NASA Astrophysics Data System (ADS)
Lee, Chi-Woo; Petrykin, Valery; Kakihana, Masato
2009-01-01
A series of 0.5 mol% Eu 2+-activated Ba 2-xSr xZnS 3 phosphor materials were synthesized using precursors prepared by the polymerizable complex method and their fluorescent properties were studied for the first time. It was found that Sr substitution for Ba leads to the considerable improvement of internal quantum efficiency and emission intensity in these materials compared to Ba 2ZnS 3, while emission peak wavelength exhibits a blue shift from 680 to 660 nm. Rietveld refinement of crystal structure of sample with x=0.7 suggests that Sr ions preferentially occupy one of two Ba sites in this compound. Such a structural re-arrangement might be responsible for the observed quantum efficiency dependence on Sr concentration.
Ba(1-x)Sr(x)Zn2Si2O7--A new family of materials with negative and very high thermal expansion.
Thieme, Christian; Görls, Helmar; Rüssel, Christian
2015-12-15
The compound BaZn2Si2O7 shows a high coefficient of thermal expansion up to a temperature of 280 °C, then a transition to a high temperature phase is observed. This high temperature phase exhibits negative thermal expansion. If Ba(2+) is successively replaced by Sr(2+), a new phase with a structure, similar to that of the high temperature phase of BaZn2Si2O7, forms. At the composition Ba0.8Sr0.2Zn2Si2O7, this new phase is completely stabilized. The crystal structure was determined with single crystal X-ray diffraction using the composition Ba0.6Sr0.4Zn2Si2O7, which crystallizes in the orthorhombic space group Cmcm. The negative thermal expansion is a result of motions and distortions inside the crystal lattice, especially inside the chains of ZnO4 tetrahedra. Dilatometry and high temperature X-ray powder diffraction were used to verify the negative thermal expansion. Coefficients of thermal expansion partially smaller than -10·10(-6) K(-1) were measured.
Dielectric properties of Ba0.6Sr0.4TiO3-La(B0.5Ti0.5)O3 (B=Mg, Zn) ceramics.
Xu, Yebin; Liu, Ting; He, Yanyan; Yuan, Xiao
2009-11-01
Ba(0.6)Sr(0.4)TiO(3)-La(B(0.5)Ti(0.5))O(3) (B = Mg, Zn) ceramics were prepared by a solid-state reaction method, and their microwave dielectric characteristics and tunability were investigated. The ferroelectric-dielectric solid solutions with cubic perovskite structures were obtained for compositions of 10 to 60 mol% La(Mg(0.5)Ti(0.5))O(3) and 10 to 50 mol% La(Zn(0.5)Ti(0.5))O(3). With the increase of linear oxide dielectric content, the dielectric constant and tunability were decreased and Qf was increased. Ba(0.6)Sr(0.4)TiO(3)-La(Mg(0.5)Ti(0.5))O(3) has better dielectric properties than Ba(0.6)Sr(0.4)TiO(3)-La(Zn(0.5)Ti(0.5))O(3). 0.9Ba(0.6)Sr(0.4)TiO(3)-0.1La(Mg(0.5)Ti(0.5))O(3) has a dielectric constant epsilon = 338.2, Qf = 979 GHz and a tunability of was 3.7% at 100 kHz under 1.67 kV/mm. The Qf value of 0.5Ba(0.6)Sr(0.4)TiO(3)- 0.5La(Mg(0.5)Ti(0.5))O(3) reached 9367 GHz, but the tunable properties were lost.
Inaba, Kazuho; Murata, Tomoyoshi; Yamamura, Shigeki; Nagano, Masaaki; Iwasaki, Kazuhiro; Nakajima, Daisuke; Takigami, Hidetaka
2018-01-01
The contents and elution behavior of metals in consumer electronics parts were determined so as to understand their maximum environmental risk. Elements contained most in printed-circuit boards were Cu, Si, Br, Ca, Al, Sn, Pb, Sb, Ba, Fe, Ni, Ti, and Zn; in cathode-ray tube glass were Si, Pb, Ba, Sr, Zn, Zr, Ca, and Sb; in arsenic contained liquid-crystal displays were Si, Ca, Sr, Ba, As, and Fe; and in antimony contained liquid-crystal displays were Si, Ba, Ca, Sb, Sr, Fe, and Sn. The elements eluted most from printed-circuit boards were Zn, Pb, and Cu; from cathode-ray tube glass were Pb, Zn, B, Ba, and Si; and from liquid-crystal displays were B and Si, and the toxic As and Sb. The amount eluted was greatest at acidic pH. It was revealed that officially recommended 6-h-shaking with a pure water test was insufficient to understand the real environmental risk of waste electronics.
Chisholm, Malcolm H; Gallucci, Judith C; Yaman, Gulsah
2009-01-14
Reactions involving MI2 where M=Mg, Ca, Sr, Ba or Zn and M'TpC* where M'=Na or Tl and TpC*=tris[3-methoxy-1,1-dimethyl)pyrazolyl]hydroborate in tetrahydrofuran are described leading to the isolation and characterization of the complexes TpC*MgI, , TpC*CaI, , TpC*SrI, , TpC*SrI(THF), , TpC*BaI, , TpC*BaI(pz*H), , where pz*H=3-(2-methoxyl-1,1-dimethyl)pyrazole, TpC*BaI.1/2toluene, and TpC*ZnI, . The compounds , , , , and have been characterized by single-crystal X-ray crystallography. Compounds and are isostructural and are salt-like containing kappa6-TpM+ cations and I- anions. In all other structures, the iodide is bound to the metal and TpC* is kappa6 bonded to the group 2 M(2+) ions. Reactions involving TpC*CaI, , and sodium or lithium alkoxides or amides failed to yield the amide or alkoxide calcium TpC* derivative, though related reactions involving TpC*ZnI, , and KOSiMe3 proceeded quantitatively to yield kappa3TpC*ZnOSiMe3, , which was also structurally characterized and shown to have the kappa3-TpC* bound ligand.
Dissolved trace elements in a nitrogen-polluted river near to the Liaodong Bay in Northeast China.
Bu, Hongmei; Song, Xianfang; Guo, Fen
2017-01-15
Dissolved trace element concentrations (Ba, Fe, Mn, Si, Sr, and Zn) were investigated in the Haicheng River near to the Liaodong Bay in Northeast China during 2010. Dissolved Ba, Fe, Mn, and Sr showed significant spatial variation, whereas dissolved Fe, Mn, and Zn displayed seasonal variations. Conditions such as water temperature, pH, and dissolved oxygen were found to have an important impact on redox reactions involving dissolved Ba, Fe, and Zn. Dissolved Fe and Mn concentrations were regulated by adsorption or desorption of Fe/Mn oxyhydroxides and the effects of organic carbon complexation on dissolved Ba and Sr were found to be significant. The sources of dissolved trace elements were found to be mainly from domestic sewage, industrial waste, agricultural surface runoff, and natural origin, with estimated seasonal and annual river fluxes established as important inputs of dissolved trace elements from the Haicheng River into the Liaodong Bay or Bohai Sea. Copyright © 2016 Elsevier Ltd. All rights reserved.
White HDPE bottles as source of serious contamination of water samples with Ba and Zn.
Reimann, Clemens; Grimstvedt, Andreas; Frengstad, Bjørn; Finne, Tor Erik
2007-03-15
During a recent study of surface water quality factory new white high-density polyethylene (HDPE) bottles were used for collecting the water samples. According to the established field protocol of the Geological Survey of Norway the bottles were twice carefully rinsed with water in the field prior to sampling. Several blank samples using milli-Q (ELGA) water (>18.2 MOmega) were also prepared. On checking the analytical results the blanks returned values of Ag, Ba, Sr, V, Zn and Zr. For Ba and Zn the values (c. 300 microg/l and 95 microg/l) were about 10 times above the concentrations that can be expected in natural waters. A laboratory test of the bottles demonstrated that the bottles contaminate the samples with significant amounts of Ba and Zn and some Sr. Simple acid washing of the bottles prior to use did not solve the contamination problem for Ba and Zn. The results suggest that there may exist "clean" and "dirty" HDPE bottles depending on manufacturer/production process. When collecting water samples it is mandatory to check bottles regularly as a possible source of contamination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linley, Timothy J.; Krogstad, Eirik J.; Nims, Megan K.
Rebuilding fish populations that have undergone a major decline is a challenging task that can be made more complicated when estimates of abundance obtained from physical tags are biased or imprecise. Abundance estimates based on natural tags where each fish in the population is marked can help address these problems, but generally requires that the samples be obtained in a nonlethal manner. We evaluated the potential of using geochemical signatures in fin rays as a nonlethal method to determine the natal tributaries of endangered juvenile spring Chinook Salmon in the Wenatchee River, Washington. Archived samples of anal fin clips collectedmore » from yearling smolt in 2009, 2010 and 2011 were analyzed for Ba/Ca, Mn/Ba, Mg/Ca, Sr/Ca, Zn/Ca and 87Sr/86Sr by inductively coupled plasma mass spectrometry. Water samples collected from these same streams in 2012 were also quantified for geochemical composition. Fin ray and water Ba/Ca, Sr/Ca, and 87Sr/86Sr were highly correlated despite the samples having been collected in different years. Fin ray Ba/Ca, Mg/Ca, Sr/Ca, Zn/Ca and 87Sr/86Sr ratios differed significantly among the natal streams, but also among years within streams. A linear discriminant model that included Ba/Ca, Mg/Ca, Sr/Ca, and 87Sr/86Sr correctly classified 95% of the salmon to their natal stream. Our results suggest that fin ray geochemistry may provide an effective, nonlethal method to identify mixtures of Wenatchee River spring Chinook Salmon for recovery efforts when these involve the capture of juvenile fish to estimate population abundance.« less
Li, Jing; Jiang, Pengfei; Gao, Wenliang; Cong, Rihong; Yang, Tao
2017-11-20
6H and 3C perovskites are important prototype structures in materials science. We systemically studied the structural evolution induced by the Sr 2+ -to-Ba 2+ substitution to the parent 6H perovskite Ba 3 ZnSb 2 O 9 . The 6H perovskite is only stable in the narrow range of x ≤ 0.2, which attributes to the impressibility of [Sb 2 O 9 ]. The preference of 90° Sb-O-Sb connection and the strong Sb 5+ -Sb 5+ electrostatic repulsion in [Sb 2 O 9 ] are competitive factors to stabilize or destabilize the 6H structure when chemical pressure was introduced by Sr 2+ incorporation. Therefore, in the following, a wide two-phase region containing 1:2 ordered 6H-Ba 2.8 Sr 0.2 ZnSb 2 O 9 and rock-salt ordered 3C-Ba 2 SrZnSb 2 O 9 was observed (0.3 ≤ x ≤ 1.0). In the final, the successive symmetry descending was established from cubic (Fm3̅m, 1.3 ≤ x ≤ 1.8) to tetragonal (I4/m, 2.0 ≤ x ≤ 2.4), and finally to monoclinic (I2/m, 2.6 ≤ x ≤ 3.0). Here we proved that the electronic configurations of B-site cations, with either empty, partially, or fully filled d-shell, would also affect the structure stabilization, through the orientation preference of the B-O covalent bonding. Our investigation gives a deeper understanding of the factors to the competitive formation of perovskite structures, facilitating the fine manipulation on their physical properties.
Electrolytes comprising metal amide and metal chlorides for multivalent battery
Liao, Chen; Zhang, Zhengcheng; Burrell, Anthony; Vaughey, John T.
2017-03-21
An electrolyte includes compounds of formula M.sup.1X.sub.n and M.sup.2Z.sub.m; and a solvent wherein M.sup.1 is Mg, Ca, Sr, Ba, Sc, Ti, Al, or Zn; M.sup.2 is Mg, Ca, Sr, Ba, Sc, Ti, Al, or Zn; X is a group forming a covalent bond with M.sup.1; Z is a halogen or pseudo-halogen; n is 1, 2, 3, 4, 5, or 6; and m is 1, 2, 3, 4, 5, or 6.
Ali, Osama Y; Randell, Nicholas M; Fridgen, Travis D
2012-04-23
Complexes formed between metal dications, the conjugate base of uracil, and uracil are investigated by sustained off-resonance irradiation collision-induced dissociation (SORI-CID) in a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Positive-ion electrospray spectra show that [M(Ura-H)(Ura)](+) (M=Zn, Cu, Ni, Co, Fe, Mn, Cd, Pd, Mg, Ca, Sr, Ba, or Pb) is the most abundant ion even at low concentrations of uracil. SORI-CID experiments show that the main primary decomposition pathway for all [M(Ura-H)(Ura)](+) , except where M=Ca, Sr, Ba, or Pb, is the loss of HNCO. Under the same SORI-CID conditions, when M is Ca, Sr, Ba, or Pb, [M(Ura-H)(Ura)](+) are shown to lose a molecule of uracil. Similar results were observed under infrared multiple-photon dissociation excitation conditions, except that [Ca(Ura-H)(Ura)](+) was found to lose HNCO as the primary fragmentation product. The binding energies between neutral uracil and [M(Ura-H)](+) (M=Zn, Cu, Ni, Fe, Cd, Pd ,Mg, Ca, Sr Ba, or Pb) are calculated by means of electronic-structure calculations. The differences in the uracil binding energies between complexes which lose uracil and those which lose HNCO are consistent with the experimentally observed differences in fragmentation pathways. A size dependence in the binding energies suggests that the interaction between uracil and [M(Ura-H)](+) is ion-dipole complexation and the experimental evidence presented supports this. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gough, L.P.; Severson, R.C.; Jackson, L.L.
1988-01-01
Element-concentration baselines are given for Parmelia sulcata and associated soils. Parmelia chlorochroa was found sporadically and therefore only representative concentration ranges are reported for this species. Element data include (1) for lichens; Al, As, Ba, B, Ca, Cr, Cu, Fe, Hg, Mn, Ni, P, Sr, S, Ti, V, Y, and Zn; and (2) for soils: Al, Ba, Be, Ca, Cs, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Nb, P, Pb, Sr, S, Ti, V, Y, and Zn. Very little (usually 7.2 km); thus, P sulcata is, in general, chemically similar throughout the park. This same uniformity was found for soil geochemistry. Numerous samples collected at close intervals would be required, therefore, to produce detailed element-concentration maps for P. sulcata and soils. No instances of elemental phytotoxic conditions were found; however, P. sulcata apparently possesses large concentrations of Ba, Cu, Fe, Pb, S, V, and possibly Zn.
NASA Astrophysics Data System (ADS)
Vladislavova, Liliya; Kracker, Michael; Zscheckel, Tilman; Thieme, Christian; Rüssel, Christian
2018-04-01
The effect of different nucleation agents such as ZrO2 and TiO2 was investigated for a first time with respect to their crystallisation behaviour in the glass system BaO-SrO-ZnO-SiO2. In all studied glasses, a Ba1-xSrxZn2Si2O7 (0.1 ≤ x ≤ 0.9) solid solution crystallized. This phase was first described in 2015 to possess a similar structure as the high temperature phase of BaZn2Si2O7 and a thermal expansion close to zero or even negative. It may find applications e.g. as cook panels, telescope mirrors, and furnace windows. Kinetic parameters of the crystallisation process were determined by supplying different heating rates in a differential scanning calorimeter (DSC). The results were evaluated using the equations of Ozawa and Kissinger with respect to the activation energies. Furthermore, the Ozawa method was used for the determination of Avrami parameters, which provides further information on the nucleation and crystallisation processes. Scanning electron microscopy including electron backscatter diffraction (EBSD) was used to characterise the microstructure, to determine the crystallite size and the crystal orientation. For the characterisation of the occurring crystalline phases, X-ray diffraction was used.
Gibson-Reinemer, D. K.; Johnson, B.M.; Martinez, P.J.; Winkelman, D.L.; Koenig, A.E.; Woodhead, J.D.
2009-01-01
Otolith chemistry in freshwater has considerable potential to reveal patterns of origin and movement, which would benefit traditional fisheries management and provide a valuable tool to curb the spread of invasive and illicitly stocked species. We evaluated the relationship between otolith and water chemistry for five markers (Ba/Ca, Mn/Ca, Sr/ Ca, Zn/Ca, and 87Sr/86Sr) in rainbow trout (Oncorhynchus mykiss) using the existing hatchery system in Colorado and Wyoming, USA, to provide controlled, seminatural conditions. Otolith Ba/Ca, Sr/Ca, and 87Sr/86Sr reflected ambient levels, whereas Mn/Ca and Zn/Ca did not. Using only the markers correlated with water chemistry, we classified fish to their hatchery of origin with up to 96% accuracy when element and isotope data were used together. Large changes in 87Sr/Sr were evident in otolith transects, although subtler changes in Sr/Ca were also detectable. Our results suggest the relatively few otolith markers that reflect ambient chemistry can discriminate among locations and track movements well enough to provide valuable insight in a variety of applied contexts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izumitani, T.; Tsuru, M.
1980-12-16
A phosphate base laser glass comprising 55-70% P2O5, 1-15% Al2O3, 0-25% Li2O, 0-25% Na2O, 0-8% K2O, the total proportion of Li2O, Na2O, and K2O being 10-25%, 0-15% BaO, 0-15% ZnO, 0-15% CaO , 0-15%, sro, 0-15% MgO, the total proportion of BaO, ZnO, CaO, SrO, and MgO being 5-15%, 0-5% Y2O3, 0-5% La2O3, 0-5% GeO2, 0-5% CeO2, 0-3% Nb2O5, 0-3% MnO2, 0-2% Ta2O5, 0-1% Sb2O3, and 0.01-5% Nd2O3, all % being mole %. The phosphate base laser glass of this invention has a high induced emission cross section, a low non-linear refractive index coefficient, and excellent acid resistance and divitrificationmore » resistance. By replacing partially or wholely one or more of LiO2, Na2O, K2O, BaO, ZnO, CaO, SrO, MgO or Al2O3 by LiF, NaF, KF , BaF2ZnF2, CaF2, SrF2, MgF2 or AlF3, respectively, the above properties of the laser glass are further improved.« less
Sun, Jifeng; Singh, David J.
2017-04-03
In this paper, we report a theoretical investigation of the electronic structure and transport properties of eleven Zintl compounds including nine 122 phases (AMg 2X 2, AZn 2Sb 2 (A = Ca, Sr, Ba; X = Sb, Bi)) and two 212 phases (Ba 2ZnX 2 (X = Sb, Bi)). The electronic structures and electrical transport properties are studied using ab initio calculations and semi-classical Boltzmann theory within the constant relaxation time approximation. All the compounds are semiconducting. We find that the n-type 122 phases with the CaAl 2Si 2 structure type show better performance than p-type materials due to themore » multi-valley degeneracy with anisotropic carrier pockets at and near the conduction band minimum. The pocket anisotropy is beneficial in achieving high conductivity and Seebeck coefficient simultaneously. This mechanism yields substantial improvement in the power factor. Finally, the general performance of 212 phases is inferior to that of the 122 phases, with the Ba 2ZnSb 2 compound showing better performance.« less
Anthropogenic metal enrichment of snow and soil in north-eastern European Russia.
Walker, T R; Young, S D; Crittenden, P D; Zhang, H
2003-01-01
Trace metal composition of winter snowpack, snow-melt filter residues and top-soil samples were determined along three transects through industrial towns in the Usa basin, North-East Russia: Inta, Usinsk and Vorkuta. Snow was analysed for Ag, Al, As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr and Zn using ICP-MS (Ca and K by F-AAS for Vorkuta only), pH and acidity/alkalinity. Filter residues were analysed for: Al, Ba, Ca, Cd, Cu, K, Mg, Mn, Ni, Pb, Sr and Zn using F-AAS and GF-AAS; top-soil samples were analysed for Ba, Cu, Mg, Mn, Na, Ni, Pb, Sr, Zn using F-AAS. Results indicate elevated concentrations of elements associated with alkaline combustion ash around the coal mining towns of Vorkuta and Inta. There is little evidence of deposition around the gas and oil town of Usinsk. Atmospheric deposition in the vicinity of Vorkuta, and to a lesser extent Inta, added significantly to the soil contaminant loading as a result of ash fallout. Acid deposition was associated with pristine areas whereas alkaline combustion ash near to emission sources more than compensated for the acidity caused by SO2.
Multifold polar states in Zn-doped Sr0.9Ba0.1TiO3 ceramics
NASA Astrophysics Data System (ADS)
Guo, Yan-Yan; Guo, Yun-Jun; Wei, Tong; Liu, Jun-Ming
2015-12-01
We investigate the effect of Zn doping on the dielectricity and ferroelectricity of a series of polycrystalline Sr0.9-xZnxBa0.1TiO3 (0.0% ≤ x ≤ 5.0%) ceramics. It is surprisingly observed that the Zn doping will produce the multifold polar states, i.e., the Zn-doped ceramic will convert a reduced polar state into an enhanced polar state, and eventually into a stabilized polar state with increasing the doping level x. It is revealed that in the background of quantum fluctuations, the competition between the Zn-doping-induced lattice contraction and the Ba-doping-induced lattice expansion is responsible for both the reduced polar state and the enhanced polar state coming into being. Also, the addition of the antiferrodistortive effect, which is the antipolar interaction originating from the opposite tilted-TiO6 octahedra rotation, represents the core physics behind the stabilized polar state. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304158, 51431006, 51102277, and 11104118), the Scientific Research Foundation of Nanjing University of Posts and Telecommunications, China (Grant No. NY213020), and the Qing Lan Project of Jiangsu Province, China.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, A.; Horowitz, D.; Waxter, R.M.
1979-02-01
Data obtained as part of the Optical Materials Characterization Program are summarized in this report. Room temperature values of refractive index as a function of wavelength are presented for the following materials: commercially grown KCl, reactive atmosphere processed (RAP) KCl, KCl nominally doped with 1.5% KI, hot forged CaF2, fusion cast CaF2, CaF2 doped with Er (0.001% to 3% Er), SrF2, chemical vapor deposited (CVD) ZnSe (2 specimens), and ZnS (CVD, 2 specimens). Data for the thermo-optic constant (dn/dT) and the linear thermal expansion coefficient are given for the following materials over the temperature range -180 degrees C to 200more » degrees C: Al2O3, BaF2, CaF2, CdF2, KBr, KCl, LiF, MgF2, NaCl, NaF, SrF2, ZnS (CVD), and ZnSe (CVD). The piezo-optic constants of the following materials are presented: As2S3 glass, CaF2, BaF2, Ge, KCl, fused SiO2, SrF2, a chalcogenide glass (Ge 33%, As 12%, Se 55%) and ZnSe (CVD).« less
Falandysz, Jerzy; Frankowska, Aneta; Jarzynska, Grazyna; Dryzałowska, Anna; Kojta, Anna K; Zhang, Dan
2011-01-01
This paper provides data on baseline concentrations, interrelationships and bioconcentration potential of 12 metallic elements by King Bolete collected from 11 spatially distant sites across Poland. There are significant differences in concentrations of metals (Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Sr, Zn) and their bioconcentration potential in King Bolete Boletus edulis at 11 spatially distant sites surveyed across Poland. These have resulted from significant geographical differences in trace metal concentrations in a layer (0-10 cm) of organic and mineral soil underneath to fruiting bodies and possible local bioavailabilities of macro- (Ca, K, Mg, Na) and trace metals (Al, Ba, Cd, Cu, Fe, Mn, Sr, Zn) to King Bolete. The use of highly appreciated wild-grown edible King Bolete mushroom has established a baseline measure of regional minerals status, heavy metals pollution and assessment of intake rates for wild mushroom dish fanciers against which future changes can be compared. Data on Cd, Cu and Zn from this study and from literature search can be useful to set the maximum limit of these metals in King Bolete collected from uncontaminated (background) areas. In this report also reviewed are data on Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Sr and Zn accumulation in King Bolete.
[Speciation Distribution and Risk Assessment of Heavy Metals in Typical Material Roof Dusts].
Li, Dun-zhu; Guan, Yun-tao; Liu, An; Li, Si-yuan
2015-09-01
With the modified BCR sequential extraction procedure, the chemical speciation and risk for 10 heavy metals (Ba, Co, Cr, Cu, Mn, Ni, Pb, Sb, Sr and Zn) in roof dusts were investigated. The subjects of this study were collected from four typical material paved roofs (i. e., ceramic tile, concrete, metal and asphalt) in southeast China. The results indicated that the average contents of heavy metals in roof dust significantly exceeded road dust. The analysis of chemical fraction showed that the acid soluble/exchangeable fraction of Zn was much higher than other elements, the existence of Pb and Cu was mainly in oxidization fraction, while other heavy metals dominated by the residual fraction. The mobility sequence percentages for all roof dust samples decreased in the order of Pb > Zn > Cu >Mn > Co >Sr > Sb > Ni > Ba > Cr, and it should be noted that Pb, Zn, Cu, Mn and Co all have more than 50% proportion in mobility sequence. Based on environmental risk assessment, the highest values of contamination factors (Cf) and risk assessment code (RAC) consistently was observed in Zn, which indicated that Zn had relatively high ecological risk. Health risk assessment showed that the non-carcinogenic hazard indexes (HI) of heavy metals decreased in the order of Pb > Cr > Sb > Zn > Mn > Cu > Ba > Ni > Co > Sr, the HI of heavy metals for adults were lower than safe value while the HI of Pb for children was higher than safe value, suggesting that they will not harm the adult's health except Pb for children. The carcinogenic risk for Cr, Co and Ni were all below the threshold values, which indicated that there was no carcinogenic risk.
Heavy metals and metalloids in egg contents and eggshells of passerine birds from Arizona
Mora, Miguel A.
2003-01-01
Concentrations of inorganic elements were determined in eggs of passerine birds including the endangered southwestern willow flycatcher (Empidonax traillii extimus) from four regions in Arizona. The main aim of the study was to determine the distribution of metals in egg contents and eggshells, with emphasis on the deposition of Sr in eggshells. Seventy eggs of 11 passerine species were collected at four nesting locations during 2000. Aluminum, Ba, Cr, Cu, Mn, Se, Sr, and Zn, were detected primarily in egg contents of all bird species. Arsenic, Ni, Pb, and V were detected primarily in eggshells. A proportion of most inorganic elements accumulated in the eggshell. Concentrations of Ba, Cu, Mn, Se, Sr, and Zn in egg contents and As, Ba, Cu, and V in eggshells of yellow-breasted chats (Icteria virens) were similar among locations. However, concentrations of Mn, Ni, Sr, and Zn in eggshells were significant different among locations. Except for Cu, Mn, Se, and Zn, concentrations of inorganic elements were 2–35 times greater in eggshells than in eggs. Most concentrations of metals and metalloids in eggs and eggshells of all the bird species were below levels known to affect reproduction or that have other deleterious effects. However, I found somewhat elevated concentrations of Sr in eggshells (highest mean=1505 μg/g dw, n=3) of yellow-breasted chats and willow flycatchers, and in egg contents of yellow warblers (Dendroica petechia) and song sparrows (Melospiza melodia). Whether current observed concentrations of Sr in eggshells are affecting nesting birds in Arizona remains to be determined. Strontium and other metals could be associated with lower hatching success in some areas. This study shows that a proportion of many inorganic elements accumulates in the eggshell and that the potential effects on the proper structure and functioning of the eggshell should not be ignored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnaprasad, P. S., E-mail: pskrishnaprasu@gmail.com, E-mail: mkj@cusat.ac.in; Jayaraj, M. K., E-mail: pskrishnaprasu@gmail.com, E-mail: mkj@cusat.ac.in; Antony, Aldrin
2015-03-28
Epitaxial (111) Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) thin films have been grown by pulsed laser deposition on (0001) Al{sub 2}O{sub 3} substrate with ZnO as buffer layer. The x-ray ω-2θ, Φ-scan and reciprocal space mapping indicate epitaxial nature of BST thin films. The domain matched epitaxial growth of BST thin films over ZnO buffer layer was confirmed using Fourier filtered high resolution transmission electron microscope images of the film-buffer interface. The incorporation of ZnO buffer layer effectively suppressed the lattice mismatch and promoted domain matched epitaxial growth of BST thin films. Coplanar inter digital capacitors fabricated on epitaxial (111) BSTmore » thin films show significantly improved tunable performance over polycrystalline thin films.« less
Out-of-plane easy-axis in thin films of diluted magnetic semiconductor Ba1-xKx(Zn1-yMny)2As2
NASA Astrophysics Data System (ADS)
Wang, R.; Huang, Z. X.; Zhao, G. Q.; Yu, S.; Deng, Z.; Jin, C. Q.; Jia, Q. J.; Chen, Y.; Yang, T. Y.; Jiang, X. M.; Cao, L. X.
2017-04-01
Single-phased, single-oriented thin films of Mn-doped ZnAs-based diluted magnetic semiconductor (DMS) Ba1-xKx(Zn1-yMny)2As2 (x = 0.03, 0.08; y = 0.15) have been deposited on Si, SrTiO3, LaAlO3, (La,Sr)(Al,Ta)O3, and MgAl2O4 substrates, respectively. Utilizing a combined synthesis and characterization system excluding the air and further optimizing the deposition parameters, high-quality thin films could be obtained and be measured showing that they can keep inactive-in-air up to more than 90 hours characterized by electrical transport measurements. In comparison with films of x = 0.03 which possess relatively higher resistivity, weaker magnetic performances, and larger energy gap, thin films of x = 0.08 show better electrical and magnetic performances. Strong magnetic anisotropy was found in films of x = 0.08 grown on (La,Sr)(Al,Ta)O3 substrate with their magnetic polarization aligned almost solely on the film growth direction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao Bo; Liu Hongrui; Avrutin, Vitaliy
2009-11-23
High quality (001)-oriented Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) thin films have been grown on a-plane sapphire (1120) by rf magnetron sputtering using a double bridge layer consisting of (0001)-oriented ZnO (50 nm) and (001)-oriented MgO (10 nm) prepared by plasma-assisted molecular beam epitaxy. X-ray diffraction revealed the formation of three sets of in-plane BST domains, offset from one another by 30 deg., which is consistent with the in-plane symmetry of the MgO layer observed by in situ reflective high electron energy diffraction. The in-plane epitaxial relationship of BST, MgO, and ZnO has been determined to be BST [110]//MgO [110]//ZnO [1120]more » and BST [110]/MgO [110]//ZnO [1100]. Capacitance-voltage measurements performed on BST coplanar interdigitated capacitor structures revealed a high dielectric tunability of up to 84% at 1 MHz.« less
Haja Hameed, Abdulrahman Syedahamed; Karthikeyan, Chandrasekaran; Senthil Kumar, Venugopal; Kumaresan, Subramanian; Sasikumar, Seemaisamy
2015-01-01
The antifungal ability of pure and alkaline metal ion (Mg(2+), Ca(2+), Sr(2+) and Ba(2+)) doped ZnO nanoparticles (NPs) prepared by the co-precipitation method was tested against the pathogenic yeast, Candida albicans (C. albicans), and the results showed that the Mg-doped ZnO NPs possessed greater effect than the other alkaline metal ion doped ZnO NPs. The impact of the concentration of Mg doped ZnO sample on the growth of C. albicans was also studied. The Minimal Fungicidal Concentration (MFC) of the Mg doped ZnO NPs was found to be 2000 μg/ml for which the growth of C. albicans was completely inhibited. The ZnO:Mg sample (1.5mg/ml) with various concentrations of histidine reduced the fungicidal effect of the nanoparticles against C. albicans, which was deliberately explained by the role of ROS. The ZnO:Mg sample added with 5mM of histidine scavenged the ample amount of generated ROS effectively. The binding of the NPs with fungi was observed by their FESEM images and their electrostatic attraction is confirmed by the zeta potential measurement. Copyright © 2015. Published by Elsevier B.V.
Bocca, Beatrice; Forte, Giovanni; Giuffra, Valentina; Serra, Rita Maria; Asara, Yolande; Farace, Cristiano; Milanese, Marco; Tognotti, Eugenia; Montella, Andrea; Bandiera, Pasquale; Madeddu, Roberto
2018-03-01
Metals in bones of 72 subjects lived between the twelfth and eighteenth century AC and collected in four Sardinian (Italian insular region) burial sites (Alghero, Bisarcio, Geridu, and Sassari) were determined and used as biomarkers to evaluate diet and potential social-environmental differences. Concentrations of Ba, Ca, Cd, Cu, Hg, Pb, Sr, and Zn were quantified in different types of compact bone (femur, fibula, humerus, radius, tibia, ulna) by sector field inductively coupled plasma mass spectrometry previous acidic digestion and differences among the various burial sites, centuries, types of bone, gender, and age were explored by univariate and multivariate analyses. Results indicated differences between sites in terms of diet: Bisarcio (inland village) had increased ratios of Ba/Ca and Zn/Ca due to higher incidence of vegetables, cereals, and animal foods in the diet; Geridu (coastal village) showed increased Sr/Ca ratio indicating foods of plant and marine origin that were predominant; Alghero (coastal site) and Sassari (inland site) displayed prevalently a mixed diet reflecting a higher economy and food imports. In addition, these latter sites showed increased levels of Hg/Ca (fish, drugs, cosmetics) and Pb/Ca (coins, utensils, pipeline for water). In conclusion, the elemental Ba/Ca, Sr/Ca, and Zn/Ca ratios were indicative of provenance and diet, while Hg/Ca and Pb/Ca ratios were associated to various forms of environmental exposure.
Electromagnon in the Y-type hexaferrite BaSrCoZnFe11AlO22
NASA Astrophysics Data System (ADS)
Vít, Jakub; Kadlec, Filip; Kadlec, Christelle; Borodavka, Fedir; Chai, Yi Sheng; Zhai, Kun; Sun, Young; Kamba, Stanislav
2018-04-01
We investigated static and dynamic magnetoelectric properties of single crystalline BaSrCoZnFe11AlO22 , which is a room-temperature multiferroic with Y-type hexaferrite crystal structure. Below 300 K, a purely electric-dipole-active electromagnon at ≈1.2 THz with the electric polarization oscillating along the hexagonal axis was observed by THz and Raman spectroscopies. We investigated the behavior of the electromagnon with applied dc magnetic field and linked its properties to static measurements of the magnetic structure. Our analytical calculations determined selection rules for electromagnons activated by the magnetostriction mechanism in various magnetic structures of Y-type hexaferrite. Comparison with our experiment supports that the electromagnon is indeed activated by the magnetostriction mechanism involving spin vibrations along the hexagonal axis.
High Pressure Properties of a Ba-Cu-Zn-P Clathrate-I
Dolyniuk, Juli -Anna; Kovnir, Kirill
2016-08-12
Here, the high pressure properties of the novel tetrel-free clathrate, Ba 8Cu 13.1Zn 3.3P 29.6, were investigated using synchrotron powder X-ray diffraction. The pressure was applied using a diamond anvil cell. No structural transitions or decomposition were detected in the studied pressure range of 0.1–7 GPa. The calculated bulk modulus for Ba 8Cu 13.1Zn 3.3P 29.6 using a third-order Birch-Murnaghan equation of state is 65(6) GPa at 300 K. This bulk modulus is comparable to the bulk moduli of Ge- and Sn-based clathrates, like A 8Ga 16Ge 30 (A = Sr, Ba) and Sn 19.3Cu 4.7P 22I 8, but lowermore » than those for the transition metal-containing silicon-based clathrates, Ba 8 T xSi46–x, T = Ni, Cu; 3 ≤ x ≤ 5.« less
Zinc isotope systematics of subduction-zone magmas
NASA Astrophysics Data System (ADS)
Huang, J.; Zhang, X. C.; Huang, F.; Yu, H.
2016-12-01
Subduction-zone magmas are generated by partial melting of mantle wedge triggered by addition of fluids derived from subducted hydrothermally altered oceanic lithosphere. Source of the fluids may be sediment, altered oceanic crust and serpentinized peridotite/serpentinite. Knowledge of the exact fluid source can facilitate our better understanding of the mechanism of fluid flux, element cycling and crust-mantle interaction in subduction zones. Zinc isotopes have the potential to place a constraint on this issue, because (1) Zn has an intermediate mobility during fluid-rock interaction and is enriched in subduction-zone fluids (e.g., Li et al., 2013); (2) sediment, altered oceanic crust and serpentinite have distinct Zn isotopic compositions (Pons et al., 2011); and (3) the mantle has a homogeneous Zn isotope composition (δ66Zn = 0.28 ± 0.05‰, Chen et al., 2013). Thus, the Zn isotopic composition of subduction-zone magmas reflects the characteristics of slab-derived fluids of different sources. Here, high-precision Zn isotope analyses were conducted on igneous rocks from arcs of Central America, Kamchatka, South Lesser Antilles, and Aleutian. One rhyolite with 75.1 wt.% SiO2 and 0.2 wt.% FeOT displays the heaviest δ66Zn value of 0.394‰ (relative to JMC Lyon) that probably results from the crystallization of Fe-Ti oxides during the late-stage differentiation. The rest of rocks have Zn isotopic compositions (0.161 to 0.339‰) similar to or lighter than those of the mantle. In an individual arc, the δ66Zn values of rocks show broad negative correlations with Ba/Th and 87Sr/86Sr ratios, suggesting that the slab-derived fluids should have lighter δ66Zn as well as higher Ba/Th and 87Sr/86Sr ratios relative to the mantle. These features are in accordance with those of serpentinites. Thus, addition of serpentinite-derived 66Zn-depleted fluids into the mantle wedge can explain the declined δ66Zn of subduction-zone magmas. ReferenceChen et al. (2013) EPSL 369-370:34-42; Li et al. (2013) GCA 120:326-362; Pons et al. (2011) PNAS 108:17639-17643.
de Macêdo, Gustavo R; Tarantino, Taiana B; Barbosa, Isa S; Pires, Thaís T; Rostan, Gonzalo; Goldberg, Daphne W; Pinto, Luis Fernando B; Korn, Maria Graças A; Franke, Carlos Roberto
2015-05-15
Concentrations of elements (As, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Sr, V, Zn) were determined in liver, kidneys and bones of Eretmochelys imbricata and Chelonia mydas specimens found stranded along the northern coast of Bahia, Brazil. Results showed that the concentrations of Cd, Cu, Ni and Zn in the liver and kidneys of juvenile C. mydas were the highest found in Brazil. We also observed a significant difference (p<0.05) on the bioaccumulation of trace elements between the two species: Al, Co, Mo, Na and Se in the liver; Al, Cr, Cu, K, Mo, Ni, Pb, Sr and V in the kidneys; and Al, Ba, Ca, Cd, Mn, Ni, Pb, Se, Sr and V in the bones. This study represents the first report on the distribution and concentration of trace elements in E. imbricata in the Brazilian coast. Copyright © 2015 Elsevier Ltd. All rights reserved.
Giant flexoelectricity in Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite
NASA Astrophysics Data System (ADS)
Li, Yong; Shu, Longlong; Huang, Wenbin; Jiang, Xiaoning; Wang, Hong
2014-10-01
Enhanced flexoelectricity in perovskite ceramics and single crystals has been reported before. In this letter, 3-3 ceramic-ceramic Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite with a colossal permittivity was employed in the conventional pure bending experiment in order to examine the transverse flexoelectric response. The measured flexoelectric coefficient at 30 Hz is 128 μC/m and varies to 16 μC/m with the frequency increasing from 30 Hz to 120 Hz, mainly due to the inverse correlation between the permittivity and the frequency. This result reveals the permittivity dependence of flexoelectric coefficient in the frequency dispersion materials, suggesting that the giant permittivity composites can be good flexoelectric materials.
Philpotts, J.A.; Aruscavage, P. J.; Von Damm, Karen L.
1987-01-01
Abundances of Li, Na, K, Rb, Ca, Sr, Ba, Mn, Fe, Zn, and Si have been determined in fluid samples from 7 vents located in three areas on the southern Juan de Fuca Ridge. The hydrothermal component estimated from the Mg contents of the samples ranges from 7% to 76%. Concentrations of Fe and Si, among other elements, in acid-stabilized solutions appear to be generally representative of the parental hydrothermal fluids, but some Zn determinations and most Ba values appear to be too low.-from Authors
Kwon, Sangil; Kang, Byeongki; Kim, Changsoo; Jo, Euna; Lee, Soonchil; Chai, Yi Sheng; Chun, Sae Hwan; Kim, Kee Hoon
2014-04-09
The magnetoelectric properties of hexaferrite Ba0.5Sr1.5Zn2Fe12O22 are significantly improved by Al substitution and thermal annealing. Measuring the enhancement factor of 57Fe NMR, we found direct microscopic evidence that the magnetic moments of the L and S blocks are rotated by a magnetic field in such a way as to increase the net magnetic moment of a magnetic unit, even after the field is removed. Al substitution makes magnetoelectric property arise easily by suppressing the easy-plane anisotropy. The effect of thermal annealing is to stabilize the multiferroic state by reducing the number of pinning sites and the electron spin fluctuation. The transverse conic structure gradually changes to the alternating longitudinal conic structure where spins fluctuate more severely.
NASA Astrophysics Data System (ADS)
Harikrishnan, V.; Vizhi, R. Ezhil; Rajan Babu, D.; Saravanan, P.
2018-02-01
The effect of conventional and spark plasma sintering processes on the structural and magnetic properties of Ba0.5Sr0.5Fe12-2xCox(MgZn)x/2O19 (x = 0.2, 0.4 and 0.6) was investigated in this study. XRD patterns of both conventionally sintered (CS) and spark plasma sintered (SPS) samples with x = 0.2 and 0.4 showed the crystallization of Ba0.5Sr0.5Fe12O19-phase with space group of P63/mmc. However, in the case of SPS sample with x = 0.4, a secondary peak of α-Fe2O3 was observed. SEM analysis on the SPS samples revealed dense morphology with low porosity; while the CS samples showed the presence of aggregated particles with spherical shapes. Maximum values of saturation magnetization, MS (58 emu/g) and coercivity, HC (3.5 kOe) were obtained for the CS samples with x = 0.4; while their SPS counterparts revealed increased MS (65 emu/g) and HC (3.9 kOe) values. The observed magnetization reversal behaviour for both sintering conditions were not smooth in the case of x = 0.2, which indicated the existence of two-phase behavior. The temperature dependent magnetization studies for x = 0.2 and 0.4 were performed in order to analyze the variation in Curie temperature against Co-Mg-Zn substitution and the obtained results are discussed on the basis of crystallization of hexaferrite-phase.
Garden-like perovskite superstructures with enhanced photocatalytic activity
NASA Astrophysics Data System (ADS)
Ye, Meidan; Wang, Mengye; Zheng, Dajiang; Zhang, Nan; Lin, Changjian; Lin, Zhiqun
2014-03-01
By subjecting amorphous flower-like TiO2 to a facile hydrothermal synthesis in the presence of Sr2+, garden-like perovskite SrTiO3 superstructures were achieved. The amorphous TiO2 was preformed using ZnO flowers as templates. Different three-dimensional SrTiO3 architectures were coexisted in the garden, including SrTiO3 flowers composed of several hollow sword-shaped petals, many sheet-shaped petals or numerous flake-shaped petals, and SrTiO3 grass consisting of a number of long blades. These SrTiO3 superstructures were simultaneously grown on fluorine-doped tin oxide (FTO) substrates. On the basis of a comprehensive study on the effects of growth time, temperature, initial concentrations of precursor, and pH, the formation of these various hierarchical architectures was attributed primarily to the dissolution of amorphous TiO2 and precipitation of perovskite crystals, followed by the Ostwald ripening process of perovskite nanocrystals and self-organization of perovskite building blocks. Interestingly, this approach can be readily extended to create other perovskite structures, including dendritic BaTiO3 and nest-like CaTiO3, as well as PbTiO3 transformed from plate-like pyrochlore Pb2Ti2O6 after post-thermal treatment. Garden-like SrTiO3 superstructures showed a superior photocatalytic performance when compared to other as-prepared semiconductors and perovskite materials (i.e., ZnO, TiO2, BaTiO3, CaTiO3 and PbTiO3), probably due to their intrinsic photocatalytic activity and special garden-like features with a coexistence of various structures that significantly facilitated the adsorption and diffusion of methyl blue (MB) molecules and oxygen species in the photochemical reaction of MB degradation.By subjecting amorphous flower-like TiO2 to a facile hydrothermal synthesis in the presence of Sr2+, garden-like perovskite SrTiO3 superstructures were achieved. The amorphous TiO2 was preformed using ZnO flowers as templates. Different three-dimensional SrTiO3 architectures were coexisted in the garden, including SrTiO3 flowers composed of several hollow sword-shaped petals, many sheet-shaped petals or numerous flake-shaped petals, and SrTiO3 grass consisting of a number of long blades. These SrTiO3 superstructures were simultaneously grown on fluorine-doped tin oxide (FTO) substrates. On the basis of a comprehensive study on the effects of growth time, temperature, initial concentrations of precursor, and pH, the formation of these various hierarchical architectures was attributed primarily to the dissolution of amorphous TiO2 and precipitation of perovskite crystals, followed by the Ostwald ripening process of perovskite nanocrystals and self-organization of perovskite building blocks. Interestingly, this approach can be readily extended to create other perovskite structures, including dendritic BaTiO3 and nest-like CaTiO3, as well as PbTiO3 transformed from plate-like pyrochlore Pb2Ti2O6 after post-thermal treatment. Garden-like SrTiO3 superstructures showed a superior photocatalytic performance when compared to other as-prepared semiconductors and perovskite materials (i.e., ZnO, TiO2, BaTiO3, CaTiO3 and PbTiO3), probably due to their intrinsic photocatalytic activity and special garden-like features with a coexistence of various structures that significantly facilitated the adsorption and diffusion of methyl blue (MB) molecules and oxygen species in the photochemical reaction of MB degradation. Electronic supplementary information (ESI) available: FESEM images and the XRD pattern of SrTiO3 films (effects of growth temperature, initial precursor concentration, and pH value), EDS analysis of ZnO, TiO2 and SrTiO3, the XRD pattern and PL spectra of PbTiO3, UV-vis spectra of different films, and UV photo-degradation of MB. See DOI: 10.1039/c3nr05564g
Rogula-Kozłowska, Wioletta; Majewski, Grzegorz; Czechowski, Piotr Oskar
2015-05-01
Ambient particulate matter (PM) was sampled in Zabrze (southern Poland) in the heating period of 2009. It was investigated for distribution of its mass and of the masses of its 18 component elements (S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Ge, As, Br, Sr, Cd, Sb, Ba, and Pb) among 13 PM size fractions. In the paper, the distribution modality of and the correlations between the ambient concentrations of these elements are discussed and interpreted in terms of the source apportionment of PM emissions. By weight, S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Ge, As, Br, Sr, Cd, Sb, Ba, and Pb were 10% of coarse and 9% of ultrafine particles. The collective mass of these elements was no more than 3.5 % of the mass of the particles with the aerodynamic diameter D p between 0.4 and 1.0 μm (PM₀.₄₋₁), whose ambient mass concentration was the highest. The PM mass size distribution for the sampling period is bimodal; it has the accumulation and coarse modes. The coarse particles were probably of the mineral/soil origin (characteristic elements: Ca, Fe, Sr, and Ba), being re-suspended polluted soil or road dust (characteristic elements: Ca, Fe, Sr, Ba, S, K, Cr, Cu, Zn, Br, Sb, Pb). The maxima of the density functions (modes) of the concentration distributions with respect to particle size of PM-bound S, Cl, K, Cu, Zn, Ge, Br, Cd, Sb, and Pb within the D p interval from 0.108 to 1.6 μm (accumulation PM particles) indicate the emissions from furnaces and road traffic. The distributions of PM-bound As, Mn, Ba, and Sr concentrations have their modes within D p ≤ 0.108 μm (nucleation PM particles), indicating the emissions from high-temperature processes (industrial sources or car engines). In this work, principal component analysis (PCA) is applied separately to each of the 13 fraction-related sets of the concentrations of the 18 PM-bound elements, and further, the fractions are grouped by their origin using cluster analysis (CA) applied to the 13 fraction-related first principal components (PC1). Four distinct groups of the PM fractions are identified: (PM₁.₆₋₂.₅, PM₂.₅₋₄.₄,), (PM₀.₀₃₋₀.₀₆, PM₀.₁₀₈₋₀.₁₇), (PM₀.₀₆₋₀.₁₀₈, PM₀.₁₇₋₀.₂₆, PM₀.₂₆₋₀.₄, PM₀.₄₋₀.₆₅, PM₀.₆₅₋₁, PM₁₋₁.₆), and (PM₄.₄₋₆.₈, PM₆.₈₋₁₀, PM>₁₀). The PM sources attributed to these groups by using PCA followed by CA are roughly the same as the sources from the apportionment done by analyzing the modality of the mass size distributions.
The occurrence and distribution of trace metals in the Mississippi River and its tributaries
Taylor, Howard E.; Garbarino, J.R.; Brinton, T.I.
1990-01-01
Quantitative and semiquantitative analyses of dissolved trace metals are reported for designated sampling sites on the Mississippi River and its main tributaries utilizing depth-integrated and width-integrated sampling technology to collect statistically representative samples. Data are reported for three sampling periods, including: July-August 1987, November-December 1987, and May-June 1988. Concentrations of Al, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Pb, Sr, Tl, U, V, and Zn are reported quantitatively, with the remainder of the stable metals in the periodic table reported semiquantitatively. Correlations between As and V, Ba and U, Cu and Zn, Li and Ba, and Li and U are significant at the 99% confidence level for each of the sampling trips. Comparison of the results of this study for selected metals with other published data show generally good agreement for Cr, Cu, Fe, and Zn, moderate agreement for Mo, and poor agreement for Cd and V.
Tracking Metal Pollution in Lake Chapala: Concentrations in Water, Sediments, and Fish.
Torres, Zaria; Mora, Miguel A; Taylor, Robert J; Alvarez-Bernal, Dioselina
2016-09-01
We measured concentrations of selected metals (Al, Ba, Cu, Mn, Hg, Sr, V, and Zn) in water, sediments, and fish from Lake Chapala and a reference site to evaluate potential negative effects on wildlife, particularly fish-eating birds. Fish metal concentrations ranged from 0.05 µg/g wet weight (ww) for Al and Cu to 64.70 µg/g ww for Sr. There was a positive and significant correlation between fish length and metals particularly for Ba, Cu, Mn, and Zn in Lake Chapala (p < 0.05). However, there were no significant correlations between metal concentrations and δ(15)N values in fish indicating no biomagnification through the food web. Overall, metal concentrations in water, sediments, and fish were similar to and in some cases below those reported for Lake Chapala over the last 20 years. Also, metal concentrations were below those that could be of concern for negative effects on fish and wildlife of Lake Chapala.
Silva, J P B; Wang, J; Koster, G; Rijnders, G; Negrea, R F; Ghica, C; Sekhar, K C; Moreira, J Agostinho; Gomes, M J M
2018-05-02
In the present work, we study the hysteretic behavior in the electric-field-dependent capacitance and the current characteristics of 0.5Ba(Zr 0.2 Ti 0.8 )O 3 -0.5(Ba 0.7 Ca 0.3 )TiO 3 (BCZT)/ZnO bilayers deposited on 0.7 wt % Nb-doped (001)-SrTiO 3 (Nb:STO) substrates in a metal-ferroelectric-semiconductor (MFS) configuration. The X-ray diffraction measurements show that the BCZT and ZnO layers are highly oriented along the c-axis and have a single perovskite and wurtzite phases, respectively, whereas high-resolution transmission electron microscopy revealed very sharp Nb:STO/BCZT/ZnO interfaces. The capacitance-electric field ( C- E) characteristics of the bilayers exhibit a memory window of 47 kV/cm and a capacitance decrease of 22%, at a negative bias. The later result is explained by the formation of a depletion region in the ZnO layer. Moreover, an unusual resistive switching (RS) behavior is observed in the BCZT films, where the RS ratio can be 500 times enhanced in the BCZT/ZnO bilayers. The RS enhancement can be understood by the barrier potential profile modulation at the depletion region, in the BCZT/ZnO junction, via ferroelectric polarization switching of the BCZT layer. This work builds a bridge between the hysteretic behavior observed either in the C- E and current-electric field characteristics on a MFS structure.
NASA Astrophysics Data System (ADS)
Francesconi, M. G.; Slater, P. R.; Hodges, J. P.; Greaves, C.; Edwards, P. P.; Al-Mamouri, M.; Slaski, M.
1998-01-01
The low-temperature fluorination of a range of insulating alkaline earth cuprates Sr2-xAxCuO3(A=Ca (0≤x≤2);A=Ba (0≤x≤0.6)) can result in superconducting oxide fluorides Sr2-xAxCuO2F2+δ. In contrast, conventional high-temperature solid-state reactions produce thermodynamically more stable mixtures of oxides and fluorides. Various soft-chemistry fluorination pathways (utilizing F2gas, NH4F,MF2[M=Cu, Zn, Ni, Ag]) are compared with respect to their efficacy and mechanisms. Attention is also focused on the structural features of the mixed-oxide precursor and the final-oxide fluorides to highlight the remarkable structural rearrangements that occur during the low-temperature fluorination. The effects of fluorination of other Sr-Cu-O systems are used to identify the structural requirements of the precursor oxide in order to achieve such transformations.
NASA Technical Reports Server (NTRS)
Loss, R. D.; Lugmair, G. W.; Davis, A. M.; Macpherson, G. J.
1994-01-01
The isotopic compositions of Mg, Ca, Ti, Cr, Zn, Sr, Ba, Nd, and Sm were measured in four relatively unaltered refractory inclusions from the Vigarano carbonaceous chondrite meteorite. Three of the inclusions (USNM 1623-2, 1623-3, and 1623-8) show similar Mg, Ca, Ti, and Cr isotopic compositions to those found in most inclusions in the Allende carbonaceous chondrite. This indicates that these Vigarano inclusions sampled the same isotopic reservoirs as the majority of the Allende inclusions that isotope signatures in the latter were not significantly modified by the secondary alteration that permeates most Allende inclusions. In contrast, inclusion 1623-5 has large deficits in Mg-26, Ca-48, and Ti-50 and small but distinct Cr-54, Zn-66, Sr-84, Ba-135, Ba-137, and Sm-144 anomalies. The magnitudes of these unusual anomalies in the refractory elements are within analytical uncertainty of those found in the Allende 'FUN" inclusion C1, yet 1623-5 has a very different bulk chemical composition from C1. The fact that 1623-5 and C1 have identical isotopic anomalies yet have significantly distinct major and trace element contents provide convincing evidence for the presence of isotopically distinct reservoirs in the early solar system.
Böhlke, J.K.; Radtke, A.S.; Heropoulos, Chris; Lamothe, P.J.
1981-01-01
Samples of cuttings from three drill holes in the Gibellini claims were analyzed by emission spectroscopic techniques for a large suite of major and trace elements. Unoxidized siliceous "black shale" from drill hole NGA 7 is strongly enriched in Cd, Mo, Sb, Se, V, and Zn, and also contains relatively high concentrations of As, Ba, Cu, Ni, and Tl compared with nonmetalliferous shales. Analyses of 103 samples plotted against depth in drill holes NGA, NG31, and NGA7, and selected XRD data, show the following: 1. Groups of elements with distinct distribution patterns define most of major mineralogic components of the rocks. The "normal shale" component, which includes several detrital and authigenic phases, is indicated by covariations among Ti, Al, Fe, Na, Mg, K, B, Be, Co, Cr, Ga, La, Sc, Sr, and Zr. The shale component is diluted by varying amounts of the following minerals (and associated elements): silica (Si); dolomite (Mg, Ca, Mn, Sr); apatite (Ca, Be, Cr, La, Sr, Y); barite (Ba, Sr); sphalerite (Zn, Cd, Fe?); smithsonite (Cd, Co, Mn, Ni, Zn); bianchite (Cd, Ni, Zn) ; and bokite (V). Pyrite, gypsum, and jarosite were also identified.2. The highly siliceous kerogenous metalliferous Gibellini facies is underlain by argillaceous and (or) dolomitic rocks. The transition zone deduced from the chemical data is not well defined in all instances, but probably represents the bottom of the black shale deposit. 3. Oxidation has reached to variable depths up to at least 150 ft, and has caused profound changes in the distributions of the enriched metals. Molybdenum, Se, and V have been partially removed from the upper parts of the sections and are concentrated near or slightly above the base of the Gibellini facies. Cadmium, Ni, and Zn have been strongly leached and now occur at or below the base of the Gibellini facies. The variable depth of oxidation, the redistribution and separation of the metals, and the complex mineralogy of the deposit may make development of the claim complicated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Shipeng; Yan, Liqin; Chai, Yisheng
2014-01-20
Low magnetic field reversal of electric polarization has been demonstrated in the multiferroic Y-type hexaferrite Ba{sub 1.3}Sr{sub 0.7}Co{sub 0.9}Zn{sub 1.1}Fe{sub 10.8}Al{sub 1.2}O{sub 22} single crystal. The maximum magnetoelectric coefficient at 200 K reaches 1065 ps/m near zero magnetic field. By a systematic investigation of magnetic field dependence of magnetic and dielectric responses at various temperatures, we obtained the magnetoelectric phase diagram describing the detailed evolution of the spin-induced ferroelectric phases with temperature and magnetic field. Below 225 K, the transverse spin cone can be stabilized at zero magnetic field, which is responsible for the reversal behavior of electric polarization. Our study reveals howmore » to eventually achieve magnetic field reversal of electric polarization in hexaferrites at room temperature.« less
Hong, Feng; Lin, Wenjun; Meng, Weiwei; Yan, Yanfa
2016-02-14
We propose trigonal Cu2-II-Sn-VI4 (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant solar cell applications. Through density functional theory calculations, we show that these compounds exhibit similar electronic and optical properties to kesterite Cu2ZnSnS4 (CZTS): high optical absorption with band gaps suitable for efficient single-junction solar cell applications. However, the trigonal Cu2-II-Sn-VI4 compounds exhibit defect properties more suitable for photovoltaic applications than those of CZTS. In CZTS, the dominant defects are the deep acceptors, Cu substitutions on Zn sites, which cause non-radiative recombination and limit the open-circuit voltages of CZTS solar cells. On the contrary, the dominant defects in trigonal Cu2-II-Sn-VI4 are the shallow acceptors, Cu vacancies, similar to those in CuInSe2. Our results suggest that the trigonal Cu2-II-Sn-VI4 quaternary compounds could be promising candidates for efficient earth-abundant thin-film solar cell and photoeletrochemical water-splitting applications.
Anode materials for lithium ion batteries
Abouimrane, Ali; Amine, Khalil
2017-04-11
An electrochemical device includes a composite material of general Formula (1-x)J-(x)Q wherein: J is a metal carbon alloy of formula Sn.sub.zSi.sub.z'Met.sub.wMet'.sub.w'C.sub.t; Q is a metal oxide of formula A.sub..gamma.M.sub..alpha.M'.sub..alpha.'O.sub..beta.; and wherein: A is Li, Na, or K; M and M' are individually Ge, Mo, Al, Ga, As, Sb, Te, Ti, Ta, Zr, Ca, Mg, Sr, Ba, Li, Na, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Rt, Ru or Cd; Met and Met' are individually Ge, Mo, Al, Ga, As, Sb, Te, Ti, Ta, Zr, Ca, Mg, Sr, Ba, Li, Na, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Rt, Ru or Cd; 0
NASA Astrophysics Data System (ADS)
Abidi, R.; Slim-Shimi, N.; Somarin, A.; Henchiri, M.
2010-05-01
The Ain Allega Pb-Zn-Sr-Ba ore deposit is located in the flysch zone on the Eastern edge of the Triassic diapir of Jebel Hamra. It is part of the extrusive Triassic evaporate formation along the Ghardimaou-Cape Serrat faults. The ore body consists of argilic-dolomite breccias surrounded by argilo-gypsum Triassic formation, which forms the hanging wall of the deposit, and rimmed by the Paleocene marls. The ore minerals show a cap-rock type mineralization with different styles particularly impregnation in dolomite, cement of breccias, replacement ore and open space filling in the dissolution cavities and fractures. Ore minerals include sphalerite, galena, marcasite and pyrite. Principal gangue minerals are composed of barite, celestite, calcite, dolomite and quartz. The ore minerals are hosted by the Triassic carbonate rocks which show hydrothermal alteration, dissolution and brecciation. X-ray - crystallographic study of barite-celestite mineral series shows that pure barite and celestite are the abundant species, whereas strontianiferous barite (85-96.5% BaSO 4) and barian-celestite (95% SrSO 4) are minor. Primary and secondary mono-phase (liquid only) fluid inclusions are common in celestite. Microthermometric analyses in two-phases (liquid and vapour) fluid inclusions suggest that gangue and ore minerals were precipitated by a low-temperature (180 °C) saline (16.37 wt.% NaCl equivalent) solution originated possibly from a basinal brine with some input from magmatic or metamorphic fluid. Based on geology, mineralogy, texture and fluid characteristics, the Ain Allega deposit is classified as a carbonate-hosted Mississippi valley-type deposit.
Trace elements and radon in groundwater across the United States, 1992-2003
Ayotte, Joseph D.; Gronberg, Jo Ann M.; Apodaca, Lori E.
2011-01-01
Trace-element concentrations in groundwater were evaluated for samples collected between 1992 and 2003 from aquifers across the United States as part of the U.S. Geological Survey National Water-Quality Assessment Program. This study describes the first comprehensive analysis of those data by assessing occurrence (concentrations above analytical reporting levels) and by comparing concentrations to human-health benchmarks (HHBs). Data from 5,183 monitoring and drinking-water wells representing more than 40 principal and other aquifers in humid and dry regions and in various land-use settings were used in the analysis. Trace elements measured include aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), boron (B), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), lithium (Li), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se), silver (Ag), strontium (Sr), thallium (Tl), uranium (U), vanadium (V), and zinc (Zn). Radon (Rn) gas also was measured and is included in the data analysis. Climate influenced the occurrence and distribution of trace elements in groundwater whereby more trace elements occurred and were found at greater concentrations in wells in drier regions of the United States than in humid regions. In particular, the concentrations of As, Ba, B, Cr, Cu, Mo, Ni, Se, Sr, U, V, and Zn were greater in the drier regions, where processes such as chemical evolution, ion complexation, evaporative concentration, and redox (oxidation-reduction) controls act to varying degrees to mobilize these elements. Al, Co, Fe, Pb, and Mn concentrations in groundwater were greater in humid regions of the United States than in dry regions, partly in response to lower groundwater pH and (or) more frequent anoxic conditions. In groundwater from humid regions, concentrations of Cu, Pb, Rn, and Zn were significantly greater in drinking-water wells than in monitoring wells. Samples from drinking-water wells in dry regions had greater concentrations of As, Ba, Pb, Li, Sr, V, and Zn, than samples from monitoring wells. In humid regions, however, concentrations of most trace elements were greater in monitoring wells than in drinking-water wells; the exceptions were Cu, Pb, Zn, and Rn. Cu, Pb, and Zn are common trace elements in pumps and pipes used in the construction of drinking-water wells, and contamination from these sources may have contributed to their concentrations. Al, Sb, Ba, B, Cr, Co, Fe, Mn, Mo, Ni, Se, Sr, and U concentrations were all greater in monitoring wells than in drinking-water wells in humid regions. Groundwater from wells in agricultural settings had greater concentrations of As, Mo, and U than groundwater from wells in urban settings, possibly owing to greater pH in the agricultural wells. Significantly greater concentrations of B, Cr, Se, Ag, Sr, and V also were found in agricultural wells in dry regions. Groundwater from dry-region urban wells had greater concentrations of Co, Fe, Pb, Li, Mn, and specific conductance than groundwater from agricultural wells. The geologic composition of aquifers and aquifer geochemistry are among the major factors affecting trace-element occurrence. Trace-element concentrations in groundwater were characterized in aquifers from eight major groups based on geologic material, including (1) unconsolidated sand and gravel; (2) glacial unconsolidated sand and gravel; (3) semiconsolidated sand; (4) sandstone; (5) sandstone and carbonate rock; (6) carbonate rock; (7) basaltic and other volcanic rock; and (8) crystalline rock. The majority of groundwater samples and the largest percentages of exceedences of HHBs were in the glacial and nonglacial unconsolidated sand and gravel aquifers; in these aquifers, As, Mn, and U are the most common trace elements exceeding HHBs. Overall, 19 percent of wells (962 of 5,097) exceeded an HHB for at least one trace element. The trace elements with HHBs included in this summary were Sb, As, Ba, Be, B, Cd, Cr,
Jones, Corey L.; Marsden, Elizabeth A.; Nevin, Adam C.; Kariuki, Benson M.; Bhadbhade, Mohan M.; Martin, Adam D.
2017-01-01
A series of new group 2 coordination polymers, MgL ={MgL(H2O)(DMF)0.75}∞, CaL = {CaL(DMF)2}∞, SrL = {SrL(H2O)0.5}∞ and BaL = {BaL(H2O)0.5}∞, were synthesized using a flexible benzimidazolone diacetic acid linker (H2L) in which the two carboxylic acid binding sites are connected to a planar core via {–CH2–} spacers that can freely rotate in solution. In a ‘curiosity-led' diversion from group 2 metals, the first row transition metal salts Mn2+, Cu2+ and Zn2+ were also reacted with L to yield crystals of MnL = {MnL(DMF)(H2O)3.33}∞, Cu3L2 = {Cu3L2(DMF)2(CHO2)2}∞ and ZnL = {ZnL(DMF)}∞. Crystal structures were obtained for all seven materials. All structures form as two-dimensional sheets and contain six-coordinate centres, with the exception of ZnL, which displays tetrahedrally coordinated metal centres, and Cu3L2, which contains square planar coordinated metal centres and Cu paddle-wheels. In each structure, the linker adopts one of two distinct conformations, with the carboxylate groups either cis or trans with respect to the planar core. All materials were also characterized by powder X-ray diffraction and thermogravimetric analysis. PMID:29308246
Jami-Alahmadi, Yasaman; Fridgen, Travis D
2016-01-21
M(Pro2-H)(+) complexes were electrosprayed and isolated in an FTICR cell where their unimolecular chemistries and structures were explored using SORI-CID and IRMPD spectroscopy. These experiments were augmented by computational methods such as electronic structure, simulated annealing, and atoms in molecules (AIM) calculations. The unimolecular chemistries of the larger metal cation (Ca(2+), Sr(2+) and Ba(2+)) complexes predominantly involve loss of neutral proline whereas the complexes involving the smaller Mg(2+) and transition metal dications tend to lose small neutral molecules such as water and carbon dioxide. Interestingly, all complexes involving transition metal dications except for Cu(Pro2-H)(+) lose H2 upon collisional or IRMPD activation. IRMPD spectroscopy shows that the intact proline in the transition metal complexes and Cu(Pro2-H)(+) is predominantly canonical (charge solvated) while for the Ca(2+), Sr(2+), and Ba(2+) complexes, proline is in its zwitterionic form. The IRMPD spectra for both Mg(Pro2-H)(+) and Mn(Pro2-H)(+) are concluded to have contributions from both charge-solvated and canonical structures.
NASA Astrophysics Data System (ADS)
Yamamichi, Shintaro; Yabuta, Hisato; Sakuma, Toshiyuki; Miyasaka, Yoichi
1994-03-01
(Ba0.5Sr0.5)TiO3 thin films were prepared by ion beam sputtering from powder targets with (Ba+Sr)/Ti ratios ranging from 0.80 to 1.50. All of the perovskite (Ba,Sr)TiO3 films were single phase except for the film with a (Ba+Sr)/Ti ratio of 1.41. The dielectric constant values notably depended on the (Ba+Sr)/Ti ratio for films thicker than 70 nm. The highest dielectric constant of 580 was achieved for the 5% (Ba+Sr) rich film. This (Ba+Sr)/Ti ratio dependence was diminished by the thickness dependence for thinner films. The grain sizes for the 9% (Ba+Sr) rich film and for the 6% (Ba+Sr) poor film ranged from 70 to 100 nm and from 30 to 60 nm, respectively. This grain size difference could explain why slightly A-site rich (Ba,Sr)TiO3 films have a larger dielectric constant than A-site poor films.
Geological-hydrogeochemical characteristics of a “silver spring” water source (the Lozovy ridge)
NASA Astrophysics Data System (ADS)
Ivanova, I. S.; Bragin, I. V.; Chelnokov, G. A.; Bushkareva, K. Yu; Shvagrukova, E. V.
2016-03-01
Geological and hydrogeological characteristics of the Lozovy ridge (Southern Primorye) are studied, as far as karst phenomena are widely distributed within its boundaries. Water-bearing rocks of the karst water source “Silver Spring” (“Serebryany Klyuch”), which is located near the bottom of the “Bear’s fang” (“Medvezhiy klyk”) cave, are investigated. It is found that karst rocks are presented by calcite (CaCO3), and an accessory mineral is barite (BaSO4). It is determined that among the trace elements forming the composition of carbonate water-bearing rocks the maximum concentrations are typical for Sr, Ba, Fe, Al, Za, Mn, Cu, and Ni. Also, the chemical composition of the waters taken from the “Silver Spring” water source is studied. These waters are fresh, hydrocarbonate, calcium, and weakly alkaline. Among the elements of the spring, such elements as Sr, Ba, Fe, Al, Zn, Mn, Cu, and Ni have the maximum concentration. The other elements have concentrations less than 1 µg/l.
Oriented Y-type hexagonal ferrite thin films prepared by chemical solution deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buršík, J., E-mail: bursik@iic.cas.cz; Kužel, R.; Knížek, K.
2013-07-15
Thin films of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} (Y) hexaferrite were prepared through the chemical solution deposition method on SrTiO{sub 3}(1 1 1) (ST) single crystal substrates using epitaxial SrFe{sub 12}O{sub 19} (M) hexaferrite thin layer as a seed template layer. The process of crystallization was mainly investigated by means of X-ray diffraction and atomic force microscopy. A detailed inspection revealed that growth of seed layer starts through the break-up of initially continuous film into isolated grains with expressive shape anisotropy and hexagonal habit. The vital parameters of the seed layer, i.e. thickness, substrate coverage, crystallization conditions and temperature rampmore » were optimized with the aim to obtain epitaxially crystallized Y phase. X-ray diffraction Pole figure measurements and Φ scans reveal perfect parallel in-plane alignment of SrTiO{sub 3} substrate and both hexaferrite phases. - Graphical abstract: XRD pole figure and AFM patterns of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} thin film epitaxially grown on SrTiO{sub 3}(1 1 1) single crystal using seeding layer templating. - Highlights: • Single phase Y-type hexagonal ferrite thin films were prepared by CSD method. • Seed M layer breaks into isolated single crystal islands and serves as a template. • Large seed grains grow by consuming the grains within the bulk of recoated film. • We explained the observed orientation relation of epitaxial domains. • Epitaxial growth on SrTiO{sub 3}(1 1 1) with relation (0 0 1){sub M,Y}//(1 1 1){sub ST}+[1 0 0]{sub M,Y}//[2 −1 −1]{sub ST}.« less
Agusa, Tetsuro; Matsumoto, Taro; Ikemoto, Tokutaka; Anan, Yasumi; Kubota, Reiji; Yasunaga, Genta; Kunito, Takashi; Tanabe, Shinsuke; Ogi, Haruo; Shibata, Yasuyuki
2005-09-01
Body distribution and maternal transfer of 18 trace elements (V, Cr, Mn, Co, Cu, Zn, Se, Rb, Sr, Mo, Ag, Cd, Sb, Cs, Ba, Hg, Tl, and Pb) to eggs were examined in black-tailed gulls (Larus crassirostris), which were culled in Rishiri Island, Hokkaido Prefecture, Japan. Manganese, Cu, Rb, Mo, and Cd showed the highest levels in liver and kidney, Ag, Sb, and Hg in feather, and V, Sr, and Pb in bone. Maternal transfer rates of trace elements ranged from 0.8% (Cd) to as much as 65% (Tl) of maternal body burden. Large amounts of Sr, Ba, and Tl were transferred to the eggs, though maternal transfer rates of V, Cd, Hg, and Pb were substantially low. It also was observed that Rb, Sr, Cd, Cs, and Ba hardly were excreted into feathers. Concentrations of Co in liver, Ba in liver and kidney, and Mo in liver increased significantly with age, whereas Se in bone and kidney, Hg in kidney, and Cr in feather decreased with age in the known-aged black-tailed gulls (2-20 years old). It also was suggested that feathers might be useful to estimate contamination status of trace elements in birds, especially for Hg on a population basis, although the utility is limited on an individual basis for the black-tailed gulls. To our knowledge, this is the first report on the maternal transfer rate of multielements and also on the usefulness of feathers to estimate contamination status of Hg in birds on a population basis.
Altundag, Huseyin; Albayrak, Sinem; Dundar, Mustafa S; Tuzen, Mustafa; Soylak, Mustafa
2015-11-01
The main aim of this study was an investigation of the influence of selected soil and plant properties on the bioaccessibility of trace elements and hence their potential impacts on human health in urban environments. Two artificial digestion models were used to determine trace element levels passing from soil and plants to man for bioavailability study. Soil and plant samples were collected from various regions of the province of Sakarya, Turkey. Digestive process is started by addition of soil and plant samples to an artificial digestion model based on human physiology. Bioavailability % values are obtained from the ratio of the amount of element passing to human digestion to element content of soil and plants. According to bioavailability % results, element levels passing from soil samples to human digestion were B = Cr = Cu = Fe = Pb = Li < Al < Ni < Co < Ba < Mn < Sr < Cd < Na < Zn < Tl, while element levels passing from plant samples to human digestion were Cu = Fe = Ni = Pb = Tl = Na = Li < Co < Al < Sr < Ba < Mn < Cd < Cr < Zn < B. It was checked whether the results obtained reached harmful levels to human health by examining the literature.
Electrical and Optical Properties of Nanocrystalline A8ZnNb6O24 (A = Ba, Sr, Ca, Mg) Ceramics
NASA Astrophysics Data System (ADS)
John, Fergy; Thomas, Jijimon K.; Jacob, John; Solomon, Sam
2017-08-01
Nanoparticles of A8ZnNb6O24 (A = Ba, Sr, Ca, and Mg, abbreviated as BZN, SZN, CZN, and MZN) have been synthesized by an auto-igniting combustion technique and their structural and optical properties characterized. The phase purity, crystal structure, and particle size of the prepared nanopowders were examined by x-ray diffraction (XRD) analysis and transmission electron microscopy. The XRD results revealed that all the samples crystallized with hexagonal perovskite structure in space group P6 3 cm. The Fourier-transform infrared and Raman (FT-Raman) spectra of the samples were investigated in detail. The ultraviolet-visible (UV-Vis) absorption spectra of the samples were also recorded and their optical bandgap energy values calculated. The nanopowders synthesized by the combustion technique were sintered to 95% of theoretical density at temperature of 1250°C for 2 h. The surface morphology of the sintered pellets was studied by scanning electron microscopy. The photoluminescence spectra of the samples showed intense emission in the blue-green region. Complex impedance analysis was used to determine the grain and grain boundary effects on the dielectric behavior of the ceramics.
Absence of Dirac states in BaZnBi 2 induced by spin-orbit coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Weijun; Wang, Aifeng; Graf, D.
We report magnetotransport properties of BaZnBi 2 single crystals. Whereas electronic structure features Dirac states, such states are removed from the Fermi level by spin-orbit coupling (SOC) and consequently electronic transport is dominated by the small hole and electron pockets. Our results are consistent with not only three-dimensional, but also with quasi-two-dimensional portions of the Fermi surface. The SOC-induced gap in Dirac states is much larger when compared to isostructural SrMnBi 2. This suggests that not only long-range magnetic order, but also mass of the alkaline-earth atoms A in ABX 2 ( A = alkaline-earth, B = transition-metal, and Xmore » = Bi/Sb) are important for the presence of low-energy states obeying the relativistic Dirac equation at the Fermi surface.« less
Absence of Dirac states in BaZnBi 2 induced by spin-orbit coupling
Ren, Weijun; Wang, Aifeng; Graf, D.; ...
2018-01-22
We report magnetotransport properties of BaZnBi 2 single crystals. Whereas electronic structure features Dirac states, such states are removed from the Fermi level by spin-orbit coupling (SOC) and consequently electronic transport is dominated by the small hole and electron pockets. Our results are consistent with not only three-dimensional, but also with quasi-two-dimensional portions of the Fermi surface. The SOC-induced gap in Dirac states is much larger when compared to isostructural SrMnBi 2. This suggests that not only long-range magnetic order, but also mass of the alkaline-earth atoms A in ABX 2 ( A = alkaline-earth, B = transition-metal, and Xmore » = Bi/Sb) are important for the presence of low-energy states obeying the relativistic Dirac equation at the Fermi surface.« less
NASA Astrophysics Data System (ADS)
Pingitore, N. E.; Cruz-Jimenez, G.; Price, T. D.
2001-12-01
X-ray absorption spectroscopy (XAS) affords the opportunity to probe the atomic environment of trace elements in human bone. We are using XAS to investigate the mode(s) of incorporation of Sr, Zn, Pb, and Ba in both modern and ancient (and thus possibly altered) human and animal bone. Because burial and diagenesis may add trace elements to bone, we performed XAS analysis on samples of pristine contemporary and ancient, buried human and animal bone. We assume that deposition of these elements during burial occurs by processes distinct from those in vivo, and this will be reflected in their atomic environments. Archaeologists measure strontium in human and animal bone as a guide to diet. Carnivores show lower Sr/Ca ratios than their herbivore prey due to discrimination against Sr relative to Ca up the food chain. In an initial sample suite no difference was observed between modern and buried bone. Analysis of additional buried samples, using a more sensitive detector, revealed significant differences in the distance to the second and third neighbors of the Sr in some of the buried samples. Distances to the first neighbor, oxygen, were similar in all samples. Zinc is also used in paleo-diet studies. Initial x-ray absorption spectroscopy of a limited suite of bones did not reveal any differences between modern and buried samples. This may reflect the limited number of samples examined or the low levels of Zn in typical aqueous solutions in soils. Signals from barium and lead were too low to record useful XAS spectra. Additional samples will be studied for Zn, Ba, and Pb. We conducted our XAS experiments on beam lines 4-1 and 4-3 at the Stanford Synchrotron Radiation Laboratory. Data were collected in the fluorescence mode, using a Lytle detector and appropriate filter, and a solid state, 13-element Ge-detector.
Hinkley, T.K.; Seeley, J.L.; Tatsumoto, M.
1988-01-01
Three distinct types of solid material are associated with each sample of the hydrothermal fluid that was collected from the vents of the Southern Juan de Fuca Ridge. The solid materials appear to be representative of deposits on ocean floors near mid-ocean ridges, and interpretation of the chemistry of the hydrothermal solutions requires understanding of them. Sr isotopic evidence indicates that at least two and probably all three of these solid materials were removed from the solution with which they are associated, by precipitation or adsorption. This occurred after the "pure" hydrothermal fluid was diluted and thoroughly mixed with ambient seawater. The three types of solid materials, are, respectively, a coarse Zn- and Fe-rich material with small amounts of Na and Ca; a finer material also rich in Zn and Fe, but with alkali and alkaline-earth metals; and a scum composed of Ba or Zn, with either considerable Fe or Si, and Sr. Mineral identification is uncertain because of uncertain anion composition. Only in the cases of Ba and Zn were metal masses greater in solid materials than in the associated fluids. For all other metals measured, masses in fluids dwarf those in solids. The fluids themselves contain greater concentrations of all metals measured, except Mg, than seawater. We discuss in detail the relative merits of two methods of determining the mixing proportions of "pure" hydrothermal solution and seawater in the fluids, one based on Sr isotopes, and another previously used method based on Mg concentrations. Comparison of solute concentrations in the several samples shows that degree of dilution of "pure" hydrothermal solutions by seawater, and amounts of original solutes that were removed from it as solid materials, are not related. There is no clear evidence that appreciable amounts of solid materials were not conserved (lost) either during or prior to sample collection. ?? 1988.
Structure and properties of hopeites (Mg xZn 1- x) 3(PO 4) 2 · 4H 2O
NASA Astrophysics Data System (ADS)
Haussühl, S.; Middendorf, B.; Dörffel, M.
1991-07-01
Mg-hopeites (Mg xZn 1- x) 3(PO 4) 2 · 4H 2O were prepared by crystallization from hot aqueous solutions (70°C). The structure of (Mg 0.206Zn 0.794) 3(PO 4) 2 · 4H 2O has been determined from 1612 unique reflections (MoKα, R = 0.033): Pnma, a1 = 10.594(2), a2 = 18.333(2), a3 = 5.029(2)Å, Z = 4, Dcalc = 2.943g cm -3. The structure resembles that of pure hopeite. However, the magnesium atoms occupy only the sixcoordinated site. The thermal behavior of hopeites is strongly influenced by the substitution of Zn by Mg. The dehydration range is shifted to higher temperatures with increasing Mg content. A strongly anisotropic thermal expansion was measured by X-ray diffraction in a temperature range of -40° to 50°C. Experiments to substitute Zn by Ca, Sr, and Ba in the hopeite failed. A hitherto unknown monoclinic phase with the composition BaZn 2(PO 4) 2 · H 2O and a1 = 4.707(2), a2 = 7.840(2), a3 = 8.061(3)Å, and α 2 = 88.99(4)° was found.
Diyabalanage, Saranga; Fonseka, Sanjeewani; Dasanayake, D M S N B; Chandrajith, Rohana
2017-01-01
An alarming increase in chronic kidney disease with unknown etiology (CKDu) has recently been reported in several provinces in Sri Lanka and chronic exposures to toxic trace elements were blamed for the etiology of this disease. Keratinized matrices such as hair and nails were investigated to determine the possible link between CKDu and toxic element exposures. Elements Li, B, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Ba, Hg and Pb of hair and nails of patients and age that matched healthy controls were determined with Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The results showed that trace element contents in the hair of patients varies in the order of Zn>Fe>Al>Mn>Cu>Ba>Sr>Ni>Pb>Cr>B>Hg>Se>Mo>Co>As>Li>Cd while Fe>Al>Zn>Ni>Cu>Mn>Cr>Ba>Sr>B>Pb>Se>Mo>Co>Hg>Li>As>Cd in nail samples. The hair As levels of 0.007-0.165μgg -1 were found in CKDu subjects. However, no significant difference was observed between cases and controls. The total Se content in hair of CKDu subjects ranged from 0.043 to 0.513μgg -1 while it was varied from 0.031 to 1.15μgg -1 in controls. Selenium in nail samples varied from 0.037μgg -1 to 4.10μgg -1 in CKDu subjects and from 0.042μgg -1 to 2.19μgg -1 in controls. This study implies that substantial proportions of Sri Lankan population are Se deficient irrespective of gender, age and occupational exposure. Although some cutaneous manifestations were observed in patient subjects, chemical analyses of hair and nails indicated that patients were not exposed to toxic levels of arsenic or the other studied toxic elements. Therefore the early suggested causative factors such as exposure to environmental As and Cd, can be ruled out. Copyright © 2016 Elsevier GmbH. All rights reserved.
Ariyama, Kaoru; Nishida, Tadashi; Noda, Tomoaki; Kadokura, Masashi; Yasui, Akemi
2006-05-03
Mineral concentrations of onions (Allium cepa L.) grown under various conditions, including factors (fertilization, crop year, variety, and provenance), were investigated to clarify how much each factor contributes to the variation of their concentrations. This was because the mineral concentrations might be affected by various factors. The ultimate goal of this study was to develop a technique to determine the geographic origins of onions by mineral composition. Samples were onions grown under various conditions at 52 fields in 18 farms in Hokkaido, Japan. Twenty-six elements (Li, Na, Mg, Al, P, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Mo, Cd, Cs, Ba, La, Ce, Nd, Gd, W, and Tl) in these samples were determined by inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. Fertilization conditions and crop years of onions caused variations of P, Ni, Cu, Rb, Sr, Mo, Cs, and Tl concentrations in onions; different onion varieties also showed variations in numerous element concentrations. However, the variations of mineral compositions of onions by these factors were smaller than the differences between production places with a few exceptions. Furthermore, Na, Rb, and Cs in group IA of the periodic table, Ca, Sr, and Ba in group IIA, and Zn and Cd in group IIB showed similar concentration patterns by group; this result demonstrated that elements in the same periodic groups behaved similarly in terms of their absorption in onions.
NASA Astrophysics Data System (ADS)
Ritter, Simon M.; Isenbeck-Schröter, Margot; Schröder-Ritzrau, Andrea; Scholz, Christian; Rheinberger, Stefan; Höfle, Bernhard; Frank, Norbert
2018-03-01
The formation of tufa is essentially influenced by biological processes and, in order to infer environmental information from tufa deposits, it has to be determined how the geochemistry of biologically influenced tufa deviates from equilibrium conditions between water and calcite precipitate. We investigated the evolution of the water and tufa geochemistry of consecutive tufa barrages in a small tufa-depositing creek in Southern Germany. High incorporation of divalent cations into tufa is ubiquitous, which is probably promoted by an influence of biofilms in the tufa element partitioning. The distribution coefficients for the incorporation of Mg, Sr and Ba into tufa at the Kaisinger creek D(Mg), D(Sr) and D(Ba) are 0.020-0.031, 0.13-0.18 and 0.26-0.43, respectively. This agrees with previous research suggesting that biofilm influenced tufa will be enriched in divalent cations over equilibrium values in the order of Mg < Sr < Ba. Furthermore, the incorporation of Mg, Sr and Ba into tufa of the Kaisinger creek decreases downstream, which can be attributed to changes of the relative portions of bio-influenced tufa formation with likely higher distribution coefficients and inorganically-driven tufa formation with likely lower distribution coefficients. Additionally, the distribution coefficients of metals in tufa of the Kaisinger creek D(Cd), D(Zn), D(Co) and D(Mn) show values of 11-22, 2.2-12, 0.7-4.9 and 30-57, respectively. These metals are highly enriched in upstream tufa deposits and their contents in tufa strongly decrease downstream. Such highly compatible elements could therefore be used to distinguish easily between different lateral sections in fluvial barrage-dam tufa depositional systems and could serve as a useful geochemical tool in studying ancient barrage-dam tufa depositional systems.
Concentrations of trace elements in marine fish and its risk assessment in Malaysia.
Agusa, Tetsuro; Kunito, Takashi; Yasunaga, Genta; Iwata, Hisato; Subramanian, Annamalai; Ismail, Ahmad; Tanabe, Shinsuke
2005-01-01
Concentrations of trace elements (V, Cr, Mn, Co, Cu, Zn, Ga, Se, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Cs, Ba, Hg, Tl, Pb and Bi) were determined in muscle and liver of 12 species of marine fish collected from coastal areas in Malaysia. Levels of V, Cr, Mn, Co, Cu, Zn, Ga, Sr, Mo, Ag, Cd, Sn, Ba and Pb in liver were higher than those in muscle, whereas Rb and Cs concentrations showed the opposite trend. Positive correlations between concentrations in liver and muscle were observed for all the trace elements except Cu and Sn. Copper, Zn, Se, Ag, Cd, Cs and Hg concentrations in bigeye scads from the east coast of the Peninsular Malaysia were higher than those from the west, whereas V showed the opposite trend. The high concentration of V in the west coast might indicate oil contamination in the Strait of Malacca. To evaluate the health risk to Malaysian population through consumption of fish, intake rates of trace elements were estimated on the basis of the concentrations of trace elements in muscle of fish and daily fish consumption. Some specimens of the marine fish had Hg levels higher than the guideline value by US Environmental Protection Agency (EPA), indicating that consumption of these fish at the present rate may be hazardous to Malaysian people. To our knowledge, this is the first study on multielemental accumulation in marine fish from the Malaysian coast.
Altundag, Huseyin; Tuzen, Mustafa
2011-11-01
The aim of this study was used to investigate the level of trace metals (Ba, Pb, Cd, Mn, Cr, Co, Ni, Cu, Mn, Zn, Sr and Fe) in some dried fruits (Prunus domestica L., Ficus carica L., Morus alba L., Vitis vinifera L., Prunus armeniaca L., and Malus domestica) samples from Turkey. Trace elements were determined by ICP-OES after dry, wet and microwave digestion methods in dried fruit samples. Validation of the proposed method was carried out by using a NIST-SRM 1515-Apple Leaves certified reference material. Element concentrations in dried fruit samples were 0.33-1.77 (Ba), 0.12-0.54 (Cd), 0.25-1.03 (Co), 0.45-2.30 (Cr), 0.43-2.74 (Cu), 0.56-4.87 (Mn), 0.61-2.54 (Ni), 0.40-2.14 (Pb), 2.16-6.54 (Zn), 0.83-12.02 (Al), 11.82-40.80 (Fe) and 0.16-6.34 (Sr) μg/g. The analytical parameters show that the microwave oven digestion procedure provided best results as compared to the wet and dry digestion procedures. The results were compared with the literature values. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Bilin; Chen, Xinjun; Fang, Zhou; Hu, Song; Song, Qian
2015-12-01
We applied solution-based ICP-MS method to quantify the trace-elemental signatures in statoliths of jumbo flying squid, Dosidius gigas, which were collected from the waters off northern and central Chile during the scientific surveys carried out by Chinese squid jigging vessels in 2007 and 2008. The age and spawning date of the squid were back-calculated based on daily increments in statoliths. Eight elemental ratios (Sr/Ca, Ba/Ca, Mg/Ca, Mn/Ca, Na/Ca, Fe/Ca, Cu/Ca and Zn/Ca) were analyzed. It was found that Sr is the second most abundant element next to Ca, followed by Na, Fe, Mg, Zn, Cu, Ba and Mn. There was no significant relationship between element/Ca and sea surface temperature (SST) and sea surface salinity (SSS), although weak negative or positive tendency was found. MANOVA analysis showed that multivariate elemental signatures did not differ among the cohorts spawned in spring, autumn and winter, and no significant difference was found between the northern and central sampling locations. Classification results showed that all individuals of each spawned cohorts were correctly classified. This study demonstrates that the elemental signatures in D. gigas statoliths are potentially a useful tool to improve our understanding of its population structure and habitat environment.
