Differential subcellular membrane recruitment of Src may specify its downstream signalling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diesbach, Philippe de; Medts, Thierry; Carpentier, Sarah
2008-04-15
Most Src family members are diacylated and constitutively associate with membrane 'lipid rafts' that coordinate signalling. Whether the monoacylated Src, frequently hyperactive in carcinomas, also localizes at 'rafts' remains controversial. Using polarized MDCK cells expressing the thermosensitive v-Src/tsLA31 variant, we here addressed how Src tyrosine-kinase activation may impact on its (i) membrane recruitment, in particular to 'lipid rafts'; (ii) subcellular localization; and (iii) signalling. The kinetics of Src-kinase thermoactivation correlated with its recruitment from the cytosol to sedimentable membranes where Src largely resisted solubilisation by non-ionic detergents at 4 deg. C and floated into sucrose density gradients like caveolin-1 andmore » flotillin-2, i.e. 'lipid rafts'. By immunofluorescence, activated Src showed a dual localization, at apical endosomes/macropinosomes and at the apical plasma membrane. The plasma membrane Src pool did not colocalize with caveolin-1 and flotillin-2, but extensively overlapped GM1 labelling by cholera toxin. Severe ({approx} 70%) cholesterol extraction with methyl-{beta}-cyclodextrin (M{beta}CD) did not abolish 'rafts' floatation, but strongly decreased Src association with floating 'rafts' and abolished its localization at the apical plasma membrane. Src activation independently activated first the MAP-kinase - ERK1/2 pathway, then the PI3-kinase - Akt pathway. MAP-kinase - ERK1/2 activation was insensitive to M{beta}CD, which suppressed Akt phosphorylation and apical endocytosis induced by Src, both depending on the PI3-kinase pathway. We therefore suggest that activated Src is recruited at two membrane compartments, allowing differential signalling, first via ERK1/2 at 'non-raft' domains on endosomes, then via PI3-kinase-Akt on a distinct set of 'rafts' at the apical plasma membrane. Whether this model is applicable to c-Src remains to be examined.« less
Fasbender, Frank; Claus, Maren; Wingert, Sabine; Sandusky, Mina; Watzl, Carsten
2017-01-01
In a synthetic biology approach using Schneider (S2) cells, we show that SLP-76 is directly phosphorylated at tyrosines Y113 and Y128 by SYK in the presence of ITAM-containing adapters such as CD3ζ, DAP12, or FcεRγ. This phosphorylation was dependent on at least one functional ITAM and a functional SH2 domain within SYK. Inhibition of Src-kinases by inhibitors PP1 and PP2 did not reduce SLP-76 phosphorylation in S2 cells, suggesting an ITAM and SYK dependent, but Src-kinase independent signaling pathway. This direct ITAM/SYK/SLP-76 signaling pathway therefore differs from previously described ITAM signaling. However, the SYK-family kinase ZAP70 required the additional co-expression of the Src-family kinases Fyn or Lck to efficiently phosphorylate SLP-76 in S2 cells. This difference in Src-family kinase dependency of SYK versus ZAP70-mediated ITAM-based signaling was further demonstrated in human lymphocytes. ITAM signaling in ZAP70-expressing T cells was dependent on the activity of Src-family kinases. In contrast, Src-family kinases were partially dispensable for ITAM signaling in SYK-expressing B cells or in natural killer cells, which express SYK and ZAP70. This demonstrates that SYK can signal using a Src-kinase independent ITAM-based signaling pathway, which may be involved in calibrating the threshold for lymphocyte activation. PMID:28736554
Fasbender, Frank; Claus, Maren; Wingert, Sabine; Sandusky, Mina; Watzl, Carsten
2017-01-01
In a synthetic biology approach using Schneider (S2) cells, we show that SLP-76 is directly phosphorylated at tyrosines Y113 and Y128 by SYK in the presence of ITAM-containing adapters such as CD3ζ, DAP12, or FcεRγ. This phosphorylation was dependent on at least one functional ITAM and a functional SH2 domain within SYK. Inhibition of Src-kinases by inhibitors PP1 and PP2 did not reduce SLP-76 phosphorylation in S2 cells, suggesting an ITAM and SYK dependent, but Src-kinase independent signaling pathway. This direct ITAM/SYK/SLP-76 signaling pathway therefore differs from previously described ITAM signaling. However, the SYK-family kinase ZAP70 required the additional co-expression of the Src-family kinases Fyn or Lck to efficiently phosphorylate SLP-76 in S2 cells. This difference in Src-family kinase dependency of SYK versus ZAP70-mediated ITAM-based signaling was further demonstrated in human lymphocytes. ITAM signaling in ZAP70-expressing T cells was dependent on the activity of Src-family kinases. In contrast, Src-family kinases were partially dispensable for ITAM signaling in SYK-expressing B cells or in natural killer cells, which express SYK and ZAP70. This demonstrates that SYK can signal using a Src-kinase independent ITAM-based signaling pathway, which may be involved in calibrating the threshold for lymphocyte activation.
A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation.
Dikic, I; Tokiwa, G; Lev, S; Courtneidge, S A; Schlessinger, J
1996-10-10
The mechanisms by which mitogenic G-protein-coupled receptors activate the MAP kinase signalling pathway are poorly understood. Candidate protein tyrosine kinases that link G-protein-coupled receptors with MAP kinase include Src family kinases, the epidermal growth factor receptor, Lyn and Syk. Here we show that lysophosphatidic acid (LPA) and bradykinin induce tyrosine phosphorylation of Pyk2 and complex formation between Pyk2 and activated Src. Moreover, tyrosine phosphorylation of Pyk2 leads to binding of the SH2 domain of Src to tyrosine 402 of Pyk2 and activation of Src. Transient overexpression of a dominant interfering mutant of Pyk2 or the protein tyrosine kinase Csk reduces LPA- or bradykinin-induced activation of MAP kinase. LPA- or bradykinin-induced MAP kinase activation was also inhibited by overexpression of dominant interfering mutants of Grb2 and Sos. We propose that Pyk2 acts with Src to link Gi- and Gq-coupled receptors with Grb2 and Sos to activate the MAP kinase signalling pathway in PC12 cells.
Shaifta, Yasin; Irechukwu, Nneka; Prieto‐Lloret, Jesus; MacKay, Charles E; Marchon, Keisha A; Ward, Jeremy P T
2015-01-01
Background and Purpose The importance of tyrosine kinases in airway smooth muscle (ASM) contraction is not fully understood. The aim of this study was to investigate the role of Src‐family kinases (SrcFK) and focal adhesion kinase (FAK) in GPCR‐mediated ASM contraction and associated signalling events. Experimental Approach Contraction was recorded in intact or α‐toxin permeabilized rat bronchioles. Phosphorylation of SrcFK, FAK, myosin light‐chain‐20 (MLC20) and myosin phosphatase targeting subunit‐1 (MYPT‐1) was evaluated in cultured human ASM cells (hASMC). [Ca2+]i was evaluated in Fura‐2 loaded hASMC. Responses to carbachol (CCh) and bradykinin (BK) and the contribution of SrcFK and FAK to these responses were determined. Key Results Contractile responses in intact bronchioles were inhibited by antagonists of SrcFK, FAK and Rho‐kinase, while after α‐toxin permeabilization, they were sensitive to inhibition of SrcFK and Rho‐kinase, but not FAK. CCh and BK increased phosphorylation of MYPT‐1 and MLC20 and auto‐phosphorylation of SrcFK and FAK. MYPT‐1 phosphorylation was sensitive to inhibition of Rho‐kinase and SrcFK, but not FAK. Contraction induced by SR Ca2+ depletion and equivalent [Ca2+]i responses in hASMC were sensitive to inhibition of both SrcFK and FAK, while depolarization‐induced contraction was sensitive to FAK inhibition only. SrcFK auto‐phosphorylation was partially FAK‐dependent, while FAK auto‐phosphorylation was SrcFK‐independent. Conclusions and Implications SrcFK mediates Ca2+‐sensitization in ASM, while SrcFK and FAK together and individually influence multiple Ca2+ influx pathways. Tyrosine phosphorylation is therefore a key upstream signalling event in ASM contraction and may be a viable target for modulating ASM tone in respiratory disease. PMID:26294392
Signaling network of the Btk family kinases.
Qiu, Y; Kung, H J
2000-11-20
The Btk family kinases represent new members of non-receptor tyrosine kinases, which include Btk/Atk, Itk/Emt/Tsk, Bmx/Etk, and Tec. They are characterized by having four structural modules: PH (pleckstrin homology) domain, SH3 (Src homology 3) domain, SH2 (Src homology 2) domain and kinase (Src homology 1) domain. Increasing evidence suggests that, like Src-family kinases, Btk family kinases play central but diverse modulatory roles in various cellular processes. They participate in signal transduction in response to virtually all types of extracellular stimuli which are transmitted by growth factor receptors, cytokine receptors, G-protein coupled receptors, antigen-receptors and integrins. They are regulated by many non-receptor tyrosine kinases such as Src, Jak, Syk and FAK family kinases. In turn, they regulate many of major signaling pathways including those of PI3K, PLCgamma and PKC. Both genetic and biochemical approaches have been used to dissect the signaling pathways and elucidate their roles in growth, differentiation and apoptosis. An emerging new role of this family of kinases is cytoskeletal reorganization and cell motility. The physiological importance of these kinases was amply demonstrated by their link to the development of immunodeficiency diseases, due to germ-line mutations. The present article attempts to review the structure and functions of Btk family kinases by summarizing our current knowledge on the interacting partners associated with the different modules of the kinases and the diverse signaling pathways in which they are involved.
van Oosterwijk, J G; van Ruler, M A J H; Briaire-de Bruijn, I H; Herpers, B; Gelderblom, H; van de Water, B; Bovée, J V M G
2013-01-01
Background: Chondrosarcomas are malignant cartilage-forming tumours of bone. Because of their resistance to conventional chemotherapy and radiotherapy, currently no treatment strategies exist for unresectable and metastatic chondrosarcoma. Previously, PI3K/AKT/GSK3β and Src kinase pathways were shown to be activated in chondrosarcoma cell lines. Our aim was to investigate the role of these kinases in chemoresistance and migration in chondrosarcoma in relation to TP53 mutation status. Methods: We used five conventional and three dedifferentiated chondrosarcoma cell lines and investigated the effect of PI3K/AKT/GSK3β pathway inhibition (enzastaurin) and Src pathway inhibition (dasatinib) in chemoresistance using WST assay and live cell imaging with AnnexinV staining. Immunohistochemistry on tissue microarrays (TMAs) containing 157 cartilaginous tumours was performed for Src family members. Migration assays were performed with the RTCA xCelligence System. Results: Src inhibition was found to overcome chemoresistance, to induce apoptosis and to inhibit migration. Cell lines with TP53 mutations responded better to combination therapy than wild-type cell lines (P=0.002). Tissue microarray immunohistochemistry confirmed active Src (pSrc) signalling, with Fyn being most abundantly expressed (76.1%). Conclusion: These results strongly indicate Src family kinases, in particular Fyn, as a potential target for the treatment of inoperable and metastatic chondrosarcomas, and to sensitise for doxorubicin especially in the presence of TP53 mutations. PMID:23922104
Activation pathway of Src kinase reveals intermediate states as novel targets for drug design
Shukla, Diwakar; Meng, Yilin; Roux, Benoît; Pande, Vijay S.
2014-01-01
Unregulated activation of Src kinases leads to aberrant signaling, uncontrolled growth, and differentiation of cancerous cells. Reaching a complete mechanistic understanding of large scale conformational transformations underlying the activation of kinases could greatly help in the development of therapeutic drugs for the treatment of these pathologies. In principle, the nature of conformational transition could be modeled in silico via atomistic molecular dynamics simulations, although this is very challenging due to the long activation timescales. Here, we employ a computational paradigm that couples transition pathway techniques and Markov state model-based massively distributed simulations for mapping the conformational landscape of c-src tyrosine kinase. The computations provide the thermodynamics and kinetics of kinase activation for the first time, and help identify key structural intermediates. Furthermore, the presence of a novel allosteric site in an intermediate state of c-src that could be potentially utilized for drug design is predicted. PMID:24584478
Fusaki, N; Iwamatsu, A; Iwashima, M; Fujisawa, J i
1997-03-07
The Src family protein-tyrosine kinase, Fyn, is associated with the T cell receptor (TCR) and plays an important role in TCR-mediated signaling. We found that a human T cell leukemia virus type 1-infected T cell line, Hayai, overexpressed Fyn. To identify the molecules downstream of Fyn, we analyzed the tyrosine phosphorylation of cellular proteins in the cells. In Hayai, a 68-kDa protein was constitutively tyrosine-phosphorylated. The 68-kDa protein was coimmunoprecipitated with various signaling proteins such as phospholipase C gamma1, the phosphatidylinositol 3-kinase p85 subunit, Grb2, SHP-1, Cbl, and Jak3, implying that the protein might function as an adapter. Purification and microsequencing of this protein revealed that it was the RNA-binding protein, Sam68 (Src associated in mitosis, 68 kDa). Sam68 was associated with the Src homology 2 and 3 domains of Fyn and also those of another Src family kinase, Lck. CD3 cross-linking induced tyrosine phosphorylation of Sam68 in uninfected T cells. These data suggest that Sam68 participates in the signal transduction pathway downstream of TCR-coupled Src family kinases Fyn and Lck in lymphocytes, that is not only in the mitotic pathway downstream of c-Src in fibroblasts.
Src promotes cutaneous wound healing by regulating MMP-2 through the ERK pathway.
Wu, Xue; Yang, Longlong; Zheng, Zhao; Li, Zhenzhen; Shi, Jihong; Li, Yan; Han, Shichao; Gao, Jianxin; Tang, Chaowu; Su, Linlin; Hu, Dahai
2016-03-01
Wound healing is a highly orchestrated, multistep process, and delayed wound healing is a significant symptomatic clinical problem. Keratinocyte migration and re-epithelialization play the most important roles in wound healing, as they determine the rate of wound healing. In our previous study, we found that Src, one of the oldest proto‑oncogenes encoding a membrane-associated, non-receptor protein tyrosine kinase, promotes keratinocyte migration. We therefore hypothesized that Src promotes wound healing through enhanced keratinocyte migration. In order to test this hypothesis, vectors for overexpressing Src and small interfering RNAs (siRNAs) for silencing of Src were used in the present study. We found that the overexpression of Src accelerated keratinocyte migration in vitro and promoted wound healing in vivo without exerting a marked effect on cell proliferation. The extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways play important roles in Src-accelerated keratinocyte migration. Further experiments demonstrated that Src induced the protein expression of matrix metalloproteinase-2 (MMP-2) and decreased the protein expression of E-cadherin. We suggest that ERK signaling is involved in the Src-mediated regulation of MMP-2 expression. The present study provided evidence that Src promotes keratinocyte migration and cutaneous wound healing, in which the regulation of MMP-2 through the ERK pathway plays an important role, and thus we also demonstrated a potential therapeutic role for Src in cutaneous wound healing.
Tan, Boon Siang Nicholas; Kwek, Joly; Wong, Chong Kum Edwin; Saner, Nicholas J.; Yap, Charlotte; Felquer, Fernando; Morris, Michael B.; Gardner, David K.; Rathjen, Peter D.; Rathjen, Joy
2016-01-01
Multiple pluripotent cell populations, which together comprise the pluripotent cell lineage, have been identified. The mechanisms that control the progression between these populations are still poorly understood. The formation of early primitive ectoderm-like (EPL) cells from mouse embryonic stem (mES) cells provides a model to understand how one such transition is regulated. EPL cells form from mES cells in response to l-proline uptake through the transporter Slc38a2. Using inhibitors of cell signaling we have shown that Src family kinases, p38 MAPK, ERK1/2 and GSK3β are required for the transition between mES and EPL cells. ERK1/2, c-Src and GSK3β are likely to be enforcing a receptive, primed state in mES cells, while Src family kinases and p38 MAPK are involved in the establishment of EPL cells. Inhibition of these pathways prevented the acquisition of most, but not all, features of EPL cells, suggesting that other pathways are required. L-proline activation of differentiation is mediated through metabolism and changes to intracellular metabolite levels, specifically reactive oxygen species. The implication of multiple signaling pathways in the process suggests a model in which the context of Src family kinase activation determines the outcomes of pluripotent cell differentiation. PMID:27723793
Novel Bioluminescent Activatable Reporter for Src Tyrosine Kinase Activity in Living Mice
Leng, Weibing; Li, Dezhi; Chen, Liang; Xia, Hongwei; Tang, Qiulin; Chen, Baoqin; Gong, Qiyong; Gao, Fabao; Bi, Feng
2016-01-01
Aberrant activation of the Src kinase is implicated in the development of a variety of human malignancies. However, it is almost impossible to monitor Src activity in an in vivo setting with current biochemical techniques. To facilitate the noninvasive investigation of the activity of Src kinase both in vitro and in vivo, we developed a genetically engineered, activatable bioluminescent reporter using split-luciferase complementation. The bioluminescence of this reporter can be used as a surrogate for Src activity in real time. This hybrid luciferase reporter was constructed by sandwiching a Src-dependent conformationally responsive unit (SH2 domain-Srcpep) between the split luciferase fragments. The complementation bioluminescence of this reporter was dependent on the Src activity status. In our study, Src kinase activity in cultured cells and tumor xenografts was monitored quantitatively and dynamically in response to clinical small-molecular kinase inhibitors, dasatinib and saracatinib. This system was also applied for high-throughput screening of Src inhibitors against a kinase inhibitor library in living cells. These results provide unique insights into drug development and pharmacokinetics/phoarmocodynamics of therapeutic drugs targeting Src signaling pathway enabling the optimization of drug administration schedules for maximum benefit. Using both Firefly and Renilla luciferase imaging, we have successfully monitored Src tyrosine kinase activity and Akt serine/threonine kinase activity concurrently in one tumor xenograft. This dual luciferase reporter imaging system will be helpful in exploring the complex signaling networks in vivo. The strategies reported here can also be extended to study and image other important kinases and the cross-talks among them. PMID:26941850
Bikis, Christos; Moris, Demetrios; Vasileiou, Ioanna; Patsouris, Eustratios; Theocharis, Stamatios
2015-04-01
The focal adhesion kinase (FAK) and the Src families of kinases are subfamilies of the non-receptor protein tyrosine kinases. FAK activity is regulated by gene amplification, alternative splicing and phosporylation/dephosphorylation. FAK/Src complex has been found to participate through various pathways in neuronal models of ischemia-reperfusion injury (IRI) with conflicting results. The aim of the present review is to summarize the currently available data on this subject. The MEDLINE/PubMed database was searched for publications with the medical subject heading IRI and FAK and/or Src, nervous system. We restricted our search till 2014. We identified 93 articles that were available in English as abstracts or/and full-text articles that were deemed appropriate for our review. FAK has been found to have a beneficial preconditioning effect on IRI through activation via the protein kinase C (PKC) pathway by anesthetic agents. Of great importance are the interactions between FAK/Src and VEGF that has been already detected as a protective mean for IRI. The effect of VEGF administration might depend on dose as well as on time of administration. A Ca(2+)/calmodulin-dependent protein kinase II or PKC inhibitors seem to have protective effects on IRI by inhibiting ion channels activation.
A Protein Scaffold Coordinates SRC-Mediated JNK Activation in Response to Metabolic Stress.
Kant, Shashi; Standen, Claire L; Morel, Caroline; Jung, Dae Young; Kim, Jason K; Swat, Wojciech; Flavell, Richard A; Davis, Roger J
2017-09-19
Obesity is a major risk factor for the development of metabolic syndrome and type 2 diabetes. How obesity contributes to metabolic syndrome is unclear. Free fatty acid (FFA) activation of a non-receptor tyrosine kinase (SRC)-dependent cJun NH 2 -terminal kinase (JNK) signaling pathway is implicated in this process. However, the mechanism that mediates SRC-dependent JNK activation is unclear. Here, we identify a role for the scaffold protein JIP1 in SRC-dependent JNK activation. SRC phosphorylation of JIP1 creates phosphotyrosine interaction motifs that bind the SH2 domains of SRC and the guanine nucleotide exchange factor VAV. These interactions are required for SRC-induced activation of VAV and the subsequent engagement of a JIP1-tethered JNK signaling module. The JIP1 scaffold protein, therefore, plays a dual role in FFA signaling by coordinating upstream SRC functions together with downstream effector signaling by the JNK pathway. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Fajer, Mikolai; Meng, Yilin; Roux, Benoît
2017-04-20
Tyrosine kinases are important cellular signaling allosteric enzymes that regulate cell growth, proliferation, metabolism, differentiation, and migration. Their activity must be tightly controlled, and malfunction can lead to a variety of diseases, particularly cancer. The nonreceptor tyrosine kinase c-Src, a prototypical model system and a representative member of the Src-family, functions as complex multidomain allosteric molecular switches comprising SH2 and SH3 domains modulating the activity of the catalytic domain. The broad picture of self-inhibition of c-Src via the SH2 and SH3 regulatory domains is well characterized from a structural point of view, but a detailed molecular mechanism understanding is nonetheless still lacking. Here, we use advanced computational methods based on all-atom molecular dynamics simulations with explicit solvent to advance our understanding of kinase activation. To elucidate the mechanism of regulation and self-inhibition, we have computed the pathway and the free energy landscapes for the "inactive-to-active" conformational transition of c-Src for different configurations of the SH2 and SH3 domains. Using the isolated c-Src catalytic domain as a baseline for comparison, it is observed that the SH2 and SH3 domains, depending upon their bound orientation, promote either the inactive or active state of the catalytic domain. The regulatory structural information from the SH2-SH3 tandem is allosterically transmitted via the N-terminal linker of the catalytic domain. Analysis of the conformational transition pathways also illustrates the importance of the conserved tryptophan 260 in activating c-Src, and reveals a series of concerted events during the activation process.
Li, Lei; Hisamoto, Koji; Kim, Kyung Hee; Haynes, M Page; Bauer, Philip M; Sanjay, Archana; Collinge, Mark; Baron, Roland; Sessa, William C; Bender, Jeffrey R
2007-10-16
Little is known about the tyrosine kinase c-Src's function in the systemic circulation, in particular its role in arterial responses to hormonal stimuli. In human aortic and venous endothelial cells, c-Src is indispensable for 17beta-estradiol (E2)-stimulated phosphatidylinositol 3-kinase/Akt/endothelial NO synthase (eNOS) pathway activation, a possible mechanism in E2-mediated vascular protection. Here we show that c-Src supports basal and E2-stimulated NO production and is required for E2-induced vasorelaxation in murine aortas. Only membrane c-Src is structurally and functionally involved in E2-induced eNOS activation. Independent of c-Src kinase activity, c-Src is associated with an N-terminally truncated estrogen receptor alpha variant (ER46) and eNOS in the plasma membrane through its "open" (substrate-accessible) conformation. In the presence of E2, c-Src kinase is activated by membrane ER46 and in turn phosphorylates ER46 for subsequent ER46 and c-Src membrane recruitment, the assembly of an eNOS-centered membrane macrocomplex, and membrane-initiated eNOS activation. Overall, these results provide insights into a critical role for the tyrosine kinase c-Src in estrogen-stimulated arterial responses, and in membrane-initiated rapid signal transduction, for which obligate complex assembly and localization require the c-Src substrate-accessible structure.
Crossthwaite, Andrew J; Valli, Haseeb; Williams, Robert J
2004-03-01
Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.
Tu, Chun; Ortega-Cava, Cesar F; Winograd, Paul; Stanton, Marissa Jo; Reddi, Alagarsamy Lakku; Dodge, Ingrid; Arya, Ranjana; Dimri, Manjari; Clubb, Robert J; Naramura, Mayumi; Wagner, Kay-Uwe; Band, Vimla; Band, Hamid
2010-09-14
Active Src localization at focal adhesions (FAs) is essential for cell migration. How this pool is linked mechanistically to the large pool of Src at late endosomes (LEs)/lysosomes (LY) is not well understood. Here, we used inducible Tsg101 gene deletion, TSG101 knockdown, and dominant-negative VPS4 expression to demonstrate that the localization of activated cellular Src and viral Src at FAs requires the endosomal-sorting complexes required for transport (ESCRT) pathway. Tsg101 deletion also led to impaired Src-dependent activation of STAT3 and focal adhesion kinase and reduced cell migration. Impairment of the ESCRT pathway or Rab7 function led to the accumulation of active Src at aberrant LE/LY compartments followed by its loss. Analyses using fluorescence recovery after photo-bleaching show that dynamic mobility of Src in endosomes is ESCRT pathway-dependent. These results reveal a critical role for an ESCRT pathway-dependent LE/LY trafficking step in Src function by promoting localization of active Src to FAs.
Computational Study of the “DFG-Flip” Conformational Transition in c-Abl and c-Src Tyrosine Kinases
2015-01-01
Protein tyrosine kinases are crucial to cellular signaling pathways regulating cell growth, proliferation, metabolism, differentiation, and migration. To maintain normal regulation of cellular signal transductions, the activities of tyrosine kinases are also highly regulated. The conformation of a three-residue motif Asp-Phe-Gly (DFG) near the N-terminus of the long “activation” loop covering the catalytic site is known to have a critical impact on the activity of c-Abl and c-Src tyrosine kinases. A conformational transition of the DFG motif can switch the enzyme from an active (DFG-in) to an inactive (DFG-out) state. In the present study, the string method with swarms-of-trajectories was used to computationally determine the reaction pathway connecting the two end-states, and umbrella sampling calculations were carried out to characterize the thermodynamic factors affecting the conformations of the DFG motif in c-Abl and c-Src kinases. According to the calculated free energy landscapes, the DFG-out conformation is clearly more favorable in the case of c-Abl than that of c-Src. The calculations also show that the protonation state of the aspartate residue in the DFG motif strongly affects the in/out conformational transition in c-Abl, although it has a much smaller impact in the case of c-Src due to local structural differences. PMID:25548962
Oykhman, Paul; Timm-McCann, Martina; Xiang, Richard F.; Islam, Anowara; Li, Shu Shun; Stack, Danuta; Huston, Shaunna M.; Ma, Ling Ling
2013-01-01
Natural killer (NK) cells directly recognize and kill fungi, such as the pathogenic fungus Cryptococcus neoformans, via cytolytic mechanisms. However, the precise signaling pathways governing this NK cell microbicidal activity and the implications for fungal recognition are still unknown. Previously, it was reported that NK cell anticryptococcal activity is mediated through a conserved phosphatidylinositol 3-kinase–extracellular signal-regulated kinase 1/2 (PI3K-ERK1/2) pathway. Using YT (a human NK-like cell line) and primary human NK cells, we sought to identify the upstream, receptor-proximal signaling elements that led to fungal cytolysis. We demonstrate that Src family kinases were activated in response to C. neoformans. Furthermore, pharmacologic inhibition with an Src kinase inhibitor blocked C. neoformans-induced downstream activation of PI3K and ERK1/2 and abrogated cryptococcal killing. At the same time, the inhibitor disrupted the polarization of perforin-containing granules toward the NK cell-cryptococcal synapse but had no effect on conjugate formation between the organism and the NK cell. Finally, small interfering RNA (siRNA) double (but not single) knockdown of two Src family kinases, Fyn and Lyn, blocked cryptococcal killing. Together these data demonstrate a mechanism whereby the Src family kinases, Fyn and Lyn, redundantly mediate anticryptococcal activity through the activation of PI3K and ERK1/2, which in turn facilitates killing by inducing the polarization of perforin-containing granules to the NK cell-cryptococcal synapse. PMID:23918783
Lima-Hernández, Francisco J; Beyer, Carlos; Gómora-Arrati, Porfirio; García-Juárez, Marcos; Encarnación-Sánchez, José L; Etgen, Anne M; González-Flores, Oscar
2012-11-01
The progesterone receptor (PR) is a dual function protein that acts in the nucleus as a transcriptional factor and at the cytoplasm as a scaffold for the Src-MAPK signaling pathway. Several agents lacking affinity for the PR, such as 5β-reduced progestins, GnRH or prostaglandin E(2) (PGE(2)) facilitate estrous behavior in ovariectomized (ovx), estrogen-primed rats yet their action is blocked by the antiprogestin RU486. We hypothesize that these agents act by using the PR-Src-mitogen activated protein kinase alternative pathway. To test this hypothesis we used PP2, a specific inhibitor of the Src kinase family. Intraventricular infusion of 30 μg of PP2, 30 min before behavioral testing, significantly attenuated estrous behaviors induced in estradiol benzoate (E(2)B)-primed rats by 5β-dihydroprogesterone (5β-DHP), 5β-pregnan-3β-ol-20-one (5β,3β-Pgl), GnRH, PGE(2) and by manual flank/vaginocervical stimulation. These results suggest that the Src signaling system, by activating mitogen-activated protein kinases, participates in the facilitation of estrous behavior in E(2)B-primed rats induced by agents lacking affinity for the PR. Copyright © 2012 Elsevier Inc. All rights reserved.
Desai, Sonal J; Ma, Ai-Hong; Tepper, Clifford G; Chen, Hong-Wu; Kung, Hsing-Jien
2006-11-01
The inappropriate activation of androgen receptor (AR) by nonsteroids is considered a potential mechanism in the emergence of hormone-refractory prostate tumors, but little is known about the properties of these "pseudoactivated" AR. Here, we present the first comprehensive analysis closely examining the properties of AR activated by the neuropeptide bombesin that distinguish it from androgen-activated AR. We show that bombesin-activated AR (a) is required for bombesin-induced growth of LNCaP cells, (b) has a transcriptional profile overlapping with, but not identical to, androgen-activated AR, (c) activates prostate-specific antigen by preferentially binding to its proximal promoter, and (d) assembles a distinct coactivator complex. Significantly, we found that Src kinase is critical for bombesin-induced AR-mediated activity and is required for translocation and transactivation of AR. Additionally, we identify c-Myc, a Src target gene, to be activated by bombesin and a potential coactivator of AR-mediated activity specific to bombesin-induced signaling. Because Src kinase is often activated by other nonsteroids, such as other neuropeptides, growth factors, chemokines, and cytokines, our findings have general applicability and provide rationale for investigating the efficacy of the Src kinase pathway as a target for the prevention of relapsed prostate cancers.
TRAF6 and Src kinase activity regulates Cot activation by IL-1.
Rodríguez, Cristina; Pozo, Maite; Nieto, Elvira; Fernández, Margarita; Alemany, Susana
2006-09-01
Cot is one of the MAP kinase kinase kinases that regulates the ERK1/ERK2 pathway under physiological conditions. Cot is activated by LPS, by inducing its dissociation from the inactive p105 NFkappaB-Cot complex in macrophages. Here, we show that IL-1 promotes a 10-fold increase in endogenous Cot activity and that Cot is the only MAP kinase kinase kinase that activates ERK1/ERK2 in response to this cytokine. Moreover, in cells where the expression of Cot is blocked, IL-1 fails to induce an increase in IL-8 and MIP-1betamRNA levels. The activation of Cot-MKK1-ERK1/ERK2 signalling pathway by IL-1 is dependent on the activity of the transducer protein TRAF6. Most important, IL-1-induced ERK1/ERK2 activation is inhibited by PP1, a known inhibitor of Src tyrosine kinases, but this tyrosine kinase activity is not required for IL-1 to activate other MAP kinases such as p38 and JNK. This Src kinases inhibitor does not block the dissociation and subsequently degradation of Cot in response to IL-1, indicating that other events besides Cot dissociation are required to activate Cot. All these data highlight the specific requirements for activation of the Cot-MKK1-ERK1/ERK2 pathway and provide evidence that Cot controls the functions of IL-1 that are mediated by ERK1/ERK2.
Schlaepfer, D D; Hunter, T
1996-10-01
Focal adhesion kinase (FAK) is a nonreceptor protein-tyrosine kinase (PTK) that associates with integrin receptors and participates in extracellular matrix-mediated signal transduction events. We showed previously that the c-Src nonreceptor PTK and the Grb2 SH2/SH3 adaptor protein bound directly to FAK after fibronectin stimulation (D. D. Schlaepfer, S.K. Hanks, T. Hunter, and P. van der Geer, Nature [London] 372:786-791, 1994). Here, we present evidence that c-Src association with FAK is required for Grb2 binding to FAK. Using a tryptic phosphopeptide mapping approach, the in vivo phosphorylation of the Grb2 binding site on FAK (Tyr-925) was detected after fibronectin stimulation of NIH 3T3 cells and was constitutively phosphorylated in v-Src-transformed NIH 3T3 cells. In vitro, c-Src phosphorylated FAK Tyr-925 in a glutathione S-transferase-FAK C-terminal domain fusion protein, whereas FAK did not. Using epitope-tagged FAK constructs, transiently expressed in human 293 cells, we determined the effect of site-directed mutations on c-Src and Grb2 binding to FAK. Mutation of FAK Tyr-925 disrupted Grb2 binding, whereas mutation of the c-Src binding site on FAK (Tyr-397) disrupted both c-Src and Grb2 binding to FAK in vivo. These results support a model whereby Src-family PTKs are recruited to FAK and focal adhesions following integrin-induced autophosphorylation and exposure of FAK Tyr-397. Src-family binding and phosphorylation of FAK at Tyr-925 creates a Grb2 SH2-domain binding site and provides a link to the activation of the Ras signal transduction pathway. In Src-transformed cells, this pathway may be constitutively activated as a result of FAK Tyr-925 phosphorylation in the absence of integrin stimulation.
Kuo, Chun-Ting; Chang, Chieh; Lee, Wen-Sen
2015-01-01
To investigate the molecular mechanism underlying folic acid (FA)-induced anti-colon caner activity, we showed that FA caused G0/G1 arrest in COLO-205. FA activated the proto-oncogene tyrosine-protein kinase Src (c-SRC)-mediated signaling pathway to enhance nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB) nuclear translocation and binding onto the tumor protein p53 (TP53) gene promoter, and up-regulated expressions of TP53, cyclin-dependent kinase inhibitor 1A (CDKN1A) and cyclin-dependent kinase inhibitor 1B (CDKN1B). Knock-down of TP53 abolished FA-induced increases in the levels of CDKN1A and CDKN1B protein and G0/G1 arrest in COLO-205. Knock-down of folate receptor alpha (FRα) abolished FA-induced activations in the c-SRC-mediated pathway and increases in the levels of CDKN1A, CDKN1B and TP53 protein. These data suggest that FA inhibited COLO-205 proliferation through activating the FRα/c-SRC/mitogen-activated protein kinase 3/1 (ERK1/2)/NFκB/TP53 pathway-mediated up-regulations of CDKN1A and CDKN1B protein. In vivo studies demonstrated that daily i.p. injections of FA led to profound regression of the COLO-205 tumors and prolong the lifespan. In these tumors, the levels of CDKN1A, CDKN1B and TP53 protein were increased and von willebrand factor (VWF) protein levels were decreased. These findings suggest that FA inhibits COLO-205 colon cancer growth through anti-cancer cell proliferation and anti-angiogenesis. PMID:26056802
Acetylcholine but not adenosine triggers preconditioning through PI3-kinase and a tyrosine kinase.
Qin, Qining; Downey, James M; Cohen, Michael V
2003-02-01
Adenosine and acetylcholine (ACh) trigger preconditioning by different signaling pathways. The involvement of phosphatidylinositol 3-kinase (PI3-kinase), a protein tyrosine kinase, and Src family tyrosine kinase in preconditioning was evaluated in isolated rabbit hearts. Either wortmannin (PI3-kinase blocker), genistein (tyrosine kinase blocker), lavendustin A (tyrosine kinase blocker), or 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolol[3,4-d]pyrimidine (PP2; Src family tyrosine kinase blocker) was given for 15 min to bracket a 5-min infusion of either adenosine or ACh (trigger phase). The hearts then underwent 30 min of regional ischemia. Infarct size for ACh alone was 9.3 +/- 3.5% of the risk zone versus 34.3 +/- 4.1% in controls. All four inhibitors blocked ACh-induced protection. When wortmannin or PP2 was infused only during the 30-min ischemic period (mediator phase), ACh-induced protection was not affected (7.4 +/- 2.1% and 9.7 +/- 1.7% infarction, respectively). Adenosine-triggered protection was not blocked by any of the inhibitors. Therefore, PI3-kinase and at least one protein tyrosine kinase, probably Src kinase, are involved in the trigger phase of ACh-induced, but not adenosine-induced, preconditioning. Neither PI3-kinase nor Src kinase is a mediator of the protection of ACh.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angrist, M.; Chakravarti, A.; Wells, D.E.
1995-12-10
Molecules containing Src-homology 2 (SH2) and Src-homology 3 (SH3) domains are critical components of signal transduction pathways that serve to relay signals originating from the cell surface to the interior of the cell. Src-like adapter protein (SLAP) is a recently described adapter protein that binds activated the Eck receptor protein-tyrosine kinase. Although SLAP bears a striking homology to the SH3 and SH2 domains of the Src family of nonreceptor tyrosine kinases, it does not contain a tyrosine kinase catalytic domain. In this report, the Slap gene was mapped by linkage analysis to mouse chromosome 15, while its putative human homologmore » (SLA) was identified and mapped to human 8q22.3-qter using a panel of somatic cell hybrids. 10 refs., 2 figs.« less
The stem cell factor (SCF)/c-KIT signalling in testis and prostate cancer.
Cardoso, Henrique J; Figueira, Marília I; Socorro, Sílvia
2017-12-01
The stem cell factor (SCF) is a cytokine that specifically binds the tyrosine kinase receptor c-KIT. The SCF/c-KIT interaction leads to receptor dimerization, activation of kinase activity and initiation of several signal transduction pathways that control cell proliferation, apoptosis, differentiation and migration in several tissues. The activity of SCF/c-KIT system is linked with the phosphatidylinositol 3-kinase (PI3-K), the Src, the Janus kinase/signal transducers and activators of transcription (JAK/STAT), the phospholipase-C (PLC-γ) and the mitogen-activated protein kinase (MAPK) pathways. Moreover, it has been reported that cancer cases display an overactivation of c-KIT due to the presence of gain-of-function mutations or receptor overexpression, which renders c-KIT a tempting target for cancer treatment. In the case of male cancers the most documented activated pathways are the PI3-K and Src, both enhancing abnormal cell proliferation. It is also known that the Src activity in prostate cancer cases depends on the presence of tr-KIT, the cytoplasmic truncated variant of c-KIT that is specifically expressed in tumour tissues and, thus, a very interesting target for drug development. The present review provides an overview of the signalling pathways activated by SCF/c-KIT and discusses the potential application of c-KIT inhibitors for treatment of testicular and prostatic cancers.
