Law, Mary E; Ferreira, Renan B; Davis, Bradley J; Higgins, Paul J; Kim, Jae-Sung; Castellano, Ronald K; Chen, Sixue; Luesch, Hendrik; Law, Brian K
2016-08-05
While localized malignancies often respond to available therapies, most disseminated cancers are refractory. Novel approaches, therefore, are needed for the treatment of metastatic disease. CUB domain-containing protein1 (CDCP1) plays an important role in metastasis and drug resistance; the mechanism however, is poorly understood. Breast cancer cell lines were engineered to stably express EGFR, CDCP1 or phosphorylation site mutants of CDCP1. These cell lines were used for immunoblot analysis or affinity purification followed by immunoblot analysis to assess protein phosphorylation and/or protein complex formation with CDCP1. Kinase activity was evaluated using phosphorylation site-specific antibodies and immunoblot analysis in in vitro kinase assays. Protein band excision and mass spectrometry was utilized to further identify proteins complexed with CDCP1 or ΔCDCP1, which is a mimetic of the cleaved form of CDCP1. Cell detachment was assessed using cell counting. This paper reports that CDCP1 forms ternary protein complexes with Src and EGFR, facilitating Src activation and Src-dependent EGFR transactivation. Importantly, we have discovered that a class of compounds termed Disulfide bond Disrupting Agents (DDAs) blocks CDCP1/EGFR/Src ternary complex formation and downstream signaling. CDCP1 and EGFR cooperate to induce detachment of breast cancer cells from the substratum and to disrupt adherens junctions. Analysis of CDCP1-containing complexes using proteomics techniques reveals that CDCP1 associates with several proteins involved in cell adhesion, including adherens junction and desmosomal cadherins, and cytoskeletal elements. Together, these results suggest that CDCP1 may facilitate loss of adhesion by promoting activation of EGFR and Src at sites of cell-cell and cell-substratum contact.
Sundararaman, Ananthalakshmy; Amirtham, Usha; Rangarajan, Annapoorni
2016-01-01
The AMP-activated protein kinase (AMPK) has recently been implicated in anoikis resistance. However, the molecular mechanisms that activate AMPK upon matrix detachment remain unexplored. In this study, we show that AMPK activation is a rapid and sustained phenomenon upon matrix deprivation, whereas re-attachment to the matrix leads to its dephosphorylation and inactivation. Because matrix detachment leads to loss of integrin signaling, we investigated whether integrin signaling negatively regulates AMPK activation. However, modulation of focal adhesion kinase or Src, the major downstream components of integrin signaling, failed to cause a corresponding change in AMPK signaling. Further investigations revealed that the upstream AMPK kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) contribute to AMPK activation upon detachment. In LKB1-deficient cells, we found AMPK activation to be predominantly dependent on CaMKKβ. We observed no change in ATP levels under detached conditions at early time points suggesting that rapid AMPK activation upon detachment was not triggered by energy stress. We demonstrate that matrix deprivation leads to a spike in intracellular calcium as well as oxidant signaling, and both these intracellular messengers contribute to rapid AMPK activation upon detachment. We further show that endoplasmic reticulum calcium release-induced store-operated calcium entry contributes to intracellular calcium increase, leading to reactive oxygen species production, and AMPK activation. We additionally show that the LKB1/CaMKK-AMPK axis and intracellular calcium levels play a critical role in anchorage-independent cancer sphere formation. Thus, the Ca2+/reactive oxygen species-triggered LKB1/CaMKK-AMPK signaling cascade may provide a quick, adaptable switch to promote survival of metastasizing cancer cells. PMID:27226623
4-Hydroxynonenal activates Src through a non-canonical pathway that involves EGFR/PTP1B
Zhang, Hongqiao; Forman, Henry Jay
2015-01-01
Src, a non-receptor protein tyrosine kinase involved in many biological processes, can be activated through both redox-dependent and independent mechanisms. 4-Hydroxy-2-nonenal (HNE) is a lipid peroxidation product that is increased in pathophysiological conditions associated with Src activation. This study examined how HNE activates human c-Src. In the canonical pathway Src activation is initiated by dephosphorylation of pTyr530 followed by conformational change that causes Src auto-phosphorylation at Tyr419 and its activation. HNE increased Src activation in both dose- and time-dependent manner, while it also increased Src phosphorylation at Tyr530 (pTyr530 Src), suggesting that HNE activated Src via a non-canonical mechanism. Protein tyrosine phosphatase 1B inhibitor (539741), at concentrations that increased basal pTyr530 Src, also increased basal Src activity and significantly reduced HNE-mediated Src activation. The EGFR inhibitor, AG1478, and EGFR silencing, abrogated HNE-mediated EGFR activation and inhibited basal and HNE-induced Src activity. In addition, AG1478 also eliminated the increase of basal Src activation by a PTP1B inhibitor. Taken together these data suggest that HNE can activate Src partly through a non-canonical pathway involving activation of EGFR and inhibition of PTP1B. PMID:26453921
Braun, Sabine; Lösel, Ralf; Wehling, Martin; Boldyreff, Brigitte
2004-07-16
We investigated the effect of aldosterone on Src kinase. In the kidney cell line, M-1 aldosterone leads to a >2-fold transient activation of Src kinase seen as early as 2 min after aldosterone administration. Maximal Src kinase activation was measured at an aldosterone concentration of 1 nM. In parallel to activation, autophosphorylation at Tyr-416 of Src kinase increased. Src kinase activation was blocked by spironolactone. Aldosterone led to increased association of Src with HSP84. Furthermore, rapamycin blocked aldosterone-induced Src activation. We conclude that Src activation by aldosterone is mediated through the mineralocorticoid receptor and HSP84.
Way, B A; Mooney, R A
1994-10-26
pp60c-src kinase activity can be increased by phosphotyrosine dephosphorylation or growth factor-dependent phosphorylation reactions. Expression of the transmembrane phosphotyrosine phosphatase (PTPase) CD45 has been shown to inhibit growth factor receptor signal transduction (Mooney, RA, Freund, GG, Way, BA and Bordwell, KL (1992) J Biol Chem 267, 23443-23446). Here it is shown that PTPase expression decreased platelet-derived growth factor (PDGF)-dependent activation of pp60c-src but failed to increase hormone independent (basal) pp60c-src activity. PDGF-dependent tyrosine phosphorylation of its receptor was reduced by approximately 60% in cells expressing the PTPase. In contrast, a change in phosphotyrosine content of pp60c-src was not detected in response to PDGF or in PTPase+ cells. PDGF increased the intrinsic tyrosine kinase activity of pp60c-src in both control and PTPase+ cells, but the effect was smaller in PTPase+ cells. In an in vitro assay, hormone-stimulated pp60c-src autophosphorylation from PTPase+ cells was decreased 64 +/- 22%, and substrate phosphorylation by pp60c-src was reduced 54 +/- 16% compared to controls. Hormone-independent pp60c-src kinase activity was unchanged by expression of the PTPase. pp60c-src was, however, an in vitro substrate for CD45, being dephosphorylated at both the regulatory (Tyr527) and kinase domain (Tyr416) residues. In addition, in vitro dephosphorylation by CD45 increased pp60c-src activity. These findings suggest that the PDGF receptor was an in vivo substrate of CD45 but pp60c-src was not. The lack of activation of pp60c-src in the presence of expressed PTPase may demonstrate the importance of compartmentalization and/or accessory proteins to PTPase-substrate interactions.
Kim, Sungjin; Yang, Xiangkun; Li, Qianjin; Wu, Meng; Costyn, Leah; Beharry, Zanna; Bartlett, Michael G; Cai, Houjian
2017-11-10
Exogenous fatty acids provide substrates for energy production and biogenesis of the cytoplasmic membrane, but they also enhance cellular signaling during cancer cell proliferation. However, it remains controversial whether dietary fatty acids are correlated with tumor progression. In this study, we demonstrate that increased Src kinase activity is associated with high-fat diet-accelerated progression of prostate tumors and that Src kinases mediate this pathological process. Moreover, in the in vivo prostate regeneration assay, host SCID mice carrying Src(Y529F)-transduced regeneration tissues were fed a low-fat diet or a high-fat diet and treated with vehicle or dasatinib. The high-fat diet not only accelerated Src-induced prostate tumorigenesis in mice but also compromised the inhibitory effect of the anticancer drug dasatinib on Src kinase oncogenic potential in vivo We further show that myristoylation of Src kinase is essential to facilitate Src-induced and high-fat diet-accelerated tumor progression. Mechanistically, metabolism of exogenous myristic acid increased the biosynthesis of myristoyl CoA and myristoylated Src and promoted Src kinase-mediated oncogenic signaling in human cells. Of the fatty acids tested, only exogenous myristic acid contributed to increased intracellular myristoyl CoA levels. Our results suggest that targeting Src kinase myristoylation, which is required for Src kinase association at the cellular membrane, blocks dietary fat-accelerated tumorigenesis in vivo Our findings uncover the molecular basis of how the metabolism of myristic acid stimulates high-fat diet-mediated prostate tumor progression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukumoto, Yasunori, E-mail: fukumoto@faculty.chiba-u.jp; Kuki, Kazumasa; Morii, Mariko
2014-09-26
Highlights: • Inhibition of Src family kinases decreased γ-H2AX signal. • Inhibition of Src family increased ATM-dependent phosphorylation of Chk2 and Kap1. • shRNA-mediated knockdown of Lyn increased phosphorylation of Kap1 by ATM. • Ectopic expression of Src family kinase suppressed ATM-mediated Kap1 phosphorylation. • Src is involved in upstream signaling for inactivation of ATM signaling. - Abstract: DNA damage activates the DNA damage checkpoint and the DNA repair machinery. After initial activation of DNA damage responses, cells recover to their original states through completion of DNA repair and termination of checkpoint signaling. Currently, little is known about the processmore » by which cells recover from the DNA damage checkpoint, a process called checkpoint recovery. Here, we show that Src family kinases promote inactivation of ataxia telangiectasia mutated (ATM)-dependent checkpoint signaling during recovery from DNA double-strand breaks. Inhibition of Src activity increased ATM-dependent phosphorylation of Chk2 and Kap1. Src inhibition increased ATM signaling both in G2 phase and during asynchronous growth. shRNA knockdown of Lyn increased ATM signaling. Src-dependent nuclear tyrosine phosphorylation suppressed ATM-mediated Kap1 phosphorylation. These results suggest that Src family kinases are involved in upstream signaling that leads to inactivation of the ATM-dependent DNA damage checkpoint.« less
Lack of Csk-mediated negative regulation in a unicellular SRC kinase.
Schultheiss, Kira P; Suga, Hiroshi; Ruiz-Trillo, Iñaki; Miller, W Todd
2012-10-16
Phosphotyrosine-based signaling plays a vital role in cellular communication in multicellular organisms. Unexpectedly, unicellular choanoflagellates (the closest phylogenetic group to metazoans) possess numbers of tyrosine kinases that are comparable to those in complex metazoans. Here, we have characterized tyrosine kinases from the filasterean Capsaspora owczarzaki, a unicellular protist representing the sister group to choanoflagellates and metazoans. Two Src-like tyrosine kinases have been identified in C. owczarzaki (CoSrc1 and CoSrc2), both of which have the arrangement of SH3, SH2, and catalytic domains seen in mammalian Src kinases. In Capsaspora cells, CoSrc1 and CoSrc2 localize to punctate structures in filopodia that may represent primordial focal adhesions. We have cloned, expressed, and purified both enzymes. CoSrc1 and CoSrc2 are active tyrosine kinases. Mammalian Src kinases are normally regulated in a reciprocal fashion by autophosphorylation in the activation loop (which increases activity) and by Csk-mediated phosphorylation of the C-terminal tail (which inhibits activity). Similar to mammalian Src kinases, the enzymatic activities of CoSrc1 and CoSrc2 are increased by autophosphorylation in the activation loop. We have identified a Csk-like kinase (CoCsk) in the genome of C. owczarzaki. We cloned, expressed, and purified CoCsk and found that it has no measurable tyrosine kinase activity. Furthermore, CoCsk does not phosphorylate or regulate CoSrc1 or CoSrc2 in cells or in vitro, and CoSrc1 and CoSrc2 are active in Capsaspora cell lysates. Thus, the function of Csk as a negative regulator of Src family kinases appears to have arisen with the emergence of metazoans.
Endo, Akinori; Ly, Tony; Pippa, Raffaella; Bensaddek, Dalila; Nicolas, Armel; Lamond, Angus I
2017-01-06
Tumor invasion into surrounding stromal tissue is a hallmark of high grade, metastatic cancers. Oncogenic transformation of human epithelial cells in culture can be triggered by activation of v-Src kinase, resulting in increased cell motility, invasiveness, and tumorigenicity and provides a valuable model for studying how changes in gene expression cause cancer phenotypes. Here, we show that epithelial cells transformed by activated Src show increased levels of DNA methylation and that the methylation inhibitor 5-azacytidine (5-AzaC) potently blocks the increased cell motility and invasiveness induced by Src activation. A proteomic screen for chromatin regulators acting downstream of activated Src identified the replication-dependent histone chaperone CAF1 as an important factor for Src-mediated increased cell motility and invasion. We show that Src causes a 5-AzaC-sensitive decrease in both mRNA and protein levels of the p150 (CHAF1A) and p60 (CHAF1B), subunits of CAF1. Depletion of CAF1 in untransformed epithelial cells using siRNA was sufficient to recapitulate the increased motility and invasive phenotypes characteristic of transformed cells without activation of Src. Maintaining high levels of CAF1 by exogenous expression suppressed the increased cell motility and invasiveness phenotypes when Src was activated. These data identify a critical role of CAF1 in the dysregulation of cell invasion and motility phenotypes seen in transformed cells and also highlight an important role for epigenetic remodeling through DNA methylation for Src-mediated induction of cancer phenotypes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
SRC activates TAZ for intestinal tumorigenesis and regeneration.
Byun, Mi Ran; Hwang, Jun-Ha; Kim, A Rum; Kim, Kyung Min; Park, Jung Il; Oh, Ho Taek; Hwang, Eun Sook; Hong, Jeong-Ho
2017-12-01
Proto-oncogene tyrosine-protein kinase Src (cSRC) is involved in colorectal cancer (CRC) development and damage-induced intestinal regeneration, although the cellular mechanisms involved are poorly understood. Here, we report that transcriptional coactivator with PDZ binding domain (TAZ) is activated by cSRC, regulating CRC cell proliferation and tumor formation, where cSRC overexpression increases TAZ expression in CRC cells. In contrast, knockdown of cSRC decreases TAZ expression. Additionally, direct phosphorylation of TAZ at Tyr316 by cSRC stimulates nuclear localization and facilitates transcriptional enhancer factor TEF-3 (TEAD4)-mediated transcription. However, a TAZ phosphorylation mutant significantly decreased cell proliferation, wound healing, colony forming, and tumor formation. In a CRC mouse model, Apc Min/+ , activated SRC expression was associated with increased TAZ expression in polyps and TAZ depletion decreased polyp formation. Moreover, intestinal TAZ knockout mice had intestinal regeneration defects following γ-irradiation. Finally, significant correspondence between SRC activation and TAZ overexpression was observed in CRC patients. These results suggest that TAZ is a critical factor for SRC-mediated intestinal tumor formation and regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.
SH2 Ligand-Like Effects of Second Cytosolic Domain of Na/K-ATPase α1 Subunit on Src Kinase.
Banerjee, Moumita; Duan, Qiming; Xie, Zijian
2015-01-01
Our previous studies have suggested that the α1 Na/K-ATPase interacts with Src to form a receptor complex. In vitro binding assays indicate an interaction between second cytosolic domain (CD2) of Na/K-ATPase α1 subunit and Src SH2 domain. Since SH2 domain targets Src to specific signaling complexes, we expressed CD2 as a cytosolic protein and studied whether it could act as a Src SH2 ligand in LLC-PK1 cells. Co-immunoprecipitation analyses indicated a direct binding of CD2 to Src, consistent with the in vitro binding data. Functionally, CD2 expression increased basal Src activity, suggesting a Src SH2 ligand-like property of CD2. Consistently, we found that CD2 expression attenuated several signaling pathways where Src plays an important role. For instance, although it increased surface expression of Na/K-ATPase, it decreased ouabain-induced activation of Src and ERK by blocking the formation of Na/K-ATPase/Src complex. Moreover, it also attenuated cell attachment-induced activation of Src/FAK. Consequently, CD2 delayed cell spreading, and inhibited cell proliferation. Furthermore, these effects appear to be Src-specific because CD2 expression had no effect on EGF-induced activation of EGF receptor and ERK. Hence, the new findings indicate the importance of Na/K-ATPase/Src interaction in ouabain-induced signal transduction, and support the proposition that the CD2 peptide may be utilized as a Src SH2 ligand capable of blocking Src-dependent signaling pathways via a different mechanism from a general Src kinase inhibitor.
Sobue, S; Murakami, M; Banno, Y; Ito, H; Kimura, A; Gao, S; Furuhata, A; Takagi, A; Kojima, T; Suzuki, M; Nozawa, Y; Murate, T
2008-10-09
Sphingosine kinase 1 (SPHK1) is overexpressed in solid tumors and leukemia. However, the mechanism of SPHK1 overexpression by oncogenes has not been defined. We found that v-Src-transformed NIH3T3 cells showed a high SPHK1 mRNA, SPHK1 protein and SPHK enzyme activity. siRNA of SPHK1 inhibited the growth of v-Src-NIH3T3, suggesting the involvement of SPHK1 in v-Src-induced oncogenesis. v-Src-NIH3T3 showed activations of protein kinase C-alpha, signal transducers and activators of transcription 3 and c-Jun NH(2)-terminal kinase. Their inhibition suppressed SPHK1 expression in v-Src-NIH3T3, whereas their overexpression increased SPHK1 mRNA in NIH3T3. Unexpectedly, the nuclear run-on assay and the promoter analysis using 5'-promoter region of mouse SPHK1 did not show any significant difference between mock- and v-Src-NIH3T3. Furthermore, the half-life of SPHK1 mRNA in mock-NIH3T3 was nearly 15 min, whereas that of v-Src-NIH3T3 was much longer. Examination of two AU-rich region-binding proteins, AUF1 and HuR, that regulate mRNA decay reciprocally, showed decreased total AUF1 protein associated with increased tyrosine-phosphorylated form and increased serine-phosphorylated HuR protein in v-Src-NIH3T3. Modulation of AUF1 and HuR by their overexpression or siRNA revealed that SPHK1 mRNA in v-Src- and mock-NIH3T3 was regulated reciprocally by these factors. Our results showed, for the first time, a novel mechanism of v-Src-induced SPHK1 overexpression.
Li, Shuning; Li, Shi-Ming; Wang, Xiao-Lei; Kang, Meng-Tian; Liu, Luo-Ru; Li, He; Wei, Shi-Fei; Ran, An-Ran; Zhan, Siyan; Thomas, Ravi; Wang, Ningli
2017-01-01
To report the intraocular pressure (IOP) and its association with myopia and other factors in 7 and 12-year-old Chinese children. All children participating in the Anyang Childhood Eye Study underwent non-contact tonometry as well as measurement of central corneal thickness (CCT), axial length, cycloplegic auto-refraction, blood pressure, height and weight. A questionnaire was used to collect other relevant information. Univariable and multivariable analysis were performed to determine the associations of IOP. A total of 2760 7-year-old children (95.4%) and 2198 12-year-old children (97.0%) were included. The mean IOP was 13.5±3.1 mmHg in the younger cohort and 15.8±3.5 mmHg in older children (P<0.0001). On multivariable analysis, higher IOP in the younger cohort was associated with female gender (standardized regression coefficient [SRC], 0.11, P<0.0001), increasing central corneal thickness (SRC, 0.39, P<0.0001), myopia (SRC, 0.05, P = 0.03), deep anterior chamber (SRC, 0.07, P<0.01), smaller waist (SRC, 0.07, P<0.01) and increasing mean arterial pressure (SRC, 0.13, P<0.0001). In the older cohort, higher IOP was again associated with female gender (SRC, 0.16, P<0.0001), increasing central corneal thickness (SRC, 0.43, P<0.0001), deep anterior chamber (SRC, 0.09, P<0.01), higher body mass index (SRC, 0.07, P = 0.04) and with increasing mean arterial pressure (SRC, 0.09, P = 0.01), age at which reading commenced (SRC, 0.10, P<0.01) and birth method (SRC, 0.09, P = 0.01), but not with myopia (SRC, 0.09, P = 0.20). In Chinese children, higher IOP was associated with female gender, older age, thicker central cornea, deeper anterior chamber and higher mean arterial pressure. Higher body mass index, younger age at commencement of reading and being born of a caesarean section was also associated with higher IOP in adolescence.
Antimitochondrial Autoantibodies in Pemphigus Vulgaris
Marchenko, Steve; Chernyavsky, Alexander I.; Arredondo, Juan; Gindi, Vivian; Grando, Sergei A.
2010-01-01
A loss of epidermal cohesion in pemphigus vulgaris (PV) results from autoantibody action on keratinocytes (KCs) activating the signaling kinases and executioner caspases that damage KCs, causing their shrinkage, detachment from neighboring cells, and rounding up (apoptolysis). In this study, we found that PV antibody binding leads to activation of epidermal growth factor receptor kinase, Src, p38 MAPK, and JNK in KCs with time pattern variations from patient to patient. Both extrinsic and intrinsic apoptotic pathways were also activated. Although Fas ligand neutralizing antibody could inhibit the former pathway, the mechanism of activation of the latter remained unknown. PV antibodies increased cytochrome c release, suggesting damage to mitochondria. The immunoblotting experiments revealed penetration of PVIgG into the subcellular mitochondrial fraction. The antimitochondrial antibodies from different PV patients recognized distinct combinations of antigens with apparent molecular sizes of 25, 30, 35, 57, 60, and 100 kDa. Antimitochondrial antibodies were pathogenic because their absorption abolished the ability of PVIgG to cause keratinocyte detachment both in vitro and in vivo. The downstream signaling of antimitochondrial antibodies involved JNK and late p38 MAPK activation, whereas the signaling of anti-desmoglein 3 (Dsg3) antibody involved JNK and biphasic p38 MAPK activation. Using KCs grown from Dsg3−/− mice, we determined that Dsg3 did not serve as a surrogate antigen allowing antimitochondrial antibodies to enter KCs. The PVIgG-induced activation of epidermal growth factor receptor and Src was affected neither in Dsg3−/− KCs nor due to absorption of antimitochondrial antibodies. These results demonstrated that apoptolysis in PV is a complex process initiated by at least three classes of autoantibodies directed against desmosomal, mitochondrial, and other keratinocyte self-antigens. These autoantibodies synergize with the proapoptotic serum and tissue factors to trigger both extrinsic and intrinsic pathways of cell death and break the epidermal cohesion, leading to blisters. Further elucidation of the primary signaling events downstream of PV autoantigens will be crucial for the development of a more successful therapy for PV patients. PMID:20007702
Src kinase regulation by phosphorylation and dephosphorylation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roskoski, Robert
2005-05-27
Src and Src-family protein-tyrosine kinases are regulatory proteins that play key roles in cell differentiation, motility, proliferation, and survival. The initially described phosphorylation sites of Src include an activating phosphotyrosine 416 that results from autophosphorylation, and an inhibiting phosphotyrosine 527 that results from phosphorylation by C-terminal Src kinase (Csk) and Csk homologous kinase. Dephosphorylation of phosphotyrosine 527 increases Src kinase activity. Candidate phosphotyrosine 527 phosphatases include cytoplasmic PTP1B, Shp1 and Shp2, and transmembrane enzymes include CD45, PTP{alpha}, PTP{epsilon}, and PTP{lambda}. Dephosphorylation of phosphotyrosine 416 decreases Src kinase activity. Thus far PTP-BL, the mouse homologue of human PTP-BAS, has been shownmore » to dephosphorylate phosphotyrosine 416 in a regulatory fashion. The platelet-derived growth factor receptor protein-tyrosine kinase mediates the phosphorylation of Src Tyr138; this phosphorylation has no direct effect on Src kinase activity. The platelet-derived growth factor receptor and the ErbB2/HER2 growth factor receptor protein-tyrosine kinases mediate the phosphorylation of Src Tyr213 and activation of Src kinase activity. Src kinase is also a substrate for protein-serine/threonine kinases including protein kinase C (Ser12), protein kinase A (Ser17), and CDK1/cdc2 (Thr34, Thr46, and Ser72). Of the three protein-serine/threonine kinases, only phosphorylation by CDK1/cdc2 has been demonstrated to increase Src kinase activity. Although considerable information on the phosphoprotein phosphatases that catalyze the hydrolysis of Src phosphotyrosine 527 is at hand, the nature of the phosphatases that mediate the hydrolysis of phosphotyrosine 138 and 213, and phosphoserine and phosphothreonine residues has not been determined.« less
Weiss, Roy E; Gehin, Martine; Xu, Jianming; Sadow, Peter M; O'Malley, Bert W; Chambon, Pierre; Refetoff, Samuel
2002-04-01
Steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF)-2 are homologous nuclear receptor coactivators. We have investigated their possible redundancy as thyroid hormone (TH) coactivators by measuring thyroid function in compound SRC-1 and TIF-2 knock out (KO) mice. Whereas SRC-1 KO (SRC-1(-/-)) mice are resistant to TH and SRC-1(+/-) are not, we now demonstrate that TIF-2 KO (TIF-2(-/-)) mice have normal thyroid function. Yet double heterozygous, SRC-1(+/-)/TIF-2(+/-) mice manifested resistance to TH of a similar degree as that in mice completely deficient in SRC-1. KO of both SRC-1 and TIF-2 resulted in marked increases of serum TH and thyrotropin concentrations. This work demonstrates gene dosage effect in nuclear coactivators manifesting as haploinsufficiency and functional redundancy of SRC-1 and TIF-2.
Wang, Zhiyong; Shah, O Jameel; Hunter, Tony
2012-01-01
Three p160 family members, p/CIP, SRC1, and TIF2, have been identified as transcriptional coactivators for nuclear hormone receptors and other transcription factors in vitro. In a previous study, we reported initial characterization of the obesity-resistant phenotypes of p/CIP and SRC-1 double knockout (DKO) mice, which exhibit increased energy expenditure, and suggested that nuclear hormone receptor target genes were involved in these phenotypes. In this study, we demonstrate that p/CIP and SRC1 control insulin signaling in a cell-autonomous manner both in vitro and in vivo. Genetic deletion of p/CIP and SRC-1 increases glucose uptake and enhances insulin sensitivity in both regular chow- and high fat diet-fed DKO mice despite increased food intake. Interestingly, we discover that loss of p/CIP and SRC-1 results in resistance to age-related obesity and glucose intolerance. We show that expression levels of a key insulin signaling component, insulin receptor substrate 1 (IRS1), are significantly increased in two cell lines representing fat and muscle lineages with p/CIP and SRC-1 deletions and in white adipose tissue and skeletal muscle of DKO mice; this may account for increased glucose metabolism and insulin sensitivity. This is the first evidence that the p160 coactivators control insulin signaling and glucose metabolism through IRS1. Therefore, our studies indicate that p/CIP and SRC-1 are potential therapeutic targets not only for obesity but also for diabetes.
Wang, Zhiyong; Shah, O. Jameel; Hunter, Tony
2012-01-01
Three p160 family members, p/CIP, SRC1, and TIF2, have been identified as transcriptional coactivators for nuclear hormone receptors and other transcription factors in vitro. In a previous study, we reported initial characterization of the obesity-resistant phenotypes of p/CIP and SRC-1 double knockout (DKO) mice, which exhibit increased energy expenditure, and suggested that nuclear hormone receptor target genes were involved in these phenotypes. In this study, we demonstrate that p/CIP and SRC1 control insulin signaling in a cell-autonomous manner both in vitro and in vivo. Genetic deletion of p/CIP and SRC-1 increases glucose uptake and enhances insulin sensitivity in both regular chow- and high fat diet-fed DKO mice despite increased food intake. Interestingly, we discover that loss of p/CIP and SRC-1 results in resistance to age-related obesity and glucose intolerance. We show that expression levels of a key insulin signaling component, insulin receptor substrate 1 (IRS1), are significantly increased in two cell lines representing fat and muscle lineages with p/CIP and SRC-1 deletions and in white adipose tissue and skeletal muscle of DKO mice; this may account for increased glucose metabolism and insulin sensitivity. This is the first evidence that the p160 coactivators control insulin signaling and glucose metabolism through IRS1. Therefore, our studies indicate that p/CIP and SRC-1 are potential therapeutic targets not only for obesity but also for diabetes. PMID:22859932
Short-range order clustering in BCC Fe-Mn alloys induced by severe plastic deformation
NASA Astrophysics Data System (ADS)
Shabashov, V. A.; Kozlov, K. A.; Sagaradze, V. V.; Nikolaev, A. L.; Lyashkov, K. A.; Semyonkin, V. A.; Voronin, V. I.
2018-03-01
The effect of severe plastic deformation, namely, high-pressure torsion (HPT) at different temperatures and ball milling (BM) at different time intervals, has been investigated by means of Mössbauer spectroscopy in Fe100-xMnx (x = 4.1, 6.8, 9) alloys. Deformation affects the short-range clustering (SRC) in BCC lattice. Two processes occur: destruction of SRC by moving dislocations and enhancement of the SRC by migration of non-equilibrium defects. Destruction of SRC prevails during HPT at 80-293 K; whereas enhancement of SRC dominates at 473-573 K. BM starts enhancing the SRC formation at as low as 293 K due to local heating at impacts. The efficiency of HPT in terms of enhancing SRC increases with increasing temperature. The authors suppose that at low temperatures, a significant fraction of vacancies are excluded from enhancing SRC because of formation of mobile bi- and tri-vacancies having low efficiency of enhancing SRC as compared to that of mono vacancies. Milling of BCC Fe100-xMnx alloys stabilises the BCC phase with respect to α → γ transition at subsequent isothermal annealing because of a high degree of work hardening and formation of composition inhomogeneity.
NASA Astrophysics Data System (ADS)
Zhang, Juntao; Gao, Xuejuan; Xing, Da; Liu, Lei
2007-11-01
Low-power laser irradiation (LPLI) leads to photochemical reaction and then activates intracellular several signaling pathway. Reactive oxygen species (ROS) are considered to be the primary messengers produced by LPLI. Here, we studied the signaling pathway mediated by ROS upon the stimulation of LPLI. Src tyrosine kinases are well-known targets of ROS and can be activated by oxidative events. Using a Src reporter based on fluorescence resonance energy transfer (FRET) technique, we visualized the dynamic Src activation in Hela cells immediately after LPLI. Moreover, Src activity was enhanced by increasing the duration of LPLI. In addition, our results suggested that ROS were key mediators of Src activation, as ROS scavenger, vitamin C decreased and exogenous H IIO II increased the activity of Src. Meanwhile, Gö6983 loading did not block the effect of LPLI. CCK-8 experiments proved that cell vitality was prominently improved by LPLI with all the doses we applied in our experiments ranging from 3 to 25J/cm2. The results indicated that LPLI/ROS/Src pathway may be involved in the LPLI biostimulation effects.
Kakae, Keiko; Ikeuchi, Masayoshi; Kuga, Takahisa; Saito, Youhei; Yamaguchi, Naoto; Nakayama, Yuji
2017-01-01
The protein-tyrosine kinase, c-Src, is involved in a variety of signaling events, including cell division. We have reported that v-Src, which is a mutant variant of the cellular proto-oncogene, c-Src, causes delocalization of Aurora B kinase, resulting in a furrow regression in cytokinesis and the generation of multinucleated cells. However, the effect of v-Src on mitotic spindle formation is unknown. Here we show that v-Src-expressing HCT116 and NIH3T3 cells undergo abnormal cell division, in which cells separate into more than two cells. Upon v-Src expression, the proportion of multinucleated cells is increased in a time-dependent manner. Flow cytometry analysis revealed that v-Src increases the number of cells having a ≥4N DNA content. Microscopic analysis showed that v-Src induces the formation of multipolar spindles with excess centrosomes. These results suggest that v-Src induces multipolar spindle formation by generating multinucleated cells. Tetraploidy activates the tetraploidy checkpoint, leading to a cell cycle arrest of tetraploid cells at the G1 phase, in which the nuclear exclusion of the transcription co-activator YAP plays a critical role. In multinucleated cells that are induced by cytochalasin B and the Plk1 inhibitor, YAP is excluded from the nucleus. However, v-Src prevents this nuclear exclusion of YAP through a decrease in the phosphorylation of YAP at Ser127 in multinucleated cells. Furthermore, v-Src decreases the expression level of p53, which also plays a critical role in the cell cycle arrest of tetraploid cells. These results suggest that v-Src promotes abnormal spindle formation in at least two ways: generation of multinucleated cells and a weakening of the tetraploidy checkpoint. Copyright © 2016 Elsevier Inc. All rights reserved.
Karoor, Vijaya; Oka, Masahiko; Walchak, Sandra J.; Hersh, Louis B.; Miller, York E.; Dempsey, Edward C.
2013-01-01
Reduced neprilysin (NEP), a cell surface metallopeptidase, which cleaves and inactivates pro-inflammatory and vasoactive peptides, predisposes the lung vasculature to exaggerated remodeling in response to hypoxia. We hypothesize that loss of NEP in pulmonary artery smooth muscle cells (PASMCs) results in increased migration and proliferation. PASMCs isolated from NEP−/− mice exhibited enhanced migration and proliferation in response to serum and PDGF, which was attenuated by NEP replacement. Inhibition of NEP by overexpression of a peptidase dead mutant or knockdown by siRNA in NEP+/+ cells increased migration and proliferation. Loss of NEP led to an increase in Src kinase activity and phosphorylation of PTEN resulting in activation of the PDGF receptor (PDGFR). Knockdown of Src kinase with siRNA or inhibition with PP2 a src kinase inhibitor decreased PDGFRY751 phosphorylation and attenuated migration and proliferation in NEP−/− SMCs. NEP substrates, endothelin-1(ET-1) or fibroblast growth factor-2 (FGF2), increased activation of Src and PDGFR in NEP+/+ cells, which was decreased by an ETAR antagonist, neutralizing antibody to FGF2 and Src inhibitor. Similar to the observations in PASMCs levels of p-PDGFR, p-Src and p-PTEN were elevated in NEP−/− lungs. ETAR antagonist also attenuated the enhanced responses in NEP−/−PASMCs and lungs. Taken together our results suggest a novel mechanism for regulation of PDGFR signaling by NEP substrates involving Src and PTEN. Strategies that increase lung NEP activity/expression or target key downstream effectors, like Src, PTEN or PDGFR, may be of therapeutic benefit in pulmonary vascular disease. PMID:23381789
Geraghty, Patrick; Hardigan, Andrew
2014-01-01
The diagnosis of chronic obstructive pulmonary disease (COPD) confers a 2-fold increased lung cancer risk even after adjusting for cigarette smoking, suggesting that common pathways are operative in both diseases. Although the role of the tyrosine kinase c-Src is established in lung cancer, less is known about its impact in other lung diseases, such as COPD. This study examined whether c-Src activation by cigarette smoke contributes to the pathogenesis of COPD. Cigarette smoke increased c-Src activity in human small airway epithelial (SAE) cells from healthy donors and in the lungs of exposed mice. Similarly, higher c-Src activation was measured in SAE cells from patients with COPD compared with healthy control subjects. In SAE cells, c-Src silencing or chemical inhibition prevented epidermal growth factor (EGF) receptor signaling in response to cigarette smoke but not EGF stimulation. Further studies showed that cigarette smoke acted through protein kinase C α to trigger c-Src to phosphorylate EGF receptor and thereby to induce mitogen-activated protein kinase responses in these cells. To further investigate the role of c-Src, A/J mice were orally administered the specific Src inhibitor AZD-0530 while they were exposed to cigarette smoke for 2 months. AZD-0530 treatment blocked c-Src activation, decreased macrophage influx, and prevented airspace enlargement in the lungs of cigarette smoke–exposed mice. Moreover, inhibiting Src deterred the cigarette smoke–mediated induction of matrix metalloproteinase-9 and -12 in alveolar macrophages and lung expression of cathepsin K, IL-17, TNF-α, MCP-1, and KC, all key factors in the pathogenesis of COPD. These results indicate that activation of the proto-oncogene c-Src by cigarette smoke promotes processes linked to the development of COPD. PMID:24111605
Inhibition of SRC-3 enhances sensitivity of human cancer cells to histone deacetylase inhibitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Zhengzhi, E-mail: zouzhengzhi@m.scnu.edu.cn; Luo, Xiaoyong; Nie, Peipei
SRC-3 is widely expressed in multiple tumor types and involved in cancer cell proliferation and apoptosis. Histone deacetylase (HDAC) inhibitors are promising antitumor drugs. However, the poor efficacy of HDAC inhibitors in solid tumors has restricted its further clinical application. Here, we reported the novel finding that depletion of SRC-3 enhanced sensitivity of breast and lung cancer cells to HDAC inhibitors (SAHA and romidepsin). In contrast, overexpression of SRC-3 decreased SAHA-induced cancer cell apoptosis. Furthermore, we found that SRC-3 inhibitor bufalin increased cancer cell apoptosis induced by HDAC inhibitors. The combination of bufalin and SAHA was particular efficient in attenuatingmore » AKT activation and reducing Bcl-2 levels. Taken together, these accumulating data might guide development of new breast and lung cancer therapies. - Highlights: • Depletion of SRC-3 enhanced sensitivity of breast and lung cancer cells to HDAC inhibitors. • Overexpression of SRC-3 enhanced cancer cell resistance to HDAC inhibitors. • SRC-3 inhibitor bufalin increased cancer cell apoptosis induced by HDAC inhibitors. • Bufalin synergized with HDAC inhibitor attenuated AKT activation and reduced Bcl-2 levels in human cancer cell.« less
Kiechle, Karin; Bazarian, Jeffrey J; Merchant-Borna, Kian; Stoecklein, Veit; Rozen, Eric; Blyth, Brian; Huang, Jason H; Dayawansa, Samantha; Kanz, Karl; Biberthaler, Peter
2014-01-01
The on-field diagnosis of sports-related concussion (SRC) is complicated by the lack of an accurate and objective marker of brain injury. To compare subject-specific changes in the astroglial protein, S100B, before and after SRC among collegiate and semi-professional contact sport athletes, and compare these changes to differences in S100B before and after non-contact exertion. Longitudinal cohort study. From 2009-2011, we performed a prospective study of athletes from Munich, Germany, and Rochester, New York, USA. Serum S100B was measured in all SRC athletes at pre-season baseline, within 3 hours of injury, and at days 2, 3 and 7 post-SRC. Among a subset of athletes, S100B was measured after non-contact exertion but before injury. All samples were collected identically and analyzed using an automated electrochemiluminescent assay to quantify serum S100B levels. Forty-six athletes (30 Munich, 16 Rochester) underwent baseline testing. Thirty underwent additional post-exertion S100B testing. Twenty-two athletes (16 Rochester, 6 Munich) sustained a SRC, and 17 had S100B testing within 3 hours post-injury. The mean 3-hour post-SRC S100B was significantly higher than pre-season baseline (0.099±0.008 µg/L vs. 0.058±0.006 µg/L, p = 0.0002). Mean post-exertion S100B was not significantly different than the preseason baseline. S100B levels at post-injury days 2, 3 and 7 were significantly lower than the 3-hour level, and not different than baseline. Both the absolute change and proportional increase in S100B 3-hour post-injury were accurate discriminators of SRC from non-contact exertion without SRC (AUC 0.772 and 0.904, respectively). A 3-hour post-concussion S100B >0.122 µg/L and a proportional S100B increase of >45.9% over baseline were both 96.7% specific for SRC. Relative and absolute increases in serum S100B can accurately distinguish SRC from sports-related exertion, and may be a useful adjunct to the diagnosis of SRC.
Sanjay, Archana; Miyazaki, Tsuyoshi; Itzstein, Cecile; Purev, Enkhtsetseg; Horne, William C; Baron, Roland
2006-12-01
Cbl is an adaptor protein and ubiquitin ligase that binds and is phosphorylated by the nonreceptor tyrosine kinase Src. We previously showed that the primary interaction between Src and Cbl is mediated by the Src homology domain 3 (SH3) of Src binding to proline-rich sequences of Cbl. The peptide Cbl RDLPPPPPPDRP(540-551), which corresponds to residues 540-551 of Cbl, inhibited the binding of a GST-Src SH3 fusion protein to Cbl, whereas RDLAPPAPPPDR(540-551) did not, suggesting that Src binds to this site on Cbl in a class I orientation. Mutating prolines 543-548 reduced Src binding to the Cbl 479-636 fragment significantly more than mutating the prolines in the PPVPPR(494-499) motif, which was previously reported to bind Src SH3. Mutating Cbl prolines 543-548 to alanines substantially reduced Src binding to Cbl, Src-induced phosphorylation of Cbl, and the inhibition of Src kinase activity by Cbl. Expressing the mutated Cbl in osteoclasts induced a moderate reduction in bone-resorbing activity and increased amounts of Src protein. In contrast, disabling the tyrosine kinase-binding domain of full-length Cbl by mutating glycine 306 to glutamic acid, and thereby preventing the previously described binding of the tyrosine kinase-binding domain to the Src phosphotyrosine 416, had no effect on Cbl phosphorylation, the inhibition of Src activity by full-length Cbl, or bone resorption. These data indicate that the Cbl RDLPPPP(540-546) sequence is a functionally important binding site for Src.
NASA Astrophysics Data System (ADS)
Norhazariah, S.; Azura, A. R.; Azahari, B.; Sivakumar, R.
2017-12-01
Semi-refined carrageenan (SRC) product is considerably cheaper and easier to produce as a natural polysaccharide, which was utilized in food and other product application. However, the application in latex is limited. The aim of this work is to evaluate the SRC produced from low industrial grade seaweed (LIGS) in the latex foam application. The FTIR spectra showed the SRC produced as kappa type carrageenan with lower sulfur content compared to native LIGS. NR latex foam is produced by using the Dunlop method with some modifications. The effect of SRC loading as a secondary gelling agent in NR latex foam is investigated. The density and morphology of the NR latex foam with the addition of the SRC are analyzed. NR latex foam density increased with SRC loading and peaked at 1.8 phr SRC. The addition of SRC has induced the bigger cell size compared to the cell size of the control NR latex foam, as shown in the optical micrograph. It can be concluded that SRC LIGS could be acted as secondary gelling agent in NR latex foam.
Vázquez-Juárez, E; Ramos-Mandujano, G; Lezama, R A; Cruz-Rangel, S; Islas, L D; Pasantes-Morales, H
2008-02-01
The present study in Swiss3T3 fibroblasts examines the effect of thrombin on hyposmolarity-induced osmolyte fluxes and RVD, and the contribution of the src/EGFR pathway. Thrombin (5 U/ml) added to a 30% hyposmotic medium markedly increased hyposmotic 3H-taurine efflux (285%), accelerated the volume-sensitive Cl- current (ICI-swell) and increased RVD rate. These effects were reduced (50-65%) by preventing the thrombin-induced intracellular Ca2+ [Ca2+]i rise with EGTA-AM, or with the phospholipase C (PLC) blocker U73122. Ca2+calmodulin (CaM) and calmodulin kinase II (CaMKII) also participate in this Ca2+-dependent pathway. Thrombin plus hyposmolarity increased src and EGFR phosphorylation, whose blockade by PP2 and AG1478, decreased by 30-50%, respectively, the thrombin effects on hyposmotic taurine efflux, ICI-swell and RVD. Ca2+- and src/EGFR-mediated pathways operate independently as shown by (1) the persistence of src and EGFR activation when [Ca2+]i rise is prevented and (2) the additive effect on taurine efflux, ICI-swell or RVD by simultaneous inhibition of the two pathways, which essentially suppressed these events. PLC-Ca2+- and src/EGFR-signaling pathways operate in the hyposmotic condition and because thrombin per se failed to increase taurine efflux and ICI-swell under isosmotic condition it seems that it is merely amplifying these previously activated mechanisms. The study shows that thrombin potentiates hyposmolarity-induced osmolyte fluxes and RVD by increasing src/EGFR-dependent signaling, in addition to the Ca2+-dependent pathway.
Cytokinesis Failure Leading to Chromosome Instability in v-Src-Induced Oncogenesis.
Nakayama, Yuji; Soeda, Shuhei; Ikeuchi, Masayoshi; Kakae, Keiko; Yamaguchi, Naoto
2017-04-12
v-Src, an oncogene found in Rous sarcoma virus, is a constitutively active variant of c-Src. Activation of Src is observed frequently in colorectal and breast cancers, and is critical in tumor progression through multiple processes. However, in some experimental conditions, v-Src causes growth suppression and apoptosis. In this review, we highlight recent progress in our understanding of cytokinesis failure and the attenuation of the tetraploidy checkpoint in v-Src-expressing cells. v-Src induces cell cycle changes-such as the accumulation of the 4N cell population-and increases the number of binucleated cells, which is accompanied by an excess number of centrosomes. Time-lapse analysis of v-Src-expressing cells showed that cytokinesis failure is caused by cleavage furrow regression. Microscopic analysis revealed that v-Src induces delocalization of cytokinesis regulators including Aurora B and Mklp1. Tetraploid cell formation is one of the causes of chromosome instability; however, tetraploid cells can be eliminated at the tetraploidy checkpoint. Interestingly, v-Src weakens the tetraploidy checkpoint by inhibiting the nuclear exclusion of the transcription coactivator YAP, which is downstream of the Hippo pathway and its nuclear exclusion is critical in the tetraploidy checkpoint. We also discuss the relationship between v-Src-induced chromosome instability and growth suppression in v-Src-induced oncogenesis.
Hsp90 dependence of a kinase is determined by its conformational landscape
Luo, Qi; Boczek, Edgar E.; Wang, Qi; Buchner, Johannes; Kaila, Ville R. I.
2017-01-01
Heat shock protein 90 (Hsp90) is an abundant molecular chaperone, involved in the folding and activation of 60% of the human kinome. The oncogenic tyrosine kinase v-Src is one of the most stringent client proteins of Hsp90, whereas its almost identical homolog c-Src is only weakly affected by the chaperone. Here, we perform atomistic molecular simulations and in vitro kinase assays to explore the mechanistic differences in the activation of v-Src and c-Src. While activation in c-Src is strictly controlled by ATP-binding and phosphorylation, we find that activating conformational transitions are spontaneously sampled in Hsp90-dependent Src mutants. Phosphorylation results in an enrichment of the active conformation and in an increased affinity for Hsp90. Thus, the conformational landscape of the mutated kinase is reshaped by a broken “control switch”, resulting in perturbations of long-range electrostatics, higher activity and increased Hsp90-dependence. PMID:28290541
Destaing, Olivier; Sanjay, Archana; Itzstein, Cecile; Horne, William C.; Toomre, Derek
2008-01-01
Podosomes are dynamic actin-rich structures composed of a dense F-actin core surrounded by a cloud of more diffuse F-actin. Src performs one or more unique functions in osteoclasts (OCLs), and podosome belts and bone resorption are impaired in the absence of Src. Using Src−/− OCLs, we investigated the specific functions of Src in the organization and dynamics of podosomes. We found that podosome number and the podosome-associated actin cloud were decreased in Src−/− OCLs. Videomicroscopy and fluorescence recovery after photobleaching analysis revealed that the life span of Src−/− podosomes was increased fourfold and that the rate of actin flux in the core was decreased by 40%. Thus, Src regulates the formation, structure, life span, and rate of actin polymerization in podosomes and in the actin cloud. Rescue of Src−/− OCLs with Src mutants showed that both the kinase activity and either the SH2 or the SH3 binding domain are required for Src to restore normal podosome organization and dynamics. Moreover, inhibition of Src family kinase activities in Src−/− OCLs by Src inhibitors or by expressing dominant-negative SrcK295M induced the formation of abnormal podosomes. Thus, Src is an essential regulator of podosome structure, dynamics and organization. PMID:17978100
Differential Prognostic Implications of Gastric Signet Ring Cell Carcinoma
Chon, Hong Jae; Hyung, Woo Jin; Kim, Chan; Park, Sohee; Kim, Jie-Hyun; Park, Chan Hyuk; Ahn, Joong Bae; Kim, Hyunki; Chung, Hyun Cheol; Rha, Sun Young; Noh, Sung Hoon; Jeung, Hei-Cheul
2017-01-01
Objective: The aim of this study was to analyze the clinicopathologic characteristics and prognosis of signet ring cell carcinoma (SRC) according to disease status (early vs advanced gastric cancer) in gastric cancer patients. Background: The prognostic implication of gastric SRC remains a subject of debate. Methods: A retrospective analysis was performed using the clinical records of 7667 patients including 1646 SRC patients who underwent radical gastrectomy between 2001 and 2010. A further analysis was also performed after dividing patients into three groups according to histologic subtype: SRC, well-to-moderately differentiated (WMD), and poorly differentiated adenocarcinoma. Results: SRC patients have younger age distribution and female predominance compared with other histologic subtypes. Notably, the distribution of T stage of SRC patients was distinct, located in extremes (T1: 66.2% and T4: 20%). Moreover, the prognosis of SRC in early gastric cancer and advanced gastric cancer was contrasting. In early gastric cancer, SRC demonstrated more favorable prognosis than WMD after adjusting for age, sex, and stage. In contrast, SRC in advanced gastric cancer displayed worse prognosis than WMD. As stage increased, survival outcomes of SRC continued to worsen compared with WMD. Conclusions: Although conferring favorable prognosis in early stage, SRC has worse prognostic impact as disease progresses. The longstanding controversy of SRC on prognosis may result from disease status at presentation, which leads to differing prognosis compared with tubular adenocarinoma. PMID:27232252
Hao, Hui-Feng; Liu, Li-Mei; Pan, Chun-Shui; Wang, Chuan-She; Gao, Yuan-Sheng; Fan, Jing-Yu; Han, Jing-Yan
2017-01-01
Objectives: To examine the protective effect of Rhynchophylline (Rhy) on vascular endothelial function in spontaneous hypertensive rats (SHRs) and the underlying mechanism. Methods: Intrarenal arteries of SHRs and Wistar rats were suspended in myograph for force measurement. Expression and phosphorylation of endothelial nitric oxide (NO) synthase (eNOS), Akt, and Src kinase (Src) were examined by Western blotting. NO production was assayed by ELISA. Results: Rhy time- and concentration-dependently improved endothelium-dependent relaxation in the renal arteries from SHRs, but had no effect on endothelium-independent relaxation in SHR renal arteries. Wortmannin (an inhibitor of phosphatidylinositol 3-kinase) or PP2 (an inhibitor of Src) inhibited the improvement of relaxation in response to acetylcholine by 12 h-incubation with 300 μM Rhy. Western blot analysis revealed that Rhy elevated phosphorylations of eNOS, Akt, and Src in SHR renal arteries. Moreover, wortmannin reversed the increased phosphorylations of Akt and eNOS induced by Rhy, but did not affect the phosphorylation of Src. Furthermore, the enhanced phosphorylations of eNOS, Akt, and Src were blunted by PP2. Importantly, Rhy increased NO production and this effect was blocked by inhibition of Src or PI3K/Akt. Conclusion: The present study provides evidences for the first time that Rhy ameliorates endothelial dysfunction in SHRs through the activation of Src-PI3K/Akt-eNOS signaling pathway. PMID:29187825
Lee, Luke J.; Kovbasnjuk, Olga; Li, Xuhang; Donowitz, Mark
2013-01-01
Elevated levels of intracellular Ca2+ ([Ca2+]i) inhibit Na+/H+ exchanger 3 (NHE3) activity in the intact intestine. We previously demonstrated that PLC-γ directly binds NHE3, an interaction that is necessary for [Ca2+]i inhibition of NHE3 activity, and that PLC-γ Src homology 2 (SH2) domains may scaffold Ca2+ signaling proteins necessary for regulation of NHE3 activity. [Ca2+]i regulation of NHE3 activity is also c-Src dependent; however, the mechanism by which c-Src is involved is undetermined. We hypothesized that the SH2 domains of PLC-γ might link c-Src to NHE3-containing complexes to mediate [Ca2+]i inhibition of NHE3 activity. In Caco-2/BBe cells, carbachol (CCh) decreased NHE3 activity by ∼40%, an effect abolished with the c-Src inhibitor PP2. CCh treatment increased the amount of active c-Src as early as 1 min through increased Y416 phosphorylation. Coimmunoprecipitation demonstrated that c-Src associated with PLC-γ, but not NHE3, under basal conditions, an interaction that increased rapidly after CCh treatment and occurred before the dissociation of PLC-γ and NHE3 that occurred 10 min after CCh treatment. Finally, direct binding to c-Src only occurred through the PLC-γ SH2 domains, an interaction that was prevented by blocking the PLC-γ SH2 domain. This study demonstrated that c-Src 1) activity is necessary for [Ca2+]i inhibition of NHE3 activity, 2) activation occurs rapidly (∼1 min) after CCh treatment, 3) directly binds PLC-γ SH2 domains and associates dynamically with PLC-γ under elevated [Ca2+]i conditions, and 4) does not directly bind NHE3. Under elevated [Ca2+]i conditions, PLC-γ scaffolds c-Src into NHE3-containing multiprotein complexes before dissociation of PLC-γ from NHE3 and subsequent endocytosis of NHE3. PMID:23703528
Zachos, Nicholas C; Lee, Luke J; Kovbasnjuk, Olga; Li, Xuhang; Donowitz, Mark
2013-08-01
Elevated levels of intracellular Ca(2+) ([Ca(2+)]i) inhibit Na(+)/H(+) exchanger 3 (NHE3) activity in the intact intestine. We previously demonstrated that PLC-γ directly binds NHE3, an interaction that is necessary for [Ca(2+)]i inhibition of NHE3 activity, and that PLC-γ Src homology 2 (SH2) domains may scaffold Ca(2+) signaling proteins necessary for regulation of NHE3 activity. [Ca(2+)]i regulation of NHE3 activity is also c-Src dependent; however, the mechanism by which c-Src is involved is undetermined. We hypothesized that the SH2 domains of PLC-γ might link c-Src to NHE3-containing complexes to mediate [Ca(2+)]i inhibition of NHE3 activity. In Caco-2/BBe cells, carbachol (CCh) decreased NHE3 activity by ∼40%, an effect abolished with the c-Src inhibitor PP2. CCh treatment increased the amount of active c-Src as early as 1 min through increased Y(416) phosphorylation. Coimmunoprecipitation demonstrated that c-Src associated with PLC-γ, but not NHE3, under basal conditions, an interaction that increased rapidly after CCh treatment and occurred before the dissociation of PLC-γ and NHE3 that occurred 10 min after CCh treatment. Finally, direct binding to c-Src only occurred through the PLC-γ SH2 domains, an interaction that was prevented by blocking the PLC-γ SH2 domain. This study demonstrated that c-Src 1) activity is necessary for [Ca(2+)]i inhibition of NHE3 activity, 2) activation occurs rapidly (∼1 min) after CCh treatment, 3) directly binds PLC-γ SH2 domains and associates dynamically with PLC-γ under elevated [Ca(2+)]i conditions, and 4) does not directly bind NHE3. Under elevated [Ca(2+)]i conditions, PLC-γ scaffolds c-Src into NHE3-containing multiprotein complexes before dissociation of PLC-γ from NHE3 and subsequent endocytosis of NHE3.
Montagner, Alexandra; Delgado, Maria B; Tallichet-Blanc, Corinne; Chan, Jeremy S K; Sng, Ming K; Mottaz, Hélén; Degueurce, Gwendoline; Lippi, Yannick; Moret, Catherine; Baruchet, Michael; Antsiferova, Maria; Werner, Sabine; Hohl, Daniel; Saati, Talal Al; Farmer, Pierre J; Tan, Nguan S; Michalik, Liliane; Wahli, Walter
2014-01-01
Although non-melanoma skin cancer (NMSC) is the most common human cancer and its incidence continues to rise worldwide, the mechanisms underlying its development remain incompletely understood. Here, we unveil a cascade of events involving peroxisome proliferator-activated receptor (PPAR) β/δ and the oncogene Src, which promotes the development of ultraviolet (UV)-induced skin cancer in mice. UV-induced PPARβ/δ activity, which directly stimulated Src expression, increased Src kinase activity and enhanced the EGFR/Erk1/2 signalling pathway, resulting in increased epithelial-to-mesenchymal transition (EMT) marker expression. Consistent with these observations, PPARβ/δ-null mice developed fewer and smaller skin tumours, and a PPARβ/δ antagonist prevented UV-dependent Src stimulation. Furthermore, the expression of PPARβ/δ positively correlated with the expression of SRC and EMT markers in human skin squamous cell carcinoma (SCC), and critically, linear models applied to several human epithelial cancers revealed an interaction between PPARβ/δ and SRC and TGFβ1 transcriptional levels. Taken together, these observations motivate the future evaluation of PPARβ/δ modulators to attenuate the development of several epithelial cancers.
Transmembrane adaptor protein PAG1 is a novel tumor suppressor in neuroblastoma
Agarwal, Saurabh; Ghosh, Rajib; Chen, Zaowen; Lakoma, Anna; Gunaratne, Preethi H.; Kim, Eugene S.; Shohet, Jason M.
2016-01-01
(NB) is the most common extracranial pediatric solid tumor with high mortality rates. The tyrosine kinase c-Src has been known to play an important role in differentiation of NB cells, but the mechanism of c-Src regulation has not been defined. Here, we characterize PAG1 (Cbp, Csk binding protein), a central inhibitor of c-Src and other Src family kinases, as a novel tumor suppressor in NB. Clinical cohort analysis demonstrate that low expression of PAG1 is a significant prognostic factor for high stage disease, increased relapse, and worse overall survival for children with NB. PAG1 knockdown in NB cells promotes proliferation and anchorage-independent colony formation with increased activation of AKT and ERK downstream of c-Src, while PAG1 overexpression significantly rescues these effects. In vivo, PAG1 overexpression significantly inhibits NB tumorigenicity in an orthotopic xenograft model. Our results establish PAG1 as a potent tumor suppressor in NB by inhibiting c-Src and downstream effector pathways. Thus, reactivation of PAG1 and inhibition of c-Src kinase activity represents an important novel therapeutic approach for high-risk NB. PMID:26993602
Tian, X; Ye, M; Cao, Y; Wang, C
2017-02-01
Angiotensin II type 1 receptor blocker losartan has shown strongly anti-insulin resistance properties in vivo and in vitro ; however, the underlying mechanisms are poorly understood. In this study, we demonstrate that losartan administration increased phosphorylation of Akt and its downstream Akt substrate of 160 kDa (AS160), enhanced plasma membrane translocation of glucose transporter type 4 (GLUT4), and increased glucose uptake, along with increased Src phosphorylation as well as reduced expression of docking protein 1(DOK1) in palmitate-treated 3T3-L1 adipocytes. The beneficial impacts of losartan on insulin signaling were diminished in Src-deficient 3T3-L1 adipocytes. In addition, suppressed expression of DOK1 by losartan was abolished by Src knockdown. Our results suggest that anti-insulin resistance ability of losartan is mediated by Src/DOK1/Akt pathway. © Georg Thieme Verlag KG Stuttgart · New York.
Huang, Yu; He, Qing
2017-06-01
The mechanisms underlying paraquat induced acute lung injury (ALI) is still not clear. C-Src plays an important role in the regulation of microvascular endothelial barrier function and the pathogenesis of ALI. In the present study, we found that paraquat induced cell toxicity and an increase of reactive oxygen species (ROS) in endothelium. Paraquat exposure also induced significant increase of caveolin-1 phosphorylation, caveolae trafficking and albumin permeability in endothelial monolayers. C-Src depletion by siRNA significantly attenuate paraquat induced cell toxicity, caveolin-1 phosphorylation, caveolae formation and endothelial hyperpermeability. N-acetylcysteine (NAC) failed to protect endothelial monolayers against paraquat induced toxicity. Thus, our findings suggest that paraquat exposure increases paracellular endothelial permeability by increasing caveolin-1 phosphorylation in a c-Src dependant manner. The depletion of c-Src might protect microvascular endothelial function by regulating caveolin-1 phosphorylation and caveolae trafficking during paraquat exposure, and might have potential therapeutic effects on paraquat induced ALI. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Ming-Chong; Shi, Xiu-Zhen; Yang, Hui-Ting; Sun, Jie-Jie; Xu, Ling; Wang, Xian-Wei; Zhao, Xiao-Fan
2016-01-01
Scavenger receptors are an important class of pattern recognition receptors that play several important roles in host defense against pathogens. The class C scavenger receptors (SRCs) have only been identified in a few invertebrates, and their role in the immune response against viruses is seldom studied. In this study, we firstly identified an SRC from kuruma shrimp, Marsupenaeus japonicus, designated MjSRC, which was significantly upregulated after white spot syndrome virus (WSSV) challenge at the mRNA and protein levels in hemocytes. The quantity of WSSV increased in shrimp after knockdown of MjSRC, compared with the controls. Furthermore, overexpression of MjSRC led to enhanced WSSV elimination via phagocytosis by hemocytes. Pull-down and co-immunoprecipitation assays demonstrated the interaction between MjSRC and the WSSV envelope protein. Electron microscopy observation indicated that the colloidal gold-labeled extracellular domain of MjSRC was located on the outer surface of WSSV. MjSRC formed a trimer and was internalized into the cytoplasm after WSSV challenge, and the internalization was strongly inhibited after knockdown of Mjβ-arrestin2. Further studies found that Mjβ-arrestin2 interacted with the intracellular domain of MjSRC and induced the internalization of WSSV in a clathrin-dependent manner. WSSV were co-localized with lysosomes in hemocytes and the WSSV quantity in shrimp increased after injection of lysosome inhibitor, chloroquine. Collectively, this study demonstrated that MjSRC recognized WSSV via its extracellular domain and invoked hemocyte phagocytosis to restrict WSSV systemic infection. This is the first study to report an SRC as a pattern recognition receptor promoting phagocytosis of a virus. PMID:28027319
Su, Kuo-Hui; Tsai, Jin-Yi; Kou, Yu Ru; Chiang, An-Na; Hsiao, Sheng-Huang; Wu, Yuh-Lin; Hou, Hsin-Han; Pan, Ching-Chian; Shyue, Song-Kun; Lee, Tzong-Shyuan
2009-06-01
Valsartan, a selective angiotensin II type 1 receptor (AT1R) blocker, has beneficial effects in the cardiovascular system in part by its increase of nitric oxide (NO) bioavailability, yet the mechanisms are unclear. We investigated the molecular mechanisms underlying this effect in endothelial cells (ECs). NO production was examined by Griess reagent assay, DAF-2 DA fluorescence staining and cGMP ELISA kits. Protein interaction was determined by western blotting and immunoprecipitation. Treating bovine or human aortic ECs with valsartan increased NO production, as evidenced by elevated level of stable NO metabolites and intracellular cGMP. Valsartan increased the phosphorylation but not the protein level of endothelial NO synthase (eNOS). Inhibition of phosphoinositide-3 kinase (PI3K)/Akt and Src pathways by specific inhibitors suppressed valsartan-induced NO release. In addition, valsartan increased the tyrosine residue phosphorylation of AT1R, which was attenuated by inhibition of Src but not PI3K activities. Valsartan also suppressed the interaction of eNOS and AT1R, which was blocked by Src or PI3K inhibition. Valsartan-induced NO production in ECs is mediated through Src/PI3K/Akt-dependent phosphorylation of eNOS. Valsartan-induced AT1R phosphorylation depends on Src but not PI3K, whereas valsartan-induced suppression of AT1R-eNOS interaction depends on Src/PI3K/Akt signalling. These results indicate a novel vasoprotective mechanism of valsartan in upregulating NO production in ECs.
Socodato, Renato; Santiago, Felipe N.; Portugal, Camila C.; Domingues, Ana F.; Santiago, Ana R.; Relvas, João B.; Ambrósio, António F.; Paes-de-Carvalho, Roberto
2012-01-01
In the retina information decoding is dependent on excitatory neurotransmission and is critically modulated by AMPA glutamate receptors. The Src-tyrosine kinase has been implicated in modulating neurotransmission in CNS. Thus, our main goal was to correlate AMPA-mediated excitatory neurotransmission with the modulation of Src activity in retinal neurons. Cultured retinal cells were used to access the effects of AMPA stimulation on nitric oxide (NO) production and Src phosphorylation. 4-Amino-5-methylamino-2′,7′-difluorofluorescein diacetate fluorescence mainly determined NO production, and immunocytochemistry and Western blotting evaluated Src activation. AMPA receptors activation rapidly up-regulated Src phosphorylation at tyrosine 416 (stimulatory site) and down-regulated phosphotyrosine 527 (inhibitory site) in retinal cells, an effect mainly mediated by calcium-permeable AMPA receptors. Interestingly, experiments confirmed that neuronal NOS was activated in response to calcium-permeable AMPA receptor stimulation. Moreover, data suggest NO pathway as a key regulatory signaling in AMPA-induced Src activation in neurons but not in glial cells. The NO donor SNAP (S-nitroso-N-acetyl-dl-penicillamine) and a soluble guanylyl cyclase agonist (YC-1) mimicked AMPA effect in Src Tyr-416 phosphorylation, reinforcing that Src activation is indeed modulated by the NO pathway. Gain and loss-of-function data demonstrated that ERK is a downstream target of AMPA-induced Src activation and NO signaling. Furthermore, AMPA stimulated NO production in organotypic retinal cultures and increased Src activity in the in vivo retina. Additionally, AMPA-induced apoptotic retinal cell death was regulated by both NOS and Src activity. Because Src activity is pivotal in several CNS regions, the data presented herein highlight that Src modulation is a critical step in excitatory retinal cell death. PMID:22992730
Socodato, Renato; Santiago, Felipe N; Portugal, Camila C; Domingues, Ana F; Santiago, Ana R; Relvas, João B; Ambrósio, António F; Paes-de-Carvalho, Roberto
2012-11-09
In the retina information decoding is dependent on excitatory neurotransmission and is critically modulated by AMPA glutamate receptors. The Src-tyrosine kinase has been implicated in modulating neurotransmission in CNS. Thus, our main goal was to correlate AMPA-mediated excitatory neurotransmission with the modulation of Src activity in retinal neurons. Cultured retinal cells were used to access the effects of AMPA stimulation on nitric oxide (NO) production and Src phosphorylation. 4-Amino-5-methylamino-2',7'-difluorofluorescein diacetate fluorescence mainly determined NO production, and immunocytochemistry and Western blotting evaluated Src activation. AMPA receptors activation rapidly up-regulated Src phosphorylation at tyrosine 416 (stimulatory site) and down-regulated phosphotyrosine 527 (inhibitory site) in retinal cells, an effect mainly mediated by calcium-permeable AMPA receptors. Interestingly, experiments confirmed that neuronal NOS was activated in response to calcium-permeable AMPA receptor stimulation. Moreover, data suggest NO pathway as a key regulatory signaling in AMPA-induced Src activation in neurons but not in glial cells. The NO donor SNAP (S-nitroso-N-acetyl-DL-penicillamine) and a soluble guanylyl cyclase agonist (YC-1) mimicked AMPA effect in Src Tyr-416 phosphorylation, reinforcing that Src activation is indeed modulated by the NO pathway. Gain and loss-of-function data demonstrated that ERK is a downstream target of AMPA-induced Src activation and NO signaling. Furthermore, AMPA stimulated NO production in organotypic retinal cultures and increased Src activity in the in vivo retina. Additionally, AMPA-induced apoptotic retinal cell death was regulated by both NOS and Src activity. Because Src activity is pivotal in several CNS regions, the data presented herein highlight that Src modulation is a critical step in excitatory retinal cell death.
Thornton, Claire; Yaka, Rami; Dinh, Son; Ron, Dorit
2005-01-01
Tyrosine phosphorylation of the NR2A and NR2B subunits of the N-methyl-d-aspartate (NMDA) receptor by Src protein-tyrosine kinases modulates receptor channel activity and is necessary for the induction of long term potentiation (LTP). Deletion of H-Ras increases both NR2 tyrosine phosphorylation and NMDA receptor-mediated hippocampal LTP. Here we investigated whether H-Ras regulates phosphorylation and function of the NMDA receptor via Src family protein-tyrosine kinases. We identified Src as a novel H-Ras binding partner. H-Ras bound to Src but not Fyn both in vitro and in brain via the Src kinase domain. Cotransfection of H-Ras and Src inhibited Src activity and decreased NR2A tyrosine phosphorylation. Treatment of rat brain slices with Tat-H-Ras depleted NR2A from the synaptic membrane, decreased endogenous Src activity and NR2A phosphorylation, and decreased the magnitude of hip-pocampal LTP. No change was observed for NR2B. We suggest that H-Ras negatively regulates Src phosphorylation of NR2A and retention of NR2A into the synaptic membrane leading to inhibition of NMDA receptor function. This mechanism is specific for Src and NR2A and has implications for studies in which regulation of NMDA receptor-mediated LTP is important, such as synaptic plasticity, learning, and memory and addiction. PMID:12695509
Gomes, Evan G; Connelly, Sarah F; Summy, Justin M
2013-07-01
Although c-Src (Src) has emerged as a potential pancreatic cancer target in preclinical studies, Src inhibitors have not demonstrated a significant therapeutic benefit in clinical trials. The objective of these studies was to examine the effects of combining Src inhibition with inhibition of the protein tyrosine phosphatase SHP-2 in pancreatic cancer cells in vitro and in vivo. SHP-2 and Src functions were inhibited by siRNA or small molecule inhibitors. The effects of dual Src/SHP-2 functional inhibition were evaluated by Western blot analysis of downstream signaling pathways; cell biology assays to examine caspase activity, viability, adhesion, migration, and invasion in vitro; and an orthotopic nude mouse model to observe pancreatic tumor formation in vivo. Dual targeting of Src and SHP-2 induces an additive or supra-additive loss of phosphorylation of Akt and ERK-1/2 and corresponding increases in expression of apoptotic markers, relative to targeting either protein individually. Combinatorial inhibition of Src and SHP-2 significantly reduces viability, adhesion, migration, and invasion of pancreatic cancer cells in vitro and tumor formation in vivo, relative to individual Src/SHP-2 inhibition. These data suggest that the antitumor effects of Src inhibition in pancreatic cancer may be enhanced through simultaneous inhibition of SHP-2.
SRC-2-mediated coactivation of anti-tumorigenic target genes suppresses MYC-induced liver cancer
Zhou, Xiaorong; Comerford, Sarah A.; York, Brian; O’Donnell, Kathryn A.
2017-01-01
Hepatocellular carcinoma (HCC) is the fifth most common solid tumor in the world and the third leading cause of cancer-associated deaths. A Sleeping Beauty-mediated transposon mutagenesis screen previously identified mutations that cooperate with MYC to accelerate liver tumorigenesis. This revealed a tumor suppressor role for Steroid Receptor Coactivator 2/Nuclear Receptor Coactivator 2 (Src-2/Ncoa2) in liver cancer. In contrast, SRC-2 promotes survival and metastasis in prostate cancer cells, suggesting a tissue-specific and context-dependent role for SRC-2 in tumorigenesis. To determine if genetic loss of SRC-2 is sufficient to accelerate MYC-mediated liver tumorigenesis, we bred Src-2-/- mice with a MYC-induced liver tumor model and observed a significant increase in liver tumor burden. RNA sequencing of liver tumors and in vivo chromatin immunoprecipitation assays revealed a set of direct target genes that are bound by SRC-2 and exhibit downregulated expression in Src-2-/- liver tumors. We demonstrate that activation of SHP (Small Heterodimer Partner), DKK4 (Dickkopf-4), and CADM4 (Cell Adhesion Molecule 4) by SRC-2 suppresses tumorigenesis in vitro and in vivo. These studies suggest that SRC-2 may exhibit oncogenic or tumor suppressor activity depending on the target genes and nuclear receptors that are expressed in distinct tissues and illuminate the mechanisms of tumor suppression by SRC-2 in liver. PMID:28273073
C-terminal Src kinase (Csk) regulates the tricellular junction protein Gliotactin independent of Src
Samarasekera, G. D. N. Gayathri; Auld, Vanessa Jane
2018-01-01
Tricellular junctions (TCJs) are uniquely placed permeability barriers formed at the corners of polarized epithelia where tight junctions in vertebrates or septate junctions (SJ) in invertebrates from three cells converge. Gliotactin is a Drosophila TCJ protein, and loss of Gliotactin results in SJ and TCJ breakdown and permeability barrier loss. When overexpressed, Gliotactin spreads away from the TCJs, resulting in disrupted epithelial architecture, including overproliferation, cell delamination, and migration. Gliotactin levels are tightly controlled at the mRNA level and at the protein level through endocytosis and degradation triggered by tyrosine phosphorylation. We identified C-terminal Src kinase (Csk) as a tyrosine kinase responsible for regulating Gliotactin endocytosis. Increased Csk suppresses the Gliotactin overexpression phenotypes by increasing endocytosis. Loss of Csk causes Gliotactin to spread away from the TCJ. Although Csk is known as a negative regulator of Src kinases, the effects of Csk on Gliotactin are independent of Src and likely occur through an adherens junction associated complex. Overall, we identified a new Src-independent role for Csk in the control of Gliotactin, a key tricellular junction protein. PMID:29167383
Ivakine, Evgueni A.; Lam, Emily; Deurloo, Marielle; Dida, Joana; Zirngibl, Ralph A.
2015-01-01
Abstract Src is a nonreceptor protein tyrosine kinase that is expressed widely throughout the central nervous system and is involved in diverse biological functions. Mice homozygous for a spontaneous mutation in Src (Src thl/thl) exhibited hypersociability and hyperactivity along with impairments in visuospatial, amygdala-dependent, and motor learning as well as an increased startle response to loud tones. The phenotype of Src thl/thl mice showed significant overlap with Williams-Beuren syndrome (WBS), a disorder caused by the deletion of several genes, including General Transcription Factor 2-I (GTF2I). Src phosphorylation regulates the movement of GTF2I protein (TFII-I) between the nucleus, where it is a transcriptional activator, and the cytoplasm, where it regulates trafficking of transient receptor potential cation channel, subfamily C, member 3 (TRPC3) subunits to the plasma membrane. Here, we demonstrate altered cellular localization of both TFII-I and TRPC3 in the Src mutants, suggesting that disruption of Src can phenocopy behavioral phenotypes observed in WBS through its regulation of TFII-I. PMID:26464974
Wallace, Jessica; Covassin, Tracey; Beidler, Erica
2017-07-01
Recent researchers have reported that athletes' knowledge of sport-related concussion (SRC) has increased but that athletes still lack knowledge of all the signs and symptoms of SRC. Understanding the signs and symptoms of SRC and the dangers of playing while symptomatic are critical to reporting behaviors in high school athletes. To examine sex differences in knowledge of SRC symptoms and reasons for not reporting a suspected SRC to an authoritative figure in high school athletes. Cross-sectional study. Survey. A total of 288 athletes across 7 sports (198 males [68.8%] and 90 females [31.2%]). A validated knowledge-of-SRC survey consisted of demographic questions, a list of 21 signs and symptoms of SRC, and reasons why athletes would not report their SRC. The independent variable was sex. Athlete knowledge of SRC symptoms was assessed by having participants identify the signs and symptoms of SRC from a list of 21 symptoms. Knowledge scores were calculated by summing the number of correct answers; scores ranged from 0 to 21, with a score closer to 21 representing greater knowledge. Reporting-behavior questions asked athletes to choose reasons why they decided not to report any possible SRC signs and symptoms to an authoritative figure. A sex difference in total SRC symptom knowledge was found (F 286 = 4.97, P = .03, d = 0.26). Female high school athletes had more total SRC symptom knowledge (mean ± standard deviation = 15.06 ± 2.63; 95% confidence interval = 14.54, 15.57) than males (14.36 ± 2.76; 95% confidence interval = 13.97, 14.74). Chi-square tests identified significant relationships between sex and 8 different reasons for not reporting an SRC. High school males and females had similar SRC symptom knowledge; however, female athletes were more likely to report their concussive symptoms to an authoritative figure.
NASA Astrophysics Data System (ADS)
Hara, T.; Jones, L.; Tewari, K. C.; Li, N. C.
1981-02-01
The viscosity of SRC-LL liquid increases when subjected to accelerated aging by bubbling oxygen in the presence of copper strip at 62°C. Precipitates are formed and can be separated from the aged liquid by Soxhlet extraction with pentane. A 30-70 blend of SRC-I with SRC-LL was subjected to oxygen aging in the absence of copper, and the viscosity increased dramatically after 6 days at 62°. The content of preasphaltene and its molecular size increase with time of aging, accompanied by decrease of asphaltene and pentane-soluble contents. For the preasphaltene fraction on aging, gel permeation chromatography shows formation of larger particles. ESR experiments show that with oxygen aging, spin concentration in the preasphaltene fraction decreases. Perhaps some semiquinone, together with di- and tri-substituted phenoxy radicals, generated by oxygen aging of the coal liquid, interact with the free radicals already present in coal to yield larger particles and reduce free radical concentration. We are currently using the very high-field (600-MHz) NMR spectrometer at Mellon Institute to determine changes in structural parameters before and after aging of SRC-II and its chromatographically separated fractions.
Wang, Zhe; Yan, Wei; Sun, Huimin; Xue, Peipei; Fan, Xiaoming; Zeng, Xiaoyu; Chen, Juan; Shao, Chen; Zhu, Feng
2016-01-01
T-LAK cell-originated protein kinase (TOPK), a serine/threonine protein kinase, is highly expressed in a variety of tumors and associated with a poor prognosis of human malignancies. However, the activation mechanism of TOPK is still unrevealed. Herein, first we found that Src directly bound with and phosphorylated TOPK at Y74 and Y272 in vitro. Anti-phospho-TOPK at Y74 was prepared, the endogenous phosphorylation of TOPK at Y74 was detected in colon cancer cells, and the phosphorylation was inhibited in cells expressing low levels of Src. Subsequently, we stably transfected Y74 and Y272 double mutated TOPK (TOPK-FF) into JB6 or SW480 cells, and observed that both the anchorage-independent growth ability and tumorigenesis of TOPK-FF cells were suppressed compared with those of wild type TOPK (TOPK-WT) ex vivo and in vivo. The phosphorylation level of TOPK substrate, Histone H3 at Ser10 also decreased dramatically ex vivo or in vivo. Moreover, we showed that Src could inhibit the ubiquitination of TOPK. Transiently expressed TOPK-WT was more stable than TOPK-FF in pause and chase experiment. Endogenous TOPK was more stable in Src wild type (Src+/+) MEFs than in Src knockout (Src−/−). Taken together, our results indicate that Src is a novel upstream kinase of TOPK. The phosphorylation of TOPK at Y74 and Y272 by Src increases the stability and activity of TOPK, and promotes the tumorigenesis of colon cancer. It may provide opportunities for TOPK based prognosis and targeted therapy for colon cancer patients. PMID:27016416
Kim, Dae Joong; Norden, Pieter R; Salvador, Jocelynda; Barry, David M; Bowers, Stephanie L K; Cleaver, Ondine; Davis, George E
2017-01-01
Here we examine the question of how endothelial cells (ECs) develop their apical membrane surface domain during lumen and tube formation. We demonstrate marked apical membrane targeting of activated Src kinases to this apical domain during early and late stages of this process. Immunostaining for phosphotyrosine or phospho-Src reveals apical membrane staining in intracellular vacuoles initially. This is then followed by vacuole to vacuole fusion events to generate an apical luminal membrane, which is similarly decorated with activated phospho-Src kinases. Functional blockade of Src kinases completely blocks EC lumen and tube formation, whether this occurs during vasculogenic tube assembly or angiogenic sprouting events. Multiple Src kinases participate in this apical membrane formation process and siRNA suppression of Src, Fyn and Yes, but not Lyn, blocks EC lumen formation. We also demonstrate strong apical targeting of Src-GFP and Fyn-GFP fusion proteins and increasing their expression enhances lumen formation. Finally, we show that Src- and Fyn-associated vacuoles track and fuse along a subapically polarized microtubule cytoskeleton, which is highly acetylated. These vacuoles generate the apical luminal membrane in a stereotypically polarized, perinuclear position. Overall, our study identifies a critical role for Src kinases in creating and decorating the EC apical membrane surface during early and late stages of lumen and tube formation, a central event in the molecular control of vascular morphogenesis.
Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae
Zimnicka, Adriana M.; Husain, Yawer S.; Shajahan, Ayesha N.; Sverdlov, Maria; Chaga, Oleg; Chen, Zhenlong; Toth, Peter T.; Klomp, Jennifer; Karginov, Andrei V.; Tiruppathi, Chinnaswamy; Malik, Asrar B.; Minshall, Richard D.
2016-01-01
Caveolin 1 (Cav1) is a required structural component of caveolae, and its phosphorylation by Src is associated with an increase in caveolae-mediated endocytosis. Here we demonstrate, using quantitative live-cell 4D, TIRF, and FRET imaging, that endocytosis and trafficking of caveolae are associated with a Cav1 Tyr-14 phosphorylation-dependent conformational change, which spatially separates, or loosens, Cav1 molecules within the oligomeric caveolar coat. When tracked by TIRF and spinning-disk microscopy, cells expressing phosphomimicking Cav1 (Y14D) mutant formed vesicles that were greater in number and volume than with Y14F-Cav1-GFP. Furthermore, we observed in HEK cells cotransfected with wild-type, Y14D, or Y14F Cav1-CFP and -YFP constructs that FRET efficiency was greater with Y14F pairs than with Y14D, indicating that pY14-Cav1 regulates the spatial organization of Cav1 molecules within the oligomer. In addition, albumin-induced Src activation or direct activation of Src using a rapamycin-inducible Src construct (RapR-Src) led to an increase in monomeric Cav1 in Western blots, as well as a simultaneous increase in vesicle number and decrease in FRET intensity, indicative of a Src-mediated conformational change in CFP/YFP-tagged WT-Cav1 pairs. We conclude that phosphorylation of Cav1 leads to separation or “spreading” of neighboring negatively charged N-terminal phosphotyrosine residues, promoting swelling of caveolae, followed by their release from the plasma membrane. PMID:27170175
Montagner, Alexandra; Delgado, Maria B; Tallichet-Blanc, Corinne; Chan, Jeremy S K; Sng, Ming K; Mottaz, Hélène; Degueurce, Gwendoline; Lippi, Yannick; Moret, Catherine; Baruchet, Michael; Antsiferova, Maria; Werner, Sabine; Hohl, Daniel; Al Saati, Talal; Farmer, Pierre J; Tan, Nguan S; Michalik, Liliane; Wahli, Walter
2014-01-01
Although non-melanoma skin cancer (NMSC) is the most common human cancer and its incidence continues to rise worldwide, the mechanisms underlying its development remain incompletely understood. Here, we unveil a cascade of events involving peroxisome proliferator-activated receptor (PPAR) β/δ and the oncogene Src, which promotes the development of ultraviolet (UV)-induced skin cancer in mice. UV-induced PPARβ/δ activity, which directly stimulated Src expression, increased Src kinase activity and enhanced the EGFR/Erk1/2 signalling pathway, resulting in increased epithelial-to-mesenchymal transition (EMT) marker expression. Consistent with these observations, PPARβ/δ-null mice developed fewer and smaller skin tumours, and a PPARβ/δ antagonist prevented UV-dependent Src stimulation. Furthermore, the expression of PPARβ/δ positively correlated with the expression of SRC and EMT markers in human skin squamous cell carcinoma (SCC), and critically, linear models applied to several human epithelial cancers revealed an interaction between PPARβ/δ and SRC and TGFβ1 transcriptional levels. Taken together, these observations motivate the future evaluation of PPARβ/δ modulators to attenuate the development of several epithelial cancers. PMID:24203162
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korovin, N.V.; Kozlova, N.I.; Kumenko, M.V.
This work is concerned with the effect of oxidation on the activity of Raney nickel catalyst in cathodic hydrogen evolution. The superficial Raney nickel catalyst (nickel SRC) was prepared by a previously described procedure. The surface of the nickel SRC was oxidized by applying an anodic sweep over the potential range from 0.25 to 1.00 V with a potential sweep rate of 1 mV/sec. The rate of cathodic hydrogen evolution increases after pretreatment of the surface of nickel SRC by application of an anodic pulse. A significant increase in the reaction rate most probably is due to oxygen adsorption onmore » the nickel SRC surface. The largest increase in the amount of weakly bound hydrogen corresponds to the most active electrode. Oxidation of the nickel surface by an anodic pulse causes both an acceleration and a retardation of the cathodic hydrogen evolution reaction.« less
Identification of a functional interaction between Kv4.3 channels and c-Src tyrosine kinase.
Gomes, Pedro; Saito, Tomoaki; Del Corsso, Cris; Alioua, Abderrahmane; Eghbali, Mansoureh; Toro, Ligia; Stefani, Enrico
2008-10-01
Voltage-gated K(+) (Kv) channels are key determinants of cardiac and neuronal excitability. A substantial body of evidence has accumulated in support of a role for Src family tyrosine kinases in the regulation of Kv channels. In this study, we examined the possibility that c-Src tyrosine kinase participates in the modulation of the transient voltage-dependent K(+) channel Kv4.3. Supporting a mechanistic link between Kv4.3 and c-Src, confocal microscopy analysis of HEK293 cells stably transfected with Kv4.3 showed high degree of co-localization of the two proteins at the plasma membrane. Our results further demonstrate an association between Kv4.3 and c-Src by co-immunoprecipitation and GST pull-down assays, this interaction being mediated by the SH2 and SH3 domains of c-Src. Furthermore, we show that Kv4.3 is tyrosine phosphorylated under basal conditions. The functional relevance of the observed interaction between Kv4.3 and c-Src was established in patch-clamp experiments, where application of the Src inhibitor PP2 caused a decrease in Kv4.3 peak current amplitude, but not the inactive structural analogue PP3. Conversely, intracellular application of recombinant c-Src kinase or the protein tyrosine phosphatase inhibitor bpV(phen) increased Kv4.3 peak current amplitude. In conclusion, our findings provide evidence that c-Src-induced Kv4.3 channel activation involves their association in a macromolecular complex and suggest a role for c-Src-Kv4.3 pathway in regulating cardiac and neuronal excitability.
The Role of C-SRC Activation in Prostate Tumor Progression
2006-07-01
cancer cell line PANC -1 and prostrate cancer cell line PC-3 (B2-fold increase relative to control in both cell lines), while the Src inhibitory PP2 blocks...at normoxia in PANC -1 and PC-3 cells, its levels significantly increase in response to hypoxia (B4.5–8-fold induction). Inhibition of endo- genous c...Src activation in PANC -1 and PC-3 cells by PP2 drastically reduced HIF-1a levels to below those levels observed at normoxia (Figure 1a). STAT3 has
Coactivator SRC-2–dependent metabolic reprogramming mediates prostate cancer survival and metastasis
Dasgupta, Subhamoy; Putluri, Nagireddy; Long, Weiwen; Zhang, Bin; Wang, Jianghua; Kaushik, Akash K.; Arnold, James M.; Bhowmik, Salil K.; Stashi, Erin; Brennan, Christine A.; Rajapakshe, Kimal; Coarfa, Cristian; Mitsiades, Nicholas; Ittmann, Michael M.; Chinnaiyan, Arul M.; Sreekumar, Arun; O’Malley, Bert W.
2015-01-01
Metabolic pathway reprogramming is a hallmark of cancer cell growth and survival and supports the anabolic and energetic demands of these rapidly dividing cells. The underlying regulators of the tumor metabolic program are not completely understood; however, these factors have potential as cancer therapy targets. Here, we determined that upregulation of the oncogenic transcriptional coregulator steroid receptor coactivator 2 (SRC-2), also known as NCOA2, drives glutamine-dependent de novo lipogenesis, which supports tumor cell survival and eventual metastasis. SRC-2 was highly elevated in a variety of tumors, especially in prostate cancer, in which SRC-2 was amplified and overexpressed in 37% of the metastatic tumors evaluated. In prostate cancer cells, SRC-2 stimulated reductive carboxylation of α-ketoglutarate to generate citrate via retrograde TCA cycling, promoting lipogenesis and reprogramming of glutamine metabolism. Glutamine-mediated nutrient signaling activated SRC-2 via mTORC1-dependent phosphorylation, which then triggered downstream transcriptional responses by coactivating SREBP-1, which subsequently enhanced lipogenic enzyme expression. Metabolic profiling of human prostate tumors identified a massive increase in the SRC-2–driven metabolic signature in metastatic tumors compared with that seen in localized tumors, further implicating SRC-2 as a prominent metabolic coordinator of cancer metastasis. Moreover, SRC-2 inhibition in murine models severely attenuated the survival, growth, and metastasis of prostate cancer. Together, these results suggest that the SRC-2 pathway has potential as a therapeutic target for prostate cancer. PMID:25664849
Chun, Kyung-Soo; Lao, Huei-Chen; Trempus, Carol S.; Okada, Manabu; Langenbach, Robert
2009-01-01
Prostaglandin E2 (PGE2) is elevated in many tumor types, but PGE2's contributions to tumor growth are largely unknown. To investigate PGE2's roles, the contributions of one of its receptors, EP2, were studied using the mouse skin initiation/promotion model. Initial studies indicated that protein kinase A (PKA), epidermal growth factor receptor (EGFR) and several effectors—cyclic adenosine 3′,5′-monophosphate response element-binding protein (CREB), H-Ras, Src, protein kinase B (AKT) and extracellular signal-regulated kinase (ERK)1/2—were activated in 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted papillomas and that PKA and EGFR inhibition (H89 and AG1478, respectively) decreased papilloma formation. EP2's contributions to the activation of these pathways and papilloma development were determined by inhibiting endogenous TPA-induced PGE2 production with indomethacin (Indo) and concomitantly treating with the EP2 agonist, CAY10399 (CAY). CAY treatment restored papilloma formation in TPA/Indo-treated mice and increased cyclic adenosine 3′,5′-monophosphate and PKA activation as measured by p-CREB formation. CAY treatment also increased EGFR and Src activation and their inhibition by AG1478 and PP2 indicated that Src was upstream of EGFR. CAY also increased H-Ras, ERK1/2 and AKT activation, and AG1478 decreased their activation indicating EGFR being upstream. Supporting EP2's contribution, EP2−/− mice exhibited 65% fewer papillomas and reduced Src, EGFR, H-Ras, AKT and ERK1/2 activation. G protein-coupled receptor (GPCR) activation of EGFR has been reported to involve Src's activation via a GPCR–β-arrestin–Src complex. Indeed, immunoprecipitation of β-arrestin1 or p-Src indicated the presence of an EP2–β-arrestin1–p-Src complex in papillomas. The data indicated that EP2 contributed to tumor formation via activation of PKA and EGFR and that EP2 formed a complex with β-arrestin1 and Src that contributed to signaling and/or EP2 desensitization. PMID:19587094
Levy-Apter, Einat; Finkelshtein, Eynat; Vemulapalli, Vidyasiri; Li, Shawn S-C; Bedford, Mark T; Elson, Ari
2014-12-26
The non-receptor isoform of protein-tyrosine phosphatase ϵ (cyt-PTPe) supports adhesion of bone-resorbing osteoclasts by activating Src downstream of integrins. Loss of cyt-PTPe reduces Src activity in osteoclasts, reduces resorption of mineralized matrix both in vivo and in cell culture, and induces mild osteopetrosis in young female PTPe KO mice. Activation of Src by cyt-PTPe is dependent upon this phosphatase undergoing phosphorylation at its C-terminal Tyr-638 by partially active Src. To understand how cyt-PTPe activates Src, we screened 73 Src homology 2 (SH2) domains for binding to Tyr(P)-638 of cyt-PTPe. The SH2 domain of GRB2 bound Tyr(P)-638 of cyt-PTPe most prominently, whereas the Src SH2 domain did not bind at all, suggesting that GRB2 may link PTPe with downstream molecules. Further studies indicated that GRB2 is required for activation of Src by cyt-PTPe in osteoclast-like cells (OCLs) in culture. Overexpression of GRB2 in OCLs increased activating phosphorylation of Src at Tyr-416 and of cyt-PTPe at Tyr-638; opposite results were obtained when GRB2 expression was reduced by shRNA or by gene inactivation. Phosphorylation of cyt-PTPe at Tyr-683 and its association with GRB2 are integrin-driven processes in OCLs, and cyt-PTPe undergoes autodephosphorylation at Tyr-683, thus limiting Src activation by integrins. Reduced GRB2 expression also reduced the ability of bone marrow precursors to differentiate into OCLs and reduced the fraction of OCLs in which podosomal adhesion structures assume organization typical of active, resorbing cells. We conclude that GRB2 physically links cyt-PTPe with Src and enables cyt-PTPe to activate Src downstream of activated integrins in OCLs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Role of src-family kinases in hypoxic vasoconstriction of rat pulmonary artery
Knock, Greg A.; Snetkov, Vladimir A.; Shaifta, Yasin; Drndarski, Svetlana; Ward, Jeremy P.T.; Aaronson, Philip I.