NASA Astrophysics Data System (ADS)
Karimi, Rezvan; Ayoubi, Shamsollah; Jalalian, Ahmad; Sheikh-Hosseini, Ahmad Reza; Afyuni, Majid
2011-05-01
Recently methods dealing with magnetometry have been proposed as a proper proxy for assessing the heavy metal pollution of soils. A total of 113 topsoil samples were collected from public parks and green strips along the rim of roads with high-density traffic within the city of Isfahan, central Iran. The magnetic susceptibility (χ) of the collected soil samples was measured at both low and high frequency (χlf and χhf) using the Bartington MS2 dual frequency sensor. As, Cd, Cr, Ba, Cu, Mn, Pb, Zn, Sr and V concentrations were measured in the all collected soil samples. Significant correlations were found between Zn and Cu (0.85) and between Zn and Pb (0.84). The χfd value of urban topsoil varied from 0.45% to 7.7%. Low mean value of χfd indicated that the magnetic properties of the samples are predominately contributed by multi-domain grains, rather than by super-paramagnetic particles. Lead, Cu, Zn, and Ba showed positive significant correlations with magnetic susceptibility, but As, Sr, Cd, Mn, Cr and V, had no significant correlation with the magnetic susceptibility. There was a significant correlation between pollution load index (PLI) and χlf. PLI was computed to evaluate the soil environmental quality of selected heavy metals. Moreover, the results of multiple regression analysis between χlf and heavy metal concentrations indicated the LnPb, V and LnCu could explain approximately 54% of the total variability of χlf in the study area. These results indicate the potential of the magnetometric methods to evaluate the heavy metal pollution of soils.
NASA Astrophysics Data System (ADS)
Lee, Ki-Ju; Tang, Dongxu; Park, K.; Cho, Won-Seung
2010-02-01
Porous Y-doped (Ba,Sr)TiO3 ceramics were prepared by the spark plasma sintering of (Ba,Sr)TiO3 powders with different amounts of carbon black, and by subsequently burning out the carbon black acting as a pore precursor. The microstructure, PTCR and gas-sensing characteristics for porous Y-doped (Ba,Sr)TiO3 ceramics were investigated. Spark plasma sintered (Ba,Sr)TiO3 ceramics revealed a very fine microstructure containing submicron-sized grains with a cubic phase and revealed an increased porosity after the carbon black was burned out. As a result of reoxidation treatment, the grain size of the (Ba,Sr)TiO3 ceramics increased to a few μm and the cubic phase transformed into a tetragonal phase. The phase transformation of (Ba,Sr)TiO3 ceramics was affected by grain size. The PTCR jump in the (Ba,Sr)TiO3 ceramics prepared by adding 40 vol.% carbon black showed an excellent value of 4.72 × 106, which was ten times higher than the PTCR jump in (Ba,Sr)TiO3 ceramics. The electrical resistivity of the porous (Ba,Sr)TiO3 ceramics was recovered as the atmosphere changed from a reducing gas (N2) to an oxidizing gas (O2) under consecutive heating and cooling cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandi, Dianisa Khoirum; Supriyanto, Agus; Iriani, Yofentina, E-mail: yopen-2005@yahoo.com
2016-02-08
Barium Strontium Titanate (Ba{sub 1-x}Sr{sub x}TiO{sub 3}) or BST was prepared by solid state reaction method. Raw materials are BaCO{sub 3}, SrCO{sub 3}, and TiO{sub 2}. Those materials are mixed for 8 h, pressed, and sintered at temperature 1200°C for 2 h. Mole composition of Sr (x) was varied to study its influences on structural, morphological, and electrical properties of BST. Variation of (x) are x = 0; x = 0.1; and x = 0.5. XRD patterns showed a single phase of BST, which mean that mixture of raw materials was homogenous. Crystal structure was influenced by x. BaTiO{sub 3} and Ba{submore » 0.9}Ti{sub 0.1}TiO{sub 3} have tetragonal crystal structure, while Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} is cubic. The diffraction angle shifted to right side (angle larger) as the increases of x. Crystalline size of BaTiO{sub 3}, Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3}, and Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} are 38.13 nm; 38.62 nm; and 37.13 nm, respectively. SEM images showed that there are still of pores which were influenced by x. Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3} has densest surface (pores are few and small in size). Sawyer Tower circuit showed that BaTiO{sub 3} and Ba{sub 0.9}Sr{sub 0.1} TiO{sub 3} is ferroelectric, while Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} is paraelectric. The dielectric constants of BaTiO{sub 3}, Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3} and Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} at frequency of 1 KHz are 156; 196; and 83, respectively. Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3} has relatively highest dielectric constant. It is considered that Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3} has densest surface.« less
Alammar, Tarek; Slowing, Igor I.; Anderegg, Jim; ...
2017-06-06
Nanocrystalline Sr 1–xBa xSnO 3 (x = 0, 0.2, 0.4, 0.8, 1) perovskite photocatalysts were prepared by microwave synthesis in an ionic liquid (IL) and subsequent heat-treatment. The influence of the Sr/Ba substitution on the structure, crystallization, morphology, and photocatalytic efficiency was investigated and the samples were fully characterized. On the basis of X-ray diffraction results, as the Ba content in the SrSnO 3 lattice increases, a symmetry increase was observed from the orthorhombic perovskite structure for SrSnO 3 to the cubic BaSnO 3 structure. The analysis of the sample morphology by SEM reveals that the Sr 1–xBa xSnO 3more » samples favor the formation of nanorods (500 nm–5 μm in diameter and several micrometers long). The photophysical properties were examined by UV/Vis diffuse reflectance spectroscopy. The band gap decreases from 3.85 to 3.19 eV with increasing Ba 2+ content. Furthermore, the photocatalytic properties were evaluated for the hydroxylation of terephthalic acid (TA). The order of the activities for TA hydroxylation was Sr 0.8Ba 0.2SnO 3 > SrSnO 3 > BaSnO 3 > Sr 0.6Ba 0.4SnO 3 > Sr 0.2Ba 0.8SnO 3. Here, the highest photocatalytic activity was observed for Sr 0.8Ba 0.2SnO 3, and this can be attributed to the synergistic impacts of the modification of the crystal structure and morphology, the relatively large surface area associated with the small crystallite size, and the suitable band gap and band-edge position.« less
NASA Astrophysics Data System (ADS)
Bullen, T. D.; Bailey, S. W.; McGuire, K. J.; Zimmer, M. A.; Ross, D. S.
2011-12-01
Determining solute sources and water flowpaths in catchments is of critical importance to development of models that effectively describe catchment function. For solutes in soil water and stream water, simple mass balance models that compare precipitation input to catchment outlet compositions can predict average mineral weathering contributions for the catchment as a whole, but fail to provide information about either variability of contributions from different portions of the catchment and different soil depths or processes such as ion exchange and biological cycling. In order to better understand how forested headwater catchments function, we are interpreting concentration and isotope ratios of the alkaline earth elements Ca, Sr and Ba in streamwater, groundwater, the soil ion exchange pool and plants in a hydropedologic context at the 41 hectare hydrologic reference catchment (Watershed 3) at the Hubbard Brook Experimental Forest, New Hampshire, USA. This forested headwater catchment consists of a beech-birch-maple-spruce forest growing on vertically- and laterally-developed Spodosols and Inceptisols formed on granitoid glacial till that mantles Paleozoic metamorphic bedrock. Across the watershed in terms of the soil ion exchange pool, the forest floor has high Sr/Ba and Ca/Sr ratios, mineral soils have intermediate Sr/Ba and low Ca/Sr, and relatively unweathered till in the C horizon has low Sr/Ba and high Ca/Sr. Waters moving through these various compartments will obtain Sr/Ba and Ca/Sr ratios reflecting these characteristics, and thus variations of Sr/Ba and Ca/Sr of streamwater provide evidence of the depth of water flowpaths feeding the streams. 87Sr/86Sr of exchangeable Sr spans a broad range from 0.715 to 0.725, with highest values along the mid-to upper flanks of the catchment and lowest values in a broad zone along the central axis of the catchment associated with numerous groundwater seeps. Thus, variations of 87Sr/86Sr in streamwater provide evidence of the spatial distribution of water flowpaths feeding the streams. In addition, we are exploring the use of Sr and Ba stable isotope ratios (88Sr/86Sr, 138Ba/134Ba) as novel tracers of Sr and Ba sources in catchments. Initial results indicate that both Sr and Ba stable isotopes are fractionated by plants similarly to patterns observed globally for Ca stable isotopes. We hypothesize that while biologically-cycled Ca is efficiently retained in the organic soil-plant system, biologically-cycled Sr and especially Ba will be more easily leached by soil waters and delivered to the streams and thus their stable isotope ratios may provide an additional means to distinguish between shallow and deep water flowpaths in forested catchments.
Toxic elements and bio-metals in Cantharellus mushrooms from Poland and China.
Falandysz, Jerzy; Chudzińska, Maria; Barałkiewicz, Danuta; Drewnowska, Małgorzata; Hanć, Anetta
2017-04-01
Data on multi-trace element composition and content relationships have been obtained for Cantharellus cibarius, C. tubaeformis, and C. minor mushrooms from Poland and China by inductive coupled plasma-dynamic reaction cell-mass spectroscopy. There is no previous data published on As, Li, V, Tl, and U in chanterelles from Poland and on Ba, Co, Cr, Ni, Rb, and Sr in chanterelles from China. The results implied a role of the soil background geochemistry at the collection site with the occurrence of Ag, As, Ba, Cr, Cs, Li, Mn, Pb, Rb, Sr, U, and V in the fruiting bodies. Both geogenic Cd and anthropogenic Cd can contribute in load of this element in chanterelles from the Świetokrzyskie Mts. region in Poland, while geogenic source can be highly dominant in the background areas of Yunnan. An essentiality of Cu and Zn and effort by mushroom to maintain their physiological regulation could be reflected by data for Cantharellus mushrooms from both regions of the world, but its geogenic source (and possibly anthropogenic) can matter also in the region of the Świetokrzyskie Mountains in Poland. The elements Co, Ni, and Tl were at the same order of magnitude in contents in C. cibarius in Poland and Yunnan, China. C. tubaeformis differed from C. cibarius by a lower content of correlated Co, Ni, and Zn. Soil which is polymetallic and highly weathered in Yunnan can be suggested as a natural geogenic source of greater concentrations of As, Ba, Cr, Li, Pb, Sr, U, and V in the chanterelles there while lower of Mn and Rb, when related to chanterelles in Poland. A difference in Cs content between the sites can be attributed as an effect of the 137 Cs release from the Chernobyl accident, in which Poland was much more affected than Yunnan, where deposition was negligible.
Pan, Kuan Lun; Chen, Mei Chung; Yu, Sheng Jen; Yan, Shaw Yi; Chang, Moo Been
2016-06-01
Direct decompositions of nitric oxide (NO) by La0.7Ce0.3SrNiO4, La0.4Ba0.4Ce0.2SrNiO4, and Pr0.4Ba0.4Ce0.2SrNiO4 are experimentally investigated, and the catalysts are tested with different operating parameters to evaluate their activities. Experimental results indicate that the physical and chemical properties of La0.7Ce0.3SrNiO4 are significantly improved by doping with Ba and partial substitution with Pr. NO decomposition efficiencies achieved with La0.4Ba0.4Ce0.2SrNiO4 and Pr0.4Ba0.4Ce0.2SrNiO4 are 32% and 68%, respectively, at 400 °C with He as carrier gas. As the temperature is increased to 600 °C, NO decomposition efficiencies achieved with La0.4Ba0.4Ce0.2SrNiO4 and Pr0.4Ba0.4Ce0.2SrNiO4, respectively, reach 100% with the inlet NO concentration of 1000 ppm while the space velocity is fixed at 8000 hr(-1). Effects of O2, H2O(g), and CO2 contents and space velocity on NO decomposition are also explored. The results indicate that NO decomposition efficiencies achieved with La0.4Ba0.4Ce0.2SrNiO4 and Pr0.4Ba0.4Ce0.2SrNiO4, respectively, are slightly reduced as space velocity is increased from 8000 to 20,000 hr(-1) at 500 °C. In addition, the activities of both catalysts (La0.4Ba0.4Ce0.2SrNiO4 and Pr0.4Ba0.4Ce0.2SrNiO4) for NO decomposition are slightly reduced in the presence of 5% O2, 5% CO2, or 5% H2O(g). For durability test, with the space velocity of 8000 hr(-1) and operating temperature of 600 °C, high N2 yield is maintained throughout the durability test of 60 hr, revealing the long-term stability of Pr0.4Ba0.4Ce0.2SrNiO4 for NO decomposition. Overall, Pr0.4Ba0.4Ce0.2SrNiO4 shows good catalytic activity for NO decomposition. Nitrous oxide (NO) not only causes adverse environmental effects such as acid rain, photochemical smog, and deterioration of visibility and water quality, but also harms human lungs and respiratory system. Pervoskite-type catalysts, including La0.7Ce0.3SrNiO4, La0.4Ba0.4Ce0.2SrNiO4, and Pr0.4Ba0.4Ce0.2SrNiO4, are applied for direct NO decomposition. The results show that NO decomposition can be enhanced as La0.7Ce0.3SrNiO4 is substituted with Ba and/or Pr. At 600 °C, NO decomposition efficiencies achieved with La0.4Ba0.4Ce0.2SrNiO4 and Pr0.4Ba0.4Ce0.2SrNiO4 reach 100%, demonstrating high activity and good potential for direct NO decomposition. Effects of O2, H2O(g), and CO2 contents on catalytic activities are also evaluated and discussed.
Ávila, Dayara Virgínia Lino; Souza, Sidnei Oliveira; Costa, Silvânio Silvério Lopes; Garcia, Carlos Alexandre Borges; Alves, José do Patrocínio Hora; Araujo, Rennan Geovanny Oliveira; Passos, Elisangela Andrade
2017-09-01
A full 24 factorial design was applied to find the best combination of diluted reagents (HNO3 and H2O2), time, and temperature for the digestion of samples of wet feed for dogs and cats using a closed digestion block. The residual carbon concentration (RCC) was used as the response in the factorial design. All variables and their interactions significantly influenced the digestion of the feed samples, as indicated by the RCC. The conditions established for the digestion of 0.05 g (dry mass) wet feed samples were the addition of 3.0 mol/L HNO3 and 5.0% m/m H2O2 in a final volume of 10 mL, followed by heating in a closed digestion block at a temperature of 170°C for 120 min. Analyses were performed by inductively coupled plasma (ICP) optical emission spectrometry (OES). LOQs ranged from 0.2 μg/g (Mg and Sr) to 51 μg/g (P). Accuracy of the analytical method was confirmed through the analysis of the Standard Reference Materials Tomato Leaves (NIST 1573), Apple Leaves (NIST 1515), and Peach Leaves (NIST 1547). The agreement values achieved ranged from 80.2 ± 0.3% for Ba to 113.8 ± 7.1% for Zn (n = 3). Addition and recovery tests were carried out by adding the analytes to a feed sample at two concentration levels, and the recoveries were between 84 ± 6 and 114 ± 10% for macroelements (Ca, K, Mg, and P; n = 3) and between 88 ± 3 and 113 ± 7% for microelements and trace elements (B, Cu, Fe, Sr, and Zn; n = 3). The precision values achieved for the different elements, expressed as RSDs, were better than 7.3% (Zn; n = 3) except for Cu determination, that was 14.6% (n=3). The optimized analytical method was applied to 10 commercial samples of wet feed for cats and dogs, with the concentrations of Al, B, Ba, Ca, Cu, Fe, K, Mg, Mn, P, Sr, and Zn determined by ICP-OES.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jun, E-mail: lijun_yt@163.com; Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072; Huang, Chuan-Xin
Graphical abstract: This work reports the Ba content on thin film transistor based on a novel BaZnSnO semiconductor using solution process. - Highlights: • No reports about BaZnSnO thin film using solution process. • BaZnSnO thin film transistor (TFT) was firstly fabricated. • BaZnSnO-TFT shows a acceptable performace. • Influence of Ba content on BaZnSnO-TFT. - Abstract: A novel BaZnSnO semiconductor is fabricated using solution process and the influence of Ba addition on the structure, the chemical state of oxygen and electrical performance of BaZnSnO thin films are investigated. A high performance BaZnSnO-based thin film transistor with 15 mol% Bamore » is obtained, showing a saturation mobility of 1.94 cm{sup 2}/V s, a threshold voltage of 3.6 V, an on/off current ratio of 6.2 × 10{sup 6}, a subthreshold swing of 0.94 V/decade, and a good bias stability. Transistors with solution processed BaZnSnO films are promising candidates for the development of future large-area, low-cost and high-performance electronic devices.« less
Superconducting transition temperature in the Y(1-x)M(x)Ba2Cu3O(y) system
NASA Astrophysics Data System (ADS)
Suzuki, Takeyuki; Yamazaki, Tsutomu; Sekine, Ryuuta; Koukitsu, Akinori; Seki, Hisashi
1989-04-01
Experimental results are presented for the inclusion of compositional additives, M, to the sintered high-temperature superconductor Y(1-x)M(x)Ba2Cu3O(y); M can be the oxides of Mg, Ce, Gd, Yb, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Zn, B, Al, Ga, In, Si, Ge, Sn, Pb, Sb, Bi, and Te, as well as Li, Na, K, Ca, Sr, and La carbonates. Temperature dependence of the electrical resistance was measured down to about 80 K. Attention is given to the influence of ionic radius and the valence of the M species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vukasinovic-Pesic, V.; Rajakovic, L.J.
2009-07-01
The chemical compositions and trace element contents (Zn, Cu, Co, Cr, Ni, Pb, Cd, As, B, Hg, Sr, Se, Be, Ba, Mn, Th, V, U) in coal and coal ash samples from Tamnava-Zapadno Polje coal field in Serbia were studied. The coal from this field belongs to lignite. This high volatility coal has high moisture and low S contents, moderate ash yield, and high calorific value. The coal ash is abundant in alumosilicates. Many trace elements such as Ni > Cd > Cr > B > As > Cu > Co > Pb > V > Zn > Mn inmore » the coal and Ni > Cr > As > B > Cu > Co = Pb > V > Zn > Mn in the coal ash are enriched in comparison with Clarke concentrations.« less
Effect of Wood Aging on Wine Mineral Composition and 87Sr/86Sr Isotopic Ratio.
Kaya, Ayse D; Bruno de Sousa, Raúl; Curvelo-Garcia, António S; Ricardo-da-Silva, Jorge M; Catarino, Sofia
2017-06-14
The evolution of mineral composition and wine strontium isotopic ratio 87 Sr/ 86 Sr (Sr IR) during wood aging were investigated. A red wine was aged in stainless steel tanks with French oak staves (Quercus sessiliflora Salisb.), with three industrial scale replicates. Sampling was carried out after 30, 60, and 90 days of aging, and the wines were evaluated in terms of general analysis, phenolic composition, total polysaccharides, multielement composition, and Sr IR. Li, Be, Mg, Al, Sc, Ti, V, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Rb, Sr, Y, Zr, Mo, Sb, Cs, Ba, Pr, Nd, Sm, Eu, Dy, Ho, Er, Yb, Lu, Tl, and Pb elements and 87 Sr/ 86 Sr were determined by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS) and Na, K, Ca, and Fe by flame atomic absorption spectrometry (FAAS). Two-way ANOVA was applied to assess wood aging and time effect on Sr IR and mineral composition. Wood aging resulted in significantly higher concentrations of Mg, V, Co, Ni, and Sr. At the end of the aging period, wine exhibited statistically identical Sr IR compared to control. Study suggests that wood aging does not affect 87 Sr/ 86 Sr, not precluding the use of this parameter for wine traceability purposes.
Jin, C.-Q.; Zhou, J.-S.; Goodenough, J. B.; Liu, Q. Q.; Zhao, J. G.; Yang, L. X.; Yu, Y.; Yu, R. C.; Katsura, T.; Shatskiy, A.; Ito, E.
2008-01-01
The cubic perovskite BaRuO3 has been synthesized under 18 GPa at 1,000°C. Rietveld refinement indicates that the new compound has a stretched Ru–O bond. The cubic perovskite BaRuO3 remains metallic to 4 K and exhibits a ferromagnetic transition at Tc = 60 K, which is significantly lower than the Tc ≈ 160 K for SrRuO3. The availability of cubic perovskite BaRuO3 not only makes it possible to map out the evolution of magnetism in the whole series of ARuO3 (A = Ca, Sr, Ba) as a function of the ionic size of the A-site rA, but also completes the polytypes of BaRuO3. Extension of the plot of Tc versus rA in perovskites ARuO3 (A = Ca, Sr, Ba) shows that Tc does not increase as the cubic structure is approached, but has a maximum for orthorhombic SrRuO3. Suppressing Tc by Ca and Ba doping in SrRuO3 is distinguished by sharply different magnetic susceptibilities χ(T) of the paramagnetic phase. This distinction has been interpreted in the context of a Griffiths' phase on the (Ca Sr)RuO3 side and bandwidth broadening on the (Sr,Ba)RuO3 side. PMID:18480262
Earthworm Activity and the Potential for Enhanced Leaching of Inorganic Elements in Soils
NASA Astrophysics Data System (ADS)
Gruau, G.; Ablain, F.; Cluzeau, D.
2002-12-01
The potential influence of earthworms on the mobility of soil inorganic constituents was experimentally investigated. Six 20 cm long and 15 cm i.d. columns were packed with soil (loamy material, Paris basin, France). Three earthworm specimens - Lombricus terrestris - were introduced into 3 of the 6 columns (earthworm treatment or ET), the remaing 3 being used to study changes in water composition and solute fluxes without earthworms (control treatment or CT). The 6 columns were operated for 8 weeks and were subjected to 100 ml addition of distilled water at 1, 8, 15, 22, 29, 36, 43 and 50 days. Effluents were collected weekly, filtered and analysed for their Dissolved Organic Carbon (DOC) as well as Si, Na, K, Mg, Ca, Fe, Mn, Al, Sr, Ba, Cu, Zn, Cr, Cd, REE and U concentrations. Replicates yielded extremely consistent results, with standard deviations generally lower than 10%. Effluent volumes were greatest during ET simulations (28% difference on a cumulative basis), which can be attributed to the construction by Lombricus terrestris of permanent vertical burrows into the soil columns. Different temporal chemical trends were observed depending on whether earthworms were present or not. During ET simulations, a washout phenomenon occurred for DOC, Ca, Mg, Fe, Ba, Sr, Cu and U during the startup outflow period (week 2). This washout was followed by a period of apparent equilibrium with concentrations in ET effluents remaining roughly constant for all solutes except REE, Zn and to a lesser extent Mn. No such washout nor equilibrium period was observed during CT simulations. Instead, concentrations in Ca, Mg, Fe, Ba, Sr, Cr and Cu decreased from week 2 to week 8, while those in other solutes increased from week 2 to week 5, then declining untill week 8. For many elements (not all), final (equilibrium?) concentrations (8 weeks simulation) were highest in ET effluents (e.g. 17% higher for Ca and Na; 30% higher for Zn), despite the enhanced infiltration rate (and thus the likely shorter soil-water interaction time). Although preliminary, these results suggest that earthworm activities can potentialy increase the leaching of a wide variety of inorganic elements in soils. This increase could occur through the ability of earthworms to change the biogeochemical conditions in the soil along their burrows (so-called drilosphere).
NASA Astrophysics Data System (ADS)
Tematio, P.; Tchaptchet, W. T.; Nguetnkam, J. P.; Mbog, M. B.; Yongue Fouateu, R.
2017-07-01
The mineralogical and geochemical investigation of mylonitic weathering profiles in Fodjomekwet-Fotouni was done to better trace the occurrence of minerals and chemical elements in this area. Four representative soil profiles were identified in two geomorphological units (upland and lowland) differentiating three weathering products (organo-mineral, mineral and weathered materials). Weathering of these mylonites led to some minerals association such as vermiculite, kaolinite, goethite, smectite, halloysite, phlogopite and gibbsite. The minerals in a decreasing order of abundance are: quartz (24.2%-54.8%); kaolinite (8.4%-36.0%); phlogopite (5.5%-21.9%); goethite (7.8%-16.1%); vermiculite (6.7%-15.7%); smectite (10.2%-11.9%); gibbsite (9.0%-11.8%) and halloysite (5.6%-11.5%) respectively. Patterns of chemical elements allow highlighting three behaviors (enriched elements, depleted elements and elements with complex behavior), depending on the landscape position of the profiles. In the upland weathering products, K, Cr and REEs are enriched; Ca, Mg, Na, Mn, Rb, S and Sr are depleted while Si, Al, Fe, Ti, Ba, Co, Cu, Ga, Mo, Nb, Ni, Pb, Sc, V, Y, Zn and Zr portray a complex behavior. Contrarily, the lowland weathering profiles enriched elements are Fe, Ti, Co, Cr, Cu, V, Zr, Pr, Sm, Tb, Dy, Er and Yb; while depleted elements are Ca, Mg, K, Na, Mn, Ba, Ga, S, Sr, Y, Zn, La, Ce and Nd; and Si, Al, Mo, Nb, Ni, Pb, Rb, Sc evidenced complex behaviors. In all the studied weathering products, the REEs fractionation was also noticeable with a landscape-position dependency, showing light REEs (LREEs) enrichment in the upland areas and heavy REEs (HREEs) in lowland areas. SiO2, Al2O3 and Fe2O3 are positively correlated with most of the traces and REEs (Co, Cu, Nb, Ni, Mo, Pb, Sc, V, Zn, Zr, La, Ce, Sm, Tb, Dy, Er, Yb), pointing to the fact that they may be incorporated into newly formed clay minerals and oxides. Ba, Cr, Ga, Rb, S, Sr, Y, Pr and Nd behave like alkalis and alkaline earths, and are thus highly mobile during weathering.
Zhou, Renjie; Bu, Yunfei; Xu, Dandan; Zhong, Qin
2014-01-01
A perovskite-type oxide La(0.4)Ba(0.6)Fe(0.8)Zn(0.2)O(3-delta) (LBFZ) was investigated as the cathode material for simultaneous NO reduction and electricity generation in solid oxide fuel cells (SOFCs). The microstructure of LBFZ was demonstrated by X-ray diffraction and scanning electron microscopy. The results showed that a single cubic perovskite LBFZ was formed after calcined at 1100 degrees C. Meanwhile, the solid-state reaction between LBFZ and Ce(0.8)Sm(0.2)O(1.9) (SDC) at 900 degrees C was negligible. To measure the electrochemical properties, SOFC units were constructed with Sm(0.9)Sr(0.1)Cr(0.5)Fe(0.5)O3 as the anode, SDC as the electrolyte and LBFZ as the cathode. The maximum power density increased with the increasing NO concentration and temperature. The cell resistance is mainly due to the cathodic polarization resistance.
Mainzer, Barbara; Lahrssen-Wiederholt, Monika; Schafft, Helmut; Palavinskas, Richard; Breithaupt, Angele; Zentek, Jürgen
2015-01-01
This study was conducted to measure the concentrations of strontium (Sr), barium (Ba), cadmium (Cd), copper (Cu), zinc (Zn), manganese (Mn), chromium (Cr), antimony (Sb), selenium (Se), and lead (Pb) in canine liver, renal cortex, and renal medulla, and the association of these concentrations with age, gender, and occurrence of chronic kidney disease (CKD). Tissues from 50 dogs were analyzed using inductively coupled plasma mass spectrometry. Cu, Zn, and Mn levels were highest in the liver followed by the renal cortex and renal medulla. The highest Sr, Cd, and Se concentrations were measured in the renal cortex while lower levels were found in the renal medulla and liver. Female dogs had higher tissue concentrations of Sr (liver and renal medulla), Cd (liver), Zn (liver and renal cortex), Cr (liver, renal cortex, and renal medulla), and Pb (liver) than male animals. Except for Mn and Sb, age-dependent variations were observed for all element concentrations in the canine tissues. Hepatic Cd and Cr concentrations were higher in dogs with CKD. In conclusion, the present results provide new knowledge about the storage of specific elements in canine liver and kidneys, and can be considered important reference data for diagnostic methods and further investigations. PMID:25234328
Energetic Materials and Metals Contamination at CFB/ASU Wainwirght, Alberta Phase 1
2008-11-01
Edmonton, Alberta). Metals analyzed for this study were silver (Ag), aluminium (Al), arsenic (As), boron (B), barium (Ba), beryllium (Be), bismuth 4...selenium (Se), antimony (Sb), tin (Sn), strontium (Sr), tellurium (Te), titanium (Ti), thallium (Tl), uranium (U), vanadium (V), zinc (Zn), and...mg/kg mg/kg mg/kg Aluminium - 9070 1040 Antimony 40 2 1 Arsenic 12 7 13.6 Barium 2000 177 73.4 Beryllium 8 40 40 Bismuth - 20 20 Boron - 10
Banger, Kulbinder K; Peterson, Rebecca L; Mori, Kiyotaka; Yamashita, Yoshihisa; Leedham, Timothy; Sirringhaus, Henning
2014-01-28
Amorphous mixed metal oxides are emerging as high performance semiconductors for thin film transistor (TFT) applications, with indium gallium zinc oxide, InGaZnO (IGZO), being one of the most widely studied and best performing systems. Here, we investigate alkaline earth (barium or strontium) doped InBa(Sr)ZnO as alternative, semiconducting channel layers and compare their performance of the electrical stress stability with IGZO. In films fabricated by solution-processing from metal alkoxide precursors and annealed to 450 °C we achieve high field-effect electron mobility up to 26 cm 2 V -1 s -1 . We show that it is possible to solution-process these materials at low process temperature (225-200 °C yielding mobilities up to 4.4 cm 2 V -1 s -1 ) and demonstrate a facile "ink-on-demand" process for these materials which utilizes the alcoholysis reaction of alkyl metal precursors to negate the need for complex synthesis and purification protocols. Electrical bias stress measurements which can serve as a figure of merit for performance stability for a TFT device reveal Sr- and Ba-doped semiconductors to exhibit enhanced electrical stability and reduced threshold voltage shift compared to IGZO irrespective of the process temperature and preparation method. This enhancement in stability can be attributed to the higher Gibbs energy of oxidation of barium and strontium compared to gallium.
NASA Astrophysics Data System (ADS)
Moreda-Piñeiro, Jorge; Alonso-Rodríguez, Elia; Moscoso-Pérez, Carmen; Blanco-Heras, Gustavo; Turnes-Carou, Isabel; López-Mahía, Purificación; Muniategui-Lorenzo, Soledad; Prada-Rodríguez, Darío
2014-05-01
In the present research, the rainwater chemistry of soluble (SF) and non-soluble (NSF) fractions is studied over a one a half year period (from March 2011 to August 2012) at a suburban site (Oleiros, A Coruña, Spain). The monthly rainfall in this region during the studied period ranged from 10 to 137 mm, while the NSF ranged from 0.9 to 54 mg L-1. More rainfall occurs within October-January. Eighteen samples, which provide information pertaining to the monthly variation in chemistry, were analyzed. Trace metals (Al, As, Ba, Co, Cu, Cr, Fe, Mn, Ni, Pb, Sr, V, Zn) were enclosed in the study of both fractions of the rainwater. Major inorganic ions (Cl-, NO3-, SO42-, Na+, K+, Ca2+, Mg2+ and NH4+) were also enclosed in the study of the SF of the rainwater. After partition coefficients analysis, univariate and principal components analysis (PCA) and air mass back trajectories analysis, three sources were found for the ionic and metal composition of the SF of rainwater; terrestrial (Ca2+, non sea salt SO42-, Al and Fe), marine (Mg2+, Na+, Cl-) and anthropogenic (K+, NH4+, NO3-, Fe, Mn, Pb, Sr, V and Zn). Results also suggest ubiquitous sources for Ba, Co, Cu, Cr and Ni. One source (terrestrial) was found for NSF of rainwater.
2013-01-01
Amorphous mixed metal oxides are emerging as high performance semiconductors for thin film transistor (TFT) applications, with indium gallium zinc oxide, InGaZnO (IGZO), being one of the most widely studied and best performing systems. Here, we investigate alkaline earth (barium or strontium) doped InBa(Sr)ZnO as alternative, semiconducting channel layers and compare their performance of the electrical stress stability with IGZO. In films fabricated by solution-processing from metal alkoxide precursors and annealed to 450 °C we achieve high field-effect electron mobility up to 26 cm2 V–1 s–1. We show that it is possible to solution-process these materials at low process temperature (225–200 °C yielding mobilities up to 4.4 cm2 V–1 s–1) and demonstrate a facile “ink-on-demand” process for these materials which utilizes the alcoholysis reaction of alkyl metal precursors to negate the need for complex synthesis and purification protocols. Electrical bias stress measurements which can serve as a figure of merit for performance stability for a TFT device reveal Sr- and Ba-doped semiconductors to exhibit enhanced electrical stability and reduced threshold voltage shift compared to IGZO irrespective of the process temperature and preparation method. This enhancement in stability can be attributed to the higher Gibbs energy of oxidation of barium and strontium compared to gallium. PMID:24511184
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamba, S.; Goian, V.; Savinov, M.
2010-05-15
We prepared multiferroic Y-type hexaferrite Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}Fe{sub 12}O{sub 22} ceramics and compared their magnetic and dielectric properties with single crystal. Magnetic susceptibility and microwave resonance measurement revealed magnetic phase transition at T{sub C}=312 K, similar as in single crystal. Ferroelectric (FE) phase can be induced by external magnetic field in all investigated samples and the phase diagram in ceramics qualitatively resembles that of the single crystal. The range of magnetic fields, where the FE phase is induced, broadens after annealing of single crystal. Ceramics quenched after sintering exhibit several orders of magnitude lower conductivity than the single crystal.more » Heavily damped magnetic resonance was discovered in terahertz spectra at 10 K and its frequency softens below 5 GHz near T{sub C}. Number and symmetry of observed infrared (IR) and Raman active phonons correspond to paraelectric phase with D{sub 3d}{sup 5} hexagonal structure. No evidence for a structural phase transition was found in the IR and Raman spectra on cooling (in zero magnetic field) or in the room-temperature IR spectra with external static magnetic field up to 0.3 T.« less
Alammar, Tarek; Slowing, Igor I.; Anderegg, Jim
2017-01-01
Abstract Nanocrystalline Sr1−xBaxSnO3 (x=0, 0.2, 0.4, 0.8, 1) perovskite photocatalysts were prepared by microwave synthesis in an ionic liquid (IL) and subsequent heat‐treatment. The influence of the Sr/Ba substitution on the structure, crystallization, morphology, and photocatalytic efficiency was investigated and the samples were fully characterized. On the basis of X‐ray diffraction results, as the Ba content in the SrSnO3 lattice increases, a symmetry increase was observed from the orthorhombic perovskite structure for SrSnO3 to the cubic BaSnO3 structure. The analysis of the sample morphology by SEM reveals that the Sr1−xBaxSnO3 samples favor the formation of nanorods (500 nm–5 μm in diameter and several micrometers long). The photophysical properties were examined by UV/Vis diffuse reflectance spectroscopy. The band gap decreases from 3.85 to 3.19 eV with increasing Ba2+ content. Furthermore, the photocatalytic properties were evaluated for the hydroxylation of terephthalic acid (TA). The order of the activities for TA hydroxylation was Sr0.8Ba0.2SnO3>SrSnO3>BaSnO3>Sr0.6Ba0.4SnO3>Sr0.2Ba0.8SnO3. The highest photocatalytic activity was observed for Sr0.8Ba0.2SnO3, and this can be attributed to the synergistic impacts of the modification of the crystal structure and morphology, the relatively large surface area associated with the small crystallite size, and the suitable band gap and band‐edge position. PMID:28589568
Jin, C-Q; Zhou, J-S; Goodenough, J B; Liu, Q Q; Zhao, J G; Yang, L X; Yu, Y; Yu, R C; Katsura, T; Shatskiy, A; Ito, E
2008-05-20
The cubic perovskite BaRuO(3) has been synthesized under 18 GPa at 1,000 degrees C. Rietveld refinement indicates that the new compound has a stretched Ru-O bond. The cubic perovskite BaRuO(3) remains metallic to 4 K and exhibits a ferromagnetic transition at T(c) = 60 K, which is significantly lower than the T(c) approximately = 160 K for SrRuO(3). The availability of cubic perovskite BaRuO(3) not only makes it possible to map out the evolution of magnetism in the whole series of ARuO(3) (A = Ca, Sr, Ba) as a function of the ionic size of the A-site r(A,) but also completes the polytypes of BaRuO(3). Extension of the plot of T(c) versus r(A) in perovskites ARuO(3) (A = Ca, Sr, Ba) shows that T(c) does not increase as the cubic structure is approached, but has a maximum for orthorhombic SrRuO(3). Suppressing T(c) by Ca and Ba doping in SrRuO(3) is distinguished by sharply different magnetic susceptibilities chi(T) of the paramagnetic phase. This distinction has been interpreted in the context of a Griffiths' phase on the (Ca Sr)RuO(3) side and bandwidth broadening on the (Sr,Ba)RuO(3) side.
Microwave assisted extraction for trace element analysis of plant materials by ICP-AES.
Borkowska-Burnecka, J
2000-11-01
Application of microwave assisted extraction for the decomposition and dissolution of plant samples for trace metal determination by ICP-AES was examined. Dried onion, leaves of spinach beet and three reference materials CTA-OTL-1, CTA-VTL-2 and CL-1 were analyzed. Water, EDTA and hydrochloric acid (0.01, 0.10 and 1.0 M, respectively) were used as leaching solutions. The extraction efficiency was investigated by comparison of the results with those obtained after microwave wet digestion. HCl was found to be very suitable for quantitative extraction of B, Ba, Cd, Cu, Mn, Ni, Pb, Sr and Zn from the samples. For reference materials, the measured concentrations are well consistent with the certified values. The use of EDTA led to a complete extraction of B, Cd, Ni, Pb, Sr and Zn. Water was found to be a good leaching solution for boron. For extraction with HCl and EDTA, the RSD values for the concentrations measured were below 8% for most of the elements.
2012-07-11
molar flux of each precursor entering the reactor. The molar fluxes for Ba , Sr , and Ti are measured and computed in real-time, and these measured values...allows control of the relative amounts of Ba , Sr , and Ti, and the overall total mass flow in umole/min reaching the substrate. In all, there are three...is the Ba:Sr ratio with depth (from the top of the film). The ratio of Ba to Sr was controlled from 0.87 to 0.43. The total film thickness is 130 nm
Abe, Yoshinari; Iizawa, Yushin; Terada, Yasuko; Adachi, Kouji; Igarashi, Yasuhito; Nakai, Izumi
2014-09-02
Synchrotron radiation (SR) X-ray microbeam analyses revealed the detailed chemical nature of radioactive aerosol microparticles emitted during the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, resulting in better understanding of what occurred in the plant during the early stages of the accident. Three spherical microparticles (∼2 μm, diameter) containing radioactive Cs were found in aerosol samples collected on March 14th and 15th, 2011, in Tsukuba, 172 km southwest of the FDNPP. SR-μ-X-ray fluorescence analysis detected the following 10 heavy elements in all three particles: Fe, Zn, Rb, Zr, Mo, Sn, Sb, Te, Cs, and Ba. In addition, U was found for the first time in two of the particles, further confirmed by U L-edge X-ray absorption near-edge structure (XANES) spectra, implying that U fuel and its fission products were contained in these particles along with radioactive Cs. These results strongly suggest that the FDNPP was damaged sufficiently to emit U fuel and fission products outside the containment vessel as aerosol particles. SR-μ-XANES spectra of Fe, Zn, Mo, and Sn K-edges for the individual particles revealed that they were present at high oxidation states, i.e., Fe(3+), Zn(2+), Mo(6+), and Sn(4+) in the glass matrix, confirmed by SR-μ-X-ray diffraction analysis. These radioactive materials in a glassy state may remain in the environment longer than those emitted as water-soluble radioactive Cs aerosol particles.
Doe, B.R.
1997-01-01
A database on a number of elements in oceanic volcanic rocks is presented, including the principal major-element oxides - SiO2, TiO2, Al2O3, Fe2O3(T), MnO, MgO, CaO, Na2O, K2O, and P2O5 (where T refers to total iron) - and the trace elements - Ba, Ce, Cr, Cu, Ni, Sc, Sr, V, Pb (mainly by isotope dilution), Yb, Zn, and Zr. Interpretations are given for transition metals, with emphasis on Mn, Sc, and V, in order to determine the concentration of the elements in primitive melts and assess their trends in magmatic differentiation. Transition metals are not enriched in plagioclase, so all are incompatible with pure plagioclase removal - that is, they become enriched in the melt. Both Cr and Ni are known to be highly compatible with olivine separation - i.e., they are depleted in the melt early in differentiation. Also, Sc is compatible with clinopyroxene (Cpx) removal from the melt and is depleted by separation of Cpx. Copper does not fit well in any of the principal silicates, but Cu, like Ni, is greatly enriched in sulfides that may remain in the source or separate from the magma. Decreasing Ni abundances and increasing Cu contents during differentiation are a sign of olivine separation. In the analysis presented herein, V - in the absence of Cpx separation - is found to behave remarkably like the moderately incompatible element Zn, and these two elements add to the list of element pairs of similar incompatibility whose ratios are insensitive to differentiation and to submarine weathering as well. Both are enhanced in titanomagnetite, so both would he compatible during titanomagnetite separation. When Cpx separates, however, V becomes compatible like Sc, but Zn remains incompatible. Thus, decreasing V (and Sc) contents and increasing Zn contents during differentiation are a sign of Cpx separation. Manganese often behaves much like Zn and therefore is moderately incompatible, but Mn is less compatible than Zn and V in titanomagnetite. Thus, decreasing Zn and V with increasing Mn is an indication of titanomagnetite removal. Dual compatible and incompatible trends with differentiation are found chiefly for Cu, Sc, and Sr. Distinguishing mid-ocean ridge basalts (MORB), oceanic-island volcanic rocks (OIV), and island-arc volcanic rocks (IAV) may be accomplished by plots of Ce/Yb versus Ba/Ce, where OIV plot to higher values of Ce/Yb than do MORB, and IAV data plot to higher values of Ba/Ce than do those of MORB. These ratios do not seem to be significantly affected by submarine weathering.
Allometric constraints on Sr/Ca and Ba/Ca partitioning in terrestrial mammalian trophic chains.
Balter, Vincent
2004-03-01
In biological systems, strontium (Sr) and barium (Ba) are two non-essential elements, in comparison to calcium (Ca) which is essential. The Sr/Ca and Ba/Ca ratios tend to decrease in biochemical pathways which include Ca as an essential element, and these processes are termed biopurification of Ca. The quantitative pathway of the biopurification of Ca in relation to Sr and Ba between two biological reservoirs ( Rn and R(n -1)) is measured with an observed ratio (OR) expressed by the (Sr/Ca) Rn /(Sr/Ca)( Rn-1) and (Ba/Ca) Rn /(Ba/Ca)( Rn-1) ratios. For a mammalian organism, during the whole biopurification of Ca starting with the diet to the ultimate reservoir of Ca which is the bone, the mean values for ORSr and ORBa are 0.25 and 0.2, respectively. In this study, published Sr/Ca and Ba/Ca ratios are used for three sets of soils, plants, and bones of herbivorous and carnivorous mammals, each comprising a trophic chain, to illustrate the biopurification of Ca at the level of trophic chains. Calculated ORSr and ORBa of herbivore bones in relation to plants and of bones of carnivores in relation to bones of herbivores give ORSr=0.30+/-0.08 and ORBa=0.16+/-0.08, thus suggesting that trophic chains reflect the Sr/Ca and Ba/Ca fluxes that are prevalent at the level of a mammalian organism. The slopes of the three regression equations of log(Sr/Ca) vs. log(Ba/Ca) are similar, indicating that the process of biopurification of Ca with respect to Sr and Ba is due to biological processes and is independent of the geological settings. Modifications of the logarithmic expression of the Sr/Ca and Ba/Ca relationship allow a new formula of the biopurification process to be deduced, leading to the general equation ORBa=ORSr(1.79+/-0.33), where the allometric coefficient is the mean of the slopes of the three regression equations. Some recent examples are used to illustrate this new analysis of predator-prey relations between mammals. This opens up new possibilities for the utilization of Ba/Ca and Sr/Ca in addition to stable isotope ratios (delta13C and delta15N) for the determination of the relative contribution of different food sources to an animal's diet.
Geochemical properties of topsoil around the coal mine and thermoelectric power plant.
Stafilov, Trajče; Šajn, Robert; Arapčeska, Mila; Kungulovski, Ivan; Alijagić, Jasminka
2018-03-19
The results of the systematic study of the spatial distribution of trace metals in surface soil over the Bitola region, Republic of Macedonia, known for its coal mine and thermo-electrical power plant activities are reported. The investigated region (3200 km 2 ) is covered by a sparse sampling grid of 5 × 5 km, but in the urban zone and around the thermoelectric power plant the sampling grid is denser (1 × 1 km). In total, 229 soil samples from 149 locations were collected including top-soil (0-5 cm) and bottom-soil samples (20-30 cm and 0-30 cm). Inductively coupled plasma - atomic emission spectrometry (ICP-AES) was applied for the determinations of 21 elements (Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, Sr, V and Zn). Based on the results of factor analyses, three geogenic associations of elements have been defined: F1 (Fe, Ni, V, Co, Cr, Mn and Li), F2 (Zn, B, Cu, Cd, Na and K) and F3 (Ca, Sr, Mg, Ba and Al). Even typical trace metals such as As, Cd, Cu, Ni, P, Pb and Zn are not isolated into anthropogenic geochemical associations by multivariate statistical methods still show some trends of local anthropogenic enrichment. The distribution maps for each analyzed element is showing the higher content of these elements in soil samples collected around the thermoelectric power plants than their average content for the soil samples collected from the whole Bitola Region. It was found that this enrichment is a result of the pollution by fly ash from coal burning which deposited near the plant having a high content of these elements.
Materials by Design - Computational Alloy Design for Corrosion
2011-02-01
Es = + 0.33 eV Cs Rb K · ~·Ba Sr ::~ \\ H ~ YCd ./ G B FS A~ Zn " Be• ’f_ Ni?.Au SeA. ’\\ . At-v Rh Ru • Zr Ja Mo Tc _,. • • • pt • lr Nb w...Windows Air Conditioning Autoflight Electrical Power Navigation Engine Exhaust Stabilizer Doors Fuel system Nacelles/Pylons Power Plant Equip...p. 14 ASETSDefense 2011: Sustainable Surface Engineering for Aerospace and Defense Workshop Quantum Mechanics Insights into SCC resistance 3.5 -E 0
Stoyko, Stanislav; Voss, Leonard; He, Hua; ...
2015-09-24
New ternary arsenides AE 3TrAs 3 (AE = Sr, Ba; Tr = Al, Ga) and their phosphide analogs Sr 3GaP 3 and Ba 3AlP 3 have been prepared by reactions of the respective elements at high temperatures. Single-crystal X-ray diffraction studies reveal that Sr 3AlAs 3 and Ba 3AlAs 3 adopt the Ba 3AlSb 3-type structure (Pearson symbol oC56, space group Cmce, Z = 8). This structure is also realized for Sr 3GaP 3 and Ba 3AlP 3. Likewise, the compounds Sr 3GaAs 3 and Ba 3GaAs 3 crystallize with the Ba 3GaSb 3-type structure (Pearson symbol oP56, space groupmore » Pnma, Z = 8). Both structures are made up of isolated pairs of edge-shared AlPn 4 and GaPn 4 tetrahedra (Pn = pnictogen, i.e., P or As), separated by the alkaline-earth Sr 2+ and Ba 2+ cations. In both cases, there are no homoatomic bonds, hence, regardless of the slightly different atomic arrangements, both structures can be rationalized as valence-precise [AE 2+] 3[Tr 3+][Pn 3-] 3, or rather [AE 2+] 6[Tr 2Pn 6] 12-, i.e., as Zintl phases.« less
NASA Astrophysics Data System (ADS)
Kim, Tae Song; Oh, Myung Hwan; Kim, Chong Hee
1993-06-01
Nearly stoichiometric ((Ba+Sr)/Ti=1.08-1.09) and optically transparent (BaSr)TiO3 thin films were deposited on an indium tin oxide (ITO)-coated glass substrate by means of rf magnetron sputtering for their application to the insulating layer of an electroluminescent flat panel display. The influence of the ITO layer on the properties of (BaSr)TiO3 thin films deposited on the ITO-coated substrate was investigated. The ITO layer did not affect the crystallographic orientation of (BaSr)TiO3 thin film, but enhanced the grain growth. Another effect of the ITO layer on (BaSr)TiO3 thin films was the interdiffusion phenomenon, which was studied by means of secondary ion mass spectrometry (SIMS). As the substrate temperature increased, interdiffusion intensified at the interface not only between the grown film and ITO layer but also between the ITO layer and base glass substrate. The refractive index (nf) of (BaSr)TiO3 thin film deposited on a bare glass substrate was 2.138-2.286, as a function of substrate temperature.
Composition-dependent surface chemistry of colloidal Ba xSr 1-xTiO 3 perovskite nanocrystals
Margossian, Tigran; Culver, Sean P.; Larmier, Kim; ...
2016-11-01
Ba xSr 1-xTiO 3 perovskite nanocrystals, prepared by the vapor diffusion sol-gel method and characterized by state of the art surface techniques, display significantly different O-H stretching frequencies and adsorption properties towards CO 2 as a function of the alkaline earth composition (Ba vs. Sr). Lastly, the difference of properties can be associated with the more basic nature of BaO-rich than SrO-rich surfaces.
Metal removal from oil sands tailings pond water by indigenous micro-alga.
Mahdavi, Hamed; Ulrich, Ania C; Liu, Yang
2012-09-01
This paper reports the removal of ten target metals of environmental concern ((53)Cr, Mn, Co, (60)Ni, (65)Cu, (66)Zn, As, (88)Sr, (95)Mo, and Ba) from oil sands tailings pond water. The organism responsible for removal was found to be an indigenous green micro-alga identified as Parachlorella kessleri by sequencing of the 23S rRNA gene. P. kessleri grew in tailings pond water samples taken from two oil sands operators (Syncrude Canada Ltd. and Albian Sands Energy Inc.), and enriched with low (0.24 mM NO(3)(-) and 0.016 mM PO(4)(-3)) and high (1.98 mM NO(3)(-) and 0.20mM PO(4)(-3)) concentrations of nutrient supplements (the most realistic scenario). The removal of (60)Ni, (65)Cu, As, (88)Sr, (95)Mo, and Ba from Syncrude tailings pond water was significantly enhanced by high concentrations of nitrogen and phosphorus, whereas the high nutrient concentrations adversely affected the removal of Co, (60)Ni, As, (88)Sr, and Mo in samples of Albian tailings pond water. Based on ANOVA two-factor analysis, higher nutrient concentration does not always result in higher metal removal, and TPW source must also be considered. Copyright © 2012. Published by Elsevier Ltd.
Terahertz dielectric response of ferroelectric Ba(x)Sr(1-x)TiO3 thin films.
Kang, Seung Beom; Kwak, Min Hwan; Choi, Muhan; Kim, Sungil; Kim, Taeyong; Cha, Eun Jong; Kang, Kwang Yong
2011-11-01
Terahertz time-domain spectroscopy has been used to investigate the dielectric and optical properties of ferroelectric Ba(x)Sr(1-x)TiO(3) thin films for nominal x-values of 0.4, 0.6, and 0.8 in the frequency range of 0.3 to 2.5 THz. The ferroelectric thin films were deposited at approximately 700 nm thickness on [001] MgO substrate by pulsed laser deposition. The measured complex dielectric and optical constants were compared with the Cole-Cole relaxation model. The results show that the Cole-Cole relaxation model fits well with the data throughout the frequency range and the dielectric relaxation behavior of ferroelectric Ba(x)Sr(1-x)TiO(3) thin films varies with the films compositions. Among the compositions of Ba(x)Sr(1-x)TiO(3) films with different Ba/Sr ratios, Ba(0.6)Sr(0.4)TiO(3) has the highest dielectric constants and the shortest dielectric relaxation time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manaf, A., E-mail: azwar@ui.ac.id; Fahmi, Agam Aidil; Yustanti, Erlina
This paper describes the particle size characterization of mechanically alloyed Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} and Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3} prepared with the aid of a high-power ultrasonic destruction. Analytical-grade BaCO{sub 3}, TiO{sub 2} and SrCO{sub 3} with a purity greater than 99 wt.% were used as precursors for Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} and Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3}. The mechanically powders were respectively sintered at 1200 °C for 3 hours to form crystalline powders. This work is aimed at studying the effect of diameter ratio between reactor and transducer of a high power sonicator on the Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} andmore » Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3} nanoparticles formation. The presence of a single phase of the two materials was confirmed by X-Ray Diffraction (XRD). The concentration of the particles in demineralized water was 3.0 g / 100 mL which become the object of 3 hours ultrasonic destruction subjected to the application of transducer in which the ratio between the diameter of the reactor and the transducer (D/d) was fixed at 1.4, 1.6 and 1.8 respectively. It was found that the mean particle size before the ultrasonic destruction was 538 nm for Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} and 480 nm for Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3}. With D/d of 1.8, the mean particle size of the two materials was found to decrease drastically to 38 nm and 24 nm, respectively. These mean particle sizes were respectively comparable with that of the crystallite size of the particles derived using the Whole Powder Pattern Modelling (WPPM) from which the mean crystallite size of 22 nm for Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} and 14 nm for Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3} were obtained. It is then confirmed single nanocrystallite Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} and Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3} particles were already achieved. We can conclude that the ultrasonic destruction to mechanically milled crystalline particles would be one of an effective way to produce nanoparticles.« less
On the substitution of Sr ions at Y sites in YB(suba2)Cu3O(sub7-d)
NASA Astrophysics Data System (ADS)
Siddiqi, S. A.; Sreedhar, K.; Drobac, D.; Infante, C.; Matacotta, F. C.; Ganguly, P.
1989-10-01
The effect of Sr substitution at the Ba sites in YBa2 Cu3 O sub 7-d has been studied; attempts to substitute Sr exclusively at Y sites have not been successful. We have been able to substitute Sr at Y sites only when the Ba ions are simultaneously substituted by Sr to give solid solutions of the type Y sub 1-x Sr sub x Ba sub 2-2x Sr sub 2x Cu3 O(sub 7-)x(sub /2-d). These examples show superconducting transitions higher than 78 K without significant deterioration in the magnitude of the ac susceptibility. The substitutions are best understood in terms of site constraints on the ions occupying the Y and Ba sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiogai, Junichi, E-mail: junichi.shiogai@imr.tohoku.ac.jp; Nishihara, Kazuki; Sato, Kazuhisa
One perovskite oxide, ASnO{sub 3} (A = Sr, Ba), is a candidate for use as a transparent conductive oxide with high electron mobility in single crystalline form. However, the electron mobility of films grown on SrTiO{sub 3} substrates does not reach the bulk value, probably because of dislocation scattering that originates from the large lattice mismatch. This study investigates the effect of insertion of bilayer BaSnO{sub 3} / (Sr,Ba)SnO{sub 3} for buffering this large lattice mismatch between La:BaSnO{sub 3} and SrTiO{sub 3} substrate. The insertion of 200-nm-thick BaSnO{sub 3} on (Sr,Ba)SnO{sub 3} bilayer buffer structures reduces the number of dislocationsmore » and improves surface smoothness of the films after annealing as proved respectively by scanning transmission electron microscopy and atomic force microscopy. A systematic investigation of BaSnO{sub 3} buffer layer thickness dependence on Hall mobility of the electron transport in La:BaSnO{sub 3} shows that the highest obtained value of mobility is 78 cm{sup 2}V{sup −1}s{sup −1} because of its fewer dislocations. High electron mobility films based on perovskite BaSnO{sub 3} can provide a good platform for transparent-conducting-oxide electronic devices and for creation of fascinating perovskite heterostructures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasir, Navida; Grytsiv, Andriy; Melnychenko-Koblyuk, Nataliya
2010-10-15
Three series of vacancy-free quaternary clathrates of type I, Ba{sub 8}Zn{sub x}Ge{sub 46-x-y}Si{sub y}, Ba{sub 8}(Zn,Cu){sub x}Ge{sub 46-x}, and Ba{sub 8}(Zn,Pd){sub x}Ge{sub 46-x}, have been prepared by reactions of elemental ingots in vacuum sealed quartz at 800 {sup o}C. In all cases cubic primitive symmetry (space group Pm3n, a{approx}1.1 nm) was confirmed for the clathrate phase by X-ray powder diffraction and X-ray single crystal analyses. The lattice parameters show a linear increase with increase in Ge for Ba{sub 8}Zn{sub x}Ge{sub 46-x-y}Si{sub y}. M atoms (Zn, Pd, Cu) preferably occupy the 6d site in random mixtures. No defects were observed formore » the 6d site. Site preference of Ge and Si in Ba{sub 8}Zn{sub x}Ge{sub 46-x-y}Si{sub y} has been elucidated from X-ray refinement: Ge atoms linearly substitute Si in the 24k site whilst a significant deviation from linearity is observed for occupation of the 16i site. A connectivity scheme for the phase equilibria in the 'Ba{sub 8}Ge{sub 46}' corner at 800 {sup o}C has been derived and a three-dimensional isothermal section at 800 {sup o}C is presented for the Ba-Pd-Zn-Ge system. Studies of transport properties carried out for Ba{sub 8{l_brace}}Cu,Pd,Zn{r_brace}{sub x}Ge{sub 46-x} and Ba{sub 8}Zn{sub x}Si{sub y}Ge{sub 46-x-y} evidenced predominantly electrons as charge carriers and the closeness of the systems to a metal-to-insulator transition, fine-tuned by substitution and mechanical processing of starting material Ba{sub 8}Ge{sub 43}. A promising figure of merit, ZT {approx}0.45 at 750 K, has been derived for Ba{sub 8}Zn{sub 7.4}Ge{sub 19.8}Si{sub 18.8}, where pricey germanium is exchanged by reasonably cheap silicon. - Graphical abstract: Quaternary phase diagram of Ba-Pd-Zn-Ge system at 800 {sup o}C.« less
Distribution and Phase Association of Some Major and Trace Elements in the Arabian Gulf Sediments
NASA Astrophysics Data System (ADS)
Basaham, A. S.; El-Sayed, M. A.
1998-02-01
Twenty-four sediment samples were collected from the Arabian Gulf (ROPME Sea) and analysed for their grain size distribution and carbonate contents as well as the major elements Ca, Mg, Fe and Al and macro and trace elements Mn, Sr, Ba, Zn, Cu, Cr, V, Ni and Hg. Concentration of trace elements are found comparable to previous data published for samples taken before and after the Gulf War, and reflect the natural background level. Grain size analyses, aluminium and carbonate measurements support the presence of two major sediment types: (1) a terrigenous, fine-grained and Al rich type predominating along the Iranian side; and (2) a coarse-grained and carbonate rich type predominating along the Arabian side of the Gulf. Investigation of the correlation of the elements analysed with the sediment type indicates that they could be grouped under two distinct associations: (1) carbonate association including Ca and Sr; and (2) terrigenous association comprising Al, Fe, Mg, Ba, Mn, Zn, Cu, Cr, V, Ni and Hg. Element/Al ratios calculated for the mud non-carbonate fraction indicate that the Euphrates and Tigris rivers have minor importance as sediment sources to the Gulf. Most of the elements have exceptionally high aluminium ratios in sediments containing more than 85-90% carbonate. These sediments are restricted to the southern and south-eastern part of the area where depth is shallow and temperature and salinity are high. Both biological accumulation and chemical and biochemical coprecipitation could be responsible for this anomaly.
Phosphate glass useful in high energy lasers
Hayden, Yuiko T.; Payne, Stephen A.; Hayden, Joseph S.; Campbell, John H.; Aston, Mary Kay; Elder, Melanie L.
1996-01-01
In a high energy laser system utilizing phosphate laser glass components to amplify the laser beam, the laser system requires a generated laser beam having an emission bandwidth of less than 26 nm and the laser glass components consist essentially of (on an oxide composition basis) in mole percent: P{sub 2}O{sub 5}, 50--75; Al{sub 2}O{sub 3}, {gt}0--10; K{sub 2}O, {gt}0--30; MgO, 0--30; CaO, 0--30; Li{sub 2}O, 0--20; Na{sub 2}O, 0--20; Rb{sub 2}O, 0--20; Cs{sub 2}O, 0--20; BeO, 0--20; SrO, 0--20; BaO, 0--20; ZnO, 0--20; PbO, 0--20; B{sub 2}O{sub 3}, 0--10; Y{sub 2}O{sub 3}, 0--10; La{sub 2}O{sub 3}, 0--8; Ln{sub 2}O{sub 3}, 0.01--8; wherein the sum of MgO and CaO is >0--30; the sum of Li{sub 2}O, Na{sub 2}O, Rb{sub 2}O, and Cs{sub 2}O is 0--20; the sum of BeO, SrO, BaO, ZnO, and PbO is 0--20; the sum of B{sub 2}O{sub 3} and Y{sub 2}O{sub 3} is 0--10; and Ln{sub 2}O{sub 3} represents the sum of the oxides of active lasing lanthanides of atomic number 58--71. 21 figs.
Kamar, Veysi; Dağalp, Rukiye; Taştekin, Mustafa
2017-12-28
In this study, the elements of Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Ni, Sr, Pb, Ti, and Zn were determined in the leaves, fruits, and branches of mistletoe, (Viscum albüm L.), used as a medicinal plant, and in the leaves, branches and barks of almond tree which mistletoe grows on. The aim of the study is to investigate whether the mistletoe are more absorbent than the almond tree in terms of the heavy metal contents and the determination of the amount of the elements penetrated into the mistletoe from the almond tree. ICP-MS (inductively coupled plasma-mass spectrometry) was used for the analysis of As, Cd, Mo, and Pb, whereas ICP-OES (inductively coupled plasma optical emission spectrometry) was used for the other elements. The results obtained were statistically evaluated at 95% confidence level. Within the results obtained in this study, it was determined whether there is a significant difference between metal elements in almond tree and mistletoe, or not. As a result, it was observed that there were higher contents of B, Ba, K, Mg, and Zn in the mistletoe than in the almond tree. K was found much higher than other elements in the mistletoe. On the other hand, Al, As, Ca, Cd, Cr, Cu, Fe, Mo, Ni, Sr, Pb, and Ti contents were determined to be more in almond tree than mistletoe.
Phosphate glass useful in high energy lasers
Hayden, Y.T.; Payne, S.A.; Hayden, J.S.; Campbell, J.H.; Aston, M.K.; Elder, M.L.
1996-06-11
In a high energy laser system utilizing phosphate laser glass components to amplify the laser beam, the laser system requires a generated laser beam having an emission bandwidth of less than 26 nm and the laser glass components consist essentially of (on an oxide composition basis) in mole percent: P{sub 2}O{sub 5}, 50--75; Al{sub 2}O{sub 3}, {gt}0--10; K{sub 2}O, {gt}0--30; MgO, 0--30; CaO, 0--30; Li{sub 2}O, 0--20; Na{sub 2}O, 0--20; Rb{sub 2}O, 0--20; Cs{sub 2}O, 0--20; BeO, 0--20; SrO, 0--20; BaO, 0--20; ZnO, 0--20; PbO, 0--20; B{sub 2}O{sub 3}, 0--10; Y{sub 2}O{sub 3}, 0--10; La{sub 2}O{sub 3}, 0--8; Ln{sub 2}O{sub 3}, 0.01--8; wherein the sum of MgO and CaO is >0--30; the sum of Li{sub 2}O, Na{sub 2}O, Rb{sub 2}O, and Cs{sub 2}O is 0--20; the sum of BeO, SrO, BaO, ZnO, and PbO is 0--20; the sum of B{sub 2}O{sub 3} and Y{sub 2}O{sub 3} is 0--10; and Ln{sub 2}O{sub 3} represents the sum of the oxides of active lasing lanthanides of atomic number 58--71. 21 figs.
Soil pollution in Central district of Saint-Petersburg (Russia)
NASA Astrophysics Data System (ADS)
Terekhina, Natalia; Ufimtseva, Margarita
2015-04-01
Analysis of soil samples of upper horizon for the content of chemical elements (Fe, Mn, Cu, Zn, Pb, Ni, Cr, Co, Cd, Ba, Sr) was carried out by atomic emission with inductively coupled plasma. A relative indicator of soil contamination degree is a concentration coefficient, representing the ratio of metal content in tested soil samples to the local background value of the corresponding element. Total pollution index is calculated by the concentration coefficients, which are greater than 1, taking into account the hazard class of metals (1 class - Zn, Pb ,Cd; 2 - class Cr, Ni, Cu ,Со; 3 class - Fe, Mn, Sr, Ba). Analysis of trace element of urban soils demonstrated mosaic patterns of pollution for Central district. The method of correlation sets constructing and factor analysis revealed three groups of chemical elements having a strong and significant association with each other: Pb-Cu-Cd-Zn-Ba, Ni-Cr-Co, Fe-Mn. Elements of the first group are characterized by high values of concentration coefficient and are the main pollutants - their average content is 3-11 times higher than background values. Strontium does not have strong correlation with the other elements, and its lowest concentration coefficient indicates that the element can not be regarded as a pollutant. The spatial distribution of the total pollution index identified several sources of pollution, the origin of which may be different. The main reason is probably the impact of vehicle emissions, although local pollution of soil is possible (the soils, contaminated during reconstruction of lawns, dumping of construction materials, etc.). Differentiated assessment of database shows that 48% of samples refer to dangerous pollution category, 37% - to moderately dangerous category, 15% - to allowable category. Thus, almost half of the district is characterized as dangerous in terms of soil contamination. Solution of the problem of soil contamination is recommended in three ways: reducing the intensity of vehicular traffic through the historic center of the city, improving the quality of transport emissions, removal of contaminated soil layers in particularly polluted areas and the introduction of clean soil, optimization of verdurization of the urban environment, as a means of reducing the flow of atmospheric pollutants in soil.
Jeffery, John C; Rice, Craig R; Harding, Lindsay P; Baylies, Christian J; Riis-Johannessen, Thomas
2007-01-01
The ditopic ligand 6,6'-bis(4-methylthiazol-2-yl)-3,3'-([18]crown-6)-2,2'-bipyridine (L(1)) contains both a potentially tetradentate pyridyl-thiazole (py-tz) N-donor chain and an additional "external" crown ether binding site which spans the central 2,2'-bipyridine unit. In polar solvents (MeCN, MeNO(2)) this ligand forms complexes with Zn(II), Cd(II), Hg(II) and Cu(I) ions via coordination of the N donors to the metal ion. Reaction with both Hg(II) and Cu(I) ions results in the self-assembly of dinuclear double-stranded helicate complexes. The ligands are partitioned by rotation about the central py--py bond, such that each can coordinate to both metals as a bis-bidentate donor ligand. With Zn(II) ions a single-stranded mononuclear species is formed in which one ligand coordinates the metal ion in a planar tetradentate fashion. Reaction with Cd(II) ions gives rise to an equilibrium between both the dinuclear double-stranded helicate and the mononuclear species. These complexes can further coordinate s-block metal cations via the remote crown ether O-donor domains; a consequence of which are some remarkable changes in the binding modes of the N-donor domains. Reaction of the Hg(II)- or Cd(II)-containing helicate with either Ba(2+) or Sr(2+) ions effectively reprogrammes the ligand to form only the single-stranded heterobinuclear complexes [MM'(L(1))](4+) (M=Hg(II), Cd(II); M'=Ba(2+), Sr(2+)), where the transition and s-block cations reside in the N- and O-donor sites, respectively. In contrast, the same ions have only a minor structural impact on the Zn(II) species, which already exists as a single-stranded mononuclear complex. Similar reactions with the Cd(II) system result in a shift in equilibrium towards the single-stranded species, the extent of which depends on the size and charge of the s-block cation in question. Reaction of the dicopper(I) double-stranded helicate with Ba(2+) shows that the dinuclear structure still remains intact but the pitch length is significantly increased.
Ryan, D; Shephard, S; Kelly, F L
2016-09-01
This study investigates temporal stability in the scale microchemistry of brown trout Salmo trutta in feeder streams of a large heterogeneous lake catchment and rates of change after migration into the lake. Laser-ablation inductively coupled plasma mass spectrometry was used to quantify the elemental concentrations of Na, Mg, Mn, Cu, Zn, Ba and Sr in archived (1997-2002) scales of juvenile S. trutta collected from six major feeder streams of Lough Mask, County Mayo, Ireland. Water-element Ca ratios within these streams were determined for the fish sampling period and for a later period (2013-2015). Salmo trutta scale Sr and Ba concentrations were significantly (P < 0·05) correlated with stream water sample Sr:Ca and Ba:Ca ratios respectively from both periods, indicating multi-annual stability in scale and water-elemental signatures. Discriminant analysis of scale chemistries correctly classified 91% of sampled juvenile S. trutta to their stream of origin using a cross-validated classification model. This model was used to test whether assumed post-depositional change in scale element concentrations reduced correct natal stream classification of S. trutta in successive years after migration into Lough Mask. Fish residing in the lake for 1-3 years could be reliably classified to their most likely natal stream, but the probability of correct classification diminished strongly with longer lake residence. Use of scale chemistry to identify natal streams of lake S. trutta should focus on recent migrants, but may not require contemporary water chemistry data. © 2016 The Fisheries Society of the British Isles.
Growth and characterization of BaZnGa
Jo, Na Hyun; Lin, Qisheng; Nguyen, Manh Cuong; ...
2017-10-20
In this paper, we report the growth, structure and characterization of BaZnGa, identifying it as the sole known ternary compound in the Ba–Zn–Ga system. Single crystals of BaZnGa can be grown out of excess Ba–Zn and adopt a tI36 structure type. There are three unique Ba sites and three M = Zn/Ga sites. Using DFT calculations we can argue that whereas one of these three M sites is probably solely occupied by Ga, the other two M sites, most likely, have mixed Zn/Ga occupancy. Finally, temperature-dependent resistivity and magnetization measurements suggest that BaZnGa is a poor metal with no electronicmore » or magnetic phase transitions between 1.8 and 300 K.« less
NASA Astrophysics Data System (ADS)
Liu, Zhe; Xing, Zhiguo; Wang, Haidou; Xue, Zifan; Chen, Shuying; Cui, Xiufang; Jin, Guo
2018-04-01
The dielectric performance of BaTiO3 ceramic coatings is enhanced significantly by the addition of ZnO. In this study, the maximum relative permittivity value (εr ≈ 923) was measured in BaTiO3 coatings with ZnO added at 6 wt%. The Curie temperature (Tc) was in the range of 111 °C-121 °C for all of the ZnO-modified BaTiO3 coatings. Tc shifted to low temperatures as the ZnO content increased. Detailed analyses were performed to determine the phase composition and optical band gaps of powders collected in liquid nitrogen, which showed that the Zn2+ ions were incorporated into the BaTiO3 lattice where they substituted into the Ti4+ sites, and the composite powders (BaTiO3 + 6 wt% ZnO) tolerated high temperatures in the plasma beam. In addition, some residual Zn accumulated in the grain boundary in the form of ZnO. X-ray diffraction and Raman spectroscopy showed that the substitution led to changes in the compositional and structural properties. The red shift in the optical band gap of BaTiO3 indicated that the ZnTi'' defects caused by the dopants acted as carriers in the doped BaTiO3 coatings.
NASA Astrophysics Data System (ADS)
Balter, Vincent; Person, Alain; Labourdette, Nathalie; Drucker, Dorothée; Renard, Maurice; Vandermeersch, Bernard
2001-01-01
Strontium-calcium (Sr/Ca) and barium-calcium (Ba/Ca) ratios are reduced constantly between diet and bioapatite in mammal organisms. This phenomenon leads to a reduction in the Sr/Ca and Ba/Ca ratios at higher trophic level in predator-prey mammalian communities, and is applied here to the reconstruction of a castelperronian food web, which includes a Neanderthal specimen. Adapted chemical pretreatment allows to isolate bioapatite from diagenetic compounds for analysis of Ca, Sr and Ba. Sr/Ca and Ba/Ca results of the fauna are consistent with trophic predictions. Initial results for the Neandertal suggest that he was mostly carnivorous. Distribution of Ba/Ca values of bones of herbivorous taxa reveals that ruminant animals can be distinguished from non-ruminants. The biosegregation model predicts that the diet of the Neandertal was composed by about 97 % in weight of meat with a weak contribution of vegetable or fish, and that the association of fish and plant is excluded in any proportion.
Falandysz, Jerzy; Zhang, Ji; Wiejak, Anna; Barałkiewicz, Danuta; Hanć, Anetta
2017-08-01
Yunnan Province in China is known for its high biodiversity of mushrooms and a diverse geochemistry of soil bedrock and polymetallic soils, but our knowledge of mineral compositions of mushrooms from Yunnan is scarce. The metallic trace elements, Ag, Ba, Co, Cd, Cs, Cu, Cr, Hg, Li, Mn, Ni, Pb, Rb, Sr, V, Tl, U and Zn, and the metalloids, As and Sb, have been investigated using validated methods with a dynamic reactive cell by mass spectroscopy - inductive coupled plasma and cold vapour - atomic absorption spectroscopy on three popular species of Boletus mushrooms from Southwestern China. The trace mineral profiles in caps and stipes of B. luridus (24 individuals), B. magnificus (29 individuals) and B. tomentipes (38 individuals) have been evaluated. The interspecific differences in the content of several trace elements could be attributed to known differences in the geochemistry of soils in Yunnan, but for copper a difference was observed within species. The mean values of concentrations in composite samples of caps for B. luridus, B. magnificus and B. tomentipes from three to four locations were at the ranges (mgkg -1 dry biomass): Ag (1.3-3.7), As (0.79-53), Ba (4.0-12), Co (0.68-1.2), Cd (0.79-2.2), Cs (0.67-55), Cu (37-77), Cr (5.0-7.6), Hg (2.1-5.4), Li (0.15-0.61), Mn (13-28), Ni (0.86-4.6), Pb (0.59-1.8), Rb (90-120), Sb (0.014-0.088), Sr (0.63-1.6), V (1.4-2.2), Tl (0.017-0.054), U (0.029-0.065) and Zn (130-180). Caps of Boletus mushrooms were richer in Ag, Cu, Hg and Zn than stipes, while other elements were distributed roughly equally between both morphological parts. B. luridus, B. magnificus and B. tomentipes grew in certain sites in Yunnan contained Ag, As, Ba, Cr, Hg, Ni, Sr or V at elevated concentration. A specific geochemistry of the soils type (latosols, lateritic red earths, and red and yellow earths in the Circum-Pacific Mercuriferous Belt of Southwestern China) can explain occurrence of some minerals at greater or elevated amount in mushrooms in Yunnan, while number of available research and data on mineral composition of mushrooms due to geochemical anomalies of soil parent material is so far little. Copyright © 2017 Elsevier Inc. All rights reserved.
Luminescence properties of Eu2+ in M2MgSi2O7 (M=Ca, Sr, and Ba) phosphors
NASA Astrophysics Data System (ADS)
Kim, T.; Kim, Y.; Kang, S.
2012-03-01
The photoluminescence properties of alkali-earth magnesium silicates (M2MgSi2O7, M=Ca, Sr, and Ba) doped with Eu2+ were investigated. Solid solutions of Ba x Sr2- x Si2O7, Ca2MgSi2O7, and Sr2MgSi2O7 were prepared. Ba x Sr2- x Si2O7 retained a tetragonal crystal structure similar to the structure of the other compounds up to a stoichiometry of x=1.6, which enabled a systematic study of the common structure. Monoclinic Ba2MgSi2O7 was prepared, and the luminescence properties were compared with those of other samples. The emission and excitation spectra of tetragonal M2MgSi2O7 (M=Ca, Sr, and Ba) changed as a function of the covalency, site symmetry, and crystal field strength. The luminescence properties showed excellent agreement with theoretical predictions based on these factors. The Stokes shift differentiated the emission behaviors of the tetragonal and monoclinic structures.
Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al₂O₄:Eu2+, Dy3+ Phosphors.
Xie, Qidi; Li, Bowen; He, Xin; Zhang, Mei; Chen, Yan; Zeng, Qingguang
2017-10-18
(Sr, Ca, Ba)Al₂O₄:Eu 2+ , Dy 3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al₂O₄:Eu 2+ ,Dy 3+ phosphors, the different phase formation from monoclinic SrAl₂O₄ phase to hexagonal SrAl₂O₄ phase to monoclinic CaAl₂O₄ phase was observed when the Ca content increased. The emission color of SrAl₂O₄:Eu 2+ , Dy 3+ phosphors varied from green to blue. For the (Sr, Ba)Al₂O₄:Eu 2+ , Dy 3+ phosphors, different phase formation from the monoclinic SrAl₂O₄ phase to the hexagonal BaAl₂O₄ phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl₂O₄:Eu 2+ , Dy 3+ changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr 2+ with Ba 2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED). Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(In)N near UV chips.
Ba3CuOs2O9 and Ba3ZnOs2O9, a comparative study
NASA Astrophysics Data System (ADS)
Feng, Hai L.; Jansen, Martin
2018-02-01
Polycrystalline samples of Ba3CuOs2O9 and Ba3ZnOs2O9 were synthesized by solid-state reactions. Ba3CuOs2O9 crystallizes in Cmcm, while Ba3ZnOs2O9 adopts the hexagonal space group P63/mmc. Both the crystal structures consist of face-sharing Os-centered octahedra forming dimer-like Os2O9 units, which are interconnected by corner-sharing CuO6, or ZnO6 octahedra, respectively. In Ba3CuOs2O9, the CuO6 octahedra show a characteristic Jahn-Teller distortion. Both, Ba3CuOs2O9 and Ba3ZnOs2O9, are electrically insulating. Magnetic and specific heat measurements confirm that Ba3CuOs2O9 is antiferromagnetically ordered below 47 K. Analysis of the magnetic data indicated that its magnetic properties are dominated by Cu2+ ions. The magnetic susceptibility of Ba3ZnOs2O9 is weakly temperature-dependent with a broad maximum ≈ 280 K, indicating the presence of strong exchange interactions within the Os2O9 dimer. The residual magnetic susceptibility at low temperatures also suggests the presence of appreciable exchange coupling between the dimers.
Major and trace elements in organically or conventionally produced milk.
Hermansen, John E; Badsberg, Jens H; Kristensen, Troels; Gundersen, Vagn
2005-08-01
A total of 480 samples of milk from 10 organically and 10 conventionally producing dairy farms in Denmark and covering 8 sampling periods over 1 year (triplicate samplings) were analysed for 45 trace elements and 6 major elements by high-resolution inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry. Sampling, sample preparation, and analysis of the samples were performed under carefully controlled contamination-free conditions. The dairy cattle breeds were Danish-Holstein or Jersey. Sources of variance were quantified, and differences between production systems and breeds were tested. The major source of variation for most elements was week of sampling. Concentrations of Al, Cu, Fe, Mo, Rb, Se, and Zn were within published ranges. Concentrations of As, Cd, Cr, Mn and Pb were lower, and concentrations of Co and Sr were higher than published ranges. Compared with Holsteins, Jerseys produced milk with higher concentrations of Ba, Ca, Cu, Fe, Mg, Mn, Mo, P, Rh, and Zn and with a lower concentration of Bi. The organically produced milk, compared with conventionally produced milk, contained a significantly higher concentration of Mo (48 v. 37 ng/g) and a lower concentration of Ba (43 v. 62 ng/g), Eu (4 v. 7 ng/g), Mn (16 v. 20 ng/g) and Zn (4400 v. 5150 ng/g respectively). The investigation yielded typical concentrations for the following trace elements in milk, for which no or very few data are available: Ba, Bi, Ce, Cs, Eu, Ga, Gd, In, La, Nb, Nd, Pd, Pr, Rh, Sb, Sm, Tb, Te, Th, Ti, Tl, U, V, Y, and Zr.
The effect of tissue structure and soil chemistry on trace element uptake in fossils
NASA Astrophysics Data System (ADS)
Hinz, Emily A.; Kohn, Matthew J.
2010-06-01
Trace element profiles for common divalent cations (Sr, Zn, Ba), rare-earth elements (REE), Y, U, and Th were measured in fossil bones and teeth from the c. 25 ka Merrell locality, Montana, USA, by using laser-ablation ICP-MS. Multiple traverses in teeth were transformed into 2-D trace element maps for visualizing structural influences on trace element uptake. Trace element compositions of different soils from the fossil site were also analyzed by solution ICP-MS, employing progressive leaches that included distilled H 2O, 0.1 M acetic acid, and microwave digestion in concentrated HCl-HNO 3. In teeth, trace element uptake in enamel is 2-4 orders of magnitude slower than in dentine, forming an effective trace element barrier. Uptake in dentine parallel to the dentine-enamel interface is enhanced by at least 2 orders of magnitude compared to transverse, causing trace element "plumes" down the tooth core. In bone, U, Ba and Sr are nearly homogeneous, implying diffusivities ˜5 orders of magnitude faster than in enamel and virtually complete equilibration with host soils. In contrast all REE show strong depletions inward, with stepwise linear segments in log-normal or inverse complementary error function plots; these data require a multi-medium diffusion model, with about 2 orders of magnitude difference in slowest vs. fastest diffusivities. Differences in REE diffusivities in bone (slow) vs. dentine (fast) reflect different partition coefficients ( Kd's). Although acid leaches and bulk digestion of soils yield comparable fossil-soil Kd's among different elements, natural solutions are expected to be neutral to slightly basic. Distilled H 2O leachates instead reveal radically different Kd's in bone for REE than for U-Sr-Ba, suggest orders of magnitude lower effective diffusivities for REE, and readily explain steep vs. flat profiles for REE vs. U-Sr-Ba, respectively. Differences among REE Kd's and diffusivities may explain inward changes in Ce anomalies. Acid washes and bulk soil compositions yield misleading Kd's for many trace elements, especially the REE, and H 2O-leaches are preferred. Patterns of trace element distributions indicate diagenetic alteration at all scales, including enamel, and challenge the use of trace elements in paleodietary studies.
Advanced thermionic converter development
NASA Technical Reports Server (NTRS)
Huffman, F. N.; Lieb, D.; Briere, T. R.; Sommer, A. H.; Rufeh, F.
1976-01-01
Recent progress at Thermo Electron in developing advanced thermionic converters is summarized with particular attention paid to the development of electrodes, diodes, and triodes. It is found that one class of materials (ZnO, BaO and SrO) provides interesting cesiated work functions (1.3-1.4 eV) without additional oxygen. The second class of materials studied (rare earth oxides and hexaborides) gives cesiated/oxygenated work functions of less than 1.2 eV. Five techniques of oxygen addition to thermionic converters are discussed. Vapor deposited tungsten oxide collector diodes and the reflux converter are considered.
The Phase Transformation and Crystal Structure Studies of Strontium Substituted Barium Monoferrite
NASA Astrophysics Data System (ADS)
Mulyawan, A.; Adi, W. A.; Mustofa, S.; Fisli, A.
2017-03-01
Unlike other AFe2O4 ferrite materials, Barium Monoferrite (BaFe2O4) have an orthorhombic structure which is very interesting to further study the crystal structure and phase formation. In this study, Strontium substituted Barium Monoferrite in the form of Ba(1-x)Sr(x)Fe2O4 has successfully been synthesized through solid state reaction method which includes BaCO3, SrCO3, and Fe2O3 as starting materials. Ba(1-x)Sr(x)Fe2O4 was made by varying the dopant composition of Strontium (Sr2+) from x = 0, 0.1, 0.3, and 0.5. Each composition was assisted by ethanol and continued to the milling process for 5 hours then followed by sintering process at 900 °C for 5 hours. The phase transformation was studied by using X-ray diffractometer (XRD) and Rietveld refinement using General Structure Analysis System (GSAS) also 3D crystal visualization using VESTA. Referring to the refinement results, a single phase of BaFe2O4 was formed in x = 0 and 0.1. The composition has orthorhombic structure, space group B b21m, and lattice parameters of a = 19.0229, b = 5.3814 c = 8.4524 Å, α = β = γ = 90° and a = 18.9978, b = 5.3802 c = 8.4385 Å, α = β = γ = 90° respectively. In the composition of x = 0.3 it was found that the phase of BaSrFe4O8 begin to form due to the overload expansion of the Sr2+ occupancy which made the distortion of the initial lattice parameters and finally in the x = 0.5 composition the single phase of BaSrFe4O8 was clearly formed. Energy Dispersive Spectroscopy (EDS) was used to confirm the change of the material structure by measuring the elemental compound composition ratio. The result of EDS spectra clearly exhibited the dominant elements were Barium (Ba), Strontium (Sr), Iron (Fe), and Oxygen (O) with the compound ratio (Atomic percentage and mass percentage) correspond to the BaFe2O4 and BaSrFe4O8 phase.
NASA Astrophysics Data System (ADS)
Yoshimaru, Masaki; Takehiro, Shinobu; Abe, Kazuhide; Onoda, Hiroshi
2005-05-01
The (Ba, Sr) TiO3 thin film deposited by radio frequency (rf) sputtering requires a high deposition temperature near 500 °C to realize a high relative dielectric constant over of 300. For example, the film deposited at 330 °C contains an amorphous phase and shows a low relative dielectric constant of less than 100. We found that rf power supplied not only to the (Ba, Sr) TiO3 sputtering target, but also to the substrate during the initial step of film deposition, enhanced the crystallization of the (Ba, Sr) TiO3 film drastically and realized a high dielectric constant of the film even at low deposition temperatures near 300 °C. The 50-nm-thick film with only a 10 nm initial layer deposited with the substrate rf biasing is crystallized completely and shows a high relative dielectric constant of 380 at the deposition temperature of 330 °C. The (Ba, Sr) TiO3 film deposited at higher temperatures (upwards of 400 °C) shows <110> preferred orientation, while the film deposited at 330 °C with the 10 nm initial layer shows a <111> preferred orientation on a <001>-oriented ruthenium electrode. The unit cell of (Ba, Sr) TiO3 (111) plane is similar to that of ruthenium (001) plane. We conclude that the rf power supplied to the substrate causes ion bombardments on the (Ba, Sr) TiO3 film surface, which assists the quasiepitaxial growth of (Ba, Sr) TiO3 film on the ruthenium electrode at low temperatures of less than 400 °C.
NASA Astrophysics Data System (ADS)
Purwanto, P.; Adi, WA; Yunasfi
2017-05-01
The Composite of Ba1,5Sr0,5Fe2O5 has been synthesized by using powder metallurgy technique. The Ba1.5Sr0.5Fe2O5 were prepared from BaCO3, SrCO3 and Fe2O3 raw materials with a specific weight ratio. The three materials were synthesized by powder metallurgy under heat treatment at 800 °C, 900 °C, and 1000 °C for 5 hours. All the three samples were characterized by using X-ray Diffraction (XRD) to determine the crystal structure and crystal size, LCR meter to determine the conductivity, and Scanning Electron Microscope (SEM) to observe the morphological of the composites. The phase analysis result showed that the composite consists of several minor phases such as BaO2, SrO2, and Fe2O3. The Crystal size of composite Ba1.5Sr0.5Fe2O5 decreased while increases the strain of crystal with increasing of sintering temperature. The crystal size of the Ba1.5Sr0.5Fe2O5 composite is 3.55 nm to 7.23 nm and value of strain is 8.47% until 3.90%. Based on the conductivity measurement, it was obtained that the conductivity of the Ba1.5Sr0.5Fe2O5 composite decreased with increasing sintering temperature. It was also noticed that the conductivity increased with increasing of frequency. The conductivity ranged from 6.619×10-7 S/cm to 65.659×10-7 S/cm. The energy dispersive spectroscopy (EDS) analysis showed that several dominant elements were a good agreement with the phase analysis.
Growth and interface engineering in thin-film Ba0.6Sr0.4TiO3 /SrMoO3 heterostructures
NASA Astrophysics Data System (ADS)
Radetinac, Aldin; Ziegler, Jürgen; Vafaee, Mehran; Alff, Lambert; Komissinskiy, Philipp
2017-04-01
Epitaxial heterostructures of ferroelectric Ba0.6Sr0.4TiO3 and highly conducting SrMoO3 were grown by pulsed laser deposition on SrTiO3 (0 0 1) substrates. Surface oxidation of the SrMoO3 film is suppressed using a thin cap interlayer of Ba0.6Sr0.4TiO3-δ grown in reduced atmosphere. As shown by X-ray photoelectron spectroscopy, the Mo4+ valence state of the SrMoO3 films is stable upon annealing of the sample in oxygen up to 600 °C. The described oxygen interface engineering enables utilization of the highly conducting material SrMoO3 in multilayer oxide ferroelectric varactors.
Preparation of porous (Ba,Sr)TiO3 by adding corn-starch
NASA Astrophysics Data System (ADS)
Kim, J.-G.; Sim, J.-H.; Cho, W.-S.
2002-11-01
A new method of preparing porous (Ba,Sr)TiO3 ceramics has been introduced, using an ordinary ceramics processing technique. The effect of corn-starch on the positive temperature coefficient of resistivity characteristics and microstructure of the porous (Ba,Sr)TiO3 ceramics has been investigated. When the corn-starch addition was 1-20 wt%, the PTCR jump was over 106 and 1-2 orders higher than that of samples without corn-starch. Also, it was found that the (Ba,Sr)TiO3 ceramics had porous microstructure by the addition of corn-starch. The porosity of the ceramics with 20 wt% corn-starch was 44%. The electrical properties of the (Ba,Sr)TiO3 ceramics have been discussed, based on the microstructure, resistivity of grain boundaries, donor concentration of grains and the electrical potential barrier of grain boundaries.
Tuning the electrocaloric effect by varying Sr concentration in ferroelectric Ba1 -xSrxTiO3
NASA Astrophysics Data System (ADS)
Lisenkov, S.; Ponomareva, I.