MacKay, Charles E; Knock, Greg A
2015-01-01
Abstract Reactive oxygen species (ROS) are now recognised as second messenger molecules that regulate cellular function by reversibly oxidising specific amino acid residues of key target proteins. Amongst these are the Src-family kinases (SrcFKs), a multi-functional group of non-receptor tyrosine kinases highly expressed in vascular smooth muscle (VSM). In this review we examine the evidence supporting a role for ROS-induced SrcFK activity in normal VSM contractile function and in vascular remodelling in cardiovascular disease. VSM contractile responses to G-protein-coupled receptor stimulation, as well as hypoxia in pulmonary artery, are shown to be dependent on both ROS and SrcFK activity. Specific phosphorylation targets are identified amongst those that alter intracellular Ca2+ concentration, including transient receptor potential channels, voltage-gated Ca2+ channels and various types of K+ channels, as well as amongst those that regulate actin cytoskeleton dynamics and myosin phosphatase activity, including focal adhesion kinase, protein tyrosine kinase-2, Janus kinase, other focal adhesion-associated proteins, and Rho guanine nucleotide exchange factors. We also examine a growing weight of evidence in favour of a key role for SrcFKs in multiple pro-proliferative and anti-apoptotic signalling pathways relating to oxidative stress and vascular remodelling, with a particular focus on pulmonary hypertension, including growth-factor receptor transactivation and downstream signalling, hypoxia-inducible factors, positive feedback between SrcFK and STAT3 signalling and positive feedback between SrcFK and NADPH oxidase dependent ROS production. We also discuss evidence for and against the potential therapeutic targeting of SrcFKs in the treatment of pulmonary hypertension. PMID:25384773
Knock, Greg A; Shaifta, Yasin; Snetkov, Vladimir A; Vowles, Benjamin; Drndarski, Svetlana; Ward, Jeremy P T; Aaronson, Philip I
2008-02-01
We investigated the role of src family kinases (srcFK) in agonist-mediated Ca2+-sensitization in pulmonary artery and whether this involves interaction with the rho/rho-kinase pathway. Intra-pulmonary arteries (IPAs) and cultured pulmonary artery smooth muscle cells (PASMC) were obtained from rat. Expression of srcFK was determined at the mRNA and protein levels. Ca2+-sensitization was induced by prostaglandin F(2 alpha) (PGF(2 alpha)) in alpha-toxin-permeabilized IPAs. Phosphorylation of the regulatory subunit of myosin phosphatase (MYPT-1) and of myosin light-chain-20 (MLC20) and translocation of rho-kinase in response to PGF(2 alpha) were also determined. Nine srcFK were expressed at the mRNA level, including src, fyn, and yes, and PGF(2 alpha) enhanced phosphorylation of three srcFK proteins at tyr-416. In alpha-toxin-permeabilized IPAs, PGF(2 alpha) enhanced the Ca2+-induced contraction (pCa 6.9) approximately three-fold. This enhancement was inhibited by the srcFK blockers SU6656 and PP2 and by the rho-kinase inhibitor Y27632. Y27632, but not SU6656 or PP2, also inhibited the underlying pCa 6.9 contraction. PGF(2 alpha) enhanced phosphorylation of MYPT-1 at thr-697 and thr-855 and of MLC20 at ser-19. This enhancement, but not the underlying basal phosphorylation, was inhibited by SU6656. Y27632 suppressed both basal and PGF(2 alpha)-mediated phosphorylation. The effects of SU6656 and Y27632, on both contraction and MYPT-1 and MLC20 phosphorylation, were not additive. PGF(2 alpha) triggered translocation of rho-kinase in PASMC, and this was inhibited by SU6656. srcFK are activated by PGF(2 alpha) in the rat pulmonary artery and may contribute to Ca2+-sensitization and contraction via rho-kinase translocation and phosphorylation of MYPT-1.
Knock, Greg A.; Shaifta, Yasin; Snetkov, Vladimir A.; Vowles, Benjamin; Drndarski, Svetlana; Ward, Jeremy P.T.; Aaronson, Philip I.
2008-01-01
Abstract Aims We investigated the role of src family kinases (srcFK) in agonist-mediated Ca2+-sensitization in pulmonary artery and whether this involves interaction with the rho/rho-kinase pathway. Methods and results Intra-pulmonary arteries (IPAs) and cultured pulmonary artery smooth muscle cells (PASMC) were obtained from rat. Expression of srcFK was determined at the mRNA and protein levels. Ca2+-sensitization was induced by prostaglandin F2α (PGF2α) in α-toxin-permeabilized IPAs. Phosphorylation of the regulatory subunit of myosin phosphatase (MYPT-1) and of myosin light-chain-20 (MLC20) and translocation of rho-kinase in response to PGF2α were also determined. Nine srcFK were expressed at the mRNA level, including src, fyn, and yes, and PGF2α enhanced phosphorylation of three srcFK proteins at tyr-416. In α-toxin-permeabilized IPAs, PGF2α enhanced the Ca2+-induced contraction (pCa 6.9) approximately three-fold. This enhancement was inhibited by the srcFK blockers SU6656 and PP2 and by the rho-kinase inhibitor Y27632. Y27632, but not SU6656 or PP2, also inhibited the underlying pCa 6.9 contraction. PGF2α enhanced phosphorylation of MYPT-1 at thr-697 and thr-855 and of MLC20 at ser-19. This enhancement, but not the underlying basal phosphorylation, was inhibited by SU6656. Y27632 suppressed both basal and PGF2α-mediated phosphorylation. The effects of SU6656 and Y27632, on both contraction and MYPT-1 and MLC20 phosphorylation, were not additive. PGF2α triggered translocation of rho-kinase in PASMC, and this was inhibited by SU6656. Conclusions srcFK are activated by PGF2α in the rat pulmonary artery and may contribute to Ca2+-sensitization and contraction via rho-kinase translocation and phosphorylation of MYPT-1. PMID:18032393
4-Hydroxynonenal activates Src through a non-canonical pathway that involves EGFR/PTP1B
Zhang, Hongqiao; Forman, Henry Jay
2015-01-01
Src, a non-receptor protein tyrosine kinase involved in many biological processes, can be activated through both redox-dependent and independent mechanisms. 4-Hydroxy-2-nonenal (HNE) is a lipid peroxidation product that is increased in pathophysiological conditions associated with Src activation. This study examined how HNE activates human c-Src. In the canonical pathway Src activation is initiated by dephosphorylation of pTyr530 followed by conformational change that causes Src auto-phosphorylation at Tyr419 and its activation. HNE increased Src activation in both dose- and time-dependent manner, while it also increased Src phosphorylation at Tyr530 (pTyr530 Src), suggesting that HNE activated Src via a non-canonical mechanism. Protein tyrosine phosphatase 1B inhibitor (539741), at concentrations that increased basal pTyr530 Src, also increased basal Src activity and significantly reduced HNE-mediated Src activation. The EGFR inhibitor, AG1478, and EGFR silencing, abrogated HNE-mediated EGFR activation and inhibited basal and HNE-induced Src activity. In addition, AG1478 also eliminated the increase of basal Src activation by a PTP1B inhibitor. Taken together these data suggest that HNE can activate Src partly through a non-canonical pathway involving activation of EGFR and inhibition of PTP1B. PMID:26453921
SH2 Ligand-Like Effects of Second Cytosolic Domain of Na/K-ATPase α1 Subunit on Src Kinase.
Banerjee, Moumita; Duan, Qiming; Xie, Zijian
2015-01-01
Our previous studies have suggested that the α1 Na/K-ATPase interacts with Src to form a receptor complex. In vitro binding assays indicate an interaction between second cytosolic domain (CD2) of Na/K-ATPase α1 subunit and Src SH2 domain. Since SH2 domain targets Src to specific signaling complexes, we expressed CD2 as a cytosolic protein and studied whether it could act as a Src SH2 ligand in LLC-PK1 cells. Co-immunoprecipitation analyses indicated a direct binding of CD2 to Src, consistent with the in vitro binding data. Functionally, CD2 expression increased basal Src activity, suggesting a Src SH2 ligand-like property of CD2. Consistently, we found that CD2 expression attenuated several signaling pathways where Src plays an important role. For instance, although it increased surface expression of Na/K-ATPase, it decreased ouabain-induced activation of Src and ERK by blocking the formation of Na/K-ATPase/Src complex. Moreover, it also attenuated cell attachment-induced activation of Src/FAK. Consequently, CD2 delayed cell spreading, and inhibited cell proliferation. Furthermore, these effects appear to be Src-specific because CD2 expression had no effect on EGF-induced activation of EGF receptor and ERK. Hence, the new findings indicate the importance of Na/K-ATPase/Src interaction in ouabain-induced signal transduction, and support the proposition that the CD2 peptide may be utilized as a Src SH2 ligand capable of blocking Src-dependent signaling pathways via a different mechanism from a general Src kinase inhibitor.
Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis.
Silva, Corinne M
2004-10-18
The signal transducers and activators of transcription (STATs) were originally identified in the signaling pathway activated by the nontyrosine kinase containing cytokine receptors. The role of these STATs in hematopoietic cell signaling has been well described. In the case of cytokine receptors, activation of STAT tyrosine phosphorylation occurs through ligand-induced recruitment, and activation of the intracellular JAK kinases. However, STATs can also be activated by growth factor receptors, particularly the EGFR; as well as by members of the Src Family of Kinases (SFKs), particularly c-Src. In many cases, there is a differential activation of the STATs by these tyrosine kinases as compared to activation by the cytokine receptors. This difference provides for the potential of unique actions of STATs in response to growth factor receptor and SFK activation. Since there are many cancers in which SFKs and c-Src in particular, are co-overexpressed with growth factor receptors, it is not surprising that STATs play an important role in the tumorigenesis process induced by c-Src. The activation paradigm and role of STATs in these cancers, with particular emphasis on breast cancer models, is discussed.
Identification of a functional interaction between Kv4.3 channels and c-Src tyrosine kinase.
Gomes, Pedro; Saito, Tomoaki; Del Corsso, Cris; Alioua, Abderrahmane; Eghbali, Mansoureh; Toro, Ligia; Stefani, Enrico
2008-10-01
Voltage-gated K(+) (Kv) channels are key determinants of cardiac and neuronal excitability. A substantial body of evidence has accumulated in support of a role for Src family tyrosine kinases in the regulation of Kv channels. In this study, we examined the possibility that c-Src tyrosine kinase participates in the modulation of the transient voltage-dependent K(+) channel Kv4.3. Supporting a mechanistic link between Kv4.3 and c-Src, confocal microscopy analysis of HEK293 cells stably transfected with Kv4.3 showed high degree of co-localization of the two proteins at the plasma membrane. Our results further demonstrate an association between Kv4.3 and c-Src by co-immunoprecipitation and GST pull-down assays, this interaction being mediated by the SH2 and SH3 domains of c-Src. Furthermore, we show that Kv4.3 is tyrosine phosphorylated under basal conditions. The functional relevance of the observed interaction between Kv4.3 and c-Src was established in patch-clamp experiments, where application of the Src inhibitor PP2 caused a decrease in Kv4.3 peak current amplitude, but not the inactive structural analogue PP3. Conversely, intracellular application of recombinant c-Src kinase or the protein tyrosine phosphatase inhibitor bpV(phen) increased Kv4.3 peak current amplitude. In conclusion, our findings provide evidence that c-Src-induced Kv4.3 channel activation involves their association in a macromolecular complex and suggest a role for c-Src-Kv4.3 pathway in regulating cardiac and neuronal excitability.
Microbial products activate monocytic cells through detergent-resistant membrane microdomains.
Epelman, Slava; Berenger, Byron; Stack, Danuta; Neely, Graham G; Ma, Ling Ling; Mody, Christopher H
2008-12-01
Patients with cystic fibrosis suffer recurrent pulmonary infections that are characterized by an overactive yet ineffective and destructive inflammatory response that is associated with respiratory infections by Pseudomonas aeruginosa, a pathogen that produces a number of phlogistic molecules. To better understand this process, we used exoenzyme S (ExoS), one of the key P. aeruginosa-secreted exoproducts, which is known to stimulate cells via the Toll-like receptor (TLR) pathway. We found that ExoS induced proinflammatory cytokine production via the NF-kappaB, Erk1/2, and Src kinase pathways. Because Src kinases are concentrated within cholesterol-containing, detergent-resistant membrane microdomains (DRM) (also called lipid rafts) and DRM act as signaling platforms and amplifiers on the surface of cells, we addressed the role of DRM in ExoS signaling. ExoS bound directly to a subset of DRM and induced the phosphorylation of multiple proteins within DRM, including Src kinases. Disruption of DRM by cholesterol extraction prevented NF-kappaB and Erk 1/2 activation and TNF-alpha production in response to ExoS. Activation of monocytic cells by other TLR and Nod-like receptor agonists, such as lipoteichoic acid, lipopolysaccharide, and peptidoglycan, were also dependent on DRM, and disruption prevented TNF-alpha production. Disruption of DRM did not prevent ExoS binding but did release the Src kinase, Lyn, from the DRM fraction into the detergent-soluble fraction, a site in which Src kinases are not active. These studies show that ExoS, a TLR agonist, requires direct binding to DRM for optimal signaling, which suggests that DRM are possible therapeutic targets in cystic fibrosis.
Schlaepfer, D D; Hanks, S K; Hunter, T; van der Geer, P
The cytoplasmic focal adhesion protein-tyrosine kinase (FAK) localizes with surface integrin receptors at sites where cells attach to the extracellular matrix. Increased FAK tyrosine phosphorylation occurs upon integrin engagement with fibronectin. Here we show that adhesion of murine NIH3T3 fibroblasts to fibronectin promotes SH2-domain-mediated association of the GRB2 adaptor protein and the c-Src protein-tyrosine kinase (PTK) with FAK in vivo, and also results in activation of mitogen-activated protein kinase (MAPK). In v-Src-transformed NIH3T3, the association of v-Src, GRB2 and Sos with FAK is independent of cell adhesion to fibronectin. The GRB2 SH2 domain binds directly to tyrosine-phosphorylated FAK. Mutation of tyrosine residue 925 of FAK (YENV motif) to phenylalanine blocks GRB2 SH2-domain binding to FAK in vitro. Our results show that fibronectin binding to integrins on NIH3T3 fibroblasts promotes c-Src and FAK association and formation of an integrin-activated signalling complex. Phosphorylation of FAK at Tyr 925 upon fibronectin stimulation creates an SH2-binding site for GRB2 which may link integrin engagement to the activation of the Ras/MAPK signal transduction pathway.
Tsarouhas, Vasilios; Yao, Liqun; Samakovlis, Christos
2014-04-15
Metazoans have evolved efficient mechanisms for epidermal repair and survival following injury. Several cellular responses and key signaling molecules that are involved in wound healing have been identified in Drosophila, but the coordination of cytoskeletal rearrangements and the activation of gene expression during barrier repair are poorly understood. The Ret-like receptor tyrosine kinase (RTK) Stitcher (Stit, also known as Cad96Ca) regulates both re-epithelialization and transcriptional activation by Grainy head (Grh) to induce restoration of the extracellular barrier. Here, we describe the immediate downstream effectors of Stit signaling in vivo. Drk (Downstream of receptor kinase) and Src family tyrosine kinases bind to the same docking site in the Stit intracellular domain. Drk is required for the full activation of transcriptional responses but is dispensable for re-epithelialization. By contrast, Src family kinases (SFKs) control both the assembly of a contractile actin ring at the wound periphery and Grh-dependent activation of barrier-repair genes. Our analysis identifies distinct pathways mediating injury responses and reveals an RTK-dependent activation mode for Src kinases and their central functions during epidermal wound healing in vivo.
Presence of an SH2 domain in the actin-binding protein tensin.
Davis, S; Lu, M L; Lo, S H; Lin, S; Butler, J A; Druker, B J; Roberts, T M; An, Q; Chen, L B
1991-05-03
The molecular cloning of the complementary DNA coding for a 90-kilodalton fragment of tensin, an actin-binding component of focal contacts and other submembraneous cytoskeletal structures, is reported. The derived amino acid sequence revealed the presence of a Src homology 2 (SH2) domain. This domain is shared by a number of signal transduction proteins including nonreceptor tyrosine kinases such as Abl, Fps, Src, and Src family members, the transforming protein Crk, phospholipase C-gamma 1, PI-3 (phosphatidylinositol) kinase, and guanosine triphosphatase-activating protein (GAP). Like the SH2 domain found in Src, Crk, and Abl, the SH2 domain of tensin bound specifically to a number of phosphotyrosine-containing proteins from v-src-transformed cells. Tensin was also found to be phosphorylated on tyrosine residues. These findings suggest that by possessing both actin-binding and phosphotyrosine-binding activities and being itself a target for tyrosine kinases, tensin may link signal transduction pathways with the cytoskeleton.
Transmembrane adaptor protein PAG1 is a novel tumor suppressor in neuroblastoma
Agarwal, Saurabh; Ghosh, Rajib; Chen, Zaowen; Lakoma, Anna; Gunaratne, Preethi H.; Kim, Eugene S.; Shohet, Jason M.
2016-01-01
(NB) is the most common extracranial pediatric solid tumor with high mortality rates. The tyrosine kinase c-Src has been known to play an important role in differentiation of NB cells, but the mechanism of c-Src regulation has not been defined. Here, we characterize PAG1 (Cbp, Csk binding protein), a central inhibitor of c-Src and other Src family kinases, as a novel tumor suppressor in NB. Clinical cohort analysis demonstrate that low expression of PAG1 is a significant prognostic factor for high stage disease, increased relapse, and worse overall survival for children with NB. PAG1 knockdown in NB cells promotes proliferation and anchorage-independent colony formation with increased activation of AKT and ERK downstream of c-Src, while PAG1 overexpression significantly rescues these effects. In vivo, PAG1 overexpression significantly inhibits NB tumorigenicity in an orthotopic xenograft model. Our results establish PAG1 as a potent tumor suppressor in NB by inhibiting c-Src and downstream effector pathways. Thus, reactivation of PAG1 and inhibition of c-Src kinase activity represents an important novel therapeutic approach for high-risk NB. PMID:26993602
Socodato, Renato; Santiago, Felipe N.; Portugal, Camila C.; Domingues, Ana F.; Santiago, Ana R.; Relvas, João B.; Ambrósio, António F.; Paes-de-Carvalho, Roberto
2012-01-01
In the retina information decoding is dependent on excitatory neurotransmission and is critically modulated by AMPA glutamate receptors. The Src-tyrosine kinase has been implicated in modulating neurotransmission in CNS. Thus, our main goal was to correlate AMPA-mediated excitatory neurotransmission with the modulation of Src activity in retinal neurons. Cultured retinal cells were used to access the effects of AMPA stimulation on nitric oxide (NO) production and Src phosphorylation. 4-Amino-5-methylamino-2′,7′-difluorofluorescein diacetate fluorescence mainly determined NO production, and immunocytochemistry and Western blotting evaluated Src activation. AMPA receptors activation rapidly up-regulated Src phosphorylation at tyrosine 416 (stimulatory site) and down-regulated phosphotyrosine 527 (inhibitory site) in retinal cells, an effect mainly mediated by calcium-permeable AMPA receptors. Interestingly, experiments confirmed that neuronal NOS was activated in response to calcium-permeable AMPA receptor stimulation. Moreover, data suggest NO pathway as a key regulatory signaling in AMPA-induced Src activation in neurons but not in glial cells. The NO donor SNAP (S-nitroso-N-acetyl-dl-penicillamine) and a soluble guanylyl cyclase agonist (YC-1) mimicked AMPA effect in Src Tyr-416 phosphorylation, reinforcing that Src activation is indeed modulated by the NO pathway. Gain and loss-of-function data demonstrated that ERK is a downstream target of AMPA-induced Src activation and NO signaling. Furthermore, AMPA stimulated NO production in organotypic retinal cultures and increased Src activity in the in vivo retina. Additionally, AMPA-induced apoptotic retinal cell death was regulated by both NOS and Src activity. Because Src activity is pivotal in several CNS regions, the data presented herein highlight that Src modulation is a critical step in excitatory retinal cell death. PMID:22992730
Socodato, Renato; Santiago, Felipe N; Portugal, Camila C; Domingues, Ana F; Santiago, Ana R; Relvas, João B; Ambrósio, António F; Paes-de-Carvalho, Roberto
2012-11-09
In the retina information decoding is dependent on excitatory neurotransmission and is critically modulated by AMPA glutamate receptors. The Src-tyrosine kinase has been implicated in modulating neurotransmission in CNS. Thus, our main goal was to correlate AMPA-mediated excitatory neurotransmission with the modulation of Src activity in retinal neurons. Cultured retinal cells were used to access the effects of AMPA stimulation on nitric oxide (NO) production and Src phosphorylation. 4-Amino-5-methylamino-2',7'-difluorofluorescein diacetate fluorescence mainly determined NO production, and immunocytochemistry and Western blotting evaluated Src activation. AMPA receptors activation rapidly up-regulated Src phosphorylation at tyrosine 416 (stimulatory site) and down-regulated phosphotyrosine 527 (inhibitory site) in retinal cells, an effect mainly mediated by calcium-permeable AMPA receptors. Interestingly, experiments confirmed that neuronal NOS was activated in response to calcium-permeable AMPA receptor stimulation. Moreover, data suggest NO pathway as a key regulatory signaling in AMPA-induced Src activation in neurons but not in glial cells. The NO donor SNAP (S-nitroso-N-acetyl-DL-penicillamine) and a soluble guanylyl cyclase agonist (YC-1) mimicked AMPA effect in Src Tyr-416 phosphorylation, reinforcing that Src activation is indeed modulated by the NO pathway. Gain and loss-of-function data demonstrated that ERK is a downstream target of AMPA-induced Src activation and NO signaling. Furthermore, AMPA stimulated NO production in organotypic retinal cultures and increased Src activity in the in vivo retina. Additionally, AMPA-induced apoptotic retinal cell death was regulated by both NOS and Src activity. Because Src activity is pivotal in several CNS regions, the data presented herein highlight that Src modulation is a critical step in excitatory retinal cell death.
Song, Xiulong; Wei, Zhengxi; Shaikh, Zahir A
2015-08-15
Cadmium (Cd) is a common environmental toxicant and an established carcinogen. Epidemiological studies implicate Cd with human breast cancer. Low micromolar concentrations of Cd promote proliferation of human breast cancer cells in vitro. The growth promotion of breast cancer cells is associated with the activation of MAPK/ERK pathway. This study explores the mechanism of Cd-induced activation of MAPK/ERK pathway. Specifically, the role of cell surface receptors ERα, EGFR, and Src kinase was evaluated in human breast cancer MCF-7 cells treated with 1-3μM Cd. The activation of ERK was studied using a serum response element (SRE) luciferase reporter assay. Receptor phosphorylation was detected by Western blot analyses. Cd treatment increased both the SRE reporter activity and ERK1/2 phosphorylation in a concentration-dependent manner. Cd treatment had no effect on reactive oxygen species (ROS) generation. Also, blocking the entry of Cd into the cells with manganese did not diminish Cd-induced activation of MAPK/ERK. These results suggest that the effect of Cd was likely not caused by intracellular ROS generation, but through interaction with the membrane receptors. While Cd did not appear to activate either EGFR or Src kinase, their inhibition completely blocked the Cd-induced activation of ERK as well as cell proliferation. Similarly, silencing ERα with siRNA or use of ERα antagonist blocked the effects of Cd. Based on these results, it is concluded that not only ERα, but also basal activities of EGFR and Src kinase are essential for Cd-induced signal transduction and activation of MAPK/ERK pathway for breast cancer cell proliferation. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Juntao; Gao, Xuejuan; Xing, Da; Liu, Lei
2007-11-01
Low-power laser irradiation (LPLI) leads to photochemical reaction and then activates intracellular several signaling pathway. Reactive oxygen species (ROS) are considered to be the primary messengers produced by LPLI. Here, we studied the signaling pathway mediated by ROS upon the stimulation of LPLI. Src tyrosine kinases are well-known targets of ROS and can be activated by oxidative events. Using a Src reporter based on fluorescence resonance energy transfer (FRET) technique, we visualized the dynamic Src activation in Hela cells immediately after LPLI. Moreover, Src activity was enhanced by increasing the duration of LPLI. In addition, our results suggested that ROS were key mediators of Src activation, as ROS scavenger, vitamin C decreased and exogenous H IIO II increased the activity of Src. Meanwhile, Gö6983 loading did not block the effect of LPLI. CCK-8 experiments proved that cell vitality was prominently improved by LPLI with all the doses we applied in our experiments ranging from 3 to 25J/cm2. The results indicated that LPLI/ROS/Src pathway may be involved in the LPLI biostimulation effects.
The Role of Akt and its Substrates in Resistance of Breast Cancer to Trastuzumab
2008-03-01
RD: Pathway pathology: Histological differences between ErbB/Ras and Wnt pathway trasngenic mammary tumors. Am J Pathol 2002, 161:1087-1097. 7. Kim...constitutively active Akt1 mutant bearing the myristolation sequence from Src; NMR = nuclear magnetic resonance; PI3K = phosphatidyl inositol-3 kinase...between ErbB/Ras and Wnt pathway transgenic mammary tumors. Am J Pathol 2002, 161:1087-1097. 24. Ishizawar RC, Miyake T, Parsons SJ: c-Src modulates ErbB2
Shih, Wen-Ling; Liao, Ming-Huei; Yu, Feng-Ling; Lin, Ping-Yuan; Hsu, Hsue-Yin; Chiu, Shu-Jun
2008-11-08
We have previously shown that AMF/PGI induces hepatoma cell migration through the induction of MMP-3. This work investigates how AMF/PGI activates the MMP-3 gene. We demonstrated that AMF/PGI transactivates the MMP-3 gene promoter through AP-1. The transactivation and induction of cell migration effect of AMF/PGI directly correlates with its enzymatic activity. Various analyses showed that AMF/PGI stimulated the Src-RhoA-PI3-kinase signaling pathway, and these three signaling molecules could form a complex. Our results demonstrate a new mechanism of AMF/PGI-induced cell migration and a link between Src-RhoA-PI3-kinase, AP-1, MMP-3 and hepatoma cell migration.
Horng, Chi-Ting; Shieh, Po-Chuen; Tan, Tzu-Wei; Yang, Wei-Hung; Tang, Chih-Hsin
2014-01-01
Chondrosarcoma, a primary malignant bone cancer, has potential for local invasion and distant metastasis, especially to the lungs. Patients diagnosed with it show poor prognosis. Paeonol (2'-hydroxy-4'-methoxyacetophenone), the main active compound of traditional Chinese remedy Paeonia lactiflora Pallas, exhibits anti-inflammatory and anti-tumor activity; whether paeonol regulates metastatic chondrosarcoma is largely unknown. Here, we find paeonol do not increase apoptosis. By contrast, at non-cytotoxic concentrations, paeonol suppresses migration and invasion of chondrosarcoma cells. We also demonstrate paeonol enhancing miR-141 expression and miR-141 inhibitor reversing paeonol-inhibited cell motility; paeonol also reduces protein kinase C (PKC)δ and c-Src kinase activity. Since paeonol inhibits migration and invasion of human chondrosarcoma via up-regulation of miR-141 via PKCδ and c-Src pathways, it thus might be a novel anti-metastasis agent for treatment of metastatic chondrosarcoma. PMID:24992595
Lesslie, D P; Summy, J M; Parikh, N U; Fan, F; Trevino, J G; Sawyer, T K; Metcalf, C A; Shakespeare, W C; Hicklin, D J; Ellis, L M; Gallick, G E
2006-01-01
Vascular endothelial growth factor (VEGF) is the predominant pro-angiogenic cytokine in human malignancy, and its expression correlates with disease recurrence and poor outcomes in patients with colorectal cancer. Recently, expression of vascular endothelial growth factor receptors (VEGFRs) has been observed on tumours of epithelial origin, including those arising in the colon, but the molecular mechanisms governing potential VEGF-driven biologic functioning in these tumours are not well characterised. In this report, we investigated the role of Src family kinases (SFKs) in VEGF-mediated signalling in human colorectal carcinoma (CRC) cell lines. Vascular endothelial growth factor specifically activated SFKs in HT29 and KM12L4 CRC cell lines. Further, VEGF stimulation resulted in enhanced cellular migration, which was effectively blocked by pharmacologic inhibition of VEGFR-1 or Src kinase. Correspondingly, migration studies using siRNA clones with reduced Src expression confirmed the requirement for Src in VEGF-induced migration in these cells. Furthermore, VEGF treatment enhanced VEGFR-1/SFK complex formation and increased tyrosine phosphorylation of focal adhesion kinase, p130 cas and paxillin. Finally, we demonstrate that VEGF-induced migration is not due, at least in part, to VEGF acting as a mitogen. These results suggest that VEGFR-1 promotes migration of tumour cells through a Src-dependent pathway linked to activation of focal adhesion components that regulate this process. PMID:16685275
An essential role of ubiquitination in Cbl-mediated negative regulation of the Src-family kinase Fyn
Rao, Navin; Ghosh, Amiya K.; Douillard, Patrice; Andoniou, Christopher E.; Zhou, Pengcheng; Band, Hamid
2009-01-01
SUMMARY The Cbl family of ubiquitin ligases function as negative regulators of activated receptor tyrosine kinases by facilitating their ubiquitination and subsequent lysosomal targeting. Here, we have investigated the role of Cbl ubiquitin ligase activity in the negative regulation of a non-receptor tyrosine kinase, the Src-family kinase Fyn. Using primary embryonic fibroblasts from Cbl+/+ and Cbl−/− mice, we demonstrate that endogenous Cbl mediates the ubiquitination of Fyn and dictates the rate of Fyn turnover. By analyzing CHO-TS20 cells with a temperature-sensitive ubiquitin activating enzyme, we demonstrate that intact cellular ubiquitin machinery is required for Cbl-induced degradation of Fyn. Analyses of Cbl mutants, with mutations in or near the RING finger domain, in 293T cells revealed that the ubiquitin ligase activity of Cbl is essential for Cbl-induced degradation of Fyn by the proteasome pathway. Finally, use of a SRE-luciferase reporter demonstrated that Cbl-dependent negative regulation of Fyn function requires the region of Cbl that mediates the ubiquitin ligase activity. Given the conservation of structure between various Src-family kinases and the ability of Cbl to interact with multiple members of this family, Cbl-dependent ubiquitination could serve a general role to negatively regulate activated Src-family kinases. PMID:19966925
Interaction between focal adhesion kinase and Crk-associated tyrosine kinase substrate p130Cas.
Polte, T R; Hanks, S K
1995-11-07
The focal adhesion kinase (FAK) has been implicated in integrin-mediated signaling events and in the mechanism of cell transformation by the v-Src and v-Crk oncoproteins. To gain further insight into FAK signaling pathways, we used a two-hybrid screen to identify proteins that interact with mouse FAK. The screen identified two proteins that interact with FAK via their Src homology 3 (SH3) domains: a v-Crk-associated tyrosine kinase substrate (Cas), p130Cas, and a still uncharacterized protein, FIPSH3-2, which contains an SH3 domain closely related to that of p130Cas. These SH3 domains bind to the same proline-rich region of FAK (APPKPSR) encompassing residues 711-717. The mouse p130Cas amino acid sequence was deduced from cDNA clones, revealing an overall high degree of similarity to the recently reported rat sequence. Coimmunoprecipitation experiments confirmed that p130Cas and FAK are associated in mouse fibroblasts. The stable interaction between p130Cas and FAK emerges as a likely key element in integrin-mediated signal transduction and further represents a direct molecular link between the v-Src and v-Crk oncoproteins. The Src family kinase Fyn, whose Src homology 2 (SH2) domain binds to the major FAK autophosphorylation site (tyrosine 397), was also identified in the two-hybrid screen.
Yu, Seon-Mi; Kim, Song-Ja
2010-11-30
Endoplasmic reticulum (ER) stress regulates a wide range of cellular responses including apoptosis, proliferation, inflammation, and differentiation in mammalian cells. In this study, we observed the role of 2-deoxy-D-glucose (2DG) on inflammation of chondrocytes. 2DG is well known as an inducer of ER stress, via inhibition of glycolysis and glycosylation. Treatment of 2DG in chondrocytes considerably induced ER stress in a dose- and time-dependent manner, which was demonstrated by a reduction of glucose regulated protein of 94 kDa (grp94), an ER stress-inducible protein, as determined by a Western blot analysis. In addition, induction of ER stress by 2DG led to the expression of COX-2 protein with an apparent molecular mass of 66-70kDa as compared with the normally expressed 72-74 kDa protein. The suppression of ER stress with salubrinal (Salub), a selective inhibitor of eif2-alpha dephosphorylation, successfully prevented grp94 induction and efficiently recovered 2DG- modified COX-2 molecular mass and COX-2 activity might be associated with COX-2 N-glycosylation. Also, treatment of 2DG increased phosphorylation of Src in chondrocytes. The inhibition of the Src signaling pathway with PP2 (Src tyrosine kinase inhibitor) suppressed grp94 expression and restored COX-2 expression, N-glycosylation, and PGE2 production, as determined by a Western blot analysis and PGE2 assay. Taken together, our results indicate that the ER stress induced by 2DG results in a decrease of the transcription level, the molecular mass, and the activity of COX-2 in rabbit articular chondrocytes via a Src kinase-dependent pathway.
Lipid binding by the Unique and SH3 domains of c-Src suggests a new regulatory mechanism
Pérez, Yolanda; Maffei, Mariano; Igea, Ana; Amata, Irene; Gairí, Margarida; Nebreda, Angel R.; Bernadó, Pau; Pons, Miquel
2013-01-01
c-Src is a non-receptor tyrosine kinase involved in numerous signal transduction pathways. The kinase, SH3 and SH2 domains of c-Src are attached to the membrane-anchoring SH4 domain through the flexible Unique domain. Here we show intra- and intermolecular interactions involving the Unique and SH3 domains suggesting the presence of a previously unrecognized additional regulation layer in c-Src. We have characterized lipid binding by the Unique and SH3 domains, their intramolecular interaction and its allosteric modulation by a SH3-binding peptide or by Calcium-loaded calmodulin binding to the Unique domain. We also show reduced lipid binding following phosphorylation at conserved sites of the Unique domain. Finally, we show that injection of full-length c-Src with mutations that abolish lipid binding by the Unique domain causes a strong in vivo phenotype distinct from that of wild-type c-Src in a Xenopus oocyte model system, confirming the functional role of the Unique domain in c-Src regulation. PMID:23416516
Geraghty, Patrick; Hardigan, Andrew
2014-01-01
The diagnosis of chronic obstructive pulmonary disease (COPD) confers a 2-fold increased lung cancer risk even after adjusting for cigarette smoking, suggesting that common pathways are operative in both diseases. Although the role of the tyrosine kinase c-Src is established in lung cancer, less is known about its impact in other lung diseases, such as COPD. This study examined whether c-Src activation by cigarette smoke contributes to the pathogenesis of COPD. Cigarette smoke increased c-Src activity in human small airway epithelial (SAE) cells from healthy donors and in the lungs of exposed mice. Similarly, higher c-Src activation was measured in SAE cells from patients with COPD compared with healthy control subjects. In SAE cells, c-Src silencing or chemical inhibition prevented epidermal growth factor (EGF) receptor signaling in response to cigarette smoke but not EGF stimulation. Further studies showed that cigarette smoke acted through protein kinase C α to trigger c-Src to phosphorylate EGF receptor and thereby to induce mitogen-activated protein kinase responses in these cells. To further investigate the role of c-Src, A/J mice were orally administered the specific Src inhibitor AZD-0530 while they were exposed to cigarette smoke for 2 months. AZD-0530 treatment blocked c-Src activation, decreased macrophage influx, and prevented airspace enlargement in the lungs of cigarette smoke–exposed mice. Moreover, inhibiting Src deterred the cigarette smoke–mediated induction of matrix metalloproteinase-9 and -12 in alveolar macrophages and lung expression of cathepsin K, IL-17, TNF-α, MCP-1, and KC, all key factors in the pathogenesis of COPD. These results indicate that activation of the proto-oncogene c-Src by cigarette smoke promotes processes linked to the development of COPD. PMID:24111605
Src kinase regulation by phosphorylation and dephosphorylation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roskoski, Robert
2005-05-27
Src and Src-family protein-tyrosine kinases are regulatory proteins that play key roles in cell differentiation, motility, proliferation, and survival. The initially described phosphorylation sites of Src include an activating phosphotyrosine 416 that results from autophosphorylation, and an inhibiting phosphotyrosine 527 that results from phosphorylation by C-terminal Src kinase (Csk) and Csk homologous kinase. Dephosphorylation of phosphotyrosine 527 increases Src kinase activity. Candidate phosphotyrosine 527 phosphatases include cytoplasmic PTP1B, Shp1 and Shp2, and transmembrane enzymes include CD45, PTP{alpha}, PTP{epsilon}, and PTP{lambda}. Dephosphorylation of phosphotyrosine 416 decreases Src kinase activity. Thus far PTP-BL, the mouse homologue of human PTP-BAS, has been shownmore » to dephosphorylate phosphotyrosine 416 in a regulatory fashion. The platelet-derived growth factor receptor protein-tyrosine kinase mediates the phosphorylation of Src Tyr138; this phosphorylation has no direct effect on Src kinase activity. The platelet-derived growth factor receptor and the ErbB2/HER2 growth factor receptor protein-tyrosine kinases mediate the phosphorylation of Src Tyr213 and activation of Src kinase activity. Src kinase is also a substrate for protein-serine/threonine kinases including protein kinase C (Ser12), protein kinase A (Ser17), and CDK1/cdc2 (Thr34, Thr46, and Ser72). Of the three protein-serine/threonine kinases, only phosphorylation by CDK1/cdc2 has been demonstrated to increase Src kinase activity. Although considerable information on the phosphoprotein phosphatases that catalyze the hydrolysis of Src phosphotyrosine 527 is at hand, the nature of the phosphatases that mediate the hydrolysis of phosphotyrosine 138 and 213, and phosphoserine and phosphothreonine residues has not been determined.« less
Braun, Sabine; Lösel, Ralf; Wehling, Martin; Boldyreff, Brigitte
2004-07-16
We investigated the effect of aldosterone on Src kinase. In the kidney cell line, M-1 aldosterone leads to a >2-fold transient activation of Src kinase seen as early as 2 min after aldosterone administration. Maximal Src kinase activation was measured at an aldosterone concentration of 1 nM. In parallel to activation, autophosphorylation at Tyr-416 of Src kinase increased. Src kinase activation was blocked by spironolactone. Aldosterone led to increased association of Src with HSP84. Furthermore, rapamycin blocked aldosterone-induced Src activation. We conclude that Src activation by aldosterone is mediated through the mineralocorticoid receptor and HSP84.
Kinsey, William H.
2015-01-01
The oocyte is a highly specialized cell poised to respond to fertilization with a unique set of actions needed to recognize and incorporate a single sperm, complete meiosis, reprogram maternal and paternal genomes and assemble them into a unique zygotic genome, and finally initiate the mitotic cell cycle. Oocytes accomplish this diverse series of events through an array of signal transduction pathway components that include a characteristic collection of protein tyrosine kinases. The src-family protein kinases figure importantly in this signaling array and oocytes characteristically express certain SFKs at high levels to provide for the unique actions that the oocyte must perform. The SFKs typically exhibit a distinct pattern of subcellular localization in oocytes and perform critical functions in different subcellular compartments at different steps during oocyte maturation and fertilization. While many aspects of SFK signaling are conserved among oocytes from different species, significant differences exist in the extent to which src-family -mediated pathways are used by oocytes from species that fertilize externally vs those which are fertilized internally. The observation that several oocyte functions which require SFK signaling appear to represent common points of failure during assisted reproductive techniques in humans, highlights the importance of these signaling pathways for human reproductive health. PMID:25030759
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, W.-N.; Luo, S.-F.; Wu, C.-B.
