Sample records for sram static random

  1. Sub-1-V-60 nm vertical body channel MOSFET-based six-transistor static random access memory array with wide noise margin and excellent power delay product and its optimization with the cell ratio on static random access memory cell

    NASA Astrophysics Data System (ADS)

    Ogasawara, Ryosuke; Endoh, Tetsuo

    2018-04-01

    In this study, with the aim to achieve a wide noise margin and an excellent power delay product (PDP), a vertical body channel (BC)-MOSFET-based six-transistor (6T) static random access memory (SRAM) array is evaluated by changing the number of pillars in each part of a SRAM cell, that is, by changing the cell ratio in the SRAM cell. This 60 nm vertical BC-MOSFET-based 6T SRAM array realizes 0.84 V operation under the best PDP and up to 31% improvement of PDP compared with the 6T SRAM array based on a 90 nm planar MOSFET whose gate length and channel width are the same as those of the 60 nm vertical BC-MOSFET. Additionally, the vertical BC-MOSFET-based 6T SRAM array achieves an 8.8% wider read static noise margin (RSNM), a 16% wider write margin (WM), and an 89% smaller leakage. Moreover, it is shown that changing the cell ratio brings larger improvements of RSNM, WM, and write time in the vertical BC-MOSFET-based 6T SRAM array.

  2. False Operation of Static Random Access Memory Cells under Alternating Current Power Supply Voltage Variation

    NASA Astrophysics Data System (ADS)

    Sawada, Takuya; Takata, Hidehiro; Nii, Koji; Nagata, Makoto

    2013-04-01

    Static random access memory (SRAM) cores exhibit susceptibility against power supply voltage variation. False operation is investigated among SRAM cells under sinusoidal voltage variation on power lines introduced by direct RF power injection. A standard SRAM core of 16 kbyte in a 90 nm 1.5 V technology is diagnosed with built-in self test and on-die noise monitor techniques. The sensitivity of bit error rate is shown to be high against the frequency of injected voltage variation, while it is not greatly influenced by the difference in frequency and phase against SRAM clocking. It is also observed that the distribution of false bits is substantially random in a cell array.

  3. Development of highly reliable static random access memory for 40-nm embedded split gate-MONOS flash memory

    NASA Astrophysics Data System (ADS)

    Okamoto, Shin-ichi; Maekawa, Kei-ichi; Kawashima, Yoshiyuki; Shiba, Kazutoshi; Sugiyama, Hideki; Inoue, Masao; Nishida, Akio

    2015-04-01

    High quality static random access memory (SRAM) for 40-nm embedded MONOS flash memory with split gate (SG-MONOS) was developed. Marginal failure, which results in threshold voltage/drain current tailing and outliers of SRAM transistors, occurs when using a conventional SRAM structure. These phenomena can be explained by not only gate depletion but also partial depletion and percolation path formation in the MOS channel. A stacked poly-Si gate structure can suppress these phenomena and achieve high quality SRAM without any defects in the 6σ level and with high affinity to the 40-nm SG-MONOS process was developed.

  4. Soft errors in commercial off-the-shelf static random access memories

    NASA Astrophysics Data System (ADS)

    Dilillo, L.; Tsiligiannis, G.; Gupta, V.; Bosser, A.; Saigne, F.; Wrobel, F.

    2017-01-01

    This article reviews state-of-the-art techniques for the evaluation of the effect of radiation on static random access memory (SRAM). We detailed irradiation test techniques and results from irradiation experiments with several types of particles. Two commercial SRAMs, in 90 and 65 nm technology nodes, were considered as case studies. Besides the basic static and dynamic test modes, advanced stimuli for the irradiation tests were introduced, as well as statistical post-processing techniques allowing for deeper analysis of the correlations between bit-flip cross-sections and design/architectural characteristics of the memory device. Further insight is provided on the response of irradiated stacked layer devices and on the use of characterized SRAM devices as particle detectors.

  5. SRAM As An Array Of Energetic-Ion Detectors

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Blaes, Brent R.; Lieneweg, Udo; Nixon, Robert H.

    1993-01-01

    Static random-access memory (SRAM) designed for use as array of energetic-ion detectors. Exploits well-known tendency of incident energetic ions to cause bit flips in cells of electronic memories. Design of ion-detector SRAM involves modifications of standard SRAM design to increase sensitivity to ions. Device fabricated by use of conventional complementary metal oxide/semiconductor (CMOS) processes. Potential uses include gas densimetry, position sensing, and measurement of cosmic-ray spectrum.

  6. Gas-Sensing Flip-Flop Circuits

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Blaes, Brent R.; Williams, Roger; Ryan, Margaret A.

    1995-01-01

    Gas-sensing integrated circuits consisting largely of modified static random-access memories (SRAMs) undergoing development, building on experience gained in use of modified SRAMs as radiation sensors. Each SRAM memory cell includes flip-flop circuit; sensors exploit metastable state that lies between two stable states (corresponding to binary logic states) of flip-flop circuit. Voltages of metastable states vary with exposures of gas-sensitive resistors.

  7. Lowering data retention voltage in static random access memory array by post fabrication self-improvement of cell stability by multiple stress application

    NASA Astrophysics Data System (ADS)

    Mizutani, Tomoko; Takeuchi, Kiyoshi; Saraya, Takuya; Kobayashi, Masaharu; Hiramoto, Toshiro

    2018-04-01

    We propose a new version of the post fabrication static random access memory (SRAM) self-improvement technique, which utilizes multiple stress application. It is demonstrated that, using a device matrix array (DMA) test element group (TEG) with intrinsic channel fully depleted (FD) silicon-on-thin-buried-oxide (SOTB) six-transistor (6T) SRAM cells fabricated by the 65 nm technology, the lowering of data retention voltage (DRV) is more effectively achieved than using the previously proposed single stress technique.

  8. Application of RADSAFE to Model Single Event Upset Response of a 0.25 micron CMOS SRAM

    NASA Technical Reports Server (NTRS)

    Warren, Kevin M.; Weller, Robert A.; Sierawski, Brian; Reed, Robert A.; Mendenhall, Marcus H.; Schrimpf, Ronald D.; Massengill, Lloyd; Porter, Mark; Wilkerson, Jeff; LaBel, Kenneth A.; hide

    2006-01-01

    The RADSAFE simulation framework is described and applied to model Single Event Upsets (SEU) in a 0.25 micron CMOS 4Mbit Static Random Access Memory (SRAM). For this circuit, the RADSAFE approach produces trends similar to those expected from classical models, but more closely represents the physical mechanisms responsible for SEU in the SRAM circuit.

  9. A highly symmetrical 10 transistor 2-read/write dual-port static random access memory bitcell design in 28 nm high-k/metal-gate planar bulk CMOS technology

    NASA Astrophysics Data System (ADS)

    Ishii, Yuichiro; Tanaka, Miki; Yabuuchi, Makoto; Sawada, Yohei; Tanaka, Shinji; Nii, Koji; Lu, Tien Yu; Huang, Chun Hsien; Sian Chen, Shou; Tse Kuo, Yu; Lung, Ching Cheng; Cheng, Osbert

    2018-04-01

    We propose a highly symmetrical 10 transistor (10T) 2-read/write (2RW) dual-port (DP) static random access memory (SRAM) bitcell in 28 nm high-k/metal-gate (HKMG) planar bulk CMOS. It replaces the conventional 8T 2RW DP SRAM bitcell without any area overhead. It significantly improves the robustness of process variations and an asymmetric issue between the true and bar bitline pairs. Measured data show that read current (I read) and read static noise margin (SNM) are respectively boosted by +20% and +15 mV by introducing the proposed bitcell with enlarged pull-down (PD) and pass-gate (PG) N-channel MOSs (NMOSs). The minimum operating voltage (V min) of the proposed 256 kbit 10T DP SRAM is 0.53 V in the TT process, 25 °C under the worst access condition with read/write disturbances, and improved by 90 mV (15%) compared with the conventional one.

  10. Total Ionizing Dose Influence on the Single-Event Upset Sensitivity of 130-nm PD SOI SRAMs

    NASA Astrophysics Data System (ADS)

    Zheng, Qiwen; Cui, Jiangwei; Liu, Mengxin; Zhou, Hang; Liu, Mohan; Wei, Ying; Su, Dandan; Ma, Teng; Lu, Wu; Yu, Xuefeng; Guo, Qi; He, Chengfa

    2017-07-01

    Effect of total ionizing dose (TID) on single-event upset (SEU) hardness of 130 nm partially depleted (PD) silicon-on-insulator (SOI) static random access memories (SRAMs) is investigated in this paper. The measurable synergistic effect of TID on SEU sensitivity of 130-nm PD SOI SRAM was observed in our experiment, even though that is far less than micrometer and submicrometer devices. Moreover, SEU cross section after TID irradiation has no dependence on the data pattern that was applied during TID exposure: SEU cross sections are characterized by TID data pattern and its complement data pattern are decreased consistently rather than a preferred state and a nonpreferred state as micrometer and sub-micrometer SRAMs. The memory cell test structure allowing direct measurement of static noise margin (SNM) under standby operation was designed using identical memory cell layout of SRAM. Direct measurement of the memory cell SNM shows that both data sides' SNM is decreased by TID, indicating that SEU cross section of 130-nm PD SOI SRAM will be increased by TID. And, the decreased SNM is caused by threshold shift in memory cell transistors induced by “radiation-induced narrow channel effect”.

  11. A Memory-Based Programmable Logic Device Using Look-Up Table Cascade with Synchronous Static Random Access Memories

    NASA Astrophysics Data System (ADS)

    Nakamura, Kazuyuki; Sasao, Tsutomu; Matsuura, Munehiro; Tanaka, Katsumasa; Yoshizumi, Kenichi; Nakahara, Hiroki; Iguchi, Yukihiro

    2006-04-01

    A large-scale memory-technology-based programmable logic device (PLD) using a look-up table (LUT) cascade is developed in the 0.35-μm standard complementary metal oxide semiconductor (CMOS) logic process. Eight 64 K-bit synchronous SRAMs are connected to form an LUT cascade with a few additional circuits. The features of the LUT cascade include: 1) a flexible cascade connection structure, 2) multi phase pseudo asynchronous operations with synchronous static random access memory (SRAM) cores, and 3) LUT-bypass redundancy. This chip operates at 33 MHz in 8-LUT cascades at 122 mW. Benchmark results show that it achieves a comparable performance to field programmable gate array (FPGAs).

  12. Comparison and statistical analysis of four write stability metrics in bulk CMOS static random access memory cells

    NASA Astrophysics Data System (ADS)

    Qiu, Hao; Mizutani, Tomoko; Saraya, Takuya; Hiramoto, Toshiro

    2015-04-01

    The commonly used four metrics for write stability were measured and compared based on the same set of 2048 (2k) six-transistor (6T) static random access memory (SRAM) cells by the 65 nm bulk technology. The preferred one should be effective for yield estimation and help predict edge of stability. Results have demonstrated that all metrics share the same worst SRAM cell. On the other hand, compared to butterfly curve with non-normality and write N-curve where no cell state flip happens, bit-line and word-line margins have good normality as well as almost perfect correlation. As a result, both bit line method and word line method prove themselves preferred write stability metrics.

  13. SRAM Based Re-programmable FPGA for Space Applications

    NASA Technical Reports Server (NTRS)

    Wang, J. J.; Sun, J. S.; Cronquist, B. E.; McCollum, J. L.; Speers, T. M.; Plants, W. C.; Katz, R. B.

    1999-01-01

    An SRAM (static random access memory)-based reprogrammable FPGA (field programmable gate array) is investigated for space applications. A new commercial prototype, named the RS family, was used as an example for the investigation. The device is fabricated in a 0.25 micrometers CMOS technology. Its architecture is reviewed to provide a better understanding of the impact of single event upset (SEU) on the device during operation. The SEU effect of different memories available on the device is evaluated. Heavy ion test data and SPICE simulations are used integrally to extract the threshold LET (linear energy transfer). Together with the saturation cross-section measurement from the layout, a rate prediction is done on each memory type. The SEU in the configuration SRAM is identified as the dominant failure mode and is discussed in detail. The single event transient error in combinational logic is also investigated and simulated by SPICE. SEU mitigation by hardening the memories and employing EDAC (error detection and correction) at the device level are presented. For the configuration SRAM (CSRAM) cell, the trade-off between resistor de-coupling and redundancy hardening techniques are investigated with interesting results. Preliminary heavy ion test data show no sign of SEL (single event latch-up). With regard to ionizing radiation effects, the increase in static leakage current (static I(sub CC)) measured indicates a device tolerance of approximately 50krad(Si).

  14. Single Event Upset in Static Random Access Memories in Atmospheric Neutron Environments

    NASA Astrophysics Data System (ADS)

    Arita, Yutaka; Takai, Mikio; Ogawa, Izumi; Kishimoto, Tadafumi

    2003-07-01

    Single-event upsets (SEUs) in a 0.4 μm 4 Mbit complementary metal oxide semiconductor (CMOS) static random access memory (SRAM) were investigated in various atmospheric neutron environments at sea level, at an altitude of 2612 m mountain, at an altitude of commercial airplane, and at an underground depth of 476 m. Neutron-induced SEUs increase with the increase in altitude. For a device with a borophosphosilicate glass (BPSG) film, SEU rates induced by thermal neutrons increase with the decrease in the cell charge of a memory cell. A thermal neutron-induced SEU is significant in SRAMs with a small cell charge. With the conditions of small cell charge, thermal neutron-induced SEUs account for 60% or more of the total neutron-induced SEUs. The SEU rate induced by atmospheric thermal neutrons can be estimated by an acceleration test using 252Cf.

  15. Leveraging pattern matching to solve SRAM verification challenges at advanced nodes

    NASA Astrophysics Data System (ADS)

    Kan, Huan; Huang, Lucas; Yang, Legender; Zou, Elaine; Wan, Qijian; Du, Chunshan; Hu, Xinyi; Liu, Zhengfang; Zhu, Yu; Zhang, Recoo; Huang, Elven; Muirhead, Jonathan

    2018-03-01

    Memory is a critical component in today's system-on-chip (SoC) designs. Static random-access memory (SRAM) blocks are assembled by combining intellectual property (IP) blocks that come from SRAM libraries developed and certified by the foundries for both functionality and a specific process node. Customers place these SRAM IP in their designs, adjusting as necessary to achieve DRC-clean results. However, any changes a customer makes to these SRAM IP during implementation, whether intentionally or in error, can impact yield and functionality. Physical verification of SRAM has always been a challenge, because these blocks usually contain smaller feature sizes and spacing constraints compared to traditional logic or other layout structures. At advanced nodes, critical dimension becomes smaller and smaller, until there is almost no opportunity to use optical proximity correction (OPC) and lithography to adjust the manufacturing process to mitigate the effects of any changes. The smaller process geometries, reduced supply voltages, increasing process variation, and manufacturing uncertainty mean accurate SRAM physical verification results are not only reaching new levels of difficulty, but also new levels of criticality for design success. In this paper, we explore the use of pattern matching to create an SRAM verification flow that provides both accurate, comprehensive coverage of the required checks and visual output to enable faster, more accurate error debugging. Our results indicate that pattern matching can enable foundries to improve SRAM manufacturing yield, while allowing designers to benefit from SRAM verification kits that can shorten the time to market.

  16. Mitigating Upsets in SRAM-Based FPGAs from the Xilinx Virtex 2 Family

    NASA Technical Reports Server (NTRS)

    Swift, G. M.; Yui, C. C.; Carmichael, C.; Koga, R.; George, J. S.

    2003-01-01

    Static random access memory (SRAM) upset rates in field programmable gate arrays (FPGAs) from the Xilinx Virtex 2 family have been tested for radiation effects on configuration memory, block RAM and the power-on-reset (POR) and SelectMAP single event functional interrupts (SEFIs). Dynamic testing has shown the effectiveness and value of Triple Module Redundancy (TMR) and partial reconfiguration when used in conjunction. Continuing dynamic testing for more complex designs and other Virtex 2 capabilities (i.e., I/O standards, digital clock managers (DCM), etc.) is scheduled.

  17. Single event effects and laser simulation studies

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Schwartz, H.; Mccarty, K.; Coss, J.; Barnes, C.

    1993-01-01

    The single event upset (SEU) linear energy transfer threshold (LETTH) of radiation hardened 64K Static Random Access Memories (SRAM's) was measured with a picosecond pulsed dye laser system. These results were compared with standard heavy ion accelerator (Brookhaven National Laboratory (BNL)) measurements of the same SRAM's. With heavy ions, the LETTH of the Honeywell HC6364 was 27 MeV-sq cm/mg at 125 C compared with a value of 24 MeV-sq cm/mg obtained with the laser. In the case of the second type of 64K SRAM, the IBM640lCRH no upsets were observed at 125 C with the highest LET ions used at BNL. In contrast, the pulsed dye laser tests indicated a value of 90 MeV-sq cm/mg at room temperature for the SEU-hardened IBM SRAM. No latchups or multiple SEU's were observed on any of the SRAM's even under worst case conditions. The results of this study suggest that the laser can be used as an inexpensive laboratory SEU prescreen tool in certain cases.

  18. New Mode For Single-Event Upsets

    NASA Technical Reports Server (NTRS)

    Zoutendyk, John A.; Smith, Lawrence S.; Soli, George A.; Lo, Roger Y.

    1988-01-01

    Report presents theory and experimental data regarding newly discovered mode for single-event upsets, (SEU's) in complementary metal-oxide/semiconductor, static random-access memories, CMOS SRAM's. SEU cross sections larger than those expected from previously known modes given rise to speculation regarding additional mode, and subsequent cross-section measurements appear to confirm speculation.

  19. Criticality of Low-Energy Protons in Single-Event Effects Testing of Highly-Scaled Technologies

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan Allen; Marshall, Paul W.; Rodbell, K. P.; Gordon, M. S.; LaBel, K. A.; Schwank, J. R.; Dodds, N. A.; Castaneda, C. M.; Berg, M. D.; Kim, H. S.; hide

    2014-01-01

    We report low-energy proton and alpha particle SEE data on a 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) static random access memory (SRAM) that demonstrates the criticality of understanding and using low-energy protons for SEE testing of highly-scaled technologies

  20. SEE induced in SRAM operating in a superconducting electron linear accelerator environment

    NASA Astrophysics Data System (ADS)

    Makowski, D.; Mukherjee, Bhaskar; Grecki, M.; Simrock, Stefan

    2005-02-01

    Strong fields of bremsstrahlung photons and photoneutrons are produced during the operation of high-energy electron linacs. Therefore, a mixed gamma and neutron radiation field dominates the accelerators environment. The gamma radiation induced Total Ionizing Dose (TID) effect manifests the long-term deterioration of the electronic devices operating in accelerator environment. On the other hand, the neutron radiation is responsible for Single Event Effects (SEE) and may cause a temporal loss of functionality of electronic systems. This phenomenon is known as Single Event Upset (SEU). The neutron dose (KERMA) was used to scale the neutron induced SEU in the SRAM chips. Hence, in order to estimate the neutron KERMA conversion factor for Silicon (Si), dedicated calibration experiments using an Americium-Beryllium (241Am/Be) neutron standard source was carried out. Single Event Upset (SEU) influences the short-term operation of SRAM compared to the gamma induced TID effect. We are at present investigating the feasibility of an SRAM based real-time beam-loss monitor for high-energy accelerators utilizing the SEU caused by fast neutrons. This paper highlights the effects of gamma and neutron radiations on Static Random Access Memory (SRAM), placed at selected locations near the Superconducting Linear Accelerator driving the Vacuum UV Free Electron Laser (VUVFEL) of DESY.

  1. Implications of scaling on static RAM bit cell stability and reliability

    NASA Astrophysics Data System (ADS)

    Coones, Mary Ann; Herr, Norm; Bormann, Al; Erington, Kent; Soorholtz, Vince; Sweeney, John; Phillips, Michael

    1993-01-01

    In order to lower manufacturing costs and increase performance, static random access memory (SRAM) bit cells are scaled progressively toward submicron geometries. The reliability of an SRAM is highly dependent on the bit cell stability. Smaller memory cells with less capacitance and restoring current make the array more susceptible to failures from defectivity, alpha hits, and other instabilities and leakage mechanisms. Improving long term reliability while migrating to higher density devices makes the task of building in and improving reliability increasingly difficult. Reliability requirements for high density SRAMs are very demanding with failure rates of less than 100 failures per billion device hours (100 FITs) being a common criteria. Design techniques for increasing bit cell stability and manufacturability must be implemented in order to build in this level of reliability. Several types of analyses are performed to benchmark the performance of the SRAM device. Examples of these analysis techniques which are presented here include DC parametric measurements of test structures, functional bit mapping of the circuit used to characterize the entire distribution of bits, electrical microprobing of weak and/or failing bits, and system and accelerated soft error rate measurements. These tests allow process and design improvements to be evaluated prior to implementation on the final product. These results are used to provide comprehensive bit cell characterization which can then be compared to device models and adjusted accordingly to provide optimized cell stability versus cell size for a particular technology. The result is designed in reliability which can be accomplished during the early stages of product development.

  2. An SEU resistant 256K SOI SRAM

    NASA Astrophysics Data System (ADS)

    Hite, L. R.; Lu, H.; Houston, T. W.; Hurta, D. S.; Bailey, W. E.

    1992-12-01

    A novel SEU (single event upset) resistant SRAM (static random access memory) cell has been implemented in a 256K SOI (silicon on insulator) SRAM that has attractive performance characteristics over the military temperature range of -55 to +125 C. These include worst-case access time of 40 ns with an active power of only 150 mW at 25 MHz, and a worst-case minimum WRITE pulse width of 20 ns. Measured SEU performance gives an Adams 10 percent worst-case error rate of 3.4 x 10 exp -11 errors/bit-day using the CRUP code with a conservative first-upset LET threshold. Modeling does show that higher bipolar gain than that measured on a sample from the SRAM lot would produce a lower error rate. Measurements show the worst-case supply voltage for SEU to be 5.5 V. Analysis has shown this to be primarily caused by the drain voltage dependence of the beta of the SOI parasitic bipolar transistor. Based on this, SEU experiments with SOI devices should include measurements as a function of supply voltage, rather than the traditional 4.5 V, to determine the worst-case condition.

  3. Analysis of SEL on Commercial SRAM Memories and Mixed-Field Characterization of a Latchup Detection Circuit for LEO Space Applications

    NASA Astrophysics Data System (ADS)

    Secondo, R.; Alía, R. Garcia; Peronnard, P.; Brugger, M.; Masi, A.; Danzeca, S.; Merlenghi, A.; Vaillé, J.-R.; Dusseau, L.

    2017-08-01

    A single event latchup (SEL) experiment based on commercial static random access memory (SRAM) memories has recently been proposed in the framework of the European Organization for Nuclear Research (CERN) Latchup Experiment and Student Satellite nanosatellite low Earth orbit (LEO) space mission. SEL characterization of three commercial SRAM memories has been carried out at the Paul Scherrer Institut (PSI) facility, using monoenergetic focused proton beams and different acquisition setups. The best target candidate was selected and a circuit for SEL detection has been proposed and tested at CERN, in the CERN High Energy AcceleRator Mixed-field facility (CHARM). Experimental results were carried out at test locations representative of the LEO environment, thus providing a full characterization of the SRAM cross sections, together with the analysis of the single-event effect and total ionizing dose of the latchup detection circuit in relation to the particle spectra expected during mission. The setups used for SEL monitoring are described, and details of the proposed circuit components and topology are presented. Experimental results obtained both at PSI and at CHARM facilities are discussed.

  4. Low power test architecture for dynamic read destructive fault detection in SRAM

    NASA Astrophysics Data System (ADS)

    Takher, Vikram Singh; Choudhary, Rahul Raj

    2018-06-01

    Dynamic Read Destructive Fault (dRDF) is the outcome of resistive open defects in the core cells of static random-access memories (SRAMs). The sensitisation of dRDF involves either performing multiple read operations or creation of number of read equivalent stress (RES), on the core cell under test. Though the creation of RES is preferred over the performing multiple read operation on the core cell, cell dissipates more power during RES than during the read or write operation. This paper focuses on the reduction in power dissipation by optimisation of number of RESs, which are required to sensitise the dRDF during test mode of operation of SRAM. The novel pre-charge architecture has been proposed in order to reduce the power dissipation by limiting the number of RESs to an optimised number of two. The proposed low power architecture is simulated and analysed which shows reduction in power dissipation by reducing the number of RESs up to 18.18%.

  5. Using Cf-252 for single event upset testing

    NASA Astrophysics Data System (ADS)

    Howard, J. W.; Chen, R.; Block, R. C.; Becker, M.; Costantine, A. G.; Smith, L. S.; Soli, G. A.; Stauber, M. C.

    An improved system using Cf-252 and associated nuclear instrumentation has been used to determine single event upset (SEU) cross section versus linear energy transfer (LET) curve for several static random access memory (SRAM) devices. Through the use of a thin-film scintillator, providing energy information on each fission fragment, individual SEU's and ion energy can be associated to calculate the cross section curves. Results are presented from tests of several SRAM's over the 17-43 MeV-cm squared/mg LET range. Values obtained for SEU cross sections and LET thresholds are in good agreement with the results from accelerator testing. The equipment is described, the theory of thin-film scintillation detector response is summarized, experimental procedures are reviewed, and the test results are discussed.

  6. Single event upset in avionics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taber, A.; Normand, E.

    1993-04-01

    Data from military/experimental flights and laboratory testing indicate that typical non radiation-hardened 64K and 256K static random access memories (SRAMs) can experience a significant soft upset rate at aircraft altitudes due to energetic neutrons created by cosmic ray interactions in the atmosphere. It is suggested that error detection and correction (EDAC) circuitry be considered for all avionics designs containing large amounts of semi-conductor memory.

  7. Empirical modeling of Single-Event Upset (SEU) in NMOS depletion-mode-load static RAM (SRAM) chips

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.; Smith, L. S.; Soli, G. A.; Smith, S. L.; Atwood, G. E.

    1986-01-01

    A detailed experimental investigation of single-event upset (SEU) in static RAM (SRAM) chips fabricated using a family of high-performance NMOS (HMOS) depletion-mode-load process technologies, has been done. Empirical SEU models have been developed with the aid of heavy-ion data obtained with a three-stage tandem van de Graaff accelerator. The results of this work demonstrate a method by which SEU may be empirically modeled in NMOS integrated circuits.

  8. Single-event effects in avionics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Normand, E.

    1996-04-01

    The occurrence of single-event upset (SEU) in aircraft electronics has evolved from a series of interesting anecdotal incidents to accepted fact. A study completed in 1992 demonstrated that SEU`s are real, that the measured in-flight rates correlate with the atmospheric neutron flux, and that the rates can be calculated using laboratory SEU data. Once avionics DEU was shown to be an actual effect, it had to be dealt with in avionics designs. The major concern is in random access memories (RAM`s), both static (SRAM`s) and dynamic (DRAM`s), because these microelectronic devices contain the largest number of bits, but other parts,more » such as microprocessors, are also potentially susceptible to upset. In addition, other single-event effects (SEE`s), specifically latch-up and burnout, can also be induced by atmospheric neutrons.« less

  9. Design and Implementation of an MC68020-Based Educational Computer Board

    DTIC Science & Technology

    1989-12-01

    device and the other for a Macintosh personal computer. A stored program can be installed in 8K bytes Programmable Read Only Memory (PROM) to initialize...MHz. It includes four * Static Random Access Memory (SRAM) chips which provide a storage of 32K bytes. Two Programmable Array Logic (PAL) chips...device and the other for a Macintosh personal computer. A stored program can be installed in 8K bytes Programmable Read Only Memory (PROM) to

  10. Validation techniques for fault emulation of SRAM-based FPGAs

    DOE PAGES

    Quinn, Heather; Wirthlin, Michael

    2015-08-07

    A variety of fault emulation systems have been created to study the effect of single-event effects (SEEs) in static random access memory (SRAM) based field-programmable gate arrays (FPGAs). These systems are useful for augmenting radiation-hardness assurance (RHA) methodologies for verifying the effectiveness for mitigation techniques; understanding error signatures and failure modes in FPGAs; and failure rate estimation. For radiation effects researchers, it is important that these systems properly emulate how SEEs manifest in FPGAs. If the fault emulation systems does not mimic the radiation environment, the system will generate erroneous data and incorrect predictions of behavior of the FPGA inmore » a radiation environment. Validation determines whether the emulated faults are reasonable analogs to the radiation-induced faults. In this study we present methods for validating fault emulation systems and provide several examples of validated FPGA fault emulation systems.« less

  11. Static Noise Margin Enhancement by Flex-Pass-Gate SRAM

    NASA Astrophysics Data System (ADS)

    O'Uchi, Shin-Ichi; Masahara, Meishoku; Sakamoto, Kunihiro; Endo, Kazuhiko; Liu, Yungxun; Matsukawa, Takashi; Sekigawa, Toshihiro; Koike, Hanpei; Suzuki, Eiichi

    A Flex-Pass-Gate SRAM, i.e. a fin-type-field-effect-transistor- (FinFET-) based SRAM, is proposed to enhance noise margin during both read and write operations. In its cell, the flip-flop is composed of usual three-terminal- (3T-) FinFETs while pass gates are composed of four-terminal- (4T-) FinFETs. The 4T-FinFETs enable to adopt a dynamic threshold-voltage control in the pass gates. During a write operation, the threshold voltage of the pass gates is lowered to enhance the writing speed and stability. During the read operation, on the other hand, the threshold voltage is raised to enhance the static noise margin. An asymmetric-oxide 4T-FinFET is helpful to manage the leakage current through the pass gate. In this paper, a design strategy of the pass gate with an asymmetric gate oxide is considered, and a TCAD-based Monte Carlo simulation reveals that the Flex-Pass-Gate SRAM based on that design strategy is expected to be effective in half-pitch 32-nm technology for low-standby-power (LSTP) applications, even taking into account the variability in the device performance.

  12. Design and measurement of fully digital ternary content addressable memory using ratioless static random access memory cells and hierarchical-AND matching comparator

    NASA Astrophysics Data System (ADS)

    Nishikata, Daisuke; Ali, Mohammad Alimudin Bin Mohd; Hosoda, Kento; Matsumoto, Hiroshi; Nakamura, Kazuyuki

    2018-04-01

    A 36-bit × 32-entry fully digital ternary content addressable memory (TCAM) using the ratioless static random access memory (RL-SRAM) technology and fully complementary hierarchical-AND matching comparators (HAMCs) was developed. Since its fully complementary and digital operation enables the effect of device variabilities to be avoided, it can operate with a quite low supply voltage. A test chip incorporating a conventional TCAM and a proposed 24-transistor ratioless TCAM (RL-TCAM) cells and HAMCs was developed using a 0.18 µm CMOS process. The minimum operating voltage of 0.25 V of the developed RL-TCAM, which is less than half of that of the conventional TCAM, was measured via the conventional CMOS push–pull output buffers with the level-shifting and flipping technique using optimized pull-up voltage and resistors.

  13. Single Event Upset Rate Estimates for a 16-K CMOS (Complementary Metal Oxide Semiconductor) SRAM (Static Random Access Memory).

    DTIC Science & Technology

    1986-09-30

    4 . ~**..ft.. ft . - - - ft SI TABLES 9 I. SA32~40 Single Event Upset Test, 1140-MeV Krypton, 9/l8/8~4. . .. .. .. .. .. .16 II. CRUP Simulation...cosmic ray interaction analysis described in the remainder of this report were calculated using the CRUP computer code 3 modified for funneling. The... CRUP code requires, as inputs, the size of a depletion region specified as a retangular parallel piped with dimensions a 9 b S c, the effective funnel

  14. Mitigating Upsets in SRAM Based FPGAs from the Xilinix Virtex 2 Family

    NASA Technical Reports Server (NTRS)

    Swift, Gary M.; Yui, Candice C.; Carmichael, Carl; Koga, Rocky; George, Jeffrey S.

    2003-01-01

    This slide presentation reviews the single event upset static testing of the Virtex II field programmable gate arrays (FPGA) that were tested in protons and heavy-ions. The test designs and static and dynamic test results are reviewed.

  15. A Test Methodology for Determining Space-Readiness of Xilinx SRAM-Based FPGA Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, Heather M; Graham, Paul S; Morgan, Keith S

    2008-01-01

    Using reconfigurable, static random-access memory (SRAM) based field-programmable gate arrays (FPGAs) for space-based computation has been an exciting area of research for the past decade. Since both the circuit and the circuit's state is stored in radiation-tolerant memory, both could be alterd by the harsh space radiation environment. Both the circuit and the circuit's state can be prote cted by triple-moduler redundancy (TMR), but applying TMR to FPGA user designs is often an error-prone process. Faulty application of TMR could cause the FPGA user circuit to output incorrect data. This paper will describe a three-tiered methodology for testing FPGA usermore » designs for space-readiness. We will describe the standard approach to testing FPGA user designs using a particle accelerator, as well as two methods using fault injection and a modeling tool. While accelerator testing is the current 'gold standard' for pre-launch testing, we believe the use of fault injection and modeling tools allows for easy, cheap and uniform access for discovering errors early in the design process.« less

  16. A novel ternary content addressable memory design based on resistive random access memory with high intensity and low search energy

    NASA Astrophysics Data System (ADS)

    Han, Runze; Shen, Wensheng; Huang, Peng; Zhou, Zheng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng

    2018-04-01

    A novel ternary content addressable memory (TCAM) design based on resistive random access memory (RRAM) is presented. Each TCAM cell consists of two parallel RRAM to both store and search for ternary data. The cell size of the proposed design is 8F2, enable a ∼60× cell area reduction compared with the conventional static random access memory (SRAM) based implementation. Simulation results also show that the search delay and energy consumption of the proposed design at the 64-bit word search are 2 ps and 0.18 fJ/bit/search respectively at 22 nm technology node, where significant improvements are achieved compared to previous works. The desired characteristics of RRAM for implementation of the high performance TCAM search chip are also discussed.

  17. Statistical Anomalies of Bitflips in SRAMs to Discriminate SBUs From MCUs

    NASA Astrophysics Data System (ADS)

    Clemente, Juan Antonio; Franco, Francisco J.; Villa, Francesca; Baylac, Maud; Rey, Solenne; Mecha, Hortensia; Agapito, Juan A.; Puchner, Helmut; Hubert, Guillaume; Velazco, Raoul

    2016-08-01

    Recently, the occurrence of multiple events in static tests has been investigated by checking the statistical distribution of the difference between the addresses of the words containing bitflips. That method has been successfully applied to Field Programmable Gate Arrays (FPGAs) and the original authors indicate that it is also valid for SRAMs. This paper presents a modified methodology that is based on checking the XORed addresses with bitflips, rather than on the difference. Irradiation tests on CMOS 130 & 90 nm SRAMs with 14-MeV neutrons have been performed to validate this methodology. Results in high-altitude environments are also presented and cross-checked with theoretical predictions. In addition, this methodology has also been used to detect modifications in the organization of said memories. Theoretical predictions have been validated with actual data provided by the manufacturer.

  18. Power reduction by power gating in differential pair type spin-transfer-torque magnetic random access memories for low-power nonvolatile cache memories

    NASA Astrophysics Data System (ADS)

    Ohsawa, Takashi; Ikeda, Shoji; Hanyu, Takahiro; Ohno, Hideo; Endoh, Tetsuo

    2014-01-01

    Array operation currents in spin-transfer-torque magnetic random access memories (STT-MRAMs) that use four differential pair type magnetic tunnel junction (MTJ)-based memory cells (4T2MTJ, two 6T2MTJs and 8T2MTJ) are simulated and compared with that in SRAM. With L3 cache applications in mind, it is assumed that the memories are composed of 32 Mbyte capacity to be accessed in 64 byte in parallel. All the STT-MRAMs except for the 8T2MTJ one are designed with 32 bit fine-grained power gating scheme applied to eliminate static currents in the memory cells that are not accessed. The 8T2MTJ STT-MRAM, the cell’s design concept being not suitable for the fine-grained power gating, loads and saves 32 Mbyte data in 64 Mbyte unit per 1 Mbit sub-array in 2 × 103 cycles. It is shown that the array operation current of the 4T2MTJ STT-MRAM is 70 mA averaged in 15 ns write cycles at Vdd = 0.9 V. This is the smallest among the STT-MRAMs, about the half of the low standby power (LSTP) SRAM whose array operation current is totally dominated by the cells’ subthreshold leakage.

  19. Designing high-performance cost-efficient embedded SRAM in deep-submicron era

    NASA Astrophysics Data System (ADS)

    Kobozeva, Olga; Venkatraman, Ramnath; Castagnetti, Ruggero; Duan, Franklin; Kamath, Arvind; Ramesh, Shiva

    2004-05-01

    We have previously presented the smallest and fastest 6 Transistor (6T)-Static Random Access Memories (SRAM) bitcells for System-on-Chip (SoC) high-density (HD) memories in 0.18 μm and 0.13 μm technologies. Our 1.87 μm2 6TSRAM bitcell with cell current of 47 μA and industry lowest soft error rate (0.35 FIT/Kbit) is used to assemble memory blocks embedded into SoC designs in 0.13 μm process technology. Excellent performance is achieved at a low overall cost, as our bitcells are based on standard CMOS process and demonstrate high yields in manufacturing. This paper discusses our methodology of embedded SRAM bitcell design. The key aspects of our approach are: 1) judicious selection of tightest achievable yet manufacturable design rules to build the cell; 2) compatibility with standard Optical Proximity Correction (OPC) flow; 3) use of parametric testing and yield analysis to achieve excellent design robustness and manufacturability. A thorough understanding of process limitations, particularly those related to photolithography was critical to the successful design and manufacturing of our aggressive, yet robust SRAM bitcells. The patterning of critical layers, such as diffusion, poly gate, contact and metal 1 has profound implications on functionality, electrical performance and manufacturability of memories. We have conducted the development of SRAM bitcells using two approaches for OPC: a) "manual" OPC, wherein the bitcell layout of each of the critical layers is achieved using iterative improvement of layout & aerial image simulation and b) automated OPC-compatible design, wherein the drawn bitcell layout becomes a subject of a full chip OPC. While manual-OPC remains a popular option, automated OPC-compatible bitcell design is very attractive, as it does not require additional development costs to achieve fab-to-fab portability. In both cases we have obtained good results with respect to patterning of the critical layers, electrical performance of the bitcell and memory yields. A critical part of our memory technology development effort is the design of memory-specific test structures that are used for: a) verifying electrical characteristics of SRAM transistors and b) confirming the robustness of the design rules used within the SRAM cell. In addition to electrical test structures, we have a fully functional SRAM test chip called RAMPCM that is composed of sub-blocks each designated to evaluate the robustness of a specific critical design rule used within the bitcells. The results from the electrical testing and RAMPCM yield analysis are used to identify opportunities for improvements in the layout design. The paper will also suggest some techniques that can result in more design friendly OPC solutions. Our work indicates that future IC designs can benefit from an automated OPC tool that can intelligently handle layout modifications according to design priorities.

  20. Process monitoring using automatic physical measurement based on electrical and physical variability analysis

    NASA Astrophysics Data System (ADS)

    Shauly, Eitan N.; Levi, Shimon; Schwarzband, Ishai; Adan, Ofer; Latinsky, Sergey

    2015-04-01

    A fully automated silicon-based methodology for systematic analysis of electrical features is shown. The system was developed for process monitoring and electrical variability reduction. A mapping step was created by dedicated structures such as static-random-access-memory (SRAM) array or standard cell library, or by using a simple design rule checking run-set. The resulting database was then used as an input for choosing locations for critical dimension scanning electron microscope images and for specific layout parameter extraction then was input to SPICE compact modeling simulation. Based on the experimental data, we identified two items that must be checked and monitored using the method described here: transistor's sensitivity to the distance between the poly end cap and edge of active area (AA) due to AA rounding, and SRAM leakage due to a too close N-well to P-well. Based on this example, for process monitoring and variability analyses, we extensively used this method to analyze transistor gates having different shapes. In addition, analysis for a large area of high density standard cell library was done. Another set of monitoring focused on a high density SRAM array is also presented. These examples provided information on the poly and AA layers, using transistor parameters such as leakage current and drive current. We successfully define "robust" and "less-robust" transistor configurations included in the library and identified unsymmetrical transistors in the SRAM bit-cells. These data were compared to data extracted from the same devices at the end of the line. Another set of analyses was done to samples after Cu M1 etch. Process monitoring information on M1 enclosed contact was extracted based on contact resistance as a feedback. Guidelines for the optimal M1 space for different layout configurations were also extracted. All these data showed the successful in-field implementation of our methodology as a useful process monitoring method.

  1. Analysis of TID process, geometry, and bias condition dependence in 14-nm FinFETs and implications for RF and SRAM performance

    DOE PAGES

    King, M. P.; Wu, X.; Eller, Manfred; ...

    2016-12-07

    Here, total ionizing dose results are provided, showing the effects of different threshold adjust implant processes and irradiation bias conditions of 14-nm FinFETs. Minimal radiation-induced threshold voltage shift across a variety of transistor types is observed. Off-state leakage current of nMOSFET transistors exhibits a strong gate bias dependence, indicating electrostatic gate control of the sub-fin region and the corresponding parasitic conduction path are the largest concern for radiation hardness in FinFET technology. The high-Vth transistors exhibit the best irradiation performance across all bias conditions, showing a reasonably small change in off-state leakage current and Vth, while the low-Vth transistors exhibitmore » a larger change in off-state leakage current. The “worst-case” bias condition during irradiation for both pull-down and pass-gate nMOSFETs in static random access memory is determined to be the on-state (Vgs = Vdd). We find the nMOSFET pull-down and pass-gate transistors of the SRAM bit-cell show less radiation-induced degradation due to transistor geometry and channel doping differences than the low-Vth transistor. Near-threshold operation is presented as a methodology for reducing radiation-induced increases in off-state device leakage current. In a 14-nm FinFET technology, the modeling indicates devices with high channel stop doping show the most robust response to TID allowing stable operation of ring oscillators and the SRAM bit-cell with minimal shift in critical operating characteristics.« less

  2. Analysis of TID process, geometry, and bias condition dependence in 14-nm FinFETs and implications for RF and SRAM performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, M. P.; Wu, X.; Eller, Manfred

    Here, total ionizing dose results are provided, showing the effects of different threshold adjust implant processes and irradiation bias conditions of 14-nm FinFETs. Minimal radiation-induced threshold voltage shift across a variety of transistor types is observed. Off-state leakage current of nMOSFET transistors exhibits a strong gate bias dependence, indicating electrostatic gate control of the sub-fin region and the corresponding parasitic conduction path are the largest concern for radiation hardness in FinFET technology. The high-Vth transistors exhibit the best irradiation performance across all bias conditions, showing a reasonably small change in off-state leakage current and Vth, while the low-Vth transistors exhibitmore » a larger change in off-state leakage current. The “worst-case” bias condition during irradiation for both pull-down and pass-gate nMOSFETs in static random access memory is determined to be the on-state (Vgs = Vdd). We find the nMOSFET pull-down and pass-gate transistors of the SRAM bit-cell show less radiation-induced degradation due to transistor geometry and channel doping differences than the low-Vth transistor. Near-threshold operation is presented as a methodology for reducing radiation-induced increases in off-state device leakage current. In a 14-nm FinFET technology, the modeling indicates devices with high channel stop doping show the most robust response to TID allowing stable operation of ring oscillators and the SRAM bit-cell with minimal shift in critical operating characteristics.« less

  3. Optimal design of leak-proof SRAM cell using MCDM method

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Kang, Sung-Mo

    2003-04-01

    As deep-submicron CMOS technology advances, on-chip cache has become a bottleneck on microprocessor's performance. Meanwhile, it also occupies a big percentage of processor area and consumes large power. Speed, power and area of SRAM are mutually contradicting, and not easy to be met simultaneously. Many existent leakage suppression techniques have been proposed, but they limit the circuit's performance. We apply a Multi-Criteria Decision Making strategy to perform a minimum delay-power-area optimization on SRAM circuit under some certain constraints. Based on an integrated device and circuit-level approach, we search for a process that yields a targeted composite performance. In consideration of the huge amount of simulation workload involved in the optimal design-seeking process, most of this process is automated to facilitate our goal-pursuant. With varying emphasis put on delay, power or area, different optimal SRAM designs are derived and a gate-oxide thickness scaling limit is projected. The result seems to indicate that a better composite performance could be achieved under a thinner oxide thickness. Under the derived optimal oxide thickness, the static leakage power consumption contributes less than 1% in the total power dissipation.

  4. Solution-Processed Carbon Nanotube True Random Number Generator.

    PubMed

    Gaviria Rojas, William A; McMorrow, Julian J; Geier, Michael L; Tang, Qianying; Kim, Chris H; Marks, Tobin J; Hersam, Mark C

    2017-08-09

    With the growing adoption of interconnected electronic devices in consumer and industrial applications, there is an increasing demand for robust security protocols when transmitting and receiving sensitive data. Toward this end, hardware true random number generators (TRNGs), commonly used to create encryption keys, offer significant advantages over software pseudorandom number generators. However, the vast network of devices and sensors envisioned for the "Internet of Things" will require small, low-cost, and mechanically flexible TRNGs with low computational complexity. These rigorous constraints position solution-processed semiconducting single-walled carbon nanotubes (SWCNTs) as leading candidates for next-generation security devices. Here, we demonstrate the first TRNG using static random access memory (SRAM) cells based on solution-processed SWCNTs that digitize thermal noise to generate random bits. This bit generation strategy can be readily implemented in hardware with minimal transistor and computational overhead, resulting in an output stream that passes standardized statistical tests for randomness. By using solution-processed semiconducting SWCNTs in a low-power, complementary architecture to achieve TRNG, we demonstrate a promising approach for improving the security of printable and flexible electronics.

  5. Critical issues regarding SEU in avionics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Normand, E.; McNulty, P.J.

    1993-01-01

    The energetic neutrons in the atmosphere cause microelectronics in avionic system to malfunction through a mechanism called single-event upsets (SEUs), and single-event latchup is a potential threat. Data from military and experimental flights as well as laboratory testing indicate that typical non-radiation-hardened 64K and 256K static random access memories (SRAMs) can experience a significant SEU rate at aircraft altitudes. Microelectronics in avionics systems have been demonstrated to be susceptible to SEU. Of all device types, RAMs are the most sensitive because they have the largest number of bits on a chip (e.g., an SRAM may have from 64K to 1Mmore » bits, a microprocessor 3K to 10K bits, and a logic device like an analog-to-digital converter, 12 bits). Avionics designers will need to take this susceptibility into account in current and future designs. A number of techniques are available for dealing with SEU: EDAC, redundancy, use of SEU-hard parts, reset and/or watchdog timer capability, etc. Specifications should be developed to guide avionics vendors in the analysis, prevention, and verification of neutron-induced SEU. Areas for additional research include better definition of the atmospheric neutrons and protons, development of better calculational models (e.g., those used for protons[sup 11]), and better characterization of neutron-induced latchup.« less

  6. Analysis of power gating in different hierarchical levels of 2MB cache, considering variation

    NASA Astrophysics Data System (ADS)

    Jafari, Mohsen; Imani, Mohsen; Fathipour, Morteza

    2015-09-01

    This article reintroduces power gating technique in different hierarchical levels of static random-access memory (SRAM) design including cell, row, bank and entire cache memory in 16 nm Fin field effect transistor. Different structures of SRAM cells such as 6T, 8T, 9T and 10T are used in design of 2MB cache memory. The power reduction of the entire cache memory employing cell-level optimisation is 99.7% with the expense of area and other stability overheads. The power saving of the cell-level optimisation is 3× (1.2×) higher than power gating in cache (bank) level due to its superior selectivity. The access delay times are allowed to increase by 4% in the same energy delay product to achieve the best power reduction for each supply voltages and optimisation levels. The results show the row-level power gating is the best for optimising the power of the entire cache with lowest drawbacks. Comparisons of cells show that the cells whose bodies have higher power consumption are the best candidates for power gating technique in row-level optimisation. The technique has the lowest percentage of saving in minimum energy point (MEP) of the design. The power gating also improves the variation of power in all structures by at least 70%.

  7. Comparison of work function variation between FinFET and 3D stacked nanowire FET devices for 6-T SRAM reliability

    NASA Astrophysics Data System (ADS)

    Ko, Kyul; Son, Dokyun; Kang, Myounggon; Shin, Hyungcheol

    2018-02-01

    In this work, work-function variation (WFV) on 5 nm node gate-all-around (GAA) silicon 3D stacked nanowire FET (NWFET) and FinFET devices are studied for 6-T SRAM cells through 3D technology computer-aided design (TCAD) simulation. The NWFET devices have strong immunity for the unprecedented short channel effects (SCEs) compared with the FinFET devices owing to increased gate controllability. However, due to the narrow gate area, the single NWFET is more vulnerable to WFV effects than FinFET devices. Our results show that the WFV effects on single NWFETs are larger than the FinFETs by 45-55%. In the case of standard SRAM bit cells (high density: 111 bit cell), the variation of read stability (read static noise margin) on single NWFETs are larger than the FinFETs by 65-75%. Therefore, to improve the performance and having immunity to WFV effects, it is important to analyze the degree of variability in 3D stacked device architectures without area penalty. Moreover, we investigated the WFV effects for an accurate guideline with regard to grain size (GS) and channel area of 3D stacked NWFET in 6-T SRAM bit cells.

  8. Criticality of Low-Energy Protons in Single-Event Effects Testing of Highly-Scaled Technologies

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Marshall, Paul W.; Rodbell, Kenneth P.; Gordon, Michael S.; LaBel, Kenneth A.; Schwank, James R.; Dodds, Nathaniel A.; Castaneda, Carlos M.; Berg, Melanie D.; Kim, Hak S.; hide

    2014-01-01

    We report low-energy proton and low-energy alpha particle single-event effects (SEE) data on a 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) latches and static random access memory (SRAM) that demonstrates the criticality of using low-energy protons for SEE testing of highly-scaled technologies. Low-energy protons produced a significantly higher fraction of multi-bit upsets relative to single-bit upsets when compared to similar alpha particle data. This difference highlights the importance of performing hardness assurance testing with protons that include energy distribution components below 2 megaelectron-volt. The importance of low-energy protons to system-level single-event performance is based on the technology under investigation as well as the target radiation environment.

  9. A new method for using Cf-252 in SEU testing

    NASA Astrophysics Data System (ADS)

    Costantine, A.; Howard, J. W.; Becker, M.; Block, R. C.; Smith, L. S.; Soli, G. A.; Stauber, M. C.

    1990-12-01

    A system using Cf-252 and associated nuclear instrumentation has determined the single-event upset (SEU) cross section versus linear energy transfer (LET) curve for several 2K x 8 static random access memories (SRAMs). The Cf-252 fission fragments pass through a thin-film organic scintillator detector (TFD) on the way to the device under test (DUT). The TFD provides energy information for each transiting fragment. Data analysis provides the energy of the individual ion responsible for each SEU; thus, separate upset cross sections can be developed for different energy and mass regions of the californium spectrum. This californium-based device is quite small and fits onto a bench top. It provides a convenient and inexpensive supplement or alternative to accelerator and high-altitude/space SEU testing.

  10. A new method for using Cf-252 in SEU testing

    NASA Technical Reports Server (NTRS)

    Costantine, A.; Howard, J. W.; Becker, M.; Block, R. C.; Smith, L. S.; Soli, G. A.; Stauber, M. C.

    1990-01-01

    A system using Cf-252 and associated nuclear instrumentation has determined the single-event upset (SEU) cross section versus linear energy transfer (LET) curve for several 2K x 8 static random access memories (SRAMs). The Cf-252 fission fragments pass through a thin-film organic scintillator detector (TFD) on the way to the device under test (DUT). The TFD provides energy information for each transiting fragment. Data analysis provides the energy of the individual ion responsible for each SEU; thus, separate upset cross sections can be developed for different energy and mass regions of the californium spectrum. This californium-based device is quite small and fits onto a bench top. It provides a convenient and inexpensive supplement or alternative to accelerator and high-altitude/space SEU testing.

  11. Tuning the Electrical Memory Behavior from Nonvolatile to Volatile in Functional Copolyimides Bearing Varied Fluorene and Pyrene Moieties

    NASA Astrophysics Data System (ADS)

    Jia, Nanfang; Qi, Shengli; Tian, Guofeng; Wang, Xiaodong; Wu, Dezhen

    2017-04-01

    For producing polymer based electronics with good memory behavior, a series of functional copolyimides were designed and synthesized in this work by copolymerizing 3,3',4,4'-diphenylsulfonetetracarboxylic dianhydride (DSDA) with (9,9'-bis(4-aminophenyl)fluorene) (BAPF) and N, N-bis(4-aminophenyl) aminopyrene (DAPAP) diamines. The synthesized copolyimides DSDA/(DAPAP/BAPF) were denoted as coPI-DAPAP x ( x = 100, 50, 20, 10, 5, 1, 0), where x% represents the molar fraction of the DAPAP unit in the diamines. Characterization results indicate that the coPI-DAPAP x exhibits tunable electrical switching behaviors from write once read many times (WORM, nonvolatile, coPI-DAPAP100, coPI-DAPAP50, coPI-DAPAP20, coPI-DAPAP10) to the static random access memory (SRAM, volatile, coPI-DAPAP5, coPI-DAPAP1) with the variation of the DAPAP content. Optical and electrochemical characterization show gradually decreasing highest occupied molecular orbital levels and enlarged energy gap with the decrease of the DAPAP moiety, suggesting decreasing charge-transfer effect in the copolyimides, which can account for the observed WORM-SRAM memory conversion. Meanwhile, the charge transfer process was elucidated by quantum chemical calculation at B3LYP/6-31G(d) theory level. This work shows the effect of electron donor content on the memory behavior of polymer electronic materials.

  12. The effect of patterning options on embedded memory cells in logic technologies at iN10 and iN7

    NASA Astrophysics Data System (ADS)

    Appeltans, Raf; Weckx, Pieter; Raghavan, Praveen; Kim, Ryoung-Han; Kar, Gouri Sankar; Furnémont, Arnaud; Van der Perre, Liesbet; Dehaene, Wim

    2017-03-01

    Static Random Access Memory (SRAM) cells are used together with logic standard cells as the benchmark to develop the process flow for new logic technologies. In order to achieve successful integration of Spin-Transfer Torque Magnetic Random Access Memory (STT-MRAM) as area efficient higher level embedded cache, it also needs to be included as a benchmark. The simple cell structure of STT-MRAM brings extra patterning challenges to achieve high density. The two memory types are compared in terms of minimum area and critical design rules in both the iN10 and iN7 node, with an extra focus on patterning options in iN7. Both the use of Self-Aligned Quadruple Patterning (SAQP) mandrel and spacer engineering, as well as multi-level via's are explored. These patterning options result in large area gains for the STT-MRAM cell and moreover determine which cell variant is the smallest.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, Heather; Wirthlin, Michael

    A variety of fault emulation systems have been created to study the effect of single-event effects (SEEs) in static random access memory (SRAM) based field-programmable gate arrays (FPGAs). These systems are useful for augmenting radiation-hardness assurance (RHA) methodologies for verifying the effectiveness for mitigation techniques; understanding error signatures and failure modes in FPGAs; and failure rate estimation. For radiation effects researchers, it is important that these systems properly emulate how SEEs manifest in FPGAs. If the fault emulation systems does not mimic the radiation environment, the system will generate erroneous data and incorrect predictions of behavior of the FPGA inmore » a radiation environment. Validation determines whether the emulated faults are reasonable analogs to the radiation-induced faults. In this study we present methods for validating fault emulation systems and provide several examples of validated FPGA fault emulation systems.« less

  14. Assessment of read and write stability for 6T SRAM cell based on charge plasma DLTFET

    NASA Astrophysics Data System (ADS)

    Anju; Yadav, Shivendra; Sharma, Dheeraj

    2018-03-01

    To overcome the process variations due to random dopant fluctuations (RDFs) and complex annealing techniques a charge plasma based doping less TFET (CP-DLTFET) device has been proposed for designing of 6T SRAM cell. The proposed device also benefited by subthreshold slope, low leakage current, and low power supply. In this paper, to avoid the dependency of stability parameters of SRAM cell to supply voltage (Vdd), here N-curve metrics has been analyzed to determine read and write stability. Because N-curve provides stability analysis in terms of voltage and current as well as it gives combine stability analysis with the facility of an inline tester. Further, analyzing the N-curve metrics for different Vdd, cell ratio, and pull-up ratio assist in designing the configuration of transistors for the better read and write stability. Power metrics of N-curve gives the knowledge about read and write stability instead of using four metrics (SINM, SVNM, WTV, and WTI) of N-curve. Finally, in the 6T CP-DLTFET SRAM cell, read and write stability is tested by the interface trap charges (ITCs). The performance parameter of the 6T CP-DLTFET SRAM cell provides considerable read and write stability with less fabrication complexity.

  15. Analysis of multiple cell upset sensitivity in bulk CMOS SRAM after neutron irradiation

    NASA Astrophysics Data System (ADS)

    Pan, Xiaoyu; Guo, Hongxia; Luo, Yinhong; Zhang, Fengqi; Ding, Lili

    2018-03-01

    In our previous studies, we have proved that neutron irradiation can decrease the single event latch-up (SEL) sensitivity of CMOS SRAM. And one of the key contributions to the multiple cell upset (MCU) is the parasitic bipolar amplification, it bring us to study the impact of neutron irradiation on the SRAM’s MCU sensitivity. After the neutron experiment, we test the devices’ function and electrical parameters. Then, we use the heavy ion fluence to examine the changes on the devices’ MCU sensitivity pre- and post-neutron-irradiation. Unfortunately, neutron irradiation makes the MCU phenomenon worse. Finally, we use the electric static discharge (ESD) testing technology to deduce the experimental results and find that the changes on the WPM region take the lead rather than the changes on the parasitic bipolar amplification for the 90 nm process.

  16. Survey and Analysis of Environmental Requirements for Shipboard Electronic Equipment Applications. Appendix B. Volume 3.

    DTIC Science & Technology

    1991-07-31

    memory banks Up to 1.25MByte SRAM 5 planes of 2048 x 1024 pixels Programmable video parameters max 720 x 512 pixels Sixteen colors TTL RGBI standard...bit I/O extension bus (VLXbus) Up to 2048 KByte 0-wait state static RAM BTT (Built-In-Test) PAL selectable dual ported VMEbus address Two RS-232/422...16, 25, or 33 MHz) A16/24:D08/16 VMEbus interface 8/16-bit I/O Extension bus (VLXbus) Up to 2048 KByte 32-bit wide static RAM -- 0-wait state at 16

  17. Smart substrates: Making multi-chip modules smarter

    NASA Astrophysics Data System (ADS)

    Wunsch, T. F.; Treece, R. K.

    1995-05-01

    A novel multi-chip module (MCM) design and manufacturing methodology which utilizes active CMOS circuits in what is normally a passive substrate realizes the 'smart substrate' for use in highly testable, high reliability MCMS. The active devices are used to test the bare substrate, diagnose assembly errors or integrated circuit (IC) failures that require rework, and improve the testability of the final MCM assembly. A static random access memory (SRAM) MCM has been designed and fabricated in Sandia Microelectronics Development Laboratory in order to demonstrate the technical feasibility of this concept and to examine design and manufacturing issues which will ultimately determine the economic viability of this approach. The smart substrate memory MCM represents a first in MCM packaging. At the time the first modules were fabricated, no other company or MCM vendor had incorporated active devices in the substrate to improve manufacturability and testability, and thereby improve MCM reliability and reduce cost.

  18. A dual V t disturb-free subthreshold SRAM with write-assist and read isolation

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Vipul; Kumar, Pradeep; Pandey, Neeta; Pandey, Sujata

    2018-02-01

    This paper presents a new dual V t 8T SRAM cell having single bit-line read and write, in addition to Write Assist and Read Isolation (WARI). Also a faster write back scheme is proposed for the half selected cells. A high V t device is used for interrupting the supply to one of the inverters for weakening the feedback loop for assisted write. The proposed cell provides an improved read static noise margin (RSNM) due to the bit-line isolation during the read. Static noise margins for data read (RSNM), write (WSNM), read delay, write delay, data retention voltage (DRV), leakage and average powers have been calculated. The proposed cell was found to operate properly at a supply voltage as small as 0.41 V. A new write back scheme has been suggested for half-selected cells, which uses a single NMOS access device and provides reduced delay, pulse timing hardware requirements and power consumption. The proposed new WARI 8T cell shows better performance in terms of easier write, improved read noise margin, reduced leakage power, and less delay as compared to the existing schemes that have been available so far. It was also observed that with proper adjustment of the cell ratio the supply voltage can further be reduced to 0.2 V.

  19. Gaining Insight Into Femtosecond-scale CMOS Effects using FPGAs

    DTIC Science & Technology

    2015-03-24

    paths or detecting gross path delay faults , but for characterizing subtle aging effects, there is a need to isolate very short paths and detect very...data using COTS FPGAs and novel self-test. Hardware experiments using a 28 nm FPGA demonstrate isolation of small sets of transistors, detection of...hold the static configuration data specifying the LUT function. A set of inverters drive the SRAM contents into a pass-gate multiplexor tree; we

  20. An IPv6 routing lookup algorithm using weight-balanced tree based on prefix value for virtual router

    NASA Astrophysics Data System (ADS)

    Chen, Lingjiang; Zhou, Shuguang; Zhang, Qiaoduo; Li, Fenghua

    2016-10-01

    Virtual router enables the coexistence of different networks on the same physical facility and has lately attracted a great deal of attention from researchers. As the number of IPv6 addresses is rapidly increasing in virtual routers, designing an efficient IPv6 routing lookup algorithm is of great importance. In this paper, we present an IPv6 lookup algorithm called weight-balanced tree (WBT). WBT merges Forwarding Information Bases (FIBs) of virtual routers into one spanning tree, and compresses the space cost. WBT's average time complexity and the worst case time complexity of lookup and update process are both O(logN) and space complexity is O(cN) where N is the size of routing table and c is a constant. Experiments show that WBT helps reduce more than 80% Static Random Access Memory (SRAM) cost in comparison to those separation schemes. WBT also achieves the least average search depth comparing with other homogeneous algorithms.

  1. Ge-cap quantum-well bulk FinFET for 5 nm node CMOS integration

    NASA Astrophysics Data System (ADS)

    Dwi Kurniawan, Erry; Peng, Kang-Hui; Yang, Shang-Yi; Yang, Yi-Yun; Thirunavukkarasu, Vasanthan; Lin, Yu-Hsien; Wu, Yung-Chun

    2018-04-01

    We propose the use of Ge-cap quantum-well (QW) bulk FinFET for 5 nm CMOS integration, which is a Si channel wrapped with Ge around three sides of the fin channel. The simulation results show that the Ge-cap FinFET structure demonstrates better performance than pure Si, pure Ge, and Si-cap FinFET structures. By optimizing Si fin width and Ge-cap thickness, the on-state current of nFET and pFET can also be symmetric without changing the total fin width (F Wp = F Wn). The electrons in Ge-cap nFinFET concentrate in the Si channel because of QWs formed in the lowest conduction band of the Ge and Si heterostructure, while the holes in Ge-cap pFinFET prefer to stay in Ge surfaces owing to QWs formed in the Ge valence band. The physics studies of this device have made the design rules relevant for the application of the CMOS inverter and static random access memory (SRAM) application technology.

  2. Experimental evidence for a new single-event upset (SEU) mode in a CMOS SRAM obtained from model verification

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.; Smith, L. S.; Soli, G. A.; Lo, R. Y.

    1987-01-01

    Modeling of SEU has been done in a CMOS static RAM containing 1-micron-channel-length transistors fabricated from a p-well epilayer process using both circuit-simulation and numerical-simulation techniques. The modeling results have been experimentally verified with the aid of heavy-ion beams obtained from a three-stage tandem van de Graaff accelerator. Experimental evidence for a novel SEU mode in an ON n-channel device is presented.

  3. Statistical modeling of SRAM yield performance and circuit variability

    NASA Astrophysics Data System (ADS)

    Cheng, Qi; Chen, Yijian

    2015-03-01

    In this paper, we develop statistical models to investigate SRAM yield performance and circuit variability in the presence of self-aligned multiple patterning (SAMP) process. It is assumed that SRAM fins are fabricated by a positivetone (spacer is line) self-aligned sextuple patterning (SASP) process which accommodates two types of spacers, while gates are fabricated by a more pitch-relaxed self-aligned quadruple patterning (SAQP) process which only allows one type of spacer. A number of possible inverter and SRAM structures are identified and the related circuit multi-modality is studied using the developed failure-probability and yield models. It is shown that SRAM circuit yield is significantly impacted by the multi-modality of fins' spatial variations in a SRAM cell. The sensitivity of 6-transistor SRAM read/write failure probability to SASP process variations is calculated and the specific circuit type with the highest probability to fail in the reading/writing operation is identified. Our study suggests that the 6-transistor SRAM configuration may not be scalable to 7-nm half pitch and more robust SRAM circuit design needs to be researched.

  4. Characterizing SRAM Single Event Upset in Terms of Single and Double Node Charge Collection

    NASA Technical Reports Server (NTRS)

    Black, J. D.; Ball, D. R., II; Robinson, W. H.; Fleetwood, D. M.; Schrimpf, R. D.; Reed, R. A.; Black, D. A.; Warren, K. M.; Tipton, A. D.; Dodd, P. E.; hide

    2008-01-01

    A well-collapse source-injection mode for SRAM SEU is demonstrated through TCAD modeling. The recovery of the SRAM s state is shown to be based upon the resistive path from the p+-sources in the SRAM to the well. Multiple cell upset patterns for direct charge collection and the well-collapse source-injection mechanisms are then predicted and compared to recent SRAM test data.

  5. Low-Power Differential SRAM design for SOC Based on the 25-um Technology

    NASA Astrophysics Data System (ADS)

    Godugunuri, Sivaprasad; Dara, Naveen; Sambasiva Nayak, R.; Nayeemuddin, Md; Singh, Yadu, Dr.; Veda, R. N. S. Sunil

    2017-08-01

    In recent, the SOC styles area unit the vast complicated styles in VLSI these SOC styles having important low-power operations problems, to comprehend this we tend to enforced low-power SRAM. However these SRAM Architectures critically affects the entire power of SOC and competitive space. To beat the higher than disadvantages, during this paper, a low-power differential SRAM design is planned. The differential SRAM design stores multiple bits within the same cell, operates at minimum in operation low-tension and space per bit. The differential SRAM design designed supported the 25-um technology using Tanner-EDA Tool.

  6. A comparison of heavy ion induced single event upset susceptibility in unhardened 6T/SRAM and hardened ADE/SRAM

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Zeng, Chuanbin; Geng, Chao; Liu, Tianqi; Khan, Maaz; Yan, Weiwei; Hou, Mingdong; Ye, Bing; Sun, Youmei; Yin, Yanan; Luo, Jie; Ji, Qinggang; Zhao, Fazhan; Liu, Jie

    2017-09-01

    Single event upset (SEU) susceptibility of unhardened 6T/SRAM and hardened active delay element (ADE)/SRAM, fabricated with 0.35 μm silicon-on-insulator (SOI) CMOS technology, was investigated at heavy ion accelerator. The mechanisms were revealed by the laser irradiation and resistor-capacitor hardened techniques. Compared with conventional 6T/SRAM, the hardened ADE/SRAM exhibited higher tolerance to heavy ion irradiation, with an increase of about 80% in the LET threshold and a decrease of ∼64% in the limiting upset cross-section. Moreover, different probabilities between 0 → 1 and 1 → 0 transitions were observed, which were attributed to the specific architecture of ADE/SRAM memory cell. Consequently, the radiation-hardened technology can be an attractive alternative to the SEU tolerance of the device-level.

  7. Toward the 5nm technology: layout optimization and performance benchmark for logic/SRAMs using lateral and vertical GAA FETs

    NASA Astrophysics Data System (ADS)

    Huynh-Bao, Trong; Ryckaert, Julien; Sakhare, Sushil; Mercha, Abdelkarim; Verkest, Diederik; Thean, Aaron; Wambacq, Piet

    2016-03-01

    In this paper, we present a layout and performance analysis of logic and SRAM circuits for vertical and lateral GAA FETs using 5nm (iN5) design rules. Extreme ultra-violet lithography (EUVL) processes are exploited to print the critical features: 32 nm gate pitch and 24 nm metal pitch. Layout architectures and patterning compromises for enabling the 5nm node will be discussed in details. A distinct standard-cell template for vertical FETs is proposed and elaborated for the first time. To assess electrical performances, a BSIM-CMG model has been developed and calibrated with TCAD simulations, which accounts for the quasi-ballistic transport in the nanowire channel. The results show that the inbound power rail layout construct for vertical devices could achieve the highest density while the interleaving diffusion template can maximize the port accessibility. By using a representative critical path circuit of a generic low power SoCs, it is shown that the VFET-based circuit is 40% more energy efficient than LFET designs at iso-performance. Regarding SRAMs, benefits given by vertical channel orientation in VFETs has reduced the SRAM area by 20%~30% compared to lateral SRAMs. A double exposures with EUV canner is needed to reach a minimum tip-to-tip (T2T) of 16 nm for middle-of-line (MOL) layers. To enable HD SRAMs with two metal layers, a fully self-aligned gate contact for LFETs and 2D routing of the top electrode for VFETs are required. The standby leakage of vertical SRAMs is 4~6X lower than LFET-based SRAMs at iso-performance and iso-area. The minimum operating voltage (Vmin) of vertical SRAMs is 170 mV lower than lateral SRAMs. A high-density SRAM bitcell of 0.014 um2 can be obtained for the iN5 technology node, which fully follows the SRAM scaling trend for the 45nm nodes and beyond.

  8. Performance evaluation of the analogue front-end and ADC prototypes for the Gotthard-II development

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Andrä, M.; Barten, R.; Bergamaschi, A.; Brückner, M.; Dinapoli, R.; Fröjdh, E.; Greiffenberg, D.; Lopez-Cuenca, C.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Redford, S.; Ruat, M.; Ruder, C.; Schmitt, B.; Shi, X.; Thattil, D.; Tinti, G.; Turcato, M.; Vetter, S.

    2017-12-01

    Gotthard-II is a silicon microstrip detector developed for the European X-ray Free-Electron Laser (XFEL.EU). Its potential scientific applications include X-ray absorption/emission spectroscopy, hard X-ray high resolution single-shot spectrometry (HiREX), energy dispersive experiments at 4.5 MHz frame rate, beam diagnostics, as well as veto signal generation for pixel detectors. Gotthard-II uses a silicon microstrip sensor with a pitch of 50 μm or 25 μm and with 1280 or 2560 channels wire-bonded to readout chips (ROCs). In the ROC, an adaptive gain switching pre-amplifier (PRE), a fully differential Correlated-Double-Sampling (CDS) stage, an Analog-to-Digital Converter (ADC) as well as a Static Random-Access Memory (SRAM) capable of storing all the 2700 images in an XFEL.EU bunch train will be implemented. Several prototypes with different designs of the analogue front-end (PRE and CDS) and ADC test structures have been fabricated in UMC-110 nm CMOS technology and their performance has been evaluated. In this paper, the performance of the analogue front-end and ADC will be summarized.

  9. SRAM Detector Calibration

    NASA Technical Reports Server (NTRS)

    Soli, G. A.; Blaes, B. R.; Beuhler, M. G.