2018-05-01
The electrocaloric effect is investigated systematically in Ba1 -xSrxTiO3 ferroelectrics using a semiclassical direct computational approach. The data are reported for the technologically important range of Sr concentrations of 0.0-0.6, electric fields up to 1000 kV/cm, and temperatures ranging from 5 to 600 K. A detailed comparison of computational data with experimental data from the literature reveals semiquantitative agreement and suggests the origin of discrepancies. The electrocaloric change in temperature Δ T shows strong dependence on Sr concentration which offers a way to tune electrocaloric response. In particular, the maximum electrocaloric Δ T is found to decrease with the increase in Sr concentration, whereas the location of the maximum shifts towards lower temperatures following the Curie point of the ferroelectric. Surprisingly, the width of the peak in the dependence of Δ T on the initial temperature is independent of the Sr concentration but shows a strong dependence on the applied electric field. Computational data are used to propose a compositionally graded ferroelectric Ba0.70Sr0.30TiO3/Ba0.55Sr0.45TiO3/Ba0.50Sr0.50TiO3/Ba0.45Sr0.55TiO3 whose Δ T shows almost no temperature dependence in the technologically important range of temperatures and electric fields. Such a desirable feature could potentially lead to the enhancement of relative cooling power.
Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors
Xie, Qidi; Li, Bowen; He, Xin; Zhang, Mei; Chen, Yan; Zeng, Qingguang
2017-01-01
(Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al2O4:Eu2+, Dy3+ phosphors, the different phase formation from monoclinic SrAl2O4 phase to hexagonal SrAl2O4 phase to monoclinic CaAl2O4 phase was observed when the Ca content increased. The emission color of SrAl2O4:Eu2+, Dy3+ phosphors varied from green to blue. For the (Sr, Ba)Al2O4:Eu2+, Dy3+ phosphors, different phase formation from the monoclinic SrAl2O4 phase to the hexagonal BaAl2O4 phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl2O4:Eu2+, Dy3+ changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr2+ with Ba2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED). Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(In)N near UV chips. PMID:29057839
Poddar, Maneesh Kumar; Sharma, Sachin; Pattipaka, Srinivas; Pamu, D; Moholkar, Vijayanand S
2017-11-01
The present study reports synthesis and characterization of poly(MMA-co-BA)/ZnO nanocomposites using ultrasound-assisted in-situ emulsion polymerization. Methyl methacrylate (MMA) was copolymerized with butyl acrylate (BA), for enhanced ductility of copolymer matrix, in presence of nanoscale ZnO particles. Ultrasound generated strong micro-turbulence in reaction mixture, which resulted in higher encapsulation and uniform dispersion of ZnO (in native form - without surface modification) in polymer matrix, as compared to mechanical stirring. The nanocomposites were characterized for physical properties and structural morphology using standard techniques such as XRD, FTIR, particle size analysis, UV-Visible spectroscopy, electrical conductivity, TGA, DSC, FE-SEM and TEM. Copolymerization of MMA and BA (in presence of ZnO) followed second order kinetics. Thermal stability (T 10% =324.9°C) and glass transition temperature (T g =67.8°C) of poly(MMA-co-BA)/ZnO nanocomposites showed significant enhancement (35.1°C for 1wt% ZnO and 15.7°C for 4wt% ZnO, respectively), as compared to pristine poly(MMA-co-BA). poly(MMA-co-BA)/ZnO (5wt%) nanocomposites possessed the highest electrical conductivity of 0.192μS/cm and peak UV absorptivity of 0.55 at 372nm. Solution rheological study of nanocomposites revealed enhancement in viscosity with increasing ZnO loading. Maximum viscosity of 0.01Pa-s was obtained for 5wt% ZnO loading. Copyright © 2017 Elsevier B.V. All rights reserved.
Magnetic and magnetocaloric properties of Ba and Ti co-doped SrRuO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Babusona; Dalal, Biswajit; Dev Ashok, Vishal
2014-12-28
Temperature evolution of magnetic properties in Ba and Ti doped SrRuO{sub 3} has been investigated to observe the effects of larger ionic radius Ba at Sr site and isovalent nonmagnetic impurity Ti at Ru site. Ionic radius mismatch and different electronic configuration in comparison with Ru modify Sr(Ba)-O and Ru(Ti)-O bond lengths and Ru-O-Ru bond angle. The apical and basal Ru-O-Ru bond angles vary significantly with Ti doping. Ferromagnetic Curie temperature decreases from 161 K to 149 K monotonically with Ba (10%) and Ti (10%) substitutions at Sr and Ru sites. The zero field cooled (ZFC) magnetization reveals a prominent peak whichmore » shifts towards lower temperature with application of magnetic field. The substitution of tetravalent Ti with localized 3d{sup 0} orbitals for Ru with more delocalized 4d{sup 4} orbitals leads to a broad peak in ZFC magnetization. A spontaneous ZFC magnetization becomes negative below 160 K for all the compositions. The occurrence of both normal and inverse magnetocaloric effects in Ba and Ti co-doped SrRuO{sub 3} makes the system more interesting.« less
Monolayer II-VI semiconductors: A first-principles prediction
NASA Astrophysics Data System (ADS)
Zheng, Hui; Chen, Nian-Ke; Zhang, S. B.; Li, Xian-Bin
A systematic study of 32 honeycomb monolayer II-VI semiconductors is carried out by first-principles methods. It appears that BeO, MgO, CaO, ZnO, CdO, CaS, SrS, SrSe, BaTe, and HgTe honeycomb monolayers have a good dynamic stability which is revealed by phonon calculations. In addition, from the molecular dynamic (MD) simulation of other unstable candidates, we also find two extra monolayers dynamically stable, which are tetragonal BaS and orthorhombic HgS. The honeycomb monolayers exist in form of either a planar perfect honeycomb or a low-buckled 2D layer, all of which possess a band gap and most of them are in the ultraviolet region. Interestingly, the dynamically stable SrSe has a gap near visible light, and displays exotic electronic properties with a flat top of the valence band, and hence has a strong spin polarization upon hole doping. The honeycomb HgTe has been reported to achieve a topological nontrivial phase under appropriate in-plane tensile strain and spin-orbital coupling (SOC). Some II-VI partners with less than 5% lattice mismatch may be used to design novel 2D heterojunction devices. If synthesized, potential applications of these 2D II-VI families could include optoelectronics, spintronics, and strong correlated electronics. Distinguished Student (DS) Program of APS FIP travel funds.
Superconductivity in the Sn-Ba-Sr-Y-Cu-O system
NASA Technical Reports Server (NTRS)
Aleksandrov, K. S.; Khrustalev, B. P.; Krivomazov, S. N.; Petrov, M. I.; Vasilyev, A. D.; Zwegintsev, S. A.
1991-01-01
After the discovery of high-T(sub c) superconductivity in the La-Ba-Cu-O compound, several families of superconducting oxides were synthesized. Here, researchers report the results of the search for superconductivity in the compounds based on tin which has a lone electron pair like Bi, Tl, and Pb. The following compounds were synthesized: Sn1Ba1Sr1Cu3O(sub x), Sn1Ba1Ca1Cu3O(sub x), Sn1Ba1Mg1Cu3O(sub x), Sn1Sr1Ca1Cu3O(sub x), Sn1Sr1Mg1Cu3O(sub x), and Sn1Ca1Mg1Cu3O(sub x). The initial components were oxides and carbonates of the appropriate elements. A standard firing-grinding procedure was used. Final heating was carried out at 960 C during 12 hours. Then the samples were cooled inside the furnace. All the synthesis cycles were carried out in air atmosphere. Among the synthesized compounds only Sn1Ba1Sr1Cu3O(sub x) showed remarkable conductivity. Other compounds were practically dielectrics. Presence of a possible superconductivity in Sn1Ba1Sr1Cu3O(sub x) was defined by using the Meissner effect. At low temperature a deviation from paramagnetic behavior is observed. The hysteresis loops obtained at lower temperature undoubtly testify to the presence of a superconductive phase in the sample. However, the part of the superconductive phase in the Sn1Ba1Sr1Cu3O(sub x) ceramic turned out to be small, less than 2 percent, which agrees with the estimation from magnetic data. In order to increase the content of the superconductive phase, two-valent cations Ba and Sr were partially substituted by univalent (K) and three-valent ones (Y).
Search for d0-Magnetism in Amorphous MB6 (M = Ca, Sr, Ba) Thin Films
NASA Astrophysics Data System (ADS)
Suter, Andreas; Ackland, Karl; Stilp, Evelyn; Prokscha, Thomas; Salman, Zaher; Coey, Michael
In the past decade there have been various reports on insulating or semi-conducting compounds showing weak ferromagnetic-like properties, even though none of their constituent have partially occupied d or f shells. Among them are HfO2 [1], highly oriented pyrolytic graphite [2], CaB2C2 [3], CaB6 [4,5], and ZnO2 [6]. From the very beginning it has been speculated that lattice defects might play a significant role. These effects can potentially be amplified when these materials are grown in thin film form, due to strain and interface effects. With low-energy μSR (LE-μSR) we studied various amorphous thin films of alkaline earth hexaborides MB6 (M = Ca, Sr, Ba) grown on Al2O3. Furthermore, we studied the starting materials which were used for the pulsed laser deposition (PLD) targets for the films with bulk μSR to ensure the quality of these powders. Similar to the results in Ref. [5] we find an increased second moment of the static width (ZF/LF dynamic Kubo-Toyabe function) compared to the nuclear width which suggest a very weak magnetic contribution which must originate from the electronic system (defect polarization, grain boundary effects, etc.). Two complications arise from the fact that a strong quadrupolar level crossing resonance is found in the hexaborides at rather low field values, and muon diffusion sets in at rather low temperature. The thin film results demonstrate a strong suppression of the muon diffusion which makes it more suitable to search for weak magnetic signatures. Indeed we find essentially a temperature independent second moment equal to the low temperature value found in the starting powders. This indicates that the weak magnetic state is stabilized up to much higher temperatures.
NASA Astrophysics Data System (ADS)
Kılıçoğlu, Tolgahan; Çalışkan, Şeyma; Ünal, Kübraözge
2018-01-01
To understand the origin of the abundance peculiarities of non-magnetic A-type stars, we present the first detailed chemical abundance analysis of a metallic line star HD 23193 (A2m) and an A-type subgiant HD 170920 (A5), which could have been a HgMn star on the main sequence. Our analysis is based on medium (R ∼ 14,000) and high (R ∼ 40,000) resolution spectroscopic data of the stars. The abundances of 18 elements are derived: C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Zn, Sr, Y, and Ba. The masses of HD 23193 and HD 170920 are estimated from evolutionary tracks as 2.3 ± 0.1 M ⊙ and 2.9 ± 0.1 M ⊙. The ages are found to be 635 ± 33 Myr for HD 23193 and 480 ± 50 Myr for HD 170920 using isochrones. The abundance pattern of HD 23193 shows deviations from solar values in the iron-peak elements and indicates remarkable overabundances of Sr (1.16), Y (1.03), and Ba (1.24) with respect to the solar abundances. We compare the derived abundances of this moderately rotating (v\\sin i =37.5 km s‑1) Am star to the theoretical chemical evolution models including rotational mixing. The theoretically predicted abundances resemble our derived abundance pattern, except for a few elements (Si and Cr). For HD 170920, we find nearly solar abundances, except for C (‑0.43), S (0.16), Ti (0.15), Ni (0.16), Zn (0.41), Y (0.57), and Ba (0.97). Its low rotational velocity (v\\sin i=14.5 km s‑1), reduced carbon abundance, and enhanced heavy element abundances suggest that the star is most likely an evolved HgMn star. Based on observations made at the TÜBITAK National Observatory (Program ID 14BRTT150–671), and the Ankara University Observatory, Turkey.
NASA Astrophysics Data System (ADS)
Zhao, Hailei; Shen, Wei; Zhu, Zhiming; Li, Xue; Wang, Zhifeng
Ba xSr 1- xCo yFe 1- yO 3- δ (BSCF) materials with perovskite structure were synthesized via solid-state reaction. Their structural characteristics, electrical-conduction behavior and cathode performance were investigated. Compared to A-site elements, B-site elements show a wide solid-solution range in BSCF. The electrical-conduction behavior of BSCF obeys the small polaron-hopping mechanism. An increase of Ba or Co content in the BSCF samples results in a decrease of electrical conductivity, which is mainly attributable to the preferential existence of B 3+ rather than B 4+ in Ba- or Co-rich samples. At the same time, this leads to increases in the lattice parameter a and the number of oxygen vacancies. BSCF samples with high Ba content show a high structural stability (high oxygen-loss temperature). Ba 0.6Sr 0.4Co 0.8Fe 0.2O 3- δ and Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ materials present good thermal-cycling stability of the electrical conductivity. Compared with Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ, Ba 0.6Sr 0.4Co 0.8Fe 0.2O 3- δ exhibits a better cathode performance in a Ce 0.8Gd 0.2O 2- δ (GDC)-supported half cell. The cell performance can be improved by introducing a certain amount of GDC electrolyte into the BSCF cathode material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Panlai, E-mail: li_panlai@126.com; Wang, Zhijun, E-mail: wangzj1998@126.com; Yang, Zhiping
2014-12-15
A novel green phosphor SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} is synthesized by a high temperature solid-state method, and its luminescent property is investigated. X-ray diffraction patterns of SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} indicate a similarity crystalline phase to SrZn{sub 2}(PO{sub 4}){sub 2}. SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} shows green emission under 369 nm excitation, and the prominent luminescence in green (544 nm) due to {sup 5}D{sub 4}–{sup 7}F{sub 5} transition of Tb{sup 3+}. For the 544 nm emission, excitation spectrum has several excitation band from 200 nm to 400 nm. Emission intensity of SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} is influencedmore » by Tb{sup 3+} concentration, and concentration quenching effect of Tb{sup 3+} in SrZn{sub 2}(PO{sub 4}){sub 2} is also observed. With incorporating A{sup +} (A=Li, Na, and K) as compensator charge, the emission intensity of SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} can be obviously enhanced. CIE color coordinates of SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} locate in the green region. The results indicate this phosphor may be a potential application in white LEDs. - Graphical abstract: SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} can produce green emission under near-UV excitation, and its luminescent properties can be improved by incorporating A{sup +} (A=Li, Na, and K). - Highlights: • SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} can produce green emission under near-UV excitation. • Concentration quenching effect of Tb{sup 3+} in SrZn{sub 2}(PO{sub 4}){sub 2} is observed. • Emission intensities of SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} are enhanced by codoped A{sup +} (A=Li, Na, K)« less
Anisotropic Dirac Fermions in BaMnBi2 and BaZnBi2
NASA Astrophysics Data System (ADS)
Ryu, Hyejin; Park, Se Young; Li, Lijun; Ren, Weijun; Petrovic, Cedomir; Hwang, Choonkyu; Mo, Sung-Kwan
We report electronic structures of BaMnBi2 and BaZnBi2 sharing similar structural properties but having different valence configuration of the Mn/Zn-Bi complex. Our angle-resolved photoemission measurements found a strong anisotropic Dirac dispersion in BaMnBi2 and a complete departure from the Dirac dispersion in BaZnBi2. Our findings, substantiated by the first principle calculations, allow us to understand role of Mn/Zn-Bi tetrahedra in the changes of the electronic structures as well as the effect of varying band filling of Bi-square net. Work at BNL was supported by the U.S. Dept of Energy-BES, Division of Materials Science and Engineering, under Contract No. DE-SC0012704 and Chinese Academy of Sciences under Grant No. KJZD-EW-M05.
NASA Astrophysics Data System (ADS)
Schwarz, Michael; Wendorff, Marco; Röhr, Caroline
2012-12-01
The title compounds Ba3ZnHg10 and BaZn0.6Hg3.4 were synthesized from stoichiometric ratios of the elements in Ta crucibles. Their crystal structures, which both represent new structure types, have been determined using single crystal X-ray data. The structure of Ba3ZnHg10 (orthorhombic, oP28, space group Pmmn, a=701.2(3), b=1706.9(8), c=627.3(3)pm, Z=2, R1=0.0657) contains folded 44 Hg nets, where the meshes form the bases of flat rectangular pyramids resembling the structure of BaAl4. The flat pyramids are connected via Hg-Zn/Hg bonds, leaving large channels at the folds, in which Ba(1) and Hg(2) atoms alternate. Whereas the remaining Hg/Zn atoms form a covalent 3D network of three- to five-bonded atoms with short M-M distances (273-301 pm; CN 9-11), the Hg(2) atoms in the channels adopt a comparatively large coordination number of 12 and increased distances (317-348 pm) to their Zn/Hg neighbours. In the structure of BaZn0.6Hg3.4 (cubic, cI320, space group I4bar3d, a=2025.50(7) pm, Z=64, R1=0.0440), with a chemical composition not much different from that of Ba3ZnHg10, the Zn/Hg atoms of the mixed positions M(1/2) are arranged in an slightly distorted primitive cubic lattice with a 4×4×4 subcell relation to the unit cell. The 24 of the originating 64 cubes contain planar cis tetramers Hg(5,6)4 with Hg in a nearly trigonal planar or tetrahedral coordination. In another 24 of the small cubes, two opposing faces are decorated by Hg(3,4)2 dumbbells, two by Ba(2) atoms respectively. The third type of small cubes are centered by Ba(1) atoms only. The complex 3D polyanionic Hg/Zn network thus formed is compared with the Hg partial structure in Rb3Hg20 applying a group-subgroup relation. Despite their different overall structures, the connectivity of the negatively charged Hg atoms, the rather metallic Zn bonding characteristic (as obtained from FP-LAPW band structure calculations) and the coordination number of 16 for all Ba cations relate the two title compounds.
NASA Astrophysics Data System (ADS)
Ding, Chang-Chun; Wu, Shao-Yi; Wu, Li-Na; Zhang, Li-Juan; Peng, Li; Wu, Ming-He; Teng, Bao-Hua
2018-02-01
The electron paramagnetic resonance (EPR) parameters and local structures for impurities VO2+ and Cu2+ in RO-Li2O-Na2O-K2O-B2O3 (RLNKB; R = Zn, Mg, Sr and Ba) glasses are theoretically investigated by using the perturbation formulas of the EPR parameters for tetragonally compressed octahedral 3d1 and tetragonally elongated octahedral 3d9 clusters, respectively. The VO2+ and Cu2+ dopants are found to undergo the tetragonal compression (characterized by the negative relative distortion ratios ρ ≈ -3%, -0.98%, -1% and -0.8% for R = Zn, Mg, Sr and Ba) and elongation (characterized by the positive relative distortion ratios ρ ≈ 29%, 17%, 16% and 28%), respectively, due to the Jahn-Teller effect. Both dopants show similar overall decreasing trends of cubic field parameter Dq and covalency factor N with decreasing electronegativity of alkali earth cation R. The conventional optical basicities Λth and local optical basicities Λloc are calculated for both systems, and the local Λloc are higher for Cu2+ than for VO2+ in the same RLNKB glass, despite the opposite relationship for the conventional Λth. This point is supported by the weaker covalency or stronger ionicity for Cu2+ than VO2+ in the same RLNKB system, characterized by the larger N in the former. The above comparative analysis on the spectral and local structural properties would be helpful to understand structures and spectroscopic properties for the similar oxide glasses with transition-metal dopants of complementary electronic configurations.
Craciun, Smaranda; Donald, Kelling J
2009-07-06
We examine the bonding possibilities of the bis(phenalenyl) MP(2) sandwich complexes of the divalent metals M = Be, Mg, Ca, Sr, Ba, Zn, Cd, and Hg, at the B3LYP level of theory. The outcome is an extraordinarily diverse class of low symmetry bis(phenalenyl)metal complexes in which bonding preferences and binding enthalpies differ dramatically. The lowest energy group 2 metal MP(2) complexes include an intriguing eta(1),eta(3) BeP(2) structure, and bent eta(6),eta(6) systems for M = Ca, Sr, and Ba. The group 12 bis(phenalenyl) complexes are thermodynamically unstable eta(1),eta(1) slip-sandwich structures. To better understand changes in the structural preferences going from the (eta(6),eta(6)) group 2 to the (eta(1),eta(1)) group 12 complexes, we explored the bonding in the bis(phenalenyl) complexes of transition metals with stable +2 oxidations states between Ca and Zn in period 4. The computed binding enthalpies are large and negative for nearly all of the minimum energy bis(phenalenyl) complexes of the group 2 and the transition metals; they are tiny for MgP(2), and are quite positive for the group 12 systems. The structural preferences and stability of the complexes is a subtle negotiation of several influences: the (un)availability of (n - 1)d and np, orbitals for bonding, the cost of the rehybridization at carbon sites in the phenalenyl rings in preparation for bonding to the metals, and the (P---P) interaction between the phenalenyl radicals.
Morales-García, S S; Rodríguez-Espinosa, P F; Shruti, V C; Jonathan, M P; Martínez-Tavera, E
2017-01-01
The rapid urban expansion and presence of volcanoes in the premises of Puebla River basin in central Mexico exert significant influences over its aquatic environments. Twenty surface sediment samples from Puebla River basin consisting of R. Alseseca, R. Atoyac, and Valsequillo dam were collected during September 2009 and analyzed for major (Al, Fe, Mg, Ba, Ca, and K) and trace elements (As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, V, and Zn) in order to identify the metal concentrations and their enrichment. R. Atoyac sediments presented higher concentrations of Ba (1193.8 μg g -1 ) and Pb (27.1 μg g -1 ) in comparison with the local reference sample values. All the metal concentrations except Sr for R. Alseseca sediments were within the range of local reference sample values indicating no significant external influence, whereas Valsequillo dam sediments had elevated concentrations of all the metals suggesting both natural and external influences in the study region. The magnitude of metal contamination was assessed using several indices such as geoaccumulation index (I geo ), enrichment factor (EF), degree of contamination (C d ), and pollution load index (PLI). The results suggest that As, Pb, and Zn were predominantly enriched in the Puebla River basin sediments. Comparing with sediment quality guidelines and ecotoxicological values, it is revealed that Cd, Cr, Cu, and Ni have possible harmful effects on the biological community. The present study provides an outlook of metal enrichment in Puebla River basin sediments, highlighting the necessity to conserve this river ecosystem for the near future.
Liang, Ya-Chuan; Liu, Kai-Kai; Wu, Xue-Ying; Lu, Xian-Li; Lu, Ying-Jie; Zhao, Qi; Shan, Chong-Xin
2018-05-29
ZnO as an eco-friendly material shows bright luminescence under UV illumination when it is tailored into nanoscale size, which makes it a promising luminescent nanomaterial. However, the poor stability of ZnO hinders its applications drastically. In this work, multi-ZnO-cores@uni-BaSO 4 -shell (mZnO@uBaSO 4 ) nanocomposite has been prepared through a non-equilibrium sorption process employing ZnO QDs as the "seeds" and BaSO 4 as the "valve". The mZnO@uBaSO 4 nanocomposite shows improved photo-, thermal- and ambient-stability compare with bare ZnO QDs. The fluorescence efficiency of the mZnO@uBaSO 4 nanocomposite decreases little even after 60 h of UV irradiation compare with ZnO QDs. The mZnO@uBaSO 4 nanocomposite shows bright luminescence with little decrease even the ambient temperature up to 160 °C and the nanocomposite shows strong resistance to harsh environment. By coating the mZnO@uBaSO 4 nanocomposite and commercial phosphors onto UV-chip, light-emitting diode (LED) with correlated color temperature, Commission Internationale de L'Eclairage coordinate, color rendering index and luminous efficiency of 6109 K, (0.32, 0.33), 85 and 47.33 lm/W have been realized, and this will make a great step towards eco-friendly UV-pumped LEDs. Copyright © 2018. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.H.; Chen, L.; Zhou, X.F.
Eu{sup 2+} doped Sr{sub 2-x}Ba{sub x}Si{sub 5}N{sub 8} phosphors were synthesized at 1610 ℃ for 4 h via the solid-state reaction method. The XRD results confirm that the complete solid solutions are formed. With the increase of x, the emission spectra show an obvious blue-shift from 610 nm to 585 nm under the excitation of 460 nm. The color tone can be tuned from yellow to red. The corresponding mechanism for the blue-shift of peak-wavelength is studied in detail. The results of decomposed Gaussian spectra and fluorescence lifetime show that the local coordination structure surrounding activator ions changes with increasingmore » x value. It is found that the probability of Eu occupying Sr1 and Sr2 site is dependent on Ba/Sr ratio. The variation of thermal quenching properties and the corresponding mechanism is discussed in detail. The results indicate that Eu{sup 2+} doped Sr{sub 2-x}Ba{sub x}Si{sub 5}N{sub 8} is a promising orange red-emitting phosphor for near UV or blue light-pumped white light-emitting-diodes (wLEDs). - Graphical abstract: Eu{sup 2+} doped Sr{sub 2-x}Ba{sub x}Si{sub 5}N{sub 8} solid solutions were prepared by the solid-state reaction method. The structure, luminescence and thermal quenching properties with varying Ba/Sr ratio were investigated in detail. - Highlights: • The stucture and luminescence properties of Eu doped Sr{sub 2-x}Ba{sub x}Si{sub 5}N{sub 8} phosphors were investigated. • The samples with the intermediate compositions(x=1.0,1.5) show better stability than the end members of both Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+} and Ba{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+}. • The possible mechanism for the improvement of thermal quenching properties was proposed.« less
Multielemental analysis of 20 mushroom species growing near a heavily trafficked road in Poland.
Mleczek, M; Niedzielski, P; Kalač, P; Budka, A; Siwulski, M; Gąsecka, M; Rzymski, P; Magdziak, Z; Sobieralski, K
2016-08-01
The aim of this work was to compare 10 mostly edible aboveground and 10 wood-growing mushroom species collected near a heavily trafficked road (approximately 28,000 vehicles per 24 h) in Poland with regard to their capacity to accumulate 26 trace elements (Ag, Al, As, Au, B, Ba, Bi, Cd, Co, Cr, Cu, Fe, Ga, Ge, In, Li, Mn, Ni, Pb, Re, Sb, Se, Sr, Te, Tl, and Zn) in their fruit bodies in order to illustrate mushroom diversity in element accumulation. All analyses were performed using an inductively coupled plasma optical emission spectrometry (ICP-OES) spectrometer in synchronous dual view mode. The aboveground species had significantly higher levels of 12 elements, including Ag, As, Pb, and Se, compared to the wood-growing species. An opposite relationship was observed only for Au, Ba, and Sr. The results of principal component analysis (PCA) and hierarchical cluster analysis (HCA) implied some new relationships among the analyzed species and elements. Of the analyzed mushroom species, lead content in Macrolepiota procera would seem to pose a health risk; however, at present knowledge regarding lead bioaccessibility from mushrooms is quite limited.
Welna, Maja; Szymczycha-Madeja, Anna
2014-04-01
Various sample preparation procedures, such as common wet digestions and alternatives based on solubilisation in aqua regia or tetramethyl ammonium hydroxide, were compared for the determination of the total Ba, Ca, Cr, Cd, Cu, Fe, Mg, Mn, Ni, P, Pb, Se, Sr and Zn contents in Brazil nuts using inductively coupled plasma optical emission spectrometry (ICP-OES). For measurement of Se, a hydride generation technique was used. The performance of these procedures was measured in terms of precision, accuracy and limits of detection of the elements. It was found that solubilisation in aqua regia gave the best results, i.e. limits of detection from 0.60 to 41.9 ng ml(-1), precision of 1.0-3.9% and accuracy better than 5%. External calibration with simple standard solutions could be applied for the analysis. The proposed procedure is simple, reduces sample handling, and minimises the time and reagent consumption. Thus, this can be a vital alternative to traditional sample treatment approaches based on the total digestion with concentrated reagents. A phenomenon resulting from levels of Ba, Se and Sr in Brazil nuts was also discussed.
Mahdavi, Hamed; Liu, Yang; Ulrich, Ania C
2013-02-01
This paper studies the partitioning and bioaccumulation of ten target metals ((53)Cr, Mn, Co, (60)Ni, (65)Cu, (66)Zn, As, (88)Sr, (95)Mo and Ba) from oil sands tailings pond water (TPW) by indigenous Parachlorella kessleri. To determine the role of extracellular and intracellular bioaccumulation in metal removal by P. kessleri, TPW samples taken from two oil sands operators (Syncrude Canada Ltd. and Albian Sands Energy Inc.) were enriched with nutrient supplements. Results indicate that intracellular bioaccumulation played the main role in metal removal from TPW; whereas extracellular bioaccumulation was only observed to some extent for Mn, Co, (60)Ni, (65)Cu, (88)Sr, (95)Mo and Ba. The FTIR scan and titration of functional groups on the cell surface indicated low metal binding capacity by indigenous P. kessleri. However, it is believed that the dissolved cations and organic ligand content in TPW (such as naphthenic acids) may interfere with metal binding on the cell surface and lower extracellular bioaccumulation. In addition, the total bioaccumulation and bioconcentration factor (BCF) varied during the cultivation period in different growth regimes. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Smith-Schmitz, Sarah E.; Appold, Martin S.
2018-03-01
Knowledge of the concentrations of Zn and Pb in Mississippi Valley-type (MVT) ore fluids is fundamental to understanding MVT deposit origin. Most previous attempts to quantify the concentrations of Zn and Pb in MVT ore fluids have focused on the analysis of fluid inclusions. However, these attempts have yielded ambiguous results due to possible contamination from secondary fluid inclusions, interferences from Zn and Pb in the host mineral matrix, and uncertainties about whether the measured Zn and Pb signals represent aqueous solute or accidental solid inclusions entrained within the fluid inclusions. The purpose of the present study, therefore, was to try to determine Zn and Pb concentrations in MVT ore fluids using an alternate method that avoids these ambiguities by calculating Zn and Pb concentrations in MVT ore fluids theoretically based on their solid solution concentrations in calcite. This method was applied to the Illinois-Kentucky and Central Tennessee districts, which both contain ore-stage calcite. Experimental partition coefficient (D) values from Rimstidt et al. (1998) and Tsusue and Holland (1966), and theoretical thermodynamic distribution coefficient (KD) values were employed in the present study. Ore fluid concentrations of Zn were likely most accurately predicted by Rimstidt et al. (1998) D values, based on their success in predicting known fluid inclusion concentrations of Mg and Mn, and likely also most accurately predicted ore fluid concentrations of Fe. All four of these elements have a divalent ionic radius smaller than that of Ca2+ and form carbonate minerals with the calcite structure. For both the Illinois-Kentucky and the Central Tennessee district, predicted ore fluid Zn and Fe concentrations were on the order of up to 10's of ppm. Ore fluid concentrations of Pb could only be predicted using Rimstidt et al. (1998) D values. However, these concentrations are unlikely to be reliable, as predicted ore fluid concentrations of Sr and Ba, which like Pb also have a divalent ionic radius larger than that of Ca2+ and form carbonate minerals with the aragonite structure, did not consistently agree well with known concentrations of Sr and Ba in fluid inclusions. The ore fluid Zn concentrations predicted in the present study lie within the range of Zn concentrations typical of modern sedimentary brines and are high enough to allow deposition of the observed amounts of Zn in the Illinois-Kentucky and Central Tennessee districts within ranges of geologically reasonable times and ore fluid flow velocities. If the pH of the Illinois-Kentucky and Central pH ore fluids was as low as current evidence suggests to be possible, then these ore fluids could simultaneously have transported enough sulfide with their Zn to account for the observed amounts of sphalerite in the districts.
NASA Astrophysics Data System (ADS)
Fathy, Douaa; Wagreich, Michael; Zaki, Rafat; Mohamed, Ramadan S. A.
2016-04-01
Early Maastrichtian oil shales are hosted in the Duwi Formation of the Central Eastern Desert, Egypt. The examined member represents up to 20% of the total Duwi Formation. This interval is mainly composed of siliciclastic facies, phosphorites facies and carbonate facies. Oil shales microfacies is mainly composed of smectite, kaolinite, calcite, fluorapatite, quartz and pyrite. They are enriched in a number of major elements and trace metals in particular Ca, P, V, Ni, Cr, Sr, Zn, Mo, Nb, U and Y compared to the post-Archaean Australian shale (PAAS). Chondrite-normalized REEs patterns of oil shales for the studied area display light rare earth elements enrichment relatively to heavy rare earth elements with negative Ce/Ce* and Eu/Eu* anomalies. The most remarkable indicators for redox conditions are enrichments of V, Mo, Ni, Cr, U content and depletion of Mn content. Besides, V/V+Ni, V/Ni, U/Th, Ni/Co, authigentic uranium ratios with presence of framboidal shape of pyrite and its size are reflecting the deposition of these shales under marine anoxic to euxinic environmental conditions. Additionally, the ratio of Strontium (Sr) to Barium (Ba) Sr/Ba reflected highly saline water during deposition. Elemental ratios critical to paleoclimate and paleoweathering (Rb /Sr, Al2O3/TiO2), CIA values, binary diagram between (Al2O3+K2O+Na2O) and SiO2 and types of clay minerals dominated reflect warm to humid climate conditions prevailing during the accumulation of these organic-rich petroleum source rocks.
Method of Synthesizing a Novel Absorbent Titanosilicate Material (UPRM-5)
NASA Technical Reports Server (NTRS)
Hernandez-Maldonado, Arturo (Inventor); Primera-Pedrozo, Jose N (Inventor)
2013-01-01
A titanium silicate variant named UPRM-5 was prepared using tetraethylammonium hydroxide as a structure-directing agent (SDA). Successful detemplation was achieved via ion exchange with NH4Cl. Effective functionalization was obtained after ion exchanging the detemplated material using SrCl2 and BaCl2. Adsorption of CO2 at 25 deg C in Sr(-) and Ba-UPRM-5 materials activated at different temperatures. For low partial pressures, the observed CO2 adsorption capacities increased as follows: NH4-UPRM-5 less than Sr-UPRM-5 less than Ba-UPRM-5. Both the Sr(-) and Ba-UPRM-5 materials exhibited outstanding selectivity for CO2 over CH4, N2 and O2.
Assessment of trace metal levels in size-resolved particulate matter in the area of Leipzig
NASA Astrophysics Data System (ADS)
Fomba, Khanneh Wadinga; van Pinxteren, Dominik; Müller, Konrad; Spindler, Gerald; Herrmann, Hartmut
2018-03-01
Size-resolved trace metal concentrations at four sites in Leipzig (Germany) and its surrounding were assessed between the winter of 2013 and the summer of 2015. The measurements were performed in parallel at; traffic dominated (Leipzig - Mitte, LMI), traffic and residential dominated (Eisenbahnstrasse, EIB), urban background (TROPOS, TRO) and regional background (Melpitz, MEL) sites. In total, 19 trace metals, i.e. K, Ca, Ti, Mn, Fe, Cu, Zn, As, Se, Ba, V, Pb, Ni, Cr, Sr, Sn, Sb, Co and Rb were analysed using total reflection x-ray fluorescence (TXRF). The major metals were Fe, K and Ca with concentrations ranging between; 31-440 ng/m3, 42-153 ng/m3 and 24-322 ng/m3, respectively, while the trace metals with the lowest concentrations were Co, Rb and Se with concentrations of; < 0.3 ng/m3, <0.5 ng/m3 and 0.5-0.7 ng/m3, respectively. PM10 trace metal concentrations during easterly air mass inflow especially at the background sites were in average 70% higher in the winter and 30% higher in the summer in comparison to westerly air mass inflow. Traffic at LMI contributed to about 75% of Cr, Ba, Cu, Sb, Sn, Ca, Co, Mn, Fe and Ti concentrations while regional activities contributed to more than 70% of K, Rb, Pb, Se, As and V concentrations. Traffic dominated trace metals were often observed in the coarse mode while the regional background dominated trace metals were often observed in the fine mode. Trace metal sources were related to crustal matter and road dust re-suspension for metals such as Ca, Fe, Co, Sr, and Ti, brake and tire wear (Cu, Sb, Ba, Fe, Zn, Pb), biomass burning (K, Rb), oil and coal combustion (V, Zn, As, Pb). Crustal matter contributed 5-12% in winter and 8-19% in summer of the PM10 mass. Using Cu and Zn as markers for brake and tire wear, respectively, the estimated brake and tire wear contributions to the PM10 mass were 0.1-0.8% and 1.7-2.9%, respectively. The higher contributions were observed at the traffic sites while the lower contributions were observed at the regional background site. In total, non-exhaust emissions could account for about 10-22% of the PM10 mass in the summer and about 7-15% of the PM10 mass in the winter.
Watanabe, Ryo; Ikushima, Maiko; Mukawa, Kei; Sumomozawa, Fumitaka; Ogo, Shuhei; Sekine, Yasushi
2013-01-01
For the development of highly active and robust catalysts for dehydrogenation of ethylbenzene (EBDH) to produce styrene; an important monomer for polystyrene production, perovskite-type oxides were applied to the reaction. Controlling the mobility of lattice oxygen by changing the structure of Ba1 - x SrxFe y Mn1 - y O3 - δ (0 ≤ x ≤ 1, 0.2 ≤ y ≤ 0.8), perovskite catalyst showed higher activity and stability on EBDH. The optimized Ba/Sr and Fe/Mn molar ratios were 0.4/0.6 and 0.6/0.4, respectively. Comparison of the dehydrogenation activity of Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst with that of an industrial potassium promoted iron (Fe-K) catalyst revealed that the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst showed higher initial activity than the industrial Fe-K oxide catalyst. Additionally, the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst showed high activity and stability under severe conditions, even at temperatures as low as 783 K, or at the low steam/EB ratio of 2, while, the Fe-K catalyst showed low activity in such conditions. Comparing reduction profiles of the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ and the Fe-K catalysts in a H2O/H2 atmosphere, reduction was suppressed by the presence of H2O over the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst while the Fe-K catalyst was reduced. In other words, Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst had higher potential for activating the steam than the Fe-K catalyst. The lattice oxygen in perovskite-structure was consumed by H2, subsequently the consumed lattice oxygen was regenerated by H2O. So the catalytic performance of Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ was superior to that of Fe-K catalyst thanks to the high redox property of the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ perovskite oxide.
NASA Astrophysics Data System (ADS)
Watanabe, Ryo; Ikushima, Maiko; Mukawa, Kei; Sumomozawa, Fumitaka; Ogo, Shuhei; Sekine, Yasushi
2013-10-01
For the development of highly active and robust catalysts for dehydrogenation of ethylbenzene (EBDH) to produce styrene; an important monomer for polystyrene production, perovskite-type oxides were applied to the reaction. Controlling the mobility of lattice oxygen by changing the structure of Ba1-xSrxFeyMn1-yO3-d(0 ≤ x≤ 1, 0.2 ≤ y≤ 0.8), perovskite catalyst showed higher activity and stability on EBDH. The optimized Ba/Sr and Fe/Mn molar ratios were 0.4/0.6 and 0.6/0.4, respectively. Comparison of the dehydrogenation activity of Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst with that of an industrial potassium promoted iron (Fe-K) catalyst revealed that the Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst showed higher initial activity than the industrial Fe-K oxide catalyst. Additionally, the Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst showed high activity and stability under severe conditions, even at temperatures as low as 783 K, or at the low steam/EB ratio of 2, while, the Fe-K catalyst showed low activity in such conditions. Comparing reduction profiles of the Ba0.4Sr0.6Fe0.6Mn0.4O3-d and the Fe-K catalysts in aH2O/H2 atmosphere, reduction was suppressed by the presence of H2O over the Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst while the Fe-K catalyst was reduced. In other words, Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst had higher potential for activating the steam than the Fe-K catalyst. The lattice oxygen in perovskite-structure was consumed by H2, subsequently the consumed lattice oxygen was regenerated by H2O. So the catalytic performance of Ba0.4Sr0.6Fe0.6Mn0.4O3-d was superior to that of Fe-K catalyst thanks to the high redox property of the Ba0.4Sr0.6Fe0.6Mn0.4O3-d perovskite oxide.
NASA Astrophysics Data System (ADS)
Chen, Long; Jiang, Jizhong; Bao, Zuben; Pan, Jian; Xu, Weibing; Zhou, Lili; Wu, Zhigang; Chen, Xu
2013-12-01
In this paper, strontium carbonate (SrCO3) and barium carbonate (BaCO3) crystals were synthesized in the presence of an organic additive-hexamethylenetetramine (HMT) using two CO2 sources. Scanning electron microscopy and X-ray powder diffractometry were used to characterize the products. The results showed that the morphologies of orthorhombic strontianite SrCO3 transformed from branch-like to flower-like, and to capsicum-like at last, while the morphologies of BaCO3 change from fiber-like to branchlike, and to rod-like finally with an increase of the molar ratio HMT/Sr2+ and HMT/Ba2+ from 0.2 to 10 using ammonium carbonate as CO2 source. When using diethyl carbonate instead of ammonium carbonate as CO2 source, SrCO3 flowers aggregated by rods and BaCO3 shuttles were formed. The possible formation mechanisms of SrCO3 and BaCO3 crystals obtained in different conditions were also discussed.
Dielectric and Energy Storage Properties of Ba0.65Sr0.35TiO3 Ceramics Modified by BiNbO4
NASA Astrophysics Data System (ADS)
Zheng, Yi; Zhang, Jihua; Wei, Meng; Dong, Xiangxiang; Huang, Jiapeng; Wu, Kaituo; Chen, Hongwei
2018-02-01
(1 - x) (Ba0.65Sr0.35TiO3)-xBiNbO4 (x = 0.0-0.15) ceramic were prepared by solid-state reaction method. The phase composition, microstructure, dielectric properties, polarization-electric field, breakdown strength and energy storage behaviors for the BiNbO4-modified Ba0.65Sr0.35TiO3 ceramics were investigated. With the addition of BiNbO4, the remnant polarization and saturation polarization decreased and the nonlinearity was suppressed. When x = 0.07, the maximum recoverable energy storage achieved was 0.5 J/cm3, 1.5 times that of un-doped Ba0.65Sr0.35TiO3 ceramics, with an efficiency of 96.89% and a breakdown electric field reaching 15.3 kV/mm. Therefore, BiNbO4 doping could improve the energy storage properties of Ba0.65Sr0.35TiO3 for high-energy pulse capacitor application.
Chemical Interaction between High-Tc Superconducting Oxides and Alkaline Earth Fluorides
NASA Astrophysics Data System (ADS)
Hashimoto, Takuya; Asakawa, Toshiaki; Shiraishi, Tadashi; Yoshida, Tsutomu; Yoshimoto, Mamoru; Koinuma, Hideomi
1989-07-01
Reactions of high-Tc superconductors and MF2 (M: Ca, Sr, Ba) were investigated by means of ac susceptibility, X-ray diffraction, and TG-DTA measurements. The superconducting transition temperature (Tconset) of Ba2YCu3O7-δ powder mixed with MF2 powder decreased as a result of heat treatment at 600°C in air, whereas it did not decrease by the heat treatment under carefully dried conditions. In contrast, neither of the heat-treatment conditions decreased the Tconset of Bi2Sr2CaCu2Ox mixed with MF2 powder. Heating with MF2 at temperatures higher than 700°C reduced volume fractions of these superconductors even in dry atmosphere and the reactivity increased in the order of BaF2
Xiong, Qiu-lin; Zhao, Wen-ji; Guo, Xiao-yu; Chen, Fan-tao; Shu, Tong-tong; Zheng, Xiao-xia; Zhao, Wen-hui
2015-08-01
The dustfall content is one of the evaluation indexes of atmospheric pollution. Trace elements especially heavy metals in dustfall can lead to risks to ecological environment and human health. In order to study the distribution characteristics of trace elements, heavy metals pollution and their sources in winter atmospheric dust, 49 dustfall samples were collected in Beijing City and nearby during November 2013 to March 2014. Then the contents (mass percentages) of 40 trace elements were measured by Elan DRC It type inductively coupled plasma mass (ICP-MS). Test results showed that more than half of the trace elements in the dust were less than 10 mg x kg(-1); about a quarter were between 10-100 mg x kg-1); while 7 elements (Pb, Zr, Cr, Cu, Zn, Sr and Ba) were more than 100 mg x kg(-1). The contents of Pb, Cu, Zn, Bi, Cd and Mo of winter dustfall in Beijing city.were respectively 4.18, 4.66, 5.35, 6.31, 6.62, and 8.62 times as high as those of corresponding elements in the surface soil in the same period, which went beyond the soil background values by more than 300% . The contribution of human activities to dustfall trace heavy metals content in Beijing city was larger than that in the surrounding region. Then sources analysis of dustfall and its 20 main trace elements (Cd, Mo, Nb, Ga, Co, Y, Nd, Li, La, Ni, Rb, V, Ce, Pb, Zr, Cr, Cu, Zn, Sr, Ba) was conducted through a multi-method analysis, including Pearson correlation analysis, Kendall correlation coefficient analysis and principal component analysis. Research results indicated that sources of winter dustfall in Beijing city were mainly composed of the earth's crust sources (including road dust, construction dust and remote transmission of dust) and the burning of fossil fuels (vehicle emissions, coal combustion, biomass combustion and industrial processes).
Determination of mineral contents of wild Boletus edulis mushroom and its edible safety assessment.
Su, Jiuyan; Zhang, Ji; Li, Jieqing; Li, Tao; Liu, Honggao; Wang, Yuanzhong
2018-04-06
This study aimed to determine the contents of main mineral elements of wild Boletus edulis and to assess its edible safety, which may provide scientific evidence for the utilization of this species. Fourteen mineral contents (Ba, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Na, Ni, Sr, V and Zn) in the caps and stipes of B. edulis as well as the corresponding surface soils collected from nine different geographic regions in Yunnan Province, southwest China were determined. The analyses were performed using inductively coupled plasma atomic emission spectrometer (ICP-AES) after microwave digestion. Measurement data were analyzed using variance and Pearson correlation analysis. Edible safety was evaluated according to the provisionally tolerable weekly intake (PTWI) of heavy metals recommended by United Nations Food and Agriculture Organization and World Health Organization (FAO/WHO). Mineral contents were significantly different with the variance of collection areas. B. edulis showed relative abundant contents of Ca, Fe, Mg and Na, followed by Ba, Cr, Cu, Mn and Zn, and the elements with the lower content less were Cd, Co, Ni, Sr and V. The elements accumulation differed significantly in caps and stipes. Among them, Cd and Zn were bioconcentrated (BCF > 1) while others were bioexcluded (BCF < 1). The mineral contents in B. edulis and its surface soil were positively related, indicating that the elements accumulation level was related to soil background. In addition, from the perspective of food safety, if an adult (60 kg) eats 300 g fresh B. edulis per week, the intake of Cd in most of tested mushrooms were lower than PTWI value whereas the Cd intakes in some other samples were higher than this standard. The results indicated that the main mineral contents in B. edulis were significantly different with respect to geographical distribution, and the Cd intake in a few of regions was higher than the acceptable intakes with a potential risk.
BaFe2As2/Fe Bilayers with [001]-tilt Grain Boundary on MgO and SrTiO3 Bicrystal Substrates
NASA Astrophysics Data System (ADS)
Iida, K.; Haindl, S.; Kurth, F.; Hänisch, J.; Schulz, L.; Holzapfel, B.
Co-doped BaFe2As2 (Ba-122) can be realized on both MgO and SrTiO3 bicrystal substrates with [001]-tilt grain boundary by employing Fe buffer layers. However, an additional spinel (i.e. MgAl2O4) buffer between Fe and SrTiO3 is necessary since an epitaxial, smooth surface of Fe layer can not be grown on bare SrTiO3. Both types of bicrystal films show good crystalline quality.
Structural, optoelectronic, and thermoelectric properties of AZn13 (A=Na, K, Ca, Sr, Ba) compounds
NASA Astrophysics Data System (ADS)
Basit, Abdul; Murtaza, G.; Mahmood, Asif; Yar, Abdullah; Muhammad, S.
2016-08-01
We report the structural, electronic, optical, and thermoelectric properties of the five cubic alkali-earth transition-metals AZn13 (A-Na, K, Ca, Sr, Ba) using density functional theory. Structural properties, electronic structures and optical behaviors are calculated explicitly via highly accurate contemporary full potential-linearized augmented plane wave (FP-LAPW) method. The investigated ground state data of these materials is quite close to the experimental information. The modified Becke-Johnson (mBJ) predicts the intermetallic nature of AZn13 (A-Na, K, Ca, Sr, Ba) materials. The complex dielectric function of these intermetallic compounds has been calculated and the observed noticeable peaks are examined through mBJ. With the help of complex dielectric function, the other important optical parameters like reflectivities, conductivities and refractive indices of AZn13 (A-Na, K, Ca, Sr, Ba) have been calculated as a function of energy. The optical response suggests that AZn13 (A-Na, K, Ca, Sr, Ba) compounds can be used for the optoelectronic devices. Further, the thermoelectric properties have been calculated through BoltzTraP program, the calculated values for different thermoelectric parameters recommend that these AZn13 (A-Na, K, Ca, Sr, Ba) materials are the suitable candidates for thermoelectric applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Jing; Mei, Lefu, E-mail: mlf@cugb.edu.cn; Deng, Junru
2015-11-15
Tm{sup 3+}/Yb{sup 3+} co-doped BaLa{sub 2}ZnO{sub 5} up-conversion (UC) phosphors were successfully synthesized by high temperature solid-state reaction method. The X-ray diffraction (XRD) results show that synthesized phosphor co-doped with 0.75% Tm/10% Yb has the optimum pure phase of BaLa{sub 2}ZnO{sub 5} among different co-doping concentrations. The structure of BaLa{sub 2}ZnO{sub 5}:0.75% Tm/10% Yb phosphor was refined by the Rietveld method and results show the decreased unit cell parameters and cell volume after doping Tm{sup 3+}/Yb{sup 3+}, indicating that Tm{sup 3+}/Yb{sup 3+} have successfully replaced La{sup 3+}. Under excitation at 980 nm, Tm{sup 3+}/Yb{sup 3+} co-doped BaLa{sub 2}ZnO{sub 5} phosphorsmore » present bright blue emission near 478 nm generated by the {sup 1}G{sub 4}→{sup 3}H{sub 6} transition and weak red emissions around 653 nm and 692 nm generated by the {sup 1}G{sub 4}→{sup 3}F{sub 4} and {sup 3}F{sub 3}→{sup 3}H{sub 6} transitions of Tm{sup 3+}, respectively. The UC luminescence properties of BaLa{sub 2}ZnO{sub 5} phosphors co-doped with different Tm{sup 3+}/Yb{sup 3+} concentrations were investigated, and the related UC mechanisms of Tm{sup 3+}/Yb{sup 3+} co-doped BaLa{sub 2}ZnO{sub 5} depending on pump power were studied in detail. - Graphical abstract: Up-conversion luminescence of BaLa{sub 2}ZnO{sub 5}:Tm{sup 3+}/Yb{sup 3+} and its crystal structure and up-conversion mechanisms. - Highlights: • Up-conversion phosphors BaLa{sub 2}ZnO{sub 5} co-doped with Tm{sup 3+}/Yb{sup 3+} were synthesized by high temperature solid-state reaction method. • The crystal structure of BaLa{sub 2}ZnO{sub 5} and the changes of cell parameters and volume of BaLa{sub 2}ZnO{sub 5} after doping Tm{sup 3+} and Yb{sup 3+} have been discussed. • Up-conversion luminescence properties and energy transfer between Tm{sup 3+} and Yb{sup 3+} in BaLa{sub 2}ZnO{sub 5} have been discussed in detail.« less
Kim, Donghyeon; Kim, Sung-Chul; Bae, Jong-Seong; Kim, Sungyun; Kim, Seung-Joo; Park, Jung-Chul
2016-09-06
Eu(2+)-activated M5(PO4)3X (M = Ca, Sr, Ba; X = F, Cl, Br) compounds providing different alkaline-earth metal and halide ions were successfully synthesized and characterized. The emission peak maxima of the M5(PO4)3Cl:Eu(2+) (M = Ca, Sr, Ba) compounds were blue-shifted from Ca to Ba (454 nm for Ca, 444 nm for Sr, and 434 nm for Ba), and those of the Sr5(PO4)3X:Eu(2+) (X = F, Cl, Br) compounds were red-shifted along the series of halides, F → Cl → Br (437 nm for F, 444 nm for Cl, and 448 nm for Br). The site selectivity and occupancy of the activator ions (Eu(2+)) in the M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) crystal lattices were estimated based on theoretical calculation of the 5d → 4f transition energies of Eu(2+) using LCAO. In combination with the photoluminescence measurements and theoretical calculation, it was elucidated that the Eu(2+) ions preferably enter the fully oxygen-coordinated sites in the M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) compounds. This trend can be well explained by "Pauling's rules". These compounds may provide a platform for modeling a new phosphor and application in the solid-state lighting field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunanto, Y. E., E-mail: yohanes.gunanto@uph.edu; Jobiliong, E., E-mail: eric.jobiliong@uph.edu; Adi, Wisnu Ari, E-mail: dwisnuaa@batan.go.id
2016-03-11
Single phase of nanocrystalline Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} (x = 1.0; 0.6; and 0.4) was successfully synthesized by mechanical milling method and thermal process. Stoichiometric quantities of analytical-grade SrCO{sub 3}, BaCO{sub 3}, and Fe{sub 2}O{sub 3}, were mixed and milled using a high-energy milling. The mixture of all precursors was sintered at a temperature of 1000 °C for 10 hours. The refinement of x-ray diffraction trace for all samples confirmed a single phase material with a hexagonal structure. The increase of the amount of strontium content in the barium atoms in the Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} system canmore » decrease the lattice parameter which have been successfully substituted into the barium atoms. The calculation result of cationic distribution showed that the Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} (x = 0.6) and (x = 0.4) samples have nominal composition of Ba{sub 0,61}Sr{sub 0,39}Fe{sub 12}O{sub 19} and Ba{sub 0,37}Sr{sub 0,63}Fe{sub 12}O{sub 19}, respectively. Results of the mean of crystallite size evaluation for respective powder materials showed that the Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} (x = 1.0; 0.6; and 0.4) samples have the crystallite size of 22 nm, 25 nm and 34 nm, respectively. We concluded that the cationic distribution of barium atoms was successfully substituted by strontium atoms approaching the nominal stoichiometric composition.« less
Characterizing suspended sediments from the Piracicaba River Basin by means of k0-INAA
NASA Astrophysics Data System (ADS)
França, E. J.; Fernandes, E. A. N.; Cavalca, I. P. O.; Fonseca, F. Y.; Camilli, L.; Rodrigues, V. S.; Bardini Junior, C.; Ferreira, J. R.; Bacchi, M. A.
2010-10-01
The inorganic chemical characterization of suspended sediments is of utmost relevance for the knowledge of the dynamics and movement of chemical elements in the aquatic and wet ecosystems. Despite the complexity of the effective design for studying this ecological compartment, this work has tested a procedure for analyzing suspended sediments by instrumental neutron activation analysis, k0 method ( k0-INAA). The chemical elements As, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, Hg, K, La, Mo, Na, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, Yb and Zn were quantified in the suspended sediment compartment by means of k0-INAA. When compared with World Average for rivers, high mass fractions of Fe (222,900 mg/kg), Ba (4990 mg/kg), Zn (1350 mg/kg), Cr (646 mg/kg), Co (74.5 mg/kg), Br (113 mg/kg) and Mo (31.9 mg/kg) were quantified in suspended sediments from the Piracicaba River, the Piracicamirim Stream and the Marins Stream. Results of the principal component analysis for standardized chemical element mass fractions indicated an intricate correlation among chemical elements evaluated, as a response of the contribution of natural and anthropogenic sources of chemical elements for ecosystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saradhi, M.P.; Department of Chemistry, Indian Institute of Technology Hyderabad, Yeddumailaram, Hyderabad - 502205; Laboratoire de Cristallographie et Sciences des Materiaux, ENSICAEN, Universite de Caen, CNRS, 6 Bd Marechal Juin, F-14050 Caen
2010-10-15
In the present work, we have synthesized maleevite mineral phase BaB{sub 2}Si{sub 2}O{sub 8} for the first time, which is isostructural with the pekovite mineral SrB{sub 2}Si{sub 2}O{sub 8}. In these europium doped host lattices, we observed the partial reduction of Eu{sup 3+} to Eu{sup 2+} at high temperature during the synthesis in air. Tb{sup 3+} co-doping in MB{sub 2}Si{sub 2}O{sub 8}:0.01(Eu{sup 3+}/Eu{sup 2+}) [M=Sr, Ba] improves the emission properties towards white light. The emission color varies from bluish white to greenish white under UV lamp excitation when the host cation changes from Sr to Ba. - Graphical abstract: Themore » figure shows structure refinement of both MB{sub 2}Si{sub 2}O{sub 8} [M=Sr, Ba]. The structure refinement of newly synthesized phase BaB{sub 2}Si{sub 2}O{sub 8} was carried out by taking SrB{sub 2}Si{sub 2}O{sub 8} as starting structure model. Inset in the figure shows the structure projection of BaB{sub 2}Si{sub 2}O{sub 8}. The Sr{sup 2+}/Ba{sup 2+} are embedded in polyanionic network formed by corner sharing BO{sub 4}{sup 5-} and SiO{sub 4}{sup 4-} tetrahedral that intern form interconnected layers of 4 and 8 membered rings perpendicular to b-axis.« less
Supercritical fluid route for synthesizing crystalline Barium Strontium Titanate nanoparticles.
Reverón, H; Elissalde, C; Aymonier, C; Bidault, O; Maglione, M; Cansell, F
2005-10-01
Pure and well-crystallized Barium Strontium Titanate (BST) nanoparticles with controlled Ba/Sr ratio have been successfully synthesized under supercritical conditions using a continuous-flow reactor in the temperature range of 150-380 degrees C at 26 MPa. To synthesize the Ba0.6Sr0.4TiO3 composition, alkoxides, ethanol and water were used. The resulting nanopowder consists of fine particles with an average particle size of 23 nm. The results show that the Ba/Sr ratio of this powder can be accurately controlled from the composition of precursor. The characterization of the as-synthesized Ba0.6Sr0.4TiO3 solid-solution and the dielectric properties of the sintered ceramics are here reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Qisheng; Zhu, Ran; Miller, Gordon J.
Cluster chemistry of intermetallics with valence electron counts (VECs) in the range of 2.0–3.0 is intriguing. Lithiation of polar intermetallics in this VEC region is found to be an effective chemical route to produce new complex structures with different stability mechanisms. In this work, two new complex intermetallic structures have been discovered in the Ca–Li–Zn system: Ca 12Li xZn 59–x and Ca 15Li xZn 75–x. Ca 12Li xZn 59–x, x ≈ 5.65(3)–14.95(3), forms in the trigonal space group R3m, with a = 9.074(1)–9.1699(2) Å, c = 53.353(1)–53.602(1) Å, and Z = 3. In comparison, Ca 15Li xZn 75–x, x ≈more » 19.07(2), crystallizes in the space group P6 3/ mmc, with a ≈ 9.183(1) Å, c ≈ 45.191(5) Å), and Z = 2. Both structures are members of a large intergrowth family featuring slabs of dimers (D) and trimers (T) stacking along [001], with the sequences DTDDTDDTD for Ca 12Li xZn 59–x and TDDDTDDD for Ca 15Li xZn 75–x. Each dimer consists of two face-sharing Zn-centered hypho-icosahedra, and each trimer comprises a Li-centered icosahedron sandwiched by two hypho-icosahedra. Furthermore, this intergrowth family includes several known intermetallic structure types involving very electropositive metals, e.g., SrMg 5.2, Ba 2Li 4.21Al 4.79, and Sr 9Li 17.5Al 25.5. Because of cluster defects and condensation, both Ca 12Li xZn 59–x and Ca 15Li xZn 75–x are electronically akin to close-packed metals, and their structural stabilities can be interpreted by a Hume-Rothery mechanism rather than the Zintl–Klemm concept.« less
Lin, Qisheng; Zhu, Ran; Miller, Gordon J.
2016-04-26
Cluster chemistry of intermetallics with valence electron counts (VECs) in the range of 2.0–3.0 is intriguing. Lithiation of polar intermetallics in this VEC region is found to be an effective chemical route to produce new complex structures with different stability mechanisms. In this work, two new complex intermetallic structures have been discovered in the Ca–Li–Zn system: Ca 12Li xZn 59–x and Ca 15Li xZn 75–x. Ca 12Li xZn 59–x, x ≈ 5.65(3)–14.95(3), forms in the trigonal space group R3m, with a = 9.074(1)–9.1699(2) Å, c = 53.353(1)–53.602(1) Å, and Z = 3. In comparison, Ca 15Li xZn 75–x, x ≈more » 19.07(2), crystallizes in the space group P6 3/ mmc, with a ≈ 9.183(1) Å, c ≈ 45.191(5) Å), and Z = 2. Both structures are members of a large intergrowth family featuring slabs of dimers (D) and trimers (T) stacking along [001], with the sequences DTDDTDDTD for Ca 12Li xZn 59–x and TDDDTDDD for Ca 15Li xZn 75–x. Each dimer consists of two face-sharing Zn-centered hypho-icosahedra, and each trimer comprises a Li-centered icosahedron sandwiched by two hypho-icosahedra. Furthermore, this intergrowth family includes several known intermetallic structure types involving very electropositive metals, e.g., SrMg 5.2, Ba 2Li 4.21Al 4.79, and Sr 9Li 17.5Al 25.5. Because of cluster defects and condensation, both Ca 12Li xZn 59–x and Ca 15Li xZn 75–x are electronically akin to close-packed metals, and their structural stabilities can be interpreted by a Hume-Rothery mechanism rather than the Zintl–Klemm concept.« less
Cravotta, C.A.
2008-01-01
Water-quality data for discharges from 140 abandoned mines in the Anthracite and Bituminous Coalfields of Pennsylvania reveal complex relations among the pH and dissolved solute concentrations that can be explained with geochemical equilibrium models. Observed values of pH ranged from 2.7 to 7.3 in the coal-mine discharges (CMD). Generally, flow rates were smaller and solute concentrations were greater for low-pH CMD samples; pH typically increased with flow rate. Although the frequency distribution of pH was similar for the anthracite and bituminous discharges, the bituminous discharges had smaller median flow rates; greater concentrations of SO4, Fe, Al, As, Cd, Cu, Ni and Sr; comparable concentrations of Mn, Cd, Zn and Se; and smaller concentrations of Ba and Pb than anthracite discharges with the same pH values. The observed relations between the pH and constituent concentrations can be attributed to (1) dilution of acidic water by near-neutral or alkaline ground water; (2) solubility control of Al, Fe, Mn, Ba and Sr by hydroxide, sulfate, and/or carbonate minerals; and (3) aqueous SO4-complexation and surface-complexation (adsorption) reactions. The formation of AlSO4+ and AlHSO42 + complexes adds to the total dissolved Al concentration at equilibrium with Al(OH)3 and/or Al hydroxysulfate phases and can account for 10-20 times greater concentrations of dissolved Al in SO4-laden bituminous discharges compared to anthracite discharges at pH of 5. Sulfate complexation can also account for 10-30 times greater concentrations of dissolved FeIII concentrations at equilibrium with Fe(OH)3 and/or schwertmannite (Fe8O8(OH)4.5(SO4)1.75) at pH of 3-5. In contrast, lower Ba concentrations in bituminous discharges indicate that elevated SO4 concentrations in these CMD sources could limit Ba concentrations by the precipitation of barite (BaSO4). Coprecipitation of Sr with barite could limit concentrations of this element. However, concentrations of dissolved Pb, Cu, Cd, Zn, and most other trace cations in CMD samples were orders of magnitude less than equilibrium with sulfate, carbonate, and/or hydroxide minerals. Surface complexation (adsorption) by hydrous ferric oxides (HFO) could account for the decreased concentrations of these divalent cations with increased pH. In contrast, increased concentrations of As and, to a lesser extent, Se with increased pH could result from the adsorption of these oxyanions by HFO at low pH and desorption at near-neutral pH. Hence, the solute concentrations in CMD and the purity of associated "ochres" formed in CMD settings are expected to vary with pH and aqueous SO4 concentration, with potential for elevated SO4, As and Se in ochres formed at low pH and elevated Cu, Cd, Pb and Zn in ochres formed at near-neutral pH. Elevated SO4 content of ochres could enhance the adsorption of cations at low pH, but decrease the adsorption of anions such as As. Such information on environmental processes that control element concentrations in aqueous samples and associated precipitates could be useful in the design of systems to reduce dissolved contaminant concentrations and/or to recover potentially valuable constituents in mine effluents.
SrZnO nanostructures grown on templated <0001> Al2O3 substrates by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Labis, Joselito P.; Alanazi, Anwar Q.; Albrithen, Hamad A.; El-Toni, Ahmed Mohamed; Hezam, Mahmoud; Elafifi, Hussein Elsayed; Abaza, Osama M.
2017-09-01
The parameters of pulsed laser deposition (PLD) have been optimized to design different nanostructures of Strontium-alloyed zinc oxide (SrZnO). In this work, SrZnO nanostructures are grown on <0001>Al2O3 substrates via two-step templating/seeding approach. In the temperature range between 300 - 750 oC and O2 background pressures between 0.01 and 10 Torr, the growth conditions have been tailored to grow unique pointed leaf-like- and pitted olive-like nanostructures. Prior to the growth of the nanostructures, a thin SrZnO layer that serves as seed layer/template is first deposited on the Al2O3 substrates at ˜300oC and background oxygen pressure of 10 mTorr. The optical properties of the nanostructures were examined by UV/Vis spectroscopy and photoluminescence (PL), while the structures/morphologies were examined by SEM, TEM, and XRD. The alloyed SrZnO nanostructures, grown by ablating ZnO targets with 5, 10, 25% SrO contents, have in common a single-crystal hexagonal nanostructure with (0002) preferential orientation and have shown remarkable changes in the morphological and optical properties of the materials. To date, this is the only reported work on optimization of laser ablation parameters to design novel SrZnO nanostructures in the 5-25% alloying range, as most related Sr-doped ZnO studies were done below 7% doping. Although the physical properties of ZnO are modified via Sr doping, the mechanism remains unclear. The PLD-grown SrZnO nanostructures were directly grown onto the Al2O3 substrates; thus making these nanomaterials very promising for potential applications in biosensors, love-wave filters, solar cells, and ultrasonic oscillators.
NASA Astrophysics Data System (ADS)
Aidoud, Amina; Maroutian, Thomas; Matzen, Sylvia; Agnus, Guillaume; Amrani, Bouhalouane; Driss-Khodja, Kouider; Aubert, Pascal; Lecoeur, Philippe
2018-01-01
This study is focused on the link between the structural and electric properties of BaTiO3 thin films grown on SrRuO3-buffered (001) SrTiO3 substrates, SrRuO3 acting as bottom electrode. The growth regime and film structure are here tuned through the growth pressure for pulsed laser deposition in the 1-200 mTorr range. The dielectric, ferroelectric and leakage current properties are systematically measured for the different strain states of the BaTiO3 thin films on SrRuO3. The results are discussed with the help of ab initio calculations on the effects of Ba- and Ti-vacancies on BaTiO3 lattice parameters. A sharp increase of the dielectric constant is evidenced in the high pressure region, where the tetragonality of the BaTiO3 is decreasing rapidly with growth pressure. We interpret this divergence of the dielectric function as the signature of the vicinity of the phase boundary between the out-of-plane and in-plane orientations of the tetragonal BTO films.
NASA Astrophysics Data System (ADS)
Wu, Ming-Chung; Chen, Wei-Cheng; Chan, Shun-Hsiang; Su, Wei-Fang
2018-01-01
Perovskite solar cell is a novel photovoltaic technology with the superior progress in efficiency and the simple solution processes. Develop lead-free or lead-reduced perovskite materials is a significant concern for high-performance perovskite solar cell. Among the alkaline earth metals, the Sr2+ and Ba2+ are suitable for Pb2+ replacement in perovskite film due to fitting Goldschmidt's tolerance factor. In this study, we adopted Ba-doped and Sr-doped perovskite structured materials with different doping levels, including 1.0, 5.0, and 10.0 mol%, to prepare perovskite solar cells. Both Ba-doped and Sr-doped perovskite structured materials have a related tendency in absorption behavior and surface morphology. At 10.0 mol% doping level, the power conversion efficiency (PCE) of Sr-doped perovskite solar cells is only ∼0.5%, but the PCE of Ba-doped perovskite solar cells can be achieved to ∼9.7%. Ba-doped perovskite solar cells showed the acceptable photovoltaic characteristics than Sr-doped perovskite solar cells. Ba dopant can partially replace the amount of lead in the perovskite solar cells, and it could be a potential candidate in the field of lead-free or lead-reduced perovskite energy materials.
NASA Astrophysics Data System (ADS)
Stafford, Luc
Advances in electronics and photonics critically depend upon plasma-based materials processing either for transferring small lithographic patterns into underlying materials (plasma etching) or for the growth of high-quality films. This thesis deals with the etching mechanisms of materials using high-density plasmas. The general objective of this work is to provide an original framework for the plasma-material interaction involved in the etching of advanced materials by putting the emphasis on complex oxides such as SrTiO3, (Ba,Sr)TiO 3 and SrBi2Ta2O9 films. Based on a synthesis of the descriptions proposed by different authors to explain the etching characteristics of simple materials in noble and halogenated plasma mixtures, we propose comprehensive rate models for physical and chemical plasma etching processes. These models have been successfully validated using experimental data published in literature for Si, Pt, W, SiO2 and ZnO. As an example, we have been able to adequately describe the simultaneous dependence of the etch rate on ion and reactive neutral fluxes and on the ion energy. From an exhaustive experimental investigation of the plasma and etching properties, we have also demonstrated that the validity of the proposed models can be extended to complex oxides such as SrTiO3, (Ba,Sr)TiO 3 and SrBi2Ta2O9 films. We also reported for the first time physical aspects involved in plasma etching such as the influence of the film microstructural properties on the sputter-etch rate and the influence of the positive ion composition on the ion-assisted desorption dynamics. Finally, we have used our deep investigation of the etching mechanisms of STO films and the resulting excellent control of the etch rate to fabricate a ridge waveguide for photonic device applications. Keywords: plasma etching, sputtering, adsorption and desorption dynamics, high-density plasmas, plasma diagnostics, advanced materials, photonic applications.
NASA Astrophysics Data System (ADS)
Huang, Xin; Chen, Shuai; Zeng, Zhigang; Pu, Xiaoqiang; Hou, Qinghua
2017-10-01
Sediment samples obtained from the South Mid-Atlantic Ridge were analyzed for the major and trace elements by inductively coupled plasma atomic emission spectroscopy and inductively coupled plasma mass spectrometry. Results revealed that the contents of elements (e.g., Fe, Mn, Cu, Zn, V, Co) were high in samples 22V-TVG10 and 26V-TVG05 from the sites near the hydrothermal areas, and low in sample 22V-TVG14, which was collected far from the hydrothermal areas. The contents of Ca, Sr and Ba in the samples showed opposite trends. A positive correlation between the concentrations of metallic elements (Cu, Zn, Co, Ni, Pb, V) and Fe in the samples were observed. These results are consistent with chemical evolution of the dispersing hydrothermal plume.
Crystal growth and physical properties of SrCu2As2, SrCu2Sb2, and BaCu2Sb2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anand, V.K.; Perera, P. Kanchana; Pandey, Abhishek
2012-06-25
We report the growth of single crystals of SrCu2As2, SrCu2Sb2, SrCu2(As0.84Sb0.16)2, and BaCu2Sb2 using the self-flux technique and their structural, magnetic, thermal, and transport properties that were investigated by powder x-ray diffraction (XRD), magnetic susceptibility χ, specific heat Cp, and electrical resistivity ρ measurements versus temperature T from 1.8 to 350 K. Rietveld refinements of XRD patterns for crushed crystals confirm that SrCu2As2 crystallizes in the ThCr2Si2-type body-centered tetragonal structure (space group I4/mmm) and SrCu2Sb2 crystallizes in the CaBe2Ge2-type primitive tetragonal structure (space group P4/nmm). However, as reported previously, BaCu2Sb2 is found to have a large unit cell consisting ofmore » three blocks. Here a ThCr2Si2-type block is sandwiched between two CaBe2Ge2-type blocks along the c axis with an overall symmetry of I4/mmm, as reported, but likely with a monoclinic distortion. The χ data of all these compounds are diamagnetic and reveal nearly T-independent anisotropic behavior. The χ of SrCu2As2 is found to be larger in the ab plane than along the c axis, as also previously reported for pure and doped BaFe2As2, whereas the χ values of SrCu2Sb2 and BaCu2Sb2 are larger along the c axis. This difference in anisotropy appears to arise from the differences between the crystal structures. The finite values of the Sommerfeld linear specific heat coefficients γ and the T dependences of ρ reveal metallic character of all four compounds. The electronic and magnetic properties indicate that these compounds are sp metals with Cu in the nonmagnetic 3d10 electronic configuration corresponding to the oxidation state Cu+1, as previously predicted theoretically for SrCu2As2 by Singh [ Phys. Rev. B 79 153102 (2009)]. We present a brief review of theoretical and experimental work on the doping character of transition metals for Fe in BaFe2As2. The As–As covalent interlayer bond distances in the collapsed-tetragonal (Ca,Sr,Ba)Cu2As2 compounds are much shorter than the nonbonding As–As distances in BaFe2As2. Thus, the electronic character of the Cu and the strength of the As–As interlayer bonding are both expected to drastically change between weakly Cu-substituted BaFe2As2 and pure BaCu2As2, perhaps via a first-order lattice instability such as a miscibility gap in the Ba(Fe1−xCux)2As2 system.« less
Zimmerman, Christian E.; Swanson, Heidi K.; Volk, Eric C.; Kent, Adam J.R.
2013-01-01
To test the utility of otolith chemical composition as a tool for determining the natal stream of origin for salmon, we examined water chemistry and otoliths of juvenile and adult Chum Salmon Oncorhynchus keta and Coho Salmon O. kisutch from three watersheds (five rivers) in the Norton Sound region of Alaska. The two species are characterized by different life histories: Coho Salmon rear in freshwater for up to 3 years, whereas Chum Salmon emigrate from freshwater shortly after emergence. We used laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS) to quantify element: Ca ratios for Mg, Mn, Zn, Sr, and Ba, and we used multicollector LA-ICP-MS to determine 87Sr:86Sr ratios in otolith regions corresponding to the period of freshwater residence. Significant differences existed in both water and otolith elemental composition, suggesting that otolith composition could be used to discriminate the natal origin of Coho Salmon and Chum Salmon but only when 87Sr:86Sr ratios were included in the discriminant function analyses. The best discriminant model included 87Sr:86Sr ratios, and without 87Sr:86Sr ratios it was difficult to discriminate among watersheds and rivers. Classification accuracy was 80% for Coho Salmon and 68% for Chum Salmon, indicating that this method does not provide sufficient sensitivity to estimate straying rates of Pacific salmon at the scale we studied.
Radionuclide transfer to reptiles.
Wood, Michael D; Beresford, Nicholas A; Semenov, Dmitry V; Yankovich, Tamara L; Copplestone, David
2010-11-01
Reptiles are an important, and often protected, component of many ecosystems but have rarely been fully considered within ecological risk assessments (ERA) due to a paucity of data on contaminant uptake and effects. This paper presents a meta-analysis of literature-derived environmental media (soil and water) to whole-body concentration ratios (CRs) for predicting the transfer of 35 elements (Am, As, B, Ba, Ca, Cd, Ce, Cm, Co, Cr, Cs, Cu, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Po, Pu, Ra, Rb, Sb, Se, Sr, Th, U, V, Y, Zn, Zr) to reptiles in freshwater ecosystems and 15 elements (Am, C, Cs, Cu, K, Mn, Ni, Pb, Po, Pu, Sr, Tc, Th, U, Zn) to reptiles in terrestrial ecosystems. These reptile CRs are compared with CRs for other vertebrate groups. Tissue distribution data are also presented along with data on the fractional mass of bone, kidney, liver and muscle in reptiles. Although the data were originally collected for use in radiation dose assessments, many of the CR data presented in this paper will also be useful for chemical ERA and for the assessments of dietary transfer in humans for whom reptiles constitute an important component of the diet, such as in Australian aboriginal communities.
NASA Astrophysics Data System (ADS)
Brügmann, G.; Krause, J.; Brachert, T. C.; Stoll, B.; Weis, U.; Kullmer, O.; Ssemmanda, I.; Mertz, D. F.
2012-11-01
This study demonstrates that alkaline earth elements in enamel of hippopotamids, in particular Ba and Sr, are tracers for water provenance and hydrochemistry in terrestrial settings. The studied specimens are permanent premolar and molar teeth found in modern and fossil lacustrine sediments of the Western Branch of the East African Rift system (Lake Kikorongo, Lake Albert, and Lake Malawi) and from modern fluvial environments of the Nile River. Concentrations in enamel vary by two orders of magnitude for Ba (120-9336 μg g-1) as well as for Sr (9-2150 μg g-1). The variations are partially induced during post-mortem alteration and during amelogenesis, but the major contribution originates ultimately from the variable water chemistry in the habitats of the hippopotamids which is controlled by the lithologies and weathering processes in the watershed areas. Amelogenesis causes a distinct distribution of MgO, Ba and Sr in modern and fossil enamel, in that element concentrations increase along profiles from the outer rim towards the enamel-dentin junction by a factor of 1.3-1.9. These elements are well correlated in single specimens, thus suggesting that their distribution is determined by a common, single process, which can be described by closed system Rayleigh crystallization of bioapatite in vivo. Enamel from most hippopotamid specimens has Sr/Ca and Ba/Ca which are typical for herbivores. However, Ba/Sr ranges from 0.1 to 3 and varies on spatial and temporal scales. Thus, Sr concentrations and Ba/Sr in enamel differentiate between habitats having basaltic mantle rocks or Archean crustal rocks as the ultimate sources of Sr and Ba. This provenance signal is modulated by climate change. In Miocene to Pleistocene enamel from the Lake Albert region, Ba/Sr decreases systematically with time from 2 to 0.5. This trend can be correlated with changes in climate from humid to arid, in vegetation from C3 to C4 biomass as well as with increasing evaporation of the lake water. The most plausible explanation is that Ba mobility decreased with increasing aridification due to preferential deposition with clay and Fe-oxide-hydroxide or barite on the watershed of Lake Albert.
Structural and photoluminescence study of bulk SrZnO2
NASA Astrophysics Data System (ADS)
Manju, Jain, Megha; Kumar, Ravi; Kumar, Shalendra; Thakur, Anup; Vij, Ankush
2018-05-01
In present work, we report synthesis, X-ray diffraction study and photoluminescence of SrZnO2. The SrZnO2 phosphors were prepared through high energy ball milling process and subsequent annealing. The annealing at various temperatures helped in emergence of single phased SrZnO2 phosphors. The texture coefficient of prominent planes was found to be growing with annealing temperature. At an excitation wavelength of 325 nm, the photoluminescence spectrum is spanning from yellow to IR region. As SrZnO2 is wide band gap phosphor, so the observed emission is believed to be due to oxygen vacancies or cation interstitial defects.
Selectivity in biomineralization of barium and strontium.
Krejci, Minna R; Wasserman, Brian; Finney, Lydia; McNulty, Ian; Legnini, Daniel; Vogt, Stefan; Joester, Derk
2011-11-01
The desmid green alga Closterium moniliferum belongs to a small number of organisms that form barite (BaSO(4)) or celestite (SrSO(4)) biominerals. The ability to sequester Sr in the presence of an excess of Ca is of considerable interest for the remediation of (90)Sr from the environment and nuclear waste. While most cells dynamically regulate the concentration of the second messenger Ca(2+) in the cytosol and various organelles, transport proteins rarely discriminate strongly between Ca, Sr, and Ba. Herein, we investigate how these ions are trafficked in C. moniliferum and how precipitation of (Ba,Sr)SO(4) crystals occurs in the terminal vacuoles. Towards this goal, we simultaneously visualize intracellular dynamics of multiple elements using X-ray fluorescence microscopy (XFM) of cryo-fixed/freeze-dried samples. We correlate the resulting elemental maps with ultrastructural information gleaned from freeze-fracture cryo-SEM of frozen-hydrated cells and use micro X-ray absorption near edge structure (micro-XANES) to determine sulfur speciation. We find that the kinetics of Sr uptake and efflux depend on external Ca concentrations, and Sr, Ba, and Ca show similar intracellular localization. A highly ion-selective cross-membrane transport step is not evident. Based on elevated levels of sulfate detected in the terminal vacuoles, we propose a "sulfate trap" model, where the presence of dissolved barium leads to preferential precipitation of (Ba,Sr)SO(4) due to its low solubility relative to SrSO(4) and CaSO(4). Engineering the sulfate concentration in the vacuole may thus be the most direct way to increase the Sr sequestered per cell, an important consideration in using desmids for phytoremediation of (90)Sr. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakaria, Nurhamidah, E-mail: nurhamidahzakaria@yahoo.com; Idris, Mohd Sobri, E-mail: sobri@unimap.edu.my; Osman, Rozana A. M., E-mail: rozana@unimap.edu.my
2016-07-19
Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} was successfully prepared using modified solid-state synthesis routes. The lowest temperature to obtained single phase of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} is about 900°C for 15 hours. Longer period of time are required compared to only 5 hours at 950°C as established in literatures. The X-ray Diffraction (XRD) data confirmed that Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} is formed a cubic perovskite with the space group of Pm-3m. The lattice parameters of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} are a = 3.990 (1) Å and unit cell volume is V = 63.5 (1)more » Å{sup 3}. The Rietveld refinement of XRD data revealed that the crystal structure of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} slightly changes as a function of temperature.« less
Watanabe, Ryo; Ikushima, Maiko; Mukawa, Kei; Sumomozawa, Fumitaka; Ogo, Shuhei; Sekine, Yasushi
2013-01-01
For the development of highly active and robust catalysts for dehydrogenation of ethylbenzene (EBDH) to produce styrene; an important monomer for polystyrene production, perovskite-type oxides were applied to the reaction. Controlling the mobility of lattice oxygen by changing the structure of Ba1 − xSrxFeyMn1 − yO3 − δ (0 ≤ x ≤ 1, 0.2 ≤ y ≤ 0.8), perovskite catalyst showed higher activity and stability on EBDH. The optimized Ba/Sr and Fe/Mn molar ratios were 0.4/0.6 and 0.6/0.4, respectively. Comparison of the dehydrogenation activity of Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst with that of an industrial potassium promoted iron (Fe–K) catalyst revealed that the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst showed higher initial activity than the industrial Fe–K oxide catalyst. Additionally, the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst showed high activity and stability under severe conditions, even at temperatures as low as 783 K, or at the low steam/EB ratio of 2, while, the Fe–K catalyst showed low activity in such conditions. Comparing reduction profiles of the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ and the Fe–K catalysts in a H2O/H2 atmosphere, reduction was suppressed by the presence of H2O over the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst while the Fe–K catalyst was reduced. In other words, Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst had higher potential for activating the steam than the Fe–K catalyst. The lattice oxygen in perovskite-structure was consumed by H2, subsequently the consumed lattice oxygen was regenerated by H2O. So the catalytic performance of Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ was superior to that of Fe–K catalyst thanks to the high redox property of the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ perovskite oxide. PMID:24790949
[Application of ICP-MS to Identify the Botanic Source of Characteristic Honey in South Yunnan].
Wei, Yue; Chen, Fang; Wang, Yong; Chen, Lan-zhen; Zhang, Xue-wen; Wang, Yan-hui; Wu, Li-ming; Zhou, Qun
2016-01-01
By adopting inductively coupled plasma mass spectrometry (ICP-MS) combined with chemometric analysis technology, 23 kinds of minerals in four kinds of characteristic honey derived from Yunnan province were analyzed. The result showed that 21 kinds of mineral elements, namely Na, Mg, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Sb, Ba, Tl and Pb, have significant differences among different varieties of honey. The results of principal component analysis (PCA) showed that the cumulative variance contribution rate of the first four main components reached 77.74%, seven kinds of elements (Mg, Ca, Mn, Co, Sr, Cd, Ba) from the first main component contained most of the honey information. Through the stepwise discriminant analysis, seven kinds of elements (Mg, K, Ca, Cr, Mn, Sr, Pb) were filtered. out and used to establish the discriminant function model, and the correct classification rates of the proposed model reached 90% and 86.7%, respectively, which showed elements contents could be effectively indicators to discriminate the four kinds characteristic honey in southern Yunnan Province. In view of all the honey samples were harvested from apiaries located at south Yunnan Province where have similar climate, soil and other environment conditions, the differences of the mineral elements contents for the honey samples mainly due to their corresponding nectariferous plant. Therefore, it is feasible to identify honey botanical source through the differences of mineral elements.
Jiang, Xiaoliang; Xiong, Ziqian; Liu, Hui; Liu, Guihua; Liu, Wenzhi
2017-01-01
The majority of rivers in the world have been dammed, and over 45,000 large reservoirs have been constructed for multiple purposes. Riparian and reservoir shorelines are the two most important wetland types in a dammed river. To date, few studies have concerned the heavy metal pollution in wetland soils of these river-reservoir systems. In this study, we measured the concentrations of ten heavy metals (Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, and Zn) in surface soils collected from riparian and reservoir shorelines along the Han River in different seasons. Our results found that the Co, Cu, and Ni concentrations in riparian wetlands were significantly lower than those in reservoir shorelines. In riparian wetlands, only soil Sr concentration significantly increased after summer and autumn submergence. Multivariate statistical analyses demonstrated that Ba and Cd might originate from industrial and mining sources, whereas Sr and Mn predominantly originated from natural rock weathering. The ecological risk assessment analysis indicated that both riparian and reservoir shorelines along the Han River in China exhibited a moderate ecological risk in soil heavy metals. The upper Han River basin is the water resource area of China's Middle Route of the South-to-North Water Transfer Project. Therefore, to control the contamination of heavy metals in wetland soils, more efforts should be focused on reducing the discharge of mining and industrial pollutants into the riparian and reservoir shorelines.
NASA Astrophysics Data System (ADS)
Sager, Manfred; Erhart, Eva
2016-04-01
High quality biological waste treatment aims at producing compost in order to maintain a clean environment and to sustain soil organic carbon levels. Fertilization with compost as a source of organic carbon, nutrients, and accessory elements, as well as fertilization with mineral N- and PK fertilizer have been tested in a field experiment on a calcaric Fluvisol in the Danube wetlands, at 4 levels each. Yields of wheat were recorded, and grains and soils were sampled from each treatment, and analyzed for main and trace element composition. The corresponding soils were characterized by mobile phases, obtained by leaching with 0,16M acetic acid to cover exchangeables plus carbonates, and subsequently by 0,1M oxalate buffer pH 3 to dissolve the pedogenic oxides. Total amounts were obtained from digests with perchloric- nitric-hydrofluoric acid. For quasi-total amounts, aqua regia was replaced by pressure decomposition with KClO3 in dilute nitric acid. The proposed extraction sequence permits to analyze and interpret soil for main elements, trace elements, nutrients and anions simultaneously. Factor analyses of soil extracts obtained from dilute acetic acid revealed Ba-Be-Cd-Cu-Li-S (traces), Ca-Mg-Mn (main carbonates), Al-Fe-B, Y, and P-K (nutrients) as chemically feasible principal components. Subsequent soil extracts from oxalate contained Al-B-Co-K-Na-Pb-Si-V-S (maybe acid silicate weathering), Cr-Li-Ni-Sr-Ti (maybe basic silicate weathering), Be-Cu-Fe-P, Co-Mg-Mn-Zn (Mn-oxides) and Ba-Sc as principal components. Factor analyses of total element data distinguished the principal components Ce-La-Li-Sc-Y-P (rare earths), Al-Ca-Fe-K-Mg-Na-P (main elements), Cd-Co-Cr-Cu-Ni-Zn (trace elements), As-Pb (contaminants), Ba-Mn-Sr, and Ti, which looks chemically feasible also. Factor analyses of those soil fractions which presumably form the main fractions of exchangeables, carbonates, pedogenic oxides and silicates, showed no cross connections, except for P. Oxalate-soluble Fe together with P and S was independent from oxalate-soluble Al-Mn-Si. In the crops, all element levels were within a non-contaminated and non-deficient range, therefore correlations with concentrations as well as loads in the wheat grains where largely not pronounced. Maximum correlations between plant and soil data were obtained with Li and Be. The load data (concentration times yield, given in g/ha) were much more intercorrelated than the concentrations. Regarding the same element, correlation coefficients between loads and respective concentrations were larger than 0,800 for Al, Ba, Cd, Co, Cr, Li, Mo, Na, Ni, Se, and Sr, which means the transfer remained independent from the load. In case of Ca, Mg, P, S, Zn, however, correlation coefficients between loads and concentrations were < 0,500, thus the transfer was not constant because of obvious metabolic influences. The proposed method of soil characterization was applied at a field trial here for the first time, and offers new possibilities of intercorrelations between plant uptake and geochemical soil fractions.
A first principles study on newly proposed (Ca/Sr/Ba)Fe2Bi2 compounds with their parent compounds
NASA Astrophysics Data System (ADS)
Sundareswari, M.; Jayalakshmi, D. S.; Viswanathan, E.
2016-02-01
The structural, electronic, bonding and magnetic properties of newly proposed iron-based compounds viz., CaFe2Bi2, SrFe2Bi2, BaFe2Bi2 with their Fermi surface topology are reported here for the first time by means of first principles calculation. All these properties of newly proposed compounds are compared and analysed along with their respective parent compounds namely (Ca,Sr,Ba)Fe2As2.
Aluminum/alkaline earth metal composites and method for producing
Russell, Alan M; Anderson, Iver E; Kim, Hyong J; Freichs, Andrew E
2014-02-11
A composite is provided having an electrically conducting Al matrix and elongated filaments comprising Ca and/or Sr and/or Ba disposed in the matrix and extending along a longitudinal axis of the composite. The filaments initially comprise Ca and/or Sr and/or Ba metal or allow and then may be reacted with the Al matrix to form a strengthening intermetallic compound comprising Al and Ca and/or Sr and/or Ba. The composite is useful as a long-distance, high voltage power transmission conductor.