2008-04-15
In our previous study, LPS has been shown to induce vascular cell adhesion molecule-1(VCAM-1) expression through MAPKs and NF-{kappa}B in human tracheal smooth muscle cells (HTSMCs). In addition to these pathways, the non-receptor tyrosine kinases (Src), EGF receptor (EGFR), and phosphatidylinositol 3-kinase (PI3K) have been shown to be implicated in the expression of several inflammatory target proteins. Here, we reported that LPS-induced up-regulation of VCAM-1 enhanced the adhesion of neutrophils onto HTSMC monolayer, which was inhibited by LY294002 and wortmannin. LPS stimulated phosphorylation of protein tyrosine kinases including Src, PYK2, and EGFR, which were further confirmed using specific anti-phospho-Src, PYK2,more » or EGFR Ab, respectively, revealed by Western blotting. LPS-stimulated Src, PYK2, EGFR, and Akt phosphorylation and VCAM-1 expression were attenuated by the inhibitors of Src (PP1), EGFR (AG1478), PI3-K (LY294002 and wortmannin), and Akt (SH-5), respectively, or transfection with siRNAs of Src or Akt and shRNA of p110. LPS-induced VCAM-1 expression was also blocked by pretreatment with curcumin (a p300 inhibitor) or transfection with p300 siRNA. LPS-stimulated Akt activation translocated into nucleus and associated with p300 and VCAM-1 promoter region was further confirmed by immunofluorescence, immunoprecipitation, and chromatin immunoprecipitation assays. This association of Akt and p300 to VCAM-1 promoter was inhibited by pretreatment with PP1, AG1478, wortmannin, and SH-5. LPS-induced p300 activation enhanced VCAM-1 promoter activity and VCAM-1 mRNA expression. These results suggested that in HTSMCs, Akt phosphorylation mediated through transactivation of Src/PYK2/EGFR promoted the transcriptional p300 activity and eventually led to VCAM-1 expression induced by LPS.« less
2013-01-01
Exposure of intact cells to selective inhibitors of Na+/K+-ATPase such as ouabain activates several growth-related cell signaling pathways. It has been suggested that the initial event of these pathways is the binding of ouabain to a preexisting complex of Src with Na+/K+-ATPase of the plasma membrane. The aim of this work was to evaluate the role of Src in the ouabain-induced activation of phosphatidylinositide 3-kinase 1A (PI3K1A) and its downstream consequences. When fibroblasts devoid of Src (SYF cells) and controls (Src++ cells) were exposed to ouabain, PI3K1A, Akt, and proliferative growth were similarly stimulated in both cell lines. Ouabain-induced activation of Akt was not prevented by the Src inhibitor PP2. In contrast, ERK1/2 were not activated by ouabain in SYF cells but were stimulated in Src++ cells; this was prevented by PP2. In isolated adult mouse cardiac myocytes, where ouabain induces hypertrophic growth, PP2 also did not prevent ouabain-induced activation of Akt and the resulting hypertrophy. Ouabain-induced increases in the levels of co-immunoprecipitation of the α-subunit of Na+/K+-ATPase with the p85 subunit of PI3K1A were noted in SYF cells, Src++ cells, and adult cardiac myocytes. In conjunction with previous findings, the results presented here indicate that (a) if there is a preformed complex of Src and Na+/K+-ATPase, it is irrelevant to ouabain-induced activation of the PI3K1A/Akt pathway through Na+/K+-ATPase and (b) a more likely, but not established, mechanism of linkage of Na+/K+-ATPase to PI3K1A is the ouabain-induced interaction of a proline-rich domain of the α-subunit of Na+/K+-ATPase with the SH3 domain of the p85 subunit of PI3K1A. PMID:24266852
Lack of Csk-mediated negative regulation in a unicellular SRC kinase.
Schultheiss, Kira P; Suga, Hiroshi; Ruiz-Trillo, Iñaki; Miller, W Todd
2012-10-16
Phosphotyrosine-based signaling plays a vital role in cellular communication in multicellular organisms. Unexpectedly, unicellular choanoflagellates (the closest phylogenetic group to metazoans) possess numbers of tyrosine kinases that are comparable to those in complex metazoans. Here, we have characterized tyrosine kinases from the filasterean Capsaspora owczarzaki, a unicellular protist representing the sister group to choanoflagellates and metazoans. Two Src-like tyrosine kinases have been identified in C. owczarzaki (CoSrc1 and CoSrc2), both of which have the arrangement of SH3, SH2, and catalytic domains seen in mammalian Src kinases. In Capsaspora cells, CoSrc1 and CoSrc2 localize to punctate structures in filopodia that may represent primordial focal adhesions. We have cloned, expressed, and purified both enzymes. CoSrc1 and CoSrc2 are active tyrosine kinases. Mammalian Src kinases are normally regulated in a reciprocal fashion by autophosphorylation in the activation loop (which increases activity) and by Csk-mediated phosphorylation of the C-terminal tail (which inhibits activity). Similar to mammalian Src kinases, the enzymatic activities of CoSrc1 and CoSrc2 are increased by autophosphorylation in the activation loop. We have identified a Csk-like kinase (CoCsk) in the genome of C. owczarzaki. We cloned, expressed, and purified CoCsk and found that it has no measurable tyrosine kinase activity. Furthermore, CoCsk does not phosphorylate or regulate CoSrc1 or CoSrc2 in cells or in vitro, and CoSrc1 and CoSrc2 are active in Capsaspora cell lysates. Thus, the function of Csk as a negative regulator of Src family kinases appears to have arisen with the emergence of metazoans.
Hayes, Karen E.; Walk, Elyse L.; Ammer, Amanda Gatesman; Kelley, Laura C.; Martin, Karen H.; Weed, Scott A.
2014-01-01
Head and neck squamous cell carcinoma (HNSCC) has a proclivity for locoregional invasion. HNSCC mediates invasion in part through invadopodia-based proteolysis of the extracellular matrix (ECM). Activation of Src, Erk1/2, Abl and Arg downstream of epidermal growth factor receptor (EGFR) modulates invadopodia activity through phosphorylation of the actin regulatory protein cortactin. In MDA-MB-231 breast cancer cells, Abl and Arg function downstream of Src to phosphorylate cortactin, promoting invadopodia ECM degradation activity and thus assigning a pro-invasive role for Ableson kinases. We report that Abl kinases have an opposite, negative regulatory role in HNSCC where they suppress invadopodia and tumor invasion. Impairment of Abl expression or Abl kinase activity with imatinib mesylate enhanced HNSCC matrix degradation and 3D collagen invasion, functions that were impaired in MDA-MB-231. HNSCC lines with elevated EGFR and Src activation did not contain increased Abl or Arg kinase activity, suggesting Src could bypass Abl/Arg to phosphorylate cortactin and promote invadopodia ECM degradation. Src transformed Abl−/−/Arg−/− fibroblasts produced ECM degrading invadopodia containing pY421 cortactin, indicating that Abl/Arg are dispensable for invadopodia function in this system. Imatinib treated HNSCC cells had increased EGFR, Erk1/2 and Src activation, enhancing cortactin pY421 and pS405/418 required for invadopodia function. Imatinib stimulated shedding of the EGFR ligand heparin-binding EGF-like growth factor (HB-EGF) from HNSCC cells, where soluble HB-EGF enhanced invadopodia ECM degradation in HNSCC but not in MDA-MB-231. HNSCC cells treated with inhibitors of the EGFR invadopodia pathway indicated that EGFR and Src are required for invadopodia function. Collectively our results indicate that Abl kinases negatively regulate HNSCC invasive processes through suppression of an HB-EGF autocrine loop responsible for activating a EGFR-Src-cortactin cascade, in contrast to the invasion promoting functions of Abl kinases in breast and other cancer types. Our results provide mechanistic support for recent failed HNSCC clinical trials utilizing imatinib. PMID:23146907
Xie, Weiwei; Zheng, Rongliang; Gan, Yu; Chang, Jianhua
2016-01-01
The Rearranged during transfection (RET) fusion gene is a newly identified oncogenic mutation in non-small cell lung cancer (NSCLC). The aim of this study is to explore the biological functions of the gene in tumorigenesis and metastasis in RET gene fusion-driven preclinical models. We also investigate the anti-tumor activity of Apatinib, a potent inhibitor of VEGFR-2, PDGFR-β, c-Src and RET, in RET-rearranged lung adenocarcinoma, together with the mechanisms underlying. Our results suggested that KIF5B-RET fusion gene promoted cell invasion and migration, which were probably mediated through Src signaling pathway. Apatinib exerted its anti-cancer effect not only via cytotoxicity, but also via inhibition of migration and invasion by suppressing RET/Src signaling pathway, supporting a potential role for Apatinib in the treatment of KIF5B-RET driven tumors. PMID:27494860
Lin, Chen; Wang, Shanshan; Xie, Weiwei; Zheng, Rongliang; Gan, Yu; Chang, Jianhua
2016-09-13
The Rearranged during transfection (RET) fusion gene is a newly identified oncogenic mutation in non-small cell lung cancer (NSCLC). The aim of this study is to explore the biological functions of the gene in tumorigenesis and metastasis in RET gene fusion-driven preclinical models. We also investigate the anti-tumor activity of Apatinib, a potent inhibitor of VEGFR-2, PDGFR-β, c-Src and RET, in RET-rearranged lung adenocarcinoma, together with the mechanisms underlying. Our results suggested that KIF5B-RET fusion gene promoted cell invasion and migration, which were probably mediated through Src signaling pathway. Apatinib exerted its anti-cancer effect not only via cytotoxicity, but also via inhibition of migration and invasion by suppressing RET/Src signaling pathway, supporting a potential role for Apatinib in the treatment of KIF5B-RET driven tumors.
Vázquez-Gómez, G; Rocha-Zavaleta, L; Rodríguez-Sosa, M; Petrosyan, P; Rubio-Lightbourn, J
2018-06-01
Benzo[a]pyrene (B[a]P), the most extensively studied carcinogen in cigarette smoke, has been regarded as a critical mediator of lung cancer. It is known that B[a]P-mediated Aryl hydrocarbon Receptor (AhR) activation stimulates the mitogen activated protein kinases (MAPK) signaling cascade in different cell models. MAPK pathway disturbances drive alterations in cellular processes, such as differentiation, proliferation, and apoptosis, and the disturbances may also modify the AhR pathway itself. However, MAPK involvement in B[a]P metabolic activation and toxicity in lung tissues is not well understood. Here, we used a non-transformed human bronchial epithelial lung cell line, BEAS-2B, to study the participation of ERK 1/2 kinases in the metabolic activation of B[a]P and in its related genotoxic effects. Our results indicate that B[a]P is not cytotoxic to BEAS-2B cells at relatively low concentrations, but it enhances CYP1A1 gene transcription and protein induction. Additionally, B[a]P promotes Src and ERK 1/2 phosphorylation. Accordingly, inhibition of both Src and ERK 1/2 phosphorylation decreases CYP1A1 protein induction, AhR nuclear translocation and production of B[a]P adducts. Together, these data suggest a crosstalk between AhR and the members of the MAPK pathway, ERK 1/2 mediated by Src kinase. This interaction is important for the adequate AhR pathway signaling that in turn induces transcription and protein induction of CYP1A1 and B[a]P-induced DNA damage in BEAS-2B cells. Copyright © 2018 Elsevier B.V. All rights reserved.
Sharma, Shalini; Mulik, Sachin; Kumar, Naveen; Suryawanshi, Amol; Rouse, Barry T.
2011-01-01
Corneal neovascularization represents a key step in the blinding inflammatory stromal keratitis (SK) lesion caused by ocular infection with herpes simplex virus (HSV). In this report, we describe a novel approach for limiting the angiogenesis caused by HSV infection of the mouse eye. We show that topical or systemic administration of the Src kinase inhibitor (TG100572) that inhibits downstream molecules involved in the vascular endothelial growth factor (VEGF) signaling pathway resulted in markedly diminished levels of HSV-induced angiogenesis and significantly reduced the severity of SK lesions. Multiple mechanisms were involved in the inhibitory effects. These included blockade of IL-8/CXCL1 involved in inflammatory cells recruitment that are a source of VEGF, diminished cellular infiltration in the cornea, and reduced proliferation and migration of CD4+ T cells into the corneas. As multiple angiogenic factors (VEGF and basic fibroblast growth factor [bFGF]) play a role in promoting angiogenesis during SK and since Src kinases are involved in signaling by many of them, the use of Src kinase inhibition represents a promising way of limiting the severity of SK lesions the most common cause of infectious blindness in the Western world. PMID:21471229
Src is a major signaling component for CTGF induction by TGF-β1 in osteoblasts
X, Zhang; JA, Arnott; S, Rehman; WG, DeLong; A, Sanjay; FF, Safadi; SN, Popoff
2010-01-01
Connective tissue growth factor (CTGF/CCN2) is induced by transforming growth factor beta 1(TGF-β1) where it acts as a downstream mediator of TGF-β1 induced matrix production in osteoblasts. We have shown the requirement of Src, Erk and Smad signaling for CTGF induction by TGF-β1 in osteoblasts, however the potential interaction among these signaling pathways remains undetermined. In this study we demonstrate that TGF-β1 activates Src kinase in ROS17/2.8 cells and that treatment with the Src family kinase inhibitor PP2 prevents Src activation and CTGF induction by TGF-β1. Additionally, inhibiting Src activation prevented Erk activation, Smad 2 & 3 activation and nuclear translocation by TGF-β1, demonstrating that Src is an essential upstream signaling partner of both Erk and Smads in osteoblasts. MAPKs such as Erk can modulate the Smad pathway through directly mediating the phosphorylation of Smads or indirectly through activation/inactivation of required nuclear co-activators that mediate Smad DNA binding. When we treated cells with the Erk inhibitor, PD98059 it inhibited TGF-β1-induced CTGF protein expression but had no effect on Src activation, Smad activation or Smad nuclear translocation. However PD98059 impaired transcriptional complex formation on the Smad binding element (SBE) on the CTGF promoter, demonstrating that Erk activation was required for SBE transactivation. This data demonstrates that Src is an essential upstream signaling transducer of Erk and Smad signaling with respect to TGF-β1 in osteoblasts and that Smads and Erk function independently but are both essential for forming a transcriptionally active complex on the CTGF promoter in osteoblasts. PMID:20432467
Levitt, Jonathan M; Yamashita, Hideyuki; Jian, Weiguo; Lerner, Seth P; Sonpavde, Guru
2010-05-01
Dasatinib is an orally administered multitargeted kinase inhibitor that targets Src family tyrosine kinases, Abl, c-Kit, and PDGFR. A preclinical study was conducted to evaluate dasatinib alone or combined with cisplatin for human transitional cell carcinoma (TCC). Expression of Src in a human TCC tissue microarray was evaluated by immunohistochemistry. The activity of dasatinib and/or cisplatin was evaluated in six human TCC cell lines. Western blot was done to assess Src and phosphorylated-Src (p-Src) expression. The activity of dasatinib alone and in combination with cisplatin was determined in murine subcutaneous xenografts. Sixty-two percent to 75% of human TCC expressed Src. Dasatinib displayed significant antiproliferative activity at nanomolar concentrations against two human TCC cell lines (RT4 and Hu456) that exhibited high Src and p-Src expression and were cisplatin-resistant. RT4 cells were the most sensitive and displayed the highest level of Src pathway activation (p-Src/Src ratio). Dasatinib downregulated p-Src in either sensitive or resistant cells. TCC cells that were sensitive to cisplatin (5637 and TCC-SUP) were highly resistant to dasatinib and exhibited low Src expression. Dasatinib showed antitumor activity in RT4 murine xenografts, and the combination of dasatinib and cisplatin was significantly more active than placebo. Combination dasatinib plus cisplatin significantly inhibited proliferation and promoted apoptosis in vivo. In conclusion, dasatinib displayed significant preclinical antitumor activity against Src-overexpressing human TCC with active Src signaling and was highly active in combination with cisplatin in vivo. Further clinical development might be warranted in selected human subjects.
Bach, Cuc T.; Murray, Rachael Z.; Owen, Dylan; Gaus, Kat
2014-01-01
In order for cells to stop moving, they must synchronously stabilize actin filaments and their associated focal adhesions. How these two structures are coordinated in time and space is not known. We show here that the actin association protein Tm5NM1, which induces stable actin filaments, concurrently suppresses the trafficking of focal-adhesion-regulatory molecules. Using combinations of fluorescent biosensors and fluorescence recovery after photobleaching (FRAP), we demonstrate that Tm5NM1 reduces the level of delivery of Src kinase to focal adhesions, resulting in reduced phosphorylation of adhesion-resident Src substrates. Live imaging of Rab11-positive recycling endosomes that carry Src to focal adhesions reveals disruption of this pathway. We propose that tropomyosin synchronizes adhesion dynamics with the cytoskeleton by regulating actin-dependent trafficking of essential focal-adhesion molecules. PMID:25288639
Moroco, Jamie A; Baumgartner, Matthew P; Rust, Heather L; Choi, Hwan Geun; Hur, Wooyoung; Gray, Nathanael S; Camacho, Carlos J; Smithgall, Thomas E
2015-08-01
The c-Src tyrosine kinase co-operates with the focal adhesion kinase to regulate cell adhesion and motility. Focal adhesion kinase engages the regulatory SH3 and SH2 domains of c-Src, resulting in localized kinase activation that contributes to tumor cell metastasis. Using assay conditions where c-Src kinase activity required binding to a tyrosine phosphopeptide based on the focal adhesion kinase SH3-SH2 docking sequence, we screened a kinase-biased library for selective inhibitors of the Src/focal adhesion kinase peptide complex versus c-Src alone. This approach identified an aminopyrimidinyl carbamate compound, WH-4-124-2, with nanomolar inhibitory potency and fivefold selectivity for c-Src when bound to the phospho-focal adhesion kinase peptide. Molecular docking studies indicate that WH-4-124-2 may preferentially inhibit the 'DFG-out' conformation of the kinase active site. These findings suggest that interaction of c-Src with focal adhesion kinase induces a unique kinase domain conformation amenable to selective inhibition. © 2014 John Wiley & Sons A/S.
2016-09-01
Inhibition of MAP kinase pathway prevents plasma protrusions Next we used a selective inhibitor of MAP kinases , PD98059, to address whether we can...from human patients harbor AKT1 and that AKT1 kinase activity is sustained in these particles, nominating them as active signaling platforms...with the extracellular matrix (ECM) and extracellular molecules (2). Though many classic extracellular signaling molecules (e.g., hormones, peptide
Chun, Kyung-Soo; Lao, Huei-Chen; Trempus, Carol S.; Okada, Manabu; Langenbach, Robert
2009-01-01
Prostaglandin E2 (PGE2) is elevated in many tumor types, but PGE2's contributions to tumor growth are largely unknown. To investigate PGE2's roles, the contributions of one of its receptors, EP2, were studied using the mouse skin initiation/promotion model. Initial studies indicated that protein kinase A (PKA), epidermal growth factor receptor (EGFR) and several effectors—cyclic adenosine 3′,5′-monophosphate response element-binding protein (CREB), H-Ras, Src, protein kinase B (AKT) and extracellular signal-regulated kinase (ERK)1/2—were activated in 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted papillomas and that PKA and EGFR inhibition (H89 and AG1478, respectively) decreased papilloma formation. EP2's contributions to the activation of these pathways and papilloma development were determined by inhibiting endogenous TPA-induced PGE2 production with indomethacin (Indo) and concomitantly treating with the EP2 agonist, CAY10399 (CAY). CAY treatment restored papilloma formation in TPA/Indo-treated mice and increased cyclic adenosine 3′,5′-monophosphate and PKA activation as measured by p-CREB formation. CAY treatment also increased EGFR and Src activation and their inhibition by AG1478 and PP2 indicated that Src was upstream of EGFR. CAY also increased H-Ras, ERK1/2 and AKT activation, and AG1478 decreased their activation indicating EGFR being upstream. Supporting EP2's contribution, EP2−/− mice exhibited 65% fewer papillomas and reduced Src, EGFR, H-Ras, AKT and ERK1/2 activation. G protein-coupled receptor (GPCR) activation of EGFR has been reported to involve Src's activation via a GPCR–β-arrestin–Src complex. Indeed, immunoprecipitation of β-arrestin1 or p-Src indicated the presence of an EP2–β-arrestin1–p-Src complex in papillomas. The data indicated that EP2 contributed to tumor formation via activation of PKA and EGFR and that EP2 formed a complex with β-arrestin1 and Src that contributed to signaling and/or EP2 desensitization. PMID:19587094
Transition path theory analysis of c-Src kinase activation
Meng, Yilin; Shukla, Diwakar; Pande, Vijay S.; Roux, Benoît
2016-01-01
Nonreceptor tyrosine kinases of the Src family are large multidomain allosteric proteins that are crucial to cellular signaling pathways. In a previous study, we generated a Markov state model (MSM) to simulate the activation of c-Src catalytic domain, used as a prototypical tyrosine kinase. The long-time kinetics of transition predicted by the MSM was in agreement with experimental observations. In the present study, we apply the framework of transition path theory (TPT) to the previously constructed MSM to characterize the main features of the activation pathway. The analysis indicates that the activating transition, in which the activation loop first opens up followed by an inward rotation of the αC-helix, takes place via a dense set of intermediate microstates distributed within a fairly broad “transition tube” in a multidimensional conformational subspace connecting the two end-point conformations. Multiple microstates with negligible equilibrium probabilities carry a large transition flux associated with the activating transition, which explains why extensive conformational sampling is necessary to accurately determine the kinetics of activation. Our results suggest that the combination of MSM with TPT provides an effective framework to represent conformational transitions in complex biomolecular systems. PMID:27482115
The diverse functions of Src family kinases in macrophages
Abram, Clare L.; Lowell, Clifford A.
2015-01-01
Macrophages are key components of the innate immune response. These cells possess a diverse repertoire of receptors that allow them to respond to a host of external stimuli including cytokines, chemokines, and pathogen-associated molecules. Signals resulting from these stimuli activate a number of macrophage functional responses such as adhesion, migration, phagocytosis, proliferation, survival, cytokine release and production of reactive oxygen and nitrogen species. The cytoplasmic tyrosine kinase Src and its family members (SFKs) have been implicated in many intracellular signaling pathways in macrophages, initiated by a diverse set of receptors ranging from integrins to Toll-like receptors. However, it has been difficult to implicate any given member of the family in any specific pathway. SFKs appear to have overlapping and complementary functions in many pathways. Perhaps the function of these enzymes is to modulate the overall intracellular signaling network in macrophages, rather than operating as exclusive signaling switches for defined pathways. In general, SFKs may function more like rheostats, influencing the amplitude of many pathways. PMID:18508521
O'Hara, Samantha D; Garcea, Robert L
2016-11-01
Virus binding to the cell surface triggers an array of host responses, including activation of specific signaling pathways that facilitate steps in virus entry. Using mouse polyomavirus (MuPyV), we identified host signaling pathways activated upon virus binding to mouse embryonic fibroblasts (MEFs). Pathways activated by MuPyV included the phosphatidylinositol 3-kinase (PI3K), FAK/SRC, and mitogen-activated protein kinase (MAPK) pathways. Gangliosides and α4-integrin are required receptors for MuPyV infection. MuPyV binding to both gangliosides and the α4-integrin receptors was required for activation of the PI3K pathway; however, either receptor interaction alone was sufficient for activation of the MAPK pathway. Using small-molecule inhibitors, we confirmed that the PI3K and FAK/SRC pathways were required for MuPyV infection, while the MAPK pathway was dispensable. Mechanistically, the PI3K pathway was required for MuPyV endocytosis, while the FAK/SRC pathway enabled trafficking of MuPyV along microtubules. Thus, MuPyV interactions with specific cell surface receptors facilitate activation of signaling pathways required for virus entry and trafficking. Understanding how different viruses manipulate cell signaling pathways through interactions with host receptors could lead to the identification of new therapeutic targets for viral infection. Virus binding to cell surface receptors initiates outside-in signaling that leads to virus endocytosis and subsequent virus trafficking. How different viruses manipulate cell signaling through interactions with host receptors remains unclear, and elucidation of the specific receptors and signaling pathways required for virus infection may lead to new therapeutic targets. In this study, we determined that gangliosides and α4-integrin mediate mouse polyomavirus (MuPyV) activation of host signaling pathways. Of these pathways, the PI3K and FAK/SRC pathways were required for MuPyV infection. Both the PI3K and FAK/SRC pathways have been implicated in human diseases, such as heart disease and cancer, and inhibitors directed against these pathways are currently being investigated as therapies. It is possible that these pathways play a role in human PyV infections and could be targeted to inhibit PyV infection in immunosuppressed patients. Copyright © 2016 O’Hara and Garcea.
SRC: marker or actor in prostate cancer aggressiveness.
Vlaeminck-Guillem, Virginie; Gillet, Germain; Rimokh, Ruth
2014-01-01
A key question for urologic practitioners is whether an apparently organ-confined prostate cancer (PCa) is actually aggressive or not. The dilemma is to specifically identify among all prostate tumors the very aggressive high-grade cancers that will become life-threatening by developing extra-prostatic invasion and metastatic potential and the indolent cancers that will never modify a patient's life expectancy. A choice must be made between several therapeutic options to achieve the optimal personalized management of the disease that causes as little harm as possible to patients. Reliable clinical, biological, or pathological markers that would enable distinctions to be made between aggressive and indolent PCas in routine practice at the time of initial diagnosis are still lacking. The molecular mechanisms that explain why a PCa is aggressive or not are also poorly understood. Among the potential markers and/or actors in PCa aggressiveness, Src and other members of the Src kinase family, are valuable candidates. Activation of Src-dependent intracellular pathways is frequently observed in PCa. Indeed, Src is at the cross-roads of several pathways [including androgen receptor (AR), TGFbeta, Bcl-2, Akt/PTEN or MAPK, and ERK …], and is now known to influence some of the cellular and tissular events that accompany tumor progression: cell proliferation, cell motility, invasion, epithelial-to-mesenchymal transition, resistance to apoptosis, angiogenesis, neuroendocrine differentiation, and metastatic spread. Recent work even suggests that Src could also play a part in PCa initiation in coordination with the AR. The aim of this review is to gather data that explore the links between the Src kinase family and PCa progression and aggressiveness.
Vázquez-Juárez, E; Ramos-Mandujano, G; Lezama, R A; Cruz-Rangel, S; Islas, L D; Pasantes-Morales, H
2008-02-01
The present study in Swiss3T3 fibroblasts examines the effect of thrombin on hyposmolarity-induced osmolyte fluxes and RVD, and the contribution of the src/EGFR pathway. Thrombin (5 U/ml) added to a 30% hyposmotic medium markedly increased hyposmotic 3H-taurine efflux (285%), accelerated the volume-sensitive Cl- current (ICI-swell) and increased RVD rate. These effects were reduced (50-65%) by preventing the thrombin-induced intracellular Ca2+ [Ca2+]i rise with EGTA-AM, or with the phospholipase C (PLC) blocker U73122. Ca2+calmodulin (CaM) and calmodulin kinase II (CaMKII) also participate in this Ca2+-dependent pathway. Thrombin plus hyposmolarity increased src and EGFR phosphorylation, whose blockade by PP2 and AG1478, decreased by 30-50%, respectively, the thrombin effects on hyposmotic taurine efflux, ICI-swell and RVD. Ca2+- and src/EGFR-mediated pathways operate independently as shown by (1) the persistence of src and EGFR activation when [Ca2+]i rise is prevented and (2) the additive effect on taurine efflux, ICI-swell or RVD by simultaneous inhibition of the two pathways, which essentially suppressed these events. PLC-Ca2+- and src/EGFR-signaling pathways operate in the hyposmotic condition and because thrombin per se failed to increase taurine efflux and ICI-swell under isosmotic condition it seems that it is merely amplifying these previously activated mechanisms. The study shows that thrombin potentiates hyposmolarity-induced osmolyte fluxes and RVD by increasing src/EGFR-dependent signaling, in addition to the Ca2+-dependent pathway.
Garcia, P; Shoelson, S E; Drew, J S; Miller, W T
1994-12-02
Phosphorylation of c-Src at carboxyl-terminal Tyr-527 suppresses tyrosine kinase activity and transforming potential, presumably by facilitating the intramolecular interaction of the C terminus of Src with its SH2 domain. In addition, it has been shown previously that occupancy of the c-Src SH2 domain with a phosphopeptide stimulates c-Src kinase catalytic activity. We have performed analogous studies with v-Src, the transforming protein from Rous sarcoma virus, which has extensive homology with c-Src. v-Src lacks an autoregulatory phosphorylation site, and its kinase domain is constitutively active. Phosphopeptides corresponding to the sequences surrounding c-Src Tyr-527 and a Tyr-Glu-Glu-Ile motif from the hamster polyoma virus middle T antigen inhibit tyrosine kinase activity of baculovirus-expressed v-Src 2- and 4-fold, respectively. To determine the mechanism of this regulation, the Tyr-527 phosphopeptide was substituted with the photoactive amino acid p-benzoylphenylalanine at the adjacent positions (N- and C-terminal) to phosphotyrosine. These peptides photoinactivate the v-Src tyrosine kinase 5-fold in a time- and concentration-dependent manner. Furthermore, the peptides cross-link an isolated Src SH2 domain with similar rates and specificity. These data indicate that occupancy of the v-Src SH2 domain induces a conformational change that is transmitted to the kinase domain and attenuates tyrosine kinase activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Xiulong, E-mail: songxiulong@hotmail.com; Wei, Zhengxi; Shaikh, Zahir A., E-mail: zshaikh@uri.edu
Cadmium (Cd) is a common environmental toxicant and an established carcinogen. Epidemiological studies implicate Cd with human breast cancer. Low micromolar concentrations of Cd promote proliferation of human breast cancer cells in vitro. The growth promotion of breast cancer cells is associated with the activation of MAPK/ERK pathway. This study explores the mechanism of Cd-induced activation of MAPK/ERK pathway. Specifically, the role of cell surface receptors ERα, EGFR, and Src kinase was evaluated in human breast cancer MCF-7 cells treated with 1–3 μM Cd. The activation of ERK was studied using a serum response element (SRE) luciferase reporter assay. Receptormore » phosphorylation was detected by Western blot analyses. Cd treatment increased both the SRE reporter activity and ERK1/2 phosphorylation in a concentration-dependent manner. Cd treatment had no effect on reactive oxygen species (ROS) generation. Also, blocking the entry of Cd into the cells with manganese did not diminish Cd-induced activation of MAPK/ERK. These results suggest that the effect of Cd was likely not caused by intracellular ROS generation, but through interaction with the membrane receptors. While Cd did not appear to activate either EGFR or Src kinase, their inhibition completely blocked the Cd-induced activation of ERK as well as cell proliferation. Similarly, silencing ERα with siRNA or use of ERα antagonist blocked the effects of Cd. Based on these results, it is concluded that not only ERα, but also basal activities of EGFR and Src kinase are essential for Cd-induced signal transduction and activation of MAPK/ERK pathway for breast cancer cell proliferation. - Highlights: • Low micromolar concentrations of Cd rapidly activate ERK1/2 in MCF-7 cells. • Signal transduction and resulting cell proliferation require EGFR, ERα, and Src. • These findings implicate Cd in promotion of breast cancer.« less
Pervanadate induces Mammalian Ste20 Kinase 3 (MST3) tyrosine phosphorylation but not activation.
Kan, Wei-Chih; Lu, Te-Ling; Ling, Pin; Lee, Te-Hsiu; Cho, Chien-Yu; Huang, Chi-Ying F; Jeng, Wen-Yih; Weng, Yui-Ping; Chiang, Chun-Yen; Wu, Jin Bin; Lu, Te-Jung
2016-07-01
The yeast Ste20 (sterile) protein kinase, which is a serine/threonine kinase, responds to the stimulation of the G proteincoupled receptor (GPCR) pheromone receptor. Ste20 protein kinase serves as the critical component that links signaling from the GPCR/G proteins to the mitogen-activated protein kinase (MAPK) cascade in yeast. The yeast Ste20p functions as a MAP kinase kinase kinase kinase (MAP4K) in the pheromone response. Ste20-like kinases are structurally conserved from yeast to mammals. The mechanism by which MAP4K links GPCR to the MAPK pathway is less clearly defined in vertebrates. In addition to MAP4K, the tyrosine kinase cascade bridges G proteins and the MAPK pathway in vertebrate cells. Mammalian Ste20 Kinase 3 (MST3) has been categorized into the Ste20 family and has been reported to function in the regulation of cell polarity and migration. However, whether MST3 tyrosine phosphorylation regulates diverse signaling pathways is unknown. In this study, the tyrosine phosphatase inhibitor pervanadate was found to induce MST3 tyrosine phosphorylation in intact cells, and the activity of tyrosine-phosphorylated MST3 was measured. This tyrosine-directed phosphorylation was independent of MST3 activity. Parameters including protein conformation, Triton concentration and ionic concentration influenced the sensitivity of MST3 activity. Taken together, our data suggests that the serine/threonine kinase MST3 undergoes tyrosinedirected phosphorylation. The tyrosine-phosphorylated MST3 may create a docking site for the structurally conserved SH2/SH3 (Src Homology 2 and 3) domains within the Src oncoprotein. The unusual tyrosinephosphorylated MST3 may recruit MST3 to various signaling components. Copyright © 2016. Published by Elsevier Inc.
Alvarado, John J; Betts, Laurie; Moroco, Jamie A; Smithgall, Thomas E; Yeh, Joanne I
2010-11-12
Most mammalian cell types depend on multiple Src family kinases (SFKs) to regulate diverse signaling pathways. Strict control of SFK activity is essential for normal cellular function, and loss of kinase regulation contributes to several forms of cancer and other diseases. Previous x-ray crystal structures of the SFKs c-Src and Hck revealed that intramolecular association of their Src homology (SH) 3 domains and SH2 kinase linker regions has a key role in down-regulation of kinase activity. However, the amino acid sequence of the Hck linker represents a suboptimal ligand for the isolated SH3 domain, suggesting that it may form the polyproline type II helical conformation required for SH3 docking only in the context of the intact structure. To test this hypothesis directly, we determined the crystal structure of a truncated Hck protein consisting of the SH2 and SH3 domains plus the linker. Despite the absence of the kinase domain, the structures and relative orientations of the SH2 and SH3 domains in this shorter protein were very similar to those observed in near full-length, down-regulated Hck. However, the SH2 kinase linker adopted a modified topology and failed to engage the SH3 domain. This new structure supports the idea that these noncatalytic regions work together as a "conformational switch" that modulates kinase activity in a manner unique to the SH3 domain and linker topologies present in the intact Hck protein. Our results also provide fresh structural insight into the facile induction of Hck activity by HIV-1 Nef and other Hck SH3 domain binding proteins and implicate the existence of innate conformational states unique to individual Src family members that "fine-tune" their sensitivities to activation by SH3-based ligands.
Mobasheri, Ali; Buhrmann, Constanze; Aldinger, Constance; Rad, Jafar Soleimani; Shakibaei, Mehdi
2011-01-01
Objective Interleukin-1β (IL-1β) is a pro-inflammatory cytokine that plays a key role in the pathogenesis of osteoarthritis (OA). Growth factors (GFs) capable of antagonizing the catabolic actions of cytokines may have therapeutic potential in the treatment of OA. Herein, we investigated the potential synergistic effects of insulin-like growth factor (IGF-1) and platelet-derived growth factor (PDGF-bb) on different mechanisms participating in IL-1β-induced activation of nuclear transcription factor-κB (NF-κB) and apoptosis in chondrocytes. Methods Primary chondrocytes were treated with IL-1β to induce dedifferentiation and co-treated with either IGF-1 or/and PDGF-bb and evaluated by immunoblotting and electron microscopy. Results Pretreatment of chondrocytes with IGF-1 or/and PDGF-bb suppressed IL-1β-induced NF-κB activation via inhibition of IκB-α kinase. Inhibition of IκB-α kinase by GFs led to the suppression of IκB-α phosphorylation and degradation, p65 nuclear translocation and NF-κB-regulated gene products involved in inflammation and cartilage degradation (COX-2, MMPs) and apoptosis (caspase-3). GFs or BMS-345541 (specific inhibitor of the IKK) reversed the IL-1β-induced down-regulation of collagen type II, cartilage specific proteoglycans, β1-integrin, Shc, activated MAPKinase, Sox-9 and up-regulation of active caspase-3. Furthermore, the inhibitory effects of IGF-1 or/and PDGF-bb on IL-1β-induced NF-κB activation were sensitive to inhibitors of Src (PP1), PI-3K (wortmannin) and Akt (SH-5), suggesting that the pathway consisting of non-receptor tyrosine kinase (Src), phosphatidylinositol 3-kinase and protein kinase B must be involved in IL-1β signaling. Conclusion The results presented suggest that IGF-1 and PDGF-bb are potent inhibitors of IL-1β-mediated activation of NF-κB and apoptosis in chondrocytes, may be mediated in part through suppression of Src/PI-3K/AKT pathway, which may contribute to their anti-inflammatory effects. PMID:22194879
Graness, A; Hanke, S; Boehmer, F D; Presek, P; Liebmann, C
2000-01-01
Transactivation of the epidermal growth factor (EGF) receptor (EGFR) has been proposed to represent an essential link between G-protein-coupled receptors and the mitogen-activated protein kinase (MAPK) pathway in various cell types. In the present work we report, in contrast, that in A431 cells bradykinin transinactivates the EGFR and stimulates MAPK activity independently of EGFR tyrosine phosphorylation. Both effects of bradykinin are mediated by a pertussis-toxin-insensitive G-protein. Three lines of evidence suggest the activation of a protein tyrosine phosphatase (PTP) by bradykinin: (i) treatment of A431 cells with bradykinin decreases both basal and EGF-induced EGFR tyrosine phosphorylation, (ii) this effect of bradykinin can be blocked by two different PTP inhibitors, and (iii) bradykinin significantly increased the PTP activity in total A431 cell lysates when measured in vitro. The transmembrane receptor PTP sigma was identified as a putative mediator of bradykinin-induced downregulation of EGFR autophosphorylation. Activation of MAPK in response to bradykinin was insensitive towards AG 1478, a specific inhibitor of EGFR tyrosine kinase, but was blocked by wortmannin or bisindolylmaleimide, inhibitors of phosphatidylinositol 3-kinase (PI3-K) and protein kinase C (PKC) respectively. These results also suggest that the bradykinin-induced activation of MAPK is independent of EGFR and indicate a pathway involving PI3-K and PKC. In addition, bradykinin evokes a rapid and transient increase in Src kinase activity. Although Src does not participate in bradykinin-induced stimulation of PTP activity, inhibition of Src by 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine leads to an increase in MAPK activation by bradykinin. Our results suggest that in A431 cells the G(q/11)-protein-coupled bradykinin B(2) receptor may stimulate PTP activity and thereby transinactivate the EGFR, and may simultaneously activate MAPK by an alternative signalling pathway which can bypass EGFR. PMID:10749673
Kim, Sungjin; Yang, Xiangkun; Li, Qianjin; Wu, Meng; Costyn, Leah; Beharry, Zanna; Bartlett, Michael G; Cai, Houjian
2017-11-10
Exogenous fatty acids provide substrates for energy production and biogenesis of the cytoplasmic membrane, but they also enhance cellular signaling during cancer cell proliferation. However, it remains controversial whether dietary fatty acids are correlated with tumor progression. In this study, we demonstrate that increased Src kinase activity is associated with high-fat diet-accelerated progression of prostate tumors and that Src kinases mediate this pathological process. Moreover, in the in vivo prostate regeneration assay, host SCID mice carrying Src(Y529F)-transduced regeneration tissues were fed a low-fat diet or a high-fat diet and treated with vehicle or dasatinib. The high-fat diet not only accelerated Src-induced prostate tumorigenesis in mice but also compromised the inhibitory effect of the anticancer drug dasatinib on Src kinase oncogenic potential in vivo We further show that myristoylation of Src kinase is essential to facilitate Src-induced and high-fat diet-accelerated tumor progression. Mechanistically, metabolism of exogenous myristic acid increased the biosynthesis of myristoyl CoA and myristoylated Src and promoted Src kinase-mediated oncogenic signaling in human cells. Of the fatty acids tested, only exogenous myristic acid contributed to increased intracellular myristoyl CoA levels. Our results suggest that targeting Src kinase myristoylation, which is required for Src kinase association at the cellular membrane, blocks dietary fat-accelerated tumorigenesis in vivo Our findings uncover the molecular basis of how the metabolism of myristic acid stimulates high-fat diet-mediated prostate tumor progression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Nck adaptor proteins link Tks5 to invadopodia actin regulation and ECM degradation.