2008-01-01
Aims We investigated the role of src-family kinases (srcFKs) in hypoxic pulmonary vasoconstriction (HPV) and how this relates to Rho-kinase-mediated Ca2+ sensitization and changes in intracellular Ca2+ concentration ([Ca2+]i). Methods and results Intra-pulmonary arteries (IPAs) were obtained from male Wistar rats. HPV was induced in myograph-mounted IPAs. Auto-phosphorylation of srcFKs and phosphorylation of the regulatory subunit of myosin phosphatase (MYPT-1) and myosin light-chain (MLC20) in response to hypoxia were determined by western blotting. Translocation of Rho-kinase and effects of siRNA knockdown of src and fyn were examined in cultured pulmonary artery smooth muscle cells (PASMCs). [Ca2+]i was estimated in Fura-PE3-loaded IPA. HPV was inhibited by two blockers of srcFKs, SU6656 and PP2. Hypoxia enhanced phosphorylation of three srcFK proteins at Tyr-416 (60, 59, and 54 kDa, corresponding to src, fyn, and yes, respectively) and enhanced srcFK-dependent tyrosine phosphorylation of multiple target proteins. Hypoxia caused a complex, time-dependent enhancement of MYPT-1 and MLC20 phosphorylation, both in the absence and presence of pre-constriction. The sustained component of this enhancement was blocked by SU6656 and the Rho-kinase inhibitor Y27632. In PASMCs, hypoxia caused translocation of Rho-kinase from the nucleus to the cytoplasm, and this was prevented by anti-src siRNA and to a lesser extent by anti-fyn siRNA. The biphasic increases in [Ca2+]i that accompany HPV were also inhibited by PP2. Conclusion Hypoxia activates srcFKs and triggers protein tyrosine phosphorylation in IPA. Hypoxia-mediated Rho-kinase activation, Ca2+ sensitization, and [Ca2+]i responses are depressed by srcFK inhibitors and/or siRNA knockdown, suggesting a central role of srcFKs in HPV. PMID:18682436
Shaifta, Yasin; Irechukwu, Nneka; Prieto‐Lloret, Jesus; MacKay, Charles E; Marchon, Keisha A; Ward, Jeremy P T
2015-01-01
Background and Purpose The importance of tyrosine kinases in airway smooth muscle (ASM) contraction is not fully understood. The aim of this study was to investigate the role of Src‐family kinases (SrcFK) and focal adhesion kinase (FAK) in GPCR‐mediated ASM contraction and associated signalling events. Experimental Approach Contraction was recorded in intact or α‐toxin permeabilized rat bronchioles. Phosphorylation of SrcFK, FAK, myosin light‐chain‐20 (MLC20) and myosin phosphatase targeting subunit‐1 (MYPT‐1) was evaluated in cultured human ASM cells (hASMC). [Ca2+]i was evaluated in Fura‐2 loaded hASMC. Responses to carbachol (CCh) and bradykinin (BK) and the contribution of SrcFK and FAK to these responses were determined. Key Results Contractile responses in intact bronchioles were inhibited by antagonists of SrcFK, FAK and Rho‐kinase, while after α‐toxin permeabilization, they were sensitive to inhibition of SrcFK and Rho‐kinase, but not FAK. CCh and BK increased phosphorylation of MYPT‐1 and MLC20 and auto‐phosphorylation of SrcFK and FAK. MYPT‐1 phosphorylation was sensitive to inhibition of Rho‐kinase and SrcFK, but not FAK. Contraction induced by SR Ca2+ depletion and equivalent [Ca2+]i responses in hASMC were sensitive to inhibition of both SrcFK and FAK, while depolarization‐induced contraction was sensitive to FAK inhibition only. SrcFK auto‐phosphorylation was partially FAK‐dependent, while FAK auto‐phosphorylation was SrcFK‐independent. Conclusions and Implications SrcFK mediates Ca2+‐sensitization in ASM, while SrcFK and FAK together and individually influence multiple Ca2+ influx pathways. Tyrosine phosphorylation is therefore a key upstream signalling event in ASM contraction and may be a viable target for modulating ASM tone in respiratory disease. PMID:26294392
Mitochondrial events responsible for morphine's cardioprotection against ischemia/reperfusion injury
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Haiyan; Department of Pharmacology, Tianjin Medical University, Tianjin 300070; Huh, Jin
Morphine may induce cardioprotection by targeting mitochondria, but little is known about the exact mitochondrial events that mediate morphine's protection. We aimed to address the role of the mitochondrial Src tyrosine kinase in morphine's protection. Isolated rat hearts were subjected to 30 min ischemia and 2 h of reperfusion. Morphine was given before the onset of ischemia. Infarct size and troponin I release were measured to evaluate cardiac injury. Oxidative stress was evaluated by measuring mitochondrial protein carbonylation and mitochondrial ROS generation. HL-1 cells were subjected to simulated ischemia/reperfusion and LDH release and mitochondrial membrane potential (ΔΨm) were measured. Morphinemore » reduced infarct size as well as cardiac troponin I release which were aborted by the selective Src tyrosine kinase inhibitors PP2 and Src-I1. Morphine also attenuated LDH release and prevented a loss of ΔΨm at reperfusion in a Src tyrosine kinase dependent manner in HL-1 cells. However, morphine failed to reduce LDH release in HL-1 cells transfected with Src siRNA. Morphine increased mitochondrial Src phosphorylation at reperfusion and this was abrogated by PP2. Morphine attenuated mitochondrial protein carbonylation and mitochondrial superoxide generation at reperfusion through Src tyrosine kinase. The inhibitory effect of morphine on the mitochondrial complex I activity was reversed by PP2. These data suggest that morphine induces cardioprotection by preventing mitochondrial oxidative stress through mitochondrial Src tyrosine kinase. Inhibition of mitochondrial complex I at reperfusion by Src tyrosine kinase may account for the prevention of mitochondrial oxidative stress by morphine. - Highlights: • Morphine induced mito-Src phosphorylation and reduced infarct size in rat hearts. • Morphine failed to reduce I/R-induced LDH release in Src-silencing HL-1 cells. • Morphine prevented mitochondria damage caused by I/R through Src. • Morphine reduced mitochondrial ROS generation by inhibiting complex I via Src.« less
Two-stage coal liquefaction process
Skinner, Ronald W.; Tao, John C.; Znaimer, Samuel
1985-01-01
An improved SRC-I two-stage coal liquefaction process which improves the product slate is provided. Substantially all of the net yield of 650.degree.-850.degree. F. heavy distillate from the LC-Finer is combined with the SRC process solvent, substantially all of the net 400.degree.-650.degree. F. middle distillate from the SRC section is combined with the hydrocracker solvent in the LC-Finer, and the initial boiling point of the SRC process solvent is increased sufficiently high to produce a net yield of 650.degree.-850.degree. F. heavy distillate of zero for the two-stage liquefaction process.
Zhou, Xiaoxu; Liu, Lirong; Masucci, Monica V.; Tang, Jinhua; Li, Xuezhu; Liu, Na; Bayliss, George; Zhao, Ting C.; Zhuang, Shougang
2017-01-01
Activation of Src kinase has been implicated in the pathogenesis of acute brain, liver, and lung injury. However, the role of Src in acute kidney injury (AKI) remains unestablished. To address this, we evaluated the effects of Src inhibition on renal dysfunction and pathological changes in a murine model of AKI induced by ischemia/reperfusion (I/R). I/R injury to the kidney resulted in increased Src phosphorylation at tyrosine 416 (activation). Administration of PP1, a highly selective Src inhibitor, blocked Src phosphorylation, improved renal function and ameliorated renal pathological damage. PP1 treatment also suppressed renal expression of neutrophil gelatinase-associated lipocalin and reduced apoptosis in the injured kidney. Moreover, Src inhibition prevented downregulation of several adherens and tight junction proteins, including E-cadherin, ZO-1, and claudins-1/−4 in the kidney after I/R injury as well as in cultured renal proximal tubular cells following oxidative stress. Finally, PP1 inhibited I/R–induced renal expression of matrix metalloproteinase-2 and -9, phosphorylation of extracellular signal–regulated kinases1/2, signal transducer and activator of transcription-3, and nuclear factor-κB, and the infiltration of macrophages into the kidney. These data indicate that Src is a pivotal mediator of renal epithelial injury and that its inhibition may have a therapeutic potential to treat AKI. PMID:28415724
Sex differences in sport-related concussion long-term outcomes.
Covassin, Tracey; Savage, Jennifer L; Bretzin, Abigail C; Fox, Meghan E
2017-09-18
Approximately 1.6 to 3.8 million recreational and sports-related concussions (SRC) occur each year in the Unites States. Research suggest that female athletes are at a greater risk for a SRC compared to male athletes competing in comparable sports (i.e., soccer, basketball). Moreover, female athletes have reported more total symptoms and greater neurocognitive impairments following a SRC. Female athletes have been found to report greater symptom provocation as measured by the Vestibular/Ocular Motor Screening (VOMS), and increased brain activation compared to males. There is a scarcity of research on long-term effects of SRC in male and female athletes. Therefore, the aim of this review article is to summarize the existing literature on sex differences in acute and sub-acute SRC outcomes. Copyright © 2017. Published by Elsevier B.V.
Mezquita, Belén; Mezquita, Pau; Pau, Montserrat; Gasa, Laura; Navarro, Lourdes; Samitier, Mireia; Pons, Miquel; Mezquita, Cristóbal
2018-05-04
All-trans-retinoic acid (RA), the active metabolite of vitamin A, can reduce the malignant phenotype in some types of cancer and paradoxically also can promote cancer growth and invasion in others. For instance, it has been reported that RA induces tumor suppression in tumor xenografts of MDA-MB-468 breast cancer cells while increasing tumor growth and metastases in xenografts of MDA-MB-231 breast cancer cells. The signaling pathways involved in the pro-invasive action of retinoic acid remain mostly unknown. We show here that RA activates the pro-invasive axis Src-YAP-Interleukin 6 (Src-YAP-IL6) in triple negative MDA-MB-231 breast cancer cells, yielding to increased invasion of these cells. On the contrary, RA inhibits the Src-YAP-IL6 axis of triple-negative MDA-MB-468 cells, which results in decreased invasion phenotype. In both types of cells, inhibition of the Src-YAP-IL6 axis by the Src inhibitor PP2 drastically reduces migration and invasion. Src inhibition also downregulates the expression of a pro-invasive isoform of VEGFR1 in MDA-MB-231 breast cancer cells. Furthermore, interference of YAP nuclear translocation using the statin cerivastatin reverses the upregulation of Interleukin 6 (IL-6) and the pro-invasive effect of RA on MDA-MB-231 breast cancer cells and also decreases invasion and viability of MDA-MB-468 breast cancer cells. These results altogether suggest that RA induces pro-invasive or anti-invasive actions in two triple-negative breast cancer cell lines due to its ability to activate or inhibit the Src-YAP-IL6 axis in different cancer cells. The pro-invasive effect of RA can be reversed by the statin cerivastatin.
Increased risk of kidney damage among Chinese adults with simple renal cyst.
Kong, Xianglei; Ma, Xiaojing; Zhang, Chengyin; Su, Hong; Gong, Xiaojie; Xu, Dongmei
2018-05-04
The presence of simple renal cyst (SRC) has been related to hypertension, the early and long-term allograft function, and aortic disease, but the relationship with kidney damage was still controversial. Accordingly, we conducted a large sample cross-sectional study to explore the association of SRC with indicators of kidney damage among Chinese adults. A total of 42,369 adults (aged 45.8 ± 13.67 years, 70.6% males) who visited the Health Checkup Clinic were consecutively enrolled. SRC was assessed by ultrasonography according to Bosniak category. Multiple regression models were applied to explore the relationships between SRC and indicators of kidney damage [proteinuria (dipstick urine protein ≥ 1+) and decreased estimated glomerular filtration rate (DeGFR) < 60 ml/min/1.73 m 2 ]. Among all participants in the study, the prevalence of SRC was 10.5%. As a categorical outcome, participants with more 1 cyst and with 1 cyst had higher percentage of proteinuria [53 (5.3%) and 93 (2.7%) vs. 596 (1.6%), p < 0.001] and DeGFR [57 (5.7%) and 85 (2.5%) vs. 278 (0.7%), p < 0.001] compared with participants with no cyst. SRC significantly correlated with proteinuria [OR 1.59 (95% CI 1.30-1.95)] and DeGFR [OR 1.97 (95% CI 1.56-2.47)] after adjusting for potential confounders. Furthermore, the results also demonstrated that maximum diameter (per 1 cm increase), bilateral location, and multiple cysts significantly correlated with DeGFR in the multiple logistic regression analysis. The study revealed that SRC significantly correlated with kidney damage and special attention should be paid among Chinese adults with SRC.
Hall, Megan P.; Huang, Sui; Black, Douglas L.
2004-01-01
We have examined the subcellular localization of the KH-type splicing regulatory protein (KSRP). KSRP is a multidomain RNA-binding protein implicated in a variety of cellular processes, including splicing in the nucleus and mRNA localization in the cytoplasm. We find that KSRP is primarily nuclear with a localization pattern that most closely resembles that of polypyrimidine tract binding protein (PTB). Colocalization experiments of KSRP with PTB in a mouse neuroblastoma cell line determined that both proteins are present in the perinucleolar compartment (PNC), as well as in other nuclear enrichments. In contrast, HeLa cells do not show prominent KSRP staining in the PNC, even though PTB labeling identified the PNC in these cells. Because both PTB and KSRP interact with the c-src transcript to affect N1 exon splicing, we examined the localization of the c-src pre-mRNA by fluorescence in situ hybridization. The src transcript is present in specific foci within the nucleus that are presumably sites of src transcription but are not generally perinucleolar. In normally cultured neuroblastoma cells, these src RNA foci contain PTB, but little KSRP. However, upon induced neuronal differentiation of these cells, KSRP occurs in the same foci with src RNA. PTB localization remains unaffected. This differentiation-induced localization of KSRP with src RNA correlates with an increase in src exon N1 inclusion. These results indicate that PTB and KSRP do indeed interact with the c-src transcript in vivo, and that these associations change with the differentiated state of the cell. PMID:14657238
Kasi, V S; Kuppuswamy, D
1999-10-01
Src family kinases are implicated in cellular proliferation and transformation. Terminally differentiated myocytes have lost the ability to proliferate, indicating the existence of a down-regulatory mechanism(s) for these mitogenic kinases. Here we show that feline cardiomyocyte lysate contains thermostable components that inhibit c-Src kinase in vitro. This inhibitory activity, present predominantly in heart tissue, involves two components acting combinatorially. After purification by sequential chromatography, one component was identified by mass and nuclear magnetic resonance spectroscopies as 5'-AMP, while the other was identified by peptide sequencing as a small heat shock protein (sHSP). 5'-AMP and to a lesser extent 5'-ADP inhibit c-Src when combined with either HSP-27 or HSP-32. Other HSPs, including alphaB-crystallin, HSP-70, and HSP-90, did not exhibit this effect. The inhibition, observed preferentially on Src family kinases and independent of the Src tyrosine phosphorylation state, occurs via a direct interaction of the c-Src catalytic domain with the inhibitory components. Our study indicates that sHSPs increase the affinity of 5'-AMP for the c-Src ATP binding site, thereby facilitating the inhibition. In vivo, elevation of ATP levels in the cardiomyocytes results in the tyrosine phosphorylation of cellular proteins including c-Src at the activatory site, and this effect is blocked when the 5'-AMP concentration is raised. Thus, this study reveals a novel role for sHSPs and 5'-AMP in the regulation of Src family kinases, presumably for the maintenance of the terminally differentiated state.
Shakespeare, William; Yang, Michael; Bohacek, Regine; Cerasoli, Franklin; Stebbins, Karin; Sundaramoorthi, Raji; Azimioara, Mihai; Vu, Chi; Pradeepan, Selvi; Metcalf, Chester; Haraldson, Chad; Merry, Taylor; Dalgarno, David; Narula, Surinder; Hatada, Marcos; Lu, Xiaode; van Schravendijk, Marie Rose; Adams, Susan; Violette, Shelia; Smith, Jeremy; Guan, Wei; Bartlett, Catherine; Herson, Jay; Iuliucci, John; Weigele, Manfred; Sawyer, Tomi
2000-01-01
Targeted disruption of the pp60src (Src) gene has implicated this tyrosine kinase in osteoclast-mediated bone resorption and as a therapeutic target for the treatment of osteoporosis and other bone-related diseases. Herein we describe the discovery of a nonpeptide inhibitor (AP22408) of Src that demonstrates in vivo antiresorptive activity. Based on a cocrystal structure of the noncatalytic Src homology 2 (SH2) domain of Src complexed with citrate [in the phosphotyrosine (pTyr) binding pocket], we designed 3′,4′-diphosphonophenylalanine (Dpp) as a pTyr mimic. In addition to its design to bind Src SH2, the Dpp moiety exhibits bone-targeting properties that confer osteoclast selectivity, hence minimizing possible undesired effects on other cells that have Src-dependent activities. The chemical structure AP22408 also illustrates a bicyclic template to replace the post-pTyr sequence of cognate Src SH2 phosphopeptides such as Ac-pTyr-Glu-Glu-Ile (1). An x-ray structure of AP22408 complexed with Lck (S164C) SH2 confirmed molecular interactions of both the Dpp and bicyclic template of AP22408 as predicted from molecular modeling. Relative to the cognate phosphopeptide, AP22408 exhibits significantly increased Src SH2 binding affinity (IC50 = 0.30 μM for AP22408 and 5.5 μM for 1). Furthermore, AP22408 inhibits rabbit osteoclast-mediated resorption of dentine in a cellular assay, exhibits bone-targeting properties based on a hydroxyapatite adsorption assay, and demonstrates in vivo antiresorptive activity in a parathyroid hormone-induced rat model. PMID:10944210
Src promotes delta opioid receptor (DOR) desensitization by interfering with receptor recycling.
Archer-Lahlou, Elodie; Audet, Nicolas; Amraei, Mohammad Gholi; Huard, Karine; Paquin-Gobeil, Mélanie; Pineyro, Graciela
2009-01-01
Abstract An important limitation in the clinical use of opiates is progressive loss of analgesic efficacy over time. Development of analgesic tolerance is tightly linked to receptor desensitization. In the case of delta opioid receptors (DOR), desensitization is especially swift because receptors are rapidly internalized and are poorly recycled to the membrane. In the present study, we investigated whether Src activity contributed to this sorting pattern and to functional desensitization of DORs. A first series of experiments demonstrated that agonist binding activates Src and destabilizes a constitutive complex formed by the spontaneous association of DORs with the kinase. Src contribution to DOR desensitization was then established by showing that pre-treatment with Src inhibitor PP2 (20 microM; 1 hr) or transfection of a dominant negative Src mutant preserved DOR signalling following sustained exposure to an agonist. This protection was afforded without interfering with endocytosis, but suboptimal internalization interfered with PP2 ability to preserve DOR signalling, suggesting a post-endocytic site of action for the kinase. This assumption was confirmed by demonstrating that Src inhibition by PP2 or its silencing by siRNA increased membrane recovery of internalized DORs and was further corroborated by showing that inhibition of recycling by monensin or dominant negative Rab11 (Rab11S25N) abolished the ability of Src blockers to prevent desensitization. Finally, Src inhibitors accelerated recovery of DOR-Galphal3 coupling after desensitization. Taken together, these results indicate that Src dynamically regulates DOR recycling and by doing so contributes to desensitization of these receptors.
Gu, Yan-jiao; Li, Hong-dan; Zhao, Liang; Zhao, Song; He, Wu-bin; Rui, Li; Su, Chang; Zheng, Hua-chuan; Su, Rong-jian
2015-10-20
5-FU is a common first-line chemotherapeutic drug for the treatment of hepatocellular carcinoma. However the development of acquired resistance to 5-FU confines its clinical usages. Although this phenomenon has been the subject of intense investigation, the exact mechanism of acquired resistance to 5-FU remains elusive. Here, we report that over-expression of GRP78 contributes to acquired resistance to 5-FU in HCC by up-regulating the c-Src/LSF/TS axis. Moreover, we found that the resistance to 5-FU conferred by GRP78 is mediated by its ATPase domain. The ATPase domain differentially increased the expression of LSF, TS and promoted the phosphorylation of ERK and Akt. We further identified that GRP78 interacts physically with c-Src through its ATPase domain and promotes the phosphorylation of c-Src, which in turn increases the expression of LSF in the nucleus. Together, GRP78 confers the resistance to 5-FU by up-regulating the c-Src/LSF/TS axis via its ATPase domain.
Korsch, Margarethe; Frühholz, Sascha; Herrmann, Manfred
2016-01-01
Aging is usually accompanied by alterations of cognitive control functions such as conflict processing. Recent research suggests that aging effects on cognitive control seem to vary with degree and source of conflict, and conflict specific aging effects on performance measures as well as neural activation patterns have been shown. However, there is sparse information whether and how aging affects different stages of conflict processing as indicated by event related potentials (ERPs) such as the P2, N2 and P3 components. In the present study, 19 young and 23 elderly adults performed a combined Flanker conflict and stimulus-response-conflict (SRC) task. Analysis of the reaction times (RTs) revealed an increased SRC related conflict effect in elderly. ERP analysis furthermore demonstrated an age-related increase of the P2 amplitude in response to the SRC task. In addition, elderly adults exhibited an increased P3 amplitude modulation induced by incongruent SRC and Flanker conflict trials.
Register-Mihalik, Johna; Baugh, Christine; Kroshus, Emily; Y Kerr, Zachary; Valovich McLeod, Tamara C
2017-03-01
To offer an overview of sport-related concussion (SRC) prevention and education strategies in the context of the socioecological framework (SEF). Athletic trainers (ATs) will understand the many factors that interact to influence SRC prevention and the implications of these interactions for effective SRC education. Concussion is a complex injury that is challenging to identify and manage, particularly when athletes fail to disclose symptoms to their health care providers. Education is 1 strategy for increasing disclosure. However, limited information addresses how ATs can integrate the many factors that may influence the effectiveness of SRC education into their specific settings. Public health models provide an example through the SEF, which highlights the interplay among various levels of society and sport that can facilitate SRC prevention strategies, including education. For ATs to develop appropriate SRC prevention strategies, a framework for application is needed. A growing body of information concerning SRC prevention indicates that knowledge alone is insufficient to change concussion-related behaviors. The SEF allows this information to be considered at levels such as policy and societal, community, interpersonal (relationships), and intrapersonal (athlete). The use of such a framework will facilitate more comprehensive SRC prevention efforts that can be applied in all athletic training practice settings. Clinical Applications: Athletic trainers can use this information as they plan SRC prevention strategies in their specific settings. This approach will aid in addressing the layers of complexity that exist when developing a concussion-management policy and plan.
Donath, Carolin; Winkler, Angelika; Grässel, Elmar
2009-08-01
Short-term residential care (SRC) has proved to be effective in reducing the burden on family caregivers of dementia patients. Nevertheless, little is known about the factors which influence its usage or the expectations of family caregivers regarding quality. In this paper we address the following questions: (i) which variables of the care situation, the caregivers and their attitudes act as predictors for the utilization of SRC facilities? (ii) What are the views of caregivers about the quality of SRC? The cross-sectional study was carried out as an anonymous written survey of family caregivers of dementia patients in four regions of Germany. With a 20% response it was possible to analyze the quantitative and qualitative data from 404 and 254 family caregivers respectively. Predictors for utilization were evaluated using binary logistic regression analysis. The answers to questions of quality were evaluated using qualitative content analysis. Significant predictors for the utilization of SRC are the assessment of the helpfulness of SRC and the caregiver's knowledge of the accessibility of SRC facilities. Family caregivers who had already used SRC most frequently expressed the wish for "good care" in SRC facilities, followed by a program of suitable activities for dementia patients. In order to increase the rate of utilization, family caregivers must be convinced of the relevant advantages of using SRC facilities. The staff should be trained in caring for dementia patients and appropriate activities should be available.
Zhao, Wei; Chang, Cunjie; Cui, Yangyan; Zhao, Xiaozhi; Yang, Jun; Shen, Lan; Zhou, Ji; Hou, Zhibo; Zhang, Zhen; Ye, Changxiao; Hasenmayer, Donald; Perkins, Robert; Huang, Xiaojing; Yao, Xin; Yu, Like; Huang, Ruimin; Zhang, Dianzheng; Guo, Hongqian; Yan, Jun
2014-04-18
Cancer cell proliferation is a metabolically demanding process, requiring high glycolysis, which is known as "Warburg effect," to support anabolic growth. Steroid receptor coactivator-3 (SRC-3), a steroid receptor coactivator, is overexpressed and/or amplified in multiple cancer types, including non-steroid targeted cancers, such as urinary bladder cancer (UBC). However, whether SRC-3 regulates the metabolic reprogramming for cancer cell growth is unknown. Here, we reported that overexpression of SRC-3 accelerated UBC cell growth, accompanied by the increased expression of genes involved in glycolysis. Knockdown of SRC-3 reduced the UBC cell glycolytic rate under hypoxia, decreased tumor growth in nude mice, with reduction of proliferating cell nuclear antigen and lactate dehydrogenase expression levels. We further revealed that SRC-3 could interact with hypoxia inducible factor 1α (HIF1α), which is a key transcription factor required for glycolysis, and coactivate its transcriptional activity. SRC-3 was recruited to the promoters of HIF1α-target genes, such as glut1 and pgk1. The positive correlation of expression levels between SRC-3 and Glut1 proteins was demonstrated in human UBC patient samples. Inhibition of glycolysis through targeting HK2 or LDHA decelerated SRC-3 overexpression-induced cell growth. In summary, overexpression of SRC-3 promoted glycolysis in bladder cancer cells through HIF1α to facilitate tumorigenesis, which may be an intriguing drug target for bladder cancer therapy.
Ishikawa, F; Ushida, K; Mori, K; Shibanuma, M
2015-01-22
Anchorage dependence of cellular growth and survival prevents inappropriate cell growth or survival in ectopic environments, and serves as a potential barrier to metastasis of cancer cells. Therefore, obtaining a better understanding of anchorage-dependent responses in normal cells is the first step to understand and impede anchorage independence of growth and survival in cancer cells and finally to eradicate cancer cells during metastasis. Anoikis, a type of apoptosis specifically induced by lack of appropriate cell-extracellular matrix adhesion, has been established as the dominant response of normal epithelial cells to anchorage loss. For example, under detached conditions, the untransformed mammary epithelial cell (MEC) line MCF-10 A, which exhibits myoepithelial characteristics, underwent anoikis dependent on classical ERK signaling. On the other hand, recent studies have revealed a variety of phenotypes resulting in cell death modalities distinct from anoikis, such as autophagy, necrosis, and cornification, in detached epithelial cells. In the present study, we characterized detachment-induced cell death (DICD) in primary human MECs immortalized with hTERT ((Tert)HMECs), which are bipotent progenitor-like cells with a differentiating phenotype to luminal cells. In contrast to MCF-10 A cells, apoptosis was not observed in detached (Tert)HMECs; instead, non-apoptotic cell death marked by features of entosis, cornification, and necrosis was observed along with downregulation of focal adhesion kinase (FAK) signaling. Cell death was overcome by anchorage-independent activities of FAK but not PI3K/AKT, SRC, and MEK/ERK, suggesting critical roles of atypical FAK signaling pathways in the regulation of non-apoptotic cell death. Further analysis revealed an important role of TRAIL (tumor necrosis factor (TNF)-related apoptosis-inducing ligand) as a mediator of FAK signaling in regulation of entosis and necrosis and a role of p38 MAPK in the induction of necrosis. Overall, the present study highlighted outstanding cell subtype or differentiation stage specificity in cell death phenotypes induced upon anchorage loss in human MECs.
SRC family kinases as novel therapeutic targets to treat breast cancer brain metastases.
Zhang, Siyuan; Huang, Wen-Chien; Zhang, Lin; Zhang, Chenyu; Lowery, Frank J; Ding, Zhaoxi; Guo, Hua; Wang, Hai; Huang, Suyun; Sahin, Aysegul A; Aldape, Kenneth D; Steeg, Patricia S; Yu, Dihua
2013-09-15
Despite better control of early-stage disease and improved overall survival of patients with breast cancer, the incidence of life-threatening brain metastases continues to increase in some of these patients. Unfortunately, other than palliative treatments there is no effective therapy for this condition. In this study, we reveal a critical role for Src activation in promoting brain metastasis in a preclinical model of breast cancer and we show how Src-targeting combinatorial regimens can treat HER2(+) brain metastases in this model. We found that Src was hyperactivated in brain-seeking breast cancer cells derived from human cell lines or from patients' brain metastases. Mechanistically, Src activation promoted tumor cell extravasation into the brain parenchyma via permeabilization of the blood-brain barrier. When combined with the EGFR/HER2 dual-targeting drug lapatinib, an Src-targeting combinatorial regimen prevented outgrowth of disseminated breast cancer cells through the induction of cell-cycle arrest. More importantly, this combinatorial regimen inhibited the outgrowth of established experimental brain metastases, prolonging the survival of metastases-bearing mice. Our results provide a rationale for clinical evaluation of Src-targeting regimens to treat patients with breast cancer suffering from brain metastasis. ©2013 AACR.
Bates, Ryan C.; Fees, Colby P.; Holland, William L.; Winger, Courtney C.; Batbayar, Khulan; Ancar, Rachel; Bergren, Todd; Petcoff, Douglas; Stith, Bradley J.
2014-01-01
We report a new step in the fertilization in Xenopus laevis which has been found to involve activation of Src tyrosine kinase to stimulate phospholipase C-γ (PLC- γ) which increases inositol 1,4,5-trisphosphate (IP3) to release intracellular calcium ([Ca]i). Molecular species analysis and mass measurements suggested that sperm activate phospholipase D (PLD) to elevate phosphatidic acid (PA). We now report that PA mass increased 2.7 fold by 1 minute after insemination and inhibition of PA production by two methods inhibited activation of Src and PLCγ, increased [Ca]i and other fertilization events. As compared to 14 other lipids, PA strongly bound Xenopus Src but not PLCγ. Addition of synthetic PA activated egg Src (an action requiring intact lipid rafts) and PLCγ as well as doubling the amount of PLCγ in rafts. In the absence of elevated [Ca]i, PA addition elevated IP3 mass to levels equivalent to that induced by sperm (but twice that achieved by calcium ionophore). Finally, PA induced [Ca]i release that was blocked by an IP3 receptor inhibitor. As only PLD1b message was detected, and Western blotting did not detect PLD2, we suggest that sperm activate PLD1b to elevate PA which then binds to and activates Src leading to PLCγ stimulation, IP3 elevation and [Ca]i release. Due to these and other studies, PA may also play a role in membrane fusion events such as sperm-egg fusion, cortical granule exocytosis, the elevation of phosphatidylinositol 4,5-bisphosphate and the large, late increase in sn 1,2-diacylglycerol in fertilization. PMID:24269904
Bio-Energy Retains Its Mitigation Potential Under Elevated CO2
Bellassen, Valentin; Njakou Djomo, Sylvestre; Lukac, Martin; Calfapietra, Carlo; Janssens, Ivan A.; Hoosbeek, Marcel R.; Viovy, Nicolas; Churkina, Galina; Scarascia-Mugnozza, Giuseppe; Ceulemans, Reinhart
2010-01-01
Background If biofuels are to be a viable substitute for fossil fuels, it is essential that they retain their potential to mitigate climate change under future atmospheric conditions. Elevated atmospheric CO2 concentration [CO2] stimulates plant biomass production; however, the beneficial effects of increased production may be offset by higher energy costs in crop management. Methodology/Main Findings We maintained full size poplar short rotation coppice (SRC) systems under both current ambient and future elevated [CO2] (550 ppm) and estimated their net energy and greenhouse gas balance. We show that a poplar SRC system is energy efficient and produces more energy than required for coppice management. Even more, elevated [CO2] will increase the net energy production and greenhouse gas balance of a SRC system with 18%. Managing the trees in shorter rotation cycles (i.e., 2 year cycles instead of 3 year cycles) will further enhance the benefits from elevated [CO2] on both the net energy and greenhouse gas balance. Conclusions/Significance Adapting coppice management to the future atmospheric [CO2] is necessary to fully benefit from the climate mitigation potential of bio-energy systems. Further, a future increase in potential biomass production due to elevated [CO2] outweighs the increased production costs resulting in a northward extension of the area where SRC is greenhouse gas neutral. Currently, the main part of the European terrestrial carbon sink is found in forest biomass and attributed to harvesting less than the annual growth in wood. Because SRC is intensively managed, with a higher turnover in wood production than conventional forest, northward expansion of SRC is likely to erode the European terrestrial carbon sink. PMID:20657833
Bates, Ryan C; Fees, Colby P; Holland, William L; Winger, Courtney C; Batbayar, Khulan; Ancar, Rachel; Bergren, Todd; Petcoff, Douglas; Stith, Bradley J
2014-02-01
We report a new step in the fertilization in Xenopus laevis which has been found to involve activation of Src tyrosine kinase to stimulate phospholipase C-γ (PLC-γ) which increases inositol 1,4,5-trisphosphate (IP3) to release intracellular calcium ([Ca](i)). Molecular species analysis and mass measurements suggested that sperm activate phospholipase D (PLD) to elevate phosphatidic acid (PA). We now report that PA mass increased 2.7 fold by 1 min after insemination and inhibition of PA production by two methods inhibited activation of Src and PLCγ, increased [Ca](i) and other fertilization events. As compared to 14 other lipids, PA specifically bound Xenopus Src but not PLCγ. Addition of synthetic PA activated egg Src (an action requiring intact lipid rafts) and PLCγ as well as doubling the amount of PLCγ in rafts. In the absence of elevated [Ca](i), PA addition elevated IP3 mass to levels equivalent to that induced by sperm (but twice that achieved by calcium ionophore). Finally, PA induced [Ca](i) release that was blocked by an IP3 receptor inhibitor. As only PLD1b message was detected, and Western blotting did not detect PLD2, we suggest that sperm activate PLD1b to elevate PA which then binds to and activates Src leading to PLCγ stimulation, IP3 elevation and [Ca](i) release. Due to these and other studies, PA may also play a role in membrane fusion events such as sperm-egg fusion, cortical granule exocytosis, the elevation of phosphatidylinositol 4,5-bisphosphate and the large, late increase in sn 1,2-diacylglycerol in fertilization. © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Fetal-to-maternal signaling to initiate parturition
Reinl, Erin L.; England, Sarah K.
2015-01-01
Multiple processes are capable of activating the onset of parturition; however, the specific contributions of the mother and the fetus to this process are not fully understood. In this issue of the JCI, Gao and colleagues present evidence that steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2) regulate surfactant protein-A (SP-A) and platelet-activating factor (PAF) expression, which increases in the developing fetal lung. WT dams crossed with males deficient for both SRC-1 and SRC-2 had suppressed myometrial inflammation, increased serum progesterone, and delayed parturition, which could be reconciled by injection of either SP-A or PAF into the amnion. Together, the results of this study demonstrate that the fetal lungs produce signals to initiate labor in the mouse. This work underscores the importance of the fetus as a contributor to the onset of murine, and potentially human, parturition. PMID:26098207
NASA Astrophysics Data System (ADS)
Georgiadis, Petros; Stupak, Inge; Vesterdal, Lars; Raulund-Rasmussen, Karsten
2015-04-01
Increased demand for bioenergy has intensified the production of Short Rotation Coppice (SRC) willow and poplar in temperate zones. We used a combined chronosequence and paired plot approach to study the potential of SRC willow and poplar stands to increase the soil carbon stock compared to stocks of the previous arable land-use. The study focused on well-drained soils. We sampled soil from 30 SRC stands in Denmark and southern Sweden including soils from their adjacent arable fields. The 18 willow and 12 poplar stands formed a chronosequence ranging between 4 and 29 years after conversion. The soil was sampled both with soil cores taken by fixed depths of 0-5, 5-10, 10-15, 15-25, and 25-40 cm and by genetic horizons from soil pits to 1m depth. The aim of the study was to estimate the difference and the ratio between soil carbon contents of the SRC and annual crop land and analyze the results as a chronosequence to examine the effect of age after conversion on the difference. Covariates such as soil type, fertilization type and harvest frequency were also taken into account. Preliminary results suggest an overall increase in carbon stocks over time with average accumulation rates ranging from 0.25 to 0.4 Mg ha-1 yr-1 in willow and poplar stands. Poplar stands had higher rates of C gain, probably due to less frequent harvesting. The differences in carbon between the SRC and the paired cropland were initially negative but changed to positive over time, implying loss of carbon after conversion and a later gain in soil carbon with stand age. Pairwise differences ranged from -25 Mg C ha-1 to 37 Mg C ha-1 for the top 40 cm. The carbon stock ratio of the SRC stand to the arable land was estimated to minimize the effect of site-related factors. The results of this analysis suggested that the ratio increased significantly with age after conversion for the top 10 cm of the soil, both for poplar and willow. A slight increase with age was also noticed at the deeper depths, but it was not significant. The increasing soil carbon stocks in SRC stands on former cropland can be attributed to the increased leaf and litter input from the perennial SRC plantations as well as less stimulation of organic matter decomposition after cessation of annual. Initial losses of soil carbon after the land use change have also been reported by other studies, but the soil carbon accumulation high rates suggest that SRC can act as sinks at least for some decades. Our results indicate that a steady state has not yet been reached after 29 years. Key words: Bioenergy,Land Use Change, poplar, Short Rotation Coppice, Soil Organic Carbon, willow,
Antitumor Effect of KX-01 through Inhibiting Src Family Kinases and Mitosis.
Kim, Seongyeong; Min, Ahrum; Lee, Kyung-Hun; Yang, Yaewon; Kim, Tae-Yong; Lim, Jee Min; Park, So Jung; Nam, Hyun-Jin; Kim, Jung Eun; Song, Sang-Hyun; Han, Sae-Won; Oh, Do-Youn; Kim, Jee Hyun; Kim, Tae-You; Hangauer, David; Lau, Johnson Yiu-Nam; Im, Kyongok; Lee, Dong Soon; Bang, Yung-Jue; Im, Seock-Ah
2017-07-01
KX-01 is a novel dual inhibitor of Src and tubulin. Unlike previous Src inhibitors that failed to show clinical benefit during treatment of breast cancer, KX-01 can potentially overcome the therapeutic limitations of current Src inhibitors through inhibition of both Src and tubulin. The present study further evaluates the activity and mechanism of KX-01 in vitro and in vivo . The antitumor effect of KX-01 in triple negative breast cancer (TNBC) cell lines was determined by MTT assay. Wound healing and immunofluorescence assays were performed to evaluate the action mechanisms of KX-01. Changes in the cell cycle and molecular changes induced by KX-01 were also evaluated. A MDA-MB-231 mouse xenograft model was used to demonstrate the in vivo effects. KX-01 effectively inhibited the growth of breast cancer cell lines. The expression of phospho-Src and proliferative-signaling molecules were down-regulated in KX-01-sensitive TNBC cell lines. In addition, migration inhibition was observed by wound healing assay. KX-01-induced G2/M cell cycle arrest and increased the aneuploid cell population in KX-01-sensitive cell lines. Multi-nucleated cells were significantly increased after KX-01 treatment. Furthermore, KX-01 effectively delayed tumor growth in a MDA-MB-231 mouse xenograft model. KX-01 effectively inhibited cell growth and migration of TNBC cells. Moreover, this study demonstrated that KX-01 showed antitumor effects through the inhibition of Src signaling and the induction of mitotic catastrophe. The antitumor effects of KX-01 were also demonstrated in vivo using a mouse xenograft model.
Kasi, Vijaykumar S.; Kuppuswamy, Dhandapani
1999-01-01
Src family kinases are implicated in cellular proliferation and transformation. Terminally differentiated myocytes have lost the ability to proliferate, indicating the existence of a down-regulatory mechanism(s) for these mitogenic kinases. Here we show that feline cardiomyocyte lysate contains thermostable components that inhibit c-Src kinase in vitro. This inhibitory activity, present predominantly in heart tissue, involves two components acting combinatorially. After purification by sequential chromatography, one component was identified by mass and nuclear magnetic resonance spectroscopies as 5′-AMP, while the other was identified by peptide sequencing as a small heat shock protein (sHSP). 5′-AMP and to a lesser extent 5′-ADP inhibit c-Src when combined with either HSP-27 or HSP-32. Other HSPs, including αB-crystallin, HSP-70, and HSP-90, did not exhibit this effect. The inhibition, observed preferentially on Src family kinases and independent of the Src tyrosine phosphorylation state, occurs via a direct interaction of the c-Src catalytic domain with the inhibitory components. Our study indicates that sHSPs increase the affinity of 5′-AMP for the c-Src ATP binding site, thereby facilitating the inhibition. In vivo, elevation of ATP levels in the cardiomyocytes results in the tyrosine phosphorylation of cellular proteins including c-Src at the activatory site, and this effect is blocked when the 5′-AMP concentration is raised. Thus, this study reveals a novel role for sHSPs and 5′-AMP in the regulation of Src family kinases, presumably for the maintenance of the terminally differentiated state. PMID:10490624
Chellaiah, Meenakshi A; Schaller, Michael D
2009-08-01
PTP-PEST is involved in the regulation of sealing ring formation in osteoclasts. In this article, we have shown a regulatory role for PTP-PEST on dephosphorylation of c-Src at Y527 and phosphorylation at Y418 in the catalytic site. Activation of Src in osteoclasts by over-expression of PTP-PEST resulted in the phosphorylation of cortactin at Y421 and WASP at Y294. Also enhanced as a result, is the interaction of Src, cortactin, and Arp2 with WASP. Moreover, the number of osteoclasts displaying sealing ring and bone resorbing activity was increased in response to PTP-PEST over-expression as compared with control osteoclasts. Cells expressing constitutively active-Src (527YDeltaF) simulate the effects mediated by PTP-PEST. Treatment of osteoclasts with a bisphosphonate alendronate or a potent PTP inhibitor PAO decreased the activity and phosphorylation of Src at Y418 due to reduced dephosphorylation state at Y527. Therefore, Src-mediated phosphorylation of cortactin and WASP as well as the formation of WASP.cortactin.Arp2 complex and sealing ring were reduced in these osteoclasts. Similar effects were observed in osteoclasts treated with an Src inhibitor PP2. We have shown that bisphosphonates could modulate the function of osteoclasts by inhibiting downstream signaling mediated by PTP-PEST/Src, in addition to its effect on the inhibition of the post-translational modification of small GTP-binding proteins such as Rab, Rho, and Rac as shown by others. The promising effects of the inhibitors PP2 and PAO on osteoclast function suggest a therapeutic approach for patients with bone metastases and osteoporosis as an alternative to bisphosphonates.
Coupled motions in the SH2 and kinase domains of Csk control Src phosphorylation.
Wong, Lilly; Lieser, Scot A; Miyashita, Osamu; Miller, Meghan; Tasken, Kjetil; Onuchic, Josè N; Adams, Joseph A; Woods, Virgil L; Jennings, Patricia A
2005-08-05
The C-terminal Src kinase (Csk) phosphorylates and down-regulates Src family tyrosine kinases. The Csk-binding protein (Cbp) localizes Csk close to its substrates at the plasma membrane, and increases the specific activity of the kinase. To investigate this long-range catalytic effect, the phosphorylation of Src and the conformation of Csk were investigated in the presence of a high-affinity phosphopeptide derived from Cbp. This peptide binds tightly to the SH2 domain and enhances Src recognition (lowers K(m)) by increasing the apparent phosphoryl transfer rate in the Csk active site, a phenomenon detected in rapid quench flow experiments. Previous studies demonstrated that the regulation of Csk activity is linked to conformational changes in the enzyme that can be probed with hydrogen-deuterium exchange methods. We show that the Cbp peptide impacts deuterium incorporation into its binding partner (the SH2 domain), and into the SH2-kinase linker and several sequences in the kinase domain, including the glycine-rich loop in the active site. These findings, along with computational data from normal mode analyses, suggest that the SH2 domain moves in a cantilever fashion with respect to the small lobe of the kinase domain, ordering the active site for catalysis. The binding of a small Cbp-derived peptide to the SH2 domain of Csk modifies these motions, enhancing Src recognition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Nancy L., E-mail: nlcho@partners.org; Lin, Chi-Iou; Du, Jinyan
Highlights: Black-Right-Pointing-Pointer Kinome profiling is a novel technique for identifying activated kinases in human cancers. Black-Right-Pointing-Pointer Src activity is increased in invasive thyroid cancers. Black-Right-Pointing-Pointer Inhibition of Src activity decreased proliferation and invasion in vitro. Black-Right-Pointing-Pointer Further investigation of Src targeted therapies in thyroid cancer is warranted. -- Abstract: Background: Novel therapies are needed for the treatment of invasive thyroid cancers. Aberrant activation of tyrosine kinases plays an important role in thyroid oncogenesis. Because current targeted therapies are biased toward a small subset of tyrosine kinases, we conducted a study to reveal novel therapeutic targets for thyroid cancer using amore » bead-based, high-throughput system. Methods: Thyroid tumors and matched normal tissues were harvested from twenty-six patients in the operating room. Protein lysates were analyzed using the Luminex immunosandwich, a bead-based kinase phosphorylation assay. Data was analyzed using GenePattern 3.0 software and clustered according to histology, demographic factors, and tumor status regarding capsular invasion, size, lymphovascular invasion, and extrathyroidal extension. Survival and invasion assays were performed to determine the effect of Src inhibition in papillary thyroid cancer (PTC) cells. Results: Tyrosine kinome profiling demonstrated upregulation of nine tyrosine kinases in tumors relative to matched normal thyroid tissue: EGFR, PTK6, BTK, HCK, ABL1, TNK1, GRB2, ERK, and SRC. Supervised clustering of well-differentiated tumors by histology, gender, age, or size did not reveal significant differences in tyrosine kinase activity. However, supervised clustering by the presence of invasive disease showed increased Src activity in invasive tumors relative to non-invasive tumors (60% v. 0%, p < 0.05). In vitro, we found that Src inhibition in PTC cells decreased cell invasion and proliferation. Conclusion: Global kinome analysis enables the discovery of novel targets for thyroid cancer therapy. Further investigation of Src targeted therapy for advanced thyroid cancer is warranted.« less
Zhao, Yangang; Yu, Yanlan; Zhang, Yuanyuan; He, Li; Qiu, Linli; Zhao, Jikai; Liu, Mengying; Zhang, Jiqiang
2017-03-01
In the hippocampus, local estrogens (E 2 ) derived from testosterone that is catalyzed by aromatase play important roles in the regulation of hippocampal neural plasticity, but the underlying mechanisms remain unclear. The actin cytoskeleton contributes greatly to hippocampal synaptic plasticity; however, whether it is regulated by local E 2 and the related mechanisms remain to be elucidated. In this study, we first examined the postnatal developmental profiles of hippocampal aromatase and specific proteins responsible for actin cytoskeleton dynamics. Then we used aromatase inhibitor letrozole (LET) to block local E 2 synthesis and examined the changes of these proteins and steroid receptor coactivator-1 (SRC-1), the predominant coactivator for steroid nuclear receptors. Finally, SRC-1 specific RNA interference was used to examine the effects of SRC-1 on the expression of these actin remodeling proteins. The results showed a V-type profile for aromatase and increased profiles for actin cytoskeleton proteins in both male and female hippocampus without obvious sex differences. LET treatment dramatically decreased the F-actin/G-actin ratio, the expression of Rictor, phospho-AKT (ser473), Profilin-1, phospho-Cofilin (Ser3), and SRC-1 in a dose-dependent manner. In vitro studies demonstrated that LET induced downregulation of these proteins could be reversed by E 2 , and E 2 induced increase of these proteins were significantly suppressed by SRC-1 shRNA interference. These results for the first time clearly demonstrated that local E 2 inhibition could induce aberrant actin polymerization; they also showed an important role of SRC-1 in the mediation of local E 2 action on hippocampal synaptic plasticity by regulation of actin cytoskeleton dynamics. Copyright © 2016 Elsevier Ltd. All rights reserved.
El-Hashim, Ahmed Z; Khajah, Maitham A; Renno, Waleed M; Babyson, Rhema S; Uddin, Mohib; Benter, Ibrahim F; Ezeamuzie, Charles; Akhtar, Saghir
2017-08-30
The molecular mechanisms underlying asthma pathogenesis are poorly characterized. In this study, we investigated (1) whether Src mediates epidermal growth factor receptor (EGFR) transactivation; (2) if ERK1/2, PI3Kδ/Akt and NF-κB are signaling effectors downstream of Src/EGFR activation; and (3) if upstream inhibition of Src/EGFR is more effective in downregulating the allergic inflammation than selective inhibition of downstream signaling pathways. Allergic inflammation resulted in increased phosphorylation of EGFR, Akt, ERK1/2 and IκB in the lung tissues from ovalbumin (OVA)-challenged BALB/c mice. Treatment with inhibitors of Src (SU6656) or EGFR (AG1478) reduced EGFR phosphorylation and downstream signaling which resulted in the inhibition of the OVA-induced inflammatory cell influx in bronchoalveolar lavage fluid (BALF), perivascular and peribronchial inflammation, fibrosis, goblet cell hyper/metaplasia and airway hyper-responsiveness. Treatment with pathway-selective inhibitors for ERK1/2 (PD89059) and PI3Kδ/Akt (IC-87114) respectively, or an inhibitor of NF-κB (BAY11-7085) also reduced the OVA-induced asthmatic phenotype but to a lesser extent compared to Src/EGFR inhibition. Thus, Src via EGFR transactivation and subsequent downstream activation of multiple pathways regulates the allergic airway inflammatory response. Furthermore, a broader upstream inhibition of Src/EGFR offers an attractive therapeutic alternative in the treatment of asthma relative to selectively targeting the individual downstream signaling effectors.
Hypoxia-induced IL-32β increases glycolysis in breast cancer cells.
Park, Jeong Su; Lee, Sunyi; Jeong, Ae Lee; Han, Sora; Ka, Hye In; Lim, Jong-Seok; Lee, Myung Sok; Yoon, Do-Young; Lee, Jeong-Hyung; Yang, Young
2015-01-28
IL-32β is highly expressed and increases the migration and invasion of gastric, lung, and breast cancer cells. Since IL-32 enhances VEGF production under hypoxic conditions, whether IL-32β is regulated by hypoxia was examined. Hypoxic conditions and a mimetic chemical CoCl2 enhanced IL-32β production. When cells were treated with various inhibitors of ROS generation to prevent hypoxia-induced ROS function, IL-32β production was suppressed by both NADPH oxidase and mitochondrial ROS inhibitors. IL-32β translocated to the mitochondria under hypoxic conditions, where it was associated with mitochondrial biogenesis. Thus, whether hypoxia-induced IL-32β is associated with oxidative phosphorylation (OXPHOS) or glycolysis was examined. Glycolysis under aerobic and anaerobic conditions is impaired in IL-32β-depleted cells, and the hypoxia-induced IL-32β increased glycolysis through activation of lactate dehydrogenase. Src is also known to increase lactate dehydrogenase activity, and the hypoxia-induced IL-32β was found to stimulate Src activation by inhibiting the dephosphorylation of Src. These findings revealed that a hypoxia-ROS-IL-32β-Src-glycolysis pathway is associated with the regulation of cancer cell metabolism. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Wang, Dong-Yuan Debbie; Richard, F Dan; Ray, Brittany
2016-01-01
The stimulus-response correspondence (SRC) effect refers to advantages in performance when stimulus and response correspond in dimensions or features, even if the common features are irrelevant to the task. Previous research indicated that the SRC effect depends on the temporal course of stimulus information processing. The current study investigated how the temporal overlap between relevant and irrelevant stimulus processing influences the SRC effect. In this experiment, the irrelevant stimulus (a previously associated tone) preceded the relevant stimulus (a coloured rectangle). The irrelevant and relevant stimuli onset asynchrony was varied to manipulate the temporal overlap between the irrelevant and relevant stimuli processing. Results indicated that the SRC effect size varied as a quadratic function of the temporal overlap between the relevant stimulus and irrelevant stimulus. This finding extends previous experimental observations that the SRC effect size varies in an increasing or decreasing function with reaction time. The current study demonstrated a quadratic function between effect size and the temporal overlap.
Chandra, Pallavi; Rajmani, R S; Verma, Garima; Bhavesh, Neel Sarovar; Kumar, Dhiraj
2016-01-01
In view of emerging drug resistance among bacterial pathogens, including Mycobacterium tuberculosis, the development of novel therapeutic strategies is increasingly being sought. A recent paradigm in antituberculosis (anti-TB) drug development is to target the host molecules that are crucial for intracellular survival of the pathogen. We previously showed the importance of Src tyrosine kinases in mycobacterial pathogenesis. Here, we report that inhibition of Src significantly reduced survival of H37Rv as well as multidrug-resistant (MDR) and extremely drug-resistant (XDR) strains of M. tuberculosis in THP-1 macrophages. Src inhibition was also effective in controlling M. tuberculosis infection in guinea pigs. In guinea pigs, reduced M. tuberculosis burden due to Src inhibition also led to a marked decline in the disease pathology. In agreement with the theoretical framework of host-directed approaches against the pathogen, Src inhibition was equally effective against an XDR strain in controlling infection in guinea pigs. We propose that Src inhibitors could be developed into effective host-directed anti-TB drugs, which could be indiscriminately used against both drug-sensitive and drug-resistant strains of M. tuberculosis. IMPORTANCE The existing treatment regimen for tuberculosis (TB) suffers from deficiencies like high doses of antibiotics, long treatment duration, and inability to kill persistent populations in an efficient manner. Together, these contribute to the emergence of drug-resistant tuberculosis. Recently, several host factors were identified which help intracellular survival of Mycobacterium tuberculosis within the macrophage. These factors serve as attractive targets for developing alternate therapeutic strategies against M. tuberculosis. This strategy promises to be effective against drug-resistant strains. The approach also has potential to considerably lower the risk of emergence of new drug-resistant strains. We explored tyrosine kinase Src as a host factor exploited by virulent M. tuberculosis for intracellular survival. We show that Src inhibition can effectively control tuberculosis in infected guinea pigs. Moreover, Src inhibition ameliorated TB-associated pathology in guinea pigs. Thus, Src inhibitors have strong potential to be developed as possible anti-TB drugs.
Genetic and Environmental Models of Circadian Disruption Link SRC-2 Function to Hepatic Pathology
Fleet, Tiffany; Stashi, Erin; Zhu, Bokai; Rajapakshe, Kimal; Marcelo, Kathrina L.; Kettner, Nicole M.; Gorman, Blythe K.; Coarfa, Cristian; Fu, Loning; O’Malley, Bert W.; York, Brian
2017-01-01
Circadian rhythmicity is a fundamental process that synchronizes behavioral cues with metabolic homeostasis. Disruption of daily cycles due to jet lag or shift work results in severe physiological consequences including advanced aging, metabolic syndrome, and even cancer. Our understanding of the molecular clock, which is regulated by intricate positive feedforward and negative feedback loops, has expanded to include an important metabolic transcriptional coregulator, Steroid Receptor Coactivator-2 (SRC-2), that regulates both the central clock of the suprachiasmatic nucleus (SCN) and peripheral clocks including the liver. We hypothesized that an environmental uncoupling of the light-dark phases, termed chronic circadian disruption (CCD), would lead to pathology similar to the genetic circadian disruption observed with loss of SRC-2. We found that CCD and ablation of SRC-2 in mice led to a common comorbidity of metabolic syndrome also found in humans with circadian disruption, non-alcoholic fatty liver disease (NAFLD). The combination of SRC-2−/− and CCD results in a more robust phenotype that correlates with human non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) gene signatures. Either CCD or SRC-2 ablation produces an advanced aging phenotype leading to increased mortality consistent with other circadian mutant mouse models. Collectively, our studies demonstrate that SRC-2 provides an essential link between the behavioral activities influenced by light cues and the metabolic homeostasis maintained by the liver. PMID:27432117
Rey, Juan Antonio; Pinto, Giovanny Rebouças; Lamarão, Leticia Martins; Montenegro, Raquel Carvalho; Alves, Ana Paula Negreiros Nunes; Assumpção, Paulo Pimentel; Borges, Barbara do Nascimento; Smith, Marília Cardoso; Burbano, Rommel Rodriguez
2015-01-01
Kinases are downstream modulators and effectors of several cellular signaling cascades and play key roles in the development of neoplastic disease. In this study, we aimed to evaluate SRC, LYN and CKB protein and mRNA expression, as well as their promoter methylation, in gastric cancer. We found elevated expression of SRC and LYN kinase mRNA and protein but decreased levels of CKB kinase, alterations that may have a role in the invasiveness and metastasis of gastric tumors. Expression of the three studied kinases was also associated with MYC oncogene expression, a possible biomarker for gastric cancer. To understand the mechanisms that regulate the expression of these genes, we evaluated the DNA promoter methylation of the three kinases. We found that reduced SRC and LYN methylation and increased CKB methylation was associated with gastric cancer. The reduced SRC and LYN methylation was associated with increased levels of mRNA and protein expression, suggesting that DNA methylation is involved in regulating the expression of these kinases. Conversely, reduced CKB methylation was observed in samples with reduced mRNA and protein expression, suggesting CKB expression was found to be only partly regulated by DNA methylation. Additionally, we found that alterations in the DNA methylation pattern of the three studied kinases were also associated with the gastric cancer onset, advanced gastric cancer, deeper tumor invasion and the presence of metastasis. Therefore, SRC, LYN and CKB expression or DNA methylation could be useful markers for predicting tumor progression and targeting in anti-cancer strategies. PMID:26460485
Mello, Adriano Azevedo; Leal, Mariana Ferreira; Rey, Juan Antonio; Pinto, Giovanny Rebouças; Lamarão, Leticia Martins; Montenegro, Raquel Carvalho; Alves, Ana Paula Negreiros Nunes; Assumpção, Paulo Pimentel; Borges, Barbara do Nascimento; Smith, Marília Cardoso; Burbano, Rommel Rodriguez
2015-01-01
Kinases are downstream modulators and effectors of several cellular signaling cascades and play key roles in the development of neoplastic disease. In this study, we aimed to evaluate SRC, LYN and CKB protein and mRNA expression, as well as their promoter methylation, in gastric cancer. We found elevated expression of SRC and LYN kinase mRNA and protein but decreased levels of CKB kinase, alterations that may have a role in the invasiveness and metastasis of gastric tumors. Expression of the three studied kinases was also associated with MYC oncogene expression, a possible biomarker for gastric cancer. To understand the mechanisms that regulate the expression of these genes, we evaluated the DNA promoter methylation of the three kinases. We found that reduced SRC and LYN methylation and increased CKB methylation was associated with gastric cancer. The reduced SRC and LYN methylation was associated with increased levels of mRNA and protein expression, suggesting that DNA methylation is involved in regulating the expression of these kinases. Conversely, reduced CKB methylation was observed in samples with reduced mRNA and protein expression, suggesting CKB expression was found to be only partly regulated by DNA methylation. Additionally, we found that alterations in the DNA methylation pattern of the three studied kinases were also associated with the gastric cancer onset, advanced gastric cancer, deeper tumor invasion and the presence of metastasis. Therefore, SRC, LYN and CKB expression or DNA methylation could be useful markers for predicting tumor progression and targeting in anti-cancer strategies.
Hayes, Karen E.; Walk, Elyse L.; Ammer, Amanda Gatesman; Kelley, Laura C.; Martin, Karen H.; Weed, Scott A.
2014-01-01
Head and neck squamous cell carcinoma (HNSCC) has a proclivity for locoregional invasion. HNSCC mediates invasion in part through invadopodia-based proteolysis of the extracellular matrix (ECM). Activation of Src, Erk1/2, Abl and Arg downstream of epidermal growth factor receptor (EGFR) modulates invadopodia activity through phosphorylation of the actin regulatory protein cortactin. In MDA-MB-231 breast cancer cells, Abl and Arg function downstream of Src to phosphorylate cortactin, promoting invadopodia ECM degradation activity and thus assigning a pro-invasive role for Ableson kinases. We report that Abl kinases have an opposite, negative regulatory role in HNSCC where they suppress invadopodia and tumor invasion. Impairment of Abl expression or Abl kinase activity with imatinib mesylate enhanced HNSCC matrix degradation and 3D collagen invasion, functions that were impaired in MDA-MB-231. HNSCC lines with elevated EGFR and Src activation did not contain increased Abl or Arg kinase activity, suggesting Src could bypass Abl/Arg to phosphorylate cortactin and promote invadopodia ECM degradation. Src transformed Abl−/−/Arg−/− fibroblasts produced ECM degrading invadopodia containing pY421 cortactin, indicating that Abl/Arg are dispensable for invadopodia function in this system. Imatinib treated HNSCC cells had increased EGFR, Erk1/2 and Src activation, enhancing cortactin pY421 and pS405/418 required for invadopodia function. Imatinib stimulated shedding of the EGFR ligand heparin-binding EGF-like growth factor (HB-EGF) from HNSCC cells, where soluble HB-EGF enhanced invadopodia ECM degradation in HNSCC but not in MDA-MB-231. HNSCC cells treated with inhibitors of the EGFR invadopodia pathway indicated that EGFR and Src are required for invadopodia function. Collectively our results indicate that Abl kinases negatively regulate HNSCC invasive processes through suppression of an HB-EGF autocrine loop responsible for activating a EGFR-Src-cortactin cascade, in contrast to the invasion promoting functions of Abl kinases in breast and other cancer types. Our results provide mechanistic support for recent failed HNSCC clinical trials utilizing imatinib. PMID:23146907
Multiple Sparse Representations Classification
Plenge, Esben; Klein, Stefan S.; Niessen, Wiro J.; Meijering, Erik
2015-01-01
Sparse representations classification (SRC) is a powerful technique for pixelwise classification of images and it is increasingly being used for a wide variety of image analysis tasks. The method uses sparse representation and learned redundant dictionaries to classify image pixels. In this empirical study we propose to further leverage the redundancy of the learned dictionaries to achieve a more accurate classifier. In conventional SRC, each image pixel is associated with a small patch surrounding it. Using these patches, a dictionary is trained for each class in a supervised fashion. Commonly, redundant/overcomplete dictionaries are trained and image patches are sparsely represented by a linear combination of only a few of the dictionary elements. Given a set of trained dictionaries, a new patch is sparse coded using each of them, and subsequently assigned to the class whose dictionary yields the minimum residual energy. We propose a generalization of this scheme. The method, which we call multiple sparse representations classification (mSRC), is based on the observation that an overcomplete, class specific dictionary is capable of generating multiple accurate and independent estimates of a patch belonging to the class. So instead of finding a single sparse representation of a patch for each dictionary, we find multiple, and the corresponding residual energies provides an enhanced statistic which is used to improve classification. We demonstrate the efficacy of mSRC for three example applications: pixelwise classification of texture images, lumen segmentation in carotid artery magnetic resonance imaging (MRI), and bifurcation point detection in carotid artery MRI. We compare our method with conventional SRC, K-nearest neighbor, and support vector machine classifiers. The results show that mSRC outperforms SRC and the other reference methods. In addition, we present an extensive evaluation of the effect of the main mSRC parameters: patch size, dictionary size, and sparsity level. PMID:26177106
Li, Yang; Zhou, Yanbo; Zhou, Zhenhua; Wang, Ningsheng; Zhou, Qiang; Wang, Fuchen
2014-01-01
The eutrophication of many rivers and lakes is attributed to the anoxia and the increasing internal loading of nutrients from sediment. A novel sustained-release composite (SRC) synthesis of stearic acid and calcium peroxide (CaO2) was applied to supply a water body with oxygen endured in this study. The influences of SRC on the dissolved oxygen (DO) level, pH and total phosphorus (TP) of an urban river in Shanghai were studied. The results show that SRC has a longer oxygen-releasing cycle and a more tender effect on pH with the comparison of CaO2 powder. Reduction of 79.6% in the concentration of TP was observed in the water column. After 35 days of SRC addition, there was a significant positive correlation between TP and DO. As a consequence, the phosphorus fractions in sediment, including loosely sorbed P (NH4Cl-P), redox-sensitive P (Fe-P), calcium bound P (Ca-P), aluminium bound P (Al-P) and residual P (organic and refractory P) were affected by the addition of SRC. The NH4Cl-P and Fe-P fractions in the sediment that could release P easily were well constrained under the positive effect of SRC.
2013-01-01
Exposure of intact cells to selective inhibitors of Na+/K+-ATPase such as ouabain activates several growth-related cell signaling pathways. It has been suggested that the initial event of these pathways is the binding of ouabain to a preexisting complex of Src with Na+/K+-ATPase of the plasma membrane. The aim of this work was to evaluate the role of Src in the ouabain-induced activation of phosphatidylinositide 3-kinase 1A (PI3K1A) and its downstream consequences. When fibroblasts devoid of Src (SYF cells) and controls (Src++ cells) were exposed to ouabain, PI3K1A, Akt, and proliferative growth were similarly stimulated in both cell lines. Ouabain-induced activation of Akt was not prevented by the Src inhibitor PP2. In contrast, ERK1/2 were not activated by ouabain in SYF cells but were stimulated in Src++ cells; this was prevented by PP2. In isolated adult mouse cardiac myocytes, where ouabain induces hypertrophic growth, PP2 also did not prevent ouabain-induced activation of Akt and the resulting hypertrophy. Ouabain-induced increases in the levels of co-immunoprecipitation of the α-subunit of Na+/K+-ATPase with the p85 subunit of PI3K1A were noted in SYF cells, Src++ cells, and adult cardiac myocytes. In conjunction with previous findings, the results presented here indicate that (a) if there is a preformed complex of Src and Na+/K+-ATPase, it is irrelevant to ouabain-induced activation of the PI3K1A/Akt pathway through Na+/K+-ATPase and (b) a more likely, but not established, mechanism of linkage of Na+/K+-ATPase to PI3K1A is the ouabain-induced interaction of a proline-rich domain of the α-subunit of Na+/K+-ATPase with the SH3 domain of the p85 subunit of PI3K1A. PMID:24266852
Larsen, Sarah L.; Laenkholm, Anne-Vibeke; Duun-Henriksen, Anne Katrine; Bak, Martin; Lykkesfeldt, Anne E.; Kirkegaard, Tove
2015-01-01
The underlying mechanisms leading to antiestrogen resistance in estrogen-receptor α (ER)-positive breast cancer is still poorly understood. The aim of this study was therefore to identify biomarkers and novel treatments for antiestrogen resistant breast cancer. We performed a kinase inhibitor screen on antiestrogen responsive T47D breast cancer cells and T47D-derived tamoxifen and fulvestrant resistant cell lines. We found that dasatinib, a broad-spectrum kinase inhibitor, inhibited growth of the antiestrogen resistant cells compared to parental T47D cells. Furthermore western blot analysis showed increased expression and phosphorylation of Src in the resistant cells and that dasatinib inhibited phosphorylation of Src and also signaling via Akt and Erk in all cell lines. Immunoprecipitation revealed Src: ER complexes only in the parental T47D cells. In fulvestrant resistant cells, Src formed complexes with the Human Epidermal growth factor Receptor (HER)1 and HER2. Neither HER receptors nor ER were co-precipitated with Src in the tamoxifen resistant cell lines. Compared to treatment with dasatinib alone, combined treatment with dasatinib and fulvestrant had a stronger inhibitory effect on tamoxifen resistant cell growth, whereas dasatinib in combination with tamoxifen had no additive inhibitory effect on fulvestrant resistant growth. When performing immunohistochemical staining on 268 primary tumors from breast cancer patients who had received tamoxifen as first line endocrine treatment, we found that membrane expression of Src in the tumor cells was significant associated with reduced disease-free and overall survival. In conclusion, Src was identified as target for treatment of antiestrogen resistant T47D breast cancer cells. For tamoxifen resistant T47D cells, combined treatment with dasatinib and fulvestrant was superior to treatment with dasatinib alone. Src located at the membrane has potential as a new biomarker for reduced benefit of tamoxifen. PMID:25706943
Honda, Takuya; Morii, Mariko; Nakayama, Yuji; Suzuki, Ko; Yamaguchi, Noritaka; Yamaguchi, Naoto
2018-01-18
v-Src is the first identified oncogene product and has a strong tyrosine kinase activity. Much of the literature indicates that v-Src expression induces anchorage-independent and infinite cell proliferation through continuous stimulation of growth signaling by v-Src activity. Although all of v-Src-expressing cells are supposed to form transformed colonies, low frequencies of v-Src-induced colony formation have been observed so far. Using cells that exhibit high expression efficiencies of inducible v-Src, we show that v-Src expression causes cell-cycle arrest through p21 up-regulation despite ERK activation. v-Src expression also induces chromosome abnormalities and unexpected suppression of v-Src expression, leading to p21 down-regulation and ERK inactivation. Importantly, among v-Src-suppressed cells, only a limited number of cells gain the ability to re-proliferate and form transformed colonies. Our findings provide the first evidence that v-Src-driven transformation is attributed to chromosome abnormalities, but not continuous stimulation of growth signaling, possibly through stochastic genetic alterations.
Levitt, Jonathan M; Yamashita, Hideyuki; Jian, Weiguo; Lerner, Seth P; Sonpavde, Guru
2010-05-01
Dasatinib is an orally administered multitargeted kinase inhibitor that targets Src family tyrosine kinases, Abl, c-Kit, and PDGFR. A preclinical study was conducted to evaluate dasatinib alone or combined with cisplatin for human transitional cell carcinoma (TCC). Expression of Src in a human TCC tissue microarray was evaluated by immunohistochemistry. The activity of dasatinib and/or cisplatin was evaluated in six human TCC cell lines. Western blot was done to assess Src and phosphorylated-Src (p-Src) expression. The activity of dasatinib alone and in combination with cisplatin was determined in murine subcutaneous xenografts. Sixty-two percent to 75% of human TCC expressed Src. Dasatinib displayed significant antiproliferative activity at nanomolar concentrations against two human TCC cell lines (RT4 and Hu456) that exhibited high Src and p-Src expression and were cisplatin-resistant. RT4 cells were the most sensitive and displayed the highest level of Src pathway activation (p-Src/Src ratio). Dasatinib downregulated p-Src in either sensitive or resistant cells. TCC cells that were sensitive to cisplatin (5637 and TCC-SUP) were highly resistant to dasatinib and exhibited low Src expression. Dasatinib showed antitumor activity in RT4 murine xenografts, and the combination of dasatinib and cisplatin was significantly more active than placebo. Combination dasatinib plus cisplatin significantly inhibited proliferation and promoted apoptosis in vivo. In conclusion, dasatinib displayed significant preclinical antitumor activity against Src-overexpressing human TCC with active Src signaling and was highly active in combination with cisplatin in vivo. Further clinical development might be warranted in selected human subjects.
Alt-Holland, Addy; Sowalsky, Adam; Szwec-Levin, Yonit; Shamis, Yulia; Hatch, Harold; Feig, Larry A.; Garlick, Jonathan A.
2011-01-01
Advanced stages of epithelial carcinogenesis involve the loss of intercellular adhesion, but it remains unclear how proteins that regulate alterations in cell-cell and cell-matrix adhesion are deregulated to promote the early stages of cancer development. To address this, a three-dimensional human tissue model that mimics the incipient stages of Squamous Cell Carcinoma (SCC) was used to study how E-cadherin suppression promotes tumor progression in Ras-expressing human keratinocytes. We found that E-cadherin suppression triggered elevated mRNA and protein expression levels of Focal Adhesion Kinase (FAK), and increased FAK and Src activities above the level seen in Ras-expressing E-cadherin-competent keratinocytes. sh-RNA-mediated depletion of FAK and Src restored E-cadherin expression levels by increasing its stability in the membrane, and blocked tumor cell invasion in tissues. Surface transplantation of these tissues to mice resulted in reversion of the tumor phenotype to low-grade tumor islands in contrast to control tissues that manifested an aggressive, high-grade SCC. These findings suggest that the tumor-promoting effect of E-cadherin suppression, a common event in SCC development, is exacerbated by enhanced E-cadherin degradation induced by elevated FAK and Src activities. Furthermore, they imply that targeting FAK or Src in human epithelial cells with neoplastic potential may inhibit the early stages of SCC. PMID:21716326
Kramer, Benedikt; Kneissle, Marcel; Birk, Richard; Rotter, Nicole; Aderhold, Christoph
2018-05-01
Therapeutic options of locally advanced or metastatic head and neck squamous cell carcinoma (HNSCC) are limited. Src and cKIT are key protein regulators for local tumor progression. The aim of the study was to investigate the therapeutic potential of targeted therapies in human squamous cell carcinoma (HNSCC) in vitro. Therefore, the influence of the selective tyrosine kinase inhibitors niotinib, dasatinib, erlotinib, gefitinib and afatinib on Src and cKIT expression in Human papilloma virus (HPV)-positive and HPV-negative squamous cancer cells (SCC) was analyzed in vitro. ELISA was performed to evaluate the expression of Src and cKIT under the influence of nilotinib, dasatinib, erlotinib, gefitinib and afatinib (10 μmol/l) in HPV-negative and HPV-positive SCC (24-96 h of incubation). Gefitinib significantly increased cKIT expression in HPV-positive and HPV-negative cells whereas nilotinib and afatinib decreased cKIT expression in HPV-positive SCC. The influence of tyrosine kinase inhibitors in HPV-negative SCC was marginal. Surprisingly, Src expression was significantly increased by all tested tyrosine kinase inhibitors in HPV-positive SCC. The results revealed beneficial and unexpected information concerning the interaction of selective tyrosine kinase inhibitors and the tumor biology of HNSCC. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
The Src/c-Abl pathway is a potential therapeutic target in amyotrophic lateral sclerosis.
Imamura, Keiko; Izumi, Yuishin; Watanabe, Akira; Tsukita, Kayoko; Woltjen, Knut; Yamamoto, Takuya; Hotta, Akitsu; Kondo, Takayuki; Kitaoka, Shiho; Ohta, Akira; Tanaka, Akito; Watanabe, Dai; Morita, Mitsuya; Takuma, Hiroshi; Tamaoka, Akira; Kunath, Tilo; Wray, Selina; Furuya, Hirokazu; Era, Takumi; Makioka, Kouki; Okamoto, Koichi; Fujisawa, Takao; Nishitoh, Hideki; Homma, Kengo; Ichijo, Hidenori; Julien, Jean-Pierre; Obata, Nanako; Hosokawa, Masato; Akiyama, Haruhiko; Kaneko, Satoshi; Ayaki, Takashi; Ito, Hidefumi; Kaji, Ryuji; Takahashi, Ryosuke; Yamanaka, Shinya; Inoue, Haruhisa
2017-05-24
Amyotrophic lateral sclerosis (ALS), a fatal disease causing progressive loss of motor neurons, still has no effective treatment. We developed a phenotypic screen to repurpose existing drugs using ALS motor neuron survival as readout. Motor neurons were generated from induced pluripotent stem cells (iPSCs) derived from an ALS patient with a mutation in superoxide dismutase 1 ( SOD1 ). Results of the screen showed that more than half of the hits targeted the Src/c-Abl signaling pathway. Src/c-Abl inhibitors increased survival of ALS iPSC-derived motor neurons in vitro. Knockdown of Src or c-Abl with small interfering RNAs (siRNAs) also rescued ALS motor neuron degeneration. One of the hits, bosutinib, boosted autophagy, reduced the amount of misfolded mutant SOD1 protein, and attenuated altered expression of mitochondrial genes. Bosutinib also increased survival in vitro of ALS iPSC-derived motor neurons from patients with sporadic ALS or other forms of familial ALS caused by mutations in TAR DNA binding protein ( TDP-43 ) or repeat expansions in C9orf72 Furthermore, bosutinib treatment modestly extended survival of a mouse model of ALS with an SOD1 mutation, suggesting that Src/c-Abl may be a potentially useful target for developing new drugs to treat ALS. Copyright © 2017, American Association for the Advancement of Science.
Murdaugh, Donna L; Ono, Kim E; Reisner, Andrew; Burns, Thomas G
2018-05-01
To determine the relation between sleep quantity and sleep disturbances on symptoms and neurocognitive ability during the acute phase (<7d) and after sports-related concussion (SRC; >21d). Prospective inception cohort study. General community setting of regional middle and high schools. A sample (N=971) including youth athletes with SRC (n=528) and controls (n=443) (age, 10-18y). Not applicable. Athletes completed the Immediate Post-Concussion Assessment and Cognitive Testing battery. Partial correlation analyses and independent t tests were conducted to assess sleep quantity the night before testing. Multivariate analysis of covariance was used to assess sleep disturbances and their interaction with age. Less sleep quantity was correlated with greater report of cognitive (P=.001) and neuropsychological (P=.024) symptoms specific to prolonged recovery from SRC. Sleep disturbances significantly affect each migraine, cognitive, and neuropsychological symptoms (P<.001). A significant interaction was found between sleep disturbances and age (P=.04) at >21 days post-SRC. Findings emphasize that the continued presence of low sleep quantity and sleep disturbances in youth athletes with SRC should be a specific indicator to health professionals that these athletes are at an increased risk of protracted recovery. Further research should identify additional factors that may interact with sleep to increase the risk of protracted recovery. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Concussions in American Football.
Womble, Melissa N; Collins, Michael W
Major advancements in sport-related concussion (SRC) management have been made across time to improve the safety of contact sports, including football. Nevertheless, these advances are often overlooked due to concerns regarding the potential long-term effects of SRC. Although further research is needed, it is critical that current efforts are focused on better understanding SRC in order to recognize and change ongoing factors leading to prolonged recoveries, increased risk for injury, and potentially long-term effects. To reduce risk for these outcomes, future focus must be placed on increased education efforts, immediate reporting of injury, prevention techniques, targeted treatment, and the development of multidisciplinary treatment teams nationwide. Finally, with the progress in understanding concussion, it is important to remain vigilant of additional advances that will help to further improve the safety of contact sports, including football.
Roles of Raft-Anchored Adaptor Cbp/PAG1 in Spatial Regulation of c-Src Kinase
Oneyama, Chitose; Suzuki, Takashi; Okada, Masato
2014-01-01
The tyrosine kinase c-Src is upregulated in numerous human cancers, implying a role for c-Src in cancer progression. Previously, we have shown that sequestration of activated c-Src into lipid rafts via a transmembrane adaptor, Cbp/PAG1, efficiently suppresses c-Src-induced cell transformation in Csk-deficient cells, suggesting that the transforming activity of c-Src is spatially regulated via Cbp in lipid rafts. To dissect the molecular mechanisms of the Cbp-mediated regulation of c-Src, a combined analysis was performed that included mathematical modeling and in vitro experiments in a c-Src- or Cbp-inducible system. c-Src activity was first determined as a function of c-Src or Cbp levels, using focal adhesion kinase (FAK) as a crucial c-Src substrate. Based on these experimental data, two mathematical models were constructed, the sequestration model and the ternary model. The computational analysis showed that both models supported our proposal that raft localization of Cbp is crucial for the suppression of c-Src function, but the ternary model, which includes a ternary complex consisting of Cbp, c-Src, and FAK, also predicted that c-Src function is dependent on the lipid-raft volume. Experimental analysis revealed that c-Src activity is elevated when lipid rafts are disrupted and the ternary complex forms in non-raft membranes, indicating that the ternary model accurately represents the system. Moreover, the ternary model predicted that, if Cbp enhances the interaction between c-Src and FAK, Cbp could promote c-Src function when lipid rafts are disrupted. These findings underscore the crucial role of lipid rafts in the Cbp-mediated negative regulation of c-Src-transforming activity, and explain the positive role of Cbp in c-Src regulation under particular conditions where lipid rafts are perturbed. PMID:24675741
Removal From Play After Concussion and Recovery Time
Sufrinko, Alicia; Schatz, Philip; French, Jon; Henry, Luke; Burkhart, Scott; Collins, Michael W.; Kontos, Anthony P.
2016-01-01
OBJECTIVE: Despite increases in education and awareness, many athletes continue to play with signs and symptoms of a sport-related concussion (SRC). The impact that continuing to play has on recovery is unknown. This study compared recovery time and related outcomes between athletes who were immediately removed from play and athletes who continued to play with an SRC. METHODS: A prospective, repeated measures design was used to compare neurocognitive performance, symptoms, and recovery time between 35 athletes (mean ± SD age, 15.61 ± 1.65 years) immediately removed after an SRC (REMOVED group) compared with 34 athletes (mean ± SD age, 15.35 ± 1.73 years) who continued to play (PLAYED group) with SRC. Neurocognitive and symptom data were obtained at baseline and at 1 to 7 days and 8 to 30 days after an SRC. RESULTS: The PLAYED group took longer to recover than the REMOVED group (44.4 ± 36.0 vs 22.0 ± 18.7 days; P = .003) and were 8.80 times more likely to demonstrate protracted recovery (≥21 days) (P < .001). Removal from play status was associated with the greatest risk of protracted recovery (adjusted odds ratio, 14.27; P = .001) compared with other predictors (eg, sex). The PLAYED group exhibited significantly worse neurocognitive and greater symptoms than the REMOVED group. CONCLUSIONS: SRC recovery time may be reduced if athletes are removed from participation. Immediate removal from play is the first step in mitigating prolonged SRC recovery, and these data support current consensus statements and management guidelines. PMID:27573089
Garcia-Recio, Susana; Pastor-Arroyo, Eva M; Marín-Aguilera, Mercedes; Almendro, Vanessa; Gascón, Pedro
2015-01-01
Substance P (SP) is a pleiotropic cytokine/neuropeptide that enhances breast cancer (BC) aggressiveness by transactivating tyrosine kinase receptors like EGFR and HER2. We previously showed that SP and its cognate receptor NK-1 (SP/NK1-R) signaling modulates the basal phosphorylation of HER2 and EGFR in BC, increasing aggressiveness and drug resistance. In order to elucidate the mechanisms responsible for NK-1R-mediated HER2 and EGFR transactivation, we investigated the involvement of c-Src (a ligand-independent mediator) and of metalloproteinases (ligand-dependent mediators) in HER2/EGFR activation. Overexpression of NK-1R in MDA-MB-231 and its chemical inhibition in SK-BR-3, BT-474 and MDA-MB-468 BC cells significantly modulated c-Src activation, suggesting that this protein is a mediator of NK-1R signaling. In addition, the c-Src inhibitor 4-(4'-phenoxyanilino)-6,7-dimethoxyquinazoline prevented SP-induced activation of HER2. On the other hand, SP-dependent phosphorylation of HER2 and EGFR decreased substantially in the presence of the MMP inhibitor 1-10, phenanthroline monohydrate, and the dual inhibition of both c-Src and MMP almost abolished the activation of HER2 and EGFR. Moreover, the use of these inhibitors demonstrated that this Src and MMP-dependent signaling is important to the cell viability and migration capacity of HER2+ and EGFR+ cell lines. Our results indicate that the transactivation of HER2 and EGFR by the pro-inflammatory cytokine/neuropeptide SP in BC cells is a c-Src and MMP-dependent process.
p68 Sam is a substrate of the insulin receptor and associates with the SH2 domains of p85 PI3K.
Sánchez-Margalet, V; Najib, S
1999-07-23
The 68 kDa Src substrate associated during mitosis is an RNA binding protein with Src homology 2 and 3 domain binding sites. A role for Src associated in mitosis 68 as an adaptor protein in signaling transduction has been proposed in different systems such as T-cell receptors. In the present work, we have sought to assess the possible role of Src associated in mitosis 68 in insulin receptor signaling. We performed in vivo studies in HTC-IR cells and in vitro studies using recombinant Src associated in mitosis 68, purified insulin receptor and fusion proteins containing either the N-terminal or the C-terminal Src homology 2 domain of p85 phosphatidylinositol-3-kinase. We have found that Src associated in mitosis 68 is a substrate of the insulin receptor both in vivo and in vitro. Moreover, tyrosine-phosphorylated Src associated in mitosis 68 was found to associate with p85 phosphatidylinositol-3-kinase in response to insulin, as assessed by co-immunoprecipitation studies. Therefore, Src associated in mitosis 68 may be part of the signaling complexes of insulin receptor along with p85. In vitro studies demonstrate that Src associated in mitosis 68 associates with the Src homology 2 domains of p85 after tyrosine phosphorylation by the activated insulin receptor. Moreover, tyr-phosphorylated Src associated in mitosis 68 binds with a higher affinity to the N-terminal Src homology 2 domain of p85 compared to the C-terminal Src homology 2 domain of p85, suggesting a preferential association of Src associated in mitosis 68 with the N-terminal Src homology 2 domain of p85. This association may be important for the link of the signaling with RNA metabolism.
SGT1 is required in PcINF1/SRC2-1 induced pepper defense response by interacting with SRC2-1
Liu, Zhi-qin; Liu, Yan-yan; Shi, Lan-ping; Yang, Sheng; Shen, Lei; Yu, Huan-xin; Wang, Rong-zhang; Wen, Jia-yu; Tang, Qian; Hussain, Ansar; Khan, Muhammad Ifnan; Hu, Jiong; Liu, Cai-ling; Zhang, Yang-wen; Cheng, Wei; He, Shui-lin
2016-01-01
PcINF1 was previously found to induce pepper defense response by interacting with SRC2-1, but the underlying mechanism remains uninvestigated. Herein, we describe the involvement of SGT1 in the PcINF1/SRC2-1-induced immunity. SGT1 was observed to be up-regulated by Phytophthora capsici inoculation and synergistically transient overexpression of PcINF1/SRC2-1 in pepper plants. SGT1-silencing compromised HR cell death, blocked H2O2 accumulation, and downregulated HR-associated and hormones-dependent marker genes’ expression triggered by PcINF1/SRC2-1 co-overexpression. The interaction between SRC2-1 and SGT1 was found by the yeast two hybrid system and was further confirmed by bimolecular fluorescence complementation and co-immunoprecipitation analyses. The SGT1/SRC2-1 interaction was enhanced by transient overexpression of PcINF1 and Phytophthora capsici inoculation, and SGT1-silencing attenuated PcINF1/SRC2-1 interaction. Additionally, by modulating subcellular localizations of SRC2-1, SGT1, and the interacting complex of SGT1/SRC2-1, it was revealed that exclusive nuclear targeting of the SGT1/SRC2-1 complex blocks immunity triggered by formation of SGT1/SRC2-1, and a translocation of the SGT1/SRC2-1 complex from the plasma membrane and cytoplasm to the nuclei upon the inoculation of P. capsici. Our data demonstrate that the SGT1/SRC2-1 interaction, and its nucleocytoplasmic partitioning, is involved in pepper’s immunity against P. capsici, thus providing a molecular link between Ca2+ signaling associated SRC2-1 and SGT1-mediated defense signaling. PMID:26898479
Lesslie, D P; Summy, J M; Parikh, N U; Fan, F; Trevino, J G; Sawyer, T K; Metcalf, C A; Shakespeare, W C; Hicklin, D J; Ellis, L M; Gallick, G E
2006-01-01
Vascular endothelial growth factor (VEGF) is the predominant pro-angiogenic cytokine in human malignancy, and its expression correlates with disease recurrence and poor outcomes in patients with colorectal cancer. Recently, expression of vascular endothelial growth factor receptors (VEGFRs) has been observed on tumours of epithelial origin, including those arising in the colon, but the molecular mechanisms governing potential VEGF-driven biologic functioning in these tumours are not well characterised. In this report, we investigated the role of Src family kinases (SFKs) in VEGF-mediated signalling in human colorectal carcinoma (CRC) cell lines. Vascular endothelial growth factor specifically activated SFKs in HT29 and KM12L4 CRC cell lines. Further, VEGF stimulation resulted in enhanced cellular migration, which was effectively blocked by pharmacologic inhibition of VEGFR-1 or Src kinase. Correspondingly, migration studies using siRNA clones with reduced Src expression confirmed the requirement for Src in VEGF-induced migration in these cells. Furthermore, VEGF treatment enhanced VEGFR-1/SFK complex formation and increased tyrosine phosphorylation of focal adhesion kinase, p130 cas and paxillin. Finally, we demonstrate that VEGF-induced migration is not due, at least in part, to VEGF acting as a mitogen. These results suggest that VEGFR-1 promotes migration of tumour cells through a Src-dependent pathway linked to activation of focal adhesion components that regulate this process. PMID:16685275
Sanjay, Archana; Houghton, Adam; Neff, Lynn; DiDomenico, Emilia; Bardelay, Chantal; Antoine, Evelyne; Levy, Joan; Gailit, James; Bowtell, David; Horne, William C.; Baron, Roland
2001-01-01
The signaling events downstream of integrins that regulate cell attachment and motility are only partially understood. Using osteoclasts and transfected 293 cells, we find that a molecular complex comprising Src, Pyk2, and Cbl functions to regulate cell adhesion and motility. The activation of integrin αvβ3 induces the [Ca2+]i-dependent phosphorylation of Pyk2 Y402, its association with Src SH2, Src activation, and the Src SH3-dependent recruitment and phosphorylation of c-Cbl. Furthermore, the PTB domain of Cbl is shown to bind to phosphorylated Tyr-416 in the activation loop of Src, the autophosphorylation site of Src, inhibiting Src kinase activity and integrin-mediated adhesion. Finally, we show that deletion of c Src or c-Cbl leads to a decrease in osteoclast migration. Thus, binding of αvβ3 integrin induces the formation of a Pyk2/Src/Cbl complex in which Cbl is a key regulator of Src kinase activity and of cell adhesion and migration. These findings may explain the osteopetrotic phenotype in the Src−/− mice. PMID:11149930
McHugh, Nicola; Edmondson, Jill L; Gaston, Kevin J; Leake, Jonathan R; O'Sullivan, Odhran S
2015-10-01
The capacity of urban areas to deliver provisioning ecosystem services is commonly overlooked and underutilized. Urban populations have globally increased fivefold since 1950, and they disproportionately consume ecosystem services and contribute to carbon emissions, highlighting the need to increase urban sustainability and reduce environmental impacts of urban dwellers. Here, we investigated the potential for increasing carbon sequestration, and biomass fuel production, by planting trees and short-rotation coppice (SRC), respectively, in a mid-sized UK city as a contribution to meeting national commitments to reduce CO 2 emissions.Iterative GIS models were developed using high-resolution spatial data. The models were applied to patches of public and privately owned urban greenspace suitable for planting trees and SRC, across the 73 km 2 area of the city of Leicester. We modelled tree planting with a species mix based on the existing tree populations, and SRC with willow and poplar to calculate biomass production in new trees, and carbon sequestration into harvested biomass over 25 years.An area of 11 km 2 comprising 15% of the city met criteria for tree planting and had the potential over 25 years to sequester 4200 tonnes of carbon above-ground. Of this area, 5·8 km 2 also met criteria for SRC planting and over the same period this could yield 71 800 tonnes of carbon in harvested biomass.The harvested biomass could supply energy to over 1566 domestic homes or 30 municipal buildings, resulting in avoided carbon emissions of 29 236 tonnes of carbon over 25 years when compared to heating by natural gas. Together with the net carbon sequestration into trees, a total reduction of 33 419 tonnes of carbon in the atmosphere could be achieved in 25 years by combined SRC and tree planting across the city. Synthesis and applications . We demonstrate that urban greenspaces in a typical UK city are underutilized for provisioning ecosystem services by trees and especially SRC, which has high biomass production potential. For urban greenspace management, we recommend that planting SRC in urban areas can contribute to reducing food-fuel conflicts on agricultural land and produce renewable energy sources close to centres of population and demand.
Garcia, P; Shoelson, S E; Drew, J S; Miller, W T
1994-12-02
Phosphorylation of c-Src at carboxyl-terminal Tyr-527 suppresses tyrosine kinase activity and transforming potential, presumably by facilitating the intramolecular interaction of the C terminus of Src with its SH2 domain. In addition, it has been shown previously that occupancy of the c-Src SH2 domain with a phosphopeptide stimulates c-Src kinase catalytic activity. We have performed analogous studies with v-Src, the transforming protein from Rous sarcoma virus, which has extensive homology with c-Src. v-Src lacks an autoregulatory phosphorylation site, and its kinase domain is constitutively active. Phosphopeptides corresponding to the sequences surrounding c-Src Tyr-527 and a Tyr-Glu-Glu-Ile motif from the hamster polyoma virus middle T antigen inhibit tyrosine kinase activity of baculovirus-expressed v-Src 2- and 4-fold, respectively. To determine the mechanism of this regulation, the Tyr-527 phosphopeptide was substituted with the photoactive amino acid p-benzoylphenylalanine at the adjacent positions (N- and C-terminal) to phosphotyrosine. These peptides photoinactivate the v-Src tyrosine kinase 5-fold in a time- and concentration-dependent manner. Furthermore, the peptides cross-link an isolated Src SH2 domain with similar rates and specificity. These data indicate that occupancy of the v-Src SH2 domain induces a conformational change that is transmitted to the kinase domain and attenuates tyrosine kinase activity.
Kuo, Chun-Ting; Chang, Chieh; Lee, Wen-Sen
2015-01-01
To investigate the molecular mechanism underlying folic acid (FA)-induced anti-colon caner activity, we showed that FA caused G0/G1 arrest in COLO-205. FA activated the proto-oncogene tyrosine-protein kinase Src (c-SRC)-mediated signaling pathway to enhance nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB) nuclear translocation and binding onto the tumor protein p53 (TP53) gene promoter, and up-regulated expressions of TP53, cyclin-dependent kinase inhibitor 1A (CDKN1A) and cyclin-dependent kinase inhibitor 1B (CDKN1B). Knock-down of TP53 abolished FA-induced increases in the levels of CDKN1A and CDKN1B protein and G0/G1 arrest in COLO-205. Knock-down of folate receptor alpha (FRα) abolished FA-induced activations in the c-SRC-mediated pathway and increases in the levels of CDKN1A, CDKN1B and TP53 protein. These data suggest that FA inhibited COLO-205 proliferation through activating the FRα/c-SRC/mitogen-activated protein kinase 3/1 (ERK1/2)/NFκB/TP53 pathway-mediated up-regulations of CDKN1A and CDKN1B protein. In vivo studies demonstrated that daily i.p. injections of FA led to profound regression of the COLO-205 tumors and prolong the lifespan. In these tumors, the levels of CDKN1A, CDKN1B and TP53 protein were increased and von willebrand factor (VWF) protein levels were decreased. These findings suggest that FA inhibits COLO-205 colon cancer growth through anti-cancer cell proliferation and anti-angiogenesis. PMID:26056802
Li, Wei; Fu, Jingshu; Bian, Chen; Zhang, Jiqiang; Xie, Zhao
2014-12-01
Chondrosarcoma is the second most common type of primary bone malignancy following up osteosarcoma, characterized by resistance to conventional chemotherapeutic agents and radiation regimens. The p160 family members steroid receptor coactivator-1 and -3 (SRC-1 and SRC-3) have been implied in the regulation of cancer growth, migration, invasion, metastasis and chemotherapeutic resistance; but we still lack detailed information about the levels of SRCs in chondrosarcoma. In this study, expression of SRC-1 and SRC-3 in chondrosarcoma was examined by immunohistochemistry with tissue microarrays; the four score system (0, 1, 2 and 3) was used to evaluate the staining. The results showed that there were no gender-, site- or age-differences regarding the expression of SRC-1 or SRC-3 (p>0.05); organ (bone or cartilage) -differences were only detected for SRC-1 but not SRC-3 (p<0.05). Significant higher levels of SRC-1 and SRC-3 were detected in MDC and PDC when compared to WDC. Our study clearly demonstrated differentiation-dependant expression of SRC-1 and SRC-3 in chondrosarcoma, may be novel targets for the prognosis and/or treatment of chondrosarcoma, would have opened a new avenue and established foundation for studying chondrosarcoma. Copyright © 2014 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soeda, Shuhei; Nakayama, Yuji, E-mail: nakayama@mb.kyoto-phu.ac.jp; Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414
Src-family tyrosine kinases are aberrantly activated in cancers, and this activation is associated with malignant tumor progression. v-Src, encoded by the v-src transforming gene of the Rous sarcoma virus, is a mutant variant of the cellular proto-oncogene c-Src. Although investigations with temperature sensitive mutants of v-Src have shown that v-Src induces many oncogenic processes, the effects on cell division are unknown. Here, we show that v-Src inhibits cellular proliferation of HCT116, HeLa S3 and NIH3T3 cells. Flow cytometry analysis indicated that inducible expression of v-Src results in an accumulation of 4N cells. Time-lapse analysis revealed that binucleation is induced throughmore » the inhibition of cytokinesis, a final step of cell division. The localization of Mklp1, which is essential for cytokinesis, to the spindle midzone is inhibited in v-Src-expressing cells. Intriguingly, Aurora B, which regulates Mklp1 localization at the midzone, is delocalized from the spindle midzone and the midbody but not from the metaphase chromosomes upon v-Src expression. Mklp2, which is responsible for the relocation of Aurora B from the metaphase chromosomes to the spindle midzone, is also lost from the spindle midzone. These results suggest that v-Src inhibits cytokinesis through the delocalization of Mklp1 and Aurora B from the spindle midzone, resulting in binucleation. -- Highlights: • v-Src inhibits cell proliferation of HCT116, HeLa S3 and NIH3T3 cells. • v-Src induces binucleation together with cytokinesis failure. • v-Src causes delocalization of Mklp1, Aurora B and INCENP from the spindle midzone.« less
Src binds cortactin through an SH2 domain cystine-mediated linkage.