NASA Astrophysics Data System (ADS)
Yan, Li; Zhou, Jiaxing; Sun, Zhenzhou; Yang, Meng; Ma, Liqun
2018-04-01
Magnesium alloys are widely studied as biomedical implants owing to their biodegradability. In this work, novel Mg-5Zn-0.5Ca-xSr (x = 0, 0.14, 0.36, 0.50, 0.70 wt%) alloys were prepared as biomedical materials. The influence of strontium (Sr) addition on the microstructure, corrosion properties and corrosion morphology of the as-cast Mg-5Zn-0.5Ca-xSr alloys is investigated by a variety of techniques such as scanning electron microscopy, x-ray diffraction, and electrochemical measurements. The Sr-free alloy is composed of three phases, namely, α-Mg, CaMg2 and Ca2Mg6Zn3, while the alloys with the Sr addition consist of α-Mg, CaMg2 and Ca2Mg6Zn3 and Mg17Sr2. Corrosion experiments in Hank’s solution show that the addition of a small amount of Sr can improve the corrosion resistance of the Mg-5Zn-0.5Ca alloy. The corrosion products include Mg(OH)2, Zn(OH)2, Ca(OH)2, and HA (Ca5(PO4)3(OH)). Mg-5Zn-0.5Ca-0.36Sr alloy has the minimum weight loss rate (0.68 mm/a), minimal hydrogen evolution (0.08 ml/cm2/d) and minimum corrosion current density (7.4 μA/cm2), indicating that this alloy shows the best corrosion resistance.
Zhou, Shanshan; Yuan, Haodong; Ma, Xiaoling; Liu, Ying
2017-01-01
Women have an increased risk for chemical element deficiencies during reproductive age, particularly due to higher chemical element requirements and poor diets. Twenty-one chemical elements (Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Se, Si, Sn, Sr, Ti, V and Zn) in hair samples, which were collected from 71 non-pregnant and 236 pregnant women living in the West Ujimqin Banner, central Inner Mongolia, China, were measured, and the environment, dietary habits and ethnic group influence factors associated with the biomarker were analyzed. The results indicated that the average values of the chemical element contents from hair were greatly different compared to those from other areas, especially the Al, Cd, Pb, Ca and Sr contents. There was no significant difference among the three ethnicities for any element except Mn and Ti in non-pregnant women. Compared to non-pregnant women, in the first trimester group, the levels of nine chemical elements (Ba, Cd, Cu, Pb, Se, Si, Sn and Ti) decreased, while the others increased, and the contents of all of the chemical elements decreased in the second trimester group, while in the third trimester, there was a slight increase. Three chemical elements (Cu, Mn and Zn) displayed a synergistic correlation between each other in the third trimester group, which may protect the placenta from some oxidant damage. The high levels of Cd and Pb in hair likely originate from house renovations and traffic pollution. This study provided basic and useful information on the levels of chemical elements in reproductive-age women, and the results of this study are helpful to control the contents and improve the health of pregnant and non-pregnant women. Copyright © 2016 Elsevier Ltd. All rights reserved.
Richards, Samia; Withers, Paul J A; Paterson, Eric; McRoberts, Colin W; Stutter, Marc
2016-11-15
Discharges from the widely distributed small point sources of pollutants such as septic tanks contribute to microbial and nutrient loading of streams and can pose risks to human health and stream ecology, especially during periods of ecological sensitivity. Here we present the first comprehensive data on the compositional variability of septic tank effluents (STE) as a potential source of water pollution during different seasons and the associated links to their influence on stream waters. To determine STE parameters and nutrient variations, the biological and physicochemical properties of effluents sampled quarterly from 12 septic tank systems were investigated with concurrent analyses of upstream and downstream receiving waters. The study revealed that during the warmer dryer months of spring and summer, effluents were similar in composition, as were the colder wetter months of autumn and winter. However, spring/summer effluents differed significantly (P<0.05) from autumn/winter for concentrations of biological oxygen demand (BOD), arsenic, barium (Ba), cobalt, chromium, manganese, strontium (Sr), titanium, tungsten (W) and zinc (Zn). With the exception of BOD, Ba and Sr which were greater in summer and spring, the concentrations of these parameters were greater in winter. Receiving stream waters also showed significant seasonal variation (P≤0.05) in alkalinity, BOD, dissolved organic carbon, sulphate, sulphur, lithium, W, Zn and Escherichiacoli abundance. There was a clear significant influence of STE on downstream waters relative to upstream from the source (P<0.05) for total suspended solids, total particulate P and N, ammonium-N, coliforms and E. coli. The findings of this study found seasonal variation in STE and place effluent discharges as a factor affecting adjacent stream quality and call for appropriate measures to reduce or redirect STE discharges away from water courses. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of glyphosate on the mineral content of glyphosate-resistant soybeans (Glycine max).
Duke, Stephen O; Reddy, Krishna N; Bu, Kaixuan; Cizdziel, James V
2012-07-11
There are conflicting claims as to whether treatment with glyphosate adversely affects mineral nutrition of glyphosate-resistant (GR) crops. Those who have made claims of adverse effects have argued links between reduced Mn and diseases in these crops. This article describes experiments designed to determine the effects of a recommended rate (0.86 kg ha(-1)) of glyphosate applied once or twice on the mineral content of young and mature leaves, as well as in seeds produced by GR soybeans (Glycine max) in both the greenhouse and field using inductively coupled plasma mass spectrometry (ICP-MS). In the greenhouse, there were no effects of either one application (at 3 weeks after planting, WAP) or two applications (at 3 and 6 WAP) of glyphosate on Ca, Mg, Mn, Zn, Fe, Cu, Sr, Ba, Al, Cd, Cr, Co, or Ni content of young or old leaves sampled at 6, 9, and 12 WAP and in harvested seed. Se concentrations were too low for accurate detection in leaves, but there was also no effect of glyphosate applications on Se in the seeds. In the field study, there were no effects of two applications (at 3 and 6 WAP) of glyphosate on Ca, Mg, Mn, Zn, Fe, Cu, Sr, Ba, Al, Cd, Cr, Co, or Ni content of young or old leaves at either 9 or 12 WAP. There was also no effect on Se in the seeds. There was no difference in yield between control and glyphosate-treated GR soybeans in the field. The results indicate that glyphosate does not influence mineral nutrition of GR soybean at recommended rates for weed management in the field. Furthermore, the field studies confirm the results of greenhouse studies.
Lu, Ying; Ahmed, Sultan; Harari, Florencia; Vahter, Marie
2015-01-01
Ficoll density gradient centrifugation is widely used to separate cellular components of human blood. We evaluated the suitability to use erythrocytes and blood plasma obtained from Ficoll centrifugation for assessment of elemental concentrations. We determined 22 elements (from Li to U) in erythrocytes and blood plasma separated by direct or Ficoll density gradient centrifugation, using inductively coupled plasma mass spectrometry. Compared with erythrocytes and blood plasma separated by direct centrifugation, those separated by Ficoll had highly elevated iodine and Ba concentration, due to the contamination from the Ficoll-Paque medium, and about twice as high concentrations of Sr and Mo in erythrocytes. On the other hand, the concentrations of Ca in erythrocytes and plasma were markedly reduced by the Ficoll separation, to some extent also Li, Co, Cu, and U. The reduced concentrations were probably due to EDTA, a chelator present in the Ficoll medium. Arsenic concentrations seemed to be lowered by Ficoll, probably in a species-specific manner. The concentrations of Mg, P, S, K, Fe, Zn, Se, Rb, and Cs were not affected in the erythrocytes, but decreased in plasma. Concentrations of Mn, Cd, and Pb were not affected in erythrocytes, but in plasma affected by EDTA and/or pre-analytical contamination. Ficoll separation changed the concentrations of Li, Ca, Co, Cu, As, Mo, I, Ba, and U in erythrocytes and blood plasma, Sr in erythrocytes, and Mg, P, S, K, Fe, Zn, Se, Rb and Cs in blood plasma, to an extent that will invalidate evaluation of deficiencies or excess intakes. Copyright © 2014 Elsevier GmbH. All rights reserved.
Anan, Y; Kunito, T; Watanabe, I; Sakai, H; Tanabe, S
2001-12-01
Concentrations of 18 trace elements (V, Cr, Mn, Co, Cu, Zn, Se, Rb, Sr, Zr, Mo, Ag, Cd, Sb, Ba, Hg, Tl, and Pb) were determined in the liver, kidney, and muscle of green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Yaeyama Islands, Okinawa, Japan. Accumulation features of trace elements in the three tissues were similar between green and hawksbill turtles. No gender differences in trace element accumulation in liver and kidney were found for most of the elements. Significant growth-dependent variations were found in concentrations of some elements in tissues of green and hawksbill turtles. Significant negative correlations (p < 0.05) were found between standard carapace length (SCL) and the concentrations of Cu, Zn, and Se in the kidney and V in muscle of green turtles and Mn in the liver, Rb and Ag in kidney, and Hg in muscle of hawksbill turtles. Concentrations of Sr, Mo, Ag, Sb, and Tl in the liver, Sb in kidney, and Sb and Ba in muscle of green turtles and Se and Hg in the liver and Co, Se, and Hg in kidney of hawksbill turtles increased with an increase in SCL (p < 0.05). Green and hawksbill turtles accumulated extremely high concentrations of Cu in the liver and Cd in kidney, whereas the levels of Hg in liver were low in comparison with those of other higher-trophic-level marine animals. High accumulation of Ag in the liver of green turtles was also observed. To evaluate the trophic transfer of trace elements, concentrations of trace elements were determined in stomach contents of green and hawksbill turtles. A remarkably high trophic transfer coefficient was found for Ag and Cd in green turtles and for Cd and Hg in hawksbill turtles.
NASA Astrophysics Data System (ADS)
Sobhanachalam, P.; Ravi Kumar, V.; Raghavaiah, B. V.; Ravi Kumar, Valluri; Sahaya Baskaran, G.; Gandhi, Y.; Syam Prasad, P.; Veeraiah, N.
2017-11-01
In this investigation we have synthesized CaF2sbnd CaOsbnd B2O3sbnd P2O5: CoO glasses mixed with different therapeutically active ions viz., Ba2+, Sr2+, Mg2+ and Zn2+ (that play a vital role in the normal functioning of human body) and performed in vitro bioactivity studies by immersing them in simulated body fluid (SBF) for a period of about a month and the obtained results were analyzed using spectroscopic studies. Due to immersion in SBF solution, a thin layer of hydroxy apatite (HAp) is developed on the surface of the samples. The results of XRD, SEM and also IR spectra have confirmed that the layer deposited on the surface of the samples is crystalline HAp mixed with cobalt ions. The quantitative analysis of the results in vitro bioactive studies with the help of optical absorption and IR spectral studies have indicated that BaO is an efficient modifier in accelerating the HAp growth. The cobalt ions are found to be in tetrahedral positions and participated in the glass network with BO4 and PO4 structural units in larger quantities in CoZn and CoMg glasses and such occupancy is found to be the reason for the relatively low bioactive efficiency of these glasses when compared with that of CoBa glass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shuangbin; Wang, Xiaohan; University of Chinese Academy of Sciences, Beijing 100049
2014-09-01
Ba{sub x}Sr{sub 1−x}TiO{sub 3} ceramics with x ranging from 0 to 1 were prepared by direct current arc discharge technique and studied by means of x-ray diffraction (XRD) and Raman spectroscopy. The cubic-tetragonal ferroelectric phase transition in Ba{sub x}Sr{sub 1−x}TiO{sub 3} ceramics was found to occur at x ≈ 0.75. XRD investigation of as-grown BaTiO{sub 3} ceramics revealed co-existence of tetragonal and hexagonal modifications with a small amount of impurity phase BaTi{sub 4}O{sub 9}. No evidences of hexagonal phase were observed in Raman spectra of as-grown BaTiO{sub 3} ceramics, while Raman peaks related to hexagonal phase were clearly observed in the spectrummore » of fine-grain powders prepared from the same ceramics. A core-shell model for BaTiO{sub 3} ceramics prepared by direct current arc discharge technique is proposed. Absence of the hexagonal phase in any Ba{sub x}Sr{sub 1−x}TiO{sub 3} solid solution with x < 1 is discussed in the frame of specific atomic arrangement.« less
Antiferromagnetism in semiconducting SrMn2Sb2 and BaMn2Sb2 single crystals
NASA Astrophysics Data System (ADS)
Sangeetha, N. S.; Smetana, V.; Mudring, A.-V.; Johnston, D. C.
2018-01-01
Crystals of SrMn2Sb2 and BaMn2Sb2 were grown using Sn flux and characterized by powder and single-crystal x-ray diffraction, respectively, and by single-crystal electrical resistivity ρ , heat capacity Cp, and magnetic susceptibility χ measurements versus temperature T , and magnetization versus field M (H ) isotherm measurements. SrMn2Sb2 adopts the trigonal CaAl2Si2 -type structure, whereas BaMn2Sb2 crystallizes in the tetragonal ThCr2Si2 -type structure. The ρ (T ) data indicate semiconducting behaviors for both compounds with activation energies of ≳0.35 eV for SrMn2Sb2 and 0.16 eV for BaMn2Sb2 . The χ (T ) and Cp(T ) data reveal antiferromagnetic (AFM) ordering at TN = 110 K for SrMn2Sb2 and 450 K for BaMn2Sb2 . The anisotropic χ (T ≤TN) data also show that the ordered moments in SrMn2Sb2 are aligned in the hexagonal a b plane, whereas the ordered moments in BaMn2Sb2 are aligned collinearly along the tetragonal c axis. The a b -plane M (H ) data for SrMn2Sb2 exhibit a continuous metamagnetic transition at low fields 0
Major, minor, trace and rare earth elements in sediments of the Bijagós archipelago, Guinea-Bissau.
Carvalho, Lina; Figueira, Paula; Monteiro, Rui; Reis, Ana Teresa; Almeida, Joana; Catry, Teresa; Lourenço, Pedro Miguel; Catry, Paulo; Barbosa, Castro; Catry, Inês; Pereira, Eduarda; Granadeiro, José Pedro; Vale, Carlos
2018-04-01
Sixty sediment samples from four sites in the Bijagós archipelago were characterized for fine fraction, loss on ignition, major, minor and trace elemental composition (Al, Fe, Ca, Mg, Ti, P, Zr, Mn, Cr, Sr, Ba, B, V, Li, Zn, Ni, Pb, As, Co, U, Cu, Cs and Cd), and the elements of the La-Lu series. Element concentrations were largely explained by the Al content and the proportion of fine fraction content, with the exception of Ca and Sr. Sediments showed enhanced Ti, U, Cr, As and Cd concentrations with respect to estimated upper crust values, most likely mirroring a regional signature. Rare earth elements were in deficit relatively to the North American Shale Composite (NASC), mainly in coarser material. No pronounced Ce-anomaly was observed, while Eu-anomalies were positive in most analyzed sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yoo, Young‑Zo; Song, Jeong‑Hwan; Konishi, Yoshinori; Kawasaki, Masashi; Koinuma, Hideomi; Chikyow, Toyohiro
2006-03-01
Epitaxial SrTiO3 (STO) thin films with high electrical properties were grown on Si using ZnS single- and SrS/MnS hetero-buffer layers. STO films on both ZnS-buffered and SrS/MnS-buffered Si showed two growth orientations, (100) and (110). The temperature dependence of the growth orientation for STO films was different for the ZnS single-buffer layer in comparison with the SrS/MnS heterobuffer layers. (100) growth of STO films on SrS/MnS-buffered Si became dominant at high temperatures about 700 °C, while (100) growth of STO films on ZnS-buffered Si became dominant at a relatively low growth temperature of 550 °C. STO(100) films on ZnS-buffered and SrS/MnS-buffered Si showed lattice and domain matches for epitaxial relationships with [001]ZnS\\parallel[011]STO and SrS[001]\\parallel[011]STO, respectively via 45° in-plane rotation of STO films relative to both ZnS and SrS layers. The ZnS buffer layer contained many stacking faults because of the mismatch between ZnS and Si, however, those defects were terminated at the ZnS/STO interface. In contrast, the MnS buffer was very stable against stacking defect formation. Transmission electron microscopy measurements revealed the presence of a disordered region at the ZnS/Si and MnS/Si interfaces. Auger electron spectroscopy and transmission electron microscopy results showed that a good MnS/Si interface at the initial growth stage degraded to a SiS2-x-rich phase during MnS deposition and again into a SiO2-x-rich phase during STO deposition at the high growth temperature of 700 °C. It was also observed that STO on SrS/MnS-buffered Si showed a markedly high dielectric constant compared with that of STO on ZnS-buffered Si.
Liu, Ling; Li, Nianfeng; Lei, Ting; Li, Kaimo; Zhang, Yangde
2014-01-01
Background Magnesium (Mg) alloy is a metal-based biodegradable material that has received increasing attention in the field of clinical surgery, but it is currently seldom used in intestinal anastomosis. This study was conducted to comprehensively assess a ternary magnesium (Mg)-zinc (Zn)-strontium (Sr) alloy’s biological superiorities as a preparation material for intestinal anastomosis ring. Material/Methods Mouse L-929 fibroblasts were cultured with Mg-Zn-Sr alloy extract and compared with both positive (0.64% phenol) and negative (original broth culture) controls. The cell morphology of different groups was examined using microscopy, and a cytotoxicity assessment was performed. Fresh anticoagulated human blood was mixed with Mg-Zn-Sr alloy extract and compared with both positive (distilled water) and negative (normal saline) controls. The absorbance of each sample at 570 nm was used to calculate the Mg-Zn-Sr alloy hemolysis ratio in order to test the Mg alloy’s blood compatibility. Bacterial cultures of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus were added to Mg-Zn-Sr alloy block samples and compared with positive (Ceftazidime), negative (316LSS stainless steel), and blank controls. The broth cultures were sampled to compare their bacterial colony counts so as to evaluate the antibacterial properties of the Mg-Zn-Sr alloy. The Mg-Zn-Sr alloy was surface-coated with a layer of poly(lactic-co-glycolic acid) carrying everolimus. The surface morphology and degradability of the coating were examined so as to demonstrate feasibility of coating, which can release the drug evenly. Results The experiments proved that Mg-Zn-Sr alloy has good biocompatible, antibacterial, and drug-loaded coating performances, which are lacking in existing intestinal anastomosis devices/materials. Conclusions The Mg-Zn-Sr alloy increases biocompatibility, and yields a safer and better therapeutic effect; therefore, it is a novel biomaterial that is feasible for use when preparing biodegradable intestinal anastomosis rings. PMID:24957079
Tungsten-doped thin film materials
Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.
2003-12-09
A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.
Pressure-induced photoluminescence in Mn2+-doped BaF2 and SrF2 fluorites
NASA Astrophysics Data System (ADS)
Hernández, Ignacio; Rodríguez, Fernando
2003-01-01
This work reports an effective way for inducing room temperature photoluminescence (PL) in Mn2+-doped BaF2 and SrF2 using high-pressure techniques. The aim is to understand the surprising PL behavior exhibited by Mn2+ at the cubal site of the fluorite structure. While Mn2+-doped CaF2 shows a green PL with quantum yield close to 1 at room temperature, Mn2+-doped MF2 (M=Ba,Sr) is not PL either at room temperature (SrF2) or at any temperature (BaF2) at ambient pressure. We associate the loss of Mn2+ PL on passing from CaF2 to SrF2 or BaF2 with nonradiative multiphonon relaxation whose thermal activation energy decreases along the series CaF2→SrF2→BaF2. A salient feature of this work deals with the increase of activation energy induced by pressure. It leads to a quantum yield enhancement, which favors PL recovery. Furthermore, the activation energy mainly depends on the crystal volume per molecule irrespective of the crystal structure or the local symmetry around the impurity. In this way, the relevance of the fluorite-to-cotunnite phase transition is analyzed in connection with the PL properties of the investigated compounds. The PL spectrum and the corresponding lifetime are reported for both structural phases as a function of pressure.
Atmospheric dust deposition on soils around an abandoned fluorite mine (Hammam Zriba, NE Tunisia).
Djebbi, Chaima; Chaabani, Fredj; Font, Oriol; Queralt, Ignasi; Querol, Xavier
2017-10-01
The present study focuses on the eolian dispersion and dust deposition, of major and trace elements in soils in a semi-arid climate, around an old fluorite (CaF 2 ) and barite (BaSO 4 ) mine, located in Hammam Zriba in Northern Tunisia. Ore deposits from this site contain a high amount of metal sulphides constituting heavy metal pollution in the surrounding environment. Samples of waste from the surface of mine tailings and agricultural topsoil samples in the vicinity of the mine were collected. The soil samples and a control sample from unpolluted area, were taken in the direction of prevailing northwest and west winds. Chemical analysis of these solids was performed using both X-ray fluorescence and X-ray diffraction. To determine the transfer from mine wastes to the soils, soluble fraction was performed by inductively coupled plasma and ionic chromatography. The fine grained size fraction of the un-restored tailings, still contained significant levels of barium, strontium, sulphur, fluorine, zinc and lead with mean percentages (wt%) of 30 (calculated as BaO), 13 (as SrO), 10 (as SO 3 ), 4 (F), 2 (Zn) and 1.2 (Pb). Also, high concentrations of cadmium (Cd), arsenic (As) and mercury (Hg) were found with an averages of 36, 24 and 1.2mgkg -1 , respectively. As a result of the eolian erosion of the tailings and their subsequent wind transport, the concentrations of Ba, Sr, S, F, Zn and Pb were extremely high in the soils near to the tailings dumps, with 5%, 4%, 7%, 1%, 0.8% and 0.2%, respectively. Concentration of major pollutants decreases with distance, but they were high even in the farthest samples. Same spatial distribution was observed for Cd, As and Hg. While, the other elements follow different spatial patterns. The leaching test revealed that most elements in the mining wastes, except for the anions, had a low solubility despite their high bulk concentrations. According the 2003/33/CE Decision Threshold, some of these tailings samples were considered as hazardous. Furthermore, other waste samples, considered non hazardous, were not inert. In contrast, the SO 4 2- , Ba, Pb and Sb leachable contents measured in most of the soil samples were relatively high, exceeding the inert threshold for landfill disposal of wastes. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rajasekaran, P.; Alagar Nedunchezhian, A. S.; Yalini Devi, N.; Sidharth, D.; Arivanandhan, M.; Jayavel, R.
2017-11-01
Metal oxide based materials are promising for thermoelectric applications especially at elevated temperature due to their high thermal stability. Recently, perovskite based oxide materials have been focused as a novel thermoelectric material due to their tunable electrical conductivity. Thermoelectric properties of BaSnO3 has been extensively investigated. However, the effect of various rare earth doping on the thermoelectric properties of BaSnO3 is not studied in detail. In the present work, Ba1-x RE x SnO3 (RE = La and Sr) materials with x = 0.05 were prepared by polymerization complex (PC) method in order to study the effect of RE incorporation on the structural, morphological and thermoelectric characteristics of BaSnO3. The structural and morphological properties of the synthesized materials were studied by XRD and TEM analysis. XRD analysis confirmed the mixed phases of the synthesized samples. The TEM images of Ba1-x Sr x SnO3 shows hexagonal and cubic morphology while, Ba1-x La x SnO3 exhibit rod like morphology. Various functional groups of the perovskite material were identified using FTIR analysis. Formation of the perovskite material was further confirmed by XPS analysis. The Seebeck coefficient of Ba0.95La0.05SnO3 was relatively higher than that of Ba0.95Sr0.05SnO3, especially at high temperature. The rod like morphology of Ba0.95La0.05SnO3 may facilitate fast electron transport which results high thermal power compared to Ba0.95Sr0.05SnO3 despite of its poor crystalline nature. The substitution of La3+ on the Ba2+ site could vary the carrier density which results high Seebeck coefficient of Ba0.95La0.05SnO3 compared to Ba0.95Sr0.05SnO3. From the experimental results, it is obvious that Ba0.95La0.05SnO3 could be a promising thermoelectric material for high temperature application.
NASA Astrophysics Data System (ADS)
Brügmann, G.; Krause, J.; Brachert, T. C.; Stoll, B.; Weis, U.; Kullmer, O.; Ssemmanda, I.; Mertz, D. F.
2012-03-01
For reconstructing environmental change in terrestrial realms the geochemistry of fossil bioapatite in bones and teeth is among the most promising applications. This study demonstrates that alkaline earth elements in enamel of Hippopotamids, in particular Ba and Sr are tracers for water provenance and hydrochemistry. The studied specimens are molar teeth from Hippopotamids found in modern and fossil lacustrine settings of the Western Branch of the East African Rift system (Lake Kikorongo, Lake Albert, and Lake Malawi) and from modern fluvial environments of the Nile River. Concentrations in enamel vary by ca. two orders of magnitude for Ba (120-9336 μg g-1) as well as for Sr (9-2150 μg g-1). Concentration variations in enamel are partly induced during post-mortem alteration and during amelogenesis, but the major contribution originates from the variable water chemistry in the habitats of the Hippopotamids which is dominated by the lithologies and weathering processes in the watershed areas. Amelogenesis causes a distinct distribution of Ba and Sr in modern and fossil enamel, in that element concentrations increase along profiles from the outer rim towards the enamel-dentin junction by a factor of 1.3-1.5. These elements are well correlated with MgO and Na2O in single specimens, thus suggesting that their distribution is determined by a common, single process. Presuming that the shape of the tooth is established at the end of the secretion process and apatite composition is in equilibrium with the enamel fluid, the maturation process can be modeled by closed system Rayleigh crystallization. Enamel from many Hippopotamid specimens has Sr/Ca and Ba/Ca which are typical for herbivores, but the compositions extend well into the levels of plants and carnivores. Within enamel from single specimens these element ratios covary and provide a specific fingerprint of the Hippopotamid habitat. All specimens together, however, define subparallel trends with different Ba/Sr ranging from 0.1 to 3. This ratio varies on spatial and temporal scales and traces provenance signals as well as the fractionation of the elements in the hydrological cycle. Thus, Sr concentrations and Ba/Sr in enamel differentiate between habitats having basaltic or Archean crustal rocks as the ultimate sources of Sr and Ba. The provenance signal is modulated by climate change. In Miocene to Pleistocene enamel from the Lake Albert region, Ba/Sr decreases systematically with time from about 2 to 0.5. This trend can be correlated with changes in climate from humid to arid in vegetation from C3 to C4 biomass as well as with increasing evaporation of the lake water. The most plausible explanation is that with time, Ba mobility decreased relative to that of Sr. This can arise if preferential adsorption of Ba to clay and Fe-oxide-hydroxide is related to increasing aridification. Additionally, weathering solutions and lake water can become increasingly alkaline and barite becomes stable. In this case, Ba will be preferentially deposited on the watershed of Lake Albert and rivers with low Ba/Sr will feed the habitats of the Hippopotamids.
Zhang, Su-jing; Luo, Ru-xin; Ma, Dong; Zhuo, Xian-yi
2016-04-01
To determine the normal reference values of 33 elements, Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, Hg, Li, Mg, Mn, Mo, Ni, Pb, Rb, Sb, Se, Sr, Th, Ti, Tl, U, V, Zn and Zr, in the blood and urine samples from the general population in Sanmen County of Zhejiang province, a typical coastal area of eastern China. The 33 elements in 272 blood and 300 urine samples were determined by inductively coupled plasma-mass spectrometry (ICP-MS). The normality test of data was conducted using SPSS 17.0 Statistics. The data was compared with other reports. The normal reference values of the 33 elements in the blood and urine samples from the general population in Sanmen County were obtained, which of some elements were found to be similar with other reports, such as Co, Cu, Mn and Sr, while As, Cd, Hg and Pb were generally found to be higher than those previously reported. There was a wide variation between the reports from different countries in blood Ba. The normal reference values of the 33 elements in the blood and urine samples from the general population in Sanmen County are established, and successfully applied to two poisoning cases.
PIXE and ICP-MS Analysis of Andrographis Paniculata Medicinal Plant
NASA Astrophysics Data System (ADS)
Chandrasekhar Rao, J.; Naidu, B. G.; Sarita, P.; Srikanth, S.; Naga Raju, G. J.
2017-08-01
The concentrations of elements Li, Be, Al, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Ag, Cd, Ba, Pb and U in Andrographis Paniculata medicinal plant used in the treatment of Diabetes Mellitus were determined by using Particle Induced X-ray Emission (PIXE) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) techniques. This plant was collected from four different geographical locations in Andhra Pradesh, India in order to assess the regional variation of elemental concentrations. Appreciable levels of K, Ca, Cr, Mn, Cu and Zn determined in this plant can be correlated to the antidiabetic property of Andrographis Paniculata since these elements are known to regulate and potentiate insulin action. Presence of toxic elements As, Cd and Pb necessitates the adoption of precautionary measures while prescribing dosage of the herbal medicine prepared from this plant for the treatment diabetes mellitus.
Quantification of chemical elements in blood of patients affected by multiple sclerosis.
Forte, Giovanni; Visconti, Andrea; Santucci, Simone; Ghazaryan, Anna; Figà-Talamanca, Lorenzo; Cannoni, Stefania; Bocca, Beatrice; Pino, Anna; Violante, Nicola; Alimonti, Alessandro; Salvetti, Marco; Ristori, Giovanni
2005-01-01
Although some studies suggested a link between exposure to trace elements and development of multiple sclerosis (MS), clear information on their role in the aetiology of MS is still lacking. In this study the concentrations of Al, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, Li, Mg, Mn, Mo, Ni, Pb, Sb, Si, Sn, Sr, Tl, V, W, Zn and Zr were determined in the blood of 60 patients with MS and 60 controls. Quantifications were performed by inductively coupled plasma (ICP) atomic emission spectrometry and sector field ICP mass spectrometry. When the two groups were compared, an increased level of Co, Cu and Ni and a decrement of Be, Fe, Hg, Mg, Mo, Pb and Zn in blood of patients were observed. In addition, the discriminant analysis pointed out that Cu, Be, Hg, Co and Mo were able to discriminate between MS patients and controls (92.5% of cases correctly classified).
Removal of barium and strontium from aqueous solution using zeolite 4A.
Araissi, Manel; Ayed, Imen; Elaloui, Elimame; Moussaoui, Younes
2016-01-01
The adsorption efficiency of Sr(2+) and Ba(2+) from aqueous solutions by zeolite 4A was investigated. Adsorption studies were carried out both in single and binary component systems. The single ion equilibrium adsorption data were fitted to three isotherm models: Langmuir, Freundlich and Dubinin-Radushkevich. The Langmuir model represents the equilibrium data better than the Freundlich model in the studied initial metal concentration (0.3-25 mmol L(-1)) in both the single and binary component systems. The obtained RL (separation factor or Langmuir parameter) values were in the range of 0-1 indicating that Sr(2+) and Ba(2+) sorption were favorable. The obtained mean free energy value for adsorption of Ba(2+) and Sr(2+) was 8.45 kJ mol(-1) and 9.12 kJ mol(-1), respectively, indicating that both ions were uptaken through an ion exchange process. The maximum adsorption capacities (Qmax) were 2.25 mmol g(-1) and 2.34 mmol g(-1) for Ba(2+) and Sr(2+) ions, respectively. Also, the study of the competitive sorption of ions in the binary system showed that zeolite 4A preferentially adsorbs cations in the following order: Ba(2+) < Sr(2+).
Electronic Structure of I-M8Ga16Sn30 (M = Ba, Sr, Yb) by First-Principles Calculation
NASA Astrophysics Data System (ADS)
Wang, Jin-song; Liu, Hong-xia; Deng, Shuping; Li, De-cong; Shen, Lan-xian; Cheng, Feng; Deng, Shu-kang
2017-05-01
Sn-based clathrates possess excellent thermoelectric properties ascribed to their higher Seebeck coefficient and lower thermal conductivity. Guest atoms significantly modulate the thermoelectric properties of Sn-based calculates because of their diverse atomic radius and interactions with framework atoms. Thus, we explored the electronic structure of I-M8Ga16Sn30 (M = Ba, Sr, Yb) by first-principles calculation. Results revealed significant differences between Yb8Ga16Sn30 and M8Ga16Sn30 (M = Ba, Sr,). In particular, the Yb-filled compound substitution possesses lowest formation energy and the off-center distance of the Yb atom is the largest compared with the other structures. I-M8Ga16Sn30 (M = Ba, Sr, Yb) is an indirect band gap semiconductor, and the enhanced hybridization effect between the guest and framework atoms' orbits exists because the Yb f orbit results in a decrease in band gap. Ba- and Sr-filled clathrates have similar valence bands but slightly different conduction bands; however, Yb8Ga16Sn30 possess the spiculate density of states near the Fermi level that reveals excellent thermoelectric properties.
NASA Astrophysics Data System (ADS)
Sorokin, N. I.; Sobolev, B. P.; Krivandina, E. A.; Zhmurova, Z. I.
2015-01-01
Single crystals of fluorine-conducting solid electrolytes R 1 - y Sr y F3 - y and R 1 - y Ba y F3 - y ( R = La-Lu, Y) with a tysonite-type structure (LaF3) have been optimized for room-temperature conductivity σ293 K. The optimization is based on high-temperature measurements of σ( T) in two-component nonstoichiometric phases R 1 - y M y F3 - y ( M = Sr, Ba) as a function of the MF2 content. Optimization for thermal stability is based on studying the phase diagrams of MF2- RF3 systems ( M = Sr, Ba) and the behavior of nonstoichiometric crystals upon heating when measuring temperature dependences σ( T). Single crystals of many studied R 1 - y Sr y F3 - y and R 1 - y Ba y F3 - y phases have σ293 K values large enough to use these materials in solid-state electrochemical devices (chemical sensors, fluorine-ion batteries, accumulators, etc.) operating at room temperature.
NASA Astrophysics Data System (ADS)
Togashi, Shigeko; Kita, Noriko T.; Tomiya, Akihiko; Morishita, Yuichi
2017-08-01
The compositions of host magmas of ferroan anorthosites (FAN-host magmas) were estimated from secondary ion mass spectrometry analyses of plagioclase in lunar highland rocks. The evolution of the magmas was investigated by considering phase relations based on the MELTS algorithm and by re-examining partition coefficients for trace elements between plagioclase and melts. Data little affected by post-magmatic processes were selected by using plagioclase with relatively primitive Sc and Co contents. The FAN-host magma contained 90-174 ppm Sr, 40-119 ppm Ba and 0.5-1.3% TiO2, and had sub-chondritic Sr/Ba and Ti/Ba ratios. It is difficult to account for the formation of FAN-host magma on the basis of magma evolution processes of previously proposed bulk silicate Moon models with chondritic ratios for refractory elements at global scale. Therefore, the source of the FAN-host magma must have had primordial sub-chondritic Sr/Ba and Ti/Ba ratios. The FAN-host magmas were consistent in refractory elements with the estimated host mafic magma for feldspathic crust based on lunar meteorites, and some very-low-Ti mare rocks from lunar meteorites. Here, we propose an alternative bulk silicate Moon model (the cBSM model), which is enriched in crustal components of proto-bodies relative to the present whole Earth-Moon system.
Microstructure and dielectric parameters of epitaxial SrRuO3/BaTiO3/SrRuO3 heterostructures
NASA Astrophysics Data System (ADS)
Boikov, Yu. A.; Claeson, T.
2001-05-01
Epitaxial films of ferroelectric barium titanate are desirable in a number of applications but their properties are inferior to those of bulk material. Relations between microstructure and dielectric properties may give better understanding of limitations. Trilayer heterostructures SrRuO3/BaTiO3/SrRuO3 were grown by laser ablation on (100)LaAlO3 and (100)MgO substrates. The BaTiO3 layer was granular in structure. When grown on (100)SrRuO3/(100)LaAlO3, it was preferentially a-axis oriented due to tensile mechanical stress. Using (100)MgO as a substrate, on the other hand, produced a mixture of about equal value of a-axis and c-axis oriented grains of BaTiO3. The dielectric permittivity, ɛ, of the BaTiO3 layer was almost twice as large, at T>200 K and f=100 kHz, for the LaAlO3 substrate as compared to the MgO one. Its maximum value (ɛ/ɛ0≈6200) depended on temperature of growth, grain size, and electric field and compares well with optimal values commonly used for ceramic material. The maximum in the ɛ(T) shifted from about 370 to 320 K when the grain size in the BaTiO3 film decreased from 100 to 40 nm. At T<300 K, hysteresis loops in polarization versus electric field were roughly symmetric. The BaTiO3 films grown on (100)SrRuO3/(100)MgO exhibit the largest remnant polarizations and coercive fields in the temperature range 100-380 K.
NASA Astrophysics Data System (ADS)
Yang, Panseok; Rivers, Toby
2000-04-01
Coexisting biotite and muscovite in ten metapelitic and quartzofeldspathic rocks from western Labrador have been analyzed by electron microprobe for major and minor elements and by a laser ablation microprobe coupled to ICP-MS (LAM-ICP-MS) for selected trace elements - Li, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Cs, Ba, REE, Hf and Ta. The samples have experienced a single prograde Grenvillian metamorphism ranging from 490 to 680°C and from 7 to 12 kbar. The trace element compositions of coexisting micas in the metamorphic rocks are used to assess the effects of crystal structure, major element composition and temperature on the partitioning of each element between biotite and muscovite. Overall, trace element distributions are systematic across the range of metamorphic grade and bulk composition, suggesting that chemical equilibrium was approached. Most distribution coefficients (biotite/muscovite) show good agreement with published data. However, distribution coefficients for Co and Sr are significantly different from previous determinations, probably because of contamination associated with older data obtained by bulk analysis techniques. The sequence of distribution coefficients is governed mainly by the ionic radii and charges of substituting cations compared to the optimum ionic radius of each crystallographic site in the micas. In particular, distribution coefficients exhibit the sequence Cr 3+ (0.615 Å) > V 3+ (0.64 Å) > Sc 3+ (0.745 Å) in VI-sites, and Ba 2+ (1.61 Å) > Sr 2+ (1.44 Å) and Cs + (1.88 Å) > K + (1.64 Å) > Rb + (1.72 Å) > Na + (1.39 Å) in XII-sites. The distributions of Li, Sc, Sr and Ba appear to be thermally sensitive but are also controlled by major element compositions of micas. V and Zr partitioning is dependent on T and may be used to cross-check thermometry calculations where the latter suffer from retrograde re-equilibration and/or high concentrations of Fe 3+. The ranges and dependence of distribution coefficients on major element compositions provide important constraints on the values that can be used in geochemical modeling.
2010-08-01
among CoxC, AINiCo and Ba / Sr ferrite magnets. AINiCo is shown to exhibit high (BH)max, 35 kJmŗ, but a low intrinsic coercivity, mostly ə kOe...whereas Ba / Sr ferrite features high intrinsic coercivity, 3-4.5 kOe, but typical values of (BH)max below 25 kJm-3. However, the multiple...coercivity of cobalt carbide nanoparticles is compared with free powders of AINiCo and ceramic magnets of the Ba / Sr hexaferrite type. Curie temperatures near
Izod, Keith; Liddle, Stephen T; Clegg, William
2003-06-25
Metathesis between either SrI2 or BaI2 and 2 equiv of {(Me3Si)2(MeOMe2Si)C}K in THF yields the novel heavier alkali metal dialkyls {(Me3Si)2(MeOMe2Si)C}2M(L) [M(L) = Sr(THF) (2), Ba(DME) (3) (DME = 1,2-dimethoxyethane)] after recrystallization.
Clynne, Michael A.; Muffler, L.J.P.; Siems, D.F.; Taggart, J.E.; Bruggman, Peggy
2008-01-01
This open-file report presents WDXRF major-element chemical data for late Pliocene to Holocene volcanic rocks collected from Lassen Volcanic National Park and vicinity, California. Data for Rb, Sr, Ba, Y, Zr, Nb, Ni, Cr, Zn and Cu obtained by EDXRF are included for many samples. Data are presented in an EXCEL spreadsheet and are keyed to rock units as displayed on the Geologic Map of Lassen Volcanic National Park and vicinity (Clynne and Muffler, in press). Location of the samples is given in latitude and longitude in degrees and decimal minutes and in decimal degrees.
Multifunctional Oxide Films for Advanced Multifunction RF Systems
2007-09-14
during the epitaxy runs. Effusion cells (SVT) provide perovskite and rocksalt matrix elements (Ti, Ba , Sr , Mg). An e-gun evaporator (MDC):can be used to...sample that best matched the targeted stoichiometry. 10 5 MgO Ba 0 . Sr 1.4 TiO3/MgO 10 000 BS I 102 3~) ;101 0~ 0 (a) RHiEED of BST rowthonM 0 105O... Ba 0. Sr .. iO3 /SrMO. 5 200 1Is V STO10 -STO 3 -10 _ 10 2 30S 15 10 100 10 20 30 40 50 60 70 80 90 20 (b) RHEED of BST growth on STO (c) XRD scan of
NASA Astrophysics Data System (ADS)
Casey, Andrew R.; Schlaufman, Kevin C.
2017-12-01
The rapid neutron-capture or r-process is thought to produce the majority of the heavy elements (Z> 30) in extremely metal-poor stars. The same process is also responsible for a significant fraction of the heavy elements in the Sun. This universality of the r-process is one of its characteristic features, as well as one of the most important clues to its astrophysical origin. We report the discovery of an extremely metal-poor field giant with [{Sr},{Ba}/{{H}}]≈ -6.0 and [{Sr},{Ba}/{Fe}]≈ -3.0, the lowest abundances of strontium and barium relative to iron ever observed. Despite its low abundances, the star 2MASS J151113.24-213003.0 has [{Sr}/{Ba}]=-0.11+/- 0.14, therefore its neutron-capture abundances are consistent with the main solar r-process pattern that has [{Sr}/{Ba}]=-0.25. It has been suggested that extremely low neutron-capture abundances are a characteristic of dwarf galaxies, and we find that this star is on a highly eccentric orbit with an apocenter ≳100 kpc that lies in the disk of satellites in the halo of the Milky Way. We show that other extremely metal-poor stars with low [Sr, Ba/H] and [Sr, Ba/Fe] plus solar [Sr/Ba] tend to have orbits with large apocenters, consistent with a dwarf galaxy origin for this class of object. The nucleosynthesis event that produced the neutron-capture elements in 2MASS J151113.24-213003.0 must produce both strontium and barium together in the solar ratio. We exclude contributions from the s-process in intermediate-mass asymptotic giant branch or fast-rotating massive metal-poor stars, pair-instability supernovae, the weak r-process, and neutron-star mergers. We argue that the event was a Pop III or extreme Pop II core-collapse supernova explosion. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
Optimal formation and enhanced superconductivity of Tl-1212 phase (Tl0.6Pb0.4)(Ba,Sr)CaCu2O7
NASA Astrophysics Data System (ADS)
Ranjbar, M. G.; Ghoranneviss, Mahmood; Abd-Shukor, R.
2018-06-01
The effect of heating temperature on the formation of Tl-1212 phase with nominal starting composition (Tl0.6Pb0.4)(Ba,Sr)CaCu2O7 (Tl-1212) is reported. The Ba-bearing Tl-1212 phase is normally prepared at around 900 °C while with Sr-bearing sample is prepared at a much higher temperature of around 1000 °C. This work was conducted to determine the optimal temperature to synthesis the Tl-1212 phase when the sample contains Ba and Sr with 1:1 ratio. (Tl0.6Pb0.4)(Ba,Sr)CaCu2O7 samples were prepared using the solid-state reaction method via the precursor route. In the final preparation stage, the samples were heated at 850, 870, 900, 920, 950, 970 and 1000 °C in oxygen flow. X-Ray diffraction patterns showed that most samples consisted of a mixed (Tl0.6Pb0.4)(Ba,Sr)Ca2Cu3O9 (Tl-1223) and Tl-1212 phase except for the sample heated at 970 °C which showed a single Tl-1212 phase and the sample heated at 850 °C which showed the Tl-1223 phase. The transition temperature measured by four-probe method showed that the sample heated at 970 °C exhibited the highest onset temperature of 118 K and zero-resistance temperature of 100 K. This transition temperature is higher than the usually reported value for the Tl-1212 phase. AC susceptibility measurements also showed the 970 °C heated sample with the highest transition temperature T c χ' = 109 K. The interplay of ionic radius (Ba2+ and Sr2+) decreases of the unit cell volume and changes in the internal lattice strain enhanced the transition temperature and the formation of the Tl-1212 phase.
Synthesis of barium-strontium titanate hollow tubes using Kirkendall effect
NASA Astrophysics Data System (ADS)
Chen, Xuncai; Im, SangHyuk; Kim, Jinsoo; Kim, Woo-Sik
2018-02-01
(BaSr)TiO3 hexagonal hollow tubes was fabricated by a solid-state interfacial reaction including a Kirkendall diffusion. Using a co-precipitation and sol-gel process, a core@shell structure of (BaSr)CO3@TiO2 rods were prepared, and then converted to (BaSr)TiO3 hollow tubes at 750 °C. This was a first achievement of single-phase crystal hollow tube. Here, the inner diameter and wall thickness of hollow tube were about 700 nm and 130 nm, respectively. The fabrication of (BaSr)TiO3 hollow tubes was monitored with scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), transmission electron microscopy (TEM), and X-ray diffraction (XRD) to investigate their formation mechanism. The present synthetic approach would provide a new insight into the design and fabrication of hollow architectures of many perovskite oxides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siggelkow, Lisa; Hlukhyy, Viktor; Faessler, Thomas F., E-mail: thomas.faessler@lrz.tum.de
2012-07-15
The germanides Sr{sub 7}Ge{sub 6} and Ba{sub 7}Ge{sub 6} as well as the stannide Ba{sub 3}Sn{sub 2} were prepared by arc melting and annealing in welded tantalum ampoules using induction as well as resistance furnaces. The compounds were investigated by powder and single crystal X-ray diffraction. Sr{sub 7}Ge{sub 6} and Ba{sub 7}Ge{sub 6} crystallize in the Ca{sub 7}Sn{sub 6} structure type (space group Pmna, Z=4: a=7.777(2) A, b=23.595(4) A, c=8.563(2) A, wR{sub 2}=0.081 (all data), 2175 independent reflections, 64 variable parameters for Sr{sub 7}Ge{sub 6} and a=8.0853(6) A, b=24.545(2) A, c=8.9782(8) A, wR{sub 2}=0.085 (all data), 2307 independent reflections, 64more » variable parameters for Ba{sub 7}Ge{sub 6}). Ba{sub 3}Sn{sub 2} crystallizes in an own structure type with the space group P4{sub 3}2{sub 1}2, Z=4, a=6.6854(2) A, c=17.842(2) A, wR{sub 2}=0.037 (all data), 1163 independent reflections, 25 variable parameters. In Sr{sub 7}Ge{sub 6} and Ba{sub 7}Ge{sub 6} the Ge atoms are arranged as Ge{sub 2} dumbbells and Ge{sub 4} four-membered atom chains. Their crystal structures cannot be rationalized according to the (8-N) rule. In contrast, Ba{sub 3}Sn{sub 2} presents Sn{sub 2} dumbbells as a main structural motif and thereby can be described as an electron precise Zintl phase. The chemical bonding situation in these structures is discussed on the basis of partial and total Density Of States (DOS) curves, band structures including fatbands, topological analysis of the Electron Localization Function (ELF) as well as Bader analysis of the bond critical points using the programs TB-LMTO-ASA and WIEN2K. While Ba{sub 3}Sn{sub 2} reveals semiconducting behaviour, all germanides Ae{sub 7}Ge{sub 6} (Ae=Ca, Sr, and Ba) show metallic properties and a considerable {pi}-bonding character between the Ge atoms of the four-membered chains and the dumbbells. The {pi}-bonding character of the germanides is best reflected by the resonance hybrid structures {l_brace}[Ge-Ge]{sup 6-}/[Ge-{sup ....}Ge-{sup ....}Ge-{sup ....}Ge]{sup 8-}{r_brace}{r_reversible}{l_brace}[Ge=Ge]{sup 4-}/[Ge-Ge-Ge-Ge]{sup 10-}{r_brace}. - Graphical abstract: The structure of Ba{sub 3}Sn{sub 2} contains Sn{sub 2} dumbbells as a main structural motif and thereby can be described as an electron precise Zintl phase. Ge{sub 2} dumbbells and Ge{sub 4} four-membered atom chains are the predominant features in Sr{sub 7}Ge{sub 6} and Ba{sub 7}Ge{sub 6}. Their crystal structures cannot be rationalized according to the (8-N) rule. While Ba{sub 3}Sn{sub 2} reveals semiconducting behaviour, the germanides Ae{sub 7}Ge{sub 6} (Ae=Ca, Sr, and Ba) show metallic properties and a considerable {pi}-bonding character between the Ge atoms of the four-membered chains and the dumbbells. Highlights: Black-Right-Pointing-Pointer The germanides Sr{sub 7}Ge{sub 6} and Ba{sub 7}Ge{sub 6} as well as the stannide Ba{sub 3}Sn{sub 2} have been synthesized. Black-Right-Pointing-Pointer In Sr{sub 7}Ge{sub 6} and Ba{sub 7}Ge{sub 6} the Ge atoms are arranged as dumbbells and four-membered atom chains. Black-Right-Pointing-Pointer Ba{sub 3}Sn{sub 2} presents Sn{sub 2} dumbbells as a main structural motif. Black-Right-Pointing-Pointer The chemical bonding situation within these structures is discussed.« less
Guttman, Rita
1940-01-01
1. The alkaline earths, Ba, Sr, Ca, and Mg, in isotonic solutions of their chlorides, have, in general, no effect upon the resting potential of non-medullated spider crab nerve. 2. Ba, Sr, and Ca can, however, prevent the depressing action of K upon the resting potential. The order of effectiveness of these ions in this regard is the following: Ba > Sr > Ca. 3. Ba, Sr, Ca, and Mg oppose the depressing action of veratrine sulfate upon the resting potential. The order of effectiveness is Ba > Sr > Ca > Mg. The relation between drop in potential caused by veratrine sulfate and the logarithm of the veratrine sulfate concentration is a linear one. 4. The action of various other organic ions and molecules which depress the resting potential: saponin, amyl urethane, chloral hydrate, and Na salicylate is neutralized by Ba. 5. Hypertonic sea water solutions do not affect the resting potential. Also, preliminary experiments indicate that the nerves do not shrink in hypertonic solutions although they swell in hypotonic sea water. 6. The alkaline earths depress excitability reversibly. The various organic agents which depress the resting potential also depress excitability, in most cases, reversibly, but the concentrations necessary to depress excitability are much smaller than those necessary to depress the resting potential. 7. The relation of these findings to theories put forward as possible explanations of resting potential phenomena is considered. PMID:19873160
NASA Astrophysics Data System (ADS)
He, S.; Xu, Y. J.
2015-11-01
Strontium and barium to calcium ratios are often used as proxies for tracking animal movement across salinity gradients. As sea level rise continues, many estuarine rivers in the world face saltwater intrusion, which may cause changes in mobility and distribution of these metals upstream. Despite intensive research on metal adsorption and desorption in marine systems, knowledge of the spatiotemporal distribution of these elements along estuarine rivers is still limited. In this study, we conducted an intensive monitoring of Sr and Ba dynamics along an 88 km long estuary, the Calcasieu River in South Louisiana, USA, which has been strongly affected by saltwater intrusion. Over the period from May 2013 to August 2015, we collected monthly water samples and performed in-situ water quality measurements at six sites from the upstream to the river mouth, with a salinity range from 0.02 to 29.50 ppt. Water samples were analyzed for Sr, Ba, and Ca concentrations. In-situ measurements were made on salinity, pH, water temperature, dissolved oxygen concentration, and specific conductance. We found that the Sr and Ca concentrations and the Sr / Ca ratio all increased significantly with increasing salinity. The average Sr concentration at the site closest to the Gulf of Mexico (site 6) was 46.21 μmol L-1, which was about 130 times higher than that of the site furthest upstream (site 1, 0.35 μmol L-1). The average Ca concentration at site 6 was 8.19 mmol L-1, which was about 60 times higher than that of site 1 (0.13 mmol L-1). The average Sr / Ca ratio at site 6 (8.41 mmol mol-1) was about 3 times the average Sr / Ca ratio at site 1 (2.89 mmol mol-1). However, the spatial variation in Ba concentration was marginal, varying from 0.36 μmol L-1 at site 6 to 0.47 at site 5. The average Ba / Ca ratio at site 1 (4.82 mmol mol-1) was about 54 times the average Ba / Ca ratio at site 6 (0.09 mmol mol-1), showing a clear negative relation between the Ba / Ca ratio and increasing salinity. All the elemental concentrations and ratios had considerable seasonal variations, with significant differences among sampling months for the Sr, Ba concentrations and the Ba / Ca ratio (p < 0.01). The results from this study suggest that concentrations of Sr and Ca in the world's estuaries will very likely increase in the future as sea level rise continues. For low-gradient estuarine rivers such as the Calcasieu River in South Louisiana, USA, water chemistry upstream would experience substantial Sr and Ca enrichment, which could affect aquatic environments and biological communities.
Santolaria, Zoe; Arruebo, Tomás; Pardo, Alfonso; Rodríguez-Casals, Carlos; Matesanz, José María; Lanaja, Francisco Javier; Urieta, José Santiago
2017-07-01
This study presents the key hydrochemical characteristics and concentration levels of major (Ca, Mg, Na, Si, K, Sr, Fe) and trace (Ba, Sc, Cr, Mn, Al, As, Li, Co, Cu, U, Pb, Hg, Au, Sn, Zn, Cd, Ag, Ni) elements in the water mass of four selected Pyrenean cirque glacial lakes (Sabocos, Baños, Truchas and Escalar tarns) with different catchment features, between 2010 and 2013. Resulting data set is statistically analyzed to discriminate between the natural or anthropic origin of the elements. Analyses indicate that in all cases, the main source of most major and trace elements is geological weathering, being thus individual bedrock composition the main driver of differences between lakes. Several anthropogenic sources of airborne Cu, Sc, Co, and Cr must be also considered. The shallowness of the lake is also a factor that may influence element cycling and concentration levels in its water mass. Concentrations of anthropogenic elements were low, comparable to those reported in other glacial lakes, way below the WHO, US EPA, EC, and Spanish legal limits for drinking water quality, indicating the absence of serious pollution. Toxic heavy metals Cd, Pb, Hg, and Zn were not detected in any of the tarns.
NASA Astrophysics Data System (ADS)
Delgado Mena, E.; Tsantaki, M.; Adibekyan, V. Zh.; Sousa, S. G.; Santos, N. C.; González Hernández, J. I.; Israelian, G.
2017-10-01
Aims: To understand the formation and evolution of the different stellar populations within our Galaxy it is essential to combine detailed kinematical and chemical information for large samples of stars. The aim of this work is to explore the chemical abundances of neutron capture elements which are a product of different nucleosynthesis processes taking place in diverse objects in the Galaxy, such as massive stars, asymptotic giant branch (AGB) stars and supernovae (SNe) explosions. Methods: We derive chemical abundances of Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd, and Eu for a large sample of more than 1000 FGK dwarf stars with high-resolution (R 115 000) and high-quality spectra from the HARPS-GTO program. The abundances are derived by a standard local thermodynamic equilibrium (LTE) analysis using measured equivalent widths (EWs) injected to the code MOOG and a grid of Kurucz ATLAS9 atmospheres. Results: We find that thick disc stars are chemically disjunct for Zn and Eu and also show on average higher Zr but lower Ba and Y than the thin disc stars. We also discovered that the previously identified high-α metal-rich population is also enhanced in Cu, Zn, Nd, and Eu with respect to the thin disc but presents lower Ba and Y abundances on average, following the trend of thick disc stars towards higher metallities and further supporting the different chemical composition of this population. By making a qualitative comparison of O (pure α), Mg, Eu (pure r-process), and s-process elements we can distinguish between the contribution of the more massive stars (SNe II for α and r-process elements) and the lower mass stars (AGBs) whose contribution to the enrichment of the Galaxy is delayed, due to their longer lifetimes. The ratio of heavy-s to light-s elements of thin disc stars presents the expected behaviour (increasing towards lower metallicities) and can be explained by a major contribution of low-mass AGB stars for s-process production at disc metallicities. However, the opposite trend found for thick disc stars suggests that intermediate-mass AGB stars play an important role in the enrichment of the gas from where these stars formed. Previous works in the literature also point to a possible primary production of light-s elements at low metallicities to explain this trend. Finally, we also find an enhancement of light-s elements in the thin disc at super-solar metallicities which could be caused by the contribution of metal-rich AGB stars. Conclusions: This work proves the utility of homogeneous and high-quality data of modest sample sizes. We find some interesting trends that might help to differentiate thin and thick disc population (such as [Zn/Fe] and [Eu/Fe] ratios) and that can also provide useful constraints for Galactic chemical evolution models of the different populations in the Galaxy. Based on observations collected at the La Silla Observatory, ESO (Chile), with the HARPS spectrograph at the 3.6 m ESO telescope (ESO runs ID 72.C—0488, 082.C—0212, and 085.C—0063).Full Tables 1 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A94
Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr.
Li, H F; Xie, X H; Zheng, Y F; Cong, Y; Zhou, F Y; Qiu, K J; Wang, X; Chen, S H; Huang, L; Tian, L; Qin, L
2015-05-29
Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals.
Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr
Li, H. F.; Xie, X. H.; Zheng, Y. F.; Cong, Y.; Zhou, F. Y.; Qiu, K. J.; Wang, X.; Chen, S. H.; Huang, L.; Tian, L.; Qin, L.
2015-01-01
Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals. PMID:26023878
Electronic properties of high-temperature superconductors
NASA Astrophysics Data System (ADS)
Richert, Brent Armand
1989-08-01
A semiempirical tight-binding model was developed for the electronic energy bands, the local and total densities of states, and the atomic valences in the high temperature superconductors La(1.85)Sr(0.15)CuO4, YBaCu307, Bi2Sr2CuO6, Bi2CaSr2Cu2O8, Tl2Ba2CuO6, Tl2CaBa2Cu2O8, Tl2Ca2Ba2Cu3O10, TlCa3Ba2Cu4O11, BaPb(0.75)Bi(0.25)O3, and Ba(0.6)K(0.4)BiO3. Calculations of the changes in electronic properties associated with atomic substitutions in YBa2Cu3O7, Bi2CaSr2Cu2O8, and Tl2CaBa2Cu2O8 give results in agreement with expected chemical trends and consistent with observed changes in the superconducting properties. For example, substitution of Lead for Bismuth in BiMCaSr2Cu2O8 increases the concentration of hole carriers within the CuO2 planes. Similarly, doping with Mercury or Pb in TlMCaBa2Cu2O8 also affects the carrier concentration, with Hg creating holes and Pb destroying them. Oxygen vacancies in both La(1.85)Sr(0.15)CuO(4-y) and YBa2Cu3O(7-y) act as electron donors. This is consistent with the observations that oxygen vacancies degrade the superconductivity and metallic conductivity in these materials. Lanthanum vacancies in La2-xCuO4 donate holes, giving the same electronic effect as doping with divalent metal atoms or excess oxygen initially stoichiometric La2CuO4. A specific excitonic mechanism for high temperature superconductivity is proposed which requires insulating metal oxide layers adjacent to the superconducting planes.
Ardini, Francisco; Soggia, Francesco; Abelmoschi, Maria Luisa; Magi, Emanuele; Grotti, Marco
2013-01-01
To provide a new insight into the response of plants to abiotic stresses, the ionomic profiles of Nicotiana langsdorffii specimens have been determined before and after exposure to toxic metals (chromium) or drought conditions. The plants were genetically transformed with the rat glucocorticoid receptor (GR) or the gene for Agrobacterium rhizogenes rolC, because these modifications are known to produce an imbalance in phytohormone equilibria and a significant change in the defence response of the plant. Elemental profiles were obtained by developing and applying analytical procedures based on inductively coupled plasma atomic emission and mass spectrometry (ICP-AES/MS). In particular, the removal of isobaric interferences affecting the determination of Cr and V by ICP-MS was accomplished by use of a dynamic reaction cell, after optimization of the relevant conditions. The combined use of ICP atomic emission and mass spectrometry enabled the determination of 29 major and trace elements (Ba, Bi, Ca, Cd, Co, Cr, Cu, Eu, Fe, Ga, K, Li, Mg, Mn, Mo, Na, P, Pb, Pt, Rb, S, Sb, Sn, Sr, Te, V, W, Y, and Zn) in different parts of the plants (roots, stems, and leaves), with high accuracy and precision. Multivariate data processing and study of element distribution patterns provided new information about the ionomic response of the target organism to chemical treatment or water stress. Genetic modification mainly affected the distribution of Bi, Cr, Mo, Na, and S, indicating that these elements were involved in biochemical processes controlled by the GR or rolC genes. Chemical stress strongly affected accumulation of several elements (Ba, Ca, Fe, Ga, K, Li, Mn, Mo, Na, P, Pb, Rb, S, Sn, Te, V, and Zn) in different ways; for Ca, Fe, K, Mn, Na, and P the effect was quite similar to that observed in other studies after treatment with other transition elements, for example Cu and Cd. The effect of water deficit was less evident, mainly consisting in a decrease of Ba, Cr, Na, and Sr in roots.
Le Bot, Barbara; Lucas, Jean-Paul; Lacroix, Françoise; Glorennec, Philippe
2016-09-01
29 inorganic compounds (Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, Gd, K, Mg, Mn, Mo, Na, Nd, Ni, Pb, Sb, Se, Sr, Tl, U, V and Zn) were measured in the tap water of 484 representative homes of children aged 6months to 6years in metropolitan France in 2008-2009. Parents were asked whether their children consumed tap water. Sampling design and sampling weights were taken into account to estimate element concentrations in tap water supplied to the 3,581,991 homes of 4,923,058 children aged 6months to 6years. Median and 95th percentiles of concentrations in tap water were in μg/L: Al: <10, 48.3, As: 0.2, 2.1; B: <100, 100; Ba: 30.7, 149.4; Ca: 85,000, 121,700; Cd: <0.5, <0.5; Ce: <0.5, <0.5; Co: <0.5, 0.8; Cr: <5, <5; Cu: 70, 720; K: 2210, 6740; Fe: <20, 46; Mn: <5, <5; Mo: <0.5, 1.5; Na: 14,500, 66,800; Ni: <2, 10.2; Mg: 6500, 21,200; Pb: <1, 5.4; Sb: <0.5, <0.5; Se: <1, 6.7; Sr: 256.9, 1004; Tl: <0.5, <0.5; U: <0.5, 2.4; V: <1, 1; Zn: 53, 208. Of the 2,977,123 young children drinking tap water in France, some were drinking water having concentrations above the 2011 World Health Organization drinking-water quality guidelines: respectively 498 (CI 95%: 0-1484) over 700μg/L of Ba; 121,581 (CI 95%: 7091-236,070) over 50mg/L of Na; 2044 (CI 95%: 0-6132) over 70μg/L of Ni, and 78,466 (17,171-139,761) over 10μg/L of Pb. Since it is representative, this tap water contamination data can be used for integrated exposure assessment, in conjunction with diet and environmental (dust and soil) exposure data. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thirumal, M.; Jawahar, I.N.; Surendiran, K.P.
2002-11-20
Oxides belonging to the families Ba{sub 3}ZnTa{sub 2-x}Nb{sub x}O{sub 9} and Ba{sub 3}MgTa{sub 2-x}Nb{sub x}O{sub 9} were synthesized by the solid state reaction route. Sintering temperatures of 1300 deg. C led to oxides with disordered (cubic) perovskite structure. However, on sintering at 1425 deg. C hexagonally ordered structures were obtained for Ba{sub 3}MgTa{sub 2-x}Nb{sub x}O{sub 9} over the entire range (0{<=}x{<=}1) of composition, while for Ba{sub 3}ZnTa{sub 2-x}Nb{sub x}O{sub 9} the ordered structure exists in a limited range (0{<=}x{<=}0.5). The dielectric constant is close to 30 for the Ba{sub 3}ZnTa{sub 2-x}Nb{sub x}O{sub 9} family of oxides while the Mg analoguesmore » have lower dielectric constant of {approx}18 in the range 50 Hz to 500 kHz. At microwave frequencies (5-7 GHz) dielectric constant increases with increase in niobium concentration (22-26) for Ba{sub 3}ZnTa{sub 2-x}Nb{sub x}O{sub 9}; for Ba{sub 3}MgTa{sub 2-x}Nb{sub x}O{sub 9} it varies between 12 and 14. The 'Zn' compounds have much higher quality factors and lower temperature coefficient of resonant frequency compared to the 'Mg' analogues.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yuntong; Liu, Xiaohua, E-mail: xhliuxhliu@tom.com
2015-04-15
Graphical abstract: The phosphor powders of Ba{sub 2}ZnMoO{sub 6}:Eu{sup 3+} were prepared by sol–gel method. The dependence of luminescence intensity on the Eu{sup 3+} concentration was investigated. - Highlights: • We synthesize Ba{sub 2}ZnMoO{sub 6}:Eu{sup 3+} phosphors by the sol–gel method. • The effect of temperature on the crystallinity and morphology is investigated. • The phosphor presents an intense CT band in near UV range (370–410 nm). • The concentration quenching mechanism is the exchange interaction. - Abstract: Double-perovskite Ba{sub 2}Zn{sub 1−x}MoO{sub 6}:xEu{sup 3+} (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1) orange–red emitting phosphors were synthesized by using themore » sol–gel method. The crystalline structure and photoluminescence properties of the phosphors were investigated. The X-ray diffraction (XRD) patterns indicate that the structure of matrix Ba{sub 2}ZnMoO{sub 6} is cubic double-perovskite with space group Fm-3m. The Ba{sub 2}ZnMoO{sub 6}:Eu{sup 3+} phosphors present an intense broad charge transfer (CT) band absorption in near UV range (370–410 nm), which attributes to the charge transfer state of MoO{sub 6}, and performs orange–red emission of Eu{sup 3+} ({sup 5}D{sub 0} → {sup 7}F{sub 1} transition) at around 596 nm. A low concentration quenching occurs in Ba{sub 2}ZnMoO{sub 6}:Eu{sup 3+} and the optimal doping concentration is about 6 mol%. The Ba{sub 2}ZnMoO{sub 6}:Eu{sup 3+} phosphors are considered to be a promising orange–red emitting phosphor for near ultraviolet GaN-based white light emitting diode.« less
Tokumaru, Takashi; Ozaki, Hirokazu; Onwona-Agyeman, Siaw; Ofosu-Anim, John; Watanabe, Izumi
2017-10-01
The concentrations of trace elements (Mg, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Y, Mo, Cd, In, Sn, Sb, Cs, Ba, Tl, Pb, and Bi) in soils, sediment, human hair, and foodstuff collected around the electronic waste (e-waste) recycling sites in Accra, Ghana were detected using inductively coupled plasma-mass spectrometry (ICP-MS). High levels of Cu, Zn, Mo, Cd, In, Sn, Sb, and Pb were observed in soils collected from the e-waste recycling sites. Four sequential extraction procedures were used to evaluate the mobility and bioavailability of metals (Cu, Zn, Cd, Sb, and Pb). Especially, the results showed that Cd and Zn in soils were mostly recovered in exchangeable fraction (respectively 58.9 and 62.8%). Sediment collected from around the site had enrichment of Zn, Sn, Sb, Mo, In, Pb, and Bi. The concentrations of Cu, Mo, Cd, Sb, and Pb in human hair were significantly higher than those collected from the control site (p < 0.01). Additionally, hierarchical cluster analysis reviewed that these elements were derived from e-waste activities. The results of Pb isotopic ratios in the samples indicate that Pb in human hair possibly originated from contaminated soils, fish, and foodstuff.
Strontium, barium, and manganese metabolism in isolated presynaptic nerve terminals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasgado-Flores, H.; Sanchez-Armass, S.; Blaustein, M.P.
1987-06-01
To gain insight into the mechanisms by which the divalent cations Sr, Ba, and Mn affect neurotransmitter release from presynaptic nerve terminals, the authors examined the sequestration of these cations, ion comparison to Ca, by mitochondrial and nonmitochondrial organelles and the extrusion of these cations from isolated nerve terminals. Sequestration was studied in synaptosomes made leaky to small ions by treatment with saponin; efflux was examined in intact synaptosomes that were preloaded with the divalent cations by incubation in depolarizing (K rich) media. The selectivity sequence for ATP-dependent mitochondrial uptake that they observed was Mn>>Ca>Sr>>Ba, whereas that for the SERmore » was Ca greater than or equal to Mn>Sr>>Ba. When synaptosomes that were preloaded with divalent cations were incubated in Na- and Ca-free media, there was little efflux of /sup 45/Ca, /sup 133/Ba, /sup 85/Sr, or /sup 54/Mn. When the incubation was carried out in media containing Na without Ca, there was substantial stimulation of Ca and Sr efflux, but only slight stimulation of Ba or Mn efflux. In Na-free media, the addition of 1 mM Ca promoted the efflux of all four divalent cations, probably via Ca-divalent cation exchange. In summary, the sequestration and extrusion data suggest that, with equal loads, Mn will be buffered to the greatest extent, whereas Ba will be least well buffered. These results may help to explain why Mn has a very long-lasting effect on transmitter release, while the effect of Sr is much briefer.« less
Antiferromagnetism in semiconducting SrMn 2 Sb 2 and BaMn 2 Sb 2 single crystals
Sangeetha, N. S.; Smetana, V.; Mudring, A. -V.; ...
2018-01-03
Here, crystals of SrMn 2Sb 2 and BaMn 2Sb 2 were grown using Sn flux and characterized by powder and single-crystal x-ray diffraction, respectively, and by single-crystal electrical resistivity ρ, heat capacity C p, and magnetic susceptibility χ measurements versus temperature T, and magnetization versus field M(H) isotherm measurements. SrMn 2Sb 2 adopts the trigonal CaAl 2Si 2-type structure, whereas BaMn 2Sb 2 crystallizes in the tetragonal ThCr 2Si 2-type structure. The ρ(T) data indicate semiconducting behaviors for both compounds with activation energies of ≳0.35 eV for SrMn 2Sb 2 and 0.16 eV for BaMn 2Sb 2. The χ(T) andmore » C p(T) data reveal antiferromagnetic (AFM) ordering at T N = 110 K for SrMn 2Sb 2 and 450 K for BaMn 2Sb 2. The anisotropic χ(T≤T N) data also show that the ordered moments in SrMn 2Sb 2 are aligned in the hexagonal ab plane, whereas the ordered moments in BaMn 2Sb 2 are aligned collinearly along the tetragonal c axis. The ab-plane M(H) data for SrMn 2Sb 2 exhibit a continuous metamagnetic transition at low fields 02Sb 2 exhibits no metamagnetic transitions up to 5.5 T. The χ(T) and C p(T) data for both SrMn 2Sb 2 and BaMn 2Sb 2 indicate strong dynamic short-range AFM correlations above their respective T N up to at least 900 K within a local-moment picture, corresponding to quasi-two-dimensional magnetic behavior. The present results and a survey of the literature for Mn pnictides with the CaAl 2Si 2 and ThCr 2Si 2 crystal structures show that the T N values for the CaAl 2Si 2-type compounds are much smaller than those for the ThCr 2Si 2-type materials.« less
Double-perovskites A 2FeMoO 6- δ (A = Ca, Sr, Ba) as anodes for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Zhang, Leilei; Zhou, Qingjun; He, Qiang; He, Tianmin
Double-perovskites A 2FeMoO 6- δ (A = Ca, Sr, Ba) have been investigated as potential anode materials for solid oxide fuel cells (SOFCs). At room temperature, A 2FeMoO 6- δ compounds crystallize in monoclinic, tetragonal, and cubic structures for A = Ca, Sr, and Ba, respectively. A weak peak observed at around 880 cm -1 in the Raman spectra can be attributed to traces of AMoO 4. XPS has confirmed the coexistence of Fe 2+-Mo 6+ and Fe 3+-Mo 5+ electronic configurations. Moreover, a systematic shift from Fe 2+/3+-Mo 6+/5+ to Fe 2+-Mo 6+ configuration is seen with increasing A-site cation size. A 2FeMoO 6- δ samples display distinct electrical properties in H 2, which can be attributed to different degrees of degeneracy of the Fe 2+-Mo 6+ and Fe 3+-Mo 5+ configurations. Ca 2FeMoO 6- δ is unstable in a nitrogen atmosphere, while Sr 2FeMoO 6- δ and Ba 2FeMoO 6- δ are stable up to 1200 °C. The thermal expansion coefficients of Sr 2FeMoO 6- δ and Ba 2FeMoO 6- δ are very close to that of La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ (LSGM). The performances of cells with 300 μm thick LSGM electrolyte, double-perovskite SmBaCo 2O 5+ x cathodes, and A 2FeMoO 6- δ anodes follow the sequence Ca 2FeMoO 6- δ < Ba 2FeMoO 6- δ < Sr 2FeMoO 6- δ. The maximum power densities of a cell with an Sr 2FeMoO 6- δ anode reach 831 mW cm -2 in dry H 2 and 735 mW cm -2 in commercial city gas at 850 °C, respectively.
Disentangling controls on element impurities of bivalve shells
NASA Astrophysics Data System (ADS)
Zhao, Liqiang; Schöne, Bernd R.; Mertz-Kraus, Regina
2017-04-01
Trace and minor elements of bivalve shells can potentially serve as proxies of past environmental change. However, retrieving environmental information from element impurities of bivalve shells remains an extremely challenging task. A central difficulty concerns the fact that extrinsic and intrinsic factors governing the element incorporation are poorly constrained. Within the framework of the ARAMACC project, we aim to decipher the complexity of the incorporation of trace and minor elements into bivalve shells and explore their full potential as proxies of environmental change. More specifically, the following questions were tackled. (1) How are trace and minor elements transported from the ambient environment to the calcifying front? (2) How is their incorporation into the shells affected by environmental and physiological variables? Our findings lend support to the general assumption that divalent ions (e.g., Cu2+, Mn2+, Zn2+ and Pb2+) share the same transport pathways as Ca2+ because of similar ionic radii and electrochemical properties. However, results obtained for Mg2+, Sr2+ and Ba2+ are particularly interesting as they are at odds with existing hypotheses on the incorporation of these three elements, i.e., intracellular Ca2+ pathways (via Ca2+ channels and Ca2+-ATPase) are likely not responsible for their incorporation. Despite the existence of strong physiological interference, some encouraging results were found, in particular (1) strong, positive relationships between the Sr, Ba and Mn contents of the shells and concentrations in the ambient water, (2) only minor effects of growth rate (which is closely linked to the rate of crystal growth and hence, kinetics) on the amounts of Na, Sr, Ba and Mn incorporation into the shells. Overall, our findings demonstrate that environmental and physiological controls on the element incorporation do not have to be mutually exclusive, i.e., if environmental changes outweigh physiological influences, one could still expect that trace and minor elements of bivalve shells serve as promising environmental proxies.
NASA Astrophysics Data System (ADS)
Lira, Raúl; Poklepovic, María F.
2017-12-01
Tourmaline orbicules hosted in peraluminous granites are documented worldwide. Seven occurrences were identified in Argentina. Petrography, mineral chemistry, whole-rock geochemistry mass balance and microthermometric studies were performed in orbicules formed at the cupola of a peraluminous A-type leucogranite (Los Riojanos pluton), as well as complementary investigation was achieved in other orbicules of similar geological setting. Mass balance computations in zoned orbicules consistently confirmed immobility of Si both in core and halo, immobility of K and little loss of Al during halo reactions. Elements gained and lost in the schorl-rich core are Fe, Al, Mg, Ti, Ba, Sr, Y and Zr, and Na, K, Rb and Nb, respectively; in the halo, K, Ba, Sr, Y, Zr and locally CaO, were gained, and Fe, Mg, Na, Al, Rb and Nb were lost. The schorl-rich core is enriched in LREE relative to the leucogranite host. A temperature-salinity plot from fluid inclusion data delineates a magmatic-meteoric mixing trend of diluting salinity with descending temperature. Computed δDH20 values from Los Riojanos orbicule schorl suggest magmatic and magmatic-meteoric mixed origins. In Los Riojanos, mass balance constraints suggest that Fe, Mg, Ba, Sr and metallic traces like Zn and V (±Pb) were most likely derived from country-rock schists and gneisses through fluid-rock exchange reactions. A late magmatic-, volatile-rich- fluid exsolution scenario for the formation of orbicules is envisaged. Schorl crystallization was likely delayed to the latest stages of leucogranite consolidation, not only favored by the high diffusivity of B2O3 preferentially partitioned into the exsolved aqueous-rich fluid, but also likely limited to the low availability of Fe and Mg from the scarce granitic biotite, and to the high F- content of the melt. The spatial confination of orbicules to the contact zone granite-metasediments suggests that orbicules were not formed until exsolved fluids reached the boundary with the biotite-rich country-rock.
c-Axis oriented epitaxial Ba 0.25Sr 0.75TiO 3 films display Curie-Weiss behavior
NASA Astrophysics Data System (ADS)
Boikov, Yu. A.; Claeson, T.
2002-02-01
Thin films of ferroelectrics have inferior dielectric properties, including microwave losses, compared to bulk material and generally do not display a proper Curie-Weiss behavior. This study shows that the film properties can be improved considerably, with a Curie-Weiss behavior, by choosing lattice matched electrodes and proper stoichiometry. A 700 nm thick Ba 0.25Sr 0.75TiO 3 layer was inserted, by laser ablation, between two epitaxial metallic oxide (200 nm) SrRuO 3 electrodes. Because of compressive stress in the plane of the substrate, the c-axis of the unit cell in the Ba 0.25Sr 0.75TiO 3 layer was normal to the substrate plane. Grains were of the order of 100-200 nm (with small misorientation angles in a× b plane) as determined by X-rays and AFM. The positions of pronounced maxima in the temperature dependence of the permittivity depended on external bias voltage applied between the SrRuO 3 electrodes to the dielectric film. The measured ε( T) curves agreed well with existing theoretical models at temperatures below and above the ferroelectric phase transition point. At T≈200 K, ε/ ε0 for the Ba 0.25Sr 0.75TiO 3 layer was suppressed up to 85% (from 4400 down to 560) when ±2.5 V bias voltage was applied to the metallic oxide electrodes. Well saturated polarization-vs.-voltage hysteresis loops were measured for the Ba 0.25Sr 0.75TiO 3 layer in the temperature interval 4.2-200 K. Because of depolarization effects, the polarization of the Ba 0.25Sr 0.75TiO 3 layer was suppressed at positive voltage applied between the electrodes, as compared with a negative one.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Famiano, M. A.; Kajino, T.; Aoki, W.
A model is proposed in which the dependence on the equation of state (EOS) of the scatter of [Sr/Ba] in metal-poor stars is studied. Light r-process element enrichment in these stars has been explained via a truncated r-process, or “tr-process.” The truncation of the r-process from a generic core-collapse event followed by a collapse into an accretion-induced black hole is examined in the framework of a galactic chemical evolution model. The constraints on this model imposed by observations of extremely metal-poor stars are explained, and the upper limits in the [Sr/Ba] distributions are found to be related to the nuclearmore » EOS in a collapse scenario. The scatter in [Sr/Ba] and [Sr/Eu] as a function of metallicity has been found to be consistent with turbulent ejection in core-collapse supernovae. Adaptations of this model are evaluated to account for the scatter in isotopic observables. This is done by assuming mixing in ejecta in a supernova event. Stiff EOS are eliminated by this model.« less
Ca, Sr and Ba stable isotopes reveal the fate of soil nutrients along a tropical climosequence
Bullen, Thomas D.; Chadwick, Oliver A.
2016-01-01
Nutrient biolifting is an important pedogenic process in which plant roots obtain inorganic nutrients such as phosphorus (P) and calcium (Ca) from minerals at depth and concentrate those nutrients at the surface. Here we use soil chemistry and stable isotopes of the alkaline earth elements Ca, strontium (Sr) and barium (Ba) to test the hypothesis that biolifting of P has been an important pedogenic process across a soil climosequence developed on volcanic deposits at Kohala Mountain, Hawaii. The geochemical linkage between these elements is revealed as generally positive site-specific relationships in soil mass gains and losses, particularly for P, Ba and Ca, using the ratio of immobile elements titanium and niobium (Ti/Nb) to link individual soil samples to a restricted compositional range of the chemically and isotopically diverse volcanic parent materials. At sites where P is enriched in surface soils relative to abundances in deeper soils, the isotope compositions of exchangeable Ca, Sr and Ba in the shallowest soil horizons (< 10 cm depth) are lighter than those of the volcanic parent materials and trend toward those of plants growing on fresh volcanic deposits. In contrast the isotope composition of exchangeable Ba in deeper soil horizons (> 10 cm depth) at those sites is consistently heavier than the volcanic parent materials. The isotope compositions of exchangeable Ca and Sr trend toward heavier compositions with depth more gradually, reflecting increasing leakiness from these soils in the order Ba < Sr < Ca and downward transfer of light biocycled Ca and Sr to deeper exchange sites. Given the long-term stability of ecosystem properties at the sites where P is enriched in surface soils, a simple box model demonstrates that persistence of isotopically light exchangeable Ca, Sr and Ba in the shallowest soil horizons requires that the uptake flux to plants from those near-surface layers is less than the recycling flux returned to the surface as litterfall. This observation implicates an uptake flux from an additional source which we attribute to biolifting. We view the heavy exchangeable Ba relative to soil parent values in deeper soils at sites where P is enriched in surface soils, and indeed at all but the wettest site across the climosequence, to represent the complement of an isotopically light Ba fraction removed from these soils by plant roots consistent with the biolifting hypothesis. We further suggest that decreasing heaviness of depth-integrated exchangeable Ba in deeper soils with increasing median annual precipitation across the climosequence reflects greater reliance on shallow nutrient sources as site water balance increases. While the Ca, Sr and Ba isotopes considered together were useful in confirming an important role for nutrient biolifting across the climosequence, the Ba isotopes provided the most robust tracer of biolifting and have the greatest potential to find application as an isotopic proxy for P dynamics in soils.
NASA Astrophysics Data System (ADS)
Turetta, C.; Planchon, F.; Gabrielli, P.; Cozzi, G.; Cairns, W.; Barbaro, E.; Petit, J. R.; Bulat, S.; Boutron, C.; Barbante, C.
2016-12-01
We present in this study comprehensive data on the occurrence of 25 trace and ultra-trace elements in the deepest part of the Vostok ice core. The determination of Li, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sb, Ba, Pb, Bi and U has been performed in the different types of ice encountered from 3271 m to 3609 m of depth, corresponding to atmospheric ice, glacial flour and to accreted ice originating from the freezing of Lake Vostok waters. From atmospheric ice and glacial flour, the relative contributions of primary aerosols were evaluated for each element using a chemical mass balance approach in order to provide a first order evaluation of their partition between soluble (sea-salt) and insoluble (wind-blown dust) fractions in the ice. Sea-salt spray aerosols are the main source of impurities to the ice for certain elements (Na, Mg and K levels, and in a lesser extent to Ca, Sr, Rb, Li and U) while for other elements (Al, V, Cr, Mn, Fe, Co, Cu, Zn, Mo, Sb, Ba and Pb as well as the non sea salt fractions of Mg, K, Ca, Sr, Rb, Li and U) dust inputs appear to primarily control their depositional variability. For the glacial flour, the comparable levels of elements with the overlying atmospheric ice suggest that incorporation of abrasion debris at the glacier is quite limited in the sections considered. For the accreted ice originating from the subglacial waters of Lake Vostok, we observed a major chemical shift in the composition of the ice showing two distinct trends that we assumed to be derived from the chemical speciation of elements. The study of the glacier ice and the glacial flour has allowed us to perform a detailed characterisation of elemental abundances related to the aerosol sources variability and also to illustrate the interaction between the ice-sheet and the bedrock.
NASA Astrophysics Data System (ADS)
Rajamanickam, N.; Jayakumar, K.; Ramachandran, K.
2018-04-01
Core/shell BaSnO3/ZnO (BS-ZO) nanostructures were prepared by oxalate precipitation method and wet-chemical method. BaSnO3 (BSO) cubic perovskite structure and ZnO hexagonal wurtzite structure were confirmed by X-ray diffraction (XRD). The crystallite sizes is 23 nm, 29 nm and 27 nm for BSO, ZnO and BS-ZO, respectively. Chunk-shape and cuboids morphology observed from scanning electron microscopy (SEM) analysis. The magnetic properties were studied by VSM for bare and core-shell nano systems and the room temperature ferromagnetism observed for core-shell nanostructures. The BSO/ZnO shows enhanced coercivity and saturated magnetization as compared with BSO and ZnO nanostructures.
Su, Yue; Liu, Xiuling; Lei, Pengpeng; Xu, Xia; Dong, Lile; Guo, Xianmin; Yan, Xingxu; Wang, Peng; Song, Shuyan; Feng, Jing; Zhang, Hongjie
2016-07-05
Core-shell-shell heterostructures of α-NaLuF4:Yb/Er@NaLuF4:Yb@MF2 (M = Ca, Sr, Ba) have been successfully fabricated via the thermal decomposition method. Upconversion nanoparticles (UCNPs) were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), upconversion luminescence (UCL) spectroscopy, etc. Under 980 nm excitation, the emission intensities of the UCNPs are remarkably enhanced after coating the MF2 (M = Ca, Sr, and Ba) shell. Among these samples, CaF2 coated UCNPs show the strongest overall emission, while BaF2 coated UCNPs exhibit the longest lifetime. These results demonstrate that alkaline earth metal fluorides are ideal materials to improve the UCL properties. Meanwhile, although the lattice mismatch between the ternary NaREF4 core and the binary MF2 (M = Sr and Ba) shell is relatively large, the successfully synthesized NaLuF4:Yb/Er@NaLuF4:Yb@MF2 indicates a new outlook on the fabrication of heterostructural core-shell UCNPs.
Luminescence in Sulfides: A Rich History and a Bright Future
Smet, Philippe F.; Moreels, Iwan; Hens, Zeger; Poelman, Dirk
2010-01-01
Sulfide-based luminescent materials have attracted a lot of attention for a wide range of photo-, cathodo- and electroluminescent applications. Upon doping with Ce3+ and Eu2+, the luminescence can be varied over the entire visible region by appropriately choosing the composition of the sulfide host. Main application areas are flat panel displays based on thin film electroluminescence, field emission displays and ZnS-based powder electroluminescence for backlights. For these applications, special attention is given to BaAl2S4:Eu, ZnS:Mn and ZnS:Cu. Recently, sulfide materials have regained interest due to their ability (in contrast to oxide materials) to provide a broad band, Eu2+-based red emission for use as a color conversion material in white-light emitting diodes (LEDs). The potential application of rare-earth doped binary alkaline-earth sulfides, like CaS and SrS, thiogallates, thioaluminates and thiosilicates as conversion phosphors is discussed. Finally, this review concludes with the size-dependent luminescence in intrinsic colloidal quantum dots like PbS and CdS, and with the luminescence in doped nanoparticles.
Sr(1.7)Zn(0.3)CeO4: Eu3+ novel red-emitting phosphors: synthesis and photoluminescence properties.
Li, Haifeng; Zhao, Ran; Jia, Yonglei; Sun, Wenzhi; Fu, Jipeng; Jiang, Lihong; Zhang, Su; Pang, Ran; Li, Chengyu
2014-03-12
A series of novel red-emitting Sr1.7Zn0.3CeO4:Eu(3+) phosphors were synthesized through conventional solid-state reactions. The powder X-ray diffraction patterns and Rietveld refinement verified the similar phase of Sr1.7Zn0.3CeO4:Eu(3+) to that of Sr2CeO4. The photoluminescence spectrum exhibits that peak located at 614 nm ((5)D0-(7)F2) dominates the emission of Sr1.7Zn0.3CeO4:Eu(3+) phosphors. Because there are two regions in the excitation spectrum originating from the overlap of the Ce(4+)-O(2-) and Eu(3+)-O(2-) charge-transfer state band from 200 to 440 nm, and from the intra-4f transitions at 395 and 467 nm, the Sr1.7Zn0.3CeO4:Eu(3+) phosphors can be well excited by the near-UV light. The investigation of the concentration quenching behavior, luminescence decay curves, and lifetime implies that the dominant mechanism type leading to concentration quenching is the energy transfer among the nearest neighbor or next nearest neighbor activators. The discussion about the dependence of photoluminescence spectra on temperature shows the better thermal quenching properties of Sr1.7Zn0.3CeO4:0.3Eu(3+) than that of Sr2CeO4:Eu(3+). The experimental data indicates that Sr1.7Zn0.3CeO4:Eu(3+) phosphors have the potential as red phosphors for white light-emitting diodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Gabriel; Kennedy, Brendan J., E-mail: kennedyb@chem.usyd.edu.au; Johannessen, Bernt
The structures of some AUO{sub 4} (A=Ca, Sr, or Ba) oxides have been determined using a combination of neutron and synchrotron X-ray diffraction, supported by X-ray absorption spectroscopic measurements at the U L{sub 3}-edge. The smaller Ca cation favours a rhombohedral AUO{sub 4} structure with 8-coordinate UO{sub 8} moieties whilst an orthorhombic structure based on UO{sub 6} groups is found for BaUO{sub 4}. Both the rhombohedral and orthorhombic structures can be stabilised for SrUO{sub 4}. The structural studies suggest that the bonding requirements of the A site cation play a significant role in determining which structure is favoured. In themore » rhombohedral structure, Bond Valence Sums demonstrate the A site is invariably overbonded, which, in the case of rhombohedral α-SrUO{sub 4}, is compensated for by the formation of vacancies in the oxygen sub-lattice. The uranium cation, with its flexible oxidation state, is able to accommodate this by inducing vacancies along its equatorial coordination site as demonstrated by neutron powder diffraction. - Graphical abstract: Diffraction studies of AUO{sub 4} (A = Ca, Sr, or Ba) oxides reveal the importance of the bonding requirements of the A site cation in determining whether the structure is rhombohedral or orthorhombic. - Highlights: • Structures of AUO{sub 4} ( A = Ca Sr, Ba) refined against X-ray and Neutron diffraction. • The alkali cations size has a dramatic effect on the crystal structure. • Smaller cations favouring a rhombohedral structure. • Oxygen vacancies to stabilise the rhombohedral structure in SrUO{sub 4}.« less
NASA Astrophysics Data System (ADS)
Moon, Keon Ho; Avdeev, Maxim; Kim, Young-Il
2017-10-01
Oxynitride type complex perovskites AM0.2Nb0.8O3-xNx (A = Sr, Ba; M = Li, Na, Mg) were newly synthesized by the solid state diffusion of Li+, Na+, or Mg2+ into the layered oxide, A5Nb4O15, with concurrent O/N substitution. Neutron and synchrotron X-ray Rietveld refinement showed that SrLi0.2Nb0.8O2.8N0.2, SrNa0.2Nb0.8O2.8N0.2, and SrMg0.2Nb0.8O2.6N0.4 had body-centered tetragonal symmetry (I4/mcm), while those with A = Ba had simple cubic symmetry (Pm 3 ̅ m). In the tetragonal Sr-compounds, the nitrogen atoms were localized on the c-axial 4a site. However, the octahedral cations, M/Nb (M = Li, Na, Mg) were distributed randomly in all six compounds. The lattice volume of AM0.2Nb0.8O3-xNx was dependent on various factors including the type of A and the electronegativity of M. Compared to the simple perovskites, ANbO2N (A = Sr, Ba), AM0.2Nb0.8O3-xNx had wider band gaps (1.76-2.15 eV for A = Sr and 1.65-2.10 eV for A = Ba), but significantly lower sub-gap absorption.