Stylli, Stanley S; Stacey, T T I; Verhagen, Anne M; Xu, San San; Pass, Ian; Courtneidge, Sara A; Lock, Peter
2009-08-01
Invadopodia are actin-based projections enriched with proteases, which invasive cancer cells use to degrade the extracellular matrix (ECM). The Phox homology (PX)-Src homology (SH)3 domain adaptor protein Tks5 (also known as SH3PXD2A) cooperates with Src tyrosine kinase to promote invadopodia formation but the underlying pathway is not clear. Here we show that Src phosphorylates Tks5 at Y557, inducing it to associate directly with the SH3-SH2 domain adaptor proteins Nck1 and Nck2 in invadopodia. Tks5 mutants unable to bind Nck show reduced matrix degradation-promoting activity and recruit actin to invadopodia inefficiently. Conversely, Src- and Tks5-driven matrix proteolysis and actin assembly in invadopodia are enhanced by Nck1 or Nck2 overexpression and inhibited by Nck1 depletion. We show that clustering at the plasma membrane of the Tks5 inter-SH3 region containing Y557 triggers phosphorylation at this site, facilitating Nck recruitment and F-actin assembly. These results identify a Src-Tks5-Nck pathway in ECM-degrading invadopodia that shows parallels with pathways linking several mammalian and pathogen-derived proteins to local actin regulation.
Martin, Carolina; Leyton, Luis; Hott, Melissa; Arancibia, Yennyfer; Spichiger, Carlos; McNiven, Mark A.; Court, Felipe A.; Concha, Margarita I.; Burgos, Patricia V.; Otth, Carola
2017-01-01
Herpes simplex virus type 1 (HSV-1) is a ubiquitous pathogen that establishes a latent persistent neuronal infection in humans. The pathogenic effects of repeated viral reactivation in infected neurons are still unknown. Several studies have reported that during HSV-1 epithelial infection, the virus could modulate diverse cell signaling pathways remodeling the Golgi apparatus (GA) membranes, but the molecular mechanisms implicated, and the functional consequences to neurons is currently unknown. Here we report that infection of primary neuronal cultures with HSV-1 triggers Src tyrosine kinase activation and subsequent phosphorylation of Dynamin 2 GTPase, two players with a role in GA integrity maintenance. Immunofluorescence analyses showed that HSV-1 productive neuronal infection caused a scattered and fragmented distribution of the GA through the cytoplasm, contrasting with the uniform perinuclear distribution pattern observed in control cells. In addition, transmission electron microscopy revealed swollen cisternae and disorganized stacks in HSV-1 infected neurons compared to control cells. Interestingly, PP2, a selective inhibitor for Src-family kinases markedly reduced these morphological alterations of the GA induced by HSV-1 infection strongly supporting the possible involvement of Src tyrosine kinase. Finally, we showed that HSV-1 tegument protein VP11/12 is necessary but not sufficient to induce Dyn2 phosphorylation. Altogether, these results show that HSV-1 neuronal infection triggers activation of Src tyrosine kinase, phosphorylation of Dynamin 2 GTPase, and perturbation of GA integrity. These findings suggest a possible neuropathogenic mechanism triggered by HSV-1 infection, which could involve dysfunction of the secretory system in neurons and central nervous system. PMID:28879169
Martin, Carolina; Leyton, Luis; Hott, Melissa; Arancibia, Yennyfer; Spichiger, Carlos; McNiven, Mark A; Court, Felipe A; Concha, Margarita I; Burgos, Patricia V; Otth, Carola
2017-01-01
Herpes simplex virus type 1 (HSV-1) is a ubiquitous pathogen that establishes a latent persistent neuronal infection in humans. The pathogenic effects of repeated viral reactivation in infected neurons are still unknown. Several studies have reported that during HSV-1 epithelial infection, the virus could modulate diverse cell signaling pathways remodeling the Golgi apparatus (GA) membranes, but the molecular mechanisms implicated, and the functional consequences to neurons is currently unknown. Here we report that infection of primary neuronal cultures with HSV-1 triggers Src tyrosine kinase activation and subsequent phosphorylation of Dynamin 2 GTPase, two players with a role in GA integrity maintenance. Immunofluorescence analyses showed that HSV-1 productive neuronal infection caused a scattered and fragmented distribution of the GA through the cytoplasm, contrasting with the uniform perinuclear distribution pattern observed in control cells. In addition, transmission electron microscopy revealed swollen cisternae and disorganized stacks in HSV-1 infected neurons compared to control cells. Interestingly, PP2, a selective inhibitor for Src-family kinases markedly reduced these morphological alterations of the GA induced by HSV-1 infection strongly supporting the possible involvement of Src tyrosine kinase. Finally, we showed that HSV-1 tegument protein VP11/12 is necessary but not sufficient to induce Dyn2 phosphorylation. Altogether, these results show that HSV-1 neuronal infection triggers activation of Src tyrosine kinase, phosphorylation of Dynamin 2 GTPase, and perturbation of GA integrity. These findings suggest a possible neuropathogenic mechanism triggered by HSV-1 infection, which could involve dysfunction of the secretory system in neurons and central nervous system.
Hao, Hui-Feng; Liu, Li-Mei; Pan, Chun-Shui; Wang, Chuan-She; Gao, Yuan-Sheng; Fan, Jing-Yu; Han, Jing-Yan
2017-01-01
Objectives: To examine the protective effect of Rhynchophylline (Rhy) on vascular endothelial function in spontaneous hypertensive rats (SHRs) and the underlying mechanism. Methods: Intrarenal arteries of SHRs and Wistar rats were suspended in myograph for force measurement. Expression and phosphorylation of endothelial nitric oxide (NO) synthase (eNOS), Akt, and Src kinase (Src) were examined by Western blotting. NO production was assayed by ELISA. Results: Rhy time- and concentration-dependently improved endothelium-dependent relaxation in the renal arteries from SHRs, but had no effect on endothelium-independent relaxation in SHR renal arteries. Wortmannin (an inhibitor of phosphatidylinositol 3-kinase) or PP2 (an inhibitor of Src) inhibited the improvement of relaxation in response to acetylcholine by 12 h-incubation with 300 μM Rhy. Western blot analysis revealed that Rhy elevated phosphorylations of eNOS, Akt, and Src in SHR renal arteries. Moreover, wortmannin reversed the increased phosphorylations of Akt and eNOS induced by Rhy, but did not affect the phosphorylation of Src. Furthermore, the enhanced phosphorylations of eNOS, Akt, and Src were blunted by PP2. Importantly, Rhy increased NO production and this effect was blocked by inhibition of Src or PI3K/Akt. Conclusion: The present study provides evidences for the first time that Rhy ameliorates endothelial dysfunction in SHRs through the activation of Src-PI3K/Akt-eNOS signaling pathway. PMID:29187825
Maldonado, H; Calderon, C; Burgos-Bravo, F; Kobler, O; Zuschratter, W; Ramirez, O; Härtel, S; Schneider, P; Quest, A F G; Herrera-Molina, R; Leyton, L
2017-02-01
Two key proteins for cellular communication between astrocytes and neurons are αvβ3 integrin and the receptor Thy-1. Binding of these molecules in the same (cis) or on adjacent (trans) cellular membranes induces Thy-1 clustering, triggering actin cytoskeleton remodeling. Molecular events that could explain how the Thy-1-αvβ3 integrin interaction signals have only been studied separately in different cell types, and the detailed transcellular communication and signal transduction pathways involved in neuronal cytoskeleton remodeling remain unresolved. Using biochemical and genetic approaches, single-molecule tracking, and high-resolution nanoscopy, we provide evidence that upon binding to αvβ3 integrin, Thy-1 mobility decreased while Thy-1 nanocluster size increased. This occurred concomitantly with inactivation and exclusion of the non-receptor tyrosine kinase Src from the Thy-1/C-terminal Src kinase (Csk)-binding protein (CBP)/Csk complex. The Src inactivation decreased the p190Rho GTPase activating protein phosphorylation, promoting RhoA activation, cofilin, and myosin light chain II phosphorylation and, consequently, neurite shortening. Finally, silencing the adaptor CBP demonstrated that this protein was a key transducer in the Thy-1 signaling cascade. In conclusion, these data support the hypothesis that the Thy-1-CBP-Csk-Src-RhoA-ROCK axis transmitted signals from astrocytic integrin-engaged Thy-1 (trans) to the neuronal actin cytoskeleton. Importantly, the β3 integrin in neurons (cis) was not found to be crucial for neurite shortening. This is the first study to detail the signaling pathway triggered by αvβ3, the endogenous Thy-1 ligand, highlighting the role of membrane-bound integrins as trans acting ligands in astrocyte-neuron communication. Copyright © 2016 Elsevier B.V. All rights reserved.
Piegeler, Tobias; Votta-Velis, E Gina; Bakhshi, Farnaz R; Mao, Mao; Carnegie, Graeme; Bonini, Marcelo G; Schwartz, David E; Borgeat, Alain; Beck-Schimmer, Beatrice; Minshall, Richard D
2014-06-01
Pulmonary endothelial barrier dysfunction mediated in part by Src-kinase activation plays a crucial role in acute inflammatory disease. Proinflammatory cytokines, such as tumor necrosis factor-α (TNFα), activate Src via phosphatidylinositide 3-kinase/Akt-dependent nitric oxide generation, a process initiated by recruitment of phosphatidylinositide 3-kinase regulatory subunit p85 to TNF-receptor-1. Because amide-linked local anesthetics have well-established anti-inflammatory effects, the authors hypothesized that ropivacaine and lidocaine attenuate inflammatory Src signaling by disrupting the phosphatidylinositide 3-kinase-Akt-nitric oxide pathway, thus blocking Src-dependent neutrophil adhesion and endothelial hyperpermeability. Human lung microvascular endothelial cells, incubated with TNFα in the absence or presence of clinically relevant concentrations of ropivacaine and lidocaine, were analyzed by Western blot, probing for phosphorylated/activated Src, endothelial nitric oxide synthase, Akt, intercellular adhesion molecule-1, and caveolin-1. The effect of ropivacaine on TNFα-induced nitric oxide generation, co-immunoprecipitation of TNF-receptor-1 with p85, neutrophil adhesion, and endothelial barrier disruption were assessed. Ropivacaine and lidocaine attenuated TNFα-induced Src activation (half-maximal inhibitory concentration [IC50] = 8.611 × 10 M for ropivacaine; IC50 = 5.864 × 10 M for lidocaine) and endothelial nitric oxide synthase phosphorylation (IC50 = 7.572 × 10 M for ropivacaine; IC50 = 6.377 × 10 M for lidocaine). Akt activation (n = 7; P = 0.006) and stimulus-dependent binding of TNF-receptor-1 and p85 (n = 6; P = 0.043) were blocked by 1 nM of ropivacaine. TNFα-induced neutrophil adhesion and disruption of endothelial monolayers via Src-dependent intercellular adhesion molecule-1- and caveolin-1-phosphorylation, respectively, were also attenuated. Ropivacaine and lidocaine effectively blocked inflammatory TNFα signaling in endothelial cells by attenuating p85 recruitment to TNF-receptor-1. The resultant decrease in Akt, endothelial nitric oxide synthase, and Src phosphorylation reduced neutrophil adhesion and endothelial hyperpermeability. This novel anti-inflammatory "side-effect" of ropivacaine and lidocaine may provide therapeutic benefit in acute inflammatory disease.
Inhibition of Src by microRNA-23b increases the cisplatin sensitivity of chondrosarcoma cells.
Huang, Kai; Chen, Jun; Yang, Mo-Song; Tang, Yu-Jun; Pan, Feng
2017-01-01
Chondrosarcomas are malignant cartilage-forming tumors from low-grade to high-grade aggressive tumors characterized by metastasis. Cisplatin is an effective DNA-damaging anti-tumor agent for the treatment against a wide variety of solid tumors. However, chondrosarcomas are notorious for their resistance to conventional chemo- and radio- therapies. In this study, we report miR-23b acts as a tumor suppressor in chondrosarcoma. The expressions of miR-23b are down-regulated in chondrosarcoma patient samples and cell lines compared with adjacent normal tissues and human primary chondrocytes. In addition, overexpression of miR-23b suppresses chondrosarcoma cell proliferation. By comparison of the cisplatin resistant chondrosarcoma cells and parental cells, we observed miR-23b was significantly down regulated in cisplatin resistant cells. Moreover, we demonstrate here Src kinase is a direct target of miR-23b in chondrosarcoma cells. Overexpression of miR-23b suppresses Src-Akt pathway, leading to the sensitization of cisplatin resistant chondrosarcoma cells to cisplatin. This chemo-sensitivity effect by the miR-23b-mediated inhibition of Src-Akt pathway is verified with the restoration of Src kinase in miR-23b-overespressing chondrosarcoma cells, resulting in the acquirement of resistance to cisplatin. In summary, our study reveals a novel role of miR-23b in cisplatin resistance in chondrosarcoma and will contribute to the development of the microRNA-targeted anti-cancer therapeutics.
Li, Yan-Shu; Qin, Xing-Jun; Dai, Wei
2017-01-01
Fisetin (3,7,3',4'-tetrahydroxyflavone) is a dietary flavonoid and has been indicated as a novel anti-cancer agent in several types of cancer cells. However, the mechanisms underlying the effect of fisetin in human oral squamous cell carcinoma (OSCC) remain unclear. Here, we report that fisetin significantly inhibits tumor cell proliferation and induces apoptosis in OSCC (UM-SCC-23 and Tca-8113) cancer cell lines. Further analysis demonstrates that fisetin also inhibits Met/Src signaling pathways using the PathScan ® receptor tyrosine kinases (RTK) Signaling Antibody Array Kit. Fisetin resulted in decreased basal expression of Met and Src protein in UM-SCC-23 cancer cell lines, which validated by western blot. A student's t -test (two-tailed) was used to compare differences between groups. Furthermore, fisetin significantly inhibited the expression of a disintegrin and metalloproteinase 9 (ADAM9) protein in OSCC cells. Taken together, these results provide novel insights into the mechanism of fisetin and suggest potential therapeutic strategies for human OSCC by blocking the Met/Src signaling pathways.
Boroughs, Lindsey K; Antonyak, Marc A; Cerione, Richard A
2014-04-04
Tissue transglutaminase (tTG) functions as a GTPase and an acyl transferase that catalyzes the formation of protein cross-links. tTG expression is frequently up-regulated in human cancer, where it has been implicated in various aspects of cancer progression, including cell survival and chemo-resistance. However, the extent to which tTG cooperates with other proteins within the context of a cancer cell, versus its intrinsic ability to confer transformed characteristics to cells, is poorly understood. To address this question, we asked what effect the ectopic expression of tTG in a non-transformed cellular background would have on the behavior of the cells. Using NIH3T3 fibroblasts stably expressing a Myc-tagged form of tTG, we found that tTG strongly protected these cells from serum starvation-induced apoptosis and triggered the activation of the PI3-kinase/mTOR Complex 1 (mTORC1)/p70 S6-kinase pathway. We determined that tTG forms a complex with the non-receptor tyrosine kinase c-Src and PI3-kinase, and that treating cells with inhibitors to block tTG function (monodansylcadaverine; MDC) or c-Src kinase activity (PP2) disrupted the formation of this complex, and prevented tTG from activating the PI3-kinase pathway. Moreover, treatment of fibroblasts over-expressing tTG with PP2, or with inhibitors that inactivate components of the PI3-kinase pathway, including PI3-kinase (LY294002) and mTORC1 (rapamycin), ablated the tTG-promoted survival of the cells. These findings demonstrate that tTG has an intrinsic capability to stimulate cell survival through a novel mechanism that activates PI3-kinase signaling events, thus highlighting tTG as a potential target for the treatment of human cancer.
The role of Src kinase in the biology and pathogenesis of Acanthamoeba castellanii
2012-01-01
Background Acanthamoeba species are the causative agents of fatal granulomatous encephalitis in humans. Haematogenous spread is thought to be a primary step, followed by blood–brain barrier penetration, in the transmission of Acanthmaoeba into the central nervous system, but the associated molecular mechanisms remain unclear. Here, we evaluated the role of Src, a non-receptor protein tyrosine kinase in the biology and pathogenesis of Acanthamoeba. Methods Amoebistatic and amoebicidal assays were performed by incubating amoeba in the presence of Src kinase-selective inhibitor, PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine) and its inactive analog, PP3 (4-amino-7-phenylpyrazolo[3,4-d]pyrimidine). Using this inhibitor, the role of Src kinase in A. castellanii interactions with Escherichia coli was determined. Zymographic assays were performed to study effects of Src kinase on extracellular proteolytic activities of A. castellanii. The human brain microvascular endothelial cells were used to determine the effects of Src kinase on A. castellanii adhesion to and cytotoxicity of host cells. Results Inhibition of Src kinase using a specific inhibitor, PP2 (4-amino-5-(4 chlorophenyl)-7-(t-butyl)pyrazolo [3,4-d] pyrimidine) but not its inactive analog, PP3 (4-amino-7-phenylpyrazolo[3,4-d] pyrimidine), had detrimental effects on the growth of A. castellanii (keratitis isolate, belonging to the T4 genotype). Interestingly, inhibition of Src kinase hampered the phagocytic ability of A. castellanii, as measured by the uptake of non-invasive bacteria, but, on the contrary, invasion by pathogenic bacteria was enhanced. Zymographic assays revealed that inhibition of Src kinases reduced extracellular protease activities of A. castellanii. Src kinase inhibition had no significant effect on A. castellanii binding to and cytotoxicity of primary human brain microvascular endothelial cells, which constitute the blood–brain barrier. Conclusions For the first time, these findings demonstrated that Src kinase is involved in A. castellanii proliferation, protease secretions and phagocytic properties. Conversely, invasion of Acanthamoeba by pathogenic bacteria was stimulated by Src kinase inhibition. PMID:22676352
Distinct roles for multiple Src family kinases at fertilization.
O'Neill, Forest J; Gillett, Jessica; Foltz, Kathy R
2004-12-01
Egg activation at fertilization requires the release of Ca2+ from the endoplasmic reticulum of the egg. Recent evidence indicates that Src family kinases (SFKs) function in the signaling pathway that initiates this Ca2+ release in the eggs of many deuterostomes. We have identified three SFKs expressed in starfish (Asterina miniata) eggs, designated AmSFK1, AmSFK2 and AmSFK3. Antibodies made against the unique domains of each AmSFK protein revealed that all three are expressed in eggs and localized primarily to the membrane fraction. Both AmSFK1 and AmSFK3 (but not AmSFK2) are necessary for egg activation, as determined by injection of starfish oocytes with dominant-interfering Src homology 2 (SH2) domains, which specifically delay and reduce the initial release of Ca2+ at fertilization. AmSFK3 exhibits a very rapid and transient kinase activity in response to fertilization, peaking at 30 seconds post sperm addition. AmSFK1 kinase activity also increases transiently at fertilization, but peaks later, at 2 minutes. These results indicate that there are multiple SFKs present in starfish eggs with distinct, perhaps sequential, signaling roles.
Dodd, Dana A; Worth, Randall G; Rosen, Michael K; Grinstein, Sergio; van Oers, Nicolai S C; Hansen, Eric J
2014-05-20
Haemophilus ducreyi causes chancroid, a sexually transmitted infection. A primary means by which this pathogen causes disease involves eluding phagocytosis; however, the molecular basis for this escape mechanism has been poorly understood. Here, we report that the LspA virulence factors of H. ducreyi inhibit phagocytosis by stimulating the catalytic activity of C-terminal Src kinase (Csk), which itself inhibits Src family protein tyrosine kinases (SFKs) that promote phagocytosis. Inhibitory activity could be localized to a 37-kDa domain (designated YL2) of the 456-kDa LspA1 protein. The YL2 domain impaired ingestion of IgG-opsonized targets and decreased levels of active SFKs when expressed in mammalian cells. YL2 contains tyrosine residues in two EPIYG motifs that are phosphorylated in mammalian cells. These tyrosine residues were essential for YL2-based inhibition of phagocytosis. Csk was identified as the predominant mammalian protein interacting with YL2, and a dominant-negative Csk rescued phagocytosis in the presence of YL2. Purified Csk phosphorylated the tyrosines in the YL2 EPIYG motifs. Phosphorylated YL2 increased Csk catalytic activity, resulting in positive feedback, such that YL2 can be phosphorylated by the same kinase that it activates. Finally, we found that the Helicobacter pylori CagA protein also inhibited phagocytosis in a Csk-dependent manner, raising the possibility that this may be a general mechanism among diverse bacteria. Harnessing Csk to subvert the Fcγ receptor (FcγR)-mediated phagocytic pathway represents a new bacterial mechanism for circumventing a crucial component of the innate immune response and may potentially affect other SFK-involved cellular pathways. Phagocytosis is a critical component of the immune system that enables pathogens to be contained and cleared. A number of bacterial pathogens have developed specific strategies to either physically evade phagocytosis or block the intracellular signaling required for phagocytic activity. Haemophilus ducreyi, a sexually transmitted pathogen, secretes a 4,153-amino-acid (aa) protein (LspA1) that effectively inhibits FcγR-mediated phagocytic activity. In this study, we show that a 294-aa domain within this bacterial protein binds to C-terminal Src kinase (Csk) and stimulates its catalytic activity, resulting in a significant attenuation of Src kinase activity and consequent inhibition of phagocytosis. The ability to inhibit phagocytosis via Csk is not unique to H. ducreyi, because we found that the Helicobacter pylori CagA protein also inhibits phagocytosis in a Csk-dependent manner. Harnessing Csk to subvert the FcγR-mediated phagocytic pathway represents a new bacterial effector mechanism for circumventing the innate immune response. Copyright © 2014 Dodd et al.
Tyrosine phosphorylation of LRP6 by Src and Fer inhibits Wnt/β-catenin signalling
Chen, Qing; Su, Yi; Wesslowski, Janine; Hagemann, Anja I; Ramialison, Mirana; Wittbrodt, Joachim; Scholpp, Steffen; Davidson, Gary
2014-01-01
Low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) function as transmembrane receptors to transduce Wnt signals. A key mechanism for signalling is Wnt-induced serine/threonine phosphorylation at conserved PPPSPxS motifs in the LRP6 cytoplasmic domain, which promotes pathway activation. Conserved tyrosine residues are positioned close to all PPPSPxS motifs, which suggests they have a functional significance. Using a cell culture-based cDNA expression screen, we identified the non-receptor tyrosine kinases Src and Fer as novel LRP6 modifiers. Both Src and Fer associate with LRP6 and phosphorylate LRP6 directly. In contrast to the known PPPSPxS Ser/Thr kinases, tyrosine phosphorylation by Src and Fer negatively regulates LRP6-Wnt signalling. Epistatically, they function upstream of β-catenin to inhibit signalling and in agreement with a negative role in regulating LRP6, MEF cells lacking these kinases show enhanced Wnt signalling. Wnt3a treatment of cells enhances tyrosine phosphorylation of endogenous LRP6 and, mechanistically, Src reduces cell surface LRP6 levels and disrupts LRP6 signalosome formation. Interestingly, CK1γ inhibits Fer-induced LRP6 phosphorylation, suggesting a mechanism whereby CK1γ acts to de-represses inhibitory LRP6 tyrosine phosphorylation. We propose that LRP6 tyrosine phosphorylation by Src and Fer serves a negative regulatory function to prevent over-activation of Wnt signalling at the level of the Wnt receptor, LRP6. Subject Categories Membrane & Intracellular Transport; Post-translational Modifications, Proteolysis & Proteomics PMID:25391905
CHLAMYDIA TRACHOMATIS TARP IS PHOSPHORYLATED BY SRC FAMILY TYROSINE KINASES
Jewett, Travis J.; Dooley, Cheryl A.; Mead, David J.; Hackstadt, Ted
2008-01-01
The translocated actin recruiting phosphoprotein (Tarp) is injected into the cytosol shortly after Chlamydia trachomatis attachment to a target cell and subsequently phosphorylated by an unidentified tyrosine kinase. A role for Tarp phosphorylation in bacterial entry is unknown. In this study, recombinant C. trachomatis Tarp was employed to identify the host cell kinase(s) required for phosphorylation. Each tyrosine rich repeat of L2 Tarp harbors a sequence similar to a Src and Abl kinase consensus target. Furthermore, purified p60-src, Yes, Fyn, and Abl kinases were able to phosphorylate Tarp. Mutagenesis of potential tyrosines within a single tyrosine rich repeat peptide indicated that both Src and Abl kinases phosphorylate the same residues suggesting that C. trachomatis Tarp may serve as a substrate for multiple host cell kinases. Surprisingly, chemical inhibition of Src and Abl kinases prevented Tarp phosphorylation in culture and had no measurable effect on bacterial entry into host cells. PMID:18442471
SFK-STAT pathway: an alternative and important way to malignancies.
Hayakawa, Fumihiko; Naoe, Tomoki
2006-11-01
Signal transducers and activators of transcription (STAT) proteins play a crucial role in mediating signals from a diverse spectrum of cytokine receptors. STAT is thought to be activated by JAK family kinases (JFK) in many cytokine receptor signal pathways; however, recent studies have demonstrated an alternative pathway to activate STAT by Src family kinases (SFK) in growth factor receptor signal. We also observed STAT5 phosphorylation by Lyn, a member of SFK, in our two recent studies. We introduce these studies and review the literature of STAT activation by SFK and aberrant activation of STAT by oncogenic signals.
Integrin activation and focal complex formation in cardiac hypertrophy.
Laser, M; Willey, C D; Jiang, W; Cooper, G; Menick, D R; Zile, M R; Kuppuswamy, D
2000-11-10
Cardiac hypertrophy is characterized by both remodeling of the extracellular matrix (ECM) and hypertrophic growth of the cardiocytes. Here we show increased expression and cytoskeletal association of the ECM proteins fibronectin and vitronectin in pressure-overloaded feline myocardium. These changes are accompanied by cytoskeletal binding and phosphorylation of focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, c-Src at Tyr-416, recruitment of the adapter proteins p130(Cas), Shc, and Nck, and activation of the extracellular-regulated kinases ERK1/2. A synthetic peptide containing the Arg-Gly-Asp (RGD) motif of fibronectin and vitronectin was used to stimulate adult feline cardiomyocytes cultured on laminin or within a type-I collagen matrix. Whereas cardiocytes under both conditions showed RGD-stimulated ERK1/2 activation, only collagen-embedded cells exhibited cytoskeletal assembly of FAK, c-Src, Nck, and Shc. In RGD-stimulated collagen-embedded cells, FAK was phosphorylated only at Tyr-397 and c-Src association occurred without Tyr-416 phosphorylation and p130(Cas) association. Therefore, c-Src activation is not required for its cytoskeletal binding but may be important for additional phosphorylation of FAK. Overall, our study suggests that multiple signaling pathways originate in pressure-overloaded heart following integrin engagement with ECM proteins, including focal complex formation and ERK1/2 activation, and many of these pathways can be activated in cardiomyocytes via RGD-stimulated integrin activation.
Integrin activation and focal complex formation in cardiac hypertrophy
NASA Technical Reports Server (NTRS)
Laser, M.; Willey, C. D.; Jiang, W.; Cooper, G. 4th; Menick, D. R.; Zile, M. R.; Kuppuswamy, D.
2000-01-01
Cardiac hypertrophy is characterized by both remodeling of the extracellular matrix (ECM) and hypertrophic growth of the cardiocytes. Here we show increased expression and cytoskeletal association of the ECM proteins fibronectin and vitronectin in pressure-overloaded feline myocardium. These changes are accompanied by cytoskeletal binding and phosphorylation of focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, c-Src at Tyr-416, recruitment of the adapter proteins p130(Cas), Shc, and Nck, and activation of the extracellular-regulated kinases ERK1/2. A synthetic peptide containing the Arg-Gly-Asp (RGD) motif of fibronectin and vitronectin was used to stimulate adult feline cardiomyocytes cultured on laminin or within a type-I collagen matrix. Whereas cardiocytes under both conditions showed RGD-stimulated ERK1/2 activation, only collagen-embedded cells exhibited cytoskeletal assembly of FAK, c-Src, Nck, and Shc. In RGD-stimulated collagen-embedded cells, FAK was phosphorylated only at Tyr-397 and c-Src association occurred without Tyr-416 phosphorylation and p130(Cas) association. Therefore, c-Src activation is not required for its cytoskeletal binding but may be important for additional phosphorylation of FAK. Overall, our study suggests that multiple signaling pathways originate in pressure-overloaded heart following integrin engagement with ECM proteins, including focal complex formation and ERK1/2 activation, and many of these pathways can be activated in cardiomyocytes via RGD-stimulated integrin activation.
2007-03-01
68 HR positive tumors were compared with 23 ’triple receptor-negative’ tumors (negative for ER and PR by IHC and for HER2 by FISH ), Src levels were...47. Rosen,N., Bolen,J.B., Schwartz,A.M., Cohen,P., DeSeau,V., and Israel ,M.A. 1986. Analysis of pp60c-src protein kinase activity in human tumor...www.aacrjournals.org cancers has been associated with poor prognosis (41, 42). Cyclin D1 deficient mice are resistant to breast cancers induced by transgenic ErbB2/neu
Activated HGF-c-Met Axis in Head and Neck Cancer
Arnold, Levi; Enders, Jonathan; Thomas, Sufi Mary
2017-01-01
Head and neck squamous cell carcinoma (HNSCC) is a highly morbid disease. Recent developments including Food and Drug Administration (FDA) approved molecular targeted agent’s pembrolizumab and cetuximab show promise but did not improve the five-year survival which is currently less than 40%. The hepatocyte growth factor receptor; also known as mesenchymal–epithelial transition factor (c-Met) and its ligand hepatocyte growth factor (HGF) are overexpressed in head and neck squamous cell carcinoma (HNSCC); and regulates tumor progression and response to therapy. The c-Met pathway has been shown to regulate many cellular processes such as cell proliferation, invasion, and angiogenesis. The c-Met pathway is involved in cross-talk, activation, and perpetuation of other signaling pathways, curbing the cogency of a blockade molecule on a single pathway. The receptor and its ligand act on several downstream effectors including phospholipase C gamma (PLCγ), cellular Src kinase (c-Src), phosphotidylinsitol-3-OH kinase (PI3K) alpha serine/threonine-protein kinase (Akt), mitogen activate protein kinase (MAPK), and wingless-related integration site (Wnt) pathways. They are also known to cross-talk with other receptors; namely epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) and specifically contribute to treatment resistance. Clinical trials targeting the c-Met axis in HNSCC have been undertaken because of significant preclinical work demonstrating a relationship between HGF/c-Met signaling and cancer cell survival. Here we focus on HGF/c-Met impact on cellular signaling in HNSCC to potentiate tumor growth and disrupt therapeutic efficacy. Herein we summarize the current understanding of HGF/c-Met signaling and its effects on HNSCC. The intertwining of c-Met signaling with other signaling pathways provides opportunities for more robust and specific therapies, leading to better clinical outcomes. PMID:29231907
Burnett, James C.; Nuss, Jonathan E.; Wanner, Laura M.; Peyser, Brian D.; Du, Hao T.; Gomba, Glenn Y.; Kota, Krishna P.; Panchal, Rekha G.; Gussio, Rick; Kane, Christopher D.; Tessarollo, Lino
2015-01-01
Botulinum neurotoxins (BoNTs), the causative agents of botulism, are potent inhibitors of neurotransmitter release from motor neurons. There are currently no drugs to treat BoNT intoxication after the onset of the disease symptoms. In this study, we explored how modulation of key host pathways affects the process of BoNT intoxication in human motor neurons, focusing on Src family kinase (SFK) signaling. Motor neurons derived from human embryonic stem (hES) cells were treated with a panel of SFK inhibitors and intoxicated with BoNT serotypes A, B, or E (which are responsible for >95 % of human botulism cases). Subsequently, it was found that bosutinib, dasatinib, KX2-391, PP1, PP2, Src inhibitor-1, and SU6656 significantly antagonized all three of the serotypes. Furthermore, the data indicated that the treatment of hES-derived motor neurons with multiple SFK inhibitors increased the antagonistic effect synergistically. Mechanistically, the small molecules appear to inhibit BoNTs by targeting host pathways necessary for intoxication and not by directly inhibiting the toxins’ proteolytic activity. Importantly, the identified inhibitors are all well-studied with some in clinical trials while others are FDA-approved drugs. Overall, this study emphasizes the importance of targeting host neuronal pathways, rather than the toxin’s enzymatic components, to antagonize multiple BoNT serotypes in motor neurons. PMID:25782580
Role of src-family kinases in hypoxic vasoconstriction of rat pulmonary artery
Knock, Greg A.; Snetkov, Vladimir A.; Shaifta, Yasin; Drndarski, Svetlana; Ward, Jeremy P.T.; Aaronson, Philip I.
2008-01-01
Aims We investigated the role of src-family kinases (srcFKs) in hypoxic pulmonary vasoconstriction (HPV) and how this relates to Rho-kinase-mediated Ca2+ sensitization and changes in intracellular Ca2+ concentration ([Ca2+]i). Methods and results Intra-pulmonary arteries (IPAs) were obtained from male Wistar rats. HPV was induced in myograph-mounted IPAs. Auto-phosphorylation of srcFKs and phosphorylation of the regulatory subunit of myosin phosphatase (MYPT-1) and myosin light-chain (MLC20) in response to hypoxia were determined by western blotting. Translocation of Rho-kinase and effects of siRNA knockdown of src and fyn were examined in cultured pulmonary artery smooth muscle cells (PASMCs). [Ca2+]i was estimated in Fura-PE3-loaded IPA. HPV was inhibited by two blockers of srcFKs, SU6656 and PP2. Hypoxia enhanced phosphorylation of three srcFK proteins at Tyr-416 (60, 59, and 54 kDa, corresponding to src, fyn, and yes, respectively) and enhanced srcFK-dependent tyrosine phosphorylation of multiple target proteins. Hypoxia caused a complex, time-dependent enhancement of MYPT-1 and MLC20 phosphorylation, both in the absence and presence of pre-constriction. The sustained component of this enhancement was blocked by SU6656 and the Rho-kinase inhibitor Y27632. In PASMCs, hypoxia caused translocation of Rho-kinase from the nucleus to the cytoplasm, and this was prevented by anti-src siRNA and to a lesser extent by anti-fyn siRNA. The biphasic increases in [Ca2+]i that accompany HPV were also inhibited by PP2. Conclusion Hypoxia activates srcFKs and triggers protein tyrosine phosphorylation in IPA. Hypoxia-mediated Rho-kinase activation, Ca2+ sensitization, and [Ca2+]i responses are depressed by srcFK inhibitors and/or siRNA knockdown, suggesting a central role of srcFKs in HPV. PMID:18682436
Kuhar, Jamie Rose; Bedini, Andrea; Melief, Erica J; Chiu, Yen-Chen; Striegel, Heather N; Chavkin, Charles
2015-09-01
G protein-coupled receptor desensitization is typically mediated by receptor phosphorylation by G protein-coupled receptor kinase (GRK) and subsequent arrestin binding; morphine, however, was previously found to activate a c-Jun N-terminal kinase (JNK)-dependent, GRK/arrestin-independent pathway to produce mu opioid receptor (MOR) inactivation in spinally-mediated, acute anti-nociceptive responses [Melief et al.] [1]. In the current study, we determined that JNK2 was also required for centrally-mediated analgesic tolerance to morphine using the hotplate assay. We compared JNK activation by morphine and fentanyl in JNK1(-/-), JNK2(-/-), JNK3(-/-), and GRK3(-/-) mice and found that both compounds specifically activate JNK2 in vivo; however, fentanyl activation of JNK2 was GRK3-dependent, whereas morphine activation of JNK2 was GRK3-independent. In MOR-GFP expressing HEK293 cells, treatment with either arrestin siRNA, the Src family kinase inhibitor PP2, or the protein kinase C (PKC) inhibitor Gö6976 indicated that morphine activated JNK2 through an arrestin-independent Src- and PKC-dependent mechanism, whereas fentanyl activated JNK2 through a Src-GRK3/arrestin-2-dependent and PKC-independent mechanism. This study resolves distinct ligand-directed mechanisms of JNK activation by mu opioid agonists and understanding ligand-directed signaling at MOR may improve opioid therapeutics. Copyright © 2015 Elsevier Inc. All rights reserved.
Specific Cx43 phosphorylation events regulate gap junction turnover in vivo
Solan, Joell L.; Lampe, Paul D.