    1994-01-01

    Custom proton sensitive SRAM chips are being flown on the BMDO Clementine missions and Space Technology Research Vehicle experiments. This paper describes the calibration procedure for the SRAM proton detectors and their response to the space environment.

  10. Dose measurement based on threshold shift in MOSFET arrays in commercial SRAMS

    NASA Technical Reports Server (NTRS)

    Scheick, L. Z.; Swift, G.

    2002-01-01

    A new method using an array of MOS transistors isdescribed for measuring dose absorbed from ionizingradiation. Using the array of MOSFETs in a SRAM, a direct measurement of the number of MOS cells which change as a function of applied bias on the SRAM. Since the input and output of a SRAM used as a dosimeter is completely digital, the measurement of dose is easily accessible by a remote processing system.

  11. Depth Measurements Using Alpha Particles and Upsettable SRAMs

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Reier, M.; Soli, G. A.

    1995-01-01

    A custom designed SRAM was used to measure the thickness of integrated circuit over layers and the epi-layer thickness using alpha particles and a test SRAM. The over layer consists of oxide, nitride, metal, and junction regions.

  12. Highly flexible SRAM cells based on novel tri-independent-gate FinFET

    NASA Astrophysics Data System (ADS)

    Liu, Chengsheng; Zheng, Fanglin; Sun, Yabin; Li, Xiaojin; Shi, Yanling

    2017-10-01

    In this paper, a novel tri-independent-gate (TIG) FinFET is proposed for highly flexible SRAM cells design. To mitigate the read-write conflict, two kinds of SRAM cells based on TIG FinFETs are designed, and high tradeoff are obtained between read stability and speed. Both cells can offer multi read operations for frequency requirement with single voltage supply. In the first TIG FinFET SRAM cell, the strength of single-fin access transistor (TIG FinFET) can be flexibly adjusted by selecting five different modes to meet the needs of dynamic frequency design. Compared to the previous double-independent-gate (DIG) FinFET SRAM cell, 12.16% shorter read delay can be achieved with only 1.62% read stability decrement. As for the second TIG FinFET SRAM cell, pass-gate feedback technology is applied and double-fin TIG FinFETs are used as access transistors to solve the severe write-ability degradation. Three modes exist to flexibly adjust read speed and stability, and 68.2% larger write margin and 51.7% shorter write delay are achieved at only the expense of 26.2% increase in leakage power, with the same layout area as conventional FinFET SRAM cell.

  13. Characteristics of a Nonvolatile SRAM Memory Cell Utilizing a Ferroelectric Transistor

    NASA Technical Reports Server (NTRS)

    Mitchell, Cody; Laws, Crystal; MacLeod, Todd C.; Ho, Fat D.

    2011-01-01

    The SRAM cell circuit is a standard for volatile data storage. When utilizing one or more ferroelectric transistors, the hysteresis characteristics give unique properties to the SRAM circuit, providing for investigation into the development of a nonvolatile memory cell. This paper discusses various formations of the SRAM circuit, using ferroelectric transistors, n-channel and p-channel MOSFETs, and resistive loads. With varied source and supply voltages, the effects on the timing and retention characteristics are investigated, including retention times of up to 24 hours.

  14. Analysis of electrical characteristics and proposal of design guide for ultra-scaled nanoplate vertical FET and 6T-SRAM

    NASA Astrophysics Data System (ADS)

    Seo, Youngsoo; Kim, Shinkeun; Ko, Kyul; Woo, Changbeom; Kim, Minsoo; Lee, Jangkyu; Kang, Myounggon; Shin, Hyungcheol

    2018-02-01

    In this paper, electrical characteristics of gate-all-around (GAA) nanoplate (NP) vertical FET (VFET) were analyzed for single transistor and 6T-SRAM cell through 3D technology computer-aided design (TCAD) simulation. In VFET, gate and extension lengths are not limited by the area of device because theses lengths are vertically located. The height of NP is assumed in 40 nm considering device fabrication method (top-down approach). According to the sizes of devices, we analyzed the performances of device such as total resistance, capacitance, intrinsic gate delay, sub-threshold swing (S.S), drain-induced barrier lowering (DIBL) and static noise margin (SNM). As the gate length becomes larger, the resistance should be smaller because the total height of NP is fixed in 40 nm. Also, when the channel thickness becomes thicker, the total resistance becomes smaller since the sheet resistances of channel and extension become smaller and the contact resistance becomes smaller due to the increasing contact area. In addition, as the length of channel pitch increases, the parasitic capacitance comes to be larger due to the increasing area of gate-drain and gate-source. The performance of RC delay is best in the shortest gate length (12 nm), the thickest channel (6 nm) and the shortest channel pitch (17 nm) owing to the reduced resistance and parasitic capacitance. However, the other performances such as DIBL, S.S, on/off ratio and SNM are worst because the short channel effect is highest in this situation. Also, we investigated the performance of the multi-channel device. As the number of channels increases, the performance of device and the reliability of SRAM improve because of reduced contact resistance, increased gate dimension and multi-channel compensation effect.

  15. Scan direction induced charging dynamics and the application for detection of gate to S/D shorts in logic devices

    NASA Astrophysics Data System (ADS)

    Lei, Ming; Tian, Qing; Wu, Kevin; Zhao, Yan

    2016-03-01

    Gate to source/drain (S/D) short is the most common and detrimental failure mechanism for advanced process technology development in Metal-Oxide-Semiconductor-Field-Effect-Transistor (MOSFET) device manufacturing. Especially for sub-1Xnm nodes, MOSFET device is more vulnerable to gate-S/D shorts due to the aggressive scaling. The detection of this kind of electrical short defect is always challenging for in-line electron beam inspection (EBI), especially new shorting mechanisms on atomic scale due to new material/process flow implementation. The second challenge comes from the characterization of the shorts including identification of the exact shorting location. In this paper, we demonstrate unique scan direction induced charging dynamics (SDCD) phenomenon which stems from the transistor level response from EBI scan at post metal contact chemical-mechanical planarization (CMP) layers. We found that SDCD effect is exceptionally useful for gate-S/D short induced voltage contrast (VC) defect detection, especially for identification of shorting locations. The unique SDCD effect signatures of gate-S/D shorts can be used as fingerprint for ground true shorting defect detection. Correlation with other characterization methods on the same defective location from EBI scan shows consistent results from various shorting mechanism. A practical work flow to implement the application of SDCD effect for in-line EBI monitor of critical gate-S/D short defects is also proposed, together with examples of successful application use cases which mostly focus on static random-access memory (SRAM) array regions. Although the capability of gate-S/D short detection as well as expected device response is limited to passing transistors and pull-down transistors due to the design restriction from standard 6-cell SRAM structure, SDCD effect is proven to be very effective for gate-S/D short induced VC defect detection as well as yield learning for advanced technology development.

  16. MRAM Technology Status

    NASA Technical Reports Server (NTRS)

    Heidecker, Jason

    2013-01-01

    Magnetoresistive Random Access Memory (MRAM) is much different from conventional types of memory like SRAM, DRAM, and Flash, where electric charge is used to store information. Instead of exploiting the charge of an electron, MRAM uses its spin to store data. This new type of electronics is known as "spintronics." The primary focus of this report is the current generation of MRAM technology, and its reliability, vendors, and space-readiness.

  17. Microdose analysis of ion strikes on SRAM cells

    NASA Astrophysics Data System (ADS)

    Scheick, L.

    2003-12-01

    A method of measuring the effect from exposure to highly localized ionizing radiation on microstructures is described. The voltage at which a commercial SRAM cell cannot hold a programmed state changes with microdose. The microdose distribution across the array, in addition to the analysis of the occurrence of anomalous shifts in operating bias due to rare, large energy-deposition events is studied. The effect of multiple hits on a SRAM cell is presented. A general theory on multiple hits from which basic device parameters can be extracted is presented. SPICE, as well as analysis of basic device physics, is used to analyze the damage to individual transistors and the response of a SRAM cell.

  18. Overview of emerging nonvolatile memory technologies

    PubMed Central

    2014-01-01

    Nonvolatile memory technologies in Si-based electronics date back to the 1990s. Ferroelectric field-effect transistor (FeFET) was one of the most promising devices replacing the conventional Flash memory facing physical scaling limitations at those times. A variant of charge storage memory referred to as Flash memory is widely used in consumer electronic products such as cell phones and music players while NAND Flash-based solid-state disks (SSDs) are increasingly displacing hard disk drives as the primary storage device in laptops, desktops, and even data centers. The integration limit of Flash memories is approaching, and many new types of memory to replace conventional Flash memories have been proposed. Emerging memory technologies promise new memories to store more data at less cost than the expensive-to-build silicon chips used by popular consumer gadgets including digital cameras, cell phones and portable music players. They are being investigated and lead to the future as potential alternatives to existing memories in future computing systems. Emerging nonvolatile memory technologies such as magnetic random-access memory (MRAM), spin-transfer torque random-access memory (STT-RAM), ferroelectric random-access memory (FeRAM), phase-change memory (PCM), and resistive random-access memory (RRAM) combine the speed of static random-access memory (SRAM), the density of dynamic random-access memory (DRAM), and the nonvolatility of Flash memory and so become very attractive as another possibility for future memory hierarchies. Many other new classes of emerging memory technologies such as transparent and plastic, three-dimensional (3-D), and quantum dot memory technologies have also gained tremendous popularity in recent years. Subsequently, not an exaggeration to say that computer memory could soon earn the ultimate commercial validation for commercial scale-up and production the cheap plastic knockoff. Therefore, this review is devoted to the rapidly developing new class of memory technologies and scaling of scientific procedures based on an investigation of recent progress in advanced Flash memory devices. PMID:25278820

  19. Overview of emerging nonvolatile memory technologies.

    PubMed

    Meena, Jagan Singh; Sze, Simon Min; Chand, Umesh; Tseng, Tseung-Yuen

    2014-01-01

    Nonvolatile memory technologies in Si-based electronics date back to the 1990s. Ferroelectric field-effect transistor (FeFET) was one of the most promising devices replacing the conventional Flash memory facing physical scaling limitations at those times. A variant of charge storage memory referred to as Flash memory is widely used in consumer electronic products such as cell phones and music players while NAND Flash-based solid-state disks (SSDs) are increasingly displacing hard disk drives as the primary storage device in laptops, desktops, and even data centers. The integration limit of Flash memories is approaching, and many new types of memory to replace conventional Flash memories have been proposed. Emerging memory technologies promise new memories to store more data at less cost than the expensive-to-build silicon chips used by popular consumer gadgets including digital cameras, cell phones and portable music players. They are being investigated and lead to the future as potential alternatives to existing memories in future computing systems. Emerging nonvolatile memory technologies such as magnetic random-access memory (MRAM), spin-transfer torque random-access memory (STT-RAM), ferroelectric random-access memory (FeRAM), phase-change memory (PCM), and resistive random-access memory (RRAM) combine the speed of static random-access memory (SRAM), the density of dynamic random-access memory (DRAM), and the nonvolatility of Flash memory and so become very attractive as another possibility for future memory hierarchies. Many other new classes of emerging memory technologies such as transparent and plastic, three-dimensional (3-D), and quantum dot memory technologies have also gained tremendous popularity in recent years. Subsequently, not an exaggeration to say that computer memory could soon earn the ultimate commercial validation for commercial scale-up and production the cheap plastic knockoff. Therefore, this review is devoted to the rapidly developing new class of memory technologies and scaling of scientific procedures based on an investigation of recent progress in advanced Flash memory devices.

  20. CoNNeCT Baseband Processor Module

    NASA Technical Reports Server (NTRS)

    Yamamoto, Clifford K; Jedrey, Thomas C.; Gutrich, Daniel G.; Goodpasture, Richard L.

    2011-01-01

    A document describes the CoNNeCT Baseband Processor Module (BPM) based on an updated processor, memory technology, and field-programmable gate arrays (FPGAs). The BPM was developed from a requirement to provide sufficient computing power and memory storage to conduct experiments for a Software Defined Radio (SDR) to be implemented. The flight SDR uses the AT697 SPARC processor with on-chip data and instruction cache. The non-volatile memory has been increased from a 20-Mbit EEPROM (electrically erasable programmable read only memory) to a 4-Gbit Flash, managed by the RTAX2000 Housekeeper, allowing more programs and FPGA bit-files to be stored. The volatile memory has been increased from a 20-Mbit SRAM (static random access memory) to a 1.25-Gbit SDRAM (synchronous dynamic random access memory), providing additional memory space for more complex operating systems and programs to be executed on the SPARC. All memory is EDAC (error detection and correction) protected, while the SPARC processor implements fault protection via TMR (triple modular redundancy) architecture. Further capability over prior BPM designs includes the addition of a second FPGA to implement features beyond the resources of a single FPGA. Both FPGAs are implemented with Xilinx Virtex-II and are interconnected by a 96-bit bus to facilitate data exchange. Dedicated 1.25- Gbit SDRAMs are wired to each Xilinx FPGA to accommodate high rate data buffering for SDR applications as well as independent SpaceWire interfaces. The RTAX2000 manages scrub and configuration of each Xilinx.

  1. Towards Terabit Memories

    NASA Astrophysics Data System (ADS)

    Hoefflinger, Bernd

    Memories have been the major yardstick for the continuing validity of Moore's law. In single-transistor-per-Bit dynamic random-access memories (DRAM), the number of bits per chip pretty much gives us the number of transistors. For decades, DRAM's have offered the largest storage capacity per chip. However, DRAM does not scale any longer, both in density and voltage, severely limiting its power efficiency to 10 fJ/b. A differential DRAM would gain four-times in density and eight-times in energy. Static CMOS RAM (SRAM) with its six transistors/cell is gaining in reputation because it scales well in cell size and operating voltage so that its fundamental advantage of speed, non-destructive read-out and low-power standby could lead to just 2.5 electrons/bit in standby and to a dynamic power efficiency of 2aJ/b. With a projected 2020 density of 16 Gb/cm², the SRAM would be as dense as normal DRAM and vastly better in power efficiency, which would mean a major change in the architecture and market scenario for DRAM versus SRAM. Non-volatile Flash memory have seen two quantum jumps in density well beyond the roadmap: Multi-Bit storage per transistor and high-density TSV (through-silicon via) technology. The number of electrons required per Bit on the storage gate has been reduced since their first realization in 1996 by more than an order of magnitude to 400 electrons/Bit in 2010 for a complexity of 32Gbit per chip at the 32 nm node. Chip stacking of eight chips with TSV has produced a 32GByte solid-state drive (SSD). A stack of 32 chips with 2 b/cell at the 16 nm node will reach a density of 2.5 Terabit/cm². Non-volatile memory with a density of 10 × 10 nm²/Bit is the target for widespread development. Phase-change memory (PCM) and resistive memory (RRAM) lead in cell density, and they will reach 20 Gb/cm² in 2D and higher with 3D chip stacking. This is still almost an order-of-magnitude less than Flash. However, their read-out speed is ~10-times faster, with as yet little data on their energy/b. As a read-out memory with unparalleled retention and lifetime, the ROM with electron-beam direct-write-lithography (Chap. 8) should be considered for its projected 2D density of 250 Gb/cm², a very small read energy of 0.1 μW/Gb/s. The lithography write-speed 10 ms/Terabit makes this ROM a serious contentender for the optimum in non-volatile, tamper-proof storage.

  2. AYUSH: A Technique for Extending Lifetime of SRAM-NVM Hybrid Caches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Sparsh; Vetter, Jeffrey S

    2014-01-01

    Recently, researchers have explored way-based hybrid SRAM-NVM (non-volatile memory) last level caches (LLCs) to bring the best of SRAM and NVM together. However, the limited write endurance of NVMs restricts the lifetime of these hybrid caches. We present AYUSH, a technique to enhance the lifetime of hybrid caches, which works by using data-migration to preferentially use SRAM for storing frequently-reused data. Microarchitectural simulations confirm that AYUSH achieves larger improvement in lifetime than a previous technique and also maintains performance and energy efficiency. For single, dual and quad-core workloads, the average increase in cache lifetime with AYUSH is 6.90X, 24.06X andmore » 47.62X, respectively.« less

  3. A New Partial Reconfiguration-Based Fault-Injection System to Evaluate SEU Effects in SRAM-Based FPGAs

    NASA Astrophysics Data System (ADS)

    Sterpone, L.; Violante, M.

    2007-08-01

    Modern SRAM-based field programmable gate array (FPGA) devices offer high capability in implementing complex system. Unfortunately, SRAM-based FPGAs are extremely sensitive to single event upsets (SEUs) induced by radiation particles. In order to successfully deploy safety- or mission-critical applications, designer need to validate the correctness of the obtained designs. In this paper we describe a system based on partial-reconfiguration for running fault-injection experiments within the configuration memory of SRAM-based FPGAs. The proposed fault-injection system uses the internal configuration capabilities that modern FPGAs offer in order to inject SEU within the configuration memory. Detailed experimental results show that the technique is orders of magnitude faster than previously proposed ones.

  4. Memory Circuit Fault Simulator

    NASA Technical Reports Server (NTRS)

    Sheldon, Douglas J.; McClure, Tucker

    2013-01-01

    Spacecraft are known to experience significant memory part-related failures and problems, both pre- and postlaunch. These memory parts include both static and dynamic memories (SRAM and DRAM). These failures manifest themselves in a variety of ways, such as pattern-sensitive failures, timingsensitive failures, etc. Because of the mission critical nature memory devices play in spacecraft architecture and operation, understanding their failure modes is vital to successful mission operation. To support this need, a generic simulation tool that can model different data patterns in conjunction with variable write and read conditions was developed. This tool is a mathematical and graphical way to embed pattern, electrical, and physical information to perform what-if analysis as part of a root cause failure analysis effort.

  5. A Design Methodology for Optoelectronic VLSI

    DTIC Science & Technology

    2007-01-01

    current gets converted to a CMOS voltage level through a transimpedance amplifier circuit called a receiver. The output of the receiver is then...change the current flowing from the diode to a voltage that the logic inputs can use. That circuit is called a receiver. It is a transimpedance amplifier ...incorpo- rate random access memory circuits, SRAM or dynamic RAM (DRAM). These circuits use weak internal analog signals that are amplified by sense

  6. Non-volatile, high density, high speed, Micromagnet-Hall effect Random Access Memory (MHRAM)

    NASA Technical Reports Server (NTRS)

    Wu, Jiin C.; Katti, Romney R.; Stadler, Henry L.

    1991-01-01

    The micromagnetic Hall effect random access memory (MHRAM) has the potential of replacing ROMs, EPROMs, EEPROMs, and SRAMs because of its ability to achieve non-volatility, radiation hardness, high density, and fast access times, simultaneously. Information is stored magnetically in small magnetic elements (micromagnets), allowing unlimited data retention time, unlimited numbers of rewrite cycles, and inherent radiation hardness and SEU immunity, making the MHRAM suitable for ground based as well as spaceflight applications. The MHRAM device design is not affected by areal property fluctuations in the micromagnet, so high operating margins and high yield can be achieved in large scale integrated circuit (IC) fabrication. The MHRAM has short access times (less than 100 nsec). Write access time is short because on-chip transistors are used to gate current quickly, and magnetization reversal in the micromagnet can occur in a matter of a few nanoseconds. Read access time is short because the high electron mobility sensor (InAs or InSb) produces a large signal voltage in response to the fringing magnetic field from the micromagnet. High storage density is achieved since a unit cell consists only of two transistors and one micromagnet Hall effect element. By comparison, a DRAM unit cell has one transistor and one capacitor, and a SRAM unit cell has six transistors.

  7. Electron-induced single event upsets in 28 nm and 45 nm bulk SRAMs

    DOE PAGES

    Trippe, J. M.; Reed, R. A.; Austin, R. A.; ...

    2015-12-01

    In this study, we present experimental evidence of single electron-induced upsets in commercial 28 nm and 45 nm CMOS SRAMs from a monoenergetic electron beam. Upsets were observed in both technology nodes when the SRAM was operated in a low power state. The experimental cross section depends strongly on both bias and technology node feature size, consistent with previous work in which SRAMs were irradiated with low energy muons and protons. Accompanying simulations demonstrate that δ-rays produced by the primary electrons are responsible for the observed upsets. Additional simulations predict the on-orbit event rates for various Earth and Jovian environmentsmore » for a set of sensitive volumes representative of current technology nodes. The electron contribution to the total upset rate for Earth environments is significant for critical charges as high as 0.2 fC. This value is comparable to that of sub-22 nm bulk SRAMs. Similarly, for the Jovian environment, the electron-induced upset rate is larger than the proton-induced upset rate for critical charges as high as 0.3 fC.« less

  8. Design and implementation of a programming circuit in radiation-hardened FPGA

    NASA Astrophysics Data System (ADS)

    Lihua, Wu; Xiaowei, Han; Yan, Zhao; Zhongli, Liu; Fang, Yu; Chen, Stanley L.

    2011-08-01

    We present a novel programming circuit used in our radiation-hardened field programmable gate array (FPGA) chip. This circuit provides the ability to write user-defined configuration data into an FPGA and then read it back. The proposed circuit adopts the direct-access programming point scheme instead of the typical long token shift register chain. It not only saves area but also provides more flexible configuration operations. By configuring the proposed partial configuration control register, our smallest configuration section can be conveniently configured as a single data and a flexible partial configuration can be easily implemented. The hierarchical simulation scheme, optimization of the critical path and the elaborate layout plan make this circuit work well. Also, the radiation hardened by design programming point is introduced. This circuit has been implemented in a static random access memory (SRAM)-based FPGA fabricated by a 0.5 μm partial-depletion silicon-on-insulator CMOS process. The function test results of the fabricated chip indicate that this programming circuit successfully realizes the desired functions in the configuration and read-back. Moreover, the radiation test results indicate that the programming circuit has total dose tolerance of 1 × 105 rad(Si), dose rate survivability of 1.5 × 1011 rad(Si)/s and neutron fluence immunity of 1 × 1014 n/cm2.

  9. PUFKEY: A High-Security and High-Throughput Hardware True Random Number Generator for Sensor Networks

    PubMed Central

    Li, Dongfang; Lu, Zhaojun; Zou, Xuecheng; Liu, Zhenglin

    2015-01-01

    Random number generators (RNG) play an important role in many sensor network systems and applications, such as those requiring secure and robust communications. In this paper, we develop a high-security and high-throughput hardware true random number generator, called PUFKEY, which consists of two kinds of physical unclonable function (PUF) elements. Combined with a conditioning algorithm, true random seeds are extracted from the noise on the start-up pattern of SRAM memories. These true random seeds contain full entropy. Then, the true random seeds are used as the input for a non-deterministic hardware RNG to generate a stream of true random bits with a throughput as high as 803 Mbps. The experimental results show that the bitstream generated by the proposed PUFKEY can pass all standard national institute of standards and technology (NIST) randomness tests and is resilient to a wide range of security attacks. PMID:26501283

  10. PUFKEY: a high-security and high-throughput hardware true random number generator for sensor networks.

    PubMed

    Li, Dongfang; Lu, Zhaojun; Zou, Xuecheng; Liu, Zhenglin

    2015-10-16

    Random number generators (RNG) play an important role in many sensor network systems and applications, such as those requiring secure and robust communications. In this paper, we develop a high-security and high-throughput hardware true random number generator, called PUFKEY, which consists of two kinds of physical unclonable function (PUF) elements. Combined with a conditioning algorithm, true random seeds are extracted from the noise on the start-up pattern of SRAM memories. These true random seeds contain full entropy. Then, the true random seeds are used as the input for a non-deterministic hardware RNG to generate a stream of true random bits with a throughput as high as 803 Mbps. The experimental results show that the bitstream generated by the proposed PUFKEY can pass all standard national institute of standards and technology (NIST) randomness tests and is resilient to a wide range of security attacks.

  11. A Physics-Based Engineering Approach to Predict the Cross Section for Advanced SRAMs

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhou, Wanting; Liu, Huihua

    2012-12-01

    This paper presents a physics-based engineering approach to estimate the heavy ion induced upset cross section for 6T SRAM cells from layout and technology parameters. The new approach calculates the effects of radiation with junction photocurrent, which is derived based on device physics. The new and simple approach handles the problem by using simple SPICE simulations. At first, the approach uses a standard SPICE program on a typical PC to predict the SPICE-simulated curve of the collected charge vs. its affected distance from the drain-body junction with the derived junction photocurrent. And then, the SPICE-simulated curve is used to calculate the heavy ion induced upset cross section with a simple model, which considers that the SEU cross section of a SRAM cell is more related to a “radius of influence” around a heavy ion strike than to the physical size of a diffusion node in the layout for advanced SRAMs in nano-scale process technologies. The calculated upset cross section based on this method is in good agreement with the test results for 6T SRAM cells processed using 90 nm process technology.

  12. Fault handling schemes in electronic systems with specific application to radiation tolerance and VLSI design

    NASA Technical Reports Server (NTRS)

    Attia, John Okyere

    1993-01-01

    Naturally occurring space radiation particles can produce transient and permanent changes in the electrical properties of electronic devices and systems. In this work, the transient radiation effects on DRAM and CMOS SRAM were considered. In addition, the effect of total ionizing dose radiation of the switching times of CMOS logic gates were investigated. Effects of transient radiation on the column and cell of MOS dynamic memory cell was simulated using SPICE. It was found that the critical charge of the bitline was higher than that of the cell. In addition, the critical charge of the combined cell-bitline was found to be dependent on the gate voltage of the access transistor. In addition, the effect of total ionizing dose radiation on the switching times of CMOS logic gate was obtained. The results of this work indicate that, the rise time of CMOS logic gates increases, while the fall time decreases with an increase in total ionizing dose radiation. Also, by increasing the size of the P-channel transistor with respect to that of the N-channel transistor, the propagation delay of CMOS logic gate can be made to decrease with, or be independent of an increase in total ionizing dose radiation. Furthermore, a method was developed for replacing polysilicon feedback resistance of SRAMs with a switched capacitor network. A switched capacitor SRAM was implemented using MOS Technology. The critical change of the switched capacitor SRAM has a very large critical charge. The results of this work indicate that switched capacitor SRAM is a viable alternative to SRAM with polysilicon feedback resistance.

  13. The New S-RAM Air Variable Compressor/Expander for Heat Pump and Waste Heat to Power Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehoff, Ryan R; Jestings, Lee; Conde, Ricardo

    S-RAM Dynamics (S-RAM) has designed an innovative heat pump system targeted for commercial and industrial applications. This new heat pump system is more efficient than anything currently on the market and utilizes air as the refrigerant instead of hydrofluorocarbon (HFC) refrigerants, leading to lower operating costs, minimal environmental costs or concerns, and lower maintenance costs. The heat pumps will be manufactured in the United States. This project was aimed at determining the feasibility of utilizing additive manufacturing to make the heat exchanger device for the new heat pump system. ORNL and S-RAM Dynamics collaborated on determining the prototype performance andmore » subsequently printing of the prototype using additive manufacturing. Complex heat exchanger designs were fabricated using the Arcam electron beam melting (EBM) powder bed technology using Ti-6Al-4V material. An ultrasonic welding system was utilized in order to remove the powder from the small openings of the heat exchanger. The majority of powder in the small chambers was removed, however, the amount of powder remaining in the heat exchanger was a function of geometry. Therefore, only certain geometries of heat exchangers could be fabricated. SRAM Dynamics evaluated a preliminary heat exchanger design. Although the results of the additive manufacturing of the heat exchanger were not optimum, a less complex geometry was demonstrated. A sleeve valve was used as a demonstration piece, as engine designs from S-RAM Dynamics require the engine to have a very high density. Preliminary designs of this geometry were successfully fabricated using the EBM technology.« less

  14. Hi Fi Audio Tape to Sun Workstation Transfer System for Digital Audio Data

    DTIC Science & Technology

    1994-03-01

    33 Figure 13 The Interface Memory Map (for 64K X 32 SRAM ). [Ref. 10] ..... 35 Figure 14 Main board data bus connection to the DM bus...module are described separately below. DSP-LINK’C OR SCSI 2K x 32 SRAM 40MMO 51K x 32 atuffersOM C SBus TMS320C30 - - Slave Floating Point A t a...and an ENABLE signal is sent to the device along with a read or a write signal. The memory map of the board with 64k SRAM is shown in Figure 13. The

  15. Thin Rechargeable Batteries for CMOS SRAM Memory Protection

    NASA Technical Reports Server (NTRS)

    Crouse, Dennis N.

    1993-01-01

    New rechargeable battery technology is described and compared with classical primary battery back-up of SRAM PC cards. Thin solid polymer electrolyte cells with the thickness of TSOP memory components (1 mm nominal, 1.1 mm max) and capacities of 14 mAh/sq cm can replace coin cells. The SRAM PC cards with permanently installed rechargeable cells and optional electrochromic low battery voltage indicators will free the periodic PC card user from having to 'feed' their PC cards with coin cells and will allow a quick visual check of stored cards for their battery voltage status.

  16. Impact of Smoke Exposure on Digital Instrumentation and Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Tina J.; Nowlen, Steven P.; Korsah, Kofi

    2003-08-15

    Smoke can cause interruptions and upsets in active electronics. Because nuclear power plants are replacing analog with digital instrumentation and control systems, qualification guidelines for new systems are being reviewed for severe environments such as smoke and electromagnetic interference. Active digital systems, individual components, and active circuits have been exposed to smoke in a program sponsored by the U.S. Nuclear Regulatory Commission. The circuits and systems were all monitored during the smoke exposure, indicating any immediate effects of the smoke. The results of previous smoke exposure studies have been reported in various publications. The major immediate effect of smoke hasmore » been to increase leakage currents and to cause momentary upsets and failures in digital systems. This paper presents new results from conformal coatings, memory chips, and hard drive tests.The best conformal coatings were found to be polyurethane, parylene, and acrylic (when applied by dipping). Conformal coatings can reduce smoke-induced leakage currents and protect against metal loss through corrosion. However conformal coatings are typically flammable, so they do increase material flammability. Some of the low-voltage biased memory chips failed during a combination of high smoke and high humidity. Typically, smoke along with heat and humidity is expected during fire, rather than smoke alone. Thus, due to high sensitivity of digital circuits to heat and humidity, it is hypothesized that the impact of smoke may be secondary.Low-voltage (3.3-V) static random-access memory (SRAMs) were found to be the most vulnerable to smoke. Higher bias voltages decrease the likelihood of failure. Erasable programmable read-only memory (EPROMs) and nonvolatile SRAMs were very smoke tolerant. Failures of the SRAMs occurred when two conditions were present: high density of smoke and high humidity. As the high humidity was present for only part of the test, the failures were intermittent. All of the chips that failed during the test recovered after enough venting.Hard disks were tested in severe environments but did not fail during the 2 h of monitoring.While the results of the tests documented in this report confirm that digital circuits can indeed be vulnerable to smoke, there is currently no practical, repeatable testing methodology, so it is not feasible to assess smoke susceptibility as part of environmental qualification. As a result, the most reasonable approach to minimizing smoke susceptibility is to employ design, implementation, and procedural practices that can reduce the possibility of smoke exposure and enhance smoke tolerance. Traditional approaches to mitigate its effects in digital safety instrumentation and control, such as redundancy, separation, defense in depth, as well as adherence to standards (e.g., the Institute of Electrical and Electronics Engineers' IEEE 384) and the Code of Federal Regulations Appendix R of 10 CFR 50, should continue to be applied.« less

  17. Importance of ion energy on SEU in CMOS SRAMs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodd, P.E.; Shaneyfelt, M.R.; Sexton, F.W.

    1998-03-01

    The single-event upset (SEU) responses of 16 Kbit to 1 Mbit SRAMs irradiated with low and high-energy heavy ions are reported. Standard low-energy heavy ion tests appear to be sufficiently conservative for technologies down to 0.5 {micro}m.

  18. Susceptibility of Redundant Versus Singular Clock Domains Implemented in SRAM-Based FPGA TMR Designs

    NASA Technical Reports Server (NTRS)

    Berg, Melanie D.; LaBel, Kenneth A.; Pellish, Jonathan

    2016-01-01

    We present the challenges that arise when using redundant clock domains due to their clock-skew. Radiation data show that a singular clock domain (DTMR) provides an improved TMR methodology for SRAM-based FPGAs over redundant clocks.

  19. FinFET memory cell improvements for higher immunity against single event upsets

    NASA Astrophysics Data System (ADS)

    Sajit, Ahmed Sattar

    The 21st century is witnessing a tremendous demand for transistors. Life amenities have incorporated the transistor in every aspect of daily life, ranging from toys to rocket science. Day by day, scaling down the transistor is becoming an imperious necessity. However, it is not a straightforward process; instead, it faces overwhelming challenges. Due to these scaling changes, new technologies, such as FinFETs for example, have emerged as alternatives to the conventional bulk-CMOS technology. FinFET has more control over the channel, therefore, leakage current is reduced. FinFET could bridge the gap between silicon devices and non-silicon devices. The semiconductor industry is now incorporating FinFETs in systems and subsystems. For example, Intel has been using them in their newest processors, delivering potential saving powers and increased speeds to memory circuits. Memory sub-systems are considered a vital component in the digital era. In memory, few rows are read or written at a time, while the most rows are static; hence, reducing leakage current increases the performance. However, as a transistor shrinks, it becomes more vulnerable to the effects from radioactive particle strikes. If a particle hits a node in a memory cell, the content might flip; consequently, leading to corrupting stored data. Critical fields, such as medical and aerospace, where there are no second chances and cannot even afford to operate at 99.99% accuracy, has induced me to find a rigid circuit in a radiated working environment. This research focuses on a wide spectrum of memories such as 6T SRAM, 8T SRAM, and DICE memory cells using FinFET technology and finding the best platform in terms of Read and Write delay, susceptibility level of SNM, RSNM, leakage current, energy consumption, and Single Event Upsets (SEUs). This research has shown that the SEU tolerance that 6T and 8T FinFET SRAMs provide may not be acceptable in medical and aerospace applications where there is a very high likelihood of SEUs. Consequently, FinFET DICE memory can be a good candidate due to its high ability to tolerate SEUs of different amplitudes and long periods for both read and hold operations.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trippe, J. M.; Reed, R. A.; Austin, R. A.

    In this study, we present experimental evidence of single electron-induced upsets in commercial 28 nm and 45 nm CMOS SRAMs from a monoenergetic electron beam. Upsets were observed in both technology nodes when the SRAM was operated in a low power state. The experimental cross section depends strongly on both bias and technology node feature size, consistent with previous work in which SRAMs were irradiated with low energy muons and protons. Accompanying simulations demonstrate that δ-rays produced by the primary electrons are responsible for the observed upsets. Additional simulations predict the on-orbit event rates for various Earth and Jovian environmentsmore » for a set of sensitive volumes representative of current technology nodes. The electron contribution to the total upset rate for Earth environments is significant for critical charges as high as 0.2 fC. This value is comparable to that of sub-22 nm bulk SRAMs. Similarly, for the Jovian environment, the electron-induced upset rate is larger than the proton-induced upset rate for critical charges as high as 0.3 fC.« less

  1. A Cryptographic SoC for Robust Protection of Secret Keys in IPTV DRM Systems

    NASA Astrophysics Data System (ADS)

    Lee, Sanghan; Yang, Hae-Yong; Yeom, Yongjin; Park, Jongsik

    The security level of an internet protocol television (IPTV) digital right management (DRM) system ultimately relies on protection of secret keys. Well known devices for the key protection include smartcards and battery backup SRAMs (BB-SRAMs); however, these devices could be vulnerable to various physical attacks. In this paper, we propose a secure and cost-effective design of a cryptographic system on chip (SoC) that integrates the BB-SRAM with a cell-based design technique. The proposed SoC provides robust safeguard against the physical attacks, and satisfies high-speed and low-price requirements of IPTV set-top boxes. Our implementation results show that the maximum encryption rate of the SoC is 633Mb/s. In order to verify the data retention capabilities, we made a prototype chip using 0.18µm standard cell technology. The experimental results show that the integrated BB-SRAM can reliably retain data with a 1.4µA leakage current.

  2. Method for characterizing the upset response of CMOS circuits using alpha-particle sensitive test circuits

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor); Nixon, Robert H. (Inventor); Soli, George A. (Inventor); Blaes, Brent R. (Inventor)

    1995-01-01

    A method for predicting the SEU susceptibility of a standard-cell D-latch using an alpha-particle sensitive SRAM, SPICE critical charge simulation results, and alpha-particle interaction physics. A technique utilizing test structures to quickly and inexpensively characterize the SEU sensitivity of standard cell latches intended for use in a space environment. This bench-level approach utilizes alpha particles to induce upsets in a low LET sensitive 4-k bit test SRAM. This SRAM consists of cells that employ an offset voltage to adjust their upset sensitivity and an enlarged sensitive drain junction to enhance the cell's upset rate.

  3. Nonvolatile flip-flop based on pseudo-spin-transistor architecture and its nonvolatile power-gating applications for low-power CMOS logic

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shuu'ichirou; Shuto, Yusuke; Sugahara, Satoshi

    2013-07-01

    We computationally analyzed performance and power-gating (PG) ability of a new nonvolatile delay flip-flop (NV-DFF) based on pseudo-spin-MOSFET (PS-MOSFET) architecture using spin-transfer-torque magnetic tunnel junctions (STT-MTJs). The high-performance energy-efficient PG operations of the NV-DFF can be achieved owing to its cell structure employing PS-MOSFETs that can electrically separate the STT-MTJs from the ordinary DFF part of the NV-DFF. This separation also makes it possible that the break-even time (BET) of the NV-DFF is designed by the size of the PS-MOSFETs without performance degradation of the normal DFF operations. The effect of the area occupation ratio of the NV-DFFs to a CMOS logic system on the BET was also analyzed. Although the optimized BET was varied depending on the area occupation ratio, energy-efficient fine-grained PG with a BET of several sub-microseconds was revealed to be achieved. We also proposed microprocessors and system-on-chip (SoC) devices using nonvolatile hierarchical-memory systems wherein NV-DFF and nonvolatile static random access memory (NV-SRAM) circuits are used as fundamental building blocks. Contribution to the Topical Issue “International Semiconductor Conference Dresden-Grenoble - ISCDG 2012”, Edited by Gérard Ghibaudo, Francis Balestra and Simon Deleonibus.

  4. Product assurance technology for procuring reliable, radiation-hard, custom LSI/VLSI electronics

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Allen, R. A.; Blaes, B. R.; Hicks, K. A.; Jennings, G. A.; Lin, Y.-S.; Pina, C. A.; Sayah, H. R.; Zamani, N.

    1989-01-01

    Advanced measurement methods using microelectronic test chips are described. These chips are intended to be used in acquiring the data needed to qualify Application Specific Integrated Circuits (ASIC's) for space use. Efforts were focused on developing the technology for obtaining custom IC's from CMOS/bulk silicon foundries. A series of test chips were developed: a parametric test strip, a fault chip, a set of reliability chips, and the CRRES (Combined Release and Radiation Effects Satellite) chip, a test circuit for monitoring space radiation effects. The technical accomplishments of the effort include: (1) development of a fault chip that contains a set of test structures used to evaluate the density of various process-induced defects; (2) development of new test structures and testing techniques for measuring gate-oxide capacitance, gate-overlap capacitance, and propagation delay; (3) development of a set of reliability chips that are used to evaluate failure mechanisms in CMOS/bulk: interconnect and contact electromigration and time-dependent dielectric breakdown; (4) development of MOSFET parameter extraction procedures for evaluating subthreshold characteristics; (5) evaluation of test chips and test strips on the second CRRES wafer run; (6) two dedicated fabrication runs for the CRRES chip flight parts; and (7) publication of two papers: one on the split-cross bridge resistor and another on asymmetrical SRAM (static random access memory) cells for single-event upset analysis.

  5. An experimental study of solid source diffusion by spin on dopants and its application for minimal silicon-on-insulator CMOS fabrication

    NASA Astrophysics Data System (ADS)

    Liu, Yongxun; Koga, Kazuhiro; Khumpuang, Sommawan; Nagao, Masayoshi; Matsukawa, Takashi; Hara, Shiro

    2017-06-01

    Solid source diffusions of phosphorus (P) and boron (B) into the half-inch (12.5 mm) minimal silicon (Si) wafers by spin on dopants (SOD) have been systematically investigated and the physical-vapor-deposited (PVD) titanium nitride (TiN) metal gate minimal silicon-on-insulator (SOI) complementary metal-oxide-semiconductor (CMOS) field-effect transistors (FETs) have successfully been fabricated using the developed SOD thermal diffusion technique. It was experimentally confirmed that a low temperature oxidation (LTO) process which depresses a boron silicide layer formation is effective way to remove boron-glass in a diluted hydrofluoric acid (DHF) solution. It was also found that top Si layer thickness of SOI wafers is reduced in the SOD thermal diffusion process because of its consumption by thermal oxidation owing to the oxygen atoms included in SOD films, which should be carefully considered in the ultrathin SOI device fabrication. Moreover, normal operations of the fabricated minimal PVD-TiN metal gate SOI-CMOS inverters, static random access memory (SRAM) cells and ring oscillators have been demonstrated. These circuit level results indicate that no remarkable particles and interface traps were introduced onto the minimal wafers during the device fabrication, and the developed solid source diffusion by SOD is useful for the fabrication of functional logic gate minimal SOI-CMOS integrated circuits.

  6. STRV RADMON: An integrated high-energy particle detector

    NASA Technical Reports Server (NTRS)

    Buehler, Martin; Soli, George; Blaes, Brent; Tardio, Gemma

    1993-01-01

    The RADMON (Radiation Monitor) was developed as a compact device with a 4-kbit SRAM particle detector and two p-FET total dose monitors. Thus it can be used as a spacecraft radiation alarm and in situ total dose monitor. This paper discusses the design and calibration of the SRAM for proton, alpha, and heavy ion detection. Upset rates for the RADMON, based on a newly developed space particle flux algorithm, are shown to vary over eight orders of magnitude. On the STRV (Space Technology Research Vehicle) the RADMON's SRAM will be used to detect trapped protons, solar flares, and cosmic rays and to evaluate our ability to predict space results from ground tests.

  7. Clementine RRELAX SRAM Particle Spectrometer

    NASA Technical Reports Server (NTRS)

    Buehler, M.; Soli, G.; Blaes, B.; Ratliff, J.; Garrett, H.

    1994-01-01

    The Clementine RRELAX radiation monitor chip consists of a p-FET total dose monitor and a 4-kbit SRAM particle spectrometer. Eight of these chips were included in the RRELAX and used to detect the passage of the Clementine (S/C) and the innerstage adapter (ISA) through the earth's radiation belts and the 21-Feb 1994 solar flare. This is the first space flight for this 1.2 micron rad-soft custom CMOS radiation monitor. This paper emphasizes results from the SRAM particle detector which showed that it a) has a detection range of five orders of magnitude relative to the 21-Feb solar flare, b) is not affected by electrons, and c) detected microflares occurring with a 26.5 day period.

  8. Simulation of SRAM SEU Sensitivity at Reduced Operating Temperatures

    NASA Technical Reports Server (NTRS)

    Sanathanamurthy, S.; Ramachandran, V.; Alles, M. L.; Reed, R. A.; Massengill, L. W.; Raman, A.; Turowski, M.; Mantooth, A.; Woods, B.; Barlow, M.; hide

    2009-01-01

    A new NanoTCAD-to-Spectre interface is applied to perform mixed-mode SEU simulations of an SRAM cell. Results using newly calibrated TCAD cold temperature substrate mobility models, and BSIM3 compact models extracted explicitly for the cold temperature designs, indicate a 33% reduction in SEU threshold for the range of temperatures simulated.

  9. A study of charged particles/radiation damage to VLSI device materials

    NASA Technical Reports Server (NTRS)

    Okyere, John G.

    1987-01-01

    Future spacecraft systems such as the manned space station will be subjected to low-dose long term radiation particles. Most electronic systems are affected by such particles. There is therefore a great need to understand device physics and failure mechanisms affected by radiation and to design circuits that would be less susceptible to radiation. Using 2 MeV electron radiation and bias temperature aging, it was found that MOS capacitors that were prepositively biased have lower flatband voltage shift and lesser increase in density of surface state charge than those that were not prepositively biased. In addition, it was shown that there is continued recovery of flatband voltage and density of state charge in irradiated capacitors during both room temperature anneal and 137 degree anneal. When nMOS transistors were subjected to 1 MeV proton radiation, charge pumping and current versus voltage measurements indicated that transconductance degradation, threshold voltage shifts and changes in interface states density may be the primary cause of nMOS transistor failure after radiation. Simulation studies using SPICE were performed on CMOS SRAM cells of various transistor sizes. It is shown that transistor sizing affects the noise margins of CMOS SRAM cells, and that as the beta ratio of the transistors of the CMOS SRAM cell decreases, the effective noise margin of the SRAM cell increases. Some suggestions were made in connection with the design of CMOS SRAMS that are hardened against single event upsets.

  10. Variability-aware compact modeling and statistical circuit validation on SRAM test array

    NASA Astrophysics Data System (ADS)

    Qiao, Ying; Spanos, Costas J.

    2016-03-01

    Variability modeling at the compact transistor model level can enable statistically optimized designs in view of limitations imposed by the fabrication technology. In this work we propose a variability-aware compact model characterization methodology based on stepwise parameter selection. Transistor I-V measurements are obtained from bit transistor accessible SRAM test array fabricated using a collaborating foundry's 28nm FDSOI technology. Our in-house customized Monte Carlo simulation bench can incorporate these statistical compact models; and simulation results on SRAM writability performance are very close to measurements in distribution estimation. Our proposed statistical compact model parameter extraction methodology also has the potential of predicting non-Gaussian behavior in statistical circuit performances through mixtures of Gaussian distributions.

  11. Perceived Social Relationships and Science Learning Outcomes for Taiwanese Eighth Graders: Structural Equation Modeling with a Complex Sampling Consideration

    ERIC Educational Resources Information Center

    Jen, Tsung-Hau; Lee, Che-Di; Chien, Chin-Lung; Hsu, Ying-Shao; Chen, Kuan-Ming

    2013-01-01

    Based on the Trends in International Mathematics and Science Study 2007 study and a follow-up national survey, data for 3,901 Taiwanese grade 8 students were analyzed using structural equation modeling to confirm a social-relation-based affection-driven model (SRAM). SRAM hypothesized relationships among students' perceived social relationships in…

  12. Area efficient layout design of CMOS circuit for high-density ICs

    NASA Astrophysics Data System (ADS)

    Mishra, Vimal Kumar; Chauhan, R. K.

    2018-01-01

    Efficient layouts have been an active area of research to accommodate the greater number of devices fabricated on a given chip area. In this work a new layout of CMOS circuit is proposed, with an aim to improve its electrical performance and reduce the chip area consumed. The study shows that the design of CMOS circuit and SRAM cells comprising tapered body reduced source fully depleted silicon on insulator (TBRS FD-SOI)-based n- and p-type MOS devices. The proposed TBRS FD-SOI n- and p-MOSFET exhibits lower sub-threshold slope and higher Ion to Ioff ratio when compared with FD-SOI MOSFET and FinFET technology. Other parameters like power dissipation, delay time and signal-to-noise margin of CMOS inverter circuits show improvement when compared with available inverter designs. The above device design is used in 6-T SRAM cell so as to see the effect of proposed layout on high density integrated circuits (ICs). The SNM obtained from the proposed SRAM cell is 565 mV which is much better than any other SRAM cell designed at 50 nm gate length MOS device. The Sentaurus TCAD device simulator is used to design the proposed MOS structure.

  13. VLSI Design of Trusted Virtual Sensors.

    PubMed

    Martínez-Rodríguez, Macarena C; Prada-Delgado, Miguel A; Brox, Piedad; Baturone, Iluminada

    2018-01-25

    This work presents a Very Large Scale Integration (VLSI) design of trusted virtual sensors providing a minimum unitary cost and very good figures of size, speed and power consumption. The sensed variable is estimated by a virtual sensor based on a configurable and programmable PieceWise-Affine hyper-Rectangular (PWAR) model. An algorithm is presented to find the best values of the programmable parameters given a set of (empirical or simulated) input-output data. The VLSI design of the trusted virtual sensor uses the fast authenticated encryption algorithm, AEGIS, to ensure the integrity of the provided virtual measurement and to encrypt it, and a Physical Unclonable Function (PUF) based on a Static Random Access Memory (SRAM) to ensure the integrity of the sensor itself. Implementation results of a prototype designed in a 90-nm Complementary Metal Oxide Semiconductor (CMOS) technology show that the active silicon area of the trusted virtual sensor is 0.86 mm 2 and its power consumption when trusted sensing at 50 MHz is 7.12 mW. The maximum operation frequency is 85 MHz, which allows response times lower than 0.25 μ s. As application example, the designed prototype was programmed to estimate the yaw rate in a vehicle, obtaining root mean square errors lower than 1.1%. Experimental results of the employed PUF show the robustness of the trusted sensing against aging and variations of the operation conditions, namely, temperature and power supply voltage (final value as well as ramp-up time).

  14. VLSI Design of Trusted Virtual Sensors

    PubMed Central

    2018-01-01

    This work presents a Very Large Scale Integration (VLSI) design of trusted virtual sensors providing a minimum unitary cost and very good figures of size, speed and power consumption. The sensed variable is estimated by a virtual sensor based on a configurable and programmable PieceWise-Affine hyper-Rectangular (PWAR) model. An algorithm is presented to find the best values of the programmable parameters given a set of (empirical or simulated) input-output data. The VLSI design of the trusted virtual sensor uses the fast authenticated encryption algorithm, AEGIS, to ensure the integrity of the provided virtual measurement and to encrypt it, and a Physical Unclonable Function (PUF) based on a Static Random Access Memory (SRAM) to ensure the integrity of the sensor itself. Implementation results of a prototype designed in a 90-nm Complementary Metal Oxide Semiconductor (CMOS) technology show that the active silicon area of the trusted virtual sensor is 0.86 mm2 and its power consumption when trusted sensing at 50 MHz is 7.12 mW. The maximum operation frequency is 85 MHz, which allows response times lower than 0.25 μs. As application example, the designed prototype was programmed to estimate the yaw rate in a vehicle, obtaining root mean square errors lower than 1.1%. Experimental results of the employed PUF show the robustness of the trusted sensing against aging and variations of the operation conditions, namely, temperature and power supply voltage (final value as well as ramp-up time). PMID:29370141

  15. Response Modeling of Lightweight Charring Ablators and Thermal Radiation Testing Results

    NASA Technical Reports Server (NTRS)

    Congdon, William M.; Curry, Donald M.; Rarick, Douglas A.; Collins, Timothy J.

    2003-01-01

    Under NASA's In-Space Propulsion/Aerocapture Program, ARA conducted arc-jet and thermal-radiation ablation test series in 2003 for advanced development, characterization, and response modeling of SRAM-20, SRAM-17, SRAM-14, and PhenCarb-20 ablators. Testing was focused on the future Titan Explorer mission. Convective heating rates (CW) were as high as 153 W/sq cm in the IHF and radiation rates were 100 W/sq cm in the Solar Tower Facility. The ablators showed good performance in the radiation environment without spallation, which was initially a concern, but they also showed higher in-depth temperatures when compared to analytical predictions based on arc-jet thermal-ablation response models. More testing in 2003 is planned in both of these facility to generate a sufficient data base for Titan TPS engineering.

  16. 65 nm LP/GP mix low cost platform for multi-media wireless and consumer applications

    NASA Astrophysics Data System (ADS)

    Tavel, B.; Duriez, B.; Gwoziecki, R.; Basso, M. T.; Julien, C.; Ortolland, C.; Laplanche, Y.; Fox, R.; Sabouret, E.; Detcheverry, C.; Boeuf, F.; Morin, P.; Barge, D.; Bidaud, M.; Biénacel, J.; Garnier, P.; Cooper, K.; Chapon, J. D.; Trouiller, Y.; Belledent, J.; Broekaart, M.; Gouraud, P.; Denais, M.; Huard, V.; Rochereau, K.; Difrenza, R.; Planes, N.; Marin, M.; Boret, S.; Gloria, D.; Vanbergue, S.; Abramowitz, P.; Vishnubhotla, L.; Reber, D.; Stolk, P.; Woo, M.; Arnaud, F.

    2006-04-01

    A complete 65 nm CMOS platform, called LP/GP Mix, has been developed employing thick oxide transistor (IO), Low Power (LP) and General Purpose (GP) devices on the same chip. Dedicated to wireless multi-media and consumer applications, this new triple gate oxide platform is low cost (+1mask only) and saves over 35% of dynamic power with the use of the low operating voltage GP. The LP/GP mix shows competitive digital performance with a ring oscillator (FO = 1) speed equal to 7 ps per stage (GP) and 6T-SRAM static power lower than 10 pA/cell (LP). Compatible with mixed-signal design requirements, transistors show high voltage gain, low mismatch factor and low flicker noise. Moreover, to address mobile phone demands, excellent RF performance has been achieved with FT = 160 GHz for LP and 280 GHz for GP nMOS transistors.

  17. Design of replica bit line control circuit to optimize power for SRAM

    NASA Astrophysics Data System (ADS)

    Pengjun, Wang; Keji, Zhou; Huihong, Zhang; Daohui, Gong

    2016-12-01

    A design of a replica bit line control circuit to optimize power for SRAM is proposed. The proposed design overcomes the limitations of the traditional replica bit line control circuit, which cannot shut off the word line in time. In the novel design, the delay of word line enable and disable paths are balanced. Thus, the word line can be opened and shut off in time. Moreover, the chip select signal is decomposed, which prevents feedback oscillations caused by the replica bit line and the replica word line. As a result, the switch power caused by unnecessary discharging of the bit line is reduced. A 2-kb SRAM is fully custom designed in an SMIC 65-nm CMOS process. The traditional replica bit line control circuit and the new replica bit line control circuit are used in the designed SRAM, and their performances are compared with each other. The experimental results show that at a supply voltage of 1.2 V, the switch power consumption of the memory array can be reduced by 53.7%. Project supported by the Zhejiang Provincial Natural Science Foundation of China (No. LQ14F040001), the National Natural Science Foundation of China (Nos. 61274132, 61234002, 61474068), and the K. C. Wong Magna Fund in Ningbo University.

  18. Simple aerosol correction technique based on the spectral relationships of the aerosol multiple-scattering reflectances for atmospheric correction over the oceans.

    PubMed

    Ahn, Jae-Hyun; Park, Young-Je; Kim, Wonkook; Lee, Boram

    2016-12-26

    An estimation of the aerosol multiple-scattering reflectance is an important part of the atmospheric correction procedure in satellite ocean color data processing. Most commonly, the utilization of two near-infrared (NIR) bands to estimate the aerosol optical properties has been adopted for the estimation of the effects of aerosols. Previously, the operational Geostationary Color Ocean Imager (GOCI) atmospheric correction scheme relies on a single-scattering reflectance ratio (SSE), which was developed for the processing of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data to determine the appropriate aerosol models and their aerosol optical thicknesses. The scheme computes reflectance contributions (weighting factor) of candidate aerosol models in a single scattering domain then spectrally extrapolates the single-scattering aerosol reflectance from NIR to visible (VIS) bands using the SSE. However, it directly applies the weight value to all wavelengths in a multiple-scattering domain although the multiple-scattering aerosol reflectance has a non-linear relationship with the single-scattering reflectance and inter-band relationship of multiple scattering aerosol reflectances is non-linear. To avoid these issues, we propose an alternative scheme for estimating the aerosol reflectance that uses the spectral relationships in the aerosol multiple-scattering reflectance between different wavelengths (called SRAMS). The process directly calculates the multiple-scattering reflectance contributions in NIR with no residual errors for selected aerosol models. Then it spectrally extrapolates the reflectance contribution from NIR to visible bands for each selected model using the SRAMS. To assess the performance of the algorithm regarding the errors in the water reflectance at the surface or remote-sensing reflectance retrieval, we compared the SRAMS atmospheric correction results with the SSE atmospheric correction using both simulations and in situ match-ups with the GOCI data. From simulations, the mean errors for bands from 412 to 555 nm were 5.2% for the SRAMS scheme and 11.5% for SSE scheme in case-I waters. From in situ match-ups, 16.5% for the SRAMS scheme and 17.6% scheme for the SSE scheme in both case-I and case-II waters. Although we applied the SRAMS algorithm to the GOCI, it can be applied to other ocean color sensors which have two NIR wavelengths.

  19. Free-Flying Magnetometer Data System

    NASA Technical Reports Server (NTRS)

    Blaes, B.; Javadi, H.; Spencer, H.

    2000-01-01

    The Free-Flying Magnetometer (FFM) is an autonomous "sensorcraft" developed at the Jet Propulsion Laboratory (JPL) for the Enstrophy sounding rocket mission. This mission was a collaborative project between the University of New Hampshire, Cornell University and JPL. The science goal of the mission was the study of current filamentation phenomena in the northern auroral region through multipoint measurements of magnetic field. The technical objective of the mission was the proof of concept of the JPL FFM design and the demonstration of an in-situ multipoint measurement technique employing many free-flying spacecraft. Four FFMs were successfully deployed from a sounding rocket launched from Poker Flats, Alaska on February 11, 1999. These hockey-puck-sized (80 mm diameter, 38 mm. height, 250 gram mass) free flyers each carry a miniature 3-axis flux-gate magnetometer that output +/- 2 V signals corresponding to a +/- 60,000 nT measurement range for each axis. The FFM uses a synchronized four-channel Sigma(Delta) Analog-to-Digital Converter (ADC) having a dynamic range of +/- 2.5V and converting at a rate of 279 samples/second/channel. Three channels are used to digitize the magnetometer signals to 17-bit (1.144 nT/bit) resolution. The fourth ADC channel is multiplexed for system monitoring of four temperature sensors and two battery voltages. The FFM also contains two sun sensors, a laser diode which emits a fan-shaped beam, a miniature S-band transmitter for direct communication to the ground station antennas, an ultra-stable Temperature Compensated Crystal Oscillator (TCXO) clock, an integrated data subsystem implemented in a Field-Programmable Gate Array (FPGA), a 4 Mbit Static Random Access Memory (SRAM) for data storage and Lithium Thionyl Chloride batteries for power. Communicating commands to the FFM prior to deployment is achieved with an infrared (IR) link. The FFM IR receiver responds to 9-bit pulse coded signals that are generated by an IR Light Emitting Diode (LED) in the payload for turning FFM power on or off and placing the FFM in a test mode or flight mode. The IR links are also used to synchronize (zero) the clocks onboard all the FFMs through a reset pulse originating from the payload GPS receiver that is issued when the FFMs are in flight mode. The FPGA based data subsystem manages continuous data collection from the four ADC channels and sun sensors, formatting and storing the data to SRAM, and controlling downlink transmission. The transmitter is powered only after a 2547 frame SRAM buffer has been filled (approx. 5 minutes of data). The data is Viterbi encoded and sent to the S-band transmitter via a First-In-First-Out (FIFO) buffer who's output is clocked at 100 bits/second. After the 26-second transmission, the transmitter is turned off to reduce noise coupling to the sensitive magnetometer. The data subsystem control consists of a master state machine that performs data flow management and is interfaced through a prioritized interrupt scheme to state machines that service the ADC, sun sensors and transmitter FIFO. Continuous data collection prevents the missing of data during transmission and provides implicit time tagging of the data acquired by the ADC because of synchronization with the TCXO clock.

  20. Combined methods of tolerance increasing for embedded SRAM

    NASA Astrophysics Data System (ADS)

    Shchigorev, L. A.; Shagurin, I. I.

    2016-10-01

    The abilities of combined use of different methods of fault tolerance increasing for SRAM such as error detection and correction codes, parity bits, and redundant elements are considered. Area penalties due to using combinations of these methods are investigated. Estimation is made for different configurations of 4K x 128 RAM memory block for 28 nm manufacturing process. Evaluation of the effectiveness of the proposed combinations is also reported. The results of these investigations can be useful for designing fault-tolerant “system on chips”.

  1. 8755 Emulator Design

    DTIC Science & Technology

    1988-12-01

    Break Control....................51 8755 I/O Control..................54 Z-100 Control Software................. 55 Pass User Memory...the emulator SRAM and the other is 55 for the target SRAM. If either signal is replaced by the NACK signal the host computer displays an error message...Block Diagram 69 AUU M/M 8 in Fiur[:. cemti Daga 70m F’M I-- ’I ANLAD AMam U52 COMM ow U2 i M.2 " -n ax- U 6_- Figure 2b. Schematic Diagram 71 )-M -A -I

  2. Impact of line edge roughness on the performance of 14-nm FinFET: Device-circuit Co-design

    NASA Astrophysics Data System (ADS)

    Rathore, Rituraj Singh; Rana, Ashwani K.

    2018-01-01

    With the evolution of sub-20 nm FinFET technology, line edge roughness (LER) has been identified as a critical problem and may result in critical device parameter variation and performance limitation in the future VLSI circuit application. In the present work, an analytical model of fin-LER has been presented, which shows the impact of correlated and uncorrelated LER on FinFET structure. Further, the influence of correlated and uncorrelated fin- LER on all electrical performance parameters is thoroughly investigated using the three-dimensional (3-D) Technology Computer Aided Design (TCAD) simulations for 14-nm technology node. Moreover, the impact of all possible fin shapes on threshold voltage (VTH), drain induced barrier lowering (DIBL), on-current (ION), and off-current (IOFF) has been compared with the well calibrated rectangular FinFET structure. In addition, the influence of all possible fin geometries on the read stability of six-transistor (6-T) Static-Random-Access-Memory (SRAM) has been investigated. The study reveals that fin-LER plays a vital role as it directly governs the electrostatics of the FinFET structure. This has been found that there is a high degree of fluctuations in all performance parameters for uncorrelated fin-LER type FinFETs as compared to correlated fin-LER with respect to rectangular FinFET structure. This paper gives physical insight of FinFET design, especially in sub-20 nm technology nodes by concluding that the impact of LER on electrical parameters are minimum for correlated LER.

  3. Real-time soft error rate measurements on bulk 40 nm SRAM memories: a five-year dual-site experiment

    NASA Astrophysics Data System (ADS)

    Autran, J. L.; Munteanu, D.; Moindjie, S.; Saad Saoud, T.; Gasiot, G.; Roche, P.

    2016-11-01

    This paper reports five years of real-time soft error rate experimentation conducted with the same setup at mountain altitude for three years and then at sea level for two years. More than 7 Gbit of SRAM memories manufactured in CMOS bulk 40 nm technology have been subjected to the natural radiation background. The intensity of the atmospheric neutron flux has been continuously measured on site during these experiments using dedicated neutron monitors. As the result, the neutron and alpha component of the soft error rate (SER) have been very accurately extracted from these measurements, refining the first SER estimations performed in 2012 for this SRAM technology. Data obtained at sea level evidence, for the first time, a possible correlation between the neutron flux changes induced by the daily atmospheric pressure variations and the measured SER. Finally, all of the experimental data are compared with results obtained from accelerated tests and numerical simulation.

  4. 78 FR 35645 - Certain Static Random Access Memories and Products Containing Same; Commission Determination...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-792] Certain Static Random Access Memories and Products Containing Same; Commission Determination Affirming a Final Initial Determination..., and the sale within the United States after importation of certain static random access memories and...

  5. 78 FR 25767 - Certain Static Random Access Memories and Products Containing Same; Commission Determination To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-792] Certain Static Random Access Memories and Products Containing Same; Commission Determination To Review in Part a Final Initial... States after importation of certain static random access memories and products containing the same by...

  6. Heavy Ion Testing at the Galactic Cosmic Ray Energy Peak

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Xapsos, Michael A.; LaBel, Kenneth A.; Marshall, Paul W.; Heidel, David F.; Rodbell, Kennth P.; Hakey, Mark C.; Dodd, Paul E.; Shanneyfelt, Marty R.; Schwank, James R.; hide

    2009-01-01

    A 1 GeV/u 5 6Fe ion beam allows for true 90deg tilt irradiations of various microelectronic c-0mponents and reveals relevant upset trends at the GCR Hux energy peak. Three SRAMs and an SRAM-based FPGA evaluated at the NASA Space Radiation Effects Laboratory demonstrate that a 90deg tilt irradiation yields a unique device response. These tilt angle effects need t-0 be screened for, and if found, pursued with radiation transport simulations to quantify their impact on event rate calculations.

  7. Design and implementation of power efficient 10-bit dual port SRAM on 28 nm technology

    NASA Astrophysics Data System (ADS)

    Gulati, Anmol; Gupta, Ashutosh; Murgai, Shruti; Bhaskar, Lala

    2016-03-01

    In this paper, 10 bit synchronous clock gated Dual port RAM has been designed. The negative latch based clock gating technique has been employed to optimize the power of the design. The design has been implemented on XV7K70T device, -3 speed grade, and kintex 7 FPGA family on Xilinx ISE Design Suite 14.7 using 28 nm technology. The design has been synthesized using Verilog HDL. We have been successful in achieving approximately 55 % reduction in total clock power, 81.55% reduction in BRAM power, 82.65%, 0.07%, 1.04% and 11.31% reduction in static power, 72.32%, 38.60%, 68.74% and 71.97%, reduction in dynamic power and 72.44%, 16.96%, 60.88% and 71.06% reduction in total supply power at 1 THz, 1GHz, 100 GHz and 1000 GHz frequency respectively. The power of the device has been calculated using XPower Analyzer tool of Xilinx ISE Design Suite 14.7.

  8. REDUCTIONS WITHOUT REGRET: HISTORICAL PERSPECTIVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swegle, J.; Tincher, D.

    This is the first of three papers (in addition to an introductory summary) aimed at providing a framework for evaluating future reductions or modifications of the U.S. nuclear force, first by considering previous instances in which nuclear-force capabilities were eliminated; second by looking forward into at least the foreseeable future at the features of global and regional deterrence (recognizing that new weapon systems currently projected will have expected lifetimes stretching beyond our ability to predict the future); and third by providing examples of past or possible undesirable outcomes in the shaping of the future nuclear force, as well as somemore » closing thoughts for the future. This paper examines the circumstances and consequences of the elimination of The INF-range Pershing II ballistic missile and Gryphon Ground-Launched Cruise Missile (GLCM), deployed by NATO under a dual-track strategy to counter Soviet intermediate-range missiles while pursuing negotiations to limit or eliminate all of these missiles. The Short-Range Attack Missile (SRAM), which was actually a family of missiles including SRAM A, SRAM B (never deployed), and SRAM II and SRAM T, these last two cancelled during an over-budget/behind-schedule development phase as part of the Presidential Nuclear Initiatives of 1991 and 1992. The nuclear-armed version of the Tomahawk Land-Attack Cruise Missile (TLAM/N), first limited to shore-based storage by the PNIs, and finally eliminated in deliberations surrounding the 2010 Nuclear Posture Review Report. The Missile-X (MX), or Peacekeeper, a heavy MIRVed ICBM, deployed in fixed silos, rather than in an originally proposed mobile mode. Peacekeeper was likely intended as a bargaining chip to facilitate elimination of Russian heavy missiles. The plan failed when START II did not enter into force, and the missiles were eliminated at the end of their intended service life. The Small ICBM (SICBM), or Midgetman, a road-mobile, single-warhead missile for which per-unit costs were climbing when it was eliminated under the PNIs. Although there were liabilities associated with each of these systems, there were also unique capabilities; this paper lays out the pros and cons for each. Further, we articulate the capabilities that were eliminated with these systems.« less

  9. Reconfigurable fault tolerant avionics system

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. M.; Asami, K.; Cho, Mengu

    This paper presents the design of a reconfigurable avionics system based on modern Static Random Access Memory (SRAM)-based Field Programmable Gate Array (FPGA) to be used in future generations of nano satellites. A major concern in satellite systems and especially nano satellites is to build robust systems with low-power consumption profiles. The system is designed to be flexible by providing the capability of reconfiguring itself based on its orbital position. As Single Event Upsets (SEU) do not have the same severity and intensity in all orbital locations, having the maximum at the South Atlantic Anomaly (SAA) and the polar cusps, the system does not have to be fully protected all the time in its orbit. An acceptable level of protection against high-energy cosmic rays and charged particles roaming in space is provided within the majority of the orbit through software fault tolerance. Check pointing and roll back, besides control flow assertions, is used for that level of protection. In the minority part of the orbit where severe SEUs are expected to exist, a reconfiguration for the system FPGA is initiated where the processor systems are triplicated and protection through Triple Modular Redundancy (TMR) with feedback is provided. This technique of reconfiguring the system as per the level of the threat expected from SEU-induced faults helps in reducing the average dynamic power consumption of the system to one-third of its maximum. This technique can be viewed as a smart protection through system reconfiguration. The system is built on the commercial version of the (XC5VLX50) Xilinx Virtex5 FPGA on bulk silicon with 324 IO. Simulations of orbit SEU rates were carried out using the SPENVIS web-based software package.

  10. Memory Applications Using Resonant Tunneling Diodes

    NASA Astrophysics Data System (ADS)

    Shieh, Ming-Huei

    Resonant tunneling diodes (RTDs) producing unique folding current-voltage (I-V) characteristics have attracted considerable research attention due to their promising application in signal processing and multi-valued logic. The negative differential resistance of RTDs renders the operating points self-latching and stable. We have proposed a multiple -dimensional multiple-state RTD-based static random-access memory (SRAM) cell in which the number of stable states can significantly be increased to (N + 1)^ m or more for m number of N-peak RTDs connected in series. The proposed cells take advantage of the hysteresis and folding I-V characteristics of RTD. Several cell designs are presented and evaluated. A two-dimensional nine-state memory cell has been implemented and demonstrated by a breadboard circuit using two 2-peak RTDs. The hysteresis phenomenon in a series of RTDs is also further analyzed. The switch model provided in SPICE 3 can be utilized to simulate the hysteretic I-V characteristics of RTDs. A simple macro-circuit is described to model the hysteretic I-V characteristic of RTD for circuit simulation. A new scheme for storing word-wide multiple-bit information very efficiently in a single memory cell using RTDs is proposed. An efficient and inexpensive periphery circuit to read from and write into the cell is also described. Simulation results on the design of a 3-bit memory cell scheme using one-peak RTDs are also presented. Finally, a binary transistor-less memory cell which is only composed of a pair of RTDs and an ordinary rectifier diode is presented and investigated. A simple means for reading and writing information from or into the memory cell is also discussed.

  11. Layout decomposition of self-aligned double patterning for 2D random logic patterning

    NASA Astrophysics Data System (ADS)

    Ban, Yongchan; Miloslavsky, Alex; Lucas, Kevin; Choi, Soo-Han; Park, Chul-Hong; Pan, David Z.

    2011-04-01

    Self-aligned double pattering (SADP) has been adapted as a promising solution for sub-30nm technology nodes due to its lower overlay problem and better process tolerance. SADP is in production use for 1D dense patterns with good pitch control such as NAND Flash memory applications, but it is still challenging to apply SADP to 2D random logic patterns. The favored type of SADP for complex logic interconnects is a two mask approach using a core mask and a trim mask. In this paper, we first describe layout decomposition methods of spacer-type double patterning lithography, then report a type of SADP compliant layouts, and finally report SADP applications on Samsung 22nm SRAM layout. For SADP decomposition, we propose several SADP-aware layout coloring algorithms and a method of generating lithography-friendly core mask patterns. Experimental results on 22nm node designs show that our proposed layout decomposition for SADP effectively decomposes any given layouts.