Pancras, Joseph Patrick; Norris, Gary A; Landis, Matthew S; Kovalcik, Kasey D; McGee, John K; Kamal, Ali S
2015-10-01
Oil and gas extraction and coal-fired electrical power generating stations produce wastewaters that are treated and discharged to rivers in Western Pennsylvania with public drinking water system (PDWS) intakes. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to quantify inorganic species in wastewater and river samples using a method based on EPA Method 200.7 rev4.4. A total of 53 emission lines from 30 elements (Al, As, B, Ba, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, Tl, V, and Zn) were investigated. Samples were prepared by microwave-assisted acid digestion using a mixture of 2% HNO3 and 0.5% HCl. Lower interferences and better detection characteristics resulted in selection of alternative wavelengths for Al, As, Sb, Mg, Mo, and Na. Radial view measurements offered accurate determinations of Al, Ba, K, Li, Na, and Sr in high-brine samples. Spike recovery studies and analyses of reference materials showed 80-105% recoveries for most analytes. This method was used to quantify species in samples with high to low brine concentrations with method detection limits a factor of 2 below the maximum contaminant limit concentrations of national drinking water standards. Elements B, Ca, K, Li, Mg, Na, and Sr were identified as potential tracers for the sources impacting PDWS intakes. Usability of the ICP-OES derived data for factor analytic model applications was also demonstrated. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolyniuk, J.; Whitfield, P. S.; Lee, K.
2017-01-01
Order–disorder–order phase transitions in the clathrate-I Ba8Cu16P30 were induced and controlled by aliovalent substitutions of Zn into the framework. Unaltered Ba8Cu16P30 crystallizes in an ordered orthorhombic (Pbcn) clathrate-I superstructure that maintains complete segregation of metal and phosphorus atoms over 23 different crystallographic positions in the clathrate framework. The driving force for the formation of this Pbcn superstructure is the avoidance of Cu–Cu bonds. This superstructure is preserved upon aliovalent substitution of Zn for Cu in Ba8Cu16-xZnxP30 with 0 < x < 1.6 (10% Zn/Mtotal), but vanishes at greater substitution concentrations. Higher Zn concentrations (up to 35% Zn/Mtotal) resulted in themore » additional substitution of Zn for P in Ba8M16+yP30-y (M = Cu, Zn) with 0 ≤ y ≤ 1. This causes the formation of Cu–Zn bonds in the framework, leading to a collapse of the orthorhombic superstructure into the more common cubic subcell of clathrate-I (Pm[3 with combining macron]n). In the resulting cubic phases, each clathrate framework position is jointly occupied by three different elements: Cu, Zn, and P. Detailed structural characterization of the Ba–Cu–Zn–P clathrates-I via single crystal X-ray diffraction, joint synchrotron X-ray and neutron powder diffractions, pair distribution function analysis, electron diffraction and high-resolution electron microscopy, along with elemental analysis, indicates that local ordering is present in the cubic clathrate framework, suggesting the evolution of Cu–Zn bonds. For the compounds with the highest Zn content, a disorder–order transformation is detected due to the formation of another superstructure with trigonal symmetry and Cu–Zn bonds in the clathrate-I framework. It is shown that small changes in the composition, synthesis, and crystal structure have significant impacts on the structural and transport properties of Zn-substituted Ba8Cu16P30.« less
The effect of oxidant on resputtering of Bi from Bi-Sr-Ca-Cu-O films
NASA Astrophysics Data System (ADS)
Grace, J. M.; McDonald, D. B.; Reiten, M. T.; Olson, J.; Kampwirth, R. T.; Gray, K. E.
1991-09-01
The type and partial pressure of oxidant mixed with argon can affect the selective resputtering of Bi in composite-target, magnetron-sputtered Bi-Sr-Ca-Cu-O films. Comparative studies using oxygen and ozone show that ozone is a more potent oxidant, as well as a more potent source of resputterers, than is oxygen. Severe resputtering from ozone is significantly reduced by a -40 V potential on the sample block. We suggest that oxygen causes resputtering by forming O2(+)p , which interacts with the target to produce energetic O(-). In contrast, ozone may form lower-energy O(-) by electron impact in the dark space. Negative oxygen ions from the target itself may be responsible for a background resputtering effect. Our results and those found for Y-Ba-Cu-O by others are comparable. Bi in Bi-Sr-Ca-Cu-O behaves as Ba in Y-Ba-Cu-O, with regard to selective resputtering; furthermore, the response of Sr, Ca, and Cu to oxygen in sputtered Bi-Sr-Ca-Cu-O is similar to what is observed for Cu in Y-Ba-Cu-O.
Interplay between magnetism and relativistic fermions in Eu doped (Sr/Ba)MnSb2
NASA Astrophysics Data System (ADS)
Liu, Jinyu; Hu, Jin; Zhu, Yanglin; Chuang, Alyssa; Graf, David; Jaime, Marcelo; Balakirev, Fedor; Weickert, Franziska; Zhang, Qiang; Ditusa, John; Wu, Yan; Cao, Huibo; Mao, Zhiqiang
Layered compounds AMnBi2 (A =Ca, Sr, Ba, Eu, and Yb) have been established as Dirac materials with fascinating properties. In our previous work, we have demonstrated that Sr1-y Mn1-z Sb2 (y, z <0.1), isostructural to AMnBi2, not only host relativistic fermions, but also exhibit ferromagnetic properties, with its ferromagnetism being coupled to the relativistic fermions' transport. To gain further insight into the relativistic fermion-magnetism coupling, we have synthesized a series of Eu doped (Sr/Ba)MnSb2 single crystals and found Eu moments order antiferromagnetically. Through neutron scattering experiments, we determined the magnetic structures for Sr1-xEuxMnSb2 with x = 0.2, 0.5, and 0.8. From magnetotransport measurements, we find the Eu antiferromagnetism is also coupled to relativistic fermion transport. More importantly, we observed a novel quantum phase with saturated magnetoresistivity near the quantum limit for the 10% Eu doped BaMnSb2 sample. We will discuss possible mechanisms for this novel phase.
Soares, Léo G; Jonski, Grazyna; Tinoco, Eduardo M B; Young, Alix
2015-04-01
Zinc (Zn) reduces the formation of volatile sulphur compounds (VSCs) associated with oral malodour. Although strontium (Sr) is included in some products for reducing dental hypersensitivity, it may also have anti-halitosis properties. This randomized, double-blind, cross-over clinical study compared the anti-VSC effect of brushing with commercial toothpastes and rinses containing Zn and Sr. The volunteers (n = 30) either brushed/rinsed with/without tongue brushing using Zn-containing toothpaste/rinse, Sr-containing toothpaste/rinse, or placebo (control). Volatile sulphur compounds [hydrogen sulphide (H2 S) and methyl mercaptan (CH3 SH)] were measured, in morning breath, using gas chromatography. The anti-VSC effects of the test toothpastes and test rinses were significantly better than the anti-VSC effects of the respective controls. Toothbrushing with test toothpastes gave median reductions, compared with the control, of 70% for H2 S and 55-57% for CH3 SH. Rinsing with the Sr- and Zn-containing solutions had the same anti-VSC effect as toothbrushing and tooth- and tongue brushing with the Sr- and Zn-containing toothpastes. Zinc-containing rinse resulted in a significantly higher median salivary level of Zn compared with brushing with Zn-containing toothpaste, although this effect did not correlate with the anti-VSC effect. It can be concluded that the Sr- and Zn-containing toothpastes and the Zn- and Sr-containing rinses, when used in the evening, are equally effective in reducing morning-breath VSCs the following day. © 2015 Eur J Oral Sci.
Han, Yanbing; Siol, Sebastian; Zhang, Qun; ...
2017-09-27
Optically transparent materials with p-type electrical conductivity can facilitate the development of transparent electronics and improve the efficiency of photovoltaic solar cells. Sulfide materials represent an interesting alternative to oxides for these applications due to better hole transport properties. We prepare transparent and conductive Ba-Cu-S thin films by combinatorial cosputtering and characterized for their composition, structure, and optoelectronic properties. The conductivity and transparency of these films are found to be strongly dependent on their chemical composition and the substrate temperature during growth. The conductivity of BaCu 2S 2 and BaCu 4S 3 can reach 53 S/cm (at 250 °C) andmore » 74 S/cm (at 200 degrees C), respectively, which is higher than their solution processed/bulk counterparts. The 90% reflectance corrected transmittance is achieved in the wavelength range 600-1000 nm for BaCu 2S 2 and 650-1000 nm for BaCu 4S 3 (at 250 °C). These electrical and optical properties are comparable with other recently presented transparent p-type conductors, while the 200-350 degrees C processing temperature is low enough to be used in semiconductor devices with limited thermal budgets. Some attempts have been made to synthesize the related Sr-Cu-S materials, following the theoretical suggestion of their potential as transparent p-type conductors, but these attempts resulted only in phase-separated SrS and CuxS phases. Alloying BaCu 2S 2 with Sr on the Ba site on the other hand increases the conductivity to >100 S/cm while only slightly compromising the transparency of the material. To explain the difference between the Ba and the Sr containing copper sulfides, the lower bounds on the SrCu 2S 2 and SrCu 4S 3 formation enthalpies are estimated. While the doping of the Ba-Cu-S materials presented here is too large for application in transparent electronics, it is promising for potential use as p-type contact layers in thin film solar cells.« less
Records of River Variation in the Shells of Freshwater Bivalves
NASA Astrophysics Data System (ADS)
Carroll, M.; Romanek, C.
2005-12-01
The skeletons of hard-shelled invertebrates such as corals and bivalves are commonly used in marine settings as archives of environmental information. They are less commonly used in freshwater settings where variability in water chemistry makes it more difficult to calibrate chemical proxies such as the Sr:Ca in a shell. Our objective is to evaluate whether trace element concentrations in freshwater bivalve shells contain information on environmental conditions. Multiple elements (Ba, Cu, Mn and Sr) were analyzed within the shells of modern bivalves from four streams on DOE's Savannah River Site in S.C. Laser Ablation ICP-MS was used to measure elemental concentrations across five aragonitic shells from each site. These elements were chosen because they are present in detectable concentrations (ppm) in the shell and they have been suggested as useful proxies for temperature, rainfall, productivity and pollution. Results were compared to historical monthly site records of water chemistry and chemical analyses of water samples collected from the streams where the clams were found. The average shell concentrations of Sr and Mn were significantly different between sites and increased proportionally to water concentration. This was not observed for Ba and Cu. For example, the Ba concentrations of shells collected at a site downstream of a lake were higher than those for shells from stream sites with significantly higher dissolved Ba concentrations. Copper was only detected at dark growth lines with the number of lines and shell material between them varying between shells within the same stream. Intrashell profiles of Ba, Sr and Mn concentrations exhibited cyclical variation. The magnitude of cyclical variation for Mn and Sr within a shell corresponds with the annual variation in monthly water sample concentrations. Again, this pattern was not observed for Ba, especially in shells from the site downstream of a lake. This supports suggestions that particulate organic matter, to which Ba preferentially partitions, plays a role in bivalve Ba uptake. Finally, variations in Ba, Cu, Mn and Sr profiles across shells are not in unison. The individual elemental responses to biological and physicochemical effects suggest that the elemental records in freshwater bivalve shells can be interpreted as environmental proxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yanbing; Siol, Sebastian; Zhang, Qun
Optically transparent materials with p-type electrical conductivity can facilitate the development of transparent electronics and improve the efficiency of photovoltaic solar cells. Sulfide materials represent an interesting alternative to oxides for these applications due to better hole transport properties. We prepare transparent and conductive Ba-Cu-S thin films by combinatorial cosputtering and characterized for their composition, structure, and optoelectronic properties. The conductivity and transparency of these films are found to be strongly dependent on their chemical composition and the substrate temperature during growth. The conductivity of BaCu 2S 2 and BaCu 4S 3 can reach 53 S/cm (at 250 °C) andmore » 74 S/cm (at 200 degrees C), respectively, which is higher than their solution processed/bulk counterparts. The 90% reflectance corrected transmittance is achieved in the wavelength range 600-1000 nm for BaCu 2S 2 and 650-1000 nm for BaCu 4S 3 (at 250 °C). These electrical and optical properties are comparable with other recently presented transparent p-type conductors, while the 200-350 degrees C processing temperature is low enough to be used in semiconductor devices with limited thermal budgets. Some attempts have been made to synthesize the related Sr-Cu-S materials, following the theoretical suggestion of their potential as transparent p-type conductors, but these attempts resulted only in phase-separated SrS and CuxS phases. Alloying BaCu 2S 2 with Sr on the Ba site on the other hand increases the conductivity to >100 S/cm while only slightly compromising the transparency of the material. To explain the difference between the Ba and the Sr containing copper sulfides, the lower bounds on the SrCu 2S 2 and SrCu 4S 3 formation enthalpies are estimated. While the doping of the Ba-Cu-S materials presented here is too large for application in transparent electronics, it is promising for potential use as p-type contact layers in thin film solar cells.« less
Functionalized inorganic membranes for gas separation
Ku, Anthony Yu-Chung [Rexford, NY; Ruud, James Anthony [Delmar, NY; Molaison, Jennifer Lynn [Marietta, GA; Schick, Louis Andrew ,; Ramaswamy, Vidya [Niskayuna, NY
2008-07-08
A porous membrane for separation of carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity. The porous membrane comprises a porous support layer comprising alumina, silica, zirconia or stabilized zirconia; a porous separation layer comprising alumina, silica, zirconia or stabilized zirconia, and a functional layer comprising a ceramic oxide contactable with the fluid stream to preferentially transport carbon dioxide. In particular, the functional layer may be MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3 or a mixture thereof; wherein A is Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; and A.sup.3 is Sr or Ba.
Physical and magnetic properties of (Ba/Sr) substituted magnesium nano ferrites
NASA Astrophysics Data System (ADS)
Ateia, Ebtesam E.; Takla, E.; Mohamed, Amira T.
2017-10-01
In the presented paper, strontium (Sr) and barium (Ba) nano ferrites were synthesized by citrate auto combustion method. The investigated samples are characterized by X-ray diffraction technique (XRD), field emission scanning electron microscopy, high resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. The structural properties of the obtained samples were examined by XRD analysis showing that the synthesized nanoparticles are in cubic spinel structure. The average crystallite sizes are in the range of 22.66 and 21.95 nm for Mg0.7Ba0.3Fe2O4 and Mg0.7 Sr0.3Fe2O4 respectively. The VSM analysis confirms the existence of ferromagnetic nature of Sr2+/Ba2+ substituted magnesium nano particles. Exchange interaction between hard (Sr/Ba) and soft (Mg) magnetic phases improves the structural and magnetic properties of nano ferrite particles. Rigidity modulus, longitudinal and shear wave velocities are predicted theoretically from Raman spectroscopy and structural data of the investigated spinel ferrite. The magnetic and structural properties of magnesium are enhanced by doping with barium and strontium nano particles. The saturation magnetization, remanent magnetization and coercivity reported on vibrating sample magnetometer curve illustrate the promising industrial and magnetic recording applications of the prepared samples.
Chen, Lianxi; Bin, Yuanhong; Zou, Wenqi; Wang, Xiaojian; Li, Wei
2017-02-01
In the present work, new magnesium (Mg) alloys (Mg-4Zn-0.6Zr-xSr, x=0, 0.4, 0.8, 1.2, 1.6wt%; ZK40xSr) were prepared and studied as potential biodegradable materials. The influence of strontium (Sr) addition on the properties of the new Mg alloys was investigated, which included microstructure, corrosion degradation, and the stress corrosion cracking (SCC) susceptibility. The average grain size of the ZK40Sr was approximately 100µm, which was significantly smaller than that of ZK40 alloy without Sr (402.3±40.2µm). The size of grain boundaries precipitates in the ZK40xSr alloys gradually increased with the increase of Sr content. The grain boundaries finally showed a continuously distribution and net-like shape. The degradation test showed that the average degradation rate of the ZK40xSr alloys increased with the increase of Sr addition. In the case of Mg-4Zn-0.6Zr, the degradation rate was 2.2mgcm -2 day -1 , which was lower than that of Mg-4Zn-0.6Zr-1.6Sr (4.93mgcm -2 day -1 ). When the ZK40xSr alloys were immersed in m-SBF, the rod-like Sr-contained hydroxyapatite (HA) substance was detected, which was known to enhance cell growth around bone implants. The fracture surfaces of the as-cast Mg-4Zn-0.6Zr-1.6Sr were shown intergranular stress corrosion cracking (IGSCC) patterns. The increase of SCC susceptibility of the higher Sr ZK40xSr alloys was attributed to the increase of micro-galvanic corrosion between the α-Mg and the grain boundaries precipitates. The SCC susceptibility values were ≈0.13 and ≈0.41 for the Mg-4Zn-0.6Zr-0.4Sr and the Mg-4Zn-0.6Zr-1.6Sr, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Luo, Tingting; Du, Yun; Qiu, Zhongxian; Li, Yanmei; Wang, Xiaofang; Zhou, Wenli; Zhang, Jilin; Yu, Liping; Lian, Shixun
2017-05-15
Eu 2+ -activated Ba 2 ZnS 3 has been reported as a red phosphor with a broad emission band peaking at 650 nm under blue excitation for white-LED. In this study, Ba 2 ZnS 3 :Eu 2+ , X - (X = F, Cl, Br, I) phosphors doped with halide ions were prepared by traditional high-temperature solid-state reaction. Phase identification of powders was performed by X-ray powder diffraction analysis, confirming the existence of single-phase Ba 2 ZnS 3 crystals without dopant. The corresponding excitation spectra showed an additional broad band in the green region peaking at 550 nm when the phosphor was halogenated except by the smallest F - . It was proved that the green-excitation efficiency successively strengthened from Cl - , to Br - , to I - , which suggested larger halide ions made a greater contribution to the further splitting of the t 2g energy level of the doped Eu 2+ ions in the host Ba 2 ZnS 3 , and the optimized formula Ba 1.995 ZnS 2.82 :Eu 2+ 0.005 , I - 0.18 showed a potential application in solar spectral conversion for agricultural greenhouse and solar cell. Defect chemistry theory and crystal field theory provided insights into the key role of halide ions in enhancing green-excitation efficiency.
Rathore, Satyapal Singh; Vitta, Satish
2015-01-01
(Ba/Sr)3NbFe3Si2O14 is a magneto-electric multiferroic with an incommensurate antiferromagnetic spiral magnetic structure which induces electric polarization at 26 K. Structural studies show that both the compounds have similar crystal structure down to 6 K. They exhibit a transition, TN at 26 K and 25 K respectively, as indicated by heat capacity and magnetization, into an antiferromagnetic state. Although Ba and Sr are isovalent, they exhibit very different static and dynamic magnetic behaviors. The Ba-compound exhibits a glassy behavior with critical slowing dynamics with a freezing temperature of ~35 K and a critical exponent of 3.9, a value close to the 3-D Ising model above TN, in addition to the invariant transition into an antiferromagnetic state. The Sr-compound however does not exhibit any dispersive behavior except for the invariant transition at TN. The dielectric constant reflects magnetic behavior of the two compounds: the Ba-compound has two distinct dispersive peaks while the Sr-compound has a single dispersive peak. Thus the compounds exhibit coupled ‘multiglass’ behavior. The difference in magnetic properties between the two compounds is found to be due to modifications to super exchange path angle and length as well as anti-site defects which stabilize either ferromagnetic or antiferromagnetic interactions. PMID:25988657
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antao, Sytle M.
2012-05-10
The crystal structures of the isostructural orthorhombic sulfates celestite (SrSO{sub 4}), anglesite (PbSO{sub 4}), and barite (BaSO{sub 4}) were refined by Rietveld methods using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. Their structural model was refined in space group Pbnm. The unit-cell parameters are a = 6.87032(3), b = 8.36030(5), c = 5.34732(1) {angstrom}, and V = 307.139(3) {angstrom}{sup 3} for SrSO{sub 4}; a = 6.95802(1), b = 8.48024(3), c = 5.39754(1) {angstrom}, and V = 318.486(1) {angstrom}{sup 3} for PbSO{sub 4}; and a = 7.15505(1), b = 8.88101(3), c = 5.45447(1) {angstrom}, and V = 346.599(1) {angstrom}{sup 3} formore » BaSO{sub 4}. The average
NASA Astrophysics Data System (ADS)
He, S.; Xu, Y. J.
2016-02-01
Strontium and barium to calcium ratios are often used as proxies for tracking animal movement across salinity gradients. As sea level rise continues, many estuarine rivers face saltwater intrusion, which may cause changes in mobility and distribution of these metals upstream. Despite intensive research on metal adsorption and desorption in marine systems, knowledge of the spatiotemporal distribution of these elements along estuarine rivers is still limited. In this study, we conducted an intensive monitoring of Sr and Ba dynamics along an 88-km long estuary, the Calcasieu River, which has been strongly affected by saltwater intrusion. Over the period from May 2013 to July 2015, we collected monthly water samples and performed in-situ water quality measurements at six sites from the upstream to the river mouth. Water samples were analyzed for dissolved Sr, Ba, and Ca concentrations. In-situ measurements of salinity, pH, water temperature, dissolved oxygen concentration, and specific conductance were taken. Our preliminary data showed that the Sr and Ca concentrations and the Sr/Ca ratio all increased significantly with decreasing distance to the Gulf of Mexico, while the Ba/Ca ratio decreased with decreasing distance to the Gulf. The spatial variation in Ba concentration was marginal. The Sr and Ca concentrations and ratios were positively related to salinity, while Ba/Ca was negatively related to salinity. All the elemental concentrations and ratios had considerable seasonal and interannual variations. There were significant differences among sampling months for all the elemental concentrations and ratios (p<0.05), and there were significant differences among sampling years for the Sr and Ca concentrations and the Ba/Ca ratio (p<0.05).
NASA Astrophysics Data System (ADS)
Selmi, Fathi A.
This thesis consists of two areas of research: (1) sol-gel processing of Ba_{rm 1-x}Sr_{rm x} TiO_3 ceramics and their dielectric properties measurement; and (2) microwave versus conventional sintering of ceramics such as Al_2 O_3, Ba_{ rm 1-x}Sr_{rm x}TiO_3, Sb-doped SnO _2 and YBa_2Cu _3O_7. Sol-gel powders of BaTiO_3, SrTiO_3, and their solid solutions were synthesized by the hydrolysis of titanium isopropoxide and Ba and Sr methoxyethoxides. The loss tangent and dielectric constant of both sol-gel and conventionally prepared and sintered Ba_{rm 1-x}Sr _{rm x}TiO _3 ceramics were investigated at high frequencies. The sol-gel prepared ceramics showed higher dielectric constant and lower loss compared to those prepared conventionally. Ba _{rm 1-x}Sr _{rm x}TiO_3 ceramics were tunable with applied bias, indicating the potential use of this material for phase shifter applications. Porous Ba_{0.65}Sr _{0.35}TiO_3 was also investigated to lower the dielectric constant. Microwave sintering of alpha -Al_2O_3 and SrTiO_3 was investigated using an ordinary kitchen microwave oven (2.45 GHz; 600 Watts). The use of microwaves with good insulation of alpha -Al_2O_3 and SrTiO_3 samples resulted in their rapid sintering with good final densities of 96 and 98% of the theoretical density, respectively. A comparison of grain size for conventionally and microwave sintered SrTiO_3 samples did not show a noticeable difference. However, the grain size of microwave sintered alpha-Al_2O _3 was found to be larger than that of conventionally sintered sample. These results show that rapid sintering of ceramics can be achieved by using microwave radiation. The sintering behavior of coprecipitated Sb-doped SnO_2 was investigated using microwave power absorption. With microwave power, samples were sintered at 1450^circC for 20 minutes and showed a density as high as 99.9% of theoretical. However, samples fired in a conventional electric furnace at the same temperature for 4 hours showed only 60% of theoretical density. Microwave sintering also led to improvement in terms of uniform structure and electrical properties. Ba_{0.65}Sr _{0.35}TiO_3 was sintered using the microwave power at 1300 ^circC for 10 minutes. A density of 99% was achieved with small and uniform grain size. Superconducting powders have been successfully prepared by the sol-gel process and sintered and annealed using microwave power. Sintering and densification was achieved in a shorter time with microwave heating than with conventional heating and microwave heating appears to result in refined microstructure.
Lund Rasmussen, Kaare; Skytte, Lilian; D'imporzano, Paolo; Orla Thomsen, Per; Søvsø, Morten; Lier Boldsen, Jesper
2017-01-01
The differences in trace element concentrations among 19 different bone elements procured from 10 archaeologically derived human skeletons have been investigated. The 10 individuals are dated archaeologically and some by radiocarbon dating to the medieval and post-medieval period, an interval from ca. AD 1150 to ca. AD 1810. This study is relevant for two reasons. First, most archaeometric studies analyze only one bone sample from each individual; so to what degree are the bones in the human body equal in trace element chemistry? Second, differences in turnover time of the bone elements makes the cortical tissues record the trace element concentrations in equilibrium with the blood stream over a longer time earlier in life than the trabecular. Therefore, any differences in trace element concentrations between the bone elements can yield what can be termed a chemical life history of the individual, revealing changes in diet, provenance, or medication throughout life. Thorough decontamination and strict exclusion of non-viable data has secured a dataset of high quality. The measurements were carried out using Inductively Coupled Plasma Mass Spectrometry (for Fe, Mn, Al, Ca, Mg, Na, Ba, Sr, Zn, Pb and As) and Cold Vapor Atomic Absorption Spectroscopy (for Hg) on ca. 20 mg samples. Twelve major and trace elements have been measured on 19 bone elements from 10 different individuals interred at five cemeteries widely distributed in medieval and renaissance Denmark. The ranges of the concentrations of elements were: Na (2240-5660 µg g -1 ), Mg (440-2490 µg g -1 ), Al (9-2030 µg g -1 ), Ca (22-36 wt. %), Mn (5-11450 µg g -1 ), Fe (32-41850 µg g -1 ), Zn (69-2610 µg g -1 ), As (0.4-120 µg g -1 ), Sr (101-815 µg g -1 ), Ba (8-880 µg g -1 ), Hg (7-78730 ng g -1 ), and Pb (0.8-426 µg g -1 ). It is found that excess As is mainly of diagenetic origin. The results support that Ba and Sr concentrations are effective provenance or dietary indicators. Migrating behavior or changes in diet have been observed in four individuals; non-migratory or non-changing diet in six out of the 10 individuals studied. From the two most mobile (most changing diet) individuals in the study, it is deduced that the fastest turnover is seen in the trabecular tissues of the long bones and the hands and the feet, and that these bone elements have higher turnover rates than centrally placed trabecular bone tissue, such as from the ilium or the spine. Comparing Sr and published bone turnover times, it is concluded that the differences seen in Sr concentrations are not caused by diagenesis, but by changes of diet or provenance. Finally, it is concluded that there can be two viable interpretations of the Pb concentrations, which can either be seen as an indicator for social class or a temporal development of increased Pb exposure over the centuries. © 2016 Wiley Periodicals, Inc.
Non-linear second harmonic generation (SHG) studies of BaTiO3/SrTiO3 superlattices
NASA Astrophysics Data System (ADS)
Vlahos, Eftihia; Lee, Che-Hui; Wu, Pingping; Wung Bark, Chung; Jang, Ho Won; Folkman, Chad; Hyub Baek, Seung; Park, J. W.; Biegalski, Mike; Tenne, Dmitri; Schlom, Darrell; Chen, Long-Qing; Eom, Chang-Beom; Gopalan, Venkatraman
2010-03-01
Theoretical phase-field simulations predict that certain types of superlattices consisting of alternating (BaTiO3)n/(SrTiO3)n layers have novel vortex domain wall configurations which give rise to exceptionally high polarization tunability combined with negligible polarization hysteresis. Optical second harmonic generation (SHG) was used to probe the phase and transition temperatures of multilayer (BaTiO3)m/(SrTiO3)n superlattices, as a function of epitaxial strain. In addition, in-plane electro-optic measurements were carried out. The experimental results are in excellent agreement both with theoretical predictions, as well as the temperature-strain phase diagram obtained experimentally from UV Raman studies. The ferroelectric, in-plane SHG signal, from the tensile strained SrTiO3 layers reveals an mm2 point group symmetry, whereas the point group symmetry of the compressively strained BaTiO3 layers, was determined to be 4mm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Barry M.; McCaffrey, John G., E-mail: john.mccaffrey@nuim.ie
2016-01-28
Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ⋅ RG ground state interaction potentials. The y{sup 1}P←a{sup 1}S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ⋅more » RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (<130 cm{sup −1}). All of the M ⋅ RG diatomics have bond lengths considerably longer than those of the rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr{sub 2} while this transition is quenched in Ba{sub 2}. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba{sub 2} indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications.« less
Gough, L.P.; Jackson, L.L.; Sacklin, J.A.
1988-01-01
Hypogymnia enteromorpha and Usnea spp. were collected in the Little Bald Hills ultramafic region of Redwood National Park, California, to establish element-concentration norms. Baselines are presented for Ba, Ca, Cu, Mn, Ni, P, Sr, V, and Zn for both lichen species; for Li, Mg, and K for H. enteromorpha; and for Al, Ce, Cr, Co, Fe, Na, and Ti for Usnea. Element concentrations of future collections of this same material can be used to monitor possible air quality changes anticipated from mining activities planned nearby. The variability in the element concentrations was partitioned between geographical distance increments and sample preparation and analysis procedures. In general, most of this variability was found in samples less than a few hundreds of meters apart rather than those at about 1 km apart. Therefore, except for Ba and Co, no large geographical element-concentration trends were observed. Samples of both species contained elevated levels of Ni and Mg, which probably reflect the ultramafic terrain over which they occur.
De Boer, Jan L M; Ritsema, Rob; Piso, Sjoerd; Van Staden, Hans; Van Den Beld, Wilbert
2004-07-01
Two screening methods were developed for rapid analysis of a great number of urine and blood samples within the framework of an exposure check of the population after a firework explosion. A total of 56 elements was measured including major elements. Sample preparation consisted of simple dilution. Extensive quality controls were applied including element addition and the use of certified reference materials. Relevant results at levels similar to those found in the literature were obtained for Co, Ni, Cu, Zn, Sr, Cd, Sn, Sb, Ba, Tl, and Pb in urine and for the same elements except Ni, Sn, Sb, and Ba in blood. However, quadrupole ICP-MS has limitations, mainly related to spectral interferences, for the analysis of urine and blood, and these cause higher detection limits. The general aspects discussed in the paper give it wider applicability than just for analysis of blood and urine-it can for example be used in environmental analysis.
NASA Astrophysics Data System (ADS)
Talovskaya, Anna V.; Osipova, Nina A.; Yazikov, Egor G.; Shakhova, Tatyana S.
2017-11-01
The article deals with assessment of anthropogenic pollution in vicinity of local boilers using the data on microelement composition of solid airborne particles deposited in snow. The anthropogenic feature of elevated accumulation levels of solid airborne particles deposited in snow in the vicinity of coal-fired boiler house is revealed in elevated concentrations (3-25 higher than background) of Cd, Sb, Mo, Pb, Sr, Ba, Ni, Mo, Zn and Co. In the vicinity oil-fired boiler house the specific elements as parts of solid airborne particles deposited in snow are V, Ni and Sb, as their content exceeds the background from 3 to 8 times. It is determined that the maximum shares in non-carcinogenic human health risk from chronic inhalation of trace elements to the human body in the vicinity of coal-fired boiler house belong to Al, Mn, Cu, Ba, Co, Pb, whereas in the vicinity of oil-fired boiler house - Al, Mn, Cu, Ni, V.
NASA Astrophysics Data System (ADS)
Murtaza, G.; Yousaf, N.; Laref, A.; Yaseen, M.
2018-03-01
Pnictogen-based Zintl compounds have fascinating properties. Nowadays these compounds have gained exceptional interest in thermoelectric and optoelectronic fields. Therefore, in this work the structural, electronic and optical properties of SrZn2Pn2 (Pn=N, P, As, Sb, Bi) compounds were studied using state-of-the-art density functional theory. The optimised lattice parameters (ɑ, c, c/ɑ and bond lengths) are consistent with the experimental results. The bulk moduli and c/a showed a decrease when changing the Pnictogen (Pn) anion from N to Bi in SrZn2Pn2 (Pn=N, P, As, Sb, Bi). The modified Becke-Johnson potential is used for band structure calculations. All compounds show semiconducting behaviour except SrZn2Bi2, which is metallic. Pn-p, Zn-d and Sr-d play an important role in defining the electronic structure of the compounds. The optical conductivity and absorption coefficient strength are high in visible and ultraviolet regions. These band structures and optical properties clearly show that SrZn2Pn2 compounds are potential candidates in the fields of optoelectronic and photonic devices.
Xiang, Xiao-Dong; Chang, Hauyee; Takeuchi, Ichiro
2000-01-01
A dielectric thin-film material for microwave applications, including use as a capacitor, the thin-film comprising a composition of barium strontium calcium and titanium of perovskite type (Ba.sub.x Sr.sub.y Ca.sub.1-x-y)TiO.sub.3. Also provided is a method for making a dielectric thin film of that formula over a wide compositional range through a single deposition process.
Geochemical landscapes of the conterminous United States; new map presentations for 22 elements
Gustavsson, N.; Bolviken, B.; Smith, D.B.; Severson, R.C.
2001-01-01
Geochemical maps of the conterminous United States have been prepared for seven major elements (Al, Ca, Fe, K, Mg, Na, and Ti) and 15 trace elements (As, Ba, Cr, Cu, Hg, Li, Mn, Ni, Pb, Se, Sr, V, Y, Zn, and Zr). The maps are based on an ultra low-density geochemical survey consisting of 1,323 samples of soils and other surficial materials collected from approximately 1960-1975. The data were published by Boerngen and Shacklette (1981) and black-and-white point-symbol geochemical maps were published by Shacklette and Boerngen (1984). The data have been reprocessed using weighted-median and Bootstrap procedures for interpolation and smoothing.
Analysis of eight argonne premium coal samples by X-ray fluorescence spectrometry
Evans, J.R.; Sellers, G.A.; Johnson, R.G.; Vivit, D.V.; Kent, J.
1990-01-01
X-ray fluorescence spectrometric methods were used in the analysis of eight Argonne Premium Coal Samples. Trace elements (Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, La, and Ce) in coal ash were determined by energy-dispersive X-ray fluorescence spectrometry; major elements (Na, Mg, Al, Si, P, S, K, Ca, Ti, Mn, and Fe) in coal ash and trace elements (Cl and P) in whole coal were determined by wavelength-dispersive X-ray fluorescence spectrometry. The results of this study will be used in a geochemical database compiled for these materials from various analytical techniques. The experimental XRF methods and procedures used to determine these major and trace elements are described.
[Determination of twenty one elements in lithium hexafluorophosphate by ICP-AES].
Fang, Yi-wen; Hao, Zhi-feng; Song, Yi-bing; Sun, Chang-yong; Yu, Jian; Yu, Lin
2005-02-01
One gram (+/- 0.0001 g) of lithium hexafluorophosphate was weighed exactly under dry atmosphere and was dissolved with an adequate amount of dimethyl carbonate (DMC). After the sample solution was pretreated with a series of methods, Be, Cu, Pb, Ca, Zr, Co, Mg, V, Ti, Mo, Ni, Mn, Sr, Zn, K, Al, Ba, Cd, Fe, Cr and Na were determined by ICP-AES. The results show that the recoveries of standard addition were 93.3%-102.1%, and the relative standard deviations (n = 11) were 0%-3.56%. The method is efficient, accurate and easy to operate. It has been applied to the determination of lithium hexafluorophosphate products with satisfactory results.
Arveti, Nagaraju; Reginald, S; Kumar, K Sunil; Harinath, V; Sreedhar, Y
2012-04-01
Termite mounds are abundant components of Tummalapalle area of uranium mineralization of Cuddapah District of Andhra Pradesh, India. The systematic research has been carried out on the application of termite mound sampling to mineral exploration in this region. The distribution of chemical elements Cu, Pb, Zn, Ni, Co, Cr, Li, Rb, Sr, Ba, and U were studied both in termite soils and adjacent surface soils. Uranium accumulations were noticed in seven termite mounds ranging from 10 to 36 ppm. A biogeochemical parameter called "Biological Absorption Coefficient" of the termite mounds indicated the termite affected soils contained huge amounts of chemical elements than the adjacent soils.
Rowe, J.J.; Steinnes, E.
1977-01-01
Thirty elements are determined in coal and fly ash by instrumental neutron-activation analysis using both thermal and epithermal irradiation. Gamma-ray spectra were recorded 7 and 20 days after the irradiations. The procedure is applicable to the routine analysis of coals and fly ash. Epithermal irradiation was found preferable for the determination of Ni, Zn, As, Se, Br, Rb, Sr, Mo, Sb, Cs, Ba, Sm, Tb, Hf, Ta, W, Th and U, whereas thermal irradiation was best for Sc, Cr, Fe, Co, La, Ce, Nd, Eu, Yb and Lu. Results for SRM 1632 (coal) and SRM 1633 (fly ash) agree with those of other investigators. ?? 1977.
NASA Astrophysics Data System (ADS)
Elias, Robert W.; Hirao, Yoshimitsu; Patterson, Clair C.
1982-12-01
Biopurification factors for Ca with respect to Sr, Ba, and natural, uncontaminated Pb were measured for different nutrient-consumer pairs in a remote subalpine ecosystem. The factor for Sr is expressed as: (nutrient Sr/Ca) ÷ (consumer Sr/Ca). Similar expressions were used for Ba/Ca and Pb/Ca. It was found that Ca was biopurified of Sr 3-fold, of Ba 16-fold, and of Pb 100-fold in going from rock to sedge leaves. In going from sedge leaf to vole, Ca was biopurified of Sr 4-fold, of Ba 8-fold, and of Pb 16-fold. In going from meadow vole to pine marten, Ca was biopurified of Sr 6-fold, of Ba 7-fold, and of Pb 1.1-fold. Similar ranges of values for these factors were obtained for detrital and amphibian food chains. Fluxes of industrial lead entering the ecosystem as precipitation and dry deposition were measured and it was found that 40% of the lead in soil humus and soil moisture, 82% of the lead in sedge leaves, 92% of the lead in vole, and 97% of the lead in marten was industrial. The natural skeletal Pb/Ca ratio in carnivores (4 × 10 -8) was determined by means of corrections for inputs of industrial lead, food chain relationships, and measured biopurification factors for the ecosystem studied. This represents a 1700-fold reduction of the average Pb/Ca ratio in igneous rocks at the earth's surface (6.4 × 10 -5) by the compounding of successive Pb biopurification factors in transferring Ca from rock to carnivore. The natural ratio is similar to the value of 6 × 10 -8 observed for Pb/Ca in the bones of Peruvians who lived 2000 years ago but is 1/900th of the value of about 3.5 × 10 -5 for the skeletal Pb/Ca ratio found in present day Americans. This study shows experimentally how the Ba/Ca ratio in average surface igneous rock (3 × 10 -3) has been reduced 800-fold through compounding of successive biopurification steps to provide the skeletal Ba/Ca ratio of about 4 × 10 -6 observed in humans. It also provides biopurification factors for Sr and Ba among a number of nutrient-consumer pairs which anthropologists can use to delineate degrees of herbivory in diets of hominids within the last 10,000 years.
NASA Astrophysics Data System (ADS)
Cescutti, G.; Chiappini, C.
2014-05-01
Context. Thanks to the heroic observational campaigns carried out in recent years we now have large samples of metal-poor stars for which measurements of detailed abundances exist. In particular, large samples of stars with metallicities -5 < [Fe/H] <-1 and measured abundances of Sr, Ba, Y, and Eu are now available. These data hold important clues on the nature of the contribution of the first stellar generations to the enrichment of our Galaxy. Aims: We aim to explain the scatter in Sr, Ba, Y, and Eu abundance ratio diagrams unveiled by the metal-poor halo stars. Methods: We computed inhomogeneous chemical evolution models for the Galactic halo assuming different scenarios for the r-process site: the electron-capture (EC) supernovae and the magnetorotationally driven (MRD) supernovae scenarios. We also considered models with and without the contribution of fast-rotating massive stars (spinstars) to an early enrichment by the s-process. A detailed comparison with the now large sample of stars with measured abundances of Sr, Ba, Y, Eu, and Fe is provided (both in terms of scatter plots and number distributions for several abundance ratios). Results: The scatter observed in these abundance ratios of the very metal-poor stars (with [Fe/H] <-2.5) can be explained by combining the s-process production in spinstars, and the r-process contribution coming from massive stars. For the r-process we have developed models for both the EC and the MRD scenarios that match the observations. Conclusions: With the present observational and theoretical constraints we cannot distinguish between the EC and the MRD scenarios in the Galactic halo. Independently of the r-process scenarios adopted, the production of elements by an s-process in spinstars is needed to reproduce the spread in abundances of the light neutron capture elements (Sr and Y) over heavy neutron capture elements (Ba and Eu). We provide a way to test our suggestions by means of the distribution of the Ba isotopic ratios in a [Ba/Fe] or [Sr/Ba] vs. [Fe/H] diagram. Appendix A is available in electronic form at http://www.aanda.org
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jena, Paramananda; Gupta, Santosh K., E-mail: santufrnd@gmail.com; Natarajan, V.
2015-04-15
Nanocrystalline Scheelite type Dy doped AMoO{sub 4} [where A = Ba, Sr and Ca] samples were prepared by acrylamide assisted sol–gel process and characterized by XRD, FT-Raman, FTIR, SEM and photoluminescence (PL). PL of undoped sample shows blue/green emission in CaMoO{sub 4} and SrMoO{sub 4} but multicolour visible emission leading to near white light in BaMoO{sub 4} nanoparticles; the origin of which is explained. It was observed that on doping 0.5 mol% of Dy{sup 3+} in molybdate samples complete energy transfer takes place in case of SrMoO{sub 4} and BaMoO{sub 4}, but host contributed substantially in Dy doped BaMoO{sub 4}more » sample, resulting in biexponential decay. It was also observed that symmetry around Dy{sup 3+} decreases as the size of alkaline earth ion increases. Due to combined blue, yellow and red colour emission in dysprosium doped sample; all samples showed near white light emission under UV and near UV excitation.« less
Kabbour, Houria; Cario, Laurent
2006-03-20
We have designed new compounds within the homologous series Ae2F2M(1+n)X(3+n) (Ae = Sr, Ba; M = main group metal; n = integer) built up from the stacking of 2D building blocks of rock salt and fluorite types. By incrementally increasing the size of the rock salt 2D building blocks, we have obtained two new n = 1 members of this homologous series, namely, Sr2F2Sb2Se4 and Ba2F2Sb2Se4. We then succeeded in synthesizing these compounds using a high-temperature ceramic method. The structure refinements from the powder or single-crystal X-ray diffraction data confirmed presence of the expected alternating stacking of fluorite [Ae2F2] (Ae = Sr, Ba) and rock salt [Sb2Se4] 2D building blocks. However the Ba derivative shows a strong distortion of the [Sb2Se4] block and a concomitant change of the Sb atom coordination likely related to the lone-pair activity.
NASA Astrophysics Data System (ADS)
Fang, T.; Guo, H.; Verma, V.; Peltier, R. E.; Weber, R. J.
2015-06-01
Water-soluble redox-active metals are potentially toxic due to the ability to catalytically generate reactive oxygen species (ROS) in vivo, leading to oxidative stress. As part of the Southeastern Center for Air Pollution and Epidemiology (SCAPE), we developed a method to quantify water-soluble elements, including redox-active metals, from a large number of filter samples (N = 530) in support of the Center's health studies. PM2.5 samples were collected during 2012-2013 at various sites (three urban, two rural, a near-road, and a road-side site) in the southeastern US, using high-volume samplers. Water-soluble elements (S, K, Ca, Ti, Mn, Fe, Cu, Zn, As, Se, Br, Sr, Ba, and Pb) were determined by extracting filters in deionized water and re-aerosolized for analyses by X-ray fluorescence (XRF) using an online aerosol element analyzer (Xact, Cooper Environmental). Concentrations ranged from detection limits (nominally 0.1 to 30 ng m-3) to 1.2 μg m-3, with S as the most abundant element, followed by Ca, K, Fe, Cu, Zn, and Ba. Positive Matrix Factorization (PMF) identified four factors that were associated with specific sources based on relative loadings of various tracers. These include: brake/tire wear (with tracers Ba and Cu); biomass burning (K); secondary formation (S, Se, and WSOC); and mineral dust (Ca). Of the four potentially toxic and relatively abundant metals (redox active Cu, Mn, Fe, and redox-inactive Zn), 51 % of Cu, 32 % of Fe, 17 % of Mn, and 45 % of Zn, were associated with the brake/tire factor. Mn was mostly associated with the mineral dust factor (45 %). These two factors were higher in warm (dryer) periods that favored particle re-suspension. Zn was found in a mixture of factors, with 26 % associated with mineral dust, 14 % biomass burning, and 13 % secondary formation. Roughly 50 % of Fe and 40 % of Cu was apportioned to the secondary formation factor, likely through increased solubility by sulfur-driven aerosol acidity. Linkages between sulfate and water-soluble Fe and Cu may account for some of the past observed associations between sulfate/sulfur oxide and health outcomes. For Cu, Mn, Fe, and Zn, only Fe was correlated with PM2.5 mass (r = 0.73-0.80). Overall, mobile source emissions generated through mechanical processes (re-entrained road dust, tire and break wear) and processing by secondary sulfate were major contributors to water-soluble metals known to be capable of generating ROS.
Zang, C H; Su, J F; Liu, Y C; Tang, C J; Fang, S J; Zhang, D M; Zhang, Y S
2011-11-01
ZnO nanoparticles embedded in BaF2 matrix were fabricated by rf magnetic sputtering technology. The optical properties of high quality ZnO nanoparticles, thermally post treated in a N2 atmosphere, were investigated by temperature-dependence photoluminescence measurement. Free exciton and localized exciton were observed at the low temperature. Free exciton peak was at 3.374 eV and localized exciton peak was at 3.420 eV, dominating the PL spectrum at 77 K. Free exciton transition was observed at 3.310 eV at room temperature, whereas the localized exciton transition was at 3.378 eV. The multiple-phonon Raman scattering spectrum showed that ZnO nanoparticles embedded in BaF2 matrix had a large deformation energy originated from lattice mismatch between ZnO and BaF2 matrix. Analysis of the fitting results from the temperature dependence of FWHM of ZnO exciton illustrated that the large value of gamma(ph) was good qualitative agreement with the large deformation potential.
NASA Astrophysics Data System (ADS)
Carvalho, M. L.; Marques, A. F.; Lima, M. T.; Reus, U.
2004-08-01
The purpose of the present work is to investigate the suitability of TXRF technique to study the distribution of trace elements along human bones of the 13th century, to conclude about environmental conditions and dietary habits of old populations and to study the uptake of some elements from the surrounding soil. In this work, we used TXRF to quantify and to make profiles of the elements through long bones. Two femur bones, one from a man and another from a woman, buried in the same grave were cross-sectioned in four different points at a distance of 1 cm. Microsamples of each section were taken at a distance of 1 mm from each other. Quantitative analysis was performed for Ca, Mn, Fe, Cu, Zn, Sr, Ba and Pb. Very high concentrations of Mn and Fe were obtained in the whole analysed samples, reaching values higher than 2% in some samples of trabecular tissue, very much alike to the concentrations in the burial soil. A sharp decrease for both elements was observed in cortical tissue. Zn and Sr present steady concentration levels in both kinds of bone tissues. Pb and Cu show very low concentrations in the inner tissue of cortical bone. However, these concentrations increase in the regions in contact to trabecular tissue and external surface in contact with the soil, where high levels of both elements were found. We suggest that contamination from the surrounding soil exists for Mn and Fe in the whole bone tissue. Pb can be both from post-mortem and ante-mortem origin. Inner compact tissue might represent in vivo accumulation and trabecular one corresponds to uptake during burial. The steady levels of Sr and Zn together with soil concentration lower levels for these elements may allow us to conclude that they are originated from in vivo incorporation in the hydroxyapatite bone matrix.
Wang, Yulong; Zhang, Wentao; Gao, Yang; Long, Jianping; Li, Junfeng
2017-02-01
Eu 2 + -doped Sr 2 SiO 4 phosphor with Ca 2 + /Zn 2 + substitution, (Sr 1-x M x ) 2 SiO 4 :Eu 2 + (M = Ca, Zn), was prepared using a high-temperature solid-state reaction method. The structure and luminescence properties of Ca 2 + /Zn 2 + partially substituted Sr 2 SiO 4 :Eu 2 + phosphors were investigated in detail. With Ca 2 + or Zn 2 + added to the silicate host, the crystal phase could be transformed between the α-form and the β-form of the Sr 2 SiO 4 structure. Under UV excitation at 367 nm, all samples exhibit a broad band emission from 420 to 680 nm due to the 4f 6 5d 1 → 4f 7 transition of Eu 2 + ions. The broad emission band consists of two peaks at 482 and 547 nm, which correspond to Eu 2 + ions occupying the ten-fold oxygen-coordinated Sr.(I) site and the nine-fold oxygen-coordinated Sr.(II) site, respectively. The luminescence properties, including the intensity and lifetime of Sr 2 SiO 4 :Eu 2 + phosphors, improved remarkably on Ca 2 + /Zn 2 + addition, and promote its application in white light-emitting diodes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Positron annihilation study on ZnO-based scintillating glasses
NASA Astrophysics Data System (ADS)
Nie, Jiaxiang; Yu, Runsheng; Wang, Baoyi; Ou, Yuwen; Zhong, Yurong; Xia, Fang; Chen, Guorong
2009-04-01
Positron lifetime of ZnO-based scintillating glasses (55 - x)SiO 2-45ZnO- xBaF 2 ( x = 5, 10, 15 mol%) were measured with a conventional fast-fast spectrometer. Three positron lifetime components τ1, τ 2, and τ3 are ˜0.23 ns, ˜0.45 ns, and ˜1.6 ns, respectively. All the three positron lifetime components first increase with increasing BaF 2 concentration from 5 mol% to 10 mol%, then decreases as BaF 2 further increases to 15 mol%. The result suggests that the glass sample with 10 mol% BaF 2 contains the highest defect density, and is in excellent agreement with glass chemistry, glass density, thermal properties, and calculated crystallinity. Therefore, positron annihilation lifetime measurement is an effective tool for analyzing defects in ZnO-based scintillating glasses.
Simplified multi-element analysis of ground and instant coffees by ICP-OES and FAAS.
Szymczycha-Madeja, Anna; Welna, Maja; Pohl, Pawel
2015-01-01
A simplified alternative to the wet digestion sample preparation procedure for roasted ground and instant coffees has been developed and validated for the determination of different elements by inductively coupled plasma optical emission spectrometry (ICP-OES) (Al, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, Zn) and flame atomic absorption spectrometry (FAAS) (Ca, Fe, K, Mg, Na). The proposed procedure, i.e. the ultrasound-assisted solubilisation in aqua regia, is quite fast and simple, requires minimal use of reagents, and demonstrated good analytical performance, i.e. accuracy from -4.7% to 1.9%, precision within 0.5-8.6% and recovery in the range 93.5-103%. Detection limits of elements were from 0.086 ng ml(-1) (Sr) to 40 ng ml(-1) (Fe). A preliminary classification of 18 samples of ground and instant coffees was successfully made based on concentrations of selected elements and using principal component analysis and hierarchic cluster analysis.
Taylor, Vivien F; Longerich, Henry P; Greenough, John D
2003-02-12
Trace element fingerprints were deciphered for wines from Canada's two major wine-producing regions, the Okanagan Valley and the Niagara Peninsula, for the purpose of examining differences in wine element composition with region of origin and identifying elements important to determining provenance. Analysis by ICP-MS allowed simultaneous determination of 34 trace elements in wine (Li, Be, Mg, Al, P, Cl, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Mo, Ag, Cd, Sb, I, Cs, Ba, La, Ce, Tl, Pb, Bi, Th, and U) at low levels of detection, and patterns in trace element concentrations were deciphered by multivariate statistical analysis. The two regions were discriminated with 100% accuracy using 10 of these elements. Differences in soil chemistry between the Niagara and Okanagan vineyards were evident, without a good correlation between soil and wine composition. The element Sr was found to be a good indicator of provenance and has been reported in fingerprinting studies of other regions.
A deep hydrothermal fault zone in the lower oceanic crust, Samail ophiolite Oman
NASA Astrophysics Data System (ADS)
Zihlmann, B.; Mueller, S.; Koepke, J.; Teagle, D. A. H.
2017-12-01
Hydrothermal circulation is a key process for the exchange of chemical elements between the oceans and the solid Earth and for the extraction of heat from newly accreted crust at mid-ocean ridges. However, due to a dearth of samples from intact oceanic crust, or continuous samples from ophiolites, there remain major short comings in our understanding of hydrothermal circulation in the oceanic crust, especially in the deeper parts. In particular, it is unknown whether fluid recharge and discharge occurs pervasively or if it is mainly channeled within discrete zones such as faults. Here, we present a description of a hydrothermal fault zone that crops out in Wadi Gideah in the layered gabbro section of the Samail ophiolite of Oman. Field observations reveal a one meter thick chlorite-epidote normal fault with disseminated pyrite and chalcopyrite and heavily altered gabbro clasts at its core. In both, the hanging and the footwall the gabbro is altered and abundantly veined with amphibole, epidote, prehnite and zeolite. Whole rock mass balance calculations show enrichments in Fe, Mn, Sc, V, Co, Cu, Rb, Zr, Nb, Th and U and depletions of Si, Ca, Na, Cr, Zn, Sr, Ba and Pb concentrations in the fault rock compared to fresh layered gabbros. Gabbro clasts within the fault zone as well as altered rock from the hanging wall show enrichments in Na, Sc, V, Co, Rb, Zr, Nb and depletion of Cr, Ni, Cu, Zn, Sr and Pb. Strontium isotope whole rock data of the fault rock yield 87Sr/86Sr ratios of 0.7046, which is considerably more radiogenic than fresh layered gabbro from this locality (87Sr/86Sr = 0.7030 - 0.7034), and similar to black smoker hydrothermal signatures based on epidote, measured elsewhere in the ophiolite. Altered gabbro clasts within the fault zone show similar values with 87Sr/86Sr ratios of 0.7045 - 0.7050, whereas hanging wall and foot wall display values only slightly more radiogenic than fresh layered gabbro.The secondary mineral assemblages and strontium isotope compositions of the fault rock, clasts and hanging wall indicate interaction with a seawater-derived hydrothermal fluid during oceanic spreading at an ancient mid-ocean ridge. The considerable elemental mass changes in the fault rocks and surrounds compared to the primary layered gabbros suggests extensive hydrothermal fluid flow and exchange deep within the ocean crust.
Fang, C. M.; Biswas, Koushik
2015-07-22
Several rare-earth-doped, heavy-metal halides have recently been identified as potential next-generation luminescent materials with high efficiency at low cost. AB 2I 5:Eu 2+ (A=Li–Cs; B=Sr, Ba) is one such family of halides. Its members, such as CsBa 2I 5:Eu 2+ and KSr 2I 5:Eu 2+, are currently being investigated as high-performance scintillators with improved sensitivity, light yield, and energy resolution less than 3% at 662 keV. Within the AB 2I 5 family, our first-principles-based calculations reveal two remarkably different trends in Eu site occupation. The substitutional Eu ions occupy both eightfold-coordinated B1(VIII) and the sevenfold-coordinated B2(VII) sites in the Sr-containingmore » compounds. However, in the Ba-containing crystals, Eu ions strongly prefer the B2(VII)sites. This random versus preferential distribution of Eu affects their electronic properties. The calculations also suggest that in the Ba-containing compounds one can expect the formation of Eu-rich domains. These results provide atomistic insight into recent experimental observations about the concentration and temperature effects in Eu-doped CsBa 2I 5. We discuss the implications of our results with respect to luminescent properties and applications. We also hypothesize Sr, Ba-mixed quaternary iodides ABa VIIISr VIII 5:Eu as scintillators having enhanced homogeneity and electronic properties.« less
NASA Astrophysics Data System (ADS)
Chen, Xiuli; Li, Xiaoxia; Yan, Xiao; Liu, Gaofeng; Zhou, Huanfu
2018-06-01
Perovskite solid solution ceramics of (Ba1- x Bi0.33 x Sr0.67 x )(Ti1- x Bi0.67 x V0.33 x )O3 and (Ba1- x Bi0.5 x Sr0.5 x )(Ti1- x Bi0.5 x Ti0.5 x )O3 (BBSTBV, BBSTBT, 0.02 ≤ x ≤ 0.2) were prepared by the traditional solid state reaction technique. The phase evolution, microstructure and dielectric properties of BBSTBV and BBSTBT ceramics were researched. X-Ray diffraction results illustrated that both BBSTBV and BBSTBT could form a homogenous solid solution which has a similar structure with BaTiO3. The optimized properties of (Ba0.8Bi0.1Sr0.1)(Ti0.8Bi0.1Ti0.1)O3 ceramics with stable ɛ r ( 1769-2293), small Δ ɛ/ ɛ 25 °C values (± 15%) over a broad temperature range from - 58 to 151 °C and low tan δ ≤ 0.03 from - 11 to 131 °C were obtained. In the high-temperature region, the relaxation and conduction process are attributed to the thermal activation and the oxygen vacancies may be the ionic charge carriers in perovskite ferroelectrics.
Isotopic and Chemical Evidence for Primitive Aqueous Alteration in the Tagish Lake Meteorite
NASA Astrophysics Data System (ADS)
Sakuma, Keisuke; Hidaka, Hiroshi; Yoneda, Shigekazu
2018-01-01
Aqueous alteration is one of the primitive activities that occurred on meteorite parent bodies in the early solar system. The Tagish Lake meteorite is known to show an intense parent body aqueous alteration signature. In this study, quantitative analyses of the alkaline elements and isotopic analyses of Sr and Ba from acid leachates of TL (C2-ungrouped) were performed to investigate effects of aqueous alteration. The main purpose of this study is to search for isotopic evidence of extinct 135Cs from the Ba isotopic analyses in the chemical separates from the Tagish Lake meteorite. Barium isotopic data from the leachates show variable 135Ba isotopic anomalies (ε = ‑2.6 ∼ +3.6) which correlatewith 137Ba and 138Ba suggesting a heterogeneous distribution of s- and r-rich nucleosynthetic components in the early solar system. The 87Rb–87Sr and 135Cs–135Ba decay systems on TL in this study do not provide any chronological information. The disturbance of the TL chronometers is likely a reflection of the selective dissolution of Cs and Rb given the relatively higher mobility of Cs and Rb compared to Ba and Sr, respectively, during fluid mineral interactions.
Zhang, Tieyuan; Gregory, Kelvin; Hammack, Richard W; Vidic, Radisav D
2014-04-15
Radium occurs in flowback and produced waters from hydraulic fracturing for unconventional gas extraction along with high concentrations of barium and strontium and elevated salinity. Radium is often removed from this wastewater by co-precipitation with barium or other alkaline earth metals. The distribution equation for Ra in the precipitate is derived from the equilibrium of the lattice replacement reaction (inclusion) between the Ra(2+) ion and the carrier ions (e.g., Ba(2+) and Sr(2+)) in aqueous and solid phases and is often applied to describe the fate of radium in these systems. Although the theoretical distribution coefficient for Ra-SrSO4 (Kd = 237) is much larger than that for Ra-BaSO4 (Kd = 1.54), previous studies have focused on Ra-BaSO4 equilibrium. This study evaluates the equilibria and kinetics of co-precipitation reactions in Ra-Ba-SO4 and Ra-Sr-SO4 binary systems and the Ra-Ba-Sr-SO4 ternary system under varying ionic strength (IS) conditions that are representative of brines generated during unconventional gas extraction. Results show that radium removal generally follows the theoretical distribution law in binary systems and is enhanced in the Ra-Ba-SO4 system and restrained in the Ra-Sr-SO4 system by high IS. However, the experimental distribution coefficient (Kd') varies widely and cannot be accurately described by the distribution equation, which depends on IS, kinetics of carrier precipitation and does not account for radium removal by adsorption. Radium removal in the ternary system is controlled by the co-precipitation of Ra-Ba-SO4, which is attributed to the rapid BaSO4 nucleation rate and closer ionic radii of Ra(2+) with Ba(2+) than with Sr(2+). Carrier (i.e., barite) recycling during water treatment was shown to be effective in enhancing radium removal even after co-precipitation was completed. Calculations based on experimental results show that Ra levels in the precipitate generated in centralized waste treatment facilities far exceed regulatory limits for disposal in municipal sanitary landfills and require careful monitoring of allowed source term loading (ASTL) for technically enhanced naturally occurring materials (TENORM) in these landfills. Several alternatives for sustainable management of TENORM are discussed.
A study on the thermal conversion of scheelite-type ABO4 into perovskite-type AB(O,N)3.
Li, Wenjie; Li, Duan; Gao, Xin; Gurlo, Aleksander; Zander, Stefan; Jones, Philip; Navrotsky, Alexandra; Shen, Zhijian; Riedel, Ralf; Ionescu, Emanuel
2015-05-07
Phase-pure scheelite AMoO4 and AWO4 (A = Ba, Sr, Ca) were thermally treated under an ammonia atmosphere at 400 to 900 °C. SrMoO4 and SrWO4 were shown to convert into cubic perovskite SrMoO2N and SrWO1.5N1.5, at 700 °C and 900 °C respectively, and to form metastable intermediate phases (scheelite SrMoO4-xNx and SrWO4-xNx), as revealed by X-ray diffraction (XRD), elemental analysis and FTIR spectroscopy. High-temperature oxide melt solution calorimetry reveals that the enthalpy of formation for SrM(O,N)3 (M = Mo, W) perovskites is less negative than that of the corresponding scheelite oxides, though the conversion of the scheelite oxides into perovskite oxynitrides is thermodynamically favorable at moderate temperatures. The reaction of BaMO4 with ammonia leads to the formation of rhombohedral Ba3M2(O,N)8 and the corresponding binary metal nitrides Mo3N2 and W4.6N4; similar behavior was observed for CaMO4, which converted upon ammonolysis into individual oxides and nitrides. Thus, BaMO4 and CaMO4 were shown to not provide access to perovskite oxynitrides. The influence of the starting scheelite oxide precursor, the structure distortion and the degree of covalency of the B-site-N bond are discussed within the context of the formability of perovskite oxynitrides.
Characterization and Luminescence Properties of Color-Tunable Dy3+-Doped BaY2ZnO5 Nanophosphors
NASA Astrophysics Data System (ADS)
Sonika; Khatkar, S. P.; Khatkar, Avni; Kumar, Rajesh; Taxak, V. B.
2015-01-01
Dy3+-doped BaY2ZnO5 nanophosphors were successfully synthesized by use of a solution combustion process. The effects of sintering temperature and dysprosium concentration on the structural and luminescence characteristics of the phosphors were investigated. X-ray diffraction (XRD) analysis confirmed the formation of pure orthorhombic BaY2ZnO5 with the space group Pbnm at 1100°C. Morphological investigation revealed spherical nanoparticles with smooth surfaces. The luminescence features of the nanophosphor were studied by use of photoluminescence excitation (PLE) and photoluminescence emission (PL), with luminescence decay curves and color ( x, y) coordinates. On excitation at 355 nm, BaY2ZnO5 nanophosphor doped with trivalent dysprosium ion emits white light as a mixture of blue (4F9/2 → 6H15/2) and yellow (4F9/2 → 6H13/2) emission. Concentration quenching is explained on the basis of cross-relaxation between intermediate Dy3+ states. Thus, BaY2ZnO5:Dy3+ nanophosphor may be suitable for producing efficient white light for ultraviolet-light-emitting diodes (UV-LEDs), fluorescent lamps, and a variety of optical display panels.
NASA Astrophysics Data System (ADS)
Rana, Amit Kumar; Das, Rajasree; Kumar, Yogendra; Sen, Somaditya; Shirage, Parasharam M.
2016-08-01
Zn1 - xSrxO (0.0 ≤ x ≤ 0.08) nano-rods thin films are prepared using simple wet chemical technique on transparent flexible substrate. Effect of Sr-doping on structural and optical properties of ZnO is systematically investigated. SEM and TEM confirm the nano-rods like morphology with single crystalline nature of all the samples. Rietveld refinement of XRD shows the samples belongs to P63mc space group, furthermore, a gradual increment in lattice parameters and change in Zn/oxygen occupancy ratio is observed with Sr doping. SIMS and XPS confirm the doping of Sr in the ZnO nanostructures. XPS measurements shows that increase in Sr doping creates more oxygen associated defects, which is further supported by the photoluminescence spectra indicating the gradual change in Zn vacancy (Vzn) and oxygen interstitial (Oin) point defect intensities in the films. Near band edge emission peak shows to shift toward higher wavelength in the doped films. Pure ZnO film shows Raman peaks around 99 (E2low), 333 (E2high - E2low) , 382 (A1 (TO)), 438 (E2high) and 582 (A1 (LO) +E1 (TO)) cm-1, whereas two additional defect driven vibrational modes (at 277 and 663 cm-1) are appeared in the Sr-doped films. The sensing property of the ZnO is enhanced by Sr doping and replicates as a promising material for future toxic and flammable gas sensor applications as well as for opto-electronic devices.
NASA Astrophysics Data System (ADS)
Jacobson, Heather R.; Keller, Stefan; Frebel, Anna; Casey, Andrew R.; Asplund, Martin; Bessell, Michael S.; Da Costa, Gary S.; Lind, Karin; Marino, Anna F.; Norris, John E.; Peña, José M.; Schmidt, Brian P.; Tisserand, Patrick; Walsh, Jennifer M.; Yong, David; Yu, Qinsi
2015-07-01
The SkyMapper Southern Sky Survey is carrying out a search for the most metal-poor stars in the Galaxy. It identifies candidates by way of its unique filter set which allows for estimation of stellar atmospheric parameters. The set includes a narrow filter centered on the Ca ii K 3933 Å line, enabling a robust estimate of stellar metallicity. Promising candidates are then confirmed with spectroscopy. We present the analysis of Magellan Inamori Kyocera Echelle high-resolution spectroscopy of 122 metal-poor stars found by SkyMapper in the first two years of commissioning observations. Forty-one stars have [{Fe}/{{H}}]≤slant -3.0. Nine have [{Fe}/{{H}}]≤slant -3.5, with three at [{Fe}/{{H}}]∼ -4. A 1D LTE abundance analysis of the elements Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, Ba, and Eu shows these stars have [X/Fe] ratios typical of other halo stars. One star with low [X/Fe] values appears to be “Fe-enhanced,” while another star has an extremely large [Sr/Ba] ratio: \\gt 2. Only one other star is known to have a comparable value. Seven stars are “CEMP-no” stars ([{{C}}/{Fe}]\\gt 0.7, [{Ba}/{Fe}]\\lt 0). 21 stars exhibit mild r-process element enhancements (0.3≤slant [{Eu}/{Fe}]\\lt 1.0), while four stars have [{Eu}/{Fe}]≥slant 1.0. These results demonstrate the ability to identify extremely metal-poor stars from SkyMapper photometry, pointing to increased sample sizes and a better characterization of the metal-poor tail of the halo metallicity distribution function in the future. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
An Industry-Scale Mass Marking Technique for Tracing Farmed Fish Escapees
Warren-Myers, Fletcher; Dempster, Tim; Fjelldal, Per Gunnar; Hansen, Tom; Swearer, Stephen E.
2015-01-01
Farmed fish escape and enter the environment with subsequent effects on wild populations. Reducing escapes requires the ability to trace individuals back to the point of escape, so that escape causes can be identified and technical standards improved. Here, we tested if stable isotope otolith fingerprint marks delivered during routine vaccination could be an accurate, feasible and cost effective marking method, suitable for industrial-scale application. We tested seven stable isotopes, 134Ba, 135Ba, 136Ba, 137Ba, 86Sr, 87Sr and 26Mg, on farmed Atlantic salmon reared in freshwater, in experimental conditions designed to reflect commercial practice. Marking was 100% successful with individual Ba isotopes at concentrations as low as 0.001 µg. g-1 fish and for Sr isotopes at 1 µg. g-1 fish. Our results suggest that 63 unique fingerprint marks can be made at low cost using Ba (0.0002 – 0.02 $US per mark) and Sr (0.46 – 0.82 $US per mark) isotopes. Stable isotope fingerprinting during vaccination is feasible for commercial application if applied at a company level within the world’s largest salmon producing nations. Introducing a mass marking scheme would enable tracing of escapees back to point of origin, which could drive greater compliance, better farm design and improved management practices to reduce escapes. PMID:25738955
NASA Astrophysics Data System (ADS)
Navarro, H.; Sirena, M.; González Sutter, J.; Troiani, H. E.; del Corro, P. G.; Granell, P.; Golmar, F.; Haberkorn, N.
2018-01-01
We report the electrical transport properties of conducting/insulator/conducting heterostructures by studying current-voltage IV curves at room temperature. The measurements were obtained on tunnel junctions with different areas (900, 400 and 100 μm2) using a conducting atomic force microscope. Trilayers with GdBa2Cu3O7 (GBCO) as the bottom electrode, SrTiO3 or BaTiO3 (thicknesses between 1.6 and 4 nm) as the insulator barrier, and GBCO or Nb as the top electrode were grown by DC sputtering on (100) SrTiO3 substrates For SrTiO3 and BaTiO3 barriers, asymmetric IV curves at positive and negative polarization can be obtained using electrodes with different work function. In addition, hysteretic IV curves are obtained for BaTiO3 barriers, which can be ascribed to a combined effect of the FE reversal switching polarization and an oxygen vacancy migration. For GBCO/BaTiO3/GBCO heterostructures, the IV curves correspond to that expected for asymmetric interfaces, which indicates that the disorder affects differently the properties at the bottom and top interfaces. Our results show the role of the interface disorder on the electrical transport of conducting/insulator/conduction heterostructures, which is relevant for different applications, going from resistive switching memories (at room temperature) to Josephson junctions (at low temperatures).
Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS.
Heitland, Peter; Köster, Helmut D
2006-03-01
The paper provides physicians and clinical chemists with statistical data (concentration ranges, geometric mean values, selected percentiles, etc.) about 30 urinary trace elements in order to determine whether people have trace element deficiencies or have been exposed to higher elemental concentrations. Morning urine samples of 72 children and 87 adults from two geographical areas of Germany were collected and the elements Li, Be, V, Cr, Mn, Ni, Co, Cu, Zn, Ga, As, Se, Rb, Sr, Mo, Rh, Pd, Ag, Cd, In, Sn, Sb, Cs, Ba, Pt, Au, Pb, Tl, Bi and U were determined by inductively coupled plasma mass spectrometry (ICP-MS) with a new octopole based collision/reaction cell. The urine samples were analysed directly after a simple 1/5 (V/V) dilution with deionised water and nitric acid. Information on exposure conditions of all human subjects were collected by questionnaire-based interviews. The described concentration data down to the ng/l range are very useful for the formulation of reference values. For some elements either new data are described (e.g., for V, Ga, In, Bi, Rh, Mn) or differences to earlier studies were found (e.g., for Be, As). For other elements (e.g., Sb, Se, Mo, Ba, Cu, Zn, Li) our results are in good correlation with previous studies and also complemented with urinary trace element concentrations for children.
Optical properties of ZnO/BaCO3 nanocomposites in UV and visible regions.
Zak, Ali Khorsand; Hashim, Abdul Manaf; Darroudi, Majid
2014-01-01
Pure zinc oxide and zinc oxide/barium carbonate nanoparticles (ZnO-NPs and ZB-NPs) were synthesized by the sol-gel method. The prepared powders were characterized by X-ray diffraction (XRD), ultraviolet-visible (UV-Vis), Auger spectroscopy, and transmission electron microscopy (TEM). The XRD result showed that the ZnO and BaCO3 nanocrystals grow independently. The Auger spectroscopy proved the existence of carbon in the composites besides the Zn, Ba, and O elements. The UV-Vis spectroscopy results showed that the absorption edge of ZnO nanoparticles is redshifted by adding barium carbonate. In addition, the optical parameters including the refractive index and permittivity of the prepared samples were calculated using the UV-Vis spectra. 81.05.Dz; 78.40.Tv; 42.70.-a.
Synthesis, structural and optical properties of (ALa)(FeMn)O6 (A = Ba and Sr) double perovskites
NASA Astrophysics Data System (ADS)
Kumar, Dinesh; Sudarshan, V.; Singh, Akhilesh Kumar
2018-05-01
Here, we report structural and optical properties of ALaFeMnO6 (A = Ba and Sr) double perovskite synthesized via auto-combustion followed by calcinations process. Rietveld refinement of structure using x-ray diffraction data reveals that BaLaFeMnO6 crystallizes into cubic crystal structure with space group Pm-3m while SrLaFeMnO6 crystallizes into rhombohedral crystal structure having space group R-3c. The absorption spectrum measurement using UV-Vis spectroscopy reveals that these samples are prefect insulator having energy band gap between conduction and valence band of the order of 6 eV.
Smith, Wade D.; Miller, Jessica A.; Heppell, Selina S.
2013-01-01
Differences in the chemical composition of calcified skeletal structures (e.g. shells, otoliths) have proven useful for reconstructing the environmental history of many marine species. However, the extent to which ambient environmental conditions can be inferred from the elemental signatures within the vertebrae of elasmobranchs (sharks, skates, rays) has not been evaluated. To assess the relationship between water and vertebral elemental composition, we conducted two laboratory studies using round stingrays, Urobatis halleri, as a model species. First, we examined the effects of temperature (16°, 18°, 24°C) on vertebral elemental incorporation (Li/Ca, Mg/Ca, Mn/Ca, Zn/Ca, Sr/Ca, Ba/Ca). Second, we tested the relationship between water and subsequent vertebral elemental composition by manipulating dissolved barium concentrations (1x, 3x, 6x). We also evaluated the influence of natural variation in growth rate on elemental incorporation for both experiments. Finally, we examined the accuracy of classifying individuals to known environmental histories (temperature and barium treatments) using vertebral elemental composition. Temperature had strong, negative effects on the uptake of magnesium (DMg) and barium (DBa) and positively influenced manganese (DMn) incorporation. Temperature-dependent responses were not observed for lithium and strontium. Vertebral Ba/Ca was positively correlated with ambient Ba/Ca. Partition coefficients (DBa) revealed increased discrimination of barium in response to increased dissolved barium concentrations. There were no significant relationships between elemental incorporation and somatic growth or vertebral precipitation rates for any elements except Zn. Relationships between somatic growth rate and DZn were, however, inconsistent and inconclusive. Variation in the vertebral elemental signatures of U. halleri reliably distinguished individual rays from each treatment based on temperature (85%) and Ba exposure (96%) history. These results support the assumption that vertebral elemental composition reflects the environmental conditions during deposition and validates the use of vertebral elemental signatures as natural markers in an elasmobranch. Vertebral elemental analysis is a promising tool for the study of elasmobranch population structure, movement, and habitat use. PMID:24098320
Smith, Wade D; Miller, Jessica A; Heppell, Selina S
2013-01-01
Differences in the chemical composition of calcified skeletal structures (e.g. shells, otoliths) have proven useful for reconstructing the environmental history of many marine species. However, the extent to which ambient environmental conditions can be inferred from the elemental signatures within the vertebrae of elasmobranchs (sharks, skates, rays) has not been evaluated. To assess the relationship between water and vertebral elemental composition, we conducted two laboratory studies using round stingrays, Urobatis halleri, as a model species. First, we examined the effects of temperature (16°, 18°, 24°C) on vertebral elemental incorporation (Li/Ca, Mg/Ca, Mn/Ca, Zn/Ca, Sr/Ca, Ba/Ca). Second, we tested the relationship between water and subsequent vertebral elemental composition by manipulating dissolved barium concentrations (1x, 3x, 6x). We also evaluated the influence of natural variation in growth rate on elemental incorporation for both experiments. Finally, we examined the accuracy of classifying individuals to known environmental histories (temperature and barium treatments) using vertebral elemental composition. Temperature had strong, negative effects on the uptake of magnesium (DMg) and barium (DBa) and positively influenced manganese (DMn) incorporation. Temperature-dependent responses were not observed for lithium and strontium. Vertebral Ba/Ca was positively correlated with ambient Ba/Ca. Partition coefficients (DBa) revealed increased discrimination of barium in response to increased dissolved barium concentrations. There were no significant relationships between elemental incorporation and somatic growth or vertebral precipitation rates for any elements except Zn. Relationships between somatic growth rate and DZn were, however, inconsistent and inconclusive. Variation in the vertebral elemental signatures of U. halleri reliably distinguished individual rays from each treatment based on temperature (85%) and Ba exposure (96%) history. These results support the assumption that vertebral elemental composition reflects the environmental conditions during deposition and validates the use of vertebral elemental signatures as natural markers in an elasmobranch. Vertebral elemental analysis is a promising tool for the study of elasmobranch population structure, movement, and habitat use.
Zhao, K; Deng, Z; Wang, X C; Han, W; Zhu, J L; Li, X; Liu, Q Q; Yu, R C; Goko, T; Frandsen, B; Liu, Lian; Ning, Fanlong; Uemura, Y J; Dabkowska, H; Luke, G M; Luetkens, H; Morenzoni, E; Dunsiger, S R; Senyshyn, A; Böni, P; Jin, C Q
2013-01-01
Diluted magnetic semiconductors have received much attention due to their potential applications for spintronics devices. A prototypical system (Ga,Mn)As has been widely studied since the 1990s. The simultaneous spin and charge doping via hetero-valent (Ga(3+),Mn(2+)) substitution, however, resulted in severely limited solubility without availability of bulk specimens. Here we report the synthesis of a new diluted magnetic semiconductor (Ba(1-x)K(x))(Zn(1-y)Mn(y))(2)As(2), which is isostructural to the 122 iron-based superconductors with the tetragonal ThCr(2)Si(2) (122) structure. Holes are doped via (Ba(2+), K(1+)) replacements, while spins via isovalent (Zn(2+),Mn(2+)) substitutions. Bulk samples with x=0.1-0.3 and y=0.05-0.15 exhibit ferromagnetic order with T(C) up to 180 K, which is comparable to the highest T(C) for (Ga,Mn)As and significantly enhanced from T(C) up to 50 K of the '111'-based Li(Zn,Mn)As. Moreover, ferromagnetic (Ba,K)(Zn,Mn)(2)As(2) shares the same 122 crystal structure with semiconducting BaZn(2)As(2), antiferromagnetic BaMn(2)As(2) and superconducting (Ba,K)Fe(2)As(2), which makes them promising for the development of multilayer functional devices.
Severson, R.C.; Gough, L.P.; van den Boom, G.
1992-01-01
Baseline element concentrations are given for dune grass (Ammophilia arenaria), willow (Salix repens), moss (Hylocomium splendens) and associated surface soils. Baseline and variability data for pH, ash, Al, As, Ba, C, Ca, Cd, Ce, Co, Cr, Cu, Fe, Hg, K, La, Li, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, S, Sc, Se, Sr, Th, Ti, V, Y, Yb, and Zn are reported; however, not all variables are reported for all media because, in some media, certain elements were below the analytical detection limit. Spatial variation in element concentration between five Frisian Islands are given for each of the sample media. In general, only a few elements in each media showed statistically significant differences between the islands sampled. The measured concentrations in all sample media exhibited ranges that cannot be attributed to anthropogenic additions of trace elements, with the possible exception of Hg and Pb in surface soils.Baseline element concentrations are given for dune grass (Ammophilia arenaria), willow (Salix repens), moss (Hylocomium splendens) and associated surface soils. Baseline and variability data for pH, ash, Al, As, Ba, C, Ca, Cd, Ce, Co, Cr, Cu, Fe, Hg, K, La, Li, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, S, Sc, Se, Sr, Th, Ti, V, Y, Yb, and Zn are reported; however, not all variables are reported for all media because, in some media, certain elements were below the analytical detection limit. Spatial variation in element concentration between five Frisian Islands are given for each of the sample media. In general, only a few elements in each media showed statistically significant differences between the islands sampled. The measured concentrations in all sample media exhibited ranges that cannot be attributed to anthropogenic additions of trace elements, with the possible exception of Hg and Pb in surface soils.
Reference levels of trace elements in hair samples from children and adolescents in Madrid, Spain.
Llorente Ballesteros, María Teresa; Navarro Serrano, Irene; Izquierdo Álvarez, Silvia
2017-09-01
Hair samples are used as a tool to evaluate environmental exposure to contaminants and metabolic status in the individual. However, the use of human hair is controversial, mainly because of the lack of well-defined reference levels. In the case of Spain, very few biomonitoring studies have investigated these issues in infants, children or adolescents. To establish reference levels for trace elements in children and teenagers in Madrid, Spain. Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure Al, As, Ag, Ba, Bi, Cd, Cr, Co, Cu, Fe, Mn, Mo, Ni, Pb, Se, Sr, Tl and Zn levels in hair samples from 648 healthy children and adolescents (253 boys and 395 girls) between April 2008 and December 2009. Median levels were as follows: Al 18.5μg/g, As 0.07μg/g, Ag 196ng/g, Ba 0.5μg/g, Bi 0.01μg/g, Cd 18.3ng/g, Cr 0.4μg/g, Co 14.5ng/g, Cu 25.7μg/g, Fe 15.5μg/g, Mn 328ng/g, Mo 0.04μg/g, Ni 0.5μg/g, Pb 0.70μg/g, Se 0.5μg/g, Sr 1.29μg/g, Tl 0.28ng/g and Zn 121μg/g. The values of trace elements here described could be considered as possible reference ranges for hair samples from children and adolescents aged 0-18 years living in the Madrid region (central Spain). These values could also be selected as a preliminary screening tool to assess exposure sources and to generate information needed to develop prevention strategies and likewise could be a complement to other diagnostic procedures. Copyright © 2016 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Huiming; Wu, Hongfei; Wang, Qin'geng; Yang, Meng; Li, Fengying; Sun, Yixuan; Qian, Xin; Wang, Jinhua; Wang, Cheng
2017-01-01
Information on chemical partitioning and associated risk of airborne metals, particularly during a haze-fog episode, is limited. Fine particulate matter (PM2.5) was collected during a severe haze-fog event in winter and non-haze-fog periods in summer and fall from an urban region of a typical Chinese mega-city, Nanjing. The particulate-bound metals (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Sr, Ti, V, and Zn) were chemically fractionated in a four-step sequential extraction procedure and human health risk was assessed. During the haze-fog episode, PM2.5 was extremely elevated with a mean concentration of 281 μg/m3 (range: 77-431 μg/m3), whereas the mean PM2.5 concentrations in summer and fall periods were 86 μg/m3 (range: 66-111 μg/m3) and 77 μg/m3 (range: 42-131 μg/m3), respectively. All elements had significantly higher concentrations and many metals exceeded relevant limits on haze-fog days. K, Na, Sr, Zn, Mo, Ca, Cd, Mg, Mn, Cu, Ba, Cr and As all showed relatively high proportions of the soluble and exchangeable fraction and strong bio-accessible potential. High temperature and humidity may increase the bio-accessible fraction of many airborne metals. The hazard index for potential toxic metals was 0.115, which was lower than the safe limit (1). However, the combined carcinogenic risk was 1.32 × 10- 6 for children and 5.29 × 10- 6 for adults, with both values being higher than the precautionary criterion (10- 6). Results of this study provide information for the behavior and risk mitigation of airborne metals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taufeeq, Saba, E-mail: sabataufeeq23@gmail.com; Parveen, Azra; Agrawal, Shraddha
2016-05-23
Nanoparticles (NPs) of Pure BaFe{sub 12}O{sub 19} and Strontium doped Barium Ferrite (Ba{sub 0.9}Sr{sub 0.1}Fe{sub 12}O{sub 19}) have been successfully synthesized by Auto combustion method using citric acid as a chelating agent and calcined at 450°C for 3 hrs and 850°C for 4 hrs. Microstructural studies were carried by XRD and SEM techniques. Structural studies suggest that the crystal system remains hexagonal even with the doping of Strontium. The XRD analysis confirms the formation of the structures in the nanometer regime and the peaks are the evidence of the crystalline phase. The SEM images shows the morphology of surface ofmore » the samples. The thermal property studied by TGA shows the weight loss which is with varying the temperature and weight loss also varies with Sr doping. The TGA analysis exhibits the loss of weight at different temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirsch, S.; Komissinskiy, P., E-mail: komissinskiy@oxide.tu-darmstadt.de; Flege, S.
2014-06-28
We report on the effects of Ag impurities at interfaces of parallel-plate Pt/Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}/Pt thin film ferroelectric varactors. Ag impurities occur at the interfaces due to diffusion of Ag from colloidal silver paint used to attach the varactor samples with their back side to the plate heated at 600–750 °C during deposition of Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}. X-ray photoelectron spectroscopy and secondary ion mass spectrometry suggest that amount and distribution of Ag adsorbed at the interfaces depend strongly on the adsorbent surface layer. In particular, Ag preferentially accumulates on top of the Pt bottom electrode. The presence of Agmore » significantly reduces the barrier height between Pt and Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} leading to an increased leakage current density and, thus, to a severe degradation of the varactor performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauhan, Sunil, E-mail: sunilchauhanjiit@gmail.com; Kumar, Manoj; Katyal, S. C.
2016-05-23
A Comparative study of heterovalent Ba, Sr and Ca ions substitution on the structural, vibrational, optical and magnetic properties of BiFeO{sub 3} nanoparticles was carried out. The distorted rhombohedral structure was confirmed from both X-ray diffraction and Raman spectroscopy techniques in pure BiFeO{sub 3} and Bi{sub 0.85}A{sub 0.15}FeO{sub 3} (A= Ba, Sr and Ca) samples. UV-Visible spectroscopy results show that the band-gap of BiFeO{sub 3} nanoparticles can be tuned by heterovalent ions substitution from 2.12 eV for BiFeO{sub 3} to 2.10, 2.06 and 2.03 eV for Ca, Sr and Ba substituted BiFeO{sub 3} nanoparticles respectively. The magnetic measurements indicate enhancementmore » in magnetization for heterovalent A{sup 2+} substituted BiFeO{sub 3} samples and the magnetization increases with increase of ionic radius of the substituted ions.« less
NASA Astrophysics Data System (ADS)
Zur, Lidia; Janek, Joanna; Pietrasik, Ewa; Sołtys, Marta; Pisarska, Joanna; Pisarski, Wojciech A.
2016-11-01
Series of Eu3+-doped lead-free germanate and borate glasses were synthesized. The MO glass modifiers (M = Ca, Sr or Ba) were partially or totally substituted by MF2 in chemical composition. In contrast to samples modified by CaO/CaF2 or SrO/SrF2, the germanate glass samples containing BaO and/or BaF2 are fully amorphous, while the lead-free borate glasses are fully amorphous, independently from glass modifiers. Effect of glass modifiers on spectroscopic properties of Eu3+ were systematically investigated. For that reason, excitation and emission spectra of Eu3+ ions in examined systems were registered. Based on the emission spectra, ratio of integrated luminescence intensity of the 5D0 → 7F2 transition to that of the 5D0 → 7F1 transition (R factor) was calculated. Moreover, the luminescence decay curves were collected and the luminescence lifetimes of the 5D0 excited state of Eu3+ ions were determined in function of MF2 concentration.