2014-01-01
Gap junctions, composed of proteins from the connexin gene family, are highly dynamic structures that are regulated by kinase-mediated signaling pathways and interactions with other proteins. Phosphorylation of Connexin43 (Cx43) at different sites controls gap junction assembly, gap junction size and gap junction turnover. Here we present a model describing how Akt, mitogen activated protein kinase (MAPK) and src kinase coordinate to regulate rapid turnover of gap junctions. Specifically, Akt phosphorylates Cx43 at S373 eliminating interaction with zona occludens-1 (ZO-1) allowing gap junctions to enlarge. Then MAPK and src phosphorylate Cx43 to initiate turnover. We integrate published data with new data to test and refine this model. Finally, we propose that differential coordination of kinase activation and Cx43 phosphorylation controls the specific routes of disassembly, e.g., annular junction formation or gap junctions can potentially “unzip” and be internalized/endocytosed into the cell that produced each connexin. PMID:24508467
Tauzin, Sebastien; Starnes, Taylor W; Becker, Francisco Barros; Lam, Pui-ying; Huttenlocher, Anna
2014-12-08
Tissue damage induces early recruitment of neutrophils through redox-regulated Src family kinase (SFK) signaling in neutrophils. Redox-SFK signaling in epithelium is also necessary for wound resolution and tissue regeneration. How neutrophil-mediated inflammation resolves remains unclear. In this paper, we studied the interactions between macrophages and neutrophils in response to tissue damage in zebrafish and found that macrophages contact neutrophils and induce resolution via neutrophil reverse migration. We found that redox-SFK signaling through p22phox and Yes-related kinase is necessary for macrophage wound attraction and the subsequent reverse migration of neutrophils. Importantly, macrophage-specific reconstitution of p22phox revealed that macrophage redox signaling is necessary for neutrophil reverse migration. Thus, redox-SFK signaling in adjacent tissues is essential for coordinated leukocyte wound attraction and repulsion through pathways that involve contact-mediated guidance. © 2014 Tauzin et al.
Gong, J; Zhu, J; Goodman, O B; Pestell, R G; Schlegel, P N; Nanus, D M; Shen, R
2006-03-30
Androgen receptor signaling in prostate cancer cells is augmented by the androgen receptor (AR) coactivator p300, which transactivates and acetylates the AR in the presence of dihydrotestosterone (DHT). As prostate cancer (PC) cells progress to androgen independence, AR signaling remains intact, indicating that other factors stimulate AR activities in the absence of androgen. We previously reported that neuropeptide growth factors could transactivate the AR in the presence of very low concentrations of DHT. Here, we examine the involvement of p300 in neuropeptide activation of AR signaling. Transfection of increasing concentrations of p300 in the presence of bombesin into PC-3 cells resulted in a linear increase in AR transactivation, suggesting that p300 acts as a coactivator in neuropeptide-mediated AR transactivation. P300 is endowed with histone acetyltransferase (HAT) activity. Therefore, we examine the effect of bombesin on p300 HAT activity. At 4 h after the addition of bombesin, p300 HAT activity increased 2.0-fold (P<0.01). Incubation with neutral endopeptidase, which degrades bombesin, or bombesin receptor antagonists blocked bombesin-induced p300 HAT activity. To explore the potential signaling pathways involved in bombesin-induced p300 HAT activity, we examined Src and PKCdelta pathways that mediate bombesin signaling. Inhibitors of Src kinase activity or Src kinase siRNA blocked bombesin-induced p300 HAT activity, whereas PKCdelta inhibitors or PKCdelta siRNA significantly increased bombesin-induced p300 HAT activity suggesting that Src kinase and PKCdelta kinase are involved in the regulation of p300 HAT activity. As AR is acetylated in the presence of 100 nM DHT, we next examined whether bombesin-induced p300 HAT activity would result in enhanced AR acetylation. Bombesin-induced AR acetylation at the same motif KLKK observed in DHT-induced acetylation. Elimination of p300 using p300 siRNA reduced AR acetylation, demonstrating that AR acetylation was mediated by p300. AR acetylation results in AR transactivation and the expression of the AR-regulated gene prostate-specific antigen (PSA). Therefore, we examined bombesin-induced AR transactivation and PSA expression in the presence and absence of p300 siRNA and found inhibition of p300 expression reduced bombesin-induced AR transactivation and PSA expression. Together these results demonstrate that bombesin, via Src and PKCdelta signaling pathways, activates p300 HAT activity which leads to enhanced acetylation of AR resulting in increased expression of AR-regulated genes.
Albin, Stephanie D; Davis, Graeme W
2004-08-04
Here, we show that postsynaptic p21-activated kinase (Pak) signaling diverges into two genetically separable pathways at the Drosophila neuromuscular junction. One pathway controls glutamate receptor abundance. Pak signaling within this pathway is specified by a required interaction with the adaptor protein Dreadlocks (Dock). We demonstrate that Dock is localized to the synapse via an Src homology 2-mediated protein interaction. Dock is not necessary for Pak localization but is necessary to restrict Pak signaling to control glutamate receptor abundance. A second genetically separable function of Pak kinase signaling controls muscle membrane specialization through the regulation of synaptic Discs-large. In this pathway, Dock is dispensable. We present a model in which divergent Pak signaling is able to coordinate two different features of postsynaptic maturation, receptor abundance, and muscle membrane specialization.
FGF-mediated mesoderm induction involves the Src-family kinase Laloo.
Weinstein, D C; Marden, J; Carnevali, F; Hemmati-Brivanlou, A
1998-08-27
During embryogenesis, inductive interactions underlie the development of much of the body plan. In Xenopus laevis, factors secreted from the vegetal pole induce mesoderm in the adjacent marginal zone; members of both the transforming growth factor-beta (TGF-beta) and fibroblast growth factor (FGF) ligand families seem to have critical roles in this process. Here we report the identification and characterization of laloo, a novel participant in the signal transduction cascade linking extracellular, mesoderm-inducing signals to the nucleus, where alteration of cell fate is driven by changes in gene expression. Overexpression of laloo, a member of the Src-related gene family, in Xenopus embryos gives rise to ectopic posterior structures that frequently contain axial tissue. Laloo induces mesoderm in Xenopus ectodermal explants; this induction is blocked by reagents that disrupt the FGF signalling pathway. Conversely, expression of a dominant-inhibitory Laloo mutant blocks mesoderm induction by FGF and causes severe posterior truncations in vivo. This work provides the first evidence that a Src-related kinase is involved in vertebrate mesoderm induction.
Piegeler, Tobias; Votta-Velis, E. Gina; Bakhshi, Farnaz R.; Mao, Mao; Carnegie, Graeme; Bonini, Marcelo G.; Schwartz, David E.; Borgeat, Alain; Beck-Schimmer, Beatrice; Minshall, Richard D.
2014-01-01
Background Pulmonary endothelial barrier dysfunction mediated in part by Src-kinase activation plays a crucial role in acute inflammatory disease. Proinflammatory cytokines, such as tumor necrosis factor-α (TNFα), activate Src via phosphatidylinositide 3-kinase/Akt-dependent nitric oxide generation, a process initiated by recruitment of phosphatidylinositide 3-kinase regulatory subunit p85 to TNF-receptor-1. Because amide-linked local anesthetics have well-established anti-inflammatory effects, the authors hypothesized that ropivacaine and lidocaine attenuate inflammatory Src signaling by disrupting the phosphatidylinositide 3-kinase–Akt–nitric oxide pathway, thus blocking Src-dependent neutrophil adhesion and endothelial hyperpermeability. Methods Human lung microvascular endothelial cells, incubated with TNFα in the absence or presence of clinically relevant concentrations of ropivacaine and lidocaine, were analyzed by Western blot, probing for phosphorylated/activated Src, endothelial nitric oxide synthase, Akt, intercellular adhesion molecule-1, and caveolin-1. The effect of ropivacaine on TNFα-induced nitric oxide generation, co-immunoprecipitation of TNF-receptor-1 with p85, neutrophil adhesion, and endothelial barrier disruption were assessed. Results Ropivacaine and lidocaine attenuated TNFα-induced Src activation (half-maximal inhibitory concentration [IC50] = 8.611 × 10−10 M for ropivacaine; IC50 = 5.864 × 10−10 M for lidocaine) and endothelial nitric oxide synthase phosphorylation (IC50 = 7.572 × 10−10 M for ropivacaine; IC50 = 6.377 × 10−10 M for lidocaine). Akt activation (n = 7; P = 0.006) and stimulus-dependent binding of TNF-receptor-1 and p85 (n = 6; P = 0.043) were blocked by 1 nM of ropivacaine. TNFα-induced neutrophil adhesion and disruption of endothelial monolayers via Src-dependent intercellular adhesion molecule-1- and caveolin-1-phosphorylation, respectively, were also attenuated. Conclusions Ropivacaine and lidocaine effectively blocked inflammatory TNFα signaling in endothelial cells by attenuating p85 recruitment to TNF-receptor-1. The resultant decrease in Akt, endothelial nitric oxide synthase, and Src phosphorylation reduced neutrophil adhesion and endothelial hyperpermeability. This novel anti-inflammatory “side-effect” of ropivacaine and lidocaine may provide therapeutic benefit in acute inflammatory disease. PMID:24525631
Kim, Dae Joong; Norden, Pieter R; Salvador, Jocelynda; Barry, David M; Bowers, Stephanie L K; Cleaver, Ondine; Davis, George E
2017-01-01
Here we examine the question of how endothelial cells (ECs) develop their apical membrane surface domain during lumen and tube formation. We demonstrate marked apical membrane targeting of activated Src kinases to this apical domain during early and late stages of this process. Immunostaining for phosphotyrosine or phospho-Src reveals apical membrane staining in intracellular vacuoles initially. This is then followed by vacuole to vacuole fusion events to generate an apical luminal membrane, which is similarly decorated with activated phospho-Src kinases. Functional blockade of Src kinases completely blocks EC lumen and tube formation, whether this occurs during vasculogenic tube assembly or angiogenic sprouting events. Multiple Src kinases participate in this apical membrane formation process and siRNA suppression of Src, Fyn and Yes, but not Lyn, blocks EC lumen formation. We also demonstrate strong apical targeting of Src-GFP and Fyn-GFP fusion proteins and increasing their expression enhances lumen formation. Finally, we show that Src- and Fyn-associated vacuoles track and fuse along a subapically polarized microtubule cytoskeleton, which is highly acetylated. These vacuoles generate the apical luminal membrane in a stereotypically polarized, perinuclear position. Overall, our study identifies a critical role for Src kinases in creating and decorating the EC apical membrane surface during early and late stages of lumen and tube formation, a central event in the molecular control of vascular morphogenesis.
Amplification and oscillations in the FAK/Src kinase system during integrin signaling.
Caron-Lormier, G; Berry, H
2005-01-21
Integrin signaling is a major pathway of cell adhesion to extracellular matrices that regulates many physiological cell behaviors such as cell proliferation, migration or differentiation and is implied in pathologies such as tumor invasion. In this paper, we focused on the molecular system formed by the two kinases FAK (focal adhesion kinase) and Src, which undergo auto- and co-activation during early steps of integrin signaling. The system is modelled using classical kinetic equations and yields a set of three nonlinear ordinary differential equations describing the dynamics of the different phosphorylation forms of FAK. Analytical and numerical analysis of these equations show that this system may in certain cases amplify incoming signals from the integrins. A quantitative condition is obtained, which indicates that the total FAK charge in the system acts as a critical mass that must be exceeded for amplification to be effective. Furthermore, we show that when FAK activity is lower than Src activity, spontaneous oscillations of FAK phosphorylation forms may appear. The oscillatory behavior is studied using bifurcation and stability diagrams. We finally discuss the significance of this behavior with respect to recent experimental results evidencing FAK dynamics.
Zhang, Qing; Thomas, Sufi M; Lui, Vivian Wai Yan; Xi, Sichuan; Siegfried, Jill M; Fan, Huizhou; Smithgall, Thomas E; Mills, Gordon B; Grandis, Jennifer Rubin
2006-05-02
G protein-coupled receptors induce EGF receptor (EGFR) signaling, leading to the proliferation and invasion of cancer cells. Elucidation of the mechanism of EGFR activation by G protein-coupled receptors may identify new signaling paradigms. A gastrin-releasing peptide (GRP)/GRP receptor-mediated autocrine pathway was previously described in squamous cell carcinoma of head and neck. In the present study, we demonstrate that TNF-alpha converting enzyme (TACE), a disintegrin and metalloproteinse-17, undergoes a Src-dependent phosphorylation that regulates release of the EGFR ligand amphiregulin upon GRP treatment. Further investigation reveals the phosphatidylinositol 3-kinase (PI3-K) as the intermediate of c-Src and TACE, contributing to their association and TACE phosphorylation. Phosphoinositide-dependent kinase 1 (PDK1), a downstream target of PI3-K, has been identified as the previously undescribed kinase to directly phosphorylate TACE upon GRP treatment. These findings suggest a signaling cascade of GRP-Src-PI3-K-PDK1-TACE-amphiregulin-EGFR with multiple points of interaction, translocation, and phosphorylation. Furthermore, knockdown of PDK1 augmented the antitumor effects of the EGFR inhibitor erlotinib, indicating PDK1 as a therapeutic target to improve the clinical response to EGFR inhibitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Min Soo; Kim, Gyoung Mi; Choi, Yun-Jeong
2013-11-15
Highlights: •TrkA was mainly present in other types of leukemia including AML. •TrkA enhances the survival of leukemia by activation of PI3K/Akt pathway. •TrkA induced significant hematological malignancies by inducing PLK-1 and Twist-1. •TrkA acted as a key regulator of leukemogenesis and survival through c-Src activation. -- Abstract: Although the kinase receptor TrkA may play an important role in acute myeloid leukemia (AML), its involvement in other types of leukemia has not been reported. Furthermore, how it contributes to leukemogenesis is unknown. Here, we describe a molecular network that is important for TrkA function in leukemogenesis. We found that TrkAmore » is frequently overexpressed in other types of leukemia such as acute lymphoblastic leukemia (ALL), chronic myelogenous leukemia (CML), and myelodysplastic syndrome (MDS) including AML. In addition, TrkA was overexpressed in patients with MDS or secondary AML evolving from MDS. TrkA induced significant hematological malignancies by inducing PLK-1 and Twist-1, and enhanced survival and proliferation of leukemia, which was correlated with activation of the phosphatidylinositol 3-kinase/Akt/mTOR pathway. Moreover, endogenous TrkA associated with c-Src complexes was detected in leukemia. Suppression of c-Src activation by TrkA resulted in markedly decreased expression of PLK-1 and Twist-1 via suppressed activation of Akt/mTOR cascades. These data suggest that TrkA plays a key role in leukemogenesis and reveal an unexpected physiological role for TrkA in the pathogenesis of leukemia. These data have important implications for understanding various hematological malignancies.« less
Kasi, V S; Kuppuswamy, D
1999-10-01
Src family kinases are implicated in cellular proliferation and transformation. Terminally differentiated myocytes have lost the ability to proliferate, indicating the existence of a down-regulatory mechanism(s) for these mitogenic kinases. Here we show that feline cardiomyocyte lysate contains thermostable components that inhibit c-Src kinase in vitro. This inhibitory activity, present predominantly in heart tissue, involves two components acting combinatorially. After purification by sequential chromatography, one component was identified by mass and nuclear magnetic resonance spectroscopies as 5'-AMP, while the other was identified by peptide sequencing as a small heat shock protein (sHSP). 5'-AMP and to a lesser extent 5'-ADP inhibit c-Src when combined with either HSP-27 or HSP-32. Other HSPs, including alphaB-crystallin, HSP-70, and HSP-90, did not exhibit this effect. The inhibition, observed preferentially on Src family kinases and independent of the Src tyrosine phosphorylation state, occurs via a direct interaction of the c-Src catalytic domain with the inhibitory components. Our study indicates that sHSPs increase the affinity of 5'-AMP for the c-Src ATP binding site, thereby facilitating the inhibition. In vivo, elevation of ATP levels in the cardiomyocytes results in the tyrosine phosphorylation of cellular proteins including c-Src at the activatory site, and this effect is blocked when the 5'-AMP concentration is raised. Thus, this study reveals a novel role for sHSPs and 5'-AMP in the regulation of Src family kinases, presumably for the maintenance of the terminally differentiated state.
Zgheel, Faraj; Alhosin, Mahmoud; Rashid, Sherzad; Burban, Mélanie; Auger, Cyril; Schini-Kerth, Valérie B.
2014-01-01
Aims Omega-3 fatty acid products containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have vasoprotective effects, in part, by stimulating the endothelial formation of nitric oxide (NO). This study determined the role of the EPA:DHA ratio and amount, and characterized the mechanism leading to endothelial NO synthase (eNOS) activation. Methods and Results EPA:DHA 6∶1 and 9∶1 caused significantly greater endothelium-dependent relaxations in porcine coronary artery rings than EPA:DHA 3∶1, 1∶1, 1∶3, 1∶6, 1∶9, EPA and DHA alone, and EPA:DHA 6∶1 with a reduced EPA + DHA amount, which were inhibited by an eNOS inhibitor. Relaxations to EPA:DHA 6∶1 were insensitive to cyclooxygenase inhibition, and reduced by inhibitors of either oxidative stress, Src kinase, PI3-kinase, p38 MAPK, MEK, or JNK. EPA:DHA 6∶1 induced phosphorylation of Src, Akt, p38 MAPK, ERK, JNK and eNOS; these effects were inhibited by MnTMPyP. EPA:DHA 6∶1 induced the endothelial formation of ROS in coronary artery sections as assessed by dihydroethidium, and of superoxide anions and hydrogen peroxide in cultured endothelial cells as assessed by electron spin resonance with the spin probe CMH, and the Amplex Red based assay, respectively. Conclusion Omega-3 fatty acids cause endothelium-dependent NO-mediated relaxations in coronary artery rings, which are dependent on the EPA:DHA ratio and amount, and involve an intracellular activation of the redox-sensitive PI3-kinase/Akt and MAPKs pathways to activate eNOS. PMID:25133540
Zgheel, Faraj; Alhosin, Mahmoud; Rashid, Sherzad; Burban, Mélanie; Auger, Cyril; Schini-Kerth, Valérie B
2014-01-01
Omega-3 fatty acid products containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have vasoprotective effects, in part, by stimulating the endothelial formation of nitric oxide (NO). This study determined the role of the EPA:DHA ratio and amount, and characterized the mechanism leading to endothelial NO synthase (eNOS) activation. EPA:DHA 6∶1 and 9∶1 caused significantly greater endothelium-dependent relaxations in porcine coronary artery rings than EPA:DHA 3∶1, 1∶1, 1∶3, 1∶6, 1∶9, EPA and DHA alone, and EPA:DHA 6∶1 with a reduced EPA + DHA amount, which were inhibited by an eNOS inhibitor. Relaxations to EPA:DHA 6∶1 were insensitive to cyclooxygenase inhibition, and reduced by inhibitors of either oxidative stress, Src kinase, PI3-kinase, p38 MAPK, MEK, or JNK. EPA:DHA 6∶1 induced phosphorylation of Src, Akt, p38 MAPK, ERK, JNK and eNOS; these effects were inhibited by MnTMPyP. EPA:DHA 6∶1 induced the endothelial formation of ROS in coronary artery sections as assessed by dihydroethidium, and of superoxide anions and hydrogen peroxide in cultured endothelial cells as assessed by electron spin resonance with the spin probe CMH, and the Amplex Red based assay, respectively. Omega-3 fatty acids cause endothelium-dependent NO-mediated relaxations in coronary artery rings, which are dependent on the EPA:DHA ratio and amount, and involve an intracellular activation of the redox-sensitive PI3-kinase/Akt and MAPKs pathways to activate eNOS.
Protein Tyrosine Kinase Signaling During Oocyte Maturation and Fertilization
McGinnis, Lynda K.; Carroll, David J.; Kinsey, William H.
2011-01-01
The oocyte is a highly specialized cell capable of accumulating and storing energy supplies as well as maternal transcripts and pre-positioned signal transduction components needed for zygotic development, undergoing meiosis under control of paracrine signals from the follicle, fusing with a single sperm during fertilization, and zygotic development. The oocyte accomplishes this diverse series of events by establishing an array of signal transduction pathway components that include a select collection of protein tyrosine kinases (PTKs) that are expressed at levels significantly higher than most other cell types. This array of PTKs includes cytosolic kinases such as SRC-family PTKs (FYN and YES), and FAK kinases, as well as FER. These kinases typically exhibit distinct patterns of localization and in some cases are translocated from one subcellular compartment to another during meiosis. Significant differences exist in the extent to which PTK-mediated pathways are used by oocytes from species that fertilize externally versus internally. The PTK activation profiles as well as calcium signaling pattern seems to correlate with the extent to which a rapid block to polyspermy is required by the biology of each species. Suppression of each of the SRC-family PTKs as well as FER kinase results in failure of meiotic maturation or zygote development, indicating that these PTKs are important for oocyte quality and developmental potential. Future studies will hopefully reveal the extent to which these factors impact clinical assisted reproductive techniques in domestic animals and humans. PMID:21681843
Functional diversity of Csk, Chk, and Src SH2 domains due to a single residue variation.
Ayrapetov, Marina K; Nam, Nguyen Hai; Ye, Guofeng; Kumar, Anil; Parang, Keykavous; Sun, Gongqin
2005-07-08
The C-terminal Src kinase (Csk) family of protein tyrosine kinases contains two members: Csk and Csk homologous kinase (Chk). Both phosphorylate and inactivate Src family kinases. Recent reports suggest that the Src homology (SH) 2 domains of Csk and Chk may bind to different phosphoproteins, which provides a basis for different cellular functions for Csk and Chk. To verify and characterize such a functional divergence, we compared the binding properties of the Csk, Chk, and Src SH2 domains and investigated the structural basis for the functional divergence. First, the study demonstrated striking functional differences between the Csk and Chk SH2 domains and revealed functional similarities between the Chk and Src SH2 domains. Second, structural analysis and mutagenic studies revealed that the functional differences among the three SH2 domains were largely controlled by one residue, Glu127 in Csk, Ile167 in Chk, and Lys200 in Src. Mutating these residues in the Csk or Chk SH2 domain to the Src counterpart resulted in dramatic gain of function similar to Src SH2 domain, whereas mutating Lys200 in Src SH2 domain to Glu (the Csk counterpart) resulted in loss of Src SH2 function. Third, a single point mutation of E127K rendered Csk responsive to activation by a Src SH2 domain ligand. Finally, the optimal phosphopeptide sequence for the Chk SH2 domain was determined. These results provide a compelling explanation for the functional differences between two homologous protein tyrosine kinases and reveal a new structure-function relationship for the SH2 domains.
Mitochondrial events responsible for morphine's cardioprotection against ischemia/reperfusion injury
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Haiyan; Department of Pharmacology, Tianjin Medical University, Tianjin 300070; Huh, Jin
Morphine may induce cardioprotection by targeting mitochondria, but little is known about the exact mitochondrial events that mediate morphine's protection. We aimed to address the role of the mitochondrial Src tyrosine kinase in morphine's protection. Isolated rat hearts were subjected to 30 min ischemia and 2 h of reperfusion. Morphine was given before the onset of ischemia. Infarct size and troponin I release were measured to evaluate cardiac injury. Oxidative stress was evaluated by measuring mitochondrial protein carbonylation and mitochondrial ROS generation. HL-1 cells were subjected to simulated ischemia/reperfusion and LDH release and mitochondrial membrane potential (ΔΨm) were measured. Morphinemore » reduced infarct size as well as cardiac troponin I release which were aborted by the selective Src tyrosine kinase inhibitors PP2 and Src-I1. Morphine also attenuated LDH release and prevented a loss of ΔΨm at reperfusion in a Src tyrosine kinase dependent manner in HL-1 cells. However, morphine failed to reduce LDH release in HL-1 cells transfected with Src siRNA. Morphine increased mitochondrial Src phosphorylation at reperfusion and this was abrogated by PP2. Morphine attenuated mitochondrial protein carbonylation and mitochondrial superoxide generation at reperfusion through Src tyrosine kinase. The inhibitory effect of morphine on the mitochondrial complex I activity was reversed by PP2. These data suggest that morphine induces cardioprotection by preventing mitochondrial oxidative stress through mitochondrial Src tyrosine kinase. Inhibition of mitochondrial complex I at reperfusion by Src tyrosine kinase may account for the prevention of mitochondrial oxidative stress by morphine. - Highlights: • Morphine induced mito-Src phosphorylation and reduced infarct size in rat hearts. • Morphine failed to reduce I/R-induced LDH release in Src-silencing HL-1 cells. • Morphine prevented mitochondria damage caused by I/R through Src. • Morphine reduced mitochondrial ROS generation by inhibiting complex I via Src.« less
Greenway, Alison L.; Dutartre, Hélène; Allen, Kelly; McPhee, Dale A.; Olive, Daniel; Collette, Yves
1999-01-01
The nef gene from human and simian immunodeficiency viruses (HIV and SIV) regulates cell function and viral replication, possibly through binding of the nef product to cellular proteins, including Src family tyrosine kinases. We show here that the Nef protein encoded by SIVmac239 interacts with and also activates the human Src kinases Lck and Hck. This is in direct contrast to the inhibitory effect of HIV type 1 (HIV-1) Nef on Lck catalytic activity. Unexpectedly, however, the interaction of SIV Nef with human Lck or Hck is not mediated via its consensus proline motif, which is known to mediate HIV-1 Nef binding to Src homology 3 (SH3) domains, and various experimental analyses failed to show significant interaction of SIV Nef with the SH3 domain of either kinase. Instead, SIV Nef can bind Lck and Hck SH2 domains, and its N-terminal 50 amino acid residues are sufficient for Src kinase binding and activation. Our results provide evidence for multiple mechanisms by which Nef binds to and regulates Src kinases. PMID:10364375
Li, Lisheng; Chen, Wanze; Liang, Yaoji; Ma, Huabin; Li, Wenjuan; Zhou, Zhenru; Li, Jie; Ding, Yan; Ren, Junming; Lin, Juan; Han, Felicia; Wu, Jianfeng; Han, Jiahuai
2014-01-01
Formation of multi-component signaling complex necrosomes is essential for tumor necrosis factor α (TNF)-induced programmed necrosis (also called necroptosis). However, the mechanisms of necroptosis are still largely unknown. We isolated a TNF-resistant L929 mutant cell line generated by retrovirus insertion and identified that disruption of the guanine nucleotide-binding protein γ 10 (Gγ10) gene is responsible for this phenotype. We further show that Gγ10 is involved in TNF-induced necroptosis and Gβ2 is the partner of Gγ10. Src is the downstream effector of Gβ2γ10 in TNF-induced necroptosis because TNF-induced Src activation was impaired upon Gγ10 knockdown. Gγ10 does not affect TNF-induced activation of NF-κB and MAPKs and the formation of necrosomes, but is required for trafficking of necrosomes to their potential functioning site, an unidentified subcellular organelle that can be fractionated into heterotypic membrane fractions. The TNF-induced Gβγ-Src signaling pathway is independent of RIP1/RIP3 kinase activity and necrosome formation, but is required for the necrosome to function. PMID:24513853
Sanjay, Archana; Miyazaki, Tsuyoshi; Itzstein, Cecile; Purev, Enkhtsetseg; Horne, William C; Baron, Roland
2006-12-01
Cbl is an adaptor protein and ubiquitin ligase that binds and is phosphorylated by the nonreceptor tyrosine kinase Src. We previously showed that the primary interaction between Src and Cbl is mediated by the Src homology domain 3 (SH3) of Src binding to proline-rich sequences of Cbl. The peptide Cbl RDLPPPPPPDRP(540-551), which corresponds to residues 540-551 of Cbl, inhibited the binding of a GST-Src SH3 fusion protein to Cbl, whereas RDLAPPAPPPDR(540-551) did not, suggesting that Src binds to this site on Cbl in a class I orientation. Mutating prolines 543-548 reduced Src binding to the Cbl 479-636 fragment significantly more than mutating the prolines in the PPVPPR(494-499) motif, which was previously reported to bind Src SH3. Mutating Cbl prolines 543-548 to alanines substantially reduced Src binding to Cbl, Src-induced phosphorylation of Cbl, and the inhibition of Src kinase activity by Cbl. Expressing the mutated Cbl in osteoclasts induced a moderate reduction in bone-resorbing activity and increased amounts of Src protein. In contrast, disabling the tyrosine kinase-binding domain of full-length Cbl by mutating glycine 306 to glutamic acid, and thereby preventing the previously described binding of the tyrosine kinase-binding domain to the Src phosphotyrosine 416, had no effect on Cbl phosphorylation, the inhibition of Src activity by full-length Cbl, or bone resorption. These data indicate that the Cbl RDLPPPP(540-546) sequence is a functionally important binding site for Src.
JunD/AP-1 Antagonizes the Induction of DAPK1 To Promote the Survival of v-Src-Transformed Cells.
Maślikowski, Bart M; Wang, Lizhen; Wu, Ying; Fielding, Ben; Bédard, Pierre-André
2017-01-01
The increase in AP-1 activity is a hallmark of cell transformation by tyrosine kinases. Previously, we reported that blocking AP-1 using the c-Jun dominant negative mutant TAM67 induced senescence, adipogenesis, or apoptosis in v-Src-transformed chicken embryo fibroblasts (CEFs) whereas inhibition of JunD by short hairpin RNA (shRNA) specifically induced apoptosis. To investigate the role of AP-1 in Src-mediated transformation, we undertook a gene profiling study to characterize the transcriptomes of v-Src-transformed CEFs expressing either TAM67 or the JunD shRNA. Our study revealed a cluster of 18 probe sets upregulated exclusively in response to AP-1/JunD impairment and v-Src transformation. Four of these probe sets correspond to genes involved in the interferon pathway. One gene in particular, death-associated protein kinase 1 (DAPK1), is a C/EBPβ-regulated mediator of apoptosis in gamma interferon (IFN-γ)-induced cell death. Here, we show that inhibition of DAPK1 abrogates cell death in v-Src-transformed cells expressing the JunD shRNA. Chromatin immunoprecipitation data indicated that C/EBPβ was recruited to the DAPK1 promoter while the expression of a dominant negative mutant of C/EBPβ abrogated the induction of DAPK1 in response to the inhibition of AP-1. In contrast, as determined by chromatin immunoprecipitation (ChIP) assays, JunD was not detected on the DAPK1 promoter under any conditions, suggesting that JunD promotes survival by indirectly antagonizing the expression of DAPK1 in v-Src transformed cells. Transformation by the v-Src oncoprotein causes extensive changes in gene expression in primary cells such as chicken embryo fibroblasts. These changes, determining the properties of transformed cells, are controlled in part at the transcriptional level. Much attention has been devoted to transcription factors such as AP-1 and NF-κB and the control of genes associated with a more aggressive phenotype. In this report, we describe a novel mechanism of action determined by the JunD component of AP-1, a factor enhancing cell survival in v-Src-transformed cells. We show that the loss of JunD results in the aberrant activation of a genetic program leading to cell death. This program requires the activation of the tumor suppressor death-associated protein kinase 1 (DAPK1). Since DAPK1 is phosphorylated and inhibited by v-Src, these results highlight the importance of this kinase and the multiple mechanisms controlled by v-Src to antagonize the tumor suppressor function of DAPK1. Copyright © 2016 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukumoto, Yasunori, E-mail: fukumoto@faculty.chiba-u.jp; Kuki, Kazumasa; Morii, Mariko
2014-09-26
Highlights: • Inhibition of Src family kinases decreased γ-H2AX signal. • Inhibition of Src family increased ATM-dependent phosphorylation of Chk2 and Kap1. • shRNA-mediated knockdown of Lyn increased phosphorylation of Kap1 by ATM. • Ectopic expression of Src family kinase suppressed ATM-mediated Kap1 phosphorylation. • Src is involved in upstream signaling for inactivation of ATM signaling. - Abstract: DNA damage activates the DNA damage checkpoint and the DNA repair machinery. After initial activation of DNA damage responses, cells recover to their original states through completion of DNA repair and termination of checkpoint signaling. Currently, little is known about the processmore » by which cells recover from the DNA damage checkpoint, a process called checkpoint recovery. Here, we show that Src family kinases promote inactivation of ataxia telangiectasia mutated (ATM)-dependent checkpoint signaling during recovery from DNA double-strand breaks. Inhibition of Src activity increased ATM-dependent phosphorylation of Chk2 and Kap1. Src inhibition increased ATM signaling both in G2 phase and during asynchronous growth. shRNA knockdown of Lyn increased ATM signaling. Src-dependent nuclear tyrosine phosphorylation suppressed ATM-mediated Kap1 phosphorylation. These results suggest that Src family kinases are involved in upstream signaling that leads to inactivation of the ATM-dependent DNA damage checkpoint.« less
Kasi, Vijaykumar S.; Kuppuswamy, Dhandapani
1999-01-01
Src family kinases are implicated in cellular proliferation and transformation. Terminally differentiated myocytes have lost the ability to proliferate, indicating the existence of a down-regulatory mechanism(s) for these mitogenic kinases. Here we show that feline cardiomyocyte lysate contains thermostable components that inhibit c-Src kinase in vitro. This inhibitory activity, present predominantly in heart tissue, involves two components acting combinatorially. After purification by sequential chromatography, one component was identified by mass and nuclear magnetic resonance spectroscopies as 5′-AMP, while the other was identified by peptide sequencing as a small heat shock protein (sHSP). 5′-AMP and to a lesser extent 5′-ADP inhibit c-Src when combined with either HSP-27 or HSP-32. Other HSPs, including αB-crystallin, HSP-70, and HSP-90, did not exhibit this effect. The inhibition, observed preferentially on Src family kinases and independent of the Src tyrosine phosphorylation state, occurs via a direct interaction of the c-Src catalytic domain with the inhibitory components. Our study indicates that sHSPs increase the affinity of 5′-AMP for the c-Src ATP binding site, thereby facilitating the inhibition. In vivo, elevation of ATP levels in the cardiomyocytes results in the tyrosine phosphorylation of cellular proteins including c-Src at the activatory site, and this effect is blocked when the 5′-AMP concentration is raised. Thus, this study reveals a novel role for sHSPs and 5′-AMP in the regulation of Src family kinases, presumably for the maintenance of the terminally differentiated state. PMID:10490624
Roles of the SH2 and SH3 domains in the regulation of neuronal Src kinase functions.
Groveman, Bradley R; Xue, Sheng; Marin, Vedrana; Xu, Jindong; Ali, Mohammad K; Bienkiewicz, Ewa A; Yu, Xian-Min
2011-02-01
Previous studies demonstrated that intra-domain interactions between Src family kinases (SFKs), stabilized by binding of the phosphorylated C-terminus to the SH2 domain and/or binding of the SH2 kinase linker to the SH3 domain, lock the molecules in a closed conformation, disrupt the kinase active site, and inactivate SFKs. Here we report that the up-regulation of N-methyl-D-aspartate receptors (NMDARs) induced by expression of constitutively active neuronal Src (n-Src), in which the C-terminus tyrosine is mutated to phenylalanine (n-Src/Y535F), is significantly reduced by dysfunctions of the SH2 and/or SH3 domains of the protein. Furthermore, we found that dysfunctions of SH2 and/or SH3 domains reduce auto-phosphorylation of the kinase activation loop, depress kinase activity, and decrease NMDAR phosphorylation. The SH2 domain plays a greater regulatory role than the SH3 domain. Our data also show that n-Src binds directly to the C-terminus of the NMDAR NR2A subunit in vitro, with a K(D) of 108.2 ± 13.3 nM. This binding is not Src kinase activity-dependent, and dysfunctions of the SH2 and/or SH3 domains do not significantly affect the binding. These data indicate that the SH2 and SH3 domains may function to promote the catalytic activity of active n-Src, which is important in the regulation of NMDAR functions. © 2010 The Authors Journal compilation © 2010 FEBS.
Src regulates sequence-dependent beta-2 adrenergic receptor recycling via cortactin phosphorylation*
Vistein, Rachel; Puthenveedu, Manojkumar A.