Evans, Jason V; Ammer, Amanda G; Jett, John E; Bolcato, Chris A; Breaux, Jason C; Martin, Karen H; Culp, Mark V; Gannett, Peter M; Weed, Scott A
2012-12-15
Tyrosine-kinase-based signal transduction mediated by modular protein domains is critical for cellular function. The Src homology (SH)2 domain is an important conductor of intracellular signaling that binds to phosphorylated tyrosines on acceptor proteins, producing molecular complexes responsible for signal relay. Cortactin is a cytoskeletal protein and tyrosine kinase substrate that regulates actin-based motility through interactions with SH2-domain-containing proteins. The Src kinase SH2 domain mediates cortactin binding and tyrosine phosphorylation, but how Src interacts with cortactin is unknown. Here we demonstrate that Src binds cortactin through cystine bonding between Src C185 in the SH2 domain within the phosphotyrosine binding pocket and cortactin C112/246 in the cortactin repeats domain, independent of tyrosine phosphorylation. Interaction studies show that the presence of reducing agents ablates Src-cortactin binding, eliminates cortactin phosphorylation by Src, and prevents Src SH2 domain binding to cortactin. Tandem MS/MS sequencing demonstrates cystine bond formation between Src C185 and cortactin C112/246. Mutational studies indicate that an intact cystine binding interface is required for Src-mediated cortactin phosphorylation, cell migration, and pre-invadopodia formation. Our results identify a novel phosphotyrosine-independent binding mode between the Src SH2 domain and cortactin. Besides Src, one quarter of all SH2 domains contain cysteines at or near the analogous Src C185 position. This provides a potential alternative mechanism to tyrosine phosphorylation for cysteine-containing SH2 domains to bind cognate ligands that may be widespread in propagating signals regulating diverse cellular functions.
Src binds cortactin through an SH2 domain cystine-mediated linkage
Evans, Jason V.; Ammer, Amanda G.; Jett, John E.; Bolcato, Chris A.; Breaux, Jason C.; Martin, Karen H.; Culp, Mark V.; Gannett, Peter M.; Weed, Scott A.
2012-01-01
Summary Tyrosine-kinase-based signal transduction mediated by modular protein domains is critical for cellular function. The Src homology (SH)2 domain is an important conductor of intracellular signaling that binds to phosphorylated tyrosines on acceptor proteins, producing molecular complexes responsible for signal relay. Cortactin is a cytoskeletal protein and tyrosine kinase substrate that regulates actin-based motility through interactions with SH2-domain-containing proteins. The Src kinase SH2 domain mediates cortactin binding and tyrosine phosphorylation, but how Src interacts with cortactin is unknown. Here we demonstrate that Src binds cortactin through cystine bonding between Src C185 in the SH2 domain within the phosphotyrosine binding pocket and cortactin C112/246 in the cortactin repeats domain, independent of tyrosine phosphorylation. Interaction studies show that the presence of reducing agents ablates Src-cortactin binding, eliminates cortactin phosphorylation by Src, and prevents Src SH2 domain binding to cortactin. Tandem MS/MS sequencing demonstrates cystine bond formation between Src C185 and cortactin C112/246. Mutational studies indicate that an intact cystine binding interface is required for Src-mediated cortactin phosphorylation, cell migration, and pre-invadopodia formation. Our results identify a novel phosphotyrosine-independent binding mode between the Src SH2 domain and cortactin. Besides Src, one quarter of all SH2 domains contain cysteines at or near the analogous Src C185 position. This provides a potential alternative mechanism to tyrosine phosphorylation for cysteine-containing SH2 domains to bind cognate ligands that may be widespread in propagating signals regulating diverse cellular functions. PMID:23097045
Siqueira, Adriane S; Pinto, Monique P; Cruz, Mário C; Smuczek, Basilio; Cruz, Karen S P; Barbuto, José Alexandre M; Hoshino, Daisuke; Weaver, Alissa M; Freitas, Vanessa M; Jaeger, Ruy G
2016-07-26
Laminin peptides influence tumor behavior. In this study, we addressed whether laminin peptide C16 (KAFDITYVRLKF, γ1 chain) would increase invadopodia activity of cells from squamous cell carcinoma (CAL27) and fibrosarcoma (HT1080). We found that C16 stimulates invadopodia activity over time in both cell lines. Rhodamine-conjugated C16 decorates the edge of cells, suggesting a possible binding to membrane receptors. Flow cytometry showed that C16 increases activated β1 integrin, and β1 integrin miRNA-mediated depletion diminishes C16-induced invadopodia activity in both cell lines. C16 stimulates Src and ERK 1/2 phosphorylation, and ERK 1/2 inhibition decreases peptide-induced invadopodia activity. C16 also increases cortactin phosphorylation in both cells lines. Based on our findings, we propose that C16 regulates invadopodia activity over time of squamous carcinoma and fibrosarcoma cells, probably through β1 integrin, Src and ERK 1/2 signaling pathways.
Targeting Src in Mucinous Ovarian Carcinoma
Matsuo, Koji; Nishimura, Masato; Bottsford-Miller, Justin N.; Huang1, Jie; Komurov, Kakajan; Armaiz-Pena, Guillermo N.; Shahzad, Mian M. K.; Stone, Rebecca L.; Roh, Ju Won; Sanguino, Angela M.; Lu, Chunhua; Im, Dwight D.; Rosenshien, Neil B.; Sakakibara, Atsuko; Nagano, Tadayoshi; Yamasaki, Masato; Enomoto, Takayuki; Kimura, Tadashi; Ram, Prahlad T.; Schmeler, Kathleen M.; Gallick, Gary E.; Wong, Kwong K.; Frumovitz, Michael; Sood, Anil K.
2014-01-01
PURPOSE Mucinous ovarian carcinomas have a distinct clinical pattern compared to other subtypes of ovarian carcinoma. Here, we evaluated (i) stage-specific clinical significance of mucinous ovarian carcinomas in a large cohort and (ii) the functional role of src kinase in pre-clinical models of mucinous ovarian carcinoma. EXPERIMENTAL DESIGN 1302 ovarian cancer patients including 122 (9.4%) cases of mucinous carcinoma were evaluated for survival analyses. Biological effects of src kinase inhibition were tested in a novel orthotopic mucinous ovarian cancer model (RMUG-S-ip2) using dasatinib-based therapy. RESULTS Patients with advanced-stage mucinous ovarian cancer had significantly worse survival compared to those with serous histology: median overall survival, 1.67 versus 3.41 years, p=0.002; and median survival time after recurrence of 0.53 versus 1.66 years, p<0.0001. Among multiple ovarian cancer cell lines, RMUG-S-ip2 mucinous ovarian cancer cells showed the highest src kinase activity. Moreover, oxaliplatin treatment induced phosphorylation of src kinase. This induced activity by oxaliplatin therapy was inhibited by concurrent administration of dasatinib. Targeting src with dasatinib in vivo showed significant anti-tumor effects in the RMUG-S-ip2 model, but not in the serous ovarian carcinoma (SKOV3-TR) model. Combination therapy of oxaliplatin with dasatinib further demonstrated significant effects on reducing cell viability, increasing apoptosis, and in vivo anti-tumor effects in the RMUG-S-ip2 model. CONCLUSIONS Our results suggest that poor survival of women with mucinous ovarian carcinoma is associated with resistance to cytotoxic therapy. Targeting src kinase with combination of dasatinib and oxaliplatin may be an attractive approach in this disease. PMID:21737505
Crossthwaite, Andrew J; Valli, Haseeb; Williams, Robert J
2004-03-01
Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.
Myers, Margaret D; Dragone, Leonard L; Weiss, Arthur
2005-07-18
Src-like adaptor protein (SLAP) down-regulates expression of the T cell receptor (TCR)-CD3 complex during a specific stage of thymocyte development when the TCR repertoire is selected. Consequently, SLAP-/- thymocytes display alterations in thymocyte development. Here, we have studied the mechanism of SLAP function. We demonstrate that SLAP-deficient thymocytes have increased TCRzeta chain expression as a result of a defect in TCRzeta degradation. Failure to degrade TCRzeta leads to an increased pool of fully assembled TCR-CD3 complexes that are capable of recycling back to the cell surface. We also provide evidence that SLAP functions in a pathway that requires the phosphorylated TCRzeta chain and the Src family kinase Lck, but not ZAP-70 (zeta-associated protein of 70 kD). These studies reveal a unique mechanism by which SLAP contributes to the regulation of TCR expression during a distinct stage of thymocyte development.
Eedunuri, Vijay Kumar; Rajapakshe, Kimal; Fiskus, Warren; Geng, Chuandong; Chew, Sue Anne; Foley, Christopher; Shah, Shrijal S.; Shou, John; Mohamed, Junaith S.; O'Malley, Bert W.
2015-01-01
The p160 family of steroid receptor coactivators (SRCs) are pleiotropic transcription factor coactivators and “master regulators” of gene expression that promote cancer cell proliferation, survival, metabolism, migration, invasion, and metastasis. Cancers with high p160 SRC expression exhibit poor clinical outcomes and resistance to therapy, highlighting the SRCs as critical oncogenic drivers and, thus, therapeutic targets. microRNAs are important epigenetic regulators of protein expression. To examine the regulation of p160 SRCs by microRNAs, we used and combined 4 prediction algorithms to identify microRNAs that could target SRC1, SRC2, and SRC3 expression. For validation of these predictions, we assessed p160 SRC protein expression and cell viability after transfection of corresponding microRNA mimetics in breast cancer, uveal melanoma, and prostate cancer (PC) cell lines. Transfection of selected microRNA mimetics into breast cancer, uveal melanoma, and PC cells depleted SRC protein expression levels and exerted potent antiproliferative activity in these cell types. In particular, microRNA-137 (miR-137) depleted expression of SRC1, SRC2, and very potently, SRC3. The latter effect can be attributed to the presence of 3 miR-137 recognition sequences within the SRC3 3′-untranslated region. Using reverse phase protein array analysis, we identified a network of proteins, in addition to SRC3, that were modulated by miR-137 in PC cells. We also found that miR-137 and its host gene are epigenetically silenced in human cancer specimens and cell lines. These results support the development and testing of microRNA-based therapies (in particular based on restoring miR-137 levels) for targeting the oncogenic family of p160 SRCs in cancer. PMID:26066330
Differential subcellular membrane recruitment of Src may specify its downstream signalling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diesbach, Philippe de; Medts, Thierry; Carpentier, Sarah
2008-04-15
Most Src family members are diacylated and constitutively associate with membrane 'lipid rafts' that coordinate signalling. Whether the monoacylated Src, frequently hyperactive in carcinomas, also localizes at 'rafts' remains controversial. Using polarized MDCK cells expressing the thermosensitive v-Src/tsLA31 variant, we here addressed how Src tyrosine-kinase activation may impact on its (i) membrane recruitment, in particular to 'lipid rafts'; (ii) subcellular localization; and (iii) signalling. The kinetics of Src-kinase thermoactivation correlated with its recruitment from the cytosol to sedimentable membranes where Src largely resisted solubilisation by non-ionic detergents at 4 deg. C and floated into sucrose density gradients like caveolin-1 andmore » flotillin-2, i.e. 'lipid rafts'. By immunofluorescence, activated Src showed a dual localization, at apical endosomes/macropinosomes and at the apical plasma membrane. The plasma membrane Src pool did not colocalize with caveolin-1 and flotillin-2, but extensively overlapped GM1 labelling by cholera toxin. Severe ({approx} 70%) cholesterol extraction with methyl-{beta}-cyclodextrin (M{beta}CD) did not abolish 'rafts' floatation, but strongly decreased Src association with floating 'rafts' and abolished its localization at the apical plasma membrane. Src activation independently activated first the MAP-kinase - ERK1/2 pathway, then the PI3-kinase - Akt pathway. MAP-kinase - ERK1/2 activation was insensitive to M{beta}CD, which suppressed Akt phosphorylation and apical endocytosis induced by Src, both depending on the PI3-kinase pathway. We therefore suggest that activated Src is recruited at two membrane compartments, allowing differential signalling, first via ERK1/2 at 'non-raft' domains on endosomes, then via PI3-kinase-Akt on a distinct set of 'rafts' at the apical plasma membrane. Whether this model is applicable to c-Src remains to be examined.« less
Chang, Fumin; Flavahan, Sheila; Flavahan, Nicholas A
2017-08-01
Ageing-induced endothelial dysfunction contributes to organ dysfunction and progression of cardiovascular disease. VE-cadherin clustering at adherens junctions promotes protective endothelial functions, including endothelium-dependent dilatation. Ageing increased internalization and degradation of VE-cadherin, resulting in impaired activity of adherens junctions. Inhibition of VE-cadherin clustering at adherens junctions (function-blocking antibody; FBA) reduced endothelial dilatation in young arteries but did not affect the already impaired dilatation in old arteries. After junctional disruption with the FBA, dilatation was similar in young and old arteries. Src tyrosine kinase activity and tyrosine phosphorylation of VE-cadherin were increased in old arteries. Src inhibition increased VE-cadherin at adherens junctions and increased endothelial dilatation in old, but not young, arteries. Src inhibition did not increase dilatation in old arteries treated with the VE-cadherin FBA. Ageing impairs the activity of adherens junctions, which contributes to endothelial dilator dysfunction. Restoring the activity of adherens junctions could be of therapeutic benefit in vascular ageing. Endothelial dilator dysfunction contributes to pathological vascular ageing. Experiments assessed whether altered activity of endothelial adherens junctions (AJs) might contribute to this dysfunction. Aortas and tail arteries were isolated from young (3-4 months) and old (22-24 months) F344 rats. VE-cadherin immunofluorescent staining at endothelial AJs and AJ width were reduced in old compared to young arteries. A 140 kDa VE-cadherin species was present on the cell surface and in TTX-insoluble fractions, consistent with junctional localization. Levels of the 140 kDa VE-cadherin were decreased, whereas levels of a TTX-soluble 115 kDa VE-cadherin species were increased in old compared to young arteries. Acetylcholine caused endothelium-dependent dilatation that was decreased in old compared to young arteries. Disruption of VE-cadherin clustering at AJs (function-blocking antibody, FBA) inhibited dilatation to acetylcholine in young, but not old, arteries. After the FBA, there was no longer any difference in dilatation between old and young arteries. Src activity and tyrosine phosphorylation of VE-cadherin were increased in old compared to young arteries. In old arteries, Src inhibition (saracatinib) increased: (i) 140 kDa VE-cadherin in the TTX-insoluble fraction, (ii) VE-cadherin intensity at AJs, (iii) AJ width, and (iv) acetylcholine dilatation. In old arteries treated with the FBA, saracatinib no longer increased acetylcholine dilatation. Saracatinib did not affect dilatation in young arteries. Therefore, ageing impairs AJ activity, which appears to reflect Src-induced phosphorylation, internalization and degradation of VE-cadherin. Moreover, impaired AJ activity can account for the endothelial dilator dysfunction in old arteries. Restoring endothelial AJ activity may be a novel therapeutic approach to vascular ageing. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Li, Lei; Hisamoto, Koji; Kim, Kyung Hee; Haynes, M Page; Bauer, Philip M; Sanjay, Archana; Collinge, Mark; Baron, Roland; Sessa, William C; Bender, Jeffrey R
2007-10-16
Little is known about the tyrosine kinase c-Src's function in the systemic circulation, in particular its role in arterial responses to hormonal stimuli. In human aortic and venous endothelial cells, c-Src is indispensable for 17beta-estradiol (E2)-stimulated phosphatidylinositol 3-kinase/Akt/endothelial NO synthase (eNOS) pathway activation, a possible mechanism in E2-mediated vascular protection. Here we show that c-Src supports basal and E2-stimulated NO production and is required for E2-induced vasorelaxation in murine aortas. Only membrane c-Src is structurally and functionally involved in E2-induced eNOS activation. Independent of c-Src kinase activity, c-Src is associated with an N-terminally truncated estrogen receptor alpha variant (ER46) and eNOS in the plasma membrane through its "open" (substrate-accessible) conformation. In the presence of E2, c-Src kinase is activated by membrane ER46 and in turn phosphorylates ER46 for subsequent ER46 and c-Src membrane recruitment, the assembly of an eNOS-centered membrane macrocomplex, and membrane-initiated eNOS activation. Overall, these results provide insights into a critical role for the tyrosine kinase c-Src in estrogen-stimulated arterial responses, and in membrane-initiated rapid signal transduction, for which obligate complex assembly and localization require the c-Src substrate-accessible structure.
Wu, Jui-Chung; Chen, Yu-Chen; Kuo, Chih-Ting; Wenshin Yu, Helen; Chen, Yin-Quan; Chiou, Arthur; Kuo, Jean-Cheng
2015-01-01
Directed cell migration requires dynamical control of the protein complex within focal adhesions (FAs) and this control is regulated by signaling events involving tyrosine phosphorylation. We screened the SH2 domains present in tyrosine-specific kinases and phosphatases found within FAs, including SRC, SHP1 and SHP2, and examined whether these enzymes transiently target FAs via their SH2 domains. We found that the SRC_SH2 domain and the SHP2_N-SH2 domain are associated with FAs, but only the SRC_SH2 domain is able to be regulated by focal adhesion kinase (FAK). The FAK-dependent association of the SRC_SH2 domain is necessary and sufficient for SRC FA targeting. When the targeting of SRC into FAs is inhibited, there is significant suppression of SRC-mediated phosphorylation of paxillin and FAK; this results in an inhibition of FA formation and maturation and a reduction in cell migration. This study reveals an association between FAs and the SRC_SH2 domain as well as between FAs and the SHP2_N-SH2 domains. This supports the hypothesis that the FAK-regulated SRC_SH2 domain plays an important role in directing SRC into FAs and that this SRC-mediated FA signaling drives cell migration. PMID:26681405
Wu, Jui-Chung; Chen, Yu-Chen; Kuo, Chih-Ting; Wenshin Yu, Helen; Chen, Yin-Quan; Chiou, Arthur; Kuo, Jean-Cheng
2015-12-18
Directed cell migration requires dynamical control of the protein complex within focal adhesions (FAs) and this control is regulated by signaling events involving tyrosine phosphorylation. We screened the SH2 domains present in tyrosine-specific kinases and phosphatases found within FAs, including SRC, SHP1 and SHP2, and examined whether these enzymes transiently target FAs via their SH2 domains. We found that the SRC_SH2 domain and the SHP2_N-SH2 domain are associated with FAs, but only the SRC_SH2 domain is able to be regulated by focal adhesion kinase (FAK). The FAK-dependent association of the SRC_SH2 domain is necessary and sufficient for SRC FA targeting. When the targeting of SRC into FAs is inhibited, there is significant suppression of SRC-mediated phosphorylation of paxillin and FAK; this results in an inhibition of FA formation and maturation and a reduction in cell migration. This study reveals an association between FAs and the SRC_SH2 domain as well as between FAs and the SHP2_N-SH2 domains. This supports the hypothesis that the FAK-regulated SRC_SH2 domain plays an important role in directing SRC into FAs and that this SRC-mediated FA signaling drives cell migration.
Tu, Chun; Ortega-Cava, Cesar F; Winograd, Paul; Stanton, Marissa Jo; Reddi, Alagarsamy Lakku; Dodge, Ingrid; Arya, Ranjana; Dimri, Manjari; Clubb, Robert J; Naramura, Mayumi; Wagner, Kay-Uwe; Band, Vimla; Band, Hamid
2010-09-14
Active Src localization at focal adhesions (FAs) is essential for cell migration. How this pool is linked mechanistically to the large pool of Src at late endosomes (LEs)/lysosomes (LY) is not well understood. Here, we used inducible Tsg101 gene deletion, TSG101 knockdown, and dominant-negative VPS4 expression to demonstrate that the localization of activated cellular Src and viral Src at FAs requires the endosomal-sorting complexes required for transport (ESCRT) pathway. Tsg101 deletion also led to impaired Src-dependent activation of STAT3 and focal adhesion kinase and reduced cell migration. Impairment of the ESCRT pathway or Rab7 function led to the accumulation of active Src at aberrant LE/LY compartments followed by its loss. Analyses using fluorescence recovery after photo-bleaching show that dynamic mobility of Src in endosomes is ESCRT pathway-dependent. These results reveal a critical role for an ESCRT pathway-dependent LE/LY trafficking step in Src function by promoting localization of active Src to FAs.
Ror2-Src signaling in metastasis of mouse melanoma cells is inhibited by NRAGE.
Lai, Shan-Shan; Xue, Bin; Yang, Yang; Zhao, Li; Chu, Chao-Shun; Hao, Jia-Yin; Wen, Chuan-Jun
2012-11-01
The receptor tyrosine kinase (RTK) Ror2 plays important roles in developmental morphogenesis and mediates the filopodia formation in Wnt5a-induced cell migration. However, the function of Ror2 in noncanonical Wnt signaling resulting in cancer metastasis is largely unknown. Here, we show that Ror2 expression is higher in the highly metastatic murine B16-BL6 melanoma cells than in the low metastatic variant B16 cells. Overexpression of Ror2 increases the metastasis ability of B16 cells, and knockdown of Ror2 reduces the migration ability of B16-BL6 cells. Furthermore, the inhibition of Src kinase activity is critical for the Ror2-mediated cell migration upon Wnt5a treatment. The C-terminus of Ror2, which is deleted in brachydactyly type B (BDB), is essential for the mutual interaction with the SH1 domain of Src. Intriguingly, the Neurotrophin receptor-interacting MAGE homologue (NRAGE), which, as we previously reported, can remodel the cellular skeleton and inhibit cell-cell adhesion and metastasis of melanoma and pancreatic cancer, sharply blocks the interaction between Src and Ror2 and inhibits Ror2-mediated B16 cell migration by decreasing the activity of Src and focal adhesion kinase (FAK). Our data show that Ror2 is a potential factor in the tumorigenesis and metastasis in a Src-dependent manner that is negatively regulated by NRAGE. Copyright © 2012. Published by Elsevier Inc.
McGuine, Timothy A; Hetzel, Scott; McCrea, Michael; Brooks, M Alison
2014-10-01
The incidence of sport-related concussion (SRC) in high school football is well documented. However, limited prospective data are available regarding how player characteristics and protective equipment affect the incidence of SRC. To determine whether the type of protective equipment (helmet and mouth guard) and player characteristics affect the incidence of SRC in high school football players. Cohort study; Level of evidence, 2. Certified athletic trainers (ATs) at each high school recorded the type of helmet worn (brand, model, purchase year, and recondition status) by each player as well as information regarding players' demographics, type of mouth guard used, and history of SRC. The ATs also recorded the incidence and days lost from participation for each SRC. Incidence of SRC was compared for various helmets, type of mouth guard, history of SRC, and player demographics. A total of 2081 players (grades 9-12) enrolled during the 2012 and/or 2013 football seasons (2287 player-seasons) and participated in 134,437 football (practice or competition) exposures. Of these players, 206 (9%) sustained a total of 211 SRCs (1.56/1000 exposures). There was no difference in the incidence of SRC (number of helmets, % SRC [95% CI]) for players wearing Riddell (1171, 9.1% [7.6%-11.0%]), Schutt (680, 8.7% [6.7%-11.1%]), or Xenith (436, 9.2% [6.7%-12.4%]) helmets. Helmet age and recondition status did not affect the incidence of SRC. The rate of SRC (hazard ratio [HR]) was higher in players who wore a custom mouth guard (HR = 1.69 [95% CI, 1.20-2.37], P < .001) than in players who wore a generic mouth guard. The rate of SRC was also higher (HR = 1.96 [95% CI, 1.40-2.73], P < .001) in players who had sustained an SRC within the previous 12 months (15.1% of the 259 players [95% CI, 11.0%-20.1%]) than in players without a previous SRC (8.2% of the 2028 players [95% CI, 7.1%-9.5%]). Incidence of SRC was similar regardless of the helmet brand (manufacturer) worn by high school football players. Players who had sustained an SRC within the previous 12 months were more likely to sustain an SRC than were players without a history of SRC. Sports medicine providers who work with high school football players need to realize that factors other than the type of protective equipment worn affect the risk of SRC in high school players. © 2014 The Author(s).
@font-face { font-family: 'DroidSansRegular'; src: url('../fonts/droidsans-webfont.eot'); src: url -family: 'DroidSansBold'; src: url('../fonts/droidsans-bold-webfont.eot'); src: url('../fonts/droidsans
Tian, Meng; Xu, Jian; Lei, Gang; Lombroso, Paul J.; Jackson, Michael F.; MacDonald, John F.
2016-01-01
N-methyl-D-aspartate receptors (NMDARs) are necessary for the induction of synaptic plasticity and for the consolidation of learning and memory. NMDAR function is tightly regulated by functionally opposed families of kinases and phosphatases. Herein we show that the striatal-enriched protein tyrosine phosphatase (STEP) is recruited by Gαq-coupled receptors, including the M1 muscarinic acetylcholine receptor (M1R), and opposes the Src tyrosine kinase-mediated increase in the function of NMDARs composed of GluN2A. STEP activation by M1R stimulation requires IP3Rs and can depress NMDA-evoked currents with modest intracellular Ca2+ buffering. Src recruitment by M1R stimulation requires coincident NMDAR activation and can augment NMDA-evoked currents with high intracellular Ca2+ buffering. Our findings suggest that Src and STEP recruitment is contingent on differing intracellular Ca2+ dynamics that dictate whether NMDAR function is augmented or depressed following M1R stimulation. PMID:27857196
Cyr61 as mediator of Src signaling in triple negative breast cancer cells
Molinari, Agnese; Wagner, Kay-Uwe; Losada, Jesús Pérez; Ciordia, Sergio; Albar, Juan Pablo; Martín-Pérez, Jorge
2015-01-01
SFKs are involved in tumorigenesis and metastasis. Here we analyzed c-Src contribution to initial steps of metastasis by tetracycline-dependent expression of a specific shRNA-c-Src, which suppressed c-Src mRNA and protein levels in metastatic MDA-MB-231 cells. c-Src suppression did not alter cell proliferation or survival, but it significantly reduced anchorage-independent growth. Concomitantly with diminished tyrosine-phosphorylation/activation of Fak, caveolin-1, paxillin and p130CAS, c-Src depletion also inhibited cellular migration, invasion and transendothelial migration. Quantitative proteomic analyses of the secretome showed that Cyr61 levels, which were detected in the exosomal fraction, were diminished upon shRNA-c-Src expression. In contrast, Cyr61 expression was unaltered inside cells. Cyr61 partially colocalized with cis-Golgi gp74 marker and with exosomal marker CD63, but c-Src depletion did not alter their cellular distribution. In SUM159PT cells, transient c-Src suppression also reduced secreted exosomal Cyr61 levels. Furthermore, conditional expression of a c-Src dominant negative mutant (SrcDN, c-Src-K295M/Y527F) in MDA-MB-231 and in SUM159PT diminished secreted Cyr61 as well. Cyr61 transient suppression in MDA-MB-231 inhibited invasion and transendothelial migration. Finally, in both MDA-MB-231 and SUM159PT, a neutralizing Cyr61 antibody restrained migration. Collectively, these results suggest that c-Src regulates secreted proteins, including the exosomal Cyr61, which are involved in modulating the metastatic potential of triple negative breast cancer cells. PMID:25980494
Coupled factors influencing detachment of nano- and micro-sized particles from primary minima.
Shen, Chongyang; Lazouskaya, Volha; Jin, Yan; Li, Baoguo; Ma, Zhiqiang; Zheng, Wenjuan; Huang, Yuanfang
2012-06-01
This study examined the detachments of nano- and micro-sized colloids from primary minima in the presence of cation exchange by laboratory column experiments. Colloids were initially deposited in columns packed with glass beads at 0.2 M CaCl(2) in the primary minima of Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies. Then, the columns were flushed with NaCl solutions with different ionic strengths (i.e., 0.001, 0.01, 0.1 and 0.2 M). Detachments were observed at all ionic strengths and were particularly significant for the nanoparticle. The detachments increased with increasing electrolyte concentration for the nanoparticle whereas increased from 0.001 M to 0.01 M and decreased with further increasing electrolyte concentration for the micro-sized colloid. The observations were attributed to coupled influence of cation exchange, short-range repulsion, surface roughness, surface charge heterogeneity, and deposition in the secondary minima. The detachments of colloids from primary minima challenge the common belief that colloid interaction in primary minimum is irreversible and resistant to disturbance in solution ionic strength and composition. Although the significance of surface roughness, surface charge heterogeneity, and secondary minima on colloid deposition has been widely recognized, our study implies that they also play important roles in colloid detachment. Whereas colloid detachment is frequently associated with decrease of ionic strength, our results show that increase of ionic strength can also cause detachment due to influence of cation exchange. Copyright © 2012 Elsevier B.V. All rights reserved.
Samak, Geetha; Chaudhry, Kamaljit K; Gangwar, Ruchika; Narayanan, Damodaran; Jaggar, Jonathan H; Rao, RadhaKrishna
2015-02-01
Disruption of intestinal epithelial tight junctions is an important event in the pathogenesis of ulcerative colitis. Dextran sodium sulfate (DSS) induces colitis in mice with symptoms similar to ulcerative colitis. However, the mechanism of DSS-induced colitis is unknown. We investigated the mechanism of DSS-induced disruption of intestinal epithelial tight junctions and barrier dysfunction in Caco-2 cell monolayers in vitro and mouse colon in vivo. DSS treatment resulted in disruption of tight junctions, adherens junctions and actin cytoskeleton leading to barrier dysfunction in Caco-2 cell monolayers. DSS induced a rapid activation of c-Jun N-terminal kinase (JNK), and the inhibition or knockdown of JNK2 attenuated DSS-induced tight junction disruption and barrier dysfunction. In mice, DSS administration for 4 days caused redistribution of tight junction and adherens junction proteins from the epithelial junctions, which was blocked by JNK inhibitor. In Caco-2 cell monolayers, DSS increased intracellular Ca(2+) concentration, and depletion of intracellular Ca(2+) by 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester) (BAPTA/AM) or thapsigargin attenuated DSS-induced JNK activation, tight junction disruption and barrier dysfunction. Knockdown of apoptosis signal-regulated kinase 1 (Ask1) or MKK7 blocked DSS-induced tight junction disruption and barrier dysfunction. DSS activated c-Src by a Ca2+ and JNK-dependent mechanism. Inhibition of Src kinase activity or knockdown of c-Src blocked DSS-induced tight junction disruption and barrier dysfunction. DSS increased tyrosine phosphorylation of occludin, zonula occludens-1 (ZO-1), E-cadherin and β-catenin. SP600125 abrogated DSS-induced tyrosine phosphorylation of junctional proteins. Recombinant JNK2 induced threonine phosphorylation and auto-phosphorylation of c-Src. The present study demonstrates that Ca(2+)/Ask1/MKK7/JNK2/cSrc signalling cascade mediates DSS-induced tight junction disruption and barrier dysfunction.
γδT Cells Exacerbate Podocyte Injury via the CD28/B7-1-Phosphor-SRC Kinase Pathway
Chen, Wanbing; Zhang, Gaofu; Wang, Mo; Yang, Haiping
2018-01-01
Primary nephrotic syndrome (PNS) is a devastating pediatric disorder. However, its mechanism remains unclear. Previous studies detected B7-1 in podocytes; meanwhile, γδT cells play pivotal roles in immune diseases. Therefore, this study aimed to assess whether and how γδT cells impact podocytes via the CD28/B7-1 pathway. WT and TCRδ−/− mice were assessed. LPS was used to induce nephropathy. Total γδT and CD28+γδT cells were quantitated in mouse spleen and kidney samples. B7-1 and phosphor-SRC levels in the kidney were detected as well. In vitro, γδT cells from the mouse spleen were cocultured with mouse podocytes, and apoptosis rate and phosphor-SRC expression in podocytes were assessed. Compared with control mice, WT mice with LPS nephropathy showed increased amounts of γδT cells in the kidney. Kidney injury was alleviated in TCRδ−/− mice. Meanwhile, B7-1 and phosphor-SRC levels were increased in the kidney from WT mice with LPS nephropathy. CD28+γδT cells were decreased, indicating CD28 may play a role in LPS nephropathy. Immunofluorescence colocalization analysis revealed a tight association of γδT cells with B7-1 in the kidney. High B7-1 expression was detected in podocytes treated with LPS. Podocytes cocultured with γδT cells showed higher phosphor-SRC and apoptosis rate than other cell groups. Furthermore, CD28/B7-1 blockage with CTLA4-Ig in vitro relieved podocyte injury. γδT cells exacerbate podocyte injury via CD28/B7-1 signaling, with downstream involvement of phosphor-SRC. The CD28/B7-1 blocker CTLA4-Ig prevented progressive podocyte injury, providing a potential therapeutic tool for PNS. PMID:29862277
76 FR 21404 - National Park Service Alaska Region's Subsistence Resource Commission (SRC) Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-15
... Resource Commission (SRC) program. SUMMARY: The Gates of the Arctic National Park SRC will meet to develop... to do so. Gates of the Arctic National Park SRC Meeting Date and Location: The Gates of the Arctic... weather or local circumstances. For Further Information on the Gates of the Arctic National Park SRC...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-18
... SRC and Wrangell-St. Elias SRC plan to meet to develop and continue work on National Park Service (NPS... SRC Meeting Date and Location: The Lake Clark National Park SRC meeting will be held on Tuesday... Alaska Regional Office, at (907) 644- 3603. Aniakchak National Monument SRC Meeting Date and Location...
Hormonal regulation of steroid receptor coactivator-1 mRNA in the male and female green anole brain.
Kerver, H N; Wade, J
2015-03-01
Green anole lizards are seasonal breeders, with male sexual behaviour primarily regulated by an annual increase in testosterone. Morphological, biochemical and behavioural changes associated with reproduction are activated by testosterone, generally with a greater effect in the breeding season (BS) than in the nonbreeding season (NBS). The present study investigates the possibility that differences in a steroid receptor coactivator may regulate this seasonal difference in responsiveness to testosterone. In situ hybridisation was used to examine the expression of steroid receptor coactivator-1 (SRC-1) in the brains of gonadally intact male and female green anoles across breeding states. A second experiment examined gonadectomised animals with and without testosterone treatment. Gonadally intact males had more SRC-1 expressing cells in the preoptic area and larger volumes of this region as defined by these cells than females. Main effects of both sex and season (males > females and BS > NBS) were present in cell number and volume of the ventromedial hypothalamus. An interaction between sex and season suggested that high expression in BS males was driving these effects. In hormone-manipulated animals, testosterone treatment increased both the number of SRC-1 expressing cells in and volumes of the preoptic area and amygdala. These results suggest that testosterone selectively regulates SRC-1, and that this coactivator may play a role in facilitating reproductive behaviours across both sexes. However, changes in SRC-1 expression are not likely responsible for the seasonal change in responsiveness to testosterone. © 2014 British Society for Neuroendocrinology.
JunD/AP-1 Antagonizes the Induction of DAPK1 To Promote the Survival of v-Src-Transformed Cells.
Maślikowski, Bart M; Wang, Lizhen; Wu, Ying; Fielding, Ben; Bédard, Pierre-André
2017-01-01
The increase in AP-1 activity is a hallmark of cell transformation by tyrosine kinases. Previously, we reported that blocking AP-1 using the c-Jun dominant negative mutant TAM67 induced senescence, adipogenesis, or apoptosis in v-Src-transformed chicken embryo fibroblasts (CEFs) whereas inhibition of JunD by short hairpin RNA (shRNA) specifically induced apoptosis. To investigate the role of AP-1 in Src-mediated transformation, we undertook a gene profiling study to characterize the transcriptomes of v-Src-transformed CEFs expressing either TAM67 or the JunD shRNA. Our study revealed a cluster of 18 probe sets upregulated exclusively in response to AP-1/JunD impairment and v-Src transformation. Four of these probe sets correspond to genes involved in the interferon pathway. One gene in particular, death-associated protein kinase 1 (DAPK1), is a C/EBPβ-regulated mediator of apoptosis in gamma interferon (IFN-γ)-induced cell death. Here, we show that inhibition of DAPK1 abrogates cell death in v-Src-transformed cells expressing the JunD shRNA. Chromatin immunoprecipitation data indicated that C/EBPβ was recruited to the DAPK1 promoter while the expression of a dominant negative mutant of C/EBPβ abrogated the induction of DAPK1 in response to the inhibition of AP-1. In contrast, as determined by chromatin immunoprecipitation (ChIP) assays, JunD was not detected on the DAPK1 promoter under any conditions, suggesting that JunD promotes survival by indirectly antagonizing the expression of DAPK1 in v-Src transformed cells. Transformation by the v-Src oncoprotein causes extensive changes in gene expression in primary cells such as chicken embryo fibroblasts. These changes, determining the properties of transformed cells, are controlled in part at the transcriptional level. Much attention has been devoted to transcription factors such as AP-1 and NF-κB and the control of genes associated with a more aggressive phenotype. In this report, we describe a novel mechanism of action determined by the JunD component of AP-1, a factor enhancing cell survival in v-Src-transformed cells. We show that the loss of JunD results in the aberrant activation of a genetic program leading to cell death. This program requires the activation of the tumor suppressor death-associated protein kinase 1 (DAPK1). Since DAPK1 is phosphorylated and inhibited by v-Src, these results highlight the importance of this kinase and the multiple mechanisms controlled by v-Src to antagonize the tumor suppressor function of DAPK1. Copyright © 2016 American Society for Microbiology.
Bruzzaniti, Angela; Neff, Lynn; Sanjay, Archana; Horne, William C.; De Camilli, Pietro; Baron, Roland
2005-01-01
Podosomes are highly dynamic actin-containing adhesion structures found in osteoclasts, macrophages, and Rous sarcoma virus (RSV)-transformed fibroblasts. After integrin engagement, Pyk2 recruits Src and the adaptor protein Cbl, forming a molecular signaling complex that is critical for cell migration, and deletion of any molecule in this complex disrupts podosome ring formation and/or decreases osteoclast migration. Dynamin, a GTPase essential for endocytosis, is also involved in actin cytoskeleton remodeling and is localized to podosomes where it has a role in actin turnover. We found that dynamin colocalizes with Cbl in the actin-rich podosome belt of osteoclasts and that dynamin forms a complex with Cbl in osteoclasts and when overexpressed in 293VnR or SYF cells. The association of dynamin with Cbl in osteoclasts was decreased by Src tyrosine kinase activity and we found that destabilization of the dynamin-Cbl complex involves the recruitment of Src through the proline-rich domain of Cbl. Overexpression of dynamin increased osteoclast bone resorbing activity and migration, whereas overexpression of dynK44A decreased osteoclast resorption and migration. These studies suggest that dynamin, Cbl, and Src coordinately participate in signaling complexes that are important in the assembly and remodeling of the actin cytoskeleton, leading to changes in osteoclast adhesion, migration, and resorption. PMID:15872089
Hennequin, Laurent F; Allen, Jack; Breed, Jason; Curwen, Jon; Fennell, Michael; Green, Tim P; Lambert-van der Brempt, Christine; Morgentin, Rémy; Norman, Richard A; Olivier, Annie; Otterbein, Ludovic; Plé, Patrick A; Warin, Nicolas; Costello, Gerard
2006-11-02
Src family kinases (SFKs) are nonreceptor tyrosine kinases that are reported to be critical for cancer progression. We report here a novel subseries of C-5-substituted anilinoquinazolines that display high affinity and specificity for the tyrosine kinase domain of the c-Src and Abl enzymes. These compounds exhibit high selectivity for SFKs over a panel of recombinant protein kinases, excellent pharmacokinetics, and in vivo activity following oral dosing. N-(5-Chloro-1,3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl)ethoxy]-5-(tetrahydro-2H-pyran-4-yloxy)quinazolin-4-amine (AZD0530) inhibits c-Src and Abl enzymes at low nanomolar concentrations and is highly selective over a range of kinases. AZD0530 displays excellent pharmacokinetic parameters in animal preclinically and in man (t(1/2) = 40 h). AZD0530 is a potent inhibitor of tumor growth in a c-Src-transfected 3T3-fibroblast xenograft model in vivo and led to a significant increase in survival in a highly aggressive, orthotopic model of human pancreatic cancer when dosed orally once daily. AZD0530 is currently undergoing clinical evaluation in man.
Ghotbaddini, Maryam; Cisse, Keyana; Carey, Alexis; Powell, Joann B
2017-01-01
Altered c-Src activity has been strongly implicated in the development, growth, progression, and metastasis of human cancers including prostate cancer. Src is known to regulate several biological functions of tumor cells, including proliferation. There are several Src inhibitors under evaluation for clinical effectiveness but have shown little activity in monotherapy trials of solid tumors. Combination studies are being explored by in vitro analysis and in clinical trials. Here we investigate the effect of simultaneous inhibition of the aryl hydrocarbon receptor (AhR) and Src on androgen receptor (AR) signaling in prostate cancer cells. AhR has also been reported to interact with the Src signaling pathway during prostate development. c-Src protein kinase is associated with the AhR complex in the cytosol and upon ligand binding to AhR, c-Src is activated and released from the complex. AhR has also been shown to regulate AR signaling which remains functionally important in the development and progression of prostate cancer. We provide evidence that co-inhibition of AhR and Src abolish AR activity. Evaluation of total protein and cellular fractions revealed decreased pAR expression and AR nuclear localization. Assays utilizing an androgen responsive element (ARE) and qRT-PCR analysis of AR genes revealed decreased AR promoter activity and transcriptional activity in the presence of both AhR and Src inhibitors. Furthermore, co-inhibition of AhR and Src reduced the growth of prostate cancer cells compared to individual treatments. Several studies have revealed that AhR and Src individually inhibit cellular proliferation. However, this study is the first to suggest simultaneous inhibition of AhR and Src to inhibit AR signaling and prostate cancer cell growth.
Effects of low-Z and high-Z impurities on divertor detachment and plasma confinement
Wang, H. Q.; Guo, Houyang Y.; Petrie, Thomas W.; ...
2017-03-18
The impurity-seeded detached divertor is essential for heat exhaust in ITER and other reactor-relevant devices. Dedicated experiments with injection of N 2, Ne and Ar have been performed in DIII-D to assess the impact of the different impurities on divertor detachment and confinement. Seeding with N 2, Ne and Ar all promote divertor detachment, greatly reducing heat flux near the strike point. The upstream plasma density at the onset of detachment decreases with increasing impurity-puffing flow rates. For all injected impurity species, the confinement and pedestal pressure are correlated with the impurity content and the ratio of separatrix loss powermore » to the L-H transition threshold power. As the divertor plasma approaches detachment, the high-Z impurity seeding tends to degrade the core confinement owing to the increased core radiation. In particular, Ar injection leads to an increase in core radiation, up to 50% of the injected power, and a reduction in pedestal temperature over 60%, thus significantly degrading the confinement, i.e., with H 98 reducing from 1.1 to below 0.7. As for Ne seeding, H 98 near 0.8 can be maintained during the detachment phase with the pedestal temperature being reduced by about 50%. In contrast, in the N 2 seeded plasmas, radiation is predominately confined in the boundary plasma, with up to 50% of heating power being radiated in the divertor region and less than 25% in the core at the onset of detachment. In the case of strong N 2 gas puffing, the confinement recovers during the detachment, from ~20% reduction at the onset of the detachment to greater than that before the seeding. The core and pedestal temperatures feature a reduction of 30% from the initial attached phase and remain nearly constant during the detachment phase. The improvement in confinement appears to arise from the increase in pedestal and core density despite the temperature reduction.« less
Lindfors, Hanna E; Drijfhout, Jan Wouter; Ubbink, Marcellus
2012-06-01
The interaction between the tyrosine kinases Src and focal adhesion kinase (FAK) is a key step in signaling processes from focal adhesions. The phosphorylated tyrosine residue 397 in FAK is able to bind the Src SH2 domain. To establish the extent of the FAK binding motif, the binding affinity of the SH2 domain for phosphorylated and unphosphorylated FAK-derived peptides of increasing length was determined and compared with that of the internal Src SH2 binding site. It is shown that the FAK peptides have higher affinity than the internal binding site and that seven negative residues adjacent to the core SH2 binding motif increase the binding constant 30-fold. A rigid spin-label incorporated in the FAK peptides was used to establish on the basis of paramagnetic relaxation enhancement whether the peptide-protein complex is well defined. A large spread of the paramagnetic effects on the surface of the SH2 domain suggests that the peptide-protein complex exhibits dynamics, despite the high affinity of the peptide. The strong electrostatic interaction between the positive side of the SH2 domain and the negative peptide results in a high affinity but may also favor a dynamic interaction. Copyright © 2012 Wiley Periodicals, Inc.
Puri, Rajinder N; Fan, Ya-Ping; Rattan, Satish
2002-08-01
We examined the role of mitogen-activated protein kinase (p(44/42) MAPK) in ANG II-induced contraction of lower esophageal sphincter (LES) and internal anal sphincter (IAS) smooth muscles. Studies were performed in the isolated smooth muscles and cells (SMC). ANG II-induced changes in the levels of phosphorylation of different signal transduction and effector proteins were determined before and after selective inhibitors. ANG II-induced contraction of the rat LES and IAS SMC was inhibited by genistein, PD-98059 [a specific inhibitor of MAPK kinases (MEK 1/2)], herbimycin A (a pp60(c-src) inhibitor), and antibodies to pp60(c-src) and p(120) ras GTPase-activating protein (p(120) rasGAP). ANG II-induced contraction of the tonic smooth muscles was accompanied by an increase in tyrosine phosphorylation of p(120) rasGAP. These were attenuated by genistein but not by PD-98059. ANG II-induced increase in phosphorylations of p(44/42) MAPKs and caldesmon was attenuated by both genistein and PD-98059. We conclude that pp60(c-src) and p(44/42) MAPKs play an important role in ANG II-induced contraction of LES and IAS smooth muscles.
McGuine, Timothy A.; Hetzel, Scott; McCrea, Michael; Brooks, M. Alison
2015-01-01
Background The incidence of sport-related concussion (SRC) in high school football is well documented. However, limited prospective data are available regarding how player characteristics and protective equipment affect the incidence of SRC. Purpose To determine whether the type of protective equipment (helmet and mouth guard) and player characteristics affect the incidence of SRC in high school football players. Design Cohort study; Level of evidence, 2. Methods Certified athletic trainers (ATs) at each high school recorded the type of helmet worn (brand, model, purchase year, and recondition status) by each player as well as information regarding players’ demographics, type of mouth guard used, and history of SRC. The ATs also recorded the incidence and days lost from participation for each SRC. Incidence of SRC was compared for various helmets, type of mouth guard, history of SRC, and player demographics. Results A total of 2081 players (grades 9–12) enrolled during the 2012 and/or 2013 football seasons (2287 player-seasons) and participated in 134,437 football (practice or competition) exposures. Of these players, 206 (9%) sustained a total of 211 SRCs (1.56/1000 exposures). There was no difference in the incidence of SRC (number of helmets, % SRC [95% CI]) for players wearing Riddell (1171, 9.1% [7.6%–11.0%]), Schutt (680, 8.7% [6.7%–11.1%]), or Xenith (436, 9.2% [6.7%–12.4%]) helmets. Helmet age and recondition status did not affect the incidence of SRC. The rate of SRC (hazard ratio [HR]) was higher in players who wore a custom mouth guard (HR = 1.69 [95% CI, 1.20–2.37], P <.001) than in players who wore a generic mouth guard. The rate of SRC was also higher (HR = 1.96 [95% CI, 1.40–2.73], P <.001) in players who had sustained an SRC within the previous 12 months (15.1% of the 259 players [95% CI, 11.0%–20.1%]) than in players without a previous SRC (8.2% of the 2028 players [95% CI, 7.1%–9.5%]). Conclusion Incidence of SRC was similar regardless of the helmet brand (manufacturer) worn by high school football players. Players who had sustained an SRC within the previous 12 months were more likely to sustain an SRC than were players without a history of SRC. Sports medicine providers who work with high school football players need to realize that factors other than the type of protective equipment worn affect the risk of SRC in high school players. PMID:25060072
DeRita, Rachel M; Zerlanko, Brad; Singh, Amrita; Lu, Huimin; Iozzo, Renato V; Benovic, Jeffrey L; Languino, Lucia R
2017-01-01
It is well known that Src tyrosine kinase, insulin-like growth factor 1 receptor (IGF-IR), and focal adhesion kinase (FAK) play important roles in prostate cancer (PrCa) development and progression. Src, which signals through FAK in response to integrin activation, has been implicated in many aspects of tumor biology, such as cell proliferation, metastasis, and angiogenesis. Furthermore, Src signaling is known to crosstalk with IGF-IR, which also promotes angiogenesis. In this study, we demonstrate that c-Src, IGF-IR, and FAK are packaged into exosomes (Exo), c-Src in particular being highly enriched in Exo from the androgen receptor (AR)-positive cell line C4-2B and AR-negative cell lines PC3 and DU145. Furthermore, we show that the active phosphorylated form of Src (Src pY416 ) is co-expressed in Exo with phosphorylated FAK (FAK pY861 ), a known target site of Src, which enhances proliferation and migration. We further demonstrate for the first time exosomal enrichment of G-protein-coupled receptor kinase (GRK) 5 and GRK6, both of which regulate Src and IGF-IR signaling and have been implicated in cancer. Finally, Src pY416 and c-Src are both expressed in Exo isolated from the plasma of prostate tumor-bearing TRAMP mice, and those same mice have higher levels of exosomal c-Src than their wild-type counterparts. In summary, we provide new evidence that active signaling molecules relevant to PrCa are enriched in Exo, and this suggests that the Src signaling network may provide useful biomarkers detectable by liquid biopsy, and may contribute to PrCa progression via Exo. J. Cell. Biochem. 118: 66-73, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Heterogeneity of signal transduction by Na-K-ATPase α-isoforms: role of Src interaction.
Yu, Hui; Cui, Xiaoyu; Zhang, Jue; Xie, Joe X; Banerjee, Moumita; Pierre, Sandrine V; Xie, Zijian
2018-02-01
Of the four Na-K-ATPase α-isoforms, the ubiquitous α1 Na-K-ATPase possesses both ion transport and Src-dependent signaling functions. Mechanistically, we have identified two putative pairs of domain interactions between α1 Na-K-ATPase and Src that are critical for α1 signaling function. Our subsequent report that α2 Na-K-ATPase lacks these putative Src-binding sites and fails to carry on Src-dependent signaling further supported our proposed model of direct interaction between α1 Na-K-ATPase and Src but fell short of providing evidence for a causative role. This hypothesis was specifically tested here by introducing key residues of the two putative Src-interacting domains present on α1 but not α2 sequence into the α2 polypeptide, generating stable cell lines expressing this mutant, and comparing its signaling properties to those of α2-expressing cells. The mutant α2 was fully functional as a Na-K-ATPase. In contrast to wild-type α2, the mutant gained α1-like signaling function, capable of Src interaction and regulation. Consistently, the expression of mutant α2 redistributed Src into caveolin-1-enriched fractions and allowed ouabain to activate Src-mediated signaling cascades, unlike wild-type α2 cells. Finally, mutant α2 cells exhibited a growth phenotype similar to that of the α1 cells and proliferated much faster than wild-type α2 cells. These findings reveal the structural requirements for the Na-K-ATPase to function as a Src-dependent receptor and provide strong evidence of isoform-specific Src interaction involving the identified key amino acids. The sequences surrounding the putative Src-binding sites in α2 are highly conserved across species, suggesting that the lack of Src binding may play a physiologically important and isoform-specific role.
Huang, Chao; Zhang, Zhe; Chen, Lihan; Lee, Hank W; Ayrapetov, Marina K; Zhao, Ting C; Hao, Yimei; Gao, Jinsong; Yang, Chunzhang; Mehta, Gautam U; Zhuang, Zhengping; Zhang, Xiaoren; Hu, Guohong; Chin, Y Eugene
2018-06-01
Posttranslational modifications of mammalian c-Src N-terminal and C-terminal domains regulate distinct functions. Myristoylation of G 2 controls its cell membrane association and phosphorylation of Y419/Y527 controls its activation or inactivation, respectively. We provide evidence that Src-cell membrane association-dissociation and catalytic activation-inactivation are both regulated by acetylation. In EGF-treated cells, CREB binding protein (CBP) acetylates an N-terminal lysine cluster (K5, K7, and K9) of c-Src to promote dissociation from the cell membrane. CBP also acetylates the C-terminal K401, K423, and K427 of c-Src to activate intrinsic kinase activity for STAT3 recruitment and activation. N-terminal domain phosphorylation (Y14, Y45, and Y68) of STAT3 by c-Src activates transcriptionally active dimers of STAT3. Moreover, acetyl-Src translocates into nuclei, where it forms the Src-STAT3 enhanceosome for gene regulation and cancer cell proliferation. Thus, c-Src acetylation in the N-terminal and C-terminal domains play distinct roles in Src activity and regulation. Significance: CBP-mediated acetylation of lysine clusters in both the N-terminal and C-terminal regions of c-Src provides additional levels of control over STAT3 transcriptional activity. Cancer Res; 78(11); 2825-38. ©2018 AACR . ©2018 American Association for Cancer Research.
Functional diversity of Csk, Chk, and Src SH2 domains due to a single residue variation.
Ayrapetov, Marina K; Nam, Nguyen Hai; Ye, Guofeng; Kumar, Anil; Parang, Keykavous; Sun, Gongqin
2005-07-08
The C-terminal Src kinase (Csk) family of protein tyrosine kinases contains two members: Csk and Csk homologous kinase (Chk). Both phosphorylate and inactivate Src family kinases. Recent reports suggest that the Src homology (SH) 2 domains of Csk and Chk may bind to different phosphoproteins, which provides a basis for different cellular functions for Csk and Chk. To verify and characterize such a functional divergence, we compared the binding properties of the Csk, Chk, and Src SH2 domains and investigated the structural basis for the functional divergence. First, the study demonstrated striking functional differences between the Csk and Chk SH2 domains and revealed functional similarities between the Chk and Src SH2 domains. Second, structural analysis and mutagenic studies revealed that the functional differences among the three SH2 domains were largely controlled by one residue, Glu127 in Csk, Ile167 in Chk, and Lys200 in Src. Mutating these residues in the Csk or Chk SH2 domain to the Src counterpart resulted in dramatic gain of function similar to Src SH2 domain, whereas mutating Lys200 in Src SH2 domain to Glu (the Csk counterpart) resulted in loss of Src SH2 function. Third, a single point mutation of E127K rendered Csk responsive to activation by a Src SH2 domain ligand. Finally, the optimal phosphopeptide sequence for the Chk SH2 domain was determined. These results provide a compelling explanation for the functional differences between two homologous protein tyrosine kinases and reveal a new structure-function relationship for the SH2 domains.
Near-Channel Versus Watershed Controls on Sediment Rating Curves
NASA Astrophysics Data System (ADS)
Vaughan, Angus A.; Belmont, Patrick; Hawkins, Charles P.; Wilcock, Peter
2017-10-01
Predicting riverine suspended sediment flux is a fundamental problem in geomorphology, with important implications for water quality, land and water resource management, and aquatic ecosystem health. To advance understanding, we evaluated environmental and landscape factors that influence sediment rating curves (SRCs). We generated SRCs with recent total suspended solids (TSSs) and discharge data from 45 gages on 36 rivers throughout the state of Minnesota, USA. Watersheds range from 32 to 14,600 km2 and represent distinct settings regarding topography, land cover, and geologic history. Rivers exhibited three distinct SRC shapes: simple power functions, threshold power functions, and peaked or negative-slope functions. We computed SRC exponents and coefficients (describing the steepness of the relation and the TSS concentration at median flows, respectively). In addition to quantifying watershed topography, climate/hydrology, geology, soil type, and land cover, we used lidar topography to characterize the near-channel environment upstream of gages. We used random forest models to analyze relations between SRC parameters and attributes of the watershed and the near-channel environment. The models correctly classify 78% of SRC shapes and explain 37%-60% of variance in SRC parameters. We find that SRC steepness (exponent) is strongly related to near-channel morphological characteristics including near-channel relief, channel gradient, and presence of lakes along the local channel network, but not to land use. In contrast, land use influences TSS concentrations at moderate and low flow. These findings suggest that the near-channel environment controls changes in TSS as flows increase, whereas land use drives median and low flow TSS conditions.
Vestibulo-ocular dysfunction in pediatric sports-related concussion.
Ellis, Michael J; Cordingley, Dean; Vis, Sara; Reimer, Karen; Leiter, Jeff; Russell, Kelly
2015-09-01
The objective of this study was 2-fold: 1) to examine the prevalence of vestibulo-ocular dysfunction (VOD) among children and adolescents with acute sports-related concussion (SRC) and postconcussion syndrome (PCS) who were referred to a multidisciplinary pediatric concussion program; and 2) to determine if VOD is associated with the development of PCS in this cohort. The authors conducted a retrospective review of all patients with acute SRC (presenting 30 days or less postinjury) and PCS (3 or more symptoms for at least 1 month) referred to a multidisciplinary pediatric concussion program between September 2013 and July 2014. Initial assessment included clinical history, physical examination, and Post-Concussion Symptom Scale assessment. Patients were also assessed for VOD, which was defined as more than one subjective vestibular and oculomotor complaint (dizziness, blurred vision, and so on) and more than one objective physical examination finding (abnormal smooth pursuits, saccades, vestibulo-ocular reflex, and so on). This study was approved by the local institutional ethics review board. A total of 101 patients (mean age 14.2 years, SD 2.3 years; 63 male and 38 female patients) participated, including 77 (76.2%) with acute SRC and 24 (23.8%) with PCS. Twenty-two of the 77 patients (28.6%) with acute SRC and 15 of the 24 (62.5%) with PCS met the clinical criteria for VOD. The median duration of symptoms was 40 days (interquartile range [IQR] 28.5-54 days) for patients with acute SRC who had VOD compared with 21 days (IQR 13-32 days) for those without VOD (p = 0.0001). There was a statistically significant increase in the adjusted odds of developing PCS among patients with acute SRC who had VOD compared with those without VOD (adjusted OR 4.10; 95% CI 1.04-16.16). Evidence of VOD was detected in a significant proportion of children and adolescents with acute SRC and PCS who were referred to a multidisciplinary pediatric concussion program. This clinical feature was a significant risk factor for the subsequent development of PCS in this pediatric acute SRC cohort.
Cheng, Yang; Jiang, Shuyi; Yuan, Jin; Liu, Junxiu; Simoncini, Tommaso
2018-04-16
Vascular endothelial growth factor C (VEGF-C) accelerates cervical cancer metastasis, while the detailed mechanism remains largely unknown. Recent evidence indicates that microRNA play a crucial role in controlling cancer cell invasiveness. In the present study, we investigated the role of miR-326 in VEGF-C-induced cervical cancer cell invasion. VEGF-C expression was higher and miR-326 was much lower in primary cervical cancer specimens than that in non-cancerous specimens, and a negative correlation between VEGF-C and miR-326 was found. On cervical carcinoma cell line SiHa cells, treatment with VEGF-C downregulated miR-326 level and increased cortactin protein expression. Transfection with miR-326 mimic reversed cortactin expression induced by VEGF-C, suggesting that VEGF-C increased cortactin via downregulation of miR-326. VEGF-C activated c-Src and c-Src inhibitor PP2 abolished VEGF-C effect on miR-326 and cortactin expression, implying that VEGF-C regulated miR-326/cortactin via c-Src signaling. VEGF-C promoted SiHa cell invasion index, which was largely inhibited by transfection with miR-326 antagonist or by siRNA against cortactin. In conclusion, our findings implied that VEGF-C reduced miR-326 expression and increased cortactin expression through c-Src signaling, leading to enhanced cervical cancer invasiveness. This may shed light on potential therapeutic strategies for cervical cancer therapy.
He, Yi-Xin; Liu, Jin; Guo, Baosheng; Wang, Yi-Xiang; Pan, Xiaohua; Li, Defang; Tang, Tao; Chen, Yang; Peng, Songlin; Bian, Zhaoxiang; Liang, Zicai; Zhang, Bao-Ting; Lu, Aiping; Zhang, Ge
2015-03-09
To examine the therapeutic effect of Src inhibitor on the VEGF mediating vascular hyperpermeability and bone destruction within steroid-associated osteonecrotic lesions in rabbits. Rabbits with high risk for progress to destructive repair in steroid-associated osteonecrosis were selected according to our published protocol. The selected rabbits were systemically administrated with either Anti-VEGF antibody (Anti-VEGF Group) or Src inhibitor (Src-Inhibition Group) or VEGF (VEGF-Supplement Group) or a combination of VEGF and Src inhibitor (Supplement &Inhibition Group) or control vehicle (Control Group) for 4 weeks. At 0, 2 and 4 weeks after administration, in vivo dynamic MRI, micro-CT based-angiography, histomorphometry and immunoblotting were employed to evaluate the vascular and skeletal events in different groups. The incidence of the destructive repair in the Anti-VEGF Group, Src-Inhibition Group and Supplement &Inhibition Group was all significantly lower than that in the Control Group. The angiogenesis was promoted in VEGF-Supplement Group, Src-Inhibition Group and Supplement &Inhibition Group, while the hyperpermeability was inhibited in Anti-VEGF Group, Src-Inhibition Group and Supplement &Inhibition Group. The trabecular structure was improved in Src-Inhibition Group and Supplement &Inhibition Group. Src inhibitor could reduce permeability without disturbing vascularization and prevent destructive repair in steroid-associated osteonecrosis.
Src promotes cutaneous wound healing by regulating MMP-2 through the ERK pathway.
Wu, Xue; Yang, Longlong; Zheng, Zhao; Li, Zhenzhen; Shi, Jihong; Li, Yan; Han, Shichao; Gao, Jianxin; Tang, Chaowu; Su, Linlin; Hu, Dahai
2016-03-01
Wound healing is a highly orchestrated, multistep process, and delayed wound healing is a significant symptomatic clinical problem. Keratinocyte migration and re-epithelialization play the most important roles in wound healing, as they determine the rate of wound healing. In our previous study, we found that Src, one of the oldest proto‑oncogenes encoding a membrane-associated, non-receptor protein tyrosine kinase, promotes keratinocyte migration. We therefore hypothesized that Src promotes wound healing through enhanced keratinocyte migration. In order to test this hypothesis, vectors for overexpressing Src and small interfering RNAs (siRNAs) for silencing of Src were used in the present study. We found that the overexpression of Src accelerated keratinocyte migration in vitro and promoted wound healing in vivo without exerting a marked effect on cell proliferation. The extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways play important roles in Src-accelerated keratinocyte migration. Further experiments demonstrated that Src induced the protein expression of matrix metalloproteinase-2 (MMP-2) and decreased the protein expression of E-cadherin. We suggest that ERK signaling is involved in the Src-mediated regulation of MMP-2 expression. The present study provided evidence that Src promotes keratinocyte migration and cutaneous wound healing, in which the regulation of MMP-2 through the ERK pathway plays an important role, and thus we also demonstrated a potential therapeutic role for Src in cutaneous wound healing.
Insogna, K; Tanaka, S; Neff, L; Horne, W; Levy, J; Baron, R
1997-01-01
We and others have observed that in response to treatment with Colony Stimulating Factor-1 (CSF-1) neonatal rat osteoclasts demonstrate rapid cytoplasmic spreading. The receptor for CSF-1, c-Fms, is expressed in osteoclasts, possesses intrinsic tyrosine-kinase activity, and signals via rapid phosphorylation of selected proteins. It has been reported previously that c-Src becomes tyrosine phosphorylated following CSF-1 treatment of fibroblasts overexpressing c-Fms. We therefore examined the cellular events associated with CSF-1-induced spreading in osteoclasts and what role, if any, c-Src played in these processes. Confocal microscopic studies using phosphotyrosine (P-tyr) monoclonal antibodies demonstrated that CSF-1 induced a significant dose- and time-dependent increase in P-tyr labeling of neonatal rat osteoclasts. Phalloidin staining was consistent with partial to complete disassembly of the actin attachment ring with redistribution of actin to the spreading cytoplasmic edge of the cell. Quantitation of cellular F-actin using NBD-phallicidin confirmed a decrease in polymerized actin following exposure to CSF-1. In contrast, CSF-1 failed to induce any cytoplasmic spreading in osteoclasts isolated from mice with targeted disruption of the src gene. Further, in src- osteoclasts no well defined attachment ring could be identified. To investigate cell-signaling events associated with osteoclast spreading, detergent lysates were made from purified multinucleated osteoclast-like cells (OCLs) obtained by coculturing murine bone marrow and osteoblasts with calcitriol. Western blot analyses of lysates from control and CSF-1-treated normal cells indicated that several proteins were specifically phosphorylated in response to CSF-1, most notably proteins of 165, 60, and 85-90 kDa. Immunoprecipitation studies revealed that the 165 and 60 kDa proteins were, respectively, c-Fms and c-Src. The c-Src kinase activity was increased 2.9-fold following CSF-1 treatment. The 85-90 kDa protein is as yet unidentified. Since activated receptor tyrosine kinases may induce spreading in part by reducing phosphoinositol 4,5-bisphosphate (PIP2) binding to actin-associated proteins, a monoclonal antibody to PIP2 was used to assess the nature of PIP2 binding proteins in OCLs. Proteins of 85-90 kDa, 43 kDa, and 30 kDa were consistently demonstrated to bind PIP2. Further, the PIP2 content of the 85-90 kDa protein appeared to decrease with CSF-1 treatment. Whether this protein represents the phosphoprotein of the same M.W. is unclear. We also examined the effect of CSF-1 on the PIP2 content of alpha-actinin. Alpha-actinin showed low-level PIP2 binding, which was demonstrable only after immuno-precipitation and did not change with CSF-1 treatment. However, CSF-1 did cause a significant decline in the phosphotyrosine content of alpha-actinin. In contrast, in src- OCLs, CSF-1 induced more prolonged phosphorylation of c-Fms, and the 85-90 kDa protein was markedly hypophosphorylated. Further, alpha-actinin did not dephosphorylate in src- cells. We conclude that CSF-1-induced osteoclast spreading is accompanied by rapid reorganization of the actin cytoskeleton and phosphorylation of several cellular substrates, including c-Fms and c-Src. PIP2 binding to at least one protein appears to decrease with CSF-1 treatment, which may favor actin depolymerization. The reduced tyrosine phosphorylation of alpha-actinin could effect its ability to bind to actin. Thus c-Src may play an important role in these cellular events since in its absence, osteoclasts do not spread and signaling events downstream are altered. Whether these changes relate in part to the basal abnormalities in the cytoskeletal organization of src- osteoclasts remains to be determined.
Prewitt, Allison R.; Ghose, Sampa; Frump, Andrea L.; Datta, Arumima; Austin, Eric D.; Kenworthy, Anne K.; de Caestecker, Mark P.
2015-01-01
Hereditary pulmonary arterial hypertension (HPAH) is a rare, fatal disease of the pulmonary vasculature. The majority of HPAH patients inherit mutations in the bone morphogenetic protein type 2 receptor gene (BMPR2), but how these promote pulmonary vascular disease is unclear. HPAH patients have features of pulmonary endothelial cell (PEC) dysfunction including increased vascular permeability and perivascular inflammation associated with decreased PEC barrier function. Recently, frameshift mutations in the caveolar structural protein gene Caveolin-1 (CAV-1) were identified in two patients with non-BMPR2-associated HPAH. Because caveolae regulate endothelial function and vascular permeability, we hypothesized that defects in caveolar function might be a common mechanism by which BMPR2 mutations promote pulmonary vascular disease. To explore this, we isolated PECs from mice carrying heterozygous null Bmpr2 mutations (Bmpr2+/−) similar to those found in the majority of HPAH patients. We show that Bmpr2+/− PECs have increased numbers and intracellular localization of caveolae and caveolar structural proteins CAV-1 and Cavin-1 and that these defects are reversed after blocking endocytosis with dynasore. SRC kinase is also constitutively activated in Bmpr2+/− PECs, and localization of CAV-1 to the plasma membrane is restored after treating Bmpr2+/− PECs with the SRC kinase inhibitor 3-(4-chlorophenyl)-1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (PP2). Late outgrowth endothelial progenitor cells isolated from HPAH patients show similar increased activation of SRC kinase. Moreover, Bmpr2+/− PECs have impaired endothelial barrier function, and barrier function is restored after treatment with PP2. These data suggest that heterozygous null BMPR2 mutations promote SRC-dependent caveolar trafficking defects in PECs and that this may contribute to pulmonary endothelial barrier dysfunction in HPAH patients. PMID:25411245
Annamalai, Balasubramaniam; Mannangatti, Padmanabhan; Arapulisamy, Obulakshmi; Shippenberg, Toni S.; Jayanthi, Lankupalle D.
2012-01-01
The serotonin (5-HT) transporter (SERT) regulates serotoninergic neurotransmission by clearing 5-HT released into the synaptic space. Phosphorylation of SERT on serine and threonine mediates SERT regulation. Whether tyrosine phosphorylation regulates SERT is unknown. Here, we tested the hypothesis that tyrosine-phosphorylation of SERT regulates 5-HT transport. In support of this, alkali-resistant 32P-labeled SERT was found in rat platelets, and Src-tyrosine kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4,d]pyrimidine (PP2) decreased platelet SERT function and expression. In human placental trophoblast cells expressing SERT, PP2 reduced transporter function, expression, and stability. Although siRNA silencing of Src expression decreased SERT function and expression, coexpression of Src resulted in PP2-sensitive increases in SERT function and expression. PP2 treatment markedly decreased SERT protein stability. Compared with WT-SERT, SERT tyrosine mutants Y47F and Y142F exhibited reduced 5-HT transport despite their higher total and cell surface expression levels. Moreover, Src-coexpression increased total and cell surface expression of Y47F and Y142F SERT mutants without affecting their 5-HT transport capacity. It is noteworthy that Y47F and Y142F mutants exhibited higher protein stability compared with WT-SERT. However, similar to WT-SERT, PP2 treatment decreased the stability of Y47F and Y142F mutants. Furthermore, compared with WT-SERT, Y47F and Y142F mutants exhibited lower basal tyrosine phosphorylation and no further enhancement of tyrosine phosphorylation in response to Src coexpression. These results provide the first evidence that SERT tyrosine phosphorylation supports transporter protein stability and 5HT transport. PMID:21992875
Woo, Seon Min; Min, Kyoung-Jin; Chae, In Gyeong; Chun, Kyung-Soo; Kwon, Taeg Kyu
2015-03-01
Silymarin has been known as a chemopreventive agent, and possesses multiple anti-cancer activities including induction of apoptosis, inhibition of proliferation and growth, and blockade of migration and invasion. However, whether silymarin could inhibit prostaglandin (PG) E2 -induced renal cell carcinoma (RCC) migration and what are the underlying mechanisms are not well elucidated. Here, we found that silymarin markedly inhibited PGE2 -stimulated migration. PGE2 induced G protein-dependent CREB phosphorylation via protein kinase A (PKA) signaling, and PKA inhibitor (H89) inhibited PGE2 -mediated migration. Silymarin reduced PGE2 -induced CREB phosphorylation and CRE-promoter activity. PGE2 also activated G protien-independent signaling pathways (Src and STAT3) and silymarin reduced PGE2 -induced phosphorylation of Src and STAT3. Inhibitor of Src (Saracatinib) markedly reduced PGE2 -mediated migration. We found that EP2, a PGE2 receptor, is involved in PGE2 -mediated cell migration. Down regulation of EP2 by EP2 siRNA and EP2 antagonist (AH6809) reduced PGE2 -inudced migration. In contrast, EP2 agonist (Butaprost) increased cell migration and silymarin effectively reduced butaprost-mediated cell migration. Moreover, PGE2 increased EP2 expression through activation of positive feedback mechanism, and PGE2 -induced EP2 expression, as well as basal EP2 levels, were reduced in silymarin-treated cells. Taken together, our study demonstrates that silymarin inhibited PGE2 -induced cell migration through inhibition of EP2 signaling pathways (G protein dependent PKA-CREB and G protein-independent Src-STAT3). © 2013 Wiley Periodicals, Inc.
Zibara, Kazem; Zeidan, Asad; Bjeije, Hassan; Kassem, Nouhad; Badran, Bassam; El-Zein, Nabil
2017-03-01
Interferon gamma (IFN-ɣ) is a pleiotropic cytokine which plays dual contrasting roles in cancer. Although IFN-ɣ has been clinically used to treat various malignancies, it was recently shown to have protumorigenic activities. Reactive oxygen species (ROS) are overproduced in cancer cells, mainly due to NADPH oxidase activity, which results into several changes in signaling pathways. In this study, we examined IFN-ɣ effect on the phosphorylation levels of key signaling proteins, through ROS production, in the human breast cancer cell line MCF-7. After treatment by IFN-ɣ, results showed a significant increase in the phosphorylation of STAT1, Src, raf, AKT, ERK1/2 and p38 signaling molecules, in a time specific manner. Src and Raf were found to be involved in early stages of IFN-ɣ signaling since their phosphorylation increased very rapidly. Selective inhibition of Src-family kinases resulted in an immediate significant decrease in the phosphorylation status of Raf and ERK1/2, but not p38 and AKT. On the other hand, IFN-ɣ resulted in ROS generation, through H 2 O 2 production, whereas pre-treatment with the ROS inhibitor NAC caused ROS inhibition and a significant decrease in the phosphorylation levels of AKT, ERK1/2, p38 and STAT1. Moreover, pretreatment with a selective NOX1 inhibitor resulted in a significant decrease of AKT phosphorylation. Finally, no direct relationship was found between ROS production and calcium mobilization. In summary, IFN-ɣ signaling in MCF-7 cell line is ROS-dependent and follows the Src/Raf/ERK pathway whereas its signaling through the AKT pathway is highly dependent on NOX1.
Trends in serum relaxin concentration among elite collegiate female athletes
Dragoo, Jason L; Castillo, Tiffany N; Korotkova, Tatiana A; Kennedy, Ashleigh C; Kim, Hyeon Joo; Stewart, Dennis R
2011-01-01
Purpose: This study was designed to investigate the relationship between serum relaxin concentration (SRC) and menstrual history and hormonal contraceptive use among elite collegiate female athletes. Evaluation of SRC in athletes is necessary, because relaxin has been associated with increased knee joint laxity and decreased anterior cruciate ligament (ACL) strength in animal models. Methods: National Collegiate Athletic Association Division I female athletes participating in sports at high risk for ACL tears – basketball, field hockey, gymnastics, lacrosse, soccer, and volleyball – were invited to participate. All participants completed a questionnaire about their menstrual history and hormonal contraceptive use. Venipuncture was performed to obtain samples of serum progesterone and relaxin. Samples were obtained during the mid-luteal phase from ovulating participants, and between the actual or projected cycle days 21 to 24, from anovulatory participants. Serum concentration of relaxin and progesterone was determined by ELISA and the data were analyzed using SPSS statistical software with significance set at P = 0.05. Results: 169 female athletes participated. The mean SRC among all participants was 3.08 ± 6.66 pg/mL). The mean SRC differed significantly between those participants using hormonal contraceptives (1.41 pg/mL) and those not using hormonal contraceptives (3.08 pg/mL, P = 0.002). Mean SRC was lowest among amenorrheic participants (1.02 pg/mL) and highest among oligomenorrheic participants (3.71 pg/mL) and eumenorrheic participants (3.06 pg/mL); these differences were not significant (P = 0.53). Mean serum progesterone concentration (SPC) differed significantly between those participants using hormonal contraceptives (2.80 ng/mL), and those not using hormonal contraceptives (6.99 ng/mL, P < 0.0001). Conclusions: There is a positive correlation between serum progesterone and SRC and an attenuation of SRC with hormonal contraceptive use. Our results underscore the significant role that hormonal contraceptives can play in decreasing relaxin levels, if future investigations establish a link between relaxin levels and ligamentous injury among female athletes. PMID:21339934
NASA Astrophysics Data System (ADS)
Lahimer, A. A.; Alghoul, M. A.; Sopian, K.; Khrit, N. G.
2017-11-01
Parking a vehicle under the sun for a short period of time can rapidly increase the interior air cabin temperature no matter in clear sky days or even in partially cloudy days. These circumstances can be anxieties to car occupants upon entry. The aim of this paper is to evaluate experimentally the effect of solar reflective cover (SRC) on vehicle air temperature and cabin thermal comfort. Experimental measurements of parked cars were conducted in UKM, Bangi city, Malaysia (latitude of 2.9° N and longitude of 101.78° E) under partially cloudy day where average ambient temperature is 33°C. The experimental measurements cover the following cases: case (I): car with/ without SRC (at different measurement time); Case (II): using two identical cars concurrently (SRC versus baseline); Case (III): using two identical cars concurrently (solar reflective film (SRF) versus baseline) and Case (IV): using two identical cars concurrently (SRF versus SRC). Experimental results dedicated to case (I) revealed that the maximum cabin air temperature with SRC (39.6°C) is significantly lower than that of baseline case (57.3°C). This leads to temperature reduction improvement of 31% and the difference between the cabin and the ambient air temperature was minimized by approximately 73%. In addition, the results revealed that the air temperature at breath level of car with SRC dropped to comfort temperature (27°C) after 7 min while baseline car reached comfort temperature after 14 min. Results of the other cases are discussed inside the paper. Overall, it is learned that SRC is found superior as an efficient thermal insulation system limits solar radiation transmission into the cabin through the glass; keeps cabin air temperature close to the ambient temperature; and provide acceptable thermal environment to the occupants as they settle into their parked car.
Restoration Of MEX SRC Images For Improved Topography: A New Image Product
NASA Astrophysics Data System (ADS)
Duxbury, T. C.
2012-12-01
Surface topography is an important constraint when investigating the evolution of solar system bodies. Topography is typically obtained from stereo photogrammetric or photometric (shape from shading) analyses of overlapping / stereo images and from laser / radar altimetry data. The ESA Mars Express Mission [1] carries a Super Resolution Channel (SRC) as part of the High Resolution Stereo Camera (HRSC) [2]. The SRC can build up overlapping / stereo coverage of Mars, Phobos and Deimos by viewing the surfaces from different orbits. The derivation of high precision topography data from the SRC raw images is degraded because the camera is out of focus. The point spread function (PSF) is multi-peaked, covering tens of pixels. After registering and co-adding hundreds of star images, an accurate SRC PSF was reconstructed and is being used to restore the SRC images to near blur free quality. The restored images offer a factor of about 3 in improved geometric accuracy as well as identifying the smallest of features to significantly improve the stereo photogrammetric accuracy in producing digital elevation models. The difference between blurred and restored images provides a new derived image product that can provide improved feature recognition to increase spatial resolution and topographic accuracy of derived elevation models. Acknowledgements: This research was funded by the NASA Mars Express Participating Scientist Program. [1] Chicarro, et al., ESA SP 1291(2009) [2] Neukum, et al., ESA SP 1291 (2009). A raw SRC image (h4235.003) of a Martian crater within Gale crater (the MSL landing site) is shown in the upper left and the restored image is shown in the lower left. A raw image (h0715.004) of Phobos is shown in the upper right and the difference between the raw and restored images, a new derived image data product, is shown in the lower right. The lower images, resulting from an image restoration process, significantly improve feature recognition for improved derived topographic accuracy.
Sex Differences in Time to Return-to-Play Progression After Sport-Related Concussion.
Stone, Sarah; Lee, Bobby; Garrison, J Craig; Blueitt, Damond; Creed, Kalyssa
2016-10-03
Recently, female sports participation has increased, and there is a tendency for women to experience more symptoms and variable presentation after sport-related concussion (SRC). The purpose of this study was to determine whether sex differences exist in time to begin a return-to-play (RTP) progression after an initial SRC. After initial SRC, female athletes (11-20 years old) would take longer to begin an RTP progression compared with age-matched male athletes. Retrospective cohort study. Level 3. A total of 579 participants (365 males [mean age, 15.0 ± 1.7 years], 214 females [mean age, 15.2 ± 1.5 years]), including middle school, high school, and collegiate athletes who participated in various sports and experienced an initial SRC were included and underwent retrospective chart review. The following information was collected: sex, age at injury, sport, history of prior concussion, date of injury, and date of initiation of RTP progression. Participants with a history of more than 1 concussion or injury sustained from non-sport-related activity were excluded. Despite American football having the greatest percentage (49.2%) of sport participation, female athletes took significantly longer to start an RTP progression after an initial SRC (29.1 ± 26.3 days) compared with age-matched male athletes (22.7 ± 18.3 days; P = 0.002). On average, female athletes took approximately 6 days longer to begin an RTP progression compared with age-matched male athletes. This suggests that sex differences exist between athletes, ages 11 to 20 years, with regard to initiation of an RTP progression after SRC. Female athletes may take longer to recover after an SRC, and therefore, may take longer to return to sport. Sex should be considered as part of the clinical decision-making process when determining plan of care for this population. © 2016 The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sansing, Hope A.; Sarkeshik, Ali; Yates, John R.
2011-03-11
Research highlights: {yields} Proteomics of clustered integrin {alpha}{beta}1, {alpha}{sub v}{beta}, {alpha}{sub 6}{beta} receptors in oral carcinoma. {yields} p130Cas, Dek, Src and talin regulate oral carcinoma invasion. {yields} p130Cas, talin, Src and zyxin regulate oral carcinoma resistance to cisplatin. -- Abstract: Ligand engagement by integrins induces receptor clustering and formation of complexes at the integrin cytoplasmic face that controls cell signaling and cytoskeletal dynamics critical for adhesion-dependent processes. This study searches for a subset of integrin effectors that coordinates both tumor cell invasion and resistance to the chemotherapeutic drug cisplatin in oral carcinomas. Candidate integrin effectors were identified in a proteomicsmore » screen of proteins recruited to clustered integrin {alpha}{beta}1, {alpha}{sub v}{beta} or {alpha}{sub 6}{beta} receptors in oral carcinomas. Proteins with diverse functions including microtubule and actin binding proteins, and factors involved in trafficking, transcription and translation were identified in oral carcinoma integrin complexes. Knockdown of effectors in the oral carcinoma HN12 cells revealed that p130Cas, Dek, Src and talin were required for invasion through Matrigel. Disruption of talin or p130Cas by RNA interference increased resistance to cisplatin, whereas targeting Dek, Src or zyxin reduced HN12 resistance to cisplatin. Analysis of the spreading of HN12 cells on collagen I and laminin I revealed that a decrease in p130Cas or talin expression inhibited spreading on both matrices. Interestingly, a reduction in zyxin expression enhanced spreading on laminin I and inhibited spreading on collagen I. Reduction of Dek, Src, talin or zyxin expression reduced HN12 proliferation by 30%. Proliferation was not affected by a reduction in p130Cas expression. We conclude that p130Cas, Src and talin function in both oral carcinoma invasion and resistance to cisplatin.« less
Palanisamy, Arun P; Suryakumar, Geetha; Panneerselvam, Kavin; Willey, Christopher D; Kuppuswamy, Dhandapani
2015-12-01
Early work in pressure overloaded (PO) myocardium shows that integrins mediate focal adhesion complex formation by recruiting the adaptor protein p130Cas (Cas) and nonreceptor tyrosine kinase c-Src. To explore c-Src role in Cas-associated changes during PO, we used a feline right ventricular in vivo PO model and a three-dimensional (3D) collagen-embedded adult cardiomyocyte in vitro model that utilizes a Gly-Arg-Gly-Asp-Ser (RGD) peptide for integrin stimulation. Cas showed slow electrophoretic mobility (band-shifting), recruitment to the cytoskeleton, and tyrosine phosphorylation at 165, 249, and 410 sites in both 48 h PO myocardium and 1 h RGD-stimulated cardiomyocytes. Adenoviral mediated expression of kinase inactive (negative) c-Src mutant with intact scaffold domains (KN-Src) in cardiomyocytes did not block the RGD stimulated changes in Cas. Furthermore, expression of KN-Src or kinase active c-Src mutant with intact scaffold function (A-Src) in two-dimensionally (2D) cultured cardiomyocytes was sufficient to cause Cas band-shifting, although tyrosine phosphorylation required A-Src. These data indicate that c-Src's adaptor function, but not its kinase function, is required for a serine/threonine specific phosphorylation(s) responsible for Cas band-shifting. To explore this possibility, Chinese hamster ovary cells that stably express Cas were infected with either β-gal or KN-Src adenoviruses and used for Cas immunoprecipitation combined with mass spectrometry analysis. In the KN-Src expressing cells, Cas showed phosphorylation at the serine-639 (human numbering) site. A polyclonal antibody raised against phospho-serine-639 detected Cas phosphorylation in 24-48 h PO myocardium. Our studies indicate that c-Src's adaptor function mediates serine-639 phosphorylation of Cas during integrin activation in PO myocardium. © 2015 Wiley Periodicals, Inc.
A Protein Scaffold Coordinates SRC-Mediated JNK Activation in Response to Metabolic Stress.
Kant, Shashi; Standen, Claire L; Morel, Caroline; Jung, Dae Young; Kim, Jason K; Swat, Wojciech; Flavell, Richard A; Davis, Roger J
2017-09-19
Obesity is a major risk factor for the development of metabolic syndrome and type 2 diabetes. How obesity contributes to metabolic syndrome is unclear. Free fatty acid (FFA) activation of a non-receptor tyrosine kinase (SRC)-dependent cJun NH 2 -terminal kinase (JNK) signaling pathway is implicated in this process. However, the mechanism that mediates SRC-dependent JNK activation is unclear. Here, we identify a role for the scaffold protein JIP1 in SRC-dependent JNK activation. SRC phosphorylation of JIP1 creates phosphotyrosine interaction motifs that bind the SH2 domains of SRC and the guanine nucleotide exchange factor VAV. These interactions are required for SRC-induced activation of VAV and the subsequent engagement of a JIP1-tethered JNK signaling module. The JIP1 scaffold protein, therefore, plays a dual role in FFA signaling by coordinating upstream SRC functions together with downstream effector signaling by the JNK pathway. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Cooperative Atmosphere-Surface Exchange Study-1999.
NASA Astrophysics Data System (ADS)
Moeng, Chin-Hoh; Poulos, Gregory S.; Lemone, Margaret A.
2003-10-01
Surface-station, radiosonde, and Doppler minisodar data from the Cooperative Atmosphere-Surface Exchange Study-1997 (CASES-97) field project, collected in a 60-km-wide array in the lower Walnut River watershed (terrain variation 150 m) southeast of Wichita, Kansas, are used to study the relationship of the change of the 2-m potential temperature 2m with station elevation ze, 2m/ze ,ze to the ambient wind and thermal stratification /z ,z during fair-weather nights. As in many previous studies, predawn 2m varies linearly with ze, and ,ze ,z over a depth h that represents the maximum elevation range of the stations. Departures from the linear 2m-elevation relationship (
,ze line) are related to vegetation (cool for vegetation, warm for bare ground), local terrain (drainage flows from nearby hills, although a causal relationship is not established), and the formation of a cold pool at lower elevations on some days.
The near-surface flow and its evolution are functions of the Froude number Fr = S/(Nh), where S is the mean wind speed from the surface to h, and N is the corresponding Brunt-Väisälä frequency. The near-surface wind is coupled to the ambient flow for Fr = 3.3, based on where the straight line relating
,ze to ln Fr intersects the ln Fr axis. Under these conditions,
2m is constant horizontally even though
,z > 0, suggesting that near-surface air moves up- and downslope dry adiabatically. However,
2m cools (or warms) everywhere at the same rate. The lowest Froude numbers are associated with drainage flows, while intermediate values characterize regimes with intermediate behavior. The evolution of
2m horizontal variability σ
through the night is also a function of the predawn Froude number. For the nights with the lowest Fr, the σ
maximum occurs in the last 1-3 h before sunrise. For nights with Fr
3.3 (
,ze
0) and for intermediate values, σ
peaks 2-3 h after sunset. The standard deviations relative to the
,ze line reach their lowest values in the last hours of darkness. Thus, it is not surprising that the relationships of
,ze to Fr and
,z based on data through the night show more scatter, and
,ze
0.5
,z in contrast to the predawn relationship. However,
,ze
0 for ln Fr = 3.7, a value similar to that just before sunrise.
A heuristic Lagrangian parcel model is used to explain the horizontal uniformity of time-evolving
2m when the surface flow is coupled with the ambient wind, as well as both the linear variation of
2m with elevation and the time required to reach maximum values of σ
under drainage-flow conditions.
Effect of wheat flour characteristics on sponge cake quality.
Moiraghi, Malena; de la Hera, Esther; Pérez, Gabriela T; Gómez, Manuel
2013-02-01
To select the flour parameters that relate strongly to cake-making performance, in this study the relationship between sponge cake quality, solvent retention capacity (SRC) profile and flour physicochemical characteristics was investigated using 38 soft wheat samples of different origins. Particle size average, protein, damaged starch, water-soluble pentosans, total pentosans, SRC and pasting properties were analysed. Sponge cake volume and crumb texture were measured to evaluate cake quality. Cluster analysis was applied to assess differences in flour quality parameters among wheat lines based on the SRC profile. Cluster 1 showed significantly higher sponge cake volume and crumb softness, finer particle size and lower SRC sucrose, SRC carbonate, SRC water, damaged starch and protein content. Particle size, damaged starch, protein, thickening capacity and SRC parameters correlated negatively with sponge cake volume, while total pentosans and pasting temperature showed the opposite effect. The negative correlations between cake volume and SRC parameters along with the cluster analysis results indicated that flours with smaller particle size, lower absorption capacity and higher pasting temperature had better cake-making performance. Some simple analyses, such as SRC, particle size distribution and pasting properties, may help to choose flours suitable for cake making. Copyright © 2012 Society of Chemical Industry.
Malin, D; Strekalova, E; Petrovic, V; Rajanala, H; Sharma, B; Ugolkov, A; Gradishar, W J; Cryns, V L
2015-11-05
Evasion of extracellular matrix detachment-induced apoptosis ('anoikis') is a defining characteristic of metastatic tumor cells. The ability of metastatic carcinoma cells to survive matrix detachment and escape anoikis enables them to disseminate as viable circulating tumor cells and seed distant organs. Here we report that αB-crystallin, an antiapoptotic molecular chaperone implicated in the pathogenesis of diverse poor-prognosis solid tumors, is induced by matrix detachment and confers anoikis resistance. Specifically, we demonstrate that matrix detachment downregulates extracellular signal-regulated kinase (ERK) activity and increases αB-crystallin protein and messenger RNA (mRNA) levels. Moreover, we show that ERK inhibition in adherent cancer cells mimics matrix detachment by increasing αB-crystallin protein and mRNA levels, whereas constitutive ERK activation suppresses αB-crystallin induction during matrix detachment. These findings indicate that ERK inhibition is both necessary and sufficient for αB-crystallin induction by matrix detachment. To examine the functional consequences of αB-crystallin induction in anoikis, we stably silenced αB-crystallin in two different metastatic carcinoma cell lines. Strikingly, silencing αB-crystallin increased matrix detachment-induced caspase activation and apoptosis but did not affect cell viability of adherent cancer cells. In addition, silencing αB-crystallin in metastatic carcinoma cells reduced the number of viable circulating tumor cells and inhibited lung metastasis in two orthotopic models, but had little or no effect on primary tumor growth. Taken together, our findings point to αB-crystallin as a novel regulator of anoikis resistance that is induced by matrix detachment-mediated suppression of ERK signaling and promotes lung metastasis. Our results also suggest that αB-crystallin represents a promising molecular target for antimetastatic therapies.
Prostate segmentation by sparse representation based classification
Gao, Yaozong; Liao, Shu; Shen, Dinggang
2012-01-01
Purpose: The segmentation of prostate in CT images is of essential importance to external beam radiotherapy, which is one of the major treatments for prostate cancer nowadays. During the radiotherapy, the prostate is radiated by high-energy x rays from different directions. In order to maximize the dose to the cancer and minimize the dose to the surrounding healthy tissues (e.g., bladder and rectum), the prostate in the new treatment image needs to be accurately localized. Therefore, the effectiveness and efficiency of external beam radiotherapy highly depend on the accurate localization of the prostate. However, due to the low contrast of the prostate with its surrounding tissues (e.g., bladder), the unpredicted prostate motion, and the large appearance variations across different treatment days, it is challenging to segment the prostate in CT images. In this paper, the authors present a novel classification based segmentation method to address these problems. Methods: To segment the prostate, the proposed method first uses sparse representation based classification (SRC) to enhance the prostate in CT images by pixel-wise classification, in order to overcome the limitation of poor contrast of the prostate images. Then, based on the classification results, previous segmented prostates of the same patient are used as patient-specific atlases to align onto the current treatment image and the majority voting strategy is finally adopted to segment the prostate. In order to address the limitations of the traditional SRC in pixel-wise classification, especially for the purpose of segmentation, the authors extend SRC from the following four aspects: (1) A discriminant subdictionary learning method is proposed to learn a discriminant and compact representation of training samples for each class so that the discriminant power of SRC can be increased and also SRC can be applied to the large-scale pixel-wise classification. (2) The L1 regularized sparse coding is replaced by the elastic net in order to obtain a smooth and clear prostate boundary in the classification result. (3) Residue-based linear regression is incorporated to improve the classification performance and to extend SRC from hard classification to soft classification. (4) Iterative SRC is proposed by using context information to iteratively refine the classification results. Results: The proposed method has been comprehensively evaluated on a dataset consisting of 330 CT images from 24 patients. The effectiveness of the extended SRC has been validated by comparing it with the traditional SRC based on the proposed four extensions. The experimental results show that our extended SRC can obtain not only more accurate classification results but also smoother and clearer prostate boundary than the traditional SRC. Besides, the comparison with other five state-of-the-art prostate segmentation methods indicates that our method can achieve better performance than other methods under comparison. Conclusions: The authors have proposed a novel prostate segmentation method based on the sparse representation based classification, which can achieve considerably accurate segmentation results in CT prostate segmentation. PMID:23039673
Prostate segmentation by sparse representation based classification.