NASA Astrophysics Data System (ADS)
Saintilan, Nicolas J.; Spangenberg, Jorge E.; Samankassou, Elias; Kouzmanov, Kalin; Chiaradia, Massimo; Stephens, Michael B.; Fontboté, Lluís
2016-06-01
The current study has aimed to refine the previously proposed two-fluid mixing model for the Laisvall (sphalerite Rb-Sr age of 467 ± 5 Ma) and Vassbo Mississippi Valley-type deposits hosted in Ediacaran to Cambrian sandstone, Sweden. Premineralization cements include authigenic monazite, fluorapatite, and anatase in the Upper Sandstone at Laisvall, reflecting anoxic conditions during sandstone burial influenced by the euxinic character of the overlying carbonaceous middle Cambrian to Lower Ordovician Alum Shale Formation ( δ 13Corg = -33.0 to -29.5 ‰, δ 15Norg = 1.5 to 3.3 ‰, 0.33 to 3.03 wt% C, 0.02 to 0.08 wt% N). The available porosity for epigenetic mineralization, including that produced by subsequent partial dissolution of pre-Pb-Zn sulfide calcite and barite cements, was much higher in calcite- and barite-cemented sandstone paleoaquifers (29 % by QEMSCAN mapping) than in those mainly cemented by quartz (8 %). A major change in the Laisvall plumbing system is recognized by the transition from barite cementation to Pb-Zn sulfide precipitation in sandstone. Ba-bearing, reduced, and neutral fluids had a long premineralization residence time (highly radiogenic 87S/86Sr ratios of 0.718 to 0.723) in basement structures. As a result of an early Caledonian arc-continent collision and the development of a foreland basin, fluids migrated toward the craton and expelled Ba-bearing fluids from their host structures into overlying sandstone where they deposited barite upon mixing with a sulfate pool ( δ 34Sbarite = 14 to 33 ‰). Subsequently, slightly acidic brines initially residing in pre-Ediacaran rift sediments in the foredeep of the early Caledonian foreland basin migrated through the same plumbing system and acquired metals on the way. The bulk of Pb-Zn mineralization formed at temperatures between 120 and 180 °C by mixing of these brines with a pool of H2S ( δ 34S = 24 to 29 ‰) produced via thermochemical sulfate reduction (TSR) with oxidation of hydrocarbons in sandstone. Other minor H2S sources are identified. Upward migration and fluctuation of the hydrocarbon-water interface in sandstone below shale aquicludes and the formation of H2S along this interface explain the shape of the orebodies that splay out like smoke from a chimney and the conspicuous alternating layers of galena and sphalerite. Intimate intergrowth of bitumen with sphalerite suggests that subordinate amounts of H2S might have been produced by TSR during Pb-Zn mineralization. Gas chromatograms of the saturated hydrocarbon fraction from organic-rich shale and from both mineralized and barren sandstone samples indicate that hydrocarbons migrated from source rocks in the overlying Alum Shale Formation buried in the foredeep into sandstone, where they accumulated in favorable traps in the forebulge setting.
Reiman, Jeremy H; Xu, Y Jun; He, Songjie; DelDuco, Emily M
2018-08-01
Discharging 680 km 3 of freshwater annually to the Northern Gulf of Mexico (NGOM), the Mississippi-Atchafalaya River System (MARS) plays a significant role in transporting major and trace elements to the ocean. In this study, we analyzed total recoverable concentrations of thirty-one metals from water samples collected at five locations along the MARS during 2013-2016 to quantify their seasonal mass exports. The Atchafalaya River flows through a large swamp floodplain, allowing us to also test the hypothesis that floodplains function as a sink for metals. We found that the seven major elements (Ca, Na, Mg, Si, K, Al, and Fe) constituted 99% of the total annual mass load of metals (7.38 × 10 7 tons) from the MARS. Higher concentrations of Al, Ba, B, Ca, Fe, Mg, Mn, Ag, and Ti were found in the Mississippi River, while significantly higher Si and Na concentrations were found in the Atchafalaya River. Significant relationships were found between daily discharge and daily loads of Ba, Ca, Fe, K, Sr, and Ti in both rivers, while significant relationships were also found for Al, Mg, Mn, V, and Zn in the Atchafalaya River and B in the Mississippi River. Overall, the Mississippi River contributed 64-76% of the total annual loading of metals from the MARS to the NGOM. Daily loads of Al, Ba, B, Fe, Li, Mn, P, K, Si, Ag, Ti, V, and Zn regularly decreased upstream to downstream in the Atchafalaya River, partially accepting the initial hypothesis on metals transport in river floodplains. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pan, Shangke; Zhang, Jianyu; Pan, Jianguo
2018-02-01
To investigate the cause of the thermal instability of Yb3+-ions doped Ba3Gd(BO3)3 crystal grown from Czochralski technique, the low temperature phase β-Ba3Gd(BO3)3 powder was synthesized at the temperature of 800 °C. To inhibit the phase transition of high temperature phase Yb:α-Ba3Gd(BO3)3 during the crystal growth process, co-doping ions Sr2+, Ca2+ and La3+ ions were introduced in Yb:α-Ba3Gd(BO3)3 crystal. The melting point increased and the thermal stability of Yb:α-Ba3Gd(BO3)3 crystal was improved by co-doping ions. The absorption peaks of co-doped crystals centered at 976 nm with FWHM of 11, 11 and 12 nm and the absorption cross sections were 3.40 × 10-21 cm2, 4.00 × 10-21 cm2 and 2.66 × 10-21 cm2, respectively. The emission cross sections at 1040 nm were 2.19 × 10-21 cm2, 2.53 × 10-21 cm2 and 1.93 × 10-21 cm2, respectively. The fluorescence times of co-doped by Sr2+, Ca2+ and La3+ ions were shorter than that of Yb:α-Ba3Gd(BO3)3 crystal. So Yb:α-Ba3Gd(BO3)3 crystals co-doped by Sr2+, Ca2+ and La3+ ions will be more suitable for LD-pumping laser.
NASA Astrophysics Data System (ADS)
Truman, James Kelly
1992-01-01
The commercial application of superconducting rm YBa_2Cu_3O_{7 -x} thin films requires the development of deposition methods which can be used to reproducibly deposit films with good superconducting properties on insulating and semiconducting substrates. Sputter deposition is the most popular method to fabricate Y-Ba-Cu-O superconductor thin films, but when used in the standard configuration suffers from a deviation between the compositions of the Y-Ba-Cu-O sputter target and deposited films, which is thought to be primarily due to resputtering of the film by negative ions sputtered from the target. In this study, the negative ions were explicitly identified and were found to consist predominantly O^-. The sputter yield of O^- was found to depend on the Ba compound used in the fabrication of Y -Ba-Cu-O targets and was related to the electronegativity difference between the components. An unreacted mixture of rm Y_2O_3, CuO, and BaF_2 was found to have the lowest O^- yield among targets with Y:Ba:Cu = 1:2:3. The high yield of O^- from rm YBa_2Cu_3O _{7-x} was found to depend on the target temperature and be due to the excess oxygen present. The SIMS negative ion data supported the composition data for sputter-deposited Y-Ba-Cu-O films. Targets using BaF _2 were found to improve the Ba deficiency, the run-to-run irreproducibility and the nonuniformity of the film composition typically found in sputtered Y -Ba-Cu-O films. Superconducting Y-Ba-Cu-O films were formed on SrTiO_3 substrates by post-deposition heat treatment of Y-Ba-Cu-O-F films in humid oxygen. The growth of superconducting rm YBa_2Cu_3O_{7-x}, thin films on common substrates such as sapphire or silicon requires the use of a barrier layer to prevent the deleterious interaction which occurs between Y-Ba-Cu-O films and these substrates. Barrier layers of SrTiO_3 were studied and found to exhibit textured growth with a preferred (111) orientation on (100) Si substrates. However, SrTiO_3 was found to be unsuitable as a barrier layer for the growth of rm YBa _2Cu_3O_{7-x}, on Si since Ba reacted with the si after migrating through the SrTiO_3 layer. For sapphire, no textured growth of SrTiO_3 was observed but it was found to be a suitable barrier layer since it prevented any interaction between Y-Ba-Cu-O films and sapphire substrates.
Min, Xin; Huang, Zhaohui; Fang, Minghao; Liu, Yan'gai; Tang, Chao; Wu, Xiaowen
2016-04-01
In this paper, M3(VO4)2 (M = Mg, Ca, Sr, and Ba) self-activated phosphors were prepared by a solid-state reaction method at 1,000 °C for 5 h. The phase formation and micrographs were analyzed by X-ray diffraction and scanning electron microscopy. The Ca3(VO4)2 phosphor does not show any emission peaks under excitation with ultraviolet (UV) light. However, the M3(VO4)2 (M = Mg, Sr, and Ba) samples are effectively excited by UV light chips ranging from 200 nm to 400 nm and exhibit broad emission bands due to the charge transfer from the oxygen 2p orbital to the vacant 3d orbital of the vanadium in the VO4. The color of these phosphors changes from yellow to light blue via blue-green with increasing ionic radius from Mg to Sr to Ba. The luminescence lifetimes and quantum yield decrease with the increasing unit cell volume and V-V distance, in the order of Mg3(VO4)2 to Sr3(VO4)2 to Ba3(VO4)2. The emission intensity decreases with the increase of temperatures, but presents no color shift. This confirms that these self-activated M3(VO4)2 phosphors can be suggested as candidates of the single-phase phosphors for light using UV light emitting diodes (LEDs).
NASA Astrophysics Data System (ADS)
Timofeev, Ivan; Kosheleva, Natalia
2016-04-01
The present study aims to assess the changes in the trace element (TE) composition of Larix Sibirica species growing in the impact area of Dzhida Mo-W plant in the Zakamensk city. The objectives of the study were: (1) to reveal the biogeochemical background features and changes in the TE composition of larch needles and bark in the mining region; (2) to determine patterns of spatial distribution of TE content in larch organs; (3) to assess the ecological state of larch plantation in different land-use zones of the city. A landscape-geochemical survey of the territory was carried out in summer of 2013. Total of 21 mixed (taken from 3-5 trees) samples of needles and bark were collected in undisturbed and different land-use areas. The bulk contents of TEs in dry plant samples were analyzed by mass spectrometry with induced coupled plasma. Sixteen priority pollutants were selected for thorough analysis, including elements of hazard classes I (Zn, As, Pb, Cd), II (Cr, Co, Ni, Cu, Mo, Sb), III (V, Sr, Ba, W), and some others (Sn, Bi). Concentrations of TEs (C_b) in background trees were compared with the global clarks (C_g) for annual increment of terrestrial vegetation (Dobrovol'skii 2003) via calculating the global enrichment EF_g=C_b/Cg and dispersion factors DF_g=C_g/C_b}. The concentrations of the elements in the urban samples Ci were grouped depending on the type of land use and compared with the background (C_b) via calculating the local enrichment EF_l=C_i/Cb and dispersion factors DF_l=C_b/C_i. The ecological state of the urban plants was diagnosed using three TE ratios. The Fe/Mn ratio represents photosynthetic activity with optimum value 1.5-2.5. The Pb/Mn ratio characterizes balance between technogenic and biophilic elements, its value for unpolluted terrestrial plants is 0.006. The Cu/Zn ratio determines the proportionality in the provision of enzyme synthesis with these metals, its optimum value is 0.27. TE composition of needles of background larch is characterized by increased concentrations of ?? ? Mn (EF_g=2.9) ? Sr (1.5), and reduced ones for Ni, Co, Pb, Mo, Sn, V (DF_l=5.1-22.1), that of Cd, Cu, Zn are close to global clarks. Ba, Pb, Cd (EF_g=3.5-2.3) are accumulated in the bark, Cu, Zn, Co, Cr, Ni, Sn dissipate (DF_g=2.1-3.7), and the content of Mn, Sr, Mo, V, As is close to Cg. In the city larch needles accumulate Cr (EF_l=37.8), W (18.9), V, Pb, Bi (8.6-11.4), Sb, Ni, Cd, Sn (6.6-2.5); Mn (DF_l=3.1) is among scattered. Changes in the TE composition of larch bark is most clearly evident in the industrial area, where high concentrations of W, Sn (EF_l=5.4-6.6), Sb, Pb, As (2.8-3.4), Mo, Cd, V, Bi, Zn (1.5-2.0) and low ones -- of Cr, Ni, Co, Ba (DF_l=4.6-2.1) are observed. As an indicator of long-term pollution, bark displays that vegetation of industrial zone has been subject previously to most intense anthropogenic impact, so, Pb/Mn=0.06 was there the highest. After plant closing residential area experiences the greatest impact according to Fe/Mn=4.7; Pb/Mn=0.04 values in the needles. This is caused by the active transport of aeolian dry material of tailings. 1. Dobrovol'skii VV (2003) Basics of biogeochemistry: the textbook for students of higher educational institutions. Moscow, "Academia" Publ., 400 p.
The role of the seagrass Posidonia oceanica in the cycling of trace elements
NASA Astrophysics Data System (ADS)
Sanz-Lázaro, C.; Malea, P.; Apostolaki, E. T.; Kalantzi, I.; Marín, A.; Karakassis, I.
2012-03-01
The aim of this work was to study the role of the seagrass Posidonia oceanica on the cycling of a wide set of trace elements (Ag, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mn, Ni, Pb, Rb, Sr, Tl, V and Zn). We measured the concentration of these trace elements in the different compartments of P. oceanica (leaves, rhizomes, roots and epibiota) in a non-polluted seagrass meadow representative of the Mediterranean and calculated the annual budget from a mass balance. We provide novel data on accumulation dynamics of many trace elements in P. oceanica compartments and demonstrate that trace element accumulation patterns are mainly determined by plant compartment rather than by temporal variability. Epibiota was the compartment which showed the greatest concentrations for most trace elements. Thus, they constitute a key compartment when estimating trace element transfer to higher trophic levels by P. oceanica. For most trace elements, translocation seemed to be low and acropetal. Zn, Cd, Sr and Rb were the trace elements that showed the highest release rate through decomposition of plant detritus, while Cs, Tl and Bi the lowest. P. oceanica acts as a sink of potentially toxic trace elements (Ni, Cr, As and Ag), which can be sequestered, decreasing their bioavailability. P. oceanica may have a relevant role in the cycling of trace elements in the Mediterranean.
The role of the seagrass Posidonia oceanica in the cycling of trace elements
NASA Astrophysics Data System (ADS)
Sanz-Lázaro, C.; Malea, P.; Apostolaki, E. T.; Kalantzi, I.; Marín, A.; Karakassis, I.
2012-07-01
The aim of this study was to investigate the role of the seagrass Posidonia oceanica on the cycling of a wide set of trace elements (Ag, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mn, Ni, Pb, Rb, Sr, Tl, V and Zn). We measured the concentration of these trace elements in different compartments of P. oceanica (leaves, rhizomes, roots and epiphytes) in a non-polluted seagrass meadow representative of the Mediterranean and calculated the annual budget from a mass balance. We provide novel data on accumulation dynamics of many trace elements in P. oceanica compartments and demonstrate that trace element accumulation patterns are mainly determined by plant compartment rather than by temporal variability. Epiphytes were the compartment, which showed the greatest concentrations for most trace elements. Thus, they constitute a key compartment when estimating trace element transfer to higher trophic levels by P. oceanica. Trace element translocation in P. oceanica seemed to be low and acropetal in most cases. Zn, Cd, Sr and Rb were the trace elements that showed the highest release rate through decomposition of plant detritus, while Cs, Tl and Bi showed the lowest. P. oceanica acts as a sink of potentially toxic trace elements (Ni, Cr, As and Ag), which can be sequestered, decreasing their bioavailability. P. oceanica may have a relevant role in the cycling of trace elements in the Mediterranean.
Magneto-optical properties of BaTiO3/La0.76Sr0.24MnO3/BaTiO3 heterostructures
NASA Astrophysics Data System (ADS)
Moog, M.; Singamaneni, S. R.; Prater, J. T.; Biegalski, M. D.; Tsui, F.
2018-05-01
The magnetic properties of epitaxial BaTiO3/La0.76Sr0.24MnO3/BaTiO3 (BTO/LSMO/BTO) heterostructures have been studied using magneto-optic Kerr effect (MOKE) technique. Both longitudinal and polar MOKE were probed as a function of magnetic field and temperature (in the range between 80 and 320 K) for epitaxial films of BTO/LSMO/BTO and LSMO grown on TiO2-terminated SrTiO3 (001) substrates by pulsed laser deposition technique. The LSMO film without the BTO layers exhibits nearly square field-dependent MOKE hysteresis loops with low saturation fields below a bulk-like Curie temperature (TC) of ˜ 350K. In contrast, the film with the BTO layers exhibits a significantly suppressed TC of 155 K, accompanied by significantly enhanced coercive fields and perpendicular magnetic anisotropy.
NASA Astrophysics Data System (ADS)
Lindberg, P. A. P.; Shen, Z.-X.; Wells, B. O.; Dessau, D. S.; Ellis, W. P.; Borg, A.; Kang, J.-S.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.
1989-11-01
Photoemission measurements in the constant-final-state (absorption) mode were performed on three different classes of high-temperature superconductors Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ, BaBiO3, and Nd1.85Ce0.15CuO4 using synchrotron radiation from 20 to 200 eV. Absorption signals from all elements but Ce are identified. The results firmly show that the Bi 6s electrons are more delocalized in BaBiO3 than in Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ, in agreement with the results of band-structure calculations. Differences in the absorption signals due to O and Bi excitations between BaBiO3 and Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ are discussed. Delayed absorption onsets attributed to giant resonances (Ba 4d-->4f, La 4d-->4f, and Nd 4d-->4f transitions) are also reported.
Electronic structure and bonding interactions in Ba1- x Sr x Zr0.1Ti0.9O3 ceramics
NASA Astrophysics Data System (ADS)
Mangaiyarkkarasi, Jegannathan; Sasikumar, Subramanian; Saravanan, Olai Vasu; Saravanan, Ramachandran
2017-06-01
An investigation on the precise electronic structure and bonding interactions has been carried out on Ba1- x Sr x Zr0.1Ti0.9O3 (short for BSZT, x = 0, 0.05, 0.07 and 0.14) ceramic systems prepared via high-temperature solid state reaction technique. The influence of Sr doping on the BSZT structure has been examined by characterizing the prepared samples using PXRD, UV-visible spectrophotometry, SEM and EDS. Powder profile refinement of X-ray data confirms that all the synthesized samples have been crystallized in cubic perovskite structure with single phase. Charge density distribution of the BSZT systems has been completely analyzed by the maximum entropy method (MEM). Co-substitution of Sr at the Ba site and Zr at the Ti site into the BaTiO3 structure presents the ionic nature between Ba and O ions and the covalent nature between Ti and O ions, revealed from MEM calculations. Optical band gap values have been evaluated from UV-visible absorption spectra. Particles with irregular shapes and well defined grain boundaries are clearly visualized from SEM images. The phase purity of the prepared samples is further confirmed by EDS qualitative spectral analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahmood, A.; Materials Research Laboratory, Institute of Physics & Electronics, University of Peshawar, 25120; Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD
2015-12-15
Highlights: • Solid state processing of the (Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1−x}O{sub 3} ceramics. • Mn incorporated on the Ti-site into the host lattice of (Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1−x}O{sub 3}. • NTCR behavior was observed in the sintered samples. - Abstract: (Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1-x}O{sub 3} (x = 0.00, 0.013, 0.015 and 0.05) ceramics were prepared by solid state sintering route at the 1500 °C for 6 h in air. Effect of Mn substitution on the structure of Ba{sub 0.3}Sr{sub 0.7}(Ti0{sub .9}Zr{sub 0.1}){sub 1−x}O{sub 3} perovskite was investigated systematically. Dielectric and impedancemore » spectroscopic studies were conducted to understand the electronic microstructure of the Ba{sub 0.3}Sr{sub 0.7}(Ti0{sub .9}Zr{sub 0.1}){sub 1−x}O{sub 3} ceramics. Sample with x = 0.05 showed the highest dielectric constant (ϵ{sub r} = 1826) and low dielectric loss (tanδ = 0.001) at 10 kHz, around the room temperature, while the sample with x = 0.00 showed good microwave (MW) dielectric properties (Qf{sub o} = 838 and ϵ{sub r} = 550). The impedance spectroscopic analysis confirmed the electrical homogeneity of the samples with x = 0.013, 0.015 and 0.05, where grain boundaries dominated the conduction mechanism. Similarly, the sample with x = 0.00 was found to possess both grain boundary and bulk resistive contributions.« less
Jenke, Dennis; Rivera, Christine; Mortensen, Tammy; Amin, Parul; Chacko, Molly; Tran, Thang; Chum, James
2013-01-01
Nearly 100 individual test articles, representative of materials used in pharmaceutical applications such as packaging and devices, were extracted under exaggerated conditions and the levels of 32 metals and trace elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ge, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, V, Zn, and Zr) were measured in the extracts. The extracting solvents included aqueous mixtures at low and high pH and an organic solvent mixture (40/60 ethanol water). The sealed vessel extractions were performed by placing an appropriate portion of the test articles and an appropriate volume of extracting solution in inert extraction vessels and exposing the extraction units (and associated extraction blanks) to defined conditions of temperature and duration. The levels of extracted target elements were measured by inductively coupled plasma atomic emission spectroscopy. The overall reporting threshold for most of the targeted elements was 0.05 μg/mL, which corresponds to 0.5 μg/g for the most commonly utilized extraction stoichiometry (1 g of material per 10 mL of extracting solvent). The targeted elements could be classified into four major groups depending on the frequency with which they were present in the over 250 extractions reported in this study. Thirteen elements (Ag, As, Be, Cd, Co, Ge, Li, Mo, Ni, Sn, Ti, V, and Zr) were not extracted in reportable quantities from any of the test articles under any of the extraction conditions. Eight additional elements (Bi, Cr, Cu, Mn, Pb, Sb, Se, and Sr) were rarely extracted from the test articles at reportable levels, and three other elements (Ba, Fe, and P) were infrequently extracted from the test articles at reportable levels. The remaining eight elements (Al, B, Ca, Mg, Na, S, Si, and Zn) were more frequently present in the extracts in reportable quantities. These general trends in accumulation behavior were compared to compiled lists of elements of concern as impurities in pharmaceutical products. Nearly 100 individual test articles, representative of materials used in pharmaceutical applications such as packaging and devices, were extracted under exaggerated conditions, and the levels of thirty-two metals and trace elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ge, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, V, Zn, and Zr) were measured in the extracts. The targeted elements could be classified into four major groups depending on the frequency with which they were present in the extractions reported in this study: those elements that were not extracted in reportable quantities from any of the test articles under any of the extraction conditions, those elements that were rarely extracted from the test articles at reportable levels, those elements that were infrequently extracted from the test articles at reportable levels, and those elements that were more frequently present in the extracts in reportable quantities.
Haase, Andreas; Hartung, Klaus
2009-01-01
Kinetic properties of the Na-Ca exchanger (guinea pig NCX1) expressed in Xenopus oocytes were investigated with excised membrane patches in the inside-out configuration and photolytic Ca2+ concentration jumps with either 5 mM extracellular Sr2+ or Ba2+. After a Ca2+ concentration jump on the cytoplasmic side, the exchanger performed Sr-Ca or Ba-Ca exchange. In the Sr-Ca mode, currents are transient and decay in a monoexponential manner similar to that of currents in the Ca-Ca exchange mode described before. Currents recorded in the Ba-Ca mode are also transient, but the decay is biphasic. In the Sr-Ca mode the amount of charge translocated increases at negative potentials in agreement with experiments performed in the Ca-Ca mode. In the Ba-Ca mode the total amount of charge translocated after a Ca2+ concentration jump is ∼4 to 5 times that in Ca-Ca or Sr-Ca mode. In the Ba-Ca mode the voltage dependence of charge translocation depends on the Ca2+ concentration on the cytosolic side before the Ca2+ concentration jump. At low initial Ca2+ levels (∼0.5 μM), charge translocation is voltage independent. At a higher initial concentration (1 μM Ca2+), the amount of charge translocated increases at positive potentials. Biphasic relaxation of the current was also observed in the Ca-Ca mode if the external Ca2+ concentration was reduced to ≤0.5 mM. The results reported here and in previous publications can be described by using a 6-state model with two voltage-dependent conformational transitions. PMID:19486679
Structure evolution upon chemical and physical pressure in (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiittanen, T.; Karppinen, M., E-mail: maarit.karppinen@aalto.fi
Here we demonstrate the gradual structural transformation from the monoclinic I2/m to tetragonal I4/m, cubic Fm-3m and hexagonal P6{sub 3}/mmc structure upon the isovalent larger-for-smaller A-site cation substitution in the B-site ordered double-perovskite system (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6}. This is the same transformation sequence previously observed up to Fm-3m upon heating the parent Sr{sub 2}FeSbO{sub 6} phase to high temperatures. High-pressure treatment, on the other hand, transforms the hexagonal P6{sub 3}/mmc structure of the other end member Ba{sub 2}FeSbO{sub 6} back to the cubic Fm-3m structure. Hence we may conclude that chemical pressure, physical pressure and decreasing temperature allmore » work towards the same direction in the (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6} system. Also shown is that with increasing Ba-for-Sr substitution level, i.e. with decreasing chemical pressure effect, the degree-of-order among the B-site cations, Fe and Sb, decreases. - Graphical abstract: In the (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6} double-perovskite system the gradual structural transformation from the monoclinic I2/m to tetragonal I4/m, cubic Fm-3m and hexagonal P6{sub 3}/mmc structure is seen upon the isovalent larger-for-smaller A-site cation substitution. High-pressure treatment under 4 GPa extends stability of the cubic Fm-3m structure within a wider substitution range of x. - Highlights: • Gradual structural transitions upon A-cation substitution in (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6.} • With increasing x structure changes from I2/m to I4/m, Fm-3m and P6{sub 3}/mmc. • Degree of B-site order decreases with increasing x and A-site cation radius. • High-pressure treatment extends cubic Fm-3m phase stability for wider x range. • High-pressure treatment affects bond lengths mostly around the A-cation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haynes, Alyssa S.; Liu, Te-Kun; Frazer, Laszlo
We synthesized the barium/strontium solid solution sequence Ba 6-xSr x[Ag( 4-y)Sn( y/4)](SnS 4) 4 for nonlinear optical (NLO) applications in the infrared (IR) via a flux synthesis route. All title compounds are isotypic, crystallizing in the cubic space group Imore » $$\\bar{_4}$$ 3d and are composed of a three-dimensional (3D) anionic framework of alternating corner-sharing SnS 4 and AgS 4 tetrahedra charge balanced by Ba and Sr. The shrinkage of Ba/Sr-S bond lengths causes the tetrahedra in the anionic framework to become more distorted, which results in a tunable band gap from 1.58 to 1.38 eV with increasing x values. The performance of the barium limit (x=0) is also superior to that of Sr (x=6), but surprisingly second harmonic generation (SHG) of the solid solution remains strong and is insensitive to the value of x over the range 0-3.8. Results show that the non-type-I phase-matched SHG produced by these cubic chalcogenides display intensities higher than the benchmark AgGaSe 2 from 600 to 1000 nm.« less
Effect of Sr doping on structural and magnetic behavior of SmBa1-xSrxCo2O5+δ (x = 0 and 1)
NASA Astrophysics Data System (ADS)
Kumari, Archana; Dhanasekhar, C.; Das, A. K.
2018-05-01
Layered double perovskite, SmBa1-xSrxCo2O5+δ (x = 0, δ = 0.5 and x = 1, δ = 1) samples were prepared by solid state reaction method. X-ray diffraction studies show that the SmBaCo2O5.5 sample crystallizes in the orthorhombic crystal structure with Pmmm space group, whereas SmSrCo2O6 sample crystallizes in the orthorhombic crystal structure with Pnma space group. The temperature dependent magnetization of the SmBaCo2O5.5 sample shows a paramagnetic (PM)-ferromagnetic (FM) and a FM-antiferromagnetic (AFM) transitions at TC = 267 K and TN = 221 K, respectively. In contrast, the SmSrCo2O6 sample shows a PM-FM transition at TC = 175 K. According to Goodenough-Kanamori-Anderson rules, the ferromagnetic behavior in SmSrCo2O6 can be understood from the super exchange interaction between the intermediate spin Co3+ and low spin Co4+ via O2- (IS Co3+ -O2- - LS Co4+). The change in magnetic entropy (ΔSMmax) is found to be maximum for the SmSrCo2O6 sample.
Increased Curie Temperature Induced by Orbital Ordering in La0.67Sr0.33MnO3/BaTiO3 Superlattices.
Zhang, Fei; Wu, Biao; Zhou, Guowei; Quan, Zhi-Yong; Xu, Xiao-Hong
2018-01-17
Recent theoretical studies indicated that the Curie temperature of perovskite manganite thin films can be increased by more than an order of magnitude by applying appropriate interfacial strain to control orbital ordering. In this work, we demonstrate that the regular intercalation of BaTiO 3 layers between La 0.67 Sr 0.33 MnO 3 layers effectively enhances ferromagnetic order and increases the Curie temperature of La 0.67 Sr 0.33 MnO 3 /BaTiO 3 superlattices. The preferential orbital occupancy of e g (x 2 -y 2 ) in La 0.67 Sr 0.33 MnO 3 layers induced by the tensile strain of BaTiO 3 layers is identified by X-ray linear dichroism measurements. Our results reveal that controlling orbital ordering can effectively improve the Curie temperature of La 0.67 Sr 0.33 MnO 3 films and that in-plane orbital occupancy is beneficial to the double exchange ferromagnetic coupling of thin-film samples. These findings create new opportunities for the design and control of magnetism in artificial structures and pave the way to a variety of novel magnetoelectronic applications that operate far above room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sangeetha, N. S.; Smetana, V.; Mudring, A. -V.
Here, crystals of SrMn 2Sb 2 and BaMn 2Sb 2 were grown using Sn flux and characterized by powder and single-crystal x-ray diffraction, respectively, and by single-crystal electrical resistivity ρ, heat capacity C p, and magnetic susceptibility χ measurements versus temperature T, and magnetization versus field M(H) isotherm measurements. SrMn 2Sb 2 adopts the trigonal CaAl 2Si 2-type structure, whereas BaMn 2Sb 2 crystallizes in the tetragonal ThCr 2Si 2-type structure. The ρ(T) data indicate semiconducting behaviors for both compounds with activation energies of ≳0.35 eV for SrMn 2Sb 2 and 0.16 eV for BaMn 2Sb 2. The χ(T) andmore » C p(T) data reveal antiferromagnetic (AFM) ordering at T N = 110 K for SrMn 2Sb 2 and 450 K for BaMn 2Sb 2. The anisotropic χ(T≤T N) data also show that the ordered moments in SrMn 2Sb 2 are aligned in the hexagonal ab plane, whereas the ordered moments in BaMn 2Sb 2 are aligned collinearly along the tetragonal c axis. The ab-plane M(H) data for SrMn 2Sb 2 exhibit a continuous metamagnetic transition at low fields 02Sb 2 exhibits no metamagnetic transitions up to 5.5 T. The χ(T) and C p(T) data for both SrMn 2Sb 2 and BaMn 2Sb 2 indicate strong dynamic short-range AFM correlations above their respective T N up to at least 900 K within a local-moment picture, corresponding to quasi-two-dimensional magnetic behavior. The present results and a survey of the literature for Mn pnictides with the CaAl 2Si 2 and ThCr 2Si 2 crystal structures show that the T N values for the CaAl 2Si 2-type compounds are much smaller than those for the ThCr 2Si 2-type materials.« less
Versatile fluoride substrates for Fe-based superconducting thin films
NASA Astrophysics Data System (ADS)
Kurth, F.; Reich, E.; Hänisch, J.; Ichinose, A.; Tsukada, I.; Hühne, R.; Trommler, S.; Engelmann, J.; Schultz, L.; Holzapfel, B.; Iida, K.
2013-04-01
We demonstrate the growth of Co-doped BaFe2As2 (Ba-122) thin films on CaF2 (001), SrF2 (001), and BaF2 (001) single crystal substrates using pulsed laser deposition. All films are grown epitaxially despite of a large misfit of -10.6% for BaF2 substrate. For all films, a reaction layer is formed at the interface confirmed by X-ray diffraction and for the films grown on CaF2 and BaF2 additionally by transmission electron microscopy. The superconducting transition temperature of the film on CaF2 is around 27 K, whereas the corresponding values of the films on SrF2 and BaF2 are around 22 K and 21 K, respectively. The Ba-122 on CaF2 shows almost identical crystalline quality and superconducting properties as films on Fe-buffered MgO.
Synchrotron X-ray studies of epitaxial ferroelectric thin films and nanostructures
NASA Astrophysics Data System (ADS)
Klug, Jeffrey A.
The study of ferroelectric thin films is a field of considerable scientific and technological interest. In this dissertation synchrotron x-ray techniques were applied to examine the effects of lateral confinement and epitaxial strain in ferroelectric thin films and nanostructures. Three materials systems were investigated: laterally confined epitaxial BiFeO3 nanostructures on SrTiO3 (001), ultra-thin commensurate SrTiO 3 films on Si (001), and coherently strained films of BaTiO3 on DyScO3 (110). Epitaxial films of BiFeO3 were deposited by radio frequency magnetron sputtering on SrRuO3 coated SrTiO 3 (001) substrates. Laterally confined nanostructures were fabricated using focused ion-beam processing and subsequently characterized with focused beam x-ray nanodiffraction measurements with unprecedented spatial resolution. Results from a series of rectangular nanostructures with lateral dimensions between 500 nm and 1 mum and a comparably-sized region of the unpatterned BiFeO3 film revealed qualitatively similar distributions of local strain and lattice rotation with a 2-3 times larger magnitude of variation observed in those of the nanostructures compared to the unpatterned film. This indicates that lateral confinement leads to enhanced variation in the local strain and lattice rotation fields in epitaxial BiFeO3 nanostructures. A commensurate 2 nm thick film of SrTiO3 on Si was characterized by the x-ray standing wave (XSW) technique to determine the Sr and Ti cation positions in the strained unit cell in order to verify strain-induced ferroelectricity in SrTiO3/Si. A Si (004) XSW measurement at 10°C indicated that the average Ti displacement from the midpoint between Sr planes was consistent in magnitude to that predicted by a density functional theory (DFT) calculated ferroelectric structure. The Ti displacement determined from a 35°C measurement better matched a DFT-predicted nonpolar structure. The thin film extension of the XSW technique was employed to measure the polar displacement of the Ba cations in a 50 nm thick coherently strained BaTiO3 film on DyScO3 (110). An analysis assuming a bulk-like ratio between the Ti and Ba displacements found that the polar shift of Ba cations was larger than in bulk BaTiO3, which was consistent with strain-induced enhancement of ferroelectric polarization in BaTiO3/DyScO3 (110).
Metal (Ca, Ba, Sr, Pb) heptafluorotantalates(V): Synthesis, Raman spectra and crystal structures
NASA Astrophysics Data System (ADS)
Bunič, Tina; Tramšek, Melita; Goreshnik, Evgeny; Žemva, Boris
2007-01-01
MTaF 7 (M = Ca, Sr, Ba, Pb) were prepared by the reaction of MF 2 + Ta + F 2 (Ca, Sr, Ba) or MF 2 + TaF 5 in anhydrous HF. CaTaF 7 crystallizes in a monoclinic P2 1/ a space group, a = 9.793(3) Å, b = 11.608(3) Å, c = 13.359(4) Å, β = 90.539(13)°, V = 1518.5(7) Å 3. All Ta atoms possess distorted pentagonal-bipyramidal environment with Ta-F distances of 1.878(14)-2.044(13) Å. Three crystallographically independent Ca atoms have coordination number 8. Ca-F distances lie in the range of 2.239(16)-2.836(17) Å. Each Ca 2+ and TaF 72- moiety is bonded to 6 counter-ions. BaTaF 7 crystallizes in a cubic system, space group Pa3¯,a = 9.9009(3)Å, V = 970.56(5) Å 3. Coordination sphere around Ta atom is mono-capped trigonal prism with a Ta-F distance of 1.916(5)-2.004(5) Å. Two crystallographically independent barium atoms have different coordination numbers: for Ba1 C.N. is 12 with Ba1-F distances of 6 × 2.761(5) Å and 6 × 2.858(5) Å, for Ba2 C.N. is 14 with Ba2-F bond lengths 6 × 2.718(5), 2 × 2.814(8) and 6 × 3.236(5) Å. Ba 2+ and TaF 72- moieties are bonded to 8 neighbors. Isostructural PbTaF 7 and SrTaF 7 appear to be monoclinic, space group P2 1/ m, a = 4.8657(11) Å, b = 7.2298(16) Å, c = 6.7370(16) Å, β = 93.932(13)°, V = 236.44(9) Å 3 for PbTaF 7, and a = 4.875(3) Å, b = 7.196(4) Å, c = 6.7218(13) Å, β = 94.265(10), V = 235.2(2) Å for SrTaF 7. Tantalum coordination polyhedron may be described as a distorted mono-capped trigonal prism with the capping atom located on one of the rectangular faces with Ta-F distances of 1.868(3)-1.982(3) Å (PbTaF 7) and 1.908(16)-2.019(12) Å (SrTaF 7). Lead (or strontium) atoms are 9-coordinated and may be viewed as strongly distorted tri-capped trigonal prism, Pb-F 2.438(4)-2.669(3) Å, Sr-F 2.501(19)-2.860(19) Å. Each cation is connected to 8 anions.
1998-02-01
BaTiO3 Ferromagnets M., = 1.4 g SrRuO3 Colossal Magnetoresistance AR/RH > 104~ (6 T) (La,Sr)MnO 3 3 submitted to JOM B4Ti 3O12 PbUiO 3 (Ba,K)BiO3 YBa2C...films, perhaps as a result of those films being closer to the correct Ba/Ti stoichiometric ratio. This is seen in Fig. 5, where data for the permittivity ...as a function of temperature is shown for a 60 nm thick BaTiO 3 film (Note Permittivity BSS-12 -- Ls BSS12 that as explained earlier, this film
Metal-halide mixtures for latent heat energy storage
NASA Technical Reports Server (NTRS)
Chen, K.; Manvi, R.
1981-01-01
Alkali metal and alkali halide mixtures are identified which may be suitable for thermal energy storage at temperatures above 600 C. The use of metal-halides is appropriate because of their tendency to form two immiscible melts with a density difference, which reduces scale formation and solidification on heat transfer surfaces. Also, the accumulation of phase change material along the melt interface is avoided by the self-dispersing characteristic of some metal-halides, in particular Sr-SrCl2, Ba-BaCl2, and Ba-BaBr2 mixtures. Further advantages lie in their high thermal conductivities, ability to cope with thermal shock, corrosion inhibition, and possibly higher energy densities.
NASA Astrophysics Data System (ADS)
Lu, Xin; Park, W. K.; Greene, L. H.; Yuan, H. Q.; Chen, G. F.; Luo, G. L.; Wang, N. L.; Sefat, A. S.; McGuire, M. A.; Jin, R.; Sales, B. C.; Mandrus, D.; Gillett, J.; Sebastian, S. E.
2010-03-01
PCARS is applied to investigate the superconducting gap in iron pnictide single crystal superconductors of the AFe2As2 (A=Ba, Sr) family with two categories of G(V) curves observed [1]: one where Andreev reflection (AR) is present for (Ba0.6K0.4)Fe2As2 and Ba(Fe0.9Co0.1)2As2, and the other without AR but a V^2/3 shape for Sr0.6Na0.4Fe2As2 and Sr(Fe0.9Co0.1)2As2. The latter is also observed in the nonsuperconducting parent compound BaFe2As2. Mesoscopic phase-separated coexistence of magnetic and superconducting orders is considered to explain distinct behaviors. A gap size ˜3.0-4.0 meV with 2δ0/kBTc˜2.0-2.6 is observed for PCARS on Ba0.6K0.4Fe2As2. For the Ba(Fe0.9Co0.1)2As2, G(V) curves typically display a zero-bias conductance peak, sometimes with a V-shape background. [1] Xin Lu et al., arXiv:0910.4230
65Zn and 133Ba standardizing by photon-photon coincidence counting
NASA Astrophysics Data System (ADS)
Loureiro, Jamir S.; da Cruz, Paulo A. L.; Iwahara, Akira; Delgado, José U.; Lopes, Ricardo T.
2018-03-01
The LNMRI/Brazil has deployed a system using X-gamma coincidence technique for the standardizing radionuclide, which present simple and complex decay scheme with X-rays of energy below 100 keV. The work was carried on radionuclide metrology laboratory using a sodium iodide detector, for gamma photons, in combination with a high purity germanium detector for X-rays. Samples of 65Zn and 133Ba were standardized and the results for both radionuclides showed good precision and accuracy when compared with reference values. The standardization differences were 0.72 % for 65Zn and 0.48 % for 133Ba samples.
p-tert-Butylcalix[6]arene hexacarboxylic acid as host for Pb(ii), Sr(ii) and Ba(ii)†
Adhikari, Birendra Babu; Zhao, Xiang; Derakhshan, Shahab
2015-01-01
p-tert-Butylcalixarene hexacarboxylic acid initially binds with low symmetry, to later adopt a highly symmetric up-down alternating conformation in the presence of Pb, Sr or Ba. The conformational dynamics for the three ions are distinct, from 15 hours, to 20 days, to 38 days, respectively. PMID:25198172
NASA Astrophysics Data System (ADS)
Jayalakshmi, D. S.; Sundareswari, M.; Viswanathan, E.; Das, Abhijeet
2018-04-01
The electrical conductivity, resistivity and Seebeck coefficient, Pauli magnetic susceptibility and power factor are computed under temperature (100 K - 800 K) in steps of 100 K for the theoretically designed compounds namely (Ca,Sr,Ba)Fe2Bi2 and their parent compounds namely (Ca,Sr,Ba)Fe2As2 by using Boltzmann transport theory interfaced to the Wien2k program. The Bulk modulus, electron phonon coupling constant, thermoelectric figure of merit (ZT) and transition temperature are calculated for the optimized anti ferromagnetic phase of the proposed compounds. The results are discussed for the novel compounds in view of their superconductivity existence and compared with their parent unconventional superconducting compounds.
Enhance D. C. resistivity of Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} ceramic by acceptor (Mn) doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Hakikat, E-mail: sharmahakikat@yahoo.in; Arya, G. S.; Pramar, Kusum
2015-05-15
In the present work, we prepared Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} and Mn (2 and 3 at % on Ti site) doped Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} ceramic by sol- gel method. The samples were characterized by X-ray diffraction (XRD). The XRD patterns reveled that Mn ions did not change the perovskite structure of BST (70/30). The dielectric measurements proved that dielectric constant decreased with Mn doping. The dc resistivity was studied by using I-V measurements. The dc resistivity of the BST increased with Mn doping, which suppressed the leakage current.
NASA Astrophysics Data System (ADS)
Liu, Shengfa; Shi, Xuefa; Yang, Gang; Khokiattiwong, Somkiat; Kornkanitnan, Narumol
2016-04-01
In this study, we analyze major and trace elements (SiO2, Al2O3, Fe2O3, CaO, K2O, MgO, Na2O, TiO2, P2O5, MnO, Cu, Pb, Ba, Sr, V, Zn, Co, Ni, Cr, and Zr) and grain size of 157 surface sediment samples from the western Gulf of Thailand (GoT). On the basis of the space distribution characteristics, the study area can be classified into three geochemical provinces. Province I covers the northern and northwestern coastal zones of the GoT, including the whole upper GoT and thus the sediments from the rivers in the area. It contains high contents of SiO2. Province II is located in the middle of the GoT and has similar geochemistry composition as the South China Sea (SCS). It contains sediments that are characterized by higher contents of Na2O, TiO2, Ba, Cr, V, Zn, Zr, and Ni. Province Ш is located in the lower GoT, close to Malaysia. Major and trace elements in this area showed complex distribution patterns, which may be due to terrestrial materials from Malay rivers combining with some sediments from the SCS in this province. The results also indicate that grain size is the controlling factor in elemental contents, and that the hydrodynamic environment and mineral composition of the sediments play an important role in the distribution of these elements. The anthropogenic impact of heavy metal introduction (especially Cr, Zn, Cu, and Pb) can be seen in surface sediments from the nearshore region of Chantaburi province and north of Samui Island.
NASA Astrophysics Data System (ADS)
Cheung, A. H.; Cole, J. E.; Vetter, L.; Jimenez, G.; Thompson, D. M.; Tudhope, A. W.
2017-12-01
Sea surface temperature (SST) in the Eastern Equatorial Pacific (EEP) exhibits large variability on multiple timescales. These variations are often related to modes of climate variability that exert significant influence on global climate, such as the El Niño Southern Oscillation. However, the short length and sparsity of instrumental data in the EEP limits our ability to discern changes in this region. Geochemical signals in corals can help extend instrumental data further back in time. While δ18O and Sr/Ca are the most commonly analyzed geochemical tracers of SST in corals, they often have site-specific complications. Several alternatives (e.g., Li/Mg) have been proposed to overcome these challenges, but have yet to be applied to long climate records, in part due to the cost and time required to measure these elements. Here, we develop a new method that uses Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) to analyze Li/Mg, Sr/Ca, and Ba/Ca ratios in coral aragonite. We apply this method to two Porites spp. corals collected from the northern Galapagos archipelago (Wolf and Darwin Islands). We specifically assess the fidelity of Li/Mg and Sr/Ca to reconstruct SST, and Ba/Ca to reconstruct upwelling conditions. Our results confirm that both Li/Mg and Sr/Ca track SST. We show that despite analytical noise, downcore reconstructions of Li/Mg have the potential to provide additional information about SST that is not present in reconstructions generated from Sr/Ca alone. Skeletal Ba/Ca shows little relationship with upwelling, perhaps because of the distance of our sites from the center of upwelling in the southern Galapagos. These results demonstrate the potential for analyzing Sr, Li, Ba, Mg simultaneously in corals with a cost- and time- efficient method, which may be applied to coral paleoclimate sites worldwide.
NASA Astrophysics Data System (ADS)
Khan, Nawazish A.; Mumtaz, M.; Ahadian, M. M.; Iraji-zad, Azam
2007-03-01
The X-ray photoemission (XPS) measurements of Cu 1- xTl xBa 2Ca 2Cu 3- yZn yO 10- δ ( y = 0, 2.65) superconductors have been performed and compared. These studies revealed that the charge state of thallium in the Cu 0.5Tl 0.5Ba 2O 4- δ charge reservoir layer in Zn doped samples is Tl 1+, while it is a mix of Tl 1+ and Tl 2+ in Zn free samples. The binding energy of Ba atoms in the Zn doped samples is shifted to higher energy, which when considered along with the presence of Tl 1+ suggested that it more efficiently directed the carriers to ZnO 2 and CuO 2 planes. The evidence of improved inter-plane coupling witnessed in X-ray diffraction is also confirmed by XPS measurements of Ca atoms in the Zn doped samples. The shift of the valance band spectrum in these Zn doped samples to higher energies suggested that the electrons at the top edge of the valance band were tied to a higher binding energy (relative to samples without Zn doping), which most likely resulted in a much lower energy state of the system in the superconducting state. The stronger superconducting state arising out of these effects is witnessed in the form of increased Tc( R = 0), Jc and the extent of diamagnetism in the final compound.
Testing Room-Temperature Ionic Liquid Solutions for Depot Repair of Aluminum Coatings
2011-05-01
Ne 3 Na Mg IIIB IVB VB VIB VIIB ------ VIIIB ------ IB IIB Al Si P S Cl Ar 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 5 Rb Sr Y Zr Nb Mo Tc...Ru Rh Pd Ag Cd In Sn Sb Te I Xe 6 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 7 Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np...Electroplating Bath Lid Arrangement ;:::::::::::=== Thermometer Purge gas vent Anode lead Cathode lead (Extractable from the lid) Purge feed gas
Shin, Yeong Jae; Kim, Yoonkoo; Kang, Sung-Jin; Nahm, Ho-Hyun; Murugavel, Pattukkannu; Kim, Jeong Rae; Cho, Myung Rae; Wang, Lingfei; Yang, Sang Mo; Yoon, Jong-Gul; Chung, Jin-Seok; Kim, Miyoung; Zhou, Hua; Chang, Seo Hyoung; Noh, Tae Won
2017-05-01
The atomic-scale synthesis of artificial oxide heterostructures offers new opportunities to create novel states that do not occur in nature. The main challenge related to synthesizing these structures is obtaining atomically sharp interfaces with designed termination sequences. In this study, it is demonstrated that the oxygen pressure (PO2) during growth plays an important role in controlling the interfacial terminations of SrRuO 3 /BaTiO 3 /SrRuO 3 (SRO/BTO/SRO) ferroelectric (FE) capacitors. The SRO/BTO/SRO heterostructures are grown by a pulsed laser deposition method. The top SRO/BTO interface, grown at high PO2 (around 150 mTorr), usually exhibits a mixture of RuO 2 -BaO and SrO-TiO 2 terminations. By reducing PO2, the authors obtain atomically sharp SRO/BTO top interfaces with uniform SrO-TiO 2 termination. Using capacitor devices with symmetric and uniform interfacial termination, it is demonstrated for the first time that the FE critical thickness can reach the theoretical limit of 3.5 unit cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shin, Yeong Jae; Kim, Yoonkoo; Kang, Sung -Jin; ...
2017-03-03
Here, the atomic-scale synthesis of artificial oxide heterostructures offers new opportunities to create novel states that do not occur in nature. The main challenge related to synthesizing these structures is obtaining atomically sharp interfaces with designed termination sequences. In this study, it is demonstrated that the oxygen pressure (P O2) during growth plays an important role in controlling the interfacial terminations of SrRuO 3/BaTiO 3/SrRuO 3 (SRO/BTO/SRO) ferroelectric (FE) capacitors. The SRO/BTO/SRO heterostructures are grown by a pulsed laser deposition method. The top SRO/BTO interface, grown at high P O2 (around 150 mTorr), usually exhibits a mixture of RuO 2-BaOmore » and SrO-TiO 2 terminations. By reducing P O2, the authors obtain atomically sharp SRO/BTO top interfaces with uniform SrO-TiO 2 termination. Using capacitor devices with symmetric and uniform interfacial termination, it is demonstrated for the first time that the FE critical thickness can reach the theoretical limit of 3.5 unit cells.« less
Interfacial dislocations in (111) oriented (Ba 0.7Sr 0.3)TiO 3 films on SrTiO 3 single crystal
Shen, Xuan; Yamada, Tomoaki; Lin, Ruoqian; ...
2015-10-08
In this study, we have investigated the interfacial structure of epitaxial (Ba,Sr)TiO 3 films grown on (111)-oriented SrTiO 3 single-crystal substrates using transmission electron microscopy (TEM) techniques. Compared with the (100) epitaxial perovskite films, we observe dominant dislocation half-loop with Burgers vectors of a<110> comprised of a misfit dislocation along <112>, and threading dislocations along <110> or <100>. The misfit dislocation with Burgers vector of a <110> can dissociate into two ½ a <110> partial dislocations and one stacking fault. We found the dislocation reactions occur not only between misfit dislocations, but also between threading dislocations. Via three-dimensional electron tomography,more » we retrieved the configurations of the threading dislocation reactions. The reactions between threading dislocations lead to a more efficient strain relaxation than do the misfit dislocations alone in the near-interface region of the (111)-oriented (Ba 0.7Sr 0.3)TiO 3 films.« less
Trace elements in lake sediments measured by the PIXE technique
NASA Astrophysics Data System (ADS)
Gatti, Luciana V.; Mozeto, Antônio A.; Artaxo, Paulo
1999-04-01
Lakes are ecosystems where there is a great potential of metal accumulation in sediments due to their depositional characteristics. Total concentration of trace elements was measured on a 50 cm long sediment core from the Infernão Lake, that is an oxbow lake of the Moji-Guaçu River basin, in the state of São Paulo, Brazil. Dating of the core shows up to 180 yrs old sediment layers. The use of the PIXE technique for elemental analysis avoids the traditional acid digestion procedure common in other techniques. The multielemental characteristic of PIXE allows a simultaneous determination of about 20 elements in the sediment samples, such as, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Sr, Zr, Ba, and Pb. Average values for the elemental composition were found to be similar to the bulk crustal composition. The lake flooding pattern strongly influences the time series of the elemental profiles. Factor analysis of the elemental variability shows five factors. Two of the factors represent the mineralogical matrix, and others represent the organic component, a factor with lead, and another loaded with chromium. The mineralogical component consists of elements such as, Fe, Al, V, Ti, Mn, Ni, K, Zr, Sr, Cu and Zn. The variability of Si is explained by two distinct factors, because it is influenced by two different sources, aluminum-silicates and quartz, and the effect of inundation are different for each other. The organic matter is strongly associated with calcium, and also bounded with S, Zn, Cu and P. Lead and chromium appears as separated factors, although it is not clear the evidences for their anthropogenic origin. The techniques developed for sample preparation and PIXE analysis was proven as advantageous and provided very good reproducibility and accuracy.
Synthesis and characterization of novel electronic materials with volatile species
NASA Astrophysics Data System (ADS)
Zhizhong, Tang
In this thesis, two novel electronic materials, including semiconductor ZnGeAs2 and dielectric Ba(Zn1/3Ta 2/3)O3 were studied. The growth, characterization and application of ZnGeAs2 in photovoltaics were explored. The structure, optic and electric properties of expitaxial Ba(Zn1/3Ta2/3)O 3 films were also reported. ZnGeAs2 films were grown by pulsed laser deposition from the home-made target. The composition study showed that the Ge element incorporation rate remained constant, while the Zn and As incorporation rates decrease monotonically at elevated growth temperatures. Prototype of photovoltaic cell made with heterojunction p-ZnGeAs2/n-CdS/n+-SnO2 diode showed 0.14 Volt open circuit voltage under ˜100 mW/cm2 lab lamp illumination (1 sun) and 0.45 Volt Voc under 100 mW/cm 2 green LED illumination. Thermal decomposition studied of bulk ZnGeAs2 showed that the Zn and As dissociation rate from ZnGeAs2 approaches one monolayer per second at around 425 °C with activation energy of 1.08 eV. Thermodynamic and kinetic analysis showed that synthesis of ZnGeAs2 thin film is a metastable process involving a competition between the forward reaction which depends on the arrival of reactants at the growth surface, and the reverse kinetically-limited decomposition reaction. Ba(Zn1/3Ta2/3)O3 (100) dielectric thin films grown on MgO (100) substrates by pulsed laser deposition. The thin film structure, optic and electric properties were systematically characterized. Advanced electronic structure calculations were used to guide the interpretation of the experimental data. The Ba(Zn1/3Ta2/3)O3 films have an indirect optical band gap of ˜3.0 eV and a refractive index of 1.91 in the visible spectral range, with dielectric constant of 25 and dissipation factor of 0.0025 at 100 kHz. The Ba(Zn1/3Ta 2/3)O3 films exhibit a small thermally-activated Ohmic leakage current at high fields (<250 KV/cm) and high temperatures (<200 °C) with an activation energy of 0.85 eV. Ba(Zn1/3Ta2/3)O3 dielectric ceramics powder was used to synthesize Metallo-Dielectric Electromagnetic Band Gap structures by ceramic injection molding. Capacitive series and shunt defects were introduced in Metallo-Dielectric Electromagnetic Band Gap structures to generate sub-wavelength resonances. The frequency responses of both defect-free and defect-laden EBG structures were characterized at microwave frequencies and were found to agree with the results of electromagnetic simulations using the commercial HFSS modeling package.
Trace elements in urban and suburban rainfall, Mersin, Northeastern Mediterranean
NASA Astrophysics Data System (ADS)
Özsoy, Türkan; Örnektekin, Sermin
2009-10-01
Spatial/temporal variabilities of rainwater constituents are examined based on soluble/insoluble trace elements, pH and electrical conductivity measurements in rainfall sampled during December 2003-May 2005 at two urban and two suburban sites in Mersin, an industrialized city of 850,000 inhabitants on the southern coast of Turkey. In the analyses, backward air mass trajectories for rainy days were used in addition to factor analyses, enrichment factors, phase distributions and correlations between trace elements. The pH varied from 4.8 to 8.5 with an average value of 6.2, reflecting a mainly alkaline regime. Mean concentrations of trace elements collected from urban and suburban sites are spatially variable. Based on the overall data, total concentrations of trace elements were ordered as Ca > Na > Fe > Al > Mg > K > Zn > Mn > Sr > Pb > Ni > Cr > Ba > Cu > Co > Cd. Mainly terrigeneous (Ca, Fe, Al) and, to a lesser extent, sea salt particles (Na, Mg) were shown to be the major source of trace elements. Excluding major cations, the solubilities of trace elements were found to be ordered as Sr > Zn > Ba > Mn > Cu > Ni > Cr > Fe > Al, confirming the lower solubility of crustal elements. Cd, Co and Pb were excluded from the above evaluation because of the low numbers of soluble samples allowing quantitative measurements. The solubilities of Al, Fe, Mn and particularly of Ni were found to be considerably lower than those reported for various sites around the world, most likely due to the effect of pH. During the entire sampling period, a total of 28 dust transport episodes associated with 31 red rain events were identified. Extremely high mean concentration ratios of Al (8.2), Fe (14.4) and Mn (13.1) were observed in red rain, compared to normal rain. The degree of this enhancement displayed a decrease from crustal to anthropogenic origin elements and the lowest enhancements were found for anthropogenic origin elements of Zn and Cd (both having a ratio of 1.1). Aerosol dust was found to be the main source of almost all analyzed elements in Mersin precipitation, regardless that they are crustal or anthropic derived elements. The magnitude of crustal source contribution to trace element budget of precipitation was at its highest levels for crustal originated elements, most probably due to much higher scavenging ratios of crustal elements compared to anthropogenic ones.
NASA Astrophysics Data System (ADS)
Tan, Jihua; Duan, Jingchun; Zhen, Naijia; He, Kebin; Hao, Jiming
2016-01-01
The abundance, behavior, and source of chemical species in size-fractionated atmospheric particle were studied with a 13-stage low pressure impactor (ELPI) during high polluted winter episode in Beijing. Thirty three elements (Al, Ca, Fe, K, Mg, Na, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Sr, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, and Pb) and eight water soluble ions (Cl-, NO3-, SO42 -, NH4+, Na+, K+, Ca2 +, and Mg2 +) were determined by ICP/MS and IC, respectively. The size distribution of TC (OC + EC) was reconstructed. Averagely, 51.5 ± 5.3% and 74.1 ± 3.7% of the total aerosol mass was distributed in the sub-micron (PM1) and fine particle (PM2.5), respectively. A significant shift to larger fractions during heavy pollution episode was observed for aerosol mass, NH4+, SO42 -, NO3-, K, Fe, Cu, Zn, Cd, and Pb. The mass size distributions of NH4+, SO42 -, NO3-, and K were dominated by accumulation mode. Size distributions of elements were classified into four main types: (I) elements were enriched within the accumulation mode (< 1 μm, Ge, Se, Ag, Sn, Sb, Cs, Hg, Ti, and Pb); (II) those mass (K, Cr, Mn, Cu, Zn, As, Mo, and Cd) was resided mainly within the accumulation mode, ranged from 1 to 2 μm; (III) Na, V, Co, Ni, and Ga were distributed among fine, intermediate, and coarse modes; and (IV) those which were mainly found within particles larger than 2.7 μm (Al, Mg, Si, Ca, Sc, Tl, Fe, Sr, Zr, and Ba). [H+]cor showed an accumulation mode at 600-700 nm and the role of Ca2 + should be fully considered in the estimation of acidity. The acidity in accumulation mode particles suggested that generally gaseous NH3 was not enough to neutralize sulfate completely. PMF method was applied for source apportionment of elements combined with water soluble ions. Dust, vehicle, aged coal combustion, and sea salt were identified, and the size resolved source apportionments were discussed. Aged coal combustion was the important source of fine particles and dust contributed most to coarse particle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Wenfei; Yang, Jing, E-mail: jyang@ee.ecnu.edu.cn, E-mail: xdtang@sist.ecnu.edu.cn; Bai, Wei
2015-05-07
Crystal structure and magnetic properties of multiferroic Y-type hexaferrites Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}(Fe{sub 1−x}Al{sub x}){sub 12}O{sub 22} (x = 0, 0.04, 0.08, and 0.12) were investigated. The Z- and M-type impurity phases decrease with increasing Al content, and the pure phase samples can be obtained by modulating Al-doping. Lattice distortion exists in Al-doped samples due to the different radius of Al ion (0.535 Å) and Fe ion (0.645 Å). The microstructural morphologies show that the hexagonal shape grains can be observed in all the samples, and grain size decreases with increasing Al content. As for magnetic properties of Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}(Fe{sub 1−x}Al{sub x}){submore » 12}O{sub 22}, there exist rich thermal- and field-driven magnetic phase transitions. Temperature dependence of zero-field cooling magnetization curves from 5 K to 800 K exhibit three magnetic phase transitions involving conical spin phase, proper-screw spin phase, ferromagnetic phase, and paramagnetic phase, which can be found in all the samples. Furthermore, the phase-transition temperatures can be modulated by varying Al content. In addition, four kinds of typical hysteresis loops are observed in pure phase sample at different temperatures, which reveal different magnetization processes of above-motioned magnetic spin structures. Typically, triple hysteresis loops in low magnetic field range from 0 to 0.5 T can be observed at 5 K, which suggests low-field driven magnetic phase transitions from conical spin order to proper-screw spin order and further to ferrimagnetic spin order occur. Furthermore, the coercive field (H{sub C}) and the saturation magnetization (M{sub S}) enhance with increasing Al content from x = 0 to 0.08, and drop rapidly at x = 0.12, which could be attribute to that in initial Al-doped process the pitch of spin helix increases and therefore magnetization enhances, but conical spin phase eventually collapses in higher-concentration Al-doping.« less
NASA Astrophysics Data System (ADS)
Chen, Bijuan; Deng, Zheng; Li, Wenmin; Gao, Moran; Liu, Qingqing; Gu, C. Z.; Hu, F. X.; Shen, B. G.; Frandsen, Benjamin; Cheung, Sky; Lian, Liu; Uemura, Yasutomo J.; Ding, Cui; Guo, Shengli; Ning, Fanlong; Munsie, Timothy J. S.; Wilson, Murray Neff; Cai, Yipeng; Luke, Graeme; Guguchia, Zurab; Yonezawa, Shingo; Li, Zhi; Jin, Changqing
2016-11-01
We report the discovery of a new fluoride-arsenide bulk diluted magnetic semiconductor (Ba,K)F(Zn,Mn)As with the tetragonal ZrCuSiAs-type structure which is identical to that of the “1111” iron-based superconductors. The joint hole doping via (Ba,K) substitution & spin doping via (Zn,Mn) substitution results in ferromagnetic order with Curie temperature up to 30 K and demonstrates that the ferromagnetic interactions between the localized spins are mediated by the carriers. Muon spin relaxation measurements confirm the intrinsic nature of the long range magnetic order in the entire volume in the ferromagnetic phase. This is the first time that a diluted magnetic semiconductor with decoupled spin and charge doping is achieved in a fluoride compound. Comparing to the isostructure oxide counterpart of LaOZnSb, the fluoride DMS (Ba,K)F(Zn,Mn)As shows much improved semiconductive behavior that would be benefit for further application developments.
Capozzi, F; Adamo, P; Di Palma, A; Aboal, J R; Bargagli, R; Fernandez, J A; Lopez Mahia, P; Reski, R; Tretiach, M; Spagnuolo, V; Giordano, S
2017-06-01
Although a large body of literature exists on the use of transplanted mosses for biomonitoring of air pollution, no article has addressed so far the use and the accumulation performance of a cloned moss for this purpose. In this work, a direct comparison of metal accumulation between bags filled with a Sphagnum palustre L. clone or with native Pseudoscleropodium purum Hedw., one of the most used moss species in biomonitoring surveys, was investigated. The test was performed in sites with different atmospheric contamination levels selected in urban, industrial, agricultural and background areas of Italy and Spain. Among the eighteen elements investigated, S. palustre was significantly enriched in 10 elements (Al, Ba, Cr, Cu, Fe, Hg, Pb, Sr, V and Zn), while P. purum was enriched only in 6 elements (Al, Ba, Cu, Hg, Pb and Sr), and had a consistently lower uptake capacity than S. palustre. The clone proved to be more sensitive in terms of metal uptake and showed a better performance as a bioaccumulator, providing a higher accumulation signal and allowing a finer distinction among the different land uses and levels of pollution. The excellent uptake performance of the S. palustre clone compared to the native P. purum and its low and stable baseline elemental content, evidenced in this work, are key features for the improvement of the moss bag approach and its large scale application. Copyright © 2017 Elsevier Ltd. All rights reserved.
Synchrotron X-ray diffraction study of the Ba{sub 1−x}SrSnO{sub 3} solid solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prodjosantoso, Anti K., E-mail: Prodjosantoso@yahoo.com; Zhou, Qingdi; Kennedy, Brendan J.
At room temperature the sequence of phases with increasing amounts of strontium in the stannate perovskite system Ba{sub 1−x}SrSnO{sub 3} has been established from high resolution synchrotron X-ray powder diffraction. The observed sequence orthorhombic (Pbnm), orthorhombic (Ibmm), tetragonal (I4/mcm), and cubic (Pm3-bar m) is a consequence of the sequential introduction of cooperative tilting of the corner sharing SnO{sub 6} octahedra. The cell volume changes smoothly across the series with no obvious discontinuities associated with the phase transitions. - Graphical abstract: Portions of the synchrotron X-ray diffraction profiles (λ=0.82453 Å) from selected Ba{sub 1−x}Sr{sub x}SnO{sub 3} samples together with the resultsmore » of fitting by the Rietveld method. Highlights: ► Structures of the stannate perovskites Ba{sub 1−x}SrSnO{sub 3} refined from synchrotron XRD. ► The sequence Pm3-bar m→I4/mcm→Ibmm→Pbnm results from tilting of the octahedra. ► The tilting maintains optimal bonding of the cations seen from the BVS analysis.« less
Computational study of Ca, Sr and Ba under pressure
NASA Astrophysics Data System (ADS)
Jona, F.; Marcus, P. M.
2006-05-01
A first-principles procedure for the calculation of equilibrium properties of crystals under hydrostatic pressure is applied to Ca, Sr and Ba. The procedure is based on minimizing the Gibbs free energy G (at zero temperature) with respect to the structure at a given pressure p, and hence does not require the equation of state to fix the pressure. The calculated lattice constants of Ca, Sr and Ba are shown to be generally closer to measured values than previous calculations using other procedures. In particular for Ba, where careful and extensive pressure data are available, the calculated lattice parameters fit measurements to about 1% in three different phases, both cubic and hexagonal. Rigid-lattice transition pressures between phases which come directly from the crossing of G(p) curves are not close to measured transition pressures. One reason is the need to include zero-point energy (ZPE) of vibration in G. The ZPE of cubic phases is calculated with a generalized Debye approximation and applied to Ca and Sr, where it produces significant shifts in transition pressures. An extensive tabulation is given of structural parameters and elastic constants from the literature, including both theoretical and experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Jahangeer; Blakely, Colin K.; Bruno, Shaun R.
2012-09-15
Highlights: ► BaSnO{sub 3} and SrSnO{sub 3} nanoparticles synthesized using the reverse micelle method. ► Particle size and size distribution studied by whole powder pattern modeling. ► Nanoparticles are of optimal size for investigation in dye-sensitized solar cells. -- Abstract: Light-to-electricity conversion efficiency in dye-sensitized solar cells critically depends not only on the dye molecule, semiconducting material and redox shuttle selection but also on the particle size and particle size distribution of the semiconducting photoanode. In this study, nanocrystalline BaSnO{sub 3} and SrSnO{sub 3} particles have been synthesized using the microemulsion method. Particle size distribution was studied by whole powdermore » pattern modeling which confirmed narrow particle size distribution with an average size of 18.4 ± 8.3 nm for SrSnO{sub 3} and 15.8 ± 4.2 nm for BaSnO{sub 3}. These values are in close agreement with results of transmission electron microscopy. The prepared materials have optimal microstructure for successive investigation in dye-sensitized solar cells.« less
Mechanochemical synthesis of MgF2 - MF2 composite systems (M = Ca, Sr, Ba)
NASA Astrophysics Data System (ADS)
Scholz, G.; Breitfeld, S.; Krahl, T.; Düvel, A.; Heitjans, P.; Kemnitz, E.
2015-12-01
The capability of mechanochemical synthesis for the formation of MgF2-MF2 (M: Ca, Sr, Ba) composites, solid solutions or well-defined compounds was tested applying a fluorination of different fluorine-free metal sources with NH4F directly at milling. No evidence was found for a substitution of Mg2+ with Ca2+ (Sr2+, Ba2+) ions, or vice versa, in rutile or fluorite structure. However, an equimolar ratio of Mg2+ to the second cation allows the mechanochemical synthesis of tetrafluoromagnesates, MMgF4, which is more and more hampered the smaller the radius of the cation M2+ is. BaMgF4 is formed even phase pure from the acetates, SrMgF4 can only be observed in a mixture accompanied by the binary fluorides. In addition, 19F MAS NMR spectra along with calculations of 19F isotropic chemical shift values according to the superposition model point to the formation of a metastable phase of CaMgF4, which disappears at thermal treatment and decomposes into the binary fluorides CaF2 and MgF2.
NASA Astrophysics Data System (ADS)
Liu, Shen; Feng, Caixia; Santosh, M.; Feng, Guangying; Coulson, Ian M.; Xu, Mengjing; Guo, Zhuang; Guo, Xiaolei; Peng, Hao; Feng, Qiang
2018-02-01
Evolution of the lithospheric mantle beneath the North China Craton (NCC) from its Precambrian cratonic architecture until Paleozoic, and the transformation to an oceanic realm during Mesozoic, with implications on the destruction of cratonic root have attracted global attention. Here we present geochemical and isotopic data on a suite of newly identified Mesozoic mafic dyke swarms from the Longwangmiao, Weijiazhuang, Mengjiazhuang, Jiayou, Huangmi, and Xiahonghe areas (Qianhuai Block) along the eastern NCC with an attempt to gain further insights on the lithospheric evolution of the region. The Longwangmiao dykes are alkaline with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N > 4.3) and EM1-like Sr-Nd-Pb-Hf isotopic signature ((87Sr/86Sr) i > 0.706; ε Nd (t) < -6.3, (206Pb/204Pb) i > 16.6, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.8, ε Hf (t) < -22.4). The Weijiazhuang dykes are sub-alkaline with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N > 3.7), and display similar EM1-like isotopic features ((87Sr/86Sr) i > 0.706; ε Nd (t) < -7.0, (206Pb/204Pb) i > 16.7, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.9, ε Hf (t) < -23.3). The Mengjiazhuang dykes are also sub-alkaline with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N > 2.4) and EM1-like isotopic features((87Sr/86Sr) i > 0.706; ε Nd (t) < -18.4, (206Pb/204Pb) i > 16.7, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.9, ε Hf (t) < -8.6). The Jiayou dykes also display sub-alkaline affinity with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N > 3.7) and EM1-like Sr-Nd-Pb-Hf isotopic features ((87Sr/86Sr) i > 0.706; ε Nd(t) < -15.3, (206Pb/204Pb) i > 16.7, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.9, ε Hf (t) < -18.4). The Huangmi dykes are alkaline (with Na2O + K2O ranging to more than 5.9 wt.%)) with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N > 9.3) and EM1-like isotopic composition ((87Sr/86Sr) i > 0.705; ε Nd (t) < -15.1, (206Pb/204Pb) i > 16.9, (207Pb/204Pb) i > 15.5, (208Pb/204Pb) i > 36.9, ε Hf (t) < -12.2). The Xiahonghe dykes are alkaline with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N = 2.12-2.84) and similar EM1-like Sr-Nd-Pb-Hf isotopic signature ((87Sr/86Sr) i > 0.705; ε Nd (t)<-18.0, (206Pb/204Pb) i > 16.9, (207Pb/204Pb) i > 15.5, (208Pb/204Pb) i > 36.9, ε Hf (t) < -8.6). Our data from the various mafic dyke suites suggest that the magmas were derived from EM1-like lithospheric mantle, corresponding to lithospheric mantle modified by the previously foundered lower crust beneath the eastern NCC. Our results suggest contrasting lithospheric evolution from Triassic (212 Ma) to Cretaceous (123 Ma) beneath the NCC. These mafic dykes mark an important phase of lithospheric thinning in the eastern North China Craton.
High ferroelectric polarization in c-oriented BaTiO 3 epitaxial thin films on SrTiO 3/Si(001)
Scigaj, M.; Chao, C. H.; Gázquez, J.; ...
2016-09-21
The integration of epitaxial BaTiO 3 films on silicon, combining c-orientation, surface flatness, and high ferroelectric polarization is of main interest towards its use in memory devices. This combination of properties has been only achieved so far by using yttria-stabilized zirconia buffer layers. Here, the all-perovskite BaTiO 3/LaNiO 3/SrTiO 3 heterostructure is grown monolithically on Si(001). The BaTiO 3 films are epitaxial and c-oriented and present low surface roughness and high remnant ferroelectric polarization around 6 μC/cm 2. Lastly, this result paves the way towards the fabrication of lead-free BaTiO 3 ferroelectric memories on silicon platforms.
NASA Astrophysics Data System (ADS)
Cheng, Jianli; Nazir, Safdar; Yang, Kesong
By using first-principles electronic structure calculations, we explored the possibility of producing two-dimensional electron gas (2DEG) in nonpolar/nonpolar AHfO3/SrTiO3 (A = Ca, Sr, and Ba) heterostructures (HS). Two types of interfaces, AO/TiO2 and HfO2/SrO, each with AO and HfO2 surface terminations, are modeled, respectively. The polarization domain and resulting interfacial electronic property are found to be more sensitive to the surface termination of the film rather than the interface model. As film thickness increases, an insulator-to-metal transition (IMT) is found in all the HS with HfO2 surface termination: for AO/TiO2 interfaces, predicted critical film thickness for an IMT is about 7, 6, and 3 unit cells for CaHfO3/SrTiO3, SrHfO3/SrTiO3, and BaHfO3/SrTiO3, respectively; for HfO2/SrO interfaces, the critical film thickness is about 7.5, 5.5, and 4.5 unit cells, respectively. In contrast, for the HS with AO surface termination, only CaHfO3/SrTiO3 exhibits an IMT with a much larger critical film thickness about 11 - 12 unit cells. This work is expected to stimulate further experimental investigation to the interfacial conductivity in the nonpolar/nonpolar AHfO3/SrTiO3 HS. National Science Foundation and Department of Defense National Security Science and Engineering Faculty Fellowship.
Diluted magnetic semiconductors with narrow band gaps
NASA Astrophysics Data System (ADS)
Gu, Bo; Maekawa, Sadamichi
2016-10-01
We propose a method to realize diluted magnetic semiconductors (DMSs) with p - and n -type carriers by choosing host semiconductors with a narrow band gap. By employing a combination of the density function theory and quantum Monte Carlo simulation, we demonstrate such semiconductors using Mn-doped BaZn2As2 , which has a band gap of 0.2 eV. In addition, we found a nontoxic DMS Mn-doped BaZn2Sb2 , of which the Curie temperature Tc is predicted to be higher than that of Mn-doped BaZn2As2 , the Tc of which was up to 230 K in a recent experiment.
Investigation on gamma and neutron radiation shielding parameters for BaO/SrO‒Bi2O3‒B2O3 glasses
NASA Astrophysics Data System (ADS)
Sayyed, M. I.; Lakshminarayana, G.; Dong, M. G.; Ersundu, M. Çelikbilek; Ersundu, A. E.; Kityk, I. V.
2018-04-01
In this work, mass attenuation coefficients (μ/ρ), effective atomic number (Zeff), electron density (Ne), mean free path (MFP), and half-value layer (HVL) of 20 BaO/SrO‒(x) Bi2O3‒(80‒x) B2O3 glasses (where x=10, 20, 30, 40, 50 and 60 mol%) were calculated using WinXCom program and MCNP5 code. The obtained (μ/ρ) results using both MCNP5 code and WinXCom program were in good agreement. It is found that the addition of Bi2O3 leads to increase the Zeff values in both BaO/SrO‒Bi2O3‒B2O3 glass systems. However, the Zeff values of the BaO‒Bi2O3‒B2O3 glass system are higher than those of the SrO‒Bi2O3‒B2O3 glasses. The fast neutrons effective removal cross sections (ΣR) for 20 SrO‒40 Bi2O3‒40 B2O3 glass is the highest among all studied glasses. The calculated half-value layer values were compared with different glass systems and it was found that the shielding properties of the selected glasses are comparable or even better than other glass systems such as phosphate glasses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bannikov, V.V.; Shein, I.R.; Ivanovskii, A.L., E-mail: ivanovskii@ihim.uran.ru
2012-12-15
Employing first-principles band structure calculations, we have examined the electronic, optical properties and the peculiarities of the chemical bonding for six newly synthesized layered quaternary 1111-like chalcogenide fluorides SrAgSF, SrAgSeF, SrAgTeF, BaAgSF, BaAgSeF, and SrCuTeF, which are discussed in comparison with some isostructural 1111-like chalcogenide oxides. We found that all of the studied phases AMChF (A=Sr, Ba; M=Cu, Ag; and Ch=S, Se, Te) are semiconductors for which the fitted 'experimental' gaps lie in the interval from 2.23 eV (for SrAgSeF) to 3.07 eV (for SrCuTeF). The near-Fermi states of AMChF are formed exclusively by the valence orbitals of the atomsmore » from the blocks (MCh); thus, these phases belong to the layered materials with 'natural multiple quantum wells'. The bonding in these new AMChF phases is described as a high-anisotropic mixture of ionic and covalent contributions, where ionic M-Ch bonds together with covalent M-Ch and Ch-Ch bonds take place inside blocks (MCh), while inside blocks (AF) and between the adjacent blocks (MCh)/(AF) mainly ionic bonds emerge. - Graphical Abstract: Isoelectronic surface for SrAgSeF and atomic-resolved densities of states for SrAgTeF, and SrCuTeF. Highlights: Black-Right-Pointing-Pointer Very recently six new layered 1111-like chalcogenide fluorides AMChF were synthesized. Black-Right-Pointing-Pointer Electronic, optical properties for AMChF phases were examined from first principles. Black-Right-Pointing-Pointer All these materials are characterized as non-magnetic semiconductors. Black-Right-Pointing-Pointer Bonding is highly anisotropic and includes ionic and covalent contributions. Black-Right-Pointing-Pointer Introduction of magnetic ions in AMChF is proposed for search of novel magnetic materials.« less
NASA Astrophysics Data System (ADS)
Chou, Hsiung; Hsu, S. G.; Lin, C. B.; Wu, C. B.
2007-02-01
Strained La0.8Ba0.2MnO3 thin films on SrTiO3 (100) substrate are grown by an off-axis sputtering technique. It is found that the ferromagnetic temperature TC increases for thinner films. Secondary ion mass spectroscopy indicates that Sr diffuses partially into the film, making it structurally nonuniform. The region close to the film/substrate interface acts as La1-x(SryBa1-y)xMnO3 with a near negligible y for the as grown film and a non-negligible amount of y for the high-temperature postannealed film. The enhancement of TC is attributed to the combination of the strain and interdiffusion effects.
Slack, J.F.; Kelley, K.D.; Anderson, V.M.; Clark, J.L.; Ayuso, R.A.
2004-01-01
Geochemical analyses of major, trace, and rare earth elements (REE) in more than 200 samples of variably silicified and altered wall rocks, massive and banded sulfide, silica rock, and sulfide-rich and unmineralized barite were obtained from the Main, Aqqaluk, and Anarraaq deposits in the Red Dog Zn-Pb-Ag district of northern Alaska. Detailed lithogeochemical profiles for two drill cores at Aqqaluk display an antithetic relationship between SiO2/Al2O3 and TiO2/Zr which, together with textural information, suggest preferential silicification of carbonate-bearing sediments. Data for both drill cores also show generally high Tl, Sb, As, and Ge and uniformly positive Eu anomalies (Eu/Eu* > 1.0). Similar high Tl, Sb, As, Ge, and Eu/Eu* values are present in the footwall and shallow hanging wall of Zn-Pb-Ag sulfide intervals at Anarraaq but are not as widely dispersed. Net chemical changes for altered wall rocks in the district, on the basis of average Al-normalized data relative to unaltered black shales of the host Kuna Formation, include large enrichments (>50%) of Fe, Ba, Eu, V, S, Co, Zn, Pb, Tl, As, Sb, and Ge at both Red Dog and Anarraaq, Si at Red Dog, and Sr, U, and Se at Anarraaq. Large depletions (>50%) are evident for Ca at both Red Dog and Anarraaq, for Mg, P, and Y at Red Dog, and for Na at Anarraaq. At both Red Dog and Anarraaq, wall-rock alteration removed calcite and minor dolomite during hydrothermal decarbonation reactions and introduced Si, Eu, and Ge during silicification. Sulfidation reactions deposited Fe, S, Co, Zn, Pb, Tl, As, and Sb; barite mineralization introduced Ba, S, and Sr. Light REE and U were mobilized locally. This alteration and mineralization occurred during Mississippi an hydrothermal events that predated the Middle Jurassic-Cretaceous Brookian orogeny. Early hydrothermal silicification at Red Dog took place prior to or during massive sulfide mineralization, on the basis of the dominantly planar nature of Zn-Pb veins, which suggests filling of fractures that developed in previously lithified rock. Uniformly low Ca and Mg and uniformly negative Ce anomalies in highly siliceous Red Dog wall rocks reflect hydrothermal decarbonation reactions and pervasive silicification owing to conductive cooling of oxidized metalliferous fluids. Similar Ca and Mg depletions are evident at Anarraaq but generally lack associated silicification, possibly because temperatures of the hydrothermal fluids were too low (<180??C) or because the thermal contrast between the fluids and wall rocks was smaller owing to the greater depth of alteration and mineralization there, compared with Red Dog. Chalcophile element anomalies (Fe, Zn, Pb, Tl, As, Sb) in wall rocks at both Red Dog and Anarraq are attributed to sulfidation reactions, coeval with subsurface Zn-Pb-Ag mineralization, during the mixing of oxidized metalliferous fluids with H2S-rich fluids derived locally within the Kuna Formation. Sedimentary wall rocks in the Red Dog district are characterized by a distinctive suite of geochemical anomalies, especially for Zn, Pb, Tl, As, Sb, Ge, and Eu/Eu*. At the Aqqaluk deposit, wall rocks without visible sphalerite or galena (<300 ppm Zn + Pb) have anomalous Eu/Eu*, Tl, Sb, and As for up to ???100 m stratigraphically below Zn-rich silica rock. At Anarraaq, the Tl anomaly is most extensively developed, and enrichment relative to unaltered black shale of the Kuna Formation is present up to 62 m above the highest Zn-Pb sulfide zones. The magnitude of the enrichment and systematic behavior of Tl in the district make Tl a promising geochemical exploration guide for Red Dog-type Zn-Pb-Ag deposits elsewhere. ?? 2004 by Economic Geology.
Fey, David L.; Church, Stan E.; Driscoll, Rhonda L.; Adams, Monique G.
2011-01-01
Eleven acid-sulphate and quartz-sericite-pyrite altered mine waste samples from the Animas River watershed in SW Colorado were subjected to a series of 5 to 6 successive leaches using the US EPA 1312 leach protocol to evaluate the transport of metals and loss of acidity from mine wastes as a function of time. Multi-acid digestion ICP-AES analyses, X-ray diffraction (XRD) mineral identification, total sulphur, and net acid potential (NAP) determinations were performed on the initial starting materials. Multiple leaching steps generally showed a 'flushing' effect, whereby elements loosely bound, presumably as water-soluble salts, were removed. Aluminum, Cd, Fe, Mg, Mn, Sr, Zn, and S showed decreasing concentration trends, whereas Cu concentrations showed initially decreasing trends, followed by increasing trends in later steps. Concentrations of Zn in the first leach step were independent of whole-sample Zn content. Lead and Ba concentrations consistently increased with each step, indicating that anglesite (PbSO4) and barite (BaSO4), respectively, were dissolving in successive leach steps. Comparison of Fe content with NAP resulted in a modest correlation. However, using the S analyses and XRD identification of sulphide minerals to apportion S amongst enargite, barite, anglesite/galena, and sphalerite, and assigning the remaining S to pyrite, provided a useful correlation between estimated pyrite content and NAP. Whole-sample mass loss correlated well with NAP, but individual elements' behaviors varied between positive correlation (e.g. Al, Fe, Mg), no apparent correlation (Ca, Cd, Pb, Zn), and negative correlation (Cu). Comparison of the summed titrated acidities of the leachates with the whole-sample NAP values yielded an estimate of the fraction of NAP consumed, and led to an estimate of the time it would take to consume the sample acidity by weathering. We estimate, on the basis of these experiments, the acidity in the upper 30 cm would be consumed in 200–1000 years. In addition, calculations suggest that the acidity would be depleted before the complete store of the metals Cu-Cd-Zn in these mine wastes would be released to the environment.
Fey, D.L.; Church, S.E.; Driscoll, R.L.; Adams, M.G.
2011-01-01
Eleven acid-sulphate and quartz-sericite-pyrite altered mine waste samples from the Animas River watershed in SW Colorado were subjected to a series of 5 to 6 successive leaches using the US EPA 1312 leach protocol to evaluate the transport of metals and loss of acidity from mine wastes as a function of time. Multi-acid digestion ICP-AES analyses, X-ray diffraction (XRD) mineral identification, total sulphur, and net acid potential (NAP) determinations were performed on the initial starting materials. Multiple leaching steps generally showed a 'flushing' effect, whereby elements loosely bound, presumably as water-soluble salts, were removed. Aluminum, Cd, Fe, Mg, Mn, Sr, Zn, and S showed decreasing concentration trends, whereas Cu concentrations showed initially decreasing trends, followed by increasing trends in later steps. Concentrations of Zn in the first leach step were independent of whole-sample Zn content. Lead and Ba concentrations consistently increased with each step, indicating that anglesite (PbSO4) and barite (BaSO4), respectively, were dissolving in successive leach steps. Comparison of Fe content with NAP resulted in a modest correlation. However, using the S analyses and XRD identification of sulphide minerals to apportion S amongst enargite, barite, anglesite/galena, and sphalerite, and assigning the remaining S to pyrite, provided a useful correlation between estimated pyrite content and NAP. Whole-sample mass loss correlated well with NAP, but individual elements' behaviors varied between positive correlation (e.g. Al, Fe, Mg), no apparent correlation (Ca, Cd, Pb, Zn), and negative correlation (Cu). Comparison of the summed titrated acidities of the leachates with the whole-sample NAP values yielded an estimate of the fraction of NAP consumed, and led to an estimate of the time it would take to consume the sample acidity by weathering. We estimate, on the basis of these experiments, the acidity in the upper 30 cm would be consumed in 200-1000 years. In addition, calculations suggest that the acidity would be depleted before the complete store of the metals Cu-Cd-Zn in these mine wastes would be released to the environment. ?? 2011 AAG/Geological Society of London.
NASA Astrophysics Data System (ADS)
Chen, Peng; Hu, Wenyuan; Yang, Dingming; Zhu, Jiayi; Zhang, Jing; Wu, Yadong
2018-02-01
Novel orange-red emitting phosphors, Ba2Zn1-xWO6:xSm3+ (x = 0.03, 0.04, 0.05, 0.06 and 0.07) (BZW:Sm3+), were prepared using a high-temperature solid-state reaction method. Their crystal structure and photoluminescence properties were characterized and the mechanism of energy transfers between Ba2ZnWO6 and Sm3+ elucidated in detail. It was found that the phosphors had a cubic structure with space group Fm 3 bar m . They can be excited by near-ultraviolet light, and the characteristic emissions of Sm3+ ions are observed at 564 nm, 598 nm and 645 nm, corresponding to 4G5/2 → 6H5/2, 4G5/2 → 6H7/2 and 4G5/2 → 6H9/2 transitions, respectively. The 4G5/2 → 6H9/2 transitions shows the greatest intensity, which indicates that Sm3+ ions occupy the noncentrosymmetric sites. The optimal doping concentration of Sm3+ ions in Ba2ZnWO6 is about 5 mol% and the phenomenon of concentration quenching occurs when the content of Sm3+ ions exceeds 5 mol%. All results show that the Ba2ZnWO6:Sm3+ phosphor holds great promise for use in high-quality white light-emitting diodes.
Interaction of ultra-depleted MORBs with plagioclase: implications for CO2/Ba ratios
NASA Astrophysics Data System (ADS)
Shimizu, K.; Hauri, E.; Saal, A. E.; Perfit, M. R.; Hekinian, R.
2017-12-01
Carbon in Earth's upper mantle can significantly reduce its solidus temperature, which in turn can affect other physical properties through generation of partial melt. Carbon content in the depleted upper mantle can be estimated using ultra-depleted mid-ocean ridge basalt (UD-MORB) glasses and melt inclusions that are undersaturated in CO2. CO2 has been shown to behave as a highly incompatible element during mantle melting both through natural samples and experiments. Given its highly incompatible behavior, CO2/Ba and CO2/Nb ratios in CO2 undersaturated UD-MORBs have been used to estimate the CO2/Ba and CO2/Nb ratios and carbon content in Earth's upper mantle. A potential issue with part of this approach is the effect of melt-plagioclase chemical interaction on the CO2/Ba ratios in UD-MORBs. Plagioclase is ubiquitous in the oceanic crust and is enriched in Ba relative to other phases. Chemical interactions (assimilation and/or diffusion) between MORB melts and plagioclase bearing rocks have been shown to affect the Ba (and Sr and Eu) concentrations in MORBs, implying that such processes may also affect their CO2/Ba ratio. Hence, understanding the effect of chemical interaction between plagioclase and UD-MORBs is important for having better constraints on CO2/Ba ratio and carbon content in Earth's upper mantle. In this study, we report on the compositions of olivine-hosted melt inclusions and glasses from the Siqueiros and Garrett transform faults. A subset of melt inclusions in lavas from both transform faults show potential signatures of chemical interaction with plagioclase such as low CO2/Ba, Nb/Ba, and Nd/Sr. CO2 degassing cannot explain the low CO2/Ba ratio in the samples as they are undersaturated in CO2. To better understand the effect of chemical interaction with plagioclase on the composition of UD-MORBs, we model end-member scenarios, which are (1) assimilation of plagioclase and (2) diffusion of elements from plagioclase into the UD-MORBs. In general, the trends produced by these end-member scenarios bracket those observed in the samples (trends between CO2/Ba, Nb/Ba, and Nd/Sr as well as between Al2O3, FeO, and MgO). Hence, chemical interaction with plagioclase may affect the CO2/Ba ratio in UD-MORBs, and care should be taken to evaluate this effect using Nd/Sr and Nb/Ba ratios.