2014-01-01
The recycling of internalized signaling receptors, which has direct functional consequences, is subject to multiple sequence and biochemical requirements. Why signaling receptors recycle via a specialized pathway, unlike many other proteins that recycle by bulk, is a fundamental unanswered question. Here we show that these specialized pathways allow selective control of signaling receptor recycling by heterologous signaling. Using assays to visualize receptor recycling in living cells, we show that the recycling of the beta-2 adrenergic receptor (B2AR), a prototypic signaling receptor, is regulated by Src family kinases. The target of Src is cortactin, an essential factor for B2AR sorting into specialized recycling microdomains on the endosome. Phosphorylation of a single cortactin residue, Y466, regulates the rate of fission of B2AR recycling vesicles from these microdomains, and, therefore, the rate of delivery of B2AR to the cell surface. Together, our results indicate that actin-stabilized microdomains that mediate signaling receptor recycling can serve as a functional point of convergence for crosstalk between signaling pathways. PMID:25077552
Thornton, Claire; Yaka, Rami; Dinh, Son; Ron, Dorit
2005-01-01
Tyrosine phosphorylation of the NR2A and NR2B subunits of the N-methyl-d-aspartate (NMDA) receptor by Src protein-tyrosine kinases modulates receptor channel activity and is necessary for the induction of long term potentiation (LTP). Deletion of H-Ras increases both NR2 tyrosine phosphorylation and NMDA receptor-mediated hippocampal LTP. Here we investigated whether H-Ras regulates phosphorylation and function of the NMDA receptor via Src family protein-tyrosine kinases. We identified Src as a novel H-Ras binding partner. H-Ras bound to Src but not Fyn both in vitro and in brain via the Src kinase domain. Cotransfection of H-Ras and Src inhibited Src activity and decreased NR2A tyrosine phosphorylation. Treatment of rat brain slices with Tat-H-Ras depleted NR2A from the synaptic membrane, decreased endogenous Src activity and NR2A phosphorylation, and decreased the magnitude of hip-pocampal LTP. No change was observed for NR2B. We suggest that H-Ras negatively regulates Src phosphorylation of NR2A and retention of NR2A into the synaptic membrane leading to inhibition of NMDA receptor function. This mechanism is specific for Src and NR2A and has implications for studies in which regulation of NMDA receptor-mediated LTP is important, such as synaptic plasticity, learning, and memory and addiction. PMID:12695509
Veracini, Laurence; Grall, Dominique; Schaub, Sébastien; Divonne, Stéphanie Beghelli-de la Forest; Etienne-Grimaldi, Marie-Christine; Milano, Gérard; Bozec, Alexandre; Babin, Emmanuel; Sudaka, Anne; Thariat, Juliette; Van Obberghen-Schilling, Ellen
2015-01-01
EGF receptor (EGFR) overexpression is thought to drive head and neck carcinogenesis however clinical responses to EGFR-targeting agents have been modest and alternate targets are actively sought to improve results. Src family kinases (SFKs), reported to act downstream of EGFR are among the alternative targets for which increased expression or activity in epithelial tumors is commonly associated to the dissolution of E-cadherin-based junctions and acquisition of a mesenchymal-like phenotype. Robust expression of total and activated Src was observed in advanced stage head and neck tumors (N=60) and in head and neck squamous cell carcinoma lines. In cultured cancer cells Src co-localized with E-cadherin in cell-cell junctions and its phosphorylation on Y419 was both constitutive and independent of EGFR activation. Selective inhibition of SFKs with SU6656 delocalized E-cadherin and disrupted cellular junctions without affecting E-cadherin expression and this effect was phenocopied by knockdown of Src or Yes. These findings reveal an EGFR-independent role for SFKs in the maintenance of intercellular junctions, which likely contributes to the cohesive invasion E-cadherin-positive cells in advanced tumors. Further, they highlight the need for a deeper comprehension of molecular pathways that drive collective cell invasion, in absence of mesenchymal transition, in order to combat tumor spread. PMID:25779657
DeRita, Rachel M; Zerlanko, Brad; Singh, Amrita; Lu, Huimin; Iozzo, Renato V; Benovic, Jeffrey L; Languino, Lucia R
2017-01-01
It is well known that Src tyrosine kinase, insulin-like growth factor 1 receptor (IGF-IR), and focal adhesion kinase (FAK) play important roles in prostate cancer (PrCa) development and progression. Src, which signals through FAK in response to integrin activation, has been implicated in many aspects of tumor biology, such as cell proliferation, metastasis, and angiogenesis. Furthermore, Src signaling is known to crosstalk with IGF-IR, which also promotes angiogenesis. In this study, we demonstrate that c-Src, IGF-IR, and FAK are packaged into exosomes (Exo), c-Src in particular being highly enriched in Exo from the androgen receptor (AR)-positive cell line C4-2B and AR-negative cell lines PC3 and DU145. Furthermore, we show that the active phosphorylated form of Src (Src pY416 ) is co-expressed in Exo with phosphorylated FAK (FAK pY861 ), a known target site of Src, which enhances proliferation and migration. We further demonstrate for the first time exosomal enrichment of G-protein-coupled receptor kinase (GRK) 5 and GRK6, both of which regulate Src and IGF-IR signaling and have been implicated in cancer. Finally, Src pY416 and c-Src are both expressed in Exo isolated from the plasma of prostate tumor-bearing TRAMP mice, and those same mice have higher levels of exosomal c-Src than their wild-type counterparts. In summary, we provide new evidence that active signaling molecules relevant to PrCa are enriched in Exo, and this suggests that the Src signaling network may provide useful biomarkers detectable by liquid biopsy, and may contribute to PrCa progression via Exo. J. Cell. Biochem. 118: 66-73, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Chuang, L M; Hausdorff, S F; Myers, M G; White, M F; Birnbaum, M J; Kahn, C R
1994-11-04
Insulin receptor substrate-1 (IRS-1) serves as the major immediate substrate of insulin/insulin-like growth factor (IGF)-1 receptors and following tyrosine phosphorylation binds to specific Src homology-2 (SH2) domain-containing proteins including the p85 subunit of phosphatidylinositol (PI) 3-kinase and GRB2, a molecule believed to link IRS-1 to the Ras pathway. To investigate how these SH2-containing signaling molecules interact to regulate insulin/IGF-1 action, IRS-1, glutathione S-transferase (GST)-SH2 domain fusion proteins and Ras proteins were microinjected into Xenopus oocytes. We found that pleiotropic insulin actions are mediated by IRS-1 through two independent, but convergent, pathways involving PI 3-kinase and GRB2. Thus, microinjection of GST-fusion proteins of either p85 or GRB2 inhibited IRS-1-dependent activation of mitogen-activated protein (MAP) and S6 kinases and oocyte maturation, although only the GST-SH2 of p85 reduced insulin-stimulated PI 3-kinase activation. Co-injection of a dominant negative Ras (S17N) with IRS-1 inhibited insulin-stimulated MAP and S6 kinase activation. Micro-injection of activated [Arg12,Thr59]Ras increased basal MAP and S6 kinase activities and sensitized the oocytes to insulin-stimulated maturation without altering insulin-stimulated PI 3-kinase. The Ras-enhanced oocyte maturation response, but not the elevated basal level of MAP and S6 kinase, was partially blocked by the SH2-p85, but not SH2-GRB2. These data strongly suggest that IRS-1 can mediate many of insulin's actions on cellular enzyme activation and cell cycle progression requires binding and activation of multiple different SH2-domain proteins.
Sanjay, Archana; Houghton, Adam; Neff, Lynn; DiDomenico, Emilia; Bardelay, Chantal; Antoine, Evelyne; Levy, Joan; Gailit, James; Bowtell, David; Horne, William C.; Baron, Roland
2001-01-01
The signaling events downstream of integrins that regulate cell attachment and motility are only partially understood. Using osteoclasts and transfected 293 cells, we find that a molecular complex comprising Src, Pyk2, and Cbl functions to regulate cell adhesion and motility. The activation of integrin αvβ3 induces the [Ca2+]i-dependent phosphorylation of Pyk2 Y402, its association with Src SH2, Src activation, and the Src SH3-dependent recruitment and phosphorylation of c-Cbl. Furthermore, the PTB domain of Cbl is shown to bind to phosphorylated Tyr-416 in the activation loop of Src, the autophosphorylation site of Src, inhibiting Src kinase activity and integrin-mediated adhesion. Finally, we show that deletion of c Src or c-Cbl leads to a decrease in osteoclast migration. Thus, binding of αvβ3 integrin induces the formation of a Pyk2/Src/Cbl complex in which Cbl is a key regulator of Src kinase activity and of cell adhesion and migration. These findings may explain the osteopetrotic phenotype in the Src−/− mice. PMID:11149930
Dwyer, Amy R; Mouchemore, Kellie A; Steer, James H; Sunderland, Andrew J; Sampaio, Natalia G; Greenland, Eloise L; Joyce, David A; Pixley, Fiona J
2016-07-01
A major role of colony-stimulating factor-1 is to stimulate the differentiation of mononuclear phagocytic lineage cells into adherent, motile, mature macrophages. The colony-stimulating factor-1 receptor transduces colony-stimulating factor-1 signaling, and we have shown previously that phosphatidylinositol 3-kinase p110δ is a critical mediator of colony-stimulating factor-1-stimulated motility through the colony-stimulating factor-1 receptor pY721 motif. Src family kinases are also implicated in the regulation of macrophage motility and in colony-stimulating factor-1 receptor signaling, although functional redundancy of the multiple SFKs expressed in macrophages makes it challenging to delineate their specific functions. We report a comprehensive analysis of individual Src family kinase expression in macrophage cell lines and primary macrophages and demonstrate colony-stimulating factor-1-induced changes in Src family kinase subcellular localization, which provides clues to their distinct and redundant functions in macrophages. Moreover, expression of individual Src family kinases is both species specific and dependent on colony-stimulating factor-1-induced macrophage differentiation. Hck associated with the activated colony-stimulating factor-1 receptor, whereas Lyn associated with the receptor in a constitutive manner. Consistent with this, inhibitor studies revealed that Src family kinases were important for both colony-stimulating factor-1 receptor activation and colony-stimulating factor-1-induced macrophage spreading, motility, and invasion. Distinct colony-stimulating factor-1-induced changes in the subcellular localization of individual SFKs suggest specific roles for these Src family kinases in the macrophage response to colony-stimulating factor-1. © Society for Leukocyte Biology.
Hood, Katie Y; Mair, Kirsty M; Harvey, Adam P; Montezano, Augusto C; Touyz, Rhian M; MacLean, Margaret R
2017-07-01
Serotonin can induce human pulmonary artery smooth muscle cell (hPASMC) proliferation through reactive oxygen species (ROS), influencing the development of pulmonary arterial hypertension (PAH). We hypothesize that in PASMCs, serotonin induces oxidative stress through NADPH-oxidase-derived ROS generation and reduced Nrf-2 (nuclear factor [erythroid-derived 2]-like 2) antioxidant systems, promoting vascular injury. HPASMCs from controls and PAH patients, and PASMCs from Nox1 -/- mice, were stimulated with serotonin in the absence/presence of inhibitors of Src kinase, the 5-HT 1B receptor, and NADPH oxidase 1 (Nox1). Markers of fibrosis were also determined. The pathophysiological significance of our findings was examined in vivo in serotonin transporter overexpressing female mice, a model of pulmonary hypertension. We confirmed thatserotonin increased superoxide and hydrogen peroxide production in these cells. For the first time, we show that serotonin increased oxidized protein tyrosine phosphatases and hyperoxidized peroxiredoxin and decreased Nrf-2 and catalase activity in hPASMCs. ROS generation was exaggerated and dependent on cellular Src-related kinase, 5-HT 1B receptor, and the serotonin transporter in human pulmonary artery smooth muscle cells from PAH subjects. Proliferation and extracellular matrix remodeling were exaggerated in human pulmonary artery smooth muscle cells from PAH subjects and dependent on 5-HT 1B receptor signaling and Nox1, confirmed in PASMCs from Nox1 -/- mice. In serotonin transporter overexpressing mice, SB216641, a 5-HT 1B receptor antagonist, prevented development of pulmonary hypertension in a ROS-dependent manner. Serotonin can induce cellular Src-related kinase-regulated Nox1-induced ROS and Nrf-2 dysregulation, contributing to increased post-translational oxidative modification of proteins and activation of redox-sensitive signaling pathways in hPASMCs, associated with mitogenic responses. 5-HT 1B receptors contribute to experimental pulmonary hypertension by inducing lung ROS production. Our results suggest that 5-HT 1B receptor-dependent cellular Src-related kinase-Nox1-pathways contribute to vascular remodeling in PAH. © 2017 The Authors.
Li, Qun-Yi; Zhu, Ying-Feng; Zhang, Meng; Chen, Li; Zhang, Zhen; Du, Yong-Li; Ren, Guo-Qiang; Tang, Jian-Min; Zhong, Ming-Kang; Shi, Xiao-Jin
2015-03-15
Chlorogenic acid (CGA), abundant in coffee and particular fruits, can modulate hypertension and vascular dysfunction. Hypoxia-induced pulmonary artery smooth muscle cells (PASMCs) proliferation has been tightly linked to vascular remodeling in pulmonary arterial hypertension (PAH). Thus, the present study was designed to investigate the effect of CGA on hypoxia-induced proliferation in cultured rat PASMCs. The data showed that CGA potently inhibited PASMCs proliferation and DNA synthesis induced by hypoxia. These inhibitory effects were associated with G1 cell cycle arrest and down-regulation of cell cycle proteins. Treatment with CGA reduced hypoxia-induced hypoxia inducible factor 1α (HIF-1α) expression and trans-activation. Furthermore, hypoxia-evoked c-Src phosphorylation was inhibited by CGA. In vitro ELISA-based tyrosine kinase assay indicated that CGA was a direct inhibitor of c-Src. Moreover, CGA attenuated physical co-association of c-Src/Shc/Grb2 and ERK2 phosphorylation in PASMCs. These results suggest that CGA inhibits hypoxia-induced proliferation in PASMCs via regulating c-Src-mediated signaling pathway. In vivo investigation showed that chronic CGA treatment inhibits monocrotaline-induced PAH in rats. These findings presented here highlight the possible therapeutic use of CGA in hypoxia-related PAH. Copyright © 2015 Elsevier B.V. All rights reserved.
Palanisamy, Arun P.; Suryakumar, Geetha; Panneerselvam, Kavin; Willey, Christopher D.; Kuppuswamy, Dhandapani
2017-01-01
Early work in pressure overloaded (PO) myocardium shows that integrins mediate focal adhesion complex formation by recruiting the adaptor protein p130Cas (Cas) and nonreceptor tyrosine kinase c-Src. To explore c-Src role in Cas-associated changes during PO, we used a feline right ventricular in vivo PO model and a three-dimensional (3D) collagen-embedded adult cardiomyocyte in vitro model that utilizes a Gly-Arg-Gly-Asp-Ser (RGD) peptide for integrin stimulation. Cas showed slow electrophoretic mobility (band-shifting), recruitment to the cytoskeleton, and tyrosine phosphorylation at 165, 249, and 410 sites in both 48 h PO myocardium and 1 h RGD-stimulated cardiomyocytes. Adenoviral mediated expression of kinase inactive (negative) c-Src mutant with intact scaffold domains (KN-Src) in cardiomyocytes did not block the RGD stimulated changes in Cas. Furthermore, expression of KN-Src or kinase active c-Src mutant with intact scaffold function (A-Src) in two-dimensionally (2D) cultured cardiomyocytes was sufficient to cause Cas band-shifting, although tyrosine phosphorylation required A-Src. These data indicate that c-Src’s adaptor function, but not its kinase function, is required for a serine/threonine specific phosphorylation(s) responsible for Cas band-shifting. To explore this possibility, Chinese hamster ovary cells that stably express Cas were infected with either β-gal or KN-Src adenoviruses and used for Cas immunoprecipitation combined with mass spectrometry analysis. In the KN-Src expressing cells, Cas showed phosphorylation at the serine-639 (human numbering) site. A polyclonal antibody raised against phospho-serine-639 detected Cas phosphorylation in 24–48 h PO myocardium. Our studies indicate that c-Src’s adaptor function mediates serine-639 phosphorylation of Cas during integrin activation in PO myocardium. PMID:25976166
Schlesinger, T K; Demali, K A; Johnson, G L; Kazlauskas, A
1999-01-01
Here we report that the platelet-derived growth factor beta receptor (betaPDGFR) is not the only tyrosine kinase able to associate with the GTPase-activating protein of Ras (RasGAP). The interaction of non-betaPDGFR kinase(s) with RasGAP was dependent on stimulation with platelet-derived growth factor (PDGF) and seemed to require tyrosine phosphorylation of RasGAP. Because the tyrosine phosphorylation site of RasGAP is in a sequence context that is favoured by the Src homology 2 ('SH2') domain of Src family members, we tested the possibility that Src was the kinase that associated with RasGAP. Indeed, Src interacted with phosphorylated RasGAP fusion proteins; immunodepletion of Src markedly decreased the recovery of the RasGAP-associated kinase activity. Thus PDGF-dependent tyrosine phosphorylation of RasGAP results in the formation of a complex between RasGAP and Src. To begin to address the relevance of these observations, we focused on the consequences of the interaction of Src and RasGAP. We found that a receptor mutant that did not activate Src was unable to efficiently mediate the tyrosine phosphorylation of phospholipase Cgamma (PLCgamma). Taken together, these observations support the following hypothesis. When RasGAP is recruited to the betaPDGFR, it is phosphorylated and associates with Src. Once bound to RasGAP, Src is no longer able to promote the phosphorylation of PLCgamma. This hypothesis offers a mechanistic explanation for our previously published findings that the recruitment of RasGAP to the betaPDGFR attenuates the tyrosine phosphorylation of PLCgamma. Finally, these findings suggest a novel way in which RasGAP negatively regulates signal relay by the betaPDGFR. PMID:10567236
Yang, Su-Jung; Chen, Chen-Yu; Chang, Geen-Dong; Wen, Hui-Chin; Chen, Ching-Yu; Chang, Shi-Chuan; Liao, Jyh-Fei; Chang, Chung-Ho
2013-01-01
Diabetes is characterized by chronic hyperglycemia, which in turn facilitates the formation of advanced glycation end products (AGEs). AGEs activate signaling proteins such as Src, Akt and ERK1/2. However, the mechanisms by which AGEs activate these kinases remain unclear. We examined the effect of AGEs on Akt activation in 3T3-L1 preadipocytes. Addition of AGEs to 3T3-L1 cells activated Akt in a dose- and time-dependent manner. The AGEs-stimulated Akt activation was blocked by a PI3-kinase inhibitor LY 294002, Src inhibitor PP2, an antioxidant NAC, superoxide scavenger Tiron, or nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase inhibitor DPI, suggesting the involvement of Src and NAD(P)H oxidase in the activation of PI3-kinase-Akt pathway by AGEs. AGEs-stimulated Src tyrosine phosphorylation was inhibited by NAC, suggesting that Src is downstream of NAD(P)H oxidase. The AGEs-stimulated Akt activity was sensitive to Insulin-like growth factor 1 receptor (IGF-1R) kinase inhibitor AG1024. Furthermore, AGEs induced phosphorylation of IGF-1 receptorβsubunit (IGF-1Rβ) on Tyr1135/1136, which was sensitive to PP2, indicating that AGEs stimulate Akt activity by transactivating IGF-1 receptor. In addition, the AGEs-stimulated Akt activation was attenuated by β-methylcyclodextrin that abolishes the structure of caveolae, and by lowering caveolin-1 (Cav-1) levels with siRNAs. Furthermore, addition of AGEs enhanced the interaction of phospho-Cav-1 with IGF-1Rβ and transfection of 3T3-L1 cells with Cav-1 Y14F mutants inhibited the activation of Akt by AGEs. These results suggest that AGEs activate NAD(P)H oxidase and Src which in turn phosphorylates IGF-1 receptor and Cav-1 leading to activation of IGF-1 receptor and the downstream Akt in 3T3-L1 cells. AGEs treatment promoted the differentiation of 3T3-L1 preadipocytes and addition of AG1024, LY 294002 or Akt inhibitor attenuated the promoting effect of AGEs on adipogenesis, suggesting that IGF-1 receptor, PI3-Kinase and Akt are involved in the facilitation of adipogenesis by AGEs. PMID:23472139
PKC-Dependent Human Monocyte Adhesion Requires AMPK and Syk Activation
Chang, Mei-Ying; Huang, Duen-Yi; Ho, Feng-Ming; Huang, Kuo-Chin; Lin, Wan-Wan
2012-01-01
PKC plays a pivotal role in mediating monocyte adhesion; however, the underlying mechanisms of PKC-mediated cell adhesion are still unclear. In this study, we elucidated the signaling network of phorbol ester PMA-stimulated human monocyte adhesion. Our results with pharmacological inhibitors suggested the involvement of AMPK, Syk, Src and ERK in PKC-dependent adhesion of THP-1 monocytes to culture plates. Biochemical analysis further confirmed the ability of PMA to activate these kinases, as well as the involvement of AMPK-Syk-Src signaling in this event. Direct protein interaction between AMPK and Syk, which requires the kinase domain of AMPK and linker region of Syk, was observed following PMA stimulation. Notably, we identified Syk as a novel downstream target of AMPK; AICAR can induce Syk phosphorylation at Ser178 and activation of this kinase. However, activation of AMPK alone, either by stimulation with AICAR or by overexpression, is not sufficient to induce monocyte adhesion. Studies further demonstrated that PKC-mediated ERK signaling independent of AMPK activation is also involved in cell adhesion. Moreover, AMPK, Syk, Src and ERK signaling were also required for PMA to induce THP-1 cell adhesion to endothelial cells as well as to induce adhesion response of human primary monocytes. Taken together, we propose a bifurcated kinase signaling pathway involved in PMA-mediated adhesion of monocytes. PKC can activate LKB1/AMPK, leading to phosphorylation and activation of Syk, and subsequent activation of Src and FAK. In addition, PKC-dependent ERK activation induces a coordinated signal for cytoskeleton rearrangement and cell adhesion. For the first time we demonstrate Syk as a novel substrate target of AMPK, and shed new light on the role of AMPK in monocyte adhesion, in addition to its well identified functions in energy homeostasis. PMID:22848421
SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins.
Koch, C A; Anderson, D; Moran, M F; Ellis, C; Pawson, T
1991-05-03
Src homology (SH) regions 2 and 3 are noncatalytic domains that are conserved among a series of cytoplasmic signaling proteins regulated by receptor protein-tyrosine kinases, including phospholipase C-gamma, Ras GTPase (guanosine triphosphatase)-activating protein, and Src-like tyrosine kinases. The SH2 domains of these signaling proteins bind tyrosine phosphorylated polypeptides, implicated in normal signaling and cellular transformation. Tyrosine phosphorylation acts as a switch to induce the binding of SH2 domains, thereby mediating the formation of heteromeric protein complexes at or near the plasma membrane. The formation of these complexes is likely to control the activation of signal transduction pathways by tyrosine kinases. The SH3 domain is a distinct motif that, together with SH2, may modulate interactions with the cytoskeleton and membrane. Some signaling and transforming proteins contain SH2 and SH3 domains unattached to any known catalytic element. These noncatalytic proteins may serve as adaptors to link tyrosine kinases to specific target proteins. These observations suggest that SH2 and SH3 domains participate in the control of intracellular responses to growth factor stimulation.
Cross, F R; Garber, E A; Hanafusa, H
1985-01-01
We have constructed deletions within the region of cloned Rous sarcoma virus DNA coding for the N-terminal 30 kilodaltons of p60src. Infectious virus was recovered after transfection. Deletions of amino acids 15 to 149, 15 to 169, or 149 to 169 attenuated but did not abolish transforming activity, as assayed by focus formation and anchorage-independent growth. These deletions also had only slight effects on the tyrosine kinase activity of the mutant src protein. Deletion of amino acids 169 to 264 or 15 to 264 completely abolished transforming activity, and src kinase activity was reduced at least 10-fold. However, these mutant viruses generated low levels of transforming virus by recombination with the cellular src gene. The results suggest that as well as previously identified functional domains for p60src myristylation and membrane binding (amino acids 1 to 14) and tyrosine kinase activity (amino acids 250 to 526), additional N-terminal sequences (particularly amino acids 82 to 169) can influence the transforming activity of the src protein. Images PMID:2426576
Innate Immune Response to Burkholderia mallei
2017-02-16
stimulate immune responses via TLR4 activation that may contribute to persistent infection. Summary Mortality is high due to septicemia and immune...phosphorylation of adenosine monophosphate- activated protein kinase (AMPK); regulators of NF-κB signaling pathway (e.g. IκBα, GSK3β, Src, and STAT1) and mitogen... activated protein kinases (e.g. p38, ERK1/2 and c-Myc) (13). The degrees in which target host proteins or processes are modulated correlated to the
Gomes, Evan G; Connelly, Sarah F; Summy, Justin M
2013-07-01
Although c-Src (Src) has emerged as a potential pancreatic cancer target in preclinical studies, Src inhibitors have not demonstrated a significant therapeutic benefit in clinical trials. The objective of these studies was to examine the effects of combining Src inhibition with inhibition of the protein tyrosine phosphatase SHP-2 in pancreatic cancer cells in vitro and in vivo. SHP-2 and Src functions were inhibited by siRNA or small molecule inhibitors. The effects of dual Src/SHP-2 functional inhibition were evaluated by Western blot analysis of downstream signaling pathways; cell biology assays to examine caspase activity, viability, adhesion, migration, and invasion in vitro; and an orthotopic nude mouse model to observe pancreatic tumor formation in vivo. Dual targeting of Src and SHP-2 induces an additive or supra-additive loss of phosphorylation of Akt and ERK-1/2 and corresponding increases in expression of apoptotic markers, relative to targeting either protein individually. Combinatorial inhibition of Src and SHP-2 significantly reduces viability, adhesion, migration, and invasion of pancreatic cancer cells in vitro and tumor formation in vivo, relative to individual Src/SHP-2 inhibition. These data suggest that the antitumor effects of Src inhibition in pancreatic cancer may be enhanced through simultaneous inhibition of SHP-2.
Palanisamy, Arun P; Suryakumar, Geetha; Panneerselvam, Kavin; Willey, Christopher D; Kuppuswamy, Dhandapani
2015-12-01
Early work in pressure overloaded (PO) myocardium shows that integrins mediate focal adhesion complex formation by recruiting the adaptor protein p130Cas (Cas) and nonreceptor tyrosine kinase c-Src. To explore c-Src role in Cas-associated changes during PO, we used a feline right ventricular in vivo PO model and a three-dimensional (3D) collagen-embedded adult cardiomyocyte in vitro model that utilizes a Gly-Arg-Gly-Asp-Ser (RGD) peptide for integrin stimulation. Cas showed slow electrophoretic mobility (band-shifting), recruitment to the cytoskeleton, and tyrosine phosphorylation at 165, 249, and 410 sites in both 48 h PO myocardium and 1 h RGD-stimulated cardiomyocytes. Adenoviral mediated expression of kinase inactive (negative) c-Src mutant with intact scaffold domains (KN-Src) in cardiomyocytes did not block the RGD stimulated changes in Cas. Furthermore, expression of KN-Src or kinase active c-Src mutant with intact scaffold function (A-Src) in two-dimensionally (2D) cultured cardiomyocytes was sufficient to cause Cas band-shifting, although tyrosine phosphorylation required A-Src. These data indicate that c-Src's adaptor function, but not its kinase function, is required for a serine/threonine specific phosphorylation(s) responsible for Cas band-shifting. To explore this possibility, Chinese hamster ovary cells that stably express Cas were infected with either β-gal or KN-Src adenoviruses and used for Cas immunoprecipitation combined with mass spectrometry analysis. In the KN-Src expressing cells, Cas showed phosphorylation at the serine-639 (human numbering) site. A polyclonal antibody raised against phospho-serine-639 detected Cas phosphorylation in 24-48 h PO myocardium. Our studies indicate that c-Src's adaptor function mediates serine-639 phosphorylation of Cas during integrin activation in PO myocardium. © 2015 Wiley Periodicals, Inc.
Jücker, M; Feldman, R A
1995-11-17
Binding of human granulocyte/macrophage colony-stimulating factor (hGM-CSF) to its receptor induces the rapid activation of phosphatidylinositol-3 kinase (PI 3-kinase). As hGM-CSF receptor (hGMR) does not contain a consensus sequence for binding of PI 3-kinase, hGMR must use a distinct mechanism for its association with and activation of PI 3-kinase. Here, we describe the identification of a tyrosine-phosphorylated protein of 76-85 kDa (p80) that associates with the common beta subunit of hGMR and with the SH2 domains of the p85 subunit of PI 3-kinase in hGM-CSF-stimulated cells. Src/Yes and Lyn were tightly associated with the p80.PI 3-kinase complex, suggesting that p80 and other phosphotyrosyl proteins present in the complex were phosphorylated by Src family kinases. Tyrosine phosphorylation of p80 was only detected in hGM-CSF or human interleukin-3-stimulated cells, suggesting that activation of p80 might be specific for signaling via the common beta subunit. We postulate that p80 functions as an adapter protein that may participate in linking the hGM-CSF receptor to the PI 3-kinase signaling pathway.
Bubeck Wardenburg, J; Fu, C; Jackman, J K; Flotow, H; Wilkinson, S E; Williams, D H; Johnson, R; Kong, G; Chan, A C; Findell, P R
1996-08-16
Two families of tyrosine kinases, the Src and Syk families, are required for T-cell receptor activation. While the Src kinases are responsible for phosphorylation of receptor-encoded signaling motifs and for up-regulation of ZAP-70 activity, the downstream substrates of ZAP-70 are unknown. Evidence is presented herein that the Src homology 2 (SH2) domain-containing leukocyte protein of 76 kDa (SLP-76) is a substrate of ZAP-70. Phosphorylation of SLP-76 is diminished in T cells that express a catalytically inactive ZAP-70. Moreover, SLP-76 is preferentially phosphorylated by ZAP-70 in vitro and in heterologous cellular systems. In T cells, overexpression of wild-type SLP-76 results in a hyperactive receptor, while expression of a SLP-76 molecule that is unable to be tyrosine-phosphorylated attenuates receptor function. In addition, the SH2 domain of SLP-76 is required for T-cell receptor function, although its role is independent of the ability of SLP-76 to undergo tyrosine phosphorylation. As SLP-76 interacts with both Grb2 and phospholipase C-gamma1, these data indicate that phosphorylation of SLP-76 by ZAP-70 provides an important functional link between the T-cell receptor and activation of ras and calcium pathways.
Dunning, Christopher J R; Black, Hannah L; Andrews, Katie L; Davenport, Elizabeth C; Conboy, Michael; Chawla, Sangeeta; Dowle, Adam A; Ashford, David; Thomas, Jerry R; Evans, Gareth J O
2016-05-01
Mint/X11 is one of the four neuronal trafficking adaptors that interact with amyloid precursor protein (APP) and are linked with its cleavage to generate β-amyloid peptide, a key player in the pathology of Alzheimer's disease. How APP switches between adaptors at different stages of the secretory pathway is poorly understood. Here, we show that tyrosine phosphorylation of Mint1 regulates the destination of APP. A canonical SH2-binding motif ((202) YEEI) was identified in the N-terminus of Mint1 that is phosphorylated on tyrosine by C-Src and recruits the active kinase for sequential phosphorylation of further tyrosines (Y191 and Y187). A single Y202F mutation in the Mint1 N-terminus inhibits C-Src binding and tyrosine phosphorylation. Previous studies observed that co-expression of wild-type Mint1 and APP causes accumulation of APP in the trans-Golgi. Unphosphorylatable Mint1 (Y202F) or pharmacological inhibition of Src reduced the accumulation of APP in the trans-Golgi of heterologous cells. A similar result was observed in cultured rat hippocampal neurons where Mint1(Y202F) permitted the trafficking of APP to more distal neurites than the wild-type protein. These data underline the importance of the tyrosine phosphorylation of Mint1 as a critical switch for determining the destination of APP. The regulation of amyloid precursor protein (APP) trafficking is poorly understood. We have discovered that the APP adapter, Mint1, is phosphorylated by C-Src kinase. Mint1 causes APP accumulation in the trans-Golgi network, whereas inhibition of Src or mutation of Mint1-Y202 permits APP recycling. The phosphorylation status of Mint1 could impact on the pathological trafficking of APP in Alzheimer's disease. © 2016 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.
Hsp90 dependence of a kinase is determined by its conformational landscape
Luo, Qi; Boczek, Edgar E.; Wang, Qi; Buchner, Johannes; Kaila, Ville R. I.
2017-01-01
Heat shock protein 90 (Hsp90) is an abundant molecular chaperone, involved in the folding and activation of 60% of the human kinome. The oncogenic tyrosine kinase v-Src is one of the most stringent client proteins of Hsp90, whereas its almost identical homolog c-Src is only weakly affected by the chaperone. Here, we perform atomistic molecular simulations and in vitro kinase assays to explore the mechanistic differences in the activation of v-Src and c-Src. While activation in c-Src is strictly controlled by ATP-binding and phosphorylation, we find that activating conformational transitions are spontaneously sampled in Hsp90-dependent Src mutants. Phosphorylation results in an enrichment of the active conformation and in an increased affinity for Hsp90. Thus, the conformational landscape of the mutated kinase is reshaped by a broken “control switch”, resulting in perturbations of long-range electrostatics, higher activity and increased Hsp90-dependence. PMID:28290541
Coate, Thomas M.; Swanson, Tracy L.; Copenhaver, Philip F.
2011-01-01
Reverse signaling via GPI-linked Ephrins may help control cell proliferation and outgrowth within the nervous system, but the mechanisms underlying this process remain poorly understood. In the embryonic enteric nervous system (ENS) of the moth Manduca sexta, migratory neurons forming the enteric plexus (EP cells) express a single Ephrin ligand (GPI-linked MsEphrin), while adjacent midline cells that are inhibitory to migration express the cognate receptor (MsEph). Knocking down MsEph receptor expression in cultured embryos with antisense morpholino oligonucleotides allowed the EP cells to cross the midline inappropriately, consistent with the model that reverse signaling via MsEphrin mediates a repulsive response in the ENS. Src family kinases have been implicated in reverse signaling by type-A Ephrins in other contexts, and MsEphrin colocalizes with activated forms of endogenous Src in the leading processes of the EP cells. Pharmacological inhibition of Src within the developing ENS induced aberrant midline crossovers, similar to the effect of blocking MsEphrin reverse signaling. Hyperstimulating MsEphrin reverse signaling with MsEph-Fc fusion proteins induced the rapid activation of endogenous Src specifically within the EP cells, as assayed by Western blots of single embryonic gut explants and by whole-mount immunostaining of cultured embryos. In longer cultures, treatment with MsEph-Fc caused a global inhibition of EP cell migration and outgrowth, an effect that was prevented by inhibiting Src activation. These results support the model that MsEphrin reverse signaling induces the Src-dependent retraction of EP cell processes away from the enteric midline, thereby helping to confine the neurons to their appropriate pathways. PMID:19295147
Montagner, Alexandra; Delgado, Maria B; Tallichet-Blanc, Corinne; Chan, Jeremy S K; Sng, Ming K; Mottaz, Hélén; Degueurce, Gwendoline; Lippi, Yannick; Moret, Catherine; Baruchet, Michael; Antsiferova, Maria; Werner, Sabine; Hohl, Daniel; Saati, Talal Al; Farmer, Pierre J; Tan, Nguan S; Michalik, Liliane; Wahli, Walter
2014-01-01
Although non-melanoma skin cancer (NMSC) is the most common human cancer and its incidence continues to rise worldwide, the mechanisms underlying its development remain incompletely understood. Here, we unveil a cascade of events involving peroxisome proliferator-activated receptor (PPAR) β/δ and the oncogene Src, which promotes the development of ultraviolet (UV)-induced skin cancer in mice. UV-induced PPARβ/δ activity, which directly stimulated Src expression, increased Src kinase activity and enhanced the EGFR/Erk1/2 signalling pathway, resulting in increased epithelial-to-mesenchymal transition (EMT) marker expression. Consistent with these observations, PPARβ/δ-null mice developed fewer and smaller skin tumours, and a PPARβ/δ antagonist prevented UV-dependent Src stimulation. Furthermore, the expression of PPARβ/δ positively correlated with the expression of SRC and EMT markers in human skin squamous cell carcinoma (SCC), and critically, linear models applied to several human epithelial cancers revealed an interaction between PPARβ/δ and SRC and TGFβ1 transcriptional levels. Taken together, these observations motivate the future evaluation of PPARβ/δ modulators to attenuate the development of several epithelial cancers.
Coupled motions in the SH2 and kinase domains of Csk control Src phosphorylation.
Wong, Lilly; Lieser, Scot A; Miyashita, Osamu; Miller, Meghan; Tasken, Kjetil; Onuchic, Josè N; Adams, Joseph A; Woods, Virgil L; Jennings, Patricia A
2005-08-05
The C-terminal Src kinase (Csk) phosphorylates and down-regulates Src family tyrosine kinases. The Csk-binding protein (Cbp) localizes Csk close to its substrates at the plasma membrane, and increases the specific activity of the kinase. To investigate this long-range catalytic effect, the phosphorylation of Src and the conformation of Csk were investigated in the presence of a high-affinity phosphopeptide derived from Cbp. This peptide binds tightly to the SH2 domain and enhances Src recognition (lowers K(m)) by increasing the apparent phosphoryl transfer rate in the Csk active site, a phenomenon detected in rapid quench flow experiments. Previous studies demonstrated that the regulation of Csk activity is linked to conformational changes in the enzyme that can be probed with hydrogen-deuterium exchange methods. We show that the Cbp peptide impacts deuterium incorporation into its binding partner (the SH2 domain), and into the SH2-kinase linker and several sequences in the kinase domain, including the glycine-rich loop in the active site. These findings, along with computational data from normal mode analyses, suggest that the SH2 domain moves in a cantilever fashion with respect to the small lobe of the kinase domain, ordering the active site for catalysis. The binding of a small Cbp-derived peptide to the SH2 domain of Csk modifies these motions, enhancing Src recognition.
A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region.
Bellacosa, A; Testa, J R; Staal, S P; Tsichlis, P N
1991-10-11
The v-akt oncogene codes for a 105-kilodalton fusion phosphoprotein containing Gag sequences at its amino terminus. Sequence analysis of v-akt and biochemical characterization of its product revealed that it codes for a protein kinase C-related serine-threonine kinase whose cellular homolog is expressed in most tissues, with the highest amount found in thymus. Although Akt is a serine-threonine kinase, part of its regulatory region is similar to the Src homology-2 domain, a structural motif characteristic of cytoplasmic tyrosine kinases that functions in protein-protein interactions. This suggests that Akt may form a functional link between tyrosine and serine-threonine phosphorylation pathways.
Pak, Jhang Ho; Bashir, Qudsia; Kim, In Ki; Hong, Sung-Jong; Maeng, Sejung; Bahk, Young Yil; Kim, Tong-Soo
2017-06-01
Cholangiocarcinoma (CCA) is a slow-growing but highly metastatic cancer. Its metastatic potential largely explains its high mortality rate. A recognized risk factor for CCA development is infection with the liver flukes Opisthorchis viverrini and Clonorchis sinensis. We previously reported that the excretory-secretory products (ESPs) of C. sinensis promoted the three-dimensional aggregation and invasion of CCA cells. In the present study, a quantitative real-time PCR array of extracellular matrix (ECM) and adhesion molecules was used to examine the regulatory mechanism of ESP-mediated CCA cell migration and invasion. In particular, the expression levels of integrin α isoforms and β4 were upregulated in response to ESPs. Increased expression of integrin β4 was probably correlated with activation of focal adhesion kinase (FAK) and the steroid receptor coactivator (Src) family kinase and the subsequent activation of two downstream focal adhesion molecules, paxillin and vinculin. Moreover, inhibition of FAK/Src activation reduced paxillin and vinculin phosphorylation and attenuated ESP-induced CCA cell migration and invasion. These findings suggest that the integrin β4-FAK/Src signaling axis may play a crucial role in clonorchiasis-associated CCA metastasis during tumor progression. Copyright © 2017 Elsevier B.V. All rights reserved.