Gao, Yaozong; Liao, Shu; Shen, Dinggang
2012-10-01
The segmentation of prostate in CT images is of essential importance to external beam radiotherapy, which is one of the major treatments for prostate cancer nowadays. During the radiotherapy, the prostate is radiated by high-energy x rays from different directions. In order to maximize the dose to the cancer and minimize the dose to the surrounding healthy tissues (e.g., bladder and rectum), the prostate in the new treatment image needs to be accurately localized. Therefore, the effectiveness and efficiency of external beam radiotherapy highly depend on the accurate localization of the prostate. However, due to the low contrast of the prostate with its surrounding tissues (e.g., bladder), the unpredicted prostate motion, and the large appearance variations across different treatment days, it is challenging to segment the prostate in CT images. In this paper, the authors present a novel classification based segmentation method to address these problems. To segment the prostate, the proposed method first uses sparse representation based classification (SRC) to enhance the prostate in CT images by pixel-wise classification, in order to overcome the limitation of poor contrast of the prostate images. Then, based on the classification results, previous segmented prostates of the same patient are used as patient-specific atlases to align onto the current treatment image and the majority voting strategy is finally adopted to segment the prostate. In order to address the limitations of the traditional SRC in pixel-wise classification, especially for the purpose of segmentation, the authors extend SRC from the following four aspects: (1) A discriminant subdictionary learning method is proposed to learn a discriminant and compact representation of training samples for each class so that the discriminant power of SRC can be increased and also SRC can be applied to the large-scale pixel-wise classification. (2) The L1 regularized sparse coding is replaced by the elastic net in order to obtain a smooth and clear prostate boundary in the classification result. (3) Residue-based linear regression is incorporated to improve the classification performance and to extend SRC from hard classification to soft classification. (4) Iterative SRC is proposed by using context information to iteratively refine the classification results. The proposed method has been comprehensively evaluated on a dataset consisting of 330 CT images from 24 patients. The effectiveness of the extended SRC has been validated by comparing it with the traditional SRC based on the proposed four extensions. The experimental results show that our extended SRC can obtain not only more accurate classification results but also smoother and clearer prostate boundary than the traditional SRC. Besides, the comparison with other five state-of-the-art prostate segmentation methods indicates that our method can achieve better performance than other methods under comparison. The authors have proposed a novel prostate segmentation method based on the sparse representation based classification, which can achieve considerably accurate segmentation results in CT prostate segmentation.
Vitorino, Luciano M; Chiaradia, Raíssa; Low, Gail; Cruz, Jonas Preposi; Pargament, Kenneth I; Lucchetti, Alessandra L G; Lucchetti, Giancarlo
2018-02-01
To investigate the role of spiritual/religious coping (SRC) on depressive symptoms in high- and low-risk pregnant women. Spiritual/religious coping is associated with physical and mental health outcomes. However, only few studies investigated the role of these strategies during pregnancy and whether low- and high-risk pregnant women have different coping mechanisms. This study is a cross-sectional comparative study. This study included a total of 160 pregnant women, 80 with low-risk pregnancy and 80 with high-risk pregnancy. The Beck Depression Inventory, the brief SRC scale and a structured questionnaire on sociodemographic and obstetric aspects were used. General linear model regression analysis was used to identify the factors associated with positive and negative SRC strategies in both groups of pregnant women. Positive SRC use was high, whereas negative SRC use was low in both groups. Although we found no difference in SRC strategies between the two groups, negative SRC was associated with depression in women with high-risk pregnancy, but not in those with low-risk pregnancy. Furthermore, positive SRC was not associated with depressive symptoms in both groups. Results showed that only the negative SRC strategies of Brazilian women with high-risk pregnancies were associated with worsened mental health outcomes. Healthcare professionals, obstetricians and nurse midwives should focus on the use of negative SRC strategies in their pregnant patients. © 2017 John Wiley & Sons Ltd.
Veracini, Laurence; Grall, Dominique; Schaub, Sébastien; Divonne, Stéphanie Beghelli-de la Forest; Etienne-Grimaldi, Marie-Christine; Milano, Gérard; Bozec, Alexandre; Babin, Emmanuel; Sudaka, Anne; Thariat, Juliette; Van Obberghen-Schilling, Ellen
2015-01-01
EGF receptor (EGFR) overexpression is thought to drive head and neck carcinogenesis however clinical responses to EGFR-targeting agents have been modest and alternate targets are actively sought to improve results. Src family kinases (SFKs), reported to act downstream of EGFR are among the alternative targets for which increased expression or activity in epithelial tumors is commonly associated to the dissolution of E-cadherin-based junctions and acquisition of a mesenchymal-like phenotype. Robust expression of total and activated Src was observed in advanced stage head and neck tumors (N=60) and in head and neck squamous cell carcinoma lines. In cultured cancer cells Src co-localized with E-cadherin in cell-cell junctions and its phosphorylation on Y419 was both constitutive and independent of EGFR activation. Selective inhibition of SFKs with SU6656 delocalized E-cadherin and disrupted cellular junctions without affecting E-cadherin expression and this effect was phenocopied by knockdown of Src or Yes. These findings reveal an EGFR-independent role for SFKs in the maintenance of intercellular junctions, which likely contributes to the cohesive invasion E-cadherin-positive cells in advanced tumors. Further, they highlight the need for a deeper comprehension of molecular pathways that drive collective cell invasion, in absence of mesenchymal transition, in order to combat tumor spread. PMID:25779657
Tiran, Zohar; Peretz, Asher; Sines, Tal; Shinder, Vera; Sap, Jan; Attali, Bernard
2006-01-01
Tyrosine phosphatases (PTPs) ε and α are closely related and share several molecular functions, such as regulation of Src family kinases and voltage-gated potassium (Kv) channels. Functional interrelationships between PTPε and PTPα and the mechanisms by which they regulate K+ channels and Src were analyzed in vivo in mice lacking either or both PTPs. Lack of either PTP increases Kv channel activity and phosphorylation in Schwann cells, indicating these PTPs inhibit Kv current amplitude in vivo. Open probability and unitary conductance of Kv channels are unchanged, suggesting an effect on channel number or organization. PTPα inhibits Kv channels more strongly than PTPε; this correlates with constitutive association of PTPα with Kv2.1, driven by membranal localization of PTPα. PTPα, but not PTPε, activates Src in sciatic nerve extracts, suggesting Src deregulation is not responsible exclusively for the observed phenotypes and highlighting an unexpected difference between both PTPs. Developmentally, sciatic nerve myelination is reduced transiently in mice lacking either PTP and more so in mice lacking both PTPs, suggesting both PTPs support myelination but are not fully redundant. We conclude that PTPε and PTPα differ significantly in their regulation of Kv channels and Src in the system examined and that similarity between PTPs does not necessarily result in full functional redundancy in vivo. PMID:16870705
Chen, Wenbo; Lu, Xuqiang; Chen, Yuan; Li, Ming; Mo, Pingli; Tong, Zhangwei; Wang, Wei; Wan, Wei; Su, Guoqiang; Xu, Jianming; Yu, Chundong
2017-02-15
Steroid receptor coactivator 3 (SRC-3) is a transcriptional coactivator that interacts with nuclear receptors and some other transcription factors to enhance their effects on target gene transcription. We reported previously that SRC-3-deficient (SRC-3 -/- ) mice are extremely susceptible to Escherichia coli-induced septic peritonitis as a result of uncontrolled inflammation and a defect in bacterial clearance. In this study, we observed significant upregulation of SRC-3 in colonic epithelial cells in response to Citrobacter rodentium infection. Based on these findings, we hypothesized that SRC-3 is involved in host defense against attaching and effacing bacterial infection. We compared the responses of SRC-3 -/- and wild-type mice to intestinal C. rodentium infection. We found that SRC-3 -/- mice exhibited delayed clearance of C. rodentium and more severe tissue pathology after oral infection with C. rodentium compared with wild-type mice. SRC-3 -/- mice expressed normal antimicrobial peptides in the colons but exhibited delayed recruitment of neutrophils into the colonic mucosa. Accordingly, SRC-3 -/- mice showed a delayed induction of CXCL2 and CXCL5 in colonic epithelial cells, which are responsible for neutrophil recruitment. At the molecular level, we found that SRC-3 can activate the NF-κB signaling pathway to promote CXCL2 expression at the transcriptional level. Collectively, we show that SRC-3 contributes to host defense against enteric bacteria, at least in part via upregulating CXCL2 expression to recruit neutrophils. Copyright © 2017 by The American Association of Immunologists, Inc.
Global Impact of Oncogenic Src on a Phosphotyrosine Proteome
Luo, Weifeng; Slebos, Robbert J.; Hill, Salisha; Li, Ming; Brábek, Jan; Amanchy, Ramars; Chaerkady, Raghothama; Pandey, Akhilesh; Ham, Amy-Joan L.; Hanks, Steven K.
2008-01-01
Elevated activity of Src, the first characterized protein-tyrosine kinase, is associated with progression of many human cancers, and Src has attracted interest as a therapeutic target. Src is known to act in various receptor signaling systems to impact cell behavior, yet it remains likely that the spectrum of Src protein substrates relevant to cancer is incompletely understood. To better understand the cellular impact of deregulated Src kinase activity, we extensively applied a mass spectrometry shotgun phosphotyrosine (pTyr) proteomics strategy to obtain global pTyr profiles of Src-transformed mouse fibroblasts as well as their nontransformed counterparts. A total of 867 peptides representing 563 distinct pTyr sites on 374 different proteins were identified from the Src-transformed cells, while 514 peptides representing 275 pTyr sites on 167 proteins were identified from nontransformed cells. Distinct characteristics of the two profiles were revealed by spectral counting, indicative of pTyr site relative abundance, and by complementary quantitative analysis using stable isotope labeling with amino acids in cell culture (SILAC). While both pTyr profiles are replete with sites on signaling and adhesion/cytoskeletal regulatory proteins, the Src-transformed profile is more diverse with enrichment in sites on metabolic enzymes and RNA and protein synthesis and processing machinery. Forty-three pTyr sites (32 proteins) are predicted as major biologically relevant Src targets on the basis of frequent identification in both cell populations. This select group, of particular interest as diagnostic biomarkers, includes well-established Src sites on signaling/adhesion/cytoskeletal proteins, but also uncharacterized sites of potential relevance to the transformed cell phenotype. PMID:18563927
Novel Bioluminescent Activatable Reporter for Src Tyrosine Kinase Activity in Living Mice
Leng, Weibing; Li, Dezhi; Chen, Liang; Xia, Hongwei; Tang, Qiulin; Chen, Baoqin; Gong, Qiyong; Gao, Fabao; Bi, Feng
2016-01-01
Aberrant activation of the Src kinase is implicated in the development of a variety of human malignancies. However, it is almost impossible to monitor Src activity in an in vivo setting with current biochemical techniques. To facilitate the noninvasive investigation of the activity of Src kinase both in vitro and in vivo, we developed a genetically engineered, activatable bioluminescent reporter using split-luciferase complementation. The bioluminescence of this reporter can be used as a surrogate for Src activity in real time. This hybrid luciferase reporter was constructed by sandwiching a Src-dependent conformationally responsive unit (SH2 domain-Srcpep) between the split luciferase fragments. The complementation bioluminescence of this reporter was dependent on the Src activity status. In our study, Src kinase activity in cultured cells and tumor xenografts was monitored quantitatively and dynamically in response to clinical small-molecular kinase inhibitors, dasatinib and saracatinib. This system was also applied for high-throughput screening of Src inhibitors against a kinase inhibitor library in living cells. These results provide unique insights into drug development and pharmacokinetics/phoarmocodynamics of therapeutic drugs targeting Src signaling pathway enabling the optimization of drug administration schedules for maximum benefit. Using both Firefly and Renilla luciferase imaging, we have successfully monitored Src tyrosine kinase activity and Akt serine/threonine kinase activity concurrently in one tumor xenograft. This dual luciferase reporter imaging system will be helpful in exploring the complex signaling networks in vivo. The strategies reported here can also be extended to study and image other important kinases and the cross-talks among them. PMID:26941850
Significance of ERa and c-Src Interaction in the Progression of Hormone Independent Breast Cancer
2005-12-01
defects in estrogen signaling [1]. Because of global defects in estrogen signaling observed in these c-Src deficient mice, we have recently generated...1998). Interestingly, the region of the kinase domain of ErbB-2 that correlates with c-Src association, referred to as TK2 (Segatto et al., 1991...ductive organs that are dependent on ERa in c-Src- deficient mice. We show that the loss of the c-Src tyrosine kinase correlates with defects in ductal
Teng, Yong; Cai, Yafei; Pi, Wenhu; Gao, Lixia; Shay, Chloe
2017-06-12
Abnormalities of tubulin polymerization and microtubule assembly are often seen in cancer, which make them very suitable targets for the development of therapeutic approach against rapidly dividing and aggressive cancer cells. CYT997 is a novel microtubule-disrupting agent with anticancer activity in multiple cancer types including prostate cancer. However, the molecular mechanisms of action of CYT997 in prostate cancer have not been well characterized. Src knockdown cells were achieved by lentiviral-mediated interference. The drug effects on cell proliferation were measured by MTS. The drug effects on cell viability and death were determined by Cell Titer-Glo® Luminescent cell viability kit and flow cytometry with Zombie Aqua™ staining. The drug effects on apoptosis were assessed by Cell Death Detection Elisa kit and Western blot with a cleaved PARP antibody. The drug effects on cell invasion were examined by Matrigel-coated Boyden chambers. Oxidative stress was detected by DCFH-DA staining and electrochemical biosensor. Mouse models generated by subcutaneous or intracardiac injection were used to investigate the in vivo drug efficacy in tumor growth and metastasis. CYT997 effectively inhibited proliferation, survival, and invasion of prostate cancer cells via blocking multiple oncogenic signaling cascades but not the Src pathway. Inhibition of Src expression by small hairpin RNA or inactivation of Src by dasatinib increased the CYT997-induced cytotoxicity of in vitro. Moreover, the combination of dasatinib and CYT997 exhibited a superior inhibitory effect on tumor growth and metastasis compared with either of the drugs alone. Our findings demonstrate that blockage of Src augments the anticancer effect of CYT997 on prostate cancer and suggest that co-treatment of dasatinib and CYT997 may represent an effective therapeutic regimen for limiting prostate cancer.
Yu, Wanfeng; He, Xin; Ni, Ying; Ngeow, Joanne; Eng, Charis
2015-01-01
Germline mutations in the PTEN tumor-suppressor gene and germline variations in succinate dehydrogenase subunit D gene (SDHD-G12S, SDHD-H50R) are associated with a subset of Cowden syndrome and Cowden syndrome-like individuals (CS/CSL) and confer high risk of breast, thyroid and other cancers. However, very little is known about the underlying crosstalk between SDHD and PTEN in CS-associated thyroid cancer. Here, we show SDHD-G12S and SDHD-H50R lead to impaired PTEN function through alteration of its subcellular localization accompanied by resistance to apoptosis and induction of migration in both papillary and follicular thyroid carcinoma cell lines. Other studies have shown elevated proto-oncogene tyrosine kinase (SRC) activity in invasive thyroid cancer cells; so, we explore bosutinib, a specific inhibitor for SRC, to explore SRC as a mediator of SDH-PTEN crosstalk in this context. We show that SRC inhibition could rescue SDHD dysfunction-induced cellular phenotype and tumorigenesis only when wild-type PTEN is expressed, in thyroid cancer lines. Patient lymphoblast cells carrying either SDHD-G12S or SDHD-H50R also show increased nuclear PTEN and more oxidized PTEN after hydrogen peroxide treatment. Like in thyroid cells, bosutinib decreases oxidative PTEN in patient lymphoblast cells carrying SDHD variants, but not in patients carrying both SDHD variants and PTEN truncating mutations. In summary, our data suggest a novel mechanism whereby SDHD germline variants SDHD-G12S or SDHD-H50R induce thyroid tumorigenesis mediated by PTEN accumulation in the nucleus and may shed light on potential treatment with SRC inhibitors like bosutinib in PTEN-wild-type SDHD-variant/mutation positive CS/CSL patients and sporadic thyroid neoplasias. PMID:25149476
Changing concentration, lifetime and climate forcing of atmospheric methane
NASA Astrophysics Data System (ADS)
Lelieveld, Jos; Crutzen, Paul J.; Dentener, Frank J.
1998-04-01
Previous studies on ice core analyses and recent in situ measurements have shown that CH4 has increased from about 0.75 1.73μmol/mol during the past 150years. Here, we review sources and sink estimates and we present global 3D model calculations, showing that the main features of the global CH4 distribution are well represented. The model has been used to derive the total CH4 emission source, being about 600 Tg yr-1. Based on published results of isotope measurements the total contribution of fossil fuel related CH4 emissions has been estimated to be about 110 Tg yr-1. However, the individual coal, natural gas and oil associated CH4 emissions can not be accurately quantified. In particular natural gas and oil associated emissions remain speculative. Since the total anthropogenic CH4 source is about 410 Tg yr-1 (
70% of the total source) and the mean recent atmospheric CH4 increase is
20 Tg yr-1 an anthropogenic source reduction of 5% could stabilize the atmospheric CH4 level. We have calculated the indirect chemical effects of increasing CH4 on climate forcing on the basis of global 3D chemistry-transport and radiative transfer calculations. These indicate an enhancement of the direct radiative effect by about 30%, in agreement with previous work. The contribution of CH4 (direct and indirect effects) to climate forcing during the past 150years is 0.57W m
2 (direct 0.44W m
2, indirect 0.13 W m
2). This is about 35% of the climate forcing by CO2 (1.6W m
2) and about 22% of the forcing by all long-lived greenhouse gases (2.6 W m
2). Scenario calculations (IPCC-IS92a) indicate that the CH4 lifetime in the atmosphere increased by about 25 30%during the past 150years to a current value of 7.9years. Future lifetime changes are expected to be much smaller, about 6%, mostly due to the expected increase of tropospheric O3 (→OH) in the tropics. The global mean concentration of CH4 may increase to about 2.55μmol/mol, its lifetime is expected to increase to 8.4years in the year 2050. Further, we have calculated a CH4 global warming potential (GWP) of 21 (kgCH4/kgCO2) over a time horizon of 100years, in agreement with IPCC (1996). Scenario calculations indicate that the importance of the climate forcing by CH4 (including indirect effects) relative to that of CO2 will decrease in future; currently this is about 35%, while this is expected to decrease to about 15% in the year 2050.
EG-1 interacts with c-Src and activates its signaling pathway.
Lu, Ming; Zhang, Liping; Sartippour, Maryam R; Norris, Andrew J; Brooks, Mai N
2006-10-01
EG-1 is significantly elevated in breast, colorectal, and prostate cancers. Overexpression of EG-1 stimulates cellular proliferation, and targeted inhibition blocks mouse xenograft tumor growth. To further clarify the function of EG-1, we investigated its role in c-Src activation. We observed that EG-1 overexpression results in activation of c-Src, but found no evidence that EG-1 is a direct Src substrate. EG-1 also binds to other members of the Src family. Furthermore, EG-1 shows interaction with multiple other SH3- and WW-containing molecules involved in various signaling pathways. These observations suggest that EG-1 may be involved in signaling pathways including c-Src activation.
Pemphigus autoimmunity: Hypotheses and realities
Grando, Sergei A
2011-01-01
The goal of contemporary research in pemphigus vulgaris and pemphigus foliaceus is to achieve and maintain clinical remission without corticosteroids. Recent advances of knowledge on pemphigus autoimmunity scrutinize old dogmas, resolve controversies, and open novel perspectives for treatment. Elucidation of intimate mechanisms of keratinocyte detachment and death in pemphigus has challenged the monopathogenic explanation of disease immunopathology. Over 50 organ-specific and non-organ-specific antigens can be targeted by pemphigus autoimmunity, including desmosomal cadherins and other adhesion molecules, PERP cholinergic and other cell membrane (CM) receptors, and mitochondrial proteins. The initial insult is sustained by the autoantibodies to the cell membrane receptor antigens triggering the intracellular signaling by Src, epidermal growth factor receptor kinase, protein kinases A and C, phospholipase C, mTOR, p38 MAPK, JNK, other tyrosine kinases, and calmodulin that cause basal cell shrinkage and ripping desmosomes off the CM. Autoantibodies synergize with effectors of apoptotic and oncotic pathways, serine proteases, and inflammatory cytokines to overcome the natural resistance and activate the cell death program in keratinocytes. The process of keratinocyte shrinkage/detachment and death via apoptosis/oncosis has been termed apoptolysis to emphasize that it is triggered by the same signal effectors and mediated by the same cell death enzymes. The natural course of pemphigus has improved due to a substantial progress in developing of the steroid-sparing therapies combining the immunosuppressive and direct anti-acantholytic effects. Further elucidation of the molecular mechanisms mediating immune dysregulation and apoptolysis in pemphigus should improve our understanding of disease pathogenesis and facilitate development of steroid-free treatment of patients. PMID:21939410
Haendeler, Judith; Hoffmann, Jörg; Diehl, J Florian; Vasa, Mariuca; Spyridopoulos, Ioakim; Zeiher, Andreas M; Dimmeler, Stefanie
2004-04-02
Aging is associated with a rise in intracellular reactive oxygen species (ROS) and a loss of telomerase reverse transcriptase activity. Incubation with H2O2 induced the nuclear export of telomerase reverse transcriptase (TERT) into the cytosol in a Src-family kinase-dependent manner. Therefore, we investigated the hypothesis that age-related increase in reactive oxygen species (ROS) may induce the nuclear export of TERT and contribute to endothelial cell senescence. Continuous cultivation of endothelial cells resulted in an increased endogenous formation of ROS starting after 29 population doublings (PDL). This increase was accompanied by mitochondrial DNA damage and preceded the onset of replicative senescence at PDL 37. Along with the enhanced formation of ROS, we detected an export of nuclear TERT protein from the nucleus into the cytoplasm and an activation of the Src-kinase. Moreover, the induction of premature senescence by low concentrations of H2O2 was completely blocked with the Src-family kinase inhibitor PP2, suggesting a crucial role for Src-family kinases in the induction of endothelial cell aging. Incubation with the antioxidant N-acetylcysteine, from PDL 26, reduced the intracellular ROS formation and prevented mitochondrial DNA damage. Likewise, nuclear export of TERT protein, loss in the overall TERT activity, and the onset of replicative senescence were delayed by incubation with N-acetylcysteine. Low doses of the statin, atorvastatin (0.1 micromol/L), had also effects similar to those of N-acetylcysteine. We conclude that both antioxidants and statins can delay the onset of replicative senescence by counteracting the increased ROS production linked to aging of endothelial cells.
76 FR 3653 - Alaska Region's Subsistence Resource Commission (SRC) Program; Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
... subsistence management issues. The NPS SRC program is authorized under Title VIII, Section 808 of the Alaska...: 1. Call to order. 2. SRC Roll Call and Confirmation of Quorum. 3. Welcome and Introductions. 4.... c. Resource Management Program Update. 14. Public and other Agency Comments. 15. SRC Work Session...
OH REACTION KINETICS OF GAS-PHASE A- AND G-HEXACHLOROCYCLOHEXANE AND HEXACHLOROBENZENE. (R825377)
Rate constants for the gas-phase reactions of the hydroxyl
radical (OH) with
- and
-hexachlorocyclohexane (
-
and 78 FR 51207 - Kobuk Valley National Park Subsistence Resource Commission (SRC) and the Denali National Park SRC...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-20
... DEPARTMENT OF THE INTERIOR National Park Service [NPS-AKR-DENA-KOVA-DTS-13608; PPAKAKROR4; PPMPRLE1Y.LS0000] Kobuk Valley National Park Subsistence Resource Commission (SRC) and the Denali National Park SRC; Meetings AGENCY: National Park Service, Interior. ACTION: Meeting notice. SUMMARY: As...
76 FR 57763 - Alaska Region's Subsistence Resource Commission (SRC) Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-16
...) program. SUMMARY: The Gates of the Arctic National Park SRC will meet to develop and continue work on NPS... changed based on inclement weather or exceptional circumstances. Gates of the Arctic National Park SRC Meeting Dates and Location: The Gates of the Arctic National Park SRC will meet at Sophie Station Hotel...
Moroco, Jamie A; Baumgartner, Matthew P; Rust, Heather L; Choi, Hwan Geun; Hur, Wooyoung; Gray, Nathanael S; Camacho, Carlos J; Smithgall, Thomas E
2015-08-01
The c-Src tyrosine kinase co-operates with the focal adhesion kinase to regulate cell adhesion and motility. Focal adhesion kinase engages the regulatory SH3 and SH2 domains of c-Src, resulting in localized kinase activation that contributes to tumor cell metastasis. Using assay conditions where c-Src kinase activity required binding to a tyrosine phosphopeptide based on the focal adhesion kinase SH3-SH2 docking sequence, we screened a kinase-biased library for selective inhibitors of the Src/focal adhesion kinase peptide complex versus c-Src alone. This approach identified an aminopyrimidinyl carbamate compound, WH-4-124-2, with nanomolar inhibitory potency and fivefold selectivity for c-Src when bound to the phospho-focal adhesion kinase peptide. Molecular docking studies indicate that WH-4-124-2 may preferentially inhibit the 'DFG-out' conformation of the kinase active site. These findings suggest that interaction of c-Src with focal adhesion kinase induces a unique kinase domain conformation amenable to selective inhibition. © 2014 John Wiley & Sons A/S.
Moi, Line L Haugan; Flågeng, Marianne Hauglid; Gjerde, Jennifer; Madsen, Andre; Røst, Therese Halvorsen; Gudbrandsen, Oddrun Anita; Lien, Ernst A; Mellgren, Gunnar
2012-06-15
Steroid receptor coactivators (SRCs) may modulate estrogen receptor (ER) activity and the response to endocrine treatment in breast cancer, in part through interaction with growth factor receptor signaling pathways. In the present study the effects of tamoxifen treatment on the expression of SRCs and human epidermal growth factor receptors (HERs) were examined in an animal model of ER positive breast cancer. Sprague-Dawley rats with DMBA-induced breast cancer were randomized to 14 days of oral tamoxifen 40 mg/kg bodyweight/day or vehicle only (controls). Tumors were measured throughout the study period. Blood samples and tumor tissue were collected at sacrifice and tamoxifen and its main metabolites were quantified using LC-MS/MS. The gene expression in tumor of SRC-1, SRC-2/transcription intermediary factor-2 (TIF-2), SRC-3/amplified in breast cancer 1 (AIB1), ER, HER-1, -2, -3 and HER-4, as well as the transcription factor Ets-2, was measured by real-time RT-PCR. Protein levels were further assessed by Western blotting. Tamoxifen and its main metabolites were detected at high concentrations in serum and accumulated in tumor tissue in up to tenfolds the concentration in serum. Mean tumor volume/rat decreased in the tamoxifen treated group, but continued to increase in controls. The mRNA expression levels of SRC-1 (P = 0.035), SRC-2/TIF-2 (P = 0.002), HER-2 (P = 0.035) and HER-3 (P = 0.006) were significantly higher in tamoxifen treated tumors compared to controls, and the results were confirmed at the protein level using Western blotting. SRC-3/AIB1 protein was also higher in tamoxifen treated tumors. SRC-1 and SRC-2/TIF-2 mRNA levels were positively correlated with each other and with HER-2 (P ≤ 0.001), and the HER-2 mRNA expression correlated with the levels of the other three HER family members (P < 0.05). Furthermore, SRC-3/AIB1 and HER-4 were positively correlated with each other and Ets-2 (P < 0.001). The expression of SRCs and HER-2 and -3 is stimulated by tamoxifen treatment in DMBA-induced breast cancer. Stimulation and positive correlation of coactivators and HERs may represent an early response to endocrine treatment. The role of SRCs and HER-2 and -3 should be further studied in order to evaluate their effects on response to long-term tamoxifen treatment.
2012-01-01
Background Steroid receptor coactivators (SRCs) may modulate estrogen receptor (ER) activity and the response to endocrine treatment in breast cancer, in part through interaction with growth factor receptor signaling pathways. In the present study the effects of tamoxifen treatment on the expression of SRCs and human epidermal growth factor receptors (HERs) were examined in an animal model of ER positive breast cancer. Methods Sprague-Dawley rats with DMBA-induced breast cancer were randomized to 14 days of oral tamoxifen 40 mg/kg bodyweight/day or vehicle only (controls). Tumors were measured throughout the study period. Blood samples and tumor tissue were collected at sacrifice and tamoxifen and its main metabolites were quantified using LC-MS/MS. The gene expression in tumor of SRC-1, SRC-2/transcription intermediary factor-2 (TIF-2), SRC-3/amplified in breast cancer 1 (AIB1), ER, HER-1, -2, -3 and HER-4, as well as the transcription factor Ets-2, was measured by real-time RT-PCR. Protein levels were further assessed by Western blotting. Results Tamoxifen and its main metabolites were detected at high concentrations in serum and accumulated in tumor tissue in up to tenfolds the concentration in serum. Mean tumor volume/rat decreased in the tamoxifen treated group, but continued to increase in controls. The mRNA expression levels of SRC-1 (P = 0.035), SRC-2/TIF-2 (P = 0.002), HER-2 (P = 0.035) and HER-3 (P = 0.006) were significantly higher in tamoxifen treated tumors compared to controls, and the results were confirmed at the protein level using Western blotting. SRC-3/AIB1 protein was also higher in tamoxifen treated tumors. SRC-1 and SRC-2/TIF-2 mRNA levels were positively correlated with each other and with HER-2 (P ≤ 0.001), and the HER-2 mRNA expression correlated with the levels of the other three HER family members (P < 0.05). Furthermore, SRC-3/AIB1 and HER-4 were positively correlated with each other and Ets-2 (P < 0.001). Conclusions The expression of SRCs and HER-2 and -3 is stimulated by tamoxifen treatment in DMBA-induced breast cancer. Stimulation and positive correlation of coactivators and HERs may represent an early response to endocrine treatment. The role of SRCs and HER-2 and -3 should be further studied in order to evaluate their effects on response to long-term tamoxifen treatment. PMID:22703232
Association of p60c-src with endosomal membranes in mammalian fibroblasts
1992-01-01
We have examined the subcellular localization of p60c-src in mammalian fibroblasts. Analysis of indirect immunofluorescence by three- dimensional optical sectioning microscopy revealed a granular cytoplasmic staining that co-localized with the microtubule organizing center. Immunofluorescence experiments with antibodies against a number of membrane markers demonstrated a striking co-localization between p60c-src and the cation-dependent mannose-6-phosphate receptor (CI- MPR), a marker that identifies endosomes. Both p60c-src and the CI-MPR were found to cluster at the spindle poles throughout mitosis. In addition, treatment of interphase and mitotic cells with brefeldin A resulted in a clustering of p60c-src and CI-MPR at a peri-centriolar position. Biochemical fractionation of cellular membranes showed that a major proportion of p60c-src co-enriched with endocytic membranes. Treatment of membranes containing HRP to alter their apparent density also altered the density of p60c-src-containing membranes. Similar density shift experiments with total cellular membranes revealed that the majority of membrane-associated p60c-src in the cell is associated with endosomes, while very little is associated with plasma membranes. These results support a role for p60c-src in the regulation of endosomal membranes and protein trafficking. PMID:1378446
Ritchie, Shawn A.; Pasha, Mohammed K.; Batten, Danielle J. P.; Sharma, Rajendra K.; Olson, Douglas J. H.; Ross, Andrew R. S.; Bonham, Keith
2003-01-01
The human SRC gene encodes pp60c–src, a non-receptor tyrosine kinase involved in numerous signaling pathways. Activation or overexpression of c-Src has also been linked to a number of important human cancers. Transcription of the SRC gene is complex and regulated by two closely linked but highly dissimilar promoters, each associated with its own distinct non-coding exon. In many tissues SRC expression is regulated by the housekeeping-like SRC1A promoter. In addition to other regulatory elements, three substantial polypurine:polypyrimidine (TC) tracts within this promoter are required for full transcriptional activity. Previously, we described an unusual factor called SRC pyrimidine-binding protein (SPy) that could bind to two of these TC tracts in their double-stranded form, but was also capable of interacting with higher affinity to all three pyrimidine tracts in their single-stranded form. Mutations in the TC tracts, which abolished the ability of SPy to interact with its double-stranded DNA target, significantly reduced SRC1A promoter activity, especially in concert with mutations in critical Sp1 binding sites. Here we expand upon our characterization of this interesting factor and describe the purification of SPy from human SW620 colon cancer cells using a DNA affinity-based approach. Subsequent in-gel tryptic digestion of purified SPy followed by MALDI-TOF mass spectrometric analysis identified SPy as heterogeneous nuclear ribonucleoprotein K (hnRNP K), a known nucleic-acid binding protein implicated in various aspects of gene expression including transcription. These data provide new insights into the double- and single-stranded DNA-binding specificity, as well as functional properties of hnRNP K, and suggest that hnRNP K is a critical component of SRC1A transcriptional processes. PMID:12595559
Palanisamy, Arun P.; Suryakumar, Geetha; Panneerselvam, Kavin; Willey, Christopher D.; Kuppuswamy, Dhandapani
2017-01-01
Early work in pressure overloaded (PO) myocardium shows that integrins mediate focal adhesion complex formation by recruiting the adaptor protein p130Cas (Cas) and nonreceptor tyrosine kinase c-Src. To explore c-Src role in Cas-associated changes during PO, we used a feline right ventricular in vivo PO model and a three-dimensional (3D) collagen-embedded adult cardiomyocyte in vitro model that utilizes a Gly-Arg-Gly-Asp-Ser (RGD) peptide for integrin stimulation. Cas showed slow electrophoretic mobility (band-shifting), recruitment to the cytoskeleton, and tyrosine phosphorylation at 165, 249, and 410 sites in both 48 h PO myocardium and 1 h RGD-stimulated cardiomyocytes. Adenoviral mediated expression of kinase inactive (negative) c-Src mutant with intact scaffold domains (KN-Src) in cardiomyocytes did not block the RGD stimulated changes in Cas. Furthermore, expression of KN-Src or kinase active c-Src mutant with intact scaffold function (A-Src) in two-dimensionally (2D) cultured cardiomyocytes was sufficient to cause Cas band-shifting, although tyrosine phosphorylation required A-Src. These data indicate that c-Src’s adaptor function, but not its kinase function, is required for a serine/threonine specific phosphorylation(s) responsible for Cas band-shifting. To explore this possibility, Chinese hamster ovary cells that stably express Cas were infected with either β-gal or KN-Src adenoviruses and used for Cas immunoprecipitation combined with mass spectrometry analysis. In the KN-Src expressing cells, Cas showed phosphorylation at the serine-639 (human numbering) site. A polyclonal antibody raised against phospho-serine-639 detected Cas phosphorylation in 24–48 h PO myocardium. Our studies indicate that c-Src’s adaptor function mediates serine-639 phosphorylation of Cas during integrin activation in PO myocardium. PMID:25976166
Antiangiogenic and Antitumor Effects of Src Inhibition in Ovarian Carcinoma
Han, Liz Y.; Landen, Charles N.; Trevino, Jose G.; Halder, Jyotsnabaran; Lin, Yvonne G.; Kamat, Aparna A.; Kim, Tae-Jin; Merritt, William M.; Coleman, Robert L.; Gershenson, David M.; Shakespeare, William C.; Wang, Yihan; Sundaramoorth, Raji; Metcalf, Chester A.; Dalgarno, David C.; Sawyer, Tomi K.; Gallick, Gary E.; Sood, Anil K.
2011-01-01
Src, a nonreceptor tyrosine kinase, is a key mediator for multiple signaling pathways that regulate critical cellular functions and is often aberrantly activated in a number of solid tumors, including ovarian carcinoma. The purpose of this study was to determine the role of activated Src inhibition on tumor growth in an orthotopic murine model of ovarian carcinoma. In vitro studies on HeyA8 and SKOV3ip1 cell lines revealed that Src inhibition by the Src-selective inhibitor, AP23846, occurred within 1 hour and responded in a dose-dependent manner. Furthermore, Src inhibition enhanced the cytotoxicity of docetaxel in both chemosensitive and chemoresistant ovarian cancer cell lines, HeyA8 and HeyA8-MDR, respectively. In vivo, Src inhibition by AP23994, an orally bioavailable analogue of AP23846, significantly decreased tumor burden in HeyA8 (P = 0.02), SKOV3ip1 (P = 0.01), as well as HeyA8-MDR (P < 0.03) relative to the untreated controls. However, the greatest effect on tumor reduction was observed in combination therapy with docetaxel (P < 0.001, P = 0.002, and P = 0.01, for the above models, respectively). Proliferating cell nuclear antigen staining showed that Src inhibition alone (P = 0.02) and in combination with docetaxel (P = 0.007) significantly reduced tumor proliferation. In addition, Src inhibition alone and in combination with docetaxel significantly down-regulated tumoral production of vascular endothelial growth factor and interleukin 8, whereas combination therapy decreased the microvessel density (P = 0.02) and significantly affected vascular permeability (P < 0.05). In summary, Src inhibition with AP23994 has potent antiangiogenic effects and significantly reduces tumor burden in preclinical ovarian cancer models. Thus, Src inhibition may be an attractive therapeutic approach for patients with ovarian carcinoma. PMID:16951177
Schlesinger, T K; Demali, K A; Johnson, G L; Kazlauskas, A
1999-01-01
Here we report that the platelet-derived growth factor beta receptor (betaPDGFR) is not the only tyrosine kinase able to associate with the GTPase-activating protein of Ras (RasGAP). The interaction of non-betaPDGFR kinase(s) with RasGAP was dependent on stimulation with platelet-derived growth factor (PDGF) and seemed to require tyrosine phosphorylation of RasGAP. Because the tyrosine phosphorylation site of RasGAP is in a sequence context that is favoured by the Src homology 2 ('SH2') domain of Src family members, we tested the possibility that Src was the kinase that associated with RasGAP. Indeed, Src interacted with phosphorylated RasGAP fusion proteins; immunodepletion of Src markedly decreased the recovery of the RasGAP-associated kinase activity. Thus PDGF-dependent tyrosine phosphorylation of RasGAP results in the formation of a complex between RasGAP and Src. To begin to address the relevance of these observations, we focused on the consequences of the interaction of Src and RasGAP. We found that a receptor mutant that did not activate Src was unable to efficiently mediate the tyrosine phosphorylation of phospholipase Cgamma (PLCgamma). Taken together, these observations support the following hypothesis. When RasGAP is recruited to the betaPDGFR, it is phosphorylated and associates with Src. Once bound to RasGAP, Src is no longer able to promote the phosphorylation of PLCgamma. This hypothesis offers a mechanistic explanation for our previously published findings that the recruitment of RasGAP to the betaPDGFR attenuates the tyrosine phosphorylation of PLCgamma. Finally, these findings suggest a novel way in which RasGAP negatively regulates signal relay by the betaPDGFR. PMID:10567236
Angiotensin II stimulates basolateral 50-pS K channels in the thick ascending limb.
Wang, Mingxiao; Luan, Haiyan; Wu, Peng; Fan, Lili; Wang, Lijun; Duan, Xinpeng; Zhang, Dandan; Wang, Wen-Hui; Gu, Ruimin
2014-03-01
We used the patch-clamp technique to examine the effect of angiotensin II (ANG II) on the basolateral K channels in the thick ascending limb (TAL) of the rat kidney. Application of ANG II increased the channel activity and the current amplitude of the basolateral 50-pS K channel. The stimulatory effect of ANG II on the K channels was completely abolished by losartan, an inhibitor of type 1 angiotensin receptor (AT1R), but not by PD123319, an AT2R antagonist. Moreover, inhibition of phospholipase C (PLC) and protein kinase C (PKC) also abrogated the stimulatory effect of ANG II on the basolateral K channels in the TAL. This suggests that the stimulatory effect of ANG II on the K channels was induced by activating PLC and PKC pathways. Western blotting demonstrated that ANG II increased the phosphorylation of c-Src at tyrosine residue 416, an indication of c-Src activation. This effect was mimicked by PKC stimulator but abolished by calphostin C. Moreover, inhibition of NADPH oxidase (NOX) also blocked the effect of ANG II on c-Src tyrosine phosphorylation. The role of Src-family protein tyrosine kinase (SFK) in mediating the effect of ANG II on the basolateral K channel was further suggested by the experiments in which inhibition of SFK abrogated the stimulatory effect of ANG II on the basolateral 50-pS K channel. We conclude that ANG II increases basolateral 50-pS K channel activity via AT1R and that activation of AT1R stimulates SFK by a PLC-PKC-NOX-dependent mechanism.
Impact of Cross-field Drifts on Detachment in DIII-D
NASA Astrophysics Data System (ADS)
Jaervinen, A. E.; Allen, S. L.; McLean, A. G.; Rognlien, T. D.; Samuell, C. M.; Porter, G. D.; Groth, M.; Hill, D. N.; Leonard, A. W.
2017-10-01
Simulations of DIII-D plasmas have revealed the strong role of E ×B-drifts in the low field side (LFS) detachment structure. High confinement modes (H-mode) with the ∇B-drift towards the X-point (fwd BT) enter detachment at 20% higher upstream density, ne,sep, than plasmas with the ∇B-drift away from the X-point (rev BT). In contrast, low confinement modes (L-mode) enter detachment at 10% lower ne,sep in fwd BT. Despite this, both L- and H-modes detached plasmas show strong target flux, JSAT, reduction with increasing ne,sep in fwd BT, while only a modest reduction occurs in rev BT. In fwd BT H-mode, a step-wise transition from attached to strongly detached conditions is observed with increasing ne,sep. UEDGE simulations indicate that the strong poloidal E ×B-drift in the private flux region in H-mode drives the difference for the detachment onset relative to L-mode. In fwd BT, the dependence of this poloidal E ×B-drift on the divertor conditions can reinforce the plasma into either attached or strongly detached state. In rev BT, radial E ×B-drift depletes strike-line ne, limiting the degree of detachment. Work supported by the US DOE under DE-FC02-04ER54698, DE-AC52-07NA27344, and LLNL LDRD project 17-ERD-020.
2002-08-01
an increase in estrogen receptor activity. A second objective is to understand the potential role of Src in estrogen induced mammary ductal development ...bPcis i on to The Ser-ilS-dependent link wt GR- t KaroBio AB, a Swedish pharmaceutical development company with CBP is in addition to the Ser-1l8...the ECL detection kit (Amersham Pharmacia Biotech ). phoresis, stained with Coomassic Blue to monitor expression, and sub- Fluorescence Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1980-01-01
This report presents the results of seven SRC-II runs on Process Development Unit P99 feeding Pittsburgh Seam coal. Four of these runs (Runs 41-44) were made feeding coal from the Robinson Run Mine and three (Runs 45-47) were made feeding a second shipment of coal from the Powhatan No. 5 Mine. This work showed that both these coals are satisfactory feedstocks for the SRC-II process. Increasing dissolver outlet hydrogen partial pressure from approximately 1300 to about 1400 psia did not have a significant effect on yields from Robinson Run coal, but simultaneously increasing coal concentration in the feed slurry frommore » 25 to 30 wt% and decreasing the percent recycle solids from 21% to 17% lowered distillate yields. With the Powhatan coal, a modest increase in the boiling temperature (approximately 35/sup 0/F) at the 10% point) of the process solvent had essentially no effect on product yields, while lowering the average dissolver temperature from 851/sup 0/F to 842/sup 0/F reduced gas yield.« less
HAMLET binding to α-actinin facilitates tumor cell detachment.
Trulsson, Maria; Yu, Hao; Gisselsson, Lennart; Chao, Yinxia; Urbano, Alexander; Aits, Sonja; Mossberg, Ann-Kristin; Svanborg, Catharina
2011-03-08
Cell adhesion is tightly regulated by specific molecular interactions and detachment from the extracellular matrix modifies proliferation and survival. HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is a protein-lipid complex with tumoricidal activity that also triggers tumor cell detachment in vitro and in vivo, suggesting that molecular interactions defining detachment are perturbed in cancer cells. To identify such interactions, cell membrane extracts were used in Far-western blots and HAMLET was shown to bind α-actinins; major F-actin cross-linking proteins and focal adhesion constituents. Synthetic peptide mapping revealed that HAMLET binds to the N-terminal actin-binding domain as well as the integrin-binding domain of α-actinin-4. By co-immunoprecipitation of extracts from HAMLET-treated cancer cells, an interaction with α-actinin-1 and -4 was observed. Inhibition of α-actinin-1 and α-actinin-4 expression by siRNA transfection increased detachment, while α-actinin-4-GFP over-expression significantly delayed rounding up and detachment of tumor cells in response to HAMLET. In response to HAMLET, adherent tumor cells rounded up and detached, suggesting a loss of the actin cytoskeletal organization. These changes were accompanied by a reduction in β1 integrin staining and a decrease in FAK and ERK1/2 phosphorylation, consistent with a disruption of integrin-dependent cell adhesion signaling. Detachment per se did not increase cell death during the 22 hour experimental period, regardless of α-actinin-4 and α-actinin-1 expression levels but adherent cells with low α-actinin levels showed increased death in response to HAMLET. The results suggest that the interaction between HAMLET and α-actinins promotes tumor cell detachment. As α-actinins also associate with signaling molecules, cytoplasmic domains of transmembrane receptors and ion channels, additional α-actinin-dependent mechanisms are discussed.
HAMLET Binding to α-Actinin Facilitates Tumor Cell Detachment
Trulsson, Maria; Yu, Hao; Gisselsson, Lennart; Chao, Yinxia; Urbano, Alexander; Aits, Sonja; Mossberg, Ann-Kristin; Svanborg, Catharina
2011-01-01
Cell adhesion is tightly regulated by specific molecular interactions and detachment from the extracellular matrix modifies proliferation and survival. HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is a protein-lipid complex with tumoricidal activity that also triggers tumor cell detachment in vitro and in vivo, suggesting that molecular interactions defining detachment are perturbed in cancer cells. To identify such interactions, cell membrane extracts were used in Far-western blots and HAMLET was shown to bind α-actinins; major F-actin cross-linking proteins and focal adhesion constituents. Synthetic peptide mapping revealed that HAMLET binds to the N-terminal actin-binding domain as well as the integrin-binding domain of α-actinin-4. By co-immunoprecipitation of extracts from HAMLET-treated cancer cells, an interaction with α-actinin-1 and -4 was observed. Inhibition of α-actinin-1 and α-actinin-4 expression by siRNA transfection increased detachment, while α-actinin-4-GFP over-expression significantly delayed rounding up and detachment of tumor cells in response to HAMLET. In response to HAMLET, adherent tumor cells rounded up and detached, suggesting a loss of the actin cytoskeletal organization. These changes were accompanied by a reduction in β1 integrin staining and a decrease in FAK and ERK1/2 phosphorylation, consistent with a disruption of integrin-dependent cell adhesion signaling. Detachment per se did not increase cell death during the 22 hour experimental period, regardless of α-actinin-4 and α-actinin-1 expression levels but adherent cells with low α-actinin levels showed increased death in response to HAMLET. The results suggest that the interaction between HAMLET and α-actinins promotes tumor cell detachment. As α-actinins also associate with signaling molecules, cytoplasmic domains of transmembrane receptors and ion channels, additional α-actinin-dependent mechanisms are discussed. PMID:21408150
Zhang, Chunhua; Mallery, Eileen; Reagan, Sara; Boyko, Vitaly P.; Kotchoni, Simeon O.; Szymanski, Daniel B.
2013-01-01
During plant cell morphogenesis, signal transduction and cytoskeletal dynamics interact to locally organize the cytoplasm and define the geometry of cell expansion. The WAVE/SCAR (for WASP family verprolin homologous/suppressor of cyclic AMP receptor) regulatory complex (W/SRC) is an evolutionarily conserved heteromeric protein complex. Within the plant kingdom W/SRC is a broadly used effector that converts Rho-of-Plants (ROP)/Rac small GTPase signals into Actin-Related Protein2/3 and actin-dependent growth responses. Although the components and biochemistry of the W/SRC pathway are well understood, a basic understanding of how cells partition W/SRC into active and inactive pools is lacking. In this paper, we report that the endoplasmic reticulum (ER) is an important organelle for W/SRC regulation. We determined that a large intracellular pool of the core W/SRC subunit NAP1, like the known positive regulator of W/SRC, the DOCK family guanine nucleotide-exchange factor SPIKE1 (SPK1), localizes to the surface of the ER. The ER-associated NAP1 is inactive because it displays little colocalization with the actin network, and ER localization requires neither activating signals from SPK1 nor a physical association with its W/SRC-binding partner, SRA1. Our results indicate that in Arabidopsis (Arabidopsis thaliana) leaf pavement cells and trichomes, the ER is a reservoir for W/SRC signaling and may have a key role in the early steps of W/SRC assembly and/or activation. PMID:23613272
Kashiwagi, Kenji; Ito, Sadahiro; Maeda, Shuichiro; Kato, Goro
2017-12-01
Src knockout mice show no detectable abnormalities in central nervous system (CNS) post-mitotic neurons, likely reflecting functional compensation by other Src family kinases. Cdk1- or Cdk5-dependent Ser75 phosphorylation in the amino-terminal Unique domain of Src, which shares no homology with other Src family kinases, regulates the stability of active Src. To clarify the roles of Src Ser75 phosphorylation in CNS neurons, we established two types of mutant mice with mutations in Src: phospho-mimicking Ser75Asp (SD) and non-phosphorylatable Ser75Ala (SA). In ageing SD/SD mice, retinal ganglion cell (RGC) number in whole retinas was significantly lower than that in young SD/SD mice in the absence of inflammation and elevated intraocular pressure, resembling the pathogenesis of progressive optic neuropathy. By contrast, SA/SA mice and wild-type (WT) mice exhibited no age-related RGC loss. The age-related retinal RGC number reduction was greater in the peripheral rather than the mid-peripheral region of the retina in SD/SD mice. Furthermore, Rho-associated kinase activity in whole retinas of ageing SD/SD mice was significantly higher than that in young SD/SD mice. These results suggest that Src regulates RGC survival during ageing in a manner that depends on Ser75 phosphorylation.
Nie, Run-Cong; Yuan, Shu-Qiang; Li, Yuan-Fang; Chen, Yong-Ming; Chen, Xiao-Jiang; Zhu, Bao-Yan; Xu, Li-Pu; Zhou, Zhi-Wei; Chen, Shi; Chen, Ying-Bo
2017-01-01
Background and Objectives: Previous studies of the prognostic value of the signet ring cell (SRC) type have yielded inconsistent results. Therefore, the aim of the present meta-analysis is to explore the clinicopathological characteristics and prognostic value of SRCs. Methods: Relevant articles that compared SRC and non-SRC type in PubMed and Web of Science were comprehensively searched. Then, a meta-analysis was performed. Results: A total of 19 studies including 35947 cases were analyzed. Compared with non-SRC patients, SRC patients tended to be younger (WMD: -3.88, P=0.001) and predominantly female (OR: 1.60, P<0.001). Additionally, SRC patients exhibited less upper third tumor location (OR: 0.62, P<0.001) and less frequent hematogenous metastasis (OR: 0.41, P<0.001). There was no difference in overall survival (OS) between SRC and non-SRC patients in the total population (HR: 1.02, P=0.830). Early gastric cancer with SRCs was associated with better OS (HR: 0.57, P=0.002), while advanced gastric cancer with non-SRCs was associated with a worse prognosis (HR: 1.17, P<0.001). Conclusions: This meta-analysis revealed that SRC tends to affect young females and tends to be located in the middle and lower third of the stomach. Early SRCs are associated with better prognoses, while advanced SRCs are associated with worse prognoses.
40 CFR Appendix V to Part 86 - The Standard Road Cycle (SRC)
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false The Standard Road Cycle (SRC) V... Appendix V to Part 86—The Standard Road Cycle (SRC) 1. The standard road cycle (SRC) is a mileage accumulation cycle that may be used for any vehicle which is covered by the applicability provisions of § 86...
Cross, F R; Garber, E A; Hanafusa, H
1985-01-01
We have constructed deletions within the region of cloned Rous sarcoma virus DNA coding for the N-terminal 30 kilodaltons of p60src. Infectious virus was recovered after transfection. Deletions of amino acids 15 to 149, 15 to 169, or 149 to 169 attenuated but did not abolish transforming activity, as assayed by focus formation and anchorage-independent growth. These deletions also had only slight effects on the tyrosine kinase activity of the mutant src protein. Deletion of amino acids 169 to 264 or 15 to 264 completely abolished transforming activity, and src kinase activity was reduced at least 10-fold. However, these mutant viruses generated low levels of transforming virus by recombination with the cellular src gene. The results suggest that as well as previously identified functional domains for p60src myristylation and membrane binding (amino acids 1 to 14) and tyrosine kinase activity (amino acids 250 to 526), additional N-terminal sequences (particularly amino acids 82 to 169) can influence the transforming activity of the src protein. Images PMID:2426576
c-Src activity is differentially required by cancer cell motility modes.
Logue, Jeremy S; Cartagena-Rivera, Alexander X; Chadwick, Richard S
2018-04-01
Cancer cell migration requires that cells respond and adapt to their surroundings. In the absence of extracellular matrix cues, cancer cells will undergo a mesenchymal to ameboid transition, whereas a highly confining space will trigger a switch to "leader bleb-based" migration. To identify oncogenic signaling pathways mediating these transitions, we undertook a targeted screen using clinically useful inhibitors. Elevated Src activity was found to change actin and focal adhesion dynamics, whereas inhibiting Src triggered focal adhesion disassembly and blebbing. On non-adherent substrates and in collagen matrices, amoeboid-like, blebbing cells having high Src activity formed protrusions of the plasma membrane. To evaluate the role of Src in confined cells, we use a novel approach that places cells under a slab of polydimethylsiloxane (PDMS), which is held at a defined height. Using this method, we find that leader bleb-based migration is resistant to Src inhibition. High Src activity was found to markedly change the architecture of cortical actomyosin, reduce cell mechanical properties, and the percentage of cells that undergo leader bleb-based migration. Thus, Src is a signal transducer that can potently influence transitions between migration modes with implications for the rational development of metastasis inhibitors.
NASA Astrophysics Data System (ADS)
Setyorini, D.; Nurcahyani, P. R.
2016-04-01
Currently the seaweed is processed flour and Semi Refined Carraagenan (SRC). However, total production is small, but both of these products have a high value and are used in a wide variety of products such as cosmetics, processed foods, medicines, and edible film. The aim of this study were (1) to determine the effect of SRC on mechanical characteristics of edible film, (2) to determine the best edible film which added by SRC with different concentration. The edible film added by SRC flour which divided into three concentrations of SRC. There are 1.5%; 3%; and 4.5% of SRC, then added 3% glycerol and 0.6% arabic gum. The mechanical properties of the film measured by a universal testing machine Orientec Co. Ltd., while the water vapor permeability measured by the gravimetric method dessicant modified. The experimental design used was completely randomized design with a further test of Duncan. The result show SRC concentration differences affect the elongation breaking point and tensile strength. But not significant effect on the thickness, yield strength and the modulus of elasticity. The best edible film is edible film with the addition of SRC 4.5%.
Inhibition of Src by microRNA-23b increases the cisplatin sensitivity of chondrosarcoma cells.
Huang, Kai; Chen, Jun; Yang, Mo-Song; Tang, Yu-Jun; Pan, Feng
2017-01-01
Chondrosarcomas are malignant cartilage-forming tumors from low-grade to high-grade aggressive tumors characterized by metastasis. Cisplatin is an effective DNA-damaging anti-tumor agent for the treatment against a wide variety of solid tumors. However, chondrosarcomas are notorious for their resistance to conventional chemo- and radio- therapies. In this study, we report miR-23b acts as a tumor suppressor in chondrosarcoma. The expressions of miR-23b are down-regulated in chondrosarcoma patient samples and cell lines compared with adjacent normal tissues and human primary chondrocytes. In addition, overexpression of miR-23b suppresses chondrosarcoma cell proliferation. By comparison of the cisplatin resistant chondrosarcoma cells and parental cells, we observed miR-23b was significantly down regulated in cisplatin resistant cells. Moreover, we demonstrate here Src kinase is a direct target of miR-23b in chondrosarcoma cells. Overexpression of miR-23b suppresses Src-Akt pathway, leading to the sensitization of cisplatin resistant chondrosarcoma cells to cisplatin. This chemo-sensitivity effect by the miR-23b-mediated inhibition of Src-Akt pathway is verified with the restoration of Src kinase in miR-23b-overespressing chondrosarcoma cells, resulting in the acquirement of resistance to cisplatin. In summary, our study reveals a novel role of miR-23b in cisplatin resistance in chondrosarcoma and will contribute to the development of the microRNA-targeted anti-cancer therapeutics.
Signaling network of the Btk family kinases.
Qiu, Y; Kung, H J
2000-11-20
The Btk family kinases represent new members of non-receptor tyrosine kinases, which include Btk/Atk, Itk/Emt/Tsk, Bmx/Etk, and Tec. They are characterized by having four structural modules: PH (pleckstrin homology) domain, SH3 (Src homology 3) domain, SH2 (Src homology 2) domain and kinase (Src homology 1) domain. Increasing evidence suggests that, like Src-family kinases, Btk family kinases play central but diverse modulatory roles in various cellular processes. They participate in signal transduction in response to virtually all types of extracellular stimuli which are transmitted by growth factor receptors, cytokine receptors, G-protein coupled receptors, antigen-receptors and integrins. They are regulated by many non-receptor tyrosine kinases such as Src, Jak, Syk and FAK family kinases. In turn, they regulate many of major signaling pathways including those of PI3K, PLCgamma and PKC. Both genetic and biochemical approaches have been used to dissect the signaling pathways and elucidate their roles in growth, differentiation and apoptosis. An emerging new role of this family of kinases is cytoskeletal reorganization and cell motility. The physiological importance of these kinases was amply demonstrated by their link to the development of immunodeficiency diseases, due to germ-line mutations. The present article attempts to review the structure and functions of Btk family kinases by summarizing our current knowledge on the interacting partners associated with the different modules of the kinases and the diverse signaling pathways in which they are involved.
Thang, Nguyen Dinh; Yajima, Ichiro; Kumasaka, Mayuko Y; Ohnuma, Shoko; Yanagishita, Takeshi; Hayashi, Rumiko; Shekhar, Hossain U; Watanabe, Daisuke; Kato, Masashi
2011-01-01
Explosive increases in skin cancers have been reported in more than 36 million patients with arsenicosis caused by drinking arsenic-polluted well water. This study and previous studies showed high levels of barium as well as arsenic in the well water. However, there have been no reports showing a correlation between barium and cancer. In this study, we examined whether barium (BaCl(2)) may independently have cancer-related effects on human precancerous keratinocytes (HaCaT). Barium (5-50 µM) biologically promoted anchorage-independent growth and invasion of HaCaT cells in vitro. Barium (5 µM) biochemically enhanced activities of c-SRC, FAK, ERK and MT1-MMP molecules, which regulate anchorage-independent growth and/or invasion. A SRC kinase specific inhibitor, protein phosphatase 2 (PP2), blocked barium-mediated promotion of anchorage-independent growth and invasion with decreased c-SRC kinase activity. Barium (2.5-5 µM) also promoted anchorage-independent growth and invasion of fibroblasts (NIH3T3) and immortalized nontumorigenic melanocytes (melan-a), but not transformed cutaneous squamous cell carcinoma (HSC5 and A431) and malignant melanoma (Mel-ret) cells, with activation of c-SRC kinase. Taken together, our biological and biochemical findings newly suggest that the levels of barium shown in drinking well water independently has the cancer-promoting effects on precancerous keratinocytes, fibroblast and melanocytes in vitro.
Thang, Nguyen Dinh; Yajima, Ichiro; Kumasaka, Mayuko Y.; Ohnuma, Shoko; Yanagishita, Takeshi; Hayashi, Rumiko; Shekhar, Hossain U.; Watanabe, Daisuke; Kato, Masashi
2011-01-01
Explosive increases in skin cancers have been reported in more than 36 million patients with arsenicosis caused by drinking arsenic-polluted well water. This study and previous studies showed high levels of barium as well as arsenic in the well water. However, there have been no reports showing a correlation between barium and cancer. In this study, we examined whether barium (BaCl2) may independently have cancer-related effects on human precancerous keratinocytes (HaCaT). Barium (5–50 µM) biologically promoted anchorage-independent growth and invasion of HaCaT cells in vitro. Barium (5 µM) biochemically enhanced activities of c-SRC, FAK, ERK and MT1-MMP molecules, which regulate anchorage-independent growth and/or invasion. A SRC kinase specific inhibitor, protein phosphatase 2 (PP2), blocked barium-mediated promotion of anchorage-independent growth and invasion with decreased c-SRC kinase activity. Barium (2.5–5 µM) also promoted anchorage-independent growth and invasion of fibroblasts (NIH3T3) and immortalized nontumorigenic melanocytes (melan-a), but not transformed cutaneous squamous cell carcinoma (HSC5 and A431) and malignant melanoma (Mel-ret) cells, with activation of c-SRC kinase. Taken together, our biological and biochemical findings newly suggest that the levels of barium shown in drinking well water independently has the cancer-promoting effects on precancerous keratinocytes, fibroblast and melanocytes in vitro. PMID:22022425
Aggregation of lipid rafts activates c-met and c-Src in non-small cell lung cancer cells.
Zeng, Juan; Zhang, Heying; Tan, Yonggang; Sun, Cheng; Liang, Yusi; Yu, Jinyang; Zou, Huawei
2018-05-30
Activation of c-Met, a receptor tyrosine kinase, induces radiation therapy resistance in non-small cell lung cancer (NSCLC). The activated residual of c-Met is located in lipid rafts (Duhon et al. Mol Carcinog 49:739-49, 2010). Therefore, we hypothesized that disturbing the integrity of lipid rafts would restrain the activation of the c-Met protein and reverse radiation resistance in NSCLC. In this study, a series of experiments was performed to test this hypothesis. NSCLC A549 and H1993 cells were incubated with methyl-β-cyclodextrin (MβCD), a lipid raft inhibitor, at different concentrations for 1 h before the cells were X-ray irradiated. The following methods were used: clonogenic (colony-forming) survival assays, flow cytometry (for cell cycle and apoptosis analyses), immunofluorescence microscopy (to show the distribution of proteins in lipid rafts), Western blotting, and biochemical lipid raft isolation (purifying lipid rafts to show the distribution of proteins in lipid rafts). Our results showed that X-ray irradiation induced the aggregation of lipid rafts in A549 cells, activated c-Met and c-Src, and induced c-Met and c-Src clustering to lipid rafts. More importantly, MβCD suppressed the proliferation of A549 and H1993 cells, and the combination of MβCD and radiation resulted in additive increases in A549 and H1993 cell apoptosis. Destroying the integrity of lipid rafts inhibited the aggregation of c-Met and c-Src to lipid rafts and reduced the expression of phosphorylated c-Met and phosphorylated c-Src in lipid rafts. X-ray irradiation induced the aggregation of lipid rafts and the clustering of c-Met and c-Src to lipid rafts through both lipid raft-dependent and lipid raft-independent mechanisms. The lipid raft-dependent activation of c-Met and its downstream pathways played an important role in the development of radiation resistance in NSCLC cells mediated by c-Met. Further studies are still required to explore the molecular mechanisms of the activation of c-Met and c-Src in lipid rafts induced by radiation.
Cooper, Colin A; Zhang, Kun; Andres, Sara N; Fang, Yuan; Kaniuk, Natalia A; Hannemann, Mandy; Brumell, John H; Foster, Leonard J; Junop, Murray S; Coombes, Brian K
2010-02-05
Many Gram-negative bacteria colonize and exploit host niches using a protein apparatus called a type III secretion system (T3SS) that translocates bacterial effector proteins into host cells where their functions are essential for pathogenesis. A suite of T3SS-associated chaperone proteins bind cargo in the bacterial cytosol, establishing protein interaction networks needed for effector translocation into host cells. In Salmonella enterica serovar Typhimurium, a T3SS encoded in a large genomic island (SPI-2) is required for intracellular infection, but the chaperone complement required for effector translocation by this system is not known. Using a reverse genetics approach, we identified a multi-cargo secretion chaperone that is functionally integrated with the SPI-2-encoded T3SS and required for systemic infection in mice. Crystallographic analysis of SrcA at a resolution of 2.5 A revealed a dimer similar to the CesT chaperone from enteropathogenic E. coli but lacking a 17-amino acid extension at the carboxyl terminus. Further biochemical and quantitative proteomics data revealed three protein interactions with SrcA, including two effector cargos (SseL and PipB2) and the type III-associated ATPase, SsaN, that increases the efficiency of effector translocation. Using competitive infections in mice we show that SrcA increases bacterial fitness during host infection, highlighting the in vivo importance of effector chaperones for the SPI-2 T3SS.
Prognostic Significance of Signet Ring Gastric Cancer
Taghavi, Sharven; Jayarajan, Senthil N.; Davey, Adam; Willis, Alliric I.
2012-01-01
Purpose Studies in Asia have questioned the dictum that signet ring cell carcinoma (SRC) has a worse prognosis than other forms of gastric cancer. Our study determined differences in presentation and outcomes between SRC and gastric adenocarcinoma (AC) in the United States. Patients and Methods The National Cancer Institute Surveillance, Epidemiology, and End Results database was reviewed for SRC and AC from 2004 to 2007. Results We reviewed 10,246 cases of patients with gastric cancer, including 2,666 of SRC and 7,580 of AC. SRC presented in younger patients (61.9 v 68.7 years; P < .001) and less often in men (52.7% v 68.7%; P < .001). SRC patients were more frequently black (11.3% v 10.9%), Asian (16.4% v 13.2%), American Indian/Alaska Native (0.9% v 0.8%), or Hispanic (23.3% v 14.0%; P < .001). SRC was more likely to be stage T3-4 (45.8% v 33.3%), have lymph node spread (59.7% v 51.8%), and distant metastases (40.2% v 37.6%; P < .001). SRC was more likely to be found in the lower (30.7% v 24.2%) and middle stomach (30.6% v 20.7%; P < .001). Median survival was not different between the two (AC, 14.0 months v SRC, 13.0 months; P = .073). Multivariable analyses demonstrated SRC was not associated with mortality (hazard ratio [HR], 1.05; 95% CI, 0.96 to 1.11; P = .150). Mortality was associated with age (HR, 1.01; 95% CI, 1.01 to 1.02; P < .001), black race (HR, 1.10; 95% CI, 1.01 to 1.20; P = .026), and tumor grade. Variables associated with lower mortality risk included Asian race (HR, 0.83; 95% CI, 0.77 to 0.91; P < .001) and surgery (HR, 0.37; 95% CI, 0.34 to 0.39; P < .001). Conclusion In the United States, SRC significantly differs from AC in extent of disease at presentation. However, when adjusted for stage, SRC does not portend a worse prognosis. PMID:22927530
Maruoka, Takayuki; Kitanaka, Akira; Kubota, Yoshitsugu; Yamaoka, Genji; Kameda, Tomohiro; Imataki, Osamu; Dobashi, Hiroaki; Bandoh, Shuji; Kadowaki, Norimitsu; Tanaka, Terukazu
2018-03-13
Small-cell lung cancer (SCLC) is intractable due to its high propensity for relapse. Novel agents are thus needed for SCLC treatment. Lemongrass essential oil (LG-EO) and its major constituent, citral, have been reported to inhibit the proliferation and survival of several types of cancer cells. However, the precise mechanisms through which LG-EO and citral exert their effects on SCLC cells have not been fully elucidated. SCLC cells express Src and have high levels of Src-tyrosine kinase (Src-TK) activity. In most SCLC cell lines, constitutive phosphorylation of Stat3(Y705), which is essential for its activation, has been detected. Src-TK can phosphorylate Stat3(Y705), and activated Stat3 promotes the expression of the anti-apoptotic factors Bcl-xL and Mcl-1. In the present study, LG-EO and citral prevented Src-TK from phosphorylating Stat3(Y705), resulting in decreased Bcl-xL and Mcl-1 expression, in turn suppressing the proliferation/survival of SCLC cells. To confirm these findings, the wild-type-src gene was transfected into the LU135 SCLC cell line (LU135‑wt-src), in which Src and activated phospho-Stat3(Y705) were overexpressed. The suppression of cell proliferation and the induction of apoptosis by treatment with LG-EO or citral were significantly attenuated in the LU135-wt-src cells compared with the control LU135-mock cells. The signal transducer and activator of transcription 3 (Stat3) signaling pathway is also associated with intrinsic drug resistance. LU135-wt-src cells were significantly resistant to conventional chemotherapeutic agents compared with LU135-mock cells. The combined effects of citral and each conventional chemotherapeutic agent on SCLC cells were also evaluated. The combination treatment exerted additive or more prominent effects on LU135-wt-src, LU165 and MN1112 cells, which are relatively chemoresistant SCLC cells. These findings suggest that either LG-EO or citral, alone or in combination with chemotherapeutic agents, may be a novel therapeutic option for SCLC patients.
The role of Src kinase in the biology and pathogenesis of Acanthamoeba castellanii
2012-01-01
Background Acanthamoeba species are the causative agents of fatal granulomatous encephalitis in humans. Haematogenous spread is thought to be a primary step, followed by blood–brain barrier penetration, in the transmission of Acanthmaoeba into the central nervous system, but the associated molecular mechanisms remain unclear. Here, we evaluated the role of Src, a non-receptor protein tyrosine kinase in the biology and pathogenesis of Acanthamoeba. Methods Amoebistatic and amoebicidal assays were performed by incubating amoeba in the presence of Src kinase-selective inhibitor, PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine) and its inactive analog, PP3 (4-amino-7-phenylpyrazolo[3,4-d]pyrimidine). Using this inhibitor, the role of Src kinase in A. castellanii interactions with Escherichia coli was determined. Zymographic assays were performed to study effects of Src kinase on extracellular proteolytic activities of A. castellanii. The human brain microvascular endothelial cells were used to determine the effects of Src kinase on A. castellanii adhesion to and cytotoxicity of host cells. Results Inhibition of Src kinase using a specific inhibitor, PP2 (4-amino-5-(4 chlorophenyl)-7-(t-butyl)pyrazolo [3,4-d] pyrimidine) but not its inactive analog, PP3 (4-amino-7-phenylpyrazolo[3,4-d] pyrimidine), had detrimental effects on the growth of A. castellanii (keratitis isolate, belonging to the T4 genotype). Interestingly, inhibition of Src kinase hampered the phagocytic ability of A. castellanii, as measured by the uptake of non-invasive bacteria, but, on the contrary, invasion by pathogenic bacteria was enhanced. Zymographic assays revealed that inhibition of Src kinases reduced extracellular protease activities of A. castellanii. Src kinase inhibition had no significant effect on A. castellanii binding to and cytotoxicity of primary human brain microvascular endothelial cells, which constitute the blood–brain barrier. Conclusions For the first time, these findings demonstrated that Src kinase is involved in A. castellanii proliferation, protease secretions and phagocytic properties. Conversely, invasion of Acanthamoeba by pathogenic bacteria was stimulated by Src kinase inhibition. PMID:22676352
Schlaepfer, D D; Hunter, T
1996-10-01
Focal adhesion kinase (FAK) is a nonreceptor protein-tyrosine kinase (PTK) that associates with integrin receptors and participates in extracellular matrix-mediated signal transduction events. We showed previously that the c-Src nonreceptor PTK and the Grb2 SH2/SH3 adaptor protein bound directly to FAK after fibronectin stimulation (D. D. Schlaepfer, S.K. Hanks, T. Hunter, and P. van der Geer, Nature [London] 372:786-791, 1994). Here, we present evidence that c-Src association with FAK is required for Grb2 binding to FAK. Using a tryptic phosphopeptide mapping approach, the in vivo phosphorylation of the Grb2 binding site on FAK (Tyr-925) was detected after fibronectin stimulation of NIH 3T3 cells and was constitutively phosphorylated in v-Src-transformed NIH 3T3 cells. In vitro, c-Src phosphorylated FAK Tyr-925 in a glutathione S-transferase-FAK C-terminal domain fusion protein, whereas FAK did not. Using epitope-tagged FAK constructs, transiently expressed in human 293 cells, we determined the effect of site-directed mutations on c-Src and Grb2 binding to FAK. Mutation of FAK Tyr-925 disrupted Grb2 binding, whereas mutation of the c-Src binding site on FAK (Tyr-397) disrupted both c-Src and Grb2 binding to FAK in vivo. These results support a model whereby Src-family PTKs are recruited to FAK and focal adhesions following integrin-induced autophosphorylation and exposure of FAK Tyr-397. Src-family binding and phosphorylation of FAK at Tyr-925 creates a Grb2 SH2-domain binding site and provides a link to the activation of the Ras signal transduction pathway. In Src-transformed cells, this pathway may be constitutively activated as a result of FAK Tyr-925 phosphorylation in the absence of integrin stimulation.
Willey, Christopher D; Balasubramanian, Sundaravadivel; Rodríguez Rosas, María C; Ross, Robert S; Kuppuswamy, Dhandapani
2003-06-01
In pressure-overloaded myocardium, our recent study demonstrated cytoskeletal assembly of c-Src and other signaling proteins which was partially mimicked in vitro using adult feline cardiomyocytes embedded in three-dimensional (3D) collagen matrix and stimulated with an integrin-binding Arg-Gly-Asp (RGD) peptide. In the present study, we improved this model further to activate c-Src and obtain a full assembly of the focal adhesion complex (FAC), and characterized c-Src localization and integrin subtype(s) involved. RGD dose response experiments revealed that c-Src activation occurs subsequent to its cytoskeletal recruitment and is accompanied by p130Cas cytoskeletal binding and focal adhesion kinase (FAK) Tyr925 phosphorylation. When cardiomyocytes expressing hexahistidine-tagged c-Src via adenoviral gene delivery were used for RGD stimulation, the expressed c-Src exhibited relocation: (i) biochemical analysis revealed c-Src movement from the detergent-soluble to the -insoluble cytoskeletal fraction and (ii) confocal microscopic analysis showed c-Src movement from a nuclear/perinuclear to a sarcolemmal region. RGD treatment also caused sarcolemmal co-localization of FAK and vinculin. Characterization of integrin subtypes revealed that beta3, but not beta1, integrin plays a predominant role: (i) expression of cytoplasmic domain of beta1A integrin did not affect the RGD-stimulated FAC formation and (ii) both pressure-overloaded myocardium and RGD-stimulated cardiomyocytes exhibited phosphorylation of beta3 integrin at Tyr773/785 sites but not beta1 integrin at Thr788/789 sites. Together these data indicate that RGD treatment in cardiomyocytes causes beta3 integrin activation and c-Src sarcolemmal localization, that subsequent c-Src activation is accompanied by p130Cas binding and FAK Tyr925 phosphorylation, and that these events might be crucial for growth and remodeling of hypertrophying adult cardiomyocytes.
Xie, W; Fletcher, B S; Andersen, R D; Herschman, H R
1994-10-01
We recently reported the cloning of a mitogen-inducible prostaglandin synthase gene, TIS10/PGS2. In addition to growth factors and tumor promoters, the v-src oncogene induces TIS10/PGS2 expression in 3T3 cells. Deletion analysis, using luciferase reporters, identifies a region between -80 and -40 nucleotides 5' of the TIS10/PGS2 transcription start site that mediates pp60v-src induction in 3T3 cells. This region contains the sequence CGTCACGTG, which includes overlapping ATF/CRE (CGTCA) and E-box (CACGTG) sequences. Gel shift-oligonucleotide competition experiments with nuclear extracts from cells stably transfected with a temperature-sensitive v-src gene demonstrate that the CGTCACGTG sequence can bind proteins at both the ATF/CRE and E-box sequences. Dominant-negative CREB and Myc proteins that bind DNA, but do not transactivate, block v-src induction of a luciferase reporter driven by the first 80 nucleotides of the TIS10/PGS2 promoter. Mutational analysis distinguishes which TIS10/PGS2 cis-acting element mediates pp60v-src induction. E-box mutation has no effect on the fold induction in response to pp60v-src. In contrast, ATF/CRE mutation attenuates the pp60v-src response. Antibody supershift and methylation interference experiments demonstrate that CREB and at least one other ATF transcription factor in these extracts bind to the TIS10/PGS2 ATF/CRE element. Expression of a dominant-negative ras gene also blocks TIS10/PGS2 induction by v-src. Our data suggest that Ras mediates pp60v-src activation of an ATF transcription factor, leading to induced TIS10/PGS2 expression via the ATF/CRE element of the TIS10/PGS2 promoter. This is the first description of v-src activation of gene expression via an ATF/CRE element.
Behnke, Sabrina; Parker, Albert E; Woodall, Dawn; Camper, Anne K
2011-10-01
Although the detachment of cells from biofilms is of fundamental importance to the dissemination of organisms in both public health and clinical settings, the disinfection efficacies of commonly used biocides on detached biofilm particles have not been investigated. Therefore, the question arises whether cells in detached aggregates can be killed with disinfectant concentrations sufficient to inactivate planktonic cells. Burkholderia cepacia and Pseudomonas aeruginosa were grown in standardized laboratory reactors as single species and in coculture. Cluster size distributions in chemostats and biofilm reactor effluent were measured. Chlorine susceptibility was assessed for planktonic cultures, attached biofilm, and particles and cells detached from the biofilm. Disinfection tolerance generally increased with a higher percentage of larger cell clusters in the chemostat and detached biofilm. Samples with a lower percentage of large clusters were more easily disinfected. Thus, disinfection tolerance depended on the cluster size distribution rather than sample type for chemostat and detached biofilm. Intact biofilms were more tolerant to chlorine independent of species. Homogenization of samples led to significantly increased susceptibility in all biofilm samples as well as detached clusters for single-species B. cepacia, B. cepacia in coculture, and P. aeruginosa in coculture. The disinfection efficacy was also dependent on species composition; coculture was advantageous to the survival of both species when grown as a biofilm or as clusters detached from biofilm but, surprisingly, resulted in a lower disinfection tolerance when they were grown as a mixed planktonic culture.
P27/Kip1 is responsible for magnolol-induced U373 apoptosis in vitro and in vivo.
Chen, Li-Ching; Lee, Wen-Sen
2013-03-20
Previously, we demonstrated that magnolol, a hydroxylated biphenyl compound isolated from the bark of Magnolia officinalis, at low concentrations (3-10 μM) exerted an antiproliferation effect in colon cancer, hepatoma, and glioblastoma (U373) cell lines through upregulation of the p21/Cip1 protein. Magnolol at a higher concentration of 100 μM, however, induced apoptosis and upregulated p27/Kip1 expression in U373. In the present study, we further studied whether the increased p27/Kip1 expression contributes to the magnolol-induced apoptosis in U373. Our data show that knock-down of p27/Kip1 expression significantly suppressed the magnolol-induced apoptosis, suggesting that p27/Kip1 might play an important role in the regulation of magnolol-induced apoptosis. This notion was further supported by demonstrating that magnolol induced an increase of the caspase activity in U373 in vitro and in vivo, and these effects were abolished by pretransfection of the cell with p27/Kip1 siRNA. To delineate the possible signaling pathways involved in the magnolol-induced increases of p27/Kip1 expression and apoptosis, we found that magnolol (100 μM) increased the levels of phosphorylated cSrc (p-cSrc), p-ERK, p-p38 MAP kinase (p-p38 MAPK), and p-AKT but not p-JNK in U373. Moreover, pretreatment of U373 with a cSrc inhibitor (PP2), a PI3K inhibitor (LY294002), an ERK inhibitor (PD98059), or a p38 MAPK inhibitor (SB203580) but not a JNK inhibitor (SP600125) significantly reduced the magnolol-induced increases of p27/Kip1 protein levels and apoptosis. Taken together, our data suggest that magnolol at a higher concentration of 100 μM induced apopotosis in U373 cells through cSrc-mediated upregulation of p27/Kip1.
Discovery of Diffuse Hard X-Ray Emission from the Vicinity of PSR J1648-4611 with Suzaku
NASA Astrophysics Data System (ADS)
Sakai, Michito; Matsumoto, Hironori; Haba, Yoshito; Kanou, Yasufumi; Miyamoto, Youhei
2013-06-01
We observed the pulsar PSR J1648-4611 with Suzaku. Two X-ray sources, Suzaku J1648-4610 (Src A) and Suzaku J1648-4615 (Src B), were found in the field of view. Src A is coincident with the pulsar PSR J1648-4611, which was also detected by the Fermi Gamma-ray Space Telescope. A hard-band image indicates that Src A is spatially extended. We found point sources in the vicinity of Src A by using a Chandra image of the same region, but the point sources have soft X-ray emission, and cannot explain the hard X-ray emission of Src A. The hard-band spectrum of Src A can be reproduced by a power-law model with a photon index of 2.0+0.9-0.7. The X-ray flux in the 2-10 keV band is 1.4 × 10-13 erg cm-2 s-1. The diffuse emission suggests a pulsar wind nebula around PSR J1648&"8211;4611, but the luminosity of Src A is much larger than that expected from the spin-down luminosity of the pulsar. Parts of the very-high-energy γ-ray emission of HESS J1646-458 may be powered by this pulsar wind nebula driven by PSR J1648-4611. Src B has soft emission, and its X-ray spectrum can be described by a power-law model with a photon index of 3.0+1.4-0.8. The X-ray flux in the 0.4-10 keV band is 6.4 × 10-14 erg s-1 cm-2. No counterpart for Src B has been found in the literature.
Zhang, Guoqing; Sun, Huaijiang; Xia, Guiyu; Sun, Quansen
2016-07-07
Sparse representation based classification (SRC) has been developed and shown great potential for real-world application. Based on SRC, Yang et al. [10] devised a SRC steered discriminative projection (SRC-DP) method. However, as a linear algorithm, SRC-DP cannot handle the data with highly nonlinear distribution. Kernel sparse representation-based classifier (KSRC) is a non-linear extension of SRC and can remedy the drawback of SRC. KSRC requires the use of a predetermined kernel function and selection of the kernel function and its parameters is difficult. Recently, multiple kernel learning for SRC (MKL-SRC) [22] has been proposed to learn a kernel from a set of base kernels. However, MKL-SRC only considers the within-class reconstruction residual while ignoring the between-class relationship, when learning the kernel weights. In this paper, we propose a novel multiple kernel sparse representation-based classifier (MKSRC), and then we use it as a criterion to design a multiple kernel sparse representation based orthogonal discriminative projection method (MK-SR-ODP). The proposed algorithm aims at learning a projection matrix and a corresponding kernel from the given base kernels such that in the low dimension subspace the between-class reconstruction residual is maximized and the within-class reconstruction residual is minimized. Furthermore, to achieve a minimum overall loss by performing recognition in the learned low-dimensional subspace, we introduce cost information into the dimensionality reduction method. The solutions for the proposed method can be efficiently found based on trace ratio optimization method [33]. Extensive experimental results demonstrate the superiority of the proposed algorithm when compared with the state-of-the-art methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chackalaparampil, I.; Mukherjee, B.B.; Peri, A.
1994-09-01
Osteopetrosis, affecting mice and humans alike, arises from reduced or impaired bone resorption, causing abnormally dense bone formation. Normal bone differentiation requires continuous resorption and remodeling by osteoclasts which are derived from monocyte/macrophage lineage in the bone marrow. It has been reported that targeted homozygous disruption of c-src proto-oncogene in mice results in the development of osteopetrosis due to impaired bone-resorbing function of osteoclast cells. However, the molecular mechanism(s) which leads to osteoclast dysfunction in c-src deficient (src{sup -/-}) mice remains unclear. Here, we report that in embryonic fibroblasts derived from homozygous Src{sup -/-} mice, the expression of the genemore » coding for osteopontin (OP), a phosphorylated glycoprotein involved in bone differentiation, is drastically repressed. OP gene expression is not, however, affected in the heterozygous (Src{sup +/-}) mutant cells of identical origin, or in the c-src expression and OP production. Moreover, OP expression in c-src-deficient cells could be rescued upon treatment with 12-0-tetradecanoyl phorbol-13-myristate-acetate or okadaic acid. These observations indicate that OP expression is regulated via an src-mediated protein kinase C signaling pathway. Since it is known that OP mediates osteoclast adherence to the bone matrix, a key event in bone differentiation, our data is most significant in that they strongly suggest that drastic inhibition of synthesis of OP prevents osteoclasts in Src{sup -/-} mice from anchoring to the bone matrix. Consequently, this disruption of osteoclast adherence impairs their ability to form bone-resorbing ruffled border, causing osteopetrosis.« less
Horng, Chi-Ting; Shieh, Po-Chuen; Tan, Tzu-Wei; Yang, Wei-Hung; Tang, Chih-Hsin
2014-01-01
Chondrosarcoma, a primary malignant bone cancer, has potential for local invasion and distant metastasis, especially to the lungs. Patients diagnosed with it show poor prognosis. Paeonol (2'-hydroxy-4'-methoxyacetophenone), the main active compound of traditional Chinese remedy Paeonia lactiflora Pallas, exhibits anti-inflammatory and anti-tumor activity; whether paeonol regulates metastatic chondrosarcoma is largely unknown. Here, we find paeonol do not increase apoptosis. By contrast, at non-cytotoxic concentrations, paeonol suppresses migration and invasion of chondrosarcoma cells. We also demonstrate paeonol enhancing miR-141 expression and miR-141 inhibitor reversing paeonol-inhibited cell motility; paeonol also reduces protein kinase C (PKC)δ and c-Src kinase activity. Since paeonol inhibits migration and invasion of human chondrosarcoma via up-regulation of miR-141 via PKCδ and c-Src pathways, it thus might be a novel anti-metastasis agent for treatment of metastatic chondrosarcoma. PMID:24992595
Lessons Learned from Data on Women's Careers in Physics
NASA Astrophysics Data System (ADS)
Ivie, Rachel
2010-03-01
It is well known that the participation of women in physics decreases at every step along the academic ladder. However, the exact points at which this loss occurs are less well understood. In this talk, I will present data on women in physics collected by the Statistical Research Center (SRC) of the American Institute of Physics. I will compare these data to data recently published in a National Research Council (NRC) Report, Gender Differences at Critical Transitions in the Careers of Science, Engineering, and Mathematics Faculty. This report includes data on gender differences in: number of applications for faculty positions in physics, number of interviews, number of hires, tenure and promotion rates, salaries, and start-up packages. Taken together, the SRC and the NRC data can inform the physics community about specific areas that should be addressed to increase the representation of women in physics faculty positions. SRC data on minority women in physics also will be presented.
An improved SRC method based on virtual samples for face recognition
NASA Astrophysics Data System (ADS)
Fu, Lijun; Chen, Deyun; Lin, Kezheng; Li, Ao
2018-07-01
The sparse representation classifier (SRC) performs classification by evaluating which class leads to the minimum representation error. However, in real world, the number of available training samples is limited due to noise interference, training samples cannot accurately represent the test sample linearly. Therefore, in this paper, we first produce virtual samples by exploiting original training samples at the aim of increasing the number of training samples. Then, we take the intra-class difference as data representation of partial noise, and utilize the intra-class differences and training samples simultaneously to represent the test sample in a linear way according to the theory of SRC algorithm. Using weighted score level fusion, the respective representation scores of the virtual samples and the original training samples are fused together to obtain the final classification results. The experimental results on multiple face databases show that our proposed method has a very satisfactory classification performance.
Broglio, Steven P; Kontos, Anthony P; Levin, Harvey; Schneider, Kathryn; Wilde, Elisabeth A; Cantu, Robert C; Feddermann-Demont, Nina; Fuller, Gordon; Gagnon, Isabelle; Gioia, Gerry; Giza, Christopher C; Griesbach, Grace Sophia; Leddy, John J; Lipton, Michael L; Mayer, Andrew; McAllister, Thomas; McCrea, Michael; McKenzie, Lara; Putukian, Margot; Signoretti, Stefano; Suskauer, Stacy J; Tamburro, Robert; Turner, Michael; Yeates, Keith Owen; Zemek, Roger; Ala'i, Sherita; Esterlitz, Joy; Gay, Katelyn; Bellgowan, Patrick S F; Joseph, Kristen
2018-05-02
Through a partnership with the National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), and Department of Defense (DoD), the development of Sport-Related Concussion (SRC) Common Data Elements (CDEs) was initiated. The aim of this collaboration was to increase the efficiency and effectiveness of clinical research studies and clinical treatment outcomes, increase data quality, facilitate data sharing across studies, reduce study start-up time, more effectively aggregate information into metadata results, and educate new clinical investigators. The SRC CDE Working Group consisted of 34 worldwide experts in concussion from varied fields of related expertise, divided into three Subgroups: Acute (<72 hours post-concussion), Subacute (3 days-3 months post-concussion) and Persistent/Chronic (>3 months post-concussion). To develop CDEs, the Subgroups reviewed various domains, and then selected from, refined, and added to existing CDEs, case report forms and field-tested data elements from national registries and funded research studies. Recommendations were posted to the NINDS CDE Website for Public Review from February 2017 to April 2017. Following an internal Working Group review of recommendations, along with consideration of comments received from the Public Review period, the first iteration (Version 1.0) of the NINDS SRC CDEs was completed in June 2017. The recommendations include Core and Supplemental - Highly Recommended CDEs for cognitive data elements and symptom checklists, as well as other outcomes and endpoints (e.g., vestibular, oculomotor, balance, anxiety, depression) and sample case report forms (e.g., injury reporting, demographics, concussion history) for domains typically included in clinical research studies. The NINDS SRC CDEs and supporting documents are publicly available on the NINDS CDE website https://www.commondataelements.ninds.nih.gov/. Widespread use of CDEs by researchers and clinicians will facilitate consistent SRC clinical research and trial design, data sharing, and metadata retrospective analysis.
Toray, Hisashi; Hasegawa, Tomoka; Sakagami, Naoko; Tsuchiya, Erika; Kudo, Ai; Zhao, Shen; Moritani, Yasuhito; Abe, Miki; Yoshida, Taiji; Yamamoto, Tomomaya; Yamamoto, Tsuneyuki; Oda, Kimimitsu; Udagawa, Nobuyuki; Luiz de Freitas, Paulo Henrique; Li, Minqi
2017-01-01
Since osteoblastic activities are believed to be coupled with osteoclasts, we have attempted to histologically verify which of the distinct cellular circumstances, the presence of osteoclasts themselves or bone resorption by osteoclasts, is essential for coupled osteoblastic activity, by examining c-fos -/- or c-src -/- mice. Osteopetrotic c-fos deficient (c-fos -/- ) mice have no osteoclasts, while c-src deficient (c-src -/- ) mice, another osteopetrotic model, develop dysfunctional osteoclasts due to a lack of ruffled borders. c-fos -/- mice possessed no tartrate-resistant acid phosphatase (TRAPase)-reactive osteoclasts, and showed very weak tissue nonspecific alkaline phosphatase (TNALPase)-reactive mature osteoblasts. In contrast, c-src -/- mice had many TNALPase-positive osteoblasts and TRAPase-reactive osteoclasts. Interestingly, the parallel layers of TRAPase-reactive/osteopontin-positive cement lines were observed in the superficial region of c-src -/- bone matrix. This indicates the possibility that in c-src -/- mice, osteoblasts were activated to deposit new bone matrices on the surfaces that osteoclasts previously passed along, even without bone resorption. Transmission electron microscopy demonstrated cell-to-cell contacts between mature osteoblasts and neighboring ruffled border-less osteoclasts, and osteoid including many mineralized nodules in c-src -/- mice. Thus, it seems likely that osteoblastic activities would be maintained in the presence of osteoclasts, even if they are dysfunctional.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoker, A.W.; Sieweke, M.H.
1989-12-01
v-src is an effective carcinogen when expressed from Rous sarcoma virus (RSV) in vivo. Whereas RSV tumors require sustained oncogene expression, their growth is largely a balance between viral recruitment of tissues and host immune destruction of infected cells. The authors have therefore examined the tumorigenic potential of v-src in the absence of viral recruitment and viral antigen expression. v-src was introduced with high efficiency into chicken wing web tissues using replication-defective (rd) retroviral vectors. Clonal sarcomas were induced rapidly, and furthermore, v-src potentiated metastatic progression in {approx} 0.1%-1% of tumor clones with unexpectedly short latency. rd vectors proved effectivemore » not only in transducing v-src into tissues but also as insertional markers of tumor clonality. The rd vector present in most primary and metastatic tumors was a highly truncated form of RSV derived by viral transmission of spliced v-src mRNA; this vector should thus avoid viral recruitment and host anti-viral immune reaction through its complete lack of viral structural genes. Under such conditions v-src maintains strong carcinogenicity in vivo when restricted to clonal tumor growth and can confer rapid metastatic potential on a discrete subset of tumor clones.« less
Vitorino, Luciano Magalhães; Soares, Renata de Castro E Santos; Santos, Ana Eliza Oliveira; Lucchetti, Alessandra Lamas Granero; Cruz, Jonas Preposi; Cortez, Paulo José Oliveira; Lucchetti, Giancarlo
2017-08-01
Studies have shown that spiritual/religious beliefs are associated with mental health and health-related quality of life (HRQoL). However, few studies evaluated how spiritual/religious coping (SRC) could affect hemodialysis patients. The present study investigated the role of SRC behaviors on HRQoL and depressive symptoms in hemodialysis patients. This was cross-sectional study with 184 patients. Patients completed the Beck Depression Inventory, Brief SRC Scale, Medical Outcomes Study 36-Item Short-Form Health Survey (SF-36), and a Sociodemographic and Health Characterization Questionnaire. From 218 patients, 184 (84.4%) were included (53.8% male with a median age of 55.9 years). Negative SRC, but not positive SRC, was associated with depressive symptoms. Positive SRC presented significant effects in SF-36 pain and physical and social functioning. On the other hand, negative SRC exhibited significant effects in SF-36 role emotional, energy/fatigue, pain, and physical functioning. SRC influences the mental health and HRQoL in Brazilian hemodialysis patients in two distinct ways. If used positively, it may have positive outcomes. However, if used negatively, it may lead to dysfunctional consequences such as greater depressive symptomatology and affect HRQoL. Health professionals must be aware of these "two sides of the same coin."
NASA Astrophysics Data System (ADS)
Naudin, Cécile; Sirvent, Audrey; Leroy, Cédric; Larive, Romain; Simon, Valérie; Pannequin, Julie; Bourgaux, Jean-François; Pierre, Josiane; Robert, Bruno; Hollande, Frédéric; Roche, Serge
2014-01-01
The adaptor SLAP is a negative regulator of receptor signalling in immune cells but its role in human cancer is ill defined. Here we report that SLAP is abundantly expressed in healthy epithelial intestine but strongly downregulated in 50% of colorectal cancer. SLAP overexpression suppresses cell tumorigenicity and invasiveness while SLAP silencing enhances these transforming properties. Mechanistically, SLAP controls SRC/EPHA2/AKT signalling via destabilization of the SRC substrate and receptor tyrosine kinase EPHA2. This activity is independent from CBL but requires SLAP SH3 interaction with the ubiquitination factor UBE4A and SLAP SH2 interaction with pTyr594-EPHA2. SRC phosphorylates EPHA2 on Tyr594, thus creating a feedback loop that promotes EPHA2 destruction and thereby self-regulates its transforming potential. SLAP silencing enhances SRC oncogenicity and sensitizes colorectal tumour cells to SRC inhibitors. Collectively, these data establish a tumour-suppressive role for SLAP in colorectal cancer and a mechanism of SRC oncogenic induction through stabilization of its cognate substrates.