  12. Impact of Device Scaling on Deep Sub-micron Transistor Reliability: A Study of Reliability Trends using SRAM

    NASA Technical Reports Server (NTRS)

    White, Mark; Huang, Bing; Qin, Jin; Gur, Zvi; Talmor, Michael; Chen, Yuan; Heidecker, Jason; Nguyen, Duc; Bernstein, Joseph

    2005-01-01

    As microelectronics are scaled in to the deep sub-micron regime, users of advanced technology CMOS, particularly in high-reliability applications, should reassess how scaling effects impact long-term reliability. An experimental based reliability study of industrial grade SRAMs, consisting of three different technology nodes, is proposed to substantiate current acceleration models for temperature and voltage life-stress relationships. This reliability study utilizes step-stress techniques to evaluate memory technologies (0.25mum, 0.15mum, and 0.13mum) embedded in many of today's high-reliability space/aerospace applications. Two acceleration modeling approaches are presented to relate experimental FIT calculations to Mfr's qualification data.

  13. A Low Power and High Throughput Self Synchronous FPGA Using 65nm CMOS with Throughput Optimization by Pipeline Alignment

    NASA Astrophysics Data System (ADS)

    Stefan Devlin, Benjamin; Nakura, Toru; Ikeda, Makoto; Asada, Kunihiro

    We detail a self synchronous field programmable gate array (SSFPGA) with dual-pipeline (DP) architecture to conceal pre-charge time for dynamic logic, and its throughput optimization by using pipeline alignment implemented on benchmark circuits. A self synchronous LUT (SSLUT) consists of a three input tree-type structure with 8bits of SRAM for programming. A self synchronous switch box (SSSB) consists of both pass transistors and buffers to route signals, with 12bits of SRAM. One common block with one SSLUT and one SSSB occupies 2.2Mλ2 area with 35bits of SRAM, and the prototype SSFPGA with 34 × 30 (1020) blocks is designed and fabricated using 65nm CMOS. Measured results show at 1.2V 430MHz and 647MHz operation for a 3bit ripple carry adder, without and with throughput optimization, respectively. We find that using the proposed pipeline alignment techniques we can perform at maximum throughput of 647MHz in various benchmarks on the SSFPGA. We demonstrate up to 56.1 times throughput improvement with our pipeline alignment techniques. The pipeline alignment is carried out within the number of logic elements in the array and pipeline buffers in the switching matrix.

  14. 76 FR 35238 - Notice of Receipt of Complaint; Solicitation of Comments Relating to the Public Interest

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... Static Random Access Memories and Products Containing Same, DN 2816; the Commission is soliciting... importation of certain static random access memories and products containing same. The complaint names as...

  15. Bench-level characterization of a CMOS standard-cell D-latch using alpha-particle sensitive test circuits

    NASA Technical Reports Server (NTRS)

    Blaes, B. R.; Soli, G. A.; Buehler, M. G.

    1991-01-01

    A methodology is described for predicting the SEU susceptibility of a standard-cell D-latch using an alpha-particle sensitive SRAM, SPICE critical charge simulation results, and alpha-particle interaction physics. Measurements were made on a 1.6-micron n-well CMOS 4-kb test SRAM irradiated with an Am-241 alpha-particle source. A collection depth of 6.09 micron was determined using these results and TRIM computer code. Using this collection depth and SPICE derived critical charge results on the latch design, an LET threshold of 34 MeV sq cm/mg was predicted. Heavy ion tests were then performed on the latch and an LET threshold of 41 MeV sq cm/mg was determined.

  16. Low-Dimensional Nanomaterials and Molecular Dielectrics for Radiation-Hard Electronics

    NASA Astrophysics Data System (ADS)

    McMorrow, Julian

    The electronic materials research driving Moore's law has provided several decades of increasingly powerful yet simultaneously miniaturized computer technologies. As we approach the physical and practical limits of what can be accomplished with silicon electronics, we look to new materials to drive innovation in future electronic applications. New materials paradigms require the development of understanding from first principles to the demonstration of applications that comes with mature technologies. Semiconducting single-walled carbon nanotubes (SWCNTs), single- and few-layer molybdenum disulfide (MoS2) and self-assembled nanodielectric (SAND) gate materials have all made significant impacts in the research field of unconventional electronic materials. The materials selection, interfaces between materials, processing steps to assemble them, and their interaction with their environment all have significant bearing on the operation of the overall device. Operating in harsh radiation environments, like those of satellites orbiting the Earth, present unique challenges to the functionality and reliability of electronic devices. Because the future of space-bound electronics is often informed by the technology of terrestrial devices, a proactive approach is adopted to identify and understand the radiation response of new materials systems as they emerge and develop. The work discussed here drives the innovation and development of multiple nanomaterial based electronic technologies while simultaneously exploring their relevant radiation response mechanisms. First, collaborative efforts result in the demonstration of a SWCNT-based circuit technology that is solution processed, large-area, and compatible with flexible substrates. The statistical characterization of SWCNT transistors enables the development of robust doping and encapsulation schemes, which make the SWCNT circuits stable, scalable, and low-power. These SWCNTs are then integrated into static random access memory (SRAM) cells, an accomplishment that illustrates the technological relevance of this work by implementing a highly utilized component of modern day computing. Next, these SRAM devices demonstrate functionality as true random number generators (TRNGs), which are critical components in cryptography and encryption. The randomness of these SWCNT TRNGs is verified by a suite of statistical tests. This achievement has implications for securing data and communication in future solution-processed, large-area, flexible electronics. The unprecedented integration achieved by the underlying SWCNT doping and encapsulation motivates the study of this technology in a radiation environment. Doing so results in an understanding of the fundamental charge trapping mechanisms responsible for the radiation response in this system. The integrated nature of these devices enables, for the first time, the observation of system-level effects in a SWCNT integrated circuit technology. This technology is found to be total ionizing dose-hard, a promising result for the adoption of SWCNTs in future space-bound applications. Compared to SWCNTs, the field of MoS2 electronics is relatively nascent. As a result, studies of radiation effects in MoS2 devices focus on the fundamental mechanisms at play in the materials system. Here, we reveal the critical role of atmospheric adsorbates in the radiation effects of MoS2 transistors by measuring their response to vacuum ultraviolet radiation. These results highlight the importance of controlling the atmosphere of MoS2 devices during irradiation. Furthermore, we make recommendations for radiation-hard MoS2-based devices in the future as the technology continues to mature. One such recommendation is the incorporation of specialized dielectrics with proven radiation hardness. To this end, we address the materials integration challenge of incorporating SAND gate dielectrics on arbitrary substrates. We explore a novel approach for preparing metal substrates for SAND deposition, supporting the SAND superlattice structure and its superlative electronic properties on a metal surface. This result is critical for conducting fundamental transport studies when integrating SAND with novel semiconductor materials, as well as enabling complex circuit integration and SAND on flexible substrates. Altogether, these works drive the integration of novel nanoelectronic materials for future electronics while providing an understanding of their varying radiation response mechanisms to enable their adoption in future space-bound applications.

  17. Are randomly grown graphs really random?

    PubMed

    Callaway, D S; Hopcroft, J E; Kleinberg, J M; Newman, M E; Strogatz, S H

    2001-10-01

    We analyze a minimal model of a growing network. At each time step, a new vertex is added; then, with probability delta, two vertices are chosen uniformly at random and joined by an undirected edge. This process is repeated for t time steps. In the limit of large t, the resulting graph displays surprisingly rich characteristics. In particular, a giant component emerges in an infinite-order phase transition at delta=1/8. At the transition, the average component size jumps discontinuously but remains finite. In contrast, a static random graph with the same degree distribution exhibits a second-order phase transition at delta=1/4, and the average component size diverges there. These dramatic differences between grown and static random graphs stem from a positive correlation between the degrees of connected vertices in the grown graph-older vertices tend to have higher degree, and to link with other high-degree vertices, merely by virtue of their age. We conclude that grown graphs, however randomly they are constructed, are fundamentally different from their static random graph counterparts.

  18. Design and qualification of the SEU/TD Radiation Monitor chip

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Blaes, Brent R.; Soli, George A.; Zamani, Nasser; Hicks, Kenneth A.

    1992-01-01

    This report describes the design, fabrication, and testing of the Single-Event Upset/Total Dose (SEU/TD) Radiation Monitor chip. The Radiation Monitor is scheduled to fly on the Mid-Course Space Experiment Satellite (MSX). The Radiation Monitor chip consists of a custom-designed 4-bit SRAM for heavy ion detection and three MOSFET's for monitoring total dose. In addition the Radiation Monitor chip was tested along with three diagnostic chips: the processor monitor and the reliability and fault chips. These chips revealed the quality of the CMOS fabrication process. The SEU/TD Radiation Monitor chip had an initial functional yield of 94.6 percent. Forty-three (43) SEU SRAM's and 14 Total Dose MOSFET's passed the hermeticity and final electrical tests and were delivered to LL.

  19. Comparisons of single event vulnerability of GaAs SRAMS

    NASA Astrophysics Data System (ADS)

    Weatherford, T. R.; Hauser, J. R.; Diehl, S. E.

    1986-12-01

    A GaAs MESFET/JFET model incorporated into SPICE has been used to accurately describe C-EJFET, E/D MESFET and D MESFET/resistor GaAs memory technologies. These cells have been evaluated for critical charges due to gate-to-drain and drain-to-source charge collection. Low gate-to-drain critical charges limit conventional GaAs SRAM soft error rates to approximately 1E-6 errors/bit-day. SEU hardening approaches including decoupling resistors, diodes, and FETs have been investigated. Results predict GaAs RAM cell critical charges can be increased to over 0.1 pC. Soft error rates in such hardened memories may approach 1E-7 errors/bit-day without significantly reducing memory speed. Tradeoffs between hardening level, performance and fabrication complexity are discussed.

  20. NRAM: a disruptive carbon-nanotube resistance-change memory.

    PubMed

    Gilmer, D C; Rueckes, T; Cleveland, L

    2018-04-03

    Advanced memory technology based on carbon nanotubes (CNTs) (NRAM) possesses desired properties for implementation in a host of integrated systems due to demonstrated advantages of its operation including high speed (nanotubes can switch state in picoseconds), high endurance (over a trillion), and low power (with essential zero standby power). The applicable integrated systems for NRAM have markets that will see compound annual growth rates (CAGR) of over 62% between 2018 and 2023, with an embedded systems CAGR of 115% in 2018-2023 (http://bccresearch.com/pressroom/smc/bcc-research-predicts:-nram-(finally)-to-revolutionize-computer-memory). These opportunities are helping drive the realization of a shift from silicon-based to carbon-based (NRAM) memories. NRAM is a memory cell made up of an interlocking matrix of CNTs, either touching or slightly separated, leading to low or higher resistance states respectively. The small movement of atoms, as opposed to moving electrons for traditional silicon-based memories, renders NRAM with a more robust endurance and high temperature retention/operation which, along with high speed/low power, is expected to blossom in this memory technology to be a disruptive replacement for the current status quo of DRAM (dynamic RAM), SRAM (static RAM), and NAND flash memories.

  1. NRAM: a disruptive carbon-nanotube resistance-change memory

    NASA Astrophysics Data System (ADS)

    Gilmer, D. C.; Rueckes, T.; Cleveland, L.

    2018-04-01

    Advanced memory technology based on carbon nanotubes (CNTs) (NRAM) possesses desired properties for implementation in a host of integrated systems due to demonstrated advantages of its operation including high speed (nanotubes can switch state in picoseconds), high endurance (over a trillion), and low power (with essential zero standby power). The applicable integrated systems for NRAM have markets that will see compound annual growth rates (CAGR) of over 62% between 2018 and 2023, with an embedded systems CAGR of 115% in 2018-2023 (http://bccresearch.com/pressroom/smc/bcc-research-predicts:-nram-(finally)-to-revolutionize-computer-memory). These opportunities are helping drive the realization of a shift from silicon-based to carbon-based (NRAM) memories. NRAM is a memory cell made up of an interlocking matrix of CNTs, either touching or slightly separated, leading to low or higher resistance states respectively. The small movement of atoms, as opposed to moving electrons for traditional silicon-based memories, renders NRAM with a more robust endurance and high temperature retention/operation which, along with high speed/low power, is expected to blossom in this memory technology to be a disruptive replacement for the current status quo of DRAM (dynamic RAM), SRAM (static RAM), and NAND flash memories.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dondero, Rachel Elizabeth

    The increased use of Field Programmable Gate Arrays (FPGAs) in critical systems brings new challenges in securing the diversely programmable fabric from cyber-attacks. FPGAs are an inexpensive, efficient, and flexible alternative to Application Specific Integrated Circuits (ASICs), which are becoming increasingly expensive and impractical for low volume manufacturing as technology nodes continue to shrink. Unfortunately, FPGAs are not designed for high security applications, and their high-flexibility lends itself to low security and vulnerability to malicious attacks. Similar to securing an ASIC’s functionality, FPGA programmers can exploit the inherent randomness introduced into hardware structures during fabrication for security applications. Physically Unclonablemore » Functions (PUFs) are one such solution that uses the die specific variability in hardware fabrication for both secret key generation and verification. PUFs strive to be random, unique, and reliable. Throughout recent years many PUF structures have been presented to try and maximize these three design constraints, reliability being the most difficult of the three to achieve. This thesis presents a new PUF structure that combines two elementary PUF concepts (a bi-stable SRAM PUF and a delay-based arbiter PUF) to create a PUF with increased reliability, while maintaining both random and unique qualities. Properties of the new PUF will be discussed as well as the various design modifications that can be made to tweak the desired performance and overhead.« less

  3. First 65nm tape-out using inverse lithography technology (ILT)

    NASA Astrophysics Data System (ADS)

    Hung, Chi-Yuan; Zhang, Bin; Tang, Deming; Guo, Eric; Pang, Linyong; Liu, Yong; Moore, Andrew; Wang, Kechang

    2005-11-01

    This paper presents SMIC's first 65nm tape out results, in particularly, using ILT. ILT mathematically determines the mask features that produce the desired on-wafer results with best wafer pattern fidelity, largest process window or both. SMIC applied it to its first 65nm tape-out to study ILT performance and benefits for deep sub-wavelength lithography. SMIC selected 3 SRAM designs as the first test case, because SRAM bit-cells contain features which are challenging lithographically. Mask patterns generated from both conventional OPC and ILT were placed on the mask side-by-side. Mask manufacturability (including fracturing, writing time, inspection, and metrology) and wafer print performance of ILT were studied. The results demonstrated that ILT achieved better CD accuracy, produced substantially larger process window than conventional OPC, and met SMIC's 65nm process window requirements.

  4. Integration of e-beam direct write in BEOL processes of 28nm SRAM technology node using mix and match

    NASA Astrophysics Data System (ADS)

    Gutsch, Manuela; Choi, Kang-Hoon; Hanisch, Norbert; Hohle, Christoph; Seidel, Robert; Steidel, Katja; Thrun, Xaver; Werner, Thomas

    2014-10-01

    Many efforts were spent in the development of EUV technologies, but from a customer point of view EUV is still behind expectations. In parallel since years maskless lithography is included in the ITRS roadmap wherein multi electron beam direct patterning is considered as an alternative or complementary approach for patterning of advanced technology nodes. The process of multi beam exposures can be emulated by single beam technologies available in the field. While variable shape-beam direct writers are already used for niche applications, the integration capability of e-beam direct write at advanced nodes has not been proven, yet. In this study the e-beam lithography was implemented in the BEoL processes of the 28nm SRAM technology. Integrated 300mm wafers with a 28nm back-end of line (BEoL) stack from GLOBALFOUNDRIES, Dresden, were used for the experiments. For the patterning of the Metal layer a Mix and Match concept based on the sequence litho - etch - litho - etch (LELE) was developed and evaluated wherein several exposure fields were blanked out during the optical exposure. E-beam patterning results of BEoL Metal and Via layers are presented using a 50kV VISTEC SB3050DW variable shaped electron beam direct writer at Fraunhofer IPMS-CNT. Etch results are shown and compared to the POR. In summary we demonstrate the integration capability of EBDW into a productive CMOS process flow at the example of the 28nm SRAM technology node.

  5. Differential Effect of Taekwondo Training on Knee Muscle Strength and Reactive and Static Balance Control in Children with Developmental Coordination Disorder: A Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Fong, Shirley S. M.; Chung, Joanne W. Y.; Chow, Lina P. Y.; Ma, Ada W. W.; Tsang, William W. N.

    2013-01-01

    This randomized controlled trial aimed to investigate the effect of short-term intensive TKD training on the isokinetic knee muscle strength and reactive and static balance control of children with developmental coordination disorder (DCD). Among the 44 children with DCD (mean age: 7.6 plus or minus 1.3 years) recruited, 21 were randomly assigned…

  6. An FPGA-Based Test-Bed for Reliability and Endurance Characterization of Non-Volatile Memory

    NASA Technical Reports Server (NTRS)

    Rao, Vikram; Patel, Jagdish; Patel, Janak; Namkung, Jeffrey

    2001-01-01

    Memory technologies are divided into two categories. The first category, nonvolatile memories, are traditionally used in read-only or read-mostly applications because of limited write endurance and slow write speed. These memories are derivatives of read only memory (ROM) technology, which includes erasable programmable ROM (EPROM), electrically-erasable programmable ROM (EEPROM), Flash, and more recent ferroelectric non-volatile memory technology. Nonvolatile memories are able to retain data in the absence of power. The second category, volatile memories, are random access memory (RAM) devices including SRAM and DRAM. Writing to these memories is fast and write endurance is unlimited, so they are most often used to store data that change frequently, but they cannot store data in the absence of power. Nonvolatile memory technologies with better future potential are FRAM, Chalcogenide, GMRAM, Tunneling MRAM, and Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) EEPROM.

  7. Light sensitivity of a one transistor-one capacitor memory cell when used as a micromirror actuator in projector applications

    NASA Astrophysics Data System (ADS)

    Huffman, James Douglas

    2001-11-01

    The most important issue facing the future business success of the Digital Micromirror Device or DMD™ produced by Texas Instruments is the cost of the actual device. As the business and consumer markets call for higher resolution displays, the array size will have to be increased to incorporate more pixels. The manufacturing costs associated with building these higher resolution displays follow an exponential relation with the number of pixels due to yield loss and reduced number of chips per silicon wafer. Each pixel is actuated by electrostatics that are provided by a memory cell that is built in the underlying silicon substrate. One way to decrease cost of the wafer is to change the memory cell architecture from a static random access configuration or SRAM to a dynamic random access configuration or DRAM. This change has the benefits of having fewer components per area and a lower metal density. This reduction in the component count and metal density has a dramatic effect on the yield of the memory array by reducing the particle sensitivity of the underlying cell. The main drawback to using a DRAM configuration in a display application is the light sensitivity of a charge storage device built in the silicon substrate. As the photons pass through the mechanical micromirrors and illuminate the DRAM cell, the effective electrostatic potential of the memory element used for the mirror actuation is reduced. This dissertation outlines the issues associated with the light sensitivity of a DRAM memory cell as the actuation element for a micromirror. The concept of charge depletion on a silicon capacitor due to recombination of photogenerated carriers is explored and experimentally verified. The effects of the reduced potential on the capacitor on the micromirror are also explored. Optical modeling is used to determine the incoming photon flux to determine the benefits of adding a charge recombination region as part of the DRAM memory cell. Several options are explored to reduce the effect of the incoming photons on the potential of the memory cell. The results will show that a 1T1C memory cell with N-type recombination regions and maximum light shielding is sufficient for a projector application.

  8. Data Movement Dominates: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacob, Bruce L.

    Over the past three years in this project, what we have observed is that the primary reason for data movement in large-scale systems is that the per-node capacity is not large enough—i.e., one of the solutions to the data-movement problem (certainly not the only solution that is required, but a significant one nonetheless) is to increase per-node capacity so that inter-node traffic is reduced. This unfortunately is not as simple as it sounds. Today’s main memory systems for datacenters, enterprise computing systems, and supercomputers, fail to provide high per-socket capacity [Dirik & Jacob 2009; Cooper-Balis et al. 2012], except atmore » extremely high price points (factors of 10–100x the cost/bit of consumer main-memory systems) [Stokes 2008]. The reason is that our choice of technology for today’s main memory systems—i.e., DRAM, which we have used as a main-memory technology since the 1970s [Jacob et al. 2007]—can no longer keep up with our needs for density and price per bit. Main memory systems have always been built from the cheapest, densest, lowest-power memory technology available, and DRAM is no longer the cheapest, the densest, nor the lowest-power storage technology out there. It is now time for DRAM to go the way that SRAM went: move out of the way for a cheaper, slower, denser storage technology, and become a cache instead. This inflection point has happened before, in the context of SRAM yielding to DRAM. There was once a time that SRAM was the storage technology of choice for all main memories [Tomasulo 1967; Thornton 1970; Kidder 1981]. However, once DRAM hit volume production in the 1970s and 80s, it supplanted SRAM as a main memory technology because it was cheaper, and it was denser. It also happened to be lower power, but that was not the primary consideration of the day. At the time, it was recognized that DRAM was much slower than SRAM, but it was only at the supercomputer level (For instance the Cray X-MP in the 1980s and its follow-on, the Cray Y-MP, in the 1990s) that could one afford to build ever- larger main memories out of SRAM—the reasoning for moving to DRAM was that an appropriately designed memory hierarchy, built of DRAM as main memory and SRAM as a cache, would approach the performance of SRAM, at the price-per-bit of DRAM [Mashey 1999]. Today it is quite clear that, were one to build an entire multi-gigabyte main memory out of SRAM instead of DRAM, one could improve the performance of almost any computer system by up to an order of magnitude—but this option is not even considered, because to build that system would be prohibitively expensive. It is now time to revisit the same design choice in the context of modern technologies and modern systems. For reasons both technical and economic, we can no longer afford to build ever-larger main memory systems out of DRAM. Flash memory, on the other hand, is significantly cheaper and denser than DRAM and therefore should take its place. While it is true that flash is significantly slower than DRAM, one can afford to build much larger main memories out of flash than out of DRAM, and we show that an appropriately designed memory hierarchy, built of flash as main memory and DRAM as a cache, will approach the performance of DRAM, at the price-per-bit of flash. In our studies as part of this project, we have investigated Non-Volatile Main Memory (NVMM), a new main-memory architecture for large-scale computing systems, one that is specifically designed to address the weaknesses described previously. In particular, it provides the following features: non-volatility: The bulk of the storage is comprised of NAND flash, and in this organization DRAM is used only as a cache, not as main memory. Furthermore, the flash is journaled, which means that operations such as checkpoint/restore are already built into the system. 1+ terabytes of storage per socket: SSDs and DRAM DIMMs have roughly the same form factor (several square inches of PCB surface area), and terabyte SSDs are now commonplace. performance approaching that of DRAM: DRAM is used as a cache to the flash system. price-per-bit approaching that of NAND: Flash is currently well under $0.50 per gigabyte; DDR3 SDRAM is currently just over $10 per gigabyte [Newegg 2014]. Even today, one can build an easily affordable main memory system with a terabyte or more of NAND storage per CPU socket (which would be extremely expensive were one to use DRAM), and our cycle- accurate, full-system experiments show that this can be done at a performance point that lies within a factor of two of DRAM.« less

  9. A dynamically reconfigurable multi-functional PLL for SRAM-based FPGA in 65nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Yang, Mingqian; Chen, Lei; Li, Xuewu; Zhang, Yanlong

    2018-04-01

    Phase-locked loops (PLL) have been widely utilized in FPGA as an important module for clock management. PLL with dynamic reconfiguration capability is always welcomed in FPGA design as it is able to decrease power consumption and simultaneously improve flexibility. In this paper, a multi-functional PLL with dynamic reconfiguration capability for 65nm SRAM-based FPGA is proposed. Firstly, configurable charge pump and loop filter are utilized to optimize the loop bandwidth. Secondly, the PLL incorporates a VCO with dual control voltages to accelerate the adjustment of oscillation frequency. Thirdly, three configurable dividers are presented for flexible frequency synthesis. Lastly, a configuration block with dynamic reconfiguration function is proposed. Simulation results demonstrate that the proposed multi-functional PLL can output clocks with configurable division ratio, phase shift and duty cycle. The PLL can also be dynamically reconfigured without affecting other parts' running or halting the FPGA device.

  10. Overview of a Proposed Flight Validation of Aerocapture System Technology for Planetary Missions

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Hall, Jeffery L.; Oh, David; Munk, Michelle M.

    2006-01-01

    Aerocapture System Technology for Planetary Missions is being proposed to NASA's New Millennium Program for flight aboard the Space Technology 9 (ST9) flight opportunity. The proposed ST9 aerocapture mission is a system-level flight validation of the aerocapture maneuver as performed by an instrumented, high-fidelity flight vehicle within a true in-space and atmospheric environment. Successful validation of the aerocapture maneuver will be enabled through the flight validation of an advanced guidance, navigation, and control system as developed by Ball Aerospace and two advanced Thermal Protection System (TPS) materials, Silicon Refined Ablative Material-20 (SRAM-20) and SRAM-14, as developed by Applied Research Associates (ARA) Ablatives Laboratory. The ST9 aerocapture flight validation will be sufficient for immediate infusion of these technologies into NASA science missions being proposed for flight to a variety of Solar System destinations possessing a significant planetary atmosphere.

  11. Analyzing the effectiveness of a frame-level redundancy scrubbing technique for SRAM-based FPGAs

    DOE PAGES

    Tonfat, Jorge; Lima Kastensmidt, Fernanda; Rech, Paolo; ...

    2015-12-17

    Radiation effects such as soft errors are the major threat to the reliability of SRAM-based FPGAs. This work analyzes the effectiveness in correcting soft errors of a novel scrubbing technique using internal frame redundancy called Frame-level Redundancy Scrubbing (FLR-scrubbing). This correction technique can be implemented in a coarse grain TMR design. The FLR-scrubbing technique was implemented on a mid-size Xilinx Virtex-5 FPGA device used as a case study. The FLR-scrubbing technique was tested under neutron radiation and fault injection. Implementation results demonstrated minimum area and energy consumption overhead when compared to other techniques. The time to repair the fault ismore » also improved by using the Internal Configuration Access Port (ICAP). Lastly, neutron radiation test results demonstrated that the proposed technique is suitable for correcting accumulated SEUs and MBUs.« less

  12. Integrated layout based Monte-Carlo simulation for design arc optimization

    NASA Astrophysics Data System (ADS)

    Shao, Dongbing; Clevenger, Larry; Zhuang, Lei; Liebmann, Lars; Wong, Robert; Culp, James

    2016-03-01

    Design rules are created considering a wafer fail mechanism with the relevant design levels under various design cases, and the values are set to cover the worst scenario. Because of the simplification and generalization, design rule hinders, rather than helps, dense device scaling. As an example, SRAM designs always need extensive ground rule waivers. Furthermore, dense design also often involves "design arc", a collection of design rules, the sum of which equals critical pitch defined by technology. In design arc, a single rule change can lead to chain reaction of other rule violations. In this talk we present a methodology using Layout Based Monte-Carlo Simulation (LBMCS) with integrated multiple ground rule checks. We apply this methodology on SRAM word line contact, and the result is a layout that has balanced wafer fail risks based on Process Assumptions (PAs). This work was performed at the IBM Microelectronics Div, Semiconductor Research and Development Center, Hopewell Junction, NY 12533

  13. Design Tools for Reconfigurable Hardware in Orbit (RHinO)

    NASA Technical Reports Server (NTRS)

    French, Mathew; Graham, Paul; Wirthlin, Michael; Larchev, Gregory; Bellows, Peter; Schott, Brian

    2004-01-01

    The Reconfigurable Hardware in Orbit (RHinO) project is focused on creating a set of design tools that facilitate and automate design techniques for reconfigurable computing in space, using SRAM-based field-programmable-gate-array (FPGA) technology. These tools leverage an established FPGA design environment and focus primarily on space effects mitigation and power optimization. The project is creating software to automatically test and evaluate the single-event-upsets (SEUs) sensitivities of an FPGA design and insert mitigation techniques. Extensions into the tool suite will also allow evolvable algorithm techniques to reconfigure around single-event-latchup (SEL) events. In the power domain, tools are being created for dynamic power visualiization and optimization. Thus, this technology seeks to enable the use of Reconfigurable Hardware in Orbit, via an integrated design tool-suite aiming to reduce risk, cost, and design time of multimission reconfigurable space processors using SRAM-based FPGAs.

  14. A Novel Metal-Ferroelectric-Semiconductor Field-Effect Transistor Memory Cell Design

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; Bailey, Mark; Ho, Fat Duen

    2004-01-01

    The use of a Metal-Ferroelectric-Semiconductor Field-Effect Transistor (MFSFET) in a resistive-load SRAM memory cell has been investigated A typical two-transistor resistive-load SRAM memory cell architecture is modified by replacing one of the NMOS transistors with an n-channel MFSFET. The gate of the MFSFET is connected to a polling voltage pulse instead of the other NMOS transistor drain. The polling voltage pulses are of sufficient magnitude to saturate the ferroelectric gate material and force the MFSFET into a particular logic state. The memory cell circuit is further modified by the addition of a PMOS transistor and a load resistor in order to improve the retention characteristics of the memory cell. The retention characteristics of both the "1" and "0" logic states are simulated. The simulations show that the MFSFET memory cell design can maintain both the "1" and "0" logic states for a long period of time.

  15. Analyzing the effectiveness of a frame-level redundancy scrubbing technique for SRAM-based FPGAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonfat, Jorge; Lima Kastensmidt, Fernanda; Rech, Paolo

    Radiation effects such as soft errors are the major threat to the reliability of SRAM-based FPGAs. This work analyzes the effectiveness in correcting soft errors of a novel scrubbing technique using internal frame redundancy called Frame-level Redundancy Scrubbing (FLR-scrubbing). This correction technique can be implemented in a coarse grain TMR design. The FLR-scrubbing technique was implemented on a mid-size Xilinx Virtex-5 FPGA device used as a case study. The FLR-scrubbing technique was tested under neutron radiation and fault injection. Implementation results demonstrated minimum area and energy consumption overhead when compared to other techniques. The time to repair the fault ismore » also improved by using the Internal Configuration Access Port (ICAP). Lastly, neutron radiation test results demonstrated that the proposed technique is suitable for correcting accumulated SEUs and MBUs.« less

  16. 76 FR 45295 - In the Matter of Certain Static Random Access Memories and Products Containing Same; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ... supplementing the amended complaint was filed on June 28, 2011. A second amended complaint was filed on July 13... of certain static random access memories and products containing same by reason of infringement of... 13 of the `937 patent, and whether an industry in the United States exists as required by subsection...

  17. An investigation into the probabilistic combination of quasi-static and random accelerations

    NASA Technical Reports Server (NTRS)

    Schock, R. W.; Tuell, L. P.

    1984-01-01

    The development of design load factors for aerospace and aircraft components and experiment support structures, which are subject to a simultaneous vehicle dynamic vibration (quasi-static) and acoustically generated random vibration, require the selection of a combination methodology. Typically, the procedure is to define the quasi-static and the random generated response separately, and arithmetically add or root sum square to get combined accelerations. Since the combination of a probabilistic and a deterministic function yield a probabilistic function, a viable alternate approach would be to determine the characteristics of the combined acceleration probability density function and select an appropriate percentile level for the combined acceleration. The following paper develops this mechanism and provides graphical data to select combined accelerations for most popular percentile levels.

  18. Expert Design Advisor

    DTIC Science & Technology

    1990-10-01

    to economic, technological, spatial or logistic concerns, or involve training, man-machine interfaces, or integration into existing systems. Once the...probabilistic reasoning, mixed analysis- and simulation-oriented, mixed computation- and communication-oriented, nonpreemptive static priority...scheduling base, nonrandomized, preemptive static priority scheduling base, randomized, simulation-oriented, and static scheduling base. The selection of both

  19. The Effects of Attention Cueing on Visualizers' Multimedia Learning

    ERIC Educational Resources Information Center

    Yang, Hui-Yu

    2016-01-01

    The present study examines how various types of attention cueing and cognitive preference affect learners' comprehension of a cardiovascular system and cognitive load. EFL learners were randomly assigned to one of four conditions: non-signal, static-blood-signal, static-blood-static-arrow-signal, and animation-signal. The results indicated that…

  20. Artificial-intelligence-based optimization of the management of snow removal assets and resources.

    DOT National Transportation Integrated Search

    2002-10-01

    Geographic information systems (GIS) and artificial intelligence (AI) techniques were used to develop an intelligent : snow removal asset management system (SRAMS). The system has been evaluated through a case study examining : snow removal from the ...

  1. A 32 kb 9T near-threshold SRAM with enhanced read ability at ultra-low voltage operation

    NASA Astrophysics Data System (ADS)

    Kim, Tony Tae-Hyoung; Lee, Zhao Chuan; Do, Anh Tuan

    2018-01-01

    Ultra-low voltage SRAMs are highly sought-after in energy-limited systems such as battery-powered and self-harvested SoCs. However, ultra-low voltage operation diminishes SRAM read bitline (RBL) sensing margin significantly. This paper tackles this issue by presenting a novel 9T cell with data-independent RBL leakage in combination with an RBL boosting technique for enhancing the sensing margin. The proposed technique automatically tracks process, temperature and voltage (PVT) variations for robust sensing margin enhancement. A test chip fabricated in 65 nm CMOS technology shows that the proposed scheme significantly enlarges the sensing margin compared to the conventional bitline sensing scheme. It also achieves the minimum operating voltage of 0.18 V and the minimum energy consumption of 0.92 J/access at 0.4 V. He received 2016 International Low Power Design Contest Award from ISLPED, a best paper award at 2014 and 2011 ISOCC, 2008 AMD/CICC Student Scholarship Award, 2008 Departmental Research Fellowship from Univ. of Minnesota, 2008 DAC/ISSCC Student Design Contest Award, 2008, 2001, and 1999 Samsung Humantec Thesis Award and, 2005 ETRI Journal Paper of the Year Award. He is an author/co-author of +100 journal and conference papers and has 17 US and Korean patents registered. His current research interests include low power and high performance digital, mixed- mode, and memory circuit design, ultra-low voltage circuits and systems design, variation and aging tolerant circuits and systems, and circuit techniques for 3D ICs. He serves as an associate editor of IEEE Transactions on VLSI Systems. He is an IEEE senior member and the Chair of IEEE Solid-State Circuits Society Singapore Chapter. He has served numerous conferences as a committee member.

  2. Enhancing Learning from Dynamic and Static Visualizations by Means of Cueing

    ERIC Educational Resources Information Center

    Kuhl, Tim; Scheiter, Katharina; Gerjets, Peter

    2012-01-01

    The current study investigated whether learning from dynamic and two presentation formats for static visualizations can be enhanced by means of cueing. One hundred and fifty university students were randomly assigned to six conditions, resulting from a 2x3-design, with cueing (with/without) and type of visualization (dynamic, static-sequential,…

  3. A data-driven modeling approach to stochastic computation for low-energy biomedical devices.

    PubMed

    Lee, Kyong Ho; Jang, Kuk Jin; Shoeb, Ali; Verma, Naveen

    2011-01-01

    Low-power devices that can detect clinically relevant correlations in physiologically-complex patient signals can enable systems capable of closed-loop response (e.g., controlled actuation of therapeutic stimulators, continuous recording of disease states, etc.). In ultra-low-power platforms, however, hardware error sources are becoming increasingly limiting. In this paper, we present how data-driven methods, which allow us to accurately model physiological signals, also allow us to effectively model and overcome prominent hardware error sources with nearly no additional overhead. Two applications, EEG-based seizure detection and ECG-based arrhythmia-beat classification, are synthesized to a logic-gate implementation, and two prominent error sources are introduced: (1) SRAM bit-cell errors and (2) logic-gate switching errors ('stuck-at' faults). Using patient data from the CHB-MIT and MIT-BIH databases, performance similar to error-free hardware is achieved even for very high fault rates (up to 0.5 for SRAMs and 7 × 10(-2) for logic) that cause computational bit error rates as high as 50%.

  4. Random density matrices versus random evolution of open system

    NASA Astrophysics Data System (ADS)

    Pineda, Carlos; Seligman, Thomas H.

    2015-10-01

    We present and compare two families of ensembles of random density matrices. The first, static ensemble, is obtained foliating an unbiased ensemble of density matrices. As criterion we use fixed purity as the simplest example of a useful convex function. The second, dynamic ensemble, is inspired in random matrix models for decoherence where one evolves a separable pure state with a random Hamiltonian until a given value of purity in the central system is achieved. Several families of Hamiltonians, adequate for different physical situations, are studied. We focus on a two qubit central system, and obtain exact expressions for the static case. The ensemble displays a peak around Werner-like states, modulated by nodes on the degeneracies of the density matrices. For moderate and strong interactions good agreement between the static and the dynamic ensembles is found. Even in a model where one qubit does not interact with the environment excellent agreement is found, but only if there is maximal entanglement with the interacting one. The discussion is started recalling similar considerations for scattering theory. At the end, we comment on the reach of the results for other convex functions of the density matrix, and exemplify the situation with the von Neumann entropy.

  5. Single Event Effects in FPGA Devices 2015-2016

    NASA Technical Reports Server (NTRS)

    Berg, Melanie; LaBel, Kenneth; Pellish, Jonathan

    2016-01-01

    This presentation provides an overview of single event effects in FPGA devices 2015-2016 including commercial Xilinx V5 heavy ion accelerated testing, Xilinx Kintex-7 heavy ion accelerated testing. Mitigation study, and investigation of various types of triple modular redundancy (TMR) for commercial SRAM based FPGAs.

  6. Single Event Effects in FPGA Devices 2014-2015

    NASA Technical Reports Server (NTRS)

    Berg, Melanie D.; LaBel, Kenneth A.; Pellish, Jonathan

    2015-01-01

    This presentation provides an overview of single event effects in FPGA devices 2014-2015 including commercial Xilinx V5 heavy ion accelerated testing, Xilinx Kintex-7 heavy ion accelerated testing. Mitigation study, and investigation of various types of triple modular redundancy (TMR) for commercial SRAM based FPGAs.

  7. Single Event Effects in FPGA Devices 2015-2016

    NASA Technical Reports Server (NTRS)

    Berg, Melanie; LaBel, Kenneth; Pellish, Jonathan

    2016-01-01

    This presentation provides an overview of single event effects in FPGA devices 2015-2016 including commercial Xilinx V5 heavy ion accelerated testing, Xilinx Kintex-7 heavy ion accelerated testing, mitigation study, and investigation of various types of triple modular redundancy (TMR) for commercial SRAM based FPGAs.

  8. Power Management and SRAM for Energy-Autonomous and Low-Power Systems

    NASA Astrophysics Data System (ADS)

    Chen, Gregory K.

    We demonstrate the two first-known, complete, self-powered millimeter-scale computer systems. These microsystems achieve zero-net-energy operation using solar energy harvesting and ultra-low-power circuits. A medical implant for monitoring intraocular pressure (IOP) is presented as part of a treatment for glaucoma. The 1.5mm3 IOP monitor is easily implantable because of its small size and measures IOP with 0.5mmHg accuracy. It wirelessly transmits data to an external wand while consuming 4.70nJ/bit. This provides rapid feedback about treatment efficacies to decrease physician response time and potentially prevent unnecessary vision loss. A nearly-perpetual temperature sensor is presented that processes data using a 2.1muW near-threshold ARMRTM Cortex-M3(TM) muP that provides a widely-used and trusted programming platform. Energy harvesting and power management techniques for these two microsystems enable energy-autonomous operation. The IOP monitor harvests 80nW of solar power while consuming only 5.3nW, extending lifetime indefinitely. This allows the device to provide medical information for extended periods of time, giving doctors time to converge upon the best glaucoma treatment. The temperature sensor uses on-demand power delivery to improve low-load dc-dc voltage conversion efficiency by 4.75x. It also performs linear regulation to deliver power with low noise, improved load regulation, and tight line regulation. Low-power high-throughput SRAM techniques help millimeter-scale microsystems meet stringent power budgets. VDD scaling in memory decreases energy per access, but also decreases stability margins. These margins can be improved using sizing, VTH selection, and assist circuits, as well as new bitcell designs. Adaptive Crosshairs modulation of SRAM power supplies fixes 70% of parametric failures. Half-differential SRAM design improves stability, reducing VMIN by 72mV. The circuit techniques for energy autonomy presented in this dissertation enable millimeter-scale microsystems for medical implants, such as blood pressure and glucose sensors, as well as non-medical applications, such as supply chain and infrastructure monitoring. These pervasive sensors represent the continuation of Bell's Law, which accurately traces the evolution of computers as they have become smaller, more numerous, and more powerful. The development of millimeter-scale massively-deployed ubiquitous computers ensures the continued expansion and profitability of the semiconductor industry. NanoWatt circuit techniques will allow us to meet this next frontier in IC design.

  9. The Effects of Race Conditions when Implementing Single-Source Redundant Clock Trees in Triple Modular Redundant Synchronous Architectures

    NASA Technical Reports Server (NTRS)

    Berg, Melanie D.; Label, Kenneth A.; Pellish, Jonathan

    2016-01-01

    We present the challenges that arise when using redundant clock domains due to their clock-skew. Heavy-ion radiation data show that a singular clock domain (DTMR) provides an improved TMR methodology for SRAM-based FPGAs over redundant clocks.

  10. GST M1 GENOTYPE INFLUENCES SPERM DNA DAMAGE ASSOCIATED WITH EXPOSURE TO AIR POLLUTION

    EPA Science Inventory

    For Society for Epidemiologic Research Meeting, June 15-18, 2004, Salt Lake City, Utah.

    Presenter: Sherry G. Selevan

    GSTM1 GENOTYPE INFLUENCES SPERM DNA DAMAGE ASSOCIATED WITH EXPOSURE TO AIR POLLUTION. J Rubes, SG Selevan*, R. Sram, DPEvenson, SD Perreault. VRI, ...

  11. Characterization of Friction Joints Subjected to High Levels of Random Vibration

    NASA Technical Reports Server (NTRS)

    deSantos, Omar; MacNeal, Paul

    2012-01-01

    This paper describes the test program in detail including test sample description, test procedures, and vibration test results of multiple test samples. The material pairs used in the experiment were Aluminum-Aluminum, Aluminum- Dicronite coated Aluminum, and Aluminum-Plasmadize coated Aluminum. Levels of vibration for each set of twelve samples of each material pairing were gradually increased until all samples experienced substantial displacement. Data was collected on 1) acceleration in all three axes, 2) relative static displacement between vibration runs utilizing photogrammetry techniques, and 3) surface galling and contaminant generation. This data was used to estimate the values of static friction during random vibratory motion when "stick-slip" occurs and compare these to static friction coefficients measured before and after vibration testing.

  12. MSC/NASTRAN Stress Analysis of Complete Models Subjected to Random and Quasi-Static Loads

    NASA Technical Reports Server (NTRS)

    Hampton, Roy W.

    2000-01-01

    Space payloads, such as those which fly on the Space Shuttle in Spacelab, are designed to withstand dynamic loads which consist of combined acoustic random loads and quasi-static acceleration loads. Methods for computing the payload stresses due to these loads are well known and appear in texts and NASA documents, but typically involve approximations such as the Miles' equation, as well as possible adjustments based on "modal participation factors." Alternatively, an existing capability in MSC/NASTRAN may be used to output exact root mean square [rms] stresses due to the random loads for any specified elements in the Finite Element Model. However, it is time consuming to use this methodology to obtain the rms stresses for the complete structural model and then combine them with the quasi-static loading induced stresses. Special processing was developed as described here to perform the stress analysis of all elements in the model using existing MSC/NASTRAN and MSC/PATRAN and UNIX utilities. Fail-safe and buckling analyses applications are also described.

  13. Architectural Techniques For Managing Non-volatile Caches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Sparsh

    As chip power dissipation becomes a critical challenge in scaling processor performance, computer architects are forced to fundamentally rethink the design of modern processors and hence, the chip-design industry is now at a major inflection point in its hardware roadmap. The high leakage power and low density of SRAM poses serious obstacles in its use for designing large on-chip caches and for this reason, researchers are exploring non-volatile memory (NVM) devices, such as spin torque transfer RAM, phase change RAM and resistive RAM. However, since NVMs are not strictly superior to SRAM, effective architectural techniques are required for making themmore » a universal memory solution. This book discusses techniques for designing processor caches using NVM devices. It presents algorithms and architectures for improving their energy efficiency, performance and lifetime. It also provides both qualitative and quantitative evaluation to help the reader gain insights and motivate them to explore further. This book will be highly useful for beginners as well as veterans in computer architecture, chip designers, product managers and technical marketing professionals.« less

  14. Imaging system design and image interpolation based on CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Li, Yu-feng; Liang, Fei; Guo, Rui

    2009-11-01

    An image acquisition system is introduced, which consists of a color CMOS image sensor (OV9620), SRAM (CY62148), CPLD (EPM7128AE) and DSP (TMS320VC5509A). The CPLD implements the logic and timing control to the system. SRAM stores the image data, and DSP controls the image acquisition system through the SCCB (Omni Vision Serial Camera Control Bus). The timing sequence of the CMOS image sensor OV9620 is analyzed. The imaging part and the high speed image data memory unit are designed. The hardware and software design of the image acquisition and processing system is given. CMOS digital cameras use color filter arrays to sample different spectral components, such as red, green, and blue. At the location of each pixel only one color sample is taken, and the other colors must be interpolated from neighboring samples. We use the edge-oriented adaptive interpolation algorithm for the edge pixels and bilinear interpolation algorithm for the non-edge pixels to improve the visual quality of the interpolated images. This method can get high processing speed, decrease the computational complexity, and effectively preserve the image edges.

  15. Static RAM data recorder for flight tests

    NASA Astrophysics Data System (ADS)

    Stoner, D. C.; Eklund, T. F. F.

    A static random access memory (RAM) data recorder has been developed to recover strain and acceleration data during development tests of high-speed earth penetrating vehicles. Bilevel inputs are also available for continuity measurements. An iteration of this system was modified for use on water entry evaluations.

  16. Can a pilates exercise program be effective on balance, flexibility and muscle endurance? A randomized controlled trial.

    PubMed

    Kibar, Sibel; Yardimci, Fatma Ö; Evcik, Deniz; Ay, Saime; Alhan, Aslıhan; Manço, Miray; Ergin, Emine S

    2016-10-01

    This randomized controlled study aims to determine the effect of pilates mat exercises on dynamic and static balance, hamstring flexibility, abdominal muscle activity and endurance in healthy adults. Female healthy volunteer university students randomly assigned into two groups. Group 1 followed a pilates program for an hour two times a week. Group 2 continued daily activities as control group. Dynamic and static balance were evaluated by Sport Kinesthetic Ability Trainer (KAT) 4000 device. Hamstring flexibility and abdominal endurance were determined by sit-and-reach test, curl-up test respectively. Pressure biofeedback unit (PBU) was used to measure transversus abdominis and lumbar muscle activity. The physical activity of the participants was followed by International Physical Activity Questionnaire-Short Form. Twenty-three subjects in pilates group and 24 control subjects completed the study. In pilates group, statistical significant improvements were observed in curl-up, sit-and-reach test, PBU scores at sixth week (P<0.001), and KAT static and dynamic balance scores (P<0.001), waist circumference (P=0.007) at eighth week. In the comparison between two groups, there were significant improvements in pilates group for sit-and-reach test (P=0.01) and PBU scores (P<0.001) at sixth week, additionally curl-up and static KAT scores progressed in eighth week (P<0.001). No correlation was found between flexibility, endurance, trunk muscle activity and balance parameters. An eight-week pilates training program has been found to have beneficial effect on static balance, flexibility, abdominal muscle endurance, abdominal and lumbar muscle activity. These parameters have no effect on balance.

  17. Using Classical Reliability Models and Single Event Upset (SEU) Data to Determine Optimum Implementation Schemes for Triple Modular Redundancy (TMR) in SRAM-Based Field Programmable Gate Array (FPGA) Devices

    NASA Technical Reports Server (NTRS)

    Berg, M.; Kim, H.; Phan, A.; Seidleck, C.; LaBel, K.; Pellish, J.; Campola, M.

    2015-01-01

    Space applications are complex systems that require intricate trade analyses for optimum implementations. We focus on a subset of the trade process, using classical reliability theory and SEU data, to illustrate appropriate TMR scheme selection.

  18. The relationship between stereoacuity and stereomotion thresholds.

    PubMed

    Cumming, B G

    1995-01-01

    There are in principle at least two binocular sources of information that could be used to determine the motion of an object towards or away from an observer; such motion produces changes in binocular disparities over time and also generates different image velocities in the two eyes. It has been argued in the past that stereomotion is detected by a mechanism that is independent of that which detects static disparities. More recently this conclusion has been questioned. If stereomotion detection in fact depends upon detecting disparities, there should be a clear correlation between static stereo-detection thresholds and stereomotion thresholds. If the systems are separate, there need be no such correlation. Four types of threshold measurement were performed by means of random-dot stereograms: (1) static stereo detection/discrimination; (2) stereomotion detection in random-dot stereograms (temporally uncorrelated); (3) stereomotion detection in temporally correlated random-dot stereograms; and (4) binocular detection of frontoparallel motion. Three normal subjects and five subjects with unusually high stereoacuities were studied. In addition, two manipulations were performed that altered stereomotion thresholds: changes in mean disparity, and image defocus produced by positive spectacle lenses. Across subjects and conditions, stereomotion thresholds were well correlated with stereo-discrimination thresholds. Stereomotion was poorly correlated with binocular frontoparallel-motion thresholds. These results suggest that stereomotion is detected by means of registering changes in the output of the same disparity detectors that are used to detect static disparities.

  19. Anti-Le-Chatelet behavior driven by strong natural light

    NASA Astrophysics Data System (ADS)

    Antonyuk, B. P.

    2007-01-01

    We show that strong incoherent broad band light causes positive feedback in response to a static electric field in random media: electric current flows in opposite to a voltage drop direction; static polarization is induced in opposition to an applied electric field. This type of the electron motion amplifies the external action revealing anti-Le-Chatelet behavior. The applied static electric field is amplified up to the domain of optical damage of a silica glass ≈10 7 V/cm.

  20. A minimalistic approach to static and dynamic electron correlations: Amending generalized valence bond method with extended random phase approximation correlation correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Koushik; Jawulski, Konrad; Pastorczak, Ewa

    A perfect-pairing generalized valence bond (GVB) approximation is known to be one of the simplest approximations, which allows one to capture the essence of static correlation in molecular systems. In spite of its attractive feature of being relatively computationally efficient, this approximation misses a large portion of dynamic correlation and does not offer sufficient accuracy to be generally useful for studying electronic structure of molecules. We propose to correct the GVB model and alleviate some of its deficiencies by amending it with the correlation energy correction derived from the recently formulated extended random phase approximation (ERPA). On the examples ofmore » systems of diverse electronic structures, we show that the resulting ERPA-GVB method greatly improves upon the GVB model. ERPA-GVB recovers most of the electron correlation and it yields energy barrier heights of excellent accuracy. Thanks to a balanced treatment of static and dynamic correlation, ERPA-GVB stays reliable when one moves from systems dominated by dynamic electron correlation to those for which the static correlation comes into play.« less

  1. Under conditions of large geometric miss, tumor control probability can be higher for static gantry intensity-modulated radiation therapy compared to volume-modulated arc therapy for prostate cancer.

    PubMed

    Balderson, Michael; Brown, Derek; Johnson, Patricia; Kirkby, Charles

    2016-01-01

    The purpose of this work was to compare static gantry intensity-modulated radiation therapy (IMRT) with volume-modulated arc therapy (VMAT) in terms of tumor control probability (TCP) under scenarios involving large geometric misses, i.e., those beyond what are accounted for when margin expansion is determined. Using a planning approach typical for these treatments, a linear-quadratic-based model for TCP was used to compare mean TCP values for a population of patients who experiences a geometric miss (i.e., systematic and random shifts of the clinical target volume within the planning target dose distribution). A Monte Carlo approach was used to account for the different biological sensitivities of a population of patients. Interestingly, for errors consisting of coplanar systematic target volume offsets and three-dimensional random offsets, static gantry IMRT appears to offer an advantage over VMAT in that larger shift errors are tolerated for the same mean TCP. For example, under the conditions simulated, erroneous systematic shifts of 15mm directly between or directly into static gantry IMRT fields result in mean TCP values between 96% and 98%, whereas the same errors on VMAT plans result in mean TCP values between 45% and 74%. Random geometric shifts of the target volume were characterized using normal distributions in each Cartesian dimension. When the standard deviations were doubled from those values assumed in the derivation of the treatment margins, our model showed a 7% drop in mean TCP for the static gantry IMRT plans but a 20% drop in TCP for the VMAT plans. Although adding a margin for error to a clinical target volume is perhaps the best approach to account for expected geometric misses, this work suggests that static gantry IMRT may offer a treatment that is more tolerant to geometric miss errors than VMAT. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  2. Technology, design, simulation, and evaluation for SEP-hardened circuits

    NASA Technical Reports Server (NTRS)

    Adams, J. R.; Allred, D.; Barry, M.; Rudeck, P.; Woodruff, R.; Hoekstra, J.; Gardner, H.

    1991-01-01

    This paper describes the technology, design, simulation, and evaluation for improvement of the Single Event Phenomena (SEP) hardness of gate-array and SRAM cells. Through the use of design and processing techniques, it is possible to achieve an SEP error rate less than 1.0 x 10(exp -10) errors/bit-day for a 9O percent worst-case geosynchronous orbit environment.

  3. Evaluation of Ferroelectric Materials for Memory Applications

    DTIC Science & Technology

    1990-06-01

    as automobile odometers, access counters, and flight time recorders. Detailed product information is provided in Appendix A. 3. Optical Read...volatility but by definition are not reprogrammable , which severely restricts flexibility and makes error correction difficult. Magnetic core is non...battery-backed SRAMs as well. The programs for embedded controllers, such as those increasingly used in automobiles , are kept in nonvolatile memory. The

  4. Radiation Effects in 3D Integrated SOl SRAM Circuits

    DTIC Science & Technology

    2011-08-23

    Because of the front-to- hack capacitive coupling, significant device parametric shifts can be observed unless the BOX has been engineered to...8. - l.E-12 .,..--------------, .. J5 ;::.. 5 63-MeV Protons · Tier1 • ner2 ner3 -c a • ’i 1.E-13 ----·· -----·-- ~ . = . i§ • • g • f L_

  5. Analyzing Reliability and Performance Trade-Offs of HLS-Based Designs in SRAM-Based FPGAs Under Soft Errors

    NASA Astrophysics Data System (ADS)

    Tambara, Lucas Antunes; Tonfat, Jorge; Santos, André; Kastensmidt, Fernanda Lima; Medina, Nilberto H.; Added, Nemitala; Aguiar, Vitor A. P.; Aguirre, Fernando; Silveira, Marcilei A. G.

    2017-02-01

    The increasing system complexity of FPGA-based hardware designs and shortening of time-to-market have motivated the adoption of new designing methodologies focused on addressing the current need for high-performance circuits. High-Level Synthesis (HLS) tools can generate Register Transfer Level (RTL) designs from high-level software programming languages. These tools have evolved significantly in recent years, providing optimized RTL designs, which can serve the needs of safety-critical applications that require both high performance and high reliability levels. However, a reliability evaluation of HLS-based designs under soft errors has not yet been presented. In this work, the trade-offs of different HLS-based designs in terms of reliability, resource utilization, and performance are investigated by analyzing their behavior under soft errors and comparing them to a standard processor-based implementation in an SRAM-based FPGA. Results obtained from fault injection campaigns and radiation experiments show that it is possible to increase the performance of a processor-based system up to 5,000 times by changing its architecture with a small impact in the cross section (increasing up to 8 times), and still increasing the Mean Workload Between Failures (MWBF) of the system.

  6. A 0.7-V 17.4- μ W 3-lead wireless ECG SoC.

    PubMed

    Khayatzadeh, Mahmood; Zhang, Xiaoyang; Tan, Jun; Liew, Wen-Sin; Lian, Yong

    2013-10-01

    This paper presents a fully integrated sub-1 V 3-lead wireless ECG System-on-Chip (SoC) for wireless body sensor network applications. The SoC includes a two-channel ECG front-end with a driven-right-leg circuit, an 8-bit SAR ADC, a custom-designed 16-bit microcontroller, two banks of 16 kb SRAM, and a MICS band transceiver. The microcontroller and SRAM blocks are able to operate at sub-/near-threshold regime for the best energy consumption. The proposed SoC has been implemented in a standard 0.13- μ m CMOS process. Measurement results show the microcontroller consumes only 2.62 pJ per instruction at 0.35 V . Both microcontroller and memory blocks are functional down to 0.25 V. The entire SoC is capable of working at single 0.7-V supply. At the best case, it consumes 17.4 μ W in heart rate detection mode and 74.8 μW in raw data acquisition mode under sampling rate of 500 Hz. This makes it one of the best ECG SoCs among state-of-the-art biomedical chips.

  7. Efficient SRAM yield optimization with mixture surrogate modeling

    NASA Astrophysics Data System (ADS)

    Zhongjian, Jiang; Zuochang, Ye; Yan, Wang

    2016-12-01

    Largely repeated cells such as SRAM cells usually require extremely low failure-rate to ensure a moderate chi yield. Though fast Monte Carlo methods such as importance sampling and its variants can be used for yield estimation, they are still very expensive if one needs to perform optimization based on such estimations. Typically the process of yield calculation requires a lot of SPICE simulation. The circuit SPICE simulation analysis accounted for the largest proportion of time in the process yield calculation. In the paper, a new method is proposed to address this issue. The key idea is to establish an efficient mixture surrogate model. The surrogate model is based on the design variables and process variables. This model construction method is based on the SPICE simulation to get a certain amount of sample points, these points are trained for mixture surrogate model by the lasso algorithm. Experimental results show that the proposed model is able to calculate accurate yield successfully and it brings significant speed ups to the calculation of failure rate. Based on the model, we made a further accelerated algorithm to further enhance the speed of the yield calculation. It is suitable for high-dimensional process variables and multi-performance applications.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balderson, Michael, E-mail: michael.balderson@rmp.uhn.ca; Brown, Derek; Johnson, Patricia

    The purpose of this work was to compare static gantry intensity-modulated radiation therapy (IMRT) with volume-modulated arc therapy (VMAT) in terms of tumor control probability (TCP) under scenarios involving large geometric misses, i.e., those beyond what are accounted for when margin expansion is determined. Using a planning approach typical for these treatments, a linear-quadratic–based model for TCP was used to compare mean TCP values for a population of patients who experiences a geometric miss (i.e., systematic and random shifts of the clinical target volume within the planning target dose distribution). A Monte Carlo approach was used to account for themore » different biological sensitivities of a population of patients. Interestingly, for errors consisting of coplanar systematic target volume offsets and three-dimensional random offsets, static gantry IMRT appears to offer an advantage over VMAT in that larger shift errors are tolerated for the same mean TCP. For example, under the conditions simulated, erroneous systematic shifts of 15 mm directly between or directly into static gantry IMRT fields result in mean TCP values between 96% and 98%, whereas the same errors on VMAT plans result in mean TCP values between 45% and 74%. Random geometric shifts of the target volume were characterized using normal distributions in each Cartesian dimension. When the standard deviations were doubled from those values assumed in the derivation of the treatment margins, our model showed a 7% drop in mean TCP for the static gantry IMRT plans but a 20% drop in TCP for the VMAT plans. Although adding a margin for error to a clinical target volume is perhaps the best approach to account for expected geometric misses, this work suggests that static gantry IMRT may offer a treatment that is more tolerant to geometric miss errors than VMAT.« less

  9. Virtex-II Pro PowerPC SEE Characterization Test Methods and Results

    NASA Technical Reports Server (NTRS)

    Petrick, David; Powell, Wesley; LaBel, Ken; Howard, James

    2005-01-01

    The Xilinx Vix-11 Pro is a platform FPGA that embeds multiple microprocessors within the fabric of an SRAM-based reprogrammable FPGA. The variety and quantity of resources provided by this family of devices make them very attractive for spaceflight applications. However,these devices will be susceptible to single event effects (SEE), which must be mitigated. Observations from prior testing of the Xilinx Virtex-II Pro suggest that the PowerPC core has significant vulnerability to SEES. However, these initial tests were not designed to exclusively target the functionality of the PowerPC, therefore making it difficult to distinguish processor upsets from fabric upsets. The main focus of this paper involves detailed SEE testing of the embedded PowerPC core. Due to the complexity of the PowerPC, various custom test applications, both static and dynamic, will be designed to isolate each Unit of the processor. Collective analysis of the test results will provide insight into the exact upset mechanism of the PowerPC. With this information, mitigations schemes can be developed and tested that address the specific susceptibilities of these devices. The test bed will be the Xilinx SEE Consortium Virtex-II Pro test board, which allows for configuration scrubbing, design triplication, and ease of data collection. Testing will be performed at the Indiana University Cyclotron Facility using protons of varying energy levels and fluencies. This paper will present the detailed test approach along with the results.

  10. A Re-programmable Platform for Dynamic Burn-in Test of Xilinx Virtexll 3000 FPGA for Military and Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Roosta, Ramin; Wang, Xinchen; Sadigursky, Michael; Tracton, Phil

    2004-01-01

    Field Programmable Gate Arrays (FPGA) have played increasingly important roles in military and aerospace applications. Xilinx SRAM-based FPGAs have been extensively used in commercial applications. They have been used less frequently in space flight applications due to their susceptibility to single-event upsets. Reliability of these devices in space applications is a concern that has not been addressed. The objective of this project is to design a fully programmable hardware/software platform that allows (but is not limited to) comprehensive static/dynamic burn-in test of Virtex-II 3000 FPGAs, at speed test and SEU test. Conventional methods test very few discrete AC parameters (primarily switching) of a given integrated circuit. This approach will test any possible configuration of the FPGA and any associated performance parameters. It allows complete or partial re-programming of the FPGA and verification of the program by using read back followed by dynamic test. Designers have full control over which functional elements of the FPGA to stress. They can completely simulate all possible types of configurations/functions. Another benefit of this platform is that it allows collecting information on elevation of the junction temperature as a function of gate utilization, operating frequency and functionality. A software tool has been implemented to demonstrate the various features of the system. The software consists of three major parts: the parallel interface driver, main system procedure and a graphical user interface (GUI).

  11. Applications of Random Differential Equations to Engineering Science. Wave Propagation in Turbulent Media and Random Linear Hyperbolic Systems.

    DTIC Science & Technology

    1981-11-10

    1976), 745-754. 4. (with W. C. Tam) Periodic and traveling wave solutions to Volterra - Lotka equation with diffusion. Bull. Math. Biol. 38 (1976), 643...with applications [17,19,20). (5) A general method for reconstructing the mutual coherent function of a static or moving source from the random

  12. Cervical stability training with and without core stability training for patients with cervical disc herniation: A randomized, single-blind study.

    PubMed

    Buyukturan, B; Guclu-Gunduz, A; Buyukturan, O; Dadali, Y; Bilgin, S; Kurt, E E

    2017-11-01

    This study aims at evaluating and comparing the effects of cervical stability training to combined cervical and core stability training in patients with neck pain and cervical disc herniation. Fifty patients with neck pain and cervical disc herniation were included in the study, randomly divided into two groups as cervical stability and cervical-core stability. Training was applied three times a week in three phases, and lasted for a total duration of 8 weeks. Pain, activation and static endurance of deep cervical flexor muscles, static endurance of neck muscles, cross-sectional diameter of M. Longus Colli, static endurance of trunk muscles, disability and kinesiophobia were assessed. Pain, activation and static endurance of deep cervical flexors, static endurance of neck muscles, cross-sectional diameter of M. Longus Colli, static endurance of trunk muscles, disability and kinesiophobia improved in both groups following the training sessions (p < 0.05). Comparison of the effectiveness of these two training methods revealed that the cervical stability group produced a greater increase in the right transverse diameter of M. Longus Colli (p < 0.05). However, static endurance of trunk muscles and kinesiophobia displayed better improvement in the cervical-core stability group (p < 0.05). Cervical stability training provided benefit to patients with cervical disc herniation. The addition of core stability training did not provide any additional significant benefit. Further research is required to investigate the efficacy of combining other techniques with cervical stability training in patients with cervical disc herniation. Both cervical stability training and its combination with core stability training were significantly and similarly effective on neck pain and neck muscle endurance in patients with cervical disc herniation. © 2017 European Pain Federation - EFIC®.

  13. Unexpected surface implanted layer in static random access memory devices observed by microwave impedance microscope

    NASA Astrophysics Data System (ADS)

    Kundhikanjana, W.; Yang, Y.; Tanga, Q.; Zhang, K.; Lai, K.; Ma, Y.; Kelly, M. A.; Li, X. X.; Shen, Z.-X.

    2013-02-01

    Real-space mapping of doping concentration in semiconductor devices is of great importance for the microelectronics industry. In this work, a scanning microwave impedance microscope (MIM) is employed to resolve the local conductivity distribution of a static random access memory sample. The MIM electronics can also be adjusted to the scanning capacitance microscopy (SCM) mode, allowing both measurements on the same region. Interestingly, while the conventional SCM images match the nominal device structure, the MIM results display certain unexpected features, which originate from a thin layer of the dopant ions penetrating through the protective layers during the heavy implantation steps.

  14. Materials Integration and Doping of Carbon Nanotube-based Logic Circuits

    NASA Astrophysics Data System (ADS)

    Geier, Michael

    Over the last 20 years, extensive research into the structure and properties of single- walled carbon nanotube (SWCNT) has elucidated many of the exceptional qualities possessed by SWCNTs, including record-setting tensile strength, excellent chemical stability, distinctive optoelectronic features, and outstanding electronic transport characteristics. In order to exploit these remarkable qualities, many application-specific hurdles must be overcome before the material can be implemented in commercial products. For electronic applications, recent advances in sorting SWCNTs by electronic type have enabled significant progress towards SWCNT-based integrated circuits. Despite these advances, demonstrations of SWCNT-based devices with suitable characteristics for large-scale integrated circuits have been limited. The processing methodologies, materials integration, and mechanistic understanding of electronic properties developed in this dissertation have enabled unprecedented scales of SWCNT-based transistor fabrication and integrated circuit demonstrations. Innovative materials selection and processing methods are at the core of this work and these advances have led to transistors with the necessary transport properties required for modern circuit integration. First, extensive collaborations with other research groups allowed for the exploration of SWCNT thin-film transistors (TFTs) using a wide variety of materials and processing methods such as new dielectric materials, hybrid semiconductor materials systems, and solution-based printing of SWCNT TFTs. These materials were integrated into circuit demonstrations such as NOR and NAND logic gates, voltage-controlled ring oscillators, and D-flip-flops using both rigid and flexible substrates. This dissertation explores strategies for implementing complementary SWCNT-based circuits, which were developed by using local metal gate structures that achieve enhancement-mode p-type and n-type SWCNT TFTs with widely separated and symmetric threshold voltages. Additionally, a novel n-type doping procedure for SWCNT TFTs was also developed utilizing a solution-processed organometallic small molecule to demonstrate the first network top-gated n-type SWCNT TFTs. Lastly, new doping and encapsulation layers were incorporated to stabilize both p-type and n-type SWCNT TFT electronic properties, which enabled the fabrication of large-scale memory circuits. Employing these materials and processing advances has addressed many application specific barriers to commercialization. For instance, the first thin-film SWCNT complementary metal-oxide-semi-conductor (CMOS) logic devices are demonstrated with sub-nanowatt static power consumption and full rail-to-rail voltage transfer characteristics. With the introduction of a new n-type Rh-based molecular dopant, the first SWCNT TFTs are fabricated in top-gate geometries over large areas with high yield. Then by utilizing robust encapsulation methods, stable and uniform electronic performance of both p-type and n-type SWCNT TFTs has been achieved. Based on these complementary SWCNT TFTs, it is possible to simulate, design, and fabricate arrays of low-power static random access memory (SRAM) circuits, achieving large-scale integration for the first time based on solution-processed semiconductors. Together, this work provides a direct pathway for solution processable, large scale, power-efficient advanced integrated logic circuits and systems.

  15. Pheromone Static Routing Strategy for Complex Networks

    NASA Astrophysics Data System (ADS)

    Hu, Mao-Bin; Henry, Y. K. Lau; Ling, Xiang; Jiang, Rui

    2012-12-01

    We adopt the concept of using pheromones to generate a set of static paths that can reach the performance of global dynamic routing strategy [Phys. Rev. E 81 (2010) 016113]. The path generation method consists of two stages. In the first stage, a pheromone is dropped to the nodes by packets forwarded according to the global dynamic routing strategy. In the second stage, pheromone static paths are generated according to the pheromone density. The output paths can greatly improve traffic systems' overall capacity on different network structures, including scale-free networks, small-world networks and random graphs. Because the paths are static, the system needs much less computational resources than the global dynamic routing strategy.

  16. Response to Albuterol MDI Delivered Through an Anti-Static Chamber During Nocturnal Bronchospasm

    PubMed Central

    Prabhakaran, Sreekala; Shuster, Jonathan; Chesrown, Sarah; Hendeles, Leslie

    2013-01-01

    BACKGROUND Decreasing electrostatic charge on valved holding chambers increases the amount of drug delivered. However, there are no data demonstrating that this increases bronchodilatation. OBJECTIVE To investigate the influence of reducing electrostatic charge on the bronchodilator response to albuterol inhaler during nocturnal bronchospasm. METHODS This randomized double-blind, double-dummy crossover study included subjects, 18—40 years old, with nocturnal bronchospasm (20% overnight decrease in peak flow on 3 of 7 nights during run-in), FEV1 60–80% predicted during the day, and ≥ 12% increase after albuterol. Subjects slept in the clinical research center up to 3 nights for each treatment. FEV1 and heart rate were measured upon awakening spontaneously or at 4:00 am, and 15 min after each dose of 1, 2, and 4 cumulative puffs of albuterol via metered-dose inhaler. The drug was administered through an anti-static valved holding chamber (AeroChamber Plus Z-Stat) or a conventional valved holding chamber containing a static charge (AeroChamber Plus). RESULTS Of 88 consented subjects, 11 were randomized and 7 completed the study. Most exclusions were due to lack of objective evidence of nocturnal bronchospasm. Upon awakening, FEV1 was 44 ± 9% of predicted before the anti-static chamber and 48 ± 7% of predicted before the static chamber. The mean ± SD percent increase in FEV1 after 1, 2, and 4 cumulative puffs using the anti-static versus the static chamber, respectively, were 52 ± 26% versus 30 ± 19%, 73 ± 28% versus 48 ± 26%, and 90 ± 34% versus 64 ± 35%. The point estimates for the differences (and 95% CIs) between the devices (anti-static vs static) were 21% (4–38%) (P = .03), 23% (6–41%) (P = .02), and 25% (7–42%) (P = .01) for 1, 2, and 4 cumulative puffs, respectively. There was no significant difference in heart rate between treatments. CONCLUSIONS Delivery of albuterol through an anti-static chamber provides a clinically relevant improvement in bronchodilator response during acute, reversible bronchospasm such as nocturnal bronchospasm. PMID:22348270

  17. UNSTEADY DISPERSION IN RANDOM INTERMITTENT FLOW

    EPA Science Inventory

    The longitudinal dispersion coefficient of a conservative tracer was calculated from flow tests in a dead-end pipe loop system. Flow conditions for these tests ranged from laminar to transitional flow, and from steady to intermittent and random. Two static mixers linked in series...