Significance of ERa and c-Src Interaction in the Progression of Hormone Independent Breast Cancer
2005-12-01
defects in estrogen signaling [1]. Because of global defects in estrogen signaling observed in these c-Src deficient mice, we have recently generated...1998). Interestingly, the region of the kinase domain of ErbB-2 that correlates with c-Src association, referred to as TK2 (Segatto et al., 1991...ductive organs that are dependent on ERa in c-Src- deficient mice. We show that the loss of the c-Src tyrosine kinase correlates with defects in ductal
Hybrid and Rogue Kinases Encoded in the Genomes of Model Eukaryotes
Rakshambikai, Ramaswamy; Gnanavel, Mutharasu; Srinivasan, Narayanaswamy
2014-01-01
The highly modular nature of protein kinases generates diverse functional roles mediated by evolutionary events such as domain recombination, insertion and deletion of domains. Usually domain architecture of a kinase is related to the subfamily to which the kinase catalytic domain belongs. However outlier kinases with unusual domain architectures serve in the expansion of the functional space of the protein kinase family. For example, Src kinases are made-up of SH2 and SH3 domains in addition to the kinase catalytic domain. A kinase which lacks these two domains but retains sequence characteristics within the kinase catalytic domain is an outlier that is likely to have modes of regulation different from classical src kinases. This study defines two types of outlier kinases: hybrids and rogues depending on the nature of domain recombination. Hybrid kinases are those where the catalytic kinase domain belongs to a kinase subfamily but the domain architecture is typical of another kinase subfamily. Rogue kinases are those with kinase catalytic domain characteristic of a kinase subfamily but the domain architecture is typical of neither that subfamily nor any other kinase subfamily. This report provides a consolidated set of such hybrid and rogue kinases gleaned from six eukaryotic genomes–S.cerevisiae, D. melanogaster, C.elegans, M.musculus, T.rubripes and H.sapiens–and discusses their functions. The presence of such kinases necessitates a revisiting of the classification scheme of the protein kinase family using full length sequences apart from classical classification using solely the sequences of kinase catalytic domains. The study of these kinases provides a good insight in engineering signalling pathways for a desired output. Lastly, identification of hybrids and rogues in pathogenic protozoa such as P.falciparum sheds light on possible strategies in host-pathogen interactions. PMID:25255313
Way, B A; Mooney, R A
1994-10-26
pp60c-src kinase activity can be increased by phosphotyrosine dephosphorylation or growth factor-dependent phosphorylation reactions. Expression of the transmembrane phosphotyrosine phosphatase (PTPase) CD45 has been shown to inhibit growth factor receptor signal transduction (Mooney, RA, Freund, GG, Way, BA and Bordwell, KL (1992) J Biol Chem 267, 23443-23446). Here it is shown that PTPase expression decreased platelet-derived growth factor (PDGF)-dependent activation of pp60c-src but failed to increase hormone independent (basal) pp60c-src activity. PDGF-dependent tyrosine phosphorylation of its receptor was reduced by approximately 60% in cells expressing the PTPase. In contrast, a change in phosphotyrosine content of pp60c-src was not detected in response to PDGF or in PTPase+ cells. PDGF increased the intrinsic tyrosine kinase activity of pp60c-src in both control and PTPase+ cells, but the effect was smaller in PTPase+ cells. In an in vitro assay, hormone-stimulated pp60c-src autophosphorylation from PTPase+ cells was decreased 64 +/- 22%, and substrate phosphorylation by pp60c-src was reduced 54 +/- 16% compared to controls. Hormone-independent pp60c-src kinase activity was unchanged by expression of the PTPase. pp60c-src was, however, an in vitro substrate for CD45, being dephosphorylated at both the regulatory (Tyr527) and kinase domain (Tyr416) residues. In addition, in vitro dephosphorylation by CD45 increased pp60c-src activity. These findings suggest that the PDGF receptor was an in vivo substrate of CD45 but pp60c-src was not. The lack of activation of pp60c-src in the presence of expressed PTPase may demonstrate the importance of compartmentalization and/or accessory proteins to PTPase-substrate interactions.
Cao, Lulu; Ding, Yiyuan; Hung, Norris; Yu, Kebing; Ritz, Anna; Raphael, Benjamin J.; Salomon, Arthur R.
2012-01-01
The SH2-domain-containing leukocyte protein of 76 kDa (SLP-76) plays a critical scaffolding role in T cell receptor (TCR) signaling. As an adaptor protein that contains multiple protein-binding domains, SLP-76 interacts with many signaling molecules and links proximal receptor stimulation to downstream effectors. The function of SLP-76 in TCR signaling has been widely studied using the Jurkat human leukaemic T cell line through protein disruption or site-directed mutagenesis. However, a wide-scale characterization of SLP-76-dependant phosphorylation events is still lacking. Quantitative profiling of over a hundred tyrosine phosphorylation sites revealed new modes of regulation of phosphorylation of PAG, PI3K, and WASP while reconfirming previously established regulation of Itk, PLCγ, and Erk phosphorylation by SLP-76. The absence of SLP-76 also perturbed the phosphorylation of Src family kinases (SFKs) Lck and Fyn, and subsequently a large number of SFK-regulated signaling molecules. Altogether our data suggests unique modes of regulation of positive and negative feedback pathways in T cells by SLP-76, reconfirming its central role in the pathway. PMID:23071622
Cao, Lulu; Ding, Yiyuan; Hung, Norris; Yu, Kebing; Ritz, Anna; Raphael, Benjamin J; Salomon, Arthur R
2012-01-01
The SH2-domain-containing leukocyte protein of 76 kDa (SLP-76) plays a critical scaffolding role in T cell receptor (TCR) signaling. As an adaptor protein that contains multiple protein-binding domains, SLP-76 interacts with many signaling molecules and links proximal receptor stimulation to downstream effectors. The function of SLP-76 in TCR signaling has been widely studied using the Jurkat human leukaemic T cell line through protein disruption or site-directed mutagenesis. However, a wide-scale characterization of SLP-76-dependant phosphorylation events is still lacking. Quantitative profiling of over a hundred tyrosine phosphorylation sites revealed new modes of regulation of phosphorylation of PAG, PI3K, and WASP while reconfirming previously established regulation of Itk, PLCγ, and Erk phosphorylation by SLP-76. The absence of SLP-76 also perturbed the phosphorylation of Src family kinases (SFKs) Lck and Fyn, and subsequently a large number of SFK-regulated signaling molecules. Altogether our data suggests unique modes of regulation of positive and negative feedback pathways in T cells by SLP-76, reconfirming its central role in the pathway.
Nam, KeeSoo; Son, Seog-Ho; Oh, Sunhwa; Jeon, Donghwan; Kim, Hyungjoo; Noh, Dong-Young; Kim, Sangmin; Shin, Incheol
2017-05-30
Galectin-1 is a β-galactoside binding protein secreted by many types of aggressive cancer cells. Although many studies have focused on the role of galectin-1 in cancer progression, relatively little attention has been paid to galectin-1 as an extracellular therapeutic target. To elucidate the molecular mechanisms underlying galectin-1-mediated cancer progression, we established galectin-1 knock-down cells via retroviral delivery of short hairpin RNA (shRNA) against galectin-1 in two triple-negative breast cancer (TNBC) cell lines, MDA-MB-231 and Hs578T. Ablation of galectin-1 expression decreased cell proliferation, migration, invasion, and doxorubicin resistance. We found that these effects were caused by decreased galectin-1-integrin β1 interactions and suppression of the downstream focal adhesion kinase (FAK)/c-Src pathway. We also found that silencing of galectin-1 inhibited extracellular signal-regulated kinase (ERK)/signal transducer and activator of transcription 3 (STAT3) signaling, thereby down-regulating survivin expression. This finding implicates STAT3 as a transcription factor for survivin. Finally, rescue of endogenous galectin-1 knock-down and recombinant galectin-1 treatment both recovered signaling through the FAK/c-Src/ERK/STAT3/survivin pathway. Taken together, these results suggest that extracellular galectin-1 contributes to cancer progression and doxorubicin resistance in TNBC cells. These effects appear to be mediated by galectin-1-induced up-regulation of the integrin β1/FAK/c-Src/ERK/STAT3/survivin pathway. Our results imply that extracellular galectin-1 has potential as a therapeutic target for triple-negative breast cancer.
Zibara, Kazem; Zeidan, Asad; Bjeije, Hassan; Kassem, Nouhad; Badran, Bassam; El-Zein, Nabil
2017-03-01
Interferon gamma (IFN-ɣ) is a pleiotropic cytokine which plays dual contrasting roles in cancer. Although IFN-ɣ has been clinically used to treat various malignancies, it was recently shown to have protumorigenic activities. Reactive oxygen species (ROS) are overproduced in cancer cells, mainly due to NADPH oxidase activity, which results into several changes in signaling pathways. In this study, we examined IFN-ɣ effect on the phosphorylation levels of key signaling proteins, through ROS production, in the human breast cancer cell line MCF-7. After treatment by IFN-ɣ, results showed a significant increase in the phosphorylation of STAT1, Src, raf, AKT, ERK1/2 and p38 signaling molecules, in a time specific manner. Src and Raf were found to be involved in early stages of IFN-ɣ signaling since their phosphorylation increased very rapidly. Selective inhibition of Src-family kinases resulted in an immediate significant decrease in the phosphorylation status of Raf and ERK1/2, but not p38 and AKT. On the other hand, IFN-ɣ resulted in ROS generation, through H 2 O 2 production, whereas pre-treatment with the ROS inhibitor NAC caused ROS inhibition and a significant decrease in the phosphorylation levels of AKT, ERK1/2, p38 and STAT1. Moreover, pretreatment with a selective NOX1 inhibitor resulted in a significant decrease of AKT phosphorylation. Finally, no direct relationship was found between ROS production and calcium mobilization. In summary, IFN-ɣ signaling in MCF-7 cell line is ROS-dependent and follows the Src/Raf/ERK pathway whereas its signaling through the AKT pathway is highly dependent on NOX1.
Destaing, Olivier; Sanjay, Archana; Itzstein, Cecile; Horne, William C.; Toomre, Derek
2008-01-01
Podosomes are dynamic actin-rich structures composed of a dense F-actin core surrounded by a cloud of more diffuse F-actin. Src performs one or more unique functions in osteoclasts (OCLs), and podosome belts and bone resorption are impaired in the absence of Src. Using Src−/− OCLs, we investigated the specific functions of Src in the organization and dynamics of podosomes. We found that podosome number and the podosome-associated actin cloud were decreased in Src−/− OCLs. Videomicroscopy and fluorescence recovery after photobleaching analysis revealed that the life span of Src−/− podosomes was increased fourfold and that the rate of actin flux in the core was decreased by 40%. Thus, Src regulates the formation, structure, life span, and rate of actin polymerization in podosomes and in the actin cloud. Rescue of Src−/− OCLs with Src mutants showed that both the kinase activity and either the SH2 or the SH3 binding domain are required for Src to restore normal podosome organization and dynamics. Moreover, inhibition of Src family kinase activities in Src−/− OCLs by Src inhibitors or by expressing dominant-negative SrcK295M induced the formation of abnormal podosomes. Thus, Src is an essential regulator of podosome structure, dynamics and organization. PMID:17978100
Baumann, Christine; Ullrich, Axel; Torka, Robert
2017-10-01
AXL receptor tyrosine kinase (RTK) inhibition presents a promising therapeutic strategy for aggressive tumor subtypes, as AXL signaling is upregulated in many cancers resistant to first-line treatments. Furthermore, the AXL ligand growth arrest-specific gene 6 (GAS6) has recently been linked to cancer drug resistance. Here, we established that challenging conditions, such as serum deprivation, divide AXL-overexpressing tumor cell lines into non-self-sustaining and self-sustaining subtypes in 3D spheroid culture. Self-sustaining cells are characterized by excessive GAS6 secretion and TAM-PDK-RSK-mTOR pathway activation. In 3D spheroid culture, the activation of the TAM-PDK-RSK-mTOR pathway proves crucial following treatment with AXL/MET inhibitor BMS777607, when the self-sustaining tumor cells react with TAM-RSK hyperactivation and enhanced SRC-AKT-mTOR signaling. Thus, bidirectional activated mTOR leads to enhanced proliferation and counteracts the drug effect. mTOR activation is accompanied by an enhanced AXL expression and hyperphosphorylation following 24 h of treatment with BMS777607. Therefore, we elucidate a double role of AXL that can be assigned to RSK-mTOR as well as SRC-AKT-mTOR pathway activation, specifically through AXL Y779 phosphorylation. This phosphosite fuels the resistance mechanism in 3D spheroids, alongside further SRC-dependent EGFR Y1173 and/or MET Y1349 phosphorylation which is defined by the cell-specific addiction. In conclusion, self-sustenance in cancer cells is based on a signaling synergy, individually balanced between GAS6 TAM-dependent PDK-RSK-mTOR survival pathway and the AXLY779/EGFR/MET-driven SRC-mTOR pathway. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
Rey, Juan Antonio; Pinto, Giovanny Rebouças; Lamarão, Leticia Martins; Montenegro, Raquel Carvalho; Alves, Ana Paula Negreiros Nunes; Assumpção, Paulo Pimentel; Borges, Barbara do Nascimento; Smith, Marília Cardoso; Burbano, Rommel Rodriguez
2015-01-01
Kinases are downstream modulators and effectors of several cellular signaling cascades and play key roles in the development of neoplastic disease. In this study, we aimed to evaluate SRC, LYN and CKB protein and mRNA expression, as well as their promoter methylation, in gastric cancer. We found elevated expression of SRC and LYN kinase mRNA and protein but decreased levels of CKB kinase, alterations that may have a role in the invasiveness and metastasis of gastric tumors. Expression of the three studied kinases was also associated with MYC oncogene expression, a possible biomarker for gastric cancer. To understand the mechanisms that regulate the expression of these genes, we evaluated the DNA promoter methylation of the three kinases. We found that reduced SRC and LYN methylation and increased CKB methylation was associated with gastric cancer. The reduced SRC and LYN methylation was associated with increased levels of mRNA and protein expression, suggesting that DNA methylation is involved in regulating the expression of these kinases. Conversely, reduced CKB methylation was observed in samples with reduced mRNA and protein expression, suggesting CKB expression was found to be only partly regulated by DNA methylation. Additionally, we found that alterations in the DNA methylation pattern of the three studied kinases were also associated with the gastric cancer onset, advanced gastric cancer, deeper tumor invasion and the presence of metastasis. Therefore, SRC, LYN and CKB expression or DNA methylation could be useful markers for predicting tumor progression and targeting in anti-cancer strategies. PMID:26460485
Mello, Adriano Azevedo; Leal, Mariana Ferreira; Rey, Juan Antonio; Pinto, Giovanny Rebouças; Lamarão, Leticia Martins; Montenegro, Raquel Carvalho; Alves, Ana Paula Negreiros Nunes; Assumpção, Paulo Pimentel; Borges, Barbara do Nascimento; Smith, Marília Cardoso; Burbano, Rommel Rodriguez
2015-01-01
Kinases are downstream modulators and effectors of several cellular signaling cascades and play key roles in the development of neoplastic disease. In this study, we aimed to evaluate SRC, LYN and CKB protein and mRNA expression, as well as their promoter methylation, in gastric cancer. We found elevated expression of SRC and LYN kinase mRNA and protein but decreased levels of CKB kinase, alterations that may have a role in the invasiveness and metastasis of gastric tumors. Expression of the three studied kinases was also associated with MYC oncogene expression, a possible biomarker for gastric cancer. To understand the mechanisms that regulate the expression of these genes, we evaluated the DNA promoter methylation of the three kinases. We found that reduced SRC and LYN methylation and increased CKB methylation was associated with gastric cancer. The reduced SRC and LYN methylation was associated with increased levels of mRNA and protein expression, suggesting that DNA methylation is involved in regulating the expression of these kinases. Conversely, reduced CKB methylation was observed in samples with reduced mRNA and protein expression, suggesting CKB expression was found to be only partly regulated by DNA methylation. Additionally, we found that alterations in the DNA methylation pattern of the three studied kinases were also associated with the gastric cancer onset, advanced gastric cancer, deeper tumor invasion and the presence of metastasis. Therefore, SRC, LYN and CKB expression or DNA methylation could be useful markers for predicting tumor progression and targeting in anti-cancer strategies.
Toubiana, Julie; Rossi, Anne-Lise; Belaidouni, Nadia; Grimaldi, David; Pene, Frederic; Chafey, Philippe; Comba, Béatrice; Camoin, Luc; Bismuth, Georges; Claessens, Yann-Erick; Mira, Jean-Paul; Chiche, Jean-Daniel
2015-10-01
TLR2 has a prominent role in host defense against a wide variety of pathogens. Stimulation of TLR2 triggers MyD88-dependent signaling to induce NF-κB translocation, and activates a Rac1-PI 3-kinase dependent pathway that leads to transactivation of NF-κB through phosphorylation of the P65 NF-κB subunit. This transactivation pathway involves tyrosine phosphorylations. The role of the tyrosine kinases in TLR signaling is controversial, with discrepancies between studies using only chemical inhibitors and knockout mice. Here, we show the involvement of the tyrosine-kinase Lyn in TLR2-dependent activation of NF-κB in human cellular models, by using complementary inhibition strategies. Stimulation of TLR2 induces the formation of an activation cluster involving TLR2, CD14, PI 3-kinase and Lyn, and leads to the activation of AKT. Lyn-dependent phosphorylation of the p110 catalytic subunit of PI 3-kinase is essential to the control of PI 3-kinase biological activity upstream of AKT and thereby to the transactivation of NF-κB. Thus, Lyn kinase activity is crucial in TLR2-mediated activation of the innate immune response in human mononuclear cells. © The Author(s) 2015.
C-terminal Src kinase (Csk) regulates the tricellular junction protein Gliotactin independent of Src
Samarasekera, G. D. N. Gayathri; Auld, Vanessa Jane
2018-01-01
Tricellular junctions (TCJs) are uniquely placed permeability barriers formed at the corners of polarized epithelia where tight junctions in vertebrates or septate junctions (SJ) in invertebrates from three cells converge. Gliotactin is a Drosophila TCJ protein, and loss of Gliotactin results in SJ and TCJ breakdown and permeability barrier loss. When overexpressed, Gliotactin spreads away from the TCJs, resulting in disrupted epithelial architecture, including overproliferation, cell delamination, and migration. Gliotactin levels are tightly controlled at the mRNA level and at the protein level through endocytosis and degradation triggered by tyrosine phosphorylation. We identified C-terminal Src kinase (Csk) as a tyrosine kinase responsible for regulating Gliotactin endocytosis. Increased Csk suppresses the Gliotactin overexpression phenotypes by increasing endocytosis. Loss of Csk causes Gliotactin to spread away from the TCJ. Although Csk is known as a negative regulator of Src kinases, the effects of Csk on Gliotactin are independent of Src and likely occur through an adherens junction associated complex. Overall, we identified a new Src-independent role for Csk in the control of Gliotactin, a key tricellular junction protein. PMID:29167383
De Franceschi, Lucia; Biondani, Andrea; Carta, Franco; Turrini, Franco; Laudanna, Carlo; Deana, Renzo; Brunati, Anna Maria; Turretta, Loris; Iolascon, Achille; Perrotta, Silverio; Elson, Ari; Bulato, Cristina; Brugnara, Carlo
2010-01-01
Protein tyrosine phosphatases (PTPs) are crucial components of cellular signal transduction pathways. We report here that red blood cells (RBCs) from mice lacking PTPε (Ptpre−/−) exhibit abnormal morphology and increased Ca2+-activated-K+ channel activity, which was partially blocked by the Src-Family-Kinases (SFKs) inhibitor PP1. In Ptpre−/− mouse RBCs, the activity of Fyn and Yes, two SFKs, were increased, suggesting a functional relationship between SFKs, PTPε and Ca2+-activated-K+-channel. The absence of PTPε markedly affected the RBC membrane tyrosine (Tyr-) phosphoproteome, indicating a perturbation of RBCs signal transduction pathways. Using signaling network computational analysis of the Tyr-phosphoproteomic data, we identified 7 topological clusters. We studied cluster 1, containing Syk-Tyr-kinase: Syk-kinase activity was higher in wild-type than in Ptpre−/− RBCs, validating the network computational analysis and indicating a novel signaling pathway, which involves Fyn and Syk in regulation of red cell morphology. PMID:18924107
Mulumba, Mukandila; Granata, Riccarda; Marleau, Sylvie; Ong, Huy
2015-05-01
QRFP (RFamide) peptides are neuropeptides involved in food intake and adiposity regulation in rodents. We have previously shown that QRFP-43 (43RFa) and QRFP-26 (26RFa) inhibited isoproterenol (ISO)-induced lipolysis in adipocytes. However, the antilipolytic signaling pathways activated by QRFP peptides have not been investigated. In the present study, 3T3-L1 adipocytes were used to identify the main pathways involved in QRFP-43 decreasing ISO-induced lipolysis. Our results show that QRFP-43 reduced ISO-induced phosphorylation of perilipin A (PLIN) and hormone-sensitive lipase (HSL) on Ser660 by 43 and 25%, respectively, but increased Akt phosphorylation by 44%. However, the inhibition of phosphodiesterase 3B (PDE3B), a regulator of lipolysis activated by Akt, did not reverse the antilipolytic effect of QRFP-43. PDE3B inhibition reversed the decrease of Ser660 HSL phosphorylation associated with QRFP-43 antilipolytic effect. QRFP-43 also prevented PKC activation and ISO-induced Src kinases activation leading to the inhibition of the caveolin-1 (CAV-1) translocation on lipid droplets. Indeed, QRFP-43 attenuated phorbol 12-myristate 13-acetate-induced lipolysis and ISO-induced extracellular signal-regulated and Src kinases by 28, 37 and 48%, respectively. The attenuation of ISO-induced lipolysis by QRFP-43 was associated with a decrease of phosphorylated Ser660 HSL, PKA-catalytic (PKA-c) subunit and CAV-1 translocation on lipid droplets by 37, 50 and 46%, respectively. The decrease in ISO-induced CAV-1 and PKA-c translocation was associated with a reduction of PLIN phosphorylation by 44% in QRFP-43-treated adipocytes. These results suggest that QRFP-43 attenuated ISO-induced lipolysis by preventing the formation of an active complex on lipid droplets and the activation of Src kinases and PKC. Copyright © 2015. Published by Elsevier B.V.
Siriwardana, Gamini; Seligman, Paul A
2015-01-01
Iron is required for cellular proliferation. Recently, using systematic time studies of neuroblastoma cell growth, we better defined the G1 arrest caused by iron chelation to a point in mid-G1, where cyclin E protein is present, but the cyclin E/CDK2 complex kinase activity is inhibited. In this study, we again used the neuroblastoma SKNSH cells lines to pinpoint the mechanism responsible for this G1 block. Initial studies showed in the presence of DFO, these cells have high levels of p27 and after reversal of iron chelation p27 is degraded allowing for CDK2 kinase activity. The initial activation of CDK2 kinase allows cells to exit G1 and enter S phase. Furthermore, we found that inhibition of p27 degradation by DFO is directly associated with inhibition of Src kinase activity measured by lack of phosphorylation of Src at the 416 residue. Activation of Src kinase occurs very early after reversal from the DFO G1 block and is temporally associated with initiation of cellular proliferation associated with entry into S phase. For the first time therefore we show that iron chelation inhibits Src kinase activity and this activity is a requirement for cellular proliferation. PMID:25825542
Targeting Src and tubulin in mucinous ovarian carcinoma
Liu, Tao; Hu, Wei; Dalton, Heather J.; Choi, Hyun Jin; Huang, Jie; Kang, Yu; Pradeep, Sunila; Miyake, Takahito; Song, Jian H.; Wen, Yunfei; Lu, Chunhua; Pecot, Chad V.; Bottsford-Miller, Justin; Zand, Behrouz; Jennings, Nicholas B; Ivan, Cristina; Gallick, Gary E.; Baggerly, Keith A; Hangauer, David G.; Coleman, Robert L.; Frumovitz, Michael; Sood, Anil K.
2013-01-01
Purpose To investigate the antitumor effects of targeting Src and tubulin in mucinous ovarian carcinoma. Experimental design The in vitro and in vivo effects and molecular mechanisms of KX-01, which inhibits Src pathway and tubulin polymerization, were examined in mucinous ovarian cancer models. Results In vitro studies using RMUG-S and RMUG-L cell lines showed that KX-01 inhibited cell proliferation, induced apoptosis, arrested the cell cycle at the G2/M phase, and enhanced the cytotoxicity of oxaliplatin in the KX-01-sensitive cell line, RMUG-S. In vivo studies showed that KX-01 significantly decreased tumor burden in RMUG-S and RMUG-L mouse models relative to untreated controls, and the effects were greater when KX-01 was combined with oxaliplatin. KX-01 alone and in combination with oxaliplatin significantly inhibited tumor growth by reducing cell proliferation and inducing apoptosis in vivo. PTEN knock-in experiments in RMUG-L cells showed improved response to KX-01. Reverse phase protein array analysis showed that in addition to blocking downstream molecules of Src family kinases, KX-01 also activated acute stress-inducing molecules. Conclusion Our results showed that targeting both the Src pathway and tubulin with KX-01 significantly inhibited tumor growth in preclinical mucinous ovarian cancer models, suggesting that this may be a promising therapeutic approach for patients with mucinous ovarian carcinoma. PMID:24100628
Wu, Jui-Chung; Chen, Yu-Chen; Kuo, Chih-Ting; Wenshin Yu, Helen; Chen, Yin-Quan; Chiou, Arthur; Kuo, Jean-Cheng
2015-01-01
Directed cell migration requires dynamical control of the protein complex within focal adhesions (FAs) and this control is regulated by signaling events involving tyrosine phosphorylation. We screened the SH2 domains present in tyrosine-specific kinases and phosphatases found within FAs, including SRC, SHP1 and SHP2, and examined whether these enzymes transiently target FAs via their SH2 domains. We found that the SRC_SH2 domain and the SHP2_N-SH2 domain are associated with FAs, but only the SRC_SH2 domain is able to be regulated by focal adhesion kinase (FAK). The FAK-dependent association of the SRC_SH2 domain is necessary and sufficient for SRC FA targeting. When the targeting of SRC into FAs is inhibited, there is significant suppression of SRC-mediated phosphorylation of paxillin and FAK; this results in an inhibition of FA formation and maturation and a reduction in cell migration. This study reveals an association between FAs and the SRC_SH2 domain as well as between FAs and the SHP2_N-SH2 domains. This supports the hypothesis that the FAK-regulated SRC_SH2 domain plays an important role in directing SRC into FAs and that this SRC-mediated FA signaling drives cell migration. PMID:26681405
Wu, Jui-Chung; Chen, Yu-Chen; Kuo, Chih-Ting; Wenshin Yu, Helen; Chen, Yin-Quan; Chiou, Arthur; Kuo, Jean-Cheng
2015-12-18
Directed cell migration requires dynamical control of the protein complex within focal adhesions (FAs) and this control is regulated by signaling events involving tyrosine phosphorylation. We screened the SH2 domains present in tyrosine-specific kinases and phosphatases found within FAs, including SRC, SHP1 and SHP2, and examined whether these enzymes transiently target FAs via their SH2 domains. We found that the SRC_SH2 domain and the SHP2_N-SH2 domain are associated with FAs, but only the SRC_SH2 domain is able to be regulated by focal adhesion kinase (FAK). The FAK-dependent association of the SRC_SH2 domain is necessary and sufficient for SRC FA targeting. When the targeting of SRC into FAs is inhibited, there is significant suppression of SRC-mediated phosphorylation of paxillin and FAK; this results in an inhibition of FA formation and maturation and a reduction in cell migration. This study reveals an association between FAs and the SRC_SH2 domain as well as between FAs and the SHP2_N-SH2 domains. This supports the hypothesis that the FAK-regulated SRC_SH2 domain plays an important role in directing SRC into FAs and that this SRC-mediated FA signaling drives cell migration.
Sobue, S; Murakami, M; Banno, Y; Ito, H; Kimura, A; Gao, S; Furuhata, A; Takagi, A; Kojima, T; Suzuki, M; Nozawa, Y; Murate, T
2008-10-09
Sphingosine kinase 1 (SPHK1) is overexpressed in solid tumors and leukemia. However, the mechanism of SPHK1 overexpression by oncogenes has not been defined. We found that v-Src-transformed NIH3T3 cells showed a high SPHK1 mRNA, SPHK1 protein and SPHK enzyme activity. siRNA of SPHK1 inhibited the growth of v-Src-NIH3T3, suggesting the involvement of SPHK1 in v-Src-induced oncogenesis. v-Src-NIH3T3 showed activations of protein kinase C-alpha, signal transducers and activators of transcription 3 and c-Jun NH(2)-terminal kinase. Their inhibition suppressed SPHK1 expression in v-Src-NIH3T3, whereas their overexpression increased SPHK1 mRNA in NIH3T3. Unexpectedly, the nuclear run-on assay and the promoter analysis using 5'-promoter region of mouse SPHK1 did not show any significant difference between mock- and v-Src-NIH3T3. Furthermore, the half-life of SPHK1 mRNA in mock-NIH3T3 was nearly 15 min, whereas that of v-Src-NIH3T3 was much longer. Examination of two AU-rich region-binding proteins, AUF1 and HuR, that regulate mRNA decay reciprocally, showed decreased total AUF1 protein associated with increased tyrosine-phosphorylated form and increased serine-phosphorylated HuR protein in v-Src-NIH3T3. Modulation of AUF1 and HuR by their overexpression or siRNA revealed that SPHK1 mRNA in v-Src- and mock-NIH3T3 was regulated reciprocally by these factors. Our results showed, for the first time, a novel mechanism of v-Src-induced SPHK1 overexpression.
Montagner, Alexandra; Delgado, Maria B; Tallichet-Blanc, Corinne; Chan, Jeremy S K; Sng, Ming K; Mottaz, Hélène; Degueurce, Gwendoline; Lippi, Yannick; Moret, Catherine; Baruchet, Michael; Antsiferova, Maria; Werner, Sabine; Hohl, Daniel; Al Saati, Talal; Farmer, Pierre J; Tan, Nguan S; Michalik, Liliane; Wahli, Walter
2014-01-01
Although non-melanoma skin cancer (NMSC) is the most common human cancer and its incidence continues to rise worldwide, the mechanisms underlying its development remain incompletely understood. Here, we unveil a cascade of events involving peroxisome proliferator-activated receptor (PPAR) β/δ and the oncogene Src, which promotes the development of ultraviolet (UV)-induced skin cancer in mice. UV-induced PPARβ/δ activity, which directly stimulated Src expression, increased Src kinase activity and enhanced the EGFR/Erk1/2 signalling pathway, resulting in increased epithelial-to-mesenchymal transition (EMT) marker expression. Consistent with these observations, PPARβ/δ-null mice developed fewer and smaller skin tumours, and a PPARβ/δ antagonist prevented UV-dependent Src stimulation. Furthermore, the expression of PPARβ/δ positively correlated with the expression of SRC and EMT markers in human skin squamous cell carcinoma (SCC), and critically, linear models applied to several human epithelial cancers revealed an interaction between PPARβ/δ and SRC and TGFβ1 transcriptional levels. Taken together, these observations motivate the future evaluation of PPARβ/δ modulators to attenuate the development of several epithelial cancers. PMID:24203162
Src Kinase: A Novel Target of Early-Stage ER-Negative Breast Cancer
2012-03-01
patients with early stage ErbB2-overexpressing biopsies and ER- atypia . 13 REFERENCES: 1. Jordan VC. Tamoxifen for breast cancer prevention. Proc Soc...Summary01-03-2012 Src Kinase: A Novel Target of Early-Stage ER-Negative Breast Cancer Shalini Jain University of Texas M.D. Anderson Cancer Center Houston...SUBTITLE “Src Kinase: A Novel Target of Early-Stage ER-Negative Breast Cancer” 5a. CONTRACT NUMBER W81XWH-11-1-0004 5b. GRANT NUMBER
A dynamically coupled allosteric network underlies binding cooperativity in Src kinase
Foda, Zachariah H.; Shan, Yibing; Kim, Eric T.; Shaw, David E.; Seeliger, Markus A.
2015-01-01
Protein tyrosine kinases are attractive drug targets because many human diseases are associated with the deregulation of kinase activity. However, how the catalytic kinase domain integrates different signals and switches from an active to an inactive conformation remains incompletely understood. Here we identify an allosteric network of dynamically coupled amino acids in Src kinase that connects regulatory sites to the ATP- and substrate-binding sites. Surprisingly, reactants (ATP and peptide substrates) bind with negative cooperativity to Src kinase while products (ADP and phosphopeptide) bind with positive cooperativity. We confirm the molecular details of the signal relay through the allosteric network by biochemical studies. Experiments on two additional protein tyrosine kinases indicate that the allosteric network may be largely conserved among these enzymes. Our work provides new insights into the regulation of protein tyrosine kinases and establishes a potential conduit by which resistance mutations to ATP-competitive kinase inhibitors can affect their activity. PMID:25600932
Kinome signaling through regulated protein-protein interactions in normal and cancer cells.
Pawson, Tony; Kofler, Michael
2009-04-01
The flow of molecular information through normal and oncogenic signaling pathways frequently depends on protein phosphorylation, mediated by specific kinases, and the selective binding of the resulting phosphorylation sites to interaction domains present on downstream targets. This physical and functional interplay of catalytic and interaction domains can be clearly seen in cytoplasmic tyrosine kinases such as Src, Abl, Fes, and ZAP-70. Although the kinase and SH2 domains of these proteins possess similar intrinsic properties of phosphorylating tyrosine residues or binding phosphotyrosine sites, they also undergo intramolecular interactions when linked together, in a fashion that varies from protein to protein. These cooperative interactions can have diverse effects on substrate recognition and kinase activity, and provide a variety of mechanisms to link the stimulation of catalytic activity to substrate recognition. Taken together, these data have suggested how protein kinases, and the signaling pathways in which they are embedded, can evolve complex properties through the stepwise linkage of domains within single polypeptides or multi-protein assemblies.
Liao, Hsiang-Ruei; Chen, Ih-Sheng; Liu, Fu-Chao; Lin, Shinn-Zhi; Tseng, Ching-Ping
2018-06-15
This study investigates the effect and the underlying mechanism of 2',3-dihydroxy-5-methoxybiphenyl (RIR-2), a lignan extracted from the roots of Rhaphiolepis indica (L.) Lindl. ex Ker var. tashiroi Hayata ex Matsum. & Hayata (Rosaceae), on N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP)-induced respiratory burst and cathepsin G in human neutrophils. Signaling pathways regulated by RIR-2 which modulated fMLP-induced respiratory burst were evaluated by an interaction between β subunit of G-protein (Gβ) with downstream signaling induced by fMLP and by immunoblotting analysis of the downstream targets of Gβ-protein. RIR-2 inhibited fMLP-induced superoxide anion production (IC 50 :2.57 ± 0.22 μM), cathepsin G release (IC 50 :18.72 ± 3.76 μM) and migration in a concentration dependent manner. RIR-2 specifically suppresses fMLP-induced Src family kinases phosphorylation by inhibiting the interaction between Gβ-protein with Src kinases without inhibiting Src kinases activities, therefore, RIR-2 attenuated the downstream targets of Src kinase, such as phosphorylation of Raf/ERK, AKT, P38, PLCγ2, PKC and translocation Tec, p47 ph ° x and P40 ph ° x from the cytosol to the inner leaflet of the plasma membrane. Furthermore, RIR-2 attenuated fMLP-induced intracellular calcium mobilization by inhibiting the interaction between Gβ-protein with PLCβ2. RIR-2 was not a competitive or allosteric antagonist of fMLP. On the contrary, phorbol 12-myristate 13-acetate (PMA)-induced phosphorylation of Src, AKT, P38, PKC and membrane localization of p47 ph ° x and P40 ph ° x remained unaffected. RIR-2 specifically modulates fMLP-mediated neutrophil superoxide anion production and cathepsin G release by inhibiting the interaction between Gβ-protein with downstream signaling which subsequently interferes with the activation of intracellular calcium, PLCγ2, AKT, p38, PKC, ERK, p47 ph ° x and p40 phox . Copyright © 2018 Elsevier B.V. All rights reserved.
Src binds cortactin through an SH2 domain cystine-mediated linkage.
Evans, Jason V; Ammer, Amanda G; Jett, John E; Bolcato, Chris A; Breaux, Jason C; Martin, Karen H; Culp, Mark V; Gannett, Peter M; Weed, Scott A
2012-12-15
Tyrosine-kinase-based signal transduction mediated by modular protein domains is critical for cellular function. The Src homology (SH)2 domain is an important conductor of intracellular signaling that binds to phosphorylated tyrosines on acceptor proteins, producing molecular complexes responsible for signal relay. Cortactin is a cytoskeletal protein and tyrosine kinase substrate that regulates actin-based motility through interactions with SH2-domain-containing proteins. The Src kinase SH2 domain mediates cortactin binding and tyrosine phosphorylation, but how Src interacts with cortactin is unknown. Here we demonstrate that Src binds cortactin through cystine bonding between Src C185 in the SH2 domain within the phosphotyrosine binding pocket and cortactin C112/246 in the cortactin repeats domain, independent of tyrosine phosphorylation. Interaction studies show that the presence of reducing agents ablates Src-cortactin binding, eliminates cortactin phosphorylation by Src, and prevents Src SH2 domain binding to cortactin. Tandem MS/MS sequencing demonstrates cystine bond formation between Src C185 and cortactin C112/246. Mutational studies indicate that an intact cystine binding interface is required for Src-mediated cortactin phosphorylation, cell migration, and pre-invadopodia formation. Our results identify a novel phosphotyrosine-independent binding mode between the Src SH2 domain and cortactin. Besides Src, one quarter of all SH2 domains contain cysteines at or near the analogous Src C185 position. This provides a potential alternative mechanism to tyrosine phosphorylation for cysteine-containing SH2 domains to bind cognate ligands that may be widespread in propagating signals regulating diverse cellular functions.
Src binds cortactin through an SH2 domain cystine-mediated linkage
Evans, Jason V.; Ammer, Amanda G.; Jett, John E.; Bolcato, Chris A.; Breaux, Jason C.; Martin, Karen H.; Culp, Mark V.; Gannett, Peter M.; Weed, Scott A.