Lipid binding by the Unique and SH3 domains of c-Src suggests a new regulatory mechanism
Pérez, Yolanda; Maffei, Mariano; Igea, Ana; Amata, Irene; Gairí, Margarida; Nebreda, Angel R.; Bernadó, Pau; Pons, Miquel
2013-01-01
c-Src is a non-receptor tyrosine kinase involved in numerous signal transduction pathways. The kinase, SH3 and SH2 domains of c-Src are attached to the membrane-anchoring SH4 domain through the flexible Unique domain. Here we show intra- and intermolecular interactions involving the Unique and SH3 domains suggesting the presence of a previously unrecognized additional regulation layer in c-Src. We have characterized lipid binding by the Unique and SH3 domains, their intramolecular interaction and its allosteric modulation by a SH3-binding peptide or by Calcium-loaded calmodulin binding to the Unique domain. We also show reduced lipid binding following phosphorylation at conserved sites of the Unique domain. Finally, we show that injection of full-length c-Src with mutations that abolish lipid binding by the Unique domain causes a strong in vivo phenotype distinct from that of wild-type c-Src in a Xenopus oocyte model system, confirming the functional role of the Unique domain in c-Src regulation. PMID:23416516
Hentrich, Stephan; Zimber, Andreas; Sosnowsky-Waschek, Nadia; Gregersen, Sabine; Petermann, Franz
2018-01-01
The relationships among job demands, personality factors, recovery and psychological health receive increasing attention but are not well understoodOBJECTIVE:Therefore, the present study tests moderating effects among a sample of managers as proposed by the stressor-detachment model. We aimed to determine whether core self-evaluations (CSE) had an influence on the correlations between detachment and strain reactions (depressive symptoms, irritation, exhaustion) and between job demands and detachment. Further, we tested whether detachment attenuates the positive relation between job demands and strain reactions. A convenience sample of managers in three German settings (N = 282) participated in the cross-sectional study. Results based on hierarchical regression analysis showed that high CSE significantly weakened the negative relationship between detachment and depressive symptoms in this sample. However, CSE did not moderate the negative relationship between job demands and detachment. Moreover, results revealed that detachment moderated the positive relation between job demands and exhaustion. The authors tested whether CSE was able to moderate the relationship between job demands, psychological detachment and different stress reactions. Although we found a significant interaction effect, CSE may be too distal to moderate all respective associations.
Shimazu, Akihito; Matsudaira, Ko; Jonge, Jan DE; Tosaka, Naoya; Watanabe, Kazuhiro; Takahashi, Masaya
2016-06-10
This study examined whether a higher level of psychological detachment during non-work time is associated with better employee mental health (Hypothesis 1), and examined whether psychological detachment has a curvilinear relation (inverted U-shaped pattern) with work engagement (Hypothesis 2). A large cross-sectional Internet survey was conducted among registered monitors of an Internet survey company in Japan. The questionnaire included scales for psychological detachment, employee mental health, and work engagement as well as for job characteristics and demographic variables as potential confounders. The hypothesized model was tested with moderated structural equation modeling techniques among 2,234 respondents working in the tertiary industries with regular employment. Results showed that psychological detachment had curvilinear relations with mental health as well as with work engagement. Mental health improved when psychological detachment increased from a low to higher levels but did not benefit any further from extremely high levels of psychological detachment. Work engagement showed the highest level at an intermediate level of detachment (inverted U-shaped pattern). Although high psychological detachment may enhance employee mental health, moderate levels of psychological detachment are most beneficial for his or her work engagement.
SHIMAZU, Akihito; MATSUDAIRA, Ko; DE JONGE, Jan; TOSAKA, Naoya; WATANABE, Kazuhiro; TAKAHASHI, Masaya
2016-01-01
This study examined whether a higher level of psychological detachment during non-work time is associated with better employee mental health (Hypothesis 1), and examined whether psychological detachment has a curvilinear relation (inverted U-shaped pattern) with work engagement (Hypothesis 2). A large cross-sectional Internet survey was conducted among registered monitors of an Internet survey company in Japan. The questionnaire included scales for psychological detachment, employee mental health, and work engagement as well as for job characteristics and demographic variables as potential confounders. The hypothesized model was tested with moderated structural equation modeling techniques among 2,234 respondents working in the tertiary industries with regular employment. Results showed that psychological detachment had curvilinear relations with mental health as well as with work engagement. Mental health improved when psychological detachment increased from a low to higher levels but did not benefit any further from extremely high levels of psychological detachment. Work engagement showed the highest level at an intermediate level of detachment (inverted U-shaped pattern). Although high psychological detachment may enhance employee mental health, moderate levels of psychological detachment are most beneficial for his or her work engagement. PMID:26829972
Action of hexachlorobenzene on tumor growth and metastasis in different experimental models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pontillo, Carolina Andrea, E-mail: caroponti@hotmail.com; Rojas, Paola, E-mail: parojas2010@gmail.com; Chiappini, Florencia, E-mail: florenciachiappini@hotmail.com
Hexachlorobenzene (HCB) is a widespread organochlorine pesticide, considered a possible human carcinogen. It is a dioxin-like compound and a weak ligand of the aryl hydrocarbon receptor (AhR). We have found that HCB activates c-Src/HER1/STAT5b and HER1/ERK1/2 signaling pathways and cell migration, in an AhR-dependent manner in MDA-MB-231 breast cancer cells. The aim of this study was to investigate in vitro the effect of HCB (0.005, 0.05, 0.5, 5 μM) on cell invasion and metalloproteases (MMPs) 2 and 9 activation in MDA-MB-231 cells. Furthermore, we examined in vivo the effect of HCB (0.3, 3, 30 mg/kg b.w.) on tumor growth, MMP2more » and MMP9 expression, and metastasis using MDA-MB-231 xenografts and two syngeneic mouse breast cancer models (spontaneous metastasis using C4-HI and lung experimental metastasis using LM3). Our results show that HCB (5 μM) enhances MMP2 expression, as well as cell invasion, through AhR, c-Src/HER1 pathway and MMPs. Moreover, HCB increases MMP9 expression, secretion and activity through a HER1 and AhR-dependent mechanism, in MDA-MB-231 cells. HCB (0.3 and 3 mg/kg b.w.) enhances subcutaneous tumor growth in MDA-MB-231 and C4-HI in vivo models. In vivo, using MDA-MB-231 model, the pesticide (0.3, 3 and 30 mg/kg b.w.) activated c-Src, HER1, STAT5b, and ERK1/2 signaling pathways and increased MMP2 and MMP9 protein levels. Furthermore, we observed that HCB stimulated lung metastasis regardless the tumor hormone-receptor status. Our findings suggest that HCB may be a risk factor for human breast cancer progression. - Highlights: ► HCB enhances MMP2 and MMP9 expression and cell invasion in MDA-MB-231, in vitro. ► HCB-effects are mediated through AhR, HER1 and/or c-Src. ► HCB increases subcutaneous tumor growth in MDA-MB-231 and C4-HI in vivo models. ► HCB activates c-Src/HER1 pathway and increases MMPs levels in MDA-MB-231 tumors. ► HCB stimulates lung metastasis in C4-HI and LM3 in vivo models.« less
[Analysis of hydrodynamics parameters of runoff erosion and sediment-yielding on unpaved road].
Huang, Peng-Fei; Wang, Wen-Long; Luo, Ting; Wang, Zhen; Wang, Zheng-Li; Li, Ren
2013-02-01
By the method of field runoff washout experiment, a simulation study was conducted on the relationships between the soil detachment rate and the hydrodynamic parameters on unpaved road, and the related quantitative formulas were established. Under the conditions of different flow discharges and road gradients, the averaged soil detachment rate increased with increasing flow discharge and road gradient, and the relationships between them could be described by a power function. As compared with road gradient, flow discharge had greater effects on the soil detachment rate. The soil detachment rate had a power relation with water flow velocity and runoff kinetic energy, and the runoff kinetic energy was of importance to the soil detachment rate. The soil detachment rate was linearly correlated with the unit runoff kinetic energy. The averaged soil erodibility was 0.120 g m-1.J-F-1, and the averaged critical unit runoff kinetic energy was 2.875 g.m-1.J-1. Flow discharge, road gradient, and unit runoff kinetic energy could be used to accurately describe the soil erosion process and calculate the soil erosion rate on unpaved road.
Yomo, H; Srinivasan, K
1973-12-01
In contrast to earlier reported results of similar experiments in peas, in which almost no increase in protease activity occurred in incubated detached cotyledons, we report here an increase in protease activity in both attached and detached bean cotyledons. Detached bean cotyledons showed continually increasing protease activity up to the 12th day, while that in attached cotyledons declined after 6 days. The free amino acid level in detached cotyledons reached a maximum at the 11th day; protease formation leveled off after 50% of the original seed protein was digested. These data suggest that high free amino acid levels may inhibit protease formation.The activity of partially purified protease in aqueous extracts was enhanced by 10 mm 2-mercaptoethanol or cysteine, indicating a sulfhydryl requirement for activation. Protease formation in detached cotyledons was inhibited 30% by 10 mug/ml cycloheximide and 50% by 100 mum abscisic acid. In contrast, alpha-amylase formation was inhibited 90% by 10 mug/ml cycloheximide and 95% by 20 mum abscisic acid. The cycloheximide data suggest that only a part of the protease, but all of the alpha-amylase, is synthesized de novo; the similar pattern of inhibition by abscisic acid emphasizes the concept that protease may exist in two forms.
Yomo, Harugoro; Srinivasan, Komala
1973-01-01
In contrast to earlier reported results of similar experiments in peas, in which almost no increase in protease activity occurred in incubated detached cotyledons, we report here an increase in protease activity in both attached and detached bean cotyledons. Detached bean cotyledons showed continually increasing protease activity up to the 12th day, while that in attached cotyledons declined after 6 days. The free amino acid level in detached cotyledons reached a maximum at the 11th day; protease formation leveled off after 50% of the original seed protein was digested. These data suggest that high free amino acid levels may inhibit protease formation. The activity of partially purified protease in aqueous extracts was enhanced by 10 mm 2-mercaptoethanol or cysteine, indicating a sulfhydryl requirement for activation. Protease formation in detached cotyledons was inhibited 30% by 10 μg/ml cycloheximide and 50% by 100 μm abscisic acid. In contrast, α-amylase formation was inhibited 90% by 10 μg/ml cycloheximide and 95% by 20 μm abscisic acid. The cycloheximide data suggest that only a part of the protease, but all of the α-amylase, is synthesized de novo; the similar pattern of inhibition by abscisic acid emphasizes the concept that protease may exist in two forms. PMID:16658628
Li, X; Ye, J-X; Xu, M-H; Zhao, M-D; Yuan, F-L
2017-07-01
Activated acid-sensing ion channel 1a (ASIC1a) is involved in acid-induced osteoclastogenesis by regulating activation of the transcription factor NFATc1. These results indicated that ASIC1a activation by extracellular acid may cause osteoclast migration and adhesion through Ca 2+ -dependent integrin/Pyk2/Src signaling pathway. Osteoclast adhesion and migration are responsible for osteoporotic bone loss. Acidic conditions promote osteoclastogenesis. ASIC1a in osteoclasts is associated with acid-induced osteoclastogenesis through modulating transcription factor NFATc1 activation. However, the influence and the detailed mechanism of ASIC1a in regulating osteoclast adhesion and migration, in response to extracellular acid, are not well characterized. In this study, knockdown of ASIC1a was achieved in bone marrow macrophage cells using small interfering RNA (siRNA). The adhesion and migration abilities of osteoclast precursors and osteoclasts were determined by adhesion and migration assays, in vitro. Bone resorption was performed to measure osteoclast function. Cytoskeletal changes were assessed by F-actin ring formation. αvβ3 integrin expression in osteoclasts was measured by flow cytometry. Western blotting and co-immunoprecipitation were performed to measure alterations in integrin/Pyk2/Src signaling pathway. Our results showed that blockade of ASIC1a using ASIC1a-siRNA inhibited acid-induced osteoclast precursor migration and adhesion, as well as osteoclast adhesion and bone resorption; we also demonstrated that inhibition of ASIC1a decreased the cell surface αvβ3 integrin and β3 protein expression. Moreover, blocking of ASIC1a inhibited acidosis-induced actin ring formation and reduced Pyk2 and Src phosphorylation in osteoclasts and also inhibited the acid-induced association of the αvβ3 integrin/Src/Pyk2. Together, these results highlight a key functional role of ASIC1a/αvβ3 integrin/Pyk2/Src signaling pathway in migration and adhesion of osteoclasts.
Whitaker, Annie M.; Farooq, Muhammad A.; Edwards, Scott; Gilpin, Nicholas W.
2016-01-01
Individuals with post-traumatic stress disorder (PTSD) avoid trauma-related stimuli and exhibit blunted hypothalamic-pituitary-adrenal (HPA) axis activation at the time of stress. Our laboratory has established a rodent model of stress that mimics the avoidance symptom cluster of PTSD. Rats are classified as ‘Avoiders’ or ‘Non-Avoiders’ post-stress based on avoidance of a predator-odor paired context. Previously, we demonstrated that Avoiders exhibit an attenuated HPA stress response to predator odor. We hypothesized that corticosterone administration prior to stress would reduce magnitude and incidence of avoidance of a stress-paired context. Furthermore, we predicted that Avoiders would exhibit altered expression of GR signaling machinery elements, such as steroid receptor co-activator (SRC)-1. Male Wistar rats (n = 16) were pre-treated with corticosterone (25 mg/kg) or saline and exposed to predator odor stress paired with a context, and tested for avoidance 24 h later, A second group of corticosterone-naïve rats (n = 24) were stressed (or not stressed), indexed for avoidance 24 h later, and killed 48 h post-odor exposure for analysis of phosphorylated GR, FKBP51, and SRC-1 levels in the paraventricular nucleus (PVN), central amygdala (CeA) and ventral hippocampus (VH), all brain sites that express high quantities of GRs and regulate HPA function. Rats pre-treated with corticosterone exhibited lower magnitude and incidence of avoidance. Predator odor exposure also reduced SRC-1 expression in the PVN and CeA of Avoiders, and increased SRC-1 expression in the VH of Avoiders. SRC-1 expression in PVN, CeA, and VH was predicted by prior avoidance behavior. These results suggest that blunted HPA stress response may contribute to stress-induced neuroadaptations in central SRC-1 levels and behavioral dysfunction in Avoider rats. PMID:26482332
The imaging performance of the SRC on Mars Express
Oberst, J.; Schwarz, G.; Behnke, T.; Hoffmann, H.; Matz, K.-D.; Flohrer, J.; Hirsch, H.; Roatsch, T.; Scholten, F.; Hauber, E.; Brinkmann, B.; Jaumann, R.; Williams, D.; Kirk, R.; Duxbury, T.; Leu, C.; Neukum, G.
2008-01-01
The Mars Express spacecraft carries the pushbroom scanner high-resolution stereo camera (HRSC) and its added imaging subsystem super resolution channel (SRC). The SRC is equipped with its own optical system and a 1024??1024 framing sensor. SRC produces snapshots with 2.3 m ground pixel size from the nominal spacecraft pericenter height of 250 km, which are typically embedded in the central part of the large HRSC scenes. The salient features of the SRC are its light-weight optics, a reliable CCD detector, and high-speed read-out electronics. The quality and effective visibility of details in the SRC images unfortunately falls short of what has been expected. In cases where thermal balance cannot be reached, artifacts, such as blurring and "ghost features" are observed in the images. In addition, images show large numbers of blemish pixels and are plagued by electronic noise. As a consequence, we have developed various image improving algorithms, which are discussed in this paper. While results are encouraging, further studies of image restoration by dedicated processing appear worthwhile. The SRC has obtained more than 6940 images at the time of writing (1 September 2007), which often show fascinating details in surface morphology. SRC images are highly useful for a variety of applications in planetary geology, for studies of the Mars atmosphere, and for astrometric observations of the Martian satellites. This paper will give a full account of the design philosophy, technical concept, calibration, operation, integration with HRSC, and performance, as well as science accomplishments of the SRC. ?? 2007 Elsevier Ltd. All rights reserved.
Fincham, Gregory S; Pasea, Laura; Carroll, Christopher; McNinch, Annie M; Poulson, Arabella V; Richards, Allan J; Scott, John D; Snead, Martin P
2014-08-01
The Stickler syndromes are the most common causes of inherited and childhood retinal detachment; however, no consensus exists regarding the effectiveness of prophylactic intervention. We evaluate the long-term safety and efficacy of the Cambridge prophylactic cryotherapy protocol, a standardized retinal prophylactic treatment developed to prevent retinal detachment arising from giant retinal tears in type 1 Stickler syndrome. Retrospective comparative case series. Four hundred eighty seven patients with type 1 Stickler syndrome. Time to retinal detachment was compared between patients who received bilateral prophylaxis and untreated controls, with and without individual patient matching. Patients receiving unilateral prophylaxis (after fellow eye retinal detachment) were similarly compared with an appropriate control subgroup. Individual patient matching ensured equal age and follow-up between groups and that an appropriate control (who had not suffered a retinal detachment before the age at which their individually matched treatment patient underwent prophylactic treatment) was selected. Matching was blinded to outcome events. Individual patient matching protocols purposely weighted bias against the effectiveness of treatment. All treatment side effects are reported. Time to retinal detachment and side effects occurring after prophylactic treatment. The bilateral control group (n = 194) had a 7.4-fold increased risk of retinal detachment compared to the bilateral prophylaxis group (n = 229) (hazard ratio [HR], 7.40; 95% confidence interval [CI], 4.53-12.08; P<0.001); the matched bilateral control group (n = 165) had a 5.0-fold increased risk compared to the matched bilateral prophylaxis group (n = 165) (HR, 4.97; 95% CI, 2.82-8.78; P<0.001). The unilateral control group (n = 104) had a 10.3-fold increased risk of retinal detachment compared to the unilateral prophylaxis group (n = 64) (HR, 10.29; 95% CI, 4.96-21.36; P<0.001); the matched unilateral control group (n = 39) had a 8.4-fold increased risk compared to the matched unilateral prophylaxis group (n = 39) (HR, 8.36; 95% CI, 3.24-21.57; P<0.001). No significant long-term side effects occurred. In the largest global cohort of type 1 Stickler syndrome patients published, all analyses indicate that the Cambridge prophylactic cryotherapy protocol is safe and markedly reduces the risk of retinal detachment. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Behnke, Sabrina; Parker, Albert E.; Woodall, Dawn; Camper, Anne K.
2011-01-01
Although the detachment of cells from biofilms is of fundamental importance to the dissemination of organisms in both public health and clinical settings, the disinfection efficacies of commonly used biocides on detached biofilm particles have not been investigated. Therefore, the question arises whether cells in detached aggregates can be killed with disinfectant concentrations sufficient to inactivate planktonic cells. Burkholderia cepacia and Pseudomonas aeruginosa were grown in standardized laboratory reactors as single species and in coculture. Cluster size distributions in chemostats and biofilm reactor effluent were measured. Chlorine susceptibility was assessed for planktonic cultures, attached biofilm, and particles and cells detached from the biofilm. Disinfection tolerance generally increased with a higher percentage of larger cell clusters in the chemostat and detached biofilm. Samples with a lower percentage of large clusters were more easily disinfected. Thus, disinfection tolerance depended on the cluster size distribution rather than sample type for chemostat and detached biofilm. Intact biofilms were more tolerant to chlorine independent of species. Homogenization of samples led to significantly increased susceptibility in all biofilm samples as well as detached clusters for single-species B. cepacia, B. cepacia in coculture, and P. aeruginosa in coculture. The disinfection efficacy was also dependent on species composition; coculture was advantageous to the survival of both species when grown as a biofilm or as clusters detached from biofilm but, surprisingly, resulted in a lower disinfection tolerance when they were grown as a mixed planktonic culture. PMID:21856824
Retinal detachment following endophthalmitis.
Nelsen, P T; Marcus, D A; Bovino, J A
1985-08-01
Fifty-five consecutive patients with a clinical diagnosis of bacterial endophthalmitis were reviewed. All patients were treated with systemic, periocular, topical, and intravitreal antibiotics. In addition, 33 of the patients underwent a pars plana vitrectomy. Nine retinal detachments occurred within six months of initial diagnosis. The higher frequency of retinal detachment in the vitrectomy group (21%) as compared to those patients managed without vitrectomy (9%) may be explained by a combination of surgical complications and the increased severity of endophthalmitis in the vitrectomy group. The two patients who developed retinal detachment during vitrectomy surgery rapidly progressed to no light perception. Conversely, the repair of retinal detachments diagnosed postoperatively had a good prognosis.
Novel Approach to Measuring the Droplet Detachment Force from Fibers.
Amrei, M M; Venkateshan, D G; D'Souza, N; Atulasimha, J; Tafreshi, H Vahedi
2016-12-20
Determining the force required to detach a droplet from a fiber or from an assembly of fibers is of great importance to many applications. A novel technique is developed in this work to measure this force experimentally by using ferrofluid droplets in a magnetic field. Unlike previous methods reported in the literature, our technique does not require air flow or a mechanical object to detach the droplet from the fiber(s); therefore, it simplifies the experiment and also allows one to study the capillarity of the droplet-fiber system in a more isolated environment. In this article, we investigated the effects of the relative angle between intersecting fibers on the force required to detach a droplet from the fibers in the in-plane or out-of-plane direction. The in-plane and through-plane detachment forces were also predicted via numerical simulation and compared with the experimental results. Good agreement was observed between the numerical and experimental results. It was found that the relative angle between intersecting fibers has no significant effect on the detachment force in the out-of-plane direction. However, the detachment force in the in-plane direction depends strongly on the relative angle between the fibers, and it increases as this angle increases.
van Oosterwijk, J G; van Ruler, M A J H; Briaire-de Bruijn, I H; Herpers, B; Gelderblom, H; van de Water, B; Bovée, J V M G
2013-01-01
Background: Chondrosarcomas are malignant cartilage-forming tumours of bone. Because of their resistance to conventional chemotherapy and radiotherapy, currently no treatment strategies exist for unresectable and metastatic chondrosarcoma. Previously, PI3K/AKT/GSK3β and Src kinase pathways were shown to be activated in chondrosarcoma cell lines. Our aim was to investigate the role of these kinases in chemoresistance and migration in chondrosarcoma in relation to TP53 mutation status. Methods: We used five conventional and three dedifferentiated chondrosarcoma cell lines and investigated the effect of PI3K/AKT/GSK3β pathway inhibition (enzastaurin) and Src pathway inhibition (dasatinib) in chemoresistance using WST assay and live cell imaging with AnnexinV staining. Immunohistochemistry on tissue microarrays (TMAs) containing 157 cartilaginous tumours was performed for Src family members. Migration assays were performed with the RTCA xCelligence System. Results: Src inhibition was found to overcome chemoresistance, to induce apoptosis and to inhibit migration. Cell lines with TP53 mutations responded better to combination therapy than wild-type cell lines (P=0.002). Tissue microarray immunohistochemistry confirmed active Src (pSrc) signalling, with Fyn being most abundantly expressed (76.1%). Conclusion: These results strongly indicate Src family kinases, in particular Fyn, as a potential target for the treatment of inoperable and metastatic chondrosarcomas, and to sensitise for doxorubicin especially in the presence of TP53 mutations. PMID:23922104
Sakai, T; Kawakatsu, H; Fujita, M; Yano, J; Owada, M K
1998-02-01
In previous work, we established a new monoclonal antibody that specifically recognizes the active form of c-Src tyrosine kinase (Kawakatsu et al, 1996). To determine whether c-Src is active in colorectal tumorigenesis, we examined the expression of an active form of c-Src in human normal mucosa, hyperplastic polyps, adenomas, and adenocarcinomas. The tissue distribution of the active form of c-Src was studied by immunohistochemistry using this antibody, termed Clone 28. Among 66 cases of adenoma tested, 61 (92%) showed positive staining (adenoma with mild atypia, 3 of 3; adenoma with moderate atypia, 38 of 42; adenoma with severe atypia, 20 of 21). In contrast to the frequent and intense staining in adenomas, adenocarcinoma showed weak staining with less frequency in 4 of 16 (25%) cases. The number of specimens with positive staining in well- and moderately differentiated adenocarcinomas was limited to an early stage. The active form of c-Src mainly localized to the nuclear membrane and the perinuclear region. These results provide the first direct evidence that the activation of c-Src appears to be an early event in colonic carcinogenesis in situ. The findings of the present study thus allow us to propose a molecular mechanism involving c-Src activation in the process of malignant transformation of the human colonic neoplastic cells.
Interfacing with USSTRATCOM and UTTR during Stardust Earth Return
NASA Technical Reports Server (NTRS)
Jefferson, David C.; Baird, Darren T.; Cangahuala, Laureano A.; Lewis, George D.
2006-01-01
The Stardust Sample Return Capsule separated from the main spacecraft four hours prior to atmospheric entry. Between this time and the time at which the SRC touched down at the Utah Test and Training Range, two organizations external to JPL were involved in tracking the Sample Return Capsule. Orbit determination for the Stardust spacecraft during deep space cruise, the encounters of asteroid Annefrank and comet Wild 2, and the final approach to Earth used X-band radio metric Doppler and range data obtained through the Deep Space Network. The SRC lacked the electronics needed for coherently transponded radio metric tracking, so the DSN was not able to track the SRC after it separated from the main spacecraft. Although the expected delivery accuracy at atmospheric entry was well within the capability needed to target the SRC to the desired ground location, it was still desirable to obtain direct knowledge of the SRC trajectory in case of anomalies. For this reason U.S. Strategic Command was engaged to track the SRC between separation and atmospheric entry. Once the SRC entered the atmosphere, ground sensors at UTTR were tasked to acquire the descending SRC and maintain track during the descent in order to determine the landing location, to which the ground recovery team was then directed. This paper discusses organizational interfaces, data products, and delivery schedules, and the actual tracking operations are described.
Arce, Kevin; Moore, Eric J; Lohse, Christine M; Reiland, Matthew D; Yetzer, Jacob G; Ettinger, Kyle S
2016-09-01
The American College of Surgeons (ACS) National Surgical Quality Improvement Program (NSQIP) Surgical Risk Calculator (SRC) is a novel universal risk calculator designed to aid in risk stratification of patients undergoing various types of major surgery. The purpose of this study was to assess the validity of the ACS NSQIP SRC in predicting postoperative complications in patients undergoing microvascular head and neck reconstruction. A retrospective cohort study of patients undergoing head and neck microvascular reconstruction with fibular free flaps at a single institution was completed. The NSQIP SRC was used to compute complication risk estimates and length of stay (LOS) estimates for all patients under study. Associations between complication risk estimates generated by the SRC and actual rates of observed complications were evaluated using logistic regression models. Logistic regression models also were used to evaluate the SRC estimates for LOS duration compared with the actual observed LOS after surgery. Of 153 patients under study, 46 (30%) developed a postoperative complication corresponding to those defined by NSQIP SRC. Thirty-eight patients (25%) developed a postoperative complication categorized as severe in the parameters of the NSQIP SRC. None of the SRC complication estimates showed a statistically relevant association with the corresponding observed rates of complications. The mean LOS predicted by the SRC was 8.0 days (median, 7.5 days; interquartile range [IQR], 6.5 to 9; range, 5.0 to 18.5 days). The mean observed LOS for the study group was 9.6 days (median, 7.0 days; IQR, 6 to 9; range, 5 to 67 days). Lin's (Biometrics 45:255, 1989) concordance correlation coefficient to measure agreement between observed and predicted LOS was 0.10, indicating only slight agreement between the 2 values. The ACS NSQIP SRC is not a useful risk-stratifying metric for patients undergoing major head and neck reconstruction with microvascular fibular free flaps. The SRC also does not accurately predict hospital LOS for this same patient cohort. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Schlaepfer, D D; Hanks, S K; Hunter, T; van der Geer, P
The cytoplasmic focal adhesion protein-tyrosine kinase (FAK) localizes with surface integrin receptors at sites where cells attach to the extracellular matrix. Increased FAK tyrosine phosphorylation occurs upon integrin engagement with fibronectin. Here we show that adhesion of murine NIH3T3 fibroblasts to fibronectin promotes SH2-domain-mediated association of the GRB2 adaptor protein and the c-Src protein-tyrosine kinase (PTK) with FAK in vivo, and also results in activation of mitogen-activated protein kinase (MAPK). In v-Src-transformed NIH3T3, the association of v-Src, GRB2 and Sos with FAK is independent of cell adhesion to fibronectin. The GRB2 SH2 domain binds directly to tyrosine-phosphorylated FAK. Mutation of tyrosine residue 925 of FAK (YENV motif) to phenylalanine blocks GRB2 SH2-domain binding to FAK in vitro. Our results show that fibronectin binding to integrins on NIH3T3 fibroblasts promotes c-Src and FAK association and formation of an integrin-activated signalling complex. Phosphorylation of FAK at Tyr 925 upon fibronectin stimulation creates an SH2-binding site for GRB2 which may link integrin engagement to the activation of the Ras/MAPK signal transduction pathway.
Myosin light chain kinase and Src control membrane dynamics in volume recovery from cell swelling
Barfod, Elisabeth T.; Moore, Ann L.; Van de Graaf, Benjamin G.; Lidofsky, Steven D.
2011-01-01
The expansion of the plasma membrane, which occurs during osmotic swelling of epithelia, must be retrieved for volume recovery, but the mechanisms are unknown. Here we have identified myosin light chain kinase (MLCK) as a regulator of membrane internalization in response to osmotic swelling in a model liver cell line. On hypotonic exposure, we found that there was time-dependent phosphorylation of the MLCK substrate myosin II regulatory light chain. At the sides of the cell, MLCK and myosin II localized to swelling-induced membrane blebs with actin just before retraction, and MLCK inhibition led to persistent blebbing and attenuated cell volume recovery. At the base of the cell, MLCK also localized to dynamic actin-coated rings and patches upon swelling, which were associated with uptake of the membrane marker FM4-64X, consistent with sites of membrane internalization. Hypotonic exposure evoked increased biochemical association of the cell volume regulator Src with MLCK and with the endocytosis regulators cortactin and dynamin, which colocalized within these structures. Inhibition of either Src or MLCK led to altered patch and ring lifetimes, consistent with the concept that Src and MLCK form a swelling-induced protein complex that regulates volume recovery through membrane turnover and compensatory endocytosis under osmotic stress. PMID:21209319
Pak, Jhang Ho; Bashir, Qudsia; Kim, In Ki; Hong, Sung-Jong; Maeng, Sejung; Bahk, Young Yil; Kim, Tong-Soo
2017-06-01
Cholangiocarcinoma (CCA) is a slow-growing but highly metastatic cancer. Its metastatic potential largely explains its high mortality rate. A recognized risk factor for CCA development is infection with the liver flukes Opisthorchis viverrini and Clonorchis sinensis. We previously reported that the excretory-secretory products (ESPs) of C. sinensis promoted the three-dimensional aggregation and invasion of CCA cells. In the present study, a quantitative real-time PCR array of extracellular matrix (ECM) and adhesion molecules was used to examine the regulatory mechanism of ESP-mediated CCA cell migration and invasion. In particular, the expression levels of integrin α isoforms and β4 were upregulated in response to ESPs. Increased expression of integrin β4 was probably correlated with activation of focal adhesion kinase (FAK) and the steroid receptor coactivator (Src) family kinase and the subsequent activation of two downstream focal adhesion molecules, paxillin and vinculin. Moreover, inhibition of FAK/Src activation reduced paxillin and vinculin phosphorylation and attenuated ESP-induced CCA cell migration and invasion. These findings suggest that the integrin β4-FAK/Src signaling axis may play a crucial role in clonorchiasis-associated CCA metastasis during tumor progression. Copyright © 2017 Elsevier B.V. All rights reserved.
Hassoun, Shimaa M; Abdel-Rahman, Noha; Eladl, Entsar I; El-Shishtawy, Mamdouh M
2017-06-01
Angiogenesis plays important roles in progression of hepatocellular carcinoma. The antiangiogenic mechanisms of vitexicarpine are not fully defined. Therefore, we conducted the following study to evaluate the antiangiogenic mechanism and antitumor activity of vitexicarpine in vivo model of hepatocellular carcinoma through modulation of vascular endothelial growth factor signaling pathway. Hepatocellular carcinoma was induced in Sprague Dawley rats by thioacetamide. Hepatocellular carcinoma was assessed by measuring serum alpha-fetoprotein and investigating liver sections stained with hematoxylin/eosin. Hepatocellular carcinoma rats were injected with vitexicarpine (150 mg/kg) for 2 weeks. Hepatic vascular endothelial growth factor was measured by enzyme-linked immunosorbent assay. Protein and expression of hepatic phospho-Ser473-AKT (p-AKT) and phospho-Tyr419-Src (p-Src) were determined. The apoptotic pathway was evaluated by assessment of protein expression of caspase-3. Vitexicarpine increased rats' survival time and decreased serum alpha-fetoprotein as well as it ameliorated fibrosis and massive hepatic tissue breakdown. It attenuated hepatocellular carcinoma-induced protein and gene expression of vascular endothelial growth factor, p-AKT, p-Src, and caspase-3. In conclusion, this study suggests that vitexicarpine possesses both antiangiogenic and antitumor activities through inhibition of vascular endothelial growth factor, p-AKT/AKT, and p-Src with subsequent inhibition of apoptotic pathway.
What is the definition of sports-related concussion: a systematic review.
McCrory, Paul; Feddermann-Demont, Nina; Dvořák, Jiří; Cassidy, J David; McIntosh, Andrew; Vos, Pieter E; Echemendia, Ruben J; Meeuwisse, Willem; Tarnutzer, Alexander A
2017-06-01
Various definitions for concussion have been proposed, each having its strengths and weaknesses. We reviewed and compared current definitions and identified criteria necessary for an operational definition of sports-related concussion (SRC) in preparation of the 5th Concussion Consensus Conference (Berlin, Germany). We also assessed the role of biomechanical studies in informing an operational definition of SRC. This is a systematic literature review. Data sources include MEDLINE, Embase, Cumulative Index to Nursing and Allied Health Literature, Cochrane Central Register of Clinical Trials and SPORT Discus (accessed 14 September 2016). Eligibility criteria were studies reporting (clinical) criteria for diagnosing SRC and studies containing SRC impact data. Out of 1601 articles screened, 36 studies were included (2.2%), 14 reported on criteria for SRC definitions and 22 on biomechanical aspects of concussions. Six different operational definitions focusing on clinical findings and their dynamics were identified. Biomechanical studies were obtained almost exclusively on American football players. Angular and linear head accelerations linked to clinically confirmed concussions demonstrated considerable individual variation. SRC is a traumatic brain injury that is defined as a complex pathophysiological process affecting the brain, induced by biomechanical forces with several common features that help define its nature. Limitations identified include that the current criteria for diagnosing SRC are clinically oriented and that there is no gold/standard to assess their diagnostic properties. A future, more valid definition of SRC would better identify concussed players by demonstrating high predictive positive/negative values. Currently, the use of helmet-based systems to study the biomechanics of SRC is limited to few collision sports. New approaches need to be developed to provide objective markers for SRC. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Gong, J; Zhu, J; Goodman, O B; Pestell, R G; Schlegel, P N; Nanus, D M; Shen, R
2006-03-30
Androgen receptor signaling in prostate cancer cells is augmented by the androgen receptor (AR) coactivator p300, which transactivates and acetylates the AR in the presence of dihydrotestosterone (DHT). As prostate cancer (PC) cells progress to androgen independence, AR signaling remains intact, indicating that other factors stimulate AR activities in the absence of androgen. We previously reported that neuropeptide growth factors could transactivate the AR in the presence of very low concentrations of DHT. Here, we examine the involvement of p300 in neuropeptide activation of AR signaling. Transfection of increasing concentrations of p300 in the presence of bombesin into PC-3 cells resulted in a linear increase in AR transactivation, suggesting that p300 acts as a coactivator in neuropeptide-mediated AR transactivation. P300 is endowed with histone acetyltransferase (HAT) activity. Therefore, we examine the effect of bombesin on p300 HAT activity. At 4 h after the addition of bombesin, p300 HAT activity increased 2.0-fold (P<0.01). Incubation with neutral endopeptidase, which degrades bombesin, or bombesin receptor antagonists blocked bombesin-induced p300 HAT activity. To explore the potential signaling pathways involved in bombesin-induced p300 HAT activity, we examined Src and PKCdelta pathways that mediate bombesin signaling. Inhibitors of Src kinase activity or Src kinase siRNA blocked bombesin-induced p300 HAT activity, whereas PKCdelta inhibitors or PKCdelta siRNA significantly increased bombesin-induced p300 HAT activity suggesting that Src kinase and PKCdelta kinase are involved in the regulation of p300 HAT activity. As AR is acetylated in the presence of 100 nM DHT, we next examined whether bombesin-induced p300 HAT activity would result in enhanced AR acetylation. Bombesin-induced AR acetylation at the same motif KLKK observed in DHT-induced acetylation. Elimination of p300 using p300 siRNA reduced AR acetylation, demonstrating that AR acetylation was mediated by p300. AR acetylation results in AR transactivation and the expression of the AR-regulated gene prostate-specific antigen (PSA). Therefore, we examined bombesin-induced AR transactivation and PSA expression in the presence and absence of p300 siRNA and found inhibition of p300 expression reduced bombesin-induced AR transactivation and PSA expression. Together these results demonstrate that bombesin, via Src and PKCdelta signaling pathways, activates p300 HAT activity which leads to enhanced acetylation of AR resulting in increased expression of AR-regulated genes.
An adaptor role for cytoplasmic Sam68 in modulating Src activity during cell polarization.
Huot, Marc-Etienne; Brown, Claire M; Lamarche-Vane, Nathalie; Richard, Stéphane
2009-04-01
The Src-associated substrate during mitosis with a molecular mass of 68 kDa (Sam68) is predominantly nuclear and is known to associate with proteins containing the Src homology 3 (SH3) and SH2 domains. Although Sam68 is a Src substrate, little is known about the signaling pathway that link them. Src is known to be activated transiently after cell spreading, where it modulates the activity of small Rho GTPases. Herein we report that Sam68-deficient cells exhibit loss of cell polarity and cell migration. Interestingly, Sam68-deficient cells exhibited sustained Src activity after cell attachment, resulting in the constitutive tyrosine phosphorylation and activation of p190RhoGAP and its association with p120rasGAP. Consistently, we observed that Sam68-deficient cells exhibited deregulated RhoA and Rac1 activity. By using total internal reflection fluorescence microscopy, we observed Sam68 near the plasma membrane after cell attachment coinciding with phosphorylation of its C-terminal tyrosines and association with Csk. These findings show that Sam68 localizes near the plasma membrane during cell attachment and serves as an adaptor protein to modulate Src activity for proper signaling to small Rho GTPases.
Kaur, Amritpal; Singh, Narpinder; Kaur, Seeratpreet; Ahlawat, Arvind Kumar; Singh, Anju Mahendru
2014-09-01
The relationships of grain, flour solvent retention capacity (SRC) and dough rheological properties with the cookie making properties of wheat cultivars were evaluated. Cultivars with higher proportion of intermolecular-β-sheets+antiparallel β sheets and lower α-helix had greater gluten strength. The grain weight and diameter positively correlated with the proportion of fine particles and the cookie spread factor (SF) and negatively to the grain hardness (GH) and Na2CO3 SRC. The SF was higher in the flour with a higher amount of fine particle and with a lower Na2CO3 SRC and dough stability (DS). The breaking strength (BS) of cookies was positively correlated to lactic acid (LA) SRC, DS, peak time, sedimentation value (SV), G' and G″. Na2CO3 SRC and GH were strongly correlated. The gluten performance index showed a strong positive correlation with SV, DS, G' and G″. The water absorption had a significant positive correlation with sucrose SRC and LASRC. Cultivars with higher GH produced higher amount of coarse particles in flours that had higher Na2CO3 SRC and lower cookie SF. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Yuehua; Jiang, Hongyuan
2018-03-01
Quantitative characterizations of cell detachment are vital for understanding the fundamental mechanisms of cell adhesion. Experiments have found that cell detachment shows strong rate dependence, which is mostly attributed to the binding-unbinding kinetics of receptor-ligand bond. However, our recent study showed that the cellular volume regulation can significantly regulate the dynamics of adherent cell and cell detachment. How this cellular volume regulation contributes to the rate dependence of cell detachment remains elusive. Here, we systematically study the role of cellular volume regulation in the rate dependence of cell detachment by investigating the cell detachments of nonspecific adhesion and specific adhesion. We find that the cellular volume regulation and the bond kinetics dominate the rate dependence of cell detachment at different time scales. We further test the validity of the traditional Johnson-Kendall-Roberts (JKR) contact model and the detachment model developed by Wyart and Gennes et al (W-G model). When the cell volume is changeable, the JKR model is not appropriate for both the detachments of convex cells and concave cells. The W-G model is valid for the detachment of convex cells but is no longer applicable for the detachment of concave cells. Finally, we show that the rupture force of adherent cells is also highly sensitive to substrate stiffness, since an increase in substrate stiffness will lead to more associated bonds. These findings can provide insight into the critical role of cell volume in cell detachment and might have profound implications for other adhesion-related physiological processes.
SRC: A Model of Industry-University Cooperation.
ERIC Educational Resources Information Center
Cavin, Ralph K., III; Phillips, D. Howard
1988-01-01
Describes the Semiconductor Research Corporation (SRC), a non-profit research cooperative designed to conduct research in the field of integrated circuits, principally in U.S. universities, with membership restricted to U.S.-owned companies. Analyzes SRC's impact on the U.S. educational system. (TW)
Role of SRC-3delta4 in the Progression and Metastasis of Castration-Resistant Prostate Cancer
2014-12-01
tyrosine phosphorylation of SRC-3∆4, which was inhibited by the treatment with EGFR inhibitor AG1478. Mutation of Y1159 to phenylalanine (Y1159F...Y1159 to phenylalanine (Y1159F) greatly reduced SRC-3∆4/AR interaction that is stimulated by EGF. Figure 7 Overexpression of SRC-3∆4 promoted...adhesion turnover and matrix metalloproteinase expression. Cancer research 68, 5460-5468. 6. Chung, A.C., Zhou, S., Liao, L ., Tien, J.C., Greenberg
Transconjunctival drainage of serous and hemorrhagic choroidal detachment.
Rezende, Flávio A; Kickinger, Mônica C; Li, Gisèle; Prado, Renata F; Regis, Luiz Gustavo T
2012-02-01
To describe a novel surgical technique for drainage of bullous serous and hemorrhagic choroidal detachments. A prospective, consecutive case series of 6 eyes with serous and/or hemorrhagic choroidal detachments secondary to intraocular surgery was documented to evaluate the feasibility of using the 25-gauge and 20-gauge transconjunctival trocar/cannula systems to drain choroidal detachments. Two eyes had expulsive hemorrhagic choroidal detachments and 4 eyes had serous choroidal detachments after glaucoma surgeries. A 25-gauge infusion line was placed in the anterior chamber. A 20-gauge (in eyes with hemorrhagic choroidal detachments) or a 25-gauge (in eyes with serous detachments) trocar/cannula system was inserted into the suprachoroidal space 7.0 mm from limbus. After drainage, the cannulas were removed and no sutures were placed. Pars plana vitrectomy was performed only in eyes with concomitant pathology that demanded the additional procedure. The primary outcome measure was presence of choroidal detachment at 1 week, 2 weeks, and 1 month postoperatively. Secondary outcome measures were visual acuity at 6 months and intraocular pressure at 1 week and 1, 3, and 6 months postoperatively. Drainage of hemorrhagic choroidal detachments resulted in resolution of the detachments by 1 month postoperatively. In eyes with serous detachments, resolution was achieved by 1 week postdrainage. In both groups, intraocular pressure increased to at least 10 mmHg by postoperative Week 1. The visual acuity improved in all eyes. No complications related to the transconjunctival technique were noted. Transconjunctival drainage of serous and hemorrhagic choroidal detachments seems to be a feasible and simple surgical option with minimal scleral and conjunctival damage. Pars plana vitrectomy may not be necessary when draining choroidal detachments in this manner.
Ding, Fangrui; Wickman, Larysa; Wang, Su Q; Zhang, Yanqin; Wang, Fang; Afshinnia, Farsad; Hodgin, Jeffrey; Ding, Jie; Wiggins, Roger C
2017-12-01
Podocyte depletion is a common mechanism driving progression in glomerular diseases. Alport Syndrome glomerulopathy, caused by defective α3α4α5 (IV) collagen heterotrimer production by podocytes, is associated with an increased rate of podocyte detachment detectable in urine and reduced glomerular podocyte number suggesting that defective podocyte adherence to the glomerular basement membrane might play a role in driving progression. Here a genetically phenotyped Alport Syndrome cohort of 95 individuals [urine study] and 41 archived biopsies [biopsy study] were used to test this hypothesis. Podocyte detachment rate (measured by podocin mRNA in urine pellets expressed either per creatinine or 24-hour excretion) was significantly increased 11-fold above control, and prior to a detectably increased proteinuria or microalbuminuria. In parallel, Alport Syndrome glomeruli lose an average 26 podocytes per year versus control glomeruli that lose 2.3 podocytes per year, an 11-fold difference corresponding to the increased urine podocyte detachment rate. Podocyte number per glomerulus in Alport Syndrome biopsies is projected to be normal at birth (558/glomerulus) but accelerated podocyte loss was projected to cause end-stage kidney disease by about 22 years. Biopsy data from two independent cohorts showed a similar estimated glomerular podocyte loss rate comparable to the measured 11-fold increase in podocyte detachment rate. Reduction in podocyte number and density in biopsies correlated with proteinuria, glomerulosclerosis, and reduced renal function. Thus, the podocyte detachment rate appears to be increased from birth in Alport Syndrome, drives the progression process, and could potentially help predict time to end-stage kidney disease and response to treatment. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Src is a major signaling component for CTGF induction by TGF-β1 in osteoblasts
X, Zhang; JA, Arnott; S, Rehman; WG, DeLong; A, Sanjay; FF, Safadi; SN, Popoff
2010-01-01
Connective tissue growth factor (CTGF/CCN2) is induced by transforming growth factor beta 1(TGF-β1) where it acts as a downstream mediator of TGF-β1 induced matrix production in osteoblasts. We have shown the requirement of Src, Erk and Smad signaling for CTGF induction by TGF-β1 in osteoblasts, however the potential interaction among these signaling pathways remains undetermined. In this study we demonstrate that TGF-β1 activates Src kinase in ROS17/2.8 cells and that treatment with the Src family kinase inhibitor PP2 prevents Src activation and CTGF induction by TGF-β1. Additionally, inhibiting Src activation prevented Erk activation, Smad 2 & 3 activation and nuclear translocation by TGF-β1, demonstrating that Src is an essential upstream signaling partner of both Erk and Smads in osteoblasts. MAPKs such as Erk can modulate the Smad pathway through directly mediating the phosphorylation of Smads or indirectly through activation/inactivation of required nuclear co-activators that mediate Smad DNA binding. When we treated cells with the Erk inhibitor, PD98059 it inhibited TGF-β1-induced CTGF protein expression but had no effect on Src activation, Smad activation or Smad nuclear translocation. However PD98059 impaired transcriptional complex formation on the Smad binding element (SBE) on the CTGF promoter, demonstrating that Erk activation was required for SBE transactivation. This data demonstrates that Src is an essential upstream signaling transducer of Erk and Smad signaling with respect to TGF-β1 in osteoblasts and that Smads and Erk function independently but are both essential for forming a transcriptionally active complex on the CTGF promoter in osteoblasts. PMID:20432467
NASA Astrophysics Data System (ADS)
Levi, L.; Cvetkovic, V.; Destouni, G.
2015-12-01
This study compiles estimates of waterborne nutrient concentrations and loads in the Sava River Catchment (SRC). Based on this compilation, we investigate hotspots of nutrient inputs and retention along the river, as well as concentration and load correlations with river discharge and various human drivers of excess nutrient inputs to the SRC. For cross-regional assessment and possible generalization, we also compare corresponding results between the SRC and the Baltic Sea Drainage Basin (BSDB). In the SRC, one small incremental subcatchment, which is located just downstream of Zagreb and has the highest population density among the SRC subcatchments, is identified as a major hotspot for net loading (input minus retention) of both total nitrogen (TN) and total phosphorus (TP) to the river and through it to downstream areas of the SRC. The other SRC subcatchments exhibit relatively similar characteristics with smaller net nutrient loading. The annual loads of both TN and TP along the Sava River exhibit dominant temporal variability with considerably higher correlation with annual river discharge (R2 = 0.51 and 0.28, respectively) than that of annual average nutrient concentrations (R2 = 0.0 versus discharge for both TN and TP). Nutrient concentrations exhibit instead dominant spatial variability with relatively high correlation with population density among the SRC subcatchments (R2=0.43-0.64). These SRC correlation characteristics compare well with corresponding ones for the BSDB, even though the two regions are quite different in their hydroclimatic, agricultural and wastewater treatment conditions. Such cross-regional consistency in dominant variability type and explanatory catchment characteristics may be a useful generalization basis, worthy of further investigation, for at least first-order estimation of nutrient concentration and load conditions in less data-rich regions.
Rodriguez, Elena M; Dunham, Elizabeth E; Martin, G Steven
2009-10-01
Atypical protein kinase C (aPKC) isoforms have been shown to mediate Src-dependent signaling in response to growth factor stimulation. To determine if aPKC activity contributes to the transformed phenotype of cells expressing oncogenic Src, we have examined the activity and function of aPKCs in 3T3 cells expressing viral Src (v-Src). aPKC activity and tyrosine phosphorylation were found to be elevated in some but not all clones of mouse fibroblasts expressing v-Src. aPKC activity was inhibited either by addition of a membrane-permeable pseudosubstrate, by expression of a dominant-negative aPKC, or by RNAi-mediated knockdown of specific aPKC isoforms. aPKC activity contributes to morphological transformation and stress fiber disruption, and is required for migration of Src-transformed cells and for their ability to polarize at the edge of a monolayer. The lambda isoform of aPKC is specifically required for invasion through extracellular matrix in Boyden chamber assays and for degradation of the extracellular matrix in in situ zymography assays. Tyrosine phosphorylation of aPKClambda is required for its ability to promote cell invasion. The defect in invasion upon aPKC inhibition appears to result from a defect in the assembly and/or function of podosomes, invasive adhesions on the ventral surface of the cell that are sites of protease secretion. aPKC was also found to localize to podosomes of v-Src transformed cells, suggesting a direct role for aPKC in podosome assembly and/or function. We conclude that basal or elevated aPKC activity is required for the ability of Src-transformed cells to degrade and invade the extracellular matrix. Copyright 2009 Wiley-Liss, Inc.
1α,25(OH)2-Vitamin D3 Inhibits C2C12 Cell Differentiation by Activating c-Src and ERK1/2.
Wang, Zhonghua; Jiang, Aijun; Mei, Jingwei; Zhang, Xinyan
2018-05-01
The steroid hormone 1α,25(OH)2-vitamin D3 (1,25-D3) induced some biological responses through activation of MAPK cascades in various cell types. It seems that 1,25-D3 plays different roles at different stages of proliferating, differentiating, and differentiated C2C12 cells. We wanted to detect the effect of 1,25-D3 on myogenic differentiation and the role of ERK1/2 in differentiating stage induced by 2% horse serum with 1,25-D3. In this study, cells were induced to differentiate with 2% horse serum until the 7th day (with addition of 1,25-D3 every two days). The protein level of MHC (myosin heavy chain) and phosphorylation level of Src and ERK1/2 were determined with western blot. U0126 (MEK inhibitor) and PP2 (Src specific inhibitor) were used to confirm the relationship between 1,25-D3, MHC, Src, and ERK1/2. 1,25-D3 inhibited differentiation of C2C12 cells and fusion of myotubes by phosphorylating and activating Src and ERK1/2. Phosphorylation of ERK1/2 was inhibited, not only by U0126 but also by PP2 (a Src specific inhibitor) which led to the promotion of differentiation of C2C12 cells; however, U0126 did not inhibit Src phosphorylation. These results suggested that 1,25-D3 possibly inhibited C2C12 differentiation through Src and ERK1/2, and Src played an upstream role in this signaling pathway.
Steroid receptor coactivators 1 and 2 mediate fetal-to-maternal signaling that initiates parturition
Gao, Lu; Rabbitt, Elizabeth H.; Condon, Jennifer C.; Renthal, Nora E.; Johnston, John M.; Mitsche, Matthew A.; Chambon, Pierre; Xu, Jianming; O’Malley, Bert W.; Mendelson, Carole R.
2015-01-01
The precise mechanisms that lead to parturition are incompletely defined. Surfactant protein-A (SP-A), which is secreted by fetal lungs into amniotic fluid (AF) near term, likely provides a signal for parturition; however, SP-A–deficient mice have only a relatively modest delay (~12 hours) in parturition, suggesting additional factors. Here, we evaluated the contribution of steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2), which upregulate SP-A transcription, to the parturition process. As mice lacking both SRC-1 and SRC-2 die at birth due to respiratory distress, we crossed double-heterozygous males and females. Parturition was severely delayed (~38 hours) in heterozygous dams harboring SRC-1/-2–deficient embryos. These mothers exhibited decreased myometrial NF-κB activation, PGF2α, and expression of contraction-associated genes; impaired luteolysis; and elevated circulating progesterone. These manifestations also occurred in WT females bearing SRC-1/-2 double-deficient embryos, indicating that a fetal-specific defect delayed labor. SP-A, as well as the enzyme lysophosphatidylcholine acyltransferase-1 (LPCAT1), required for synthesis of surfactant dipalmitoylphosphatidylcholine, and the proinflammatory glycerophospholipid platelet-activating factor (PAF) were markedly reduced in SRC-1/-2–deficient fetal lungs near term. Injection of PAF or SP-A into AF at 17.5 days post coitum enhanced uterine NF-κB activation and contractile gene expression, promoted luteolysis, and rescued delayed parturition in SRC-1/-2–deficient embryo-bearing dams. These findings reveal that fetal lungs produce signals to initiate labor when mature and that SRC-1/-2–dependent production of SP-A and PAF is crucial for this process. PMID:26098214
Bauman, Julie E; Duvvuri, Umamaheswar; Gooding, William E; Rath, Tanya J; Gross, Neil D; Song, John; Jimeno, Antonio; Yarbrough, Wendell G; Johnson, Faye M; Wang, Lin; Chiosea, Simion; Sen, Malabika; Kass, Jason; Johnson, Jonas T; Ferris, Robert L; Kim, Seungwon; Hirsch, Fred R; Ellison, Kimberly; Flaherty, John T; Mills, Gordon B; Grandis, Jennifer R
2017-03-23
BACKGROUND. EGFR and Src family kinases are upregulated in head and neck squamous cell carcinoma (HNSCC). EGFR interacts with Src to activate STAT3 signaling, and dual EGFR-Src targeting is synergistic in HNSCC preclinical models. pSrc overexpression predicted resistance to the EGFR inhibitor, erlotinib, in a prior window trial. We conducted a 4-arm window trial to identify biomarkers associated with response to EGFR and/or Src inhibition. METHODS. Patients with operable stage II-IVa HNSCC were randomized to 7-21 days of neoadjuvant erlotinib, the Src inhibitor dasatinib, the combination of both, or placebo. Paired tumor specimens were collected before and after treatment. Pharmacodynamic expression of EGFR and Src pathway components was evaluated by IHC of tissue microarrays and reverse-phase protein array of tissue lysates. Candidate biomarkers were assessed for correlation with change in tumor size. RESULTS. From April 2009 to December 2012, 58 patients were randomized and 55 were treated. There was a significant decrease in tumor size in both erlotinib arms ( P = 0.0014); however, no effect was seen with dasatinib alone ( P = 0.24). High baseline pMAPK expression was associated with response to erlotinib ( P = 0.03). High baseline pSTAT3 was associated with resistance to dasatinib ( P = 0.099). CONCLUSIONS. Brief exposure to erlotinib significantly decreased tumor size in operable HNSCC, with no additive effect from dasatinib. Baseline pMAPK expression warrants further study as a response biomarker for anti-EGFR therapy. Basal expression of pSTAT3 may be independent of Src, explain therapeutic resistance, and preclude development of dasatinib in biomarker-unselected cohorts. TRIAL REGISTRATION. NCT00779389. FUNDING. National Cancer Institute, American Cancer Society, Pennsylvania Department of Health, V Foundation for Cancer Research, Bristol-Myers Squibb, and Astellas Pharma.
Bauman, Julie E.; Duvvuri, Umamaheswar; Gooding, William E.; Rath, Tanya J.; Gross, Neil D.; Song, John; Jimeno, Antonio; Yarbrough, Wendell G.; Johnson, Faye M.; Wang, Lin; Chiosea, Simion; Sen, Malabika; Kass, Jason; Johnson, Jonas T.; Ferris, Robert L.; Kim, Seungwon; Hirsch, Fred R.; Ellison, Kimberly; Flaherty, John T.; Mills, Gordon B.
2017-01-01
BACKGROUND. EGFR and Src family kinases are upregulated in head and neck squamous cell carcinoma (HNSCC). EGFR interacts with Src to activate STAT3 signaling, and dual EGFR-Src targeting is synergistic in HNSCC preclinical models. pSrc overexpression predicted resistance to the EGFR inhibitor, erlotinib, in a prior window trial. We conducted a 4-arm window trial to identify biomarkers associated with response to EGFR and/or Src inhibition. METHODS. Patients with operable stage II–IVa HNSCC were randomized to 7–21 days of neoadjuvant erlotinib, the Src inhibitor dasatinib, the combination of both, or placebo. Paired tumor specimens were collected before and after treatment. Pharmacodynamic expression of EGFR and Src pathway components was evaluated by IHC of tissue microarrays and reverse-phase protein array of tissue lysates. Candidate biomarkers were assessed for correlation with change in tumor size. RESULTS. From April 2009 to December 2012, 58 patients were randomized and 55 were treated. There was a significant decrease in tumor size in both erlotinib arms (P = 0.0014); however, no effect was seen with dasatinib alone (P = 0.24). High baseline pMAPK expression was associated with response to erlotinib (P = 0.03). High baseline pSTAT3 was associated with resistance to dasatinib (P = 0.099). CONCLUSIONS. Brief exposure to erlotinib significantly decreased tumor size in operable HNSCC, with no additive effect from dasatinib. Baseline pMAPK expression warrants further study as a response biomarker for anti-EGFR therapy. Basal expression of pSTAT3 may be independent of Src, explain therapeutic resistance, and preclude development of dasatinib in biomarker-unselected cohorts. TRIAL REGISTRATION. NCT00779389. FUNDING. National Cancer Institute, American Cancer Society, Pennsylvania Department of Health, V Foundation for Cancer Research, Bristol-Myers Squibb, and Astellas Pharma. PMID:28352657
Ye, Xiangcang; Han, Sang Jun; Tsai, Sophia Y.; DeMayo, Francesco J.; Xu, Jianming; Tsai, Ming-Jer; O'Malley, Bert W.
2005-01-01
Genetic disruption of the steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF)2/SRC-2 in mouse resulted in distinctive mutant phenotypes. To quantify their roles in the function of androgen receptor (AR) transcriptional activity in vivo, we generated a unique transgenic AR-reporter mouse and analyzed the cell-specific contributions of SRC-1 and TIF2 to the activity of AR in mouse testis. Transgenic AR-luciferase and transgenic AR-lacZ mice harbor a recombinant mouse AR gene, ARGAL4DBD, which is functionally coupled with a upstream activation sequence-mediated reporter gene (AR activity indicator). After characterization of these mice in terms of AR function, we further derived bigenic mice by crossing AR activity indicator mice with the SRC-1-/- or TIF2+/- mutant mice. Analyses of the resultant bigenic mice by in vivo imaging and luciferase assays showed that testicular AR activity was decreased significantly in those with the TIF2+/- mutation but not in the SRC-1+/- background, suggesting that TIF2 serves as the preferential coactivator for AR in testis. Immunohistological analysis confirmed that AR and TIF2 coexist in mouse testicular Sertoli cell nuclei under normal conditions. Although SRC-1 concentrates in Sertoli cell nuclei in the absence of TIF2, nuclear SRC-1 is not able to rescue AR activity in the TIF2 mutant background. Interestingly, SRC-1 appears to negatively influence AR activity, thereby counterbalancing the TIF2-stimulated AR activity. Our results provide unique in vivo insights to the multidimensional cell-type-specific interactions between AR and coregulators. PMID:15983373
Ye, Xiangcang; Han, Sang Jun; Tsai, Sophia Y; DeMayo, Francesco J; Xu, Jianming; Tsai, Ming-Jer; O'Malley, Bert W
2005-07-05
Genetic disruption of the steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF)2/SRC-2 in mouse resulted in distinctive mutant phenotypes. To quantify their roles in the function of androgen receptor (AR) transcriptional activity in vivo, we generated a unique transgenic AR-reporter mouse and analyzed the cell-specific contributions of SRC-1 and TIF2 to the activity of AR in mouse testis. Transgenic AR-luciferase and transgenic AR-lacZ mice harbor a recombinant mouse AR gene, AR(GAL4DBD), which is functionally coupled with a upstream activation sequence-mediated reporter gene (AR activity indicator). After characterization of these mice in terms of AR function, we further derived bigenic mice by crossing AR activity indicator mice with the SRC-1-/- or TIF2+/- mutant mice. Analyses of the resultant bigenic mice by in vivo imaging and luciferase assays showed that testicular AR activity was decreased significantly in those with the TIF2+/- mutation but not in the SRC-1+/- background, suggesting that TIF2 serves as the preferential coactivator for AR in testis. Immunohistological analysis confirmed that AR and TIF2 coexist in mouse testicular Sertoli cell nuclei under normal conditions. Although SRC-1 concentrates in Sertoli cell nuclei in the absence of TIF2, nuclear SRC-1 is not able to rescue AR activity in the TIF2 mutant background. Interestingly, SRC-1 appears to negatively influence AR activity, thereby counterbalancing the TIF2-stimulated AR activity. Our results provide unique in vivo insights to the multidimensional cell-type-specific interactions between AR and coregulators.
MacKay, Charles E; Knock, Greg A
2015-01-01
Abstract Reactive oxygen species (ROS) are now recognised as second messenger molecules that regulate cellular function by reversibly oxidising specific amino acid residues of key target proteins. Amongst these are the Src-family kinases (SrcFKs), a multi-functional group of non-receptor tyrosine kinases highly expressed in vascular smooth muscle (VSM). In this review we examine the evidence supporting a role for ROS-induced SrcFK activity in normal VSM contractile function and in vascular remodelling in cardiovascular disease. VSM contractile responses to G-protein-coupled receptor stimulation, as well as hypoxia in pulmonary artery, are shown to be dependent on both ROS and SrcFK activity. Specific phosphorylation targets are identified amongst those that alter intracellular Ca2+ concentration, including transient receptor potential channels, voltage-gated Ca2+ channels and various types of K+ channels, as well as amongst those that regulate actin cytoskeleton dynamics and myosin phosphatase activity, including focal adhesion kinase, protein tyrosine kinase-2, Janus kinase, other focal adhesion-associated proteins, and Rho guanine nucleotide exchange factors. We also examine a growing weight of evidence in favour of a key role for SrcFKs in multiple pro-proliferative and anti-apoptotic signalling pathways relating to oxidative stress and vascular remodelling, with a particular focus on pulmonary hypertension, including growth-factor receptor transactivation and downstream signalling, hypoxia-inducible factors, positive feedback between SrcFK and STAT3 signalling and positive feedback between SrcFK and NADPH oxidase dependent ROS production. We also discuss evidence for and against the potential therapeutic targeting of SrcFKs in the treatment of pulmonary hypertension. PMID:25384773
Gao, Lu; Rabbitt, Elizabeth H; Condon, Jennifer C; Renthal, Nora E; Johnston, John M; Mitsche, Matthew A; Chambon, Pierre; Xu, Jianming; O'Malley, Bert W; Mendelson, Carole R
2015-07-01
The precise mechanisms that lead to parturition are incompletely defined. Surfactant protein-A (SP-A), which is secreted by fetal lungs into amniotic fluid (AF) near term, likely provides a signal for parturition; however, SP-A-deficient mice have only a relatively modest delay (~12 hours) in parturition, suggesting additional factors. Here, we evaluated the contribution of steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2), which upregulate SP-A transcription, to the parturition process. As mice lacking both SRC-1 and SRC-2 die at birth due to respiratory distress, we crossed double-heterozygous males and females. Parturition was severely delayed (~38 hours) in heterozygous dams harboring SRC-1/-2-deficient embryos. These mothers exhibited decreased myometrial NF-κB activation, PGF2α, and expression of contraction-associated genes; impaired luteolysis; and elevated circulating progesterone. These manifestations also occurred in WT females bearing SRC-1/-2 double-deficient embryos, indicating that a fetal-specific defect delayed labor. SP-A, as well as the enzyme lysophosphatidylcholine acyltransferase-1 (LPCAT1), required for synthesis of surfactant dipalmitoylphosphatidylcholine, and the proinflammatory glycerophospholipid platelet-activating factor (PAF) were markedly reduced in SRC-1/-2-deficient fetal lungs near term. Injection of PAF or SP-A into AF at 17.5 days post coitum enhanced uterine NF-κB activation and contractile gene expression, promoted luteolysis, and rescued delayed parturition in SRC-1/-2-deficient embryo-bearing dams. These findings reveal that fetal lungs produce signals to initiate labor when mature and that SRC-1/-2-dependent production of SP-A and PAF is crucial for this process.
A Brain Membrane Protein Similar to the Rat src Gene Product
NASA Astrophysics Data System (ADS)
Scheinberg, David A.; Strand, Mette
1981-01-01
We report the purification to homogeneity of a 20,000-dalton, transformation-related, rat cell membrane protein. This protein, p20, was originally identified in preparations of a defective woolly monkey leukemia virus pseudotype of Kirsten sarcoma virus. The chromatographically purified p20 was an acidic hydrophobic protein, capable of specifically binding GTP (dissociation constant = 15 μ M). This nucleotide binding property and other previously reported characteristics were similar to properties ascribed to the Harvey sarcoma virus src gene product. p20 also appeared similar to this src gene product when immunoprecipitates of both proteins were directly compared by one- and two-dimensional NaDodSO4 gel electrophoreses. However, the proteins were not identical, because their tryptic maps differed. Using a competition radioimmunoassay, we have measured the concentration of p20 in cells, viruses, and rat tissues: p20 was not encoded by rat sarcoma viruses because it was increased only slightly after Kirsten sarcoma virus transformation of rat cells and was not increased in nonrat cells transformed by the Kirsten or Harvey sarcoma virus. Remarkably, of 10 rat tissues examined, p20 was found predominantly in brain, specifically in the membranes.
Takshak, Anjneya; Kunwar, Ambarish
2016-05-01
Many cellular processes are driven by collective forces generated by a team consisting of multiple molecular motor proteins. One aspect that has received less attention is the detachment rate of molecular motors under mechanical force/load. While detachment rate of kinesin motors measured under backward force increases rapidly for forces beyond stall-force; this scenario is just reversed for non-yeast dynein motors where detachment rate from microtubule decreases, exhibiting a catch-bond type behavior. It has been shown recently that yeast dynein responds anisotropically to applied load, i.e. detachment rates are different under forward and backward pulling. Here, we use computational modeling to show that these anisotropic detachment rates might help yeast dynein motors to improve their collective force generation in the absence of catch-bond behavior. We further show that the travel distance of cargos would be longer if detachment rates are anisotropic. Our results suggest that anisotropic detachment rates could be an alternative strategy for motors to improve the transport properties and force production by the team. © 2016 The Protein Society.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-24
... Park Subsistence Resource Commission (SRC) and the Wrangell-St. Elias National Park SRC will meet to... and Location for Next Meeting 12. Adjourn Meeting Wrangell-St. Elias National Park SRC Meeting Date and Location: The [[Page 58869
Thapa, Narendra; Choi, Suyong; Hedman, Andrew; Tan, Xiaojun; Anderson, Richard A.
2013-01-01
A fundamental property of tumor cells is to defy anoikis, cell death caused by a lack of cell-matrix interaction, and grow in an anchorage-independent manner. How tumor cells organize signaling molecules at the plasma membrane to sustain oncogenic signals in the absence of cell-matrix interactions remains poorly understood. Here, we describe a role for phosphatidylinositol 4-phosphate 5-kinase (PIPK) Iγi2 in controlling anchorage-independent growth of tumor cells in coordination with the proto-oncogene Src. PIPKIγi2 regulated Src activation downstream of growth factor receptors and integrins. PIPKIγi2 directly interacted with the C-terminal tail of Src and regulated its subcellular localization in concert with talin, a cytoskeletal protein targeted to focal adhesions. Co-expression of PIPKIγi2 and Src synergistically induced the anchorage-independent growth of nonmalignant cells. This study uncovers a novel mechanism where a phosphoinositide-synthesizing enzyme, PIPKIγi2, functions with the proto-oncogene Src, to regulate oncogenic signaling. PMID:24151076
Fasbender, Frank; Claus, Maren; Wingert, Sabine; Sandusky, Mina; Watzl, Carsten
2017-01-01
In a synthetic biology approach using Schneider (S2) cells, we show that SLP-76 is directly phosphorylated at tyrosines Y113 and Y128 by SYK in the presence of ITAM-containing adapters such as CD3ζ, DAP12, or FcεRγ. This phosphorylation was dependent on at least one functional ITAM and a functional SH2 domain within SYK. Inhibition of Src-kinases by inhibitors PP1 and PP2 did not reduce SLP-76 phosphorylation in S2 cells, suggesting an ITAM and SYK dependent, but Src-kinase independent signaling pathway. This direct ITAM/SYK/SLP-76 signaling pathway therefore differs from previously described ITAM signaling. However, the SYK-family kinase ZAP70 required the additional co-expression of the Src-family kinases Fyn or Lck to efficiently phosphorylate SLP-76 in S2 cells. This difference in Src-family kinase dependency of SYK versus ZAP70-mediated ITAM-based signaling was further demonstrated in human lymphocytes. ITAM signaling in ZAP70-expressing T cells was dependent on the activity of Src-family kinases. In contrast, Src-family kinases were partially dispensable for ITAM signaling in SYK-expressing B cells or in natural killer cells, which express SYK and ZAP70. This demonstrates that SYK can signal using a Src-kinase independent ITAM-based signaling pathway, which may be involved in calibrating the threshold for lymphocyte activation. PMID:28736554
Fasbender, Frank; Claus, Maren; Wingert, Sabine; Sandusky, Mina; Watzl, Carsten
2017-01-01
In a synthetic biology approach using Schneider (S2) cells, we show that SLP-76 is directly phosphorylated at tyrosines Y113 and Y128 by SYK in the presence of ITAM-containing adapters such as CD3ζ, DAP12, or FcεRγ. This phosphorylation was dependent on at least one functional ITAM and a functional SH2 domain within SYK. Inhibition of Src-kinases by inhibitors PP1 and PP2 did not reduce SLP-76 phosphorylation in S2 cells, suggesting an ITAM and SYK dependent, but Src-kinase independent signaling pathway. This direct ITAM/SYK/SLP-76 signaling pathway therefore differs from previously described ITAM signaling. However, the SYK-family kinase ZAP70 required the additional co-expression of the Src-family kinases Fyn or Lck to efficiently phosphorylate SLP-76 in S2 cells. This difference in Src-family kinase dependency of SYK versus ZAP70-mediated ITAM-based signaling was further demonstrated in human lymphocytes. ITAM signaling in ZAP70-expressing T cells was dependent on the activity of Src-family kinases. In contrast, Src-family kinases were partially dispensable for ITAM signaling in SYK-expressing B cells or in natural killer cells, which express SYK and ZAP70. This demonstrates that SYK can signal using a Src-kinase independent ITAM-based signaling pathway, which may be involved in calibrating the threshold for lymphocyte activation.
Henry, Luke C.; Elbin, RJ; Collins, Michael W.; Marchetti, Gregory; Kontos, Anthony P.
2016-01-01
Background Previous research estimates that the majority of athletes with sport-related concussion (SRC) will recover between 7–10 days following injury. This short, temporal window of recovery is predominately based on symptom resolution and cognitive improvement, and does not accurately reflect recent advances to the clinical assessment model. Objective To characterize SRC recovery at 1-week post-injury time intervals on symptom, neurocognitive, and vestibular-oculomotor outcomes, and examine gender differences on SRC recovery time. Methods A prospective, repeated measures design was used to examine the temporal resolution of neurocognitive, symptom, and vestibular-oculomotor impairment in 66 subjects (16.5 ± 1.9 years, range 14–23, 64% male) with SRC. Results Recovery time across all outcomes was between 21–28 days post SRC for most athletes. Symptoms demonstrated the greatest improvement in the first 2 weeks, while neurocognitive impairment lingered across various domains up to 28 days post SRC. Vestibular-oculomotor decrements also resolved between one to three weeks post injury. There were no gender differences in neurocognitive recovery. Males were more likely to be asymptomatic by the fourth week and reported less vestibular-oculomotor impairment than females at weeks 1 and 2. Conclusion When utilizing the recommended “comprehensive” approach for concussion assessment, recovery time for SRC is approximately three to four weeks, which is longer than the commonly reported 7–14 days. Sports medicine clinicians should use a variety of complementing assessment tools to capture the heterogeneity of SRC. PMID:26445375
Henry, Luke C; Elbin, R J; Collins, Michael W; Marchetti, Gregory; Kontos, Anthony P
2016-02-01
Previous research estimates that the majority of athletes with sport-related concussion (SRC) will recover between 7 and 10 days after injury. This short temporal window of recovery is based predominately on symptom resolution and cognitive improvement and does not accurately reflect recent advances in the clinical assessment model. To characterize SRC recovery at 1-week postinjury time intervals on symptom, neurocognitive, and vestibular-oculomotor outcomes and to examine sex differences in SRC recovery time. A prospective, repeated-measures design was used to examine the temporal resolution of neurocognitive, symptom, and vestibular-oculomotor impairment in 66 subjects (age, 16.5 ± 1.9 years; range, 14-23 years; 64% male) with SRC. Recovery time across all outcomes was between 21 and 28 days after SRC for most athletes. Symptoms demonstrated the greatest improvement in the first 2 weeks, although neurocognitive impairment lingered across various domains up to 28 days after SRC. Vestibular-oculomotor decrements also resolved between 1 and 3 weeks after injury. There were no sex differences in neurocognitive recovery. Male subjects were more likely to be asymptomatic by the fourth week and reported less vestibular-oculomotor impairment than female subjects at weeks 1 and 2. When the recommended "comprehensive" approach is used for concussion assessment, recovery time for SRC is approximately 3 to 4 weeks, which is longer than the commonly reported 7 to 14 days. Sports medicine clinicians should use a variety of complementing assessment tools to capture the heterogeneity of SRC.
Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia
NASA Astrophysics Data System (ADS)
Melling, Lulie; Hatano, Ryusuke; Goh, Kah Joo
2005-02-01
Soil CO2 flux was measured monthly over a year from tropical peatland of Sarawak, Malaysia using a closed-chamber technique. The soil CO2 flux ranged from 100 to 533 mg C m
2 h
1 for the forest ecosystem, 63 to 245 mg C m
2 h
1 for the sago and 46 to 335 mg C m
2 h
1 for the oil palm. Based on principal component analysis (PCA), the environmental variables over all sites could be classified into three components, namely, climate, soil moisture and soil bulk density, which accounted for 86% of the seasonal variability. A regression tree approach showed that CO2 flux in each ecosystem was related to different underlying environmental factors. They were relative humidity for forest, soil temperature at 5 cm for sago and water-filled pore space for oil palm. On an annual basis, the soil CO2 flux was highest in the forest ecosystem with an estimated production of 2.1 kg C m
2 yr
1 followed by oil palm at 1.5 kg C m
2 yr
1 and sago at 1.1 kg C m
2 yr
1. The different dominant controlling factors in CO2 flux among the studied ecosystems suggested that land use affected the exchange of CO2 between tropical peatland and the atmosphere.
Improved Crystal Quality By Detached Solidification in Microgravity
NASA Technical Reports Server (NTRS)
Regel, Liya L.; Wilcox, William R.; Wang, Yaz-Hen; Wang, Jian-Bin
2003-01-01
Many microgravity directional solidification experiments yielded ingots with portions that grew without contacting the ampoule wall, leading to greatly improved crystallographic perfection. Our long term goals have been: (1) To develop a complete understanding of all of the phenomena of detached solidification.; (2) To make it possible to achieve detached solidification reproducibly; (3) To increase crystallographic perfection through detached solidification. We have three major achievements to report here: (1) We obtained a new material balance solution for the Moving Meniscus Model of detached solidification. This solution greatly clarifies the physics as well as the roles of the parameters in the system; (2) We achieved detached solidification of InSb growing on earth in BN-coated ampoules; (3) We performed an extensive series of experiments on freezing water that showed how to form multiple gas bubbles or tubes on the ampoule wall. However, these did not propagate around the wall and lead to fully detached solidification unless the ampoule wall was extremely rough and non-wetted.
Rat supraspinatus muscle atrophy after tendon detachment.
Barton, Elisabeth R; Gimbel, Jonathan A; Williams, Gerald R; Soslowsky, Louis J
2005-03-01
Rotator cuff tears are one of the most common tendon disorders found in the healthy population. Tendon tears not only affect the biomechanical properties of the tendon, but can also lead to debilitation of the muscles attached to the damaged tendons. The changes that occur in the muscle after tendon detachment are not well understood. A rat rotator cuff model was utilized to determine the time course of changes that occur in the supraspinatus muscle after tendon detachment. It was hypothesized that the lack of load on the supraspinatus muscle would cause a significant decrease in muscle mass and a conversion of muscle fiber properties toward those of fast fiber types. Tendons were detached at the insertion on the humerus without repair. Muscle mass, morphology and fiber properties were measured at one, two, four, eight, and 16 weeks after detachment. Tendon detachment resulted in a rapid loss of muscle mass, an increase in the proportion of fast muscle fibers, and an increase in the fibrotic content of the muscle bed, concomitant with the appearance of adhesions of the tendon to surrounding surfaces. At 16 weeks post-detachment, muscle mass and the fiber properties in the deep muscle layers returned to normal levels. However, the fiber shifts observed in the superficial layers persisted throughout the experiment. These results suggest that load returned to the muscle via adhesions to surrounding surfaces, which may be sufficient to reverse changes in muscle mass.
Yu, Seon-Mi; Kim, Song-Ja
2010-11-30
Endoplasmic reticulum (ER) stress regulates a wide range of cellular responses including apoptosis, proliferation, inflammation, and differentiation in mammalian cells. In this study, we observed the role of 2-deoxy-D-glucose (2DG) on inflammation of chondrocytes. 2DG is well known as an inducer of ER stress, via inhibition of glycolysis and glycosylation. Treatment of 2DG in chondrocytes considerably induced ER stress in a dose- and time-dependent manner, which was demonstrated by a reduction of glucose regulated protein of 94 kDa (grp94), an ER stress-inducible protein, as determined by a Western blot analysis. In addition, induction of ER stress by 2DG led to the expression of COX-2 protein with an apparent molecular mass of 66-70kDa as compared with the normally expressed 72-74 kDa protein. The suppression of ER stress with salubrinal (Salub), a selective inhibitor of eif2-alpha dephosphorylation, successfully prevented grp94 induction and efficiently recovered 2DG- modified COX-2 molecular mass and COX-2 activity might be associated with COX-2 N-glycosylation. Also, treatment of 2DG increased phosphorylation of Src in chondrocytes. The inhibition of the Src signaling pathway with PP2 (Src tyrosine kinase inhibitor) suppressed grp94 expression and restored COX-2 expression, N-glycosylation, and PGE2 production, as determined by a Western blot analysis and PGE2 assay. Taken together, our results indicate that the ER stress induced by 2DG results in a decrease of the transcription level, the molecular mass, and the activity of COX-2 in rabbit articular chondrocytes via a Src kinase-dependent pathway.
Maldonado, H; Calderon, C; Burgos-Bravo, F; Kobler, O; Zuschratter, W; Ramirez, O; Härtel, S; Schneider, P; Quest, A F G; Herrera-Molina, R; Leyton, L
2017-02-01
Two key proteins for cellular communication between astrocytes and neurons are αvβ3 integrin and the receptor Thy-1. Binding of these molecules in the same (cis) or on adjacent (trans) cellular membranes induces Thy-1 clustering, triggering actin cytoskeleton remodeling. Molecular events that could explain how the Thy-1-αvβ3 integrin interaction signals have only been studied separately in different cell types, and the detailed transcellular communication and signal transduction pathways involved in neuronal cytoskeleton remodeling remain unresolved. Using biochemical and genetic approaches, single-molecule tracking, and high-resolution nanoscopy, we provide evidence that upon binding to αvβ3 integrin, Thy-1 mobility decreased while Thy-1 nanocluster size increased. This occurred concomitantly with inactivation and exclusion of the non-receptor tyrosine kinase Src from the Thy-1/C-terminal Src kinase (Csk)-binding protein (CBP)/Csk complex. The Src inactivation decreased the p190Rho GTPase activating protein phosphorylation, promoting RhoA activation, cofilin, and myosin light chain II phosphorylation and, consequently, neurite shortening. Finally, silencing the adaptor CBP demonstrated that this protein was a key transducer in the Thy-1 signaling cascade. In conclusion, these data support the hypothesis that the Thy-1-CBP-Csk-Src-RhoA-ROCK axis transmitted signals from astrocytic integrin-engaged Thy-1 (trans) to the neuronal actin cytoskeleton. Importantly, the β3 integrin in neurons (cis) was not found to be crucial for neurite shortening. This is the first study to detail the signaling pathway triggered by αvβ3, the endogenous Thy-1 ligand, highlighting the role of membrane-bound integrins as trans acting ligands in astrocyte-neuron communication. Copyright © 2016 Elsevier B.V. All rights reserved.
What is the physiological time to recovery after concussion? A systematic review.
Kamins, Joshua; Bigler, Erin; Covassin, Tracey; Henry, Luke; Kemp, Simon; Leddy, John J; Mayer, Andrew; McCrea, Michael; Prins, Mayumi; Schneider, Kathryn J; Valovich McLeod, Tamara C; Zemek, Roger; Giza, Christopher C
2017-06-01
The aim of this study is to consolidate studies of physiological measures following sport-related concussion (SRC) to determine if a time course of postinjury altered neurobiology can be outlined. This biological time course was considered with respect to clinically relevant outcomes such as vulnerability to repeat injury and safe timing of return to physical contact risk. Systematic review. PubMed, CINAHL, Cochrane Central, PsychINFO. Studies were included if they reported original research on physiological or neurobiological changes after SRC. Excluded were cases series <5 subjects, reviews, meta-analyses, editorials, animal research and research not pertaining to SRC. A total of 5834 articles were identified, of which 80 were included for full-text data extraction and review. Relatively few longitudinal studies exist that follow both physiological dysfunction and clinical measures to recovery. Modalities of measuring physiological change after SRC were categorised into the following: functional MRI, diffusion tensor imaging, magnetic resonance spectroscopy, cerebral blood flow, electrophysiology, heart rate, exercise, fluid biomarkers and transcranial magnetic stimulation. Due to differences in modalities, time course, study design and outcomes, it is not possible to define a single 'physiological time window' for SRC recovery. Multiple studies suggest physiological dysfunction may outlast current clinical measures of recovery, supporting a buffer zone of gradually increasing activity before full contact risk. Future studies need to use generalisable populations, longitudinal designs following to physiological and clinical recovery and careful correlation of neurobiological modalities with clinical measures. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Electron detachment of the hydrogen-bonded amino acid side-chain guanine complexes
NASA Astrophysics Data System (ADS)
Wang, Jing; Gu, Jiande; Leszczynski, Jerzy
2007-07-01
The photoelectron spectra of the hydrogen-bonded amino acid side-chain-guanine complexes has been studied at the partial third order (P3) self-energy approximation of the electron propagator theory. The correlation between the vertical electron detachment energy and the charge distributions on the guanine moiety reveals that the vertical electron detachment energy (VDE) increases as the positive charge distribution on the guanine increases. The low VDE values determined for the negatively charged complexes of the guanine-side-chain-group of Asp/Glu suggest that the influence of the H-bonded anionic groups on the VDE of guanine could be more important than that of the anionic backbone structure. The even lower vertical electron detachment energy for guanine is thus can be expected in the H-bonded protein-DNA systems.
Ageing differentially affects neural processing of different conflict types-an fMRI study.
Korsch, Margarethe; Frühholz, Sascha; Herrmann, Manfred
2014-01-01
Interference control and conflict resolution is affected by ageing. There is increasing evidence that ageing does not compromise interference control in general but rather shows distinctive effects on different components of interference control. Different conflict types, [e.g., stimulus-stimulus (S-S) or stimulus-response (S-R) conflicts] trigger different cognitive processes and thus activate different neural networks. In the present functional magnetic resonance imaging (fMRI) study, we used a combined Flanker and Stimulus Response Conflict (SRC) task to investigate the effect of ageing on S-S and S-R conflicts. Behavioral data analysis revealed larger SRC effects in elderly. fMRI Results show that both age groups recruited similar regions [caudate nucleus, cingulate gyrus and middle occipital gyrus (MOG)] during Flanker conflict processing. Furthermore, elderly show an additional activation pattern in parietal and frontal areas. In contrast, no common activation of both age groups was found in response to the SRC. These data suggest that ageing has distinctive effects on S-S and S-R conflicts.
ERIC Educational Resources Information Center
Brady, Don; Brady, Flo
2011-01-01
Sport-related concussions (SRC) are not limited to specific age ranges, professional athletes, or gender. The primary focus of much of SRC research pertains to the assessment, management, and return to play (RTP) of the concussed athlete. This article highlights some major issues of SRC along with some controversies that presently exist within the…
Maa, Ming-Chei; Leu, Tzeng-Horng
2016-06-01
As an evolutionarily conserved mechanism, innate immunity controls self-nonself discrimination to protect a host from invasive pathogens. Macrophages are major participants of the innate immune system. Through the activation of diverse Toll-like receptors (TLRs), macrophages are triggered to initiate a variety of functions including locomotion, phagocytosis, and secretion of cytokines that requires the participation of tyrosine kinases. Fgr, Hck, and Lyn are myeloid-specific Src family kinases. Despite their constitutively high expression in macrophages, their absence does not impair LPS responsiveness. In contrast, Src, a barely detectable tyrosine kinase in resting macrophages, becomes greatly inducible in response to TLR engagement, implicating its role in macrophage activation. Indeed, silencing Src suppresses the activated TLR-mediated migration, phagocytosis, and interferon-beta (IFN-β) secretion in macrophages. And these physiological defects can be restored by the introduction of siRNA-resistant Src. Notably, the elevated expression and activity of Src is inducible nitric oxide synthase (iNOS)-dependent. Due to (1) iNOS being a NF-κB target, which can be induced by various TLR ligands, (2) Src can mediate NF-κB activation, therefore, there ought to exist a loop of signal amplification that regulates macrophage physiology in response to the engagement of TLRs.
Fusaki, N; Iwamatsu, A; Iwashima, M; Fujisawa, J i
1997-03-07
The Src family protein-tyrosine kinase, Fyn, is associated with the T cell receptor (TCR) and plays an important role in TCR-mediated signaling. We found that a human T cell leukemia virus type 1-infected T cell line, Hayai, overexpressed Fyn. To identify the molecules downstream of Fyn, we analyzed the tyrosine phosphorylation of cellular proteins in the cells. In Hayai, a 68-kDa protein was constitutively tyrosine-phosphorylated. The 68-kDa protein was coimmunoprecipitated with various signaling proteins such as phospholipase C gamma1, the phosphatidylinositol 3-kinase p85 subunit, Grb2, SHP-1, Cbl, and Jak3, implying that the protein might function as an adapter. Purification and microsequencing of this protein revealed that it was the RNA-binding protein, Sam68 (Src associated in mitosis, 68 kDa). Sam68 was associated with the Src homology 2 and 3 domains of Fyn and also those of another Src family kinase, Lck. CD3 cross-linking induced tyrosine phosphorylation of Sam68 in uninfected T cells. These data suggest that Sam68 participates in the signal transduction pathway downstream of TCR-coupled Src family kinases Fyn and Lck in lymphocytes, that is not only in the mitotic pathway downstream of c-Src in fibroblasts.
Zambuzzi, Willian F.; Bonfante, Estevam A.; Jimbo, Ryo; Hayashi, Mariko; Andersson, Martin; Alves, Gutemberg; Takamori, Esther R.; Beltrão, Paulo J.; Coelho, Paulo G.; Granjeiro, José M.
2014-01-01
Background It is known that physico/chemical alterations on biomaterial surfaces have the capability to modulate cellular behavior, affecting early tissue repair. Such surface modifications are aimed to improve early healing response and, clinically, offer the possibility to shorten the time from implant placement to functional loading. Since FAK and Src are intracellular proteins able to predict the quality of osteoblast adhesion, this study evaluated the osteoblast behavior in response to nanometer scale titanium surface texturing by monitoring FAK and Src phosphorylations. Methodology Four engineered titanium surfaces were used for the study: machined (M), dual acid-etched (DAA), resorbable media microblasted and acid-etched (MBAA), and acid-etch microblasted (AAMB). Surfaces were characterized by scanning electron microscopy, interferometry, atomic force microscopy, x-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. Thereafter, those 4 samples were used to evaluate their cytotoxicity and interference on FAK and Src phosphorylations. Both Src and FAK were investigated by using specific antibody against specific phosphorylation sites. Principal Findings The results showed that both FAK and Src activations were differently modulated as a function of titanium surfaces physico/chemical configuration and protein adsorption. Conclusions It can be suggested that signaling pathways involving both FAK and Src could provide biomarkers to predict osteoblast adhesion onto different surfaces. PMID:24999733
Dynamic organization of myristoylated Src in the live cell plasma membrane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Adam W.; Huang, Hector H.; Endres, Nicholas F.
The spatial organization of lipid-anchored proteins in the plasma membrane directly influences cell signaling, but measuring such organization in situ is experimentally challenging. The canonical oncogene, c-Src, is a lipid anchored protein that plays a key role in integrin-mediated signal transduction within focal adhesions and cell–cell junctions. Because of its activity in specific plasma membrane regions, structural motifs within the protein have been hypothesized to play an important role in its subcellular localization. This study used a combination of time-resolved fluorescence fluctuation spectroscopy and super-resolution microscopy to quantify the dynamic organization of c-Src in live cell membranes. Pulsed-interleaved excitation fluorescencemore » cross-correlation spectroscopy (PIE–FCCS) showed that a small fraction of c-Src transiently sorts into membrane clusters that are several times larger than the monomers. Photoactivated localization microscopy (PALM) confirmed that c-Src partitions into clusters with low probability and showed that the characteristic size of the clusters is 10–80 nm. Finally, time-resolved fluorescence anisotropy measurements were used to quantify the rotational mobility of c-Src to determine how it interacts with its local environment. Altogether, these results build a quantitative description of the mobility and clustering behavior of the c-Src nonreceptor tyrosine kinase in the live cell plasma membrane.« less
Dynamic organization of myristoylated Src in the live cell plasma membrane
Smith, Adam W.; Huang, Hector H.; Endres, Nicholas F.; ...
2016-01-15
The spatial organization of lipid-anchored proteins in the plasma membrane directly influences cell signaling, but measuring such organization in situ is experimentally challenging. The canonical oncogene, c-Src, is a lipid anchored protein that plays a key role in integrin-mediated signal transduction within focal adhesions and cell–cell junctions. Because of its activity in specific plasma membrane regions, structural motifs within the protein have been hypothesized to play an important role in its subcellular localization. This study used a combination of time-resolved fluorescence fluctuation spectroscopy and super-resolution microscopy to quantify the dynamic organization of c-Src in live cell membranes. Pulsed-interleaved excitation fluorescencemore » cross-correlation spectroscopy (PIE–FCCS) showed that a small fraction of c-Src transiently sorts into membrane clusters that are several times larger than the monomers. Photoactivated localization microscopy (PALM) confirmed that c-Src partitions into clusters with low probability and showed that the characteristic size of the clusters is 10–80 nm. Finally, time-resolved fluorescence anisotropy measurements were used to quantify the rotational mobility of c-Src to determine how it interacts with its local environment. Altogether, these results build a quantitative description of the mobility and clustering behavior of the c-Src nonreceptor tyrosine kinase in the live cell plasma membrane.« less
Palovuori, Riitta; Sormunen, Raija; Eskelinen, Sinikka
2003-12-01
The effects of Src tyrosine kinase activation in subconfluent temperature sensitive (ts)-Src-transformed Madin-Darby canine kidney (MDCK) cells were analyzed by shifting them from nonpermissive (40.5 degrees C) to permissive (35 degrees C) temperature. Already, in 15 minutes, adherens junction components were released from the lateral walls and accumulated to basal surfaces. Simultaneously, membranous actin staining vanished, actin bundles appeared at the basal surface, and the cells flattened. The only component phosphorylated and translocated after the shift to 35 degrees C was p120ctn. The epithelial-mesenchymal transition could be inhibited by a specific inhibitor of Src kinase, PP2, or by inhibiting endocytosis. Therefore, Src activation was responsible for the transition, but not because of phosphorylation of adherens junction components but by way of activation of endocytic machinery and RhoGTPase. Expression of an RacGEF, Tiam-1 (T-lymphoma invasion and metastasis gene 1), prevented flattening of Src-transformed MDCK cells at 35 degrees C and resulted in accumulation of cadherin to lateral membranes. In the case where the Src-MDCK cells were cultivated at 35 degrees C and shifted for short time periods to 40.5 degrees C, cadherin rapidly returned to lateral membranes, whereas actin and p120ctn followed hours afterward. This further supports the view that cadherin internalization is the primary target of Src kinase. We also looked at the cell morphology and distribution of cadherin and Tiam-1 in cells grown in three-dimensional gels composed of collagen and laminin or in Matrigel. At nonpermissive temperature, both Src-MDCK and Tiam-1-transfected Src-MDCK cells exhibited nonpolarized morphology in collagen I, a loose cluster in the mixture of collagen I and laminin, and a differentiated cyst in Matrigel. In growth factor-depleted Matrigel, the Src-MDCK cells grew in nondifferentiated clusters, whereas Tiam-1-transfected cells went to apoptosis. The differentiated phenotype of both cell lines could be rescued by Matrigel-conditioned medium, platelet-derived growth factor, or cholera toxin. Concomitantly, both cadherin and Tiam-1 were recruited to lateral membranes. Therefore, cadherin and Tiam-1 seem to be the key players in the differentiation process of MDCK cells.