  18. A New Approach to Modeling the Cost of Ownership for Aircraft Systems.

    DTIC Science & Technology

    1981-08-01

    expensive airborne missiles (e.g., Maverick, SRAM ) are funded in separate program elements of their own. If an aircraft system generates requirements for...PNTS b-I p,y,b,u EIR -u p9Y RTOK (FH/MO)QPA pUF PREPGNp ( - DCR) ) BUE b pp PGEN~)~1b-I ~ SER. = SEt. SEF j J,y j CIDM - CIDMP + CIDME + CIDMEI

  19. Altitude and latitude variations in avionics SEU and atmospheric neutron flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Normand, E.; Baker, T.J.

    1993-12-01

    The direct cause of single event upsets in SRAMs at aircraft altitudes by the atmospheric neutrons has previously been documented. The variation of the in-flight SEU rate with latitude is demonstrated by new data over a wide range of geographical locations. New measurements and models of the atmospheric neutron flux are also evaluated to characterize its variation with altitude, latitude and solar activity.

  20. GST M1 GENOTYPE INFLUENCES THE SUSCEPTIBILITY OF MEN TO SPERM DNA DAMAGE ASSOCIATED WITH EXPOSURE TO AIR POLLUTION

    EPA Science Inventory

    GSTM1 GENOTYPE INFLUENCES THE SUSCEPTIBILITY OF MEN TO SPERM DNA DAMAGE ASSOCIATED WITH EXPOSURE TO AIR POLLUTION. J. Rubes1, SG Selevan2, R. Sram3, DPEvenson4, SD Perreault5. 1VRI, Brno, CR; 2US EPA/ORD/NCEA, Washington, DC; 3IEM AS CR, Prague, CR; 4SDSU, Brookings, SD; 5US EPA...

  1. Single Event Analysis and Fault Injection Techniques Targeting Complex Designs Implemented in Xilinx-Virtex Family Field Programmable Gate Array (FPGA) Devices

    NASA Technical Reports Server (NTRS)

    Berg, Melanie D.; LaBel, Kenneth; Kim, Hak

    2014-01-01

    An informative session regarding SRAM FPGA basics. Presenting a framework for fault injection techniques applied to Xilinx Field Programmable Gate Arrays (FPGAs). Introduce an overlooked time component that illustrates fault injection is impractical for most real designs as a stand-alone characterization tool. Demonstrate procedures that benefit from fault injection error analysis.

  2. Goal Structured Notation in a Radiation Hardening Safety Case for COTS-Based Spacecraft

    NASA Technical Reports Server (NTRS)

    Witulski, Arthur; Austin, Rebekah; Reed, Robert; Karsai, Gabor; Mahadevan, Nag; Sierawski, Brian; Evans, John; LaBel, Ken

    2016-01-01

    A systematic approach is presented to constructing a radiation assurance case using Goal Structured Notation (GSN) for spacecraft containing COTS parts. The GSN paradigm is applied to an SRAM single-event upset experiment board designed to fly on a CubeSat November 2016. Construction of a radiation assurance case without use of hardened parts or extensive radiation testing is discussed.

  3. The effects of Pilates exercise training on static and dynamic balance in chronic stroke patients: a randomized controlled trial

    PubMed Central

    Lim, Hee Sung; Kim, You Lim; Lee, Suk Min

    2016-01-01

    [Purpose] The purpose of this study was to analyze the effects of Pilates exercise on static and dynamic balance in chronic stroke patients. [Subjects and Methods] Nineteen individuals with unilateral chronic hemiparetic stroke (age, 64.7 ± 6.9 years; height, 161.7 ± 7.9 cm; weight, 67.0 ± 11.1 kg) were randomly allocated to either a Pilates exercise group (PG, n=10) or a control group (CG, n=9). The PG attended 24 exercise sessions conducted over an 8-week period (3 sessions/week). Center of pressure (COP) sway and COP velocity were measured one week before and after the exercise program and compared to assess training effects. [Results] Pilates exercise positively affected both static and dynamic balance in patients with chronic stroke. For static balance, COP sway and velocity in the medial-lateral (M-L) and anterior-posterior (A-P) directions were significantly decreased in the PG after training while no significant differences were found in the CG. For dynamic balance, measured during treadmill walking, the PG showed significantly reduced COP sway and velocity in the M-L and A-P directions for both the paretic and non-paretic leg. [Conclusions] The findings provide initial evidence that Pilates exercise can enhance static and dynamic balance in patients with chronic stroke. PMID:27390424

  4. Verification of E-Beam direct write integration into 28nm BEOL SRAM technology

    NASA Astrophysics Data System (ADS)

    Hohle, Christoph; Choi, Kang-Hoon; Gutsch, Manuela; Hanisch, Norbert; Seidel, Robert; Steidel, Katja; Thrun, Xaver; Werner, Thomas

    2015-03-01

    Electron beam direct write lithography (EBDW) potentially offers advantages for low-volume semiconductor manufacturing, rapid prototyping or design verification due to its high flexibility without the need of costly masks. However, the integration of this advanced patterning technology into complex CMOS manufacturing processes remains challenging. The low throughput of today's single e-Beam tools limits high volume manufacturing applications and maturity of parallel (multi) beam systems is still insufficient [1,2]. Additional concerns like transistor or material damage of underlying layers during exposure at high electron density or acceleration voltage have to be addressed for advanced technology nodes. In the past we successfully proved that potential degradation effects of high-k materials or ULK shrink can be neglected and were excluded by demonstrating integrated electrical results of 28nm node transistor and BEOL performance following 50kV electron beam dry exposure [3]. Here we will give an update on the integration of EBDW in the 300mm CMOS manufacturing processes of advanced integrated circuits at the 28nm SRAM node of GLOBALFOUNDRIES Dresden. The work is an update to what has been previously published [4]. E-beam patterning results of BEOL full chip metal and via layers with a dual damascene integration scheme using a 50kV VISTEC SB3050DW variable shaped electron beam direct writer at Fraunhofer IPMSCNT are demonstrated. For the patterning of the Metal layer a Mix & Match concept based on the sequence litho - etch -litho -etch (LELE) was developed and evaluated wherein several exposure fields were blanked out during the optical exposure. Etch results are shown and compared to the POR. Results are also shown on overlay performance and optimized e-Beam exposure time using most advanced data prep solutions and resist processes. The patterning results have been verified using fully integrated electrical measurement of metal lines and vias on wafer level. In summary we demonstrate the integration capability of EBDW into a productive CMOS process flow at the example of the 28nm SRAM technology node.

  5. Universal statistics of vortex tangles in three-dimensional random waves

    NASA Astrophysics Data System (ADS)

    Taylor, Alexander J.

    2018-02-01

    The tangled nodal lines (wave vortices) in random, three-dimensional wavefields are studied as an exemplar of a fractal loop soup. Their statistics are a three-dimensional counterpart to the characteristic random behaviour of nodal domains in quantum chaos, but in three dimensions the filaments can wind around one another to give distinctly different large scale behaviours. By tracing numerically the structure of the vortices, their conformations are shown to follow recent analytical predictions for random vortex tangles with periodic boundaries, where the local disorder of the model ‘averages out’ to produce large scale power law scaling relations whose universality classes do not depend on the local physics. These results explain previous numerical measurements in terms of an explicit effect of the periodic boundaries, where the statistics of the vortices are strongly affected by the large scale connectedness of the system even at arbitrarily high energies. The statistics are investigated primarily for static (monochromatic) wavefields, but the analytical results are further shown to directly describe the reconnection statistics of vortices evolving in certain dynamic systems, or occurring during random perturbations of the static configuration.

  6. Realistic Many-Body Quantum Systems vs. Full Random Matrices: Static and Dynamical Properties

    NASA Astrophysics Data System (ADS)

    Karp, Jonathan; Torres-Herrera, Jonathan; TáVora, Marco; Santos, Lea

    We study the static and dynamical properties of isolated spin 1/2 systems as prototypes of many-body quantum systems and compare the results to those of full random matrices from a Gaussian orthogonal ensemble. Full random matrices do not represent realistic systems, because they imply that all particles interact at the same time, as opposed to realistic Hamiltonians, which are sparse and have only few-body interactions. Nevertheless, with full random matrices we can derive analytical results that can be used as references and bounds for the corresponding properties of realistic systems. In particular, we show that the results for the Shannon information entropy are very similar to those for the von Neumann entanglement entropy, with the former being computationally less expensive. We also discuss the behavior of the survival probability of the initial state at different time scales and show that it contains more information about the system than the entropies. Support from the NSF Grant No. DMR-1147430.

  7. Bone pain caused by swelling of mouse ear capsule static xylene and effects on rat models of cervical spondylosis

    NASA Astrophysics Data System (ADS)

    Zhang, Xuhui; Xia, Lei; Hao, Shaojun; Chen, Weiliang; Guo, Junyi; Ma, Zhenzhen; Wang, Huamin; Kong, Xuejun; Wang, Hongyu; Zhang, Zhengchen

    2018-04-01

    To observe the effect of intravenous bone pain Capsule on the ear of mice induced by xylene, swelling of rat models of cervical spondylosis. Weighing 18 ˜ 21g 50 mice, male, were randomly divided into for five groups, which were fed with service for bone pain static capsule suspension, Jingfukang granule suspension 0.5%CMC liquid and the same volume of. Respectively to the mice ear drop of xylene 0.05 ml, 4h after cervical dislocation, the mice were sacrificed and the cut two ear, rapid analytical balance weighing, and calculate the ear swelling degree and the other to take the weight of 200 - 60 250g male SD rats, were randomly divided into for 6 groups, 10 rats in each group, of which 5 groups made cervical spondylosis model. Results: with the blank group than bone pain static capsule group and Jingfukang granule group can significantly reduce mouse auricular dimethylbenzene swelling, significantly reduce ear swelling degree (P < 0.01); the successful establishment of the rat model of cervical spondylosis. With the model group ratio, large, medium and small dose of bone pain static capsule group, Jingfukang granule group (P < 0.01) angle of swash plate of rats increased significantly, the high and middle dose of bone pain static capsule group, Jingfukang granule group can significantly reduce the rat X-ray scores (P < 0.05). Bone pain static capsule can significantly reduce mouse auricular dimethylbenzene swelling. The bone pain capsule has a good effect on the rat model of cervical spondylosis.

  8. The Relative Effectiveness of the Use of Static and Dynamic Mechanical Models in Teaching Elementary School Children the Theoretical Concept--The Particle Nature of Matter.

    ERIC Educational Resources Information Center

    Ziegler, Robert Edward

    This study is concerned with determining the relative effectiveness of a static and dynamic theoretical model in teaching elementary school students to use the particle idea of matter when explaining certain physical phenomena. A clinical method of personal individual interview-testing, teaching, and retesting of a random sample population from…

  9. A prospective randomized multicenter trial comparing clinical outcomes of patients treated surgically with a static or dynamic implant for acute ankle syndesmosis rupture.

    PubMed

    Laflamme, Mélissa; Belzile, Etienne L; Bédard, Luc; van den Bekerom, Michel P J; Glazebrook, Mark; Pelet, Stéphane

    2015-05-01

    To compare the clinical and radiographic outcome after stabilization of an acute syndesmosis rupture with either a static implant (a 3.5-mm metallic screw through 4 cortices) or a dynamic device (TightRope; Arthrex). Multicenter randomized double-blind controlled trial. Study realized in 5 trauma centers (2 level 1 and 3 level 2) in 2 countries. Seventy subjects admitted for an acute ankle syndesmosis rupture entered the study and were randomized into 2 groups (dynamic fixation = 34 and static fixation = 36). The 2 groups were similar regarding demographic, social, and surgical data. Sixty-five patients (dynamic = 33 and static = 32) completed the study and were available for analysis. Syndesmosis fixation in the static group was realized with a 4 cortices 3.5-mm cortical screw (Synthes) and in the dynamic group with 1 TightRope (Arthrex). Standardized rehabilitation process for the 2 groups: no weight bearing in a cast for 6 weeks and then rehabilitation without protection. Olerud-Molander score. Subjects with dynamic fixation achieved better clinical performances as described with the Olerud-Molander scores at 3 (68.8 vs. 60.2, P = 0.067), 6 (84.2 vs. 76.8, P = 0.082), and 12 months (93.3 vs. 87.6, P = 0.046). We also observed higher American Orthopaedic Foot and Ankle Society scores at 3 months (78.6 vs. 70.6, P = 0.016), but these were not significant at 6 (87.1 vs. 83.8, P = 0.26) or 12 months (93.1 vs. 89.9, P = 0.26). Implant failure was higher in the screw group (36.1% vs. 0%, P < 0.05). Loss of reduction was observed in 4 cases in the static screw group (11.1% vs. 0%, P = 0.06). Dynamic fixation of acute ankle syndesmosis rupture with a dynamic device seems to result in better clinical and radiographic outcomes. The implant offers adequate syndesmotic stabilization without failure or loss of reduction, and the reoperation rate is significantly lower than with conventional screw fixation. Therapeutic Level II. See Instructions for Authors for a complete description of levels of evidence.

  10. Parallel search for conjunctions with stimuli in apparent motion.

    PubMed

    Casco, C; Ganis, G

    1999-01-01

    A series of experiments was conducted to determine whether apparent motion tends to follow the similarity rule (i.e. is attribute-specific) and to investigate the underlying mechanism. Stimulus duration thresholds were measured during a two-alternative forced-choice task in which observers detected either the location or the motion direction of target groups defined by the conjunction of size and orientation. Target element positions were randomly chosen within a nominally defined rectangular subregion of the display (target region). The target region was presented either statically (followed by a 250 ms duration mask) or dynamically, displaced by a small distance (18 min of arc) from frame to frame. In the motion display, the position of both target and background elements was changed randomly from frame to frame within the respective areas to abolish spatial correspondence over time. Stimulus duration thresholds were lower in the motion than in the static task, indicating that target detection in the dynamic condition does not rely on the explicit identification of target elements in each static frame. Increasing the distractor-to-target ratio was found to reduce detectability in the static, but not in the motion task. This indicates that the perceptual segregation of the target is effortless and parallel with motion but not with static displays. The pattern of results holds regardless of the task or search paradigm employed. The detectability in the motion condition can be improved by increasing the number of frames and/or by reducing the width of the target area. Furthermore, parallel search in the dynamic condition can be conducted with both short-range and long-range motion stimuli. Finally, apparent motion of conjunctions is insufficient on its own to support location decision and is disrupted by random visual noise. Overall, these findings show that (i) the mechanism underlying apparent motion is attribute-specific; (ii) the motion system mediates temporal integration of feature conjunctions before they are identified by the static system; and (iii) target detectability in these stimuli relies upon a nonattentive, cooperative, directionally selective motion mechanism that responds to high-level attributes (conjunction of size and orientation).

  11. Comparison between static stretching and the Pilates method on the flexibility of older women.

    PubMed

    Oliveira, Laís Campos de; Oliveira, Raphael Gonçalves de; Pires-Oliveira, Deise Aparecida de Almeida

    2016-10-01

    Flexibility decreases with advancing age and some forms of exercise, such as static stretching and Pilates, can contribute to the improvement of this physical ability. To compare the effects of static stretching and Pilates on the flexibility of healthy older women, over the age of 60 years. Thirty-two volunteers were randomized into two groups (Static stretching or Pilates) to perform exercises for 60 min, twice a week, for three months. Evaluations to analyze the movements of the trunk (flexion and extension), hip flexion and plantar and dorsiflexion of the ankle were performed before and after the intervention, using a fleximeter. The static stretching exercises improved the trunk flexion and hip flexion movements, while the Pilates improved all evaluated movements. However, over time, the groups presented differences only for the trunk extension movement. For some body segments, Pilates may be more effective for improving flexibility in older women compared to static stretching. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effects of Static Stretching and Playing Soccer on Knee Laxity.

    PubMed

    Baumgart, Christian; Gokeler, Alli; Donath, Lars; Hoppe, Matthias W; Freiwald, Jürgen

    2015-11-01

    This study investigated exercise-induced effects of static stretching and playing soccer on anterior tibial translation (ATT) of the knee joint. Randomized controlled trial. University biomechanics laboratory. Thirty-one athletes were randomly assigned into a stretching (26.9 ± 6.2 years, 1.77 ± 0.09 m, 67.9 ± 10.7 kg) and a control group (27.9 ± 7.4 years, 1.75 ± 0.08 m, 72.0 ± 14.9 kg). Thirty-one amateur soccer players in an additional soccer group (25.1 ± 5.6 years, 1.74 ± 0.10 m, 71.8 ± 14.8 kg). All participants had no history of knee injury requiring surgery and any previous knee ligament or cartilage injury. The stretching group performed 4 different static stretching exercises with a duration of 2 × 20 seconds interspersed with breaks of 10 seconds. The soccer group completed a 90-minute soccer-specific training program. The control group did not perform any physical activity for approximately 30 minutes. Anterior tibial translation was measured with the KT-1000 knee arthrometer at forces of 67 N, 89 N, and maximal manual force (Max) before and after the intervention. There was a significant increase in ATT after static stretching and playing soccer at all applied forces. Maximal manual testing revealed a mean increase of ATT after static stretching of 2.1 ± 1.6 mm (P < 0.0005) and after playing soccer of 1.0 ± 1.5 mm (P = 0.001). The ATT increase after static stretching at 67 and 89 N is significantly higher than in controls. At maximum manual testing, significant differences were evident between all groups. Static stretching and playing soccer increase ATT and may consequently influence mechanical factors of the anterior cruciate ligament. The ATT increase after static stretching was greater than after playing soccer. The observed increase in ATT after static stretching and playing soccer may be associated with changes in kinesthetic perception and sensorimotor control, activation of muscles, joint stability, overall performance, and higher injury risk.

  13. Implementation of a Configurable Fault Tolerant Processor (CFTP) Using Internal Triple Modular Redundancy (TMR)

    DTIC Science & Technology

    2005-12-01

    Upsets in SRAM FPGAs,” Military and Aerospace Applications of Programmable Logic Devices, September 2002. 8. Wakerly , John F,. “Microcomputer...change. The goal of the Configurable Fault Tolerant Processor (CFTP) Project is to explore, develop and demonstrate the applicability of using off-the...develop and demonstrate the applicability of using commercial-of-the-shelf (COTS) Field Programmable Gate Arrays (FPGA) in the design of

  14. Goal Structuring Notation in a Radiation Hardening Assurance Case for COTS-Based Spacecraft

    NASA Technical Reports Server (NTRS)

    Witulski, Arthur; Austin, Rebekah; Evans, John; Mahadevan, Nag; Karsai, Gabor; Sierawski, Brian; LaBel, Ken; Reed, Robert; Schrimpf, Ron

    2016-01-01

    A systematic approach is presented to constructing a radiation assurance case using Goal Structuring Notation (GSN) for spacecraft containing commercial-off-the-shelf (COTS) parts. The GSN paradigm is applied to an SRAM single-event upset experiment board designed to fly on a CubeSat November 2016. Construction of a radiation assurance case without use of hardened parts or extensive radiation testing is discussed.

  15. Effect of revised high-heeled shoes on foot pressure and static balance during standing.

    PubMed

    Bae, Young-Hyeon; Ko, Mansoo; Park, Young-Soul; Lee, Suk-Min

    2015-04-01

    [Purpose] The purpose of this study was to investigate the effects of revised high-heeled shoes on the foot pressure ratio and static balance during standing. [Subjects and Methods] A single-subject design was used, 15 healthy women wearing revised high-heeled shoes and general high-heeled shoes in a random order. The foot pressure ratio and static balance scores during standing were measured using a SpaceBalance 3D system. [Results] Forefoot and rearfoot pressures were significantly different between the 2 types of high-heeled shoes. Under the 3 conditions tested, the static balance score was higher for the revised high-heeled shoes than for the general high-heeled shoes, but this difference was not statistically significant. [Conclusion] Revised high-heeled shoes are preferable to general high-heeled shoes, as they result in normalization of normalized foot pressure and a positive effect on static balance.

  16. Effect of revised high-heeled shoes on foot pressure and static balance during standing

    PubMed Central

    Bae, Young-Hyeon; Ko, Mansoo; Park, Young-Soul; Lee, Suk-Min

    2015-01-01

    [Purpose] The purpose of this study was to investigate the effects of revised high-heeled shoes on the foot pressure ratio and static balance during standing. [Subjects and Methods] A single-subject design was used, 15 healthy women wearing revised high-heeled shoes and general high-heeled shoes in a random order. The foot pressure ratio and static balance scores during standing were measured using a SpaceBalance 3D system. [Results] Forefoot and rearfoot pressures were significantly different between the 2 types of high-heeled shoes. Under the 3 conditions tested, the static balance score was higher for the revised high-heeled shoes than for the general high-heeled shoes, but this difference was not statistically significant. [Conclusion] Revised high-heeled shoes are preferable to general high-heeled shoes, as they result in normalization of normalized foot pressure and a positive effect on static balance. PMID:25995572

  17. Prophylactic stretching does not reduce cramp susceptibility.

    PubMed

    Miller, Kevin C; Harsen, James D; Long, Blaine C

    2018-03-01

    Some clinicians advocate stretching to prevent muscle cramps. It is unknown whether static or proprioceptive neuromuscular facilitation (PNF) stretching increases cramp threshold frequency (TF c ), a quantitative measure of cramp susceptibility. Fifteen individuals completed this randomized, counterbalanced, cross-over study. We measured passive hallux range of motion (ROM) and then performed 3 minutes of either static stretching, PNF stretching (hold-relax-with agonist contraction), or no stretching. ROM was reassessed and TF c was measured. PNF stretching increased hallux extension (pre-PNF 81 ± 11°, post-PNF 90 ± 10°; P < 0.05) but not hallux flexion (pre-PNF 40 ± 7°, post-PNF 40 ± 7°; P > 0.05). Static stretching increased hallux extension (pre-static 80 ± 11°, post-static 88 ± 9°; P < 0.05) but not hallux flexion (pre-static 38 ± 9°, post-static 39 ± 8°; P > 0.05). No ROM changes occurred with no stretching (P > 0.05). TF c was unaffected by stretching (no stretching 18 ± 7 Hz, PNF 16 ± 4 Hz, static 16 ± 5 Hz; P = 0.37). Static and PNF stretching increased hallux extension, but neither increased TF c . Acute stretching may not prevent muscle cramping. Muscle Nerve 57: 473-477, 2018. © 2017 Wiley Periodicals, Inc.

  18. Differential Responses to a Visual Self-Motion Signal in Human Medial Cortical Regions Revealed by Wide-View Stimulation

    PubMed Central

    Wada, Atsushi; Sakano, Yuichi; Ando, Hiroshi

    2016-01-01

    Vision is important for estimating self-motion, which is thought to involve optic-flow processing. Here, we investigated the fMRI response profiles in visual area V6, the precuneus motion area (PcM), and the cingulate sulcus visual area (CSv)—three medial brain regions recently shown to be sensitive to optic-flow. We used wide-view stereoscopic stimulation to induce robust self-motion processing. Stimuli included static, randomly moving, and coherently moving dots (simulating forward self-motion). We varied the stimulus size and the presence of stereoscopic information. A combination of univariate and multi-voxel pattern analyses (MVPA) revealed that fMRI responses in the three regions differed from each other. The univariate analysis identified optic-flow selectivity and an effect of stimulus size in V6, PcM, and CSv, among which only CSv showed a significantly lower response to random motion stimuli compared with static conditions. Furthermore, MVPA revealed an optic-flow specific multi-voxel pattern in the PcM and CSv, where the discrimination of coherent motion from both random motion and static conditions showed above-chance prediction accuracy, but that of random motion from static conditions did not. Additionally, while area V6 successfully classified different stimulus sizes regardless of motion pattern, this classification was only partial in PcM and was absent in CSv. This may reflect the known retinotopic representation in V6 and the absence of such clear visuospatial representation in CSv. We also found significant correlations between the strength of subjective self-motion and univariate activation in all examined regions except for primary visual cortex (V1). This neuro-perceptual correlation was significantly higher for V6, PcM, and CSv when compared with V1, and higher for CSv when compared with the visual motion area hMT+. Our convergent results suggest the significant involvement of CSv in self-motion processing, which may give rise to its percept. PMID:26973588

  19. Comparison of effects of static, proprioceptive neuromuscular facilitation and Mulligan stretching on hip flexion range of motion: a randomized controlled trial.

    PubMed

    Yıldırım, M S; Ozyurek, S; Tosun, Oç; Uzer, S; Gelecek, N

    2016-03-01

    The aim of this study was to compare the effects of static stretching, proprioceptive neuromuscular facilitation (PNF) stretching and Mulligan technique on hip flexion range of motion (ROM) in subjects with bilateral hamstring tightness. A total of 40 students (mean age: 21.5±1.3 years, mean body height: 172.8±8.2 cm, mean body mass index: 21.9±3.0 kg · m(-2)) with bilateral hamstring tightness were enrolled in this randomized trial, of whom 26 completed the study. Subjects were divided into 4 groups performing (I) typical static stretching, (II) PNF stretching, (III) Mulligan traction straight leg raise (TSLR) technique, (IV) no intervention. Hip flexion ROM was measured using a digital goniometer with the passive straight leg raise test before and after 4 weeks by two physiotherapists blinded to the groups. 52 extremities of 26 subjects were analyzed. Hip flexion ROM increased in all three intervention groups (p<0.05) but not in the no-intervention group after 4 weeks. A statistically significant change in initial-final assessment differences of hip flexion ROM was found between groups (p<0.001) in favour of PNF stretching and Mulligan TSLR technique in comparison to typical static stretching (p=0.016 and p=0.02, respectively). No significant difference was found between Mulligan TSLR technique and PNF stretching (p=0.920). The initial-final assessment difference of hip flexion ROM was similar in typical static stretching and no intervention (p=0.491). A 4-week stretching intervention is beneficial for increasing hip flexion ROM in bilateral hamstring tightness. However, PNF stretching and Mulligan TSLR technique are superior to typical static stretching. These two interventions can be alternatively used for stretching in hamstring tightness.

  20. Comparison of effects of static, proprioceptive neuromuscular facilitation and Mulligan stretching on hip flexion range of motion: a randomized controlled trial

    PubMed Central

    Ozyurek, S; Tosun, OÇ; Uzer, S; Gelecek, N

    2016-01-01

    The aim of this study was to compare the effects of static stretching, proprioceptive neuromuscular facilitation (PNF) stretching and Mulligan technique on hip flexion range of motion (ROM) in subjects with bilateral hamstring tightness. A total of 40 students (mean age: 21.5±1.3 years, mean body height: 172.8±8.2 cm, mean body mass index: 21.9±3.0 kg · m-2) with bilateral hamstring tightness were enrolled in this randomized trial, of whom 26 completed the study. Subjects were divided into 4 groups performing (I) typical static stretching, (II) PNF stretching, (III) Mulligan traction straight leg raise (TSLR) technique, (IV) no intervention. Hip flexion ROM was measured using a digital goniometer with the passive straight leg raise test before and after 4 weeks by two physiotherapists blinded to the groups. 52 extremities of 26 subjects were analyzed. Hip flexion ROM increased in all three intervention groups (p<0.05) but not in the no-intervention group after 4 weeks. A statistically significant change in initial–final assessment differences of hip flexion ROM was found between groups (p<0.001) in favour of PNF stretching and Mulligan TSLR technique in comparison to typical static stretching (p=0.016 and p=0.02, respectively). No significant difference was found between Mulligan TSLR technique and PNF stretching (p=0.920). The initial–final assessment difference of hip flexion ROM was similar in typical static stretching and no intervention (p=0.491). A 4-week stretching intervention is beneficial for increasing hip flexion ROM in bilateral hamstring tightness. However, PNF stretching and Mulligan TSLR technique are superior to typical static stretching. These two interventions can be alternatively used for stretching in hamstring tightness. PMID:26929476

  1. The Effect of Obstacle Training in Water on Static Balance of Chronic Stroke Patients

    PubMed Central

    Jung, JaeHyun; Lee, JiYeun; Chung, EunJung; Kim, Kyoung

    2014-01-01

    [Purpose] This study evaluated the effects of water and land-based obstacle training on static balance of chronic stroke patients. [Subjects] The subjects were randomly allocated to an aqua group (n=15) and a land group (n=15). [Methods] Both groups trained for 40 minutes, 3 times a week for 12 weeks. Static balance was assessed by measuring the mean velocities of mediolateral (ML) and anteroposterior (AP), and sway area with the eyes closed. [Results] Following the intervention, both groups showed significant changes in ML velocity, AP velocity, and sway area. The static balance of the aqua group was significantly better than the land group. [Conclusion] The results of this study suggest the feasibility and suitability of obstacle training in water for stroke patients. PMID:24707102

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batista, Antonio J. N.; Santos, Bruno; Fernandes, Ana

    The data acquisition and control instrumentation cubicles room of the ITER tokamak will be irradiated with neutrons during the fusion reactor operation. A Virtex-6 FPGA from Xilinx (XC6VLX365T-1FFG1156C) is used on the ATCA-IO-PROCESSOR board, included in the ITER Catalog of I and C products - Fast Controllers. The Virtex-6 is a re-programmable logic device where the configuration is stored in Static RAM (SRAM), functional data stored in dedicated Block RAM (BRAM) and functional state logic in Flip-Flops. Single Event Upsets (SEU) due to the ionizing radiation of neutrons causes soft errors, unintended changes (bit-flips) to the values stored in statemore » elements of the FPGA. The SEU monitoring and soft errors repairing, when possible, were explored in this work. An FPGA built-in Soft Error Mitigation (SEM) controller detects and corrects soft errors in the FPGA configuration memory. Novel SEU sensors with Error Correction Code (ECC) detect and repair the BRAM memories. Proper management of SEU can increase reliability and availability of control instrumentation hardware for nuclear applications. The results of the tests performed using the SEM controller and the BRAM SEU sensors are presented for a Virtex-6 FPGA (XC6VLX240T-1FFG1156C) when irradiated with neutrons from the Portuguese Research Reactor (RPI), a 1 MW nuclear fission reactor operated by IST in the neighborhood of Lisbon. Results show that the proposed SEU mitigation technique is able to repair the majority of the detected SEU errors in the configuration and BRAM memories. (authors)« less

  3. Methodologies for the Statistical Analysis of Memory Response to Radiation

    NASA Astrophysics Data System (ADS)

    Bosser, Alexandre L.; Gupta, Viyas; Tsiligiannis, Georgios; Frost, Christopher D.; Zadeh, Ali; Jaatinen, Jukka; Javanainen, Arto; Puchner, Helmut; Saigné, Frédéric; Virtanen, Ari; Wrobel, Frédéric; Dilillo, Luigi

    2016-08-01

    Methodologies are proposed for in-depth statistical analysis of Single Event Upset data. The motivation for using these methodologies is to obtain precise information on the intrinsic defects and weaknesses of the tested devices, and to gain insight on their failure mechanisms, at no additional cost. The case study is a 65 nm SRAM irradiated with neutrons, protons and heavy ions. This publication is an extended version of a previous study [1].

  4. Pressure and temperature fields associated with aero-optics tests. [transonic wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Raman, K. R.

    1980-01-01

    The experimental investigation carried out in a 6 x 6 ft wind tunnel on four model configurations in the aero-optics series of tests are described. The data obtained on the random pressures (static and total pressures) and total temperatures are presented. In addition, the data for static pressure fluctuations on the Coelostat turret model are presented. The measurements indicate that the random pressures and temperature are negligible compared to their own mean (or steady state) values for the four models considered, thus allowing considerable simplification in the calculations to obtain the statistical properties of the density field. In the case of the Coelostat model tests these simplifications cannot be assumed a priori and require further investigation.

  5. Error analysis and prevention of cosmic ion-induced soft errors in static CMOS RAMs

    NASA Astrophysics Data System (ADS)

    Diehl, S. E.; Ochoa, A., Jr.; Dressendorfer, P. V.; Koga, P.; Kolasinski, W. A.

    1982-12-01

    Cosmic ray interactions with memory cells are known to cause temporary, random, bit errors in some designs. The sensitivity of polysilicon gate CMOS static RAM designs to logic upset by impinging ions has been studied using computer simulations and experimental heavy ion bombardment. Results of the simulations are confirmed by experimental upset cross-section data. Analytical models have been extended to determine and evaluate design modifications which reduce memory cell sensitivity to cosmic ions. A simple design modification, the addition of decoupling resistance in the feedback path, is shown to produce static RAMs immune to cosmic ray-induced bit errors.

  6. New Polylactic Acid Composites Reinforced with Artichoke Fibers

    PubMed Central

    Botta, Luigi; Fiore, Vincenzo; Scalici, Tommaso; Valenza, Antonino; Scaffaro, Roberto

    2015-01-01

    In this work, artichoke fibers were used for the first time to prepare poly(lactic acid) (PLA)-based biocomposites. In particular, two PLA/artichoke composites with the same fiber loading (10% w/w) were prepared by the film-stacking method: the first one (UNID) reinforced with unidirectional long artichoke fibers, the second one (RANDOM) reinforced by randomly-oriented long artichoke fibers. Both composites were mechanically characterized in tensile mode by quasi-static and dynamic mechanical tests. The morphology of the fracture surfaces was analyzed through scanning electron microscopy (SEM). Moreover, a theoretical model, i.e., Hill’s method, was used to fit the experimental Young’s modulus of the biocomposites. The quasi-static tensile tests revealed that the modulus of UNID composites is significantly higher than that of the neat PLA (i.e., ~40%). Moreover, the tensile strength is slightly higher than that of the neat matrix. The other way around, the stiffness of RANDOM composites is not significantly improved, and the tensile strength decreases in comparison to the neat PLA.

  7. Design Trade-off Between Performance and Fault-Tolerance of Space Onboard Computers

    NASA Astrophysics Data System (ADS)

    Gorbunov, M. S.; Antonov, A. A.

    2017-01-01

    It is well known that there is a trade-off between performance and power consumption in onboard computers. The fault-tolerance is another important factor affecting performance, chip area and power consumption. Involving special SRAM cells and error-correcting codes is often too expensive with relation to the performance needed. We discuss the possibility of finding the optimal solutions for modern onboard computer for scientific apparatus focusing on multi-level cache memory design.

  8. Sensitivity analysis of static resistance of slender beam under bending

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valeš, Jan

    2016-06-08

    The paper deals with statical and sensitivity analyses of resistance of simply supported I-beams under bending. The resistance was solved by geometrically nonlinear finite element method in the programme Ansys. The beams are modelled with initial geometrical imperfections following the first eigenmode of buckling. Imperfections were, together with geometrical characteristics of cross section, and material characteristics of steel, considered as random quantities. The method Latin Hypercube Sampling was applied to evaluate statistical and sensitivity resistance analyses.

  9. Additional Effect of Static Ultrasound and Diadynamic Currents on Myofascial Trigger Points in a Manual Therapy Program for Patients With Chronic Neck Pain: A Randomized Clinical Trial.

    PubMed

    Dibai-Filho, Almir Vieira; de Oliveira, Alessandra Kelly; Girasol, Carlos Eduardo; Dias, Fabiana Rodrigues Cancio; Guirro, Rinaldo Roberto de Jesus

    2017-04-01

    To assess the additional effect of static ultrasound and diadynamic currents on myofascial trigger points in a manual therapy program to treat individuals with chronic neck pain. A single-blind randomized trial was conducted. Both men and women, between ages 18 and 45, with chronic neck pain and active myofascial trigger points in the upper trapezius were included in the study. Subjects were assigned to 3 different groups: group 1 (n = 20) was treated with manual therapy; group 2 (n = 20) was treated with manual therapy and static ultrasound; group 3 (n = 20) was treated with manual therapy and diadynamic currents. Individuals were assessed before the first treatment session, 48 hours after the first treatment session, 48 hours after the tenth treatment session, and 4 weeks after the last session. There was no group-versus-time interaction for Numeric Rating Scale, Neck Disability Index, Pain-Related Self-Statement Scale, pressure pain threshold, cervical range of motion, and skin temperature (F-value range, 0.089-1.961; P-value range, 0.106-0.977). Moreover, we found no differences between groups regarding electromyographic activity (P > 0.05). The use of static ultrasound or diadynamic currents on myofascial trigger points in upper trapezius associated with a manual therapy program did not generate greater benefits than manual therapy alone.

  10. Quantum random walks on congested lattices and the effect of dephasing.

    PubMed

    Motes, Keith R; Gilchrist, Alexei; Rohde, Peter P

    2016-01-27

    We consider quantum random walks on congested lattices and contrast them to classical random walks. Congestion is modelled on lattices that contain static defects which reverse the walker's direction. We implement a dephasing process after each step which allows us to smoothly interpolate between classical and quantum random walks as well as study the effect of dephasing on the quantum walk. Our key results show that a quantum walker escapes a finite boundary dramatically faster than a classical walker and that this advantage remains in the presence of heavily congested lattices.

  11. Kinect-based sign language recognition of static and dynamic hand movements

    NASA Astrophysics Data System (ADS)

    Dalawis, Rando C.; Olayao, Kenneth Deniel R.; Ramos, Evan Geoffrey I.; Samonte, Mary Jane C.

    2017-02-01

    A different approach of sign language recognition of static and dynamic hand movements was developed in this study using normalized correlation algorithm. The goal of this research was to translate fingerspelling sign language into text using MATLAB and Microsoft Kinect. Digital input image captured by Kinect devices are matched from template samples stored in a database. This Human Computer Interaction (HCI) prototype was developed to help people with communication disability to express their thoughts with ease. Frame segmentation and feature extraction was used to give meaning to the captured images. Sequential and random testing was used to test both static and dynamic fingerspelling gestures. The researchers explained some factors they encountered causing some misclassification of signs.

  12. A Comparison of the Immediate Effects of Eccentric Training vs Static Stretch on Hamstring Flexibility in High School and College Athletes.

    PubMed

    Nelson, Russell T

    2006-05-01

    A pre-event static stretching program is often used to prepare an athlete for competition. Recent studies have suggested that static stretching may not be an effective method for stretching the muscle prior to competition. The intent of this study was to compare the immediate effect of static stretching, eccentric training, and no stretching/training on hamstring flexibility in high school and college athletes. Seventy-five athletes, with a mean age of 17.22 (+/- 1.30) were randomly assigned to one of three groups - thirty- second static stretch one time, an eccentric training protocol through a full range of motion, and a control group. All athletes had limited hamstring flexibility, defined as a 20° loss of knee extension measured with the femur held at 90° of hip flexion. A significant difference was indicated by follow up analysis between the control group (gain = -1.08°) and both the static stretch (gain = 5.05°) and the eccentric training group (gain = 9.48°). In addition, the gains in the eccentric training group were significantly greater than the static stretch group. The findings of this study reveal that one session of eccentrically training through a full range of motion improved hamstring flexibility better than the gains made by a static stretch group or a control group.

  13. A Comparison of the Immediate Effects of Eccentric Training vs Static Stretch on Hamstring Flexibility in High School and College Athletes

    PubMed Central

    2006-01-01

    Background A pre-event static stretching program is often used to prepare an athlete for competition. Recent studies have suggested that static stretching may not be an effective method for stretching the muscle prior to competition. Objective The intent of this study was to compare the immediate effect of static stretching, eccentric training, and no stretching/training on hamstring flexibility in high school and college athletes. Methods Seventy-five athletes, with a mean age of 17.22 (+/- 1.30) were randomly assigned to one of three groups - thirty- second static stretch one time, an eccentric training protocol through a full range of motion, and a control group. All athletes had limited hamstring flexibility, defined as a 20° loss of knee extension measured with the femur held at 90° of hip flexion. Results A significant difference was indicated by follow up analysis between the control group (gain = -1.08°) and both the static stretch (gain = 5.05°) and the eccentric training group (gain = 9.48°). In addition, the gains in the eccentric training group were significantly greater than the static stretch group. Discussion and Conclusion The findings of this study reveal that one session of eccentrically training through a full range of motion improved hamstring flexibility better than the gains made by a static stretch group or a control group. PMID:21522215

  14. Effectiveness of two distinct web-based education tools for bedside nurses on medication administration practice for venous thromboembolism prevention: A randomized clinical trial.

    PubMed

    Lau, Brandyn D; Shaffer, Dauryne L; Hobson, Deborah B; Yenokyan, Gayane; Wang, Jiangxia; Sugar, Elizabeth A; Canner, Joseph K; Bongiovanni, David; Kraus, Peggy S; Popoola, Victor O; Shihab, Hasan M; Farrow, Norma E; Aboagye, Jonathan K; Pronovost, Peter J; Streiff, Michael B; Haut, Elliott R

    2017-01-01

    Venous thromboembolism (VTE) is a common cause of preventable harm in hospitalized patients. While numerous successful interventions have been implemented to improve prescription of VTE prophylaxis, a substantial proportion of doses of prescribed preventive medications are not administered to hospitalized patients. The purpose of this trial was to evaluate the effectiveness of nurse education on medication administration practice. This was a double-blinded, cluster randomized trial in 21 medical or surgical floors of 933 nurses at The Johns Hopkins Hospital, an academic medical center, from April 1, 2014 -March 31, 2015. Nurses were cluster-randomized by hospital floor to receive either a linear static education (Static) module with voiceover or an interactive learner-centric dynamic scenario-based education (Dynamic) module. The primary and secondary outcomes were non-administration of prescribed VTE prophylaxis medication and nurse-reported satisfaction with education modules, respectively. Overall, non-administration improved significantly following education (12.4% vs. 11.1%, conditional OR: 0.87, 95% CI: 0.80-0.95, p = 0.002) achieving our primary objective. The reduction in non-administration was greater for those randomized to the Dynamic arm (10.8% vs. 9.2%, conditional OR: 0.83, 95% CI: 0.72-0.95) versus the Static arm (14.5% vs. 13.5%, conditional OR: 0.92, 95% CI: 0.81-1.03), although the difference between arms was not statistically significant (p = 0.26). Satisfaction scores were significantly higher (p<0.05) for all survey items for nurses in the Dynamic arm. Education for nurses significantly improves medication administration practice. Dynamic learner-centered education is more effective at engaging nurses. These findings suggest that education should be tailored to the learner. ClinicalTrials.gov NCT02301793.

  15. Quantification of the memory imprint effect for a charged particle environment

    NASA Technical Reports Server (NTRS)

    Bhuva, B. L.; Johnson, R. L., Jr.; Gyurcsik, R. S.; Kerns, S. E.; Fernald, K. W.

    1987-01-01

    The effects of total accumulated dose on the single-event vulnerability of NMOS resistive-load SRAMs are investigated. The bias-dependent shifts in device parameters can imprint the memory state present during exposure or erase the imprinted state. Analysis of these effects is presented along with an analytic model developed for the quantification of these effects. The results indicate that the imprint effect is dominated by the difference in the threshold voltage of the n-channel devices.

  16. Deciding to Buy: Civil-Military Relations and Major Weapons Programs

    DTIC Science & Technology

    2010-11-01

    did not have direct jurisdiction over shipbuilding for the Navy, meaning that others would have to carry the banner. Despite a dozen bills in 1964...Selected Acquisition Reports (SARs) to keep abreast of these costs. The programs included airplanes in the Air Force inventory , like the A-10, the...Air Force’s ability to modernize the rest of 52 the inventory .153 In addition, given that the SRAM was the primary B-1 weapon, the costs should take

  17. Gallium Arsenide Pilot Line for High Performance Components

    DTIC Science & Technology

    1992-05-28

    two transistors’ characteristics were a close enough match to use as pull -up, high resistance loads in the cell. FET Data Unfortunately, data obtained...length transistors in 4K SRAM II, we can predict the performance of the memory chip. Since there is essentially no active pull up capability in the c a...Second, the 2/2 Am DFET’s threshold and "ON" current could be adjusted. Or third, a different size DFET pull -up transistor could be used which more

  18. Dosimetry and microdosimetry using COTS ICs: A comparative study

    NASA Technical Reports Server (NTRS)

    Scheick, L.; Swift, G.; Guertin, S.; Roth, D.; McNulty, P.; Nguyen, D.

    2002-01-01

    A new method using an array of MOS transistors formeasuring dose absorbed from ionizing radiation is compared to previous dosimetric methods., The accuracy and precision of dosimetry based on COTS SRAMs, DRAMs, and WPROMs are compared and contrasted. Applications of these devices in various space missions will be discussed. TID results are presented for this summary and microdosimetricresults will be added to the full paper. Finally, an analysis of the optimal condition for a digital dosimeter will be presented.

  19. Goal Structuring Notation in a Radiation Hardening Assurance Case for COTS-Based Spacecraft

    NASA Technical Reports Server (NTRS)

    Witulski, A.; Austin, R.; Evans, J.; Mahadevan, N.; Karsai, G.; Sierawski, B.; LaBel, K.; Reed, R.; Schrimpf, R.

    2016-01-01

    A systematic approach is presented to constructing a radiation assurance case using Goal Structuring Notation (GSN) for spacecraft containing COTS parts. The GSN paradigm is applied to an SRAM single-event upset experiment board designed to fly on a CubeSat in January 2017. A custom software language for development of a GSN assurance case is under development at Vanderbilt. Construction of a radiation assurance case without use of hardened parts or extensive radiation testing is discussed.

  20. Implementation of a Fault Tolerant Control Unit within an FPGA for Space Applications

    DTIC Science & Technology

    2006-12-01

    Conference 2002, September 2002. [20] M. Alderighi, A. Candelori, F. Casini, S. D’Angelo, M. Mancini, A. Paccagnella, S. Pastore , G.R. Sechi, “Heavy...Luigi Carro and Ricardo Reis , “Designing and Testing Fault-Tolerant Techniques for SRAM-based FPGAs,” in Proc. 1st Conference on Computer Frontiers, pp...susceptibility,” in IEEE Proc. 12th IEEE Intl. Symposium on On-Line Testing, pp. 89-91, 2006. [45] Fernanda Lima, Luigi Carro and Ricardo Reis

  1. System level mechanical testing of the Clementine spacecraft

    NASA Technical Reports Server (NTRS)

    Haughton, James; Hauser, Joseph; Raynor, William; Lynn, Peter

    1994-01-01

    This paper discusses the system level structural testing that was performed to qualify the Clementine Spacecraft for flight. These tests included spin balance, combined acoustic and axial random vibration, lateral random vibration, quasi-static loads, pyrotechnic shock, modal survey and on-orbit jitter simulation. Some innovative aspects of this effort were: the simultaneously combined acoustic and random vibration test; the mass loaded interface modal survey test; and the techniques used to assess how operating on board mechanisms and thrusters affect sensor vision.

  2. Structural Analysis of Pressurized Small Diameter Lines in a Random Vibration Environment

    NASA Technical Reports Server (NTRS)

    Davis, Mark; Ridnour, Andrew; Brethen, Mark

    2011-01-01

    The pressurization and propellant feed lines for the Ares 1 Upper Stage Reaction and Roll Control Systems (ReCS and RoCS) were required to be in a high g-load random vibration flight environment. The lines connected the system components and were filled with both liquid hydrazine and gaseous helium. They are considered small and varied between one fourth to one inch in diameter. The random vibration of the lines was considered to be base excitation through the mating components and mounting hardware. It was found that reducing the amount of support structure for the lines added flexibility to the system and improved the line stresses from random vibration, but caused higher stresses from the static g-loads. The locations and number of brackets were optimized by analyzing the mode shapes of the lines causing high stresses. The use of brackets that only constrain motion in the direction of concern further reduced the stresses in the lines. Finite element analysis was used to perform the analysis. The lines were pre-stressed by temperature and internal pressure with fluid and insulation included as non-structural mass. Base excitation was added to the model using Power Spectral Density (PSD) data for the expected flight loads. The random vibration and static g-load cases were combined to obtain the total stress in the lines. This approach advances the state of the art in line analysis by using FEA to predict the stresses in the lines and to optimize the entire system based on the expected flight environment. Adding flexibility to lines has been used in piping system for temperature loads, but in flight environments flexibility has been limited for the static stresses. Adding flexibility to the system in a flight environment by reducing brackets has the benefit of reducing stresses and weight

  3. One session of high-intensity interval training (HIIT) every 5 days, improves muscle power but not static balance in lifelong sedentary ageing men: A randomized controlled trial.

    PubMed

    Sculthorpe, Nicholas F; Herbert, Peter; Grace, Fergal

    2017-02-01

    Declining muscle power during advancing age predicts falls and loss of independence. High-intensity interval training (HIIT) may improve muscle power, but remains largely unstudied in ageing participants. This randomized controlled trial (RCT) investigated the efficacy of a low-frequency HIIT (LfHIIT) intervention on peak muscle power (peak power output [PPO]), body composition, and balance in lifelong sedentary but otherwise healthy males. Thirty-three lifelong sedentary ageing men were randomly assigned to either intervention (INT; n = 22, age 62.3 ± 4.1 years) or control (n = 11, age 61.6 ± 5.0 years) who were both assessed at 3 distinct measurement points (phase A), after 6 weeks of conditioning exercise (phase B), and after 6 weeks of HIIT once every 5 days in INT (phase C), where control remained inactive throughout the study. Static balance remained unaffected, and both absolute and relative PPO were not different between groups at phases A or B, but increased significantly in INT after LfHIIT (P < 0.01). Lean body mass displayed a significant interaction (P < 0.01) due to an increase in INT between phases B and C (P < 0.05). 6 weeks of LfHIIT exercise feasible and effective method to induce clinically relevant improvements in absolute and relative PPO, but does not improve static balance in sedentary ageing men.

  4. A technique for reducing patient setup uncertainties by aligning and verifying daily positioning of a moving tumor using implanted fiducials

    PubMed Central

    Balter, Peter; Morice, Rodolfo C.; Choi, Bum; Kudchadker, Rajat J.; Bucci, Kara; Chang, Joe Y.; Dong, Lei; Tucker, Susan; Vedam, Sastry; Briere, Tina; Starkschall, George

    2008-01-01

    This study aimed to validate and implement a methodology in which fiducials implanted in the periphery of lung tumors can be used to reduce uncertainties in tumor location. Alignment software that matches marker positions on two‐dimensional (2D) kilovoltage portal images to positions on three‐dimensional (3D) computed tomography data sets was validated using static and moving phantoms. This software also was used to reduce uncertainties in tumor location in a patient with fiducials implanted in the periphery of a lung tumor. Alignment of fiducial locations in orthogonal projection images with corresponding fiducial locations in 3D data sets can position both static and moving phantoms with an accuracy of 1 mm. In a patient, alignment based on fiducial locations reduced systematic errors in the left–right direction by 3 mm and random errors by 2 mm, and random errors in the superior–inferior direction by 3 mm as measured by anterior–posterior cine images. Software that matches fiducial markers on 2D and 3D images is effective for aligning both static and moving fiducials before treatment and can be implemented to reduce patient setup uncertainties. PACS number: 81.40.Wx

  5. Animated graphics for comparing two risks: a cautionary tale.

    PubMed

    Zikmund-Fisher, Brian J; Witteman, Holly O; Fuhrel-Forbis, Andrea; Exe, Nicole L; Kahn, Valerie C; Dickson, Mark

    2012-07-25

    The increasing use of computer-administered risk communications affords the potential to replace static risk graphics with animations that use motion cues to reinforce key risk messages. Research on the use of animated graphics, however, has yielded mixed findings, and little research exists to identify the specific animations that might improve risk knowledge and patients' decision making. To test whether viewing animated forms of standard pictograph (icon array) risk graphics displaying risks of side effects would improve people's ability to select the treatment with the lowest risk profile, as compared with viewing static images of the same risks. A total of 4198 members of a demographically diverse Internet panel read a scenario about two hypothetical treatments for thyroid cancer. Each treatment was described as equally effective but varied in side effects (with one option slightly better than the other). Participants were randomly assigned to receive all risk information in 1 of 10 pictograph formats in a quasi-factorial design. We compared a control condition of static grouped icons with a static scattered icon display and with 8 Flash-based animated versions that incorporated different combinations of (1) building the risk 1 icon at a time, (2) having scattered risk icons settle into a group, or (3) having scattered risk icons shuffle themselves (either automatically or by user control). We assessed participants' ability to choose the better treatment (choice accuracy), their gist knowledge of side effects (knowledge accuracy), and their graph evaluation ratings, controlling for subjective numeracy and need for cognition. When compared against static grouped-icon arrays, no animations significantly improved any outcomes, and most showed significant performance degradations. However, participants who received animations of grouped icons in which at-risk icons appeared 1 at a time performed as well on all outcomes as the static grouped-icon control group. Displays with scattered icons (static or animated) performed particularly poorly unless they included the settle animation that allowed users to view event icons grouped. Many combinations of animation, especially those with scattered icons that shuffle randomly, appear to inhibit knowledge accuracy in this context. Static pictographs that group risk icons, however, perform very well on measures of knowledge and choice accuracy. These findings parallel recent evidence in other data communication contexts that less can be more-that is, that simpler, more focused information presentation can result in improved understanding. Decision aid designers and health educators should proceed with caution when considering the use of animated risk graphics to compare two risks, given that evidence-based, static risk graphics appear optimal.

  6. Random matrices and condensation into multiple states

    NASA Astrophysics Data System (ADS)

    Sadeghi, Sina; Engel, Andreas

    2018-03-01

    In the present work, we employ methods from statistical mechanics of disordered systems to investigate static properties of condensation into multiple states in a general framework. We aim at showing how typical properties of random interaction matrices play a vital role in manifesting the statistics of condensate states. In particular, an analytical expression for the fraction of condensate states in the thermodynamic limit is provided that confirms the result of the mean number of coexisting species in a random tournament game. We also study the interplay between the condensation problem and zero-sum games with correlated random payoff matrices.

  7. Quantum random walks on congested lattices and the effect of dephasing

    PubMed Central

    Motes, Keith R.; Gilchrist, Alexei; Rohde, Peter P.

    2016-01-01

    We consider quantum random walks on congested lattices and contrast them to classical random walks. Congestion is modelled on lattices that contain static defects which reverse the walker’s direction. We implement a dephasing process after each step which allows us to smoothly interpolate between classical and quantum random walks as well as study the effect of dephasing on the quantum walk. Our key results show that a quantum walker escapes a finite boundary dramatically faster than a classical walker and that this advantage remains in the presence of heavily congested lattices. PMID:26812924

  8. Factors Associated with High Use of a Workplace Web-Based Stress Management Program in a Randomized Controlled Intervention Study

    ERIC Educational Resources Information Center

    Hasson, H.; Brown, C.; Hasson, D.

    2010-01-01

    In web-based health promotion programs, large variations in participant engagement are common. The aim was to investigate determinants of high use of a worksite self-help web-based program for stress management. Two versions of the program were offered to randomly selected departments in IT and media companies. A static version of the program…

  9. Moving Target Techniques: Cyber Resilience throught Randomization, Diversity, and Dynamism

    DTIC Science & Technology

    2017-03-03

    Moving Target Techniques: Cyber Resilience through Randomization, Diversity, and Dynamism Hamed Okhravi and Howard Shrobe Overview: The static...nature of computer systems makes them vulnerable to cyber attacks. Consider a situation where an attacker wants to compromise a remote system running... cyber resilience that attempts to rebalance the cyber landscape is known as cyber moving target (MT) (or just moving target) techniques. Moving target

  10. Three-dimensional joint inversion for magnetotelluric resistivity and static shift distributions in complex media

    NASA Astrophysics Data System (ADS)

    Sasaki, Yutaka; Meju, Max A.

    2006-05-01

    Accurate interpretation of magnetotelluric (MT) data in the presence of static shift arising from near-surface inhomogeneities is an unresolved problem in three-dimensional (3-D) inversion. While it is well known in 1-D and 2-D studies that static shift can lead to erroneous interpretation, how static shift can influence the result of 3-D inversion is not fully understood and is relevant to improved subsurface analysis. Using the synthetic data generated from 3-D models with randomly distributed heterogeneous overburden and elongate homogeneous overburden that are consistent with geological observations, this paper examines the effects of near-surface inhomogeneity on the accuracy of 3-D inversion models. It is found that small-scale and shallow depth structures are severely distorted while the large-scale structure is marginally distorted in 3-D inversion not accounting for static shift; thus the erroneous near-surface structure does degrade the reconstruction of smaller-scale structure at any depth. However, 3-D joint inversion for resistivity and static shift significantly reduces the artifacts caused by static shifts and improves the overall resolution, irrespective of whether a zero-sum or Gaussian distribution of static shifts is assumed. The 3-D joint inversion approach works equally well for situations where the shallow bodies are of small size or long enough to allow some induction such that the effects of near-surface inhomogeneity are manifested as a frequency-dependent shift rather than a constant shift.

  11. Pelvic Static Magnetic Stimulation to Control Urinary Incontinence in Older Women: A Randomized Controlled Trial

    PubMed Central

    Wallis, Marianne C.; Davies, Elizabeth A.; Thalib, Lukman; Griffiths, Susan

    2012-01-01

    Objectives To determine the efficacy of non-invasive static magnetic stimulation (SMS) of the pelvic floor compared to placebo in the treatment of women aged 60 years and over with urinary incontinence for 6 months or more. Subjects and Methods A single-blinded randomized, placebo-controlled, parallel-group trial. Subjects were excluded if they had an implanted electronic device, had experienced a symptomatic urinary tract infection, or had commenced pharmacotherapy for the same in the previous 4 weeks, or if they were booked for pelvic floor or gynecological surgery within the next 3 months. Once written consent was obtained, subjects were randomly assigned to the active SMS group (n=50) or the placebo group (n=51). Treatment was an undergarment incorporating 15 static magnets of 800–1200 Gauss anterior, posterior, and inferior to the pelvis for at least 12 hours a day for 3 months. Placebo was the same protocol with inert metal disks replacing the magnets. Primary outcome measure was cessation of incontinence as measured by a 24-hour pad test. Secondary outcomes were frequency and severity of symptoms as measured by the Bristol Female Lower Urinary Tract Symptoms questionnaire (BFLUTS-SF), the Incontinence Severity Index, a Bothersomeness Visual Analog scale, and a 24-hour bladder diary. Data were collected at baseline and 12 weeks later. Results There were no statistically significant differences between groups in any of the outcome measures from baseline to 12 weeks. Initial evidence of subjective improvement in the treatment group compared to the placebo group was not sustained with sensitivity analysis. Conclusion This study found no evidence that static magnets cure or decrease the symptoms of urinary incontinence. Additional work into the basic physics of the product and garment design is recommended prior to further clinical trials research. PMID:21817123

  12. Effect of somatosensory and neurofeedback training on balance in older healthy adults: a preliminary investigation.

    PubMed

    Azarpaikan, Atefeh; Taheri Torbati, Hamidreza

    2017-10-23

    The aim of this study was to assess the effectiveness of balance training with somatosensory and neurofeedback training on dynamic and static balance in healthy, elderly adults. The sample group consisted of 45 healthy adults randomly assigned to one of the three test groups: somatosensory, neurofeedback, and a control. Individualization of the balance program started with pre-tests for static and dynamic balances. Each group had 15- and 30-min training sessions. All groups were tested for static (postural stability) and dynamic balances (Berg Balance Scale) in acquisition and transfer tests (fall risk of stability and timed up and go). Improvements in static and dynamic balances were assessed by somatosensory and neurofeedback groups and then compared with the control group. Results indicated significant improvements in static and dynamic balances in both test groups in the acquisition test. Results revealed a significant improvement in the transfer test in the neurofeedback and somatosensory groups, in static and dynamic conditions, respectively. The findings suggest that these methods of balance training had a significant influence on balance. Both the methods are appropriate to prevent falling in adults. Neurofeedback training helped the participants to learn static balance, while somatosensory training was effective on dynamic balance learning. Further research is needed to assess the effects of longer and discontinuous stimulation with somatosensory and neurofeedback training on balance in elderly adults.

  13. A novel digital image sensor with row wise gain compensation for Hyper Spectral Imager (HySI) application

    NASA Astrophysics Data System (ADS)

    Lin, Shengmin; Lin, Chi-Pin; Wang, Weng-Lyang; Hsiao, Feng-Ke; Sikora, Robert

    2009-08-01

    A 256x512 element digital image sensor has been developed which has a large pixel size, slow scan and low power consumption for Hyper Spectral Imager (HySI) applications. The device is a mixed mode, silicon on chip (SOC) IC. It combines analog circuitry, digital circuitry and optical sensor circuitry into a single chip. This chip integrates a 256x512 active pixel sensor array, a programming gain amplifier (PGA) for row wise gain setting, I2C interface, SRAM, 12 bit analog to digital convertor (ADC), voltage regulator, low voltage differential signal (LVDS) and timing generator. The device can be used for 256 pixels of spatial resolution and 512 bands of spectral resolution ranged from 400 nm to 950 nm in wavelength. In row wise gain readout mode, one can set a different gain on each row of the photo detector by storing the gain setting data on the SRAM thru the I2C interface. This unique row wise gain setting can be used to compensate the silicon spectral response non-uniformity problem. Due to this unique function, the device is suitable for hyper-spectral imager applications. The HySI camera located on-board the Chandrayaan-1 satellite, was successfully launched to the moon on Oct. 22, 2008. The device is currently mapping the moon and sending back excellent images of the moon surface. The device design and the moon image data will be presented in the paper.

  14. Short Durations of Static Stretching when Combined with Dynamic Stretching do not Impair Repeated Sprints and Agility

    PubMed Central

    Wong, Del P.; Chaouachi, Anis; Lau, Patrick W.C.; Behm, David G.

    2011-01-01

    This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key points The duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). No significant differences in RSA and COD between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. PMID:24149890

  15. Short Durations of Static Stretching when Combined with Dynamic Stretching do not Impair Repeated Sprints and Agility.

    PubMed

    Wong, Del P; Chaouachi, Anis; Lau, Patrick W C; Behm, David G

    2011-01-01

    This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key pointsThe duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001).No significant differences in RSA and COD between the 3 stretching conditions.The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects.The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments.

  16. ILT optimization of EUV masks for sub-7nm lithography

    NASA Astrophysics Data System (ADS)

    Hooker, Kevin; Kuechler, Bernd; Kazarian, Aram; Xiao, Guangming; Lucas, Kevin

    2017-06-01

    The 5nm and 7nm technology nodes will continue recent scaling trends and will deliver significantly smaller minimum features, standard cell areas and SRAM cell areas vs. the 10nm node. There are tremendous economic pressures to shrink each subsequent technology, though in a cost-effective and performance enhancing manner. IC manufacturers are eagerly awaiting EUV so that they can more aggressively shrink their technology than they could by using complicated MPT. The current 0.33NA EUV tools and processes also have their patterning limitations. EUV scanner lenses, scanner sources, masks and resists are all relatively immature compared to the current lithography manufacturing baseline of 193i. For example, lens aberrations are currently several times larger (as a function of wavelength) in EUV scanners than for 193i scanners. Robustly patterning 16nm L/S fully random logic metal patterns and 40nm pitch random logic rectangular contacts with 0.33NA EUV are tough challenges that will benefit from advanced OPC/RET. For example, if an IC manufacturer can push single exposure device layer resolution 10% tighter using improved ILT to avoid using DPT, there will be a significant cost and process complexity benefit to doing so. ILT is well known to have considerable benefits in finding flexible 193i mask pattern solutions to improve process window, improve 2D CD control, improve resolution in low K1 lithography regime and help to delay the introduction of DPT. However, ILT has not previously been applied to EUV lithography. In this paper, we report on new developments which extend ILT method to EUV lithography and we characterize the benefits seen vs. traditional EUV OPC/RET methods.

  17. Exploration of perpendicular magnetic anisotropy material system for application in spin transfer torque - Random access memory

    NASA Astrophysics Data System (ADS)

    Natarajarathinam, Anusha

    Perpendicular magnetic anisotropy (PMA) materials have unique advantages when used in magnetic tunnel junctions (MTJ) which are the most critical part of spin-torque transfer random access memory devices (STT-RAMs) that are being researched intensively as future non-volatile memory technology. They have high magnetoresistance which improves their sensitivity. The STT-RAM has several advantages over competing technologies, for instance, low power consumption, non-volatility, ultra-fast read and write speed and high endurance. In personal computers, it can replace SRAM for high-speed applications, Flash for non-volatility, and PSRAM and DRAM for high-speed program execution. The main aim of this research is to identify and optimize the best perpendicular magnetic anisotropy (PMA) material system for application to STT-RAM technology. Preliminary search for perpendicular magnetic anisotropy (PMA) materials for pinned layer for MTJs started with the exploration and optimization of crystalline alloys such as Co50Pd50 alloy, Mn50Al50 and amorphous alloys such as Tb21Fe72Co7 and are first presented in this work. Further optimization includes the study of Co/[Pd/Pt]x multilayers (ML), and the development of perpendicular synthetic antiferromagnets (SAF) utilizing these multilayers. Focused work on capping and seed layers to evaluate interfacial perpendicular anisotropy in free layers for pMTJs is then discussed. Optimization of the full perpendicular magnetic tunnel junction (pMTJ) includes the CoFeB/MgO/CoFeB trilayer coupled to a pinned/pinning layer with perpendicular Co/[Pd/Pt]x SAF and a thin Ta seeded CoFeB free layer. Magnetometry, simulations, annealing studies, transport measurements and TEM analysis on these samples will then be presented.

  18. Design and fabrication of composite wing panels containing a production splice

    NASA Technical Reports Server (NTRS)

    Reed, D. L.

    1975-01-01

    Bolted specimens representative of both upper and lower wing surface splices of a transport aircraft were designed and manufactured for static and random load tension and compression fatigue testing including ground-air-ground load reversals. The specimens were fabricated with graphite-epoxy composite material. Multiple tests were conducted at various load levels and the results were used as input to a statistical wearout model. The statically designed specimens performed very well under highly magnified fatigue loadings. Two large panels, one tension and compression, were fabricated for testing by NASA-LRC.

  19. The Effect of Basis Selection on Static and Random Acoustic Response Prediction Using a Nonlinear Modal Simulation

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Przekop, Adam

    2005-01-01

    An investigation of the effect of basis selection on geometric nonlinear response prediction using a reduced-order nonlinear modal simulation is presented. The accuracy is dictated by the selection of the basis used to determine the nonlinear modal stiffness. This study considers a suite of available bases including bending modes only, bending and membrane modes, coupled bending and companion modes, and uncoupled bending and companion modes. The nonlinear modal simulation presented is broadly applicable and is demonstrated for nonlinear quasi-static and random acoustic response of flat beam and plate structures with isotropic material properties. Reduced-order analysis predictions are compared with those made using a numerical simulation in physical degrees-of-freedom to quantify the error associated with the selected modal bases. Bending and membrane responses are separately presented to help differentiate the bases.

  20. The Shock and Vibration Bulletin. Part 3. Vehicle Dynamics and Vibration: Test and Criteria.

    DTIC Science & Technology

    1983-05-01

    transformation. As stability is assumed in forward motion. used here it invariably means the Hydraulic suspension is formed for each group static...are used to calcu- late the random rms stress according to the type Tolerable sound pressure levels were of structure. Appropriate random S-N curves...DC AIRCRAFT SURVIVABILITY Dale B. Atkinson, Chairman, Joint Technical Coordinating Group on Aircraft Survivability, Naval Air Systems Command

  1. Effects on Hamstring Muscle Extensibility, Muscle Activity, and Balance of Different Stretching Techniques

    PubMed Central

    Lim, Kyoung-Il; Nam, Hyung-Chun; Jung, Kyoung-Sim

    2014-01-01

    [Purpose] The purpose of this study was to investigate the effects of two different stretching techniques on range of motion (ROM), muscle activation, and balance. [Subjects] For the present study, 48 adults with hamstring muscle tightness were recruited and randomly divided into three groups: a static stretching group (n=16), a PNF stretching group (n=16), a control group (n=16). [Methods] Both of the stretching techniques were applied to the hamstring once. Active knee extension angle, muscle activation during maximum voluntary isometric contraction (MVC), and static balance were measured before and after the application of each stretching technique. [Results] Both the static stretching and the PNF stretching groups showed significant increases in knee extension angle compared to the control group. However, there were no significant differences in muscle activation or balance between the groups. [Conclusion] Static stretching and PNF stretching techniques improved ROM without decrease in muscle activation, but neither of them exerted statistically significant effects on balance. PMID:24648633

  2. In vitro development of donated frozen-thawed human embryos in a prototype static microfluidic device: a randomized controlled trial.

    PubMed

    Kieslinger, Dorit C; Hao, Zhenxia; Vergouw, Carlijn G; Kostelijk, Elisabeth H; Lambalk, Cornelis B; Le Gac, Séverine

    2015-03-01

    To compare the development of human embryos in microfluidic devices with culture in standard microdrop dishes, both under static conditions. Prospective randomized controlled trial. In vitro fertilization laboratory. One hundred eighteen donated frozen-thawed human day-4 embryos. Random allocation of embryos that fulfilled the inclusion criteria to single-embryo culture in a microfluidics device (n = 58) or standard microdrop dish (n = 60). Blastocyst formation rate and quality after 24, 28, 48, and 72 hours of culture. The percentage of frozen-thawed day-4 embryos that developed to the blastocyst stage did not differ significantly in the standard microdrop dishes and microfluidic devices after 28 hours of culture (53.3% vs. 58.6%) or at any of the other time points. The proportion of embryos that would have been suitable for embryo transfer was comparable after 28 hours of culture in the control dishes and microfluidic devices (90.0% vs. 93.1%). Furthermore, blastocyst quality was similar in the two study groups. This study shows that a microfluidic device can successfully support human blastocyst development in vitro under static culture conditions. Future studies need to clarify whether earlier stage embryos will benefit from the culture in microfluidic devices more than the tested day-4 embryos because many important steps in the development of human embryos already take place before day 4. Further improvements of the microfluidic device will include parallel culture of single embryos, application of medium refreshment, and built-in sensors. NTR3867. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  3. Statistical Learning of Origin-Specific Statically Optimal Individualized Treatment Rules

    PubMed Central

    van der Laan, Mark J.; Petersen, Maya L.