NASA Astrophysics Data System (ADS)
McCormick, Mark Alan
The goal of this work was to produce BaTiO3 and BaxSr (1-x)TiO3 (BST) thin films with high dielectric constants, using a low-temperature (<100°C) hydrothermal synthesis route. To accomplish this, titanium metal-organic precursor films were spin-cast onto metal-coated glass substrates and converted to polycrystalline BaTiO3 or BST upon reacting in aqueous solutions of Ba(OH)2 or Ba(OH)2 and Sr(OH)2. The influences of solution molarity, processing temperature, and reaction time on thin film reaction kinetics, microstructure, and dielectric properties were examined for BaTiO3 films. Post-deposition annealing at temperatures as low as 200°C substantially affected the lattice parameter, dielectric constant, and dielectric loss. This behavior is explained in terms of hydroxyl defect incorporation during film formation. Current-voltage (I-V) measurements were performed to determine the dominant conduction mechanism(s) during application of a do field, and to extract the metal/ceramic barrier height. In particular, Schottky barrier-limited conduction and Poole-Frenkel conduction were investigated as potential leakage mechanisms. For BST thin films, film stoichiometry deviated from the initial solution composition, with a preferred incorporation of Sr2+ into the perovskite lattice. The dielectric constant of the BST films was measured as a function of composition (Ba:Sr ratio) and temperature over the range 25--150°C. Finally, capacitance-voltage (C-V) measurements were made for BST films to determine the influence of film composition on dielectric tunability.
Crystal structures of the double perovskites Ba{sub 2}Sr{sub 1-} {sub x} Ca {sub x} WO{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, W.T.; Akerboom, S.; IJdo, D.J.W.
2007-05-15
Structures of the double perovskites Ba{sub 2}Sr{sub 1-} {sub x} Ca {sub x} WO{sub 6} have been studied by the profile analysis of X-ray diffraction data. The end members, Ba{sub 2}SrWO{sub 6} and Ba{sub 2}CaWO{sub 6}, have the space group I2/m (tilt system a {sup 0} b {sup -} b {sup -}) and Fm3-barm (tilt system a {sup 0} a {sup 0} a {sup 0}), respectively. By increasing the Ca concentration, the monoclinic structure transforms to the cubic one via the rhombohedral R3-bar phase (tilt system a {sup -} a {sup -} a {sup -}) instead of the tetragonal I4/mmore » phase (tilt system a {sup 0} a {sup 0} c {sup -}). This observation supports the idea that the rhombohedral structure is favoured by increasing the covalency of the octahedral cations in Ba{sub 2} MM'O{sub 6}-type double perovskites, and disagrees with a recent proposal that the formation of the {pi}-bonding, e.g., d {sup 0}-ion, determines the tetragonal symmetry in preference to the rhombohedral one. - Graphical abstract: Enlarged sections showing the evolution of the basic (222) and (400) reflections in Ba{sub 2}Sr{sub 1-} {sub x} Ca {sub x} WO{sub 6}. Tick marks below are the positions of Bragg's reflections calculated using the space groups I2/m (x=0), R3-bar (x=0.25, 0.5 and 0.75) and Fm3-barm (x=1), respectively.« less
Dąbrowska, G; Hrynkiewicz, K; Trejgell, A; Baum, C
2017-07-03
The test strains Bacteroidetes bacterium (Ba), Pseudomonas fluorescens (Pf) and Variovorax sp. (Va) were selected in advance for their in vitro capability for growth promotion of rapeseed in the presence of increased concentrations of Cd, Cu, Pb and Zn in the medium. In the pot experiment, the strains were used for single Ba, Pf, Va or combined Ba + Pf, Ba + Va, Pf + Va, and Ba + Pf + Va inoculation of B. napus growing in contaminated soil from alluvial deposits. The positive effect of bacterial strains on plant growth was observed in vitro, but was not confirmed in situ in the contaminated soil, where the tested strains inhibited biomass production, rather than stimulating it. However, single inoculation with Ba significantly increased the chlorophyll content and K + concentration in the leaves. The inoculation of rapeseed with Ba and Va strains was indicated to be the most promising combination for phytoextraction of Cd and Zn from contaminated soil. Combined inoculation with Pf+Va and Pf + Ba+Va significantly decreased the concentration of heavy metals in the roots of rapeseed. We conclude that suitable combinations of PGPR can control the metal uptake of B. napus, selectively increasing either metal extraction or metal stabilization in the rhizosphere and offering promising applications in soil remediation.
Griffin, W.L.; Slack, J.F.; Ramsden, A.R.; Win, T.T.; Ryan, C.G.
1996-01-01
Trace element contents of tourmalines from massive sulfide deposits and tourmalinites have been determined in situ by proton microprobe; >390 analyses were acquired from 32 polished thin sections. Concentrations of trace elements in the tourmalines vary widely, from <40 to 3,770 ppm Mn, <4 to 1,800 ppm Ni, <2 to 1,430 ppm Cu, <9 to 4,160 ppm Zn, 3 to 305 ppm Ga, <6 to 1,345 ppm Sr, <10 to 745 ppm Sn, <49 to 510 ppm Ba, and <3 to 4,115 ppm Pb. Individual grains and growth zones are relatively homogeneous, suggesting that these trace elements are contained within the crystal structure of the tourmaline, and are not present in inclusions. The highest base metal contents are in ore-related tourmaline samples from Kidd Creek (Ontario), Broken Hill (Australia), and Sazare (Japan). Tourmaline data from these and many other massive sulfide deposits cluster by sample and display broadly linear trends on Zn vs. Fe plots, suggesting chemical control by temperature and hydrothermal and/or metamorphic fluid-mineral equilibria. Significant Ni occurs only in samples from the Kidd Creek Cu-Zn-Pb-Ag deposit, which is associated with a large footwall ultramafic body. An overall antithetic relationship between Zn and Ni probably reflects fluid source controls. Mn is correlated with Fe in tourmalines from barren associations, and possibly in some tourmalines associated with sulfide vein deposits. Sn increases systematically with Fe content irrespective of association; the highest values are found in schorls from granites. Other trace elements are generally uncorrelated with major element concentrations (e.g., Sr-Ca). Base metal proportions in the tourmalines show systematic patterns on ternary Cu-Pb-Zn diagrams that correlate well with the major commodity metals in the associated massive sulfide deposits. For example, data for tourmalines from Cu-Zn deposits (e.g., Ming mine, Newfoundland) fall mainly on the Cu-Zn join, whereas those from Pb-Zn deposits (e.g., Broken Hill, Australia) plot on the Pb-Zn join; no data fall on the Cu-Pb join, consistent with the lack of this metal association in massive sulfide deposits. The systematic relationship between base metal proportions in the tourmalines and the metallogeny of the host massive sulfide deposits indicates that the analyzed tourmalines retain a strong chemical signature of their original hydrothermal formation, in spite of variable metamorphic recrystallization. Such trace element patterns in massive sulfide tourmalines may be useful in mineral exploration, specifically for the evaluation of tourmaline concentrations in rocks, soils, and stream sediments.
Intra-urban biomonitoring: Source apportionment using tree barks to identify air pollution sources.
Moreira, Tiana Carla Lopes; de Oliveira, Regiani Carvalho; Amato, Luís Fernando Lourenço; Kang, Choong-Min; Saldiva, Paulo Hilário Nascimento; Saiki, Mitiko
2016-05-01
It is of great interest to evaluate if there is a relationship between possible sources and trace elements using biomonitoring techniques. In this study, tree bark samples of 171 trees were collected using a biomonitoring technique in the inner city of São Paulo. The trace elements (Al, Ba, Ca, Cl, Cu, Fe, K, Mg, Mn, Na, P, Rb, S, Sr and Zn) were determined by the energy dispersive X-ray fluorescence (EDXRF) spectrometry. The Principal Component Analysis (PCA) was applied to identify the plausible sources associated with tree bark measurements. The greatest source was vehicle-induced non-tailpipe emissions derived mainly from brakes and tires wear-out and road dust resuspension (characterized with Al, Ba, Cu, Fe, Mn and Zn), which was explained by 27.1% of the variance, followed by cement (14.8%), sea salt (11.6%) and biomass burning (10%), and fossil fuel combustion (9.8%). We also verified that the elements related to vehicular emission showed different concentrations at different sites of the same street, which might be helpful for a new street classification according to the emission source. The spatial distribution maps of element concentrations were obtained to evaluate the different levels of pollution in streets and avenues. Results indicated that biomonitoring techniques using tree bark can be applied to evaluate dispersion of air pollution and provide reliable data for the further epidemiological studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vuković, Gordana; Aničić Urošević, Mira; Razumenić, Ivana; Kuzmanoski, Maja; Pergal, Miodrag; Škrivanj, Sandra; Popović, Aleksandar
2014-03-01
This study was performed in four parking garages in downtown of Belgrade with the aim to provide multi-pollutant assessment. Concentrations of 16 US EPA priority PAHs and Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr and Zn were determined in PM10 samples. The carcinogenic health risk of employees' occupational exposure to heavy metals (Cd, Cr, Ni and Pb) and PAHs (B[a]A, Cry, B[b]F, B[k]F, B[a]P and DB[ah]A) was estimated. A possibility of using Sphagnum girgensohnii moss bags for monitoring of trace element air pollution in semi-enclosed spaces was evaluated as well. The results showed that concentrations of PM10, Cd, Ni and B[a]P exceeded the EU Directive target values. Concentration of Zn, Ba and Cu were two orders of magnitude higher than those measured at different urban sites in European cities. Cumulative cancer risk obtained for heavy metals and PAHs was 4.51 × 10-5 and 3.75 × 10-5 in M and PP, respectively; upper limit of the acceptable US EPA range is 10-4. In the moss, higher post-exposure than pre-exposure (background) element concentrations was observed. In comparison with instrumental monitoring data, similar order of abundances of the most elements in PM10 and moss samples was found. However, using of the S. girgensohnii moss bag technique in indoor environments needs further justification.
NASA Astrophysics Data System (ADS)
Vara, M. A.; DeLong, K. L.; Herrmann, A. D.; Ouellette, G., Jr.; Richey, J. N.
2017-12-01
Coral Sr/Ca is a robust proxy of sea surface temperature (SST); however, discrepancies in the Sr/Ca-SST relationship among colonies of the same species may reduce confidence in absolute temperature reconstructions. Furthermore, terrestrial carbonate weathering can provide local sources of Sr and/or Ca to coastal waters that may disrupt the temperature-based coral Sr/Ca signal. Thus other trace metal SST proxies have been suggested to circumvent these issues (Li/Ca, Li/Mg, and Sr-U). Coral Ba/Ca has been used as a proxy for runoff and coastal upwelling, and therefore may be used to identify intervals when these processes overprint the Sr/Ca-SST signal. This study tests multiple coral SST proxies using reproducibility assessments to determine the best performing SST proxy. We conduct these assessments with cores recovered in 1991 by the U.S. Geological Survey from five Orbicella faveolata colonies from three reefs offshore of Veracruz, Mexico (19.06°N, 96.93°W) in water depths varying from 3 to 12 m. Previous studies found micromilling the complex skeletal structure of O. faveolata challenging and that monthly resolution may not recover full seasonal cycles. We use a laser ablation inductively coupled plasma mass spectrometer to simultaneously sample this coral's structure at weekly intervals spanning 8 years for Li/Ca, Li/Mg, Sr-U, Sr/Ca, and Ba/Ca. Here we found coral Li/Ca means and seasonal variations are similar among colonies thus this proxy may capture absolute temperature and SST variability. Similar to previous research with Porites corals, Li/Ca in these O. faveolata corals decreases with increases in SST with similar slopes and intercepts. During the last 10 years of these corals' lives, coral Sr/Ca analysis reveals a mean shift among colonies suggesting an external source could have disrupted the Sr/Ca signal, possibly seasonal runoff and/or winter upwelling common to Veracruz waters. Coral Ba/Ca analyses reveals elevated values in winters that coincide with increases in coral Sr/Ca in the deeper colony suggesting upwelling is occurring at that location. However, the coral Ba/Ca does not coincide with increase coral Sr/Ca in the shallower coral indicating no direct influence from runoff. Coral Li/Mg and Sr-U do not show substantial seasonal variations as expected with a coral-SST proxy.
Film growth and structure design in the barium oxide-strontium oxide-titanium dioxide system
NASA Astrophysics Data System (ADS)
Fisher, Patrick J.
This thesis describes the growth and characterization of thin films in the SrO-BaO-TiO2 system. The films are grown by molecular beam cpitaxy (MBE) and pulsed laser deposition (PLD) on ceramic substrates, and characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), reflection-high energy electron diffraction (RHEED), and transmission electron microscopy (TEM). Films are grown with varied global and initial local stoichiometries, with the goal of determining the stability of specific cation organizations. Simple oxides, TiO2 (anatase) and SrO (rock salt) were grown on oxide substrates using MBE. Growth conditions, including substrate material, substrate temperature, O3 flux, and metal flux, are varied in each case. It is observed that the growth morphology of anatase is highly dependent on the ozone flux, with fluxes of 1.00 sccm and greater resulting in flat anatase surfaces. Increased roughness at higher substrate was determined to be a result of rutile inclusions. Growth oscillations are observed in the RHEED intensity for both TiO2 and SrO in overlapping regions of growth space, indicating 2D growth modes. Varied shuttering sequences were used during MBE growth of perovskites: globally non-stoichiometric films, as well as locally non-stoichiometric but globally stoichiometric perovskite. Films were grown within a (SrO) m(TiO2)n framework, where growth cycles involved m monolayers of SrO followed by n monolayers of TiO2. XRD results indicate that Ruddlesden-Popper defects, that is, rock salt double layers, enable incorporation of all levels of Sr excess, whereas excess Ti is observed to incorporate into the perovskite structure only at extreme excesses. A series of films with m equal to n were grown; that is, multiple monolayers of SrO deposited followed by multiple monolayers of TiO2. These initially locally non-stoichiometric arrangements interreact to form highly crystalline perovskite, even with layer thicknesses of up to 33 monolayers. The Ba0.6Sr0.4TiO3 films were characterized for their microwave dielectric properties, and were found to have high dielectric constants (epsilonr ˜1300 in each case, implying high tunabilities) but high tan delta values as well. The mechanisms by which the perovskite structure incorporates cation excesses is discussed, and it is argued that two probable mechanisms, one involving plane-sharing of Ti and Sr cations and the other involving rock salt multilayers, also enable the observed transport necessary for multilayer reaction. Working under the argument that these mechanisms involve low-energy architectures, a novel homologous series of phases based on rock salt multilayers is grown using monotayer control: the SrmTiO2+ m series, with each TiO2 monolayer followed by m SrO monolayers (m = 1-5). The phases in this series were characterized structurally, and an in-plane contraction was observed between the m = 2 and m = 3 phases, which is argued to be a relaxation of the SrO monolayers. Considering Ti-excess organizations, the BaTi2O5 structure is grown and observed to nucleate over a narrow window of growth conditions and substrates. LaAlO 3(100) promotes the nucleation of anatasc and ejection of perovskite; SrTiO3(100) promotes the nucleation of perovskite and ejection of TiO2; importantly, MgO(100) promotes the nucleation (010)-oriented BaTi2O5 growing with multiple domains. A BaTi2 O5 buffer layer was then used to promote the inclusion of Sr into (Ba,SOTi205 epilayers. Sr incorporation into a perovskite-related structure was observed to occur over the full range of (Ba,Sr)Ti2O 5 compositions.
Melting and Vaporization of the 1223 Phase in the System (Tl-Pb-Ba-Sr-Ca-Cu-O)
Cook, L. P.; Wong-Ng, W.; Paranthaman, P.
1996-01-01
The melting and vaporization of the 1223 [(Tl,Pb):(Ba,Sr):Ca:Cu] oxide phase in the system (Tl-Pb-Ba-Sr-Ca-Cu-O) have been investigated using a combination of dynamic methods (differential thermal analysis, thermogravimetry, effusion) and post-quenching characterization techniques (powder x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectrometry). Vaporization rates, thermal events, and melt compositions were followed as a function of thallia loss from a 1223 stoichiometry. Melting and vaporization equilibria of the 1223 phase are complex, with as many as seven phases participating simultaneously. At a total pressure of 0.1 MPa the 1223 phase was found to melt completely at (980 ± 5) °C in oxygen, at a thallia partial pressure (pTl2O) of (4.6 ± 0.5) kPa, where the quoted uncertainties are standard uncertainties, i.e., 1 estimated standard deviation. The melting reaction involves five other solids and a liquid, nominally as follows: 1223→1212+(Ca,Sr)2CuO3+(Sr,Ca)CuO2+BaPbO3+(Ca,Sr)O+Liquid Stoichiometries of the participating phases have been determined from microchemical analysis, and substantial elemental substitution on the 1212 and 1223 crystallographic sites is indicated. The 1223 phase occurs in equilibrium with liquids from its melting point down to at least 935 °C. The composition of the lowest melting liquid detected for the bulk compositions of this study has been measured using microchemical analysis. Applications to the processing of superconducting wires and tapes are discussed. PMID:27805086
NASA Astrophysics Data System (ADS)
Ren, Yong; Li, Jiachen; Zhang, Weifeng; Jia, Caihong
2017-10-01
Epitaxial ZnO thin films were grown on SrTiO3:Nb (NSTO) substrates by rf magnetron sputtering method. The multi-level resistance states were observed by applying different amplitudes and/or polarities of voltage pulses, which is supposed to be related to the drift of oxygen vacancies. Furthermore, the decay of retention is also corresponding to the migration of oxygen vacancies. The retention and cycle stability implies that the ZnO/Nb:SrTiO3 heterojunctions are promising for high density memory application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, S.-F.; Chu, Jinn P.; Lin, C.C.
2005-07-01
In this study, thin films prepared from the targets of Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3} (BST), BST/5 mol % MgO, BST/10 mol % MgO, and BST/20 mol % MgO composites, using radio frequency magnetron sputtering, have been reported. As-deposited films were found to be amorphous and began to crystallize after annealing at temperatures of 650 deg. C and above. The addition of MgO in the BST films resulted in the hindrance of crystallization and inhibition of grain growth. MgO was substituted into the BST lattices to a certain degree. High-resolution transmission electron microscopy results revealed some MgO dispersed in the BSTmore » matrix. The MgO dispersed in the dense BST matrix was found to be around 25 nm in size. The dielectric constant was estimated to be 90 for the pure BST film annealed at 700 deg. C, and observed to be slightly reduced with the MgO addition. The dielectric losses of the Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3} (0.006) and BST/MgO films (0.002-0.004) were much less than those of the Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}(0.013) and Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} films (0.11-0.13). The leakage current was smaller for the BST/10 mol % MgO film compared to the pure BST film and this low leakage current may be attributed to the substitution of Mg in the B sites of BST lattices which might have behaved as an electron acceptors.« less
Strontium-based glass polyalkenoate cements for luting applications in the skeleton.
Clarkin, O; Boyd, D; Towler, M R
2010-02-01
Glass Polyalkenoate Cements (GPCs) based on strontium calcium zinc silicate (Sr-Ca-Zn-SiO2) glasses and high molecular weight poly(acrylic acid) (PAA) have been shown to exhibit suitable mechanical properties for orthopaedic arthroplasty applications, however for vertebroplasty and other medical luting applications these cements have working and setting times which are unsuitable for such applications. In this study GPCs based on Sr-Ca-Zn-SiO2 glasses and low molecular weight PAA were evaluated for orthopaedic luting applications. GPCs based on four different glasses; BT100 (0.16CaO, 0.36ZnO, 0.48SiO2), BT101 (0.04SrO, 0.12CaO, 0.36ZnO, 0.48SiO2), BT102 (0.08SrO 0.08CaO, 0.36ZnO, 0.48SiO2) and BT103 (0.12SrO 0.04CaO, 0.36ZnO, 0.48SiO2) and two PAAs (MW; 12,700 and 25,700) were examined. These cement formulations exhibited handling properties potentially suitable for luting applications as well as mechanical strengths which were similar to those of trabecular bone. Upon immersion in simulated body fluid, the GPCs showed sustained growth of a calcium phosphate layer on the surface of the cement indicating that these cements were bioactive in nature.
ICP-AES determination of minor- and major elements in apples after microwave assisted digestion.
Juranović Cindrić, Iva; Krizman, Ivona; Zeiner, Michaela; Kampić, Štefica; Medunić, Gordana; Stingeder, Gerhard
2012-12-15
The aim of this paper was to determine the content of minor and major elements in apples by inductively coupled plasma atomic emission spectrometry (ICP-AES). Prior to ICP-AES measurement, dried apples were digested in a microwave assisted digestion system. The differences in the measured element concentrations after application of open and closed microwave system as sample preparation procedures are discussed. In whole apples, flesh and peel Ag, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr and Zn were analysed after optimisation and validating the analytical method using ICP-AES. The accuracy of the method determined by spiking experiments was very good (recoveries 88-115%) and the limits of detection of elements of interest were from 0.01 up to 14.7 μg g(-1). The reference ranges determined in all apple samples are 39-47 mg g(-1) for K, 9-14 mg g(-1) for Na, 3-7 mg g(-1) for Mg, 3-7 μg g(-1) for Zn, 0.7-2.8 μg g(-1) for Sr. The range of Mn in peel 4-6 μg g(-1) is higher compared to whole apple from 0.7 to 1.7 μg g(-1). Cd is found only in peel, in the concentration range of 0.4-1.1 μg g(-1). Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dessau, D. S.; Shen, Z.-X.; Wells, B. O.; Spicer, W. E.; List, R. S.; Arko, A. J.; Bartlett, R. J.; Fisk, Z.; Cheong, S.-W.; Mitzi, D. B.; Kapitulnik, A.; Schirber, J. E.
1990-07-01
High-resolution photoemission has been used to probe the electronic structure of the gold/Bi2Sr2CaCu2O8 and gold/EuBa2Cu3O7-δ interface formed by a low-temperature (20 K) gold evaporation on cleaved high quality single crystals. We find that the metallicity of the EuBa2Cu3O7-δ substrate in the near surface region (˜5 Å) is essentially destroyed by the gold deposition, while the near surface region of Bi2Sr2CaCu2O8 remains metallic. This has potentially wide ranging consequences for the applicability of the different types of superconductors in real devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumann, P. K.; Kaufman, D. Y.; Im, J.
2001-01-01
We have investigated the structural and electrical characteristics of (Ba{sub x}Sr{sub 1-x})Ti{sub 1+y}O{sub 3+z} (BST) thin films synthesized at 650{sup o}C on Pt/SiO{sub 2}/Si substrates using a large area, vertical metalorganic chemical vapor deposition (MOCVD) reactor equipped with a liquid delivery system. Films with a Ba/Sr ratio of 70/30 were studied, as determined using X-ray fluorescence spectroscopy (XRF) and Rutherford backscattering spectrometry (RBS). A substantial reduction of the dielectric loss was achieved when annealing the entire capacitor structure in air at 700{sup o}C. Dielectric tunability as high as 2.3:1 was measured for BST capacitors with the currently optimized processing conditions.
Futa, K.; Stern, C.R.
1988-01-01
Isotopic compositions of samples from six Quaternary volcanoes located in the northern and southern extremities of the Southern Volcanic Zone (SVZ, 33-46??S) of the Andes and from four centers in the Austral Volcanic Zone (AVZ, 49-54??S) range for 87Sr 86Sr from 0.70280 to 0.70591 and for 143Nd 144Nd from 0.51314 to 0.51255. The ranges are significantly greater than previously reported from the southern Andes but are different from the isotopic compositions of volcanoes in the central and northern Andes. Basalts and basaltic andesites from three centers just north of the Chile Rise-Trench triple junction have 87Sr 86Sr, 143Nd 144Nd, La Yb, Ba La, and Hf Lu that lie within the relatively restricted ranges of the basic magmas erupted from the volcanic centers as far north as 35??S in the SVZ of the Andes. The trace element and Sr and Nd isotopic characteristics of these magmas may be explained by source region contamination of subarc asthenosphere, with contaminants derived from subducted pelagic sediments and seawater-altered basalts by dehydration of subducted oceanic lithosphere. In the northern extremity of the SVZ between 33?? and 34??S, basaltic andesites and andesites have higher 87Sr 86Sr, Rb Cs, and Hf Lu, and lower 143Nd 144Nd than basalts and basaltic andesites erupted farther south in the SVZ, which suggests involvement of components derived from the continental crust. In the AVZ, the most primitive sample, high-Mg andesite from the southernmost volcanic center in the Andes (54??S) has Sr and Nd isotopic compositions and K Rb and Ba La similar to MORB. The high La Yb of this sample suggests formation by small degrees of partial melting of subducted MORB with garnet as a residue. Samples from centers farther north in the AVZ show a regionally regular northward increase in SiO2, K2O, Rb, Ba, Ba La, and 87Sr 86Sr and decrease in MgO, Sr, K Rb, Rb Cs, and 143Nd 144Nd, suggesting increasingly greater degrees of fractional crystallization and associated intra-crustal contamination. ?? 1988.
NASA Astrophysics Data System (ADS)
Mumtaz, M.; Khan, Nawazish A.
2009-11-01
The role of charge carriers in ZnO 2/CuO 2 planes of Cu 0.5Tl 0.5Ba 2Ca 3Cu 4-yZn yO 12-δ material in bringing about superconductivity has been explained. Due to suppression of anti-ferromagnetic order with Zn 3d 10 ( S=0) substitution at Cu 3d 9(S={1}/{2}) sites in the inner CuO 2 planes of Cu 0.5Tl 0.5Ba 2Ca 3Cu 4O 12-δ superconductor, the distribution of charge carriers becomes homogeneous and optimum, which is evident from the enhanced superconductivity parameters. The decreased c-axis length with the increase of Zn doping improves interlayer coupling and hence the three dimensional (3D) conductivity in the unit cell is enhanced. Also the softening of phonon modes with the increased Zn doping indicates that the electron-phonon interaction has an essential role in the mechanism of high- Tc superconductivity in these compounds.
Crystal Chemical Substitutions of YBa2Cu3O7-d to Enhance Flux Pinning (Postprint)
2012-02-01
ionic radii (1.42 A for 8-fold coordination), specifically including larger RE ions La, Pr, and Nd and Ca 2+ and Sr +2. Note also that Pm is normal1y...ng is especially critical for the larger RE ions or mixtures with these ions , which pre vents partial substitution of these RE io ns for Ba ...similar 123 phase can be formed with th e composition ThSr2Cu2•7Meo 30?. This 123 p hase can be formed by substituting Sr for Ba an d a small amount of
Crystallization and properties of Sr-Ba aluminosilicate glass-ceramic matrices
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Hyatt, Mark J.; Drummond, Charles H., III
1991-01-01
Powders of roller quenched (Sr,Ba)O-Al2O3-2SiO2 glasses of various compositions were uniaxially pressed into bars and hot isostatically pressed at 1350 C for 4 hours or cold isostatically pressed and sintered at different temperatures between 800 to 1500 C for 10 or 20 hours. Densities, flexural strengths, and linear thermal expansion were measured for three compositions. The glass transition and crystallization temperatures were determined by Differential Scanning Calorimetry (DSC). The liquidus and crystallization temperature from the melt were measured using high temperature Differential Thermal Analysis (DTA). Crystalline phases formed on heat treatment of the glasses were identified by powder X ray diffraction. In Sr containing glasses, the monoclinic celsian phase always crystallized at temperatures above 1000 C. At lower temperatures, the hexagonal analog formed. The temperature for orthorhombic to hexagonal structural transformation increased monotonically with SrO content, from 327 C for BaO-Al2O3-2SiO2 to 758 C for SrO-Al2O3-2SiO2. These glass powders can be sintered to almost full densities and monoclinic celsian phase at a relatively low temperature of 1100 C.
On the persistence of polar domains in ultrathin ferroelectric capacitors.
Zubko, Pavlo; Lu, Haidong; Bark, Chung-Wung; Martí, Xavi; Santiso, José; Eom, Chang-Beom; Catalan, Gustau; Gruverman, Alexei
2017-07-19
The instability of ferroelectric ordering in ultra-thin films is one of the most important fundamental issues pertaining realization of a number of electronic devices with enhanced functionality, such as ferroelectric and multiferroic tunnel junctions or ferroelectric field effect transistors. In this paper, we investigate the polarization state of archetypal ultrathin (several nanometres) ferroelectric heterostructures: epitaxial single-crystalline BaTiO 3 films sandwiched between the most habitual perovskite electrodes, SrRuO 3 , on top of the most used perovskite substrate, SrTiO 3 . We use a combination of piezoresponse force microscopy, dielectric measurements and structural characterization to provide conclusive evidence for the ferroelectric nature of the relaxed polarization state in ultrathin BaTiO 3 capacitors. We show that even the high screening efficiency of SrRuO 3 electrodes is still insufficient to stabilize polarization in SrRuO 3 /BaTiO 3 /SrRuO 3 heterostructures at room temperature. We identify the key role of domain wall motion in determining the macroscopic electrical properties of ultrathin capacitors and discuss their dielectric response in the light of the recent interest in negative capacitance behaviour.
Inclusion property of Cs, Sr, and Ba impurities in LiCl crystal formed by layer-melt crystallization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jung-Hoon; Cho, Yung-Zun; Lee, Tae-Kyo
Pyroprocessing is one of the promising technologies enabling the recycling of spent nuclear fuels from a commercial light water reactor (LWR). In general, pyroprocessing uses dry molten salts as electrolytes. In particular, LiCl waste salt after pyroprocessing contains highly radioactive I/II group fission products mainly composed of Cs, Sr, and Ba impurities. Therefore, it is beneficial to reuse LiCl salt in the pyroprocessing as an electrolyte for economic and environmental issues. Herein, to understand the inclusion property of impurities within LiCl crystal, the physical properties such as lattice parameter change, bulk modulus, and substitution enthalpy of a LiCl crystal havingmore » 0-6 at% Cs{sup +} or Ba{sup 2+} impurities under existence of 1 at% Sr{sup 2+} impurity were calculated via the first-principles density functional theory. The substitution enthalpy of LiCl crystals having 1 at% Sr{sup 2+} showed slightly decreased value than those without Sr{sup 2+} impurity. Therefore, through the substitution enthalpy calculation, it is expected that impurities will be incorporated within LiCl crystal as co-existed form rather than as a single component form. (authors)« less
Crystallization and properties of Sr-Ba aluminosilicate glass-ceramic matrices
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Hyatt, Mark J.; Drummond, Charles H., III
1991-01-01
Powders of roller quenched (Sr,Ba)O-Al2O3-2SiO2 glasses of various compositions were uniaxially pressed into bars and hot isostatically pressed at 1350 C for 4 hours or cold isostatically pressed and sintered at different temperatures between 800 to 1500 C for 10 or 20 hours. Densities, flexural strengths, and linear thermal expansion were measured for three compositions. The glasss transition and crystallization temperatures were determined by Differential Scanning Calorimetry (DSC). The liquidus and crystallization temperature from the melt were measured using high temperature Differential Thermal Analysis (DTA). Crystalline phases formed on heat treatment of the glasses were identified by powder x ray diffraction. In Sr containing glasses, the monoclinic celsian phase always crystallized at temperatures above 1000 C. At lower temperatures, the hexagonal analog formed. The temperature for orthorhombic to hexagonal structure transformation increased monotonically with SrO content, from 327 C for BaO-Al2O3-2SiO2 to 758 C for SrO-Al2O3-2SiO2. These glass powders can be sintered to almost full densities and monoclinic celsian phase at a relatively low temperature of 1100 C.
Assessment of the analytical capabilities of inductively coupled plasma-mass spectrometry
Taylor, Howard E.; Garbarino, John R.
1988-01-01
A thorough assessment of the analytical capabilities of inductively coupled plasma-mass spectrometry was conducted for selected analytes of importance in water quality applications and hydrologic research. A multielement calibration curve technique was designed to produce accurate and precise results in analysis times of approximately one minute. The suite of elements included Al, As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Li, Mn, Mo, Ni, Pb, Se, Sr, V, and Zn. The effects of sample matrix composition on the accuracy of the determinations showed that matrix elements (such as Na, Ca, Mg, and K) that may be present in natural water samples at concentration levels greater than 50 mg/L resulted in as much as a 10% suppression in ion current for analyte elements. Operational detection limits are presented.
Formation of the Shelf-edge Cretaceous-Tertiary contact off the southeastern U.S. Coast
Poppe, L.J.; Hathaway, J.C.; Hall, R.E.; Commeau, R.F.
1986-01-01
Submarine erosion, associated with changes in position of the proto-Gulf Stream, was the dominant mechanism controlling the formation of the Cretaceous-Tertiary unconformity in AMCOR borehole 6004. Paleontologic evidence indicates that this unconformity, which is marked by a gravelly-sand enriched in glauconitic and phosphoritic concretions, represents a hiatus of about 7 m.y. Both Cretaceous and Paleocene sediments contain middle-outer neritic foraminiferal assemblages that become more diverse with distance from the contact. Of the elemental abundances measured, Al, Ba, Co, Fe, Ga, K, Mg/Ca, Mo, Ni, P, Sr/Ca, V, Y, and Zn show a strong positive correlation with proximity to the contact, probably as a result of the concentration of authigenic and heavy minerals present as lag sediments on the erosion surface. ?? 1986.
Soroko, S I; Maksimova, I A; Protasova, O V
2014-01-01
By means of the nuclear-emission spectral analysis with inductively connected argon plasma were studied the contents of 28 macro- and trace elements (Al, Ag, Li, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, In, K, Mg, Mn, Na, Ni, Mo, P, Zn, Se, Tl, Pb, Sr, S, Si) in the hair of children and teenagers living in the European North of the Russian Federation (Arkhangelsk region). There were revealed both: decrease and increase of some elements' contents. Also were revealed the dynamics of mentioned elements contents in the hair of the same children in different years. Significant individual variability of the macro and trace elements' status of children-northerners and some gender dependence were revealed.
Concentration of stable elements in food products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montford, M.A.; Shank, K.E.; Hendricks, C.
1980-01-01
Food samples were taken from commercial markets and analyzed for stable element content. The concentrations of most stable elements (Ag, Al, As, Au, Ba, Br, Ca, Ce, Cl, Co, Cr, Cs, Cu, Fe, Hf, I, K, La, Mg, Mn, Mo, Na, Rb, Sb, Sc, Se, Sr, Ta, Th, Ti, V, Zn, Zr) were determined using multiple-element neutron activation analysis, while the concentrations of other elements (Cd, Hg, Ni, Pb) were determined using atomic absorption. The relevance of the concentrations found are noted in relation to other literature values. An earlier study was extended to include the determination of the concentrationmore » of stable elements in home-grown products in the vicinity of the Oak Ridge National Laboratory. Comparisons between the commercial and local food-stuff values are discussed.« less
Soft x-ray resonant diffraction study of magnetic structure in magnetoelectric Y-type hexaferrite
NASA Astrophysics Data System (ADS)
Ueda, H.; Tanaka, Y.; Wakabayashi, Y.; Kimura, T.
2018-05-01
The effect of magnetic field on the magnetic structure associated with magnetoelectric properties in a Y-type hexaferrite, Ba1.3Sr0.7CoZnFe11AlO22, was investigated by utilizing the soft x-ray resonant diffraction technique. In this hexaferrite, the so-called alternating longitudinal conical phase is stabilized at room temperature and zero magnetic field. Below room temperature, however, this phase is transformed into the so-called transverse conical phase by applying an in-plane magnetic field (≈ 0.3 T). The transverse conical phase persists even after removing the magnetic field. The magnetoelectricity, which is magnetically-induced electric polarization, observed in the hexaferrite is discussed in terms of the temperature-dependent magnetic structure at zero field.
Ternary oxide nanostructures and methods of making same
Wong, Stanislaus S [Stony Brook, NY; Park, Tae-Jin [Port Jefferson, NY
2009-09-08
A single crystalline ternary nanostructure having the formula A.sub.xB.sub.yO.sub.z, wherein x ranges from 0.25 to 24, and y ranges from 1.5 to 40, and wherein A and B are independently selected from the group consisting of Ag, Al, As, Au, B, Ba, Br, Ca, Cd, Ce, Cl, Cm, Co, Cr, Cs, Cu, Dy, Er, Eu, F, Fe, Ga, Gd, Ge, Hf, Ho, I, In, Ir, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Tc, Te, Ti, Tl, Tm, U, V, W, Y, Yb, and Zn, wherein the nanostructure is at least 95% free of defects and/or dislocations.
NASA Astrophysics Data System (ADS)
Not, C.; Thibodeau, B.; Yokoyama, Y.
2018-01-01
Measurement of elemental ratios (E/Ca) has been performed in two symbiont-bearing species of high-Mg calcite benthic foraminifers (hyaline, Baculogypsina sphaerulata and porcelaneous, Amphisorus hemprichii), cultured under five pCO2 levels, representing preindustrial, modern, and three predicted future values. E/Ca ratios were analyzed by Laser Ablation coupled with Inductively Coupled Plasma Mass Spectrometer (LA-ICP-MS). We measured several E/Ca, such as Mg/Ca, Sr/Ca, Ba/Ca, U/Ca, and B/Ca simultaneously. We observed that high-Mg calcite benthic foraminifers possess higher E/Ca than low-Mg calcite foraminifers, irrespective of their calcification mode (hyaline or porcelaneous). In both modes of calcification, Mg, Sr, Ba, U, and B incorporation could be controlled by Rayleigh fractionation. However, more data are needed to validate and quantify the relative importance of this process and closely investigate the presence/absence of other mechanism. Therefore, it highlights the need for a multielemental approach when looking at trace element incorporation. Finally, no significant relationship was observed between the different ratios and the pCO2 of the water, suggesting that none of the Mg/Ca, Sr/Ca, Ba/Ca, U/Ca, and B/Ca is sensitive to bottom water pCO2 or pH for these species.
NASA Astrophysics Data System (ADS)
Kawano, H.; Morii, K.; Nakayama, Y.
1993-05-01
The possibilities for fabricating solid solutions of (Ba1-x,Srx)TiO3 (x≤0.5,1.0) by crystallization of amorphous films and for improving their dielectric properties by adjusting the Sr content were investigated. Thin amorphous films were prepared from powder targets consisting of mixtures of BaTiO3 and SrTiO3 by sputtering with a neutralized Ar-ion beam. The amorphous films crystallized into (Ba1-x, Srx)TiO3 solid solutions with a cubic perovskite-type structure after annealing in air at 923 K for more than 1 h. The Debye-type dielectric relaxation was observed for the amorphous films, whereas the crystallized films showed paraelectric behavior. The relative dielectric constants were of the order of 20 for the amorphous samples, but increased greatly after crystallization to about 60-200, depending on the composition; a larger increase in the dielectric constant was observed in the higher Sr content films, in the range x≤0.5, which could be correlated with an increase in the grain size of the crystallites. The crystallization processes responsible for the difference in the grain size are discussed based on the microstructural observations.
Diffusion of Zr, Ru, Ce, Y, La, Sr and Ba fission products in UO 2
Perriot, R.; Liu, X. -Y.; Stanek, C. R.; ...
2015-01-08
The diffusivity of the solid fission products (FP) Zr (Zr 4+), Ru (Ru 4+, Ru 3+), Ce (Ce 4+), Y (Y 3+), La (La 3+), Sr (Sr 2+) and Ba (Ba 2+) by a vacancy mechanism has been calculated, using a combination of density functional theory (DFT) and empirical potential (EP) calculations. The activation energies for the solid fission products are compared to the activation energy for Xe fission gas atoms calculated previously. Apart from Ru, the solid fission products all exhibit higher activation energy than Xe. Furthermore, for all solid FPs except Y 3+, the migration of the FPmore » has lower barrier than the migration of a neighboring U atom, making the latter the rate limiting step for direct migration. An indirect mechanism, consisting of two successive migrations around the FP, is also investigated. The calculated diffusivities show that most solid fission products diffuse with rates similar to U self-diffusion. But, Ru, Ba and Sr exhibit faster diffusion than the other solid FPs, with Ru 3+ and Ru 4+ diffusing even faster than Xe for T < 1200 K. The diffusivities correlate with the observed fission product solubility in UO 2, and the tendency to form metallic and oxide second phase inclusions.« less
Frankowska, Aneta; Ziółkowska, Joanna; Bielawski, Leszek; Falandysz, Jerzy
2010-01-01
This study aimed to provide basic data on the composition of metallic elements, including toxicologically important Cd and Hg, in popular and prized wild King Bolete mushrooms. We investigated the importance of soil substratum as a source of these metals. ICP-OES and CV-AAS were applied to determine the profile of Al, Ba, Ca, Cd, Cu, Fe, Hg, K, Mg, Mn, Na, Sr and Zn in caps and stipes of King Bolete mushroom and in the surface layer of soil (0-10 cm) from the Płocka Dale area of Poland. Hg, Cu, Cd, Zn, Mg and K exhibited bioconcentration factors (BCF) > 1. Specifically, Hg, Cu and Cd (mean BCFs for caps were 110, 19 and 16, respectively) were efficiently bioconcentrated by King Bolete, while other elements were bioexcluded (BCF < 1). Cadmium was present in the caps at mean levels of 5.5 ± 2.4 mg kg(-1) dry weight (dw) and mercury at levels of 4.9 ± 1.4 mg kg(-1) dw, both occurring at elevated concentrations in those King Bolete mushrooms surveyed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aruta, C.; Balestrino, G.; Martellucci, S.
We have shown that the pulsed laser deposition technique (PLD) can be successfully used to grow artificially layered films of the CuBa{sub 2}(Ca{sub 1{minus}x}Sr{sub x}){sub n{minus}1}Cu{sub n}O{sub y} compound using only two targets having nominal composition BaCuO{sub y} and (Ca{sub 1{minus}x}Sr{sub x})CuO{sub y}, respectively. n was varied between 2 and 5. We have demonstrated, by a kinematic analysis of the x-ray diffraction spectra that the average random discrete thickness fluctuations which affect both the BaCuO{sub y} and (Ca{sub 1{minus}x}Sr{sub x})CuO{sub y} layers are much smaller than one atomic layer. Such features are confirmed by the appearance of sharp peaks evenmore » for the n=2 artificially layered structure where only one (Ca{sub 1{minus}x}Sr{sub x})CuO{sub y} cell is deposited in the stacking sequence. These results show that truly new structures can be obtained by a layer by layer deposition technique with a low interfacial disorder and give strong support to the idea of synthesizing new artificial high T{sub c} structures by the PLD technique.{copyright} {ital 1997 American Institute of Physics.}« less
Sintering of BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) with/without SrTiO3 Dopant
NASA Technical Reports Server (NTRS)
Dynys, F.; Sayir, A.; Heimann, P. J.
2004-01-01
The perovskite composition, BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta), displays excellent protonic conduction at high temperatures making it a desirable candidate for hydrogen separation membranes. This paper reports on the sintering behavior of BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) powders doped with SrTiO3. Two methods were used to synthesize BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) powders: (1) solid state reaction and (2) wet chemical co-precipitation. Co-precipitated powder crystallized into the perovskite phase at 1000 C for 4 hrs. Complete reaction and crystallization of the perovskite phase by solid state was achieved by calcining at 1200 C for 24 hrs. Solid state synthesis produced a coarser powder with an average particle size of 1.3 microns and surface area of 0.74 sq m/g. Co-precipitation produced a finer powder with a average particle size of 65 nm and surface area of 14.9 sq m/g. Powders were doped with 1, 2, 5, and 10 mole % SrTiO3. Samples were sintered at 1450 C, 1550 C and 1650 C. SrTiO3 enhances sintering, optimal dopant level is different for powders synthesized by solid state and co-precipitation. Both powders exhibit similar grain growth behavior. Dopant levels of 5 and 10 mole % SrTiO3 significantly enhances the grain size.
Su, Fu Hai; Chen, Wei; Ding, Kun; Li, Guo Hua
2008-05-29
The luminescence from Eu(2+) ions in MF2 (M = Ca, Sr, Ba) fluorides has been investigated under the pressure range of 0-8 GPa. The emission band originating from the 4f(6)5d(1) --> 4f(7) transition of Eu(2+) ions in CaF2 and SrF2 shows the red-shift as increasing pressure with pressure coefficients of -17 meV/GPa for CaF2 and -18 meV/GPa for SrF2. At atmospheric pressure, the emission spectrum of BaF2:Eu(2+) comprises two peaks at 2.20 and 2.75 eV from the impurity trapped exciton (ITE) and the self-trapped exciton (STE), respectively. As the pressure is increased, both emission peaks shift to higher energies, and the shifting rate is slowed by the phase transition from the cubic to orthorhombic phase at 4 GPa. Due to the phase transition at 4-5 GPa pressure, the ITE emission disappears gradually, and the STE emission is gradually replaced by the 4f(6)5d(1) --> 4f(7) transition of Eu(2+). Above 5 GPa, the pressure behavior of the 4f(6)5d(1) --> 4f(7) transition of Eu(2+) in BaF2:Eu(2+) is the same as the normal emission of Eu(2+) in CaF2 and SrF2 phosphors.
Vural, Alaaddin
2015-08-01
Kırkpavli alteration area (Gümüşhane, Northeast Turkey) is contaminated by heavy metals such as Cd, Pb, As, Cu and Zn. The quantity of accumulation of heavy metal trace elements and macroelements in 32 leaves of Rosa canina of the Kırkpavli alteration area has been studied within the scope of geochemical studies. Element contents of samples were assessed using various parameters including descriptive statistics, factor analysis, correlation coefficients and bioaccumulation factor. Concentrations were detected in the acceptable range for Mo, Cu, Pb, Ni, As, Cd, Sb, P, Ti, Na, Se and Sn. Concentrations of Co, Mn, Ba and Hg were detected close to the acceptable values, whereas Zn, Fe, Sr, V, Ca, Cr, Mg, B, Al, K, W, Sc, Cs and Rb concentrations were detected above the acceptable values. Principal component analysis was used to identify the elements that have a close relationship with each other and/or similar origins. It has been concluded that Zn, Cu, As and Mo content of the plant were related to hydrothermal alteration process and they behaved together, whereas Mn and Fe were especially products of weathering conditions, also behaved together. In terms of macroelements, Ca, Mg and Na had similar behaviour, while P and K had the same correlation.
Kasturi, S; Sivakumar, V; Varadaraju, U V
2017-05-01
A series of Eu 2+ -activated barium orthosilicates (BaZnSiO 4 ) were synthesized using a high-temperature solid-state reaction. A photoluminescence excitation study of Eu 2 + shows a broad absorption band in the range of 270-450 nm, with multiple absorption peak maxima (310, 350 and 400 nm) due to 4f-5d electronic transition. The emission spectra of all the compositions show green color emission (in the spectral region 450-550 nm with a peak maximum at 502 nm and a shoulder at ~ 490 nm) with appropriate Comission Internationale de l'Eclairage (CIE) color coordinates. The two emission peaks are due to the presence of Eu 2 + in two different Ba sites in the BaZnSiO 4 host lattice. The energy transfers between the Eu 2 + ions in BaZnSiO 4 host are elucidated from the critical concentration quenching data based on the electronic multipolar interaction. All Eu 2 + -activated BaZnSiO 4 phosphor materials can be efficiently excited in the ultraviolet (UV) to near UV-region (270-420 nm), making them attractive candidate as a green phosphor for solid state lighting-white light-emitting diodes. Copyright © 2016 John Wiley & Sons, Ltd.
Study of non-stoichiometric BaSrTiFeO3 oxide dedicated to semiconductor gas sensors
NASA Astrophysics Data System (ADS)
Fasquelle, D.; Verbrugghe, N.; Deputier, S.
2016-11-01
Developing instrumentation systems compatible with the European RoHS directive (restriction of hazardous substances) to monitor our environment is of great interest for our society. Our research therefore aims at developing innovating integrated systems of detection dedicated to the characterization of various environmental exposures. These systems, which integrate new gas sensors containing lead-free oxides, are dedicated to the detection of flammable and toxic gases. We have firstly chosen to study semiconductor gas sensors implemented with lead-free oxides in view to develop RoHS devices. Therefore thick films deposited by spin-coating and screen-printing have been chosen for their robustness, ease to realize and ease to finally obtain cost-effective sensors. As crystalline defects and ionic vacancies are of great interest for gas detection, we have decided to study a non-stoichiometric composition of the BaSrTiFeO3 sensible oxide. Nonstoichiometric BaSrTiFeO3 lead-free oxide thick films were deposited by screen-printing on polycrystalline AFO3 substrates covered by a layer of Ag-Pd acting as bottom electrode. The physical characterizations have revealed a crystalline structure mainly composed of BaTiO3 pseudo-cubic phase and Ba4Ti12O27 monoclinic phase for the powder, and a porous microstructure for the thick films. When compared to a BSTF thick film with a stoichiometric composition, a notable increase in the BSTF dielectric constant value was observed when taking into account of a similar microstructure and grain size. The loss tangent mean value varies more softly for the non-stoichiometric BaSrTiFeO3 films than for the perovskite BSTF film as tanδ decreases from 0.45 to 0.04 when the frequency increases from 100 Hz to 1 MHz.
NASA Astrophysics Data System (ADS)
Chen, Yongzhou; Zhang, Yong; Song, Xiaozhen; Shen, Ziqin; Zhang, Tianyuan
2018-05-01
Ferroelectric glass-ceramics, with a basic composition 90 wt.% (Ba0.65Sr0.35)TiO3-10 wt.% (B2O3-nSiO2) (n = 0.5, 1, 3, 5) were synthesized by the sol-gel method and their phase development and dielectric properties were investigated by differential thermal analysis, x-ray diffraction, field emission scanning electron microscopy, dielectric temperature curves and impedance spectroscopy. From the differential thermal analysis, glass transition and crystallization behavior can be observed. From the x-ray diffraction study, two crystalline phases (Ba,Sr)TiO3 and Ba2TiSi2O8 were formed over the entire composition range of the glass-ceramics. In addition, the main crystal phase has undergone a transformation from (Ba,Sr)TiO3 to Ba2TiSi2O8 with the increase of n. A typical structure in which the crystal phase was surrounded by a glassy matrix has been observed in the scanning electron microscope images. As a result of temperature dependent dielectric property measurements, the dielectric constant increased obviously with the increase of n from 0.5 to 1. Further increasing n led to a reduction of the dielectric constant, which is in coincidence with the variation of the intensity of (Ba,Sr)TiO3 phase with n. According to the impedance spectroscopy analysis and the activation energy calculation, the relaxation peak in both Z″ and M″ data should be attributed to the crystal-glass interface, and the change of conduction mechanism with the increase of SiO2/B2O3 ratio may be attributed to the corresponding transition of the main crystal phase.
NASA Astrophysics Data System (ADS)
Blundy, Jonathan D.; Wood, Bernard J.
1991-01-01
The isothermal (750°C) experiments of LAGACHE and DUJON (1987) reveal that the partitioning of Sr between plagioclase feldspar and hydrothermal solutions is a funtion of the anorthite (An) content of the plagioclase, indicating that crystal chemistry may exert a powerful influence on trace element partitioning. In order to compare these results with those on trace element partitioning between plagioclase and silicate melts we have compiled from the literature a large dataset of experimental and volcanic distribution coefficients ( D's) for Sr (and Ba). These data, which span a compositional range from lunar basalt to high silica rhyolite and a temperature range of over 650°C, show a relationship between DSr (and DBa) and mole fraction An ( XAn) which is similar to that exhibited by the hydrothermal results obtained at constant temperature. Plots of In DSr and In DBa versus XAn are linear with negative slope, indicating that both elements are more compatible in albite than anorthite. In terms of molar distribution coefficients ( D Sr∗) the hydrothermal and silicate melt data display an identical linear relationship between RT In D Sr∗ (where T is the absolute temperature in K and R is the gas constant, 8.314 JK -1 mol -1) and XAn. We conclude therefore that crystal chemistry provides the dominant control on partitioning of Sr and Ba into plagioclase and that the effects of temperature, pressure, and fluid composition are minor. Apparent relationships between DSr (and DBa) and the reciprocal temperature (1/ T) are artefacts of the linear relationships between XAn and 1/ T in the experimental studies. By defining a Henry's law standard state for the silicate melts and hydrothermal solutions, and considering plagioclases to be ternary regular solutions, we are able to relate the observed relationships between RT In D i∗ (where i is Ba or Sr) and XAn to the excess free energies of the trace element partitioning reactions between plagioclase and melt or hydrothermal solution. The interaction parameters are consistent with simple models in which the larger Ba or Sr cations are accommodated by lattice strain in the host plagioclase lattice, which is assumed to be perfectly elastic and isotropic. Thus D i∗ is a function of the Young's modulus of the host crystal and the size mismatch between trace and host cations. The greater elasticity of albite relative to anorthite accounts for the observed preference of Sr and Ba for sodic plagioclases over calcic plagioclases. For geochemical purposes the weight fraction partition coefficient Di is of more value than its molar counterpart. Regression of the Di data versus XAn yields the semi-empirical relationships RTIn DSr = 26,800 - 26,700 · XAnRTIn DBa = 10,200 - 38,200 · XAn. Thus measurement of the An and trace element (Ba, Sr) contents of a magmatic plagioclase enables calculation of the Ba and Sr contents of the coexisting liquid, which can be extremely important in the deciphering of igneous processes. By reference to plagioclase fractionation in the simple An-Ab binary we show that failure to take into account the compositional dependence of DSr can result in erroneous interpretations of geochemical trends. We also consider applications to three natural igneous suites: the Aden Volcanics; the layered Kiglapait Intrusion, Labrador; and the southern Actamello Massif, Italy.
Stern, C.R.; Frey, F.A.; Futa, K.; Zartman, R.E.; Peng, Z.; Kurtis, Kyser T.
1990-01-01
The Pliocene and Quaternary Patagonian alkali basalts of southernmost South America can be divided into two groups. The "cratonic" basalts erupted in areas of Cenozoic plateau volcanism and continental sedimentation and show considerable variation in 87Sr/86Sr (0.70316 to 0.70512), 143Nd/144Nd (e{open}Nd) and 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios (18.26 to 19.38, 15.53 to 15.68, and 38.30 to 39.23, respectively). These isotopic values are within the range of oceanic island basalts, as are the Ba/La, Ba/Nb, La/Nb, K/Rb, and Cs/Rb ratios of the "cratonic" basalts. In contrast, the "transitional" basalts, erupted along the western edge of the outcrop belt of the Pliocene and Quaternary plateau lavas in areas that were the locus of earlier Cenozoic Andean orogenic arc colcanism, have a much more restricted range of isotopic composition which can be approximated by 87Sr/86Sr=0.7039??0.0004, e{open}Nd, 206Pb/204Pb=18.60??0.08, 207Pb/204Pb=15.60??0.01, and 208Pb/204Pb=38.50??0.10. These isotopic values are similar to those of Andean orogenic are basalts and, compared to the "cratonic" basalts, are displaced to higher 87Sr/86Sr at a given 143Nd/144Nd and to higher 207Pb/204Pb at a given 208Pb/204Pb. The "transitional" basalts also have Ba/La, Ba/Nb, La/Nb, and Cs/Rb ratios higher than the "cratonic" and oceanic island basalts, although not as high as Andean orogenic are basalts. In contrast to the radiogenic isotopes, ??18O values for both groups of the Patagonian alkali basalts are indistinguishable and are more restricted than the range reported for Andean orogenic are basalts. Whole rock ??18O values calculated from mineral separates for both groups range from 5.3 to 6.5, while measured whole rock ??18O values range from 5.1 to 7.8. The trace element and isotopic data suggest that decreasing degrees of partial melting in association with lessened significance of subducted slabderived components are fundamental factors in the west to east transition from arc to back-arc volcanism in southern South America. The "cratonic" basalts do not contain the slab-derived components that impart the higher Ba/La, Ba/Nb, La/Nb, Cs/Rb, 87Sr/86Sr at a given 143Nd/144Nd, 207Pb/204Pb at a given 208Pb/204Pb, and ??18O to Andean orogenic arc basalts. Instead, these basalts are formed by relatively low degrees of partial melting of heterogeneous lower continental lithosphere and/or asthenosphere, probably due to thermal and mechanical pertubation of the mantle in response to subduction of oceanic lithosphere below the western margin of the continent. The "transitional" basalts do contain components added to their source region by either (1) active input of slab-derived components in amounts smaller than the contribution to the mantle below the arc and/or with lower Ba/La, Ba/Nb, La/Nb, and Cs/Rb ratios than below the arc due to progressive downdip dehydration of the subducted slab; or (2) subarc source region contamination processes which affected the mantle source of the "transitional" basalts earlier in the Cenozoic. ?? 1990 Springer-Verlag.
Thermoelectric properties of doped BaHfO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixit, Chandra Kr., E-mail: ckparadise@gmail.com, E-mail: sharmarameshfgiet@gmail.com; Bhamu, K. C.; Sharma, Ramesh, E-mail: ckparadise@gmail.com, E-mail: sharmarameshfgiet@gmail.com
2016-05-06
We have studied the structural stability, electronic structure, optical properties and thermoelectric properties of doped BaHfO{sub 3} by full potential linearized augmented plane wave (FP-LAPW) method. The electronic structure of BaHfO{sub 3} doped with Sr shows enhances the indirect band gaps of 3.53 eV, 3.58 eV. The charge density plots show strong ionic bonding in Ba-Hf, and ionic and covalent bonding between Hf and O. Calculations of the optical spectra, viz., the dielectric function, refractive index and extinction coefficient are performed for the energy range are calculated and analyzed. Thermoelectric properties of semi conducting are also reported first time. Themore » doped BaHfO{sub 3} is approximately wide band gap semiconductor with the large p-type Seebeck coefficient. The power factor of BaHfO{sub 3} is increased with Sr doping, decreases because of low electrical resistivity and thermal conductivity.« less
NASA Astrophysics Data System (ADS)
Wang, Zhongwei; Wang, Jian; Fu, Xiugen; Zhan, Wangzhong; Armstrong-Altrin, John S.; Yu, Fei; Feng, Xinglei; Song, Chunyan; Zeng, Shengqiang
2018-07-01
The Qiangtang Basin is the largest Mesozoic marine basin in the Tibetan Plateau. The Upper Triassic black mudstones are among the most significant hydrocarbon source rocks in this basin. Here, we present geochemical data for the Upper Triassic black mudstones to determine their paleoenvironment conditions, provenance, and tectonic setting. To achieve these, 30 black mudstones formed in various sedimentary environments were collected from the Zangxiahe, Zana, and Bagong formations. The results show that the total REE concentrations of mudstones from these formations range from 169 to 214 ppm, 204 to 220 ppm, and 141 to 194 ppm, respectively. All samples have chondrite-normalized REE patterns with enrichment of LREE, depletion of HREE and negative Eu and Ce anomalies. Specifically, mudstones from the Bagong Formation exhibit higher negative Eu anomalies and lower REE contents than those from the Zangxiahe and Zana formations. Mudstones from the Zangxiahe and Zana formations with low Sr/Ba and Sr/Cu ratios indicate the humid climate, whereas the high Sr/Ba and Sr/Cu ratios of rocks from the Bagong Formation suggest the arid climate. The low U/Th, (Cu + Mo)/Zn, V/Cr and Ni/Co ratios of rocks from the Zangxiahe, Zana, and Bagong formations are indicators of oxidized conditions. The bivariate diagrams (TiO2 vs. Al2O3, TiO2 vs. Zr, La/Th vs. Hf, and Co/Th vs. La/Sc) reveal that mudstones from the Zangxiahe and Zana formations were potentially derived from intermediate igneous rocks, whereas mudstones from the Bagong Formation were probably sourced from felsic igneous rocks. Their source rocks are mostly deposited in the collisional setting. REE of mudstones from the Zangxiahe, Zana, and Bagong formations were possibly originated from terrigenous detritus, with minor non-terrigenous contributions into the Zana samples. The REE contents of these mudstones are controlled mainly by terrigenous detrital minerals, rather than by the paleoclimate, paleoredox conditions, or organic matter. However, calcite minerals could dilute REE. Therefore, the REE contents of the Bagong Formation mudstones are significant lower than those of the Zangxiahe and Zana formations mudstones.
BariumCopperChFluorine (Ch = Sulfur, Selenium, Tellurium) p-type transparent conductors
NASA Astrophysics Data System (ADS)
Zakutayev, Andriy
BaCuChF (Ch = S, Se, Te) materials are chalcogen-based transparent conductors with wide optical band gaps (2.9 -- 3.5 eV) and a high concentration of free holes (1018 -- 1020 cm-3 ) caused by the presence of copper vacancies. Chalcogen vacancies compensate copper vacancies in these materials, setting the Fermi level close to the valence band maximum. BaCuChF thin film solid solutions prepared by pulsed laser deposition (PLD) have tunable properties, such as lattice constants, conductivity and optical band gaps. BaCuSF and BaCuSeF materials also feature room-temperature stable 3D excitons with spin-orbit-split levels. BaCuTeF has forbidden lowest-energy optical transitions which extends its transparency range. BaCuChF surfaces oxidize when exposed to air, but can be protected using Ch capping layers. Polycrystalline BaCuSeF thin films have a 4.85 eV work function, a 0.11 eV hole injection barrier into ZnPc, and 0.00 eV valence band offset with ZnTe. BaCuSeF should have s similar band offset and similar interfacial properties with CdTe and Cu(InGa)Se2, and BaCuSF should have no valence band offset with Cu2ZnSnS4, according to the transitivity rule. Therefore, BaCuSeF is suitable for applications as a p-layer in organic light-emitting diodes, p-i-n double-heterojunction and tandem chalcogenide solar cells.
Structure and optical band gaps of (Ba,Sr)SnO{sub 3} films grown by molecular beam epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumann, Timo; Raghavan, Santosh; Ahadi, Kaveh
2016-09-15
Epitaxial growth of (Ba{sub x}Sr{sub 1−x})SnO{sub 3} films with 0 ≤ x ≤ 1 using molecular beam epitaxy is reported. It is shown that SrSnO{sub 3} films can be grown coherently strained on closely lattice and symmetry matched PrScO{sub 3} substrates. The evolution of the optical band gap as a function of composition is determined by spectroscopic ellipsometry. The direct band gap monotonously decreases with x from to 4.46 eV (x = 0) to 3.36 eV (x = 1). A large Burnstein-Moss shift is observed with La-doping of BaSnO{sub 3} films. The shift corresponds approximately to the increase in Fermi level and is consistent with the low conduction band mass.
Numerical solutions of anharmonic vibration of BaO and SrO molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pramudito, Sidikrubadi; Sanjaya, Nugraha Wanda; Sumaryada, Tony, E-mail: tsumaryada@ipb.ac.id
2016-03-11
The Morse potential is a potential model that is used to describe the anharmonic behavior of molecular vibration between atoms. The BaO and SrO molecules, which are two almost similar diatomic molecules, were investigated in this research. Some of their properties like the value of the dissociation energy, the energy eigenvalues of each energy level, and the profile of the wavefunctions in their correspondence vibrational states were presented in this paper. Calculation of the energy eigenvalues and plotting the wave function’s profiles were performed using Numerov method combined with the shooting method. In general we concluded that the Morse potentialmore » solved with numerical methods could accurately produce the vibrational properties and the wavefunction behavior of BaO and SrO molecules from the ground state to the higher states close to the dissociation level.« less
NASA Technical Reports Server (NTRS)
Noginov, Makhail A.; Loutts, G. B.
2002-01-01
We have grown neodymium doped mixed apatite crystals, (Sr(x)Ba(l-x)5(PO4)3F, Sr5(P(1-x)V(x)O4)3F, and Ba5(P(1-x)V(x)O4)3F, and spectroscopically studied them as potential gain media for a laser source for atmospheric water sensing operating at 944.11 nm0. We conclude that an appropriate apatite host material for a 944.11 nm laser should be a mixture of Sr5(PO4)3F with a small fraction of Ba5(PO4)3F. The precise wavelength tuning around 944.11 nm can be accomplished by varying the host composition, temperature, and threshold population inversion. In apatite crystals of mixed composition, the Amplified Spontaneous Emission (ASE) loss at 1.06 microns is predicted to be significantly smaller than that in the end members.
Protonic Conduction of BaCe0.85YO. 1503 Doped with SrTiO3
NASA Technical Reports Server (NTRS)
Dynys, Frederick W.; Sayir, Ali
2005-01-01
Reformers based on ceramic membrane technology potentially offer hydrogen production that is comparable to the cost of fossil fuels. Protonic conducting ceramic with the chemical formula AB03 offers the promise of highly selective hydrogen separation at intermediate temperature (400-800 C). Among different perovskite-type oxides, BaCe03 and SrCe03 based compositions show high protonic conductivities but strong resistance to densification. X-ray diffraction studies on sintered specimens of BaCe0.85Y0.1503-6 show multi-phase formation which was found to show dependence upon powder synthesis method. Doping with SrTiO3 suppresses multi-phase formation and enhances grain growth. Conductivity measurements in temperature range of 200 to 1000 C were performed by ac impedance spectroscopy under dry and wet conditions. Sintering behavior, phase formation and conductivity results will be reported.
NASA Astrophysics Data System (ADS)
Ahmed, M. A.; Mansour, S. F.; Ismael, H.
2015-03-01
M-type hexaferrite (MFe12O19), M=Ba or Sr nanoparticles with hexagonal crystal structure have been successfully synthesized by a citrate auto-combustion method. BiFeO3 (BFO) was prepared by the flash auto-combustion technique. Different nanocomposites were prepared according to the formula [(1-X) MFe12O19+XBiFeO3; M=Ba or Sr, X=0.3, 0.4, 0.5 and 0.6]. The structure and morphology of the obtained nanocomposites have been determined by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). From the results, it is observed that the value of saturation magnetization decreases with increasing BFO content, which was mainly due to the contribution of the volume of the weak-magnetic BFO to the total sample volume.
Li, Si-Wen; He, Ying; Zhao, Hong-Jing; Wang, Yu; Liu, Juan-Juan; Shao, Yi-Zhi; Li, Jing-Lun; Sun, Xiao; Zhang, Li-Na; Xing, Ming-Wei
2017-10-01
The contents of 28 trace elements, 17 amino acid were evaluated in muscular tissues (wings, crureus and pectoralis) of chickens in response to arsenic trioxide (As 2 O 3 ). A total of 200 one-day-old male Hy-line chickens were fed either a commercial diet (C-group) or an As 2 O 3 supplement diet containing 7.5mg/kg (L-group), 15mg/kg (M-group) or 30mg/kg (H-group) As 2 O 3 for 90 days. The elements content was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Under As 2 O 3 exposure, the concentration of As were elevated 8.87-15.76 fold, 7.93-15.63 fold and 5.94-12.45 fold in wings, crureus and pectoralis compared to the corresponding C-group, respectively. 19 element levels (lithium (Li), magnesium (Mg), aluminum (Al), silicon (Si), kalium (K), vanadium (V), chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), selenium (Se), strontium (Sr), molybdenum (Mo), cadmium (Cd), tin (Sn), antimony (Sb), barium (Ba), mercury (Hg) and lead (Pb), 9 element levels (K, Co, Ni, Cu, As, Se, Sr, Sn, Ba and Hg) and 4 element levels (Mn, cobalt (Co), As, Sr and Ba) were significantly increased (P < 0.05) in wing, crureus and pectoralis, respectively. 2 element levels (sodium (Na) and zinc (Zn)), 5 element levels (Li, Na, Si, titanium (Ti and Cr), 13 element levels (Li, Na, Mg, K, V, Cr, iron (Fe), Cu, Zn, Mo, Sn, Hg and Pb) were significantly decreased (P < 0.05) in wing muscle, crureus and pectoralis, respectively. Additionally, in crureus and pectoralis, the content of total amino acids (TAA) was no significant alterations in L and M-group and then increased approximately 10.2% and 7.6% in H-group, respectively (P < 0.05). In wings, the level of total amino acids increased approximately 10% in L-group, whereas it showed unchanged in M and H-group compared to the corresponding C-group. We also observed that significantly increased levels of proline, cysteine, aspartic acid, methionine along with decrease in the tyrosine levels in muscular tissues compared to the corresponding C-group. In conclusion, the residual of As in the muscular tissues of chickens were dose-dependent and disrupts trace element homeostasis, amino acids level in muscular tissues of chickens under As 2 O 3 exposure. Additionally, the response (trace elements and amino acids) were different in wing, thigh and pectoral of chick under As 2 O 3 exposure. This study provided references for further study of heavy metal poisoning and may be helpful to understanding the toxicological mechanism of As 2 O 3 exposure in muscular tissues of chickens. Copyright © 2017 Elsevier Inc. All rights reserved.
Fluorine Kα X-Ray Emission Spectra of MgF2, CaF2, SrF2 and BaF2
NASA Astrophysics Data System (ADS)
Sugiura, Chikara; Konishi, Wataru; Shoji, Shizuko; Kojima, Shinjiro
1990-11-01
The fluorine Kα emission spectra in fluorescence from a series of alkaline-earth fluorides MF2 (M=Mg, Ca, Sr and Ba) are measured with a high-resolution two-crystal vacuum spectrometer. An anomalously low intensity of the K1L1 satellite peak arising from 1s-1(2s2p)-1 initial states is observed for SrF2. The measured emission spectra are presented along with the UPS spectra of the F- 2p valence bands obtained by Poole et al. and the fluorine K absorption-edge spectra by Oizumi et al. By using these spectra, the first peak or shoulder in the fluorine K absorption-edge spectra is identified as being due to a core exciton which is formed below the bottom of the conduction band. The binding energy of the exciton is estimated to be 1.3(± 0.3), 1.1(± 0.2), 1.0(± 0.2) and 1.7(± 0.2) eV for MgF2, CaF2, SrF2 and BaF2, respectively.
The isotopic and chemical evolution of Mount St. Helens
Halliday, A.N.; Fallick, A.E.; Dickin, A.P.; Mackenzie, A.B.; Stephens, W.E.; Hildreth, W.
1983-01-01
Isotopic and major and trace element analysis of nine samples of eruptive products spanning the history of the Mt. St. Helens volcano suggest three different episodes; (1) 40,000-2500 years ago: eruptions of dacite with ??{lunate}Nd = +5, ??{lunate}Sr = -10, variable ??18O, 206Pb/204Pb ??? 18.76, Ca/Sr ??? 60, Rb/Ba ??? 0.1, La/Yb ??? 18, (2) 2500-1000 years ago: eruptions of basalt, andesite and dacite with ??{lunate}Nd = +4 to +8, ??{lunate}Sr = -7 to -22, variable ??18O (thought to represent melting of differing mantle-crust reservoirs), 206Pb/204Pb = 18.81-18.87, variable Ca/Sr, Rb/Ba, La/Yb and high Zr, (3) 1000 years ago to present day: eruptions of andesite and dacite with ??{lunate}Nd = +6, ??{lunate}Sr = -13, ??18O ???6???, variable 206Pb/204Pb, Ca/Sr ??? 77, Rb/Ba = 0.1, La/Yb ??? 11. None of the products exhibit Eu anomalies and all are LREE enriched. There is a strong correlation between 87Sr/86Sr and differentiation indices. These data are interpreted in terms of a mantle heat source melting young crust bearing zircon and garnet, but not feldspar, followed by intrusion of this crustal reservoir by mantle-derived magma which caused further crustal melting and contaminated the crustal magma system with mafic components. Since 1000 years ago all the eruptions have been from the same reservoir which has displayed a much more gradual re-equilibration of Pb isotopic compositions than other components suggesting that Pb is being transported via a fluid phase. The Nd and Sr isotopic compositions lie along the mantle array and suggest that the mantle underneath Mt. St. Helens is not as depleted as MORB sources. There is no indication of seawater involvement in the source region. ?? 1983.
Development of BaO-ZnO-B2O3 glasses as a radiation shielding material
NASA Astrophysics Data System (ADS)
Chanthima, N.; Kaewkhao, J.; Limkitjaroenporn, P.; Tuscharoen, S.; Kothan, S.; Tungjai, M.; Kaewjaeng, S.; Sarachai, S.; Limsuwan, P.
2017-08-01
The effects of the BaO on the optical, physical and radiation shielding properties of the xBaO: 20ZnO: (80-x)B2O3, where x=5, 10, 15, 20 and 25 mol%, were investigated. The glasses were developed by the conventional melt-quenching technique at 1400 °C with high purity chemicals of H3BO3, ZnO, and BaSO4. The optical transparency of the glasses indicated that the glasses samples were high, as observed by visual inspections. The mass attenuation coefficients (μm), the effective atomic numbers (Zeff), and the effective electron densities (Ne) were increased with the increase of BaO concentrations, and the decrease of gamma-ray energy. The developed glass samples were investigated and compared with the shielding concretes and glasses in terms of half value layer (HVL). The overall results demonstrated that the developed glasses had good shielding properties, and highly practical potentials in the environmental friendly radiation shielding materials without an additional of Pb.
Electrophoretic Deposition of Chitosan/45S5 Bioactive Glass Composite Coatings Doped with Zn and Sr
Miola, Marta; Verné, Enrica; Ciraldo, Francesca Elisa; Cordero-Arias, Luis; Boccaccini, Aldo R.
2015-01-01
In this research work, the original 45S5 bioactive glass was modified by introducing zinc and/or strontium oxide (6 mol%) in place of calcium oxide. Sr was added for its ability to stimulate bone formation and Zn for its role in bone metabolism, antibacterial properties, and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology while compositional analysis (EDS) demonstrated the effective incorporation of these elements in the glass network. Bioactivity test in simulated body fluid (SBF) up to 1 month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD). Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD) and alternating current EPD (AC-EPD). The stability of the suspension was analyzed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, whereas the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover, the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses, and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behavior of 45S5-Sr-containing coating while coatings containing Zn exhibited no hydroxyapatite formation. PMID:26539431
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinacca, R.M., E-mail: rmp@unsl.edu.ar; Viola, M.C.; Pedregosa, J.C.
2011-11-15
Highlights: {yields} Evolution of the double perovskites Sr{sub 2}B'UO{sub 6} upon reduction were studied by XRPD. {yields} Orthorhombic (Pnma) disordered perovskites SrB'{sub 0.5-x}U{sub 0.5+x}O{sub 3} were obtained at 900 {sup o}C. {yields} U{sup 5+/4+} and Zn{sup 2+} cations are distributed at random over the octahedral positions. {yields} AFM ordering for the perovskite with B' = Zn appears below 30 K. -- Abstract: We describe the preparation of five perovskite oxides obtained upon reduction of Sr{sub 2}B'UO{sub 6} (B' = Mn, Fe, Co, Ni, Zn) with H{sub 2}/N{sub 2} (5%/95%) at 900 {sup o}C during 8 h, and their structural characterizationmore » by X-ray powder diffraction (XRPD). During the reduction process there is a partial segregation of the elemental metal when B' = Co, Ni, Fe, and the corresponding B'O oxide when B' = Mn, Zn. Whereas the parent, oxygen stoichiometric double perovskites Sr{sub 2}B'UO{sub 6} are long-range ordered concerning B' and U cations. The crystal structures of the reduced phases, SrB'{sub 0.5-x}U{sub 0.5+x}O{sub 3} with 0.37 < x < 0.27, correspond to simple, disordered perovskites; they are orthorhombic, space group Pnma (No. 62), with a full cationic disorder at the B site. Magnetic measurements performed on the phase with B' = Zn, indicate uncompensated antiferromagnetic ordering of the U{sup 5+}/U{sup 4+} sublattice below 30 K.« less
Giant piezoelectric property of (110) oriented BaxSr1-xTiO3 films
NASA Astrophysics Data System (ADS)
Chen, Z. H.; Chen, Z.; Qiu, J. H.; Yuan, N. Y.; Ding, J. N.
2017-10-01
A phenomenological Landau-Devonshire theory is applied to investigate the phase diagrams and physical properties of (110) oriented BaxSr1-xTiO3 films. New ferroelectric phases, such as the tetragonal a1 phase and the orthorhombic a2 c phase, appear in the ;misfit strain-temperature; phase diagrams for (110) oriented films compared with that of (001) oriented films. Moreover, the orthorhombic a2 c phase, and the tetragonal c phase and the triclinic γ phase are stable at low temperature for x = 0.5 and x = 0.7 , respectively. The ferroelectric, dielectric, and piezoelectric properties strongly depend on the misfit strain and electric field. (110) oriented Ba0.7Sr0.3TiO3 film has the larger ferroelectric polarization and piezoelectric coefficient than that of Ba0.5Sr0.5TiO3 film. The giant piezoelectric coefficient of 340 pm / V is obtained at the electric field of 50 KV / cm in (110) oriented Ba0.7Sr0.3TiO3 film, which is comparable with the values of Pb (Zr1-xTix)O3 and (1 - x) Pb (Mg1/3Nb2/3)O3 -xPbTiO3 films. It makes (110) oriented BaxSr1-xTiO3 films suitable for applications in electromechanical devices.
Ding, Chunguang; Pan, Yajuan; Zhang, Aihua; Zhu, Chun; Liu, Deye; Xu, Guang; Zheng, Yuxin; Yan, Huifang
2015-12-01
To investigate the distribution of rubidium (Rb), cesium (Cs), beryllium (Be), strontium (Sr), and barium (Ba) in blood and urine in general Chinese population. A total of 18 120 subjects aged 6~60 years were enrolled from 24 regions in 8 provinces in Eastern, Central, and Western China from 2009 to 2010 based on the method of cluster random sampling. Questionnaire survey was conducted to collect the data on living environment and health status. Blood and urine samples were collected from these subjects, and the levels of Rb, Cs, Be, Sr, and Ba in these samples were determined by inductively coupled plasma mass spectrometry. The distribution of these elements in blood and urine in male or female subjects living in different regions was analyzed statistically. In the general Chinese population, the concentration of Be in the whole blood was below the detection limit (0.06 μg/L); the geometric mean (GM) of Ba in the whole blood was below the detection limit (0.45 μg/L), with the 95th percentile (P95)of 1.37 μg/L; the GMs (95% CI)of Rb, Cs, and Sr in the whole blood were 2 374(2 357~2 392) μg/L, 2.01 (1.98~2.05) μg/L, and 23.5 (23.3~23.7) μg/L, respectively; in males and females, the GMs (95%CI)of blood Rb, Cs, and Sr were 2 506 (2 478~2 533) μg/L and 2 248 (2 227~2 270) μg/L, 1.88 (1.83~1.94) μg/L and 2.16 (2.11~2.20) μg/L, and 23.4 (23.1~23.7) μg/L and 23.6 (23.3~23.9) μg/L, respectively(P<0.01, P>0.05, and P>0.05). In the general Chinese population, the GM of urine Be was below the detection limit (0.06 μg/L), while the GMs (95%CI)of urine Rb, Cs, Sr, and Ba were 854 (836~873) μg/L, 3.65 (3.56~3.74) μg/L, 39.5 (38.4~40.6) μg/L, and 1.10 (1.07~1.12) μg/L, respectively; in males and females, the GMs (95%CI)of urine Rb, Cs, Sr, and Ba were 876 (849~904) μg/L and 832 (807~858) μg/L, 3.83 (3.70~3.96) μg/L and 3.47 (3.35~3.60) μg/L, 42.5 (40.9~44.2) μg/L and 36.6 (35.1~38.0) μg/L, and 1.15 (1.12~1.19) μg/L and 1.04 (1.01~1.07) μg/L, respectively (all P< 0.01). Correlation analyses showed that there were weak correlations between blood Rb and urine Rb (r=0.197)and between blood Sr and urine Sr (r=0.180), but a good correlation between blood Cs and urine Cs (r=0.487). The levels of Rb, Cs, Be, Sr, and Ba in the general Chinese population are similar to those reported in other countries, and there is a significant difference in the concentration of each element among the populations living in different regions, as well as significant differences in blood Rb, urine Rb, urine Cs, urine Sr, and urine Ba between males and females.
Construction of acylhydrazidate-extended metal-organic frameworks.
Wang, Yan-Ning; Yang, Qing-Feng; Li, Guang-Hua; Zhang, Ping; Yu, Jie-Hui; Xu, Ji-Qing
2014-08-14
Under hydrothermal conditions, the reactions of Ba(2+)/Zn(2+), aromatic polycarboxylic acids and N2H4 with or without oxalic acid were carried out, affording four new acylhydrazidate-extended metal-organic frameworks (MOFs) [Ba(pmdh)] (pmdh = pyromellitdihydrazidate) 1, [Ba(sdpth)(H2O)2]·0.5H2O (sdpth = 4,4'-sulfoyldiphthalhydrazidate) 2, [Ba2(cpth)2(H2O)2] (cpth = 4-carboxylphthalhydrazidate) 3 and [Zn2(pdh)2(ox)]·H2O (ox = oxalate, pdh = pyridine-2,3-dicarboxylhydrazidate) 4. The acylhydrazidate molecules pmdh, sdpth, cpth and pdh in compounds 1-4 derived from the hydrothermal in situ acylation of N2H4 with aromatic polycarboxylic acids. X-ray single-crystal diffraction analysis revealed that (i) in compound 1, the pmdh I molecules link the Ba(2+) ions into a two-dimensional (2D) layer with a (4,4) topology, and then the pmdh II molecules extend these layers into a three-dimensional (3D) network; (ii) in compound 2, the sdpth molecules link the Ba(2+) ions to form a one-dimensional (1D) square tube. Interestingly, the tubes are further linked into a 3D supramolecular network via the N-H···O interactions, creating synchronously big channels; (iii) in compound 3, the cpth I molecules link the Ba1 ions into a 3D network with a (10,3) topology. Ba2 and cpth II are distributed on the channels; (iv) in compound 4, Zn(2+) and pdh aggregate to form two types of Zn4(pdh)4 clusters. The ox molecules act as the secondary linkers, extending the Zn4(pdh)4 secondary building units (SBUs) into a 3D network with a 6(6) topology. The photoluminescence analysis indicates that compounds 3 and 4 emit green light with maxima at 495 nm for 3 (λ(ex) = 397 nm), and 522 nm for 4 (λ(ex) = 395 nm), respectively. At 77 K, the activated 2 and 4 can adsorb N2 in amounts of 58.31 cm(3) g(-1) for 2 and 38.38 cm(3) g(-1) for 4, respectively.
Development of new inorganic luminescent materials by organic-metal complex route
NASA Astrophysics Data System (ADS)
Manavbasi, Alp
The development of novel inorganic luminescent materials has provided important improvements in lighting, display, and other technologically-important optical devices. The optical characteristics of inorganic luminescent materials (phosphors) depend on their physicochemical characteristics, including the atomic structure, homogeneity in composition, microstructure, defects, and interfaces which are all controlled by thermodynamics and kinetics of synthesis from various raw materials. A large variety of technologically-important phosphors have been produced using conventional high-temperature solid-state methods. For the synthesis of functional ceramic materials with ionic dopants in a host lattice, (such as phosphors), synthesis using organic-metal complex methods and other wet chemistry routes have been found to be excellent techniques. These methods have inherent advantages such as good control of stoichiometry by molecular level of mixing, product homogeneity, simpler synthesis procedures, and use of relatively-low calcination temperatures. Supporting evidence for this claim is accomplished by a comparison of photoluminescence characteristics of a commercially available green phosphor, Zn2SiO4:Mn, with the same material system synthesized by organic-metal synthesis route. In this study, new inorganic luminescent materials were produced using rare-earth elements (Eu3+, Ce3+, Tb3+ ) and transition metals (Cu+, Pb2+) as dopants within the crystalline host lattices; SrZnO2, Ba2YAlO 5, M3Al2O6 (M=Ca,Sr,Ba). These novel phosphors were prepared using the organic-metal complex route. Polyvinyl alcohol, sucrose, and adipic acid were used as the organic component to prepare the ceramic precursors. Materials characterization of the synthesized precursor powders and calcined phosphor samples was performed usingX-Ray Diffraction, Scanning Electron Microscopy, Photon-Correlation spectroscopy, and Fourier Transform Infrared Spectroscopy techniques. In addition to the Fluorescence Spectrometer, and Diffuse Reflectance Spectroscopy, the Time Resolved Spectroscopy technique was also used to study the photoluminescence characteristics of the synthesized phosphors. Using these characterization techniques, and through careful comparisons with related studies in the literature, the mechanisms of luminescence for each of the new phosphor materials synthesized here was discussed in a detail.
Kalaiarasan, Gopinath; Balakrishnan, Raj Mohan; Sethunath, Neethu Anitha; Manoharan, Sivamoorthy
2018-07-01
Particulate matter (PM 10 and PM 2.5 ) samples were collected from six sites in urban Mangalore and the mass concentrations for PM 10 and PM 2.5 were measured using gravimetric technique. The measurements were found to exceed the national ambient air quality standards (NAAQS) limits, with the highest concentration of 231.5 μg/m 3 for PM 10 particles at Town hall and 120.3 μg/m 3 for PM 2.5 particles at KMC Attavar. The elemental analysis using inductively coupled plasma optical emission spectrophotometer (ICPOES) revealed twelve different elements (As, Ba, Cd, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Sr and Zn) for PM 10 particles and nine different elements (Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sr and Zn) for PM 2.5 particles. Similarly, ionic composition of these samples measured by ion chromatography (IC) divulged nine different ions (F - , Cl - , NO 3 - , PO 4 3- , SO 4 2- , Na + , K + , Mg 2+ and Ca 2+ ) for PM 10 particles and ten different ions (F - , Cl - , NO 3 - , PO 4 3- , SO 4 2- , Na + , NH 4 + , K + , Mg 2+ and Ca 2+ ) for PM 2.5 particles. The source apportionment study of PM 10 and PM 2.5 for urban Mangalore in accordance with these six sample sites using chemical mass balance model (CMBv8.2) revealed nine and twelve predominant contributors for both PM 10 and PM 2.5 , respectively. The highest contributor of PM 10 was found to be paved road dust followed by diesel and gasoline vehicle emissions. Correspondingly, PM 2.5 was found to be contributed mainly from two-wheeler vehicle emissions followed by four-wheeler and heavy vehicle emissions (diesel vehicles). The current study depicts that the PM 10 and PM 2.5 in ambient air of Mangalore region has 70% of its contribution from vehicular emissions (both exhaust and non-exhaust). Copyright © 2018 Elsevier Ltd. All rights reserved.
Taylor, Howard E.; Antweiler, Ronald C.; Brinton, Terry I.; Roth, David A.; Moody, John A.
1994-01-01
Extensive flooding in the upper Mississippi River Basin during summer 1993 had a significant effect on the water quality of the Mississippi River. To evaluate the change in temporal distribution and transport of dissolved constituents in the Mississippi River, six water samples were collected by a discharge-weighted method from July through September 1993 near Thebes, Illinois. Sampling at this location provided water-quality information from the upper Mississippi, the Missouri, and the Illinois River Basins. Dissolved major constituents that were analyzed in each of the samples included bicarbonate, calcium (Ca), carbonate (C03), chloride (Cl), dissolved organic carbon, magnesium (Mg), potassium (K), silica NOD, sodium (Na), and sulfate (S04). Dissolved nutrients included ammonium ion (NH4), nitrate (N03), nitrite (N02), and orthophosphate (P04) . Dissolved trace elements included aluminum (Al), arsenic (As), barium (Ba), boron (B), beryllium (Be), bromide (Br), cadmium (Cd), chromium (Cr), cobalt, (Co), copper (Cu), fluoride (F), iron (Fe), lead, lithium (Li), manganese (Mn), mercury (Hg), molybdenum (Mo), nickel (Ni), strontium (Sr), thallium, uranium (U), vanadium (V), and zinc (Zn). Other physical properties of water that were measured included specific conductance, pH and suspended-sediment concentration (particle size, less than 63 micrometers). Results of this study indicated that large quantities of dissolved constituents were transported through the river system. Generally, pH, alkalinity, and specific conductance and the concentrations of B, Br, Ca, Cl, Cr, K, Li, Mg, Mo, Na, S04, Sr, U, and V increased as water discharge decreased, while concentrations of F, Hg, and suspended sediment sharply decreased as water discharge decreased after the crest of the flood. Concentrations of other constituents, such as Al, As, Ba, Be, Co, Cu, Ni, N03, N02, NH4, P04, and Si02, varied with time as discharge decreased after the crest of the flood. For most constituents, the load transported during floods generally is much greater than that transported during low-flow conditions. How ever, for Cd, Cr, Fe, Mn, V, and Zn, loads increased substantially as water discharge decreased after the crest of the flood.
NASA Astrophysics Data System (ADS)
Zhou, Libing
2017-04-01
Velvet antler has certain effect on improving the body's immune cells and the regulation of immune system function, nervous system, anti-stress, anti-aging and osteoporosis. It has medicinal applications to treat a wide range of diseases such as tissue wound healing, anti-tumor, cardiovascular disease, et al. Therefore, the research on the relationship between pharmacological activities and elements in velvet antler is of great significance. The objective of this study was to comprehensively evaluate 15 kinds of elements in different varieties of velvet antlers and study on the relationship between the elements and traditional Chinese medicine efficacy for the human. The factor analysis and the factor cluster analysis methods were used to analyze the data of elements in the sika velvet antler, cervus elaphus linnaeus, flower horse hybrid velvet antler, apiti (elk) velvet antler, male reindeer velvet antler and find out the relationship between 15 kinds of elements including Ca, P, Mg, Na, K, Fe, Cu, Mn, Al, Ba, Co, Sr, Cr, Zn and Ni. Combining with MATLAB2010 and SPSS software, the chemometrics methods were made on the relationship between the elements in velvet antler and the pharmacological activities. The first commonality factor F1 had greater load on the indexes of Ca, P, Mg, Co, Sr and Ni, and the second commonality factor F2 had greater load on the indexes of K, Mn, Zn and Cr, and the third commonality factor F3 had greater load on the indexes of Na, Cu and Ba, and the fourth commonality factor F4 had greater load on the indexes of Fe and Al. 15 kinds of elements in velvet antler in the order were elk velvet antler>flower horse hybrid velvet antler>cervus elaphus linnaeus>sika velvet antler>male reindeer velvet antler. Based on the factor analysis and the factor cluster analysis, a model for evaluating traditional Chinese medicine quality was constructed. These studies provide the scientific base and theoretical foundation for the future large-scale rational relation development of velvet antler resources as well as the relationship between the elements and traditional Chinese medicine efficacy for the human.