Improved light-induced cell detachment on rutile TiO₂ nanodot films.
Cheng, Kui; Sun, Yu; Wan, Hongping; Wang, Xiaozhao; Weng, Wenjian; Lin, Jun; Wang, Huiming
2015-10-01
Anatase TiO2 nanodot films have been found to be able to release cells under light illumination with excellent efficiency and safety. In the present study, we investigated the effects of rutile contents in TiO2 nanodot films on such light induced cell detachment behavior. The results showed that TiO2 nanodot films with different contents of rutile phase have been prepared successfully. The content of rutile phase increased with the increase in calcination temperature. All films possessed good cell adhesion but there was a decrease in cell proliferation with the increasing content of rutile phase. Single cell detachment assay showed that the films with high rutile contents (calcined at 900°C and 1100°C) showed better cell detachment performance. That was ascribed to the changes of the secondary structure of extracellular proteins adsorbed on the nanodot surface after ultraviolet (365 nm, UV365) illumination. In addition, cell sheets detached through UV365 illumination maintained high activity and could be further used in tissue engineering. The present work showed that the existence of rutile phase is helpful in cell detachment behavior and it could be utilized to optimize light-induced cell detachment behavior. This work discovers that the presence of rutile phase in TiO2 nanodot films could improve the light-induced cell detachment behavior, although rutile phase is inferior to anatase phase on light induced superhydrophilicity. That strongly supported that the behaviors of adsorbed proteins are crucial in acquiring cell sheet with light illumination. In fact, the state and behavior of adsorbed protein greatly affect the interaction between biomaterials and living cells. Therefore, we consider this work is not only important in harvesting cells or cell sheets through light illumination, but also helpful in further understanding of interaction between biomaterials and cells. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Roles of the SH2 and SH3 domains in the regulation of neuronal Src kinase functions.
Groveman, Bradley R; Xue, Sheng; Marin, Vedrana; Xu, Jindong; Ali, Mohammad K; Bienkiewicz, Ewa A; Yu, Xian-Min
2011-02-01
Previous studies demonstrated that intra-domain interactions between Src family kinases (SFKs), stabilized by binding of the phosphorylated C-terminus to the SH2 domain and/or binding of the SH2 kinase linker to the SH3 domain, lock the molecules in a closed conformation, disrupt the kinase active site, and inactivate SFKs. Here we report that the up-regulation of N-methyl-D-aspartate receptors (NMDARs) induced by expression of constitutively active neuronal Src (n-Src), in which the C-terminus tyrosine is mutated to phenylalanine (n-Src/Y535F), is significantly reduced by dysfunctions of the SH2 and/or SH3 domains of the protein. Furthermore, we found that dysfunctions of SH2 and/or SH3 domains reduce auto-phosphorylation of the kinase activation loop, depress kinase activity, and decrease NMDAR phosphorylation. The SH2 domain plays a greater regulatory role than the SH3 domain. Our data also show that n-Src binds directly to the C-terminus of the NMDAR NR2A subunit in vitro, with a K(D) of 108.2 ± 13.3 nM. This binding is not Src kinase activity-dependent, and dysfunctions of the SH2 and/or SH3 domains do not significantly affect the binding. These data indicate that the SH2 and SH3 domains may function to promote the catalytic activity of active n-Src, which is important in the regulation of NMDAR functions. © 2010 The Authors Journal compilation © 2010 FEBS.
NASA Astrophysics Data System (ADS)
Gathorne-Hardy, A.
2014-12-01
Biochar is promoted for its carbon storage and soil amendment properties, but there remains a research gap into wider sustainability implications of biochar use. Without these there is a risk that biochar use could deliver negative unforeseen consequences. Key to biochar sustainability is the feedstock sustainability, which in developed nations can be novel due to the ability to process biomass locally. Using field trial data and primary biodiversity assessments we modelled different sustainability indicators (local GHG balance, global GHG balance, local biodiversity, global biodiversity and local economic return) associated with four different biochar feedstocks (woodlands, hedgerows, Short Rotation Coppice (SRC) and straw) over 20 years for UK arable agriculture. Global measures included Indirect Land Use Change (ILUC). Our results showed that trade-offs are inherent. Local GHG emissions are reduced by use of straw and SRC, and increased through the use of woodlands. In contrast all feedstocks reduced the global GHG emissions. Local biodiversity was increased through use of hedgerows, woodlands, SRC and low fertiliser rates. Global biodiversity was maximised through high fertiliser rates and use of all feedstocks. Critically economic return was maximised through high use of woodland and straw, and substantially reduced when hedgerows or SRC is used as feedstock. The introduction of high (£52 t-1 CO2) and low (£11.44 t-1 CO2) carbon prices were never enough to shift a system between loss and profit. This research demonstrates that the sustainability of biochar varies substantially depending on the scale (local or global) and the breadth of indicators included. Ultimately biochar is designed to have a role in solving global problems, but the decisions determining use will be made locally. Regulation to ensure biochar is used appropriately may be necessary.
Stith, Bradley J.
2015-01-01
This review emphasizes how lipids regulate membrane fusion and the proteins involved in three developmental stages: oocyte maturation to the fertilizable egg, fertilization and during first cleavage. Decades of work show that phosphatidic acid (PA) releases intracellular calcium, and recent work shows that the lipid can activate Src tyrosine kinase or phospholipase C during Xenopus fertilization. Numerous reports are summarized to show three levels of increase in lipid second messengers inositol 1,4,5-trisphosphate and sn 1,2-diacylglycerol (DAG) during the three different developmental stages. In addition, possible roles for PA, ceramide, lysophosphatidylcholine, plasmalogens, phosphatidylinositol 4-phosphate, phosphatidylinositol 5-phosphate, phosphatidylinositol 4,5-bisphosphate, membrane microdomains (rafts) and phosphatidylinositol 3,4,5-trisphosphate in regulation of membrane fusion (acrosome reaction, sperm-egg fusion, cortical granule exocytosis), inositol 1,4,5-trisphosphate receptors, and calcium release are discussed. The role of six lipases involved in generating putative lipid second messengers during fertilization is also discussed: phospholipase D, autotaxin, lipin1, sphingomyelinase, phospholipase C, and phospholipase A2. More specifically, proteins involved in developmental events and their regulation through lipid binding to SH3, SH4, PH, PX, or C2 protein domains is emphasized. New models are presented for PA activation of Src (through SH3, SH4 and a unique domain), that this may be why the SH2 domain of PLCγ is not required for Xenopus fertilization, PA activation of phospholipase C, a role for PA during the calcium wave after fertilization, and that calcium/calmodulin may be responsible for the loss of Src from rafts after fertilization. Also discussed is that the large DAG increase during fertilization derives from phospholipase D production of PA and lipin dephosphorylation to DAG. PMID:25748412
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, Ajaz A.; Ahmad, Rizwan; Uppada, SrijayaPrakash B.
Epithelial-mesenchymal transition (EMT) is an important mechanism in cancer progression and malignancy including colorectal cancer (CRC). Importantly, inflammatory mediators are critical constituents of the local tumor environment and an intimate link between CRC progression and inflammation is now validated. We and others have reported key role of the deregulated claudin-1 expression in colon carcinogenesis including colitis-associated colon cancer (CAC). However, the causal association between claudin-1 expression and inflammation-induced colon cancer progression remains unclear. Here we demonstrate, TNF-α, a pro-inflammatory cytokine, regulates claudin-1 to modulate epithelial to mesenchymal transition (EMT) and migration in colon adenocarcinoma cells. Importantly, colon cancer cells culturedmore » in the presence of TNF-α (10 ng/ml), demonstrated a sharp decrease in E-cadherin expression and an increase in vimentin expression (versus control cells). Interestingly, TNF-α treatment also upregulated (and delocalized) claudin-1 expression in a time-dependent manner accompanied by increase in proliferation and wound healing. Furthermore, similar to our previous observation that claudin-1 overexpression in CRC cells induces ERK1/2 and Src- activation, signaling associated with colon cancer cell survival and transformation, TNF-α-treatment induced upregulation of phospho-ERK1/2 and -Src expression. The shRNA-mediated inhibition of claudin-1 expression largely abrogated the TNF-α-induced changes in EMT, proliferation, migration, p-Erk and p-Src expression. Taken together, our data demonstrate TNF-α mediated regulation of claudin-1 and tumorigenic abilities of colon cancer cells and highlights a key role of deregulated claudin-1 expression in inflammation-induced colorectal cancer growth and progression, through the regulation of the ERK and Src-signaling.« less
Walls, Chad D.; Iliuk, Anton; Bai, Yunpeng; Wang, Mu; Tao, W. Andy; Zhang, Zhong-Yin
2013-01-01
Phosphatase of regenerating liver 3 (PRL3) is suspected to be a causative factor toward cellular metastasis when in excess. To date, the molecular basis for PRL3 function remains an enigma, making efforts at distilling a concerted mechanism for PRL3-mediated metastatic dissemination very difficult. We previously discovered that PRL3 expressing cells exhibit a pronounced increase in protein tyrosine phosphorylation. Here we take an unbiased mass spectrometry-based approach toward identifying the phosphoproteins exhibiting enhanced levels of tyrosine phosphorylation with a goal to define the “PRL3-mediated signaling network.” Phosphoproteomic data support intracellular activation of an extensive signaling network normally governed by extracellular ligand-activated transmembrane growth factor, cytokine, and integrin receptors in the PRL3 cells. Additionally, data implicate the Src tyrosine kinase as the major intracellular kinase responsible for “hijacking” this network and provide strong evidence that aberrant Src activation is a major consequence of PRL3 overexpression. Importantly, the data support a PDGF(α/β)-, Eph (A2/B3/B4)-, and Integrin (β1/β5)-receptor array as being the predominant network coordinator in the PRL3 cells, corroborating a PRL3-induced mesenchymal-state. Within this network, we find that tyrosine phosphorylation is increased on a multitude of signaling effectors responsible for Rho-family GTPase, PI3K-Akt, STAT, and ERK activation, linking observations made by the field as a whole under Src as a primary signal transducer. Our phosphoproteomic data paint the most comprehensive picture to date of how PRL3 drives prometastatic molecular events through Src activation. PMID:24030100
Ai, Midan; Liang, Ke; Lu, Yang; Qiu, Songbo; Fan, Zhen
2013-01-01
Breast tumor kinase (Brk)/protein tyrosine kinase-6 (PTK-6) is a nonreceptor PTK commonly expressed at high levels in breast cancer. Brk interacts closely with members of the human epidermal growth factor receptor (HER) family in breast cancer but the functional role of this interaction remains to be determined. Here, we provide novel mechanistic insights into the role of Brk in regulating cell survival and epithelial-to-mesenchymal transition (EMT) in the context of HER2-positive breast cancer cells. Overexpression of HER2 in MCF7 breast cancer cells (MCF7HER2) led to a higher level of Brk protein and concomitantly reduced Src Y416-phosphorylation, and the cells became mesenchymal in morphology. An in vivo selection of MCF7HER2 cells in nude mice resulted in a subline, termed EMT1, that exhibited not only mesenchymal morphology but also enhanced migration potential. Compared with MCF7HER2 cells, EMT1 cells maintained a similar level of HER2 protein but had much higher level of activated HER2, and the increase in Brk protein and the decrease in Src Y416-phosphorylation were less in EMT1 cells. EMT1 cells exhibited increased sensitivity to both pharmacological inhibition of HER2 and knockdown of Brk than did MCF7HER2 cells. Knockdown of Brk induced apoptosis and partially reversed the EMT phenotype in EMT1 cells. Overexpression of a constitutively active STAT3, a known substrate of Brk, overcame Brk knockdown-induced effects in EMT1 cells. Together, our findings support a new paradigm wherein Brk plays both a complementary and a counterbalancing role in cooperating with HER2 and Src to regulate breast cancer cell survival and EMT. PMID:23291984
NEW METABOLITES FROM THE MICROBIAL OXIDATION OF FLUORINATED AROMATIC COMPOUNDS. (R826113)
m-Bromo-
,
,A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation.
Dikic, I; Tokiwa, G; Lev, S; Courtneidge, S A; Schlessinger, J
1996-10-10
The mechanisms by which mitogenic G-protein-coupled receptors activate the MAP kinase signalling pathway are poorly understood. Candidate protein tyrosine kinases that link G-protein-coupled receptors with MAP kinase include Src family kinases, the epidermal growth factor receptor, Lyn and Syk. Here we show that lysophosphatidic acid (LPA) and bradykinin induce tyrosine phosphorylation of Pyk2 and complex formation between Pyk2 and activated Src. Moreover, tyrosine phosphorylation of Pyk2 leads to binding of the SH2 domain of Src to tyrosine 402 of Pyk2 and activation of Src. Transient overexpression of a dominant interfering mutant of Pyk2 or the protein tyrosine kinase Csk reduces LPA- or bradykinin-induced activation of MAP kinase. LPA- or bradykinin-induced MAP kinase activation was also inhibited by overexpression of dominant interfering mutants of Grb2 and Sos. We propose that Pyk2 acts with Src to link Gi- and Gq-coupled receptors with Grb2 and Sos to activate the MAP kinase signalling pathway in PC12 cells.
Greenway, Alison L.; Dutartre, Hélène; Allen, Kelly; McPhee, Dale A.; Olive, Daniel; Collette, Yves
1999-01-01
The nef gene from human and simian immunodeficiency viruses (HIV and SIV) regulates cell function and viral replication, possibly through binding of the nef product to cellular proteins, including Src family tyrosine kinases. We show here that the Nef protein encoded by SIVmac239 interacts with and also activates the human Src kinases Lck and Hck. This is in direct contrast to the inhibitory effect of HIV type 1 (HIV-1) Nef on Lck catalytic activity. Unexpectedly, however, the interaction of SIV Nef with human Lck or Hck is not mediated via its consensus proline motif, which is known to mediate HIV-1 Nef binding to Src homology 3 (SH3) domains, and various experimental analyses failed to show significant interaction of SIV Nef with the SH3 domain of either kinase. Instead, SIV Nef can bind Lck and Hck SH2 domains, and its N-terminal 50 amino acid residues are sufficient for Src kinase binding and activation. Our results provide evidence for multiple mechanisms by which Nef binds to and regulates Src kinases. PMID:10364375
Sandel, Natalie; Reynolds, Erin; Cohen, Paul E; Gillie, Brandon L; Kontos, Anthony P
2017-08-01
Conceptual models for assessing and treating sport-related concussion (SRC) have evolved from a homogenous approach to include different clinical profiles that reflect the heterogeneous nature of this injury and its effects. There are six identified clinical profiles, or subtypes from SRC, and one such clinical profile is the anxiety/mood profile. Athletes with this profile experience predominant emotional disturbance and anxiety following SRC. The purpose of this targeted review was to present an overview of the empirical evidence to support factors contributing to the anxiety/mood profile, along with methods of evaluation and treatment of this clinical profile following SRC. We discuss the potential underlying mechanisms and risk factors for this clinical profile, describe comprehensive assessments to evaluate concussed athletes with an anxiety/mood clinical profile, and explore behavioral and other interventions for treating these athletes. Although there is limited, but growing empirical evidence for the anxiety/mood clinical profile following SRC, understanding this clinical profile is germane for clinicians who are treating athletes with emotional sequelae after SRC.
Osteoclast inhibition impairs chondrosarcoma growth and bone destruction.
Otero, Jesse E; Stevens, Jeff W; Malandra, Allison E; Fredericks, Douglas C; Odgren, Paul R; Buckwalter, Joseph A; Morcuende, Jose
2014-12-01
Because Chondrosarcoma is resistant to available chemotherapy and radiation regimens, wide resection is the mainstay in treatment, which frequently results in high morbidity and which may not prevent local recurrence. There is a clear need for improved adjuvant treatment of this malignancy. We have observed the presence of osteoclasts in the microenvironment of chondrosarcoma in human pathological specimens. We utilized the Swarm rat chondrosarcoma (SRC) model to test the hypothesis that osteoclasts affect chondrosarcoma pathogenesis. We implanted SRC tumors in tibia of Sprague-Dawley rats and analyzed bone histologically and radiographically for bone destruction and tumor growth. At three weeks, tumors invaded local bone causing cortical disruption and trabecular resorption. Bone destruction was accompanied by increased osteoclast number and resorbed bone surface. Treatment of rats with the zoledronic acid prevented cortical destruction, inhibited trabecular resorption, and resulted in decreased tumor volume in bone. To confirm that inhibition of osteoclasts per se, and not off-target effects of drug, was responsible for the prevention of tumor growth and bone destruction, we implanted SRC into osteopetrotic rat tibia. SRC-induced bone destruction and tumor growth were impaired in osteopetrotic bone compared with control bone. The results from our animal model demonstrate that osteoclasts contribute to chondrosarcoma-mediated bone destruction and tumor growth and may represent a therapeutic target in particular chondrosarcoma patients. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation
Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias
2016-01-01
The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265
Integrin activation and focal complex formation in cardiac hypertrophy.
Laser, M; Willey, C D; Jiang, W; Cooper, G; Menick, D R; Zile, M R; Kuppuswamy, D
2000-11-10
Cardiac hypertrophy is characterized by both remodeling of the extracellular matrix (ECM) and hypertrophic growth of the cardiocytes. Here we show increased expression and cytoskeletal association of the ECM proteins fibronectin and vitronectin in pressure-overloaded feline myocardium. These changes are accompanied by cytoskeletal binding and phosphorylation of focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, c-Src at Tyr-416, recruitment of the adapter proteins p130(Cas), Shc, and Nck, and activation of the extracellular-regulated kinases ERK1/2. A synthetic peptide containing the Arg-Gly-Asp (RGD) motif of fibronectin and vitronectin was used to stimulate adult feline cardiomyocytes cultured on laminin or within a type-I collagen matrix. Whereas cardiocytes under both conditions showed RGD-stimulated ERK1/2 activation, only collagen-embedded cells exhibited cytoskeletal assembly of FAK, c-Src, Nck, and Shc. In RGD-stimulated collagen-embedded cells, FAK was phosphorylated only at Tyr-397 and c-Src association occurred without Tyr-416 phosphorylation and p130(Cas) association. Therefore, c-Src activation is not required for its cytoskeletal binding but may be important for additional phosphorylation of FAK. Overall, our study suggests that multiple signaling pathways originate in pressure-overloaded heart following integrin engagement with ECM proteins, including focal complex formation and ERK1/2 activation, and many of these pathways can be activated in cardiomyocytes via RGD-stimulated integrin activation.
Integrin activation and focal complex formation in cardiac hypertrophy
NASA Technical Reports Server (NTRS)
Laser, M.; Willey, C. D.; Jiang, W.; Cooper, G. 4th; Menick, D. R.; Zile, M. R.; Kuppuswamy, D.
2000-01-01
Cardiac hypertrophy is characterized by both remodeling of the extracellular matrix (ECM) and hypertrophic growth of the cardiocytes. Here we show increased expression and cytoskeletal association of the ECM proteins fibronectin and vitronectin in pressure-overloaded feline myocardium. These changes are accompanied by cytoskeletal binding and phosphorylation of focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, c-Src at Tyr-416, recruitment of the adapter proteins p130(Cas), Shc, and Nck, and activation of the extracellular-regulated kinases ERK1/2. A synthetic peptide containing the Arg-Gly-Asp (RGD) motif of fibronectin and vitronectin was used to stimulate adult feline cardiomyocytes cultured on laminin or within a type-I collagen matrix. Whereas cardiocytes under both conditions showed RGD-stimulated ERK1/2 activation, only collagen-embedded cells exhibited cytoskeletal assembly of FAK, c-Src, Nck, and Shc. In RGD-stimulated collagen-embedded cells, FAK was phosphorylated only at Tyr-397 and c-Src association occurred without Tyr-416 phosphorylation and p130(Cas) association. Therefore, c-Src activation is not required for its cytoskeletal binding but may be important for additional phosphorylation of FAK. Overall, our study suggests that multiple signaling pathways originate in pressure-overloaded heart following integrin engagement with ECM proteins, including focal complex formation and ERK1/2 activation, and many of these pathways can be activated in cardiomyocytes via RGD-stimulated integrin activation.
Merging nitrogen management and renewable energy needs.
Wilson, E; Chapman, P J; McDonald, A
2001-11-22
The ARBRE (ARable Biomass Renewable Energy) project, the first large-scale wood-fueled electricity generating plant in the U.K., represents a significant development in realising British and European policy objectives on renewable energy. The plant is fueled by a mix of wood from short rotation coppice (SRC) and forest residues. Where feasible, composted/conditioned sewage sludge is applied to coppice sites to increase yields and improve soil structure. In the Yorkshire Water region, typical total N:P:K composition of composted/conditioned sludge is 2.9:3.8:0.3, respectively. Sludge application is calculated on the basis of total nitrogen (N) content to achieve 750 kg N ha(-1), for 3 years" requirement. Willow coppice forms a dense, widely spaced, root network, which, with its long growing season, makes it an effective user of nutrients. This, in combination with willow"s use as a nonfood, nonfodder crop, makes it an attractive route for the recycling of sewage sludge in the absence of sea disposal, banned under the EC Urban Waste Water Treatment Directive (UWWTD). Further work is required on the nutritional requirements of SRC in order to understand better the quantities of sludge that can be applied to SRC without having a detrimental impact on the environment. This paper suggests the source of N rerouting under the UWWTD and suggests the likely expansion of SRC as an alternative recycling pathway.
NASA Astrophysics Data System (ADS)
Miao, Lei; Xin, Xiaoming; Xin, Hong; Shen, Xiaoyan; Zhu, Yi-Zhun
2016-03-01
Myocardial infarction (MI) triggers an inflammatory reaction, in which macrophages are of key importance for tissue repairing. Infiltration and/or migration of macrophages into the infarct area early after MI is critical for infarct healing, vascularization, and cardiac function. Hydrogen sulfide (H2S) has been demonstrated to possess cardioprotective effects post MI and during the progress of cardiac remodeling. However, the specific molecular and cellular mechanisms involved in macrophage recruitment by H2S remain to be identified. In this study, the NaHS (exogenous sources of H2S) treatment exerted an increased infiltration of macrophages into the infarcted myocardium at early stage of MI cardiac tissues in both wild type (WT) and cystathionine-γ-lyase-knockout (CSE-KO) mice. And NaHS accelerated the migration of macrophage cells in vitro. While, the inhibitors not only significantly diminished the migratory ability in response to NaHS, but also blocked the activation of phospho-Src, -Pyk2, -FAK397, and -FAK925. Furthermore, NaHS induced the internalization of integrin β1 on macrophage surface, but, integrin β1 silencing inhibited macrophage migration and Src signaling activation. These results indicate that H2S may have the potential as an anti-infarct of MI by governing macrophage migration, which was achieved by accelerating internalization of integrin β1 and activating downstream Src-FAK/Pyk2-Rac pathway.
Ando, Seijitsu; Otani, Hitomi; Yagi, Yasuhiro; Kawai, Kenzo; Araki, Hiromasa; Fukuhara, Shirou; Inagaki, Chiyoko
2007-01-01
Background Proteinase-activated receptors (PARs; PAR1–4) that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT) which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA) for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells). Results Stimulation of PAR with thrombin (1 U/ml) or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM) for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β). Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR) kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial-mesenchymal transition (EMT) as monitored by cell shapes, and epithelial or myofibroblast marker at least partly through EGFR transactivation via receptor-linked Src activation. PMID:17433115
Knock, Greg A; Shaifta, Yasin; Snetkov, Vladimir A; Vowles, Benjamin; Drndarski, Svetlana; Ward, Jeremy P T; Aaronson, Philip I
2008-02-01
We investigated the role of src family kinases (srcFK) in agonist-mediated Ca2+-sensitization in pulmonary artery and whether this involves interaction with the rho/rho-kinase pathway. Intra-pulmonary arteries (IPAs) and cultured pulmonary artery smooth muscle cells (PASMC) were obtained from rat. Expression of srcFK was determined at the mRNA and protein levels. Ca2+-sensitization was induced by prostaglandin F(2 alpha) (PGF(2 alpha)) in alpha-toxin-permeabilized IPAs. Phosphorylation of the regulatory subunit of myosin phosphatase (MYPT-1) and of myosin light-chain-20 (MLC20) and translocation of rho-kinase in response to PGF(2 alpha) were also determined. Nine srcFK were expressed at the mRNA level, including src, fyn, and yes, and PGF(2 alpha) enhanced phosphorylation of three srcFK proteins at tyr-416. In alpha-toxin-permeabilized IPAs, PGF(2 alpha) enhanced the Ca2+-induced contraction (pCa 6.9) approximately three-fold. This enhancement was inhibited by the srcFK blockers SU6656 and PP2 and by the rho-kinase inhibitor Y27632. Y27632, but not SU6656 or PP2, also inhibited the underlying pCa 6.9 contraction. PGF(2 alpha) enhanced phosphorylation of MYPT-1 at thr-697 and thr-855 and of MLC20 at ser-19. This enhancement, but not the underlying basal phosphorylation, was inhibited by SU6656. Y27632 suppressed both basal and PGF(2 alpha)-mediated phosphorylation. The effects of SU6656 and Y27632, on both contraction and MYPT-1 and MLC20 phosphorylation, were not additive. PGF(2 alpha) triggered translocation of rho-kinase in PASMC, and this was inhibited by SU6656. srcFK are activated by PGF(2 alpha) in the rat pulmonary artery and may contribute to Ca2+-sensitization and contraction via rho-kinase translocation and phosphorylation of MYPT-1.
Knock, Greg A.; Shaifta, Yasin; Snetkov, Vladimir A.; Vowles, Benjamin; Drndarski, Svetlana; Ward, Jeremy P.T.; Aaronson, Philip I.
2008-01-01
Abstract Aims We investigated the role of src family kinases (srcFK) in agonist-mediated Ca2+-sensitization in pulmonary artery and whether this involves interaction with the rho/rho-kinase pathway. Methods and results Intra-pulmonary arteries (IPAs) and cultured pulmonary artery smooth muscle cells (PASMC) were obtained from rat. Expression of srcFK was determined at the mRNA and protein levels. Ca2+-sensitization was induced by prostaglandin F2α (PGF2α) in α-toxin-permeabilized IPAs. Phosphorylation of the regulatory subunit of myosin phosphatase (MYPT-1) and of myosin light-chain-20 (MLC20) and translocation of rho-kinase in response to PGF2α were also determined. Nine srcFK were expressed at the mRNA level, including src, fyn, and yes, and PGF2α enhanced phosphorylation of three srcFK proteins at tyr-416. In α-toxin-permeabilized IPAs, PGF2α enhanced the Ca2+-induced contraction (pCa 6.9) approximately three-fold. This enhancement was inhibited by the srcFK blockers SU6656 and PP2 and by the rho-kinase inhibitor Y27632. Y27632, but not SU6656 or PP2, also inhibited the underlying pCa 6.9 contraction. PGF2α enhanced phosphorylation of MYPT-1 at thr-697 and thr-855 and of MLC20 at ser-19. This enhancement, but not the underlying basal phosphorylation, was inhibited by SU6656. Y27632 suppressed both basal and PGF2α-mediated phosphorylation. The effects of SU6656 and Y27632, on both contraction and MYPT-1 and MLC20 phosphorylation, were not additive. PGF2α triggered translocation of rho-kinase in PASMC, and this was inhibited by SU6656. Conclusions srcFK are activated by PGF2α in the rat pulmonary artery and may contribute to Ca2+-sensitization and contraction via rho-kinase translocation and phosphorylation of MYPT-1. PMID:18032393
Guo, Xiaoguang; Kashihara, Toshihide; Nakada, Tsutomu; Aoyama, Toshifumi; Yamada, Mitsuhiko
2018-06-01
In atherosclerosis, vascular smooth muscle cells (VSMC) migrate from the media toward the intima of the arteries in response to cytokines, such as platelet-derived growth factor (PDGF). However, molecular mechanism underlying the PDGF-induced migration of VSMCs remains unclear. The migration of rat aorta-derived synthetic VSMCs, A7r5, in response to PDGF was potently inhibited by a Ca V 1.2 channel inhibitor, nifedipine, and a Src family tyrosine kinase (SFK)/Abl inhibitor, bosutinib, in a less-than-additive manner. PDGF significantly increased Ca V 1.2 channel currents without altering Ca V 1.2 protein expression levels in A7r5 cells. This reaction was inhibited by C-terminal Src kinase, a selective inhibitor of SFKs. In contractile VSMCs, the C-terminus of Ca V 1.2 is proteolytically cleaved into proximal and distal C-termini (PCT and DCT, respectively). Clipped DCT is noncovalently reassociated with PCT to autoinhibit the channel activity. Conversely, in synthetic A7r5 cells, full-length Ca V 1.2 (Ca V 1.2FL) is expressed much more abundantly than truncated Ca V 1.2. In a heterologous expression system, c-Src activated Ca V 1.2 channels composed of Ca V 1.2FL but not truncated Ca V 1.2 (Ca V 1.2Δ1763) or Ca V 1.2Δ1763 plus clipped DCT. Further, c-Src enhanced the coupling efficiency between the voltage-sensing domain and activation gate of Ca V 1.2FL channels by phosphorylating Tyr1709 and Tyr1758 in PCT. Compared with Ca V 1.2Δ1763, c-Src could more efficiently bind to and phosphorylate Ca V 1.2FL irrespective of the presence or absence of clipped DCT. Therefore, in atherosclerotic lesions, phenotypic switching of VSMCs may facilitate pro-migratory effects of PDGF on VSMCs by suppressing posttranslational Ca V 1.2 modifications.
Combating resistance to anti-IGFR antibody by targeting the integrin β3-Src pathway.
Shin, Dong Hoon; Lee, Hyo-Jong; Min, Hye-Young; Choi, Sun Phil; Lee, Mi-Sook; Lee, Jung Weon; Johnson, Faye M; Mehta, Kapil; Lippman, Scott M; Glisson, Bonnie S; Lee, Ho-Young
2013-10-16
Several phase II/III trials of anti-insulin-like growth factor 1 receptor (IGF-1R) monoclonal antibodies (mAbs) have shown limited efficacy. The mechanisms of resistance to IGF-1R mAb-based therapies and clinically applicable strategies for overcoming drug resistance are still undefined. IGF-1R mAb cixutumumab efficacy, alone or in combination with Src inhibitors, was evaluated in 10 human head and neck squamous cell carcinoma (HNSCC) and six non-small cell lung cancer (NSCLC) cell lines in vitro in two- or three-dimensional culture systems and in vivo in cell line- or patient-derived xenograft tumors in athymic nude mice (n = 6-9 per group). Cixutumumab-induced changes in cell signaling and IGF-1 binding to integrin β3 were determined by Western or ligand blotting, immunoprecipitation, immunofluorescence, and cell adhesion analyses and enzyme-linked immunosorbent assay. Data were analyzed by the two-sided Student t test or one-way analysis of variance. Integrin β3-Src signaling cascade was activated by IGF-1 in HNSCC and NSCLC cells, when IGF-1 binding to IGF-1R was hampered by cixutumumab, resulting in Akt activation and cixutumumab resistance. Targeting integrin β3 or Src enhanced antitumor activity of cixutumumab in multiple cixutumumab-resistant cell lines and patient-derived tumors in vitro and in vivo. Mean tumor volume of mice cotreated with cixutumumab and integrin β3 siRNA was 133.7 mm(3) (95% confidence interval [CI] = 57.6 to 209.8 mm(3)) compared with those treated with cixutumumab (1472.5 mm(3); 95% CI = 1150.7 to 1794.3 mm(3); P < .001) or integrin β3 siRNA (903.2 mm(3); 95% CI = 636.1 to 1170.3 mm(3); P < .001) alone. Increased Src activation through integrin ανβ3 confers considerable resistance against anti-IGF-1R mAb-based therapies in HNSCC and NSCLC cells. Dual targeting of the IGF-1R pathway and collateral integrin β3-Src signaling module may override this resistance.
Combating Resistance to Anti-IGFR Antibody by Targeting the Integrin β3-Src Pathway
2013-01-01
Background Several phase II/III trials of anti–insulin-like growth factor 1 receptor (IGF-1R) monoclonal antibodies (mAbs) have shown limited efficacy. The mechanisms of resistance to IGF-1R mAb-based therapies and clinically applicable strategies for overcoming drug resistance are still undefined. Methods IGF-1R mAb cixutumumab efficacy, alone or in combination with Src inhibitors, was evaluated in 10 human head and neck squamous cell carcinoma (HNSCC) and six non–small cell lung cancer (NSCLC) cell lines in vitro in two- or three-dimensional culture systems and in vivo in cell line– or patient-derived xenograft tumors in athymic nude mice (n = 6–9 per group). Cixutumumab-induced changes in cell signaling and IGF-1 binding to integrin β3 were determined by Western or ligand blotting, immunoprecipitation, immunofluorescence, and cell adhesion analyses and enzyme-linked immunosorbent assay. Data were analyzed by the two-sided Student t test or one-way analysis of variance. Results Integrin β3–Src signaling cascade was activated by IGF-1 in HNSCC and NSCLC cells, when IGF-1 binding to IGF-1R was hampered by cixutumumab, resulting in Akt activation and cixutumumab resistance. Targeting integrin β3 or Src enhanced antitumor activity of cixutumumab in multiple cixutumumab-resistant cell lines and patient-derived tumors in vitro and in vivo. Mean tumor volume of mice cotreated with cixutumumab and integrin β3 siRNA was 133.7mm3 (95% confidence interval [CI] = 57.6 to 209.8mm3) compared with those treated with cixutumumab (1472.5mm3; 95% CI = 1150.7 to 1794.3mm3; P < .001) or integrin β3 siRNA (903.2mm3; 95% CI = 636.1 to 1170.3mm3; P < .001) alone. Conclusions Increased Src activation through integrin ανβ3 confers considerable resistance against anti–IGF-1R mAb-based therapies in HNSCC and NSCLC cells. Dual targeting of the IGF-1R pathway and collateral integrin β3–Src signaling module may override this resistance. PMID:24092920
Chronic traumatic encephalopathy in sports: a historical and narrative review.
Solomon, Gary
2018-01-01
My objectives are to review: 1) a brief history of sport-related concussion (SRC) and chronic traumatic encephalopathy (CTE), 2) the evolution of CTE in American professional football, 3) the data regarding SRC/CTE as they relate to depression and suicide, 4) the data on the neurocognitive effects of subconcussion/repetitive head trauma (with emphases on heading the ball in soccer and early exposure to football), 5) the evidence related to SRC and neurodegenerative diseases, 6) the published studies of CTE, 7) the NINDS neuropathological criteria for CTE, 8) public beliefs about SRC/CTE, and 9) the scientific questions regarding CTE.
Bilateral patching in retinal detachment: fluid mechanics and retinal "settling".
Foster, William J
2011-07-20
When a patient suffers a retinal detachment and surgery is delayed, it is known clinically that bilaterally patching the patient may allow the retina to partially reattach or "settle." Although this procedure has been performed since the 1860s, there is still debate as to how such a maneuver facilitates the reattachment of the retina. Finite element calculations using commercially available analysis software are used to elucidate the influence of reduction in eye movement caused by bilateral patching on the flow of subretinal fluid in a physical model of retinal detachment. It was found that by coupling fluid mechanics with structural mechanics, a physically consistent explanation of increased retinal detachment with eye movements can be found in the case of traction on the retinal hole. Large eye movements increase vitreous traction and detachment forces on the edge of the retinal hole, creating a subretinal vacuum and facilitating increased subretinal fluid. Alternative models, in which intraocular fluid flow is redirected into the subretinal space, are not consistent with these simulations. The results of these simulations explain the physical principles behind bilateral patching and provide insight that can be used clinically. In particular, as is known clinically, bilateral patching may facilitate a decrease in the height of a retinal detachment. The results described here provide a description of a physical mechanism underlying this technique. The findings of this study may aid in deciding whether to bilaterally patch patients and in counseling patients on pre- and postoperative care.
Paediatric retinal detachment: aetiology, characteristics and outcomes.
McElnea, Elizabeth; Stephenson, Kirk; Gilmore, Sarah; O'Keefe, Michael; Keegan, David
2018-01-01
To provide contemporary data on the aetiology, clinical features and outcomes of paediatric retinal detachment. A retrospective review of all those under 16y who underwent surgical repair for retinal detachment at a single centre between the years 2008 and 2015 inclusive was performed. In each case the cause of retinal detachment, the type of detachment, the presence or absence of macular involvement, the number and form of reparative surgeries undertaken, and the surgical outcome achieved was recorded. Twenty-eight eyes of 24 patients, 15 (62.5%) of whom were male and 9 (37.5%) of whom were female, their mean age being 11.6y and range 2-16y developed retinal detachment over the eight year period studied. Trauma featured in the development of retinal detachment in 14 (50.0%) cases. Retinal detachment was associated with other ocular and/or systemic conditions in 11 (39.3%) cases. A mean of 3.0 procedures with a range of 1-9 procedures per patient were undertaken in the management of retinal detachment. Complex vitrectomy combined with scleral buckling or complex vitrectomy alone were those most frequently performed. Mean postoperative visual acuity was 1.2 logMAR with range 0.0-3.0 logMAR. In 22 of 26 (84.6%) cases which underwent surgical repair the retina was attached at last follow-up. Aggressive management of paediatric retinal detachment including re-operation increases the likelihood of anatomical success. In cases where the retinal detachment can be repaired by an external approach alone there is a more favourable visual outcome.
Hiscox, Stephen; Barrett-Lee, Peter; Borley, Annabel C; Nicholson, Robert I
2010-08-01
Aromatase inhibitors have largely replaced tamoxifen as the first-line treatment for postmenopausal women with metastatic, hormone receptor-positive (HR+) breast cancer. However, many patients develop clinical resistance with prolonged treatment, and oestrogen deprivation following aromatase inhibition can result in loss of bone mineral density. Furthermore, most patients with metastatic breast cancer develop bone metastases, and the resulting adverse skeletal-related events are a significant cause of patient morbidity. Src, a non-receptor tyrosine kinase, is a component of signalling pathways that regulate breast cancer cell proliferation, invasion and metastasis as well as osteoclast-mediated bone turnover. Preclinical evidence also suggests a role for Src in acquired endocrine resistance. As such, Src inhibition represents a logical strategy for the treatment of metastatic breast cancer. In vitro, combination therapy with Src inhibitors and endocrine agents, including aromatase inhibitors, has been shown to inhibit the proliferation and metastasis of both endocrine-responsive and endocrine-resistant breast cancer cell lines more effectively than either of the therapy alone. Src inhibition has also been shown to suppress osteoclast formation and activity. Combination therapy with aromatase inhibitors and Src inhibitors therefore represents a novel approach through which the development of both acquired resistance and bone pathology could be delayed. Data from clinical trials utilising such combinations will reveal if this strategy has the potential to improve patient outcomes. Copyright 2010 Elsevier Ltd. All rights reserved.
Huang, Kezhen; Wang, Yue-Hao; Brown, Alex; Sun, Gongqin
2009-01-01
Csk and Src protein tyrosine kinases are structurally homologous, but use opposite regulatory strategies. The isolated catalytic domain of Csk is intrinsically inactive and is activated by interactions with the regulatory SH3 and SH2 domains, while the isolated catalytic domain of Src is intrinsically active and is suppressed by interactions with the regulatory SH3 and SH2 domains. The structural basis for why one isolated catalytic domain is intrinsically active while the other is inactive is not clear. In this current study, we identify the structural elements in the N-terminal lobe of the catalytic domain that render the Src catalytic domain active. These structural elements include the α-helix C region, a β-turn between the β-4 and β-5 strands, and an Arg residue at the beginning of the catalytic domain. These three motifs interact with each other to activate the Src catalytic domain, but the equivalent motifs in Csk directly interact with the regulatory domains that are important for Csk activation. The Src motifs can be grafted to the Csk catalytic domain to obtain an active Csk catalytic domain. These results, together with available Src and Csk tertiary structures, reveal an important structural switch that determines the kinase activity of a catalytic domain and dictates the regulatory strategy of a kinase. PMID:19244618
Eichhorn, Pieter J. A; Creyghton, Menno P; Wilhelmsen, Kevin; van Dam, Hans; Bernards, René
2007-01-01
Protein Phosphatase type 2A (PP2A) represents a family of holoenzyme complexes with diverse biological activities. Specific holoenzyme complexes are thought to be deregulated during oncogenic transformation and oncogene-induced signaling. Since most studies on the role of this phosphatase family have relied on the use of generic PP2A inhibitors, the contribution of individual PP2A holoenzyme complexes in PP2A-controlled signaling pathways is largely unclear. To gain insight into this, we have constructed a set of shRNA vectors targeting the individual PP2A regulatory subunits for suppression by RNA interference. Here, we identify PR55γ and PR55δ as inhibitors of c-Jun NH2-terminal kinase (JNK) activation by UV irradiation. We show that PR55γ binds c-SRC and modulates the phosphorylation of serine 12 of c-SRC, a residue we demonstrate to be required for JNK activation by c-SRC. We also find that the physical interaction between PR55γ and c-SRC is sensitive to UV irradiation. Our data reveal a novel mechanism of c-SRC regulation whereby in response to stress c-SRC activity is regulated, at least in part, through loss of the interaction with its inhibitor, PR55γ. PMID:18069897
The ly-6 protein, lynx1, is an endogenous inhibitor of nicotinic signaling in airway epithelium.
Fu, Xiao Wen; Rekow, Stephen S; Spindel, Eliot R
2012-10-15
Our laboratory has previously reported that bronchial epithelial cells (BEC) express a regulatory cascade of classic neurotransmitters and receptors that communicate in an almost neuronal-like manner to achieve physiological regulation. In this paper we show that the similarity between neurotransmitter signaling in neurons and BEC extends to the level of transmitter receptor allosteric modulators. Lynx1 is a member of the ly-6/three-finger superfamily of proteins, many of which modulate receptor signaling activity. Lynx1 specifically has been shown to modulate nicotinic acetylcholine receptor (nAChR) function in neurons by altering receptor sensitivity and desensitization. We now report that lynx1 forms a complex with α7 nAChR in BEC and serves to negatively regulate α7 downstream signaling events. Treatment of primary cultures of BEC with nicotine increased levels of nAChR subunits and that increase was potentiated by lynx1 knockdown. Lynx1 knockdown also potentiated the nicotine-induced increase in GABA(A) receptors (GABA(A)R) and MUC5AC mRNA expression, and that effect was blocked by α7 antagonists and α7 knockdown. In parallel with the increases in nAChR, GABA(A)R, and mucin mRNA levels, lynx1 knockdown also increased levels of p-Src. Consistent with this, inhibition of Src signaling blocked the ability of the lynx1 knockdown to increase basal and nicotine-stimulated GABA(A)R and mucin mRNA expression. Thus lynx1 appears to act as a negative modulator of α7 nAChR-induced events by inhibiting Src activation. This suggests that lynx1 agonists or mimetics are a potentially important therapeutic target to develop new therapies for smoking-related diseases characterized by increased mucin expression.
USDA-ARS?s Scientific Manuscript database
In order to investigate suitability of solvent retention capacity (SRC) test for quality assessment of hard red spring (HRS) wheat flour, ten HRS genotypes from six locations in North Dakota State were analyzed for SRC and flour and breadmaking quality characteristics. The SRC values were significa...
NASA Astrophysics Data System (ADS)
Mortazavi, Mehdi; Tajiri, Kazuya
2014-01-01
The dynamic behavior of a liquid water droplet emerging and detaching from the surface of the gas diffusion layer (GDL) is investigated. The droplet growth and detachment are studied for different polytetrafluoroethylene (PTFE) contents within the GDL and for different superficial gas velocities flowing in the gas channel. To simulate the droplet behavior in the cathode and anode of an operating polymer electrolyte fuel cell, separate experiments are conducted with air and hydrogen being supplied in the gas channel, respectively. Both the superficial gas velocity and the PTFE content within the GDL are found to impact the droplet detachment diameter. Increasing the superficial gas velocity increases the drag force applied on the droplet sitting on the GDL surface. It is observed that the droplet detaches at a smaller diameter for higher superficial gas velocities. The droplets also detach at smaller diameters from GDLs with a higher amount of PTFE. Such observation is justified according to two different points of view: (1) heterogeneous through-plane PTFE distribution through the GDL and (2) reduced GDL surface roughness caused by PTFE loading.
Liu, Mengying; Huangfu, Xuhong; Zhao, Yangang; Zhang, Dongmei; Zhang, Jiqiang
2015-11-01
Hippocampus local estrogen which is converted from androgen that catalyzed by aromatase has been shown to play important roles in the regulation of learning and memory as well as cognition through action on synaptic plasticity, but the underlying mechanisms are poorly understood. Steroid receptor coactivator-1 (SRC-1) is one of the coactivators of steroid nuclear receptors; it is widely distributed in brain areas that related to learning and memory, reproductive regulation, sensory and motor information integration. Previous studies have revealed high levels of SRC-1 immunoreactivities in the hippocampus; it is closely related to the levels of synaptic proteins such as PSD-95 under normal development or gonadectomy, but its exact roles in the regulation of these proteins remains unclear. In this study, we used aromatase inhibitor letrozole in vivo and SRC-1 RNA interference in vitro to investigate whether SRC-1 mediated endogenous estrogen regulation of hippocampal PSD-95. The results revealed that letrozole injection synchronously decreased hippocampal SRC-1 and PSD-95 in a dose-dependant manner. Furthermore, when SRC-1 specific shRNA pool was applied to block the expression of SRC-1 in the primary hippocampal neuron culture, both immunocytochemistry and Western blot revealed that levels of PSD-95 were also decreased significantly. Taking together, these results provided the first evidence that SRC-1 mediated endogenous estrogen regulation of hippocampal synaptic plasticity by targeting the expression of synaptic protein PSD-95. Additionally, since letrozole is frequently used to treat estrogen-sensitive breast cancer, the above results also indicate its potential side effects in clinical administration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hyaline Articular Matrix Formed by Dynamic Self-Regenerating Cartilage and Hydrogels.
Meppelink, Amanda M; Zhao, Xing; Griffin, Darvin J; Erali, Richard; Gill, Thomas J; Bonassar, Lawrence J; Redmond, Robert W; Randolph, Mark A
2016-07-01
Injuries to the articular cartilage surface are challenging to repair because cartilage possesses a limited capacity for self-repair. The outcomes of current clinical procedures aimed to address these injuries are inconsistent and unsatisfactory. We have developed a novel method for generating hyaline articular cartilage to improve the outcome of joint surface repair. A suspension of 10(7) swine chondrocytes was cultured under reciprocating motion for 14 days. The resulting dynamic self-regenerating cartilage (dSRC) was placed in a cartilage ring and capped with fibrin and collagen gel. A control group consisted of chondrocytes encapsulated in fibrin gel. Constructs were implanted subcutaneously in nude mice and harvested after 6 weeks. Gross, histological, immunohistochemical, biochemical, and biomechanical analyses were performed. In swine patellar groove, dSRC was implanted into osteochondral defects capped with collagen gel and compared to defects filled with osteochondral plugs, collagen gel, or left empty after 6 weeks. In mice, the fibrin- and collagen-capped dSRC constructs showed enhanced contiguous cartilage matrix formation over the control of cells encapsulated in fibrin gel. Biochemically, the fibrin and collagen gel dSRC groups were statistically improved in glycosaminoglycan and hydroxyproline content compared to the control. There was no statistical difference in the biomechanical data between the dSRC groups and the control. The swine model also showed contiguous cartilage matrix in the dSRC group but not in the collagen gel and empty defects. These data demonstrate the survivability and successful matrix formation of dSRC under the mechanical forces experienced by normal hyaline cartilage in the knee joint. The results from this study demonstrate that dSRC capped with hydrogels successfully engineers contiguous articular cartilage matrix in both nonload-bearing and load-bearing environments.
Src mediates cigarette smoke-induced resistance to tyrosine kinase inhibitors in NSCLC cells.
Filosto, Simone; Baston, David S; Chung, Samuel; Becker, Cathleen R; Goldkorn, Tzipora
2013-08-01
The EGF receptor (EGFR) is a proto-oncogene commonly dysregulated in several cancers including non-small cell lung carcinoma (NSCLC) and, thus, is targeted for treatment using tyrosine kinase inhibitors (TKI) such as erlotinib. However, despite the efficacy observed in patients with NSCLC harboring oncogenic variants of the EGFR, general ineffectiveness of TKIs in patients with NSCLC who are current and former smokers necessitates identification of novel mechanisms to overcome this phenomenon. Previously, we showed that NSCLC cells harboring either wild-type (WT) EGFR or oncogenic mutant (MT) L858R EGFR become resistant to the effects of TKIs when exposed to cigarette smoke, evidenced by their autophosphorylation and prolonged downstream signaling. Here, we present Src as a target mediating cigarette smoke-induced resistance to TKIs in both WT EGFR- and L858R MT EGFR-expressing NSCLC cells. First, we show that cigarette smoke exposure of A549 cells leads to time-dependent activation of Src, which then abnormally binds to the WT EGFR causing TKI resistance, contrasting previous observations of constitutive binding between inactive Src and TKI-sensitive L858R MT EGFR. Next, we show that Src inhibition restores TKI sensitivity in cigarette smoke-exposed NSCLC cells, preventing EGFR autophosphorylation in the presence of erlotinib. Furthermore, we show that overexpression of a dominant-negative Src (Y527F/K295R) restores TKI sensitivity to A549 exposed to cigarette smoke. Importantly, the TKI resistance that emerges even in cigarette smoke-exposed L858R EGFR-expressing NSCLC cells could be eliminated with Src inhibition. Together, these findings offer new rationale for using Src inhibitors for treating TKI-resistant NSCLC commonly observed in smokers.
Src mediates cigarette smoke-induced resistance to tyrosine kinase inhibitors in NSCLC cells
Filosto, Simone; Baston, David S.; Chung, Samuel; Becker, Cathleen R.; Goldkorn, Tzipora
2015-01-01
The EGF Receptor (EGFR) is a proto-oncogene commonly dysregulated in several cancers including non-small cell lung cancer (NSCLC) and, thus, is targeted for treatment using tyrosine kinase inhibitors (TKIs) such as Erlotinib. However, despite the efficacy observed in NSCLC patients harboring oncogenic variants of the EGFR, general ineffectiveness of TKIs in NSCLC patients who are current and former smokers necessitates identification of novel mechanisms to overcome this phenomenon. Previously, we showed that NSCLC cells harboring either wild-type (WT) EGFR or oncogenic mutant (MT) L858R EGFR become resistant to the effects of TKIs when exposed to cigarette smoke (CS), evidenced by their auto-phosphorylation and prolonged downstream signaling. Here, we present Src as a target mediating CS-induced resistance to TKIs in both WT EGFR and L858R MT EGFR expressing NSCLC cells. First, we show that CS exposure of A549 cells leads to time-dependent activation of Src which then abnormally binds to the WT EGFR causing TKI resistance, contrasting previous observations of constitutive binding between inactive Src and TKI-sensitive L858R MT EGFR. Next, we demonstrate that Src inhibition restores TKI sensitivity in CS-exposed NSCLC cells, preventing EGFR auto-phosphorylation in the presence of Erlotinib. Furthermore, we show that over-expression of a dominant-negative Src (Y527F/K295R) restores TKI sensitivity to A549 exposed to CS. Importantly, the TKI resistance that emerges even in CS-exposed L858R EGFR expressing NSCLC cells could be eliminated with Src inhibition. Together, these findings offer new rationale for using Src inhibitors for treating TKI-resistant NSCLC commonly observed in smokers. PMID:23686837
Gangoso, E; Thirant, C; Chneiweiss, H; Medina, J M; Tabernero, A
2014-01-01
Connexin43 (Cx43), the main gap junction channel-forming protein in astrocytes, is downregulated in malignant gliomas. These tumors are composed of a heterogeneous population of cells that include many with stem-cell-like properties, called glioma stem cells (GSCs), which are highly tumorigenic and lack Cx43 expression. Interestingly, restoring Cx43 reverses GSC phenotype and consequently reduces their tumorigenicity. In this study, we investigated the mechanism by which Cx43 exerts its antitumorigenic effects on GSCs. We have focused on the tyrosine kinase c-Src, which interacts with the intracellular carboxy tail of Cx43. We found that Cx43 regulates c-Src activity and proliferation in human GSCs expanded in adherent culture. Thus, restoring Cx43 in GSCs inhibited c-Src activity, which in turn promoted the downregulation of the inhibitor of differentiation Id1. Id1 sustains stem cell phenotype as it controls the expression of Sox2, responsible for stem cell self-renewal, and promotes cadherin switching, which has been associated to epithelial–mesenchymal transition. Our results show that both the ectopic expression of Cx43 and the inhibition of c-Src reduced Id1, Sox2 expression and promoted the switch from N- to E-cadherin, suggesting that Cx43, by inhibiting c-Src, downregulates Id1 with the subsequent changes in stem cell phenotype. On the basis of this mechanism, we found that a cell-penetrating peptide, containing the region of Cx43 that interacts with c-Src, mimics the effect of Cx43 on GSC phenotype, confirming the relevance of the interaction between Cx43 and c-Src in the regulation of the malignant phenotype and pinpointing this interaction as a promising therapeutic target. PMID:24457967
Increased operational temperature of Cr2O3-based spintronic devices
NASA Astrophysics Data System (ADS)
Street, Michael; Echtenkamp, Will; Komesu, Takashi; Cao, Shi; Wang, Jian; Dowben, Peter; Binek, Christian
Spintronic devices have been considered a promising path to revolutionizing the current data storage and memory technologies. This work is an effort to utilize voltage-controlled boundary magnetization of the magnetoelectric chromia (Cr2O3) to be implemented into a spintronic device. The electric switchable boundary magnetization of chromia can be used to voltage-control the magnetic states of an adjacent ferromagnetic layer. For this technique to be utilized in a spintronic device, the antiferromagnetic ordering temperature of chromia must be enhanced above the bulk value of TN = 307K. Previously, based on first principle calculations, boron doped chromia thin films were fabricated via pulsed laser deposition showing boundary magnetization at elevated temperatures. Measurements of the boundary magnetization were also corroborated by spin polarized inverse photoemission spectroscopy. Exchange bias of B-doped chromia was also investigated using magneto-optical Kerr effect, showing an increased blocking temperature from 307K. Further boundary magnetization measurements and spin polarized inverse photoemission measurements indicate the surface magnetization to an in-plane orientation from the standard perpendicular orientation. This project was supported by the SRC through CNFD, an SRC-NRI Center under Task ID (2398.001) and by C-SPIN, part of STARnet, sponsored by MARCO and DARPA (No. SRC 2381.001).
Aladdin: Transforming science at SRC
NASA Astrophysics Data System (ADS)
Bisognano, J.; Bissen, M.; Green, M.; Jacobs, K.; Moore, C.; Olson, E.; Severson, M.; Wehlitz, R.
2011-09-01
The Synchrotron Radiation Center (SRC) is dedicated to enabling of innovative research using IR, ultraviolet, and soft X-ray synchrotron radiation. It delivers beam time with high reliability (99%) and continues to improve the Aladdin storage ring complex. A lower emittance tuning has been commissioned to support a microfocus capability. SRC successfully installed an APPLE II undulator providing elliptically polarized light with lattice compensation for flexible scanning. Installation of a new IR beamline at SRC is providing synchrotron chemical imaging with unprecedented structural and chemical information, simultaneously. In addition, SRC has established a strong education and outreach program to bring the knowledge and power of light source science to a wider national community. It is moving forward into the future by developing a new micro focus beamline producing a diffraction-limited focus of about 500 nm at 22 eV, proposing an additional diffraction-limited chemical imaging beamline, and advancing the Wisconsin Free Electron Laser (WiFEL) concept.
CHLAMYDIA TRACHOMATIS TARP IS PHOSPHORYLATED BY SRC FAMILY TYROSINE KINASES
Jewett, Travis J.; Dooley, Cheryl A.; Mead, David J.; Hackstadt, Ted
2008-01-01
The translocated actin recruiting phosphoprotein (Tarp) is injected into the cytosol shortly after Chlamydia trachomatis attachment to a target cell and subsequently phosphorylated by an unidentified tyrosine kinase. A role for Tarp phosphorylation in bacterial entry is unknown. In this study, recombinant C. trachomatis Tarp was employed to identify the host cell kinase(s) required for phosphorylation. Each tyrosine rich repeat of L2 Tarp harbors a sequence similar to a Src and Abl kinase consensus target. Furthermore, purified p60-src, Yes, Fyn, and Abl kinases were able to phosphorylate Tarp. Mutagenesis of potential tyrosines within a single tyrosine rich repeat peptide indicated that both Src and Abl kinases phosphorylate the same residues suggesting that C. trachomatis Tarp may serve as a substrate for multiple host cell kinases. Surprisingly, chemical inhibition of Src and Abl kinases prevented Tarp phosphorylation in culture and had no measurable effect on bacterial entry into host cells. PMID:18442471
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angrist, M.; Chakravarti, A.; Wells, D.E.
1995-12-10
Molecules containing Src-homology 2 (SH2) and Src-homology 3 (SH3) domains are critical components of signal transduction pathways that serve to relay signals originating from the cell surface to the interior of the cell. Src-like adapter protein (SLAP) is a recently described adapter protein that binds activated the Eck receptor protein-tyrosine kinase. Although SLAP bears a striking homology to the SH3 and SH2 domains of the Src family of nonreceptor tyrosine kinases, it does not contain a tyrosine kinase catalytic domain. In this report, the Slap gene was mapped by linkage analysis to mouse chromosome 15, while its putative human homologmore » (SLA) was identified and mapped to human 8q22.3-qter using a panel of somatic cell hybrids. 10 refs., 2 figs.« less
Bredemeier, Michael; Busch, Gerald; Hartmann, Linda; Jansen, Martin; Richter, Falk; Lamersdorf, Norbert P
2015-01-01
Biomass crops are perceived as a feasible means to substitute sizeable amounts of fossil fuel in the future. A prospect of CO2 reduction (resp. CO2 neutrality) is credited to biomass fuels, and thus a potential contribution to mitigate climate change. Short rotation coppices (SRCs) with fast growing poplar and willow trees are an option for producing high yields of woody biomass, which is suitable for both energetic and material use. One negative effect that comes along with the establishment of SRC may be a decrease in groundwater recharge, because high rates of transpiration and interception are anticipated. Therefore, it is important to measure, analyze, and model the effects of SRC-planting on landscape water budgets. To analyze the effects on the water budget, a poplar SRC plot was studied by measuring hydrological parameters to be used in the hydrological model WaSim. Results reveal very low or even missing ground water recharge for SRC compared to agricultural land use or grassland, especially succeeding dry years. However, this strong effect on plot level is moderated on the larger spatial scale of catchment level, for which the modeling was also performed. In addition to water, nutrient fluxes and budgets were studied. Nitrogen is still a crucial issue in today's agriculture. Intensive fertilization or increased applications of manure from concentrated livestock breeding are often leading to high loads of nitrate leaching, or enhanced N2O emissions to the atmosphere on arable crop fields. SRC or agroforestry systems on former crop land may offer an option to decrease such N losses, while simultaneously producing woody biomass. This is mainly due to the generally smaller N requirements of woody vegetation, which usually entail no need for any fertilization. The trees supply deep and permanent rooting systems, which can be regarded as a "safety net" to prevent nutrient leaching. Thus, SRC altogether can help to diminish N eutrophication. It is important to offer viable and attractive economic perspectives to farmers and other land managers besides of the potential ecological benefits of SRCs. For this reason, an integrated tool for scenario analysis was developed within the BEST project ("BEAST - Bio-Energy Allocation and Scenario Tool"). It combines ecological assessments with calculations of economic revenue as a basis for a participative regional dialog on sustainable land use and climate protection goals. Results show a substantial capacity for providing renewable energy from economically competitive arable SRC sites while generating ecological synergies.
Clinical predictors of vestibulo-ocular dysfunction in pediatric sports-related concussion.
Ellis, Michael J; Cordingley, Dean M; Vis, Sara; Reimer, Karen M; Leiter, Jeff; Russell, Kelly
2017-01-01
OBJECTIVE There were 2 objectives of this study. The first objective was to identify clinical variables associated with vestibulo-ocular dysfunction (VOD) detected at initial consultation among pediatric patients with acute sports-related concussion (SRC) and postconcussion syndrome (PCS). The second objective was to reexamine the prevalence of VOD in this clinical cohort and evaluate the effect of VOD on length of recovery and the development of PCS. METHODS A retrospective review was conducted for all patients with acute SRC and PCS who were evaluated at a pediatric multidisciplinary concussion program from September 2013 to May 2015. Acute SRS was defined as presenting < 30 days postinjury, and PCS was defined according to the International Classification of Diseases, 10th Revision criteria and included being symptomatic 30 days or longer postinjury. The initial assessment included clinical history and physical examination performed by 1 neurosurgeon. Patients were assessed for VOD, defined as the presence of more than 1 subjective vestibular and oculomotor complaint (dizziness, diplopia, blurred vision, etc.) and more than 1 objective physical examination finding (abnormal near point of convergence, smooth pursuits, saccades, or vestibulo-ocular reflex testing). Poisson regression analysis was used to identify factors that increased the risk of VOD at initial presentation and the development of PCS. RESULTS Three hundred ninety-nine children, including 306 patients with acute SRC and 93 with PCS, were included. Of these patients, 30.1% of those with acute SRC (65.0% male, mean age 13.9 years) and 43.0% of those with PCS (41.9% male, mean age 15.4 years) met the criteria for VOD at initial consultation. Independent predictors of VOD at initial consultation included female sex, preinjury history of depression, posttraumatic amnesia, and presence of dizziness, blurred vision, or difficulty focusing at the time of injury. Independent predictors of PCS among patients with acute SRC included the presence of VOD at initial consultation, preinjury history of depression, and posttraumatic amnesia at the time of injury. CONCLUSIONS This study identified important potential risk factors for the development of VOD following pediatric SRC. These results provide confirmatory evidence that VOD at initial consultation is associated with prolonged recovery and is an independent predictor for the development of PCS. Future studies examining clinical prediction rules in pediatric concussion should include VOD. Additional research is needed to elucidate the natural history of VOD following SRC and establish evidence-based indications for targeted vestibular rehabilitation.
Stadig, L M; Rodenburg, T B; Ampe, B; Reubens, B; Tuyttens, F A M
2017-06-01
Free-range use by broiler chickens is often limited, whereas better use of the free-range area could benefit animal welfare. Use of free-range areas could be stimulated by more appropriate shelter or environmental enrichment (by decreasing birds' fearfulness). This study aimed to assess the effects of shelter type, early environmental enrichment and weather conditions on free-range use. Three production rounds with 440 slow-growing broiler chickens (Sasso T451) were carried out. Birds were housed indoors in four groups (two with males, two with females) from days 0 to 25, during which two of the groups received environmental enrichment. At day 23 birds' fearfulness was assessed with a tonic immobility (TI) test (n=100). At day 25 all birds were moved (in mixed-sex groups) to mobile houses, and provided with free-range access from day 28 onwards. Each group could access a range consisting for 50% of grassland with 21 artificial shelters (ASs, wooden A-frames) and for 50% of short rotation coppice (SRC) with willow (dense vegetation). Free-range use was recorded by live observations at 0900, 1300 and 1700 h for 15 to 21 days between days 28 and 63. For each bird observed outside the shelter type (AS or SRC), distance from the house (0 to 2, 2 to 5, >5 m) and its behaviour (only rounds 2 and 3) were recorded. Weather conditions were recorded by four weather stations. On average, 27.1% of the birds were observed outside at any given moment of observation. Early environmental enrichment did not decrease fearfulness as measured by the TI test. It only had a minor effect on the percentage of birds outside (0.4% more birds outside). At all distances from the house, SRC was preferred over AS. In AS, areas closer to the house were preferred over farther ones, in SRC this was less pronounced. Free-range use increased with age and temperature and decreased with wind speed. In AS, rainfall and decreasing solar radiation were related to finding more birds outside, whereas the opposite was true in SRC. Behaviour of the birds depended on shelter type, distance from the house, early environmental enrichment, time of day and age. Chickens ranged more and farther in SRC, possibly because this provided a greater sense of safety because of the amount of cover and/or better protection against adverse weather conditions. These results indicate that SRC with willow is a more appropriate shelter for slow-growing broiler chickens than A-frames.
Bredemeier, Michael; Busch, Gerald; Hartmann, Linda; Jansen, Martin; Richter, Falk; Lamersdorf, Norbert P.
2015-01-01
Biomass crops are perceived as a feasible means to substitute sizeable amounts of fossil fuel in the future. A prospect of CO2 reduction (resp. CO2 neutrality) is credited to biomass fuels, and thus a potential contribution to mitigate climate change. Short rotation coppices (SRCs) with fast growing poplar and willow trees are an option for producing high yields of woody biomass, which is suitable for both energetic and material use. One negative effect that comes along with the establishment of SRC may be a decrease in groundwater recharge, because high rates of transpiration and interception are anticipated. Therefore, it is important to measure, analyze, and model the effects of SRC-planting on landscape water budgets. To analyze the effects on the water budget, a poplar SRC plot was studied by measuring hydrological parameters to be used in the hydrological model WaSim. Results reveal very low or even missing ground water recharge for SRC compared to agricultural land use or grassland, especially succeeding dry years. However, this strong effect on plot level is moderated on the larger spatial scale of catchment level, for which the modeling was also performed. In addition to water, nutrient fluxes and budgets were studied. Nitrogen is still a crucial issue in today’s agriculture. Intensive fertilization or increased applications of manure from concentrated livestock breeding are often leading to high loads of nitrate leaching, or enhanced N2O emissions to the atmosphere on arable crop fields. SRC or agroforestry systems on former crop land may offer an option to decrease such N losses, while simultaneously producing woody biomass. This is mainly due to the generally smaller N requirements of woody vegetation, which usually entail no need for any fertilization. The trees supply deep and permanent rooting systems, which can be regarded as a “safety net” to prevent nutrient leaching. Thus, SRC altogether can help to diminish N eutrophication. It is important to offer viable and attractive economic perspectives to farmers and other land managers besides of the potential ecological benefits of SRCs. For this reason, an integrated tool for scenario analysis was developed within the BEST project (“BEAST – Bio-Energy Allocation and Scenario Tool”). It combines ecological assessments with calculations of economic revenue as a basis for a participative regional dialog on sustainable land use and climate protection goals. Results show a substantial capacity for providing renewable energy from economically competitive arable SRC sites while generating ecological synergies. PMID:26106595
Tewari, Krishna C.; Foster, Edward P.
1985-01-01
Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-22
... Resource Commission (SRC) program. SUMMARY: The Gates of the Arctic National Park SRC will meet to develop.... Gates of the Arctic National Park SRC Meeting Date and Location: The Gates of the Arctic National Park... meeting may end early if all business is completed. For Further Information On the Gates of the Arctic...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-10
... Plan Update. c. Subsistence Uses of Horns, Antlers, Bones and Plants EA Update. 13. New Business. 14... guarantee that we will be able to do so. Wrangell-St. Elias National Park SRC Meeting Date and Location: The... if all business is completed. For Further Information on the Gates of the Arctic National Park SRC...
ERK3 signals through SRC-3 coactivator to promote human lung cancer cell invasion
Long, Weiwen; Foulds, Charles E.; Qin, Jun; Liu, Jian; Ding, Chen; Lonard, David M.; Solis, Luisa M.; Wistuba, Ignacio I.; Qin, Jun; Tsai, Sophia Y.; Tsai, Ming-Jer; O’Malley, Bert W.
2012-01-01
In contrast to the well-studied classic MAPKs, such as ERK1/2, little is known concerning the regulation and substrates of the atypical MAPK ERK3 signaling cascade and its function in cancer progression. Here, we report that ERK3 interacted with and phosphorylated steroid receptor coactivator 3 (SRC-3), an oncogenic protein overexpressed in multiple human cancers at serine 857 (S857). This ERK3-mediated phosphorylation at S857 was essential for interaction of SRC-3 with the ETS transcription factor PEA3, which promotes upregulation of MMP gene expression and proinvasive activity in lung cancer cells. Importantly, knockdown of ERK3 or SRC-3 inhibited the ability of lung cancer cells to invade and form tumors in the lung in a xenograft mouse model. In addition, ERK3 was found to be highly upregulated in human lung carcinomas. Our study identifies a previously unknown role for ERK3 in promoting lung cancer cell invasiveness by phosphorylating SRC-3 and regulating SRC-3 proinvasive activity by site-specific phosphorylation. As such, ERK3 protein kinase may be an attractive target for therapeutic treatment of invasive lung cancer. PMID:22505454
Ammer, Amanda Gatesman; Kelley, Laura C.; Hayes, Karen E.; Evans, Jason V.; Lopez-Skinner, Lesly Ann; Martin, Karen H.; Frederick, Barbara; Rothschild, Brian L.; Raben, David; Elvin, Paul; Green, Tim P.; Weed, Scott A.
2010-01-01
Elevated Src kinase activity is linked to the progression of solid tumors, including head and neck squamous cell carcinoma (HNSCC). Src regulates HNSCC proliferation and tumor invasion, with the Src-targeted small molecule inhibitor saracatinib displaying potent anti-invasive effects in preclinical studies. However, the pro-invasive cellular mechanism(s) perturbed by saracatinib are unclear. The anti-proliferative and anti-invasive effects of saracatinib on HNSCC cell lines were therefore investigated in pre-clinical cell and mouse model systems. Saracatinib treatment inhibited growth, cell cycle progression and transwell Matrigel invasion in HNSCC cell lines. Dose-dependent decreases in Src activation and phosphorylation of the invasion-associated substrates focal adhesion kinase, p130 CAS and cortactin were also observed. While saracatinib did not significantly impact HNSCC tumor growth in a mouse orthotopic model of tongue squamous cell carcinoma, impaired perineural invasion and cervical lymph node metastasis was observed. Accordingly, saracatinib treatment displayed a dose-dependent inhibitory effect on invadopodia formation, extracellular matrix degradation and matrix metalloprotease 9 activation. These results suggest that inhibition of Src kinase by saracatinib impairs the pro-invasive activity of HNSCC by inhibiting Src substrate phosphorylation important for invadopodia formation and associated matrix metalloprotease activity. PMID:20505783
C-Cbl reverses HER2-mediated tamoxifen resistance in human breast cancer cells.
Li, Wei; Xu, Ling; Che, Xiaofang; Li, Haizhou; Zhang, Ye; Song, Na; Wen, Ti; Hou, Kezuo; Yang, Yi; Zhou, Lu; Xin, Xing; Xu, Lu; Zeng, Xue; Shi, Sha; Liu, Yunpeng; Qu, Xiujuan; Teng, Yuee
2018-05-02
Tamoxifen is a frontline therapy for estrogen receptor (ER)-positive breast cancer in premenopausal women. However, many patients develop resistance to tamoxifen, and the mechanism underlying tamoxifen resistance is not well understood. Here we examined whether ER-c-Src-HER2 complex formation is involved in tamoxifen resistance. MTT and colony formation assays were used to measure cell viability and proliferation. Western blot was used to detect protein expression and protein complex formations were detected by immunoprecipitation and immunofluorescence. SiRNA was used to examine the function of HER2 in of BT474 cells. An in vivo xenograft animal model was established to examine the role of c-Cbl in tumor growth. MTT and colony formation assay showed that BT474 cells are resistant to tamoxifen and T47D cells are sensitive to tamoxifen. Immunoprecipitation experiments revealed ER-c-Src-HER2 complex formation in BT474 cells but not in T47D cells. However, ER-c-Src-HER2 complex formation was detected after overexpressing HER2 in T47D cells and these cells were more resistant to tamoxifen. HER2 knockdown by siRNA in BT474 cells reduced ER-c-Src-HER2 complex formation and reversed tamoxifen resistance. ER-c-Src-HER2 complex formation was also disrupted and tamoxifen resistance was reversed in BT474 cells by the c-Src inhibitor PP2 and HER2 antibody trastuzumab. Nystatin, a lipid raft inhibitor, reduced ER-c-Src-HER2 complex formation and partially reversed tamoxifen resistance. ER-c-Src-HER2 complex formation was disrupted by overexpression of c-Cbl but not by the c-Cbl ubiquitin ligase mutant. In addition, c-Cbl could reverse tamoxifen resistance in BT474 cells, but the ubiquitin ligase mutant had no effect. The effect of c-Cbl was validated in BT474 tumor-bearing nude mice in vivo. Immunofluorescence also revealed ER-c-Src-HER2 complex formation was reduced in tumor tissues of nude mice with c-Cbl overexpression. Our results suggested that c-Cbl can reverse tamoxifen resistance in HER2-overexpressing breast cancer cells by inhibiting the formation of the ER-c-Src-HER2 complex.
NASA Astrophysics Data System (ADS)
Covele, B.; Kotschenreuther, M.; Mahajan, S.; Valanju, P.; Leonard, A.; Watkins, J.; Makowski, M.; Fenstermacher, M.; Si, H.
2017-08-01
The X-divertor geometry on DIII-D has demonstrated reduced particle and heat fluxes to the target, facilitating detachment onset at 10-20% lower upstream density and higher H-mode pedestal pressure than a standard divertor. SOLPS modeling suggests that this effect cannot be explained by an increase in total connection length alone, but rather by the addition of connection length specifically in the power-dissipating volume near the target, via poloidal flux expansion and flaring. However, poloidal flaring must work synergistically with divertor closure to most effectively reduce the detachment density threshold. The model also points to carbon radiation as the primary driver of power dissipation in divertors on the DIII-D floor, which is consistent with experimental observations. Sustainable divertor detachment at lower density has beneficial consequences for energy confinement and current drive efficiency for core operation, while simultaneously satisfying the exhaust requirements of the plasma-facing components.
Moriguchi, Shigeki; Tanaka, Tomoya; Narahashi, Toshio; Fukunaga, Kohji
2013-10-01
Sunifiram is a novel pyrrolidone nootropic drug structurally related to piracetam, which was developed for neurodegenerative disorder like Alzheimer's disease. Sunifiram is known to enhance cognitive function in some behavioral experiments such as Morris water maze task. To address question whether sunifiram affects N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic function in the hippocampal CA1 region, we assessed the effects of sunifiram on NMDAR-dependent long-term potentiation (LTP) by electrophysiology and on phosphorylation of synaptic proteins by immunoblotting analysis. In mouse hippocampal slices, sunifiram at 10-100 nM significantly enhanced LTP in a bell-shaped dose-response relationship which peaked at 10 nM. The enhancement of LTP by sunifiram treatment was inhibited by 7-chloro-kynurenic acid (7-ClKN), an antagonist for glycine-binding site of NMDAR, but not by ifenprodil, an inhibitor for polyamine site of NMDAR. The enhancement of LTP by sunifilam was associated with an increase in phosphorylation of α-amino-3-hydroxy-5-methylisozazole-4-propionate receptor (AMPAR) through activation of calcium/calmodulin-dependent protein kinase II (CaMKII) and an increase in phosphorylation of NMDAR through activation of protein kinase Cα (PKCα). Sunifiram treatments at 1-1000 nM increased the slope of field excitatory postsynaptic potentials (fEPSPs) in a dose-dependent manner. The enhancement was associated with an increase in phosphorylation of AMPAR receptor through activation of CaMKII. Interestingly, under the basal condition, sunifiram treatments increased PKCα (Ser-657) and Src family (Tyr-416) activities with the same bell-shaped dose-response curve as that of LTP peaking at 10 nM. The increase in phosphorylation of PKCα (Ser-657) and Src (Tyr-416) induced by sunifiram was inhibited by 7-ClKN treatment. The LTP enhancement by sunifiram was significantly inhibited by PP2, a Src family inhibitor. Finally, when pretreated with a high concentration of glycine (300 μM), sunifiram treatments failed to potentiate LTP in the CA1 region. Taken together, sunifiram stimulates the glycine-binding site of NMDAR with concomitant PKCα activation through Src kinase. Enhancement of PKCα activity triggers to potentiate hippocampal LTP through CaMKII activation. Copyright © 2013 Wiley Periodicals, Inc.
Girgert, Rainer; Emons, Günter; Gründker, Carsten
2018-01-01
Currently, conventional chemotherapy is the only treatment option for triple-negative breast cancers (TNBC) due to a lack of a unique target. In TNBC, a high expression of the membrane bound G protein-coupled estrogen receptor (GPER), correlates with a worse outcome. There is a potential for an association between growth hormone receptor (GHR) and GPER expression. To confirm this hypothesis, GHR was inhibited in TNBC cells with Somavert, and GPER expression levels, and the effect on signal transduction and proliferation induction in TNBC cells were analyzed. Proliferation of TNBC cells was measured using an Alamar-blue assay. Expression of GPER and activation of c-src and epidermal growth factor receptor (EGFR) by 17β-estradiol was analyzed by western blotting. Induction of c-fos, cyclin D1 and aromatase expression was determined by reverse transcription-semi-quantitative polymerase chain reaction. The expression of GPER was concentration- and time-dependently reduced by Somavert down to 46±7% (P<0.01) of the control. Furthermore, 17β-estradiol significantly increased the cell number of HCC1806 cells to 128±14% (P<0.05), and that of MDA-MB-453 cells to 115±3%. This increase in cell number was reduced to 103±11% in HCC1806 cells in which GPER expression was downregulated by Somavert, and to 102±3% in MDA-MB-453 cells. In addition, 17β-estradiol increased the activation of c-src in HCC1806 cells by 1.8-fold, and Somavert reduced p-src to 63% of control. In MDA-MB-453 cells src phosphorylation increased by 7-fold upon stimulation with estradiol, but after treatment with Somavert only a 4-fold increase was observed. Phosphorylation of EGFR was increased by 2.2-fold of control in HCC1806 cells by 17β-estradiol, and by 1.4-fold in MDA-MD-453 cells. Somavert completely prevented this activation. Induction of cyclin D1 and aromatase expression by 17β-estradiol was also prevented by Somavert. Somavert reduces GPER expression in triple negative breast cancer cells. Treatment with Somavert prevents induction of genes regulating proliferation by 17β-estradiol. Inhibition of GPER expression is a promising therapeutic intervention for TNBC. PMID:29805678
Girgert, Rainer; Emons, Günter; Gründker, Carsten
2018-06-01
Currently, conventional chemotherapy is the only treatment option for triple-negative breast cancers (TNBC) due to a lack of a unique target. In TNBC, a high expression of the membrane bound G protein-coupled estrogen receptor (GPER), correlates with a worse outcome. There is a potential for an association between growth hormone receptor (GHR) and GPER expression. To confirm this hypothesis, GHR was inhibited in TNBC cells with Somavert, and GPER expression levels, and the effect on signal transduction and proliferation induction in TNBC cells were analyzed. Proliferation of TNBC cells was measured using an Alamar-blue assay. Expression of GPER and activation of c-src and epidermal growth factor receptor (EGFR) by 17β-estradiol was analyzed by western blotting. Induction of c-fos, cyclin D1 and aromatase expression was determined by reverse transcription-semi-quantitative polymerase chain reaction. The expression of GPER was concentration- and time-dependently reduced by Somavert down to 46±7% (P<0.01) of the control. Furthermore, 17β-estradiol significantly increased the cell number of HCC1806 cells to 128±14% (P<0.05), and that of MDA-MB-453 cells to 115±3%. This increase in cell number was reduced to 103±11% in HCC1806 cells in which GPER expression was downregulated by Somavert, and to 102±3% in MDA-MB-453 cells. In addition, 17β-estradiol increased the activation of c-src in HCC1806 cells by 1.8-fold, and Somavert reduced p-src to 63% of control. In MDA-MB-453 cells src phosphorylation increased by 7-fold upon stimulation with estradiol, but after treatment with Somavert only a 4-fold increase was observed. Phosphorylation of EGFR was increased by 2.2-fold of control in HCC1806 cells by 17β-estradiol, and by 1.4-fold in MDA-MD-453 cells. Somavert completely prevented this activation. Induction of cyclin D1 and aromatase expression by 17β-estradiol was also prevented by Somavert. Somavert reduces GPER expression in triple negative breast cancer cells. Treatment with Somavert prevents induction of genes regulating proliferation by 17β-estradiol. Inhibition of GPER expression is a promising therapeutic intervention for TNBC.
Measuring Detachment of Aspergillus niger spores from Colonies with an Atomic Force Microscope.
Li, Xian; Zhang, Tengfei Tim; Wang, Shugang
2018-06-26
Detachment of fungal spores from moldy surfaces and the subsequent aerosolization can lead to adverse health effects. Spore aerosolization occurs when the forces for aerosolization exceed the binding forces of spores with their colonies. The threshold force to detach a spore from a growing colony remains unknown. This investigation measured the detachment of spores of Aspergillus niger from a colony using an atomic force microscope (AFM). The spores were first affixed to the cantilever of the AFM with ultraviolet curing glue, and then the colony was moved downward until the spores detached. The threshold detachment forces were inferred from the deflection of the cantilever. In addition, the spores were aerosolized in a wind tunnel by a gradual increase of the blowing air speed. The forces measured by the AFM were compared with the hydrodynamic forces for aerosolization. The AFM measurements revealed that a force of 3.27 ± 0.25 nN was required to detach a single spore from the four-day-old colony, while 1.98 ± 0.13 nN was sufficient for the 10-day-old colony. Slightly smaller detachment forces were observed by the AFM than were determined by the aerosolization tests. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Staying well and engaged when demands are high: the role of psychological detachment.
Sonnentag, Sabine; Binnewies, Carmen; Mojza, Eva J
2010-09-01
The authors of this study examined the relation between job demands and psychological detachment from work during off-job time (i.e., mentally switching off) with psychological well-being and work engagement. They hypothesized that high job demands and low levels of psychological detachment predict poor well-being and low work engagement. They proposed that psychological detachment buffers the negative impact of high job demands on well-being and work engagement. A longitudinal study (12-month time lag) with 309 human service employees showed that high job demands predicted emotional exhaustion, psychosomatic complaints, and low work engagement over time. Psychological detachment from work during off-job time predicted emotional exhaustion and buffered the relation between job demands and an increase in psychosomatic complaints and between job demands and a decrease in work engagement. The findings of this study suggest that psychological detachment from work during off-job time is an important factor that helps to protect employee well-being and work engagement. Copyright 2010 APA, all rights reserved
The mechanism for keratinocyte detaching from pH-responsive chitosan.
Chen, Yi-Hsin; Chang, Shao-Hsuan; Wang, I-Jong; Young, Tai-Horng
2014-11-01
In this study, we compared the detachment ratio of HaCaT and Hs68 cells from pH-responsive chitosan surface by raising medium pH from 7.20 to 7.65 for 60 min. The detachment ratio of elongated Hs68 cells was over 75%, but that of round-shaped HaCaT cells was less than 50%, even extending the incubation time to 6 h or enhancing the cytoskeletal contractile force with the Rho activator CN01. However, the addition of 2 mm of EDTA into the medium at pH 7.65 could effectively detach HaCaT cells (detachment ratio > 90%), indicating that the calcium ion played an important role in the detachment process. Therefore, the family of Ca(+2)-dependent integrin receptors was examined by RT-PCR, real-time PCR and immunocytochemistry. It was found the expression of integrin β4 (ITGb4) was HaCaT cell-specific and the mRNA level of ITGb4 in undetached HaCaT cells was significantly higher than that in detached ones. By modulating ITGb4 activity with specific functional blocking antibody ASC-8, the detachment ratio of HaCaT cells could be increased to be greater than 85%. Conversely, the addition of the ligand of ITGb4 laminin into the culture system decreased the medium pH-induced detachment ratio for HaCaT cells, but not for Hs68 cells. Further addition of ASC-8 could rescue the effect of laminin on preventing the detachment of HaCaT cells from pH-sensitive chitosan surface. Therefore, this study demonstrated the interaction of ITGb4 and laminin played an important role in controlling the detachment of HaCaT cells on pH-responsive chitosan. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mutch, W Alan C; Ellis, Michael J; Ryner, Lawrence N; Morissette, Marc P; Pries, Philip J; Dufault, Brenden; Essig, Marco; Mikulis, David J; Duffin, James; Fisher, Joseph A
2016-01-01
Advanced neuroimaging studies in concussion have been limited to detecting group differences between concussion patients and healthy controls. In this small pilot study, we used brain magnetic resonance imaging (MRI) CO2 stress testing to longitudinally assess cerebrovascular responsiveness (CVR) in individual sports-related concussion (SRC) patients. Six SRC patients (three males and three females; mean age = 15.7, range = 15-17 years) underwent longitudinal brain MRI CO2 stress testing using blood oxygen level-dependent (BOLD) MRI and model-based prospective end-tidal CO2 targeting under isoxic conditions. First-level and second-level comparisons were undertaken using statistical parametric mapping (SPM) to score the scans and compare them to an atlas of 24 healthy control subjects. All tests were well tolerated and without any serious adverse events. Anatomical MRI was normal in all study participants. The CO2 stimulus was consistent between the SRC patients and control subjects and within SRC patients across the longitudinal study. Individual SRC patients demonstrated both quantitative and qualitative patient-specific alterations in CVR (p < 0.005) that correlated strongly with clinical findings, and that persisted beyond clinical recovery. Standardized brain MRI CO2 stress testing is capable of providing a longitudinal assessment of CVR in individual SRC patients. Consequently, larger prospective studies are needed to examine the utility of brain MRI CO2 stress testing as a clinical tool to help guide the evaluation, classification, and longitudinal management of SRC patients.
NASA Astrophysics Data System (ADS)
Das, R. K.; Li, Z.; Perera, H.; Williamson, J. F.
1996-06-01
Practical dosimeters in brachytherapy, such as thermoluminescent dosimeters (TLD) and diodes, are usually calibrated against low-energy megavoltage beams. To measure absolute dose rate near a brachytherapy source, it is necessary to establish the energy response of the detector relative to that of the calibration energy. The purpose of this paper is to assess the accuracy of Monte Carlo photon transport (MCPT) simulation in modelling the absolute detector response as a function of detector geometry and photon energy. We have exposed two different sizes of TLD-100 (LiF chips) and p-type silicon diode detectors to calibrated
, HDR source
and superficial x-ray beams. For the Scanditronix electron-field diode, the relative detector response, defined as the measured detector readings per measured unit of air kerma, varied from
(40 kVp beam) to
(
beam). Similarly for the large and small chips the same quantity varied from
and
, respectively. Monte Carlo simulation was used to calculate the absorbed dose to the active volume of the detector per unit air kerma. If the Monte Carlo simulation is accurate, then the absolute detector response, which is defined as the measured detector reading per unit dose absorbed by the active detector volume, and is calculated by Monte Carlo simulation, should be a constant. For the diode, the absolute response is
. For TLDs of size
the absolute response is
and for TLDs of
it is
. From the above results we can conclude that the absolute response function of detectors (TLDs and diodes) is directly proportional to absorbed dose by the active volume of the detector and is independent of beam quality.
Effect of flour particle size and damaged starch on the quality of cookies.
Barak, Sheweta; Mudgil, Deepak; Khatkar, B S
2014-07-01
Two wheat varieties 'C 306' and 'WH 542' were milled to obtain flour fractions of different particle sizes. Various physicochemical parameters such as wet and dry gluten, falling number, solvent retention capacity (SRC), alkaline water retention capacity (AWRC) and damaged starch content of the flour fractions were analyzed. The damaged starch values ranged from 5.14% to 14.79% for different flour fractions and increased significantly with decrease in particle size. AWRC and SRC of the flour fractions also increased with decrease in particle size. AWRC(r = 0.659) showed positive correlation and cookie spread ratio (r = -0.826) was strongly negatively correlated with the damaged starch levels. Hardness of the cookies in term of compression force showed increasing trend as damaged starch of the flour fractions increased. Spread ratio of the cookies ranged from 6.72 to 10.12. Wheat flour of particle size greater than 150 μm produced cookies with best quality.
What controls deformation in a bent three-dimensional orogen? An example from the Bolivian Andes
NASA Astrophysics Data System (ADS)
Kaislaniemi, L.; Whipp, D. M., Jr.
2017-12-01
The width of orogens is thought to be affected by both erosional intensity and strength of the rocks. Along-strike variation of the orogen width can be expected to reflect shifts in these factors. An example of such variation can be found around the Bolivian orocline, which is a change in the orientation of the central Andes, in central Bolivia, from N-S south of 18°S to roughly NW-SE in the north. This bend coincides with 50% reduction in the width of the orogen east of the Altiplano, an approximately eight-fold increase in the annual precipitation, and the presence of a basement arch that reduces the thickness of relatively weak Paleozoic sediments upon which the orogen detaches. This has led to uncertainty about whether the growth of the orogen is controlled primarily by climate (erosion) or tectonics (strength of the basal detachment). We study deformation in a segmented orogen using 3D geodynamic models to understand how along-strike variations in rainfall and basal detachment strength affect orogen deformation and growth of the frontal part of the Andean fold-and-thrust belt (FTB). We calculate the visco-plastic deformation in the retro-wedge of an Andean-style orogen using the finite element software DOUAR (Braun et al. 2008) coupled to the surface process model FastScape (Braun & Willett 2013). The model design includes the basement, the Altiplano, and the FTB east of the plateau. A weak basal detachment zone is prescribed. Strain softening allows development of new faults and free evolution of the detachment zone. The effects of varying rock strength and varying precipitation are considered to determine the primary control(s) on the geometry and evolution of curved orogens. Results show that both increased precipitation and stronger detachment zone can explain differences in the width of the FTB, as reflected in the topography. These factors, however, lead to different structural evolution of the orogen: Weak basal detachment zone promotes growth of the FTB towards the foreland, whereas strong basal detachment keeps the deformation nearer to the plateau. Increased precipitation causes strong localization of the frontal thrust and no internal deformation in the foreland or near the plateau. Strike-slip faults are produced by variation in detachment zone strength, but not by shifts in precipitation rates.
Structural and Functional Impacts of ER Coactivator Sequential Recruitment.
Yi, Ping; Wang, Zhao; Feng, Qin; Chou, Chao-Kai; Pintilie, Grigore D; Shen, Hong; Foulds, Charles E; Fan, Guizhen; Serysheva, Irina; Ludtke, Steven J; Schmid, Michael F; Hung, Mien-Chie; Chiu, Wah; O'Malley, Bert W
2017-09-07
Nuclear receptors recruit multiple coactivators sequentially to activate transcription. This "ordered" recruitment allows different coactivator activities to engage the nuclear receptor complex at different steps of transcription. Estrogen receptor (ER) recruits steroid receptor coactivator-3 (SRC-3) primary coactivator and secondary coactivators, p300/CBP and CARM1. CARM1 recruitment lags behind the binding of SRC-3 and p300 to ER. Combining cryo-electron microscopy (cryo-EM) structure analysis and biochemical approaches, we demonstrate that there is a close crosstalk between early- and late-recruited coactivators. The sequential recruitment of CARM1 not only adds a protein arginine methyltransferase activity to the ER-coactivator complex, it also alters the structural organization of the pre-existing ERE/ERα/SRC-3/p300 complex. It induces a p300 conformational change and significantly increases p300 HAT activity on histone H3K18 residues, which, in turn, promotes CARM1 methylation activity on H3R17 residues to enhance transcriptional activity. This study reveals a structural role for a coactivator sequential recruitment and biochemical process in ER-mediated transcription. Copyright © 2017 Elsevier Inc. All rights reserved.
Mierswa, Tobias; Kellmann, Michael
2017-03-30
Recovery processes in leisure time influence the effect of psychosocial work factors on health issues. However, this function of recovery has been neglected in research regarding the influence of work-related risk factors on low back pain (LBP) development. The aim of this prospective study was to examine the function of psychological detachment - a relevant recovery experience - concerning the influence of psychosocial work factors on LBP development. A moderating function of detachment for the interplay of work factors and LBP was assumed. Sixty pain-free administrative employees of German universities completed an online survey 3 times during a 6-month period. Generalized estimating equations were used to estimate risk-factors of LBP. Analyses revealed an increased chance of LBP development for smokers and a decreasing chance when work resources were high. Detachment had no direct influence on LBP development, although it moderated the influence of work stressors and work resources on LBP. On the one hand, high detachment values seem to protect against an increased chance of LBP development when employees were confronted with high work stressors, while on the other hand high detachment values enhance the protective effect of high work resources. The results indicated a moderating role of detachment concerning the influence of psychosocial work factors on LBP development. Therefore, it is necessary to include recovery processes in future research regarding LBP development and consequently in LBP prevention concepts. Int J Occup Med Environ Health 2017;30(2):313-327. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Piegeler, Tobias; Votta-Velis, E. Gina; Bakhshi, Farnaz R.; Mao, Mao; Carnegie, Graeme; Bonini, Marcelo G.; Schwartz, David E.; Borgeat, Alain; Beck-Schimmer, Beatrice; Minshall, Richard D.