    2008-01-01

    Consider a longitudinal observational or controlled study in which one collects chronological data over time on a random sample of subjects. The time-dependent process one observes on each subject contains time-dependent covariates, time-dependent treatment actions, and an outcome process or single final outcome of interest. A statically optimal individualized treatment rule (as introduced in van der Laan et. al. (2005), Petersen et. al. (2007)) is a treatment rule which at any point in time conditions on a user-supplied subset of the past, computes the future static treatment regimen that maximizes a (conditional) mean future outcome of interest, and applies the first treatment action of the latter regimen. In particular, Petersen et. al. (2007) clarified that, in order to be statically optimal, an individualized treatment rule should not depend on the observed treatment mechanism. Petersen et. al. (2007) further developed estimators of statically optimal individualized treatment rules based on a past capturing all confounding of past treatment history on outcome. In practice, however, one typically wishes to find individualized treatment rules responding to a user-supplied subset of the complete observed history, which may not be sufficient to capture all confounding. The current article provides an important advance on Petersen et. al. (2007) by developing locally efficient double robust estimators of statically optimal individualized treatment rules responding to such a user-supplied subset of the past. However, failure to capture all confounding comes at a price; the static optimality of the resulting rules becomes origin-specific. We explain origin-specific static optimality, and discuss the practical importance of the proposed methodology. We further present the results of a data analysis in which we estimate a statically optimal rule for switching antiretroviral therapy among patients infected with resistant HIV virus. PMID:19122792

  4. Qualitative models of seat discomfort including static and dynamic factors.

    PubMed

    Ebe, K; Griffin, M J

    2000-06-01

    Judgements of overall seating comfort in dynamic conditions sometimes correlate better with the static characteristics of a seat than with measures of the dynamic environment. This study developed qualitative models of overall seat discomfort to include both static and dynamic seat characteristics. A dynamic factor that reflected how vibration discomfort increased as vibration magnitude increased was combined with a static seat factor which reflected seating comfort without vibration. The ability of the model to predict the relative and overall importance of dynamic and static seat characteristics on comfort was tested in two experiments. A paired comparison experiment, using four polyurethane foam cushions (50, 70, 100, 120 mm thick), provided different static and dynamic comfort when 12 subjects were exposed to one-third octave band random vertical vibration with centre frequencies of 2.5 and 5.5 Hz, at magnitudes of 0.00, 0.25 and 0.50 m x s(-2) rms measured beneath the foam samples. Subject judgements of the relative discomfort of the different conditions depended on both static and dynamic characteristics in a manner consistent with the model. The effect of static and dynamic seat factors on overall seat discomfort was investigated by magnitude estimation using three foam cushions (of different hardness) and a rigid wooden seat at six vibration magnitudes with 20 subjects. Static seat factors (i.e. cushion stiffness) affected the manner in which vibration influenced the overall discomfort: cushions with lower stiffness were more comfortable and more sensitive to changes in vibration magnitude than those with higher stiffness. The experiments confirm that judgements of overall seat discomfort can be affected by both the static and dynamic characteristics of a seat, with the effect depending on vibration magnitude: when vibration magnitude was low, discomfort was dominated by static seat factors; as the vibration magnitude increased, discomfort became dominated by dynamic factors.

  5. Justification of Estimates for Fiscal Year 1984 Submitted to Congress January 1983: Missile Procurement.

    DTIC Science & Technology

    1983-01-01

    for procurement of the first operational SRAM/ Altair /MV. (RDTE PE 64406F, 1 245JF) Space Suttle - Tne Space Shuttle is a NASA development program to...ACQUISITION IA.. R STUART IINCIASSIFIED JAN 83 RO.J- AC-64- FIG 5/ 1 NL IIIIIIIIIIIIIu IIIIIIIIIIIIIl IIIIIIIIIIIIIhl IIIhhhhmh ii1w 1112., 0 1111Ŗ--5, I i...MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANARS - 963 -A ’!/ 1 JA 12 5955 DEPARTMENT OF THE AIR FORCE JUSTIFICATION OF E&IMATES FOR FISCAL YEAR

  6. Scaling and Single Event Effects (SEE) Sensitivity

    NASA Technical Reports Server (NTRS)

    Oldham, Timothy R.

    2003-01-01

    This paper begins by discussing the potential for scaling down transistors and other components to fit more of them on chips in order to increasing computer processing speed. It also addresses technical challenges to further scaling. Components have been scaled down enough to allow single particles to have an effect, known as a Single Event Effect (SEE). This paper explores the relationship between scaling and the following SEEs: Single Event Upsets (SEU) on DRAMs and SRAMs, Latch-up, Snap-back, Single Event Burnout (SEB), Single Event Gate Rupture (SEGR), and Ion-induced soft breakdown (SBD).

  7. Insulator photocurrents: Application to dose rate hardening of CMOS/SOI integrated circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupont-Nivet, E.; Coiec, Y.M.; Flament, O.

    1998-06-01

    Irradiation of insulators with a pulse of high energy x-rays can induce photocurrents in the interconnections of integrated circuits. The authors present, here, a new method to measure and analyze this effect together with a simple model. They also demonstrate that these insulator photocurrents have to be taken into account to obtain high levels of dose-rate hardness with CMOS on SOI integrated circuits, especially flip-flops or memory blocks of ASICs. They show that it explains some of the upsets observed in a SRAM embedded in an ASIC.

  8. A Simple Data Logging System for Ballistic Applications

    DTIC Science & Technology

    2006-07-01

    6. AUTHOR(S) Thomas Kottke 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Research Laboratory ATTN...AMSRD-ARL-WM-TE Aberdeen Proving Ground, MD 21005-5066 8. PERFORMING ORGANIZATION REPORT NUMBER ARL-TR-3853 10. SPONSOR/MONITOR’S ACRONYM(S...IC2 PIC18F458-I/L-ND $185.50/25 IC SOCKET PLCC 44POS SMT for IC2 ED80010-ND $15.05/10 IC SRAM 512KX8 LP WIDE 32- SOIC IC1 and IC4 428-1075-ND $118.00

  9. Encoding dependence in Bayesian causal networks

    USDA-ARS?s Scientific Manuscript database

    Bayesian networks (BNs) represent complex, uncertain spatio-temporal dynamics by propagation of conditional probabilities between identifiable states with a testable causal interaction model. Typically, they assume random variables are discrete in time and space with a static network structure that ...

  10. Warm-up effects from concomitant use of vibration and static stretching after cycling.

    PubMed

    Yang, Wen-Wen; Liu, Chiang; Shiang, Tzyy-Yuang

    2017-04-01

    Static stretch is routinely used in traditional warm-up but impaired muscle performance. Combining vibration with static stretching as a feasible component may be an alternative to static stretching after submaximal aerobic exercise to improve jumping as well as flexibility. Therefore, the purpose of this study was to investigate and compare the effects of aerobic exercise, static stretching, and vibration with static stretching on flexibility and vertical jumping performance. A repeated measures experimental design was used in this study. Twelve participants randomly underwent 5 different warm-ups including cycling alone (C warm-up), static stretching alone (S warm-up), combining vibration with static stretching (VS warm-up), cycling followed by S (C+S warm-up), and cycling followed by VS (C+VS warm-up) on 5 separate days. Sit-and-reach, squat jump (SJ), and counter movement jump (CMJ) were measured for pre- and post- tests. The sit-and-reach scores after the S, VS, C+S and C+VS warm-ups were significantly enhanced (P<0.001), and were significantly greater than that of the C warm-up (P<0.05). The jumping height of SJ and CMJ after the C and C+VS warm-ups were significantly increased (P<0.05), whereas a significant reduction was found after the S warm-up (P<0.05). Vibration combined with stretching after submaximal cycling exercise (C+VS warm-up) could be a feasible warm-up protocol to improve both flexibility and vertical jump performance, compared with the traditional warm-up (C+S warm-up).

  11. Static balance and function in children with cerebral palsy submitted to neuromuscular block and neuromuscular electrical stimulation: Study protocol for prospective, randomized, controlled trial

    PubMed Central

    2012-01-01

    Background The use of botulinum toxin A (BT-A) for the treatment of lower limb spasticity is common in children with cerebral palsy (CP). Following the administration of BT-A, physical therapy plays a fundamental role in potentiating the functionality of the child. The balance deficit found in children with CP is mainly caused by muscle imbalance (spastic agonist and weak antagonist). Neuromuscular electrical stimulation (NMES) is a promising therapeutic modality for muscle strengthening in this population. The aim of the present study is to describe a protocol for a study aimed at analyzing the effects of NMES on dorsiflexors combined with physical therapy on static and functional balance in children with CP submitted to BT- A. Methods/Design Protocol for a prospective, randomized, controlled trial with a blinded evaluator. Eligible participants will be children with cerebral palsy (Levels I, II and III of the Gross Motor Function Classification System) between five and 12 years of age, with independent gait with or without a gait-assistance device. All participants will receive BT-A in the lower limbs (triceps surae). The children will then be randomly allocated for either treatment with motor physical therapy combined with NMES on the tibialis anterior or motor physical therapy alone. The participants will be evaluated on three occasions: 1) one week prior to the administration of BT-A; 2) one week after the administration of BT-A; and 3) four months after the administration of BT-A (end of intervention). Spasticity will be assessed by the Modified Ashworth Scale and Modified Tardieu Scale. Static balance will be assessed using the Medicapteurs Fusyo pressure platform and functional balance will be assessed using the Berg Balance Scale. Discussion The aim of this protocol study is to describe the methodology of a randomized, controlled, clinical trial comparing the effect of motor physical therapy combined with NMES on the tibialis anterior muscle or motor physical therapy alone on static and functional balance in children with CP submitted to BT-A in the lower limbs. This study describes the background, hypotheses, methodology of the procedures and measurement of the results. Trial registration RBR5qzs8h PMID:22591446

  12. Level of functional capacities following soccer-specific warm-up methods among elite collegiate soccer players.

    PubMed

    Vazini Taher, Amir; Parnow, Abdolhossein

    2017-05-01

    Different methods of warm-up may have implications in improving various aspects of soccer performance. The present study aimed to investigate acute effects of soccer specific warm-up protocols on functional performance tests. This study using randomized within-subject design, investigated the performance of 22 collegiate elite soccer player following soccer specific warm-ups using dynamic stretching, static stretching, and FIFA 11+ program. Post warm-up examinations consisted: 1) Illinois Agility Test; 2) vertical jump; 3) 30 meter sprint; 4) consecutive turns; 5) flexibility of knee. Vertical jump performance was significantly lower following static stretching, as compared to dynamic stretching (P=0.005). Sprint performance declined significantly following static stretching as compared to FIFA 11+ (P=0.023). Agility time was significantly faster following dynamic stretching as compared to FIFA 11+ (P=0.001) and static stretching (P=0.001). Knee flexibility scores were significantly improved following the static stretching as compared to dynamic stretching (P=016). No significant difference was observed for consecutive turns between three warm-up protocol. The present finding showed that a soccer specific warm-up protocol relied on dynamic stretching is preferable in enhancing performance as compared to protocols relying on static stretches and FIFA 11+ program. Investigators suggest that while different soccer specific warm-up protocols have varied types of effects on performance, acute effects of dynamic stretching on performance in elite soccer players are assured, however application of static stretching in reducing muscle stiffness is demonstrated.

  13. The energy density distribution of an ideal gas and Bernoulli’s equations

    NASA Astrophysics Data System (ADS)

    Santos, Leonardo S. F.

    2018-05-01

    This work discusses the energy density distribution in an ideal gas and the consequences of Bernoulli’s equation and the corresponding relation for compressible fluids. The aim of this work is to study how Bernoulli’s equation determines the energy flow in a fluid, although Bernoulli’s equation does not describe the energy density itself. The model from molecular dynamic considerations that describes an ideal gas at rest with uniform density is modified to explore the gas in motion with non-uniform density and gravitational effects. The difference between the component of the speed of a particle that is parallel to the gas speed and the gas speed itself is called ‘parallel random speed’. The pressure from the ‘parallel random speed’ is denominated as parallel pressure. The modified model predicts that the energy density is the sum of kinetic and potential gravitational energy densities plus two terms with static and parallel pressures. The application of Bernoulli’s equation and the corresponding relation for compressible fluids in the energy density expression has resulted in two new formulations. For incompressible and compressible gas, the energy density expressions are written as a function of stagnation, static and parallel pressures, without any dependence on kinetic or gravitational potential energy densities. These expressions of the energy density are the main contributions of this work. When the parallel pressure was uniform, the energy density distribution for incompressible approximation and compressible gas did not converge to zero for the limit of null static pressure. This result is rather unusual because the temperature tends to zero for null pressure. When the gas was considered incompressible and the parallel pressure was equal to static pressure, the energy density maintained this unusual behaviour with small pressures. If the parallel pressure was equal to static pressure, the energy density converged to zero for the limit of the null pressure only if the gas was compressible. Only the last situation describes an intuitive behaviour for an ideal gas.

  14. Eccentric Training and Static Stretching Improve Hamstring Flexibility of High School Males

    PubMed Central

    Bandy, William D.

    2004-01-01

    Objective: To determine if the flexibility of high-school-aged males would improve after a 6-week eccentric exercise program. In addition, the changes in hamstring flexibility that occurred after the eccentric program were compared with a 6-week program of static stretching and with a control group (no stretching). Design and Setting: We used a test-retest control group design in a laboratory setting. Subjects were assigned randomly to 1 of 3 groups: eccentric training, static stretching, or control. Subjects: A total of 69 subjects, with a mean age of 16.45 ± 0.96 years and with limited hamstring flexibility (defined as 20° loss of knee extension measured with the thigh held at 90° of hip flexion) were recruited for this study. Measurements: Hamstring flexibility was measured using the passive 90/90 test before and after the 6-week program. Results: Differences were significant for test and for the test-by-group interaction. Follow-up analysis indicated significant differences between the control group (gain = 1.67°) and both the eccentric-training (gain = 12.79°) and static-stretching (gain = 12.05°) groups. No difference was found between the eccentric and static-stretching groups. Conclusions: The gains achieved in range of motion of knee extension (indicating improvement in hamstring flexibility) with eccentric training were equal to those made by statically stretching the hamstring muscles. PMID:15496995

  15. Eccentric Training and Static Stretching Improve Hamstring Flexibility of High School Males.

    PubMed

    Nelson, Russell T; Bandy, William D

    2004-09-01

    OBJECTIVE: To determine if the flexibility of high-school-aged males would improve after a 6-week eccentric exercise program. In addition, the changes in hamstring flexibility that occurred after the eccentric program were compared with a 6-week program of static stretching and with a control group (no stretching). DESIGN AND SETTING: We used a test-retest control group design in a laboratory setting. Subjects were assigned randomly to 1 of 3 groups: eccentric training, static stretching, or control. SUBJECTS: A total of 69 subjects, with a mean age of 16.45 +/- 0.96 years and with limited hamstring flexibility (defined as 20 degrees loss of knee extension measured with the thigh held at 90 degrees of hip flexion) were recruited for this study. MEASUREMENTS: Hamstring flexibility was measured using the passive 90/90 test before and after the 6-week program. RESULTS: Differences were significant for test and for the test-by-group interaction. Follow-up analysis indicated significant differences between the control group (gain = 1.67 degrees ) and both the eccentric-training (gain = 12.79 degrees ) and static-stretching (gain = 12.05 degrees ) groups. No difference was found between the eccentric and static-stretching groups. CONCLUSIONS: The gains achieved in range of motion of knee extension (indicating improvement in hamstring flexibility) with eccentric training were equal to those made by statically stretching the hamstring muscles.

  16. Acute effects of static and dynamic stretching on leg flexor and extensor isokinetic strength in elite women athletes.

    PubMed

    Sekir, U; Arabaci, R; Akova, B; Kadagan, S M

    2010-04-01

    The aim of this study was to explore the effects of static and dynamic stretching of the leg flexors and extensors on concentric and eccentric peak torque (PT) and electromyography (EMG) amplitude of the leg extensors and flexors in women athletes. Ten elite women athletes completed the following intervention protocol in a randomized order on separate days: (a) non-stretching (control), (b) static stretching, and (c) dynamic stretching. Stretched muscles were the quadriceps and hamstring muscles. Before and after the stretching or control intervention, concentric and eccentric isokinetic PT and EMG activity of the leg extensors and flexors were measured at 60 and 180 degrees/s. Concentric and eccentric quadriceps and hamstring muscle strength at both test speeds displayed a significant decrease following static stretching (P<0.01-0.001). In contrast, a significant increase was observed after dynamic stretching for these strength parameters (P<0.05-0.001). Parallel to this, normalized EMG amplitude parameters exhibited significant decreases following static (P<0.05-0.001) and significant increases following dynamic stretching (P<0.05-0.001) during quadriceps and hamstring muscle actions at both concentric and eccentric testing modes. Our findings suggest that dynamic stretching, as opposed to static or no stretching, may be an effective technique for enhancing muscle performance during the pre-competition warm-up routine in elite women athletes.

  17. Effect of yoga training on one leg standing and functional reach tests in obese individuals with poor postural control

    PubMed Central

    Jorrakate, Chaiyong; Kongsuk, Jutaluk; Pongduang, Chiraprapa; Sadsee, Boontiwa; Chanthorn, Phatchari

    2015-01-01

    [Purpose] The aim of the present study was to investigate the effect of yoga training on static and dynamic standing balance in obese individuals with poor standing balance. [Subjects and Methods] Sixteen obese volunteers were randomly assigned into yoga and control groups. The yoga training program was performed for 45 minutes per day, 3 times per week, for 4 weeks. Static and dynamic balance were assessed in volunteers with one leg standing and functional reach tests. Outcome measures were tested before training and after a single week of training. Two-way repeated measure analysis of variance with Tukey’s honestly significant difference post hoc statistics was used to analyze the data. [Results] Obese individuals showed significantly increased static standing balance in the yoga training group, but there was no significant improvement of static or dynamic standing balance in the control group after 4 weeks. In the yoga group, significant increases in static standing balance was found after the 2nd, 3rd, and 4th weeks. Compared with the control group, static standing balance in the yoga group was significantly different after the 2nd week, and dynamic standing balance was significantly different after the 4th week. [Conclusion] Yoga training would be beneficial for improving standing balance in obese individuals with poor standing balance. PMID:25642038

  18. X-ray mask fabrication advancements at the Microlithographic Mask Development Center

    NASA Astrophysics Data System (ADS)

    Kimmel, Kurt R.; Hughes, Patrick J.

    1996-05-01

    The Microlithographic Mask Development Center (MMD) was established as the X-ray mask manufacturing facility at the IBM Microelectronics Division semiconductor fabricator in Essex Junction, Vermont. This center, in operation for over two years, produces high yielding, defect-free X-ray masks for competitive logic and memory products at 250nm groundrules and below. The MMD is a complete mask facility that manufactures silicon membrane mask blanks in the NIST format and finished masks with electroplated gold X-ray absorber. Mask patterning, with dimensions as small as 180 nm, is accomplished using IBM-built variable shaped spot e-beam systems. Masks are routinely inspected and repaired using state-of-the-art equipment: two KLA SEM Specs for defect inspection, a Leica LMS 2000 for image placement characterization, an Amray 2040c for image dimension characterization and a Micrion 8000 XMR for defect repair. This facility maintains a baseline mask process with daily production of 250nm, 32Mb SRAM line monitor masks for the continuous improvement of mask quality and processes. Development masks are produced for several semiconductor manufacturers including IBM, Motorola, Loral, and Sanders. Masks for 64Mb and 256Mb DRAM (IBM) and advanced logic/SRAM (IBM and Motorola) designs have also been delivered. This paper describes the MMD facility and its technical capabilities. Key manufacturing metrics such as mask turnaround time, parametric yield learning and defect reduction activities are highlighted. The challenges associated with improved mask quality, sub-180nm mask fabrication, and the transition to refractory metal absorber are discussed.

  19. Verification and Quantification of Single Event Effects on High Speed SRAM in Terrestrial Environments

    NASA Technical Reports Server (NTRS)

    Huff, H.; You, Z.; Williams, T.; Nichols, T.; Attia, J.; Fogarty, T. N.; Kirby, K.; Wilkins, R.; Lawton, R.

    1998-01-01

    As integrated circuits become more sensitive to charged particles and neutrons, anomalous performance due to single event effects (SEE) is a concern and requires experimental verification and quantification. The Center for Applied Radiation Research (CARR) at Prairie View A&M University has developed experiments as a participant in the NASA ER-2 Flight Program, the APEX balloon flight program and the Student Launch Program. Other high altitude and ground level experiments of interest to DoD and commercial applications are being developed. The experiment characterizes the SEE behavior of high speed and high density SRAM's. The system includes a PC-104 computer unit, an optical drive for storage, a test board with the components under test, and a latchup detection and reset unit. The test program will continuously monitor the stored checkerboard data pattern in the SW and record errors. Since both the computer and the optical drive contain integrated circuits, they are also vulnerable to radiation effects. A latchup detection unit with discrete components will monitor the test program and reset the system when necessary. The first results will be obtained from the NASA ER-2 flights, which are now planned to take place in early 1998 from Dryden Research Center in California. The series of flights, at altitudes up to 70,000 feet, and a variety of flight profiles should yield a distribution of conditions for correlating SEES. SEE measurements will be performed from the time of aircraft power-up on the ground throughout the flight regime until systems power-off after landing.

  20. A boosted negative bit-line SRAM with write-assisted cell in 45 nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Vipul; Kumar, Pradeep; Pandey, Neeta; Pandey, Sujata

    2018-02-01

    A new 11 T SRAM cell with write-assist is proposed to improve operation at low supply voltage. In this technique, a negative bit-line voltage is applied to one of the write bit-lines, while a boosted voltage is applied to the other write bit-line where transmission gate access is used in proposed 11 T cell. Supply voltage to one of the inverters is interrupted to weaken the feedback. Improved write feature is attributed to strengthened write access devices and weakened feedback loop of cell at the same time. Amount of boosting required for write performance improvement is also reduced due to feedback weakening, solving the persistent problem of half-selected cells and reliability reduction of access devices with the other suggested boosted and negative bit-line techniques. The proposed design improves write time by 79%, 63% and slower by 52% with respect to LP 10 T, WRE 8 T and 6 T cells respectively. It is found that write margin for the proposed cell is improved by about 4×, 2.4× and 5.37× compared to WRE8 T, LP10 T and 6 T respectively. The proposed cell with boosted negative bit line (BNBL) provides 47%, 31%, and 68.4% improvement in write margin with respect to no write-assist, negative bit line (NBL) and boosted bit line (BBL) write-assist respectively. Also, new sensing circuit with replica bit-line is proposed to give a more precise timing of applying boosted voltages for improved results. All simulations are done on TSMC 45 nm CMOS technology.

  1. 77 FR 11486 - Fresh Garlic From the People's Republic of China: Partial Final Results and Partial Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... between grades are based on color, size, sheathing, and level of decay. The scope of the order does not... Less than Fair Value: Static Random Access Memory Semiconductors From Taiwan, 63 FR 8909, 8911...

  2. SAMPLING DURATION DEPENDENCE OF SEMI-CONTINUOUS ORGANIC CARBON MEASUREMENTS ON STEADY STATE SECONDARY ORGANIC AEROSOLS

    EPA Science Inventory

    Semi-continuous organic carbon concentrations were measured through several experiments of statically generated secondary organic aerosol formed by hydrocarbon + NOx irradiations. Repeated, randomized measurements of these steady state aerosols reveal decreases in the observed c...

  3. Scope of Various Random Number Generators in Ant System Approach for TSP

    NASA Technical Reports Server (NTRS)

    Sen, S. K.; Shaykhian, Gholam Ali

    2007-01-01

    Experimented on heuristic, based on an ant system approach for traveling Salesman problem, are several quasi and pseudo-random number generators. This experiment is to explore if any particular generator is most desirable. Such an experiment on large samples has the potential to rank the performance of the generators for the foregoing heuristic. This is just to seek an answer to the controversial performance ranking of the generators in probabilistic/statically sense.

  4. Optimal Quantum Spatial Search on Random Temporal Networks

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shantanav; Novo, Leonardo; Di Giorgio, Serena; Omar, Yasser

    2017-12-01

    To investigate the performance of quantum information tasks on networks whose topology changes in time, we study the spatial search algorithm by continuous time quantum walk to find a marked node on a random temporal network. We consider a network of n nodes constituted by a time-ordered sequence of Erdös-Rényi random graphs G (n ,p ), where p is the probability that any two given nodes are connected: After every time interval τ , a new graph G (n ,p ) replaces the previous one. We prove analytically that, for any given p , there is always a range of values of τ for which the running time of the algorithm is optimal, i.e., O (√{n }), even when search on the individual static graphs constituting the temporal network is suboptimal. On the other hand, there are regimes of τ where the algorithm is suboptimal even when each of the underlying static graphs are sufficiently connected to perform optimal search on them. From this first study of quantum spatial search on a time-dependent network, it emerges that the nontrivial interplay between temporality and connectivity is key to the algorithmic performance. Moreover, our work can be extended to establish high-fidelity qubit transfer between any two nodes of the network. Overall, our findings show that one can exploit temporality to achieve optimal quantum information tasks on dynamical random networks.

  5. Distributed clone detection in static wireless sensor networks: random walk with network division.

    PubMed

    Khan, Wazir Zada; Aalsalem, Mohammed Y; Saad, N M

    2015-01-01

    Wireless Sensor Networks (WSNs) are vulnerable to clone attacks or node replication attacks as they are deployed in hostile and unattended environments where they are deprived of physical protection, lacking physical tamper-resistance of sensor nodes. As a result, an adversary can easily capture and compromise sensor nodes and after replicating them, he inserts arbitrary number of clones/replicas into the network. If these clones are not efficiently detected, an adversary can be further capable to mount a wide variety of internal attacks which can emasculate the various protocols and sensor applications. Several solutions have been proposed in the literature to address the crucial problem of clone detection, which are not satisfactory as they suffer from some serious drawbacks. In this paper we propose a novel distributed solution called Random Walk with Network Division (RWND) for the detection of node replication attack in static WSNs which is based on claimer-reporter-witness framework and combines a simple random walk with network division. RWND detects clone(s) by following a claimer-reporter-witness framework and a random walk is employed within each area for the selection of witness nodes. Splitting the network into levels and areas makes clone detection more efficient and the high security of witness nodes is ensured with moderate communication and memory overheads. Our simulation results show that RWND outperforms the existing witness node based strategies with moderate communication and memory overheads.

  6. Effects of acute static, ballistic, and PNF stretching exercise on the muscle and tendon tissue properties.

    PubMed

    Konrad, A; Stafilidis, S; Tilp, M

    2017-10-01

    The purpose of this study was to investigate the influence of a single static, ballistic, or proprioceptive neuromuscular facilitation (PNF) stretching exercise on the various muscle-tendon parameters of the lower leg and to detect possible differences in the effects between the methods. Volunteers (n = 122) were randomly divided into static, ballistic, and PNF stretching groups and a control group. Before and after the 4 × 30 s stretching intervention, we determined the maximum dorsiflexion range of motion (RoM) with the corresponding fascicle length and pennation angle of the gastrocnemius medialis. Passive resistive torque (PRT) and maximum voluntary contraction (MVC) were measured with a dynamometer. Observation of muscle-tendon junction (MTJ) displacement with ultrasound allowed us to determine the length changes in the tendon and muscle, respectively, and hence to calculate stiffness. Although RoM increased (static: +4.3%, ballistic: +4.5%, PNF: +3.5%), PRT (static: -11.4%, ballistic: -11.5%, PNF: -13,7%), muscle stiffness (static: -13.1%, ballistic: -20.3%, PNF: -20.2%), and muscle-tendon stiffness (static: -11.3%, ballistic: -10.5%, PNF: -13.7%) decreased significantly in all the stretching groups. Only in the PNF stretching group, the pennation angle in the stretched position (-4.2%) and plantar flexor MVC (-4.6%) decreased significantly. Multivariate analysis showed no clinically relevant difference between the stretching groups. The increase in RoM and the decrease in PRT and muscle-tendon stiffness could be explained by more compliant muscle tissue following a single static, ballistic, or PNF stretching exercise. © 2017 The Authors Scandinavian Journal of Medicine & Science In Sports Published by John Wiley & Sons Ltd.

  7. Pressure ulcer risk assessment and prevention: a systematic comparative effectiveness review.

    PubMed

    Chou, Roger; Dana, Tracy; Bougatsos, Christina; Blazina, Ian; Starmer, Amy J; Reitel, Katie; Buckley, David I

    2013-07-02

    Pressure ulcers are associated with substantial health burdens but may be preventable. To review the clinical utility of pressure ulcer risk assessment instruments and the comparative effectiveness of preventive interventions in persons at higher risk. MEDLINE (1946 through November 2012), CINAHL, the Cochrane Library, grant databases, clinical trial registries, and reference lists. Randomized trials and observational studies on effects of using risk assessment on clinical outcomes and randomized trials of preventive interventions on clinical outcomes. Multiple investigators abstracted and checked study details and quality using predefined criteria. One good-quality trial found no evidence that use of a pressure ulcer risk assessment instrument, with or without a protocolized intervention strategy based on assessed risk, reduces risk for incident pressure ulcers compared with less standardized risk assessment based on nurses' clinical judgment. In higher-risk populations, 1 good-quality and 4 fair-quality randomized trials found that more advanced static support surfaces were associated with lower risk for pressure ulcers compared with standard mattresses (relative risk range, 0.20 to 0.60). Evidence on the effectiveness of low-air-loss and alternating-air mattresses was limited, with some trials showing no clear differences from advanced static support surfaces. Evidence on the effectiveness of nutritional supplementation, repositioning, and skin care interventions versus usual care was limited and had methodological shortcomings, precluding strong conclusions. Only English-language articles were included, publication bias could not be formally assessed, and most studies had methodological shortcomings. More advanced static support surfaces are more effective than standard mattresses for preventing ulcers in higher-risk populations. The effectiveness of formal risk assessment instruments and associated intervention protocols compared with less standardized assessment methods and the effectiveness of other preventive interventions compared with usual care have not been clearly established.

  8. Automated time activity classification based on global positioning system (GPS) tracking data

    PubMed Central

    2011-01-01

    Background Air pollution epidemiological studies are increasingly using global positioning system (GPS) to collect time-location data because they offer continuous tracking, high temporal resolution, and minimum reporting burden for participants. However, substantial uncertainties in the processing and classifying of raw GPS data create challenges for reliably characterizing time activity patterns. We developed and evaluated models to classify people's major time activity patterns from continuous GPS tracking data. Methods We developed and evaluated two automated models to classify major time activity patterns (i.e., indoor, outdoor static, outdoor walking, and in-vehicle travel) based on GPS time activity data collected under free living conditions for 47 participants (N = 131 person-days) from the Harbor Communities Time Location Study (HCTLS) in 2008 and supplemental GPS data collected from three UC-Irvine research staff (N = 21 person-days) in 2010. Time activity patterns used for model development were manually classified by research staff using information from participant GPS recordings, activity logs, and follow-up interviews. We evaluated two models: (a) a rule-based model that developed user-defined rules based on time, speed, and spatial location, and (b) a random forest decision tree model. Results Indoor, outdoor static, outdoor walking and in-vehicle travel activities accounted for 82.7%, 6.1%, 3.2% and 7.2% of manually-classified time activities in the HCTLS dataset, respectively. The rule-based model classified indoor and in-vehicle travel periods reasonably well (Indoor: sensitivity > 91%, specificity > 80%, and precision > 96%; in-vehicle travel: sensitivity > 71%, specificity > 99%, and precision > 88%), but the performance was moderate for outdoor static and outdoor walking predictions. No striking differences in performance were observed between the rule-based and the random forest models. The random forest model was fast and easy to execute, but was likely less robust than the rule-based model under the condition of biased or poor quality training data. Conclusions Our models can successfully identify indoor and in-vehicle travel points from the raw GPS data, but challenges remain in developing models to distinguish outdoor static points and walking. Accurate training data are essential in developing reliable models in classifying time-activity patterns. PMID:22082316

  9. Automated time activity classification based on global positioning system (GPS) tracking data.

    PubMed

    Wu, Jun; Jiang, Chengsheng; Houston, Douglas; Baker, Dean; Delfino, Ralph

    2011-11-14

    Air pollution epidemiological studies are increasingly using global positioning system (GPS) to collect time-location data because they offer continuous tracking, high temporal resolution, and minimum reporting burden for participants. However, substantial uncertainties in the processing and classifying of raw GPS data create challenges for reliably characterizing time activity patterns. We developed and evaluated models to classify people's major time activity patterns from continuous GPS tracking data. We developed and evaluated two automated models to classify major time activity patterns (i.e., indoor, outdoor static, outdoor walking, and in-vehicle travel) based on GPS time activity data collected under free living conditions for 47 participants (N = 131 person-days) from the Harbor Communities Time Location Study (HCTLS) in 2008 and supplemental GPS data collected from three UC-Irvine research staff (N = 21 person-days) in 2010. Time activity patterns used for model development were manually classified by research staff using information from participant GPS recordings, activity logs, and follow-up interviews. We evaluated two models: (a) a rule-based model that developed user-defined rules based on time, speed, and spatial location, and (b) a random forest decision tree model. Indoor, outdoor static, outdoor walking and in-vehicle travel activities accounted for 82.7%, 6.1%, 3.2% and 7.2% of manually-classified time activities in the HCTLS dataset, respectively. The rule-based model classified indoor and in-vehicle travel periods reasonably well (Indoor: sensitivity > 91%, specificity > 80%, and precision > 96%; in-vehicle travel: sensitivity > 71%, specificity > 99%, and precision > 88%), but the performance was moderate for outdoor static and outdoor walking predictions. No striking differences in performance were observed between the rule-based and the random forest models. The random forest model was fast and easy to execute, but was likely less robust than the rule-based model under the condition of biased or poor quality training data. Our models can successfully identify indoor and in-vehicle travel points from the raw GPS data, but challenges remain in developing models to distinguish outdoor static points and walking. Accurate training data are essential in developing reliable models in classifying time-activity patterns.

  10. Immediate effects of Graston Technique on hamstring muscle extensibility and pain intensity in patients with nonspecific low back pain

    PubMed Central

    Moon, Jong Hoon; Jung, Jin-Hwa; Won, Young Sik; Cho, Hwi-Young

    2017-01-01

    [Purpose] The purpose of this study was to analyze the effect of Graston Technique on hamstring extensibility and pain intensity in patients with nonspecific low back pain. [Subjects and Methods] Twenty-four patients with nonspecific low back pain (27–46 years of age) enrolled in the study. All participants were randomly assigned to one of two groups: Graston technique group (n=12) and a static stretching group (n=12). The Graston Technique was used on the hamstring muscles of the experimental group, while the static stretching group performed static stretching. Hamstring extensibility was recorded using the sit and reach test, and a visual analog scale was used to measure pain intensity. [Results] Both groups showed a significant improvement after intervention. In comparison to the static stretching group, the Graston technique group had significantly more improvement in hamstring extensibility. [Conclusion] The Graston Technique is a simple and effective intervention in nonspecific low back pain patients to improve hamstring extensibility and lower pain intensity, and it would be beneficial in clinical practice. PMID:28265144

  11. Immediate effects of Graston Technique on hamstring muscle extensibility and pain intensity in patients with nonspecific low back pain.

    PubMed

    Moon, Jong Hoon; Jung, Jin-Hwa; Won, Young Sik; Cho, Hwi-Young

    2017-02-01

    [Purpose] The purpose of this study was to analyze the effect of Graston Technique on hamstring extensibility and pain intensity in patients with nonspecific low back pain. [Subjects and Methods] Twenty-four patients with nonspecific low back pain (27-46 years of age) enrolled in the study. All participants were randomly assigned to one of two groups: Graston technique group (n=12) and a static stretching group (n=12). The Graston Technique was used on the hamstring muscles of the experimental group, while the static stretching group performed static stretching. Hamstring extensibility was recorded using the sit and reach test, and a visual analog scale was used to measure pain intensity. [Results] Both groups showed a significant improvement after intervention. In comparison to the static stretching group, the Graston technique group had significantly more improvement in hamstring extensibility. [Conclusion] The Graston Technique is a simple and effective intervention in nonspecific low back pain patients to improve hamstring extensibility and lower pain intensity, and it would be beneficial in clinical practice.

  12. New Evidence for Strategic Differences between Static and Dynamic Search Tasks: An Individual Observer Analysis of Eye Movements

    PubMed Central

    Dickinson, Christopher A.; Zelinsky, Gregory J.

    2013-01-01

    Two experiments are reported that further explore the processes underlying dynamic search. In Experiment 1, observers’ oculomotor behavior was monitored while they searched for a randomly oriented T among oriented L distractors under static and dynamic viewing conditions. Despite similar search slopes, eye movements were less frequent and more spatially constrained under dynamic viewing relative to static, with misses also increasing more with target eccentricity in the dynamic condition. These patterns suggest that dynamic search involves a form of sit-and-wait strategy in which search is restricted to a small group of items surrounding fixation. To evaluate this interpretation, we developed a computational model of a sit-and-wait process hypothesized to underlie dynamic search. In Experiment 2 we tested this model by varying fixation position in the display and found that display positions optimized for a sit-and-wait strategy resulted in higher d′ values relative to a less optimal location. We conclude that different strategies, and therefore underlying processes, are used to search static and dynamic displays. PMID:23372555

  13. Finite-T correlations and free exchange-correlation energy of quasi-one-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Garg, Vinayak; Sharma, Akariti; Moudgil, R. K.

    2018-02-01

    We have studied the effect of temperature on static density-density correlations and plasmon excitation spectrum of quasi-one-dimensional electron gas (Q1DEG) using the random phase approximation (RPA). Numerical results for static structure factor, pair-correlation function, static density susceptibility, free exchange-correlation energy and plasmon dispersion are presented over a wide range of temperature and electron density. As an interesting result, we find that the short-range correlations exhibit a non-monotonic dependence on temperature T, initially growing stronger (i.e. the pair-correlation function at small inter-electron spacing assuming relatively smaller values) with increasing T and then weakening above a critical T. The cross-over temperature is found to increase with increasing coupling among electrons. Also, the q = 2kF peak in the static density susceptibility χ(q,ω = 0,T) at T = 0 K smears out with rising T. The free exchange-correlation energy and plasmon dispersion show a significant variation with T, and the trend is qualitatively the same as in higher dimensions.

  14. Empirical Modeling Of Single-Event Upset

    NASA Technical Reports Server (NTRS)

    Zoutendyk, John A.; Smith, Lawrence S.; Soli, George A.; Thieberger, Peter; Smith, Stephen L.; Atwood, Gregory E.

    1988-01-01

    Experimental study presents examples of empirical modeling of single-event upset in negatively-doped-source/drain metal-oxide-semiconductor static random-access memory cells. Data supports adoption of simplified worst-case model in which cross sectionof SEU by ion above threshold energy equals area of memory cell.

  15. Physical states and finite-size effects in Kitaev's honeycomb model: Bond disorder, spin excitations, and NMR line shape

    NASA Astrophysics Data System (ADS)

    Zschocke, Fabian; Vojta, Matthias

    2015-07-01

    Kitaev's compass model on the honeycomb lattice realizes a spin liquid whose emergent excitations are dispersive Majorana fermions and static Z2 gauge fluxes. We discuss the proper selection of physical states for finite-size simulations in the Majorana representation, based on a recent paper by F. L. Pedrocchi, S. Chesi, and D. Loss [Phys. Rev. B 84, 165414 (2011), 10.1103/PhysRevB.84.165414]. Certain physical observables acquire large finite-size effects, in particular if the ground state is not fermion-free, which we prove to generally apply to the system in the gapless phase and with periodic boundary conditions. To illustrate our findings, we compute the static and dynamic spin susceptibilities for finite-size systems. Specifically, we consider random-bond disorder (which preserves the solubility of the model), calculate the distribution of local flux gaps, and extract the NMR line shape. We also predict a transition to a random-flux state with increasing disorder.

  16. Effects of input device and motion type on a cursor-positioning task.

    PubMed

    Yau, Yi-Jan; Hwang, Sheue-Ling; Chao, Chin-Jung

    2008-02-01

    Many studies have investigated the performance of using nonkey-board input devices under static situations, but few have considered the effects of motion type on manipulating these input devices. In this study comparison of 12 mens' performance using four input devices (three trackballs: currently used, trackman wheel, and erectly held trackballs, as well as a touch screen) under five motion types of static, heave, roll, pitch, and random movements was conducted. The input device and motion type significantly affected movement speed and accuracy, and their interaction significantly affected the movement speed. The touch screen was the fastest but the least accurate input device. The erectly held trackball was the slowest, whereas the error rate of the currently used trackball was the lowest. Impairments of the random motion on movement time and error rate were larger than those of other motion types. Considering objective and subjective evaluations, the trackman wheel and currently used trackball were more efficient in operation than the erectly held trackball and touch screen under the motion environments.

  17. Spin-orbit coupling and the static polarizability of single-wall carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diniz, Ginetom S., E-mail: ginetom@gmail.com; Ulloa, Sergio E.

    2014-07-14

    We calculate the static longitudinal polarizability of single-wall carbon tubes in the long wavelength limit taking into account spin-orbit effects. We use a four-orbital orthogonal tight-binding formalism to describe the electronic states and the random phase approximation to calculate the dielectric function. We study the role of both the Rashba as well as the intrinsic spin-orbit interactions on the longitudinal dielectric response, i.e., when the probing electric field is parallel to the nanotube axis. The spin-orbit interaction modifies the nanotube electronic band dispersions, which may especially result in a small gap opening in otherwise metallic tubes. The bandgap size andmore » state features, the result of competition between Rashba and intrinsic spin-orbit interactions, result in drastic changes in the longitudinal static polarizability of the system. We discuss results for different nanotube types and the dependence on nanotube radius and spin-orbit couplings.« less

  18. Artificial Diversity and Defense Security (ADDSec) Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, Adrian R.; Hamlet, Jason; Stout, William M.S.

    Critical infrastructure systems continue to foster predictable communication patterns and static configurations over extended periods of time. The static nature of these systems eases the process of gathering reconnaissance information that can be used to design, develop, and launch attacks by adversaries. In this research effort, the early phases of an attack vector will be disrupted by randomizing application port numbers, IP addresses, and communication paths dynamically through the use of overlay networks within Industrial Control Systems (ICS). These protective measures convert static systems into "moving targets," adding an additional layer of defense. Additionally, we have developed a framework thatmore » automatically detects and defends against threats within these systems using an ensemble of machine learning algorithms that classify and categorize abnormal behavior. Our proof-of-concept has been demonstrated within a representative ICS environment. Performance metrics of our proof-of-concept have been captured with latency impacts of less than a millisecond, on average.« less

  19. Addressing Angular Single-Event Effects in the Estimation of On-Orbit Error Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, David S.; Swift, Gary M.; Wirthlin, Michael J.

    2015-12-01

    Our study describes complications introduced by angular direct ionization events on space error rate predictions. In particular, prevalence of multiple-cell upsets and a breakdown in the application of effective linear energy transfer in modern-scale devices can skew error rates approximated from currently available estimation models. Moreover, this paper highlights the importance of angular testing and proposes a methodology to extend existing error estimation tools to properly consider angular strikes in modern-scale devices. Finally, these techniques are illustrated with test data provided from a modern 28 nm SRAM-based device.

  20. Monte Carlo simulation of particle-induced bit upsets

    NASA Astrophysics Data System (ADS)

    Wrobel, Frédéric; Touboul, Antoine; Vaillé, Jean-Roch; Boch, Jérôme; Saigné, Frédéric

    2017-09-01

    We investigate the issue of radiation-induced failures in electronic devices by developing a Monte Carlo tool called MC-Oracle. It is able to transport the particles in device, to calculate the energy deposited in the sensitive region of the device and to calculate the transient current induced by the primary particle and the secondary particles produced during nuclear reactions. We compare our simulation results with SRAM experiments irradiated with neutrons, protons and ions. The agreement is very good and shows that it is possible to predict the soft error rate (SER) for a given device in a given environment.

  1. Comparison of heavy-ion- and electron-beam upset data for GaAS SRAMS. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flesner, L.D.; Zuleeg, R.; Kolasinski, W.A.

    1992-07-16

    We report the results of experiments designed to evaluate the extent to which focused electron-beam pulses simulate energetic ion upset phenomena in GaAs memory circuits fabricated by the McDonnell Douglas Astronautics Company. The results of two experimental methods were compared, irradiation by heavy-ion particle beams, and upset mapping using focused electron pulses. Linear energy transfer (LET) thresholds and upset cross sections are derived from the data for both methods. A comparison of results shows good agreement, indicating that for these circuits electron-beam pulse mapping is a viable simulation technique.

  2. A miniature on-chip multi-functional ECG signal processor with 30 µW ultra-low power consumption.

    PubMed

    Liu, Xin; Zheng, Yuan Jin; Phyu, Myint Wai; Zhao, Bin; Je, Minkyu; Yuan, Xiao Jun

    2010-01-01

    In this paper, a miniature low-power Electrocardiogram (ECG) signal processing application specific integrated circuit (ASIC) chip is proposed. This chip provides multiple critical functions for ECG analysis using a systematic wavelet transform algorithm and a novel SRAM-based ASIC architecture, while achieves low cost and high performance. Using 0.18 µm CMOS technology and 1 V power supply, this ASIC chip consumes only 29 µW and occupies an area of 3 mm(2). This on-chip ECG processor is highly suitable for reliable real-time cardiac status monitoring applications.

  3. Simulation of SEU Cross-sections using MRED under Conditions of Limited Device Information

    NASA Technical Reports Server (NTRS)

    Lauenstein, J. M.; Reed, R. A.; Weller, R. A.; Mendenhall, M. H.; Warren, K. M.; Pellish, J. A.; Schrimpf, R. D.; Sierawski, B. D.; Massengill, L. W.; Dodd, P. E.; hide

    2007-01-01

    This viewgraph presentation reviews the simulation of Single Event Upset (SEU) cross sections using the membrane electrode assembly (MEA) resistance and electrode diffusion (MRED) tool using "Best guess" assumptions about the process and geometry, and direct ionization, low-energy beam test results. This work will also simulate SEU cross-sections including angular and high energy responses and compare the simulated results with beam test data for the validation of the model. Using MRED, we produced a reasonably accurate upset response model of a low-critical charge SRAM without detailed information about the circuit, device geometry, or fabrication process

  4. Office of the Secretary of Defense Research, Development Test and Evaluation, Development and Test Evaluation, Defense, Director of Operational Test and Evaluation Defense, FY 1994 Budget Estimates, Justification of Estimates Submitted to Congress April 1993

    DTIC Science & Technology

    1993-04-01

    separation capability. o Demonstrate advanced KKVs in the 6-20 KG weight class. o Test planning for SRAM/LEAP and PATRIOT/LEAP integrated technology...packaging techniques to reduce satellite size, weight , power, and total system costs. Further development of these technologies are absolutely 4...1993 o Developed a master plan with a delivery schedule for each light- weight subassembly in the sensor integration payload. o Finalized a contract for

  5. Effects of Game-Based Constraint-Induced Movement Therapy on Balance in Patients with Stroke: A Single-Blind Randomized Controlled Trial.

    PubMed

    Choi, Ho-Suk; Shin, Won-Seob; Bang, Dae-Hyouk; Choi, Sung-Jin

    2017-03-01

    The aims of this work were to determine whether game-based constraint-induced movement therapy (CIMT) is effective at improving balance ability in patients with stroke, and to provide clinical knowledge of game-based training that allows application of CIMT to the lower extremities. Thirty-six patients with chronic stroke were randomly assigned to game-based CIMT (n = 12), general game-based training (n = 12), and conventional (n = 12) groups. All interventions were conducted 3 times a week for 4 weeks. The static balance control and weight-bearing symmetry were assessed, and the Functional Reach Test (FRT), modified Functional Reach Test (mFRT), and Timed Up and Go (TUG) test were performed to evaluate balance ability. All 3 groups showed significant improvement in anterior-posterior axis (AP-axis) distance, sway area, weight-bearing symmetry, FRT, mFRT, and TUG test after the intervention (P < 0.05). Post hoc analysis revealed significant differences in AP-axis, and sway area, weight-bearing symmetry of the game-based CIMT group compared with the other group (P < 0.05). Although the general game-based training and the game-based CIMT both improved on static and dynamic balance ability, game-based CIMT had a larger effect on static balance control, weight-bearing symmetry, and side-to-side weight shift.

  6. Random harmonic analysis program, L221 (TEV156). Volume 1: Engineering and usage

    NASA Technical Reports Server (NTRS)

    Miller, R. D.; Graham, M. L.

    1979-01-01

    A digital computer program capable of calculating steady state solutions for linear second order differential equations due to sinusoidal forcing functions is described. The field of application of the program, the analysis of airplane response and loads due to continuous random air turbulence, is discussed. Optional capabilities including frequency dependent input matrices, feedback damping, gradual gust penetration, multiple excitation forcing functions, and a static elastic solution are described. Program usage and a description of the analysis used are presented.

  7. NASTRAN computer system level 12.1

    NASA Technical Reports Server (NTRS)

    Butler, T. G.

    1971-01-01

    Program uses finite element displacement method for solving linear response of large, three-dimensional structures subject to static, dynamic, thermal, and random loadings. Program adapts to computers of different manufacture, permits up-dating and extention, allows interchange of output and input information between users, and is extensively documented.

  8. Brain activation in response to randomized visual stimulation as obtained from conjunction and differential analysis: an fMRI study

    NASA Astrophysics Data System (ADS)

    Nasaruddin, N. H.; Yusoff, A. N.; Kaur, S.

    2014-11-01

    The objective of this multiple-subjects functional magnetic resonance imaging (fMRI) study was to identify the common brain areas that are activated when viewing black-and-white checkerboard pattern stimuli of various shapes, pattern and size and to investigate specific brain areas that are involved in processing static and moving visual stimuli. Sixteen participants viewed the moving (expanding ring, rotating wedge, flipping hour glass and bowtie and arc quadrant) and static (full checkerboard) stimuli during an fMRI scan. All stimuli have black-and-white checkerboard pattern. Statistical parametric mapping (SPM) was used in generating brain activation. Differential analyses were implemented to separately search for areas involved in processing static and moving stimuli. In general, the stimuli of various shapes, pattern and size activated multiple brain areas mostly in the left hemisphere. The activation in the right middle temporal gyrus (MTG) was found to be significantly higher in processing moving visual stimuli as compared to static stimulus. In contrast, the activation in the left calcarine sulcus and left lingual gyrus were significantly higher for static stimulus as compared to moving stimuli. Visual stimulation of various shapes, pattern and size used in this study indicated left lateralization of activation. The involvement of the right MTG in processing moving visual information was evident from differential analysis, while the left calcarine sulcus and left lingual gyrus are the areas that are involved in the processing of static visual stimulus.

  9. Theoretical study of the dynamic magnetic response of ferrofluid to static and alternating magnetic fields

    NASA Astrophysics Data System (ADS)

    Batrudinov, Timur M.; Ambarov, Alexander V.; Elfimova, Ekaterina A.; Zverev, Vladimir S.; Ivanov, Alexey O.

    2017-06-01

    The dynamic magnetic response of ferrofluid in a static uniform external magnetic field to a weak, linear polarized, alternating magnetic field is investigated theoretically. The ferrofluid is modeled as a system of dipolar hard spheres, suspended in a long cylindrical tube whose long axis is parallel to the direction of the static and alternating magnetic fields. The theory is based on the Fokker-Planck-Brown equation formulated for the case when the both static and alternating magnetic fields are applied. The solution of the Fokker-Planck-Brown equation describing the orientational probability density of a randomly chosen dipolar particle is expressed as a series in terms of the spherical Legendre polynomials. The obtained analytical expression connecting three neighboring coefficients of the series makes possible to determine the probability density with any order of accuracy in terms of Legendre polynomials. The analytical formula for the probability density truncated at the first Legendre polynomial is evaluated and used for the calculation of the magnetization and dynamic susceptibility spectra. In the absence of the static magnetic field the presented theory gives the correct single-particle Debye-theory result, which is the exact solution of the Fokker-Planck-Brown equation for the case of applied weak alternating magnetic field. The influence of the static magnetic field on the dynamic susceptibility is analyzed in terms of the low-frequency behavior of the real part and the position of the peak in the imaginary part.

  10. Finite-size effects on the static properties of a single-chain magnet

    NASA Astrophysics Data System (ADS)

    Bogani, L.; Sessoli, R.; Pini, M. G.; Rettori, A.; Novak, M. A.; Rosa, P.; Massi, M.; Fedi, M. E.; Giuntini, L.; Caneschi, A.; Gatteschi, D.

    2005-08-01

    We study the role of defects in the “single-chain magnet” CoPhOMe by inserting a controlled number of diamagnetic impurities. The samples are analyzed with unprecedented accuracy with the particle induced x-ray emission technique, and with ac and dc magnetic measurements. In an external applied field the system shows an unexpected behavior, giving rise to a double peak in the susceptibility. The static thermodynamic properties of the randomly diluted Ising chain with alternating g values are then exactly obtained via a transfer matrix approach. These results are compared to the experimental behavior of CoPhOMe, showing qualitative agreement.

  11. Adaptive goal setting and financial incentives: a 2 × 2 factorial randomized controlled trial to increase adults' physical activity.

    PubMed

    Adams, Marc A; Hurley, Jane C; Todd, Michael; Bhuiyan, Nishat; Jarrett, Catherine L; Tucker, Wesley J; Hollingshead, Kevin E; Angadi, Siddhartha S

    2017-03-29

    Emerging interventions that rely on and harness variability in behavior to adapt to individual performance over time may outperform interventions that prescribe static goals (e.g., 10,000 steps/day). The purpose of this factorial trial was to compare adaptive vs. static goal setting and immediate vs. delayed, non-contingent financial rewards for increasing free-living physical activity (PA). A 4-month 2 × 2 factorial randomized controlled trial tested main effects for goal setting (adaptive vs. static goals) and rewards (immediate vs. delayed) and interactions between factors to increase steps/day as measured by a Fitbit Zip. Moderate-to-vigorous PA (MVPA) minutes/day was examined as a secondary outcome. Participants (N = 96) were mainly female (77%), aged 41 ± 9.5 years, and all were insufficiently active and overweight/obese (mean BMI = 34.1 ± 6.2). Participants across all groups increased by 2389 steps/day on average from baseline to intervention phase (p < .001). Participants receiving static goals showed a stronger increase in steps per day from baseline phase to intervention phase (2630 steps/day) than those receiving adaptive goals (2149 steps/day; difference = 482 steps/day, p = .095). Participants receiving immediate rewards showed stronger improvement (2762 step/day increase) from baseline to intervention phase than those receiving delayed rewards (2016 steps/day increase; difference = 746 steps/day, p = .009). However, the adaptive goals group showed a slower decrease in steps/day from the beginning of the intervention phase to the end of the intervention phase (i.e. less than half the rate) compared to the static goals group (-7.7 steps vs. -18.3 steps each day; difference = 10.7 steps/day, p < .001) resulting in better improvements for the adaptive goals group by study end. Rate of change over the intervention phase did not differ between reward groups. Significant goal phase x goal setting x reward interactions were observed. Adaptive goals outperformed static goals (i.e., 10,000 steps) over a 4-month period. Small immediate rewards outperformed larger, delayed rewards. Adaptive goals with either immediate or delayed rewards should be preferred for promoting PA. ClinicalTrials.gov ID: NCT02053259 registered prospectively on January 31, 2014.

  12. Hypothesis: the risk of childhood leukemia is related to combinations of power-frequency and static magnetic fields.

    PubMed

    Bowman, J D; Thomas, D C; London, S J; Peters, J M

    1995-01-01

    We present a hypothesis that the risk of childhood leukemia is related to exposure to specific combinations of static and extremely-low-frequency (ELF) magnetic fields. Laboratory data from calcium efflux and diatom mobility experiments were used with the gyromagnetic equation to predict combinations of 60 Hz and static magnetic fields hypothesized to enhance leukemia risk. The laboratory data predicted 19 bands of the static field magnitude with a bandwidth of 9.1 microT that, together with 60 Hz magnetic fields, are expected to have biological activity. We then assessed the association between this exposure metric and childhood leukemia using data from a case-control study in Los Angeles County. ELF and static magnetic fields were measured in the bedrooms of 124 cases determined from a tumor registry and 99 controls drawn from friends and random digit dialing. Among these subjects, 26 cases and 20 controls were exposed to static magnetic fields lying in the predicted bands of biological activity centered at 38.0 microT and 50.6 microT. Although no association was found for childhood leukemia in relation to measured ELF or static magnetic fields alone, an increasing trend of leukemia risk with measured ELF fields was found for subjects within these static field bands (P for trend = 0.041). The odds ratio (OR) was 3.3 [95% confidence interval (CI) = 0.4-30.5] for subjects exposed to static fields within the derived bands and to ELF magnetic field above 0.30 microT (compared to subjects exposed to static fields outside the bands and ELF magnetic fields below 0.07 microT). When the 60 Hz magnetic fields were assessed according to the Wertheimer-Leeper code for wiring configurations, leukemia risks were again greater with the hypothesized exposure conditions (OR = 9.2 for very high current configurations within the static field bands; 95% CI = 1.3-64.6). Although the risk estimates are based on limited magnetic field measurements for a small number of subjects, these findings suggest that the risk of childhood leukemia may be related to the combined effects of the static and ELF magnetic fields. Further tests of the hypothesis are proposed.

  13. 40 CFR 797.1300 - Daphnid acute toxicity test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... continuous exposure over a specified period of time. In this guideline, the effect measured is immobilization... at a point in time, or passing through the test chamber during a specific interval. (7) Static system..., daphnids which have been cultured and acclimated in accordance with the test design are randomly placed...

  14. 40 CFR 797.1300 - Daphnid acute toxicity test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... continuous exposure over a specified period of time. In this guideline, the effect measured is immobilization... at a point in time, or passing through the test chamber during a specific interval. (7) Static system..., daphnids which have been cultured and acclimated in accordance with the test design are randomly placed...

  15. 40 CFR 797.1300 - Daphnid acute toxicity test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... continuous exposure over a specified period of time. In this guideline, the effect measured is immobilization... at a point in time, or passing through the test chamber during a specific interval. (7) Static system..., daphnids which have been cultured and acclimated in accordance with the test design are randomly placed...

  16. 40 CFR 797.1300 - Daphnid acute toxicity test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... continuous exposure over a specified period of time. In this guideline, the effect measured is immobilization... at a point in time, or passing through the test chamber during a specific interval. (7) Static system..., daphnids which have been cultured and acclimated in accordance with the test design are randomly placed...

  17. 40 CFR 797.1300 - Daphnid acute toxicity test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... continuous exposure over a specified period of time. In this guideline, the effect measured is immobilization... at a point in time, or passing through the test chamber during a specific interval. (7) Static system..., daphnids which have been cultured and acclimated in accordance with the test design are randomly placed...

  18. Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios.

    PubMed

    Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin

    2015-10-18

    To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). Similarly, static stretching also decreased eccentric and concentric hamstring muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). On the other hand, when the functional H/Q strength ratios were taken into consideration, the pre-intervention values were not significant different between the groups both during the entire and end range of knee extension (P > 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention (P > 0.05). According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines.

  19. Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios

    PubMed Central

    Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin

    2015-01-01

    AIM: To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. METHODS: Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. RESULTS: The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). Similarly, static stretching also decreased eccentric and concentric hamstring muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). On the other hand, when the functional H/Q strength ratios were taken into consideration, the pre-intervention values were not significant different between the groups both during the entire and end range of knee extension (P > 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention (P > 0.05). CONCLUSION: According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines. PMID:26495249

  20. Distributed Clone Detection in Static Wireless Sensor Networks: Random Walk with Network Division

    PubMed Central

    Khan, Wazir Zada; Aalsalem, Mohammed Y.; Saad, N. M.

    2015-01-01

    Wireless Sensor Networks (WSNs) are vulnerable to clone attacks or node replication attacks as they are deployed in hostile and unattended environments where they are deprived of physical protection, lacking physical tamper-resistance of sensor nodes. As a result, an adversary can easily capture and compromise sensor nodes and after replicating them, he inserts arbitrary number of clones/replicas into the network. If these clones are not efficiently detected, an adversary can be further capable to mount a wide variety of internal attacks which can emasculate the various protocols and sensor applications. Several solutions have been proposed in the literature to address the crucial problem of clone detection, which are not satisfactory as they suffer from some serious drawbacks. In this paper we propose a novel distributed solution called Random Walk with Network Division (RWND) for the detection of node replication attack in static WSNs which is based on claimer-reporter-witness framework and combines a simple random walk with network division. RWND detects clone(s) by following a claimer-reporter-witness framework and a random walk is employed within each area for the selection of witness nodes. Splitting the network into levels and areas makes clone detection more efficient and the high security of witness nodes is ensured with moderate communication and memory overheads. Our simulation results show that RWND outperforms the existing witness node based strategies with moderate communication and memory overheads. PMID:25992913

  1. wayGoo recommender system: personalized recommendations for events scheduling, based on static and real-time information

    NASA Astrophysics Data System (ADS)

    Thanos, Konstantinos-Georgios; Thomopoulos, Stelios C. A.

    2016-05-01

    wayGoo is a fully functional application whose main functionalities include content geolocation, event scheduling, and indoor navigation. However, significant information about events do not reach users' attention, either because of the size of this information or because some information comes from real - time data sources. The purpose of this work is to facilitate event management operations by prioritizing the presented events, based on users' interests using both, static and real - time data. Through the wayGoo interface, users select conceptual topics that are interesting for them. These topics constitute a browsing behavior vector which is used for learning users' interests implicitly, without being intrusive. Then, the system estimates user preferences and return an events list sorted from the most preferred one to the least. User preferences are modeled via a Naïve Bayesian Network which consists of: a) the `decision' random variable corresponding to users' decision on attending an event, b) the `distance' random variable, modeled by a linear regression that estimates the probability that the distance between a user and each event destination is not discouraging, ` the seat availability' random variable, modeled by a linear regression, which estimates the probability that the seat availability is encouraging d) and the `relevance' random variable, modeled by a clustering - based collaborative filtering, which determines the relevance of each event users' interests. Finally, experimental results show that the proposed system contribute essentially to assisting users in browsing and selecting events to attend.

  2. 275 C Downhole Microcomputer System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chris Hutchens; Hooi Miin Soo

    2008-08-31

    An HC11 controller IC and along with serial SRAM and ROM support ICs chip set were developed to support a data acquisition and control for extreme temperature/harsh environment conditions greater than 275 C. The 68HC11 microprocessor is widely used in well logging tools for control, data acquisition, and signal processing applications and was the logical choice for a downhole controller. This extreme temperature version of the 68HC11 enables new high temperature designs and additionally allows 68HC11-based well logging tools and MWD tools to be upgraded for high temperature operation in deep gas reservoirs, The microcomputer chip consists of the microprocessormore » ALU, a small boot ROM, 4 kbyte data RAM, counter/timer unit, serial peripheral interface (SPI), asynchronous serial interface (SCI), and the A, B, C, and D parallel ports. The chip is code compatible with the single chip mode commercial 68HC11 except for the absence of the analog to digital converter system. To avoid mask programmed internal ROM, a boot program is used to load the microcomputer program from an external mask SPI ROM. A SPI RAM IC completes the chip set and allows data RAM to be added in 4 kbyte increments. The HC11 controller IC chip set is implemented in the Peregrine Semiconductor 0.5 micron Silicon-on-Sapphire (SOS) process using a custom high temperature cell library developed at Oklahoma State University. Yield data is presented for all, the HC11, SPI-RAM and ROM. The lessons learned in this project were extended to the successful development of two high temperature versions of the LEON3 and a companion 8 Kbyte SRAM, a 200 C version for the Navy and a 275 C version for the gas industry.« less

  3. Accurate electrical prediction of memory array through SEM-based edge-contour extraction using SPICE simulation

    NASA Astrophysics Data System (ADS)

    Shauly, Eitan; Rotstein, Israel; Peltinov, Ram; Latinski, Sergei; Adan, Ofer; Levi, Shimon; Menadeva, Ovadya

    2009-03-01

    The continues transistors scaling efforts, for smaller devices, similar (or larger) drive current/um and faster devices, increase the challenge to predict and to control the transistor off-state current. Typically, electrical simulators like SPICE, are using the design intent (as-drawn GDS data). At more sophisticated cases, the simulators are fed with the pattern after lithography and etch process simulations. As the importance of electrical simulation accuracy is increasing and leakage is becoming more dominant, there is a need to feed these simulators, with more accurate information extracted from physical on-silicon transistors. Our methodology to predict changes in device performances due to systematic lithography and etch effects was used in this paper. In general, the methodology consists on using the OPCCmaxTM for systematic Edge-Contour-Extraction (ECE) from transistors, taking along the manufacturing and includes any image distortions like line-end shortening, corner rounding and line-edge roughness. These measurements are used for SPICE modeling. Possible application of this new metrology is to provide a-head of time, physical and electrical statistical data improving time to market. In this work, we applied our methodology to analyze a small and large array's of 2.14um2 6T-SRAM, manufactured using Tower Standard Logic for General Purposes Platform. 4 out of the 6 transistors used "U-Shape AA", known to have higher variability. The predicted electrical performances of the transistors drive current and leakage current, in terms of nominal values and variability are presented. We also used the methodology to analyze an entire SRAM Block array. Study of an isolation leakage and variability are presented.

  4. An IO block array in a radiation-hardened SOI SRAM-based FPGA

    NASA Astrophysics Data System (ADS)

    Yan, Zhao; Lihua, Wu; Xiaowei, Han; Yan, Li; Qianli, Zhang; Liang, Chen; Guoquan, Zhang; Jianzhong, Li; Bo, Yang; Jiantou, Gao; Jian, Wang; Ming, Li; Guizhai, Liu; Feng, Zhang; Xufeng, Guo; Kai, Zhao; Chen, Stanley L.; Fang, Yu; Zhongli, Liu

    2012-01-01

    We present an input/output block (IOB) array used in the radiation-hardened SRAM-based field-programmable gate array (FPGA) VS1000, which is designed and fabricated with a 0.5 μm partially depleted silicon-on-insulator (SOI) logic process at the CETC 58th Institute. Corresponding with the characteristics of the FPGA, each IOB includes a local routing pool and two IO cells composed of a signal path circuit, configurable input/output buffers and an ESD protection network. A boundary-scan path circuit can be used between the programmable buffers and the input/output circuit or as a transparent circuit when the IOB is applied in different modes. Programmable IO buffers can be used at TTL/CMOS standard levels. The local routing pool enhances the flexibility and routability of the connection between the IOB array and the core logic. Radiation-hardened designs, including A-type and H-type body-tied transistors and special D-type registers, improve the anti-radiation performance. The ESD protection network, which provides a high-impulse discharge path on a pad, prevents the breakdown of the core logic caused by the immense current. These design strategies facilitate the design of FPGAs with different capacities or architectures to form a series of FPGAs. The functionality and performance of the IOB array is proved after a functional test. The radiation test indicates that the proposed VS1000 chip with an IOB array has a total dose tolerance of 100 krad(Si), a dose survivability rate of 1.5 × 1011 rad(Si)/s, and a neutron fluence immunity of 1 × 1014 n/cm2.

  5. Nonlinear dual-axis biodynamic response of the semi-supine human body during vertical whole-body vibration

    NASA Astrophysics Data System (ADS)

    Huang, Ya; Griffin, Michael J.

    2008-04-01

    Nonlinear biodynamic responses are evident in many studies of the apparent masses of sitting and standing subjects in static postures that require muscle activity for postural control. In the present study, 12 male subjects adopted a relaxed semi-supine posture assumed to involve less muscle activity than during static sitting and standing. The supine subjects were exposed to two types of vertical vibration (in the x-axis of the semi-supine body): (i) continuous random vibration (0.25-20 Hz) at five magnitudes (0.125, 0.25, 0.5, 0.75, and 1.0 m s -2 rms); (ii) intermittent random vibration (0.25-20 Hz) alternately at 0.25 and 1.0 m s -2 rms. With continuous random vibration, the dominant primary resonance frequency in the median normalised apparent mass decreased from 10.35 to 7.32 Hz as the vibration magnitude increased from 0.125 to 1.0 m s -2 rms. This nonlinear response was apparent in both the vertical ( x-axis) apparent mass and in the horizontal ( z-axis) cross-axis apparent mass. As the vibration magnitude increased from 0.25 to 1.0 m s -2 rms, the median resonance frequency of the apparent mass with intermittent random vibration decreased from 9.28 to 8.06 Hz whereas, over the same range of magnitudes with continuous random vibration, the resonance frequency decreased from 9.62 to 7.81 Hz. The median change in the resonance frequency (between 0.25 and 1.0 m s -2 rms) was 1.37 Hz with the intermittent random vibration and 1.71 with the continuous random vibration. With the intermittent vibration, the resonance frequency was higher at the high magnitude and lower at the low magnitude than with continuous vibration of the same magnitudes. The response was typical of thixotropy that may be a primary cause of the nonlinear biodynamic responses to whole-body vibration.

  6. Effects of virtual reality programs on balance in functional ankle instability

    PubMed Central

    Kim, Ki-Jong; Heo, Myoung

    2015-01-01

    [Purpose] The aim of present study was to identify the impact that recent virtual reality training programs used in a variety of fields have had on the ankle’s static and dynamic senses of balance among subjects with functional ankle instability. [Subjects and Methods] This study randomly divided research subjects into two groups, a strengthening exercise group (Group I) and a balance exercise group (Group II), with each group consisting of 10 people. A virtual reality program was performed three times a week for four weeks. Exercises from the Nintendo Wii Fit Plus program were applied to each group for twenty minutes along with ten minutes of warming up and wrap-up exercises. [Results] Group II showed a significant decrease of post-intervention static and dynamic balance overall in the anterior-posterior, and mediolateral directions, compared with the pre-intervention test results. In comparison of post-intervention static and dynamic balance between Group I and Group II, a significant decrease was observed overall. [Conclusion] Virtual reality programs improved the static balance and dynamic balance of subjects with functional ankle instability. Virtual reality programs can be used more safely and efficiently if they are implemented under appropriate monitoring by a physiotherapist. PMID:26644652

  7. Effects of virtual reality programs on balance in functional ankle instability.

    PubMed

    Kim, Ki-Jong; Heo, Myoung

    2015-10-01

    [Purpose] The aim of present study was to identify the impact that recent virtual reality training programs used in a variety of fields have had on the ankle's static and dynamic senses of balance among subjects with functional ankle instability. [Subjects and Methods] This study randomly divided research subjects into two groups, a strengthening exercise group (Group I) and a balance exercise group (Group II), with each group consisting of 10 people. A virtual reality program was performed three times a week for four weeks. Exercises from the Nintendo Wii Fit Plus program were applied to each group for twenty minutes along with ten minutes of warming up and wrap-up exercises. [Results] Group II showed a significant decrease of post-intervention static and dynamic balance overall in the anterior-posterior, and mediolateral directions, compared with the pre-intervention test results. In comparison of post-intervention static and dynamic balance between Group I and Group II, a significant decrease was observed overall. [Conclusion] Virtual reality programs improved the static balance and dynamic balance of subjects with functional ankle instability. Virtual reality programs can be used more safely and efficiently if they are implemented under appropriate monitoring by a physiotherapist.

  8. Static critical behavior of the q-states Potts model: High-resolution entropic study

    NASA Astrophysics Data System (ADS)

    Caparica, A. A.; Leão, Salviano A.; DaSilva, Claudio J.

    2015-11-01

    Here we report a precise computer simulation study of the static critical properties of the two-dimensional q-states Potts model using very accurate data obtained from a modified Wang-Landau (WL) scheme proposed by Caparica and Cunha-Netto (2012). This algorithm is an extension of the conventional WL sampling, but the authors changed the criterion to update the density of states during the random walk and established a new procedure to windup the simulation run. These few changes have allowed a more precise microcanonical averaging which is essential to a reliable finite-size scaling analysis. In this work we used this new technique to determine the static critical exponents β, γ, and ν, in an unambiguous fashion. The static critical exponents were determined as β = 0.10811(77) , γ = 1.4459(31) , and ν = 0.8197(17) , for the q = 3 case, and β = 0.0877(37) , γ = 1.3161(69) , and ν = 0.7076(10) , for the q = 4 Potts model. A comparison of the present results with conjectured values and with those obtained from other well established approaches strengthens this new way of performing WL simulations.

  9. Effects of Static and Dynamic Stretching on the Isokinetic Peak Torques and Electromyographic Activities of the Antagonist Muscles.