NASA Astrophysics Data System (ADS)
Mashonkina, L.; Jablonka, P.; Sitnova, T.; Pakhomov, Yu.; North, P.
2017-12-01
We present the non-local thermodynamic equilibrium (NLTE) abundances of up to 10 chemical species in a sample of 59 very metal-poor (VMP, -4 ≤ [Fe/H] ≾-2) stars in seven dwarf spheroidal galaxies (dSphs) and in the Milky Way (MW) halo. Our results are based on high-resolution spectroscopic datasets and homogeneous and accurate atmospheric parameters determined in Paper I. We show that once the NLTE effects are properly taken into account, all massive galaxies in our sample, that is, the MW halo and the classical dSphs Sculptor, Ursa Minor, Sextans, and Fornax, reveal a similar plateau at [α/Fe] ≃ 0.3 for each of the α-process elements: Mg, Ca, and Ti. We put on a firm ground the evidence for a decline in α/Fe with increasing metallicity in the Boötes I ultra-faint dwarf galaxy (UFD), that is most probably due to the ejecta of type Ia supernovae. For Na/Fe, Na/Mg, and Al/Mg, the MW halo and all dSphs reveal indistinguishable trends with metallicity, suggesting that the processes of Na and Al synthesis are identical in all systems, independent of their mass. The dichotomy in the [Sr/Ba] versus [Ba/H] diagram is observed in the classical dSphs, similarly to the MW halo, calling for two different nucleosynthesis channels for Sr. We show that Sr in the massive galaxies is well correlated with Mg suggesting a strong link to massive stars and that its origin is essentially independent of Ba, for most of the [Ba/H] range. Our three UFDs, that is Boötes I, UMa II, and Leo IV, are depleted in Sr and Ba relative to Fe and Mg, with very similar ratios of [Sr/Mg] ≃-1.3 and [Ba/Mg] ≃-1 on the entire range of their Mg abundances. The subsolar Sr/Ba ratios of Boötes I and UMa II indicate a common r-process origin of their neutron-capture elements. Sculptor remains the classical dSph, in which the evidence for inhomogeneous mixing in the early evolution stage, at [Fe/H] <-2, is the strongest. Full Tables 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A89
Flow-Through Leaching of Marine Barite: New Insights on its Composition and Diagenesis
NASA Astrophysics Data System (ADS)
Hsieh, C.; Torres, M. E.; Ungerer, A.; Klinkhammer, G. P.
2007-12-01
The distribution of stable mineral barite (BaSO4) in marine sediments has long been studied as a proxy for paleoproductivity. It is important to investigate the variation in Sr/Ba ratios of crystal barite, as it has a great influence on barite solubility and its early diagenetic processes. In addition, the role of alternative barium carriers to the sediments (e.g. aluminum silicates and oxyhydroxides) and their contributions to overall barium budget and burial efficiency need to be resolved. The techniques currently used to describe and quantify barium phases are all based on batch leaching techniques that define barium phases operationally, not chemically. Because during batch analyses each phase is characterized by a single-point measurement, variations due to phase heterogeneities cannot be resolved; nor can the results of these experiments be related in any systematic way to what happens in nature. To overcome this problem, we are developing a flow-through method that makes use of automated chromatographic techniques, which allows complete monitoring of the dissolution of barite samples with time-resolved analysis (TRA) as each phase is sequentially leached using different reagents. We have analyzed a barite sample recovered from seeps along the San Clemente escarpment, and show that we can attain complete dissolution of the sample (>85%) in 2 hours, using DTPA at 80°C. Approximately 100 μg of barite are first leached with distilled water (pH 5) for 30 minutes. During this step ~2% of the barite is removed. This highly soluble phase has Sr/Ba ratios that range from 30 to 120 mmol/mol. Acid leaching of the samples with 10 mM HNO3 removes an additional 4~8% of the barite, and this phase has Sr/Ba ratios ranging from 13 to 35 mmol/mol. Higher acid concentration (100 mM HNO3) dissolves up to 40% of the barite. These results are consistent with electron microprobe data that show clear oscillatory zoning of the (Ba,Sr)SO4. Unlike the barite sample, sediment samples collected at the base of the escarpment did not show a Ba release in the water leach. We might speculate that the highly susceptible Sr-rich barium phase present in the barite sample, dissolved during transport from a seep site leaving a barite with a lower Sr/Ba ratio, as found in the sediment samples. Our analytical approach has the potential to further address a variety of outstanding questions on the complex geochemical cycle of barium and its applications to climate change, upper ocean fertility and ocean circulation through time.
Strong polarization enhancement in asymmetric three-component ferroelectric superlattices
NASA Astrophysics Data System (ADS)
Lee, Ho Nyung; Christen, Hans M.; Chisholm, Matthew F.; Rouleau, Christopher M.; Lowndes, Douglas H.
2005-01-01
Theoretical predictions-motivated by recent advances in epitaxial engineering-indicate a wealth of complex behaviour arising in superlattices of perovskite-type metal oxides. These include the enhancement of polarization by strain and the possibility of asymmetric properties in three-component superlattices. Here we fabricate superlattices consisting of barium titanate (BaTiO3), strontium titanate (SrTiO3) and calcium titanate (CaTiO3) with atomic-scale control by high-pressure pulsed laser deposition on conducting, atomically flat strontium ruthenate (SrRuO3) layers. The strain in BaTiO3 layers is fully maintained as long as the BaTiO3 thickness does not exceed the combined thicknesses of the CaTiO3 and SrTiO3 layers. By preserving full strain and combining heterointerfacial couplings, we find an overall 50% enhancement of the superlattice global polarization with respect to similarly grown pure BaTiO3, despite the fact that half the layers in the superlattice are nominally non-ferroelectric. We further show that even superlattices containing only single-unit-cell layers of BaTiO3 in a paraelectric matrix remain ferroelectric. Our data reveal that the specific interface structure and local asymmetries play an unexpected role in the polarization enhancement.
NASA Astrophysics Data System (ADS)
Ling, Chris D.; Rowda, Budwy; Avdeev, Maxim; Pullar, Robert
2009-03-01
We present a complete temperature-composition phase diagram for Ba 3BSb 2O 9, B=Mg, Ca, Sr, Ba, along with their electrical behavior as a function of B. These compounds have long been recognized as 6H-type perovskites, but (with the exception of B=Mg) their exact structures and properties were unknown due to their low symmetries, temperature-dependent phase transitions, and difficulties in synthesizing pure samples. The full range of possible space group symmetries is observed, from ideal hexagonal P6 3/ mmc to monoclinic C2/ c to triclinic P1¯. Direct second-order transitions between these phases are plausible according to group theory, and no evidence was seen for any further intermediate phases. The phase diagram with respect to temperature and the effective ionic radius of B is remarkably symmetrical for B=Mg, Ca, and Sr. For B=Ba, a first-order phase transition to a locally distorted phase allows a metastable hexagonal phase to persist to lower temperatures than expected before decomposing around 600 K. Electrical measurements revealed that dielectric permittivity corrected for porosity does not change significantly as a function of B and is in a good agreement with the values predicted by the Clausius-Mossotti equation.
NASA Astrophysics Data System (ADS)
Li, Y. Q.; Hirosaki, N.; Xie, R. J.; Takeda, T.; Mitomo, M.
2008-12-01
The crystal structure, electronic structure, and photoluminescence properties of Eu xSi 6-zAl z-xO z+xN 8-z-x ( x=0-0.1, 0< z<1) and Eu xM ySi 6-zAl z-x-yO z+x+yN 8-z-x-y ( M=2Li, Mg, Ca, Sr, Ba) have been studied. Single-phase Eu xSi 6-zAl z-xO z+xN 8-z-x can be obtained in very narrow ranges of x⩽0.06 ( z=0.15) and z<0.5 ( x=0.3), indicating that limited Eu 2+ ions can be incorporated into nitrogen-rich Si 6-zAl zO zN 8-z. The Eu 2+ ion is found to occupy the 2 b site in a hexagonal unit cell ( P6 3/ m) and directly connected by six adjacent nitrogen/oxygen atoms ranging 2.4850-2.5089 Å. The calculated host band gaps by the relativistic DV-X α method are about 5.55 and 5.45 eV (without Eu 2+ 4 f5 d levels) for x=0 and 0.013 in Eu xSi 6-zAl z-xO z+xN 8-z-x ( z=0.15), in which the top of the 5 d orbitals overlap with the Si-3 s3 p and N-2 p orbitals within the bottom of the conduction band of the host. Eu xSi 6-zAl z-xO z+xN 8-z-x shows a strong green emission with a broad Eu 2+ band centered at about 530 nm under UV to near-UV excitation range. The excitation and emission spectra are hardly modified by Eu concentration and dual-doping ions of Li and other alkaline-earth ions with Eu. Higher Eu concentrations can significantly quench the luminescence of Eu 2+ and decrease the thermal quenching temperature. In addition, the emission spectrum can only be slightly tuned to the longer wavelengths (˜529-545 nm) by increasing z within the solid solution range of z<0.5. Furthermore, the luminescence intensity of Eu xSi 6-zAl z-xO z+xN 8-z-x can be improved by increasing z and the dual-doping of Li and Ba.
Membranes for separation of carbon dioxide
Ku, Anthony Yu-Chung [Rexford, NY; Ruud, James Anthony [Delmar, NY; Ramaswamy, Vidya [Niskayuna, NY; Willson, Patrick Daniel [Latham, NY; Gao, Yan [Niskayuna, NY
2011-03-01
Methods for separating carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity include contacting a porous membrane with the fluid stream to preferentially transport carbon dioxide. The porous membrane includes a porous support and a continuous porous separation layer disposed on a surface of the porous support and extending between the fluid stream and the porous support layer. The porous support comprises alumina, silica, zirconia, stabilized zirconia, stainless steel, titanium, nickel-based alloys, aluminum-based alloys, zirconium-based alloys or a combination thereof. Median pore size of the porous separation layer is less than about 10 nm, and the porous separation layer comprises titania, MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, HfO.sub.2, Y.sub.2O.sub.3, VO.sub.z, NbO.sub.z, TaO.sub.z, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3 CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3, Li.sub.2HfO.sub.3, A.sup.4N.sup.1.sub.yO.sub.z, Y.sub.xN.sup.1.sub.yO.sub.z, La.sub.xN.sup.1.sub.yO.sub.z, HfN.sup.2.sub.yO.sub.z, or a combination thereof; wherein A is La, Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; A.sup.3 is Sr or Ba; A.sup.4 is Mg, Ca, Sr, Ba, Ti or Zr; N.sup.1 is V, Nb, Ta, Cr, Mo, W, Mn, Si or Ge; N.sup.2 is V, Mo, W or Si; x is 1 or 2; y ranges from 1 to 3; and z ranges from 2 to 7.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chahar, Sangeeta; Taxak, V.B.; Dalal, Mandeep
2016-05-15
Highlights: • BaY{sub 2(1−x)}Sm{sub 2x}ZnO{sub 5} nanophosphors have been synthesized via solution combustion. • The nanophosphors have been characterized by XRD, TEM and PL spectroscopy. • The crystal structure reveals influence of doping on lattice parameters. • This nanophosphor executes orange–red emission under near UV excitation. - Abstract: BaY{sub 2}ZnO{sub 5}:Sm{sup 3+} nanophosphor was successfully synthesized using solution combustion process. XRD and photoluminescence (PL) techniques were used to analyze the structural and photoluminescence properties. Morphological study of the thermally stable powder was carried out using transmission electron microscope (TEM). Rietveld refinement technique has been used to analyze the samples qualitativelymore » as well as quantitatively. X-Ray diffraction analysis confirms that the highly crystalline single phased Sm{sup 3+} doped BaY{sub 2}ZnO{sub 5} nanophosphor crystallizes in orthorhombic lattice with Pbnm space group. The average particle size lies in the range 80–90 nm with spherical morphology. The photoluminescence excitation at 411 nm yields an intense orange–red emission centered at 610 nm due to {sup 4}G{sub 5/2}–{sup 6}H{sub 7/2} transition. The concentration dependent luminescent behavior of BaY{sub 2(1−x)}Sm{sub 2x}ZnO{sub 5} nanophosphor shows that the optimum concentration for best luminescence is 3 mol%. These results indicate that these nanophosphors find potential applications in the field of phosphor-converted white LED systems.« less
Park, Young Jun; Cook, Sarah A.; Sickerman, Nathaniel S.; Sano, Yohei; Ziller, Joseph W.
2013-01-01
The effects of redox-inactive metal ions on dioxygen activation were explored using a new FeII complex containing a tripodal ligand with 3 sulfonamido groups. This iron complex exhibited a faster initial rate for the reduction of O2 than its MnII analog. Increases in initial rates were also observed in the presence of group 2 metal ions for both the FeII and MnII complexes, which followed the trend NMe4+ < BaII < CaII = SrII. These studies led to the isolation of heterobimetallic complexes containing FeIII-(μ-OH)-MII cores (MII = Ca, Sr, and Ba) and one with a [SrII(OH)MnIII]+ motif. The analogous [CaII(OH)GaIII]+ complex was also prepared and its solid state molecular structure is nearly identical to that of the [CaII(OH)FeIII]+ system. Nuclear magnetic resonance studies indicated that the diamagnetic [CaII(OH)GaIII]+ complex retained its structure in solution. Electrochemical measurements on the heterobimetallic systems revealed similar one-electron reduction potentials for the [CaII(OH)FeIII]+ and [SrII(OH)FeIII]+ complexes, which were more positive than the potential observed for [BaII(OH)FeIII]+. Similar results were obtained for the heterobimetallic MnII complexes. These findings suggest that Lewis acidity is not the only factor to consider when evaluating the effects of group 2 ions on redox processes, including those within the oxygen-evolving complex of Photosystem II. PMID:24058726
Park, Young Jun; Cook, Sarah A; Sickerman, Nathaniel S; Sano, Yohei; Ziller, Joseph W; Borovik, A S
2013-02-01
The effects of redox-inactive metal ions on dioxygen activation were explored using a new Fe II complex containing a tripodal ligand with 3 sulfonamido groups. This iron complex exhibited a faster initial rate for the reduction of O 2 than its Mn II analog. Increases in initial rates were also observed in the presence of group 2 metal ions for both the Fe II and Mn II complexes, which followed the trend NMe 4 + < Ba II < Ca II = Sr II . These studies led to the isolation of heterobimetallic complexes containing Fe III -( μ -OH)-M II cores (M II = Ca, Sr, and Ba) and one with a [Sr II (OH)Mn III ] + motif. The analogous [Ca II (OH)Ga III ] + complex was also prepared and its solid state molecular structure is nearly identical to that of the [Ca II (OH)Fe III ] + system. Nuclear magnetic resonance studies indicated that the diamagnetic [Ca II (OH)Ga III ] + complex retained its structure in solution. Electrochemical measurements on the heterobimetallic systems revealed similar one-electron reduction potentials for the [Ca II (OH)Fe III ] + and [Sr II (OH)Fe III ] + complexes, which were more positive than the potential observed for [Ba II (OH)Fe III ] + . Similar results were obtained for the heterobimetallic Mn II complexes. These findings suggest that Lewis acidity is not the only factor to consider when evaluating the effects of group 2 ions on redox processes, including those within the oxygen-evolving complex of Photosystem II.
Plasmons in cuprate superconductors
NASA Astrophysics Data System (ADS)
Bozovic, Ivan
1990-08-01
The customary way of determining the complex dielectric constant from the measured reflectance spectra suffers from large uncertainties because of the extrapolations required for the Kramers-Kronig transformation. To avoid these, a method is introduced in which reflectance and ellipsometric data on single crystals and epitaxial films are combined. Utilizing this approach, the spectral functions of YBa2Cu3O7 (Y-Ba-Cu-O) and Bi2Sr2CaCu2O8 (Bi-Sr-Ca-Cu-O) are determined with substantially improved accuracy. This enables the unambiguous identification of optic plasmons at 1.4 eV in Y-Ba-Cu-O and at 1.1 eV in Bi-Sr-Ca-Cu-O. No other low-lying optic plasmons are detected, which likely rules out most plasmon-mediated superconductivity models. Next, the bare plasma frequency is found to be ħωp=3.2+/-0.3 eV in Y-Ba-Cu-O and ħωp=2.4+/-0.3 eV in Bi-Sr-Ca-Cu-O. These values support ascribing the strong infrared absorption to charge carriers which, however, are not free-electron-like, but rather show characteristic polaronic behavior. Finally, in both Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O, it is found that Im(-1/ɛ)=βω2 for small ω, and this law is conjectured to be universal for all layered cuprate superconductors. It is again not Drude-like; it may be compatible with the layered electron-gas model. The latter implies existence of a broad band of acoustic plasmon branches.
NASA Astrophysics Data System (ADS)
Im, Jaemo; Auciello, O.; Baumann, P. K.; Streiffer, S. K.; Kaufman, D. Y.; Krauss, A. R.
2000-01-01
Precise control of composition and microstructure is critical for the production of (BaxSr1-x)Ti1+yO3+z (BST) dielectric thin films with the large dependence of permittivity on electric field, low losses, and high electrical breakdown fields that are required for successful integration of BST into tunable high-frequency devices. Here, we present results on composition-microstructure-electrical property relationships for polycrystalline BST films produced by magnetron-sputter deposition, that are appropriate for microwave and millimeter-wave applications such as varactors and frequency triplers. Films with controlled compositions were grown from a stoichiometric Ba0.5Sr0.5TiO3 target by control of the background processing gas pressure. It was determined that the (Ba+Sr)/Ti ratios of these BST films could be adjusted from 0.73 to 0.98 by changing the total (Ar+O2) process pressure, while the O2/Ar ratio did not strongly affect the metal ion composition. Film crystalline structure and dielectric properties as a function of the (Ba+Sr)/Ti ratio are discussed. Optimized BST films yielded capacitors with low dielectric losses (0.0047), among the best reported for sputtered BST, while still maintaining tunabilities suitable for device applications.
Hur, Su Gil; Park, Dae Hoon; Hwang, Seong-Ju; Kim, Seung Joo; Lee, J H; Lee, Sang Young
2005-11-24
We have investigated the effect of alkaline earth metal substitution on the crystal structure and physical properties of magnetic superconductors RuSr(1.9)A(0.1)GdCu(2)O(8) (A = Ca, Sr, and Ba) in order to probe an interaction between the magnetic coupling of the RuO(2) layer and the superconductivity of the CuO(2) layer. X-ray diffraction and X-ray absorption spectroscopic analyses demonstrate that the isovalent substitution of Sr ions with Ca or Ba ions makes it possible to tune the interlayer distance between the CuO(2) and the RuO(2) layers. From the measurements of electrical resistance and magnetic susceptibility, it was found that, in contrast to negligible change of magnetization, both of the alkaline earth metal substitutions lead to a notable depression of zero-resistance temperature T(c) (DeltaT(c) approximately 17-19 K). On the basis of the absence of a systematic correlation between the T(c) and the interlayer distance/magnetization, we have concluded that the internal magnetic field of the RuO(2) layer has insignificant influence on the superconducting property of the CuO(2) layer in the ruthenocuprate.
AC conductivity studies of La doped Ba0.5Sr0.5TiO3
NASA Astrophysics Data System (ADS)
D'Souza, Slavia Deeksha; Rohith, Kotla Surya; Bhatnagar, Anil K.; Kumar, A. Sendil
2017-05-01
Ferroelectric material with high dielectric constant of Ba0.5Sr0.5TiO3 is synthesized through Solid State Reaction and fraction of Lanthanum is substituted to introduce hole concentration. XRay Diffraction shows all the samples are stabilized in cubic crystal structure. With La doped samples the Cole-Cole plot is modified and AC conductivity increases at higher temperatures as well as higher frequencies compared to undoped sample.
NASA Astrophysics Data System (ADS)
Wang, Bo-Kun; Wu, Shao-Yi; Yuan, Zi-Yi; Liu, Zi-Xuan; Jiang, Shi-Xin; Liu, Zheng; Yao, Zi-Jian; Teng, Bao-Hua; Wu, Ming-He
2016-08-01
The spin Hamiltonian parameters and local structures are theoretically studied for Cu2+-doped alkaline earth lead zinc phosphate (RPPZ, R=Mg, Ca, Sr, and Ba) glasses based on the high-order perturbation calculations for a tetragonally elongated octahedral 3d9 cluster. The relative elongation ratios are found to be ρ≈3.2%, 4.4%, 4.6%, and 3.3% for R=Mg, Ca, Sr, and Ba, respectively, because of the Jahn-Teller effect. The whole decreasing crystal-field strength Dq and orbital reduction factor k from Mg to Sr are ascribed to the weakening electrostatic coulombic interactions and the increasing probability of productivity of nonbridge oxygen (and hence increasing Cu2+-O2- electron cloud admixtures) under PbO addition, respectively, with increasing alkali earth ionic radius. The anomalies (the largest Dq and the next highest k among the systems) for R=Ba are attributed to the cross linkage of this large cation in the network. The overall increasing order (Mg≤Ba
NASA Astrophysics Data System (ADS)
Kautkar, Pranay R.; Acharya, Smita A.
2018-05-01
xDy0.45Ba0.05Sr0.5Co0.8Fe0.2O3-δ - xCe0.85Gd0.15O1.95 (x = 50 %) composite cathode supported on Ce0.85Gd0.15O1.95 (GDC15) electrolyte are studied for applications in IT-SOFCs. Results attribute that Dy0.45Ba0.05Sr0.5Co0.8Fe0.2O3-δ material is chemically compatible with Ce0.85Gd0.15O1.95 (GDC15). Rietveld refined X-ray diffraction patterns notify orthorhombic (space group:Pbnm) symmetry for Dy0.45 Ba0.05Sr0.5Co0.8Fe0.2O3-δ and fluorite type structure (space group: Fm-3m) symmetry for GDC15. The polarization resistance (Rp) of composite cathode reduces to the minimum value of 1.35 Ω cm2 at 650 °C in air. Area specific resistance (ASR) of composite cathode has found 0.67 Ω.cm2 at 650°C respectively. Result shows that the surface diffusion of the dissociative adsorbed oxygen at electrode/electrolyte interface on the composite cathode.
Ma, Jin-Gang; Zhang, Cai-Rong; Gong, Ji-Jun; Wu, You-Zhi; Kou, Sheng-Zhong; Yang, Hua; Chen, Yu-Hong; Liu, Zi-Jiang; Chen, Hong-Shan
2015-01-01
Alkaline-earth metallic dopant can improve the performance of anatase TiO2 in photocatalysis and solar cells. Aiming to understand doping mechanisms, the dopant formation energies, electronic structures, and optical properties for Be, Mg, Ca, Sr, and Ba doped anatase TiO2 are investigated by using density functional theory calculations with the HSE06 and PBE functionals. By combining our results with those of previous studies, the HSE06 functional provides a better description of electronic structures. The calculated formation energies indicate that the substitution of a lattice Ti with an AEM atom is energetically favorable under O-rich growth conditions. The electronic structures suggest that, AEM dopants shift the valence bands (VBs) to higher energy, and the dopant-state energies for the cases of Ca, Sr, and Ba are quite higher than Fermi levels, while the Be and Mg dopants result into the spin polarized gap states near the top of VBs. The components of VBs and dopant-states support that the AEM dopants are active in inter-band transitions with lower energy excitations. As to optical properties, Ca/Sr/Ba are more effective than Be/Mg to enhance absorbance in visible region, but the Be/Mg are superior to Ca/Sr/Ba for the absorbance improvement in near-IR region. PMID:28793520
Ma, Jin-Gang; Zhang, Cai-Rong; Gong, Ji-Jun; Wu, You-Zhi; Kou, Sheng-Zhong; Yang, Hua; Chen, Yu-Hong; Liu, Zi-Jiang; Chen, Hong-Shan
2015-08-24
Alkaline-earth metallic dopant can improve the performance of anatase TiO2 in photocatalysis and solar cells. Aiming to understand doping mechanisms, the dopant formation energies, electronic structures, and optical properties for Be, Mg, Ca, Sr, and Ba doped anatase TiO2 are investigated by using density functional theory calculations with the HSE06 and PBE functionals. By combining our results with those of previous studies, the HSE06 functional provides a better description of electronic structures. The calculated formation energies indicate that the substitution of a lattice Ti with an AEM atom is energetically favorable under O-rich growth conditions. The electronic structures suggest that, AEM dopants shift the valence bands (VBs) to higher energy, and the dopant-state energies for the cases of Ca, Sr, and Ba are quite higher than Fermi levels, while the Be and Mg dopants result into the spin polarized gap states near the top of VBs. The components of VBs and dopant-states support that the AEM dopants are active in inter-band transitions with lower energy excitations. As to optical properties, Ca/Sr/Ba are more effective than Be/Mg to enhance absorbance in visible region, but the Be/Mg are superior to Ca/Sr/Ba for the absorbance improvement in near-IR region.
NASA Astrophysics Data System (ADS)
Foka, Kewele E.; Dejene, Birhanu F.; Koao, Lehlohonolo F.; Swart, Hendrik C.
2018-04-01
A self-activated yellow emitting Zn2V2O7 was synthesized by combustion method. The influence of the processing parameters such as synthesis temperature and dopants concentration on the structure, morphology and luminescence properties was investigated. The X-ray diffraction (XRD) analysis confirmed that the samples have a tetragonal structure and no significant structural change was observed in varying both the synthesis temperature and the dopants concentration. The estimated average crystallite size was 78 nm for the undoped samples synthesized at different temperatures and 77 nm for the doped samples. Scanning electron microscope (SEM) images showed agglomerated hexagonal-shaped particles with straight edges at low temperatures and the shape of the particles changed to cylindrical structures at moderate temperatures. At higher temperatures, the morphology changed completely. However, the morphologies of the doped samples looked alike. The photoluminescence (PL) of the product exhibited broad emission bands ranging from 400 to 800 nm. The best luminescence intensity was observed for the undoped Zn2V2O7 samples and those synthesized at 600 ℃ . Any further increase in synthesis temperature, type and concentration of dopants led to a decrease in the luminescence intensity. The broad band emission peak of Zn2V2O7 consisted of two broad bands corresponding to emissions from the Em1 (3T2→1A1) and Em2 (3T1→1A1) transitions.
NASA Astrophysics Data System (ADS)
Wang, Shanshan; Cao, Zhimin; Lan, Dongzhao; Zheng, Zhichang; Li, Guihai
2008-09-01
Grain size parameters, trace metals (Co, Cu, Ni, Pb, Cr, Zn, Ba, Zr and Sr) and total organic matter (TOM) of 38 surficial sediments and a sediment core of west-four Pearl River Estuary region were analyzed. The spacial distribution and the transportation procession of the chemical element in surficial sediments were studied mainly. Multivariate statistics are used to analyses the interrelationship of metal elements, TOM and the grain size parameters. The results demonstrated that terrigenous sediment taken by the rivers are main sources of the trace metal elements and TOM, and the lithology of parent material is a dominating factor controlling the trace metal composition in the surficial sediment. In addition, the hydrodynamic condition and landform are the dominating factors controlling the large-scale distribution, while the anthropogenic input in the coastal area alters the regional distribution of heavy metal elements Co, Cu, Ni, Pb, Cr and Zn. The enrichment factor (EF) analysis was used for the differentiation of the metal source between anthropogenic and naturally occurring, and for the assessment of the anthropogenic influence, the deeper layer content of heavy metals were calculated as the background values and Zr was chosen as the reference element for Co, Cu, Ni, Pb, Cr and Zn. The result indicate prevalent enrichment of Co, Cu, Ni, Pb and Cr, and the contamination of Pb is most obvious, further more, the peculiar high EF value sites of Zn and Pb probably suggest point source input.
Dynamics of PM2.5 and its Chemical Components During 2015 Spring Festival Period in Beijing, China
NASA Astrophysics Data System (ADS)
Zhang, Y.; Wei, J.; Tang, A.; Zheng, A.; Liu, X.
2016-12-01
Air pollution especially PM2.5 (particles with aerodynamic diameter smaller than 2.5 µm) pollution is a serious problem in Beijing, a megacity in China. In order to quantify the status of PM2.5 pollution as affected by holiday pollution events, we collected and analyzed in urban Beijing during the 2015 Spring Festival period (from February 9th to March 6th 2015). We divided the Spring Festival period into three types of pollution days: normal, haze and fireworks days. The air quality in fireworks and haze days were both substantially worse than that in normal days. The average mass concentration of PM2.5 in fireworks days was 248.9 μg m-3, which was followed by haze days (199.9 μg m-3), and normal days (90.8 μg m-3). Secondary inorganic ions (SO42-, NO3- and NH4+) were enriched in haze days, while the ions of PM2.5 in fireworks days showed high Cl- and K+, but low NO3- and NH4+. Ratios of NO3- /SO42-, SO42-/K+ and Cl- /K+ effective distinguish the characteristics of PM2.5 between fireworks events and haze days. Ion balance calculations indicate that the acidity of PM2.5 from fireworks days was higher than those from haze and normal days. Al, Ca, Fe, and S were the dominant elements in normal days. The concentrations of As, Ba, Cd, Cr, Cu, Pb, S, Se and Zn in haze days were 2.1-10.4 times higher than that in normal days. But fireworks days caused increases in the concentrations of typical fireworks elements Al, Mg, S, Ba, Cu, Pb, Sr, and Zn. It is obvious that the levels of these pollution elements during fireworks days were 1.6-18.6 times higher than that in haze days. A method using EF has been found that fireworks elements (EF>10 in fireworks days, significantly higher than haze days) were made up of Ba, Cr, Cu, Mg, Pb, S, Si, Zn, and common anthropogenic pollution elements (EF>10 in all three sections), such as As, Cd, Cu, Pb, S, Sb, Zn, which would be mainly originated from anthropogenic sources. Therefore reducing anthropogenic reactive N and other pollutants emissions is crucial to tackle PM2.5 pollution in Beijing during traditional festival period.
Taikar, D R; Joshi, C P; Moharil, S V
2017-09-01
Modified synthesis and luminescence of Y 2 BaZnO 5 phosphors activated with the rare earths (RE) Eu 3 + , Tb 3 + , Pr 3 + and Sm 3 + are reported. RE 2 BaZnO 5 phosphors have attracted attention because of their interesting magnetic and optical properties; and are usually prepared using a two-step solid-state reaction. In the first step, carbonates or similar precursors are thoroughly mixed and heated at 900°C to decompose them to oxides. To eliminate the unwanted phases like BaRE 2 O 4 , the resulting powders are reheated at 1100°C for a long time. We prepared Y 2 BaZnO 5 phosphors activated with various activators by replacing the first step with combustion synthesis. The photoluminescence results are presented. The photoluminescence results for Eu 3 + , Tb 3 + and Pr 3 + are in good agreement with the literature. However, photoluminescence emission from Sm 3 + has not been documented previously. The excitation spectrum of Eu 3 + is dominated by a charge transfer band around 261 nm, and an additional band around 238 nm is always present, irrespective of the type of activator. The presence of this band for all these different types of activators was interpreted as host absorption. Copyright © 2016 John Wiley & Sons, Ltd.
High-K (Ba0.8Bi0.2)(Zn0.1Ti0.9)O3 ceramics for high-temperature capacitor applications.
Raengthon, Natthaphon; Cann, David P
2011-09-01
Solid solutions of BaTiO(3)-Bi(Zn(1/2)Ti(1/2))O(3) were investigated for high-temperature capacitor applications. Compositions close to 0.8BaTiO(3)-0.2Bi(Zn(1/2)Ti(1/2))O(3) revealed pseudo-cubic symmetry and showed a linear dielectric response. The existence of a nearly flat temperature dependence of the relative permittivity over the temperature range of 100 to 350°C was also obtained. In this study, the effects of cation non-stoichiometry and doping were investigated in an attempt to optimize the insulation resistance for high-temperature applications. The dielectric response of (Ba(0.8)-xBi(0.2))(Zn(0.1)Ti(0.9)) O(3) ceramics where 0 ≤ X ≤ 0.08, as well as ZrO2- and Mn(2)O(3)-doped ceramics were studied. The optimum compositions exhibited a relative permittivity in excess of 1150 with a low loss tangent (tan δ < 0.05) that persisted up to a temperature of 460δC. The temperature dependence of resistivity also revealed the improved insulation resistance of Ba-deficient compositions. Additionally, we suggest that an ionic conduction mechanism is responsible for the degradation of resistivity at high temperatures. The temperature coefficient of permittivity ((τ)K) and the RC time constant were also investigated.
Measurement of trace elements in tree rings using the PIXE method
NASA Astrophysics Data System (ADS)
Aoki, Toru; Katayama, Yukio; Kagawa, Akira; Koh, Susumu; Yoshida, Kohji
1998-03-01
Standard materials were prepared in order to calculate element concentrations in tree samples using the particle induced X-ray emission (PIXE) method. Five standard solutions (1) Ti, Fe, Cu, As, Rb, Sr; (2) Ca, V, Co, Zn, As, Rb; (3) Ti, Mn, Ni, As, Sr; (4) K, Mn, Co, As, Rb, Sr; and (5) Ca, Mn, Cu, As, Rb, Sr, were added to filter papers. The dried filter papers were used as standard samples. Pellets of Pepperbush leaves (National Institute for Environmental Studies (NIES)) and Peach leaves (National Institute of Standards and Technology (NIST)) were used as references. The peak counts of Ca, Mn, Cu, Zn, Rb, and Sr in samples taken from a kaki ( Diospros kaki Thunb.) were measured and the concentrations (ppm) of the elements were calculated using the yield curve obtained from the standard filter papers. The concentrations of Mn, Zn, Rb, and Ca were compared with the data obtained from a separate INAA analysis. Concentrations of Mn, Zn, and Ca obtained by both methods were almost the same, but the concentrations of Rb differed slightly. The amounts of trace elements in samples taken from a sugi ( Cryptomeria japonica D. Don) were also measured.
High mobility La-doped BaSnO3 on non-perovskite MgO substrate
NASA Astrophysics Data System (ADS)
Kim, Youjung; Shin, Juyeon; Kim, Young Mo; Char, Kookrin
(Ba,La)SnO3 is a transparent perovskite oxide with high electron mobility and excellent oxygen stability. Field effect device with (Ba,La)SnO3 channel was reported to show good output characteristics on STO substrate. Here, we fabricated (Ba,La)SnO3\\ films and field effect devices with (Ba,La)SnO3 channel on non-perovskite MgO substrates, which are available in large size wafers. X-ray diffraction and transmission electron microscope (TEM) images of (Ba,La)SnO3\\ films on MgO substrates show that the films are epitaxial with many threading dislocations. (Ba,La)SnO3 exhibits the high mobility with 97.2 cm2/Vs at 2 % La doping on top of 150 nm thick BaSnO3 buffer layer. Excellent carrier modulation was observed in field effect devices. FET performances on MgO substrates are slightly better than those on SrTiO3 substrates in spite of the higher dislocation density on MgO than on SrTiO3 substrates. These high mobility BaSnO3 thin films and transistors on MgO substrates will accelerate development for applications in high temperature and high power electronics. Samsung Science and Technology Foundation.
Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue☆
Pemmer, B.; Roschger, A.; Wastl, A.; Hofstaetter, J.G.; Wobrauschek, P.; Simon, R.; Thaler, H.W.; Roschger, P.; Klaushofer, K.; Streli, C.
2013-01-01
Trace elements are chemical elements in minute quantities, which are known to accumulate in the bone. Cortical and trabecular bones consist of bone structural units (BSUs) such as osteons and bone packets of different mineral content and are separated by cement lines. Previous studies investigating trace elements in bone lacked resolution and therefore very little is known about the local concentration of zinc (Zn), strontium (Sr) and lead (Pb) in BSUs of human bone. We used synchrotron radiation induced micro X-ray fluorescence analysis (SR μ-XRF) in combination with quantitative backscattered electron imaging (qBEI) to determine the distribution and accumulation of Zn, Sr, and Pb in human bone tissue. Fourteen human bone samples (10 femoral necks and 4 femoral heads) from individuals with osteoporotic femoral neck fractures as well as from healthy individuals were analyzed. Fluorescence intensity maps were matched with BE images and correlated with calcium (Ca) content. We found that Zn and Pb had significantly increased levels in the cement lines of all samples compared to the surrounding mineralized bone matrix. Pb and Sr levels were found to be correlated with the degree of mineralization. Interestingly, Zn intensities had no correlation with Ca levels. We have shown for the first time that there is a differential accumulation of the trace elements Zn, Pb and Sr in BSUs of human bone indicating different mechanisms of accumulation. PMID:23932972
Theory of magnetic enhancement in strontium hexaferrite through Zn-Sn pair substitution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liyanage, LSI; Kim, S; Hong, YK
2013-12-01
We study the site occupancy and magnetic properties of Zn-Sn substituted M-type Sr-hexaferrite SrFe12-x(Zn0.5Sn0.5)(x)O-19 with x=1 using first-principles total-energy calculations. We find that in the lowest-energy configuration Zn2+ and Sn4+ ions preferentially occupy the 4f(1) and 4f(2) sites, respectively, in contrast to the model previously suggested by Ghasemi et al. [J. Appl. Phys, 107, 09A734 (2010)], where Zn2+ and Sn4+ ions occupy the 2b and 4f(2) sites. Density-functional theory calculations show that our model has a lower total energy by more than 0.2 eV per unit cell compared to Ghasemi's model. More importantly, the latter does not show an increasemore » in saturation magnetization (M-s) compared to the pure M-type Sr-hexaferrite, in disagreement with the experiment. On the other hand, our model correctly predicts a rapid increase in M-s as well as a decrease in magnetic anisotropy compared to the pure M-type Sr-hexaferrite, consistent with experimental measurements. (c) 2013 Elsevier B.V. All rights reserved.« less
Microwave Characterization of Ba-Substituted PZT and ZnO Thin Films.
Tierno, Davide; Dekkers, Matthijn; Wittendorp, Paul; Sun, Xiao; Bayer, Samuel C; King, Seth T; Van Elshocht, Sven; Heyns, Marc; Radu, Iuliana P; Adelmann, Christoph
2018-05-01
The microwave dielectric properties of (Ba 0.1 Pb 0.9 )(Zr 0.52 Ti 0.48 )O 3 (BPZT) and ZnO thin films with thicknesses below were investigated. No significant dielectric relaxation was observed for both BPZT and ZnO up to 30 GHz. The intrinsic dielectric constant of BPZT was as high as 980 at 30 GHz. The absence of strong dielectric dispersion and loss peaks in the studied frequency range can be linked to the small grain diameters in these ultrathin films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurusinghe, Nicola N.M.; Figuera, Juand de la; Marco, José F.
2013-09-01
Graphical abstract: - Highlights: • Some Ruddlesden–Popper phases have been characterised. • Substitution on the A site influences cationic order. • The magnetic moment redirects with temperature - Abstract: A series of n = 2 Ruddlesden–Popper phases A{sub 2}B{sub 2}O{sub 7} of composition Ln{sub 2}Sr(Ba)Fe{sub 2}O{sub 7} (Ln = La, Nd, Eu) have been prepared. La{sub 2}SrFe{sub 2}O{sub 7} and La{sub 2}BaFe{sub 2}O{sub 7} crystallise in the tetragonal space group I4/mmm. The structures of Eu{sub 2}SrFe{sub 2}O{sub 7} and Nd{sub 2}SrFe{sub 2}O{sub 7} are best described in space group P4{sub 2}/mnm. Substitution on the A site with smaller lanthanide- andmore » larger alkaline metal- ions leads to enhanced cationic order in these phases and reflects increasing differences in cationic radii. All the compounds are antiferromagnetically ordered between 298 and 2 K. In La{sub 2}SrFe{sub 2}O{sub 7} the magnetic moment lies along [1 1 0] at all temperatures between 298 and 2 K whereas in La{sub 2}BaFe{sub 2}O{sub 7} the magnetic moment at 298 K lies along the crystallographic x-axis but redirects from the [1 0 0] to the [1 1 0] direction between 210 and 190 K and is retained in this direction until 2 K. In Nd{sub 2}SrFe{sub 2}O{sub 7} the magnetic moment at 298 K lies along [1 1 0] but rotates from [1 1 0] to [0 0 1] between 17 and 9 K. A series of {sup 57}Fe Mössbauer spectra recorded from La{sub 2}SrFe{sub 2}O{sub 7} between 290 and 600 K indicate a magnetic ordering temperature of T{sub N} ≥ 535 K.« less
Horowitz, A.J.; Elrick, K.A.; Smith, J.J.
2001-01-01
Suspended sediment, sediment-associated, total trace element, phosphorus (P), and total organic carbon (TOC) fluxes were determined for the Mississippi, Columbia, Rio Grande, and Colorado Basins for the study period (the 1996, 1997, and 1998 water years) as part of the US Geological Survey's redesigned National Stream Quality Accounting Network (NASQAN) programme. The majority (??? 70%) of Cu, Zn, Cr, Ni, Ba, P, As, Fe, Mn, and Al are transported in association with suspended sediment; Sr transport seems dominated by the dissolved phase, whereas the transport of Li and TOC seems to be divided equally between both phases. Average dissolved trace element levels are markedly lower than reported during the original NASQAN programme; this seems due to the use of 'clean' sampling, processing, and analytical techniques rather than to improvements in water quality. Partitioning between sediment and water for Ag, Pb, Cd, Cr, Co, V, Be, As, Sb, Hg, and Ti could not be estimated due to a lack of detectable dissolved concentrations in most samples. Elevated suspended sediment-associated Zn levels were detected in the Ohio River Basin and elevated Hg levels were detected in the Tennessee River, the former may affect the mainstem Mississippi River, whereas the latter probably do not. Sediment-associated concentrations of Ag, Cu, Pb, Zn, Cd, Cr, Co, Ba, Mo, Sb, Hg, and Fe are markedly elevated in the upper Columbia Basin, and appear to be detectable (Zn, Cd) as far downstream as the middle of the basin. These elevated concentrations seem to result from mining and/or mining-related activities. Consistently detectable concentrations of dissolved Se were found only in the Colorado River Basin. Calculated average annual suspended sediment fluxes at the mouths of the Mississippi and Rio Grande Basins were below, whereas those for the Columbia and Colorado Basins were above previously published annual values. Downstream suspended sediment-associated and total trace element fluxes increase in the Mississippi and Columbia Basins, whereas fluxes markedly decrease in the Colorado Basin. No consistent pattern in trace element fluxes was detected in the Rio Grande Basin.
Capturing anharmonicity in a lattice thermal conductivity model for high-throughput predictions
Miller, Samuel A.; Gorai, Prashun; Ortiz, Brenden R.; ...
2017-01-06
High-throughput, low-cost, and accurate predictions of thermal properties of new materials would be beneficial in fields ranging from thermal barrier coatings and thermoelectrics to integrated circuits. To date, computational efforts for predicting lattice thermal conductivity (κ L) have been hampered by the complexity associated with computing multiple phonon interactions. In this work, we develop and validate a semiempirical model for κ L by fitting density functional theory calculations to experimental data. Experimental values for κ L come from new measurements on SrIn 2O 4, Ba 2SnO 4, Cu 2ZnSiTe 4, MoTe 2, Ba 3In 2O 6, Cu 3TaTe 4, SnO,more » and InI as well as 55 compounds from across the published literature. Here, to capture the anharmonicity in phonon interactions, we incorporate a structural parameter that allows the model to predict κ L within a factor of 1.5 of the experimental value across 4 orders of magnitude in κ L values and over a diverse chemical and structural phase space, with accuracy similar to or better than that of computationally more expensive models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreira, E.; Henriques, J.M.; Azevedo, D.L.
2012-03-15
Neutron diffraction data for Sr{sub x}Ba{sub 1-x}SnO{sub 3} (x=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) solid solutions were used as inputs to obtain optimized geometries and electronic properties using the density functional theory (DFT) formalism considering both the local density and generalized gradient approximations, LDA and GGA, respectively. The crystal structures and SnO{sub 6} octahedra tilting angles found after total energy minimization agree well with experiment, specially for the GGA data. Elastic constants were also obtained and compared with theoretical and experimental results for cubic BaSnO{sub 3}. While the alloys with cubic unit cell have an indirect band gap, tetragonalmore » and orthorhombic alloys exhibit direct band gaps (exception made to x=1.0). The Kohn-Sham minimum electronic band gap oscillates from 1.52 eV (cubic x=0.0, LDA) to 2.61 eV (orthorhombic x=1.0, LDA), and from 0.74 eV (cubic BaSnO{sub 3}, GGA) to 1.97 eV (orthorhombic SrSnO{sub 3}, GGA). Parabolic interpolation of bands has allowed us to estimate the effective masses for charge carriers, which are shown to be anisotropic and larger for holes. - Graphical Abstract: Highlights: Black-Right-Pointing-Pointer DFT calculations were performed on Sr{sub x}Ba{sub 1-x}SnO{sub 3} solid solutions. Black-Right-Pointing-Pointer Calculated crystal structures agree well with experiment. Black-Right-Pointing-Pointer Alloys have direct or indirect gaps depending on the Sr molar fraction. Black-Right-Pointing-Pointer The Kohn-Sham gap variation from x=0.0 to x=1.0 is close to the experimental value. Black-Right-Pointing-Pointer Carrier effective masses are very anisotropic, specially for holes.« less
Diet and behavior of the Saint-Césaire Neanderthal inferred from biogeochemical data inversion.
Balter, Vincent; Simon, Laurent
2006-10-01
Biogeochemistry is a powerful tool for dietary reconstruction, and mixing equations can be used to quantify the contribution of multiple sources to an individual's diet. The goals of this paper are: 1) to generalize the inverse method to dietary mixtures; and 2) to reconstruct the diet of the Saint-Césaire Neanderthal using Sr/Ca and Ba/Ca data of the mineral fraction of bone (hydroxylapatite), and with published delta13C and delta15N data of the associated organic fraction of bone (collagen). A new method is proposed to calculate the maximum diagenetic contribution of the Sr/Ba ratio, assuming that the soil soluble fraction is the diagenetic end-member and, for a given fraction of diagenesis, allows the restoration of the original Sr/Ba ratio. Considering the Saint-Césaire Châtelperronian mammalian assemblage as the meat source, and on the basis of available Sr, Ba, and Ca contents of plants, the results indicate that the percentage of plants in the Neanderthal's diet must have been close to zero for realistic Sr and Ba impoverishment between diet and hydroxylapatite. Contrary to previous studies, it is shown that fish could constitute a significant proportion (30%) of the diet of the Saint-Césaire Neanderthal. However, this mass balance solution is not supported by the zooarchaeological data. When the entire faunal assemblage is considered as the dietary source, the calculation shows that bovids (except reindeer) represent the greatest percentage of consumed meat (58%), followed by horses/rhinoceros (22%), reindeer (13%), and mammoths (7%). These respective percentages are in close accordance with zooarchaeological records, suggesting that the faunal assemblage associated with the Neanderthal of Saint-Césaire reliably reflects what he ate during the last few years of his life. In behavioral terms, this result supports the hypothesis that this Neanderthal carried the foodstuffs back to the Saint-Césaire shelter before their consumption.
Rodriguez-Cruz, S E; Jockusch, R A; Williams, E R
1999-09-29
The evaporation of water from hydrated alkaline earth metal ions, produced by electrospray ionization, was studied in a Fourier transform mass spectrometer. Zero-pressure-limit dissociation rate constants for loss of a single water molecule from the hydrated divalent metal ions, M(2+)(H(2)O)(n) (M = Mg, Ca, and Sr for n = 5-7, and M = Ba for n = 4-7), are measured as a function of temperature using blackbody infrared radiative dissociation. From these values, zero-pressure-limit Arrhenius parameters are obtained. By modeling the dissociation kinetics using a master equation formalism, threshold dissociation energies (E(o)) are determined. These reactions should have a negligible reverse activation barrier; therefore, E(o) values should be approximately equal to the binding energy or hydration enthalpy at 0 K. For the hepta- and hexahydrated ions at low temperature, binding energies follow the trend expected on the basis of ionic radii: Mg > Ca > Sr > Ba. For the hexahydrated ions at high temperature, binding energies follow the order Ca > Mg > Sr > Ba. The same order is observed for the pentahydrated ions. Collisional dissociation experiments on the tetrahydrated species result in relative dissociation rates that directly correlate with the size of the metals. These results indicate the presence of two isomers for hexahydrated magnesium ions: a low-temperature isomer in which the six water molecules are located in the first solvation shell, and a high-temperature isomer with the most likely structure corresponding to four water molecules in the inner shell and two water molecules in the second shell. These results also indicate that the pentahydrated magnesium ions have a structure with four water molecules in the first solvation shell and one in the outer shell. The dissociation kinetics for the hexa- and pentahydrated clusters of Ca(2+), Sr(2+), and Ba(2+) are consistent with structures in which all the water molecules are located in the first solvation shell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samal, Saroj L.; Gulo, Fakhili; Corbett, John D.
Three new ternary polar intermetallic compounds, cubic Ca6Pt8Cd16, and tetragonal (Sr, Ba)Pt2Cd4 have been discovered during explorations of the Ae–Pt–Cd systems. Cubic Ca6Pt8Cd16 (Fm-3m, Z = 4, a = 13.513(1) Å) contains a 3D array of separate Cd8 tetrahedral stars (TS) that are both face capped along the axes and diagonally bridged by Pt atoms to generate the 3D anionic network Cd8[Pt(1)]6/2[Pt(2)]4/8. The complementary cationic surface of the cell consists of a face-centered cube of Pt(3)@Ca6 octahedra. This structure is an ordered ternary variant of Sc11Ir4 (Sc6Ir8Sc16), a stuffed version of the close relative Na6Au7Cd16, and a network inverse ofmore » the recent Er6Sb8Pd16 (compare Ca6Pt8Cd16). The three groups of elements each occur in only one structural version. The new AePt2Cd4, Ae = Sr, Ba, are tetragonal (P42/mnm,Z = 2, a ≈ 8.30 Å, c ≈ 4.47 Å) and contain chains of edge-sharing Cd4 tetrahedra along c that are bridged by four-bonded Ba/Sr. LMTO-ASA and ICOHP calculation results and comparisons show that the major bonding (Hamilton) populations in Ca6Pt8Cd16 and Er6Sb8Pd16 come from polar Pt–Cd and Pd–Sb interactions, that Pt exhibits larger relativistic contributions than Pd, that characteristic size and orbital differences are most evident for Sb 5s, Pt8, and Pd16, and that some terms remain incomparable, Ca–Cd versus Er–Pd.« less
Modulation of Cardiac Ryanodine Receptor Channels by Alkaline Earth Cations
Diaz-Sylvester, Paula L.; Porta, Maura; Copello, Julio A.
2011-01-01
Cardiac ryanodine receptor (RyR2) function is modulated by Ca2+ and Mg2+. To better characterize Ca2+ and Mg2+ binding sites involved in RyR2 regulation, the effects of cytosolic and luminal earth alkaline divalent cations (M2+: Mg2+, Ca2+, Sr2+, Ba2+) were studied on RyR2 from pig ventricle reconstituted in bilayers. RyR2 were activated by M2+ binding to high affinity activating sites at the cytosolic channel surface, specific for Ca2+ or Sr2+. This activation was interfered by Mg2+ and Ba2+ acting at low affinity M2+-unspecific binding sites. When testing the effects of luminal M2+ as current carriers, all M2+ increased maximal RyR2 open probability (compared to Cs+), suggesting the existence of low affinity activating M2+-unspecific sites at the luminal surface. Responses to M2+ vary from channel to channel (heterogeneity). However, with luminal Ba2+or Mg2+, RyR2 were less sensitive to cytosolic Ca2+ and caffeine-mediated activation, openings were shorter and voltage-dependence was more marked (compared to RyR2 with luminal Ca2+or Sr2+). Kinetics of RyR2 with mixtures of luminal Ba2+/Ca2+ and additive action of luminal plus cytosolic Ba2+ or Mg2+ suggest luminal M2+ differentially act on luminal sites rather than accessing cytosolic sites through the pore. This suggests the presence of additional luminal activating Ca2+/Sr2+-specific sites, which stabilize high Po mode (less voltage-dependent) and increase RyR2 sensitivity to cytosolic Ca2+ activation. In summary, RyR2 luminal and cytosolic surfaces have at least two sets of M2+ binding sites (specific for Ca2+ and unspecific for Ca2+/Mg2+) that dynamically modulate channel activity and gating status, depending on SR voltage. PMID:22039534
Kasamatsu, Masaaki; Igawa, Takao; Suzuki, Shinichi; Suzuki, Yasuhiro
2018-01-01
Since fragments of concrete can be evidence of crime, a determination of whether or not they come from the same origin is required. The authors focused on nitric acid-soluble components in the fragments of concrete. As a result of qualitative analysis with ICP-MS, it was confirmed that elements such as Cu, Zn, Rb, Sr, Zr, Ba, La, Ce, Nd, and Pb were contained in the fragments. After the nitric acid-soluble components in the fragments of concrete were separated by dissolving them in nitric acid, the concentrations of these elements in the dissolved solution were quantitatively determined by ICP-MS. The concentration ratios of nine elements compared to La were used as indicators. By comparing these indicators, it was possible to discriminate between the fragments of concrete.
Barbosa, Rommel Melgaço; Nacano, Letícia Ramos; Freitas, Rodolfo; Batista, Bruno Lemos; Barbosa, Fernando
2014-09-01
This article aims to evaluate 2 machine learning algorithms, decision trees and naïve Bayes (NB), for egg classification (free-range eggs compared with battery eggs). The database used for the study consisted of 15 chemical elements (As, Ba, Cd, Co, Cs, Cu, Fe, Mg, Mn, Mo, Pb, Se, Sr, V, and Zn) determined in 52 eggs samples (20 free-range and 32 battery eggs) by inductively coupled plasma mass spectrometry. Our results demonstrated that decision trees and NB associated with the mineral contents of eggs provide a high level of accuracy (above 80% and 90%, respectively) for classification between free-range and battery eggs and can be used as an alternative method for adulteration evaluation. © 2014 Institute of Food Technologists®
Potential Use of Passive Sampling for Environmental Monitoring of Petroleum E&P Operations
Traditional environmental monitoring relies on water or soil samples being taken at various time increments and sent to offsite laboratories for analysis. Reliance on grab samples generally captures limited “snapshots” of environmental contaminant concentrations, is time intensive, costly, and generates residual waste from excess sample and/or reagents used in the analysis procedures. As an alternative, we are evaluating swellable organosilica sorbents to create passive sampling systems for monitoring applications. Previous work has focused on absorption and detection of fuels, chlorinated solvents, endocrine disruptors, explosives, pesticides, fluorinated chemicals, and metals including Ba, Sr, Hg, Pb, Fe, Cu, and Zn. The advantages of swellable organosilica are that the material cancapture target compounds for an extended periods of time, does not absorb natural organic matter, and resists biofilm formation since the sorbent possesses an animated surface morphology.
Chemical characterization of gas- and oil-bearing shales by instrumental neutron activation analysis
Frost, J.K.; Koszykowski, R.F.; Klemm, R.C.
1982-01-01
The concentration of As, Ba, Ca, Co, Cr, Cs, Dy, Eu, Fe, Ga, Hf, K, La, Lu, Mn, Mo, Na, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, U, Yb, and Zn were determined by instrumental neutron activation analysis in block shale samples of the New Albany Group (Devonian-Mississippian) in the in the Illinois Basin. Uranium content of the samples was as high as 75 ppm and interfered in the determination of samarium, molybdenum, barium and cerium. In the determination of selenium a correction was made for interference from tantalum. U, As, Co, Mo, Ni and Sb as well as Cu, V and pyritic sulphur which were determined by other methods, were found to correlate positively with the organic carbon content of the samples. ?? 1982 Akade??miai Kiado??.
Anode materials for lithium ion batteries
Abouimrane, Ali; Amine, Khalil
2015-06-09
A composite material has general Formula (1-x)J-(x)Q wherein: J is a metal carbon alloy of formula Sn.sub.zSi.sub.z'Met.sub.wMet'.sub.w'C.sub.t; Q is a metal oxide of formula A.sub..gamma.M.sub..alpha.M'.sub..alpha.'O.sub..beta.; A is Li, Na, or K; M, M', Met, and Met' are individually Ge, Mo, Al, Ga, As, Sb, Te, Ti, Ta, Zr, Ca, Mg, Sr, Ba, Li, Na, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Rt, Ru or Cd; 0
NASA Astrophysics Data System (ADS)
Akyuz, Sevim; Akyuz, Tanil; Mukhamedshina, Nuranya M.; Mirsagatova, A. Adiba; Basaran, Sait; Cakan, Banu
2012-05-01
Ancient glass fragments excavated in the archaeological district Enez (Ancient Ainos)-Turkey were investigated by combined Instrumental Neutron Activation Analysis (INAA) and Fourier Transform Infrared (FTIR) spectrometry techniques. Multi-elemental contents of 15 glass fragments that belong to Hellenistic, Roman, Byzantine, and Ottoman Periods, were determined by INAA. The concentrations of twenty six elements (Na, K, Ca, Sc, Cr, Mn, Fe, Co, Cu, Zn, As, Rb, Sr, Sb, Cs, Ba, Ce, Sm, Eu, Tb, Yb, Lu, Hf, Ta, Au and Th), which might be present in the samples as flux, stabilizers, colorants or opacifiers, and impurities, were examined. Chemometric treatment of the INAA data was performed and principle component analysis revealed presence of 3 distinct groups. The thermal history of the glass samples was determined by FTIR spectrometry.
Decoupling of magnetism and electric transport in single-crystal (Sr1‑x A x )2IrO4 (A = Ca or Ba)
NASA Astrophysics Data System (ADS)
Zhao, H. D.; Terzic, J.; Zheng, H.; Ni, Y. F.; Zhang, Y.; Ye, Feng; Schlottmann, P.; Cao, G.
2018-06-01
We report a systematical structural, transport and magnetic study of Ca or Ba doped Sr2IrO4 single crystals. Isoelectronically substituting Ca2+ (up to 15%) or Ba2+ (up to 4%) ion for the Sr2+ ion provides no additional charge carriers but effectively changes the lattice parameters in Sr2IrO4. In particular, 15% Ca doping considerably reduces the c-axis and the unit cell by nearly 0.45% and 1.00%, respectively. These significant, anisotropic compressions in the lattice parameters conspicuously cause no change in the Néel temperature which remains at 240 K, but drastically reduces the electrical resistivity by up to five orders of magnitude or even precipitates a sharp insulator-to-metal transition at lower temperatures, i.e. the vanishing insulating state accompanies an unchanged Néel temperature in (Sr1‑x A x )2IrO4. This observation brings to light an intriguing difference between chemical pressure and applied pressure, the latter of which does suppress the long-range magnetic order in Sr2IrO4. This difference reveals the importance of the Ir1–O2–Ir1 bond angle and homogenous volume compression in determining the magnetic ground state. All results, along with a comparison drawn with results of Tb and La doped Sr2IrO4, underscore that the magnetic transition plays a nonessential role in the formation of the charge gap in the spin–orbit-tuned iridate.
Trace Metals and Lead Isotopes in modern Sediments Near Rio de Janeiro, Brazil
NASA Astrophysics Data System (ADS)
Boyle, E. A.; Lazzari, L.; Wagener, A. L.; Carreira, R.; Godoy, J. M.; Noble, A.; Carrasco, G. G.; Moos, S. B.
2014-12-01
This work focuses on the export of trace metals and combustion residues from land to ocean and on the Southeast continental margin of Brazil and its historical variability using stable lead isotopes. Two sediment cores were collected, one in highly impacted Guanabara Bay and the other on the Southeast continental shelf. Continental shelf samples were analyzed for trace element concentrations [Mn (117±50 ppm), Ni (6.5±2.3 ppm), Zn (5.0±1.5), (233±46 ppm), ], Pb (5.4±2.4 ppm), as well as Cu, Ag, Cd, Sr, Ba, Tl, U and Pb isotope ratios & Pb-210. Most of the elements show higher concentrations on the upper part of the core compared to the bottom. Downcore changes of the concentrations of these elements were similar. The sediments of adjacent rivers and bays around the upper section of the southeast continental shelf of Brazil are considered highly enriched with Pb, Zn, Cu and Cr such as Guanabara Bay, Sepetiba Bay and Paraíba do Sul River compared with the natural concentrations and other regions in the world. A [Pb] maximum is seen between samples from 24 to 43 cm (~8 ppm). Utilization of tetraethyl lead (TEL) gasoline in Brazil was phased out beginning in 1983 and was largely completed by 1988. Continental shelf Pb-206/Pb-207 varies between 1.174 near the core top to 1.190 at 100 cm, with a sharp difference between samples at 6 and 8 cm. Higher core top Pb, Zn, and Ni corroborate the recent anthropogenic influence on the southeast continental shelf of Brazil. For Guanabara Bay sediment samples [Pb] varies between 90 ppm near the top to 1 ppm at the bottom. Pb-206/Pb-207 varies between 1.161 near the core top to 1.165 near the bottom. Using triple isotope plots we can discern different sources of lead to the region and how these vary with time.
Adhikari, Birendra Babu; To, Cuong-Alexander; Iwasawa, Tetsuo; Schramm, Michael P.
2015-01-01
Calix[6]arene hexacarboxylic acid binds instantly and with low symmetry to Pb, Sr and Ba. Later a highly symmetric up-down alternating conformation emerges. The solution structures are identical to their p-tert-butylcalix[6]arene hexacarboxylic acid counterparts. With either receptor an octahedral cage is formed around the metal. The transformation from low to high symmetry however proceeds at significantly faster rates for the de-t-butylated host. PMID:26752941
Brian K. Wells; Bruce E. Rieman; James L. Clayton; Donna L. Horan; Cynthia M. Jones
2003-01-01
We quantified Mg:Ca, Mn:Ca, Sr:Ca, and Ba:Ca molar ratios from an area representing the summer 2000 growth season on otoliths and scales from 1-year-old westslope cutthroat trout Oncorhyncus clarki lewisi collected from three streams in the Coeur d'Alene River, Idaho, system. We also quantified Mg:Ca, Sr:Ca, and Ba:Ca molar ratios in the water...
Growth of Nanoscale BaTiO3/SrTiO3 Superlattices by Molecular-Beam Epitaxy
2008-05-01
also of interest for novel acous- tic phonon devices including mirrors, filters, and cavities for coherent acoustic phonon generation and control...phonon “laser”).4 The structure of these devices is de- termined by the acoustic phonon wavelength, which is typically in the range of a few nanometers...nanoscale [(BaTiO3)n /(SrTiO3)m]p superlattices with atomically abrupt interfaces that are vital for the perfor- mance of acoustic phonon devices as
Jiang, Haifeng; Qin, Dongli; Mou, Zhenbo; Zhao, Jiwei; Tang, Shizhan; Wu, Song; Gao, Lei
2016-06-01
Concentrations of 30 trace elements, Li, V, Cr, Mn, Fe, Ni, Cu, Mo, Zn, Se, Sr, Co, Al, Ti, As, Cs, Sc, Te, Ba, Ga, Pb, Sn, Cd, Sb, Ag, Tm, TI, Be, Hg and U in major cultured freshwater fish species (common carp-Cyprinus carpio, grass carp-Ctenopharyngodon idella and rainbow trout-Oncorhynchus mykiss) with the corresponding feed from 23 fish farms in Beijing, China, were investigated. The results revealed that Fe, Zn, Cu, Mn, Sr, Se were the major accumulated essential elements and Al, Ti were the major accumulated non-essential elements, while Mo, Co, Ga, Sn, Cd, Sb, Ag, Tm, U, TI, Be, Te, Pb and Hg were hardly detectable. Contents of investigated trace elements were close to or much lower than those in fish from other areas in China. Correlation analysis suggested that the elemental concentrations in those fish species were relatively constant and did not vary much with the fish feed. In comparison with the limits for aquafeeds and fish established by Chinese legislation, Cd in 37.5% of rainbow trout feeds and As in 20% of rainbow trout samples exceeded the maximum limit, assuming that inorganic As accounts for 10% of total As. Further health risk assessment showed that fish consumption would not pose risks to consumers as far as non-essential element contaminants are concerned. However, the carcinogenic risk of As in rainbow trout for the inhabitants in Beijing exceeded the acceptable level of 10(-)(4), to which more attention should be paid.
The Dart estuary, Devon, UK: a case study of chemical dynamics and pollutant mobility
NASA Astrophysics Data System (ADS)
Schuwerack, P.-M. M.; Neal, M.; Neal, C.
2007-01-01
Water, sediments and gill and digestive gland tissues of adult common shore crab (Carcinus maenas), collected at Noss Marina, Sandquay (Britannia Royal Naval College), the Dartmouth Pier, Warfleet Cove and Sugary Cove in the Dart estuary, Devon, UK, were analysed for major, minor and trace elements in spring 2004. Total acid-available measurements analysed included the truly dissolved component and acid-available sediments. Trace metal concentrations are associated largely with particulate and micro-particulate/colloidal phases, the latter being able to pass through standard filter papers. Wide ranges of chemical concentrations were found in the water, sediments and tissues at all the locations. In the water column, 48% of the variance is linked to the sea-salt component (Cl, Na, K, Ca, Mg, B, Li and Sr) and the sediment-associated acid-available fractions are linked to Fe-rich lithogenous materials (Ba, Co, Cu, Fe, Mn, V and Zn). In the sediments, trace elements of Cd, Co, Cr, Fe, Pb, Mn, Ni and V are correlated with the sea salts and associated with the fraction of fine sediments within the total sediment. In the gills and the digestive gland tissues of crabs, high concentrations of Al, Cu and Fe are found and there are correlations between acid-available trace metals of Cu, Cr, Fe, Mn, Ni, Sr and Zn. The relationships between trace metal contaminants, their site-specific concentrations, their temporal and spatial variability and the effects of human activities, such as moorland/agriculture with historic mining and recreational activities in the lower Dart estuary, are discussed.
Heavy metals in human teeth dentine: A bio-indicator of metals exposure and environmental pollution.
Asaduzzaman, Khandoker; Khandaker, Mayeen Uddin; Binti Baharudin, Nurul Atiqah; Amin, Yusoff Bin Mohd; Farook, Mohideen Salihu; Bradley, D A; Mahmoud, Okba
2017-06-01
With rapid urbanization and large-scale industrial activities, modern human populations are being increasingly subjected to chronic environmental heavy metal exposures. Elemental uptake in tooth dentine is a bioindicator, the uptake occurring during the formation and mineralization processes, stored to large extent over periods of many years. The uptake includes essential elements, most typically geogenic dietary sources, as well as non-essential elements arising through environmental insults. In this study, with the help of the Dental Faculty of the University of Malaya, a total of 50 separate human teeth were collected from dental patients of various ethnicity, age, gender, occupation, dietary habit, residency, etc. Analysis was conducted using inductively coupled plasma-mass spectrometry (ICP-MS), most samples indicating the presence of the following trace elements, placed in order of concentration, from least to greatest: As, Mn, Ba, Cu, Cr, Pb, Zn, Hg, Sb, Al, Sr, Sn. The concentrations have been observed to increase with age. Among the ethnic groups, the teeth of ethnic Chinese showed marginally greater metal concentrations than those of the Indians and Malays, the teeth dentine of females generally showing greater concentrations than that of males. Greater concentrations of Hg, Cu and Sn were found in molars while Pb, Sr, Sb and Zn were present in greater concentrations in incisors. With the elevated concentration levels of heavy metals in tooth dentine reflecting pollution from industrial emissions and urbanization, it is evident that human tooth dentine can provide chronological information on exposure, representing a reliable bio-indicator of environmental pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.
White-light-controlled resistive switching in ZnO/BaTiO3/C multilayer layer at room temperature
NASA Astrophysics Data System (ADS)
Wang, Junshuai; Liang, Dandan; Wu, Liangchen; Li, Xiaoping; Chen, Peng
2018-07-01
The bipolar resistance switching effect is observed in ZnO/BaTiO3/C structure. The resistance switching behavior can be modulated by white light. The resistance switch states and threshold voltage can be changed when subjected to white light. This research can help explore multi-functional materials and applications in nonvolatile memory device.
Luminescence of BaBrI and SrBrI single crystals doped with Eu2+
NASA Astrophysics Data System (ADS)
Shalaev, A. A.; Shendrik, R.; Myasnikova, A. S.; Bogdanov, A.; Rusakov, A.; Vasilkovskyi, A.
2018-05-01
The crystal growth procedure and luminescence properties of pure and Eu2+-doped BaBrI and SrBrI crystals are reported. Emission and excitation spectra were recorded under ultraviolet and vacuum ultraviolet excitations. The energy of the first Eu2+ 4f-5d transition and SrBrI band gap are obtained. The electronic structure calculations were performed within GW approximation as implemented in the Vienna Ab Initio Simulation Package. The energy between lowest Eu2+ 5d state and the bottom of conduction band are found based on luminescence quenching parameters. The vacuum referred binding energy diagram of lanthanide levels was constructed using the chemical shift model.
Epitaxial Ba2IrO4 thin-films grown on SrTiO3 substrates by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Nichols, J.; Korneta, O. B.; Terzic, J.; Cao, G.; Brill, J. W.; Seo, S. S. A.
2014-03-01
We have synthesized epitaxial Ba2IrO4 (BIO) thin-films on SrTiO3 (001) substrates by pulsed laser deposition and studied their electronic structure by dc-transport and optical spectroscopic experiments. We have observed that BIO thin-films are insulating but close to the metal-insulator transition boundary with significantly smaller transport and optical gap energies than its sister compound, Sr2IrO4. Moreover, BIO thin-films have both an enhanced electronic bandwidth and electronic-correlation energy. Our results suggest that BIO thin-films have great potential for realizing the interesting physical properties predicted in layered iridates.
Zaichick, Sofia; Zaichick, Vladimir
2010-01-01
To understand the role of major, minor, and trace elements in the etiology of bone diseases including osteoporosis, it is necessary to determine the normal levels and age-related changes of bone chemical elements. The effect of age and gender on 38 chemical element contents in intact iliac crest of 84 apparently healthy 15-55 years old women (n=38) and men (n=46) was investigated by neutron activation analysis. Mean values (M+/-SEM) for mass fraction (on dry weight basis) of Ca, Cl, Co, Fe, K, Mg, Mn, Na, P, Rb, Sr, and Zn for both female and male taken together were Ca - 169+/-3g/kg, Cl - 1490+/-43 mg/kg, Co - 0.0073+/-0.0024 mg/kg, Fe - 177+/-24 mg/kg, K - 1820+/-79 mg/kg, Mg - 1840+/-48 mg/kg, Mn - 0.316+/-0.013 mg/kg, Na - 4970+/-87 mg/kg, P - 79.7+/-1.5 g/kg, Rb - 1.89+/-0.22 mg/kg, Sr - 312+/-15 mg/kg, and Zn - 65.9+/-3.4 mg/kg, respectively. The upper limit of mean contents of Cs, Eu, Hg, Sb, Sc, and Se were Cs < or = 0.09 mg/kg, Eu < or = 0.005 mg/kg, Hg < or = 0.005 mg/kg, Sb < or = 0.004 mg/kg, Sc < or = 0.001 mg/kg, and Se < or = 0.1mg/kg, respectively. In all bone samples the contents of Ag, As, Au, Ba, Br, Cd, Ce, Cr, Gd, Hf, La, Lu, Nd, Sm, Ta, Tb, Th, U, Yb, and Zr were under detection limits. The Ca, Mg, and P contents decrease with age, regardless of gender. Higher Ca, Mg, P, and Sr mass fractions as well as lower Fe content are typical of female iliac crest as compared to those in male bone. Copyright 2009 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Hyun-Suk; Hyun, Tae-Seon; Kim, Ho-Gi; Kim, Il-Doo; Yun, Tae-Soon; Lee, Jong-Chul
2006-07-01
The effect of texture with (100) and (110) preferred orientations on dielectric properties of Ba0.6Sr0.4TiO3 (BST) thin films grown on SrO (9nm) and CeO2 (70nm ) buffered Si substrates, respectively, was investigated. The coplanar waveguide (CPW) phase shifter using (100) oriented BST films on SrO buffered Si exhibited a much-enhanced figure of merit of 24.7°/dB, as compared to that (10.2°/dB) of a CPW phase shifter using (110) oriented BST films on CeO2 buffered Si at 12GHz. This work demonstrates that the microwave properties of the Si-integrated BST thin films are highly correlated with crystal orientation.
Jarzyńska, Grażyna; Falandysz, Jerzy
2011-07-01
Concentrations, composition and interrelationships of selenium and metallic elements (Ag, Ba, Cd, Co, Cr, Cs, Cu, Ga, Mn, Mo, Pb, Rb, Sb, Sr, Tl, V and Zn) have been examined in muscle and organ meats of Red Deer hunted in Poland. The analytical data obtained were also discussed in terms of Se supplementation and deficit to Deer as well as the benefits and risk to humans associated with the essential and toxic metals intake resulting from consumption of Deer meat and products. These elements were determined in 20 adult animals of both sexes that were obtained in the 2000/2001 hunting season from Warmia and Mazury in the north-eastern part of Poland. The whole kidneys contained Ba, Cd, Cr, Ga, Pb, Se, Sr and Tl at statistically greater concentrations than liver or muscle tissue from the same animal. Liver showed statistically greater concentrations of Ag, Co, Cu, Mn and Mo than kidneys or muscle tissue, and muscle tissue was richer in Zn, when compared to the kidneys or liver. Cs and Rb were similarly distributed between all three tissue types, while V was less abundant in liver than kidneys or muscle tissue. There were significant associations between some metallic elements retained in Red Deer demonstrated by Principal Component Analysis (PCA) of the data set. In organ and muscle meats (kidneys, liver and muscle tissue considered together) the first principal component (PC1) was strongly influenced by positively correlated variables describing Se, Ba and Cd and negatively correlated variables describing Ag, Co, Cs, Mn, Pb, Tl and V; PC2, respectively, by Cu, Mn and Mo (+) and Zn (-); PC3 by Ga (+) and PC4 by Sb (+). Selenium occurred in muscle tissue, liver and kidneys at median concentrations of 0.13, 0.19 and 4.0mg/g dry weight, respectively. These values can be defined as marginally deficient (< 0.6mg Se/kg liver dw) or satisfactory (≤ 3.0mg Se/kg kidneys dw) for the amount required to maintain the Deer's body condition and health, depending on the criterion for supplementation used. In terms of human nutritional needs, a relatively high selenium content of kidneys can be beneficial. The muscle meat, liver and kidneys of Red Deer can be considered as a very good source of essential Co, Cr, Cu, Mo, Mn, Se and Zn in the human diet. Lead is generally considered as toxic, and the concentrations found in Red Deer (via the food chain intake) were well below the European Union tolerance limit. Pb from the lead bullets can always create food hygienic problem, if not well recognized during sanitary inspection, and this was noted for one muscle meat sample in this study (5% surveyed). There is no tolerance limit of Cd in game animal meats. The median values of Cd noted in fresh muscle tissue, liver and whole kidneys were 0.07, 0.18, and 3.3mg/kg wet weight, respectively. Cd exists as a chemical element present at trace levels in plants and mushrooms in Deer's food chain in background (uncontaminated) areas. When these are consumed by the Deer, the amount of Cd sequestered with metallothioneins and retained in the organ and muscle meat in this study is low enough to be considered safe for human consumption. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, S. L.; Zhao, Y.; Man, H. Y.; Ding, C.; Gong, X.; Zhi, G. X.; Fu, L. C.; Gu, Y. L.; Frandsen, B. A.; Liu, L.; Cheung, S. C.; Munsie, T. J.; Wilson, M. N.; Cai, Y. P.; Luke, G. M.; Uemura, Y. J.; Ning, F. L.
2016-09-01
We report the successful synthesis and characterization of a new type I-II-V bulk form diluted magnetic semiconductor (DMS) Li(Zn,Mn,Cu)As, in which charge and spin doping are decoupled via (Cu,Zn) and (Mn,Zn) substitution at the same Zn sites. Ferromagnetic transition temperature up to ˜33 K has been observed with a coercive field ˜40 Oe for the 12.5% doping level. μSR measurements confirmed that the magnetic volume fraction reaches nearly 100% at 2 K, and the mechanism responsible for the ferromagnetic interaction in this system is the same as other bulk form DMSs.
NASA Astrophysics Data System (ADS)
Kamenov, George D.; Brenner, Mark; Tucker, Jaimie L.
2009-06-01
Analysis of a well-dated peat core from Blue Cypress Marsh (BCM) provides a detailed record of natural and anthropogenic factors that controlled the geochemical cycles of a number of trace elements in Florida over the last five centuries. The trace elements were divided into "natural" and "anthropogenic" groups using concentration trends from the bottom to the top of the core. The "natural" group includes Li, Sc, Cr, Co, Ga, Ge, Zr, Nb, Cs, Ba, Hf, Y, Ta, Th, and REE (Rare Earth Elements). These elements show similar concentrations throughout the core, indicating that changes in human activities after European arrival in the "New World" did not affect their geochemical cycles. The "anthropogenic" group includes Pb, Cu, Zn, V, Sb, Sn, Bi, and Cd. Upcore enrichment of these elements indicates enhancement by anthropogenic activities. From the early 1500s to present, fluxes of the "anthropogenic" metals to the marsh increased significantly, with modern accumulation rates several-fold (e.g., V) to hundreds of times (e.g., Zn) greater than pre-colonial rates. The dominant input mechanism for trace elements from both groups to the marsh has been atmospheric deposition. Atmospheric input of a number of the elements, including the anthropogenic metals, was dominated by local sources during the last century. For several elements, long-distant transport may be important. For instance, REE and Nd isotopes provide evidence for long-range atmospheric transport dominated by Saharan dust. The greatest increase in flux of the "anthropogenic" metals occurred during the 20th century and was caused by changes in the chemical composition of atmospheric deposition entering the marsh. Increased atmospheric inputs were a consequence of several anthropogenic activities, including fossil fuel combustion (coal and oil), agricultural activities, and quarrying and mining operations. Pb and V exhibit similar trends, with peak accumulation rates in 1970. The principal anthropogenic source of V is oil combustion. The decline in V accumulation after 1970 in the BCM peat corresponds to the introduction of low-sulfur fuels and the change from heavy to distilled oils since the 1970s. After the 1920s, Pb distribution in the peat follows closely the history of alkyl lead consumption in the US, which peaked in the 1970s. Pb isotopes support this inference and furthermore, record changes in the ore sources used to produce leaded gasoline. Idaho ores dominated the peat Pb isotope record until the 1960s, followed by Pb from Mississippi Valley Type deposits from the 1960s to the 1980s. Enhanced fluxes of Cu, Zn, Cd, Sn, Sb, Bi, and to some extent Ni during the last century are likely also related to fossil fuel combustion. Local agricultural activities may also have influenced the geochemical cycles of Cu and Zn. The peat record shows enhanced U accumulation during the last century, possibly related to phosphate mining in western Florida. Sr isotopes in the peat core also reflect anthropogenic influence. The 87Sr/ 86Sr ratio decreases from natural background values in the basal part of the core to lower values in the upper part of the core. The Sr isotope shift is probably related to quarrying operations in Florida, and marks the first time an anthropogenic signal has been detected using the Sr isotope record in a peat core.
Oxygen isotope effect in disordered underdoped and overdoped La 2-xSr xCu 1-yZn yO 4 superconductors
NASA Astrophysics Data System (ADS)
Naqib, S. H.; Islam, R. S.
2011-04-01
The effect of oxygen isotopic substitution on the superconducting transition temperature has been studied for heavily underdoped and overdoped La 2-xSr xCu 1-yZn yO 4 compounds with different Zn contents in the CuO 2 plane. The effect of Zn on the isotope coefficient, α, was significantly more pronounced in the case of the underdoped ( x = 0.09) compounds compared to the overdoped ( x = 0.22) ones. The variation of α with disorder content can be described quite well within a model based solely on Cooper pair-breaking in the case of the underdoped compounds. This model fails to describe the behavior of α( y) for the overdoped samples, even though Zn still suppresses T c very effectively at this hole (Sr) content, indicating that the Zn induced pair-breaking is still very much at play. We discuss the implications of these findings in details by considering the Zn induced magnetism, stripe correlations, and possible changes in the superconducting order parameter as hole content in the CuO 2 plane, p (≡ x), is varied.
Wojtczak, William A.; Atanassova, Paolina; Hampden-Smith, Mark J.; Duesler, Eileen
1996-11-20
The synthesis, characterization, and reactivity of new polyether adducts of strontium and barium carboxylates of general composition M(O(2)CCF(3))(n)()(L) (M = Ba, L = 15-crown-5, (1); M = Ba (2), Sr (3), respectively, with L = tetraglyme are reported. The compounds were synthesized by reaction of BaCO(3) or MH(2) (M = Sr or Ba) with organic acids in the presence of the polyether ligands. These compounds have been characterized by IR and (13)C and (1)H NMR spectroscopies, elemental analyses, and thermogravimetric analysis. The species Ba(2)(O(2)CCF(3))(4)(15-crown-5)(2) (1) and [Ba(2)(O(2)CCF(3))(4)(tetraglyme)](infinity) (2), were also characterized by single-crystal X-ray diffraction. Ba(2)(O(2)CCF(3))(4)(15-crown-5)(2) (1) crystallizes in the orthorhombic space group Cccm with cell dimensions of a = 13.949(1) Å, b = 19.376(2) Å, c = 16.029(1) Å, and Z = 8. [Ba(2)(O(2)CCF(3))(4)(tetraglyme)](infinity) (2) crystallizes in the monoclinic space group C2/c with cell dimensions of a = 12.8673(12) Å, b = 16.6981(13) Å, c = 15.1191(12) Å, beta = 99.049(8) degrees, and Z = 4. Compounds 1-3 thermally decompose at high temperatures in the solid state to give MF(2). However, solutions of compounds 1-3 dissolved in ethanol with Ti(O-i-Pr)(4) give crystalline perovskite phase MTiO(3) films, or in the case of mixtures of 2 and 3, Ba(1)(-)(x)()Sr(x)()TiO(3) films below 600 degrees C when spin coated onto silicon substrates and thermally treated. The crystallinity, purity, and elemental composition of the films was determined by glancing angle X-ray diffraction and Auger electron spectroscopy.
Unique antitumor property of the Mg-Ca-Sr alloys with addition of Zn
Wu, Yuanhao; He, Guanping; Zhang, Yu; Liu, Yang; Li, Mei; Wang, Xiaolan; Li, Nan; Li, Kang; Zheng, Guan; Zheng, Yufeng; Yin, Qingshui
2016-01-01
In clinical practice, tumor recurrence and metastasis after orthopedic prosthesis implantation is an intensely troublesome matter. Therefore, to develop implant materials with antitumor property is extremely necessary and meaningful. Magnesium (Mg) alloys possess superb biocompatibility, mechanical property and biodegradability in orthopedic applications. However, whether they possess antitumor property had seldom been reported. In recent years, it showed that zinc (Zn) not only promote the osteogenic activity but also exhibit good antitumor property. In our present study, Zn was selected as an alloying element for the Mg-1Ca-0.5Sr alloy to develop a multifunctional material with antitumor property. We investigated the influence of the Mg-1Ca-0.5Sr-xZn (x = 0, 2, 4, 6 wt%) alloys extracts on the proliferation rate, cell apoptosis, migration and invasion of the U2OS cell line. Our results show that Zn containing Mg alloys extracts inhibit the cell proliferation by alteration the cell cycle and inducing cell apoptosis via the activation of the mitochondria pathway. The cell migration and invasion property were also suppressed by the activation of MAPK (mitogen-activated protein kinase) pathway. Our work suggests that the Mg-1Ca-0.5Sr-6Zn alloy is expected to be a promising orthopedic implant in osteosarcoma limb-salvage surgery for avoiding tumor recurrence and metastasis. PMID:26907515
Quasi-2D silicon structures based on ultrathin Me2Si (Me = Mg, Ca, Sr, Ba) films
NASA Astrophysics Data System (ADS)
Migas, D. B.; Bogorodz, V. O.; Filonov, A. B.; Borisenko, V. E.; Skorodumova, N. V.
2018-04-01
By means of ab initio calculations with hybrid functionals we show a possibility for quasi-2D silicon structures originated from semiconducting Mg2Si, Ca2Si, Sr2Si and Ba2Si silicides to exist. Such a 2D structure is similar to the one of transition metal chalcogenides where silicon atoms form a layer in between of metal atoms aligned in surface layers. These metal surface atoms act as pseudo passivation species stabilizing crystal structure and providing semiconducting properties. Considered 2D Mg2Si, Ca2Si, Sr2Si and Ba2Si have band gaps of 1.14 eV, 0.69 eV, 0.33 eV and 0.19 eV, respectively, while the former one is also characterized by a direct transition with appreciable oscillator strength. Electronic states of the surface atoms are found to suppress an influence of the quantum confinement on the band gaps. Additionally, we report Sr2Si bulk in the cubic structure to have a direct band gap of 0.85 eV as well as sizable oscillator strength of the first direct transition.
Yue -Wei Yin; Tao, Jing; Huang, Wei -Chuan; ...
2015-10-06
General drawbacks of current electronic/spintronic devices are high power consumption and low density storage. A multiferroic tunnel junction (MFTJ), employing a ferroelectric barrier layer sandwiched between two ferromagnetic layers, presents four resistance states in a single device and therefore provides an alternative way to achieve high density memories. Here, an MFTJ device with eight nonvolatile resistance states by further integrating the design of noncollinear magnetization alignments between the ferromagnetic layers is demonstrated. Through the angle-resolved tunneling magnetoresistance investigations on La 0.7Sr 0.3MnO 3/BaTiO 3/La 0.7Sr 0.3MnO 3 junctions, it is found that, besides collinear parallel/antiparallel magnetic configurations, the MFTJ showsmore » at least two other stable noncollinear (45° and 90°) magnetic configurations. As a result, combining the tunneling electroresistance effect caused by the ferroelectricity reversal of the BaTiO 3 barrier, an octonary memory device is obtained, representing potential applications in high density nonvolatile storage in the future.« less
NASA Astrophysics Data System (ADS)
Sorokin, N. I.; Krivandina, E. A.; Zhmurova, Z. I.
2013-11-01
The density of single crystals of nonstoichiometric phases Ba1 - x La x F2 + x (0 ≤ x ≤ 0.5) and Sr0.8La0.2 - x Lu x F2.2 (0 ≤ x ≤ 0.2) with the fluorite (CaF2) structure type and R 1 - y Sr y F3 - y ( R = Pr, Nd; 0 ≤ y ≤ 0.15) with the tysonite (LaF3) structure type has been measured. Single crystals were grown from a melt by the Bridgman method. The measured concentration dependences of single crystal density are linear. The interstitial and vacancy models of defect formation in the fluorite and tysonite phases, respectively, are confirmed. To implement the composition control of single crystals of superionic conductors M 1 - x R x F2 + x and R 1 - y M y F3 - y in practice, calibration graphs of X-ray density in the MF2- RF3 systems ( M = Ca, Sr, Ba, Cd, Pb; R = La-Lu, Y) are plotted.
NASA Astrophysics Data System (ADS)
García-Ramos, Crisanto A.; Larrégola, Sebastián; Retuerto, María; Fernández-Díaz, María Teresa; Krezhov, Kiril; Alonso, José Antonio
2018-06-01
New A2Fe(Mn0.5W0.5)O6 (A = Ca, Sr, Ba) double perovskite oxides have been prepared by ceramic techniques. X-ray diffraction (XRD) complemented with neutron powder diffraction (NPD) indicate a structural evolution from monoclinic (space group P21/n) for A = Ca to cubic (Fm-3m) for A = Sr and finally to hexagonal (P63/mmc) for A = Ba as the perovskite tolerance factor increases with the A2+ ionic size. The three oxides present different tilting schemes of the FeO6 and (Mn,W)O6 octahedra. NPD data also show evidence in all cases of a considerable anti-site disordering, involving the partial occupancy of Fe positions by Mn atoms, and vice-versa. Magnetic susceptibility data show magnetic transitions below 50 K characterized by a strong irreversibility between ZFC and FC susceptibility curves. The A = Ca perovskite shows a G-type magnetic structure, with weak ordered magnetic moments due to the mentioned antisite disordering. Interesting magnetostrictive effects are observed for the Sr perovskite below 10 K.
NASA Astrophysics Data System (ADS)
Hassan, M.; Shahid, A.; Mahmood, Q.
2018-02-01
Density functional theory study of the structural, electrical, optical and thermoelectric behaviors of very less investigated anti-perovskites A3SnO (A = Ca, Sr, Ba) is performed with FP-LAPW technique. The A3SnO exhibit narrow direct band gap, in contrast to the wide indirect band gap of the respective perovskites. Hence, indirect to direct band gap transformation can be realized by the structural transition from perovskite to anti-perovskite. The p-p hybridization between A and O states result in the covalent bonding. The transparency and maximum reflectivity to the certain energies, and the verification of the Penn's model indicate potential optical device applications. Thermoelectric behaviors computed within 200-800 K depict that Ca3SnO exhibits good thermoelectric performance than Ba3SnO and Sr3SnO, and all three operate at their best at 800 K suggesting high temperature thermoelectric device applications.