2014-01-01
Background Pulmonary endothelial barrier dysfunction mediated in part by Src-kinase activation plays a crucial role in acute inflammatory disease. Proinflammatory cytokines, such as tumor necrosis factor-α (TNFα), activate Src via phosphatidylinositide 3-kinase/Akt-dependent nitric oxide generation, a process initiated by recruitment of phosphatidylinositide 3-kinase regulatory subunit p85 to TNF-receptor-1. Because amide-linked local anesthetics have well-established anti-inflammatory effects, the authors hypothesized that ropivacaine and lidocaine attenuate inflammatory Src signaling by disrupting the phosphatidylinositide 3-kinase–Akt–nitric oxide pathway, thus blocking Src-dependent neutrophil adhesion and endothelial hyperpermeability. Methods Human lung microvascular endothelial cells, incubated with TNFα in the absence or presence of clinically relevant concentrations of ropivacaine and lidocaine, were analyzed by Western blot, probing for phosphorylated/activated Src, endothelial nitric oxide synthase, Akt, intercellular adhesion molecule-1, and caveolin-1. The effect of ropivacaine on TNFα-induced nitric oxide generation, co-immunoprecipitation of TNF-receptor-1 with p85, neutrophil adhesion, and endothelial barrier disruption were assessed. Results Ropivacaine and lidocaine attenuated TNFα-induced Src activation (half-maximal inhibitory concentration [IC50] = 8.611 × 10−10 M for ropivacaine; IC50 = 5.864 × 10−10 M for lidocaine) and endothelial nitric oxide synthase phosphorylation (IC50 = 7.572 × 10−10 M for ropivacaine; IC50 = 6.377 × 10−10 M for lidocaine). Akt activation (n = 7; P = 0.006) and stimulus-dependent binding of TNF-receptor-1 and p85 (n = 6; P = 0.043) were blocked by 1 nM of ropivacaine. TNFα-induced neutrophil adhesion and disruption of endothelial monolayers via Src-dependent intercellular adhesion molecule-1- and caveolin-1-phosphorylation, respectively, were also attenuated. Conclusions Ropivacaine and lidocaine effectively blocked inflammatory TNFα signaling in endothelial cells by attenuating p85 recruitment to TNF-receptor-1. The resultant decrease in Akt, endothelial nitric oxide synthase, and Src phosphorylation reduced neutrophil adhesion and endothelial hyperpermeability. This novel anti-inflammatory “side-effect” of ropivacaine and lidocaine may provide therapeutic benefit in acute inflammatory disease. PMID:24525631
Piegeler, Tobias; Votta-Velis, E Gina; Bakhshi, Farnaz R; Mao, Mao; Carnegie, Graeme; Bonini, Marcelo G; Schwartz, David E; Borgeat, Alain; Beck-Schimmer, Beatrice; Minshall, Richard D
2014-06-01
Pulmonary endothelial barrier dysfunction mediated in part by Src-kinase activation plays a crucial role in acute inflammatory disease. Proinflammatory cytokines, such as tumor necrosis factor-α (TNFα), activate Src via phosphatidylinositide 3-kinase/Akt-dependent nitric oxide generation, a process initiated by recruitment of phosphatidylinositide 3-kinase regulatory subunit p85 to TNF-receptor-1. Because amide-linked local anesthetics have well-established anti-inflammatory effects, the authors hypothesized that ropivacaine and lidocaine attenuate inflammatory Src signaling by disrupting the phosphatidylinositide 3-kinase-Akt-nitric oxide pathway, thus blocking Src-dependent neutrophil adhesion and endothelial hyperpermeability. Human lung microvascular endothelial cells, incubated with TNFα in the absence or presence of clinically relevant concentrations of ropivacaine and lidocaine, were analyzed by Western blot, probing for phosphorylated/activated Src, endothelial nitric oxide synthase, Akt, intercellular adhesion molecule-1, and caveolin-1. The effect of ropivacaine on TNFα-induced nitric oxide generation, co-immunoprecipitation of TNF-receptor-1 with p85, neutrophil adhesion, and endothelial barrier disruption were assessed. Ropivacaine and lidocaine attenuated TNFα-induced Src activation (half-maximal inhibitory concentration [IC50] = 8.611 × 10 M for ropivacaine; IC50 = 5.864 × 10 M for lidocaine) and endothelial nitric oxide synthase phosphorylation (IC50 = 7.572 × 10 M for ropivacaine; IC50 = 6.377 × 10 M for lidocaine). Akt activation (n = 7; P = 0.006) and stimulus-dependent binding of TNF-receptor-1 and p85 (n = 6; P = 0.043) were blocked by 1 nM of ropivacaine. TNFα-induced neutrophil adhesion and disruption of endothelial monolayers via Src-dependent intercellular adhesion molecule-1- and caveolin-1-phosphorylation, respectively, were also attenuated. Ropivacaine and lidocaine effectively blocked inflammatory TNFα signaling in endothelial cells by attenuating p85 recruitment to TNF-receptor-1. The resultant decrease in Akt, endothelial nitric oxide synthase, and Src phosphorylation reduced neutrophil adhesion and endothelial hyperpermeability. This novel anti-inflammatory "side-effect" of ropivacaine and lidocaine may provide therapeutic benefit in acute inflammatory disease.
Magnetic fields from domestic appliances in the UK
NASA Astrophysics Data System (ADS)
Preece, A. W.; Kaune, W.; Grainger, P.; Preece, S.; Golding, J.
1997-01-01
In a survey of 50 UK homes the 50 Hz fundamental and harmonic magnetic fields generated by 806 domestic appliances found in the homes, and used regularly by mothers, were measured. Measurements were made in the direction of most likely access, and from the surface of the appliances. Mothers completed a questionnaire on the use of appliances and were monitored for 24 h so that acquired exposure could be compared with the measured ambient fields in the home. Appliances were measured at standard distances and an algorithm was used to calculate fields at 100 and 50 cm to remove room background contributions. A few appliances generated fields in excess of
at 1 m: microwave cookers
; washing machines
; dishwashers
; some electric showers
and can openers
. Of continuously operating devices, only central heating pumps (
), central heating boilers (
) and fish-tank air pumps (
) produced significant fields at 0.5 m. There were no obvious ways to group different types of appliances as high- or low-strength sources. Mothers spent on average about 4.5 h per day in the kitchen, where the strongest sources of magnetic field were located.
NASA Astrophysics Data System (ADS)
Nilius, Nils-Peter; Wölfler, Andreas; Heineke, Caroline; Glotzbach, Christoph; Hetzel, Ralf; Hampel, Andrea; Akal, Cüneyt; Dunkl, István
2017-04-01
The Menderes Massif constitutes the western part of the Anatolide belt in western Turkey and experienced a prolonged history of post-orogenic extension. A large amount of the extension was accommodated by the two oppositely dipping Gediz and Büyük Menderes detachment faults, which led to the exhumation of the central Menderes Massif (Gessner et al., 2013). Previous studies proposed a synchronous, bivergent exhumation of the central Menderes Massif since the Miocene (Gessner et al., 2001), although only the evolution of the north-dipping Gediz detachment is well constrained (Buscher et al., 2013). Detailed structural and thermochronological investigations from the south-dipping Büyük Menderes detachment have still been missing. Here we present results from different thermochronometers, which constrain the cooling and exhumation history of footwall and hanging wall rocks of the Büyük Menderes detachment. Our new zircon and apatite (U-Th)/He and fission track ages of footwall rocks from the Büyük Menderes detachment document two phases of increased cooling and exhumation (Wölfler et al., in revision). The first episode of increased footwall exhumation ( 0.9 km/Myr) occurred during the middle Miocene, followed by a second phase during latest Miocene and Pliocene ( 1.0 km/Myr). Apatite fission track ages yield a slip rate for the Pliocene movement along the Büyük Menderes detachment of 3.0 (+1.1/-0.6) km/Myr. Thermochronological data of hanging wall units reflect a slow phase of exhumation ( 0.2 km/Myr) in the late Oligocene and an increased exhumation rate of 1.0 km/Myr during the early to middle Miocene, when hanging wall units cooled below 80 °C. In comparison with the Gediz detachment, our thermochronological data from the Büyük Menderes detachment confirms the concurrent activity of both detachments during the late Miocene and Pliocene. With respect to the relative importance of normal faulting and erosion to rock exhumation, a comparison with 10Be erosion rates from catchments in the exposed footwall of the Büyük Menderes detachment indicates that erosion has contributed 10-40% to the exhumation of metamorphic rocks beneath the detachment. Our finding underlines that the contribution of erosion to rock exhumation cannot be neglected in regions of active continental extension. References Buscher, J.T., Hampel, A., Hetzel, R., Dunkl, I, Glotzbach, C., Struffert, A., Akal, C., Rätz, M. 2013. Quantifying rates of detachment faulting and erosion in the central Menderes Massif (western Turkey) by thermochronology and cosmogenic 10Be. J. Geol. Soc. London. 170, 669-683. Gessner, K., Ring, U., Johnson, C., Hetzel, R., Passchier, C.W., Güngör, T., 2001. An active bivergent rolling-hinge detachment system: Central Menderes metamorphic core complex in western Turkey. Geology 29, 611-614. Gessner, K., Gallardo, L.A., Markwitz, V., Ring, U., Thomson, S.N., 2013. What caused the denudation of the Menderes Massif: Review of crustal evolution, lithosphere structure, and dynamic topography in southwest Turkey. Gondwana Research 24, 243-274. Wölfler, A., Glotzbach, C., Heineke, C., Nilius, N.P., Hetzel, R., Hampel, A., Akal, C., Dunkl, I., Christl, M. (manuscript in revision for Tectonophysics). Late Cenozoic cooling history of the central Menderes Massif: timing and slip rate of the Büyük Menderes detachment and the relative contribution of normal faulting and erosion to rock exhumation.
Hepatic Src Homology Phosphatase 2 Regulates Energy Balance in Mice
Nagata, Naoto; Matsuo, Kosuke; Bettaieb, Ahmed; Bakke, Jesse; Matsuo, Izumi; Graham, James; Xi, Yannan; Liu, Siming; Tomilov, Alexey; Tomilova, Natalia; Gray, Susan; Jung, Dae Young; Ramsey, Jon J.; Kim, Jason K.; Cortopassi, Gino; Havel, Peter J.
2012-01-01
The Src homology 2 domain-containing protein-tyrosine phosphatase Src homology phosphatase 2 (Shp2) is a negative regulator of hepatic insulin action in mice fed regular chow. To investigate the role of hepatic Shp2 in lipid metabolism and energy balance, we determined the metabolic effects of its deletion in mice challenged with a high-fat diet (HFD). We analyzed body mass, lipid metabolism, insulin sensitivity, and glucose tolerance in liver-specific Shp2-deficient mice (referred to herein as LSHKO) and control mice fed HFD. Hepatic Shp2 protein expression is regulated by nutritional status, increasing in mice fed HFD and decreasing during fasting. LSHKO mice gained less weight and exhibited increased energy expenditure compared with control mice. In addition, hepatic Shp2 deficiency led to decreased liver steatosis, enhanced insulin-induced suppression of hepatic glucose production, and impeded the development of insulin resistance after high-fat feeding. At the molecular level, LSHKO exhibited decreased hepatic endoplasmic reticulum stress and inflammation compared with control mice. In addition, tyrosine and serine phosphorylation of total and mitochondrial signal transducer and activator of transcription 3 were enhanced in LSHKO compared with control mice. In line with this observation and the increased energy expenditure of LSHKO, oxygen consumption rate was higher in liver mitochondria of LSHKO compared with controls. Collectively, these studies identify hepatic Shp2 as a novel regulator of systemic energy balance under conditions of high-fat feeding. PMID:22619361
Cavalheiro, Renan P.; Machado, Daisy; Cruz, Bread L. G.; Paredes-Gamero, Edgar J.; Gomes-Marcondes, Maria C. C.; Zambuzzi, Willian F.; Vasques, Luciana; Nader, Helena B.; Souza, Ana Carolina S.; Justo, Giselle Z.
2015-01-01
Herein, we provide new contribution to the mechanisms involved in keratinocytes response to hyperosmotic shock showing, for the first time, the participation of Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP) activity in this event. We reported that sorbitol-induced osmotic stress mediates alterations in the phosphorylation of pivotal cytoskeletal proteins, particularly Src and cofilin. Furthermore, an increase in the expression of the phosphorylated form of LMWPTP, which was followed by an augment in its catalytic activity, was observed. Of particular importance, these responses occurred in an intracellular milieu characterized by elevated levels of reduced glutathione (GSH) and increased expression of the antioxidant enzymes glutathione peroxidase and glutathione reductase. Altogether, our results suggest that hyperosmostic stress provides a favorable cellular environment to the activation of LMWPTP, which is associated with increased expression of antioxidant enzymes, high levels of GSH and inhibition of Src kinase. Finally, the real contribution of LMWPTP in the hyperosmotic stress response of keratinocytes was demonstrated through analysis of the effects of ACP1 gene knockdown in stressed and non-stressed cells. LMWPTP knockdown attenuates the effects of sorbitol induced-stress in HaCaT cells, mainly in the status of Src kinase, Rac and STAT5 phosphorylation and activity. These results describe for the first time the participation of LMWPTP in the dynamics of cytoskeleton rearrangement during exposure of human keratinocytes to hyperosmotic shock, which may contribute to cell death. PMID:25781955
Gao, Yuan Z.; Saphirstein, Robert J.; Yamin, Rina; Suki, Bela
2014-01-01
Increased aortic stiffness is an early and independent biomarker of cardiovascular disease. Here we tested the hypothesis that vascular smooth muscle cells (VSMCs) contribute significantly to aortic stiffness and investigated the mechanisms involved. The relative contributions of VSMCs, focal adhesions (FAs), and matrix to stiffness in mouse aorta preparations at optimal length and with confirmed VSMC viability were separated by the use of small-molecule inhibitors and activators. Using biomechanical methods designed for minimal perturbation of cellular function, we directly quantified changes with aging in aortic material stiffness. An alpha adrenoceptor agonist, in the presence of NG-nitro-l-arginine methyl ester (l-NAME) to remove interference of endothelial nitric oxide, increases stiffness by 90–200% from baseline in both young and old mice. Interestingly, increases are robustly suppressed by the Src kinase inhibitor PP2 in young but not old mice. Phosphotyrosine screening revealed, with aging, a biochemical signature of markedly impaired agonist-induced FA remodeling previously associated with Src signaling. Protein expression measurement confirmed a decrease in Src expression with aging. Thus we report here an additive model for the in vitro biomechanical components of the mouse aortic wall in which 1) VSMCs are a surprisingly large component of aortic stiffness at physiological lengths and 2) regulation of the VSMC component through FA signaling and hence plasticity is impaired with aging, diminishing the aorta's normal shock absorption function in response to stressors. PMID:25128168
Hari, Sanjay B.; Perera, B. Gayani K.; Ranjitkar, Pratistha; Seeliger, Markus A.; Maly, Dustin J.
2013-01-01
Over the last decade, an increasingly diverse array of potent and selective inhibitors that target the ATP-binding sites of protein kinases have been developed. Many of these inhibitors, like the clinically approved drug imatinib (Gleevec), stabilize a specific catalytically inactive ATP-binding site conformation of their kinases targets. Imatinib is notable in that it is highly selective for its kinase target, Abl, over other closely-related tyrosine kinases, like Src. In addition, imatinib is highly sensitive to the phosphorylation state of Abl's activation loop, which is believed to be a general characteristic of all inhibitors that stabilize a similar inactive ATP-binding site conformation. In this report, we perform a systematic analysis of a diverse series of ATP-competitive inhibitors that stabilize a similar inactive ATP-binding site conformation as imatinib with the tyrosine kinases Src and Abl. In contrast to imatinib, many of these inhibitors have very similar potencies against Src and Abl. Furthermore, only a subset of this class of inhibitors is sensitive to the phosphorylation state of the activation loop of these kinases. In attempting to explain this observation, we have uncovered an unexpected correlation between Abl's activation loop and another flexible active site feature, called the phosphate-binding loop (p-loop). These studies shed light on how imatinib is able to obtain its high target selectivity and reveal how the conformational preference of flexible active site regions can vary between closely related kinases. PMID:24106839
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cronauer, D.C.
1984-05-01
This project was undertaken to understand the role of the coal liquefaction solvent through a study of the interaction between the hydrogen donor solvent characteristics and the heterofunctionality of the solvent. Specifically, hydroxyl- and nitrogen-containing solvents were studied and characterized. A series of coal liquefaction experiments were carried out at 450/sup 0/C in a continuous feed stirred-tank reactor (CSTR) to observe the effect of adding phenolics to anthracene oil (AO) and SRC-II recycle solvents. The addition of phenol to AO at a ratio of 5/65 resulted in a nominal increase in coal conversion to THF solubles, but the amount ofmore » asphaltenes more than doubled resulting in a sizable net loss of solvent. The addition of m-cresol to both AO and SRC-II solvents had a positive effect on coal conversion to both THF and pentane solubles (oils). The partial removal of an OH-concentrate from SRC-II solvent was carried out using Amberlyst IRA-904 ion exchange resin. The resin-treated oil was only marginally better than raw SRC-II recycle solvent for coal liquefaction. Hydroaromatics having nitrogen functionality should be good solvents for coal liquefaction considering their effective solvent power, ability to penetrate and swell coal, and their ability to readily transfer hydrogen, particularly in the presence of oxygen functionality. However, these benefits are overshadowed by the strong tendency of the nitrogen-containing species to adduct with themselves and coal-derived materials.« less
Stochastic mechanics of loose boundary particle transport in turbulent flow
NASA Astrophysics Data System (ADS)
Dey, Subhasish; Ali, Sk Zeeshan
2017-05-01
In a turbulent wall shear flow, we explore, for the first time, the stochastic mechanics of loose boundary particle transport, having variable particle protrusions due to various cohesionless particle packing densities. The mean transport probabilities in contact and detachment modes are obtained. The mean transport probabilities in these modes as a function of Shields number (nondimensional fluid induced shear stress at the boundary) for different relative particle sizes (ratio of boundary roughness height to target particle diameter) and shear Reynolds numbers (ratio of fluid inertia to viscous damping) are presented. The transport probability in contact mode increases with an increase in Shields number attaining a peak and then decreases, while that in detachment mode increases monotonically. For the hydraulically transitional and rough flow regimes, the transport probability curves in contact mode for a given relative particle size of greater than or equal to unity attain their peaks corresponding to the averaged critical Shields numbers, from where the transport probability curves in detachment mode initiate. At an inception of particle transport, the mean probabilities in both the modes increase feebly with an increase in shear Reynolds number. Further, for a given particle size, the mean probability in contact mode increases with a decrease in critical Shields number attaining a critical value and then increases. However, the mean probability in detachment mode increases with a decrease in critical Shields number.
Legarreta, Andrew D; Brett, Benjamin L; Solomon, Gary S; Zuckerman, Scott L
2018-06-01
OBJECTIVE Sport-related concussion (SRC) has become a major public health concern. Prolonged recovery after SRC, named postconcussion syndrome (PCS), has been associated with several biopsychosocial factors, yet the role of both family and personal psychiatric histories requires investigation. In a cohort of concussed high school athletes, the authors examined the role(s) of family and personal psychiatric histories in the risk of developing PCS. METHODS A retrospective cohort study of 154 high school athletes with complete documentation of postconcussion symptom resolution or persistence at 6 weeks was conducted. PCS was defined as 3 or more symptoms present 6 weeks after SRC. Three groups were defined: 1) positive family psychiatric history and personal psychiatric history (FPH/PPH), 2) positive FPH only, and 3) negative family and personal psychiatric histories (controls). Three bivariate regression analyses were conducted: FPH/PPH to controls, FPH only to controls, and FPH/PPH to FPH. Post hoc bivariate regression analyses examined specific FPH pathologies and PCS. RESULTS Athletes with FPH/PPH compared with controls had an increased risk of PCS (χ 2 = 8.90, p = 0.018; OR 5.06, 95% CI 1.71-14.99). Athletes with FPH only compared with controls also had an increased risk of PCS (χ 2 = 6.04, p = 0.03; OR 2.52, 95% CI 1.20-5.30). Comparing athletes with FPH/PPH to athletes with FPH only, no added PCS risk was noted (χ 2 = 1.64, p = 0.247; OR 2.01, 95% CI 0.68-5.94). Among various FPH diagnoses, anxiety (χ 2 = 7.48, p = 0.021; OR 2.99, 95% CI 1.36-6.49) and bipolar disorder (χ 2 = 5.13, p = 0.036; OR 2.74, 95% CI 1.14-6.67) were significantly associated with the presence of PCS. CONCLUSIONS Concussed high school athletes with FPH/PPH were greater than 5 times more likely to develop PCS than controls. Athletes with only FPH were over 2.5 times more likely to develop PCS than controls. Those with an FPH of anxiety or bipolar disorder are specifically at increased risk of PCS. These results suggest that not only are athletes with FPH/PPH at risk for slower recovery after SRC, but those with an FPH only-especially anxiety or bipolar disorder-may also be at risk. Overall, this study supports taking a detailed FPH and PPH in the management of SRC.
An evolutionary switch in ND2 enables Src kinase regulation of NMDA receptors
NASA Astrophysics Data System (ADS)
Scanlon, David P.; Bah, Alaji; Krzeminski, Mickaël; Zhang, Wenbo; Leduc-Pessah, Heather L.; Dong, Yi Na; Forman-Kay, Julie D.; Salter, Michael W.
2017-05-01
The non-receptor tyrosine kinase Src is a key signalling hub for upregulating the function of N-methyl D-aspartate receptors (NMDARs). Src is anchored within the NMDAR complex via NADH dehydrogenase subunit 2 (ND2), a mitochondrially encoded adaptor protein. The interacting regions between Src and ND2 have been broadly identified, but the interaction between ND2 and the NMDAR has remained elusive. Here we generate a homology model of ND2 and dock it onto the NMDAR via the transmembrane domain of GluN1. This interaction is enabled by the evolutionary loss of three helices in bilaterian ND2 proteins compared to their ancestral homologues. We experimentally validate our model and demonstrate that blocking this interaction with an ND2 fragment identified in our experimental studies prevents Src-mediated upregulation of NMDAR currents in neurons. Our findings establish the mode of interaction between an NMDAR accessory protein with one of the core subunits of the receptor.
Presence of an SH2 domain in the actin-binding protein tensin.
Davis, S; Lu, M L; Lo, S H; Lin, S; Butler, J A; Druker, B J; Roberts, T M; An, Q; Chen, L B
1991-05-03
The molecular cloning of the complementary DNA coding for a 90-kilodalton fragment of tensin, an actin-binding component of focal contacts and other submembraneous cytoskeletal structures, is reported. The derived amino acid sequence revealed the presence of a Src homology 2 (SH2) domain. This domain is shared by a number of signal transduction proteins including nonreceptor tyrosine kinases such as Abl, Fps, Src, and Src family members, the transforming protein Crk, phospholipase C-gamma 1, PI-3 (phosphatidylinositol) kinase, and guanosine triphosphatase-activating protein (GAP). Like the SH2 domain found in Src, Crk, and Abl, the SH2 domain of tensin bound specifically to a number of phosphotyrosine-containing proteins from v-src-transformed cells. Tensin was also found to be phosphorylated on tyrosine residues. These findings suggest that by possessing both actin-binding and phosphotyrosine-binding activities and being itself a target for tyrosine kinases, tensin may link signal transduction pathways with the cytoskeleton.
The tumor suppressor DAPK is reciprocally regulated by tyrosine kinase Src and phosphatase LAR.
Wang, Won-Jing; Kuo, Jean-Cheng; Ku, Wei; Lee, Yu-Ru; Lin, Feng-Chi; Chang, Yih-Leong; Lin, Yu-Min; Chen, Chun-Hau; Huang, Yuan-Ping; Chiang, Meng-Jung; Yeh, Sheng-Wen; Wu, Pei-Rung; Shen, Che-Hung; Wu, Chen-Tu; Chen, Ruey-Hwa
2007-09-07
Death-associated protein kinase (DAPK) is a calmodulin-regulated serine/threonine kinase and elicits tumor suppression function through inhibiting cell adhesion/migration and promoting apoptosis. Despite these biological functions, the signaling mechanisms through which DAPK is regulated remain largely elusive. Here, we show that the leukocyte common antigen-related (LAR) tyrosine phosphatase dephosphorylates DAPK at pY491/492 to stimulate the catalytic, proapoptotic, and antiadhesion/antimigration activities of DAPK. Conversely, Src phosphorylates DAPK at Y491/492, which induces DAPK intra-/intermolecular interaction and inactivation. Upon EGF stimulation, a rapid Src activation leads to subsequent LAR downregulation, and these two events act in synergism to inactivate DAPK, thereby facilitating tumor cell migration and invasion toward EGF. Finally, DAPK Y491/492 hyperphosphorylation is found in human cancers in which Src activity is aberrantly elevated. These results identify LAR and Src as a DAPK regulator through their reciprocal modification of DAPK Y491/492 residues and establish a functional link of this DAPK-regulatory circuit to tumor progression.
Geomorphic versus land use controls on suspended sediment rating curves
NASA Astrophysics Data System (ADS)
Belmont, P.; Vaughan, A. A.; Fisher, A. C. N.
2017-12-01
The relation between river discharge (Q) and suspended sediment (SS) concentration reflects the degree to which sediment sources are accessed or depleted across the range of flow conditions. Increased availability of high resolution topography and land use data greatly enhance our ability to evaluate linkages between characteristics of these sediment rating curves (SRCs) and the geomorphic features that influence them. We evaluated Q-SS relations at 45 gages throughout Minnesota, USA representing a wide variety of landscape settings in terms of topography, land use, and geologic history. We characterized the SRCs according to the overall shape, steepness (exponent), vertical offset (coefficient) and SS concentration under low flow (90% exceedance) conditions. Rivers exhibited three distinct SRC shapes, simple power functions, threshold power functions and peaked power functions. We used random forest models to analyze relations between SRC parameters and attributes of the watershed as well as the near-channel environment. The model correctly classified 78% of SRC shapes and explained 60% of variance in the SRC exponent, 43% of the SRC coefficient for rising limb samples, and 45% of variance under low flow conditions. Notably, the random forest models predict that near-channel morphology predominately controls both the shape and steepness of the sediment rating curves. Land use predominately controls the vertical offset (coefficient) and SS concentration under low flow conditions. These findings suggest that land use and watershed restoration practices may have little capacity to alter the shape and steepness of these curves as these characteristics may be dictated by the geologic and geomorphic setting. Rather, human influences in the watershed may exhibit the greatest influence on suspended sediment concentrations at moderate to low flows. Criteria to evaluate improvements in water quality as a result of changes in land management might be most meaningful if they target these moderate to low flow conditions.
Neurotensin stimulates mitogenesis of prostate cancer cells through a novel c-Src/Stat5b pathway.
Amorino, G P; Deeble, P D; Parsons, S J
2007-02-01
Neuroendocrine (NE)-like cells are hypothesized to contribute to the progression of prostate cancer by producing factors that enhance the growth, survival or metastatic capabilities of surrounding tumor cells. Many of the factors known to be secreted by NE-like cells, such as neurotensin (NT), parathyroid hormone-related peptide, serotonin, bombesin, etc., are agonists for G-protein-coupled receptors, but the signaling pathways activated by these agonists in prostate tumor cells are not fully defined. Identification of such pathways could provide insights into novel methods of treating late-stage disease. Using conditioned culture medium (CM) from LNCaP-derived NE-like cells (as a source of these agonists) or NT (a prototypical component of CM) to treat PC3 cells, we found that the epidermal growth factor (EGF) receptor (EGFR) was transactivated and that such activation was required for maximal PC3 cell mitogenesis, as measured by 5-bromo-2'-deoxy-uridine incorporation or cell number. NT also induced a time-dependent increase in EGFR Tyr(845) phosphorylation and phosphorylation of c-Src and signal transducer and activator of transcription 5b (Stat5b) (a downstream effector of Tyr(845)), events that were blocked by specific inhibition of c-Src (which mediates Tyr(845) phosphorylation of EGFR) or of EGFR. Introduction of mutant forms of EGFR (Tyr(845)) or Stat5b in PC3 cells, or treatment with selective, catalytic inhibitors of EGFR, c-Src and matrix metalloproteinases (MMPs) resulted in the loss of NT-induced stimulation of DNA synthesis, relative to wild-type controls. These data indicate that the mitogenic effect of NT on prostate cancer cells requires transactivation of the EGFR by MMPs and a novel downstream pathway involving c-Src, phosphorylation of EGFR Tyr(845) and activation of Stat5b.
Turbulent Simulations of Divertor Detachment Based On BOUT + + Framework
NASA Astrophysics Data System (ADS)
Chen, Bin; Xu, Xueqiao; Xia, Tianyang; Ye, Minyou
2015-11-01
China Fusion Engineering Testing Reactor is under conceptual design, acting as a bridge between ITER and DEMO. The detached divertor operation offers great promise for a reduction of heat flux onto divertor target plates for acceptable erosion. Therefore, a density scan is performed via an increase of D2 gas puffing rates in the range of 0 . 0 ~ 5 . 0 ×1023s-1 by using the B2-Eirene/SOLPS 5.0 code package to study the heat flux control and impurity screening property. As the density increases, it shows a gradually change of the divertor operation status, from low-recycling regime to high-recycling regime and finally to detachment. Significant radiation loss inside the confined plasma in the divertor region during detachment leads to strong parallel density and temperature gradients. Based on the SOLPS simulations, BOUT + + simulations will be presented to investigate the stability and turbulent transport under divertor plasma detachment, particularly the strong parallel gradient driven instabilities and enhanced plasma turbulence to spread heat flux over larger surface areas. The correlation between outer mid-plane and divertor turbulence and the related transport will be analyzed. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-675075.
The Role of an Electric Field in the Formation of a Detached Regime in Tokamak Plasma
NASA Astrophysics Data System (ADS)
Senichenkov, I.; Kaveeva, E.; Rozhansky, V.; Sytova, E.; Veselova, I.; Voskoboynikov, S.; Coster, D.
2018-03-01
Modeling of the transition to the detachment of ASDEX Upgrade tokamak plasma with increasing density is performed using the SOLPS-ITER numerical code with a self-consistent account of drifts and currents. Their role in plasma redistribution both in the confinement region and in the scrape-off layer (SOL) is investigated. The mechanism of high field side high-density formation in the SOL in the course of detachment is suggested. In the full detachment regime, when the cold plasma region expands above the X-point and reaches closed magnetic-flux surfaces, plasma perturbation in a confined region may lead to a change in the confinement regime.
Activation of Stat3 Transcription Factor by Herpesvirus Saimiri STP-A Oncoprotein
Chung, Young-Hwa; Cho, Nam-hyuk; Garcia, Maria Ines; Lee, Sun-Hwa; Feng, Pinghui; Jung, Jae U.
2004-01-01
The saimiri transforming protein (STP) oncogene of Herpesvirus saimiri subgroup A strain 11 (STP-A11) is not required for viral replication but is required for lymphoid cell immortalization in culture and lymphoma induction in primates. We previously showed that STP-A11 interacts with cellular Src kinase through its SH2 binding motif and that this interaction elicits Src signal transduction. Here we demonstrate that STP-A11 interacts with signal transducer and activator of transcription 3 (Stat3) independently of Src association and that the amino-terminal short proline-rich motif of STP-A11 and the central linker region of Stat3 are necessary for their interaction. STP-A11 formed a triple complex with Src kinase and Stat3 where Src kinase phosphorylated Stat3, resulting in the nuclear localization and transcriptional activation of Stat3. Consequently, the constitutively active Stat3 induced by STP-A11 elicited cellular signal transduction, which ultimately induced cell survival and proliferation upon serum deprivation. Furthermore, this activity was strongly correlated with the induction of Fos, cyclin D1, and Bcl-XL expression. These results demonstrate that STP-A11 independently targets two important cellular signaling molecules, Src and Stat3, and that these proteins cooperate efficiently to induce STP-A11-mediated transformation. PMID:15163742
Weir, Marion E.; Mann, Jacqueline E.; Corwin, Thomas; Fulton, Zachary W.; Hao, Jennifer M.; Maniscalco, Jeanine F.; Kenney, Marie C.; Roque, Kristal M. Roman; Chapdelaine, Elizabeth F.; Stelzl, Ulrich; Deming, Paula B.; Ballif, Bryan A.; Hinkle, Karen L.
2016-01-01
Src family tyrosine kinases (SFKs) are critical players in normal and aberrant biological processes. While phosphorylation importantly-regulates SFKs at two known tyrosines, large-scale phosphoproteomics have revealed four additional tyrosines commonly-phosphorylated in SFKs. We found these novel tyrosines to be autophosphorylation sites. Mimicking phosphorylation at the site C-terminal to the activation loop decreased Fyn activity. Phosphomimetics and direct phosphorylation at the three SH2 domain sites increased Fyn activity while reducing phosphotyrosine-dependent interactions. While 68% of human SH2 domains exhibit conservation of at least one of these tyrosines, few have been found phosphorylated except when found in cis to a kinase domain. PMID:27001024
Flow-induced detachment of red blood cells adhering to surfaces by specific antigen-antibody bonds.
Xia, Z; Goldsmith, H L; van de Ven, T G
1994-04-01
Fixed spherical swollen human red blood cells of blood type B adhering on a glass surface through antigen-antibody bonds to monoclonal mouse antihuman IgM, adsorbed or covalently linked on the surface, were detached by known hydrodynamic forces created in an impinging jet. The dynamic process of detachment of the specifically bound cells was recorded and analyzed. The fraction of adherent cells remaining on the surface decreased with increasing hydrodynamic force. For an IgM coverage of 0.26%, a tangential force on the order of 100 pN was able to detach almost all of the cells from the surface within 20 min. After a given time of exposure to hydrodynamic force, the fraction of adherent cells remaining increased with time, reflecting an increase in adhesion strength. The characteristic time for effective aging was approximately 4 h. Results from experiments in which the adsorbed antibody molecules were immobilized through covalent coupling and from evanescent wave light scattering of adherent cells, imply that deformation of red cells at the contact area was the principal cause for aging, rather than local clustering of the antibody through surface diffusion. Experiments with latex beads specifically bound to red blood cells suggest that, instead of breaking the antigen-antibody bonds, antigen molecules were extracted from the cell membrane during detachment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kükenshöner, Tim; Schmit, Nadine Eliane; Bouda, Emilie
The binding of Src-homology 2 (SH2) domains to phosphotyrosine (pY) sites is critical for the autoinhibition and substrate recognition of the eight Src family kinases (SFKs). The high sequence conservation of the 120 human SH2 domains poses a significant challenge to selectively perturb the interactions of even the SFK SH2 family against the rest of the SH2 domains. We have developed synthetic binding proteins, termed monobodies, for six of the SFK SH2 domains with nanomolar affinity. Most of these monobodies competed with pY ligand binding and showed strong selectivity for either the SrcA (Yes, Src, Fyn, Fgr) or SrcB subgroupmore » (Lck, Lyn, Blk, Hck). Interactome analysis of intracellularly expressed monobodies revealed that they bind SFKs but no other SH2-containing proteins. Three crystal structures of monobody–SH2 complexes unveiled different and only partly overlapping binding modes, which rationalized the observed selectivity and enabled structure-based mutagenesis to modulate inhibition mode and selectivity. In line with the critical roles of SFK SH2 domains in kinase autoinhibition and T-cell receptor signaling, monobodies binding the Src and Hck SH2 domains selectively activated respective recombinant kinases, whereas an Lck SH2-binding monobody inhibited proximal signaling events downstream of the T-cell receptor complex. Our results show that SFK SH2 domains can be targeted with unprecedented potency and selectivity using monobodies. They are excellent tools for dissecting SFK functions in normal development and signaling and to interfere with aberrant SFK signaling networks in cancer cells.« less
SRC: marker or actor in prostate cancer aggressiveness.
Vlaeminck-Guillem, Virginie; Gillet, Germain; Rimokh, Ruth
2014-01-01
A key question for urologic practitioners is whether an apparently organ-confined prostate cancer (PCa) is actually aggressive or not. The dilemma is to specifically identify among all prostate tumors the very aggressive high-grade cancers that will become life-threatening by developing extra-prostatic invasion and metastatic potential and the indolent cancers that will never modify a patient's life expectancy. A choice must be made between several therapeutic options to achieve the optimal personalized management of the disease that causes as little harm as possible to patients. Reliable clinical, biological, or pathological markers that would enable distinctions to be made between aggressive and indolent PCas in routine practice at the time of initial diagnosis are still lacking. The molecular mechanisms that explain why a PCa is aggressive or not are also poorly understood. Among the potential markers and/or actors in PCa aggressiveness, Src and other members of the Src kinase family, are valuable candidates. Activation of Src-dependent intracellular pathways is frequently observed in PCa. Indeed, Src is at the cross-roads of several pathways [including androgen receptor (AR), TGFbeta, Bcl-2, Akt/PTEN or MAPK, and ERK …], and is now known to influence some of the cellular and tissular events that accompany tumor progression: cell proliferation, cell motility, invasion, epithelial-to-mesenchymal transition, resistance to apoptosis, angiogenesis, neuroendocrine differentiation, and metastatic spread. Recent work even suggests that Src could also play a part in PCa initiation in coordination with the AR. The aim of this review is to gather data that explore the links between the Src kinase family and PCa progression and aggressiveness.
The role of steroid receptor coactivator-3 (SRC-3) in human malignant disease.
Gojis, O; Rudraraju, B; Alifrangis, C; Krell, J; Libalova, P; Palmieri, C
2010-03-01
The p160 steroid receptor coactivator (SRC) family is critical to the transcriptional activation function of nuclear hormone receptors. A key member of this family is SRC-3, initially found to be amplified and expressed in breast cancer it has subsequent been shown to be expressed in malignant disease arising from a wide range of other organs. An understanding of the potential role of SRC-3 in the pathogenesis and its possible prognostic role in a broad range of tumours will improve our general understanding of carcinogenesis as well as potentially leading to a new prognostic marker as well as new therapeutic targets. Relevant papers were identified by searching the PubMed and MEDLINE databases for article published until 28th February 2009. Only articles published in English were considered. The search terms included "SRC-3", "AIB1" in association with the following terms: "human", "cancer" and "malignant disease". The search focused on malignant disease arising outside of the mammary gland. Full articles were obtained and references were checked for additional material when appropriate. SRC-3 is amplified and expressed in a wide spectrum of human malignant diseases and appears to be a potential prognostic marker in a number of different tumours. SRC-3 appears to be implicated in the possible risk of developing prostate and ovarian cancer. Its presence appears to be a marker of aggressive disease. Further research is required to determine its predictive and prognostic utility given the relative paucity of studies for each specific malignant disease. Copyright (c) 2009. Published by Elsevier Ltd.
Dwyer, Amy R; Mouchemore, Kellie A; Steer, James H; Sunderland, Andrew J; Sampaio, Natalia G; Greenland, Eloise L; Joyce, David A; Pixley, Fiona J
2016-07-01
A major role of colony-stimulating factor-1 is to stimulate the differentiation of mononuclear phagocytic lineage cells into adherent, motile, mature macrophages. The colony-stimulating factor-1 receptor transduces colony-stimulating factor-1 signaling, and we have shown previously that phosphatidylinositol 3-kinase p110δ is a critical mediator of colony-stimulating factor-1-stimulated motility through the colony-stimulating factor-1 receptor pY721 motif. Src family kinases are also implicated in the regulation of macrophage motility and in colony-stimulating factor-1 receptor signaling, although functional redundancy of the multiple SFKs expressed in macrophages makes it challenging to delineate their specific functions. We report a comprehensive analysis of individual Src family kinase expression in macrophage cell lines and primary macrophages and demonstrate colony-stimulating factor-1-induced changes in Src family kinase subcellular localization, which provides clues to their distinct and redundant functions in macrophages. Moreover, expression of individual Src family kinases is both species specific and dependent on colony-stimulating factor-1-induced macrophage differentiation. Hck associated with the activated colony-stimulating factor-1 receptor, whereas Lyn associated with the receptor in a constitutive manner. Consistent with this, inhibitor studies revealed that Src family kinases were important for both colony-stimulating factor-1 receptor activation and colony-stimulating factor-1-induced macrophage spreading, motility, and invasion. Distinct colony-stimulating factor-1-induced changes in the subcellular localization of individual SFKs suggest specific roles for these Src family kinases in the macrophage response to colony-stimulating factor-1. © Society for Leukocyte Biology.
Bian, Chen; Huang, Yan; Zhu, Haitao; Zhao, Yangang; Zhao, Jikai; Zhang, Jiqiang
2018-05-01
Steroids have been demonstrated to play profound roles in the regulation of hippocampal function by acting on their receptors, which need coactivators for their transcriptional activities. Previous studies have shown that steroid receptor coactivator-1 (SRC-1) is the predominant coactivator in the hippocampus, but its exact role and the underlying mechanisms remain unclear. In this study, we constructed SRC-1 RNA interference (RNAi) lentiviruses, injected them into the hippocampus of male mice, and then examined the changes in the expression of selected synaptic proteins, CA1 synapse density, postsynaptic density (PSD) thickness, and in vivo long-term potentiation (LTP). Spatial learning and memory behavior changes were investigated using the Morris water maze. We then transfected the lentiviruses into cultured hippocampal cells and examined the changes in synaptic protein and phospho-cyclic AMP response element-binding protein (pCREB) expression. The in vivo results showed that SRC-1 knockdown significantly decreased the expression of synaptic proteins and CA1 synapse density as well as PSD thickness; SRC-1 knockdown also significantly impaired in vivo LTP and disrupted spatial learning and memory. The in vitro results showed that while the expression of synaptic proteins was significantly decreased by SRC-1 knockdown, pCREB expression was also significantly decreased. The above results suggest a pivotal role of SRC-1 in the regulation of hippocampal synaptic plasticity and spatial learning and memory, strongly indicating SRC-1 may serve as a novel therapeutic target for hippocampus-dependent memory disorders. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Fajer, Mikolai; Meng, Yilin; Roux, Benoît
2017-04-20
Tyrosine kinases are important cellular signaling allosteric enzymes that regulate cell growth, proliferation, metabolism, differentiation, and migration. Their activity must be tightly controlled, and malfunction can lead to a variety of diseases, particularly cancer. The nonreceptor tyrosine kinase c-Src, a prototypical model system and a representative member of the Src-family, functions as complex multidomain allosteric molecular switches comprising SH2 and SH3 domains modulating the activity of the catalytic domain. The broad picture of self-inhibition of c-Src via the SH2 and SH3 regulatory domains is well characterized from a structural point of view, but a detailed molecular mechanism understanding is nonetheless still lacking. Here, we use advanced computational methods based on all-atom molecular dynamics simulations with explicit solvent to advance our understanding of kinase activation. To elucidate the mechanism of regulation and self-inhibition, we have computed the pathway and the free energy landscapes for the "inactive-to-active" conformational transition of c-Src for different configurations of the SH2 and SH3 domains. Using the isolated c-Src catalytic domain as a baseline for comparison, it is observed that the SH2 and SH3 domains, depending upon their bound orientation, promote either the inactive or active state of the catalytic domain. The regulatory structural information from the SH2-SH3 tandem is allosterically transmitted via the N-terminal linker of the catalytic domain. Analysis of the conformational transition pathways also illustrates the importance of the conserved tryptophan 260 in activating c-Src, and reveals a series of concerted events during the activation process.
Multidisciplinary Management of Pediatric Sports-Related Concussion.
Ellis, Michael J; Ritchie, Lesley J; McDonald, Patrick J; Cordingley, Dean; Reimer, Karen; Nijjar, Satnam; Koltek, Mark; Hosain, Shahid; Johnston, Janine; Mansouri, Behzad; Sawyer, Scott; Silver, Norm; Girardin, Richard; Larkins, Shannon; Vis, Sara; Selci, Erin; Davidson, Michael; Gregoire, Scott; Sam, Angela; Black, Brian; Bunge, Martin; Essig, Marco; MacDonald, Peter; Leiter, Jeff; Russell, Kelly
2017-01-01
To summarize the clinical characteristics and outcomes of pediatric sports-related concussion (SRC) patients who were evaluated and managed at a multidisciplinary pediatric concussion program and examine the healthcare resources and personnel required to meet the needs of this patient population. We conducted a retrospective review of all pediatric SRC patients referred to the Pan Am Concussion Program from September 1st, 2013 to May 25th, 2015. Initial assessments and diagnoses were carried out by a single neurosurgeon. Return-to-Play decision-making was carried out by the multidisciplinary team. 604 patients, including 423 pediatric SRC patients were evaluated at the Pan Am Concussion Program during the study period. The mean age of study patients was 14.30 years (SD: 2.32, range 7-19 years); 252 (59.57%) were males. Hockey (182; 43.03%) and soccer (60; 14.18%) were the most commonly played sports at the time of injury. Overall, 294 (69.50%) of SRC patients met the clinical criteria for concussion recovery, while 75 (17.73%) were lost to follow-up, and 53 (12.53%) remained in active treatment at the end of the study period. The median duration of symptoms among the 261 acute SRC patients with complete follow-up was 23 days (IQR: 15, 36). Overall, 25.30% of pediatric SRC patients underwent at least one diagnostic imaging test and 32.62% received referral to another member of our multidisciplinary clinical team. Comprehensive care of pediatric SRC patients requires access to appropriate diagnostic resources and the multidisciplinary collaboration of experts with national and provincially-recognized training in TBI.
Collins, Clinton; Klausner, Adam P; Herrick, Benjamin; Koo, Harry P; Miner, Amy S; Henderson, Scott C; Ratz, Paul H
2009-01-01
Interstitial cells of Cajal (ICCs) have been identified as pacemaker cells in the upper urinary tract and urethra, but the role of ICCs in the bladder remains to be determined. We tested the hypotheses that ICCs express cyclooxygenase (COX), and that COX products (prostaglandins), are the cause of spontaneous rhythmic contraction (SRC) of isolated strips of rabbit bladder free of urothelium. SRC was abolished by 10 μM indomethacin and ibuprofen (non-selective COX inhibitors). SRC was concentration-dependently inhibited by selective COX-1 (SC-560 and FR-122047) and COX-2 inhibitors (NS-398 and LM-1685), and by SC-51089, a selective antagonist for the PGE-2 receptor (EP) and ICI-192,605 and SQ-29,548, selective antagonists for thromboxane receptors (TP). The partial agonist/antagonist of the PGF-2α receptor (FP), AL-8810, inhibited SRC by ∼50%. Maximum inhibition was ∼90% by SC-51089, ∼80–85% by the COX inhibitors and ∼70% by TP receptor antagonists. In the presence of ibuprofen to abolish SRC, PGE-2, sulprostone, misoprostol, PGF-2α and U-46619 (thromboxane mimetic) caused rhythmic contractions that mimicked SRC. Fluorescence immunohistochemistry coupled with confocal laser scanning microscopy revealed that c-Kit and vimentin co-localized to interstitial cells surrounding detrusor smooth muscle bundles, indicating the presence of extensive ICCs in rabbit bladder. Co-localization of COX-1 and vimentin, and COX-2 and vimentin by ICCs supports the hypothesis that ICCs were the predominant cell type in rabbit bladder expressing both COX isoforms. These data together suggest that ICCs appear to be an important source of prostaglandins that likely play a role in regulation of SRC. Additional studies on prostaglandin-dependent SRC may generate opportunities for the application of novel treatments for disorders leading to overactive bladder. PMID:19243470
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, W.-N.; Luo, S.-F.; Wu, C.-B.
2008-04-15
In our previous study, LPS has been shown to induce vascular cell adhesion molecule-1(VCAM-1) expression through MAPKs and NF-{kappa}B in human tracheal smooth muscle cells (HTSMCs). In addition to these pathways, the non-receptor tyrosine kinases (Src), EGF receptor (EGFR), and phosphatidylinositol 3-kinase (PI3K) have been shown to be implicated in the expression of several inflammatory target proteins. Here, we reported that LPS-induced up-regulation of VCAM-1 enhanced the adhesion of neutrophils onto HTSMC monolayer, which was inhibited by LY294002 and wortmannin. LPS stimulated phosphorylation of protein tyrosine kinases including Src, PYK2, and EGFR, which were further confirmed using specific anti-phospho-Src, PYK2,more » or EGFR Ab, respectively, revealed by Western blotting. LPS-stimulated Src, PYK2, EGFR, and Akt phosphorylation and VCAM-1 expression were attenuated by the inhibitors of Src (PP1), EGFR (AG1478), PI3-K (LY294002 and wortmannin), and Akt (SH-5), respectively, or transfection with siRNAs of Src or Akt and shRNA of p110. LPS-induced VCAM-1 expression was also blocked by pretreatment with curcumin (a p300 inhibitor) or transfection with p300 siRNA. LPS-stimulated Akt activation translocated into nucleus and associated with p300 and VCAM-1 promoter region was further confirmed by immunofluorescence, immunoprecipitation, and chromatin immunoprecipitation assays. This association of Akt and p300 to VCAM-1 promoter was inhibited by pretreatment with PP1, AG1478, wortmannin, and SH-5. LPS-induced p300 activation enhanced VCAM-1 promoter activity and VCAM-1 mRNA expression. These results suggested that in HTSMCs, Akt phosphorylation mediated through transactivation of Src/PYK2/EGFR promoted the transcriptional p300 activity and eventually led to VCAM-1 expression induced by LPS.« less
Na/K-ATPase/src complex mediates regulation of CD40 in renal parenchyma.
Xie, Jeffrey X; Zhang, Shungang; Cui, Xiaoyu; Zhang, Jue; Yu, Hui; Khalaf, Fatimah K; Malhotra, Deepak; Kennedy, David J; Shapiro, Joseph I; Tian, Jiang; Haller, Steven T
2017-12-22
Recent studies have highlighted a critical role for CD40 in the pathogenesis of renal injury and fibrosis. However, little is currently understood about the regulation of CD40 in this setting. We use novel Na/K-ATPase cell lines and inhibitors in order to demonstrate the regulatory function of Na/K-ATPase with regards to CD40 expression and function. We utilize 5/6 partial nephrectomy as well as direct infusion of a Na/K-ATPase ligand to demonstrate this mechanism exists in vivo. We demonstrate that knockdown of the α1 isoform of Na/K-ATPase causes a reduction in CD40 while rescue of the α1 but not the α2 isoform restores CD40 expression in renal epithelial cells. Second, because the major functional difference between α1 and α2 is the ability of α1 to form a functional signaling complex with Src, we examined whether the Na/K-ATPase/Src complex is important for CD40 expression. We show that a gain-of-Src binding α2 mutant restores CD40 expression while loss-of-Src binding α1 reduces CD40 expression. Furthermore, loss of a functional Na/K-ATPase/Src complex also disrupts CD40 signaling. Importantly, we show that use of a specific Na/K-ATPase/Src complex antagonist, pNaKtide, can attenuate cardiotonic steroid (CTS)-induced induction of CD40 expression in vitro. Because the Na/K-ATPase/Src complex is also a key player in the pathogenesis of renal injury and fibrosis, our new findings suggest that Na/K-ATPase and CD40 may comprise a pro-fibrotic feed-forward loop in the kidney and that pharmacological inhibition of this loop may be useful in the treatment of renal fibrosis. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Qi, Shimei; Xin, Yinqiang; Qi, Zhilin; Xu, Yimiao; Diao, Ying; Lan, Lei; Luo, Lan; Yin, Zhimin
2014-03-01
Heat shock protein 27 (HSP27) regulates critical cellular functions such as development, differentiation, cell growth and apoptosis. A variety of stimuli induce the phosphorylation of HSP27, which affects its cellular functions. However, most previous studies focused on the role of HSP27 protein itself in apoptosis, the particular role of its phosphorylation state in signaling transduction remains largely unclear. In the present study, we reported that HSP27 phosphorylation modulated TRAIL-triggered pro-survival signaling transduction. In HeLa cells, suppression of HSP27 phosphorylation by specific inhibitor KRIBB3 or MAPKAPK2 (MK2) knockdown and by overexpression of non-phosphorylatable HSP27(3A) mutant demonstrated that hindered HSP27 phosphorylation enhanced the TRAIL-induced apoptosis. In addition, reduced HSP27 phosphorylation by KRIBB3 treatment or MK2 knockdown attenuated the TRAIL-induced activation of Akt and ERK survival signaling through suppressing the phosphorylation of Src. By overexpression of HSP27(15A) or HSP27(78/82A) phosphorylation mutant, we further showed that phosphorylation of HSP27 at serine 78/82 residues was essential to TRAIL-triggered Src-Akt/ERK signaling transduction. Co-immunoprecipitation and confocal microscopy showed that HSP27 interacted with Src and scaffolding protein β-arrestin2 in response of TRAIL stimulation and suppression of HSP27 phosphorylation apparently disrupted the TRAIL-induced interaction of HSP27 and Src or interaction of HSP27 and β-arrestin2. We further demonstrated that β-arrestin2 mediated HSP27 action on TRAIL-induced Src activation, which was achieved by recruiting signaling complex of HSP27/β-arrestin2/Src in response to TRAIL. Taken together, our study revealed that HSP27 phosphorylation modulates TRAIL-triggered activation of Src-Akt/ERK pro-survival signaling via interacting with β-arrestin2 in HeLa cells. Copyright © 2013 Elsevier Inc. All rights reserved.
Venugopal, Shruthi; Chen, Mo; Liao, Wupeng; Er, Shi Yin; Wong, Wai-Shiu Fred; Ge, Ruowen
2015-07-01
Isthmin (ISM) is a recently identified 60 kDa secreted angiogenesis inhibitor. Two cell-surface receptors for ISM have been defined, the high-affinity glucose-regulated protein 78 kDa (GRP78) and the low-affinity αvβ5 integrin. As αvβ5 integrin plays an important role in pulmonary vascular permeability (VP) and ISM is highly expressed in mouse lung, we sought to clarify the role of ISM in VP. Recombinant ISM (rISM) dose-dependently enhances endothelial monolayer permeability in vitro and local dermal VP when administered intradermally in mice. Systemic rISM administration through intravenous injection leads to profound lung vascular hyperpermeability but not in other organs. Mechanistic investigations using molecular, biochemical approaches and specific chemical inhibitors revealed that ISM-GRP78 interaction triggers a direct interaction between GRP78 and Src, leading to Src activation and subsequent phosphorylation of adherens junction proteins and loss of junctional proteins from inter-endothelial junctions, resulting in enhanced VP. Dynamic studies of Src activation, VP and apoptosis revealed that ISM induces VP directly via Src activation while apoptosis contributes indirectly only after prolonged treatment. Furthermore, ISM is significantly up-regulated in lipopolysaccharide (LPS)-treated mouse lung. Blocking cell-surface GRP78 by systemic infusion of anti-GRP78 antibody significantly attenuates pulmonary vascular hyperpermeability in LPS-induced acute lung injury (ALI) in mice. ISM is a novel VP inducer that functions through cell-surface GRP78-mediated Src activation as well as induction of apoptosis. It induces a direct GRP78-Src interaction, leading to cytoplasmic Src activation. ISM contributes to pulmonary vascular hyperpermeability of LPS-induced ALI in mice. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Hard X-ray spectral investigations of gamma-ray bursts 120521C and 130606A at high-redshift z ˜ 6
NASA Astrophysics Data System (ADS)
Yasuda, T.; Urata, Y.; Enomoto, J.; Tashiro, M. S.
2017-04-01
This study presents a temporal and spectral analysis of the prompt emission of two high-redshift gamma-ray bursts (GRBs), 120521C at z ˜ 6 and 130606A at z ˜ 5.91, using data obtained from the Swift-XRT/BAT and the Suzaku-WAM simultaneously. Based on follow-up XRT observations, the longest durations of the prompt emissions were approximately 80 s (120521C) and 360 s (130606A) in the rest-frames of the two GRBs. These objects are thus categorized as long-duration GRBs; however, the durations are short compared with the predicted duration of GRBs originating from first-generation stars. Because of the wide bandpass of the instruments, covering the ranges 15 keV-5 MeV (BAT-WAM) and 0.3 keV-5.0 MeV (XRT-BAT-WAM), we could successfully determine the νFν peak energies E_peak^src in the rest-frame and isotropic-equivalent radiated energies Eiso; E^src_peak = 682^{+845}_{-207} keV and E_iso = (8. 25^{+2.24}_{-1.96}) × 10^{52} erg for 120521C, and E^src_peak = 1209^{+553}_{-304} keV and E_iso = (2.82^{+0.17}_{-0.71}) × 10^{53} erg for 130606A. These obtained characteristic parameters are in accordance with the well-known relationship between E_peak^src and Eiso (Amati relationship). In addition, we examined the relationships between E_peak^src and the 1-s peak luminosity, Lp, and between E_peak^src and the geometrical corrected radiated energy, Eγ, and confirmed the E_peak^src-Lp (Yonetoku) and E_peak^src-Eγ (Ghirlanda) relationships. The results imply that these high-redshift GRBs at z ˜ 6, which are expected to have radiated during the reionization epoch, have properties similar to those of low-redshift GRBs regarding X-ray prompt emission.
Predictors of postconcussion syndrome in collegiate student-athletes.
Zuckerman, Scott L; Yengo-Kahn, Aaron M; Buckley, Thomas A; Solomon, Gary S; Sills, Allen K; Kerr, Zachary Y
2016-04-01
OBJECTIVE Sport-related concussion (SRC) has emerged as a public health problem, especially among student-athletes. Whereas most concussions resolve by 2 weeks, a minority of patients experience postconcussion syndrome (PCS), in which symptoms persist for months. The objective of this study was to elucidate factors predictive of PCS among a sample of National Collegiate Athletic Association (NCAA) student-athletes in the academic years 2009-2010 to 2014-2015. METHODS The SRC data originated from the NCAA Injury Surveillance Program (ISP) in the 2009-2010 to 2014-2015 academic seasons. The NCAA ISP is a prospective database made up of a convenience sample of schools across all divisions. All SRCs are reported by certified athletic trainers. The PCS group consisted of concussed student-athletes with concussion-related symptoms that lasted ≥ 4 weeks. The non-PCS group consisted of concussed student-athletes with symptom resolution in ≤ 2 weeks. Those with symptoms that resolved in the intermediate area of 2-4 weeks were excluded. Odds ratios (ORs) were estimated using logistic regression. RESULTS During the 2009-2010 to 2014-2015 seasons, 1507 NCAA student-athletes sustained an SRC, 112 (7.4%) of whom developed PCS (i.e., concussion-related symptoms that lasted ≥ 4 weeks). Men's ice hockey contributed the largest proportion of concussions to the PCS group (28.6%), whereas men's football contributed the largest proportion of concussions in the non-PCS group (38.6%). In multivariate analysis, recurrent concussion was associated with increased odds of PCS (OR 2.08, 95% CI 1.28-3.36). Concussion symptoms that were also associated with increased odds of PCS included retrograde amnesia (OR 2.75, 95% CI 1.34-5.64), difficulty concentrating (OR 2.35, 95% CI 1.23-4.50), sensitivity to light (OR 1.97, 95% CI 1.09-3.57), and insomnia (OR 2.19, 95% CI 1.30-3.68). Contact level, sex, and loss of consciousness were not associated with PCS. CONCLUSIONS Postconcussion syndrome represents one of the most impactful sequelae of SRC. In this study of exclusively collegiate student-athletes, the authors found that recurrent concussions and various concussion-related symptoms were associated with PCS. The identification of initial risk factors for the development of PCS may assist sports medicine clinicians in providing timely interventions and treatments to prevent morbidity and shorten recovery time after SRC.
Mantopoulos, Dimosthenis; Murakami, Yusuke; Comander, Jason; Thanos, Aristomenis; Roh, Miin; Miller, Joan W.; Vavvas, Demetrios G.
2011-01-01
Background Detachment of photoreceptors from the underlying retinal pigment epithelium is seen in various retinal disorders such as retinal detachment and age-related macular degeneration and leads to loss of photoreceptors and vision. Pharmacologic inhibition of photoreceptor cell death may prevent this outcome. This study tests whether systemic administration of tauroursodeoxycholic acid (TUDCA) can protect photoreceptors from cell death after experimental retinal detachment in rodents. Methodology/Principal Findings Retinal detachment was created in rats by subretinal injection of hyaluronic acid. The animals were treated daily with vehicle or TUDCA (500 mg/kg). TUNEL staining was used to evaluate cell death. Photoreceptor loss was evaluated by measuring the relative thickness of the outer nuclear layer (ONL). Macrophage recruitment, oxidative stress, cytokine levels, and caspase levels were also quantified. Three days after detachment, TUDCA decreased the number of TUNEL-positive cells compared to vehicle (651±68/mm2 vs. 1314±68/mm2, P = 0.001) and prevented the reduction of ONL thickness ratio (0.84±0.03 vs. 0.65±0.03, P = 0.002). Similar results were obtained after 5 days of retinal detachment. Macrophage recruitment and expression levels of TNF-a and MCP-1 after retinal detachment were not affected by TUDCA treatment, whereas increases in activity of caspases 3 and 9 as well as carbonyl-protein adducts were almost completely inhibited by TUDCA treatment. Conclusions/Significance Systemic administration of TUDCA preserved photoreceptors after retinal detachment, and was associated with decreased oxidative stress and caspase activity. TUDCA may be used as a novel therapeutic agent for preventing vision loss in diseases that are characterized by photoreceptor detachment. PMID:21961034
Szafran, Adam T.; Stephan, Cliff; Bolt, Michael; Mancini, Maureen G.; Marcelli, Marco; Mancini, Michael A.
2018-01-01
Background AR-V7 is an androgen receptor (AR) splice variant that lacks the ligand-binding domain and is isolated from prostate cancer cell lines. Increased expression of AR-V7 is associated with the transition from hormone-sensitive prostate cancer to more advanced castration-resistant prostate cancer (CRPC). Due to the loss of the ligand-binding domain, AR-V7 is not responsive to traditional AR-targeted therapies, and the mechanisms that regulate AR-V7 are still incompletely understood. Therefore, we aimed to explore existing classes of small molecules that may regulate AR-V7 expression and intracellular localization and their potential therapeutic role in CRPC. Methods We used AR high-content analysis (AR-HCA) to characterize the effects of a focused library of well-characterized clinical compounds on AR-V7 expression at the single-cell level in PC3 prostate cancer cells stably expressing green fluorescent protein (GFP)-AR-V7 (GFP-AR-V7:PC3). In parallel, an orthogonal AR-HCA screen of a small interfering (si)RNA library targeting 635 protein kinases was performed in GFP-AR-V7:PC3. The effect of the Src-Abl inhibitor PD 180970 was further characterized using cell-proliferation assays, quantitative PCR, and western blot analysis in multiple hormone-sensitive and CRPC cell lines. Results Compounds that tended to target Akt, Abl, and Src family kinases (SFKs) decreased overall AR-V7 expression, nuclear translocation, absolute nuclear level, and/or altered nuclear distribution. We identified 20 protein kinases that, when knocked down, either decreased nuclear GFP-AR-V7 levels or altered AR-V7 nuclear distribution, a set that included the SFKs Src and Fyn. The Src-Abl dual kinase inhibitor PD180970 decreased expression of AR-V7 by greater than 46% and decreased ligand-independent transcription of AR target genes in the 22RV1 human prostate carcinoma cell line. Further, PD180970 inhibited androgen-independent cell proliferation in endogenous–AR-V7–expressing prostate cancer cell lines and also overcame bicalutamide resistance observed in the 22RV1 cell line. Conclusions SFKs, especially Src and Fyn, may be important upstream regulators of AR-V7 expression and represent promising targets in a subset of CRPCs expressing high levels of AR-V7. PMID:27699828
Switzer, Christopher H; Glynn, Sharon A; Cheng, Robert Y-S; Ridnour, Lisa A; Green, Jeffrey E; Ambs, Stefan; Wink, David A
2012-09-01
Increased inducible nitric oxide synthase (NOS2) expression in breast tumors is associated with decreased survival of estrogen receptor negative (ER-) breast cancer patients. We recently communicated the preliminary observation that nitric oxide (NO) signaling results in epidermal growth factor receptor (EGFR) tyrosine phosphorylation. To further define the role of NO in the pathogenesis of ER- breast cancer, we examined the mechanism of NO-induced EGFR activation in human ER- breast cancer. NO was found to activate EGFR and Src by a mechanism that includes S-nitrosylation. NO, at physiologically relevant concentrations, induced an EGFR/Src-mediated activation of oncogenic signal transduction pathways (including c-Myc, Akt, and β-catenin) and the loss of PP2A tumor suppressor activity. In addition, NO signaling increased cellular EMT, expression and activity of COX-2, and chemoresistance to adriamycin and paclitaxel. When connected into a network, these concerted events link NO to the development of a stem cell-like phenotype, resulting in the upregulation of CD44 and STAT3 phosphorylation. Our observations are also consistent with the finding that NOS2 is associated with a basal-like transcription pattern in human breast tumors. These results indicate that the inhibition of NOS2 activity or NO signaling networks may have beneficial effects in treating basal-like breast cancer patients.
Tumor promoters alter gene expression and protein phosphorylation in avian cells in culture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laszlo, A.; Radke, K.; Chin, S.
1981-10-01
We have investigated the effect of 12-O-tetradecanoylphorbol 13-acetate (TPA) on the synthesis and modification of polypeptides in normal avian cells and cells infected by wild-type and temperature-sensitive Rous sarcoma virus (RSV). Using two-dimensional gel electrophoresis, we have detected alterations in both the abundance of cellular polypeptides and in their phosphorylation that seem unique to TPA treatment. However, the state of phosphorylation of the major putative substrate for the action of the src gene-associated protein kinase, the 34- to 36-kilodalton protein, was not altered. Moreover, examination of the phosphorylated amino acid content of total cellular phosphoproteins revealed that the response tomore » TPA was not associated with detectable increases in their phosphotyrosine content. These results make it unlikely that TPA acts by the activation of the phosphorylating activity of the cellular proto-src gene or by the activation of other cellular phosphotyrosine-specific kinases. We have shown previously that temperature-sensitive RSV-infected cells at nonpermissive temperature demonstrate an increased sensitivity to TPA treatment (Bissell, M.J., Hatie, C. and Calfin, M. (1979) Proc. Natl. Acad. Sci. USA 76, 348-352). Our present results indicate that this is not due to reactivation of the phosphorylating activity of the defective src gene product or to its leakiness, and they lend support to the notion of multistep viral carcinogenesis.« less
Wu, Ziyan; Mazzola, Catherine A; Catania, Lori; Owoeye, Oyindamola; Yaramothu, Chang; Alvarez, Tara; Gao, Yu; Li, Xiaobo
2018-06-01
This study aimed at understanding the neurobiological mechanisms associated with inattention induced by traumatic brain injury (TBI). To eliminate the potential confounding caused by the heterogeneity of TBI, we focused on young adults postsports-related concussion (SRC). Functional near-infrared spectroscopy (fNIRS) data were collected from 27 young adults post-SRC and 27 group-matched normal controls (NCs), while performing a visual sustained attention task. Task responsive cortical activation maps and pairwise functional connectivity among six regions of interest were constructed for each subject. Correlations among the brain imaging measures and clinical measures of attention were calculated in each group. Compared to the NCs, the SRC group showed significantly increased brain activation in left middle frontal gyrus (MFG) and increased functional connectivity between right inferior occipital cortex (IOC) bilateral calcarine gyri (CG). The left MFG activation magnitude was significantly negatively correlated with the hyperactive/impulsive symptom severity measure in the NCs, but not in the patients. The right hemisphere CG-IOC functional connectivity showed a significant positive correlation with the hyperactive/impulsive symptom severity measure in patients, but not in NCs. The current data suggest that abnormal left MFG activation and hyper-communications between right IOC and bilateral CG during visual attention processing may significantly contribute to behavioral manifestations of attention deficits in patients with TBI. © 2018 John Wiley & Sons Ltd.
Prevalence of early and late stages of physiologic PVD in emmetropic elderly population.
Schwab, Christoph; Ivastinovic, Domagoj; Borkenstein, Andreas; Lackner, Eva-Maria; Wedrich, Andreas; Velikay-Parel, Michaela
2012-05-01
To investigate the early and late stages of posterior vitreous detachment (PVD) in the foveal area in correlation with age and gender. Three hundred and thirty-five emmetropic eyes of 271 Caucasian patients (216 women/119 men) were examined by optical coherence tomography (OCT) and ultrasound (US). Eyes were classified into groups according to the patients age (up to 69.9; 70-74.9; 75-79.9; over 80 years) and to the clinical findings [Vitreous state: Detached in US; Detached in OCT; Foveal adhesion (FA); Attached vitreous]. The mean age was 76 ± 8 ranging from 44 to 89 years in female and 72 ± 10 ranging from 46 to 87 years in male subjects. The vitreous was attached in 32% of all eyes, 18.5% had FA, 18.5% were detached in OCT and 68% were detached in US. While prevalence of FA decreases with increasing age, OCT-diagnosed detachments did not change significantly with age. Between the ages of 70 and 75, an increase in PVD rates occurred. The prevalence of PVD was similar in both genders. Women were significantly older than men in the late-stage PVD in the eyes. The use of OCT and US enabled us to detect a partial or total PVD in 80% of the eyes. A sudden increase in late-stage PVD between the ages of 70 and 75 was observed, correlating with the reported age prevalence of various macular diseases. In contrast to myopics, both genders of elderly emmetropics have a similar prevalence of PVD. © 2011 The Authors. Acta Ophthalmologica © 2011 Acta Ophthalmologica Scandinavica Foundation.
Stardust Hypervelocity Entry Observing Campaign Support
NASA Technical Reports Server (NTRS)
Kontinos, Dean A.; Jordan, David E.; Jenniskens, Peter
2009-01-01
In the early morning of January 15, 2006, the Stardust Sample Return Capsule (SRC) successfully delivered its precious cargo of cometary particles to the awaiting recovery team at the Utah Test and Training Range (UTTR). As the SRC entered at 12.8 km/s, the fastest manmade object to traverse the atmosphere, a team of researchers imaged the event aboard the NASA DC-8 airborne observatory. At SRC entry, the airplane was at an altitude of 11.9 km positioned within 6.4 km of the prescribed, preferred target view location. The incoming SRC was first acquired approximately 18 seconds (s) after atmospheric interface and tracked for approximately 60 s, an observation period that is roughly centered in time around predicted peak heating.
International Space Station (ISS) External Television (TV) Camera Shutdown Investigation
NASA Technical Reports Server (NTRS)
Kichak, Robert; Young, Eric; Pandipati, Chetty; Cooke, Robert
2009-01-01
In the early morning of January 15, 2006, the Stardust Sample Return Capsule (SRC) successfully delivered its precious cargo of cometary particles to the awaiting recovery team at the Utah Test and Training Range (UTTR). As the SRC entered at 12.8 km/s, the fastest manmade object to traverse the atmosphere, a team of researchers imaged the event aboard the NASA DC-8 airborne observatory. At SRC entry, the airplane was at an altitude of 11.9 km positioned within 6.4 km of the prescribed, preferred target view location. The incoming SRC was first acquired approximately 18 seconds (s) after atmospheric interface and tracked for approximately 60 s, an observation period that is roughly centered in time around predicted peak heating.
Li, Xuhang; Zhang, Huiping; Cheong, Alice; Yueping Chen, Sharon Leu; Elowsky, Christian G; Donowitz, Mark
2004-01-01
The epithelial brush border membrane (BBM) Na+–H+ exchanger 3 (NHE3) is the major transport protein responsible for ileal electroneutral Na+ absorption. We have previously shown that ileal BBM NHE3 activity is rapidly inhibited by carbachol, an agonist that mimics cholinergic activation in digestion. In this study, we investigated the mechanisms involved in this NHE3 inhibition. Carbachol decreased the amount of ileal Na+ absorptive cell BBM NHE3 within 10 min of exposure. Based on OptiPrep gradient centrifugation, carbachol increased the amount of NHE3 in early endosomes and decreased the amount of NHE3 in BBM, consistent with effects on NHE3 trafficking. The decrease in BBM NHE3 occurred in the detergent-soluble BBM fraction with no change in the amount of NHE3 in the BBM detergent-resistant membranes. The size of BBM NHE3 complexes increased in carbachol-exposed ileum, as studied with sucrose gradient centrifugation. The NHE3 complex size increased in the total BBM, but did not change in the detergent-soluble fraction. This suggests that carbachol treatment enhanced the association of proteins with NHE3 complexes specifically in the detergent-resistant fraction of ileal BBM. NHERF2, α-actinin-4 and protein kinase C were among those NHE3-associated proteins because they were more efficiently coimmunoprecipitated from total BBM after carbachol treatment. Moreover, Src was involved in the carbachol-mediated inhibition since: (1) c-Src was rapidly activated in the detergent-resistant membranes by carbachol; and (2) carbachol inhibition of ileal Na+ absorption was completely abolished by the Src family inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). Moreover, the carbachol-induced increase in the size of NHE3-containing complexes was reversed by PP2. These data demonstrate that regulation of NHE3 activity by carbachol can be achieved at several interrelated levels: (1) the subcellular level, at which NHE3 is rapidly endocytosed from BBM to endocytic vesicles upon treatment with carbachol; (2) multiple BBM pools, in which carbachol selectively decreases the amount of NHE3 in the BBM detergent-soluble fraction but not the detergent-resistant membrane; and (3) the molecular level, at which NHE3 complex-associated proteins can be changed upon carbachol treatment, with carbachol leading to larger BBM NHE3 complexes and increased co-IP of NHERF2 with α-actinin-4 and activated PKC. The study further describes NHE3 presence simultaneously in multiple dynamic BBM pools in which NHE3 distribution and associated proteins are altered as part of carbachol-induced and Src-mediated rapid signal transduction, which decreases the amount of BBM NHE3 and thus inhibits NHE3 activity. PMID:14978207
NASA Astrophysics Data System (ADS)
Wang, Bing
2017-04-01
The effects of near soil surface characteristics on the soil detachment process might be different at different stages of vegetation restoration. This study was performed to investigate the effects of the near soil surface factors of plant litter, biological soil crusts (BSCs), dead roots and live roots on the soil detachment process by overland flow at different stages of restoration. Soil samples (1 m long, 0.1 m wide, and 0.05 m high) under four treatment conditions were collected from 1-yr-old and 24-yr-old natural grasslands and subjected to flow scouring under five different shear stresses ranging from 5.3 to 14.6 Pa. The results indicated that the effects of near soil surface characteristics on soil detachment were substantial during the process of vegetation restoration. The total reduction in the soil detachment capacity of the 1-yr-old grassland was 98.1%, and of this total, 7.9%, 30.0% and 60.2% was attributed to the litter, BSCs and plant roots, respectively. In the 24-yr-old grassland, the soil detachment capacity decreased by 99.0%, of which 13.2%, 23.5% and 62.3% was caused by the litter, BSCs and plant roots, respectively. Combined with the previously published data of a 7-yr-old grassland, the influence of plant litter on soil detachment was demonstrated to increase with restoration time, but soil detachment was also affected by the litter type and composition. The role of BSCs was greater than that of plant litter in reducing soil detachment during the early stages of vegetation recovery. However, its contribution weakened with time since restoration. The influence of plant roots accounted for at least half or up to two-thirds of the total near soil surface factors, of which more than 72.6% was attributed to the physical binding effects of the roots. The chemical bonding effect of the roots increased with time since restoration and was greater than the effect of the litter on soil detachment in the late stages of vegetation restoration. The correction coefficients of near soil surface characteristics for rill erodibility were provided for the Water Erosion Prediction Project (WEPP) model.
Gaining insights into interrill soil erosion processes using rare earth element tracers
USDA-ARS?s Scientific Manuscript database
Increasing interest in developing process-based erosion models requires better understanding of the relationships among soil detachment, transportation, and deposition. The objectives are to 1) identify the limiting process between soil detachment and sediment transport for interrill erosion, 2) und...
Covele, Brent; Kotschenreuther, M.; Mahajan, S.; ...
2017-06-23
The X-Divertor geometry on DIII-D has demonstrated reduced particle and heat fluxes to the target, facilitating detachment onset at ~20% lower upstream density and higher H-mode pedestal pressure than a standard divertor. SOLPS modeling suggests that this effect cannot be explained by an increase in total connection length alone, but rather by the addition of connection length specifically in the power-dissipating volume near the target, via poloidal flux expansion and flaring. But, poloidal flaring must work synergistically with divertor closure to most effectively reduce the detachment density threshold. Furthermore, the model also points to carbon radiation as the primary drivermore » of power dissipation in divertors on the DIII-D floor, which is consistent with experimental observations. Sustainable divertor detachment at lower density has beneficial consequences for energy confinement and current drive efficiency in the core for advanced tokamak (AT) operation, while simultaneously satisfying the exhaust requirements of the plasma-facing components.« less
Wang, Dong; Hu, Fei; Chen, Yu-Fen; Yang, Jun; Kong, Chui-Hua
2007-08-01
The study on the photosynthetic characteristics of Cuscuta japonica and its hosts showed that there was a negative correlation between the photosynthetic pigment content (PPC) of C. japonica and its hosts. The PPC increased in the C. japonica-preferred hosts' parasitized and neighboring leaves, but decreased in its less preferred hosts' parasitized and neighboring leaves. The leaves parasitized by C. japonica and their neighboring far from the parasitized ones had a lowered net photosynthesis rate P(n), and the decreasing order accorded with that of parasitization. The decrease of P(n) for C. japonica-less preferred hosts was mainly due to the stomatal factors, but that for the preferred hosts was regulated by multi-factors. Under light, the PPC of C. japonica detached from preferred hosts increased faster than that of C. japonica detached from less preferred hosts, but the dry matter decrease was in adverse. In dark, however, the changes in PPC and dry matter content of C. japonica were not significant, whatever hosts it was detached from.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Covele, Brent; Kotschenreuther, M.; Mahajan, S.
The X-Divertor geometry on DIII-D has demonstrated reduced particle and heat fluxes to the target, facilitating detachment onset at ~20% lower upstream density and higher H-mode pedestal pressure than a standard divertor. SOLPS modeling suggests that this effect cannot be explained by an increase in total connection length alone, but rather by the addition of connection length specifically in the power-dissipating volume near the target, via poloidal flux expansion and flaring. But, poloidal flaring must work synergistically with divertor closure to most effectively reduce the detachment density threshold. Furthermore, the model also points to carbon radiation as the primary drivermore » of power dissipation in divertors on the DIII-D floor, which is consistent with experimental observations. Sustainable divertor detachment at lower density has beneficial consequences for energy confinement and current drive efficiency in the core for advanced tokamak (AT) operation, while simultaneously satisfying the exhaust requirements of the plasma-facing components.« less
Analysis of Bacterial Detachment from Substratum Surfaces by the Passage of Air-Liquid Interfaces
Gómez-Suárez, Cristina; Busscher, Henk J.; van der Mei, Henny C.
2001-01-01
A theoretical analysis of the detachment of bacteria adhering to substratum surfaces upon the passage of an air-liquid interface is given, together with experimental results for bacterial detachment in the absence and presence of a conditioning film on different substratum surfaces. Bacteria (Streptococcus sobrinus HG1025, Streptococcus oralis J22, Actinomyces naeslundii T14V-J1, Bacteroides fragilis 793E, and Pseudomonas aeruginosa 974K) were first allowed to adhere to hydrophilic glass and hydrophobic dimethyldichlorosilane (DDS)-coated glass in a parallel-plate flow chamber until a density of 4 × 106 cells cm−2 was reached. For S. sobrinus HG1025, S. oralis J22, and A. naeslundii T14V-J1, the conditioning film consisted of adsorbed salivary components, while for B. fragilis 793E and P. aeruginosa 974K, the film consisted of adsorbed human plasma components. Subsequently, air bubbles were passed through the flow chamber and the bacterial detachment percentages were measured. For some experimental conditions, like with P. aeruginosa 974K adhering to DDS-coated glass and an air bubble moving at high velocity (i.e., 13.6 mm s−1), no bacteria detached upon passage of an air-liquid interface, while for others, detachment percentages between 80 and 90% were observed. The detachment percentage increased when the velocity of the passing air bubble decreased, regardless of the bacterial strain and substratum surface hydrophobicity involved. However, the variation in percentages of detachment by a passing air bubble depended greatly upon the strain and substratum surface involved. At low air bubble velocities the hydrophobicity of the substratum had no influence on the detachment, but at high air bubble velocities all bacterial strains were more efficiently detached from hydrophilic glass substrata. Furthermore, the presence of a conditioning film could either inhibit or stimulate detachment. The shape of the bacterial cell played a major role in detachment at high air bubble velocities, and spherical strains (i.e., streptococci) detached more efficiently than rod-shaped organisms. The present results demonstrate that methodologies to study bacterial adhesion which include contact with a moving air-liquid interface (i.e., rinsing and dipping) yield detachment of an unpredictable number of adhering microorganisms. Hence, results of studies based on such methodologies should be referred as “bacterial retention” rather than “bacterial adhesion”. PMID:11375160
Analysis of bacterial detachment from substratum surfaces by the passage of air-liquid interfaces.
Gómez-Suárez, C; Busscher, H J; van der Mei, H C
2001-06-01
A theoretical analysis of the detachment of bacteria adhering to substratum surfaces upon the passage of an air-liquid interface is given, together with experimental results for bacterial detachment in the absence and presence of a conditioning film on different substratum surfaces. Bacteria (Streptococcus sobrinus HG1025, Streptococcus oralis J22, Actinomyces naeslundii T14V-J1, Bacteroides fragilis 793E, and Pseudomonas aeruginosa 974K) were first allowed to adhere to hydrophilic glass and hydrophobic dimethyldichlorosilane (DDS)-coated glass in a parallel-plate flow chamber until a density of 4 x 10(6) cells cm(-2) was reached. For S. sobrinus HG1025, S. oralis J22, and A. naeslundii T14V-J1, the conditioning film consisted of adsorbed salivary components, while for B. fragilis 793E and P. aeruginosa 974K, the film consisted of adsorbed human plasma components. Subsequently, air bubbles were passed through the flow chamber and the bacterial detachment percentages were measured. For some experimental conditions, like with P. aeruginosa 974K adhering to DDS-coated glass and an air bubble moving at high velocity (i.e., 13.6 mm s(-1)), no bacteria detached upon passage of an air-liquid interface, while for others, detachment percentages between 80 and 90% were observed. The detachment percentage increased when the velocity of the passing air bubble decreased, regardless of the bacterial strain and substratum surface hydrophobicity involved. However, the variation in percentages of detachment by a passing air bubble depended greatly upon the strain and substratum surface involved. At low air bubble velocities the hydrophobicity of the substratum had no influence on the detachment, but at high air bubble velocities all bacterial strains were more efficiently detached from hydrophilic glass substrata. Furthermore, the presence of a conditioning film could either inhibit or stimulate detachment. The shape of the bacterial cell played a major role in detachment at high air bubble velocities, and spherical strains (i.e., streptococci) detached more efficiently than rod-shaped organisms. The present results demonstrate that methodologies to study bacterial adhesion which include contact with a moving air-liquid interface (i.e., rinsing and dipping) yield detachment of an unpredictable number of adhering microorganisms. Hence, results of studies based on such methodologies should be referred as "bacterial retention" rather than "bacterial adhesion".
Hood, Katie Y; Mair, Kirsty M; Harvey, Adam P; Montezano, Augusto C; Touyz, Rhian M; MacLean, Margaret R
2017-07-01
Serotonin can induce human pulmonary artery smooth muscle cell (hPASMC) proliferation through reactive oxygen species (ROS), influencing the development of pulmonary arterial hypertension (PAH). We hypothesize that in PASMCs, serotonin induces oxidative stress through NADPH-oxidase-derived ROS generation and reduced Nrf-2 (nuclear factor [erythroid-derived 2]-like 2) antioxidant systems, promoting vascular injury. HPASMCs from controls and PAH patients, and PASMCs from Nox1 -/- mice, were stimulated with serotonin in the absence/presence of inhibitors of Src kinase, the 5-HT 1B receptor, and NADPH oxidase 1 (Nox1). Markers of fibrosis were also determined. The pathophysiological significance of our findings was examined in vivo in serotonin transporter overexpressing female mice, a model of pulmonary hypertension. We confirmed thatserotonin increased superoxide and hydrogen peroxide production in these cells. For the first time, we show that serotonin increased oxidized protein tyrosine phosphatases and hyperoxidized peroxiredoxin and decreased Nrf-2 and catalase activity in hPASMCs. ROS generation was exaggerated and dependent on cellular Src-related kinase, 5-HT 1B receptor, and the serotonin transporter in human pulmonary artery smooth muscle cells from PAH subjects. Proliferation and extracellular matrix remodeling were exaggerated in human pulmonary artery smooth muscle cells from PAH subjects and dependent on 5-HT 1B receptor signaling and Nox1, confirmed in PASMCs from Nox1 -/- mice. In serotonin transporter overexpressing mice, SB216641, a 5-HT 1B receptor antagonist, prevented development of pulmonary hypertension in a ROS-dependent manner. Serotonin can induce cellular Src-related kinase-regulated Nox1-induced ROS and Nrf-2 dysregulation, contributing to increased post-translational oxidative modification of proteins and activation of redox-sensitive signaling pathways in hPASMCs, associated with mitogenic responses. 5-HT 1B receptors contribute to experimental pulmonary hypertension by inducing lung ROS production. Our results suggest that 5-HT 1B receptor-dependent cellular Src-related kinase-Nox1-pathways contribute to vascular remodeling in PAH. © 2017 The Authors.
Hood, Katie Y.; Mair, Kirsty M.; Harvey, Adam P.; Montezano, Augusto C.; Touyz, Rhian M.
2017-01-01
Objective— Serotonin can induce human pulmonary artery smooth muscle cell (hPASMC) proliferation through reactive oxygen species (ROS), influencing the development of pulmonary arterial hypertension (PAH). We hypothesize that in PASMCs, serotonin induces oxidative stress through NADPH-oxidase–derived ROS generation and reduced Nrf-2 (nuclear factor [erythroid-derived 2]-like 2) antioxidant systems, promoting vascular injury. Approach and Results— HPASMCs from controls and PAH patients, and PASMCs from Nox1−/− mice, were stimulated with serotonin in the absence/presence of inhibitors of Src kinase, the 5-HT1B receptor, and NADPH oxidase 1 (Nox1). Markers of fibrosis were also determined. The pathophysiological significance of our findings was examined in vivo in serotonin transporter overexpressing female mice, a model of pulmonary hypertension. We confirmed thatserotonin increased superoxide and hydrogen peroxide production in these cells. For the first time, we show that serotonin increased oxidized protein tyrosine phosphatases and hyperoxidized peroxiredoxin and decreased Nrf-2 and catalase activity in hPASMCs. ROS generation was exaggerated and dependent on cellular Src-related kinase, 5-HT1B receptor, and the serotonin transporter in human pulmonary artery smooth muscle cells from PAH subjects. Proliferation and extracellular matrix remodeling were exaggerated in human pulmonary artery smooth muscle cells from PAH subjects and dependent on 5-HT1B receptor signaling and Nox1, confirmed in PASMCs from Nox1−/− mice. In serotonin transporter overexpressing mice, SB216641, a 5-HT1B receptor antagonist, prevented development of pulmonary hypertension in a ROS-dependent manner. Conclusions— Serotonin can induce cellular Src-related kinase–regulated Nox1-induced ROS and Nrf-2 dysregulation, contributing to increased post-translational oxidative modification of proteins and activation of redox-sensitive signaling pathways in hPASMCs, associated with mitogenic responses. 5-HT1B receptors contribute to experimental pulmonary hypertension by inducing lung ROS production. Our results suggest that 5-HT1B receptor–dependent cellular Src-related kinase-Nox1-pathways contribute to vascular remodeling in PAH. PMID:28473438
Effect of 3D magnetic perturbations on divertor conditions and detachment in tokamak and stellarator
Ahn, J. -W.; Briesemester, A. R.; Kobayashi, M.; ...
2017-06-22
Enhanced perpendicular heat and momentum transport induces parallel pressure loss leading to divertor detachment, which can be produced by the increase of density in 2D tokamaks. However, in the 3D configurations such as tokamaks with 3D fields and stellarators, the fraction of perpendicular transport can be higher even in a lower density regime, which could lead to the early transition to detachment without passing through the high-recycling regime. 3D fields applied to the limiter tokamak plasmas produce edge stochastic layers close to the last closed flux surface (LCFS), which can allow for enhanced perpendicular transport and indeed the absence ofmore » high recycling regime and early detachment have been observed in TEXTOR and Tore Supra. However, in the X-point divertor tokamaks with the applied 3D fields, the parallel transport is still dominant and the detachment facilitation has not been observed yet. Rather, 3D fields affected detachment adversely under certain conditions, either by preventing detachment onset as seen in DIII-D or by re-attaching the existing detached plasma as shown in NSTX. The possible way for strong 3D effects to induce access to the early detachment in divertor tokamaks appears to be via significant perpendicular loss of parallel momentum by frictional force for the counter-streaming flows between neighboring flow channels in the divertor. In principle, the adjacent lobes in the 3D divertor tokamak may generate the counter-streaming flow channels. However, an EMC3-EIRENE simulation for ITER H-mode plasmas demonstrated that screened RMP leads to significantly reduced counter-flows near the divertor target, therefore the momentum loss effect leading to detachment facilitation is expected to be small. This is consistent with the observation in LHD, which showed screening (amplification) of RMP fields in the attachment (stable detachment) case. In conclusion, work for optimal parameter window for best divertor operation scenario is needed particularly for the 3D divertor tokamak configuration.« less
Effect of 3D magnetic perturbations on divertor conditions and detachment in tokamak and stellarator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, J. -W.; Briesemester, A. R.; Kobayashi, M.
Enhanced perpendicular heat and momentum transport induces parallel pressure loss leading to divertor detachment, which can be produced by the increase of density in 2D tokamaks. However, in the 3D configurations such as tokamaks with 3D fields and stellarators, the fraction of perpendicular transport can be higher even in a lower density regime, which could lead to the early transition to detachment without passing through the high-recycling regime. 3D fields applied to the limiter tokamak plasmas produce edge stochastic layers close to the last closed flux surface (LCFS), which can allow for enhanced perpendicular transport and indeed the absence ofmore » high recycling regime and early detachment have been observed in TEXTOR and Tore Supra. However, in the X-point divertor tokamaks with the applied 3D fields, the parallel transport is still dominant and the detachment facilitation has not been observed yet. Rather, 3D fields affected detachment adversely under certain conditions, either by preventing detachment onset as seen in DIII-D or by re-attaching the existing detached plasma as shown in NSTX. The possible way for strong 3D effects to induce access to the early detachment in divertor tokamaks appears to be via significant perpendicular loss of parallel momentum by frictional force for the counter-streaming flows between neighboring flow channels in the divertor. In principle, the adjacent lobes in the 3D divertor tokamak may generate the counter-streaming flow channels. However, an EMC3-EIRENE simulation for ITER H-mode plasmas demonstrated that screened RMP leads to significantly reduced counter-flows near the divertor target, therefore the momentum loss effect leading to detachment facilitation is expected to be small. This is consistent with the observation in LHD, which showed screening (amplification) of RMP fields in the attachment (stable detachment) case. In conclusion, work for optimal parameter window for best divertor operation scenario is needed particularly for the 3D divertor tokamak configuration.« less
NASA Astrophysics Data System (ADS)
Villeneuve, Thierry; Boudreau, Matthieu; Dumas, Guy; CFD Laboratory LMFN Team
2017-11-01
Previous studies on H-Darrieus cross-flow turbines have highlighted the fact that their performances are highly sensitive to the detrimental effects associated with the blades tips. Wingtip devices could be designed in order to attenuate these effects, but the benefits of such devices are always impaired by their added viscous drag since they are moving with the turbine's blades. In this context, the development of fixed and detached end plates, i.e., which are not in contact with the turbine's blades, could reduce the tip losses without the undesirable added drag of typical wingtip devices moving with the blades. The case of a single stationary blade with detached end plates has first been investigated with RANS simulations in order to understand the mechanisms responsible for the increase of the blade's lift. An analysis of the vorticity lines' dynamics provides crucial insights into the effects of the gap width between the blade and the detached end plate on the blade's loading and on the intensity of the tip vortices. Based on these observations, various configurations of detached end plates are tested on cross-flow turbines via RANS and DDES simulations. Preliminary results show that appropriate detached end plates can significantly increase the turbines' efficiency. The authors gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) for their financial support as well as Compute Canada and Calcul Québec for their supercomputer allocations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oudini, N.; Sirse, N.; Ellingboe, A. R.
2015-07-15
This paper presents a critical assessment of the theory of photo-detachment diagnostic method used to probe the negative ion density and electronegativity α = n{sub -}/n{sub e}. In this method, a laser pulse is used to photo-detach all negative ions located within the electropositive channel (laser spot region). The negative ion density is estimated based on the assumption that the increase of the current collected by an electrostatic probe biased positively to the plasma is a result of only the creation of photo-detached electrons. In parallel, the background electron density and temperature are considered as constants during this diagnostics. While the numericalmore » experiments performed here show that the background electron density and temperature increase due to the formation of an electrostatic potential barrier around the electropositive channel. The time scale of potential barrier rise is about 2 ns, which is comparable to the time required to completely photo-detach the negative ions in the electropositive channel (∼3 ns). We find that neglecting the effect of the potential barrier on the background plasma leads to an erroneous determination of the negative ion density. Moreover, the background electron velocity distribution function within the electropositive channel is not Maxwellian. This is due to the acceleration of these electrons through the electrostatic potential barrier. In this work, the validity of the photo-detachment diagnostic assumptions is questioned and our results illustrate the weakness of these assumptions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, I-Hua; Shih, Hsin-Chu; Hsieh, Pei-Wen
Anoikis is defined as apoptosis, which is induced by inappropriate cell–matrix interactions. Cancer cells with anoikis resistance tend to undergo metastasis, and this phenomenon has been reported to be associated with integrin and FAK activity. HPW-RX40 is a derivative of 3,4-methylenedioxy-β-nitrostyrene, which is known to prevent platelet aggregation by inhibition of integrin. In the present study, we investigated the effect of HPW-RX40 on an anoikis-resistant human breast cancer cell line MDA-MB-231. HPW-RX40 inhibited cell aggregation and induced cell death in suspending MDA-MB-231 cells, but had only little effect on the monolayer growth of adherent cells. Analysis of caspase activation andmore » poly (ADP-ribose) polymerase (PARP) cleavage confirmed anoikis in HPW-RX40-treated suspending cancer cells. HPW-RX40 also affected the Bcl-2 family proteins in detached cancer cells. Furthermore, HPW-RX40 inhibited detachment-induced activation of FAK and the downstream phosphorylation of Src and paxillin, but did not affect this pathway in adherent cancer cells. We also found that the expression and activation of β1 integrin in MDA-MB-231 cells were reduced by HPW-RX40. The combination of HPW-RX40 with an EGFR inhibitor led to enhanced anoikis and inhibition of the FAK pathway in breast cancer cells. Taken together, our results suggest that HPW-RX40 restores the anoikis sensitivity in the metastatic breast cancer cells by inhibiting integrin and subsequent FAK activation, and reveal a potential strategy for prevention of tumor metastasis. - Highlights: • The β-nitrostyrene derivative, HPW-RX40, induces anoikis in human breast cancer cells. • HPW-RX40 inhibits the integrin/FAK signaling pathway. • The combination of HPW-RX40 with an EGFR inhibitor leads to enhanced anoikis. • HPW-RX40 may have a potential to prevent the spread of metastatic breast cancer.« less
Molecular signaling in live cells studied by FRET
NASA Astrophysics Data System (ADS)
Chien, Shu; Wang, Yingxiao
2011-11-01
Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) enables visualization of signaling events in live cells with high spatiotemporal resolution. We have used FRET to assess temporal and spatial characteristics for signaling molecules, including tyrosine kinases Src and FAK, small GTPase Rac, calcium, and a membrane-bound matrix metalloproteinase MT1-MMP. Activations of Src and Rac by platelet derived growth factor (PDGF) led to distinct subcellular patterns during cell migration on micropatterned surface, and these two enzymes interact with each other to form a feedback loop with differential regulations at different subcellular locations. We have developed FRET biosensors to monitor FAK activities at rafts vs. non-raft regions of plasma membrane in live cells. In response to cell adhesion on matrix proteins or stimulation by PDGF, the raft-targeting FAK biosensor showed a stronger FRET response than that at non-rafts. The FAK activation at rafts induced by PDGF is mediated by Src. In contrast, the FAK activation at rafts induced by adhesion is independent of Src activity, but rather is essential for Src activation. Thus, Src is upstream to FAK in response to chemical stimulation (PDGF), but FAK is upstream to Src in response to mechanical stimulation (adhesion). A novel biosensor has been developed to dynamically visualize the activity of membrane type-1-matrix metalloproteinase (MT1-MMP), which proteolytically remodels the extracellular matrix. Epidermal growth factor (EGF) directed active MT1-MMP to the leading edge of migrating live cancer cells with local accumulation of EGF receptor via a process dependent on an intact cytoskeletal network. In summary, FRET-based biosensors enable the elucidation of molecular processes and hierarchies underlying spatiotemporal regulation of biological and pathological processes, thus advancing our knowledge on how cells perceive mechanical/chemical cues in space and time to coordinate molecular/cellular functions.