    PubMed

    Serefoglu, Abdullah; Sekir, Ufuk; Gür, Hakan; Akova, Bedrettin

    2017-03-01

    The aim of this study was to investigate if static and dynamic stretching exercises of the knee muscles (quadriceps and hamstring muscles) have any effects on concentric and eccentric isokinetic peak torques and electromyographic amplitudes (EMG) of the antagonist muscles. Twenty healthy male athletes (age between 18-30 years) voluntarily participated in this study. All of the subjects visited the laboratory to complete the following intervention in a randomized order on 5 separate days; (a) non-stretching (control), (b) static stretching of the quadriceps muscles, (c) static stretching of the hamstring muscles, (d) dynamic stretching of the quadriceps muscles, and (e) dynamic stretching of the hamstring muscles. Static stretching exercises either for the quadriceps or the hamstring muscles were carried out at the standing and sitting positions. Subjects performed four successive repetitions of each stretching exercises for 30 seconds in both stretching positions. Similar to static stretching exercises two different stretching modes were designed for dynamic stretching exercises. Concentric and eccentric isokinetic peak torque for the non-stretched antagonist quadriceps or hamstring muscles at angular velocities of 60°/sec and 240°/sec and their concurrent electromyographic (EMG) activities were measured before and immediately after the intervention. Isokinetic peak torques of the non-stretched agonist hamstring and quadriceps muscles did not represent any significant (p > 0.05) differences following static and dynamic stretching of the antagonist quadriceps and hamstring muscles, respectively. Similarly, the EMG activities of the agonist muscles exhibited no significant alterations (p > 0.05) following both stretching exercises of the antagonist muscles. According to the results of the present study it is possible to state that antagonist stretching exercises either in the static or dynamic modes do not affect the isokinetic peak torques and the EMG activities of the non-stretched agonist quadriceps or hamstring muscles.

  10. Oscillations and chaos in neural networks: an exactly solvable model.

    PubMed Central

    Wang, L P; Pichler, E E; Ross, J

    1990-01-01

    We consider a randomly diluted higher-order network with noise, consisting of McCulloch-Pitts neurons that interact by Hebbian-type connections. For this model, exact dynamical equations are derived and solved for both parallel and random sequential updating algorithms. For parallel dynamics, we find a rich spectrum of different behaviors including static retrieving and oscillatory and chaotic phenomena in different parts of the parameter space. The bifurcation parameters include first- and second-order neuronal interaction coefficients and a rescaled noise level, which represents the combined effects of the random synaptic dilution, interference between stored patterns, and additional background noise. We show that a marked difference in terms of the occurrence of oscillations or chaos exists between neural networks with parallel and random sequential dynamics. Images PMID:2251287

  11. The Effectiveness of PNF Versus Static Stretching on Increasing Hip-Flexion Range of Motion.

    PubMed

    Lempke, Landon; Wilkinson, Rebecca; Murray, Caitlin; Stanek, Justin

    2018-05-22

    Clinical Scenario: Stretching is applied for the purposes of injury prevention, increasing joint range of motion (ROM), and increasing muscle extensibility. Many researchers have investigated various methods and techniques to determine the most effective way to increase joint ROM and muscle extensibility. Despite the numerous studies conducted, controversy still remains within clinical practice and the literature regarding the best methods and techniques for stretching. Focused Clinical Question: Is proprioceptive neuromuscular facilitation (PNF) stretching more effective than static stretching for increasing hamstring muscle extensibility through increased hip ROM or increased knee extension angle (KEA) in a physically active population? Summary of Key Findings: Five studies met the inclusion criteria and were included. All 5 studies were randomized control trials examining mobility of the hamstring group. The studies measured hamstring ROM in a variety of ways. Three studies measured active KEA, 1 study measured passive KEA, and 1 study measured hip ROM via the single-leg raise test. Of the 5 studies, 1 study found greater improvements using PNF over static stretching for increasing hip flexion, and the remaining 4 studies found no significant difference between PNF stretching and static stretching in increasing muscle extensibility, active KEA, or hip ROM. Clinical Bottom Line: PNF stretching was not demonstrated to be more effective at increasing hamstring extensibility compared to static stretching. The literature reviewed suggests both are effective methods for increasing hip-flexion ROM. Strength of Recommendation: Using level 2 evidence and higher, the results show both static and PNF stretching effectively increase ROM; however, one does not appear to be more effective than the other.

  12. Are fixations in static natural scenes a useful predictor of attention in the real world?

    PubMed

    Foulsham, Tom; Kingstone, Alan

    2017-06-01

    Research investigating scene perception normally involves laboratory experiments using static images. Much has been learned about how observers look at pictures of the real world and the attentional mechanisms underlying this behaviour. However, the use of static, isolated pictures as a proxy for studying everyday attention in real environments has led to the criticism that such experiments are artificial. We report a new study that tests the extent to which the real world can be reduced to simpler laboratory stimuli. We recorded the gaze of participants walking on a university campus with a mobile eye tracker, and then showed static frames from this walk to new participants, in either a random or sequential order. The aim was to compare the gaze of participants walking in the real environment with fixations on pictures of the same scene. The data show that picture order affects interobserver fixation consistency and changes looking patterns. Critically, while fixations on the static images overlapped significantly with the actual real-world eye movements, they did so no more than a model that assumed a general bias to the centre. Remarkably, a model that simply takes into account where the eyes are normally positioned in the head-independent of what is actually in the scene-does far better than any other model. These data reveal that viewing patterns to static scenes are a relatively poor proxy for predicting real world eye movement behaviour, while raising intriguing possibilities for how to best measure attention in everyday life. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. One session of high-intensity interval training (HIIT) every 5 days, improves muscle power but not static balance in lifelong sedentary ageing men

    PubMed Central

    Sculthorpe, Nicholas F.; Herbert, Peter; Grace, Fergal

    2017-01-01

    Abstract Background: Declining muscle power during advancing age predicts falls and loss of independence. High-intensity interval training (HIIT) may improve muscle power, but remains largely unstudied in ageing participants. Methods: This randomized controlled trial (RCT) investigated the efficacy of a low-frequency HIIT (LfHIIT) intervention on peak muscle power (peak power output [PPO]), body composition, and balance in lifelong sedentary but otherwise healthy males. Methods: Thirty-three lifelong sedentary ageing men were randomly assigned to either intervention (INT; n = 22, age 62.3 ± 4.1 years) or control (n = 11, age 61.6 ± 5.0 years) who were both assessed at 3 distinct measurement points (phase A), after 6 weeks of conditioning exercise (phase B), and after 6 weeks of HIIT once every 5 days in INT (phase C), where control remained inactive throughout the study. Results: Static balance remained unaffected, and both absolute and relative PPO were not different between groups at phases A or B, but increased significantly in INT after LfHIIT (P < 0.01). Lean body mass displayed a significant interaction (P < 0.01) due to an increase in INT between phases B and C (P < 0.05). Conclusions: 6 weeks of LfHIIT exercise feasible and effective method to induce clinically relevant improvements in absolute and relative PPO, but does not improve static balance in sedentary ageing men. PMID:28178145

  14. Equivalent Linearization Analysis of Geometrically Nonlinear Random Vibrations Using Commercial Finite Element Codes

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Muravyov, Alexander A.

    2002-01-01

    Two new equivalent linearization implementations for geometrically nonlinear random vibrations are presented. Both implementations are based upon a novel approach for evaluating the nonlinear stiffness within commercial finite element codes and are suitable for use with any finite element code having geometrically nonlinear static analysis capabilities. The formulation includes a traditional force-error minimization approach and a relatively new version of a potential energy-error minimization approach, which has been generalized for multiple degree-of-freedom systems. Results for a simply supported plate under random acoustic excitation are presented and comparisons of the displacement root-mean-square values and power spectral densities are made with results from a nonlinear time domain numerical simulation.

  15. Remotely Powered Reconfigurable Receiver for Extreme Environment Sensing Platforms

    NASA Technical Reports Server (NTRS)

    Sheldon, Douglas J.

    2012-01-01

    Wireless sensors connected in a local network offer revolutionary exploration capabilities, but the current solutions do not work in extreme environments of low temperatures (200K) and low to moderate radiation levels (<50 krad). These sensors (temperature, radiation, infrared, etc.) would need to operate outside the spacecraft/ lander and be totally independent of power from the spacecraft/lander. Flash memory field-programmable gate arrays (FPGAs) are being used as the main signal processing and protocol generation platform in a new receiver. Flash-based FPGAs have been shown to have at least 100 reduced standby power and 10 reduction operating power when compared to normal SRAM-based FPGA technology.

  16. Making A D-Latch Sensitive To Alpha Particles

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Blaes, Brent R.; Nixon, Robert H.

    1994-01-01

    Standard complementary metal oxide/semiconductor (CMOS) D-latch integrated circuit modified to increase susceptibility to single-event upsets (SEU's) (changes in logic state) caused by impacts of energetic alpha particles. Suitable for use in relatively inexpensive bench-scale SEU tests of itself and of related integrated circuits like static random-access memories.

  17. Spreading Effect in Industrial Complex Network Based on Revised Structural Holes Theory

    PubMed Central

    Ye, Qing; Guan, Jun

    2016-01-01

    This paper analyzed the spreading effect of industrial sectors with complex network model under perspective of econophysics. Input-output analysis, as an important research tool, focuses more on static analysis. However, the fundamental aim of industry analysis is to figure out how interaction between different industries makes impacts on economic development, which turns out to be a dynamic process. Thus, industrial complex network based on input-output tables from WIOD is proposed to be a bridge connecting accurate static quantitative analysis and comparable dynamic one. With application of revised structural holes theory, flow betweenness and random walk centrality were respectively chosen to evaluate industrial sectors’ long-term and short-term spreading effect process in this paper. It shows that industries with higher flow betweenness or random walk centrality would bring about more intensive industrial spreading effect to the industrial chains they stands in, because value stream transmission of industrial sectors depends on how many products or services it can get from the other ones, and they are regarded as brokers with bigger information superiority and more intermediate interests. PMID:27218468

  18. Spreading Effect in Industrial Complex Network Based on Revised Structural Holes Theory.

    PubMed

    Xing, Lizhi; Ye, Qing; Guan, Jun

    2016-01-01

    This paper analyzed the spreading effect of industrial sectors with complex network model under perspective of econophysics. Input-output analysis, as an important research tool, focuses more on static analysis. However, the fundamental aim of industry analysis is to figure out how interaction between different industries makes impacts on economic development, which turns out to be a dynamic process. Thus, industrial complex network based on input-output tables from WIOD is proposed to be a bridge connecting accurate static quantitative analysis and comparable dynamic one. With application of revised structural holes theory, flow betweenness and random walk centrality were respectively chosen to evaluate industrial sectors' long-term and short-term spreading effect process in this paper. It shows that industries with higher flow betweenness or random walk centrality would bring about more intensive industrial spreading effect to the industrial chains they stands in, because value stream transmission of industrial sectors depends on how many products or services it can get from the other ones, and they are regarded as brokers with bigger information superiority and more intermediate interests.

  19. Static magnetism and thermal switching in randomly oriented L10 FePt thin films

    NASA Astrophysics Data System (ADS)

    Lisfi, A.; Pokharel, S.; Alqarni, A.; Akioya, O.; Morgan, W.; Wuttig, M.

    2018-05-01

    Static magnetism and thermally activated magnetic relaxation were investigated in granular FePt films (20 nm-200 nm thick) with random magnetic anisotropy through hysteresis loop, torque curve and magnetization time dependence measurements. While the magnetism of thicker film (200 nm thick) is dominated by a single switching of the ordered L10 phase, thinner film (20 nm) displays a double switching, which is indicative of the presence of the disordered cubic phase. The pronounced behavior of double switching in thinner film suggests that the film grain boundary is composed of soft cubic magnetic phase. The magnetic relaxation study reveals that magnetic viscosity S of the films is strongly dependent on the external applied field and exhibits a maximum value (12 kAm) around the switching field and a vanishing behavior at low (1 kOe) and large (12 kOe) fields. The activation volume of the thermal switching was found to be much smaller than the physical volume of the granular structure due to the incoherent rotation mode of the magnetization reversal mechanism, which is established to be domain wall nucleation.

  20. Dynamic defense and network randomization for computer systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, Adrian R.; Stout, William M. S.; Hamlet, Jason R.

    The various technologies presented herein relate to determining a network attack is taking place, and further to adjust one or more network parameters such that the network becomes dynamically configured. A plurality of machine learning algorithms are configured to recognize an active attack pattern. Notification of the attack can be generated, and knowledge gained from the detected attack pattern can be utilized to improve the knowledge of the algorithms to detect a subsequent attack vector(s). Further, network settings and application communications can be dynamically randomized, wherein artificial diversity converts control systems into moving targets that help mitigate the early reconnaissancemore » stages of an attack. An attack(s) based upon a known static address(es) of a critical infrastructure network device(s) can be mitigated by the dynamic randomization. Network parameters that can be randomized include IP addresses, application port numbers, paths data packets navigate through the network, application randomization, etc.« less

  1. AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal

    PubMed Central

    Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang

    2015-01-01

    An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal. PMID:26512665

  2. AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal.

    PubMed

    Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang

    2015-10-23

    An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal.

  3. Propfan test assessment propfan propulsion system static test report

    NASA Technical Reports Server (NTRS)

    Orourke, D. M.

    1987-01-01

    The propfan test assessment (PTA) propulsion system successfully completed over 50 hours of extensive static ground tests, including a 36 hour endurance test. All major systems performed as expected, verifying that the large-scale 2.74 m diameter propfan, engine, gearbox, controls, subsystems, and flight instrumentation will be satisfactory with minor modifications for the upcoming PTA flight tests on the GII aircraft in early 1987. A test envelope was established for static ground operation to maintain propfan blade stresses within limits for propfan rotational speeds up to 105 percent and power levels up to 3880 kW. Transient tests verified stable, predictable response of engine power and propfan speed controls. Installed engine TSFC was better than expected, probably due to the excellent inlet performance coupled with the supercharging effect of the propfan. Near- and far-field noise spectra contained three dominant components, which were dependent on power, tip speed, and direction. The components were propfan blade tones, propfan random noise, and compressor/propfan interaction noise. No significant turbine noise or combustion noise was evident.

  4. No Effect of Muscle Stretching within a Full, Dynamic Warm-up on Athletic Performance.

    PubMed

    Blazevich, Anthony J; Gill, Nicholas D; Kvorning, Thue; Kay, Anthony D; Goh, Alvin G; Hilton, Bradley; Drinkwater, Eric J; Behm, David G

    2018-06-01

    This study aimed to examine the effects of static and dynamic stretching routines performed as part of a comprehensive warm-up on flexibility and sprint running, jumping, and change of direction tests in team sport athletes. A randomized, controlled, crossover study design with experimenter blinding was conducted. On separate days, 20 male team sport athletes completed a comprehensive warm-up routine. After a low-intensity warm-up, a 5-s static stretch (5S), a 30-s static stretch (30S; 3 × 10-s stretches), a 5-repetition (per muscle group) dynamic stretch (DYN), or a no-stretch (NS) protocol was completed; stretches were done on seven lower body and two upper body regions. This was followed by test-specific practice progressing to maximum intensity. A comprehensive test battery assessing intervention effect expectations as well as flexibility, vertical jump, sprint running, and change of direction outcomes was then completed in a random order. There were no effects of stretch condition on test performances. Before the study, 18/20 participants nominated DYN as the most likely to improve performance and 15/20 nominated NS as least likely. Immediately before testing, NS was rated less "effective" (4.0 ± 2.2 on a 10-point scale) than 5S, 30S, and DYN (5.3-6.4). Nonetheless, these ratings were not related to test performances. Participants felt they were more likely to perform well when stretching was performed as part of the warm-up, irrespective of stretch type. However, no effect of muscle stretching was observed on flexibility and physical function compared with no stretching. On the basis of the current evidence, the inclusion of short durations of either static or dynamic stretching is unlikely to affect sprint running, jumping, or change of direction performance when performed as part of a comprehensive physical preparation routine.

  5. Effects of long-term estrogen replacement therapy on bone turnover in periarticular tibial osteophytes in surgically postmenopausal cynomolgus monkeys

    PubMed Central

    Olson, Erik J.; Lindgren, Bruce R.; Carlson, Cathy S.

    2008-01-01

    The aims of the present study were to assess the effects of long-term estrogen replacement therapy (ERT) on size and indices of bone turnover in periarticular osteophytes in ovariectomized cynomolgus monkeys and to compare dynamic indices of bone turnover in osteophyte bone with those of subchondral bone (SCB) and epiphyseal/metaphyseal cancellous (EMC) bone. One hundred sixty-five adult female cynomolgus macaques were bilaterally ovariectomized and randomly divided into three age- and weight-matched treatment groups for a 36-month treatment period. Group 1 (OVX control) received no treatment, Group 2 (SPE) received soy phytoestrogens, and Group 3 (ERT) received conjugated equine estrogens in the diet; all monkeys were labeled with calcein before necropsy. A midcoronal, plastic-embedded section of the right proximal tibia from 20 randomly selected animals per treatment group was examined histologically. Forty-nine of the sections (OVX control, n=16; SPE, n=16; ERT, n=17) contained lateral abaxial osteophytes, and static and dynamic histomorphometry measurements were taken from osteophyte bone, SCB from the lateral tibial plateau, and EMC bone. Data were analyzed using the ANOVA and Kruskal-Wallis test, correlation and regression methods, and the Friedman and Wilcoxon signed rank test. There was no significant effect of long-term ERT on osteophyte area or on any static or dynamic histomorphometry parameters. The bone volume, trabecular number, and trabecular thickness in osteophyte bone were considerably higher than in EMC bone; whereas, trabecular separation was considerably lower in osteophyte bone. In all three treatment groups, BS/BV was significantly lower in osteophyte bone vs. EMC bone and significantly higher in osteophyte bone vs. lateral SCB. We conclude that osteophyte area and static and dynamic histomorphometry parameters within periarticular tibial osteophytes in ovariectomized cynomolgus monkeys are not significantly influenced by long-term ERT, but that site differences in static and dynamic bone histomorphometry parameters exist, particularly between EMC and osteophyte bone. PMID:18291743

  6. Effects of long-term estrogen replacement therapy on bone turnover in periarticular tibial osteophytes in surgically postmenopausal cynomolgus monkeys.

    PubMed

    Olson, Erik J; Lindgren, Bruce R; Carlson, Cathy S

    2008-05-01

    The aims of the present study were to assess the effects of long-term estrogen replacement therapy (ERT) on size and indices of bone turnover in periarticular osteophytes in ovariectomized cynomolgus monkeys and to compare dynamic indices of bone turnover in osteophyte bone with those of subchondral bone (SCB) and epiphyseal/metaphyseal cancellous (EMC) bone. One hundred sixty-five adult female cynomolgus macaques were bilaterally ovariectomized and randomly divided into three age- and weight-matched treatment groups for a 36-month treatment period. Group 1 (OVX control) received no treatment, Group 2 (SPE) received soy phytoestrogens, and Group 3 (ERT) received conjugated equine estrogens in the diet; all monkeys were labeled with calcein before necropsy. A midcoronal, plastic-embedded section of the right proximal tibia from 20 randomly selected animals per treatment group was examined histologically. Forty-nine of the sections (OVX control, n=16; SPE, n=16; ERT, n=17) contained lateral abaxial osteophytes, and static and dynamic histomorphometry measurements were taken from osteophyte bone, SCB from the lateral tibial plateau, and EMC bone. Data were analyzed using the ANOVA and Kruskal-Wallis test, correlation and regression methods, and the Friedman and Wilcoxon signed rank test. There was no significant effect of long-term ERT on osteophyte area or on any static or dynamic histomorphometry parameters. The bone volume, trabecular number, and trabecular thickness in osteophyte bone were considerably higher than in EMC bone; whereas, trabecular separation was considerably lower in osteophyte bone. In all three treatment groups, BS/BV was significantly lower in osteophyte bone vs. EMC bone and significantly higher in osteophyte bone vs. lateral SCB. We conclude that osteophyte area and static and dynamic histomorphometry parameters within periarticular tibial osteophytes in ovariectomized cynomolgus monkeys are not significantly influenced by long-term ERT, but that site differences in static and dynamic bone histomorphometry parameters exist, particularly between EMC and osteophyte bone.

  7. New Approach in Fibromyalgia Exercise Program: A Preliminary Study Regarding the Effectiveness of Balance Training.

    PubMed

    Kibar, Sibel; Yıldız, Hatice Ecem; Ay, Saime; Evcik, Deniz; Ergin, Emine Süreyya

    2015-09-01

    To determine the effectiveness of balance exercises on the functional level and quality of life (QOL) of patients with fibromyalgia syndrome (FMS) and to investigate the circumstances associated with balance disorders in FMS. Randomized controlled trial. Physical medicine and rehabilitation clinic. Patients (N=57) (age range, 18-65y) with FMS were randomly assigned into 2 groups. Group 1 was given flexibility and balance exercises for 6 weeks, whereas group 2 received only a flexibility program as the control group. Functional balance was measured by the Berg Balance Scale (BBS), and dynamic and static balance were evaluated by a kinesthetic ability trainer (KAT) device. Fall risk was assessed with the Hendrich II fall risk model. The Nottingham Health Profile, Fibromyalgia Impact Questionnaire (FIQ), and Beck Depression Inventory (BDI) were used to determine QOL and functional and depression levels, respectively. Assessments were performed at baseline and after the 6-week program. In group 1, statistically significant improvements were observed in all parameters (P<.05), but no improvement was seen in group 2 (P>.05). When comparing the 2 groups, there were significant differences in group 1 concerning the KAT static balance test (P=.017) and FIQ measurements (P=.005). In the correlation analysis, the BDI was correlated with the BBS (r=-.434) and Hendrich II results (r=.357), whereas body mass index (BMI) was correlated with the KAT static balance measurements (r=.433), BBS (r=-.285), and fall frequency (r=.328). A 6-week balance training program had a beneficial effect on the static balance and functional levels of patients with FMS. We also observed that depression deterioration was related to balance deficit and fall risk. Higher BMI was associated with balance deficit and fall frequency. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. Titanium oxide nonvolatile memory device and its application

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    In recent years, the semiconductor memory industry has seen an ever-increasing demand for nonvolatile memory (NVM), which is fueled by portable consumer electronic applications like the mobile phone and MP3 player. FLASH memory has been the most widely used nonvolatile memories in these systems, and has successfully kept up with CMOS scaling for many generations. However, as FLASH memory faces major scaling challenges beyond 22nm, non-charge-based nonvolatile memories are widely researched as candidates to replace FLASH. Titanium oxide (TiOx) nonvolatile memory device is considered to be a promising choice due to its controllable nonvolatile memory switching, good scalability, compatibility with CMOS processing and potential for 3D stacking. However, several major issues need to be overcome before TiOx NVM device can be adopted in manufacturing. First, there exists a highly undesirable high-voltage stress initiation process (FORMING) before the device can switch between high and low resistance states repeatedly. By analyzing the conductive behaviors of the memory device before and after FORMING, we propose that FORMING involves breaking down an interfacial layer between its Pt electrode and the TiOx thin film, and that FORMING is not needed if the Pt-TiOx interface can be kept clean during fabrication. An in-situ fabrication process is developed for cross-point TiOx NVM device, which enables in-situ deposition of the critical layers of the memory device and thus achieves clean interfaces between Pt electrodes and TiOx film. Testing results show that FORMING is indeed eliminated for memory devices made with the in-situ fabrication process. It verifies the significance of in-situ deposition without vacuum break in the fabrication of TiOx NVM devices. Switching parameters statistics of TiOx NVM devices are studied and compared for unipolar and bipolar switching modes. RESET mechanisms are found to be different for the two switching modes: unipolar switching can be explained by thermal dissolution model, and bipolar switching by local redox reaction model. Since it is generally agreed that the memory switching of TiOx NVM devices is based on conductive filaments, reusability of these conductive filaments becomes an intriguing issue to determine the memory device's endurance. A 1X3 cross-point test structure is built to investigate whether conductive filaments can be reused after RESET. It is found that the conductive filament is destroyed during unipolar switching, while can be reused during bipolar switching. The result is a good indication that bipolar switching should have better endurance than unipolar switching. Finally a novel application of the two-terminal resistive switching NVM devices is demonstrated. To reduce SRAM leakage power, we propose a nonvolatile SRAM cell with two back-up NVM devices. This novel cell offers nonvolatile storage, thus allowing selected blocks of SRAM to be powered down during operation. There is no area penalty in this approach. Only a slight performance penalty is expected.

  9. Effectiveness of Wii-based rehabilitation in stroke: A randomized controlled study.

    PubMed

    Karasu, Ayça Utkan; Batur, Elif Balevi; Karataş, Gülçin Kaymak

    2018-05-08

    To investigate the efficacy of Nintendo Wii Fit®-based balance rehabilitation as an adjunc-tive therapy to conventional rehabilitation in stroke patients. During the study period, 70 stroke patients were evaluated. Of these, 23 who met the study criteria were randomly assigned to either the experimental group (n = 12) or the control group (n = 11) by block randomization. Primary outcome measures were Berg Balance Scale, Functional Reach Test, Postural Assessment Scale for Stroke Patients, Timed Up and Go Test and Static Balance Index. Secondary outcome measures were postural sway, as assessed with Emed-X, Functional Independence Measure Transfer and Ambulation Scores. An evaluator who was blinded to the groups made assessments immediately before (baseline), immediately after (post-treatment), and 4 weeks after completion of the study (follow-up). Group-time interaction was significant in the Berg Balance Scale, Functional Reach Test, anteroposterior and mediolateral centre of pressure displacement with eyes open, anteroposterior centre of pressure displacement with eyes closed, centre of pressure displacement during weight shifting to affected side, to unaffected side and total centre of pressure displacement during weight shifting. Demonstrating significant group-time interaction in those parameters suggests that, while both groups exhibited significant improvement, the experimental group showed greater improvement than the control group. Virtual reality exercises with the Nintendo Wii system could represent a useful adjunctive therapy to traditional treatment to improve static and dynamic balance in stroke patients.

  10. Acute Effect of Different Combined Stretching Methods on Acceleration and Speed in Soccer Players.

    PubMed

    Amiri-Khorasani, Mohammadtaghi; Calleja-Gonzalez, Julio; Mogharabi-Manzari, Mansooreh

    2016-04-01

    The purpose of this study was to investigate the acute effect of different stretching methods, during a warm-up, on the acceleration and speed of soccer players. The acceleration performance of 20 collegiate soccer players (body height: 177.25 ± 5.31 cm; body mass: 65.10 ± 5.62 kg; age: 16.85 ± 0.87 years; BMI: 20.70 ± 5.54; experience: 8.46 ± 1.49 years) was evaluated after different warm-up procedures, using 10 and 20 m tests. Subjects performed five types of a warm-up: static, dynamic, combined static + dynamic, combined dynamic + static, and no-stretching. Subjects were divided into five groups. Each group performed five different warm-up protocols in five non-consecutive days. The warm-up protocol used for each group was randomly assigned. The protocols consisted of 4 min jogging, a 1 min stretching program (except for the no-stretching protocol), and 2 min rest periods, followed by the 10 and 20 m sprint test, on the same day. The current findings showed significant differences in the 10 and 20 m tests after dynamic stretching compared with static, combined, and no-stretching protocols. There were also significant differences between the combined stretching compared with static and no-stretching protocols. We concluded that soccer players performed better with respect to acceleration and speed, after dynamic and combined stretching, as they were able to produce more force for a faster execution.

  11. Physical properties of conventional and Super Slick elastomeric ligatures after intraoral use.

    PubMed

    Crawford, Nicola Louise; McCarthy, Caroline; Murphy, Tanya C; Benson, Philip Edward

    2010-01-01

    To investigate the change in the physical properties of conventional and Super Slick elastomeric ligatures after they have been in the mouth. Nine healthy volunteers took part. One orthodontic bracket was bonded to a premolar tooth in each of the four quadrants of the mouth. Two conventional and two Super Slick elastomeric ligatures were placed at random locations on either side of the mouth. The ligatures were collected after various time intervals and tested using an Instron Universal testing machine. The two outcome measures were failure load and the static frictional resistance. The failure load for conventional ligatures was reduced to 67% of the original value after 6 weeks in situ. Super Slick elastomeric ligatures showed a comparable reduction after 6 weeks in situ (63% of original value). There were no statistical differences in the static friction between conventional and Super Slick elastomerics that had been in situ for either 24 hours (P = .686) or 6 weeks (P = .416). There was a good correlation between failure load and static friction (r = .49). There were statistically significant differences in the failure loads of elastomerics that had not be placed in the mouth and those that had been in the mouth for 6 weeks. There were no differences in the static frictional forces produced by conventional and Super Slick ligatures either before or after they had been placed in the mouth. There appears to be a direct proportional relationship between failure load and static friction of elastomeric ligatures.

  12. Effects of Segmented Animated Graphics among Students of Different Spatial Ability Levels: A Cognitive Load Perspective

    ERIC Educational Resources Information Center

    Fong, Soon Fook

    2013-01-01

    This study investigated the effects of segmented animated graphics utilized to facilitate learning of electrolysis of aqueous solution. A total of 171 Secondary Four chemistry students with two different spatial ability levels were randomly assigned to one of the experimental conditions: (a) text with multiple static graphics (MSG), (b) text with…

  13. Single-Word Multiple-Bit Upsets in Static Random Access Devices

    DTIC Science & Technology

    1998-01-15

    Transactions on Nuclear Science, NS-33, 1616- 1619,1986. Criswell, T.L., P.R. Measel , and K.L. Walin, "Single Event Upset Testing with Relativistic...Heavy Ions," IEEE Transactions on Nuclear Science, NS-31, 1559- 1561,1984. 1946 3. Criswell, T.L., D.L. Oberg, J.L. Wert, P.R. Measel , and W.E

  14. System and method for cognitive processing for data fusion

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A. (Inventor); Duong, Vu A. (Inventor)

    2012-01-01

    A system and method for cognitive processing of sensor data. A processor array receiving analog sensor data and having programmable interconnects, multiplication weights, and filters provides for adaptive learning in real-time. A static random access memory contains the programmable data for the processor array and the stored data is modified to provide for adaptive learning.

  15. Relative net vertical impulse determines jumping performance.

    PubMed

    Kirby, Tyler J; McBride, Jeffrey M; Haines, Tracie L; Dayne, Andrea M

    2011-08-01

    The purpose of this investigation was to determine the relationship between relative net vertical impulse and jump height in a countermovement jump and static jump performed to varying squat depths. Ten college-aged males with 2 years of jumping experience participated in this investigation (age: 23.3 ± 1.5 years; height: 176.7 ± 4.5 cm; body mass: 84.4 ± 10.1 kg). Subjects performed a series of static jumps and countermovement jumps in a randomized fashion to a depth of 0.15, 0.30, 0.45, 0.60, and 0.75 m and a self-selected depth (static jump depth = 0.38 ± 0.08 m, countermovement jump depth = 0.49 ± 0.06 m). During the concentric phase of each jump, peak force, peak velocity, peak power, jump height, and net vertical impulse were recorded and analyzed. Net vertical impulse was divided by body mass to produce relative net vertical impulse. Increasing squat depth corresponded to a decrease in peak force and an increase in jump height and relative net vertical impulse for both static jump and countermovement jump. Across all depths, relative net vertical impulse was statistically significantly correlated to jump height in the static jump (r = .9337, p < .0001, power = 1.000) and countermovement jump (r = .925, p < .0001, power = 1.000). Across all depths, peak force was negatively correlated to jump height in the static jump (r = -0.3947, p = .0018, power = 0.8831) and countermovement jump (r = -0.4080, p = .0012, power = 0.9050). These results indicate that relative net vertical impulse can be used to assess vertical jump performance, regardless of initial squat depth, and that peak force may not be the best measure to assess vertical jump performance.

  16. Applications of Temporal Graph Metrics to Real-World Networks

    NASA Astrophysics Data System (ADS)

    Tang, John; Leontiadis, Ilias; Scellato, Salvatore; Nicosia, Vincenzo; Mascolo, Cecilia; Musolesi, Mirco; Latora, Vito

    Real world networks exhibit rich temporal information: friends are added and removed over time in online social networks; the seasons dictate the predator-prey relationship in food webs; and the propagation of a virus depends on the network of human contacts throughout the day. Recent studies have demonstrated that static network analysis is perhaps unsuitable in the study of real world network since static paths ignore time order, which, in turn, results in static shortest paths overestimating available links and underestimating their true corresponding lengths. Temporal extensions to centrality and efficiency metrics based on temporal shortest paths have also been proposed. Firstly, we analyse the roles of key individuals of a corporate network ranked according to temporal centrality within the context of a bankruptcy scandal; secondly, we present how such temporal metrics can be used to study the robustness of temporal networks in presence of random errors and intelligent attacks; thirdly, we study containment schemes for mobile phone malware which can spread via short range radio, similar to biological viruses; finally, we study how the temporal network structure of human interactions can be exploited to effectively immunise human populations. Through these applications we demonstrate that temporal metrics provide a more accurate and effective analysis of real-world networks compared to their static counterparts.

  17. A statistical rain attenuation prediction model with application to the advanced communication technology satellite project. Part 2: Theoretical development of a dynamic model and application to rain fade durations and tolerable control delays for fade countermeasures

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1987-01-01

    A dynamic rain attenuation prediction model is developed for use in obtaining the temporal characteristics, on time scales of minutes or hours, of satellite communication link availability. Analagous to the associated static rain attenuation model, which yields yearly attenuation predictions, this dynamic model is applicable at any location in the world that is characterized by the static rain attenuation statistics peculiar to the geometry of the satellite link and the rain statistics of the location. Such statistics are calculated by employing the formalism of Part I of this report. In fact, the dynamic model presented here is an extension of the static model and reduces to the static model in the appropriate limit. By assuming that rain attenuation is dynamically described by a first-order stochastic differential equation in time and that this random attenuation process is a Markov process, an expression for the associated transition probability is obtained by solving the related forward Kolmogorov equation. This transition probability is then used to obtain such temporal rain attenuation statistics as attenuation durations and allowable attenuation margins versus control system delay.

  18. Effects of Combining Running and Practical Duration Stretching on Proprioceptive Skills of National Sprinters.

    PubMed

    Romero-Franco, Natalia; Párraga-Montilla, Juan Antonio; Molina-Flores, Enrique M; Jiménez-Reyes, Pedro

    2018-06-01

    Romero-Franco, N, Párraga-Montilla, JA, Molina-Flores, EM, and Jiménez-Reyes, P. Effects of combining running and practical duration stretching on proprioceptive skills of national sprinters. J Strength Cond Res XX(X): 000-000, 2018-Practical duration stretching after aerobic activities is a recommended component of the first part of warm-up because of its effects on performance. However, its effects on proprioceptive skills are unknown. This study aimed to analyze the effects of running and practical duration static stretching (SS) and dynamic stretching (DS) on postural balance and the joint position sense (JPS) of national sprinters. Thirty-two national sprinters were randomly classified into a SS group (n = 11), DS group (n = 11), or control group (n = 10). Static stretching performed 5 minutes of running and short-duration (20 seconds) static stretches; DS performed 5 minutes of running and short-duration dynamic (20 seconds) stretches; and the control group performed 5 minutes of running. Before and after the intervention, unipedal static postural balance and knee JPS were evaluated. Static stretching exhibited a more centralized center of pressure in the medial-lateral plane for unipedal static postural balance in right-leg support after stretching (p = 0.005, d = 1.24), whereas DS showed values further from the center after stretching for the same unipedal support compared with baseline (p = 0.042, d = 0.49), and the control group remained stable (p > 0.05). Joint position sense did not show significant differences in any group (p > 0.05). In conclusion, combining running and practical duration SS may be beneficial for right-leg postural stabilization, whereas DS may be partly and slightly deleterious. Both SS and DS combined with running and running alone have neutral effects on knee JPS. Sports professionals should consider running and practical duration SS as part of the warm-up of sprinters to partly improve unipedal static postural balance.

  19. Acute Effects of the Different Intensity of Static Stretching on Flexibility and Isometric Muscle Force.

    PubMed

    Kataura, Satoshi; Suzuki, Shigeyuki; Matsuo, Shingo; Hatano, Genki; Iwata, Masahiro; Yokoi, Kazuaki; Tsuchida, Wakako; Banno, Yasuhiro; Asai, Yuji

    2017-12-01

    Kataura, S, Suzuki, S, Matsuo, S, Hatano, G, Iwata, M, Yokoi, K, Tsuchida, W, Banno, Y, and Asai, Y. Acute effects of the different intensity of static stretching on flexibility and isometric muscle force. J Strength Cond Res 31(12): 3403-3410, 2017-In various fields, static stretching is commonly performed to improve flexibility, whereas the acute effects of different stretch intensities are unclear. Therefore, we investigated the acute effects of different stretch intensities on flexibility and muscle force. Eighteen healthy participants (9 men and 9 women) performed 180-second static stretches of the right hamstrings at 80, 100, and 120% of maximum tolerable intensity without stretching pain, in random order. The following outcomes were assessed as markers of lower limb function and flexibility: static passive torque (SPT), range of motion (ROM), passive joint (muscle-tendon) stiffness, passive torque (PT) at onset of pain, and isometric muscle force. Static passive torque was significantly decreased after all stretching intensities (p ≤ 0.05). Compared with before stretching at 100 and 120% intensities, ROM and PT were significantly increased after stretching (p ≤ 0.05), and passive stiffness (p = 0.05) and isometric muscle force (p ≤ 0.05) were significantly decreased. In addition, ROM was significantly greater after stretching at 100 and 120% than at 80%, and passive stiffness was significantly lower after 120% than after 80% (p ≤ 0.05). However, all measurements except SPT were unchanged after 80% intensity. There was a weak positive correlation between the intensities of stretching and the relative change for SPT (p ≤ 0.05), a moderate positive correlation with ROM (p ≤ 0.05), and a moderate positive correlation with passive stiffness (p ≤ 0.05). These results indicate that static stretching at greater intensity is more effective for increasing ROM and decreasing passive muscle-tendon stiffness.

  20. The Effects of Comprehensive Warm-Up Programs on Proprioception, Static and Dynamic Balance on Male Soccer Players

    PubMed Central

    Daneshjoo, Abdolhamid; Mokhtar, Abdul Halim; Rahnama, Nader; Yusof, Ashril

    2012-01-01

    Purpose The study investigated the effects of FIFA 11+ and HarmoKnee, both being popular warm-up programs, on proprioception, and on the static and dynamic balance of professional male soccer players. Methods Under 21 year-old soccer players (n = 36) were divided randomly into 11+, HarmoKnee and control groups. The programs were performed for 2 months (24 sessions). Proprioception was measured bilaterally at 30°, 45° and 60° knee flexion using the Biodex Isokinetic Dynamometer. Static and dynamic balances were evaluated using the stork stand test and Star Excursion Balance Test (SEBT), respectively. Results The proprioception error of dominant leg significantly decreased from pre- to post-test by 2.8% and 1.7% in the 11+ group at 45° and 60° knee flexion, compared to 3% and 2.1% in the HarmoKnee group. The largest joint positioning error was in the non-dominant leg at 30° knee flexion (mean error value = 5.047), (p<0.05). The static balance with the eyes opened increased in the 11+ by 10.9% and in the HarmoKnee by 6.1% (p<0.05). The static balance with eyes closed significantly increased in the 11+ by 12.4% and in the HarmoKnee by 17.6%. The results indicated that static balance was significantly higher in eyes opened compared to eyes closed (p = 0.000). Significant improvements in SEBT in the 11+ (12.4%) and HarmoKnee (17.6%) groups were also found. Conclusion Both the 11+ and HarmoKnee programs were proven to be useful warm-up protocols in improving proprioception at 45° and 60° knee flexion as well as static and dynamic balance in professional male soccer players. Data from this research may be helpful in encouraging coaches or trainers to implement the two warm-up programs in their soccer teams. PMID:23251579

  1. Lessons learned in research: an attempt to study the effects of magnetic therapy.

    PubMed

    Szor, Judy K; Holewinski, Paul

    2002-02-01

    Difficulties related to chronic wound healing research are frequently discussed, but results of less-than-perfect studies commonly are not published. A 16-week, randomized controlled double-blind study attempted to investigate the effect of static magnetic therapy on the healing of diabetic foot ulcers. Of 56 subjects, 37 completed the study. Because of the small sample size, randomization did not control for differences between the two groups, and the data could not be analyzed in any meaningful way. The challenges of performing magnetic therapy research are discussed and considerations for future studies are noted.

  2. Random walk in degree space and the time-dependent Watts-Strogatz model

    NASA Astrophysics Data System (ADS)

    Casa Grande, H. L.; Cotacallapa, M.; Hase, M. O.

    2017-01-01

    In this work, we propose a scheme that provides an analytical estimate for the time-dependent degree distribution of some networks. This scheme maps the problem into a random walk in degree space, and then we choose the paths that are responsible for the dominant contributions. The method is illustrated on the dynamical versions of the Erdős-Rényi and Watts-Strogatz graphs, which were introduced as static models in the original formulation. We have succeeded in obtaining an analytical form for the dynamics Watts-Strogatz model, which is asymptotically exact for some regimes.

  3. Random walk in degree space and the time-dependent Watts-Strogatz model.

    PubMed

    Casa Grande, H L; Cotacallapa, M; Hase, M O

    2017-01-01

    In this work, we propose a scheme that provides an analytical estimate for the time-dependent degree distribution of some networks. This scheme maps the problem into a random walk in degree space, and then we choose the paths that are responsible for the dominant contributions. The method is illustrated on the dynamical versions of the Erdős-Rényi and Watts-Strogatz graphs, which were introduced as static models in the original formulation. We have succeeded in obtaining an analytical form for the dynamics Watts-Strogatz model, which is asymptotically exact for some regimes.

  4. Animation, audio, and spatial ability: Optimizing multimedia for scientific explanations

    NASA Astrophysics Data System (ADS)

    Koroghlanian, Carol May

    This study investigated the effects of audio, animation and spatial ability in a computer based instructional program for biology. The program presented instructional material via text or audio with lean text and included eight instructional sequences presented either via static illustrations or animations. High school students enrolled in a biology course were blocked by spatial ability and randomly assigned to one of four treatments (Text-Static Illustration Audio-Static Illustration, Text-Animation, Audio-Animation). The study examined the effects of instructional mode (Text vs. Audio), illustration mode (Static Illustration vs. Animation) and spatial ability (Low vs. High) on practice and posttest achievement, attitude and time. Results for practice achievement indicated that high spatial ability participants achieved more than low spatial ability participants. Similar results for posttest achievement and spatial ability were not found. Participants in the Static Illustration treatments achieved the same as participants in the Animation treatments on both the practice and posttest. Likewise, participants in the Text treatments achieved the same as participants in the Audio treatments on both the practice and posttest. In terms of attitude, participants responded favorably to the computer based instructional program. They found the program interesting, felt the static illustrations or animations made the explanations easier to understand and concentrated on learning the material. Furthermore, participants in the Animation treatments felt the information was easier to understand than participants in the Static Illustration treatments. However, no difference for any attitude item was found for participants in the Text as compared to those in the Audio treatments. Significant differences were found by Spatial Ability for three attitude items concerning concentration and interest. In all three items, the low spatial ability participants responded more positively than high spatial ability participants. In addition, low spatial ability participants reported greater mental effort than high spatial ability participants. Findings for time-in-program and time-in-instruction indicated that participants in the Animation treatments took significantly more time than participants in the Static Illustration treatments. No time differences of any type were found for participants in the Text versus Audio treatments. Implications for the design of multimedia instruction and topics for future research are included in the discussion.

  5. Novel synaptic memory device for neuromorphic computing

    NASA Astrophysics Data System (ADS)

    Mandal, Saptarshi; El-Amin, Ammaarah; Alexander, Kaitlyn; Rajendran, Bipin; Jha, Rashmi

    2014-06-01

    This report discusses the electrical characteristics of two-terminal synaptic memory devices capable of demonstrating an analog change in conductance in response to the varying amplitude and pulse-width of the applied signal. The devices are based on Mn doped HfO2 material. The mechanism behind reconfiguration was studied and a unified model is presented to explain the underlying device physics. The model was then utilized to show the application of these devices in speech recognition. A comparison between a 20 nm × 20 nm sized synaptic memory device with that of a state-of-the-art VLSI SRAM synapse showed ~10× reduction in area and >106 times reduction in the power consumption per learning cycle.

  6. Language Classification using N-grams Accelerated by FPGA-based Bloom Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacob, A; Gokhale, M

    N-Gram (n-character sequences in text documents) counting is a well-established technique used in classifying the language of text in a document. In this paper, n-gram processing is accelerated through the use of reconfigurable hardware on the XtremeData XD1000 system. Our design employs parallelism at multiple levels, with parallel Bloom Filters accessing on-chip RAM, parallel language classifiers, and parallel document processing. In contrast to another hardware implementation (HAIL algorithm) that uses off-chip SRAM for lookup, our highly scalable implementation uses only on-chip memory blocks. Our implementation of end-to-end language classification runs at 85x comparable software and 1.45x the competing hardware design.

  7. Statistical Deviations From the Theoretical Only-SBU Model to Estimate MCU Rates in SRAMs

    NASA Astrophysics Data System (ADS)

    Franco, Francisco J.; Clemente, Juan Antonio; Baylac, Maud; Rey, Solenne; Villa, Francesca; Mecha, Hortensia; Agapito, Juan A.; Puchner, Helmut; Hubert, Guillaume; Velazco, Raoul

    2017-08-01

    This paper addresses a well-known problem that occurs when memories are exposed to radiation: the determination if a bit flip is isolated or if it belongs to a multiple event. As it is unusual to know the physical layout of the memory, this paper proposes to evaluate the statistical properties of the sets of corrupted addresses and to compare the results with a mathematical prediction model where all of the events are single bit upsets. A set of rules easy to implement in common programming languages can be iteratively applied if anomalies are observed, thus yielding a classification of errors quite closer to reality (more than 80% accuracy in our experiments).

  8. Bridges for Pedestrians with Random Parameters using the Stochastic Finite Elements Analysis

    NASA Astrophysics Data System (ADS)

    Szafran, J.; Kamiński, M.

    2017-02-01

    The main aim of this paper is to present a Stochastic Finite Element Method analysis with reference to principal design parameters of bridges for pedestrians: eigenfrequency and deflection of bridge span. They are considered with respect to random thickness of plates in boxed-section bridge platform, Young modulus of structural steel and static load resulting from crowd of pedestrians. The influence of the quality of the numerical model in the context of traditional FEM is shown also on the example of a simple steel shield. Steel structures with random parameters are discretized in exactly the same way as for the needs of traditional Finite Element Method. Its probabilistic version is provided thanks to the Response Function Method, where several numerical tests with random parameter values varying around its mean value enable the determination of the structural response and, thanks to the Least Squares Method, its final probabilistic moments.

  9. Combinations of coupled cluster, density functionals, and the random phase approximation for describing static and dynamic correlation, and van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Garza, Alejandro J.; Bulik, Ireneusz W.; Alencar, Ana G. Sousa; Sun, Jianwei; Perdew, John P.; Scuseria, Gustavo E.

    2016-04-01

    Contrary to standard coupled cluster doubles (CCD) and Brueckner doubles (BD), singlet-paired analogues of CCD and BD (denoted here as CCD0 and BD0) do not break down when static correlation is present, but neglect substantial amounts of dynamic correlation. In fact, CCD0 and BD0 do not account for any contributions from multielectron excitations involving only same-spin electrons at all. We exploit this feature to add - without introducing double counting, self-interaction, or increase in cost - the missing correlation to these methods via meta-GGA (generalised gradient approximation) density functionals (Tao-Perdew-Staroverov-Scuseria and strongly constrained and appropriately normed). Furthermore, we improve upon these CCD0+DFT blends by invoking range separation: the short- and long-range correlations absent in CCD0/BD0 are evaluated with density functional theory and the direct random phase approximation, respectively. This corrects the description of long-range van der Waals forces. Comprehensive benchmarking shows that the combinations presented here are very accurate for weakly correlated systems, while also providing a reasonable description of strongly correlated problems without resorting to symmetry breaking.

  10. Random graph models for dynamic networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Moore, Cristopher; Newman, Mark E. J.

    2017-10-01

    Recent theoretical work on the modeling of network structure has focused primarily on networks that are static and unchanging, but many real-world networks change their structure over time. There exist natural generalizations to the dynamic case of many static network models, including the classic random graph, the configuration model, and the stochastic block model, where one assumes that the appearance and disappearance of edges are governed by continuous-time Markov processes with rate parameters that can depend on properties of the nodes. Here we give an introduction to this class of models, showing for instance how one can compute their equilibrium properties. We also demonstrate their use in data analysis and statistical inference, giving efficient algorithms for fitting them to observed network data using the method of maximum likelihood. This allows us, for example, to estimate the time constants of network evolution or infer community structure from temporal network data using cues embedded both in the probabilities over time that node pairs are connected by edges and in the characteristic dynamics of edge appearance and disappearance. We illustrate these methods with a selection of applications, both to computer-generated test networks and real-world examples.

  11. The Acute Effects of Upper Extremity Stretching on Throwing Velocity in Baseball Throwers

    PubMed Central

    Melton, Jason; Delobel, Ashley; Puentedura, Emilio J.

    2013-01-01

    Purpose. To examine the effects of static and proprioceptive neuromuscular facilitation (PNF) stretching of the shoulder internal rotators on throwing velocity. Subjects. 27 male throwers (mean age = 25.1 years old, SD = 2.4) with adequate knowledge of demonstrable throwing mechanics. Study Design. Randomized crossover trial with repeated measures. Methods. Subjects warmed up, threw 10 pitches at their maximum velocity, were randomly assigned to 1 of 3 stretching protocols (static, PNF, or no stretch), and then repeated their 10 pitches. Velocities were recorded after each pitch and average and peak velocities were recorded after each session. Results. Data were analyzed using a 3 × 2 repeated measures ANOVA. No significant interaction between stretching and throwing velocity was observed. Main effects for time were not statistically significant. Main effects for the stretching groups were statistically significant. Discussion. Results suggest that stretching of the shoulder internal rotators did not significantly affect throwing velocity immediately after stretching. This may be due to the complexity of the throwing task. Conclusions. Stretching may be included in a thrower's warm-up without any effects on throwing velocity. Further research should be performed using a population with more throwing experience and skill. PMID:26464880

  12. Particle sensor array

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor); Lieneweg, Udo (Inventor)

    1994-01-01

    A particle sensor array which in a preferred embodiment comprises a static random access memory having a plurality of ion-sensitive memory cells, each such cell comprising at least one pull-down field effect transistor having a sensitive drain surface area (such as by bloating) and at least one pull-up field effect transistor having a source connected to an offset voltage. The sensitive drain surface area and the offset voltage are selected for memory cell upset by incident ions such as alpha-particles. The static random access memory of the present invention provides a means for selectively biasing the memory cells into the same state in which each of the sensitive drain surface areas is reverse biased and then selectively reducing the reversed bias on these sensitive drain surface areas for increasing the upset sensitivity of the cells to ions. The resulting selectively sensitive memory cells can be used in a number of applications. By way of example, the present invention can be used for measuring the linear energy transfer of ion particles, as well as a device for assessing the resistance of CMOS latches to Cosmic Ray induced single event upsets. The sensor of the present invention can also be used to determine the uniformity of an ion beam.

  13. The effects of eyeball exercise on balance ability and falls efficacy of the elderly who have experienced a fall: A single-blind, randomized controlled trial.

    PubMed

    Park, Jin-Hyuck

    The purpose of this study was to investigate the effects of eyeball exercise on balance and fall efficacy of the elderly who have experienced a fall. Subjects were randomly assigned to the eyeball exercise group (n=30) or functional exercise group (n=31). All subjects received 30 sessions for 10 weeks. To identify the effects on balance, static and dynamic balance were measured using the center of pressure (CoP) measurement equipment and Timed Up and Go Test (TUGT) respectively. Fall efficacy was evaluated using the modified efficacy scale (MFES). The outcome measurements were performed before and after the 10 weeks training period. After 10 weeks, static balance, dynamic balance, and fall efficacy were significantly improved in both groups. Also, there were significant differences in the outcome measures between both groups (p<0.05). These results indicate that eyeball exercise is beneficial to improve the fall efficacy as well as the balance of the elderly compared with functional exercise. Eyeball exercise would be useful to improve balance and fall efficacy of the elderly who have experienced a fall. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Effect of variation in active route timeout and my route timeout on the performance of AODV-ETX protocol in mobile adhoc network

    NASA Astrophysics Data System (ADS)

    Purnomo, A.; Widyawan; Najib, W.; Hartono, R.; Hartatik

    2018-03-01

    Mobile adhoc network (MANET) consists of nodes that are independent. A node can communicate each other without the presence of network infrastructure. A node can act as a transmitter and receiver as well as a router. This research has been variation in active route timeout and my route timeout on the performance of AODV-ETX protocol in MANET. The AODV-ETX protocol is the AODV protocol that uses the ETX metric. Performance testing is done on the static node topology with 5 m x 5 m node grid model where the distance between nodes is 100 m and node topology that consists of 25 nodes moves randomly with a moving speed of 1.38 m/s in an area of 1500 m x 300 m. From the test result, on the static node, AODV protocol-ETX shows optimal performance at a value MRT and ART of 10 s and 15 s, but showed a stable performance in the value of MRT and ART ≥60 s, while in randomly moved node topology shows stable performance in the value of MRT and ART ≥80 s.

  15. How to specify and measure sensitivity in Distributed Acoustic Sensing (DAS)?

    NASA Astrophysics Data System (ADS)

    Gabai, Haniel; Eyal, Avishay

    2017-04-01

    In Rayleigh-scattering-based Distributed Acoustic Sensing (DAS) an optical fiber is transformed into an array of thousands of 'virtual microphones'. This approach has gained tremendous popularity in recent years and is one of the most successful examples of a fiber-optic sensing method which made its way from the academia to the market. Despite the great amount of work done in this field, sensitivity, which is ones of the most critical parameters of any sensing technique, was rarely investigated in this context. In particular, little attention was given to its random characteristics. Without careful consideration of the random aspects of DAS, any attempt to specify its sensitivity or to compare between different DAS modalities is of limited value. Recently we introduced a new statistical parameter which defines DAS sensitivity and enables comparison between the performances of different DAS systems. In this paper we generalize the previous parameter and give a broader, simple and intuitive definition to DAS sensitivity. An important attribute of these parameters is that they can be easily extracted from the static backscatter profile of the sensing fiber. In the paper we derive the relation between DAS sensitivity and the static backscatter profile and present an experimental verification of this relation.

  16. Effects of animation on naming and identification across two graphic symbol sets representing verbs and prepositions.

    PubMed

    Schlosser, Ralf W; Koul, Rajinder; Shane, Howard; Sorce, James; Brock, Kristofer; Harmon, Ashley; Moerlein, Dorothy; Hearn, Emilia

    2014-10-01

    The effects of animation on naming and identification of graphic symbols for verbs and prepositions were studied in 2 graphic symbol sets in preschoolers. Using a 2 × 2 × 2 × 3 completely randomized block design, preschoolers across three age groups were randomly assigned to combinations of symbol set (Autism Language Program [ALP] Animated Graphics or Picture Communication Symbols [PCS]), symbol format (animated or static), and word class (verbs or prepositions). Children were asked to name symbols and to identify a target symbol from an array given the spoken label. Animated symbols were more readily named than static symbols, although this was more pronounced for verbs than for prepositions. ALP symbols were named more accurately than PCS in particular with prepositions. Animation did not facilitate identification. ALP symbols for prepositions were identified better than PCS, but there was no difference for verbs. Finally, older children guessed and identified symbols more effectively than younger children. Animation improves the naming of graphic symbols for verbs. For prepositions, ALP symbols are named more accurately and are more readily identifiable than PCS. Naming and identifying symbols are learned skills that develop over time. Limitations and future research directions are discussed.

  17. Effects of Static and Dynamic Stretching on the Isokinetic Peak Torques and Electromyographic Activities of the Antagonist Muscles

    PubMed Central

    Serefoglu, Abdullah; Sekir, Ufuk; Gür, Hakan; Akova, Bedrettin

    2017-01-01

    The aim of this study was to investigate if static and dynamic stretching exercises of the knee muscles (quadriceps and hamstring muscles) have any effects on concentric and eccentric isokinetic peak torques and electromyographic amplitudes (EMG) of the antagonist muscles. Twenty healthy male athletes (age between 18-30 years) voluntarily participated in this study. All of the subjects visited the laboratory to complete the following intervention in a randomized order on 5 separate days; (a) non-stretching (control), (b) static stretching of the quadriceps muscles, (c) static stretching of the hamstring muscles, (d) dynamic stretching of the quadriceps muscles, and (e) dynamic stretching of the hamstring muscles. Static stretching exercises either for the quadriceps or the hamstring muscles were carried out at the standing and sitting positions. Subjects performed four successive repetitions of each stretching exercises for 30 seconds in both stretching positions. Similar to static stretching exercises two different stretching modes were designed for dynamic stretching exercises. Concentric and eccentric isokinetic peak torque for the non-stretched antagonist quadriceps or hamstring muscles at angular velocities of 60°/sec and 240°/sec and their concurrent electromyographic (EMG) activities were measured before and immediately after the intervention. Isokinetic peak torques of the non-stretched agonist hamstring and quadriceps muscles did not represent any significant (p > 0.05) differences following static and dynamic stretching of the antagonist quadriceps and hamstring muscles, respectively. Similarly, the EMG activities of the agonist muscles exhibited no significant alterations (p > 0.05) following both stretching exercises of the antagonist muscles. According to the results of the present study it is possible to state that antagonist stretching exercises either in the static or dynamic modes do not affect the isokinetic peak torques and the EMG activities of the non-stretched agonist quadriceps or hamstring muscles. Key points The effects of dynamic stretching of the antagonist muscles on strength performance are unknown. We showed that both static and dynamic stretching of the antagonist muscle does not influence strength and EMG activities in the agonist muscles. Further research should focus on the effects of antagonist stretching using other techniques like PNF or ballistic stretching and/or different volumes of stretching. PMID:28344445

  18. Effects of Water-Based Training on Static and Dynamic Balance of Older Women.

    PubMed

    Bento, Paulo Cesar Barauce; Lopes, Maria de Fátima A; Cebolla, Elaine Cristine; Wolf, Renata; Rodacki, André L F

    2015-08-01

    The aim of this study was to evaluate the effects of a water-based exercise program on static and dynamic balance. Thirty-six older women were randomly assigned to a water-based training (3 days/week for 12 weeks) or control group. Water level was kept at the level of the xiphoid process and temperature at ∼28-30°C. Each session included aerobic activities and lower limb strength exercises. The medial-lateral, the anterior-posterior amplitude, and displacement of the center of pressure (CP-D) were measured in a quiet standing position (60 sec eyes opened and closed). The dynamic balance and 8-Foot Up-and-Go tests were also applied. Group comparisons were made using two-way analysis of variance (ANOVA) with repeated measures. No differences were found in the center of pressure variables; however, the WBT group showed better performance in the 8 Foot Up-and-Go Test after training (5.61±0.76 vs. 5.18±0.42; p<0.01). The water-based training was effective in improving dynamic balance, but not static balance.

  19. Analysis of SMA Hybrid Composite Structures in MSC.Nastran and ABAQUS

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Patel, Hemant D.

    2005-01-01

    A thermoelastic constitutive model for shape memory alloy (SMA) actuators and SMA hybrid composite (SMAHC) structures was recently implemented in the commercial finite element codes MSC.Nastran and ABAQUS. The model may be easily implemented in any code that has the capability for analysis of laminated composite structures with temperature dependent material properties. The model is also relatively easy to use and requires input of only fundamental engineering properties. A brief description of the model is presented, followed by discussion of implementation and usage in the commercial codes. Results are presented from static and dynamic analysis of SMAHC beams of two types; a beam clamped at each end and a cantilever beam. Nonlinear static (post-buckling) and random response analyses are demonstrated for the first specimen. Static deflection (shape) control is demonstrated for the cantilever beam. Approaches for modeling SMAHC material systems with embedded SMA in ribbon and small round wire product forms are demonstrated and compared. The results from the commercial codes are compared to those from a research code as validation of the commercial implementations; excellent correlation is achieved in all cases.

  20. Motion illusions in optical art presented for long durations are temporally distorted.

    PubMed

    Nather, Francisco Carlos; Mecca, Fernando Figueiredo; Bueno, José Lino Oliveira

    2013-01-01

    Static figurative images implying human body movements observed for shorter and longer durations affect the perception of time. This study examined whether images of static geometric shapes would affect the perception of time. Undergraduate participants observed two Optical Art paintings by Bridget Riley for 9 or 36 s (group G9 and G36, respectively). Paintings implying different intensities of movement (2.0 and 6.0 point stimuli) were randomly presented. The prospective paradigm in the reproduction method was used to record time estimations. Data analysis did not show time distortions in the G9 group. In the G36 group the paintings were differently perceived: that for the 2.0 point one are estimated to be shorter than that for the 6.0 point one. Also for G36, the 2.0 point painting was underestimated in comparison with the actual time of exposure. Motion illusions in static images affected time estimation according to the attention given to the complexity of movement by the observer, probably leading to changes in the storage velocity of internal clock pulses.

  1. Analysis of SMA Hybrid Composite Structures using Commercial Codes

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Patel, Hemant D.

    2004-01-01

    A thermomechanical model for shape memory alloy (SMA) actuators and SMA hybrid composite (SMAHC) structures has been recently implemented in the commercial finite element codes MSC.Nastran and ABAQUS. The model may be easily implemented in any code that has the capability for analysis of laminated composite structures with temperature dependent material properties. The model is also relatively easy to use and requires input of only fundamental engineering properties. A brief description of the model is presented, followed by discussion of implementation and usage in the commercial codes. Results are presented from static and dynamic analysis of SMAHC beams of two types; a beam clamped at each end and a cantilevered beam. Nonlinear static (post-buckling) and random response analyses are demonstrated for the first specimen. Static deflection (shape) control is demonstrated for the cantilevered beam. Approaches for modeling SMAHC material systems with embedded SMA in ribbon and small round wire product forms are demonstrated and compared. The results from the commercial codes are compared to those from a research code as validation of the commercial implementations; excellent correlation is achieved in all cases.

  2. Energy loss of α-particle moving in warm dense deuterium plasma: Role of local field corrections

    NASA Astrophysics Data System (ADS)

    Fu, Zhen-Guo; Wang, Zhigang; Zhang, Ping

    2017-11-01

    We theoretically study the energy loss of α-particles traveling in the warm dense plasma (WDP) of deuterium (D) with temperatures from 10 to 100 eV and electron number densities from 1023 to 1024 cm-3. Beyond the random phase approximation (RPA) model, the extended Mermin dielectric function (MDF) model including the static and dynamic local field corrections (LFC) is employed in the calculations. Compared with the static LFC, the dynamic LFC introduced in the extended MDF model gives rise to a more significant departure from the RPA result. For the plasma conditions focused in this work, the departure induced by dynamic LFC reaches almost ˜ 30 % , which may be detected in the inertial confinement fusion (ICF) related experiment. Moreover, we find that the effect of static e-e collision may be of importance (unimportance) for the WDP of D with a temperature of tens (hundreds) of eV. Our findings may be important for ICF ignition since the uncertainty induced by the correlation effects between plasma component particles is crucial for the prediction of α-particle heating in fusion plasmas.

  3. Animation of graphic symbols representing verbs and prepositions: effects on transparency, name agreement, and identification.

    PubMed

    Schlosser, Ralf W; Shane, Howard; Sorce, James; Koul, Rajinder; Bloomfield, Emma; Debrowski, Lisa; DeLuca, Tim; Miller, Stephanie; Schneider, Danielle; Neff, Allison

    2012-04-01

    The effects of animation on transparency, name agreement, and identification of graphic symbols for verbs and prepositions were evaluated in preschoolers of 3 age groups. Methods A mixed-group design was used; in each age group, half of the children were randomly allocated to 1 of 2 orders of symbol formats. The 52 children were asked to guess the meaning of symbols and to identify a target symbol among foils given the spoken label. Animated symbols were more transparent than static symbols, although this was more pronounced for verbs. Animated verbs were named more accurately than static verbs, but there was no difference between animated and static prepositions. Verbs were identified more accurately compared with prepositions, but there was no difference between symbol formats. Older children guessed, named, and identified symbols more effectively than younger children. Animation enhances transparency and name agreement, especially for verbs, which reduces the instructional burden that comes with nontransparent symbols. Animation does not enhance identification accuracy. Verbs are easier to identify than prepositions. A developmental effect was observed for each measure. Limitations and implications for future research are discussed.

  4. Frequency-dependent scaling from mesoscale to macroscale in viscoelastic random composites

    PubMed Central

    Zhang, Jun

    2016-01-01

    This paper investigates the scaling from a statistical volume element (SVE; i.e. mesoscale level) to representative volume element (RVE; i.e. macroscale level) of spatially random linear viscoelastic materials, focusing on the quasi-static properties in the frequency domain. Requiring the material statistics to be spatially homogeneous and ergodic, the mesoscale bounds on the RVE response are developed from the Hill–Mandel homogenization condition adapted to viscoelastic materials. The bounds are obtained from two stochastic initial-boundary value problems set up, respectively, under uniform kinematic and traction boundary conditions. The frequency and scale dependencies of mesoscale bounds are obtained through computational mechanics for composites with planar random chessboard microstructures. In general, the frequency-dependent scaling to RVE can be described through a complex-valued scaling function, which generalizes the concept originally developed for linear elastic random composites. This scaling function is shown to apply for all different phase combinations on random chessboards and, essentially, is only a function of the microstructure and mesoscale. PMID:27274689

  5. Acute Effects of Foam Rolling, Static Stretching, and Dynamic Stretching During Warm-ups on Muscular Flexibility and Strength in Young Adults.

    PubMed

    Su, Hsuan; Chang, Nai-Jen; Wu, Wen-Lan; Guo, Lan-Yuen; Chu, I-Hua

    2017-11-01

    Foam rolling has been proposed to improve muscle function, performance, and joint range of motion (ROM). However, whether a foam rolling protocol can be adopted as a warm-up to improve flexibility and muscle strength is unclear. To examine and compare the acute effects of foam rolling, static stretching, and dynamic stretching used as part of a warm-up on flexibility and muscle strength of knee flexion and extension. Crossover study. University research laboratory. 15 male and 15 female college students (age 21.43 ± 1.48 y, weight 65.13 ± 12.29 kg, height 166.90 ± 6.99 cm). Isokinetic peak torque was measured during knee extension and flexion at an angular velocity of 60°/second. Flexibility of the quadriceps was assessed by the modified Thomas test, while flexibility of the hamstrings was assessed using the sit-and-reach test. The 3 interventions were performed by all participants in random order on 3 days separated by 48-72 hours. The flexibility test scores improved significantly more after foam rolling as compared with static and dynamic stretching. With regard to muscle strength, only knee extension peak torque (pre vs. postintervention) improved significantly after the dynamic stretching and foam rolling, but not after static stretching. Knee flexion peak torque remained unchanged. Foam rolling is more effective than static and dynamic stretching in acutely increasing flexibility of the quadriceps and hamstrings without hampering muscle strength, and may be recommended as part of a warm-up in healthy young adults.

  6. Balance, dizziness and proprioception in patients with chronic whiplash associated disorders complaining of dizziness: A prospective randomized study comparing three exercise programs.

    PubMed

    Treleaven, Julia; Peterson, Gunnel; Ludvigsson, Maria Landén; Kammerlind, Ann-Sofi; Peolsson, Anneli

    2016-04-01

    Dizziness and unsteadiness are common symptoms following a whiplash injury. To compare the effect of 3 exercise programs on balance, dizziness, proprioception and pain in patients with chronic whiplash complaining of dizziness. A sub-analysis of a randomized study. One hundred and forty subjects were randomized to either a physiotherapist-guided neck-specific exercise (NSE), physiotherapist-guided neck-specific exercise, with a behavioural approach (NSEB) or prescription of general physical activity (PPA) group. Pre intervention, 3, 6 and 12 months post baseline they completed the University of California Los Angeles Dizziness Questionnaire (UCLA-DQ), Visual Analogue Scales (VAS) for, dizziness at rest and during activity and physical measures (static and dynamic clinical balance tests and head repositioning accuracy (HRA)). There were significant time by group differences with respect to dizziness during activity and UCLA-Q favouring the physiotherapy led neck specific exercise group with a behavioural approach. Within group analysis of changes over time also revealed significant changes in most variables apart from static balance. Between and within group comparisons suggest that physiotherapist led neck exercise groups including a behavioural approach had advantages in improving measures of dizziness compared with the general physical activity group, although many still complained of dizziness and balance impairment. Future studies should consider exercises specifically designed to address balance, dizziness and cervical proprioception in those with persistent whiplash. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  7. Updated Electronic Testbed System

    NASA Technical Reports Server (NTRS)

    Brewer, Kevin L.

    2001-01-01

    As we continue to advance in exploring space frontiers, technology must also advance. The need for faster data recovery and data processing is crucial. In this, the less equipment used, and lighter that equipment is, the better. Because integrated circuits become more sensitive in high altitude, experimental verification and quantification is required. The Center for Applied Radiation Research (CARR) at Prairie View A&M University was awarded a grant by NASA to participate in the NASA ER-2 Flight Program, the APEX balloon flight program, and the Student Launch Program. These programs are to test anomalous errors in integrated circuits due to single event effects (SEE). CARR had already begun experiments characterizing the SEE behavior of high speed and high density SRAM's. The research center built a error testing system using a PC-104 computer unit, an Iomega Zip drive for storage, a test board with the components under test, and a latchup detection and reset unit. A test program was written to continuously monitor a stored data pattern in the SRAM chip and record errors. The devices under test were eight 4Mbit memory chips totaling 4Mbytes of memory. CARR was successful at obtaining data using the Electronic TestBed System (EBS) in various NASA ER-2 test flights. These series of high altitude flights of up to 70,000 feet, were effective at yielding the conditions which single event effects usually occur. However, the data received from the series of flights indicated one error per twenty-four hours. Because flight test time is very expensive, the initial design proved not to be cost effective. The need for orders of magnitude with more memory became essential. Therefore, a project which could test more memory within a given time was created. The goal of this project was not only to test more memory within a given time, but also to have a system with a faster processing speed, and which used less peripherals. This paper will describe procedures used to build an updated Electronic Testbed System.

  8. Implementation of High Speed Distributed Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Raju, Anju P.; Sekhar, Ambika

    2012-09-01

    This paper introduces a high speed distributed data acquisition system based on a field programmable gate array (FPGA). The aim is to develop a "distributed" data acquisition interface. The development of instruments such as personal computers and engineering workstations based on "standard" platforms is the motivation behind this effort. Using standard platforms as the controlling unit allows independence in hardware from a particular vendor and hardware platform. The distributed approach also has advantages from a functional point of view: acquisition resources become available to multiple instruments; the acquisition front-end can be physically remote from the rest of the instrument. High speed data acquisition system transmits data faster to a remote computer system through Ethernet interface. The data is acquired through 16 analog input channels. The input data commands are multiplexed and digitized and then the data is stored in 1K buffer for each input channel. The main control unit in this design is the 16 bit processor implemented in the FPGA. This 16 bit processor is used to set up and initialize the data source and the Ethernet controller, as well as control the flow of data from the memory element to the NIC. Using this processor we can initialize and control the different configuration registers in the Ethernet controller in a easy manner. Then these data packets are sending to the remote PC through the Ethernet interface. The main advantages of the using FPGA as standard platform are its flexibility, low power consumption, short design duration, fast time to market, programmability and high density. The main advantages of using Ethernet controller AX88796 over others are its non PCI interface, the presence of embedded SRAM where transmit and reception buffers are located and high-performance SRAM-like interface. The paper introduces the implementation of the distributed data acquisition using FPGA by VHDL. The main advantages of this system are high accuracy, high speed, real time monitoring.