Molecular signaling in live cells studied by FRET
NASA Astrophysics Data System (ADS)
Chien, Shu; Wang, Yingxiao
2012-03-01
Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) enables visualization of signaling events in live cells with high spatiotemporal resolution. We have used FRET to assess temporal and spatial characteristics for signaling molecules, including tyrosine kinases Src and FAK, small GTPase Rac, calcium, and a membrane-bound matrix metalloproteinase MT1-MMP. Activations of Src and Rac by platelet derived growth factor (PDGF) led to distinct subcellular patterns during cell migration on micropatterned surface, and these two enzymes interact with each other to form a feedback loop with differential regulations at different subcellular locations. We have developed FRET biosensors to monitor FAK activities at rafts vs. non-raft regions of plasma membrane in live cells. In response to cell adhesion on matrix proteins or stimulation by PDGF, the raft-targeting FAK biosensor showed a stronger FRET response than that at non-rafts. The FAK activation at rafts induced by PDGF is mediated by Src. In contrast, the FAK activation at rafts induced by adhesion is independent of Src activity, but rather is essential for Src activation. Thus, Src is upstream to FAK in response to chemical stimulation (PDGF), but FAK is upstream to Src in response to mechanical stimulation (adhesion). A novel biosensor has been developed to dynamically visualize the activity of membrane type-1-matrix metalloproteinase (MT1-MMP), which proteolytically remodels the extracellular matrix. Epidermal growth factor (EGF) directed active MT1-MMP to the leading edge of migrating live cancer cells with local accumulation of EGF receptor via a process dependent on an intact cytoskeletal network. In summary, FRET-based biosensors enable the elucidation of molecular processes and hierarchies underlying spatiotemporal regulation of biological and pathological processes, thus advancing our knowledge on how cells perceive mechanical/chemical cues in space and time to coordinate molecular/cellular functions.
Molenda-Figueira, Heather A.; Williams, Casey A.; Griffin, Andreana L.; Rutledge, Eric M.; Blaustein, Jeffrey D.; Tetel, Marc J.
2008-01-01
The ovarian hormones, estradiol (E) and progesterone (P) facilitate the expression of sexual behavior in female rats. E and P mediate many of these behavioral effects by binding to their respective intracellular receptors in specific brain regions. Nuclear receptor coactivators, including Steroid Receptor Coactivator-1 (SRC-1) and CREB Binding Protein (CBP), dramatically enhance ligand-dependent steroid receptor transcriptional activity in vitro. Previously, our lab has shown that SRC-1 and CBP modulate estrogen receptor (ER)-mediated induction of progestin receptor (PR) gene expression in the ventromedial nucleus of the hypothalamus (VMN) and hormone-dependent sexual receptivity in female rats. Female sexual behaviors can be activated by high doses of E alone in ovariectomized rats, and thus are believed to be ER-dependent. However, the full repertoire of female sexual behavior, in particular, proceptive behaviors such as hopping, darting and ear wiggling, are considered to be PR-dependent. In the present experiments, the function of SRC-1 and CBP in distinct ER- (Exp. 1) and PR- (Exp. 2) dependent aspects of female sexual behavior was investigated. In Exp. 1, infusion of antisense oligodeoxynucleotides to SRC-1 and CBP mRNA into the VMN decreased lordosis intensity in rats treated with E alone, suggesting that these coactivators modulate ER-mediated female sexual behavior. In Exp. 2, antisense to SRC-1 and CBP mRNA around the time of P administration reduced PR-dependent ear wiggling and hopping and darting. Taken together, these data suggest that SRC-1 and CBP modulate ER and PR action in brain and influence distinct aspects of hormone-dependent sexual behaviors. These findings support our previous studies and provide further evidence that SRC-1 and CBP function together to regulate ovarian hormone action in behaviorally-relevant brain regions. PMID:16769066
Water use of a multigenotype poplar short-rotation coppice from tree to stand scale.
Bloemen, Jasper; Fichot, Régis; Horemans, Joanna A; Broeckx, Laura S; Verlinden, Melanie S; Zenone, Terenzio; Ceulemans, Reinhart
2017-02-01
Short-rotation coppice (SRC) has great potential for supplying biomass-based heat and energy, but little is known about SRC's ecological footprint, particularly its impact on the water cycle. To this end, we quantified the water use of a commercial scale poplar ( Populus ) SRC plantation in East Flanders (Belgium) at tree and stand level, focusing primarily on the transpiration component. First, we used the AquaCrop model and eddy covariance flux data to analyse the different components of the stand-level water balance for one entire growing season. Transpiration represented 59% of evapotranspiration (ET) at stand scale over the whole year. Measured ET and modelled ET were lower as compared to the ET of reference grassland, suggesting that the SRC only used a limited amount of water. Secondly, we compared leaf area scaled and sapwood area scaled sap flow ( F s ) measurements on individual plants vs. stand scale eddy covariance flux data during a 39-day intensive field campaign in late summer 2011. Daily stem diameter variation (∆ D ) was monitored simultaneously with F s to understand water use strategies for three poplar genotypes. Canopy transpiration based on sapwood area or leaf area scaling was 43.5 and 50.3 mm, respectively, and accounted for 74%, respectively, 86%, of total ecosystem ET measured during the intensive field campaign. Besides differences in growth, the significant intergenotypic differences in daily ∆ D (due to stem shrinkage and swelling) suggested different water use strategies among the three genotypes which were confirmed by the sap flow measurements. Future studies on the prediction of SRC water use, or efforts to enhance the biomass yield of SRC genotypes, should consider intergenotypic differences in transpiration water losses at tree level as well as the SRC water balance at stand level.
Self-reported Concussion History and Sensorimotor Tests Predict Head/Neck Injuries.
Hides, Julie A; Franettovich Smith, Melinda M; Mendis, M Dilani; Treleaven, Julia; Rotstein, Andrew H; Sexton, Christopher T; Low Choy, Nancy; McCrory, Paul
2017-12-01
Sport-related concussion (SRC) is a risk for players involved in high-impact, collision sports. A history of SRC is a risk factor for future concussions, but the mechanisms underlying this are unknown. Despite evidence that most visible signs and symptoms associated with sports concussion resolve within 7-10 d, it has been proposed that subclinical loss of neuromuscular control and impaired motor functioning may persist and be associated with further injury. Alternatively, indicators of poor sensorimotor performance could be independent risk factors. This study investigated if a history of SRC and/or preseason sensorimotor performance predicted season head/neck injuries. A total of 190 male rugby league, rugby union, and Australian Football League players participated. Preseason assessments included self-report of SRC within the previous 12 months and a suite of measures of sensorimotor function (balance, vestibular function, cervical proprioception, and trunk muscle function). Head/neck injury data were collected in the playing season. Forty-seven players (25%) reported a history of SRC. A history of concussion was related to changes in size and contraction of trunk muscles. Twenty-two (11.6%) players sustained a head/neck injury during the playing season, of which, 14 (63.6%) players had a history of SRC. Predictors of in-season head/neck injuries included history of SRC, trunk muscle function, and cervical proprioceptive errors. Five risk factors were identified, and players with three or more of these had 14 times greater risk of sustaining a season neck/head injury (sensitivity of 75% and specificity of 82.5%) than did players with two or fewer risk factors. The modifiable risk factors identified could be used to screen football players in the preseason and guide the development of exercise programs aimed at injury reduction.
Kükenshöner, Tim; Schmit, Nadine Eliane; Bouda, Emilie; Sha, Fern; Pojer, Florence; Koide, Akiko; Seeliger, Markus; Koide, Shohei; Hantschel, Oliver
2017-05-05
The binding of Src-homology 2 (SH2) domains to phosphotyrosine (pY) sites is critical for the autoinhibition and substrate recognition of the eight Src family kinases (SFKs). The high sequence conservation of the 120 human SH2 domains poses a significant challenge to selectively perturb the interactions of even the SFK SH2 family against the rest of the SH2 domains. We have developed synthetic binding proteins, termed monobodies, for six of the SFK SH2 domains with nanomolar affinity. Most of these monobodies competed with pY ligand binding and showed strong selectivity for either the SrcA (Yes, Src, Fyn, Fgr) or SrcB subgroup (Lck, Lyn, Blk, Hck). Interactome analysis of intracellularly expressed monobodies revealed that they bind SFKs but no other SH2-containing proteins. Three crystal structures of monobody-SH2 complexes unveiled different and only partly overlapping binding modes, which rationalized the observed selectivity and enabled structure-based mutagenesis to modulate inhibition mode and selectivity. In line with the critical roles of SFK SH2 domains in kinase autoinhibition and T-cell receptor signaling, monobodies binding the Src and Hck SH2 domains selectively activated respective recombinant kinases, whereas an Lck SH2-binding monobody inhibited proximal signaling events downstream of the T-cell receptor complex. Our results show that SFK SH2 domains can be targeted with unprecedented potency and selectivity using monobodies. They are excellent tools for dissecting SFK functions in normal development and signaling and to interfere with aberrant SFK signaling networks in cancer cells. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Coate, Thomas M.; Swanson, Tracy L.; Copenhaver, Philip F.
2011-01-01
Reverse signaling via GPI-linked Ephrins may help control cell proliferation and outgrowth within the nervous system, but the mechanisms underlying this process remain poorly understood. In the embryonic enteric nervous system (ENS) of the moth Manduca sexta, migratory neurons forming the enteric plexus (EP cells) express a single Ephrin ligand (GPI-linked MsEphrin), while adjacent midline cells that are inhibitory to migration express the cognate receptor (MsEph). Knocking down MsEph receptor expression in cultured embryos with antisense morpholino oligonucleotides allowed the EP cells to cross the midline inappropriately, consistent with the model that reverse signaling via MsEphrin mediates a repulsive response in the ENS. Src family kinases have been implicated in reverse signaling by type-A Ephrins in other contexts, and MsEphrin colocalizes with activated forms of endogenous Src in the leading processes of the EP cells. Pharmacological inhibition of Src within the developing ENS induced aberrant midline crossovers, similar to the effect of blocking MsEphrin reverse signaling. Hyperstimulating MsEphrin reverse signaling with MsEph-Fc fusion proteins induced the rapid activation of endogenous Src specifically within the EP cells, as assayed by Western blots of single embryonic gut explants and by whole-mount immunostaining of cultured embryos. In longer cultures, treatment with MsEph-Fc caused a global inhibition of EP cell migration and outgrowth, an effect that was prevented by inhibiting Src activation. These results support the model that MsEphrin reverse signaling induces the Src-dependent retraction of EP cell processes away from the enteric midline, thereby helping to confine the neurons to their appropriate pathways. PMID:19295147
Laser induced photo-detachment of O2 in DC discharge
NASA Astrophysics Data System (ADS)
J, R. LEGORRETA; J, L. PATIÑO; F, B. YOUSIF
2018-07-01
Determination of the negative ion number density of {{{O}}}{{2}}- and {{{O}}}- in a DC discharge of oxygen plasma was made employing Langmuir probe in conjunction with eclipse laser photo-detachment technique. The temporal evolution of the extra electrons resulting from the photo-detachment of {{{O}}}{{2}}- and {{{O}}}- were used to evaluate the negative ion number density. The ratio of {{{O}}}{{2}}- number density to {{{O}}}- varied from 0.03 to 0.22. Number density of both {{{O}}}{{2}}- and {{{O}}}- increased with increasing power and decreased as the pressure was increased. Electron number density was evaluated from the electron energy distribution function (EEDF) using the I–V recorded characteristic curves. Electron temperature between 2 and 2.7 eV were obtained. Influence of the {{{O}}}{{2}}({a}{{1}}{{{Δ }}}{{g}}) metastable state is discussed.
Development of Coactivator-Dependent, First-in-Class Therapies for Breast Cancer
2014-09-01
star: AMP-activated protein kinase stimulates fat absorption. Cell Metab. 13:1–2 53. Reineke EL, York B, Stashi E, et al. 2012. SRC-2 coactivator...receptor/SRC-3 protein complexes achieved by our group are providing powerful new insights into understanding the conformation of intact, full...length proteins in a complex and should provide valuable new information on the mechanism of action of SRC SMIs as well. 15. SUBJECT TERMS Breast
Niessen, Neville-Andrew; Balthazart, Jacques; Ball, Gregory F.; Charlier, Thierry D.
2011-01-01
Steroid receptor coactivators are necessary for efficient transcriptional regulation by ligand-bound nuclear receptors, including estrogen and androgen receptors. SRC-2 modulates estrogen- and progesterone-dependent sexual behavior in female rats but its implication in the control of male sexual behavior has not been studied to our knowledge. We cloned and sequenced the complete quail SRC-2 transcript and showed by semi-quantitative PCR that SRC-2 expression is nearly ubiquitous, with high levels of expression in the kidney, cerebellum and diencephalon. Real time quantitative PCR did not reveal any differences between intact males and females the medial preoptic nucleus (POM), optic lobes and cerebellum. We next investigated the physiological and behavioral role of this coactivator using in vivo antisense oligonucleotide (AS) techniques. Daily injections in the third ventricle at the level of the POM of locked nucleic acid antisense targeting SRC-2 significantly reduced the expression of testosterone-dependent male-typical copulatory behavior but no inhibition of one aspect of the appetitive sexual behavior was observed. The volume of POM, defined by aromatase-immunoreactive cells, was markedly decreased in animals treated with AS as compared to controls. These results demonstrate that SRC-2 plays a prominent role in the control of steroid-dependent male sexual behavior and its associated neuroplasticity in Japanese quail. PMID:21854393
Suresh, K; Mayilraj, S; Chakrabarti, T
2006-07-01
A Gram-negative bacterial isolate (designated SRC-1(T)) was isolated from an occasional drainage system and characterized by a polyphasic approach to determine its taxonomic position. Phylogenetic analysis based on 16S rRNA gene sequences affiliated strain SRC-1(T) with the family "Flexibacteraceae" of the phylum Bacteroidetes. It showed greatest sequence similarity to Pontibacter actiniarum KMM 6156(T) (95.5 %) followed by Adhaeribacter aquaticus MBRG1.5(T) (89.0 %) and Hymenobacter roseosalivarius DSM 11622(T) (88.9 %), but it differed from these micro-organisms in many phenotypic characteristics. Strain SRC-1(T) was an obligate aerobe and its cells were non-motile, irregular rods. The major fatty acids included mainly unsaturated and hydroxy fatty acids, including 17 : 1 iso I/anteiso B (36.7 %), 15 : 0 iso (15.8 %) and 17 : 0 iso 3-OH (10.3 %), and the DNA G+C content was 59.5 mol%. From the phenotypic and genotypic analyses it was clear that strain SRC-1(T) was quite different from members other genera in the family '"Flexibacteraceae". Therefore we conclude that strain SRC-1(T) represents a novel genus, for which the name Effluviibacter gen. nov., containing a single species Effluviibacter roseus sp. nov., is proposed. The type species of the genus is Effluviibacter roseus, the type strain of which is strain SRC-1(T) (=MTCC 7260(T)=DSM 17521(T)).
Detached Eddy Simulations of Hypersonic Transition
NASA Technical Reports Server (NTRS)
Yoon, S.; Barnhardt, M.; Candler, G.
2010-01-01
This slide presentation reviews the use of Detached Eddy Simulation (DES) of hypersonic transistion. The objective of the study was to investigate the feasibility of using CFD in general, DES in particular, for prediction of roughness-induced boundary layer transition to turbulence and the resulting increase in heat transfer.
NASA Astrophysics Data System (ADS)
Ashworth, K.; Folberth, G.; Hewitt, C. N.; Wild, O.
2012-01-01
Large-scale production of feedstock crops for biofuels will lead to land use changes. We quantify the effects of realistic land use change scenarios for biofuel feedstock production on isoprene emissions and hence atmospheric composition and chemistry using the HadGEM2 model. Two feedstocks are considered: oil palm for biodiesel in the tropics and short rotation coppice (SRC) in the mid-latitudes. In total, 69 Mha of oil palm and 9 Mha of SRC are planted, each sufficient to replace just over 1% of projected global fossil fuel demand in 2020. Both planting scenarios result in increases in total global annual isoprene emissions of about 1%. In each case, changes in surface concentrations of ozone and biogenic secondary organic aerosol (bSOA) are substantial at the regional scale, with implications for air quality standards. However, the changes in tropospheric burden of ozone and the OH radical, and hence effects on global climate, are negligible. Over SE Asia, one region of oil palm planting, increases in annual mean surface ozone and bSOA concentrations reach over 3 ppbv (+11%) and 0.4 μg m-3 (+10%) respectively for parts of Borneo, with monthly mean increases of up to 6.5 ppbv (+25%) and 0.5 μg m-3 (+12%). Under the SRC scenario, Europe experiences monthly mean changes of over 0.6 ppbv (+1%) and 0.1 μg m-3 (+5%) in June and July, with peak increases of over 2 ppbv (+3%) and 0.5 μg m-3 (+8 %). That appreciable regional atmospheric impacts result from low level planting scenarios demonstrates the need to include changes in emissions of reactive trace gases such as isoprene in life cycle assessments performed on potential biofuel feedstocks.
Shibata, Shunichi; Baba, Otto; Oda, Tsuyoshi; Yokohama-Tamaki, Tamaki; Qin, Chunlin; Butler, William T; Sakakura, Yasunori; Takano, Yoshiro
2008-03-01
Previous studies indicate that hypertrophic chondrocytes can transdifferentiate or dedifferentiate and redifferentiate into bone cells during the endochondral bone formation. Mandibular condyle in aged c-src-deficient mice has incremental line-like striations consisting of cartilaginous and non-cartilaginous layers, and the former contains intact hypertrophic chondrocytes in uneroded lacunae. The purpose of this study is to determine the phenotype changes of uneroded hypertrophic chondrocytes. Immunohistochemical and ultrastructural examinations of the pericellular matrix of hypertrophic chondrocytes in the upper, middle, and lower regions of the mandibular condyle were conducted in aged c-src-deficient mice, using several antibodies of cartilage/bone marker proteins. Co-localisation of aggrecan, type I collagen, and dentin matrix protein-1 (DMP-1) or matrix extracellular phosphoprotein (MEPE) was detected in the pericellular matrix of the middle region. Ultrastructurally, granular substances in the pericellular matrix of the middle region were the remains of upper region chondrocytes, which were mixed with thick collagen fibrils. In the lower region, the width of the pericellular matrix and the amount of collagen fibrils were increased. Versican, type I collagen, DMP-1, and MEPE were detected in the osteocyte lacunae. Additionally, DMP-1 and MEPE were detected in the pericellular matrix of uneroded hypertrophic chondrocytes located in the lower, peripheral region of the mandibular condyle in younger c-src-deficient mice, but not in the aged wild-type mice. These results indicate that long-term survived, uneroded hypertrophic chondrocytes, at least in a part, acquire osteocytic characteristics.
Yang, Woo Seok; Ratan, Zubair Ahmed; Kim, Gihyeon; Lee, Yunmi; Kim, Mi-Yeon; Kim, Jong-Hoon; Cho, Jae Youl
2015-01-01
The Cordyceps species has been a good source of compounds with anticancer and anti-inflammatory activities. Recently, we reported a novel compound (4-isopropyl-2,6-bis(1-phenylethyl)phenol, KTH-13) with anticancer activity isolated from Cordyceps bassiana and created several derivatives to increase its pharmacological activity. In this study, we tested one of the KTH-013 derivatives, 4-isopropyl-2,6-bis(1-phenylethyl)aniline 1 (KTH-13-AD1), with regard to anti-inflammatory activity under macrophage-mediated inflammatory conditions. KTH-13-AD1 clearly suppressed the production of nitric oxide (NO) and reactive oxygen species (ROS) in lipopolysaccharide (LPS) and sodium nitroprusside- (SNP-) treated macrophage-like cells (RAW264.7 cells). Similarly, this compound also reduced mRNA expression of inducible NO synthase (iNOS) and tumor necrosis factor-α (TNF-α), as analyzed by RT-PCR and real-time PCR. Interestingly, KTH-13-AD1 strongly diminished NF-κB-mediated luciferase activities and nuclear translocation of NF-κB family proteins. In accordance, KTH-13-AD1 suppressed the upstream signaling pathway of NF-κB activation, including IκBα, IKKα/β, AKT, p85/PI3K, and Src in a time- and dose-dependent manner. The autophosphorylation of Src and NF-κB observed during the overexpression of Src was also suppressed by KTH-13-AD1. These results strongly suggest that KTH-13-AD1 has strong anti-inflammatory features mediated by suppression of the Src/NF-κB regulatory loop. PMID:26819495
Gueto, Carlos; Ruiz, José L; Torres, Juan E; Méndez, Jefferson; Vivas-Reyes, Ricardo
2008-03-01
Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on a series of benzotriazine derivatives, as Src inhibitors. Ligand molecular superimposition on the template structure was performed by database alignment method. The statistically significant model was established of 72 molecules, which were validated by a test set of six compounds. The CoMFA model yielded a q(2)=0.526, non cross-validated R(2) of 0.781, F value of 88.132, bootstrapped R(2) of 0.831, standard error of prediction=0.587, and standard error of estimate=0.351 while the CoMSIA model yielded the best predictive model with a q(2)=0.647, non cross-validated R(2) of 0.895, F value of 115.906, bootstrapped R(2) of 0.953, standard error of prediction=0.519, and standard error of estimate=0.178. The contour maps obtained from 3D-QSAR studies were appraised for activity trends for the molecules analyzed. Results indicate that small steric volumes in the hydrophobic region, electron-withdrawing groups next to the aryl linker region, and atoms close to the solvent accessible region increase the Src inhibitory activity of the compounds. In fact, adding substituents at positions 5, 6, and 8 of the benzotriazine nucleus were generated new compounds having a higher predicted activity. The data generated from the present study will further help to design novel, potent, and selective Src inhibitors as anticancer therapeutic agents.
Regulation of fibroblast growth factor receptor signalling and trafficking by Src and Eps8.
Auciello, Giulio; Cunningham, Debbie L; Tatar, Tulin; Heath, John K; Rappoport, Joshua Z
2013-01-15
Fibroblast growth factor receptors (FGFRs) mediate a wide spectrum of cellular responses that are crucial for development and wound healing. However, aberrant FGFR activity leads to cancer. Activated growth factor receptors undergo stimulated endocytosis, but can continue to signal along the endocytic pathway. Endocytic trafficking controls the duration and intensity of signalling, and growth factor receptor signalling can lead to modifications of trafficking pathways. We have developed live-cell imaging methods for studying FGFR dynamics to investigate mechanisms that coordinate the interplay between receptor trafficking and signal transduction. Activated FGFR enters the cell following recruitment to pre-formed clathrin-coated pits (CCPs). However, FGFR activation stimulates clathrin-mediated endocytosis; FGF treatment increases the number of CCPs, including those undergoing endocytosis, and this effect is mediated by Src and its phosphorylation target Eps8. Eps8 interacts with the clathrin-mediated endocytosis machinery and depletion of Eps8 inhibits FGFR trafficking and immediate Erk signalling. Once internalized, FGFR passes through peripheral early endosomes en route to recycling and degredative compartments, through an Src- and Eps8-dependent mechanism. Thus Eps8 functions as a key coordinator in the interplay between FGFR signalling and trafficking. This work provides the first detailed mechanistic analysis of growth factor receptor clustering at the cell surface through signal transduction and endocytic trafficking. As we have characterised the Src target Eps8 as a key regulator of FGFR signalling and trafficking, and identified the early endocytic system as the site of Eps8-mediated effects, this work provides novel mechanistic insight into the reciprocal regulation of growth factor receptor signalling and trafficking.
Field, Matt; Caren, Rhiane; Fernie, Gordon; De Houwer, Jan
2011-12-01
Several recent studies suggest that alcohol-related cues elicit automatic approach tendencies in heavy drinkers. A variety of tasks have been used to demonstrate these effects, including Relevant Stimulus-Response Compatibility (R-SRC) tasks and variants of Simon tasks. Previous work with normative stimuli suggests that the R-SRC task may be more sensitive than Simon tasks because the activation of approach tendencies may depend on encoding of the stimuli as alcohol-related, which occurs in the R-SRC task but not in Simon tasks. Our aim was to directly compare these tasks for the first time in the context of alcohol use. We administered alcohol versions of an R-SRC task and a Simon task to 62 social drinkers, who were designated as heavy or light drinkers based on a median split of their weekly alcohol consumption. Results indicated that, compared to light drinkers, heavy drinkers were faster to approach, rather than avoid, alcohol-related pictures in the R-SRC task but not in the Simon task. Theoretical implications and methodological issues are discussed.
HAO, ZHENFENG; QIAN, JING; YANG, JISHI
2015-01-01
The present study identified that shikonin, a naphthoquinone extracted from the roots of Lithospermum erythrorhizon, inhibits the migration of ovarian cancer cells and induces their apoptosis by impairing the phosphorylation of two kinases, proto-oncogene tyrosine protein kinase Src (Src) and focal adhesion kinase (FAK). Ovarian carcinoma SKOV-3 cells were treated with various concentrations of shikonin and analyzed for the effects on cell migration, invasion and apoptosis via Transwell assays and flow cytometry. In addition, the effects of shikonin administration on the expression and phosphorylation of Src and FAK in the SKOV-3 cells were analyzed by western blotting. Shikonin appeared to induce apoptosis and decrease cell migration in the SKOV-3 ovarian cells. Furthermore, the present study provides evidence that shikonin may exert these effects on human ovarian carcinoma cells via the inhibition of the protein tyrosine kinases, Src and FAK. Thus, shikonin should be considered for additional investigation as a candidate agent for the prevention and treatment of human ovarian cancer. PMID:25621031
Probing short-range correlations in asymmetric nuclei with quasi-free pair knockout reactions
NASA Astrophysics Data System (ADS)
Stevens, Sam; Ryckebusch, Jan; Cosyn, Wim; Waets, Andreas
2018-02-01
Short-range correlations (SRC) in asymmetric nuclei with an unusual neutron-to-proton ratio can be studied with quasi-free two-nucleon knockout processes following the collision between accelerated ions and a proton target. We derive an approximate factorized cross section for those SRC-driven p (A ,p‧N1N2) reactions. Our reaction model hinges on the factorization properties of SRC-driven A (e ,e‧N1N2) reactions for which strong indications are found in theory-experiment comparisons. In order to put our model to the test we compare its predictions with results of 12C (p ,p‧ pn) measurements conducted at Brookhaven National Laboratory (BNL) and find a fair agreement. The model can also reproduce characteristic features of SRC-driven two-nucleon knockout reactions, like back-to-back emission of the correlated nucleons. We study the asymmetry dependence of nuclear SRC by providing predictions for the ratio of proton-proton to proton-neutron knockout cross sections for the carbon isotopes 9-15C thereby covering neutron excess values (N - Z) / Z between -0.5 and +0.5.
Revisiting the ERK/Src cortactin switch
Kelley, Laura C; Hayes, Karen E; Ammer, Amanda Gatesman; Martin, Karen H
2011-01-01
The filamentous (F)-actin regulatory protein cortactin plays an important role in tumor cell movement and invasion by promoting and stabilizing actin related protein (Arp)2/3-mediated actin networks necessary for plasma membrane protrusion. Cortactin is a substrate for ERK1/2 and Src family kinases, with previous in vitro findings demonstrating ERK1/2 phosphorylation of cortactin as a positive and Src phosphorylation as a negative regulatory event in promoting Arp2/3 activation through neuronal Wiskott Aldrich Syndrome protein (N-WASp). Evidence for this regulatory cortactin “switch” in cells has been hampered due to the lack of phosphorylation-specific antibodies that recognize ERK1/2-phosphorylated cortactin. Our findings with phosphorylation-specific antibodies against these ERK1/2 sites (pS405 and pS418) indicate that cortactin can be co-phosphorylated at 405/418 and tyrosine residues targeted by Src family tyrosine kinases. These results indicate that the ERK/Src cortactin switch is not the sole mechanism by which ERK1/2 and tyrosine phosphorylation events regulate cortactin function in cell systems. PMID:21655441
NASA Astrophysics Data System (ADS)
Nikolaeva, V.; Guimarais, L.; Manz, P.; Carralero, D.; Manso, M. E.; Stroth, U.; Silva, C.; Conway, G. D.; Seliunin, E.; Vicente, J.; Brida, D.; Aguiam, D.; Santos, J.; Silva, A.; ASDEX Upgrade team; MST1 team
2018-05-01
Transport in the scrape-off layer (SOL) depends on the state of divertor detachment. L-mode discharges were analyzed where the state of divertor detachment is varied through a density ramp-up. By means of reflectometry measurements at the low (LFS) and the high field side (HFS), midplane density fluctuations are studied for the first time in ASDEX Upgrade simultaneously at both sides of the tokamak. Radial density fluctuation profiles (δ {n}e/{n}e) increase with radius in both the HFS and the LFS. It is found that in the SOL density fluctuations at the LFS have about a factor of two larger amplitude than at the HFS in agreement with ballooned transport. Density fluctuations at the LFS show a modest variation with increasing background density resulting mainly from a rise of low frequency components. Experimental results are in good agreement with an enhanced convection of filaments at the LFS at the beginning of outer divertor detachment leading to a flatter SOL density profile. In this phase of the discharge, density fluctuations measured at the HFS far-SOL display a strong increase, which may be associated with the presence of faster filaments originated at the LFS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Xu-Qian; Liu, Xiang-Fan; Yao, Ling
Highlights: •A novel FAK splicing mutation identified in breast tumor. •FAK-Del33 mutation promotes cell migration and invasion. •FAK-Del33 mutation regulates FAK/Src signal pathway. -- Abstract: Focal adhesion kinase (FAK) regulates cell adhesion, migration, proliferation, and survival. We identified a novel splicing mutant, FAK-Del33 (exon 33 deletion, KF437463), in both breast and thyroid cancers through colony sequencing. Considering the low proportion of mutant transcripts in samples, this mutation was detected by TaqMan-MGB probes based qPCR. In total, three in 21 paired breast tissues were identified with the FAK-Del33 mutation, and no mutations were found in the corresponding normal tissues. When introducedmore » into a breast cell line through lentivirus infection, FAK-Del33 regulated cell motility and migration based on a wound healing assay. We demonstrated that the expression of Tyr397 (main auto-phosphorylation of FAK) was strongly increased in FAK-Del33 overexpressed breast tumor cells compared to wild-type following FAK/Src RTK signaling activation. These results suggest a novel and unique role of the FAK-Del33 mutation in FAK/Src signaling in breast cancer with significant implications for metastatic potential.« less
Distinct roles for multiple Src family kinases at fertilization.
O'Neill, Forest J; Gillett, Jessica; Foltz, Kathy R
2004-12-01
Egg activation at fertilization requires the release of Ca2+ from the endoplasmic reticulum of the egg. Recent evidence indicates that Src family kinases (SFKs) function in the signaling pathway that initiates this Ca2+ release in the eggs of many deuterostomes. We have identified three SFKs expressed in starfish (Asterina miniata) eggs, designated AmSFK1, AmSFK2 and AmSFK3. Antibodies made against the unique domains of each AmSFK protein revealed that all three are expressed in eggs and localized primarily to the membrane fraction. Both AmSFK1 and AmSFK3 (but not AmSFK2) are necessary for egg activation, as determined by injection of starfish oocytes with dominant-interfering Src homology 2 (SH2) domains, which specifically delay and reduce the initial release of Ca2+ at fertilization. AmSFK3 exhibits a very rapid and transient kinase activity in response to fertilization, peaking at 30 seconds post sperm addition. AmSFK1 kinase activity also increases transiently at fertilization, but peaks later, at 2 minutes. These results indicate that there are multiple SFKs present in starfish eggs with distinct, perhaps sequential, signaling roles.
Weir, Marion E; Mann, Jacqueline E; Corwin, Thomas; Fulton, Zachary W; Hao, Jennifer M; Maniscalco, Jeanine F; Kenney, Marie C; Roman Roque, Kristal M; Chapdelaine, Elizabeth F; Stelzl, Ulrich; Deming, Paula B; Ballif, Bryan A; Hinkle, Karen L
2016-04-01
Src family tyrosine kinases (SFKs) are critical players in normal and aberrant biological processes. While phosphorylation importantly regulates SFKs at two known tyrosines, large-scale phosphoproteomics have revealed four additional tyrosines commonly phosphorylated in SFKs. We found these novel tyrosines to be autophosphorylation sites. Mimicking phosphorylation at the C-terminal site to the activation loop decreased Fyn activity. Phosphomimetics and direct phosphorylation at the three SH2 domain sites increased Fyn activity while reducing phosphotyrosine-dependent interactions. While 68% of human SH2 domains exhibit conservation of at least one of these tyrosines, few have been found phosphorylated except when found in cis to a kinase domain. © 2016 Federation of European Biochemical Societies.
Src Kinase: A Novel Target of Early-Stage ER-Negative Breast Cancer
2012-03-01
patients with early stage ErbB2-overexpressing biopsies and ER- atypia . 13 REFERENCES: 1. Jordan VC. Tamoxifen for breast cancer prevention. Proc Soc...Summary01-03-2012 Src Kinase: A Novel Target of Early-Stage ER-Negative Breast Cancer Shalini Jain University of Texas M.D. Anderson Cancer Center Houston...SUBTITLE “Src Kinase: A Novel Target of Early-Stage ER-Negative Breast Cancer” 5a. CONTRACT NUMBER W81XWH-11-1-0004 5b. GRANT NUMBER
Ghossein, Cybele; Varga, John; Fenves, Andrew Z
2016-01-01
Scleroderma renal crisis (SRC) is an uncommon complication of systemic sclerosis. Despite the advent of angiotensin-converting inhibitor therapy, SRC remains a life-threatening complication. Recent studies have contributed to a better understanding of SRC, but much remains unknown regarding its pathophysiology, risk factors, and optimal management. Genetic studies provide evidence that immune dysregulation might be a contributing factor, providing hope that further research in this direction might illuminate pathogenesis and provide novel predictors for this complication.
Rudolf, Emil; Cervinka, Miroslav
2009-08-10
In this study we examined interactions between human dermal fibroblasts and chromium acetate hydroxide originating from environmental waste sediments. We show that initially exposure of fibroblasts to Cr (III) induced membrane-dependent signaling including activation of Rac1 GTPase, Src and apoptosis signal-regulating kinase 1 (ASK-1) kinases leading to increased activities of p38 and particularly Jun N-terminal kinase (JNK) and subsequent activation of caspase-3. At later treatment intervals (48-96 h), caspase-3 activity became suppressed and markedly increased lactate dehydrogenase (LDH) release was observed. Further experiments demonstrated that LDH release occurred in the presence of increased oxidative stress, extensive DNA damage, overactivation of poly(ADP-ribose)polymerase-1 (PARP-1) and depletion of ATP. Using specific inhibitors it was demonstrated that oxidative stress along with PARP-1 activity are responsible for cell death mode switch and upon their inhibition caspase-3 activity could be restored. In conclusion, Cr (III) seems to induce a biphasic response in dermal fibroblasts, with initial apoptosis switched to necrosis via increased DNA damage and resulting PARP-1 activity.
Yen, Michael; Chen, Jenny; Ausayakhun, Somsanguan; Kunavisarut, Paradee; Vichitvejpaisal, Pornpattana; Ausayakhun, Sakarin; Jirawison, Choeng; Shantha, Jessica; Holland, Gary N; Heiden, David; Margolis, Todd P; Keenan, Jeremy D
2014-01-01
Purpose To determine risk factors predictive of retinal detachment in patients with cytomegalovirus (CMV) retinitis in a setting with limited access to ophthalmic care. Design Case-control study. Methods Sixty-four patients with CMV retinitis and retinal detachment were identified from the Ocular Infectious Diseases and Retina Clinics at Chiang Mai University. Three control patients with CMV retinitis but no retinal detachment were selected for each case, matched by calendar date. The medical records of each patient were reviewed, with patient-level and eye-level features recorded for the clinic visit used to match cases and controls, and also for the initial clinic visit at which CMV retinitis was diagnosed. Risk factors for retinal detachment were assessed separately for each of these time points using multivariate conditional logistic regression models that included 1 eye from each patient. Results Patients with a retinal detachment were more likely than controls to have low visual acuity (OR, 1.24 per line of worse vision on the logMAR scale; 95%CI, 1.16-1.33) and bilateral disease (OR, 2.12; 95%CI, 0.92-4.90). Features present at the time of the initial diagnosis of CMV retinitis that predicted subsequent retinal detachment included bilateral disease (OR, 2.68; 95%CI, 1.18-6.08) and lesion size (OR, 2.64 per 10% increase in lesion size; 95%CI, 1.41-4.94). Conclusion Bilateral CMV retinitis and larger lesion sizes, each of which is a marker of advanced disease, were associated with subsequent retinal detachment. Earlier detection and treatment may reduce the likelihood that patients with CMV retinitis develop a retinal detachment. PMID:25448999
NASA Astrophysics Data System (ADS)
Zhou, Su; Luan, Xiaoli; Søraas, Finn; Østgaard, Nikolai; Raita, Tero
2018-04-01
This paper presents simultaneous detached proton auroras that appeared in both hemispheres at 11:06 UT, 08 March 2012, just 2 min after a sudden solar wind pressure enhancement ( 11:04 UT) hit the Earth. They were observed under northward interplanetary magnetic field Bz condition and during the recovery phase of a moderate geomagnetic storm. In the Northern Hemisphere, Defense Meteorological Satellite Program/Special Sensor Ultraviolet Spectrographic Imager observed that the detached arc occurred within 60°-65° magnetic latitude and covered a few magnetic local time (MLT) hours ranging from 0530 to 0830 MLT with a possible extension toward noon. At the same time (11:06 UT), Polar Orbiting Environment Satellites 19 detected a detached proton aurora around 1300 MLT in the Southern Hemisphere, centering 62° magnetic latitude, which was at the same latitudes as the northern detached arc. This southern aurora was most probably a part of a dayside detached arc that was conjugate to the northern one. In situ particle observations indicated that the detached auroras were dominated by protons/ions with energies ranging from around 20 keV to several hundreds of keV, without obvious electron precipitations. These detached arcs persisted for less than 6 min, consistent with the impact from pressure enhancement and the observed electromagnetic ion cyclotron (EMIC) waves. It is suggested that the increasing solar wind pressure pushed the hot ions in the ring current closer to Earth where the steep gradient of cold plasma favored EMIC wave growth. By losing energy to EMIC waves the energetic protons (>20 keV) were scattered into the loss cone and produced the observed detached proton auroras.
Yen, Michael; Chen, Jenny; Ausayakhun, Somsanguan; Kunavisarut, Paradee; Vichitvejpaisal, Pornpattana; Ausayakhun, Sakarin; Jirawison, Choeng; Shantha, Jessica; Holland, Gary N; Heiden, David; Margolis, Todd P; Keenan, Jeremy D
2015-01-01
To determine risk factors predictive of retinal detachment in patients with cytomegalovirus (CMV) retinitis in a setting with limited access to ophthalmic care. Case-control study. Sixty-four patients with CMV retinitis and retinal detachment were identified from the Ocular Infectious Diseases and Retina Clinics at Chiang Mai University. Three control patients with CMV retinitis but no retinal detachment were selected for each case, matched by calendar date. The medical records of each patient were reviewed, with patient-level and eye-level features recorded for the clinic visit used to match cases and controls, and also for the initial clinic visit at which CMV retinitis was diagnosed. Risk factors for retinal detachment were assessed separately for each of these time points using multivariate conditional logistic regression models that included 1 eye from each patient. Patients with a retinal detachment were more likely than controls to have low visual acuity (odds ratio [OR], 1.24 per line of worse vision on the logMAR scale; 95% confidence interval [CI], 1.16-1.33) and bilateral disease (OR, 2.12; 95% CI, 0.92-4.90). Features present at the time of the initial diagnosis of CMV retinitis that predicted subsequent retinal detachment included bilateral disease (OR, 2.68; 95% CI, 1.18-6.08) and lesion size (OR, 2.64 per 10% increase in lesion size; 95% CI, 1.41-4.94). Bilateral CMV retinitis and larger lesion sizes, each of which is a marker of advanced disease, were associated with subsequent retinal detachment. Earlier detection and treatment may reduce the likelihood that patients with CMV retinitis develop a retinal detachment. Copyright © 2015 Elsevier Inc. All rights reserved.
Baracks, Joshua; Casa, Douglas J; Covassin, Tracey; Sacko, Ryan; Scarneo, Samantha E; Schnyer, David; Yeargin, Susan W; Neville, Christopher
2018-06-13
Without a true criterion standard assessment, the sport-related concussion (SRC) diagnosis remains subjective. Inertial balance sensors have been proposed to improve acute SRC assessment, but few researchers have studied their clinical utility. To determine if group differences exist when using objective measures of balance in a sample of collegiate athletes with recent SRCs and participants serving as the control group and to calculate sensitivity and specificity to determine the diagnostic utility of the inertial balance sensor for acute SRC injuries. Cohort study. Multicenter clinical trial. We enrolled 48 participants with SRC (age = 20.62 ± 1.52 years, height = 179.76 ± 10.00 cm, mass = 83.92 ± 23.22 kg) and 45 control participants (age = 20.85 ± 1.42 years, height = 177.02 ± 9.59 cm, mass = 74.61 ± 14.92 kg) at 7 clinical sites in the United States. All were varsity or club collegiate athletes, and all participants with SRC were tested within 72 hours of SRC. Balance performance was assessed using an inertial balance sensor. Two measures (root mean square [RMS] sway and 95% ellipse sway area) were analyzed to represent a range of general balance measures. Balance assessments were conducted in double-legged, single-legged, and tandem stances. A main effect for group was associated with the root mean square sway measure ( F 1,91 = 11.75, P = .001), with the SRC group demonstrating balance deficits compared with the control group. We observed group differences in the 95% ellipse sway area measure for the double-legged ( F 1,91 = 11.59, P = .001), single-legged ( F 1,91 = 6.91, P = .01), and tandem ( F 1,91 = 7.54, P = .007) stances. Sensitivity was greatest using a cutoff value of 0.5 standard deviations (54% [specificity = 71%]), whereas specificity was greatest using a cutoff value of 2 standard deviations (98% [sensitivity = 33%]). Inertial balance sensors may be useful tools for objectively measuring balance during acute SRC evaluation. However, low sensitivity suggests that they may be best used in conjunction with other assessments to form a comprehensive screening that may improve sensitivity.
Ouellette, Eric S; Gilbert, Jeremy L
2016-11-01
Fretting corrosion in medical alloys is a persistent problem, and the need for biomaterials that can effectively suppress mechanically assisted crevice corrosion in modular taper junctions or otherwise insulate metal-on-metal interfaces in mechanically demanding environments is as yet unmet. The purpose of this study is to characterize a novel material, self-reinforced composite polyetheretherketone (SRC-PEEK) and to evaluate its ability to inhibit fretting corrosion in a pin-on-disk metal-on-metal interface test. SRC-PEEK was fabricated by hot compaction of in-house-made PEEK fibers by compacting uniaxial layups at 344°C under a load of 18,000 N for 10 minutes. SRC-PEEK, bulk isotropic PEEK, and the in-house-made PEEK fibers were analyzed for thermal transitions (T g , T m ) through differential scanning calorimetry, crystallinity, crystal size, crystalline orientation (Hermanns orientation parameter) through wide-angle x-ray scattering, and modulus, tensile strength, yield stress, and strain to failure through monotonic tensile testing. SRC-insulated pin-on-disk samples were compared with metal-on-metal control samples in pin-on-disk fretting corrosion experiments using fretting current and fretting mechanics measurements. Fifty-micron cyclic motion at 2.5 Hz was applied to the interface, first over a range of loads (0.5-35 N) while held at -0.05 V versus Ag/AgCl and then over a range of voltages (-0.5 to 0.5 V) at a constant contact stress of 73 ± 19 MPa for SRC-PEEK and 209 ± 41 MPa for metal-on-metal, which were different for each group as a result of changes in true contact area due to variations in modulus between sample groups. Pins, disks, and SRC samples were imaged for damage (on alloy and SRC surfaces) and evidence of corrosion (on alloy pin and disk surfaces). SRC specimens were analyzed for traces of alloy transferred to the surface using energy dispersive spectroscopy after pin-on-disk testing. SRC-PEEK showed improved mechanical properties to bulk PEEK (modulus = 5.0 ± 0.3 GPa, 2.8 ± 0.1 GPa, respectively, p < 0.001) and higher crystallinity to bulk PEEK (44.2% ± 3%, 39.5% ± 0.5%, respectively, p = 0.039), but had comparable crystalline orientation as compared with the initial PEEK fibers. SRC-PEEK reduced fretting currents compared with metal-on-metal controls by two to three orders of magnitude in both variable load (4.0E-5 ± 3.8E-5 μA versus 2.9E-3 ± 7.1E-4 μA, respectively, p = 0.018) and variable potential (7.5E-6 ± 4.7E-6 μA versus 5.3E-3 ± 1.4E-3 μA, respectively, p = 0.022) fretting corrosion testing. Minimal damage was observed on surfaces insulated with SRC-PEEK, whereas control surfaces showed considerable fretting corrosion damage and metal transfer. The SRC-PEEK gaskets in this study demonstrated higher crystallinity and crystalline orientation and improved monotonic tensile properties compared with bulk PEEK with the ability to effectively insulate Ti6Al4V and CoCrMo alloy surfaces and prevent the initiation of fretting corrosion under high contact-stress conditions. This novel SRC-PEEK material may offer potential as a thin film gasket material for modular tapers. Pending further in vitro and in vivo analyses, this approach may be able to preserve the advantages of modular junctions for surgeons while potentially limiting the downside risks associated with mechanically assisted crevice corrosion.
Mattioli, Stefano; Curti, Stefania; De Fazio, Rocco; Mt Cooke, Robin; Zanardi, Francesca; Bonfiglioli, Roberta; Violante, Francesco S
2012-01-01
Objectives Lifting heavy weights involves the Valsalva manoeuvre, which leads to intraocular pressure spikes. We used data from a case-control study to further investigate the hypothesis that occupational lifting is a risk factor for retinal detachment. Methods The study population included 48 cases (patients operated for retinal detachment) and 84 controls (outpatients attending an eye clinic). The odds ratios (OR) of idiopathic retinal detachment were estimated with a logistic regression model (adjusted for age, sex and body mass index). Three indexes were used to examine exposure to lifting; 1) maximum load lifted, 2) average weekly lifting, 3) lifelong cumulative lifting. Results For all indexes, the most exposed subjects showed an increased risk of retinal detachment compared with the unexposed (index 1: OR 3.57, 95% confidence interval [CI] 1.21-10.48; index 2: OR 3.24, 95% CI 1.32-7.97; index 3: OR 2.23, 95% CI 1.27-8.74) and dose-response relationships were apparent. Conclusion These results reinforce the hypothesis that heavy occupational lifting may be a relevant risk factor for retinal detachment. PMID:22953231
DOE Office of Scientific and Technical Information (OSTI.GOV)
Si, Hang; Guo, Houyang Y.; Covele, Brent
One of the major challenges facing the design and operation of next-step high-power steady-state fusion devices is to develop a divertor solution for handling power exhaust, while ensuring acceptable divertor target plate erosion, which necessitates access to divertor detachment at relative low main plasma densities compatible with current drive and high plasma confinement. Detailed modeling with SOLPS is carried out to examine the effect of divertor closure on detachment with the normal single null divertor (SD) configuration, as well as one of the advanced divertor configurations, such as x-divertor (XD) respectively. The SOLPS modeling for a high confinement plasma in DIII-D finds that increasing divertor closure with SD reduces the upstream separatrix density at the onset of detachment frommore » $$1.18\\times {{10}^{19}}\\,{{{\\rm m}}^{-3}}$$ to $$0.88\\times {{10}^{19}}\\,{{{\\rm m}}^{-3}}$$. Furthermore, coupling the divertor closure with XD further promotes the onset of divertor detachment at a still lower upstream separatrix density, down to the value of $$0.67\\times {{10}^{19}}\\,{{{\\rm m}}^{-3}}$$, thus, showing that divertor closure and advanced magnetic configuration can work synergistically to facilitate divertor detachment.« less
Si, Hang; Guo, Houyang Y.; Covele, Brent; ...
2018-04-04
One of the major challenges facing the design and operation of next-step high-power steady-state fusion devices is to develop a divertor solution for handling power exhaust, while ensuring acceptable divertor target plate erosion, which necessitates access to divertor detachment at relative low main plasma densities compatible with current drive and high plasma confinement. Detailed modeling with SOLPS is carried out to examine the effect of divertor closure on detachment with the normal single null divertor (SD) configuration, as well as one of the advanced divertor configurations, such as x-divertor (XD) respectively. The SOLPS modeling for a high confinement plasma in DIII-D finds that increasing divertor closure with SD reduces the upstream separatrix density at the onset of detachment frommore » $$1.18\\times {{10}^{19}}\\,{{{\\rm m}}^{-3}}$$ to $$0.88\\times {{10}^{19}}\\,{{{\\rm m}}^{-3}}$$. Furthermore, coupling the divertor closure with XD further promotes the onset of divertor detachment at a still lower upstream separatrix density, down to the value of $$0.67\\times {{10}^{19}}\\,{{{\\rm m}}^{-3}}$$, thus, showing that divertor closure and advanced magnetic configuration can work synergistically to facilitate divertor detachment.« less
Detachment experiments in new DIII-D upper divertor
NASA Astrophysics Data System (ADS)
Moser, A. L.; Leonard, A. W.; Groebner, R. J.; Guo, H.; Wang, H.; Watkins, J. G.; McLean, A. G.; Fenstermacher, M. E.; Shafer, M. W.; Briesemeister, A. R.; Hinson, E. T.
2017-10-01
Installation of the Small Angle Slot (SAS) in the upper divertor of DIII-D enables new studies of the effect of target and baffle geometry on divertor detachment. This structure provides a more-closed upper divertor as well as the SAS divertor itself. Initial SAS experiment results indicate that divertor detachment occurs at a lower line-averaged density than in the more-open, lower single null divertor configurations on DIII-D. In contrast, the increased divertor closure of the new installation did not reduce the upstream density required for detachment beyond that achieved with the previous upper divertor structure. Particle pumping in the upper divertor structure is found to produce a 10 % reduction in the pedestal density required for detachment compared to the case with no pumping. Comparisons focus on both the onset of detachment (measured by in-target Langmuir probes) as a function of upstream density, as well as the effect of the new divertor configurations on pedestal density profiles. Work supported by US DOE under DE-FC02-04ER54698, DE-AC05-00OR22725, DE-AC04-94AL85000, DE-AC52-07NA27344, and DE-SC00013911.
Influence of cell detachment on the respiration rate of tumor and endothelial cells.
Danhier, Pierre; Copetti, Tamara; De Preter, Géraldine; Leveque, Philippe; Feron, Olivier; Jordan, Bénédicte F; Sonveaux, Pierre; Gallez, Bernard
2013-01-01
Cell detachment is a procedure routinely performed in cell culture and a necessary step in many biochemical assays including the determination of oxygen consumption rates (OCR) in vitro. In vivo, cell detachment has been shown to exert profound metabolic influences notably in cancer but also in other pathologies, such as retinal detachment for example. In the present study, we developed and validated a new technique combining electron paramagnetic resonance (EPR) oximetry and the use of cytodex 1 and collagen-coated cytodex 3 dextran microbeads, which allowed the unprecedented comparison of the OCR of adherent and detached cells with high sensitivity. Hence, we demonstrated that both B16F10 melanoma cells and human umbilical vein endothelial cells (HUVEC) experience strong OCR decrease upon trypsin or collagenase treatments. The reduction of cell oxygen consumption was more pronounced with a trypsin compared to a collagenase treatment. Cells remaining in suspension also encounter a marked intracellular ATP depletion and an increase in the lactate production/glucose uptake ratio. These findings highlight the important influence exerted by cell adhesion/detachment on cell respiration, which can be probed with the unprecedented experimental assay that was developed and validated in this study.
Influence of Cell Detachment on the Respiration Rate of Tumor and Endothelial Cells
Danhier, Pierre; Copetti, Tamara; De Preter, Géraldine; Leveque, Philippe; Feron, Olivier; Jordan, Bénédicte F.; Sonveaux, Pierre; Gallez, Bernard
2013-01-01
Cell detachment is a procedure routinely performed in cell culture and a necessary step in many biochemical assays including the determination of oxygen consumption rates (OCR) in vitro. In vivo, cell detachment has been shown to exert profound metabolic influences notably in cancer but also in other pathologies, such as retinal detachment for example. In the present study, we developed and validated a new technique combining electron paramagnetic resonance (EPR) oximetry and the use of cytodex 1 and collagen-coated cytodex 3 dextran microbeads, which allowed the unprecedented comparison of the OCR of adherent and detached cells with high sensitivity. Hence, we demonstrated that both B16F10 melanoma cells and human umbilical vein endothelial cells (HUVEC) experience strong OCR decrease upon trypsin or collagenase treatments. The reduction of cell oxygen consumption was more pronounced with a trypsin compared to a collagenase treatment. Cells remaining in suspension also encounter a marked intracellular ATP depletion and an increase in the lactate production/glucose uptake ratio. These findings highlight the important influence exerted by cell adhesion/detachment on cell respiration, which can be probed with the unprecedented experimental assay that was developed and validated in this study. PMID:23382841
NASA Astrophysics Data System (ADS)
Si, H.; Guo, H. Y.; Covele, B.; Leonard, A. W.; Watkins, J. G.; Thomas, D.; Ding, R.
2018-05-01
One of the major challenges facing the design and operation of next-step high-power steady-state fusion devices is to develop a divertor solution for handling power exhaust, while ensuring acceptable divertor target plate erosion, which necessitates access to divertor detachment at relative low main plasma densities compatible with current drive and high plasma confinement. Detailed modeling with SOLPS is carried out to examine the effect of divertor closure on detachment with the normal single null divertor (SD) configuration, as well as one of the advanced divertor configurations, such as x-divertor (XD) respectively. The SOLPS modeling for a high confinement plasma in DIII-D finds that increasing divertor closure with SD reduces the upstream separatrix density at the onset of detachment from 1.18× {{10}19} {{m}-3} to 0.88× {{10}19} {{m}-3} . Moreover, coupling the divertor closure with XD further promotes the onset of divertor detachment at a still lower upstream separatrix density, down to the value of 0.67× {{10}19} {{m}-3} , thus, showing that divertor closure and advanced magnetic configuration can work synergistically to facilitate divertor detachment.
Transient adhesion in a non-fully detached contact.
Liu, Zheyu; Lu, Hongyu; Zheng, Yelong; Tao, Dashuai; Meng, Yonggang; Tian, Yu
2018-04-18
Continuous approaching and detaching displacement usually occurs in an adhesion test. Here, we found a transient adhesion force at the end of a non-fully detached contact. This force occurred when the nominal detaching displacement was less than the traditional quasi-static theory predicted zero force point. The transient adhesion force was ascribed to interfacial adhesion hysteresis, which was caused by the cracking process of the contact and the deformation competition between the sphere and supporting spring. Results indicated that the testing of adhesion can be significantly affected by different combinations of stiffnesses of the contact objects and the supporting spring cantilever. This combination should be carefully designed in an adhesion test. All these results enabled increased understanding of the nature of adhesion and can guide the design of adhesive actuators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, J. -W.; Briesemester, A. R.; Kobayashi, M.
Enhanced perpendicular heat and momentum transport induces parallel pressure loss leading to divertor detachment, which can be produced by the increase of density in 2D tokamaks. However, in the 3D configurations such as tokamaks with 3D fields and stellarators, the fraction of perpendicular transport can be higher even in a lower density regime, which could lead to the early transition to detachment without passing through the high-recycling regime. 3D fields applied to the limiter tokamak plasmas produce edge stochastic layers close to the last closed flux surface (LCFS), which can allow for enhanced perpendicular transport and indeed the absence ofmore » high recycling regime and early detachment have been observed in TEXTOR and Tore Supra. However, in the X-point divertor tokamaks with the applied 3D fields, the parallel transport is still dominant and the detachment facilitation has not been observed yet. Rather, 3D fields affected detachment adversely under certain conditions, either by preventing detachment onset as seen in DIII-D or by re-attaching the existing detached plasma as shown in NSTX. The possible way for strong 3D effects to induce access to the early detachment in divertor tokamaks appears to be via significant perpendicular loss of parallel momentum by frictional force for the counter-streaming flows between neighboring flow channels in the divertor. In principle, the adjacent lobes in the 3D divertor tokamak may generate the counter-streaming flow channels. However, an EMC3-EIRENE simulation for ITER H-mode plasmas demonstrated that screened RMP leads to significantly reduced counter-flows near the divertor target, therefore the momentum loss effect leading to detachment facilitation is expected to be small. This is consistent with the observation in LHD, which showed screening (amplification) of RMP fields in the attachment (stable detachment) case. In conclusion, work for optimal parameter window for best divertor operation scenario is needed particularly for the 3D divertor tokamak configuration.« less
Growth and detachment of single hydrogen bubbles in a magnetohydrodynamic shear flow
NASA Astrophysics Data System (ADS)
Baczyzmalski, Dominik; Karnbach, Franziska; Mutschke, Gerd; Yang, Xuegeng; Eckert, Kerstin; Uhlemann, Margitta; Cierpka, Christian
2017-09-01
This study investigates the effect of a magnetohydrodynamic (MHD) shear flow on the growth and detachment of single sub-millimeter-sized hydrogen gas bubbles. These bubbles were electrolytically generated at a horizontal Pt microelectrode (100 μ m in diameter) in an acidic environment (1 M H2SO4 ). The inherent electric field was superimposed by a homogeneous electrode-parallel magnetic field of up to 700 mT to generate Lorentz forces in the electrolyte, which drive the MHD flow. The growth and motion of the hydrogen bubble was analyzed by microscopic high-speed imaging and measurements of the electric current, while particle tracking velocimetry (μ PTV ) and particle image velocimetry (μ PIV ) were applied to measure the surrounding electrolyte flow. In addition, numerical flow simulations were performed based on the experimental conditions. The results show a significant reduction of the bubble growth time and detachment diameter with increasing magnetic induction, which is known to improve the efficiency of water electrolysis. In order to gain further insight into the bubble detachment mechanism, an analysis of the forces acting on the bubble was performed. The strong MHD-induced drag force causes the bubble to slowly slide away from the center of the microelectrode before its detachment. This motion increases the active electrode area and enhances the bubble growth rate. The results further indicate that at large current densities the coalescence of tiny bubbles formed at the foot of the main bubble might play an important role for the bubble detachment. Moreover, the occurrence of Marangoni stresses at the gas-liquid interface is discussed.
Bairy, Santhosh Kumar; Suneel Kumar, B V S; Bhalla, Joseph Uday Tej; Pramod, A B; Ravikumar, Muttineni
2009-04-01
c-Src kinase play an important role in cell growth and differentiation and its inhibitors can be useful for the treatment of various diseases, including cancer, osteoporosis, and metastatic bone disease. Three dimensional quantitative structure-activity relationship (3D-QSAR) studies were carried out on quinazolin derivatives inhibiting c-Src kinase. Molecular field analysis (MFA) models with four different alignment techniques, namely, GLIDE, GOLD, LIGANDFIT and Least squares based methods were developed. glide based MFA model showed better results (Leave one out cross validation correlation coefficient r(2)(cv) = 0.923 and non-cross validation correlation coefficient r(2)= 0.958) when compared with other models. These results help us to understand the nature of descriptors required for activity of these compounds and thereby provide guidelines to design novel and potent c-Src kinase inhibitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhengfu, He; Hu, Zhang; Huiwen, Miao
The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs.more » Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice.« less
Optimal Couple Projections for Domain Adaptive Sparse Representation-based Classification.
Zhang, Guoqing; Sun, Huaijiang; Porikli, Fatih; Liu, Yazhou; Sun, Quansen
2017-08-29
In recent years, sparse representation based classification (SRC) is one of the most successful methods and has been shown impressive performance in various classification tasks. However, when the training data has a different distribution than the testing data, the learned sparse representation may not be optimal, and the performance of SRC will be degraded significantly. To address this problem, in this paper, we propose an optimal couple projections for domain-adaptive sparse representation-based classification (OCPD-SRC) method, in which the discriminative features of data in the two domains are simultaneously learned with the dictionary that can succinctly represent the training and testing data in the projected space. OCPD-SRC is designed based on the decision rule of SRC, with the objective to learn coupled projection matrices and a common discriminative dictionary such that the between-class sparse reconstruction residuals of data from both domains are maximized, and the within-class sparse reconstruction residuals of data are minimized in the projected low-dimensional space. Thus, the resulting representations can well fit SRC and simultaneously have a better discriminant ability. In addition, our method can be easily extended to multiple domains and can be kernelized to deal with the nonlinear structure of data. The optimal solution for the proposed method can be efficiently obtained following the alternative optimization method. Extensive experimental results on a series of benchmark databases show that our method is better or comparable to many state-of-the-art methods.
Gill, Kamal S; Beier, Frank; Goldberg, Harvey A
2008-07-01
The mammalian growth plate is a dynamic structure rich in extracellular matrix (ECM). Interactions of growth plate chondrocytes with ECM proteins regulate cell behavior. In this study, we compared chondrocyte adhesion and spreading dynamics on fibronectin (FN) and bone sialoprotein (BSP). Chondrocyte adhesion and spreading were also compared with fibroblasts to analyze potential cell-type-specific effects. Chondrocyte adhesion to BSP is independent of posttranslational modifications but is dependent on the RGD sequence in BSP. Whereas chondrocytes and fibroblasts adhered at similar levels on FN and BSP, cells displayed more actin-dependent spread on FN despite a 16x molar excess of BSP adsorbed to plastic. To identify intracellular mediators responsible for this difference in spreading, we investigated focal adhesion kinase (FAK)-Src and Rho-Rho kinase (ROCK) signaling. Although activated FAK localized to the vertices of adhered chondrocytes, levels of FAK activation did not correlate with the extent of spreading. Furthermore, Src inhibition reduced chondrocyte spreading on both FN and BSP, suggesting that FAK-Src signaling is not responsible for less cell spreading on BSP. In contrast, inhibition of Rho and ROCK in chondrocytes increased cell spreading on BSP and membrane protrusiveness on FN but did not affect cell adhesion. In fibroblasts, Rho inhibition increased fibroblast spreading on BSP while ROCK inhibition changed membrane protrusiveness of FN and BSP. In summary, we identify a novel role for Rho-ROCK signaling in regulating chondrocyte spreading and demonstrate both cell- and matrix molecule-specific mechanisms controlling cell spreading.
Gill, Kamal S.; Beier, Frank; Goldberg, Harvey A.
2008-01-01
The mammalian growth plate is a dynamic structure rich in extracellular matrix (ECM). Interactions of growth plate chondrocytes with ECM proteins regulate cell behavior. In this study, we compared chondrocyte adhesion and spreading dynamics on fibronectin (FN) and bone sialoprotein (BSP). Chondrocyte adhesion and spreading were also compared with fibroblasts to analyze potential cell-type-specific effects. Chondrocyte adhesion to BSP is independent of posttranslational modifications but is dependent on the RGD sequence in BSP. Whereas chondrocytes and fibroblasts adhered at similar levels on FN and BSP, cells displayed more actin-dependent spread on FN despite a 16× molar excess of BSP adsorbed to plastic. To identify intracellular mediators responsible for this difference in spreading, we investigated focal adhesion kinase (FAK)-Src and Rho-Rho kinase (ROCK) signaling. Although activated FAK localized to the vertices of adhered chondrocytes, levels of FAK activation did not correlate with the extent of spreading. Furthermore, Src inhibition reduced chondrocyte spreading on both FN and BSP, suggesting that FAK-Src signaling is not responsible for less cell spreading on BSP. In contrast, inhibition of Rho and ROCK in chondrocytes increased cell spreading on BSP and membrane protrusiveness on FN but did not affect cell adhesion. In fibroblasts, Rho inhibition increased fibroblast spreading on BSP while ROCK inhibition changed membrane protrusiveness of FN and BSP. In summary, we identify a novel role for Rho-ROCK signaling in regulating chondrocyte spreading and demonstrate both cell- and matrix molecule-specific mechanisms controlling cell spreading. PMID:18463228
Lee, Heung-Man; Kang, Ju-Hyung; Shin, Jae-Min; Lee, Seoung-Ae
2017-01-01
Epithelial-mesenchymal transition (EMT) is a biological process that allows epithelial cells to assume a mesenchymal cell phenotype. EMT is considered as a therapeutic target for several persistent inflammatory airway diseases related to tissue remodeling. Herein, we investigated the role of endoplasmic reticulum (ER) stress and c-Src in TGF-β1-induced EMT. A549 cells, primary nasal epithelial cells (PNECs), and inferior nasal turbinate organ cultures were exposed to 4-phenylbutylic acid (4PBA) or PP2 and then stimulated with TGF-β1. We found that E-cadherin, vimentin, fibronectin, and α-SMA expression was increased in nasal polyps compared to inferior turbinates. TGF-β1 increased the expression of EMT markers such as E-cadherin, fibronectin, vimentin, and α-SMA and ER stress markers (XBP-1s and GRP78), an effect that was blocked by PBA or PP2 treatment. 4-PBA and PP2 also blocked the effect of TGF-β1 on migration of A549 cells and suppressed TGF-β1-induced expression of EMT markers in PNECs and organ cultures of inferior turbinate. In conclusion, we demonstrated that 4PBA inhibits TGF-β1-induced EMT via the c-Src pathway in A549 cells, PNECs, and inferior turbinate organ cultures. These results suggest an important role for ER stress and a diverse role for TGF-β1 in upper airway chronic inflammatory disease such as CRS. PMID:28804222
Lee, Heung-Man; Kang, Ju-Hyung; Shin, Jae-Min; Lee, Seoung-Ae; Park, Il-Ho
2017-01-01
Epithelial-mesenchymal transition (EMT) is a biological process that allows epithelial cells to assume a mesenchymal cell phenotype. EMT is considered as a therapeutic target for several persistent inflammatory airway diseases related to tissue remodeling. Herein, we investigated the role of endoplasmic reticulum (ER) stress and c-Src in TGF- β 1-induced EMT. A549 cells, primary nasal epithelial cells (PNECs), and inferior nasal turbinate organ cultures were exposed to 4-phenylbutylic acid (4PBA) or PP2 and then stimulated with TGF- β 1. We found that E-cadherin, vimentin, fibronectin, and α -SMA expression was increased in nasal polyps compared to inferior turbinates. TGF- β 1 increased the expression of EMT markers such as E-cadherin, fibronectin, vimentin, and α -SMA and ER stress markers (XBP-1s and GRP78), an effect that was blocked by PBA or PP2 treatment. 4-PBA and PP2 also blocked the effect of TGF- β 1 on migration of A549 cells and suppressed TGF- β 1-induced expression of EMT markers in PNECs and organ cultures of inferior turbinate. In conclusion, we demonstrated that 4PBA inhibits TGF- β 1-induced EMT via the c-Src pathway in A549 cells, PNECs, and inferior turbinate organ cultures. These results suggest an important role for ER stress and a diverse role for TGF- β 1 in upper airway chronic inflammatory disease such as CRS.
TRAF6 and Src kinase activity regulates Cot activation by IL-1.
Rodríguez, Cristina; Pozo, Maite; Nieto, Elvira; Fernández, Margarita; Alemany, Susana
2006-09-01
Cot is one of the MAP kinase kinase kinases that regulates the ERK1/ERK2 pathway under physiological conditions. Cot is activated by LPS, by inducing its dissociation from the inactive p105 NFkappaB-Cot complex in macrophages. Here, we show that IL-1 promotes a 10-fold increase in endogenous Cot activity and that Cot is the only MAP kinase kinase kinase that activates ERK1/ERK2 in response to this cytokine. Moreover, in cells where the expression of Cot is blocked, IL-1 fails to induce an increase in IL-8 and MIP-1betamRNA levels. The activation of Cot-MKK1-ERK1/ERK2 signalling pathway by IL-1 is dependent on the activity of the transducer protein TRAF6. Most important, IL-1-induced ERK1/ERK2 activation is inhibited by PP1, a known inhibitor of Src tyrosine kinases, but this tyrosine kinase activity is not required for IL-1 to activate other MAP kinases such as p38 and JNK. This Src kinases inhibitor does not block the dissociation and subsequently degradation of Cot in response to IL-1, indicating that other events besides Cot dissociation are required to activate Cot. All these data highlight the specific requirements for activation of the Cot-MKK1-ERK1/ERK2 pathway and provide evidence that Cot controls the functions of IL-1 that are mediated by ERK1/ERK2.
Moody, John A.; Nyman, Peter
2013-01-01
Wildfire affects hillslope erosion through increased surface runoff and increased sediment availability, both of which contribute to large post-fire erosion events. Relations between soil detachment rate, soil depth, flow and root properties, and fire impacts are poorly understood and not represented explicitly in commonly used post-fire erosion models. Detachment rates were measured on intact soil cores using a modified tilting flume. The cores were mounted flush with the flume-bed and a measurement was made on the surface of the core. The core was extruded upward, cut off, and another measurement was repeated at a different depth below the original surface of the core. Intact cores were collected from one site burned by the 2010 Fourmile Canyon (FMC) fire in Colorado and from one site burned by the 2010 Pozo fire in California. Each site contained contrasting vegetation and soil types. Additional soil samples were collected alongside the intact cores and were analyzed in the laboratory for soil properties (organic matter, bulk density, particle-size distribution) and for root properties (root density and root-length density). Particle-size distribution and root properties were different between sites, but sites were similar in terms of bulk density and organic matter. Soil detachment rates had similar relations with non-uniform shear stress and non-uniform unit stream power. Detachment rates within single sampling units displayed a relatively weak and inconsistent relation to flow variables. When averaged across all clusters, the detachment rate displayed a linear relation to shear stress, but variability in soil properties meant that the shear stress accounted for only a small proportion of the overall variability in detachment rates (R2 = 0.23; R2 is the coefficient of determination). Detachment rate was related to root-length density in some clusters (R2 values up to 0.91) and unrelated in others (R2 values 2 value improved and the range of exponents became narrower by applying a multivariate regression model where boundary shear stress and root-length density were included as explanatory variables. This suggests that an erodibility parameter which incorporates the effects of both flow and root properties on detachment could improve the representation of sediment availability after wildfire.
Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis.
Silva, Corinne M
2004-10-18
The signal transducers and activators of transcription (STATs) were originally identified in the signaling pathway activated by the nontyrosine kinase containing cytokine receptors. The role of these STATs in hematopoietic cell signaling has been well described. In the case of cytokine receptors, activation of STAT tyrosine phosphorylation occurs through ligand-induced recruitment, and activation of the intracellular JAK kinases. However, STATs can also be activated by growth factor receptors, particularly the EGFR; as well as by members of the Src Family of Kinases (SFKs), particularly c-Src. In many cases, there is a differential activation of the STATs by these tyrosine kinases as compared to activation by the cytokine receptors. This difference provides for the potential of unique actions of STATs in response to growth factor receptor and SFK activation. Since there are many cancers in which SFKs and c-Src in particular, are co-overexpressed with growth factor receptors, it is not surprising that STATs play an important role in the tumorigenesis process induced by c-Src. The activation paradigm and role of STATs in these cancers, with particular emphasis on breast cancer models, is discussed.
Nck adaptor proteins link Tks5 to invadopodia actin regulation and ECM degradation.
Stylli, Stanley S; Stacey, T T I; Verhagen, Anne M; Xu, San San; Pass, Ian; Courtneidge, Sara A; Lock, Peter
2009-08-01
Invadopodia are actin-based projections enriched with proteases, which invasive cancer cells use to degrade the extracellular matrix (ECM). The Phox homology (PX)-Src homology (SH)3 domain adaptor protein Tks5 (also known as SH3PXD2A) cooperates with Src tyrosine kinase to promote invadopodia formation but the underlying pathway is not clear. Here we show that Src phosphorylates Tks5 at Y557, inducing it to associate directly with the SH3-SH2 domain adaptor proteins Nck1 and Nck2 in invadopodia. Tks5 mutants unable to bind Nck show reduced matrix degradation-promoting activity and recruit actin to invadopodia inefficiently. Conversely, Src- and Tks5-driven matrix proteolysis and actin assembly in invadopodia are enhanced by Nck1 or Nck2 overexpression and inhibited by Nck1 depletion. We show that clustering at the plasma membrane of the Tks5 inter-SH3 region containing Y557 triggers phosphorylation at this site, facilitating Nck recruitment and F-actin assembly. These results identify a Src-Tks5-Nck pathway in ECM-degrading invadopodia that shows parallels with pathways linking several mammalian and pathogen-derived proteins to local actin regulation.
Activated d16HER2 homodimers and SRC kinase mediate optimal efficacy for trastuzumab.
Castagnoli, Lorenzo; Iezzi, Manuela; Ghedini, Gaia C; Ciravolo, Valentina; Marzano, Giulia; Lamolinara, Alessia; Zappasodi, Roberta; Gasparini, Patrizia; Campiglio, Manuela; Amici, Augusto; Chiodoni, Claudia; Palladini, Arianna; Lollini, Pier Luigi; Triulzi, Tiziana; Menard, Sylvie; Nanni, Patrizia; Tagliabue, Elda; Pupa, Serenella M
2014-11-01
A splice isoform of the HER2 receptor that lacks exon 16 (d16HER2) is expressed in many HER2-positive breast tumors, where it has been linked with resistance to the HER2-targeting antibody trastuzumab, but the impact of d16HER2 on tumor pathobiology and therapeutic response remains uncertain. Here, we provide genetic evidence in transgenic mice that expression of d16HER2 is sufficient to accelerate mammary tumorigenesis and improve the response to trastuzumab. A comparative analysis of effector signaling pathways activated by d16HER2 and wild-type HER2 revealed that d16HER2 was optimally functional through a link to SRC activation (pSRC). Clinically, HER2-positive breast cancers from patients who received trastuzumab exhibited a positive correlation in d16HER2 and pSRC abundance, consistent with the mouse genetic results. Moreover, patients expressing high pSRC or an activated "d16HER2 metagene" were found to derive the greatest benefit from trastuzumab treatment. Overall, our results establish the d16HER2 signaling axis as a signature for decreased risk of relapse after trastuzumab treatment. ©2014 American Association for Cancer Research.
Solvent refined coal (SRC) process. Annual technical progress report, January 1979-December 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-11-01
A set of statistically designed experiments was used to study the effects of several important operating variables on coal liquefaction product yield structures. These studies used a Continuous Stirred-Tank Reactor to provide a hydrodynamically well-defined system from which kinetic data could be extracted. An analysis of the data shows that product yield structures can be adequately represented by a correlative model. It was shown that second-order effects (interaction and squared terms) are necessary to provide a good model fit of the data throughout the range studied. Three reports were issued covering the SRC-II database and yields as functions of operatingmore » variables. The results agree well with the generally-held concepts of the SRC reaction process, i.e., liquid phase hydrogenolysis of liquid coal which is time-dependent, thermally activated, catalyzed by recycle ash, and reaction rate-controlled. Four reports were issued summarizing the comprehensive SRC reactor thermal response models and reporting the results of several studies made with the models. Analytical equipment for measuring SRC off-gas composition and simulated distillation of coal liquids and appropriate procedures have been established.« less
Kim, Ye-Ram; Hwang, Jangsun; Koh, Hyun-Jung; Jang, Kiseok; Lee, Jong-Dae; Choi, Jonghoon; Yang, Chul-Su
2016-05-01
Hyper-inflammatory responses triggered by intracellular reactive oxygen species (ROS) can lead to a variety of diseases, including sepsis and colitis. However, the regulators of this process remain poorly defined. In this study, we demonstrate that c-Src is a negative regulator of cellular ROS generation through its binding to p47phox. This molecule also competitively inhibits the NADPH oxidase complex (NOX) assembly. Furthermore, we developed the schizophyllan (SPG)-c-Src SH3 peptide, which is a β-1,3-glucan conjugated c-Src SH3-derived peptide composed of amino acids 91-108 and 121-140 of c-Src. The SPG-SH3 peptide has a significant therapeutic effect on mouse ROS-mediated inflammatory disease models, cecal-ligation-puncture-induced sepsis, and dextran sodium sulfate-induced colitis. It does so by inhibiting the NOX subunit assembly and proinflammatory mediator production. Therefore, the SPG-SH3 peptide is a potential therapeutic agent for ROS-associated lethal inflammatory diseases. Our findings provide clues for the development of new peptide-base drugs that will target p47phox. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vanderploeg, Jessica; Jacobs, J. Roger
2017-01-01
Congenital heart defects, clinically identified in both small and large animals, are multifactorial and complex. Although heritable factors are known to have a role in cardiovascular disease, the full genetic aetiology remains unclear. Model organism research has proven valuable in providing a deeper understanding of the essential factors in heart development. For example, mouse knock-out studies reveal a role for the Integrin adhesion receptor in cardiac tissue. Recent research in Drosophila melanogaster (the fruit fly), a powerful experimental model, has demonstrated that the link between the extracellular matrix and the cell, mediated by Integrins, is required for multiple aspects of cardiogenesis. Here we test the hypothesis that Integrins signal to the heart cells through Src42A kinase. Using the powerful genetics and cell biology analysis possible in Drosophila, we demonstrate that Src42A acts in early events of heart tube development. Careful examination of mutant heart tissue and genetic interaction data suggests that Src42A’s role is independent of Integrin and the Integrin-related Focal Adhesion Kinase. Rather, Src42A acts non-autonomously by promoting programmed cell death of the amnioserosa, a transient tissue that neighbors the developing heart. PMID:29056682
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Chunfa, E-mail: chunfa.huang@case.edu; Department of Medicine, Case Western Reserve University; Rammelkamp Center for Research and Education, MetroHealth System Campus, Cleveland, OH 44106
The glomerular capillary wall, composed of endothelial cells, the glomerular basement membrane and the podocytes, is continually subjected to hemodynamic force arising from tractional stress due to blood pressure and shear stress due to blood flow. Exposure of glomeruli to abnormal hemodynamic force such as hyperfiltration is associated with glomerular injury and progressive renal disease, and the conversion of mechanical stimuli to chemical signals in the regulation of the process is poorly understood in podocytes. By examining DNA fragmentation, apoptotic nuclear changes and cytochrome c release, we found that shear stress induced cell apoptosis in cultured podocytes. Meanwhile, podocytes exposedmore » to shear stress also stimulated c-Src phosphorylation, phospholipase D (PLD) activation and mammalian target of rapamycin (mTOR) signaling. Using the antibodies against c-Src, PLD{sub 1}, and PLD{sub 2} to perform reciprocal co-immunoprecipitations and in vitro PLD activity assay, our data indicated that c-Src interacted with and activated PLD{sub 1} but not PLD{sub 2}. The inhibition of shear stress-induced c-Src phosphorylation by PP{sub 2} (a specific inhibitor of c-Src kinase) resulted in reduced PLD activity. Phosphatidic acid, produced by shear stress-induced PLD activation, stimulated mTOR signaling, and caused podocyte hypertrophy and apoptosis.« less
77 FR 4580 - Alaska Region's Subsistence Resource Commission (SRC) Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-30
... canceled due to a lack of quorum caused by inclement Arctic weather conditions. The NPS has rescheduled... weather or exceptional circumstances. Kobuk Valley National Park SRC Meeting Date and Location: The Kobuk...
Szafran, Adam T; Stephan, Cliff; Bolt, Michael; Mancini, Maureen G; Marcelli, Marco; Mancini, Michael A
2017-01-01
AR-V7 is an androgen receptor (AR) splice variant that lacks the ligand-binding domain and is isolated from prostate cancer cell lines. Increased expression of AR-V7 is associated with the transition from hormone-sensitive prostate cancer to more advanced castration-resistant prostate cancer (CRPC). Due to the loss of the ligand-binding domain, AR-V7 is not responsive to traditional AR-targeted therapies, and the mechanisms that regulate AR-V7 are still incompletely understood. Therefore, we aimed to explore existing classes of small molecules that may regulate AR-V7 expression and intracellular localization and their potential therapeutic role in CRPC. We used AR high-content analysis (AR-HCA) to characterize the effects of a focused library of well-characterized clinical compounds on AR-V7 expression at the single-cell level in PC3 prostate cancer cells stably expressing green fluorescent protein (GFP)-AR-V7 (GFP-AR-V7:PC3). In parallel, an orthogonal AR-HCA screen of a small interfering (si)RNA library targeting 635 protein kinases was performed in GFP-AR-V7:PC3. The effect of the Src-Abl inhibitor PD 180970 was further characterized using cell-proliferation assays, quantitative PCR, and western blot analysis in multiple hormone-sensitive and CRPC cell lines. Compounds that tended to target Akt, Abl, and Src family kinases (SFKs) decreased overall AR-V7 expression, nuclear translocation, absolute nuclear level, and/or altered nuclear distribution. We identified 20 protein kinases that, when knocked down, either decreased nuclear GFP-AR-V7 levels or altered AR-V7 nuclear distribution, a set that included the SFKs Src and Fyn. The Src-Abl dual kinase inhibitor PD180970 decreased expression of AR-V7 by greater than 46% and decreased ligand-independent transcription of AR target genes in the 22RV1 human prostate carcinoma cell line. Further, PD180970 inhibited androgen-independent cell proliferation in endogenous-AR-V7-expressing prostate cancer cell lines and also overcame bicalutamide resistance observed in the 22RV1 cell line. SFKs, especially Src and Fyn, may be important upstream regulators of AR-V7 expression and represent promising targets in a subset of CRPCs expressing high levels of AR-V7. Prostate 77:82-93, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Physics and Innovation: A Large-Company Perspective
NASA Astrophysics Data System (ADS)
Doering, Robert
2013-03-01
With regard to its influence on innovation (i.e., creating new commercial technologies), physics continuously faces the challenge of ``keeping ahead of engineering'' and ``moving on'' to new concepts as well as to potentially new roles with respect to industrial research. For most large companies, the R&D model has undergone significant transformation over the past three decades. This has been driven, in part, by the increasing cost of continuously developing new technologies upon which to base state-of-the-art products. Part of this challenge is to select which new concepts and ``emerging technologies'' to pursue. A poor decision at this point wastes development resources and can be very difficult to overcome later. Therefore, a key feature of many new R&D models is collaboration with entities outside of the corporation. Such partnerships reduce both the cost and risk of exploring multiple lines of research which may lead to new technologies. One flexible approach to organizing R&D partnerships is via the establishment of a consortium. The semiconductor industry has successfully used research consortia since the founding of the Semiconductor Research Corporation (SRC) in 1982 and SEMATECH a few years later. The automotive industry has also used the consortium approach for many years since the formation of the United States Council for Automotive Research (USCAR) in 1992. In the case of the SRC, the principal operating methodology is for the members to create requests for proposals leading to the collective funding of university research. This is often done in partnership with federal agencies. For example, the Focus Center Research Program (FCRP, an SRC subsidiary) is co-funded with DARPA. Another SRC subsidiary, the Nanoelectronics Research Initiative (NRI) is jointly supported with the NSF and NIST. This NRI-agency partnership has partly been enabled by the National Nanotechnology Initiative's Signature Initiative on ``Nanoelectronics for 2020 and Beyond.'' Within the SRC portfolio, the NRI research is particularly ``physics intensive''! Of course, in addition to consortia, the new models typically include external R&D through consulting arrangements, IP licensing, and acquisition of smaller companies that have developed useful new technologies, supported in some cases by SBIRs and other forms of government investment in growth of the economy.
An Efficient, Lossless Database for Storing and Transmitting Medical Images
NASA Technical Reports Server (NTRS)
Fenstermacher, Marc J.
1998-01-01
This research aimed in creating new compression methods based on the central idea of Set Redundancy Compression (SRC). Set Redundancy refers to the common information that exists in a set of similar images. SRC compression methods take advantage of this common information and can achieve improved compression of similar images by reducing their Set Redundancy. The current research resulted in the development of three new lossless SRC compression methods: MARS (Median-Aided Region Sorting), MAZE (Max-Aided Zero Elimination) and MaxGBA (Max-Guided Bit Allocation).
Hatta, M; Hayasaka, S; Kato, T; Kadoi, C
2000-01-01
A 14-year-old girl complained of a sudden decrease in right visual acuity. The patient had night blindness, a mottled retina but no pigments, extinguished scotopic electroretinographic response, central scotoma in the right eye and rhegmatogenous retinal detachment. She had initially received laser photocoagulation around the retinal tear and then corticosteroid therapy, cryoretinopexy and segmental buckling. Her right visual acuity increased to 1.0. The association of retinitis pigmentosa sine pigmento, retrobulbar optic neuritis and rhegmatogenous retinal detachment, as demonstrated in our patient, may be uncommon. Copyright 2000 S. Karger AG, Basel
Song, Xiulong; Wei, Zhengxi; Shaikh, Zahir A
2015-08-15
Cadmium (Cd) is a common environmental toxicant and an established carcinogen. Epidemiological studies implicate Cd with human breast cancer. Low micromolar concentrations of Cd promote proliferation of human breast cancer cells in vitro. The growth promotion of breast cancer cells is associated with the activation of MAPK/ERK pathway. This study explores the mechanism of Cd-induced activation of MAPK/ERK pathway. Specifically, the role of cell surface receptors ERα, EGFR, and Src kinase was evaluated in human breast cancer MCF-7 cells treated with 1-3μM Cd. The activation of ERK was studied using a serum response element (SRE) luciferase reporter assay. Receptor phosphorylation was detected by Western blot analyses. Cd treatment increased both the SRE reporter activity and ERK1/2 phosphorylation in a concentration-dependent manner. Cd treatment had no effect on reactive oxygen species (ROS) generation. Also, blocking the entry of Cd into the cells with manganese did not diminish Cd-induced activation of MAPK/ERK. These results suggest that the effect of Cd was likely not caused by intracellular ROS generation, but through interaction with the membrane receptors. While Cd did not appear to activate either EGFR or Src kinase, their inhibition completely blocked the Cd-induced activation of ERK as well as cell proliferation. Similarly, silencing ERα with siRNA or use of ERα antagonist blocked the effects of Cd. Based on these results, it is concluded that not only ERα, but also basal activities of EGFR and Src kinase are essential for Cd-induced signal transduction and activation of MAPK/ERK pathway for breast cancer cell proliferation. Copyright © 2015 Elsevier Inc. All rights reserved.
Lancaster, Melissa A; Olson, Daniel V; McCrea, Michael A; Nelson, Lindsay D; LaRoche, Ashley A; Muftuler, L Tugan
2016-11-01
Recent neuroimaging studies have suggested that following sport-related concussion (SRC) physiological brain alterations may persist after an athlete has shown full symptom recovery. Diffusion MRI is a versatile technique to study white matter injury following SRC, yet serial follow-up studies in the very acute stages following SRC utilizing a comprehensive set of diffusion metrics are lacking. The aim of the current study was to characterize white matter changes within 24 hours of concussion in a group of high school and collegiate athletes, using Diffusion Tensor and Diffusion Kurtosis Tensor metrics. Participants were reassessed a week later. At 24 hours post-injury, the concussed group reported significantly more concussion symptoms than a well-matched control group and demonstrated poorer performance on a cognitive screening measure, yet these differences were nonsignificant at the 8-day follow-up. Similarly, within 24-hours after injury, the concussed group exhibited a widespread decrease in mean diffusivity, increased axial kurtosis and, to a lesser extent, decreased axial and radial diffusivities compared with control subjects. At 8 days post injury, the differences in these diffusion metrics were even more widespread in the injured athletes, despite improvement of symptoms and cognitive performance. These MRI findings suggest that the athletes might not have reached full physiological recovery a week after the injury. These findings have significant implications for the management of SRC because allowing an athlete to return to play before the brain has fully recovered from injury may have negative consequences. Hum Brain Mapp 37:3821-3834, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Calmus, Yvon; Kamar, Nassim; Gugenheim, Jean; Duvoux, Christophe; Ducerf, Christian; Wolf, Philippe; Samuel, Didier; Vanlemmens, Claire; Neau-Cransac, Martine; Salamé, Ephrem; Chazouillères, Olivier; Declerck, Nicole; Pageaux, Georges-Philippe; Dubel, Laurence; Rostaing, Lionel
2010-06-27
Calcineurin inhibitor-induced renal dysfunction is a major problem in liver transplantation. Interleukin-2 receptor antagonist induction followed by delayed tacrolimus (Tac) administration may minimize the renal insult without compromising immunoprotection. This open, randomized, multicenter trial evaluated the benefit of daclizumab induction with delayed Tac on renal function at 6 months; an observational study was continued for 18 months. Liver transplant patients with a 12-hr serum creatinine (SrC) level less than 180 micromol/L received either delayed Tac with daclizumab induction (n=98) or standard Tac (n=101) both combined with mycophenolate mofetil and steroids. The primary endpoint was the incidence of SrC level more than 130 micrommol/L at 6 months. The incidence was 22.4% with delayed Tac and 29.7% with standard Tac (P=ns), which remained unchanged at 12 months (21.6% and 23.9%) but increasing slightly at 24 months (29.0% and 32.9%), respectively. A post hoc analysis of renal function was done based on patients stratification by SrC at 12 hr (
Gupte, Sachin A; Kaminski, Pawel M; George, Shimran; Kouznestova, Lioubov; Olson, Susan C; Mathew, Rajamma; Hintze, Thomas H; Wolin, Michael S
2009-04-01
Protein kinase C (PKC) stimulation of NAD(P)H oxidases (Nox) is an important component of multiple vascular disease processes; however, the relationship between oxidase activation and the regulation of vascular smooth muscle contraction by PKC remains poorly understood. Therefore, we examined the signaling cascade of PKC-elicited Nox activation and the role of superoxide and hydrogen peroxide in mediating PKC-induced vascular contraction. Endothelium-denuded bovine coronary arteries showed a PKC-dependent basal production of lucigenin (5 muM)-detected Nox oxidase-derived superoxide, which was stimulated fourfold by PKC activation with 10 muM phorbol 12,13-dibutyrate (PDBu). PDBu appeared to increase superoxide generation by Nox2 through both p47(phox) and peroxide-dependent Src activation mechanisms based on the actions of inhibitors, properties of Src phosphorylation, and the loss of responses in aorta from mice deficient in Nox2 and p47(phox). The actions of inhibitors of contractile regulating mechanisms, scavengers of superoxide and peroxide, and responses in knockout mouse aortas suggest that a major component of the contraction elicited by PDBu appeared to be mediated through peroxide derived from Nox2 activation stimulating force generation through Rho kinase and calmodulin kinase-II mechanisms. Superoxide generated by PDBu also attenuated relaxation to nitroglycerin. Peroxide-derived from Nox2 activation by PKC appeared to be a major contributor to the thromboxane A(2) receptor agonist U46619 (100 nM)-elicited contraction of coronary arteries. Thus a p47(phox) and Src kinase activation of peroxide production by Nox2 appears to be an important contributor to vascular contractile mechanisms mediated through activation of PKC.
Wang, Yiming; Gratzke, Christian; Tamalunas, Alexander; Rutz, Beata; Ciotkowska, Anna; Strittmatter, Frank; Herlemann, Annika; Janich, Sophie; Waidelich, Raphaela; Liu, Chunxiao; Stief, Christian G; Hennenberg, Martin
2016-12-01
In benign prostatic hyperplasia, increased prostate smooth muscle tone and prostate volume may contribute alone or together to urethral obstruction and voiding symptoms. Consequently, it is assumed there is a connection between smooth muscle tone and growth in the prostate, but any molecular basis for this is poorly understood. Here, we examined effects of Src family kinase (SFK) inhibitors on prostate contraction and growth of stromal cells. SFK inhibitors, AZM475271 and PP2, were applied to human prostate tissues to assess effects on smooth muscle contraction, and to cultured stromal (WPMY-1) and c-Src-deficient cells to examine effects on proliferation, actin organization and viability. SFKs were detected by real time PCR, western blot and immunofluorescence in human prostate tissues, some being located to smooth muscle cells. AZM475271 (10 μM) and PP2 (10 μM) inhibited SFK in prostate tissues and WPMY-1 cells. Both inhibitors reduced α 1 -adrenoceptor-mediated and neurogenic contraction of prostate strips. This may result from cytoskeletal deorganization, which was observed in response to AZM475271 and PP2 in WPMY-1 cells by staining of actin filaments with phalloidin. This was paralleled by reduced proliferation of wildtype but not of c-Src-deficient cells; cytotoxicity was mainly observed at higher concentrations (>50 μM). In human prostate, smooth muscle tone and growth are both controlled by an SFK-dependent process, which may explain their common role in bladder outlet obstruction. Targeting prostate smooth muscle tone and prostate growth simultaneously by a single compound may, in principal, be possible. © 2016 The British Pharmacological Society.
Sufrinko, Alicia M; Marchetti, Gregory F; Cohen, Paul E; Elbin, R J; Re, Valentina; Kontos, Anthony P
2017-04-01
A sport-related concussion (SRC) is a heterogeneous injury that requires a multifaceted and comprehensive approach for diagnosis and management, including symptom reports, vestibular/ocular motor assessments, and neurocognitive testing. To determine which acute (eg, within 7 days) vestibular, ocular motor, neurocognitive, and symptom impairments predict the duration of recovery after an SRC. Cohort study (prognosis); Level of evidence, 2. Sixty-nine patients with a mean age of 15.3 ± 1.9 years completed a neurocognitive, vestibular/ocular motor, and symptom assessment within 7 days of a diagnosed concussion. Patients were grouped by recovery time: ≤14 days (n = 27, 39.1%), 15-29 days (n = 25, 36.2%), and 30-90 days (n = 17, 24.6%). Multinomial regression was used to identify the best subset of predictors associated with prolonged recovery relative to ≤14 days. Acute visual motor speed and cognitive-migraine-fatigue symptoms were associated with an increased likelihood of recovery times of 30-90 days and 15-29 days relative to a recovery time of ≤14 days. A model with visual motor speed and cognitive-migraine-fatigue symptoms within the first 7 days of an SRC was 87% accurate at identifying patients with a recovery time of 30-90 days. The current study identified cognitive-migraine-fatigue symptoms and visual motor speed as the most robust predictors of protracted recovery after an SRC according to the Post-concussion Symptom Scale, Immediate Post-concussion Assessment and Cognitive Testing, and Vestibular/Ocular Motor Screening (VOMS). While VOMS components were sensitive in identifying a concussion, they were not robust predictors for recovery. Clinicians may consider particular patterns of performance on clinical measures when providing treatment recommendations and discussing anticipated recovery with patients.