  9. Impact of self-healing capability on network robustness

    NASA Astrophysics Data System (ADS)

    Shang, Yilun

    2015-04-01

    A wide spectrum of real-life systems ranging from neurons to botnets display spontaneous recovery ability. Using the generating function formalism applied to static uncorrelated random networks with arbitrary degree distributions, the microscopic mechanism underlying the depreciation-recovery process is characterized and the effect of varying self-healing capability on network robustness is revealed. It is found that the self-healing capability of nodes has a profound impact on the phase transition in the emergence of percolating clusters, and that salient difference exists in upholding network integrity under random failures and intentional attacks. The results provide a theoretical framework for quantitatively understanding the self-healing phenomenon in varied complex systems.

  10. Impact of self-healing capability on network robustness.

    PubMed

    Shang, Yilun

    2015-04-01

    A wide spectrum of real-life systems ranging from neurons to botnets display spontaneous recovery ability. Using the generating function formalism applied to static uncorrelated random networks with arbitrary degree distributions, the microscopic mechanism underlying the depreciation-recovery process is characterized and the effect of varying self-healing capability on network robustness is revealed. It is found that the self-healing capability of nodes has a profound impact on the phase transition in the emergence of percolating clusters, and that salient difference exists in upholding network integrity under random failures and intentional attacks. The results provide a theoretical framework for quantitatively understanding the self-healing phenomenon in varied complex systems.

  11. Evaluation of a static stretching intervention on vascular endothelial function and arterial stiffness.

    PubMed

    Shinno, Hiromi; Kurose, Satoshi; Yamanaka, Yutaka; Higurashi, Kyoko; Fukushima, Yaeko; Tsutsumi, Hiromi; Kimura, Yutaka

    2017-06-01

    Maintenance and enhancement of vascular endothelial function contribute to the prevention of cardiovascular disease and prolong a healthy life expectancy. Given the reversible nature of vascular endothelial function, interventions to improve this function might prevent arteriosclerosis. Accordingly, we studied the effects of a 6-month static stretching intervention on vascular endothelial function (reactive hyperaemia peripheral arterial tonometry index: RH-PAT index) and arterial stiffness (brachial-ankle pulse wave velocity: baPWV) and investigated the reversibility of these effects after a 6-month detraining period following intervention completion. The study evaluated 22 healthy, non-smoking, premenopausal women aged ≥40 years. Subjects were randomly assigned to the full-intervention (n = 11; mean age: 48.6 ± 2.8 years) or a half-intervention that included a control period (n = 11; mean age: 46.9 ± 3.6 years). Body flexibility and vascular endothelial function improved significantly after 3 months of static stretching. In addition to these improvements, arterial stiffness improved significantly after a 6-month intervention. However, after a 6-month detraining period, vascular endothelial function, flexibility, and arterial stiffness all returned to preintervention conditions, demonstrating the reversibility of the obtained effects. A 3-month static stretching intervention was found to improve vascular endothelial function, and an additional 3-month intervention also improved arterial stiffness. However, these effects were reversed by detraining.

  12. Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing.

    PubMed

    Melchels, Ferry P W; Barradas, Ana M C; van Blitterswijk, Clemens A; de Boer, Jan; Feijen, Jan; Grijpma, Dirk W

    2010-11-01

    The advance of rapid prototyping techniques has significantly improved control over the pore network architecture of tissue engineering scaffolds. In this work, we have assessed the influence of scaffold pore architecture on cell seeding and static culturing, by comparing a computer designed gyroid architecture fabricated by stereolithography with a random pore architecture resulting from salt leaching. The scaffold types showed comparable porosity and pore size values, but the gyroid type showed a more than 10-fold higher permeability due to the absence of size-limiting pore interconnections. The higher permeability significantly improved the wetting properties of the hydrophobic scaffolds and increased the settling speed of cells upon static seeding of immortalised mesenchymal stem cells. After dynamic seeding followed by 5 days of static culture gyroid scaffolds showed large cell populations in the centre of the scaffold, while salt-leached scaffolds were covered with a cell sheet on the outside and no cells were found in the scaffold centre. It was shown that interconnectivity of the pores and permeability of the scaffold prolonged the time of static culture before overgrowth of cells at the scaffold periphery occurred. Furthermore, novel scaffold designs are proposed to further improve the transport of oxygen and nutrients throughout the scaffolds and to create tissue engineering grafts with a designed, pre-fabricated vasculature. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Estimating the distance separating fluorescent protein FRET pairs

    PubMed Central

    van der Meer, B. Wieb; Blank, Paul S.

    2014-01-01

    Förster resonance energy transfer (FRET) describes a physical phenomenon widely applied in biomedical research to estimate separations between biological molecules. Routinely, genetic engineering is used to incorporate spectral variants of the green fluorescent protein (GFPs), into cellular expressed proteins. The transfer efficiency or rate of energy transfer between donor and acceptor FPs is then assayed. As appreciable FRET occurs only when donors and acceptors are in close proximity (1–10 nm), the presence of FRET may indicate that the engineered proteins associate as interacting species. For a homogeneous population of FRET pairs the separations between FRET donors and acceptors can be estimated from a measured FRET efficiency if it is assumed that donors and acceptors are randomly oriented and rotate extensively during their excited state (dynamic regime). Unlike typical organic fluorophores, the rotational correlation-times of FPs are typically much longer than their fluorescence lifetime; accordingly FPs are virtually static during their excited state. Thus, estimating separations between FP FRET pairs is problematic. To overcome this obstacle, we present here a simple method for estimating separations between FPs using the experimentally measured average FRET efficiency. This approach assumes that donor and acceptor fluorophores are randomly oriented, but do not rotate during their excited state (static regime). This approach utilizes a Monte-Carlo simulation generated look-up table that allows one to estimate the separation, normalized to the Förster distance, from the average FRET efficiency. Assuming a dynamic regime overestimates the separation significantly (by 10% near 0.5 and 30% near 0.75 efficiencies) compared to assuming a static regime, which is more appropriate for estimates of separations between FPs. PMID:23811334

  14. Enhancements and Algorithms for Avionic Information Processing System Design Methodology.

    DTIC Science & Technology

    1982-06-16

    programming algorithm is enhanced by incorporating task precedence constraints and hardware failures. Stochastic network methods are used to analyze...allocations in the presence of random fluctuations. Graph theoretic methods are used to analyze hardware designs, and new designs are constructed with...There, spatial dynamic programming (SDP) was used to solve a static, deterministic software allocation problem. Under the current contract the SDP

  15. THE USE OF STATIC AND DYNAMIC MECHANICAL MODELS IN TEACHING ASPECTS OF THE THEORETICAL CONCEPT, THE PARTICLE NATURE OF MATTER.

    ERIC Educational Resources Information Center

    PELLA, MILTON O.; ZIEGLER, ROBERT E.

    THE RELATIVE EFFECTIVENESS OF TWO TYPES OF MECHANICAL MODELS FOR TEACHING ELEMENTARY SCHOOL STUDENTS TO USE THE PARTICLE IDEA OF MATTER TO EXPLAIN CERTAIN PHYSICAL PHENOMENA WAS INVESTIGATED. SUBJECTS WERE RANDOMLY SELECTED FROM STUDENTS ENROLLED IN GRADES TWO THROUGH SIX IN A SCHOOL SYSTEM. A SERIES OF DEMONSTRATIONS AND RELATED QUESTIONS WERE…

  16. A comparison study of brachial blood pressure recorded with Spacelabs 90217A and Mobil-O-Graph NG devices under static and ambulatory conditions.

    PubMed

    Sarafidis, P A; Lazaridis, A A; Imprialos, K P; Georgianos, P I; Avranas, K A; Protogerou, A D; Doumas, M N; Athyros, V G; Karagiannis, A I

    2016-12-01

    Ambulatory blood pressure monitoring is an important tool in hypertension diagnosis and management. Although several ambulatory devices exist, comparative studies are scarce. This study aimed to compare for the first time brachial blood pressure levels of Spacelabs 90217A and Mobil-O-Graph NG, under static and ambulatory conditions. We examined 40 healthy individuals under static (study A) and ambulatory (study B) conditions. In study A, participants were randomized into two groups that included blood pressure measurements with mercury sphygmomanometer, Spacelabs and Mobil-O-Graph devices with reverse order of recordings. In study B, simultaneous 6-h recordings with both devices were performed with participants randomized in two sequences of device positioning with arm reversal at 3 h. Finally, all the participants filled in a questionnaire rating their overall preference for a device. In study A, brachial systolic blood pressure (117.2±10.3 vs 117.1±9.8 mm Hg, P=0.943) and diastolic blood pressure (73.3±9.4 mm Hg vs 74.1±9.4 mm Hg, P=0.611) did not differ between Spacelabs and Mobil-O-Graph or vs sphygmomanometer (117.8±11.1 mm Hg, P=0.791 vs Spacelabs, P=0.753 vs Mobil-O-Graph). Similarly, no differences were found in ambulatory systolic blood pressure (117.9±11.4 vs 118.3±11.0 mm Hg, P=0.864), diastolic blood pressure (73.7±7.4 vs 74.7±8.0 mm Hg, P=0.571), mean blood pressure and heart rate between Spacelabs and Mobil-O-Graph. Correlation analyses and Bland-Altman plots showed agreement between the monitors. Overall, the participants showed a preference for the Mobil-O-Graph. Spacelabs 90217A and Mobil-O-Graph NG provide practically identical measurements during the static and ambulatory conditions in healthy individuals and can be rather used interchangeably in clinical practice.

  17. Strategy for continuous improvement in IC manufacturability, yield, and reliability

    NASA Astrophysics Data System (ADS)

    Dreier, Dean J.; Berry, Mark; Schani, Phil; Phillips, Michael; Steinberg, Joe; DePinto, Gary

    1993-01-01

    Continual improvements in yield, reliability and manufacturability measure a fab and ultimately result in Total Customer Satisfaction. A new organizational and technical methodology for continuous defect reduction has been established in a formal feedback loop, which relies on yield and reliability, failed bit map analysis, analytical tools, inline monitoring, cross functional teams and a defect engineering group. The strategy requires the fastest detection, identification and implementation of possible corrective actions. Feedback cycle time is minimized at all points to improve yield and reliability and reduce costs, essential for competitiveness in the memory business. Payoff was a 9.4X reduction in defectivity and a 6.2X improvement in reliability of 256 K fast SRAMs over 20 months.

  18. A natural-color mapping for single-band night-time image based on FPGA

    NASA Astrophysics Data System (ADS)

    Wang, Yilun; Qian, Yunsheng

    2018-01-01

    A natural-color mapping for single-band night-time image method based on FPGA can transmit the color of the reference image to single-band night-time image, which is consistent with human visual habits and can help observers identify the target. This paper introduces the processing of the natural-color mapping algorithm based on FPGA. Firstly, the image can be transformed based on histogram equalization, and the intensity features and standard deviation features of reference image are stored in SRAM. Then, the real-time digital images' intensity features and standard deviation features are calculated by FPGA. At last, FPGA completes the color mapping through matching pixels between images using the features in luminance channel.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Citterio, M.; Camplani, A.; Cannon, M.

    SRAM based Field Programmable Gate Arrays (FPGAs) have been rarely used in High Energy Physics (HEP) due to their sensitivity to radiation. The last generation of commercial FPGAs based on 28 nm feature size and on Silicon On Insulator (SOI) technologies are more tolerant to radiation to the level that their use in front-end electronics is now feasible. FPGAs provide re-programmability, high-speed computation and fast data transmission through the embedded serial transceivers. They could replace custom application specific integrated circuits in front end electronics in locations with moderate radiation field. Finally, the use of a FPGA in HEP experiments ismore » only limited by our ability to mitigate single event effects induced by the high energy hadrons present in the radiation field.« less

  20. Can Facebook Reduce Perceived Anxiety Among College Students? Randomized Controlled Exercise Trial Using the Transtheoretical Model of Behavior Change

    PubMed Central

    Frith, Emily

    2017-01-01

    Background Recent studies suggest social media may be an attractive strategy to promote mental health and wellness. There remains a need to examine the utility for individually tailored wellness messages posted to social media sites such as Facebook to facilitate positive psychological outcomes. Objective Our aim was to extend the growing body of evidence supporting the potential for social media to enhance mental health. We evaluated the influence of an 8-week social media intervention on anxiety in college students and examined the impact of dynamic (active) versus static (passive) Facebook content on physical activity behaviors. Methods Participants in the static group (n=21) accessed a Facebook page featuring 96 statuses. Statuses were intended to engage cognitive processes followed by behavioral processes of change per the transtheoretical model of behavior change. Content posted on the static Facebook page was identical to the dynamic page; however, the static group viewed all 96 statuses on the first day of the study, while the dynamic group received only 1 to 2 of these status updates per day throughout the intervention. Anxiety was measured using the Overall Anxiety Severity and Impairment Scale (OASIS). Time spent engaging in physical activity was assessed using the International Physical Activity Questionnaire (IPAQ). Results The OASIS change score for the dynamic Facebook group was statistically significant (P=.003), whereas the change score for the static group was not (P=.48). A statistically significant group-by-time interaction was observed (P=.03). The total IPAQ group-by-time interaction was not statistically significant (P=.06). Conclusions We observed a decrease in anxiety and increase in total physical activity for the dynamic group only. Dynamic social networking sites, featuring regularly updated content, may be more advantageous than websites that retain static content over time. Trial Registration ClinicalTrials.gov NCT03363737; https://clinicaltrials.gov/ct2/show/NCT03363737 (Archived by WebCite at http://www.webcitation.org/6vXzNbOWJ) PMID:29222077

  1. A balance and proprioception intervention programme to enhance combat performance in military personnel.

    PubMed

    Funk, Shany; Jacob, T; Ben-Dov, D; Yanovich, E; Tirosh, O; Steinberg, N

    2018-02-01

    Optimal functioning of the lower extremities under repeated movements on unstable surfaces is essential for military effectiveness. Intervention training to promote proprioceptive ability should be considered in order to limit the risk for musculoskeletal injuries. The aim of this study was to assess the effect of a proprioceptive intervention programme on static and dynamic postural balance among Israel Defense Forces combat soldiers. Twenty-seven male soldiers, aged 18-20 years, from a physical fitness instructor's course, were randomly divided into two groups matched by age and army unit. The intervention group (INT) underwent 4 weeks of proprioceptive exercises for 10 min daily; the control group underwent 4 weeks of upper body stretching exercises for 10 min daily. All participants were tested pre and postintervention for both static and dynamic postural balance. Significant interaction (condition*pre-post-test*group) was found for static postural balance, indicating that for the INT group, in condition 3 (on an unstable surface-BOSU), the post-test result was significantly better compared with the pretest result (p<0.05). Following intervention, the INT group showed significant correlations between static postural stability in condition 2 (eyes closed) and the dynamic postural stability (length of time walked on the beam following fatigue) ( r ranged from 0.647 to 0.822; p<0.05). The proprioceptive intervention programme for combat soldiers improved static postural balance on unstable surfaces, and improved the correlation between static postural balance in the eyes closed condition and dynamic postural balance following fatigue. Further longitudinal studies are needed to verify the relationship between proprioception programmes, additional weight bearing and the reduction of subsequent injuries in combat soldiers. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones.

    PubMed

    Sugiyama, Toshihiro; Price, Joanna S; Lanyon, Lance E

    2010-02-01

    In order to validate whether bones' functional adaptation to mechanical loading is a local phenomenon, we randomly assigned 21 female C57BL/6 mice at 19 weeks of age to one of three equal numbered groups. All groups were treated with isoflurane anesthesia three times a week for 2 weeks (approximately 7 min/day). During each anaesthetic period, the right tibiae/fibulae in the DYNAMIC+STATIC group were subjected to a peak dynamic load of 11.5 N (40 cycles with 10-s intervals between cycles) superimposed upon a static "pre-load" of 2.0 N. This total load of 13.5 N engendered peak longitudinal strains of approximately 1400 microstrain on the medial surface of the tibia at a middle/proximal site. The right tibiae/fibulae in the STATIC group received the static "pre-load" alone while the NOLOAD group received no artificial loading. After 2 weeks, the animals were sacrificed and both tibiae, fibulae, femora, ulnae and radii analyzed by three-dimensional high-resolution (5 mum) micro-computed tomography (microCT). In the DYNAMIC+STATIC group, the proximal trabecular percent bone volume and cortical bone volume at the proximal and middle levels of the right tibiae as well as the cortical bone volume at the middle level of the right fibulae were markedly greater than the left. In contrast, the left bones in the DYNAMIC+STATIC group showed no differences compared to the left or right bones in the NOLOAD or STATIC group. These microCT data were confirmed by two-dimensional examination of fluorochrome labels in bone sections which showed the predominantly woven nature of the new bone formed in the loaded bones. We conclude that the adaptive response in both cortical and trabecular regions of bones subjected to short periods of dynamic loading, even when this response is sufficiently vigorous to stimulate woven bone formation, is confined to the loaded bones and does not involve changes in other bones that are adjacent, contra-lateral or remote to them. (c) 2009 Elsevier Inc. All rights reserved.

  3. Adequate margins for random setup uncertainties in head-and-neck IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Astreinidou, Eleftheria; Bel, Arjan; Raaijmakers, Cornelis P.J.

    2005-03-01

    Purpose: To investigate the effect of random setup uncertainties on the highly conformal dose distributions produced by intensity-modulated radiotherapy (IMRT) for clinical head-and-neck cancer patients and to determine adequate margins to account for those uncertainties. Methods and materials: We have implemented in our clinical treatment planning system the possibility of simulating normally distributed patient setup displacements, translations, and rotations. The planning CT data of 8 patients with Stage T1-T3N0M0 oropharyngeal cancer were used. The clinical target volumes of the primary tumor (CTV{sub primary}) and of the lymph nodes (CTV{sub elective}) were expanded by 0.0, 1.5, 3.0, and 5.0 mm inmore » all directions, creating the planning target volumes (PTVs). We performed IMRT dose calculation using our class solution for each PTV margin, resulting in the conventional static plans. Then, the system recalculated the plan for each positioning displacement derived from a normal distribution with {sigma} = 2 mm and {sigma} = 4 mm (standard deviation) for translational deviations and {sigma} = 1 deg for rotational deviations. The dose distributions of the 30 fractions were summed, resulting in the actual plan. The CTV dose coverage of the actual plans was compared with that of the static plans. Results: Random translational deviations of {sigma} = 2 mm and rotational deviations of {sigma} = 1 deg did not affect the CTV{sub primary} volume receiving 95% of the prescribed dose (V{sub 95}) regardless of the PTV margin used. A V{sub 95} reduction of 3% and 1% for a 0.0-mm and 1.5-mm PTV margin, respectively, was observed for {sigma} = 4 mm. The V{sub 95} of the CTV{sub elective} contralateral was approximately 1% and 5% lower than that of the static plan for {sigma} = 2 mm and {sigma} = 4 mm, respectively, and for PTV margins < 5.0 mm. An additional reduction of 1% was observed when rotational deviations were included. The same effect was observed for the CTV{sub elective} ipsilateral but with smaller dose differences than those for the contralateral side. The effect of the random uncertainties on the mean dose to the parotid glands was not significant. The maximal dose to the spinal cord increased by a maximum of 3 Gy. Conclusions: The margins to account for random setup uncertainties, in our clinical IMRT solution, should be 1.5 mm and 3.0 mm in the case of {sigma} = 2 mm and {sigma} = 4 mm, respectively, for the CTV{sub primary}. Larger margins (5.0 mm), however, should be applied to the CTV{sub elective}, if the goal of treatment is a V{sub 95} value of at least 99%.« less

  4. The effects of 3D interactive animated graphics on student learning and attitudes in computer-based instruction

    NASA Astrophysics Data System (ADS)

    Moon, Hye Sun

    Visuals are most extensively used as instructional tools in education to present spatially-based information. Recent computer technology allows the generation of 3D animated visuals to extend the presentation in computer-based instruction. Animated visuals in 3D representation not only possess motivational value that promotes positive attitudes toward instruction but also facilitate learning when the subject matter requires dynamic motion and 3D visual cue. In this study, three questions are explored: (1) how 3D graphics affects student learning and attitude, in comparison with 2D graphics; (2) how animated graphics affects student learning and attitude, in comparison with static graphics; and (3) whether the use of 3D graphics, when they are supported by interactive animation, is the most effective visual cues to improve learning and to develop positive attitudes. A total of 145 eighth-grade students participated in a 2 x 2 factorial design study. The subjects were randomly assigned to one of four computer-based instructions: 2D static; 2D animated; 3D static; and 3D animated. The results indicated that: (1) Students in the 3D graphic condition exhibited more positive attitudes toward instruction than those in the 2D graphic condition. No group differences were found between the posttest score of 3D graphic condition and that of 2D graphic condition. However, students in the 3D graphic condition took less time for information retrieval on posttest than those in the 2D graphic condition. (2) Students in the animated graphic condition exhibited slightly more positive attitudes toward instruction than those in the static graphic condition. No group differences were found between the posttest score of animated graphic condition and that of static graphic condition. However, students in the animated graphic condition took less time for information retrieval on posttest than those in the static graphic condition. (3) Students in the 3D animated graphic condition exhibited more positive attitudes toward instruction than those in other treatment conditions (2D static, 2D animated, and 3D static conditions). No group differences were found in the posttest scores among four treatment conditions. However, students in the 3D animated condition took less time for information retrieval on posttest than those in other treatment conditions.

  5. Random-access optical-resolution photoacoustic microscopy using a digital micromirror device

    PubMed Central

    Liang, Jinyang; Zhou, Yong; Winkler, Amy W.; Wang, Lidai; Maslov, Konstantin I.; Li, Chiye; Wang, Lihong V.

    2013-01-01

    We developed random-access optical-resolution photoacoustic microscopy using a digital micromirror device. This system can rapidly scan arbitrarily shaped regions of interest within a 40×40 μm2 imaging area with a lateral resolution of 3.6 μm. To identify a region of interest, a global structural image is first acquired, then the selected region is scanned. The random-access ability was demonstrated by imaging two static samples, a carbon fiber cross and a monolayer of red blood cells, with an acquisition rate up to 4 kilohertz. The system was then used to monitor blood flow in vivo in real time within user-selected capillaries in a mouse ear. By imaging only the capillary of interest, the frame rate was increased by up to 9.2 times. PMID:23903111

  6. Random-access optical-resolution photoacoustic microscopy using a digital micromirror device.

    PubMed

    Liang, Jinyang; Zhou, Yong; Winkler, Amy W; Wang, Lidai; Maslov, Konstantin I; Li, Chiye; Wang, Lihong V

    2013-08-01

    We developed random-access optical-resolution photoacoustic microscopy using a digital micromirror device. This system can rapidly scan arbitrarily shaped regions of interest within a 40 μm×40 μm imaging area with a lateral resolution of 3.6 μm. To identify a region of interest, a global structural image is first acquired, then the selected region is scanned. The random-access ability was demonstrated by imaging two static samples, a carbon fiber cross and a monolayer of red blood cells, with an acquisition rate up to 4 kHz. The system was then used to monitor blood flow in vivo in real time within user-selected capillaries in a mouse ear. By imaging only the capillary of interest, the frame rate was increased by up to 9.2 times.

  7. Effects of a salsa dance training on balance and strength performance in older adults.

    PubMed

    Granacher, Urs; Muehlbauer, Thomas; Bridenbaugh, Stephanie A; Wolf, Madeleine; Roth, Ralf; Gschwind, Yves; Wolf, Irene; Mata, Rui; Kressig, Reto W

    2012-01-01

    Deficits in static and particularly dynamic postural control and force production have frequently been associated with an increased risk of falling in older adults. The objectives of this study were to investigate the effects of salsa dancing on measures of static/dynamic postural control and leg extensor power in seniors. Twenty-eight healthy older adults were randomly assigned to an intervention group (INT, n = 14, age 71.6 ± 5.3 years) to conduct an 8-week progressive salsa dancing programme or a control group (CON, n = 14, age 68.9 ± 4.7 years). Static postural control was measured during one-legged stance on a balance platform and dynamic postural control was obtained while walking on an instrumented walkway. Leg extensor power was assessed during a countermovement jump on a force plate. Programme compliance was excellent with participants of the INT group completing 92.5% of the dancing sessions. A tendency towards an improvement in the selected measures of static postural control was observed in the INT group as compared to the CON group. Significant group × test interactions were found for stride velocity, length and time. Post hoc analyses revealed significant increases in stride velocity and length, and concomitant decreases in stride time. However, salsa dancing did not have significant effects on various measures of gait variability and leg extensor power. Salsa proved to be a safe and feasible exercise programme for older adults accompanied with a high adherence rate. Age-related deficits in measures of static and particularly dynamic postural control can be mitigated by salsa dancing in older adults. High physical activity and fitness/mobility levels of our participants could be responsible for the nonsignificant findings in gait variability and leg extensor power. Copyright © 2012 S. Karger AG, Basel.

  8. Hamstring Stiffness Returns More Rapidly After Static Stretching Than Range of Motion, Stretch Tolerance, and Isometric Peak Torque.

    PubMed

    Hatano, Genki; Suzuki, Shigeyuki; Matsuo, Shingo; Kataura, Satoshi; Yokoi, Kazuaki; Fukaya, Taizan; Fujiwara, Mitsuhiro; Asai, Yuji; Iwata, Masahiro

    2017-12-18

    Hamstring injuries are common, and lack of hamstring flexibility may predispose to injury. Static stretching increases range of motion (ROM) but also results in reduced muscle strength after stretching. The effects of stretching on the hamstring muscles and the duration of these effects remain unclear. To determine the effects of static stretching on the hamstrings and the duration of these effects. Randomized crossover study. University laboratory. Twenty-four healthy volunteers. We measured the torque-angle relationship (ROM, passive torque (PT) at the onset of pain, and passive stiffness) and isometric muscle force using an isokinetic dynamometer. After a 60-minute rest, the ROM of the dynamometer was set at maximum tolerable intensity; this position was maintained for 300 seconds while static passive torque (SPT) was measured continuously. We remeasured the torque-angle relationship and isometric muscle force after rest periods of 10, 20, and 30 minutes. Change in SPT during stretching; changes in ROM, PT at the onset of pain, passive stiffness, and isometric muscle force before stretching compared with 10, 20, and 30 minutes after stretching. SPT decreased significantly during stretching. Passive stiffness decreased significantly 10 and 20 minutes after stretching, but there was no significant pre- vs. post-stretching difference after 30 minutes. PT at the onset of pain and ROM increased significantly after stretching at all rest intervals, while isometric muscle force decreased significantly after all rest intervals. The effect of static stretching on passive stiffness of the hamstrings was not maintained as long as the changes in ROM, stretch tolerance, and isometric muscle force. Therefore, frequent stretching is necessary to improve the viscoelasticity of the muscle-tendon unit. Muscle force was decreased for 30 minutes after stretching; this should be considered prior to activities requiring maximal muscle strength.

  9. In vitro evaluation of stiffness and load sharing in a two-level corpectomy: comparison of static and dynamic cervical plates.

    PubMed

    Fogel, Guy R; Li, Zhenyu; Liu, Weiqiang; Liao, Zhenhua; Wu, Jia; Zhou, Wenyu

    2010-05-01

    Anterior cervical plating has been accepted in corpectomy and fusion of the cervical spine. Constrained plates were criticized for stress shielding that may lead to subsidence and pseudarthrosis. A dynamic plate allows load sharing as the graft subsides. Ideally, the dynamic plate design should maintain adequate stiffness of the construct while providing a reasonable load sharing with the strut graft. The purpose of the study was to compare dynamic and static plate kinematics with graft subsidence. The study designed was an in vitro biomechanical study in a porcine cervical spine model. Twelve spines were initially tested in intact condition with 20-N axial load in 15 degrees of flexion and extension range of motion (ROM). Then, a two-level corpectomy was created in all specimens with spines randomized to receive either a static or dynamic plate. The spines were retested under identical conditions with optimal length and undersized graft. Range of motion and graft loading were analyzed with a one-way analysis of variance (p<.05). Both plates significantly limited ROM compared with the intact spine in both graft length conditions. In extension graft, load was significantly higher (p=.001) in the static plate with optimal length, and in flexion, there was a significant loss of graft load (p=.0004). In flexion, the dynamic plate with undersized graft demonstrated significantly more load sustained (p=.0004). Both plates reasonably limited the ROM of the corpectomy. The static plate had significantly higher graft loads in extension and significant loss of graft load in flexion, whereas the dynamic plate maintained a reasonable graft load in ROM even when graft contact was imperfect. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Flow motifs reveal limitations of the static framework to represent human interactions

    NASA Astrophysics Data System (ADS)

    Rocha, Luis E. C.; Blondel, Vincent D.

    2013-04-01

    Networks are commonly used to define underlying interaction structures where infections, information, or other quantities may spread. Although the standard approach has been to aggregate all links into a static structure, some studies have shown that the time order in which the links are established may alter the dynamics of spreading. In this paper, we study the impact of the time ordering in the limits of flow on various empirical temporal networks. By using a random walk dynamics, we estimate the flow on links and convert the original undirected network (temporal and static) into a directed flow network. We then introduce the concept of flow motifs and quantify the divergence in the representativity of motifs when using the temporal and static frameworks. We find that the regularity of contacts and persistence of vertices (common in email communication and face-to-face interactions) result on little differences in the limits of flow for both frameworks. On the other hand, in the case of communication within a dating site and of a sexual network, the flow between vertices changes significantly in the temporal framework such that the static approximation poorly represents the structure of contacts. We have also observed that cliques with 3 and 4 vertices containing only low-flow links are more represented than the same cliques with all high-flow links. The representativity of these low-flow cliques is higher in the temporal framework. Our results suggest that the flow between vertices connected in cliques depend on the topological context in which they are placed and in the time sequence in which the links are established. The structure of the clique alone does not completely characterize the potential of flow between the vertices.

  11. Reliability and Construct Validity of the Patient-Reported Outcomes Measurement Information System (PROMIS) Instruments in Women with Fibromyalgia.

    PubMed

    Merriwether, Ericka N; Rakel, Barbara A; Zimmerman, Miriam B; Dailey, Dana L; Vance, Carol G T; Darghosian, Leon; Golchha, Meenakshi; Geasland, Katherine M; Chimenti, Ruth; Crofford, Leslie J; Sluka, Kathleen A

    2017-08-01

    The Patient-Reported Outcomes Measurement Information System (PROMIS) was developed to standardize measurement of clinically relevant patient-reported outcomes. This study evaluated the reliability and construct validity of select PROMIS static short-form (SF) instruments in women with fibromyalgia. Analysis of baseline data from the Fibromyalgia Activity Study with TENS (FAST), a randomized controlled trial of the efficacy of transcutaneous electrical nerve stimulation. Dual site, university-based outpatient clinics. Women aged 20 to 67 years diagnosed with fibromyalgia. Participants completed the Revised Fibromyalgia Impact Questionnaire (FIQR) and 10 PROMIS static SF instruments. Internal consistency was calculated using Cronbach alpha. Convergent validity was examined against the FIQR using Pearson correlation and multiple regression analysis. PROMIS static SF instruments had fair to high internal consistency (Cronbach α = 0.58 to 0.94, P  < 0.05). PROMIS 'physical function' domain score was highly correlated with FIQR 'function' score (r = -0.73). The PROMIS 'total' score was highly correlated with the FIQR total score (r = -0.72). Correlations with FIQR total score of each of the three PROMIS domain scores were r = -0.65 for 'physical function,' r = -0.63 for 'global,' and r = -0.57 for 'symptom' domain. PROMIS 'physical function,' 'global,' and 'symptom' scores explained 58% of the FIQR total score variance. Select PROMIS static SF instruments demonstrate convergent validity with the FIQR, a legacy measure of fibromyalgia disease severity. These results highlight the potential utility of select PROMIS static SFs for assessment and tracking of patient-reported outcomes in fibromyalgia. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  12. Flexible chain molecules in the marginal and concentrated regimes: universal static scaling laws and cross-over predictions.

    PubMed

    Laso, Manuel; Karayiannis, Nikos Ch

    2008-05-07

    We present predictions for the static scaling exponents and for the cross-over polymer volumetric fractions in the marginal and concentrated solution regimes. Corrections for finite chain length are made. Predictions are based on an analysis of correlated fluctuations in density and chain length, in a semigrand ensemble in which mers and solvent sites exchange identities. Cross-over volumetric fractions are found to be chain length independent to first order, although reciprocal-N corrections are also estimated. Predicted scaling exponents and cross-over regimes are compared with available data from extensive off-lattice Monte Carlo simulations [Karayiannis and Laso, Phys. Rev. Lett. 100, 050602 (2008)] on freely jointed, hard-sphere chains of average lengths from N=12-500 and at packing densities from dilute ones up to the maximally random jammed state.

  13. The effect of two different visual presentation modalities on the narratives of mainstream grade 3 children.

    PubMed

    Klop, D; Engelbrecht, L

    2013-12-01

    This study investigated whether a dynamic visual presentation method (a soundless animated video presentation) would elicit better narratives than a static visual presentation method (a wordless picture book). Twenty mainstream grade 3 children were randomly assigned to two groups and assessed with one of the visual presentation methods. Narrative performance was measured in terms of micro- and macrostructure variables. Microstructure variables included productivity (total number of words, total number of T-units), syntactic complexity (mean length of T-unit) and lexical diversity measures (number of different words). Macrostructure variables included episodic structure in terms of goal-attempt-outcome (GAO) sequences. Both visual presentation modalities elicited narratives of similar quantity and quality in terms of the micro- and macrostructure variables that were investigated. Animation of picture stimuli did not elicit better narratives than static picture stimuli.

  14. Spatiotemporal Self-Organization of Fluctuating Bacterial Colonies

    NASA Astrophysics Data System (ADS)

    Grafke, Tobias; Cates, Michael E.; Vanden-Eijnden, Eric

    2017-11-01

    We model an enclosed system of bacteria, whose motility-induced phase separation is coupled to slow population dynamics. Without noise, the system shows both static phase separation and a limit cycle, in which a rising global population causes a dense bacterial colony to form, which then declines by local cell death, before dispersing to reinitiate the cycle. Adding fluctuations, we find that static colonies are now metastable, moving between spatial locations via rare and strongly nonequilibrium pathways, whereas the limit cycle becomes almost periodic such that after each redispersion event the next colony forms in a random location. These results, which hint at some aspects of the biofilm-planktonic life cycle, can be explained by combining tools from large deviation theory with a bifurcation analysis in which the global population density plays the role of control parameter.

  15. Missing value imputation: with application to handwriting data

    NASA Astrophysics Data System (ADS)

    Xu, Zhen; Srihari, Sargur N.

    2015-01-01

    Missing values make pattern analysis difficult, particularly with limited available data. In longitudinal research, missing values accumulate, thereby aggravating the problem. Here we consider how to deal with temporal data with missing values in handwriting analysis. In the task of studying development of individuality of handwriting, we encountered the fact that feature values are missing for several individuals at several time instances. Six algorithms, i.e., random imputation, mean imputation, most likely independent value imputation, and three methods based on Bayesian network (static Bayesian network, parameter EM, and structural EM), are compared with children's handwriting data. We evaluate the accuracy and robustness of the algorithms under different ratios of missing data and missing values, and useful conclusions are given. Specifically, static Bayesian network is used for our data which contain around 5% missing data to provide adequate accuracy and low computational cost.

  16. Structural arrest in an ideal gas.

    PubMed

    van Ketel, Willem; Das, Chinmay; Frenkel, Daan

    2005-04-08

    We report a molecular dynamics study of a simple model system that has the static properties of an ideal gas, yet exhibits nontrivial "glassy" dynamics behavior at high densities. The constituent molecules of this system are constructs of three infinitely thin hard rods of length L, rigidly joined at their midpoints. The crosses have random but fixed orientation. The static properties of this system are those of an ideal gas, and its collision frequency can be computed analytically. For number densities NL(3)/V>1, the single-particle diffusivity goes to zero. As the system is completely structureless, standard mode-coupling theory cannot describe the observed structural arrest. Nevertheless, the system exhibits many dynamical features that appear to be mode-coupling-like. All high-density incoherent intermediate scattering functions collapse onto master curves that depend only on the wave vector.

  17. The influence of one earthquake on another

    NASA Astrophysics Data System (ADS)

    Kilb, Deborah Lyman

    1999-12-01

    Part one of my dissertation examines the initiation of earthquake rupture. We study the initial subevent (ISE) of the Mw 6.7 1994 Northridge, California earthquake to distinguish between two end-member hypotheses of an organized and predictable earthquake rupture initiation process or, alternatively, a random process. We find that the focal mechanisms of the ISE and mainshock are indistinguishable, and both events may have nucleated on and ruptured the same fault plane. These results satisfy the requirements for both end-member models, and do not allow us to distinguish between them. However, further tests show the ISE's waveform characteristics are similar to those of typical nearby small earthquakes (i.e., dynamic ruptures). The second part of my dissertation examines aftershocks of the M 7.1 1989 Loma Prieta, California earthquake to determine if theoretical models of static Coulomb stress changes correctly predict the fault plane geometries and slip directions of Loma Prieta aftershocks. Our work shows individual aftershock mechanisms cannot be successfully predicted because a similar degree of predictability can be obtained using a randomized catalogue. This result is probably a function of combined errors in the models of mainshock slip distribution, background stress field, and aftershock locations. In the final part of my dissertation, we test the idea that earthquake triggering occurs when properties of a fault and/or its loading are modified by Coulomb failure stress changes that may be transient and oscillatory (i.e., dynamic) or permanent (i.e., static). We propose a triggering threshold failure stress change exists, above which the earthquake nucleation process begins although failure need not occur instantaneously. We test these ideas using data from the 1992 M 7.4 Landers earthquake and its aftershocks. Stress changes can be categorized as either dynamic (generated during the passage of seismic waves), static (associated with permanent fault offsets caused by fault slip) or complete (including both static and dynamic). We examine theoretically calculated Coulomb failure stress changes for the static (DeltaCFS) and complete (DeltaCFS(t)) cases, and statistically test for a correlation with spatially varying post-Landers seismicity rate changes. We find that directivity, which was required to model waveforms of the 1992 Landers earthquake, creates an asymmetry in mapped peak DeltaCFS(t). A similar asymmetry is apparent in the seismicity rate change map but not in the DeltaCFS map. Statistical analyses show that peak DeltaCFS(t) correlates as well or better with seismicity rate change as DeltaCFS, and qualitatively peak DeltaCFS(t) is the preferred model. (Abstract shortened by UMI.)

  18. Influence of transcutaneous electrical nerve stimulation on spasticity, balance, and walking speed in stroke patients: A systematic review and meta-analysis.

    PubMed

    Lin, Shuqin; Sun, Qi; Wang, Haifeng; Xie, Guomin

    2018-01-10

    To evaluate the influence of transcutaneous electrical nerve stimulation in patients with stroke through a systematic review and meta-analysis. PubMed, Embase, Web of Science, EBSCO, and Cochrane Library databases were searched systematically. Randomized controlled trials assessing the effect of transcutaneous electrical nerve stimulation vs placebo transcutaneous electrical nerve stimulation on stroke were included. Two investigators independently searched articles, extracted data, and assessed the quality of included studies. The primary outcome was modified Ashworth scale (MAS). Meta-analysis was performed using the random-effect model. Seven randomized controlled trials were included in the meta-analysis. Compared with placebo transcutaneous electrical nerve stimulation, transcutaneous electrical nerve stimulation supplementation significantly reduced MAS (standard mean difference (SMD) = -0.71; 95% confidence interval (95% CI) = -1.11 to -0.30; p = 0.0006), improved static balance with open eyes (SMD = -1.26; 95% CI = -1.83 to -0.69; p<0.0001) and closed eyes (SMD = -1.74; 95% CI = -2.36 to -1.12; p < 0.00001), and increased walking speed (SMD = 0.44; 95% CI = 0.05 to 0.84; p = 0.03), but did not improve results on the Timed Up and Go Test (SMD = -0.60; 95% CI=-1.22 to 0.03; p = 0.06). Transcutaneous electrical nerve stimulation is associated with significantly reduced spasticity, increased static balance and walking speed, but has no influence on dynamic balance.

  19. Acute changes of hip joint range of motion using selected clinical stretching procedures: A randomized crossover study.

    PubMed

    Hammer, Adam M; Hammer, Roger L; Lomond, Karen V; O'Connor, Paul

    2017-12-01

    Hip adductor flexibility and strength is an important component of athletic performance and many activities of daily living. Little research has been done on the acute effects of a single session of stretching on hip abduction range of motion (ROM). The aim of this study was to compare 3 clinical stretching procedures against passive static stretching and control on ROM and peak isometric maximal voluntary contraction (MVC). Using a randomized crossover study design, a total of 40 participants (20 male and 20 female) who had reduced hip adductor muscle length attended a familiarization session and 5 testing sessions on non-consecutive days. Following the warm-up and pre-intervention measures of ROM and MVC, participants were randomly assigned 1 of 3 clinical stretching procedures (modified lunge, multidirectional, and joint mobilization) or a static stretch or control condition. Post-intervention measures of ROM and MVC were taken immediately following completion of the assigned condition. An ANOVA using a repeated measure design with the change score was conducted. All interventions resulted in small but statistically significant (p < 0.05) increases (1.0°-1.7°) in ROM with no inter-condition differences except one. Multidirectional stretching was greater than control (p = 0.031). These data suggest that a single session of stretching has only a minimal effect on acute changes of hip abduction ROM. Although hip abduction is a frontal plane motion, to effectively increase the extensibility of the structures that limit abduction, integrating multi-planar stretches may be indicated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Internet-based home training is capable to improve balance in multiple sclerosis: a randomized controlled trial.

    PubMed

    Frevel, D; Mäurer, M

    2015-02-01

    Balance disorders are common in multiple sclerosis. Aim of the study is to investigate the effectiveness of an Internet-based home training program (e-Training) to improve balance in patients with multiple sclerosis. A randomized, controlled study. Academic teaching hospital in cooperation with the therapeutic riding center Gut Üttingshof, Bad Mergentheim. Eighteen multiple sclerosis patients (mean EDSS 3,5) took part in the trial. Outcome of patients using e-Training (N.=9) was compared to the outcome of patients receiving hippotherapy (N.=9), which can be considered as an advanced concept for the improvement of balance and postural control in multiple sclerosis. After simple random allocation patients received hippotherapy or Internet-based home training (balance, postural control and strength training) twice a week for 12 weeks. Assessments were done before and after the intervention and included static and dynamic balance (primary outcome). Isometric muscle strength of the knee and trunk extension/flexion (dynamometer), walking capacity, fatigue and quality of life served as secondary outcome parameters. Both intervention groups showed comparable and highly significant improvement in static and dynamic balance capacity, no difference was seen between the both intervention groups. However looking at fatigue and quality of life only the group receiving hippotherapy improved significantly. Since e-Training shows even comparable effects to hippotherapy to improve balance, we believe that the established Internet-based home training program, specialized on balance and postural control training, is feasible for a balance and strength training in persons with multiple sclerosis. We demonstrated that Internet-based home training is possible in patients with multiple sclerosis.

  1. Studies Of Single-Event-Upset Models

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.; Smith, L. S.; Soli, G. A.

    1988-01-01

    Report presents latest in series of investigations of "soft" bit errors known as single-event upsets (SEU). In this investigation, SEU response of low-power, Schottky-diode-clamped, transistor/transistor-logic (TTL) static random-access memory (RAM) observed during irradiation by Br and O ions in ranges of 100 to 240 and 20 to 100 MeV, respectively. Experimental data complete verification of computer model used to simulate SEU in this circuit.

  2. Balance Improvement Effects of Biofeedback Systems with State-of-the-Art Wearable Sensors: A Systematic Review.

    PubMed

    Ma, Christina Zong-Hao; Wong, Duo Wai-Chi; Lam, Wing Kai; Wan, Anson Hong-Ping; Lee, Winson Chiu-Chun

    2016-03-25

    Falls and fall-induced injuries are major global public health problems. Balance and gait disorders have been the second leading cause of falls. Inertial motion sensors and force sensors have been widely used to monitor both static and dynamic balance performance. Based on the detected performance, instant visual, auditory, electrotactile and vibrotactile biofeedback could be provided to augment the somatosensory input and enhance balance control. This review aims to synthesize the research examining the effect of biofeedback systems, with wearable inertial motion sensors and force sensors, on balance performance. Randomized and non-randomized clinical trials were included in this review. All studies were evaluated based on the methodological quality. Sample characteristics, device design and study characteristics were summarized. Most previous studies suggested that biofeedback devices were effective in enhancing static and dynamic balance in healthy young and older adults, and patients with balance and gait disorders. Attention should be paid to the choice of appropriate types of sensors and biofeedback for different intended purposes. Maximizing the computing capacity of the micro-processer, while minimizing the size of the electronic components, appears to be the future direction of optimizing the devices. Wearable balance-improving devices have their potential of serving as balance aids in daily life, which can be used indoors and outdoors.

  3. Balance Improvement Effects of Biofeedback Systems with State-of-the-Art Wearable Sensors: A Systematic Review

    PubMed Central

    Ma, Christina Zong-Hao; Wong, Duo Wai-Chi; Lam, Wing Kai; Wan, Anson Hong-Ping; Lee, Winson Chiu-Chun

    2016-01-01

    Falls and fall-induced injuries are major global public health problems. Balance and gait disorders have been the second leading cause of falls. Inertial motion sensors and force sensors have been widely used to monitor both static and dynamic balance performance. Based on the detected performance, instant visual, auditory, electrotactile and vibrotactile biofeedback could be provided to augment the somatosensory input and enhance balance control. This review aims to synthesize the research examining the effect of biofeedback systems, with wearable inertial motion sensors and force sensors, on balance performance. Randomized and non-randomized clinical trials were included in this review. All studies were evaluated based on the methodological quality. Sample characteristics, device design and study characteristics were summarized. Most previous studies suggested that biofeedback devices were effective in enhancing static and dynamic balance in healthy young and older adults, and patients with balance and gait disorders. Attention should be paid to the choice of appropriate types of sensors and biofeedback for different intended purposes. Maximizing the computing capacity of the micro-processer, while minimizing the size of the electronic components, appears to be the future direction of optimizing the devices. Wearable balance-improving devices have their potential of serving as balance aids in daily life, which can be used indoors and outdoors. PMID:27023558

  4. What Is Better Than Coulomb Failure Stress? A Ranking of Scalar Static Stress Triggering Mechanisms from 105 Mainshock-Aftershock Pairs

    NASA Astrophysics Data System (ADS)

    Meade, Brendan J.; DeVries, Phoebe M. R.; Faller, Jeremy; Viegas, Fernanda; Wattenberg, Martin

    2017-11-01

    Aftershocks may be triggered by the stresses generated by preceding mainshocks. The temporal frequency and maximum size of aftershocks are well described by the empirical Omori and Bath laws, but spatial patterns are more difficult to forecast. Coulomb failure stress is perhaps the most common criterion invoked to explain spatial distributions of aftershocks. Here we consider the spatial relationship between patterns of aftershocks and a comprehensive list of 38 static elastic scalar metrics of stress (including stress tensor invariants, maximum shear stress, and Coulomb failure stress) from 213 coseismic slip distributions worldwide. The rates of true-positive and false-positive classification of regions with and without aftershocks are assessed with receiver operating characteristic analysis. We infer that the stress metrics that are most consistent with observed aftershock locations are maximum shear stress and the magnitude of the second and third invariants of the stress tensor. These metrics are significantly better than random assignment at a significance level of 0.005 in over 80% of the slip distributions. In contrast, the widely used Coulomb failure stress criterion is distinguishable from random assignment in only 51-64% of the slip distributions. These results suggest that a number of alternative scalar metrics are better predictors of aftershock locations than classic Coulomb failure stress change.

  5. Reduced Osteogenesis of Human Osteogenic Precursors' Cells Cultured in the Random Positioning Machine

    NASA Astrophysics Data System (ADS)

    Gershovich, J. G.; Buravkova, L. B.

    2008-06-01

    Recent studies have shown that simulated microgravity (SMG) results in altered proliferation and differentiation not only osteoblasts but also affects on osteogenic capacity of mesenchymal stem cells (MSCs) from various sources. For present study we used system that simulates effects of microgravity produced by the Random Positioning Machine (RPM). Cultured MCSs from human bone marrow and human osteoblasts (OBs) were exposed to SMG at RPM for 10-40 days. Induced osteogenesis of these progenitor cells was compared with the appropriate static (1g) and dynamic (horizontal shaker) controls. Clinorotated OBs and MSCs showed proliferation rate lower than static and dynamic control groups of cells in the early terms of SMG. Significant reduction of ALP activity was detected after 10 days of clinorotation of MSCs. There was no such dramatic difference in ALP activity of MSCs derived cells between SMG and control groups after 20 days of clinorotation but the expression of ALP was still reduced. However, virtually no matrix mineralization was found in OBs cultured under SMG conditions in the presence of differentiation stimuli. The similar effect was observed when we assayed matrix calcification of MSCs derived cultures. Thus, our results confirm low gravity mediated reduction of osteogenesis of different osteogenic precursors' cells and can clarify the mechanisms of bone loss during spaceflight.

  6. Traditional Chinese Mind and Body Exercises for Promoting Balance Ability of Old Adults: A Systematic Review and Meta-Analysis

    PubMed Central

    Zhang, Yanjie; Wang, Yong Tai; Liu, Xiao Lei

    2016-01-01

    The purpose of this study was to provide a quantitative evaluation of the effectiveness of traditional Chinese mind and body exercises in promoting balance ability for old adults. The eligible studies were extensively searched from electronic databases (Medline, CINAHL, SportDicus, and Web of Science) until 10 May 2016. Reference lists of relevant publications were screened for future hits. The trials used randomized controlled approaches to compare the effects of traditional Chinese mind and body exercise (TCMBE) on balance ability of old adults that were included. The synthesized results of Berg Balance Scale (BBS), Timed Up and Go Test (TUG), and static balance with 95% confidence intervals were counted under a random-effects model. Ten studies were selected based on the inclusion criteria, and a total of 1,798 participants were involved in this review. The results of the meta-analysis showed that TCMBE had no significant improvement on BBS and TUG, but the BBS and TUG could be obviously improved by prolonging the intervention time. In addition, the results showed that TCMBE could significantly improve the static balance compared to control group. In conclusion, old adults who practiced TCMBE with the time not less than 150 minutes per week for more than 15 weeks could promote the balance ability. PMID:27990168

  7. Traditional Chinese Mind and Body Exercises for Promoting Balance Ability of Old Adults: A Systematic Review and Meta-Analysis.

    PubMed

    Chen, Shihui; Zhang, Yanjie; Wang, Yong Tai; Liu, Xiao Lei

    2016-01-01

    The purpose of this study was to provide a quantitative evaluation of the effectiveness of traditional Chinese mind and body exercises in promoting balance ability for old adults. The eligible studies were extensively searched from electronic databases (Medline, CINAHL, SportDicus, and Web of Science) until 10 May 2016. Reference lists of relevant publications were screened for future hits. The trials used randomized controlled approaches to compare the effects of traditional Chinese mind and body exercise (TCMBE) on balance ability of old adults that were included. The synthesized results of Berg Balance Scale (BBS), Timed Up and Go Test (TUG), and static balance with 95% confidence intervals were counted under a random-effects model. Ten studies were selected based on the inclusion criteria, and a total of 1,798 participants were involved in this review. The results of the meta-analysis showed that TCMBE had no significant improvement on BBS and TUG, but the BBS and TUG could be obviously improved by prolonging the intervention time. In addition, the results showed that TCMBE could significantly improve the static balance compared to control group. In conclusion, old adults who practiced TCMBE with the time not less than 150 minutes per week for more than 15 weeks could promote the balance ability.

  8. Assessing the performance of the random phase approximation for exchange and superexchange coupling constants in magnetic crystalline solids

    NASA Astrophysics Data System (ADS)

    Olsen, Thomas

    2017-09-01

    The random phase approximation (RPA) for total energies has previously been shown to provide a qualitatively correct description of static correlation in molecular systems, where density functional theory (DFT) with local functionals are bound to fail. This immediately poses the question of whether the RPA is also able to capture the correct physics of strongly correlated solids such as Mott insulators. Due to strong electron localization, magnetic interactions in such systems are dominated by superexchange, which in the simplest picture can be regarded as the analog of static correlation for molecules. In this paper, we investigate the performance of the RPA for evaluating both superexchange and direct exchange interactions in the magnetic solids NiO, MnO, Na3Cu2SbO6,Sr2CuO3,Sr2CuTeO6 , and a monolayer of CrI3, which were chosen to represent a broad variety of magnetic interactions. It is found that the RPA can accurately correct the large errors introduced by Hartree-Fock, independent of the input orbitals used for the perturbative expansion. However, in most cases, accuracies similar to RPA can be obtained with DFT+U, which is significantly simpler from a computational point of view.

  9. Effects of Vestibular Rehabilitation on Balance Control in Older People with Chronic Dizziness: A Randomized Clinical Trial.

    PubMed

    Ricci, Natalia Aquaroni; Aratani, Mayra Cristina; Caovilla, Heloísa Helena; Ganança, Fernando Freitas

    2016-04-01

    The aim of this study was to compare the effects of vestibular rehabilitation protocols on balance control in elderly with dizziness. This is a randomized clinical trial with 3-mo follow-up period. The sample was composed of 82 older individuals with chronic dizziness from vestibular disorders. The control group was treated according to the Conventional Cawthorne & Cooksey protocol (n = 40), and the experimental group was submitted to a Multimodal Cawthorne & Cooksey protocol (n = 42). Measures included Dynamic Gait Index, fall history, hand grip strength, Time Up-and-Go Test, sit-to-stand test, multidirectional reach, and static balance tests. With the exception of history of falls, Forward Functional Reach, Unipedal Right and Left Leg Eyes Closed, and Sensorial Romberg Eyes Open, all outcomes improved after treatments. Such results persisted at follow-up period, with the exception of the Tandem Eyes Open and the Timed Up-and-Go manual. The between-group differences for Sensorial Romberg Eyes Closed (4.27 secs) and Unipedal Left Leg Eyes Open (4.08 secs) were significant after treatment, favoring the Multimodal protocol. Both protocols resulted in improvement on elderly's balance control, which was maintained during a short-term period. The multimodal protocol presented better performance on specific static balance tests.

  10. A stochastic convolution/superposition method with isocenter sampling to evaluate intrafraction motion effects in IMRT.

    PubMed

    Naqvi, Shahid A; D'Souza, Warren D

    2005-04-01

    Current methods to calculate dose distributions with organ motion can be broadly classified as "dose convolution" and "fluence convolution" methods. In the former, a static dose distribution is convolved with the probability distribution function (PDF) that characterizes the motion. However, artifacts are produced near the surface and around inhomogeneities because the method assumes shift invariance. Fluence convolution avoids these artifacts by convolving the PDF with the incident fluence instead of the patient dose. In this paper we present an alternative method that improves the accuracy, generality as well as the speed of dose calculation with organ motion. The algorithm starts by sampling an isocenter point from a parametrically defined space curve corresponding to the patient-specific motion trajectory. Then a photon is sampled in the linac head and propagated through the three-dimensional (3-D) collimator structure corresponding to a particular MLC segment chosen randomly from the planned IMRT leaf sequence. The photon is then made to interact at a point in the CT-based simulation phantom. Randomly sampled monoenergetic kernel rays issued from this point are then made to deposit energy in the voxels. Our method explicitly accounts for MLC-specific effects (spectral hardening, tongue-and-groove, head scatter) as well as changes in SSD with isocentric displacement, assuming that the body moves rigidly with the isocenter. Since the positions are randomly sampled from a continuum, there is no motion discretization, and the computation takes no more time than a static calculation. To validate our method, we obtained ten separate film measurements of an IMRT plan delivered on a phantom moving sinusoidally, with each fraction starting with a random phase. For 2 cm motion amplitude, we found that a ten-fraction average of the film measurements gave an agreement with the calculated infinite fraction average to within 2 mm in the isodose curves. The results also corroborate the existing notion that the interfraction dose variability due to the interplay between the MLC motion and breathing motion averages out over typical multifraction treatments. Simulation with motion waveforms more representative of real breathing indicate that the motion can produce penumbral spreading asymmetric about the static dose distributions. Such calculations can help a clinician decide to use, for example, a larger margin in the superior direction than in the inferior direction. In the paper we demonstrate that a 15 min run on a single CPU can readily illustrate the effect of a patient-specific breathing waveform, and can guide the physician in making informed decisions about margin expansion and dose escalation.

  11. Static network structure can stabilize human cooperation.

    PubMed

    Rand, David G; Nowak, Martin A; Fowler, James H; Christakis, Nicholas A

    2014-12-02

    The evolution of cooperation in network-structured populations has been a major focus of theoretical work in recent years. When players are embedded in fixed networks, cooperators are more likely to interact with, and benefit from, other cooperators. In theory, this clustering can foster cooperation on fixed networks under certain circumstances. Laboratory experiments with humans, however, have thus far found no evidence that fixed network structure actually promotes cooperation. Here, we provide such evidence and help to explain why others failed to find it. First, we show that static networks can lead to a stable high level of cooperation, outperforming well-mixed populations. We then systematically vary the benefit that cooperating provides to one's neighbors relative to the cost required to cooperate (b/c), as well as the average number of neighbors in the network (k). When b/c > k, we observe high and stable levels of cooperation. Conversely, when b/c ≤ k or players are randomly shuffled, cooperation decays. Our results are consistent with a quantitative evolutionary game theoretic prediction for when cooperation should succeed on networks and, for the first time to our knowledge, provide an experimental demonstration of the power of static network structure for stabilizing human cooperation.

  12. The effects of plantar flexor static stretching and dynamic stretching using an aero-step on foot pressure during gait in healthy adults: a preliminary study.

    PubMed

    Shim, Je-Myung; Jung, Ju-Hyeon; Kim, Hwan-Hee

    2015-07-01

    [Purpose] The aim of this study was to examine whether plantar flexor static stretching and dynamic stretching using an Aero-Step results in changes in foot pressure during gait in healthy adults. [Subjects] Eighteen normal adults were randomly allocated to either a dynamic stretching using an Aero-Step group (DSUAS) group (n = 8) or a static stretching (SS) group (n = 10). [Methods] The DSUAS and SS participants took part in an exercise program for 15 minutes. Outcome measures were foot plantar pressure, which was measured during the subject's gait stance phase; the asymmetric ratio of foot pressure for both feet; and the visual analogue scale (VAS) measured during the interventions. [Results] There were significant differences in the asymmetric ratio of foot pressure for both feet and VAS between the two groups after intervention. However, there were no significant differences in foot plantar pressure during the gait stance phase within both groups. [Conclusion] DSUSAS is an effective stretching method, as pain during it is lower than that with SS, which can minimize the asymmetric ratio of foot pressure for both feet during gait due to asymmetric postural alignment.

  13. Static network structure can stabilize human cooperation

    PubMed Central

    Rand, David G.; Nowak, Martin A.; Fowler, James H.; Christakis, Nicholas A.

    2014-01-01

    The evolution of cooperation in network-structured populations has been a major focus of theoretical work in recent years. When players are embedded in fixed networks, cooperators are more likely to interact with, and benefit from, other cooperators. In theory, this clustering can foster cooperation on fixed networks under certain circumstances. Laboratory experiments with humans, however, have thus far found no evidence that fixed network structure actually promotes cooperation. Here, we provide such evidence and help to explain why others failed to find it. First, we show that static networks can lead to a stable high level of cooperation, outperforming well-mixed populations. We then systematically vary the benefit that cooperating provides to one’s neighbors relative to the cost required to cooperate (b/c), as well as the average number of neighbors in the network (k). When b/c > k, we observe high and stable levels of cooperation. Conversely, when b/c ≤ k or players are randomly shuffled, cooperation decays. Our results are consistent with a quantitative evolutionary game theoretic prediction for when cooperation should succeed on networks and, for the first time to our knowledge, provide an experimental demonstration of the power of static network structure for stabilizing human cooperation. PMID:25404308

  14. Designing automation for complex work environments under different levels of stress.

    PubMed

    Sauer, Juergen; Nickel, Peter; Wastell, David

    2013-01-01

    This article examines the effectiveness of different forms of static and adaptable automation under low- and high-stress conditions. Forty participants were randomly assigned to one of four experimental conditions, comparing three levels of static automation (low, medium and high) and one level of adaptable automation, with the environmental stressor (noise) being varied as a within-subjects variable. Participants were trained for 4 h on a simulation of a process control environment, called AutoCAMS, followed by a 2.5-h testing session. Measures of performance, psychophysiology and subjective reactions were taken. The results showed that operators preferred higher levels of automation under noise than under quiet conditions. A number of parameters indicated negative effects of noise exposure, such as performance impairments, physiological stress reactions and higher mental workload. It also emerged that adaptable automation provided advantages over low and intermediate static automation, with regard to mental workload, effort expenditure and diagnostic performance. The article concludes that for the design of automation a wider range of operational scenarios reflecting adverse as well as ideal working conditions needs to be considered. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  15. Local Nash equilibrium in social networks.

    PubMed

    Zhang, Yichao; Aziz-Alaoui, M A; Bertelle, Cyrille; Guan, Jihong

    2014-08-29

    Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures.

  16. Local Nash Equilibrium in Social Networks

    PubMed Central

    Zhang, Yichao; Aziz-Alaoui, M. A.; Bertelle, Cyrille; Guan, Jihong

    2014-01-01

    Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures. PMID:25169150

  17. Effects of doping and bias voltage on the screening in AAA-stacked trilayer graphene

    NASA Astrophysics Data System (ADS)

    Mohammadi, Yawar; Moradian, Rostam; Shirzadi Tabar, Farzad

    2014-09-01

    We calculate the static polarization of AAA-stacked trilayer graphene (TLG) and study its screening properties within the random phase approximation (RPA) in all undoped, doped and biased regimes. We find that the static polarization of undoped AAA-stacked TLG is a combination of the doped and undoped single-layer graphene static polarization. This leads to an enhancement of the dielectric background constant along a Thomas-Fermi screening with the Thomas-Fermi wave vector which is independent of carrier concentrations and a 1/r3 power law decay for the long-distance behavior of the screened Coulomb potential. We show that effects of a bias voltage can be taken into account by a renormalization of the interlayer hopping energy to a new bias-voltage-dependent value, indicating screening properties of AAA-stacked TLG can be tuned electrically. We also find that screening properties of doped AAA-stacked TLG, when μ exceeds √{2}γ, are similar to that of doped SLG only depending on doping. While for μ<√{2}γ, its screening properties are combination of SLG and AA-stacked bilayer graphene screening properties and they are determined by doping and the interlayer hopping energy.

  18. The effects of shoulder stabilization exercises and pectoralis minor stretching on balance and maximal shoulder muscle strength of healthy young adults with round shoulder posture.

    PubMed

    Kim, Mi-Kyoung; Lee, Jung Chul; Yoo, Kyung-Tae

    2018-03-01

    [Purpose] The purpose of this study was to analyze the effects of pectoralis minor stretching and shoulder strengthening with an elastic band on balance and maximal shoulder muscle strength in young adults with rounded shoulder posture. [Subjects and Methods] Nineteen subjects with rounded shoulder posture were randomly divided into 2 groups: a shoulder stabilization exercise group and a stretching exercise group. The groups performed each exercise for 40 minutes, 3 times a week, for 4 weeks. Static balance (eyes open and closed), dynamic balance (the limits of stability in 4 directions) and shoulder muscle strength in 5 directions were measure before and after the exercises. [Results] The stretching exercise demonstrated a significant difference between the pre- and post-exercise in the static balance with eyes closed and extension and horizontal abduction strength while the stabilization exercise demonstrated significant difference in the left and right directions between the pre- and post-exercise of the dynamic balance and flexion strength. The stabilization exercise demonstrated significant differences shown in the flexion between the pre- and post-test. [Conclusion] The shoulder stabilization and stretching exercises improved the static balance, dynamic balance, and muscle strength.

  19. Local Nash Equilibrium in Social Networks

    NASA Astrophysics Data System (ADS)

    Zhang, Yichao; Aziz-Alaoui, M. A.; Bertelle, Cyrille; Guan, Jihong

    2014-08-01

    Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures.

  20. Random diffusion and cooperation in continuous two-dimensional space.

    PubMed

    Antonioni, Alberto; Tomassini, Marco; Buesser, Pierre

    2014-03-07

    This work presents a systematic study of population games of the Prisoner's Dilemma, Hawk-Dove, and Stag Hunt types in two-dimensional Euclidean space under two-person, one-shot game-theoretic interactions, and in the presence of agent random mobility. The goal is to investigate whether cooperation can evolve and be stable when agents can move randomly in continuous space. When the agents all have the same constant velocity cooperation may evolve if the agents update their strategies imitating the most successful neighbor. If a fitness difference proportional is used instead, cooperation does not improve with respect to the static random geometric graph case. When viscosity effects set-in and agent velocity becomes a quickly decreasing function of the number of neighbors they have, one observes the formation of monomorphic stable clusters of cooperators or defectors in the Prisoner's Dilemma. However, cooperation does not spread in the population as in the constant velocity case. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Adaptive Circuits for the 0.5-V Nanoscale CMOS Era

    NASA Astrophysics Data System (ADS)

    Itoh, Kiyoo; Yamaoka, Masanao; Oshima, Takashi

    The minimum operating voltage, Vmin, of nanoscale CMOS LSIs is investigated to breach the 1-V wall that we are facing in the 65-nm device generation, and open the door to the below 0.5-V era. A new method using speed variation is proposed to evaluate Vmin. It shows that Vmin is very sensitive to the lowest necessary threshold voltage, Vt0, of MOSFETs and to threshold-voltage variations, ΔVt, which become more significant with device scaling. There is thus a need for low-Vt0 circuits and ΔVt-immune MOSFETs to reduce Vmin. For memory-rich LSIs, the SRAM block is particularly problematic because it has the highest Vmin. Various techniques are thus proposed to reduce the Vmin: using RAM repair, shortening the data line, up-sizing, and using more relaxed MOSFET scaling. To effectively reduce Vmin of other circuit blocks, dual-Vt0 and dual-VDD circuits using gate-source reverse biasing, temporary activation, and series connection of another small low-Vt0 MOSFET are proposed. They are dynamic logic circuits enabling the power-delay product of the conventional static CMOS inverter to be reduced to 0.09 at a 0.2-V supply, and a DRAM dynamic sense amplifier and power switches operable at below 0.5V. In addition, a fully-depleted structure (FD-SOI) and fin-type structure (FinFET) for Vt-immune MOSFETs are discussed in terms of their low-voltage potential and challenges. As a result, the height up-scalable FinFETs turns out to be quite effective to reduce Vmin to less than 0.5V, if combined with the low-Vt0 circuits. For mixed-signal LSIs, investigation of low-voltage potential of analog circuits, especially for comparators and operational amplifiers, reveals that simple inverter op-amps, in which the low gain and nonlinearity are compensated for by digitally assisted analog designs, are crucial to 0.5-V operations. Finally, it is emphasized that the development of relevant devices and fabrication processes is the key to the achievement of 0.5-V nanoscale LSIs.

  2. Role of random electric fields in relaxors

    PubMed Central

    Phelan, Daniel; Stock, Christopher; Rodriguez-Rivera, Jose A.; Chi, Songxue; Leão, Juscelino; Long, Xifa; Xie, Yujuan; Bokov, Alexei A.; Ye, Zuo-Guang; Ganesh, Panchapakesan; Gehring, Peter M.

    2014-01-01

    PbZr1–xTixO3 (PZT) and Pb(Mg1/3Nb2/3)1–xTixO3 (PMN-xPT) are complex lead-oxide perovskites that display exceptional piezoelectric properties for pseudorhombohedral compositions near a tetragonal phase boundary. In PZT these compositions are ferroelectrics, but in PMN-xPT they are relaxors because the dielectric permittivity is frequency dependent and exhibits non-Arrhenius behavior. We show that the nanoscale structure unique to PMN-xPT and other lead-oxide perovskite relaxors is absent in PZT and correlates with a greater than 100% enhancement of the longitudinal piezoelectric coefficient in PMN-xPT relative to that in PZT. By comparing dielectric, structural, lattice dynamical, and piezoelectric measurements on PZT and PMN-xPT, two nearly identical compounds that represent weak and strong random electric field limits, we show that quenched (static) random fields establish the relaxor phase and identify the order parameter. PMID:24449912

  3. I-V Characteristics of a Static Random Access Memory Cell Utilizing Ferroelectric Transistors

    NASA Technical Reports Server (NTRS)

    Laws, Crystal; Mitchell, Cody; Hunt, Mitchell; Ho, Fat D.; MacLeod, Todd C.

    2012-01-01

    I-V characteristics for FeFET different than that of MOSFET Ferroelectric layer features hysteresis trend whereas MOSFET behaves same for both increasing and decreasing VGS FeFET I-V characteristics doesn't show dependence on VDS A Transistor with different channel length and width as well as various resistance and input voltages give different results As resistance values increased, the magnitude of the drain current decreased.

  4. Scrambled Sobol Sequences via Permutation

    DTIC Science & Technology

    2009-01-01

    LCG LCG64 LFG MLFG PMLCG Sobol Scrambler PermutationScrambler LinearScrambler <<uses>> PermuationFactory StaticFactory DynamicFactory <<uses>> Figure 3...Phy., 19:252–256, 1979. [2] Emanouil I. Atanassov. A new efficient algorithm for generating the scrambled sobol ’ sequence. In NMA ’02: Revised Papers...Deidre W.Evan, and Micheal Mascagni. On the scrambled sobol sequence. In ICCS2005, pages 775–782, 2005. [7] Richard Durstenfeld. Algorithm 235: Random

  5. Whole body vibration for older persons: an open randomized, multicentre, parallel, clinical trial

    PubMed Central

    2011-01-01

    Background Institutionalized older persons have a poor functional capacity. Including physical exercise in their routine activities decreases their frailty and improves their quality of life. Whole-body vibration (WBV) training is a type of exercise that seems beneficial in frail older persons to improve their functional mobility, but the evidence is inconclusive. This trial will compare the results of exercise with WBV and exercise without WBV in improving body balance, muscle performance and fall prevention in institutionalized older persons. Methods/Design An open, multicentre and parallel randomized clinical trial with blinded assessment. 160 nursing home residents aged over 65 years and of both sexes will be identified to participate in the study. Participants will be centrally randomised and allocated to interventions (vibration or exercise group) by telephone. The vibration group will perform static/dynamic exercises (balance and resistance training) on a vibratory platform (Frequency: 30-35 Hz; Amplitude: 2-4 mm) over a six-week training period (3 sessions/week). The exercise group will perform the same exercise protocol but without a vibration stimuli platform. The primary outcome measure is the static/dynamic body balance. Secondary outcomes are muscle strength and, number of new falls. Follow-up measurements will be collected at 6 weeks and at 6 months after randomization. Efficacy will be analysed on an intention-to-treat (ITT) basis and 'per protocol'. The effects of the intervention will be evaluated using the "t" test, Mann-Witney test, or Chi-square test, depending on the type of outcome. The final analysis will be performed 6 weeks and 6 months after randomization. Discussion This study will help to clarify whether WBV training improves body balance, gait mobility and muscle strength in frail older persons living in nursing homes. As far as we know, this will be the first study to evaluate the efficacy of WBV for the prevention of falls. Trial Registration ClinicalTrials.gov: NCT01375790 PMID:22192313

  6. Static and low frequency noise characterization of ultra-thin body InAs MOSFETs

    NASA Astrophysics Data System (ADS)

    Karatsori, T. A.; Pastorek, M.; Theodorou, C. G.; Fadjie, A.; Wichmann, N.; Desplanque, L.; Wallart, X.; Bollaert, S.; Dimitriadis, C. A.; Ghibaudo, G.

    2018-05-01

    A complete static and low frequency noise characterization of ultra-thin body InAs MOSFETs is presented. Characterization techniques, such as the well-known Y-function method established for Si MOSFETs, are applied in order to extract the electrical parameters and study the behavior of these research grade devices. Additionally, the Lambert-W function parameter extraction methodology valid from weak to strong inversion is also used in order to verify its applicability in these experimental level devices. Moreover, a low-frequency noise characterization of the UTB InAs MOSFETs is presented, revealing carrier trapping/detrapping in slow oxide traps and remote Coulomb scattering as origin of 1/f noise, which allowed for the extraction of the oxide trap areal density. Finally, Lorentzian-like noise is also observed in the sub-micron area devices and attributed to both Random Telegraph Noise from oxide individual traps and g-r noise from the semiconductor interface.

  7. Static terrestrial laser scanning of juvenile understory trees for field phenotyping

    NASA Astrophysics Data System (ADS)

    Wang, Huanhuan; Lin, Yi

    2014-11-01

    This study was to attempt the cutting-edge 3D remote sensing technique of static terrestrial laser scanning (TLS) for parametric 3D reconstruction of juvenile understory trees. The data for test was collected with a Leica HDS6100 TLS system in a single-scan way. The geometrical structures of juvenile understory trees are extracted by model fitting. Cones are used to model trunks and branches. Principal component analysis (PCA) is adopted to calculate their major axes. Coordinate transformation and orthogonal projection are used to estimate the parameters of the cones. Then, AutoCAD is utilized to simulate the morphological characteristics of the understory trees, and to add secondary branches and leaves in a random way. Comparison of the reference values and the estimated values gives the regression equation and shows that the proposed algorithm of extracting parameters is credible. The results have basically verified the applicability of TLS for field phenotyping of juvenile understory trees.

  8. The Effect of Underwater Gait Training on Balance Ability of Stroke Patients

    PubMed Central

    Park, Seok Woo; Lee, Kyoung Jin; Shin, Doo Chul; Shin, Seung Ho; Lee, Myung Mo; Song, Chang Ho

    2014-01-01

    [Purpose] The purpose of this study was to investigate the effects of underwater treadmill gait training on the balance ability of stroke patients. [Subjects] Twenty-two patients with stroke were randomly assigned to an underwater treadmill group (n =11) or a control group (n =11). [Methods] Both groups received general rehabilitation for 30 min per session, 5 times per week, over a 4-week period. The underwater treadmill group received additional underwater gait training for 30 min per session, 5 times per week, over the same 4-week period. Static and dynamic balances were evaluated before and after the intervention. [Results] The means of static and dynamic balance ability increased significantly in both groups, but there was no significant difference between the two groups. [Conclusion] Compared to the general rehabilitation program, underwater treadmill gait training was not more effective at improving the balance ability of stroke patients than land-based training. PMID:25013292

  9. A k-Vector Approach to Sampling, Interpolation, and Approximation

    NASA Astrophysics Data System (ADS)

    Mortari, Daniele; Rogers, Jonathan

    2013-12-01

    The k-vector search technique is a method designed to perform extremely fast range searching of large databases at computational cost independent of the size of the database. k-vector search algorithms have historically found application in satellite star-tracker navigation systems which index very large star catalogues repeatedly in the process of attitude estimation. Recently, the k-vector search algorithm has been applied to numerous other problem areas including non-uniform random variate sampling, interpolation of 1-D or 2-D tables, nonlinear function inversion, and solution of systems of nonlinear equations. This paper presents algorithms in which the k-vector search technique is used to solve each of these problems in a computationally-efficient manner. In instances where these tasks must be performed repeatedly on a static (or nearly-static) data set, the proposed k-vector-based algorithms offer an extremely fast solution technique that outperforms standard methods.

  10. A Self-Alignment Algorithm for SINS Based on Gravitational Apparent Motion and Sensor Data Denoising

    PubMed Central

    Liu, Yiting; Xu, Xiaosu; Liu, Xixiang; Yao, Yiqing; Wu, Liang; Sun, Jin

    2015-01-01

    Initial alignment is always a key topic and difficult to achieve in an inertial navigation system (INS). In this paper a novel self-initial alignment algorithm is proposed using gravitational apparent motion vectors at three different moments and vector-operation. Simulation and analysis showed that this method easily suffers from the random noise contained in accelerometer measurements which are used to construct apparent motion directly. Aiming to resolve this problem, an online sensor data denoising method based on a Kalman filter is proposed and a novel reconstruction method for apparent motion is designed to avoid the collinearity among vectors participating in the alignment solution. Simulation, turntable tests and vehicle tests indicate that the proposed alignment algorithm can fulfill initial alignment of strapdown INS (SINS) under both static and swinging conditions. The accuracy can either reach or approach the theoretical values determined by sensor precision under static or swinging conditions. PMID:25923932

  11. Laplacian Estrada and normalized Laplacian Estrada indices of evolving graphs.

    PubMed

    Shang, Yilun

    2015-01-01

    Large-scale time-evolving networks have been generated by many natural and technological applications, posing challenges for computation and modeling. Thus, it is of theoretical and practical significance to probe mathematical tools tailored for evolving networks. In this paper, on top of the dynamic Estrada index, we study the dynamic Laplacian Estrada index and the dynamic normalized Laplacian Estrada index of evolving graphs. Using linear algebra techniques, we established general upper and lower bounds for these graph-spectrum-based invariants through a couple of intuitive graph-theoretic measures, including the number of vertices or edges. Synthetic random evolving small-world networks are employed to show the relevance of the proposed dynamic Estrada indices. It is found that neither the static snapshot graphs nor the aggregated graph can approximate the evolving graph itself, indicating the fundamental difference between the static and dynamic Estrada indices.

  12. New insights gained on mechanisms of low-energy proton-induced SEUs by minimizing energy straggle

    DOE PAGES

    Dodds, Nathaniel Anson; Dodd, Paul E.; Shaneyfelt, Marty R.; ...

    2015-12-01

    In this study, we present low-energy proton single-event upset (SEU) data on a 65 nm SOI SRAM whose substrate has been completely removed. Since the protons only had to penetrate a very thin buried oxide layer, these measurements were affected by far less energy loss, energy straggle, flux attrition, and angular scattering than previous datasets. The minimization of these common sources of experimental interference allows more direct interpretation of the data and deeper insight into SEU mechanisms. The results show a strong angular dependence, demonstrate that energy straggle, flux attrition, and angular scattering affect the measured SEU cross sections, andmore » prove that proton direct ionization is the dominant mechanism for low-energy proton-induced SEUs in these circuits.« less

  13. Irradiation setup at the U-120M cyclotron facility

    NASA Astrophysics Data System (ADS)

    Křížek, F.; Ferencei, J.; Matlocha, T.; Pospíšil, J.; Príbeli, P.; Raskina, V.; Isakov, A.; Štursa, J.; Vaňát, T.; Vysoká, K.

    2018-06-01

    This paper describes parameters of the proton beams provided by the U-120M cyclotron and the related irradiation setup at the open access irradiation facility at the Nuclear Physics Institute of the Czech Academy of Sciences. The facility is suitable for testing radiation hardness of various electronic components. The use of the setup is illustrated by a measurement of an error rate for errors caused by Single Event Transients in an SRAM-based Xilinx XC3S200 FPGA. This measurement provides an estimate of a possible occurrence of Single Event Transients. Data suggest that the variation of error rate of the Single Event Effects for different clock phase shifts is not significant enough to use clock phase alignment with the beam as a fault mitigation technique.

  14. Evolutionary Based Techniques for Fault Tolerant Field Programmable Gate Arrays

    NASA Technical Reports Server (NTRS)

    Larchev, Gregory V.; Lohn, Jason D.

    2006-01-01

    The use of SRAM-based Field Programmable Gate Arrays (FPGAs) is becoming more and more prevalent in space applications. Commercial-grade FPGAs are potentially susceptible to permanently debilitating Single-Event Latchups (SELs). Repair methods based on Evolutionary Algorithms may be applied to FPGA circuits to enable successful fault recovery. This paper presents the experimental results of applying such methods to repair four commonly used circuits (quadrature decoder, 3-by-3-bit multiplier, 3-by-3-bit adder, 440-7 decoder) into which a number of simulated faults have been introduced. The results suggest that evolutionary repair techniques can improve the process of fault recovery when used instead of or as a supplement to Triple Modular Redundancy (TMR), which is currently the predominant method for mitigating FPGA faults.

  15. Radiation testing campaign results for understanding the suitability of FPGAs in detector electronics

    DOE PAGES

    Citterio, M.; Camplani, A.; Cannon, M.; ...

    2015-11-19

    SRAM based Field Programmable Gate Arrays (FPGAs) have been rarely used in High Energy Physics (HEP) due to their sensitivity to radiation. The last generation of commercial FPGAs based on 28 nm feature size and on Silicon On Insulator (SOI) technologies are more tolerant to radiation to the level that their use in front-end electronics is now feasible. FPGAs provide re-programmability, high-speed computation and fast data transmission through the embedded serial transceivers. They could replace custom application specific integrated circuits in front end electronics in locations with moderate radiation field. Finally, the use of a FPGA in HEP experiments ismore » only limited by our ability to mitigate single event effects induced by the high energy hadrons present in the radiation field.« less

  16. DESTINY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-03-10

    DESTINY is a comprehensive tool for modeling 3D and 2D cache designs using SRAM,embedded DRAM (eDRAM), spin transfer torque RAM (STT-RAM), resistive RAM (ReRAM), and phase change RAM (PCN). In its purpose, it is similar to CACTI, CACTI-3DD or NVSim. DESTINY is very useful for performing design-space exploration across several dimensions, such as optimizing for a target (e.g. latency, area or energy-delay product) for agiven memory technology, choosing the suitable memory technology or fabrication method (i.e. 2D v/s 3D) for a given optimization target, etc. DESTINY has been validated against several cache prototypes. DESTINY is expected to boost studies ofmore » next-generation memory architectures used in systems ranging from mobile devices to extreme-scale supercomputers.« less

  17. Variable Depth Bragg Peak Method for Single Event Effects Testing

    NASA Technical Reports Server (NTRS)

    Buchner, S.; Kanyogoro, N.; Foster, C.; O'Neill, P.

    2011-01-01

    Traditionally, accelerator SEE testing is accomplished by removing the tops of packages so that the IC chips are accessible to heavy ions. However, ICs in some advanced packages cannot be de-lidded so a different approach is used that involves grinding and/or chemically etching away part of the package and the chip from the back side. The parts are then tested from the back side with ions having sufficient range to reach the sensitive volume. More recently, the entire silicon substrate in an SOI/SRAM was removed, making it possible to use low-energy ions with shorter ranges. Where removal of part of the package is not possible, facilities at Michigan State, NASA Space Radiation Laboratory, GANIL (France) and GSI (Germany) offer high-energy heavy ions with long ranges so that the ions can reach the devices' sensitive volumes without much change in the LET. Unfortunately, a run will typically involve only one ion species having a single energy and LET due to the long time it takes to tune a new energy. The Variable Depth Bragg Peak (VDBP) method is similar to the above method in that it involves the use of high-energy heavy ions that are able to pass through the packaging material and reach the device, obviating the need to remove the package. However, the method provides a broad range of LETs from a single ion by inserting degraders in the beam that modify the ion energy and, therefore, the LET. The crux of the method involves establishing a fiduciary point for degrader thickness, i.e., where the Bragg peak is located precisely at the sensitive volume in the device, for which the measured SEU cross-section and the ion LET are both also maxima and can be calculated using a Monte-Carlo program, TRIM. Once the fiduciary point has been established, calibrated high density polyethylene (HDPE) degraders are inserted into or removed from the beam to vary the ion LET at the device in a known manner. After each change of degrader thickness, the SEU cross-section is measured and the corresponding LET calculated from the change in degrader thickness. That information is used to generate a plot of cross-section as a function of ion LET. The advantages of this approach are that the part does not have to be de-lidded and a broad range of LETs is available from a single heavy ion without having to go to non-normal angles of incidence to change the "effective" LET. As we will show, it is possible to obtain an entire curve of cross-section versus LET using just two or three ions. Fig. 1 shows curves of cross-section vs LET for a Freescale 4 Mbit SOI/SRAM measured at the 88" Cyclotron at Berkeley and at NSRL. The open symbols are the data obtained from Berkeley for top-side and back-side irradiation. The solid data points are for the data obtained at NSRL using a device for which the package was intact. The data are for Iron and Gold and cover a range of LETs from 4 MeV.cm2/mg to 84 MeV.cm2/mg. The agreement between the data obtained from Berkeley and from NSRL is excellent, demonstrating that the VDBP method is capable of providing accurate values of cross-section versus LET, at least for the 4 Mbit SRAM. Details of the technique will be included in the final presentation.

  18. Demonstration of the Potential of Magnetic Tunnel Junctions for a Universal RAM Technology

    NASA Astrophysics Data System (ADS)

    Gallagher, William J.

    2000-03-01

    Over the past four years, tunnel junctions with magnetic electrodes have emerged as promising devices for future magnetoresistive sensing and for information storage. This talk will review advances in these devices, focusing particularly on the use of magnetic tunnel junctions for magnetic random access memory (MRAM). Exchange-biased versions of magnetic tunnel junctions (MTJs) in particular will be shown to have useful properties for forming magnetic memory storage elements in a novel cross-point architecture. Exchange-biased MTJ elements have been made with areas as small as 0.1 square microns and have shown magnetoresistance values exceeding 40 The potential of exchange-biased MTJs for MRAM has been most seriously explored in a demonstration experiment involving the integration of 0.25 micron CMOS technology with a special magnetic tunnel junction "back end." The magnetic back end is based upon multi-layer magnetic tunnel junction growth technology which was developed using research-scale equipment and one-inch size substrates. For the demonstration, the CMOS wafers processed through two metal layers were cut into one-inch squares for depositions of bottom-pinned exchange-biased magnetic tunnel junctions. The samples were then processed through four additional lithographic levels to complete the circuits. The demonstration focused attention on a number of processing and device issues that were addressed successfully enough that key performance aspects of MTJ MRAM were demonstrated in 1 K bit arrays, including reads and writes in less than 10 ns and nonvolatility. While other key issues remain to be addressed, these results suggest that MTJ MRAM might simultaneously provide much of the functionality now provided separately by SRAM, DRAM, and NVRAM.

  19. Assessing adverse effects of intra-articular botulinum toxin A in healthy Beagle dogs: A placebo-controlled, blinded, randomized trial

    PubMed Central

    Jokinen, Tarja S.; Syrjä, Pernilla; Junnila, Jouni; Hielm-Björkman, Anna; Laitinen-Vapaavuori, Outi

    2018-01-01

    Objective To investigate the clinical, cytological, and histopathological adverse effects of intra-articularly injected botulinum toxin A in dogs and to study whether the toxin spreads from the joint after the injection. Methods A longitudinal, placebo-controlled, randomized clinical trial was conducted with six healthy laboratory Beagle dogs. Stifle joints were randomized to receive either 30 IU of onabotulinum toxin A or placebo in a 1:1 ratio. Adverse effects and spread of the toxin were examined by evaluating dynamic and static weight-bearing of the injected limbs, by assessing painless range of motion and pain on palpation of joints, and by performing synovial fluid analysis, neurological examination, and electrophysiological recordings at different examination time-points in a 12-week period after the injections. The dogs were then euthanized and autopsy and histopathological examination of joint structures and adjacent muscles and nerves were performed. Results Intra-articular botulinum toxin A did not cause local weakness or injection site pain. Instead, static weight-bearing and painless range of motion of stifle joints decreased in the placebo limbs. No clinically significant abnormalities associated with intra-articular botulinum toxin A were detected in the neurological examinations. Electrophysiological recordings showed low compound muscle action potentials in two dogs in the botulinum toxin A-injected limb. No significant changes were detected in the synovial fluid. Autopsy and histopathological examination of the joint and adjacent muscles and nerves did not reveal histopathological adverse effects of the toxin. Conclusion Intra-articular botulinum toxin A does not produce significant clinical, cytological, or histopathological adverse effects in healthy dogs. Based on the electrophysiological recordings, the toxin may spread from the joint, but its clinical impact seems to be low. PMID:29320549

  20. Effects of a multimodal exercise program on balance, functional mobility and fall risk in older adults with cognitive impairment: a randomized controlled single-blind study.

    PubMed

    Kovács, E; Sztruhár Jónásné, I; Karóczi, C K; Korpos, A; Gondos, T

    2013-10-01

    Exercise programs have important role in prevention of falls, but to date, there are conflicting findings about the effects of exercise programs on balance, functional performance and fall risk among cognitively impaired older adults. AIM. To investigate the effects of a multimodal exercise program on static and dynamic balance, and risk of falls in older adults with mild or moderate cognitive impairment. A randomized controlled study. A long-term care institute. Cognitively impaired individuals aged over 60 years. Eighty-six participants were randomized to an exercise group providing multimodal exercise program for 12 months or a control group which did not participate in any exercise program. The Performance Oriented Mobility Assessment scale, Timed Up and Go test, and incidence of falls were measured at baseline, at 6 months and at 12 months. There was a significant improvement in balance-related items of Performance Oriented Mobility Assessment scale in the exercise group both at 6 month and 12 month (P<0.0001, P=0.002; respectively). There was no statistically significant increase in gait-related items of Performance Oriented Mobility Assessment scale after the first 6-month treatment period (P=0.210), but in the second 6-month treatment period the POMA-G score improved significantly (P=0.001). There was no significant difference between groups regarding falls. Our results confirmed that a 12-month multimodal exercise program can improve the balance in cognitively impaired older adults. Based on our results, the multimodal exercise program may be a promising fall prevention exercise program for older adults with mild or moderate cognitive impairment improving static balance but it is supposed that more emphasis should be put on walking component of exercise program and environmental fall risk assessment.

  1. Assessing adverse effects of intra-articular botulinum toxin A in healthy Beagle dogs: A placebo-controlled, blinded, randomized trial.

    PubMed

    Heikkilä, Helka M; Jokinen, Tarja S; Syrjä, Pernilla; Junnila, Jouni; Hielm-Björkman, Anna; Laitinen-Vapaavuori, Outi

    2018-01-01

    To investigate the clinical, cytological, and histopathological adverse effects of intra-articularly injected botulinum toxin A in dogs and to study whether the toxin spreads from the joint after the injection. A longitudinal, placebo-controlled, randomized clinical trial was conducted with six healthy laboratory Beagle dogs. Stifle joints were randomized to receive either 30 IU of onabotulinum toxin A or placebo in a 1:1 ratio. Adverse effects and spread of the toxin were examined by evaluating dynamic and static weight-bearing of the injected limbs, by assessing painless range of motion and pain on palpation of joints, and by performing synovial fluid analysis, neurological examination, and electrophysiological recordings at different examination time-points in a 12-week period after the injections. The dogs were then euthanized and autopsy and histopathological examination of joint structures and adjacent muscles and nerves were performed. Intra-articular botulinum toxin A did not cause local weakness or injection site pain. Instead, static weight-bearing and painless range of motion of stifle joints decreased in the placebo limbs. No clinically significant abnormalities associated with intra-articular botulinum toxin A were detected in the neurological examinations. Electrophysiological recordings showed low compound muscle action potentials in two dogs in the botulinum toxin A-injected limb. No significant changes were detected in the synovial fluid. Autopsy and histopathological examination of the joint and adjacent muscles and nerves did not reveal histopathological adverse effects of the toxin. Intra-articular botulinum toxin A does not produce significant clinical, cytological, or histopathological adverse effects in healthy dogs. Based on the electrophysiological recordings, the toxin may spread from the joint, but its clinical impact seems to be low.

  2. Effective-medium theory of elastic waves in random networks of rods.

    PubMed

    Katz, J I; Hoffman, J J; Conradi, M S; Miller, J G

    2012-06-01

    We formulate an effective medium (mean field) theory of a material consisting of randomly distributed nodes connected by straight slender rods, hinged at the nodes. Defining wavelength-dependent effective elastic moduli, we calculate both the static moduli and the dispersion relations of ultrasonic longitudinal and transverse elastic waves. At finite wave vector k the waves are dispersive, with phase and group velocities decreasing with increasing wave vector. These results are directly applicable to networks with empty pore space. They also describe the solid matrix in two-component (Biot) theories of fluid-filled porous media. We suggest the possibility of low density materials with higher ratios of stiffness and strength to density than those of foams, aerogels, or trabecular bone.

  3. Collective Transport Properties of Driven Skyrmions with Random Disorder

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Ray, D.; Reichhardt, C. J. Olson

    2015-05-01

    We use particle-based simulations to examine the static and driven collective phases of Skyrmions interacting with random quenched disorder. We show that nondissipative effects due to the Magnus term reduce the depinning threshold and strongly affect the Skyrmion motion and the nature of the dynamic phases. The quenched disorder causes the Hall angle to become drive dependent in the moving Skyrmion phase, while different flow regimes produce distinct signatures in the transport curves. For weak disorder, the Skyrmions form a pinned crystal and depin elastically, while for strong disorder the system forms a pinned amorphous state that depins plastically. At high drives the Skyrmions can dynamically reorder into a moving crystal, with the onset of reordering determined by the strength of the Magnus term.

  4. Can Facebook Reduce Perceived Anxiety Among College Students? Randomized Controlled Exercise Trial Using the Transtheoretical Model of Behavior Change.

    PubMed

    Frith, Emily; Loprinzi, Paul

    2017-12-08

    Recent studies suggest social media may be an attractive strategy to promote mental health and wellness. There remains a need to examine the utility for individually tailored wellness messages posted to social media sites such as Facebook to facilitate positive psychological outcomes. Our aim was to extend the growing body of evidence supporting the potential for social media to enhance mental health. We evaluated the influence of an 8-week social media intervention on anxiety in college students and examined the impact of dynamic (active) versus static (passive) Facebook content on physical activity behaviors. Participants in the static group (n=21) accessed a Facebook page featuring 96 statuses. Statuses were intended to engage cognitive processes followed by behavioral processes of change per the transtheoretical model of behavior change. Content posted on the static Facebook page was identical to the dynamic page; however, the static group viewed all 96 statuses on the first day of the study, while the dynamic group received only 1 to 2 of these status updates per day throughout the intervention. Anxiety was measured using the Overall Anxiety Severity and Impairment Scale (OASIS). Time spent engaging in physical activity was assessed using the International Physical Activity Questionnaire (IPAQ). The OASIS change score for the dynamic Facebook group was statistically significant (P=.003), whereas the change score for the static group was not (P=.48). A statistically significant group-by-time interaction was observed (P=.03). The total IPAQ group-by-time interaction was not statistically significant (P=.06). We observed a decrease in anxiety and increase in total physical activity for the dynamic group only. Dynamic social networking sites, featuring regularly updated content, may be more advantageous than websites that retain static content over time. ClinicalTrials.gov NCT03363737; https://clinicaltrials.gov/ct2/show/NCT03363737 (Archived by WebCite at http://www.webcitation.org/6vXzNbOWJ). ©Emily Frith, Paul Loprinzi. Originally published in JMIR Mental Health (http://mental.jmir.org), 08.12.2017.

  5. Mechanical environmental test program for the Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Buckingham, R.; Sharp, G. R.

    1974-01-01

    This paper describes the spacecraft and subsystem level mechanical environmental test program which was developed for the Communications Technology Satellite (CTS). At the spacecraft level it includes sine and random vibration, static loading, centrifuge loading, pyrotechnic and separation shock simulation and (tentatively) acoustics. At the subsystem level it entails the same type of environmental exposure as applicable. Matrices of system and subsystem tests are presented showing type, level and hardware status for each major test.

  6. Radiation evaluation study of LSI RAM technologies

    NASA Astrophysics Data System (ADS)

    Dinger, G. L.; Knoll, M. G.

    1980-01-01

    Five commercial LSI static random access memory technologies having a 1 kilobit capacity were radiation characterized. Arrays from the transistor-transistor-logic (TTL), Schottky TTL, n-channel metal oxide semiconductor, complementary metal oxide semiconductor (CMOS), and CMOS/silicon on sapphire families were evaluated. Radiation failure thresholds for gamma doserate logic upset, total gamma dose survivability, and neutron fluence survivability were determined. A brief analysis of the radiation failure mechanism for each of the logic families tested is included.

  7. A smart way to identify and extract repeated patterns of a layout

    NASA Astrophysics Data System (ADS)

    Wei, Fang; Gu, Tingting; Chu, Zhihao; Zhang, Chenming; Chen, Han; Zhu, Jun; Hu, Xinyi; Du, Chunshan; Wan, Qijian; Liu, Zhengfang

    2018-03-01

    As integrated circuits (IC) technology moves forward, manufacturing process is facing more and more challenges. Optical proximity correction (OPC) has been playing an important role in the whole manufacturing process. In the deep sub-micron technology, OPC engineers not only need to guarantee the layout designs to be manufacturable but also take a more precise control of the critical patterns to ensure a high performance circuit. One of the tasks that would like to be performed is the consistency checking as the identical patterns under identical context should have identical OPC results in theory, like SRAM regions. Consistency checking is essentially a technique of repeated patterns identification, extraction and derived patterns (i.e. OPC results) comparison. The layout passing to the OPC team may not have enough design hierarchical information either because the original designs may have undergone several layout processing steps or some other unknown reasons. This paper presents a generic way to identify and extract repeated layout structures in SRAM regions purely based on layout pattern analysis through Calibre Pattern Matching and Calibre equation-based DRC (eqDRC). Without Pattern Matching and eqDRC, it will take lots of effort to manually get it done by trial and error, it is almost impossible to automate the pattern analysis process. Combining Pattern Matching and eqDRC opens a new way to implement this flow. The repeated patterns must have some fundamental features for measurement of pitches in the horizontal and vertical direction separately by Calibre eqDRC and meanwhile can be a helper to generate some anchor points which will be the starting points for Pattern Matching to capture patterns. The informative statistical report from the pattern search tells the match counts individually for each patterns captured. Experiment shows that this is a smart way of identifying and extracting repeated structures effectively. The OPC results are the derived layers on these repeated structures, by running pattern search using design layers as pattern layers and OPC results as marker layers, it is an easy job to compare the consistency.

  8. Asymmetric underlap optimization of sub-10nm finfets for realizing energy-efficient logic and robust memories

    NASA Astrophysics Data System (ADS)

    Akkala, Arun Goud

    Leakage currents in CMOS transistors have risen dramatically with technology scaling leading to significant increase in standby power consumption. Among the various transistor candidates, the excellent short channel immunity of Silicon double gate FinFETs have made them the best contender for successful scaling to sub-10nm nodes. For sub-10nm FinFETs, new quantum mechanical leakage mechanisms such as direct source to drain tunneling (DSDT) of charge carriers through channel potential energy barrier arising due to proximity of source/drain regions coupled with the high transport direction electric field is expected to dominate overall leakage. To counter the effects of DSDT and worsening short channel effects and to maintain Ion/ Ioff, performance and power consumption at reasonable values, device optimization techniques are necessary for deeply scaled transistors. In this work, source/drain underlapping of FinFETs has been explored using quantum mechanical device simulations as a potentially promising method to lower DSDT while maintaining the Ion/ Ioff ratio at acceptable levels. By adopting a device/circuit/system level co-design approach, it is shown that asymmetric underlapping, where the drain side underlap is longer than the source side underlap, results in optimal energy efficiency for logic circuits in near-threshold as well as standard, super-threshold operating regimes. In addition, read/write conflict in 6T SRAMs and the degradation in cell noise margins due to the low supply voltage can be mitigated by using optimized asymmetric underlapped n-FinFETs for the access transistor, thereby leading to robust cache memories. When gate-workfunction tuning is possible, using asymmetric underlapped n-FinFETs for both access and pull-down devices in an SRAM bit cell can lead to high-speed and low-leakage caches. Further, it is shown that threshold voltage degradation in the presence of Hot Carrier Injection (HCI) is less severe in asymmetric underlap n-FinFETs. A lifetime projection is carried out assuming that HCI is the major degradation mechanism and it is shown that a 3.4x improvement in device lifetime is possible over symmetric underlapped n-FinFET.

  9. Effects of a randomized controlled recurrent fall prevention program on risk factors for falls in frail elderly living at home in rural communities.

    PubMed

    Jeon, Mi Yang; Jeong, HyeonCheol; Petrofsky, Jerrold; Lee, Haneul; Yim, JongEun

    2014-11-14

    Falling can lead to severe health issues in the elderly and importantly contributes to morbidity, death, immobility, hospitalization, and early entry to long-term care facilities. The aim of this study was to devise a recurrent fall prevention program for elderly women in rural areas. This study adopted an assessor-blinded, randomized, controlled trial methodology. Subjects were enrolled in a 12-week recurrent fall prevention program, which comprised strength training, balance training, and patient education. Muscle strength and endurance of the ankles and the lower extremities, static balance, dynamic balance, depression, compliance with preventive behavior related to falls, fear of falling, and fall self-efficacy at baseline and immediately after the program were assessed. Sixty-two subjects (mean age 69.2±4.3 years old) completed the program--31 subjects in the experimental group and 31 subjects in the control group. When the results of the program in the 2 groups were compared, significant differences were found in ankle heel rise test, lower extremity heel rise test, dynamic balance, depression, compliance with fall preventative behavior, fear of falling, and fall self-efficacy (p<0.05), but no significant difference was found in static balance. This study shows that the fall prevention program described effectively improves muscle strength and endurance, balance, and psychological aspects in elderly women with a fall history.

  10. Refining Time-Activity Classification of Human Subjects Using the Global Positioning System.

    PubMed

    Hu, Maogui; Li, Wei; Li, Lianfa; Houston, Douglas; Wu, Jun

    2016-01-01

    Detailed spatial location information is important in accurately estimating personal exposure to air pollution. Global Position System (GPS) has been widely used in tracking personal paths and activities. Previous researchers have developed time-activity classification models based on GPS data, most of them were developed for specific regions. An adaptive model for time-location classification can be widely applied to air pollution studies that use GPS to track individual level time-activity patterns. Time-activity data were collected for seven days using GPS loggers and accelerometers from thirteen adult participants from Southern California under free living conditions. We developed an automated model based on random forests to classify major time-activity patterns (i.e. indoor, outdoor-static, outdoor-walking, and in-vehicle travel). Sensitivity analysis was conducted to examine the contribution of the accelerometer data and the supplemental spatial data (i.e. roadway and tax parcel data) to the accuracy of time-activity classification. Our model was evaluated using both leave-one-fold-out and leave-one-subject-out methods. Maximum speeds in averaging time intervals of 7 and 5 minutes, and distance to primary highways with limited access were found to be the three most important variables in the classification model. Leave-one-fold-out cross-validation showed an overall accuracy of 99.71%. Sensitivities varied from 84.62% (outdoor walking) to 99.90% (indoor). Specificities varied from 96.33% (indoor) to 99.98% (outdoor static). The exclusion of accelerometer and ambient light sensor variables caused a slight loss in sensitivity for outdoor walking, but little loss in overall accuracy. However, leave-one-subject-out cross-validation showed considerable loss in sensitivity for outdoor static and outdoor walking conditions. The random forests classification model can achieve high accuracy for the four major time-activity categories. The model also performed well with just GPS, road and tax parcel data. However, caution is warranted when generalizing the model developed from a small number of subjects to other populations.

  11. The Effects of Different Passive Static Stretching Intensities on Recovery from Unaccustomed Eccentric Exercise - A Randomized Controlled Trial.

    PubMed

    Apostolopoulos, Nikos C; Lahart, Ian M; Plyley, Michael J; Taunton, Jack; Nevill, Alan M; Koutedakis, Yiannis; Wyon, Matthew; Metsios, George S

    2018-03-12

    Effects of passive static stretching intensity on recovery from unaccustomed eccentric exercise of right knee extensors was investigated in 30 recreationally active males randomly allocated into three groups: high-intensity (70-80% maximum perceived stretch), low-intensity (30-40% maximum perceived stretch), and control. Both stretching groups performed 3 sets of passive static stretching exercises of 60s each for hamstrings, hip flexors, and quadriceps, over 3 consecutive days, post-unaccustomed eccentric exercise. Muscle function (eccentric and isometric peak torque) and blood biomarkers (CK and CRP) were measured before (baseline) and after (24, 48, and 72h) unaccustomed eccentric exercise. Perceived muscle soreness scores were collected immediately (time 0), and after 24, 48, and 72h post-exercise. Statistical time x condition interactions observed only for eccentric peak torque (p=.008). Magnitude-based inference analyses revealed low-intensity stretching had most likely, very likely, or likely beneficial effects on perceived muscle soreness (48-72h and 0-72h) and eccentric peak torque (baseline-24h and baseline-72h), compared with high-intensity stretching. Compared with control, low-intensity stretching had very likely or likely beneficial effects on perceived muscle soreness (0-24h and 0-72h), eccentric peak torque (baseline-48h and baseline-72h), and isometric peak torque (baseline-72h). High-intensity stretching had likely beneficial effects on eccentric peak torque (baseline-48h), but likely harmful effects eccentric peak torque (baseline-24h) and CK (baseline-48h and baseline-72h), compared with control. Therefore, low-intensity stretching is likely to result in small-to-moderate beneficial effects on perceived muscle soreness and recovery of muscle function post-unaccustomed eccentric exercise, but not markers of muscle damage and inflammation, compared with high-intensity or no stretching.

  12. The Effect of Shoulder Plyometric Training on Amortization Time and Upper-Extremity Kinematics.

    PubMed

    Swanik, Kathleen A; Thomas, Stephen J; Struminger, Aaron H; Bliven, Kellie C Huxel; Kelly, John D; Swanik, Charles B

    2016-12-01

    Plyometric training is credited with providing benefits in performance and dynamic restraint. However, limited prospective data exist quantifying kinematic adaptations such as amortization time, glenohumeral rotation, and scapulothoracic position, which may underlie the efficacy of plyometric training for upper-extremity rehabilitation or performance enhancement. To measure upper-extremity kinematics and plyometric phase times before and after an 8-wk upper-extremity strength- and plyometric-training program. Randomized pretest-posttest design. Research laboratory. 40 recreationally active men (plyometric group, age 20.43 ± 1.40 y, height 180.00 ± 8.80 cm, weight 73.07 ± 7.21 kg; strength group, age 21.95 ± 3.40 y, height 173.98 ± 11.91 cm, weight 74.79 ± 13.55 kg). Participants were randomly assigned to either a strength-training group or a strength- and plyometric-training group. Each participant performed the assigned training for 8 wk. Dynamic and static glenohumeral and scapular-rotation measurements were taken before and after the training programs. Dynamic measurement of scapular rotation and time spent in each plyometric phase (concentric, eccentric, and amortization) during a ball-toss exercise were recorded while the subjects were fitted with an electromagnetic tracking system. Static measures included scapular upward rotation at 3 different glenohumeral-abduction angles, glenohumeral internal rotation, and glenohumeral external rotation. Posttesting showed that both groups significantly decreased the time spent in the amortization, concentric, and eccentric phases of a ball-toss exercise (P < .01). Both groups also exhibited significantly decreased static external rotation and increased dynamic scapular upward rotation after the training period (P < .01). The only difference between the training protocols was that the plyometric-training group exhibited an increase in internal rotation that was not present in the strength-training group (P < .01). These findings support the use of both upper-extremity plyometrics and strength training for reducing commonly identified upper-extremity-injury risk factors and improving upper-extremity performance.

  13. Compliance-guided versus FiO2-driven positive-end expiratory pressure in patients with moderate or severe acute respiratory distress syndrome according to the Berlin definition.

    PubMed

    Pintado, M-C; de Pablo, R; Trascasa, M; Milicua, J-M; Sánchez-García, M

    To study the effect of setting positive end-expiratory pressure (PEEP) in an individualized manner (based on highest static compliance) compared to setting PEEP according to FiO 2 upon mortality at 28 and 90 days, in patients with different severity acute respiratory distress syndrome (ARDS). A Spanish medical-surgical ICU. A post hoc analysis of a randomized controlled pilot study. Patients with ARDS. Ventilation with low tidal volumes and pressure limitation at 30cmH 2 O, randomized in two groups according to the method used to set PEEP: FiO 2 -guided PEEP group according to FiO 2 applied and compliance-guided group according to the highest compliance. Demographic data, risk factors and severity of ARDS, APACHE II and SOFA scores, daily Lung Injury Score, ventilatory measurements, ICU and hospital stay, organ failure and mortality at day 28 and 90 after inclusion. A total of 159 patients with ARDS were evaluated, but just 70 patients were included. Severe ARDS patients showed more organ dysfunction-free days at 28 days (12.83±10.70 versus 3.09±7.23; p=0.04) and at 90 days (6.73±22.31 vs. 54.17±42.14, p=0.03), and a trend toward lower 90-days mortality (33.3% vs. 90.9%, p=0.02), when PEEP was applied according to the best static compliance. Patients with moderate ARDS did not show these effects. In patients with severe ARDS, individualized PEEP selection based on the best static compliance was associated to lower mortality at 90 days, with an increase in organ dysfunction-free days at 28 and 90 days. Copyright © 2016 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  14. Vehicle Localization by LIDAR Point Correlation Improved by Change Detection

    NASA Astrophysics Data System (ADS)

    Schlichting, A.; Brenner, C.

    2016-06-01

    LiDAR sensors are proven sensors for accurate vehicle localization. Instead of detecting and matching features in the LiDAR data, we want to use the entire information provided by the scanners. As dynamic objects, like cars, pedestrians or even construction sites could lead to wrong localization results, we use a change detection algorithm to detect these objects in the reference data. If an object occurs in a certain number of measurements at the same position, we mark it and every containing point as static. In the next step, we merge the data of the single measurement epochs to one reference dataset, whereby we only use static points. Further, we also use a classification algorithm to detect trees. For the online localization of the vehicle, we use simulated data of a vertical aligned automotive LiDAR sensor. As we only want to use static objects in this case as well, we use a random forest classifier to detect dynamic scan points online. Since the automotive data is derived from the LiDAR Mobile Mapping System, we are able to use the labelled objects from the reference data generation step to create the training data and further to detect dynamic objects online. The localization then can be done by a point to image correlation method using only static objects. We achieved a localization standard deviation of about 5 cm (position) and 0.06° (heading), and were able to successfully localize the vehicle in about 93 % of the cases along a trajectory of 13 km in Hannover, Germany.

  15. Acute Effects of Static Stretching, Dynamic Exercises, and High Volume Upper Extremity Plyometric Activity on Tennis Serve Performance

    PubMed Central

    Gelen, Ertugrul; Dede, Muhittin; Bingul, Bergun Meric; Bulgan, Cigdem; Aydin, Mensure

    2012-01-01

    The purpose of this study was to compare the acute effects of static stretching; dynamic exercises and high volume upper extremity plyometric activity on tennis serve performance. Twenty-six elite young tennis players (15.1 ± 4.2 years, 167.9 ± 5.8 cm and 61.6 ± 8.1 kg) performed 4 different warm-up (WU) routines in a random order on non-consecutive days. The WU methods consisted of traditional WU (jogging, rally and serve practice) (TRAD); traditional WU and static stretching (TRSS); traditional WU and dynamic exercise (TRDE); and traditional WU and high volume upper extremity plyometric activity (TRPLYP). Following each WU session, subjects were tested on a tennis serve ball speed test. TRAD, TRSS, TRDE and TRPLYO were compared by repeated measurement analyses of variance and post-hoc comparisons. In this study a 1 to 3 percent increase in tennis serve ball speed was recorded in TRDE and TRPLYO when compared to TRAD (p< 0.05). However, no significant change in ball speed performance between TRSS and TRAD. (p> 0.05). ICCs for ball speed showed strong reliability (0.82 to 0.93) for the ball speed measurements.The results of this study indicate that dynamic and high volume upper extremity plyometric WU activities are likely beneficial to serve speed of elite junior tennis players. Key points After the traditional warm up in tennis, static stretching has no effect on serve speed. Tennis players should perform dynamic exercises and/or high volume upper extremity plyometric activities to improve their athletic performance. PMID:24150068

  16. Two-stage revision of septic knee prosthesis with articulating knee spacers yields better infection eradication rate than one-stage or two-stage revision with static spacers.

    PubMed

    Romanò, C L; Gala, L; Logoluso, N; Romanò, D; Drago, L

    2012-12-01

    The best method for treating chronic periprosthetic knee infection remains controversial. Randomized, comparative studies on treatment modalities are lacking. This systematic review of the literature compares the infection eradication rate after two-stage versus one-stage revision and static versus articulating spacers in two-stage procedures. We reviewed full-text papers and those with an abstract in English published from 1966 through 2011 that reported the success rate of infection eradication after one-stage or two-stage revision with two different types of spacers. In all, 6 original articles reporting the results after one-stage knee exchange arthoplasty (n = 204) and 38 papers reporting on two-stage revision (n = 1,421) were reviewed. The average success rate in the eradication of infection was 89.8% after a two-stage revision and 81.9% after a one-stage procedure at a mean follow-up of 44.7 and 40.7 months, respectively. The average infection eradication rate after a two-stage procedure was slightly, although significantly, higher when an articulating spacer rather than a static spacer was used (91.2 versus 87%). The methodological limitations of this study and the heterogeneous material in the studies reviewed notwithstanding, this systematic review shows that, on average, a two-stage procedure is associated with a higher rate of eradication of infection than one-stage revision for septic knee prosthesis and that articulating spacers are associated with a lower recurrence of infection than static spacers at a comparable mean duration of follow-up. IV.

  17. Effect of Virtual Reality on Postural and Balance Control in Patients with Stroke: A Systematic Literature Review.

    PubMed

    Chen, Ling; Lo, Wai Leung Ambrose; Mao, Yu Rong; Ding, Ming Hui; Lin, Qiang; Li, Hai; Zhao, Jiang Li; Xu, Zhi Qin; Bian, Rui Hao; Huang, Dong Feng

    2016-01-01

    Objective . To critically evaluate the studies that were conducted over the past 10 years and to assess the impact of virtual reality on static and dynamic balance control in the stroke population. Method . A systematic review of randomized controlled trials published between January 2006 and December 2015 was conducted. Databases searched were PubMed, Scopus, and Web of Science. Studies must have involved adult patients with stroke during acute, subacute, or chronic phase. All included studies must have assessed the impact of virtual reality programme on either static or dynamic balance ability and compared it with a control group. The Physiotherapy Evidence Database (PEDro) scale was used to assess the methodological quality of the included studies. Results . Nine studies were included in this systematic review. The PEDro scores ranged from 4 to 9 points. All studies, except one, showed significant improvement in static or dynamic balance outcomes group. Conclusions . This review provided moderate evidence to support the fact that virtual reality training is an effective adjunct to standard rehabilitation programme to improve balance for patients with chronic stroke. The effect of VR training in balance recovery is less clear in patients with acute or subacute stroke. Further research is required to investigate the optimum training intensity and frequency to achieve the desired outcome.

  18. Annatto tocotrienol improves indices of bone static histomorphometry in osteoporosis due to testosterone deficiency in rats.

    PubMed

    Chin, Kok-Yong; Abdul-Majeed, Saif; Fozi, Nur Farhana Mohd; Ima-Nirwana, Soelaiman

    2014-11-10

    This study aimed to evaluate the effects of annatto tocotrienol on indices of bone static histomorphometry in orchidectomized rats. Forty male rats were randomized into baseline (BL), sham (SH), orchidectomized (ORX), annatto tocotrienol-treated (AnTT) and testosterone enanthate-treated (TE) groups. The BL group was sacrificed upon receipt. All rats except the SH group underwent bilateral orchidectomy. Annatto tocotrienol at 60 mg/kg body weight was administered orally daily to the AnTT group for eight weeks. Testosterone enanthate at 7 mg/kg body weight was administered intramuscularly once weekly for eight weeks to the TE group. The rat femurs were collected for static histomorphometric analysis upon necropsy. The results indicated that the ORX group had significantly higher osteoclast surface and eroded surface, and significantly lower osteoblast surface, osteoid surface and osteoid volume compared to the SH group (p < 0.05). Annatto tocotrienol and testosterone enanthate intervention prevented all these changes (p < 0.05). The efficacy of annatto tocotrienol was on par with testosterone enanthate. In conclusion, annatto tocotrienol at 60 mg/kg can prevent the imbalance in bone remodeling caused by increased osteoclast and bone resorption, and decreased osteoblast and bone formation. This serves as a basis for the application of annatto tocotrienol in hypogonadal men as an antiosteoporotic agent.

  19. Annatto Tocotrienol Improves Indices of Bone Static Histomorphometry in Osteoporosis Due to Testosterone Deficiency in Rats

    PubMed Central

    Chin, Kok-Yong; Abdul-Majeed, Saif; Mohd. Fozi, Nur Farhana; Ima-Nirwana, Soelaiman

    2014-01-01

    This study aimed to evaluate the effects of annatto tocotrienol on indices of bone static histomorphometry in orchidectomized rats. Forty male rats were randomized into baseline (BL), sham (SH), orchidectomized (ORX), annatto tocotrienol-treated (AnTT) and testosterone enanthate-treated (TE) groups. The BL group was sacrificed upon receipt. All rats except the SH group underwent bilateral orchidectomy. Annatto tocotrienol at 60 mg/kg body weight was administered orally daily to the AnTT group for eight weeks. Testosterone enanthate at 7 mg/kg body weight was administered intramuscularly once weekly for eight weeks to the TE group. The rat femurs were collected for static histomorphometric analysis upon necropsy. The results indicated that the ORX group had significantly higher osteoclast surface and eroded surface, and significantly lower osteoblast surface, osteoid surface and osteoid volume compared to the SH group (p < 0.05). Annatto tocotrienol and testosterone enanthate intervention prevented all these changes (p < 0.05). The efficacy of annatto tocotrienol was on par with testosterone enanthate. In conclusion, annatto tocotrienol at 60 mg/kg can prevent the imbalance in bone remodeling caused by increased osteoclast and bone resorption, and decreased osteoblast and bone formation. This serves as a basis for the application of annatto tocotrienol in hypogonadal men as an antiosteoporotic agent. PMID:25389899

  20. FOG Random Drift Signal Denoising Based on the Improved AR Model and Modified Sage-Husa Adaptive Kalman Filter.

    PubMed

    Sun, Jin; Xu, Xiaosu; Liu, Yiting; Zhang, Tao; Li, Yao

    2016-07-12

    In order to reduce the influence of fiber optic gyroscope (FOG) random drift error on inertial navigation systems, an improved auto regressive (AR) model is put forward in this paper. First, based on real-time observations at each restart of the gyroscope, the model of FOG random drift can be established online. In the improved AR model, the FOG measured signal is employed instead of the zero mean signals. Then, the modified Sage-Husa adaptive Kalman filter (SHAKF) is introduced, which can directly carry out real-time filtering on the FOG signals. Finally, static and dynamic experiments are done to verify the effectiveness. The filtering results are analyzed with Allan variance. The analysis results show that the improved AR model has high fitting accuracy and strong adaptability, and the minimum fitting accuracy of single noise is 93.2%. Based on the improved AR(3) model, the denoising method of SHAKF is more effective than traditional methods, and its effect is better than 30%. The random drift error of FOG is reduced effectively, and the precision of the FOG is improved.

  1. The impact of posture and prolonged cyclic compressive loading on vertebral joint mechanics.

    PubMed

    Gooyers, Chad E; McMillan, Robert D; Howarth, Samuel J; Callaghan, Jack P

    2012-08-01

    An in vitro biomechanics investigation exposing porcine functional spinal units (FSUs) to submaximal cyclic or static compressive forces while in a flexed, neutral, or extended posture. To investigate the combined effect of cyclically applied compressive force (e.g., vibration) and postural deviation on intervertebral joint mechanics. Independently, prolonged vibration exposure and non-neutral postures are known risk factors for development of low back pain and injury. However, there is limited basic scientific evidence to explain how the risk of low back injury from vibration exposure is modified by other mechanical factors. This work examined the influence of static postural deviation on vertebral joint height loss and compressive stiffness under cyclically applied compressive force. Forty-eight FSUs, consisting of 2 adjacent vertebrae, ligaments, and the intervening intervertebral disc were included in the study. Each specimen was randomized to 1 of 3 experimental posture conditions (neutral, flexed, or extended) and assigned to 1 of 2 loading protocols, consisting of (1) cyclic (1500 ± 1200 N applied at 5 Hz using a sinusoidal waveform, resulting in 0.2 g rms acceleration) or (2) 1500 N of static compressive force. RESULTS.: As expected, FSU height loss followed a typical first-order response in both the static and cyclic loading protocols, with the majority (~50%) of the loss occurring in the first 20 minutes of testing. A significant interaction between posture and loading protocol (P < 0.001) was noted in the magnitude of FSU height loss. Subsequent analysis of simple effects revealed significant differences between cyclic and static loading protocols in both a neutral (P = 0.016) and a flexed posture (P < 0.0001). No significant differences (P = 0.320) were noted between pre/postmeasurements of FSU compressive stiffness. Posture is an important mechanical factor to consider when assessing the risk of injury from cyclic loading to the lumbar spine.

  2. Growth plate cartilage shows different strain patterns in response to static versus dynamic mechanical modulation.

    PubMed

    Kaviani, Rosa; Londono, Irene; Parent, Stefan; Moldovan, Florina; Villemure, Isabelle

    2016-08-01

    Longitudinal growth of long bones and vertebrae occurs in growth plate cartilage. This process is partly regulated by mechanical forces, which are one of the underlying reasons for progression of growth deformities such as idiopathic adolescent scoliosis and early-onset scoliosis. This concept of mechanical modulation of bone growth is also exploited in the development of fusionless treatments of these deformities. However, the optimal loading condition for the mechanical modulation of growth plate remains to be identified. The objective of this study was to evaluate the effects of in vitro static versus dynamic modulation and of dynamic loading parameters, such as frequency and amplitude, on the mechanical responses and histomorphology of growth plate explants. Growth plate explants from distal ulnae of 4-week-old swines were extracted and randomly distributed among six experimental groups: baseline ([Formula: see text]), control ([Formula: see text]), static ([Formula: see text]) and dynamic ([Formula: see text]). For static and dynamic groups, mechanical modulation was performed in vitro using an Indexed CartiGen bioreactor. A stress relaxation test combined with confocal microscopy and digital image correlation was used to characterize the mechanical responses of each explant in terms of peak stress, equilibrium stress, equilibrium modulus of elasticity and strain pattern. Histomorphometrical measurements were performed on toluidine blue tissue sections using a semi-automatic custom-developed MATLAB toolbox. Results suggest that compared to dynamic modulation, static modulation changes the strain pattern of the tissue and thus is more detrimental for tissue biomechanics, while the histomorphological parameters are not affected by mechanical modulation. Also, under dynamic modulation, changing the frequency or amplitude does not affect the biomechanical response of the tissue. Results of this study will be useful in finding optimal and non-damaging parameters for the mechanical modulation of growth plate in fusionless treatments.

  3. The effect of static cyclotorsion compensation on refractive and visual outcomes using the Schwind Amaris laser platform for the correction of high astigmatism.

    PubMed

    Aslanides, Ioannis M; Toliou, Georgia; Padroni, Sara; Arba Mosquera, Samuel; Kolli, Sai

    2011-06-01

    To compare the refractive and visual outcomes using the Schwind Amaris excimer laser in patients with high astigmatism (>1D) with and without the static cyclotorsion compensation (SCC) algorithm available with this new laser platform. 70 consecutive eyes with ≥1D astigmatism were randomized to treatment with compensation of static cyclotorsion (SCC group- 35 eyes) or not (control group- 35 eyes). A previously validated optimized aspheric ablation algorithm profile was used in every case. All patients underwent LASIK with a microkeratome cut flap. The SCC and control group did not differ preoperatively, in terms of refractive error, magnitude of astigmatism or in terms of cardinal or oblique astigmatism. Following treatment, average deviation from target was SEq +0.16D, SD±0.52 D, range -0.98 D to +1.71 D in the SCC group compared to +0.46 D, SD±0.61 D, range -0.25 D to +2.35 D in the control group, which was statistically significant (p<0.05). Following treatment, average astigmatism was 0.24 D (SD±0.28 D, range -1.01 D to 0.00 D) in the SCC group compared to 0.46 D (SD±0.42 D, range -1.80 D to 0.00 D) in the control group, which was highly statistically significant (p<0.005). There was no statistical difference in the postoperative uncorrected vision when the aspheric algorithm was used although there was a trend to increased number of lines gained in the SCC group. This study shows that static cyclotorsion is accurately compensated for by the Schwind Amaris laser platform. The compensation of static cyclotorsion in patients with moderate astigmatism produces a significant improvement in refractive and astigmatic outcomes than when not compensated. Copyright © 2011 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  4. Design and development of cell queuing, processing, and scheduling modules for the iPOINT input-buffered ATM testbed

    NASA Astrophysics Data System (ADS)

    Duan, Haoran

    1997-12-01

    This dissertation presents the concepts, principles, performance, and implementation of input queuing and cell-scheduling modules for the Illinois Pulsar-based Optical INTerconnect (iPOINT) input-buffered Asynchronous Transfer Mode (ATM) testbed. Input queuing (IQ) ATM switches are well suited to meet the requirements of current and future ultra-broadband ATM networks. The IQ structure imposes minimum memory bandwidth requirements for cell buffering, tolerates bursty traffic, and utilizes memory efficiently for multicast traffic. The lack of efficient cell queuing and scheduling solutions has been a major barrier to build high-performance, scalable IQ-based ATM switches. This dissertation proposes a new Three-Dimensional Queue (3DQ) and a novel Matrix Unit Cell Scheduler (MUCS) to remove this barrier. 3DQ uses a linked-list architecture based on Synchronous Random Access Memory (SRAM) to combine the individual advantages of per-virtual-circuit (per-VC) queuing, priority queuing, and N-destination queuing. It avoids Head of Line (HOL) blocking and provides per-VC Quality of Service (QoS) enforcement mechanisms. Computer simulation results verify the QoS capabilities of 3DQ. For multicast traffic, 3DQ provides efficient usage of cell buffering memory by storing multicast cells only once. Further, the multicast mechanism of 3DQ prevents a congested destination port from blocking other less- loaded ports. The 3DQ principle has been prototyped in the Illinois Input Queue (iiQueue) module. Using Field Programmable Gate Array (FPGA) devices, SRAM modules, and integrated on a Printed Circuit Board (PCB), iiQueue can process incoming traffic at 800 Mb/s. Using faster circuit technology, the same design is expected to operate at the OC-48 rate (2.5 Gb/s). MUCS resolves the output contention by evaluating the weight index of each candidate and selecting the heaviest. It achieves near-optimal scheduling and has a very short response time. The algorithm originates from a heuristic strategy that leads to 'socially optimal' solutions, yielding a maximum number of contention-free cells being scheduled. A novel mixed digital-analog circuit has been designed to implement the MUCS core functionality. The MUCS circuit maps the cell scheduling computation to the capacitor charging and discharging procedures that are conducted fully in parallel. The design has a uniform circuit structure, low interconnect counts, and low chip I/O counts. Using 2 μm CMOS technology, the design operates on a 100 MHz clock and finds a near-optimal solution within a linear processing time. The circuit has been verified at the transistor level by HSPICE simulation. During this research, a five-port IQ-based optoelectronic iPOINT ATM switch has been developed and demonstrated. It has been fully functional with an aggregate throughput of 800 Mb/s. The second-generation IQ-based switch is currently under development. Equipped with iiQueue modules and MUCS module, the new switch system will deliver a multi-gigabit aggregate throughput, eliminate HOL blocking, provide per-VC QoS, and achieve near-100% link bandwidth utilization. Complete documentation of input modules and trunk module for the existing testbed, and complete documentation of 3DQ, iiQueue, and MUCS for the second-generation testbed are given in this dissertation.

  5. Nanoeletromechanical switch and logic circuits formed therefrom

    DOEpatents

    Nordquist, Christopher D [Albuquerque, NM; Czaplewski, David A [Albuquerque, NM

    2010-05-18

    A nanoelectromechanical (NEM) switch is formed on a substrate with a source electrode containing a suspended electrically-conductive beam which is anchored to the substrate at each end. This beam, which can be formed of ruthenium, bows laterally in response to a voltage applied between a pair of gate electrodes and the source electrode to form an electrical connection between the source electrode and a drain electrode located near a midpoint of the beam. Another pair of gate electrodes and another drain electrode can be located on an opposite side of the beam to allow for switching in an opposite direction. The NEM switch can be used to form digital logic circuits including NAND gates, NOR gates, programmable logic gates, and SRAM and DRAM memory cells which can be used in place of conventional CMOS circuits, or in combination therewith.

  6. Radiation Mitigation and Power Optimization Design Tools for Reconfigurable Hardware in Orbit

    NASA Technical Reports Server (NTRS)

    French, Matthew; Graham, Paul; Wirthlin, Michael; Wang, Li; Larchev, Gregory

    2005-01-01

    The Reconfigurable Hardware in Orbit (RHinO)project is focused on creating a set of design tools that facilitate and automate design techniques for reconfigurable computing in space, using SRAM-based field-programmable-gate-array (FPGA) technology. In the second year of the project, design tools that leverage an established FPGA design environment have been created to visualize and analyze an FPGA circuit for radiation weaknesses and power inefficiencies. For radiation, a single event Upset (SEU) emulator, persistence analysis tool, and a half-latch removal tool for Xilinx/Virtex-II devices have been created. Research is underway on a persistence mitigation tool and multiple bit upsets (MBU) studies. For power, synthesis level dynamic power visualization and analysis tools have been completed. Power optimization tools are under development and preliminary test results are positive.

  7. Communication Optimal Parallel Multiplication of Sparse Random Matrices

    DTIC Science & Technology

    2013-02-21

    Definition 2.1), and (2) the algorithm is sparsity- independent, where the computation is statically partitioned to processors independent of the sparsity...struc- ture of the input matrices (see Definition 2.5). The second assumption applies to nearly all existing al- gorithms for general sparse matrix-matrix...where A and B are n× n ER(d) matrices: Definition 2.1 An ER(d) matrix is an adjacency matrix of an Erdős-Rényi graph with parameters n and d/n. That

  8. Dynamical singularities of glassy systems in a quantum quench.

    PubMed

    Obuchi, Tomoyuki; Takahashi, Kazutaka

    2012-11-01

    We present a prototype of behavior of glassy systems driven by quantum dynamics in a quenching protocol by analyzing the random energy model in a transverse field. We calculate several types of dynamical quantum amplitude and find a freezing transition at some critical time. The behavior is understood by the partition-function zeros in the complex temperature plane. We discuss the properties of the freezing phase as a dynamical chaotic phase, which are contrasted to those of the spin-glass phase in the static system.

  9. Tensor of effective susceptibility in random magnetic composites: Application to two-dimensional and three-dimensional cases

    NASA Astrophysics Data System (ADS)

    Posnansky, Oleg P.

    2018-05-01

    The measuring of dynamic magnetic susceptibility by nuclear magnetic resonance is used for revealing information about the internal structure of various magnetoactive composites. The response of such material on the applied external static and time-varying magnetic fields encodes intrinsic dynamic correlations and depends on links between macroscopic effective susceptibility and structure on the microscopic scale. In the current work we carried out computational analysis of the frequency dependent dynamic magnetic susceptibility and demonstrated its dependence on the microscopic architectural elements while also considering Euclidean dimensionality. The proposed numerical method is efficient in the simulation of nuclear magnetic resonance experiments in two- and three-dimensional random magnetic media by choosing and modeling the influence of the concentration of components and internal hierarchical characteristics of physical parameters.

  10. Determination of Nonlinear Stiffness Coefficients for Finite Element Models with Application to the Random Vibration Problem

    NASA Technical Reports Server (NTRS)

    Muravyov, Alexander A.

    1999-01-01

    In this paper, a method for obtaining nonlinear stiffness coefficients in modal coordinates for geometrically nonlinear finite-element models is developed. The method requires application of a finite-element program with a geometrically non- linear static capability. The MSC/NASTRAN code is employed for this purpose. The equations of motion of a MDOF system are formulated in modal coordinates. A set of linear eigenvectors is used to approximate the solution of the nonlinear problem. The random vibration problem of the MDOF nonlinear system is then considered. The solutions obtained by application of two different versions of a stochastic linearization technique are compared with linear and exact (analytical) solutions in terms of root-mean-square (RMS) displacements and strains for a beam structure.

  11. Insulation workers in Belfast. 1. Comparison of a random sample with a control population1

    PubMed Central

    Wallace, William F. M.; Langlands, Jean H. M.

    1971-01-01

    Wallace, W. F. M., and Langlands, J. H. M. (1971).Brit. J. industr. Med.,28, 211-216. Insulation workers in Belfast. 1. Comparison of a random sample with a control population. A sample of 50 men was chosen at random from the population of asbestos insulators in Belfast and matched with a control series of men of similar occupational group with respect to age, height, and smoking habit. Significantly more of the insulators complained of cough and sputum and had basal rales on examination. Clubbing was assessed by means of measurements of the hyponychial angle of both index fingers. These angles were significantly greater in the group of insulators. Twenty-one insulators had ϰ-rays which showed pleural calcification with or without pulmonary fibrosis; one control ϰ-ray showed pulmonary fibrosis. The insulators had no evidence of airways obstruction but static lung volume was reduced and their arterial oxygen tension was lower than that of the controls and their alveolar-arterial oxygen gradient was greater. PMID:5557841

  12. The Kubo-Greenwood formula as a result of the random phase approximation for the electrons of the metal

    NASA Astrophysics Data System (ADS)

    Ivliev, S. V.

    2017-12-01

    For calculation of short laser pulse absorption in metal the imaginary part of permittivity, which is simply related to the conductivity, is required. Currently to find the static and dynamic conductivity the Kubo-Greenwood formula is most commonly used. It describes the electromagnetic energy absorption in the one-electron approach. In the present study, this formula is derived directly from the expression for the permittivity expression in the random phase approximation, which in fact is equivalent to the method of the mean field. The detailed analysis of the role of electron-electron interaction in the calculation of the matrix elements of the velocity operator is given. It is shown that in the one-electron random phase approximation the single-particle conductive electron wave functions in the field of fixed ions should be used. The possibility of considering the exchange and correlation effects by means of an amendment to a local function field is discussed.

  13. A new logistic dynamic particle swarm optimization algorithm based on random topology.

    PubMed

    Ni, Qingjian; Deng, Jianming

    2013-01-01

    Population topology of particle swarm optimization (PSO) will directly affect the dissemination of optimal information during the evolutionary process and will have a significant impact on the performance of PSO. Classic static population topologies are usually used in PSO, such as fully connected topology, ring topology, star topology, and square topology. In this paper, the performance of PSO with the proposed random topologies is analyzed, and the relationship between population topology and the performance of PSO is also explored from the perspective of graph theory characteristics in population topologies. Further, in a relatively new PSO variant which named logistic dynamic particle optimization, an extensive simulation study is presented to discuss the effectiveness of the random topology and the design strategies of population topology. Finally, the experimental data are analyzed and discussed. And about the design and use of population topology on PSO, some useful conclusions are proposed which can provide a basis for further discussion and research.

  14. Network Randomization and Dynamic Defense for Critical Infrastructure Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, Adrian R.; Martin, Mitchell Tyler; Hamlet, Jason

    2015-04-01

    Critical Infrastructure control systems continue to foster predictable communication paths, static configurations, and unpatched systems that allow easy access to our nation's most critical assets. This makes them attractive targets for cyber intrusion. We seek to address these attack vectors by automatically randomizing network settings, randomizing applications on the end devices themselves, and dynamically defending these systems against active attacks. Applying these protective measures will convert control systems into moving targets that proactively defend themselves against attack. Sandia National Laboratories has led this effort by gathering operational and technical requirements from Tennessee Valley Authority (TVA) and performing research and developmentmore » to create a proof-of-concept solution. Our proof-of-concept has been tested in a laboratory environment with over 300 nodes. The vision of this project is to enhance control system security by converting existing control systems into moving targets and building these security measures into future systems while meeting the unique constraints that control systems face.« less

  15. Application of a computerized vibroacoustic data bank for random vibration criteria development

    NASA Technical Reports Server (NTRS)

    Ferebee, R. C.

    1982-01-01

    A computerized data bank system was developed for utilization of large amounts of vibration and acoustic data to formulate component random vibration design and test criteria. This system consists of a computer, graphics tablets, and a dry silver hard copier which are all desk top type hardware and occupy minimal space. Currently, the data bank contains data from the Saturn 5 and Titan 3 flight and static test programs. The vibration and acoustic data are stored in the form of power spectral density and one third octave band plots over the frequency range from 20 to 2000 Hz. The data were stored by digitizing each spectral plot by tracing with the graphics tablet. The digitized data were statistically analyzed, and the resulting 97.5 percent confidence levels were stored on tape along with the appropriate structural parameters. Standard extrapolation procedures were programmed for prediction of component random vibration test criteria for new launch vehicle and payload configurations. A user's manual is included to guide potential users through the programs.

  16. Analysis of axial compressive loaded beam under random support excitations

    NASA Astrophysics Data System (ADS)

    Xiao, Wensheng; Wang, Fengde; Liu, Jian

    2017-12-01

    An analytical procedure to investigate the response spectrum of a uniform Bernoulli-Euler beam with axial compressive load subjected to random support excitations is implemented based on the Mindlin-Goodman method and the mode superposition method in the frequency domain. The random response spectrum of the simply supported beam subjected to white noise excitation and to Pierson-Moskowitz spectrum excitation is investigated, and the characteristics of the response spectrum are further explored. Moreover, the effect of axial compressive load is studied and a method to determine the axial load is proposed. The research results show that the response spectrum mainly consists of the beam's additional displacement response spectrum when the excitation is white noise; however, the quasi-static displacement response spectrum is the main component when the excitation is the Pierson-Moskowitz spectrum. Under white noise excitation, the amplitude of the power spectral density function decreased as the axial compressive load increased, while the frequency band of the vibration response spectrum increased with the increase of axial compressive load.

  17. Dimensional study of the dynamical arrest in a random Lorentz gas.

    PubMed

    Jin, Yuliang; Charbonneau, Patrick

    2015-04-01

    The random Lorentz gas (RLG) is a minimal model for transport in heterogeneous media. Upon increasing the obstacle density, it exhibits a growing subdiffusive transport regime and then a dynamical arrest. Here, we study the dimensional dependence of the dynamical arrest, which can be mapped onto the void percolation transition for Poisson-distributed point obstacles. We numerically determine the arrest in dimensions d=2-6. Comparison of the results with standard mode-coupling theory reveals that the dynamical theory prediction grows increasingly worse with d. In an effort to clarify the origin of this discrepancy, we relate the dynamical arrest in the RLG to the dynamic glass transition of the infinite-range Mari-Kurchan-model glass former. Through a mixed static and dynamical analysis, we then extract an improved dimensional scaling form as well as a geometrical upper bound for the arrest. The results suggest that understanding the asymptotic behavior of the random Lorentz gas may be key to surmounting fundamental difficulties with the mode-coupling theory of glasses.

  18. Enhancing Motion-In-Depth Perception of Random-Dot Stereograms.

    PubMed

    Zhang, Di; Nourrit, Vincent; De Bougrenet de la Tocnaye, Jean-Louis

    2018-07-01

    Random-dot stereograms have been widely used to explore the neural mechanisms underlying binocular vision. Although they are a powerful tool to stimulate motion-in-depth (MID) perception, published results report some difficulties in the capacity to perceive MID generated by random-dot stereograms. The purpose of this study was to investigate whether the performance of MID perception could be improved using an appropriate stimulus design. Sixteen inexperienced observers participated in the experiment. A training session was carried out to improve the accuracy of MID detection before the experiment. Four aspects of stimulus design were investigated: presence of a static reference, background texture, relative disparity, and stimulus contrast. Participants' performance in MID direction discrimination was recorded and compared to evaluate whether varying these factors helped MID perception. Results showed that only the presence of background texture had a significant effect on MID direction perception. This study provides suggestions for the design of 3D stimuli in order to facilitate MID perception.

  19. Random walks on cubic lattices with bond disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernst, M.H.; van Velthoven, P.F.J.

    1986-12-01

    The authors consider diffusive systems with static disorder, such as Lorentz gases, lattice percolation, ants in a labyrinth, termite problems, random resistor networks, etc. In the case of diluted randomness the authors can apply the methods of kinetic theory to obtain systematic expansions of dc and ac transport properties in powers of the impurity concentration c. The method is applied to a hopping model on a d-dimensional cubic lattice having two types of bonds with conductivity sigma and sigma/sub 0/ = 1, with concentrations c and 1-c, respectively. For the square lattice the authors explicitly calculate the diffusion coefficient D(c,sigma)more » as a function of c, to O(c/sup 2/) terms included for different ratios of the bond conductivity sigma. The probability of return at long times is given by P/sub 0/(t) approx. (4..pi..D(c,sigma)t)/sup -d/2/, which is determined by the diffusion coefficient of the disordered system.« less

  20. Development of a clinical static and dynamic standing balance measurement tool appropriate for use in adolescents.

    PubMed

    Emery, Carolyn A; Cassidy, J David; Klassen, Terry P; Rosychuk, Rhonda J; Rowe, Brian B

    2005-06-01

    There is a need in sports medicine for a static and dynamic standing balance measure to quantify balance ability in adolescents. The purposes of this study were to determine the test-retest reliability of timed static (eyes open) and dynamic (eyes open and eyes closed) unipedal balance measurements and to examine factors associated with balance. Adolescents (n=123) were randomly selected from 10 Calgary high schools. This study used a repeated-measures design. One rater measured unipedal standing balance, including timed eyes-closed static (ECS), eyes-open dynamic (EOD), and eyes-closed dynamic (ECD) balance at baseline and 1 week later. Dynamic balance was measured on a foam surface. Reliability was examined using both intraclass correlation coefficients (ICCs) and Bland and Altman statistical techniques. Multiple linear regressions were used to examine other potentially influencing factors. Based on ICCs, test-retest reliability was adequate for ECS, EOD, and ECD balance (ICC=.69, .59, and .46, respectively). The results of Bland and Altman methods, however, suggest that caution is required in interpreting reliability based on ICCs alone. Although both ECS balance and ECD balance appear to demonstrate adequate test-retest reliability by ICC, Bland and Altman methods of agreement demonstrate sufficient reliability for ECD balance only. Thirty percent of the subjects reached the 180-second maximum on EOD balance, suggesting that this test is not appropriate for use in this population. Balance ability (ECS and ECD) was better in adolescents with no past history of lower-extremity injury. Timed ECD balance is an appropriate and reliable clinical measurement for use in adolescents and is influenced by previous injury.

Top