2012-01-01
Summary Tyrosine-kinase-based signal transduction mediated by modular protein domains is critical for cellular function. The Src homology (SH)2 domain is an important conductor of intracellular signaling that binds to phosphorylated tyrosines on acceptor proteins, producing molecular complexes responsible for signal relay. Cortactin is a cytoskeletal protein and tyrosine kinase substrate that regulates actin-based motility through interactions with SH2-domain-containing proteins. The Src kinase SH2 domain mediates cortactin binding and tyrosine phosphorylation, but how Src interacts with cortactin is unknown. Here we demonstrate that Src binds cortactin through cystine bonding between Src C185 in the SH2 domain within the phosphotyrosine binding pocket and cortactin C112/246 in the cortactin repeats domain, independent of tyrosine phosphorylation. Interaction studies show that the presence of reducing agents ablates Src-cortactin binding, eliminates cortactin phosphorylation by Src, and prevents Src SH2 domain binding to cortactin. Tandem MS/MS sequencing demonstrates cystine bond formation between Src C185 and cortactin C112/246. Mutational studies indicate that an intact cystine binding interface is required for Src-mediated cortactin phosphorylation, cell migration, and pre-invadopodia formation. Our results identify a novel phosphotyrosine-independent binding mode between the Src SH2 domain and cortactin. Besides Src, one quarter of all SH2 domains contain cysteines at or near the analogous Src C185 position. This provides a potential alternative mechanism to tyrosine phosphorylation for cysteine-containing SH2 domains to bind cognate ligands that may be widespread in propagating signals regulating diverse cellular functions. PMID:23097045
STATs MEDIATE FIBROBLAST GROWTH FACTOR INDUCED VASCULAR ENDOTHELIAL MORPHOGENESIS
Yang, Xinhai; Qiao, Dianhua; Meyer, Kristy; Friedl, Andreas
2009-01-01
The fibroblast growth factors (FGFs) play diverse roles in development, wound healing and angiogenesis. The intracellular signal transduction pathways which mediate these pleiotropic activities remain incompletely understood. We show here that the proangiogenic factors FGF2 and FGF8b can activate signal transducers and activators of transcription (STATs) in mouse microvascular endothelial cells. Both FGF2 and FGF8b activate STAT5 and to a lesser extent STAT1, but not STAT3. The FGF2-dependent activation of endothelial STAT5 was confirmed in vivo with the matrigel plug angiogenesis assay. In tissue samples of human gliomas, a tumor type where FGF-induced angiogenesis is important, STAT5 is detected in tumor vessel endothelial cell nuclei, consistent with STAT5 activation. By forced expression of constitutively active or dominant-negative mutant STAT5A in mouse brain endothelial cells, we further show that STAT5 activation is both necessary and sufficient for FGF-induced cell migration, invasion and tube formation, which are key events in vascular endothelial morphogenesis and angiogenesis. In contrast, STAT5 is not required for brain endothelial cell mitogenesis. The cytoplasmic tyrosine kinases Src and Janus kinase 2 (Jak2) both appear to be involved in the activation of STAT5, as their inhibition reduces FGF2 and FGF8b induced STAT5 phosphorylation and endothelial cell tube formation. Constitutively active STAT5A partially restores tube formation in the presence of Src or Jak2 inhibitors. These observations demonstrate that FGFs utilize distinct signaling pathways to induce angiogenic phenotypes. Together, our findings implicate the FGF-Jak2/Src-STAT5 cascade as a critical angiogenic FGF signaling pathway. PMID:19176400
Siriwardana, Gamini; Seligman, Paul A
2015-03-01
Iron is required for cellular proliferation. Recently, using systematic time studies of neuroblastoma cell growth, we better defined the G1 arrest caused by iron chelation to a point in mid-G1, where cyclin E protein is present, but the cyclin E/CDK2 complex kinase activity is inhibited. In this study, we again used the neuroblastoma SKNSH cells lines to pinpoint the mechanism responsible for this G1 block. Initial studies showed in the presence of DFO, these cells have high levels of p27 and after reversal of iron chelation p27 is degraded allowing for CDK2 kinase activity. The initial activation of CDK2 kinase allows cells to exit G1 and enter S phase. Furthermore, we found that inhibition of p27 degradation by DFO is directly associated with inhibition of Src kinase activity measured by lack of phosphorylation of Src at the 416 residue. Activation of Src kinase occurs very early after reversal from the DFO G1 block and is temporally associated with initiation of cellular proliferation associated with entry into S phase. For the first time therefore we show that iron chelation inhibits Src kinase activity and this activity is a requirement for cellular proliferation. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Hennequin, Laurent F; Allen, Jack; Breed, Jason; Curwen, Jon; Fennell, Michael; Green, Tim P; Lambert-van der Brempt, Christine; Morgentin, Rémy; Norman, Richard A; Olivier, Annie; Otterbein, Ludovic; Plé, Patrick A; Warin, Nicolas; Costello, Gerard
2006-11-02
Src family kinases (SFKs) are nonreceptor tyrosine kinases that are reported to be critical for cancer progression. We report here a novel subseries of C-5-substituted anilinoquinazolines that display high affinity and specificity for the tyrosine kinase domain of the c-Src and Abl enzymes. These compounds exhibit high selectivity for SFKs over a panel of recombinant protein kinases, excellent pharmacokinetics, and in vivo activity following oral dosing. N-(5-Chloro-1,3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl)ethoxy]-5-(tetrahydro-2H-pyran-4-yloxy)quinazolin-4-amine (AZD0530) inhibits c-Src and Abl enzymes at low nanomolar concentrations and is highly selective over a range of kinases. AZD0530 displays excellent pharmacokinetic parameters in animal preclinically and in man (t(1/2) = 40 h). AZD0530 is a potent inhibitor of tumor growth in a c-Src-transfected 3T3-fibroblast xenograft model in vivo and led to a significant increase in survival in a highly aggressive, orthotopic model of human pancreatic cancer when dosed orally once daily. AZD0530 is currently undergoing clinical evaluation in man.
PTP1B triggers integrin-mediated repression of myosin activity and modulates cell contractility
González Wusener, Ana E.; González, Ángela; Nakamura, Fumihiko; Arregui, Carlos O.
2016-01-01
ABSTRACT Cell contractility and migration by integrins depends on precise regulation of protein tyrosine kinase and Rho-family GTPase activities in specific spatiotemporal patterns. Here we show that protein tyrosine phosphatase PTP1B cooperates with β3 integrin to activate the Src/FAK signalling pathway which represses RhoA-myosin-dependent contractility. Using PTP1B null (KO) cells and PTP1B reconstituted (WT) cells, we determined that some early steps following cell adhesion to fibronectin and vitronectin occurred robustly in WT cells, including aggregation of β3 integrins and adaptor proteins, and activation of Src/FAK-dependent signalling at small puncta in a lamellipodium. However, these events were significantly impaired in KO cells. We established that cytoskeletal strain and cell contractility was highly enhanced at the periphery of KO cells compared to WT cells. Inhibition of the Src/FAK signalling pathway or expression of constitutive active RhoA in WT cells induced a KO cell phenotype. Conversely, expression of constitutive active Src or myosin inhibition in KO cells restored the WT phenotype. We propose that this novel function of PTP1B stimulates permissive conditions for adhesion and lamellipodium assembly at the protruding edge during cell spreading and migration. PMID:26700725
Liu, Songling; Premont, Richard T; Rockey, Don C
2014-06-27
Nitric oxide (NO) is a critical regulator of vascular tone and plays an especially prominent role in liver by controlling portal blood flow and pressure within liver sinusoids. Synthesis of NO in sinusoidal endothelial cells by endothelial nitric-oxide synthase (eNOS) is regulated in response to activation of endothelial cells by vasoactive signals such as endothelins. The endothelin B (ETB) receptor is a G-protein-coupled receptor, but the mechanisms by which it regulates eNOS activity in sinusoidal endothelial cells are not well understood. In this study, we built on two previous strands of work, the first showing that G-protein βγ subunits mediated activation of phosphatidylinositol 3-kinase and Akt to regulate eNOS and the second showing that eNOS directly bound to the G-protein-coupled receptor kinase-interacting protein 1 (GIT1) scaffold protein, and this association stimulated NO production. Here we investigated the mechanisms by which the GIT1-eNOS complex is formed and regulated. GIT1 was phosphorylated on tyrosine by Src, and Y293F and Y554F mutations reduced GIT1 phosphorylation as well as the ability of GIT1 to bind to and activate eNOS. Akt phosphorylation activated eNOS (at Ser(1177)), and Akt also regulated the ability of Src to phosphorylate GIT1 as well as GIT1-eNOS association. These pathways were activated by endothelin-1 through the ETB receptor; inhibiting receptor-activated G-protein βγ subunits blocked activation of Akt, GIT1 tyrosine phosphorylation, and ET-1-stimulated GIT1-eNOS association but did not affect Src activation. These data suggest a model in which Src and Akt cooperate to regulate association of eNOS with the GIT1 scaffold to facilitate NO production. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Roles of Raft-Anchored Adaptor Cbp/PAG1 in Spatial Regulation of c-Src Kinase
Oneyama, Chitose; Suzuki, Takashi; Okada, Masato
2014-01-01
The tyrosine kinase c-Src is upregulated in numerous human cancers, implying a role for c-Src in cancer progression. Previously, we have shown that sequestration of activated c-Src into lipid rafts via a transmembrane adaptor, Cbp/PAG1, efficiently suppresses c-Src-induced cell transformation in Csk-deficient cells, suggesting that the transforming activity of c-Src is spatially regulated via Cbp in lipid rafts. To dissect the molecular mechanisms of the Cbp-mediated regulation of c-Src, a combined analysis was performed that included mathematical modeling and in vitro experiments in a c-Src- or Cbp-inducible system. c-Src activity was first determined as a function of c-Src or Cbp levels, using focal adhesion kinase (FAK) as a crucial c-Src substrate. Based on these experimental data, two mathematical models were constructed, the sequestration model and the ternary model. The computational analysis showed that both models supported our proposal that raft localization of Cbp is crucial for the suppression of c-Src function, but the ternary model, which includes a ternary complex consisting of Cbp, c-Src, and FAK, also predicted that c-Src function is dependent on the lipid-raft volume. Experimental analysis revealed that c-Src activity is elevated when lipid rafts are disrupted and the ternary complex forms in non-raft membranes, indicating that the ternary model accurately represents the system. Moreover, the ternary model predicted that, if Cbp enhances the interaction between c-Src and FAK, Cbp could promote c-Src function when lipid rafts are disrupted. These findings underscore the crucial role of lipid rafts in the Cbp-mediated negative regulation of c-Src-transforming activity, and explain the positive role of Cbp in c-Src regulation under particular conditions where lipid rafts are perturbed. PMID:24675741
Hood, Katie Y.; Mair, Kirsty M.; Harvey, Adam P.; Montezano, Augusto C.; Touyz, Rhian M.
2017-01-01
Objective— Serotonin can induce human pulmonary artery smooth muscle cell (hPASMC) proliferation through reactive oxygen species (ROS), influencing the development of pulmonary arterial hypertension (PAH). We hypothesize that in PASMCs, serotonin induces oxidative stress through NADPH-oxidase–derived ROS generation and reduced Nrf-2 (nuclear factor [erythroid-derived 2]-like 2) antioxidant systems, promoting vascular injury. Approach and Results— HPASMCs from controls and PAH patients, and PASMCs from Nox1−/− mice, were stimulated with serotonin in the absence/presence of inhibitors of Src kinase, the 5-HT1B receptor, and NADPH oxidase 1 (Nox1). Markers of fibrosis were also determined. The pathophysiological significance of our findings was examined in vivo in serotonin transporter overexpressing female mice, a model of pulmonary hypertension. We confirmed thatserotonin increased superoxide and hydrogen peroxide production in these cells. For the first time, we show that serotonin increased oxidized protein tyrosine phosphatases and hyperoxidized peroxiredoxin and decreased Nrf-2 and catalase activity in hPASMCs. ROS generation was exaggerated and dependent on cellular Src-related kinase, 5-HT1B receptor, and the serotonin transporter in human pulmonary artery smooth muscle cells from PAH subjects. Proliferation and extracellular matrix remodeling were exaggerated in human pulmonary artery smooth muscle cells from PAH subjects and dependent on 5-HT1B receptor signaling and Nox1, confirmed in PASMCs from Nox1−/− mice. In serotonin transporter overexpressing mice, SB216641, a 5-HT1B receptor antagonist, prevented development of pulmonary hypertension in a ROS-dependent manner. Conclusions— Serotonin can induce cellular Src-related kinase–regulated Nox1-induced ROS and Nrf-2 dysregulation, contributing to increased post-translational oxidative modification of proteins and activation of redox-sensitive signaling pathways in hPASMCs, associated with mitogenic responses. 5-HT1B receptors contribute to experimental pulmonary hypertension by inducing lung ROS production. Our results suggest that 5-HT1B receptor–dependent cellular Src-related kinase-Nox1-pathways contribute to vascular remodeling in PAH. PMID:28473438
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Nancy L., E-mail: nlcho@partners.org; Lin, Chi-Iou; Du, Jinyan
Highlights: Black-Right-Pointing-Pointer Kinome profiling is a novel technique for identifying activated kinases in human cancers. Black-Right-Pointing-Pointer Src activity is increased in invasive thyroid cancers. Black-Right-Pointing-Pointer Inhibition of Src activity decreased proliferation and invasion in vitro. Black-Right-Pointing-Pointer Further investigation of Src targeted therapies in thyroid cancer is warranted. -- Abstract: Background: Novel therapies are needed for the treatment of invasive thyroid cancers. Aberrant activation of tyrosine kinases plays an important role in thyroid oncogenesis. Because current targeted therapies are biased toward a small subset of tyrosine kinases, we conducted a study to reveal novel therapeutic targets for thyroid cancer using amore » bead-based, high-throughput system. Methods: Thyroid tumors and matched normal tissues were harvested from twenty-six patients in the operating room. Protein lysates were analyzed using the Luminex immunosandwich, a bead-based kinase phosphorylation assay. Data was analyzed using GenePattern 3.0 software and clustered according to histology, demographic factors, and tumor status regarding capsular invasion, size, lymphovascular invasion, and extrathyroidal extension. Survival and invasion assays were performed to determine the effect of Src inhibition in papillary thyroid cancer (PTC) cells. Results: Tyrosine kinome profiling demonstrated upregulation of nine tyrosine kinases in tumors relative to matched normal thyroid tissue: EGFR, PTK6, BTK, HCK, ABL1, TNK1, GRB2, ERK, and SRC. Supervised clustering of well-differentiated tumors by histology, gender, age, or size did not reveal significant differences in tyrosine kinase activity. However, supervised clustering by the presence of invasive disease showed increased Src activity in invasive tumors relative to non-invasive tumors (60% v. 0%, p < 0.05). In vitro, we found that Src inhibition in PTC cells decreased cell invasion and proliferation. Conclusion: Global kinome analysis enables the discovery of novel targets for thyroid cancer therapy. Further investigation of Src targeted therapy for advanced thyroid cancer is warranted.« less
Ghotbaddini, Maryam; Cisse, Keyana; Carey, Alexis; Powell, Joann B
2017-01-01
Altered c-Src activity has been strongly implicated in the development, growth, progression, and metastasis of human cancers including prostate cancer. Src is known to regulate several biological functions of tumor cells, including proliferation. There are several Src inhibitors under evaluation for clinical effectiveness but have shown little activity in monotherapy trials of solid tumors. Combination studies are being explored by in vitro analysis and in clinical trials. Here we investigate the effect of simultaneous inhibition of the aryl hydrocarbon receptor (AhR) and Src on androgen receptor (AR) signaling in prostate cancer cells. AhR has also been reported to interact with the Src signaling pathway during prostate development. c-Src protein kinase is associated with the AhR complex in the cytosol and upon ligand binding to AhR, c-Src is activated and released from the complex. AhR has also been shown to regulate AR signaling which remains functionally important in the development and progression of prostate cancer. We provide evidence that co-inhibition of AhR and Src abolish AR activity. Evaluation of total protein and cellular fractions revealed decreased pAR expression and AR nuclear localization. Assays utilizing an androgen responsive element (ARE) and qRT-PCR analysis of AR genes revealed decreased AR promoter activity and transcriptional activity in the presence of both AhR and Src inhibitors. Furthermore, co-inhibition of AhR and Src reduced the growth of prostate cancer cells compared to individual treatments. Several studies have revealed that AhR and Src individually inhibit cellular proliferation. However, this study is the first to suggest simultaneous inhibition of AhR and Src to inhibit AR signaling and prostate cancer cell growth.
2005-04-01
several SH2 domains. The 5112 domains of CHE, Csk, Src, Lck, Shc, and phospholipase Cyl (PLCy1) were aligned using the T- COFFEE program (available at...iSC-Double-labeled protein samples or 15N_ acrylamide gel and then transferred onto Immobilon-PM membranes. bacteria in Bound proteins were
Woo, Seon Min; Min, Kyoung-Jin; Chae, In Gyeong; Chun, Kyung-Soo; Kwon, Taeg Kyu
2015-03-01
Silymarin has been known as a chemopreventive agent, and possesses multiple anti-cancer activities including induction of apoptosis, inhibition of proliferation and growth, and blockade of migration and invasion. However, whether silymarin could inhibit prostaglandin (PG) E2 -induced renal cell carcinoma (RCC) migration and what are the underlying mechanisms are not well elucidated. Here, we found that silymarin markedly inhibited PGE2 -stimulated migration. PGE2 induced G protein-dependent CREB phosphorylation via protein kinase A (PKA) signaling, and PKA inhibitor (H89) inhibited PGE2 -mediated migration. Silymarin reduced PGE2 -induced CREB phosphorylation and CRE-promoter activity. PGE2 also activated G protien-independent signaling pathways (Src and STAT3) and silymarin reduced PGE2 -induced phosphorylation of Src and STAT3. Inhibitor of Src (Saracatinib) markedly reduced PGE2 -mediated migration. We found that EP2, a PGE2 receptor, is involved in PGE2 -mediated cell migration. Down regulation of EP2 by EP2 siRNA and EP2 antagonist (AH6809) reduced PGE2 -inudced migration. In contrast, EP2 agonist (Butaprost) increased cell migration and silymarin effectively reduced butaprost-mediated cell migration. Moreover, PGE2 increased EP2 expression through activation of positive feedback mechanism, and PGE2 -induced EP2 expression, as well as basal EP2 levels, were reduced in silymarin-treated cells. Taken together, our study demonstrates that silymarin inhibited PGE2 -induced cell migration through inhibition of EP2 signaling pathways (G protein dependent PKA-CREB and G protein-independent Src-STAT3). © 2013 Wiley Periodicals, Inc.
Phosphorylated c-Mpl tyrosine 591 regulates thrombopoietin-induced signaling.
Sangkhae, Veena; Saur, Sebastian Jonas; Kaushansky, Alexis; Kaushansky, Kenneth; Hitchcock, Ian Stuart
2014-06-01
Thrombopoietin (TPO) is the primary regulator of platelet production, affecting cell survival, proliferation, and differentiation through binding to and stimulation of the cell surface receptor the cellular myeloproliferative leukemia virus oncogene (c-Mpl). Activating mutations in c-Mpl constitutively stimulate downstream signaling pathways, leading to aberrant hematopoiesis, and contribute to development of myeloproliferative neoplasms. Several studies have mapped the tyrosine residues within the cytoplasmic domain of c-Mpl that mediate these cellular signals; however, secondary signaling pathways are incompletely understood. In this study, we focused on c-Mpl tyrosine 591 (Y591). We found Y591 of wild-type c-Mpl to be phosphorylated in the presence of TPO. Additionally, eliminating Y591 phosphorylation by mutation to Phe resulted in decreased total receptor phosphorylation. Using a Src homology 2/phosphotyrosine-binding (SH2/PTB) domain binding microarray, we identified novel c-Mpl binding partners for phosphorylated Y591, including Src homology region 2 domain-containing phosphatase-1 (SHP-1), spleen tyrosine kinase (SYK) and Bruton's tyrosine kinase (BTK). The functional significance of binding partners was determined through small interfering RNA treatment of Ba/F3-Mpl cells, confirming that the increase in pERK1/2 resulting from removal of Y591 may be mediated by spleen tyrosine kinase. These findings identify a novel negative regulatory pathway that controls TPO-mediated signaling, advancing our understanding of the mechanisms required for successful maintenance of hematopoietic stem cells and megakaryocyte development. Copyright © 2014 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.
Mukhin, Y V; Garnovskaya, M N; Collinsworth, G; Grewal, J S; Pendergrass, D; Nagai, T; Pinckney, S; Greene, E L; Raymond, J R
2000-01-01
The hypothesis of this work is that the 'serotonin' or 5-hydroxytryptamine (5-HT)(1A) receptor, which activates the extracellular signal-regulated kinase (ERK) through a G(i)betagamma-mediated pathway, does so through the intermediate actions of reactive oxygen species (ROS). Five criteria were shown to support a key role for ROS in the activation of ERK by the 5-HT(1A) receptor. (1) Antioxidants inhibit activation of ERK by 5-HT. (2) Application of cysteine-reactive oxidant molecules activates ERK. (3) The 5-HT(1A) receptor alters cellular redox properties, and generates both superoxide and hydrogen peroxide. (4) A specific ROS-producing enzyme [NAD(P)H oxidase] is involved in the activation of ERK. (5) There is specificity both in the effects of various chemical oxidizers, and in the putative location of the ROS in the ERK activation pathway. We propose that NAD(P)H oxidase is located in the ERK activation pathway stimulated by the transfected 5-HT(1A) receptor in Chinese hamster ovary (CHO) cells downstream of G(i)betagamma subunits and upstream of or at the level of the non-receptor tyrosine kinase, Src. Moreover, these experiments provide confirmation that the transfected human 5-HT(1A) receptor induces the production of ROS (superoxide and hydrogen peroxide) in CHO cells, and support the possibility that an NAD(P)H oxidase-like enzyme might be involved in the 5-HT-mediated generation of both superoxide and hydrogen peroxide. PMID:10727402
Huang, Kezhen; Wang, Yue-Hao; Brown, Alex; Sun, Gongqin
2009-01-01
Csk and Src protein tyrosine kinases are structurally homologous, but use opposite regulatory strategies. The isolated catalytic domain of Csk is intrinsically inactive and is activated by interactions with the regulatory SH3 and SH2 domains, while the isolated catalytic domain of Src is intrinsically active and is suppressed by interactions with the regulatory SH3 and SH2 domains. The structural basis for why one isolated catalytic domain is intrinsically active while the other is inactive is not clear. In this current study, we identify the structural elements in the N-terminal lobe of the catalytic domain that render the Src catalytic domain active. These structural elements include the α-helix C region, a β-turn between the β-4 and β-5 strands, and an Arg residue at the beginning of the catalytic domain. These three motifs interact with each other to activate the Src catalytic domain, but the equivalent motifs in Csk directly interact with the regulatory domains that are important for Csk activation. The Src motifs can be grafted to the Csk catalytic domain to obtain an active Csk catalytic domain. These results, together with available Src and Csk tertiary structures, reveal an important structural switch that determines the kinase activity of a catalytic domain and dictates the regulatory strategy of a kinase. PMID:19244618
syk kinase activation by a src kinase-initiated activation loop phosphorylation chain reaction
El-Hillal, O.; Kurosaki, T.; Yamamura, H.; Kinet, J.-P.; Scharenberg, A. M.
1997-01-01
Activation of the syk tyrosine kinase occurs almost immediately following engagement of many types of antigen receptors, including Fc receptors, but the mechanism through which syk is activated is currently unclear. Here we demonstrate that Fc receptor-induced syk activation occurs as the result of phosphorylation of the syk activation loop by both src family kinases and other molecules of activated syk, suggesting that syk activation occurs as the result of a src kinase-initiated activation loop phosphorylation chain reaction. This type of activation mechanism predicts that syk activation would exhibit exponential kinetics, providing a potential explanation for its rapid and robust activation by even weak antigen receptor stimuli. We propose that a similar mechanism may be responsible for generating rapid activation of other cytoplasmic tyrosine kinases, such as those of the Bruton tyrosine kinase/tec family, as well. PMID:9050880
Zn2+-stimulation of sperm capacitation and of the acrosome reaction is mediated by EGFR activation.
Michailov, Yulia; Ickowicz, Debbi; Breitbart, Haim
2014-12-15
Extracellular zinc regulates cell proliferation via the MAP1 kinase pathway in several cell types, and has been shown to act as a signaling molecule. The testis contains a relatively high concentration of Zn(2+), required in both the early and late stages of spermatogenesis. Despite the clinical significance of this ion, its role in mature sperm cells is poorly understood. In this study, we characterized the role of Zn(2+) in sperm capacitation and in the acrosome reaction. Western blot analysis revealed the presence of ZnR of the GPR39 type in sperm cells. We previously demonstrated the presence of active epidermal growth factor receptor (EGFR) in sperm, its possible transactivation by direct activation of G-protein coupled receptor (GPCR), and its involvement in sperm capacitation and in the acrosome reaction (AR). We show here that Zn(2+) activates the EGFR during sperm capacitation, which is mediated by activation of trans-membrane adenylyl cyclase (tmAC), protein kinase A (PKA), and the tyrosine kinase, Src. Moreover, the addition of Zn(2+) to capacitated sperm caused further stimulation of EGFR and phosphatydil-inositol-3-kinase (PI3K) phosphorylation, leading to the AR. The stimulation of the AR by Zn(2+) also occurred in the absence of Ca(2+) in the incubation medium, and required the tmAC, indicating that Zn(2+) activates a GPCR. The AR stimulated by Zn(2+) is mediated by GPR39 receptor, PKA, Src and the EGFR, as well as the EGFR down-stream effectors PI3K, phospholipase C (PLC) and protein kinase C (PKC). These data support a role for extracellular zinc, acting through the ZnR, in regulating multiple signaling pathways in sperm capacitation and the acrosome reaction. Copyright © 2014 Elsevier Inc. All rights reserved.
HAO, ZHENFENG; QIAN, JING; YANG, JISHI
2015-01-01
The present study identified that shikonin, a naphthoquinone extracted from the roots of Lithospermum erythrorhizon, inhibits the migration of ovarian cancer cells and induces their apoptosis by impairing the phosphorylation of two kinases, proto-oncogene tyrosine protein kinase Src (Src) and focal adhesion kinase (FAK). Ovarian carcinoma SKOV-3 cells were treated with various concentrations of shikonin and analyzed for the effects on cell migration, invasion and apoptosis via Transwell assays and flow cytometry. In addition, the effects of shikonin administration on the expression and phosphorylation of Src and FAK in the SKOV-3 cells were analyzed by western blotting. Shikonin appeared to induce apoptosis and decrease cell migration in the SKOV-3 ovarian cells. Furthermore, the present study provides evidence that shikonin may exert these effects on human ovarian carcinoma cells via the inhibition of the protein tyrosine kinases, Src and FAK. Thus, shikonin should be considered for additional investigation as a candidate agent for the prevention and treatment of human ovarian cancer. PMID:25621031
Rosado, J A; Graves, D; Sage, S O
2000-01-01
We have recently reported that store-mediated Ca(2+) entry in platelets is likely to be mediated by a reversible trafficking and coupling of the endoplasmic reticulum with the plasma membrane, a model termed 'secretion-like coupling'. In this model the actin cytoskeleton plays a key regulatory role. Since tyrosine kinases have been shown to be important for Ca(2+) entry in platelets and other cells, we have now investigated the possible involvement of tyrosine kinases in the secretion-like-coupling model. Treatment of platelets with thrombin or thapsigargin induced actin polymerization by a calcium-independent pathway. Methyl 2,5-dihydroxycinnamate, a tyrosine kinase inhibitor, prevented thrombin- or thapsigargin-induced actin polymerization. The effects of tyrosine kinases in store-mediated Ca(2+) entry were found to be entirely dependent on the actin cytoskeleton. PP1, an inhibitor of the Src family of proteins, partially inhibited store-mediated Ca(2+) entry. In addition, depletion of intracellular Ca(2+) stores stimulated cytoskeletal association of the cytoplasmic tyrosine kinase pp60(src), a process that was sensitive to treatment with cytochalasin D and PP1, but not to inhibition of Ras proteins using prenylcysteine analogues. Finally, combined inhibition of both Ras proteins and tyrosine kinases resulted in complete inhibition of Ca(2+) entry, suggesting that these two families of proteins have independent effects in the activation of store-mediated Ca(2+) entry in human platelets. PMID:11023829
2012-01-01
Background Activated microglial cells are an important pathological component in brains of patients with neurodegenerative diseases. The purpose of this study was to investigate the effect of He-Ne (632.8 nm, 64.6 mW/cm2) low-level laser therapy (LLLT), a non-damaging physical therapy, on activated microglia, and the subsequent signaling events of LLLT-induced neuroprotective effects and phagocytic responses. Methods To model microglial activation, we treated the microglial BV2 cells with lipopolysaccharide (LPS). For the LLLT-induced neuroprotective study, neuronal cells with activated microglial cells in a Transwell™ cell-culture system were used. For the phagocytosis study, fluorescence-labeled microspheres were added into the treated microglial cells to confirm the role of LLLT. Results Our results showed that LLLT (20 J/cm2) could attenuate toll-like receptor (TLR)-mediated proinflammatory responses in microglia, characterized by down-regulation of proinflammatory cytokine expression and nitric oxide (NO) production. LLLT-triggered TLR signaling inhibition was achieved by activating tyrosine kinases Src and Syk, which led to MyD88 tyrosine phosphorylation, thus impairing MyD88-dependent proinflammatory signaling cascade. In addition, we found that Src activation could enhance Rac1 activity and F-actin accumulation that typify microglial phagocytic activity. We also found that Src/PI3K/Akt inhibitors prevented LLLT-stimulated Akt (Ser473 and Thr308) phosphorylation and blocked Rac1 activity and actin-based microglial phagocytosis, indicating the activation of Src/PI3K/Akt/Rac1 signaling pathway. Conclusions The present study underlines the importance of Src in suppressing inflammation and enhancing microglial phagocytic function in activated microglia during LLLT stimulation. We have identified a new and important neuroprotective signaling pathway that consists of regulation of microglial phagocytosis and inflammation under LLLT treatment. Our research may provide a feasible therapeutic approach to control the progression of neurodegenerative diseases. PMID:22989325
Myers, Margaret D; Dragone, Leonard L; Weiss, Arthur
2005-07-18
Src-like adaptor protein (SLAP) down-regulates expression of the T cell receptor (TCR)-CD3 complex during a specific stage of thymocyte development when the TCR repertoire is selected. Consequently, SLAP-/- thymocytes display alterations in thymocyte development. Here, we have studied the mechanism of SLAP function. We demonstrate that SLAP-deficient thymocytes have increased TCRzeta chain expression as a result of a defect in TCRzeta degradation. Failure to degrade TCRzeta leads to an increased pool of fully assembled TCR-CD3 complexes that are capable of recycling back to the cell surface. We also provide evidence that SLAP functions in a pathway that requires the phosphorylated TCRzeta chain and the Src family kinase Lck, but not ZAP-70 (zeta-associated protein of 70 kD). These studies reveal a unique mechanism by which SLAP contributes to the regulation of TCR expression during a distinct stage of thymocyte development.
Wu, Weijuan; Yang, Qing; Fung, Kar-Ming; Humphreys, Mitchell R; Brame, Lacy S; Cao, Amy; Fang, Yu-Ting; Shih, Pin-Tsen; Kropp, Bradley P; Lin, Hsueh-Kung
2014-03-05
Neuroendocrine (NE) differentiation has been attributed to the progression of castration-resistant prostate cancer (CRPC). Growth factor pathways including the epidermal growth factor receptor (EGFR) signaling have been implicated in the development of NE features and progression to a castration-resistant phenotype. However, upstream molecules that regulate the growth factor pathway remain largely unknown. Using androgen-insensitive bone metastasis PC-3 cells and androgen-sensitive lymph node metastasis LNCaP cells derived from human prostate cancer (PCa) patients, we demonstrated that γ-aminobutyric acid A receptor (GABA(A)R) ligand (GABA) and agonist (isoguvacine) stimulate cell proliferation, enhance EGF family members expression, and activate EGFR and a downstream signaling molecule, Src, in both PC-3 and LNCaP cells. Inclusion of a GABA(A)R antagonist, picrotoxin, or an EGFR tyrosine kinase inhibitor, Gefitinib (ZD1839 or Iressa), blocked isoguvacine and GABA-stimulated cell growth, trans-phospohorylation of EGFR, and tyrosyl phosphorylation of Src in both PCa cell lines. Spatial distributions of GABAAR α₁ and phosphorylated Src (Tyr416) were studied in human prostate tissues by immunohistochemistry. In contrast to extremely low or absence of GABA(A)R α₁-positive immunoreactivity in normal prostate epithelium, elevated GABA(A)R α₁ immunoreactivity was detected in prostate carcinomatous glands. Similarly, immunoreactivity of phospho-Src (Tyr416) was specifically localized and limited to the nucleoli of all invasive prostate carcinoma cells, but negative in normal tissues. Strong GABAAR α₁ immunoreactivity was spatially adjacent to the neoplastic glands where strong phospho-Src (Tyr416)-positive immunoreactivity was demonstrated, but not in adjacent to normal glands. These results suggest that the GABA signaling is linked to the EGFR pathway and may work through autocrine or paracine mechanism to promote CRPC progression. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Kashiwagi, Kenji; Ito, Sadahiro; Maeda, Shuichiro; Kato, Goro
2017-12-01
Src knockout mice show no detectable abnormalities in central nervous system (CNS) post-mitotic neurons, likely reflecting functional compensation by other Src family kinases. Cdk1- or Cdk5-dependent Ser75 phosphorylation in the amino-terminal Unique domain of Src, which shares no homology with other Src family kinases, regulates the stability of active Src. To clarify the roles of Src Ser75 phosphorylation in CNS neurons, we established two types of mutant mice with mutations in Src: phospho-mimicking Ser75Asp (SD) and non-phosphorylatable Ser75Ala (SA). In ageing SD/SD mice, retinal ganglion cell (RGC) number in whole retinas was significantly lower than that in young SD/SD mice in the absence of inflammation and elevated intraocular pressure, resembling the pathogenesis of progressive optic neuropathy. By contrast, SA/SA mice and wild-type (WT) mice exhibited no age-related RGC loss. The age-related retinal RGC number reduction was greater in the peripheral rather than the mid-peripheral region of the retina in SD/SD mice. Furthermore, Rho-associated kinase activity in whole retinas of ageing SD/SD mice was significantly higher than that in young SD/SD mice. These results suggest that Src regulates RGC survival during ageing in a manner that depends on Ser75 phosphorylation.
Zhou, Xiaoxu; Liu, Lirong; Masucci, Monica V.; Tang, Jinhua; Li, Xuezhu; Liu, Na; Bayliss, George; Zhao, Ting C.; Zhuang, Shougang
2017-01-01
Activation of Src kinase has been implicated in the pathogenesis of acute brain, liver, and lung injury. However, the role of Src in acute kidney injury (AKI) remains unestablished. To address this, we evaluated the effects of Src inhibition on renal dysfunction and pathological changes in a murine model of AKI induced by ischemia/reperfusion (I/R). I/R injury to the kidney resulted in increased Src phosphorylation at tyrosine 416 (activation). Administration of PP1, a highly selective Src inhibitor, blocked Src phosphorylation, improved renal function and ameliorated renal pathological damage. PP1 treatment also suppressed renal expression of neutrophil gelatinase-associated lipocalin and reduced apoptosis in the injured kidney. Moreover, Src inhibition prevented downregulation of several adherens and tight junction proteins, including E-cadherin, ZO-1, and claudins-1/−4 in the kidney after I/R injury as well as in cultured renal proximal tubular cells following oxidative stress. Finally, PP1 inhibited I/R–induced renal expression of matrix metalloproteinase-2 and -9, phosphorylation of extracellular signal–regulated kinases1/2, signal transducer and activator of transcription-3, and nuclear factor-κB, and the infiltration of macrophages into the kidney. These data indicate that Src is a pivotal mediator of renal epithelial injury and that its inhibition may have a therapeutic potential to treat AKI. PMID:28415724
Hiscox, Stephen; Barrett-Lee, Peter; Borley, Annabel C; Nicholson, Robert I
2010-08-01
Aromatase inhibitors have largely replaced tamoxifen as the first-line treatment for postmenopausal women with metastatic, hormone receptor-positive (HR+) breast cancer. However, many patients develop clinical resistance with prolonged treatment, and oestrogen deprivation following aromatase inhibition can result in loss of bone mineral density. Furthermore, most patients with metastatic breast cancer develop bone metastases, and the resulting adverse skeletal-related events are a significant cause of patient morbidity. Src, a non-receptor tyrosine kinase, is a component of signalling pathways that regulate breast cancer cell proliferation, invasion and metastasis as well as osteoclast-mediated bone turnover. Preclinical evidence also suggests a role for Src in acquired endocrine resistance. As such, Src inhibition represents a logical strategy for the treatment of metastatic breast cancer. In vitro, combination therapy with Src inhibitors and endocrine agents, including aromatase inhibitors, has been shown to inhibit the proliferation and metastasis of both endocrine-responsive and endocrine-resistant breast cancer cell lines more effectively than either of the therapy alone. Src inhibition has also been shown to suppress osteoclast formation and activity. Combination therapy with aromatase inhibitors and Src inhibitors therefore represents a novel approach through which the development of both acquired resistance and bone pathology could be delayed. Data from clinical trials utilising such combinations will reveal if this strategy has the potential to improve patient outcomes. Copyright 2010 Elsevier Ltd. All rights reserved.
Eichhorn, Pieter J. A; Creyghton, Menno P; Wilhelmsen, Kevin; van Dam, Hans; Bernards, René
2007-01-01
Protein Phosphatase type 2A (PP2A) represents a family of holoenzyme complexes with diverse biological activities. Specific holoenzyme complexes are thought to be deregulated during oncogenic transformation and oncogene-induced signaling. Since most studies on the role of this phosphatase family have relied on the use of generic PP2A inhibitors, the contribution of individual PP2A holoenzyme complexes in PP2A-controlled signaling pathways is largely unclear. To gain insight into this, we have constructed a set of shRNA vectors targeting the individual PP2A regulatory subunits for suppression by RNA interference. Here, we identify PR55γ and PR55δ as inhibitors of c-Jun NH2-terminal kinase (JNK) activation by UV irradiation. We show that PR55γ binds c-SRC and modulates the phosphorylation of serine 12 of c-SRC, a residue we demonstrate to be required for JNK activation by c-SRC. We also find that the physical interaction between PR55γ and c-SRC is sensitive to UV irradiation. Our data reveal a novel mechanism of c-SRC regulation whereby in response to stress c-SRC activity is regulated, at least in part, through loss of the interaction with its inhibitor, PR55γ. PMID:18069897
Activated d16HER2 homodimers and SRC kinase mediate optimal efficacy for trastuzumab.
Castagnoli, Lorenzo; Iezzi, Manuela; Ghedini, Gaia C; Ciravolo, Valentina; Marzano, Giulia; Lamolinara, Alessia; Zappasodi, Roberta; Gasparini, Patrizia; Campiglio, Manuela; Amici, Augusto; Chiodoni, Claudia; Palladini, Arianna; Lollini, Pier Luigi; Triulzi, Tiziana; Menard, Sylvie; Nanni, Patrizia; Tagliabue, Elda; Pupa, Serenella M
2014-11-01
A splice isoform of the HER2 receptor that lacks exon 16 (d16HER2) is expressed in many HER2-positive breast tumors, where it has been linked with resistance to the HER2-targeting antibody trastuzumab, but the impact of d16HER2 on tumor pathobiology and therapeutic response remains uncertain. Here, we provide genetic evidence in transgenic mice that expression of d16HER2 is sufficient to accelerate mammary tumorigenesis and improve the response to trastuzumab. A comparative analysis of effector signaling pathways activated by d16HER2 and wild-type HER2 revealed that d16HER2 was optimally functional through a link to SRC activation (pSRC). Clinically, HER2-positive breast cancers from patients who received trastuzumab exhibited a positive correlation in d16HER2 and pSRC abundance, consistent with the mouse genetic results. Moreover, patients expressing high pSRC or an activated "d16HER2 metagene" were found to derive the greatest benefit from trastuzumab treatment. Overall, our results establish the d16HER2 signaling axis as a signature for decreased risk of relapse after trastuzumab treatment. ©2014 American Association for Cancer Research.
Kim, Jong Hun; Auger, Cyril; Kurita, Ikuko; Anselm, Eric; Rivoarilala, Lalainasoa Odile; Lee, Hyong Joo; Lee, Ki Won; Schini-Kerth, Valérie B
2013-11-30
This study examined the ability of Aronia melanocarpa (chokeberry) juice, a rich source of polyphenols, to cause NO-mediated endothelium-dependent relaxations of isolated coronary arteries and, if so, to determine the underlying mechanism and the active polyphenols. A. melanocarpa juice caused potent endothelium-dependent relaxations in porcine coronary artery rings. Relaxations to A. melanocarpa juice were minimally affected by inhibition of the formation of vasoactive prostanoids and endothelium-derived hyperpolarizing factor-mediated responses, and markedly reduced by N(ω)-nitro-l-arginine (endothelial NO synthase (eNOS) inhibitor), membrane permeant analogs of superoxide dismutase and catalase, PP2 (Src kinase inhibitor), and wortmannin (PI3-kinase inhibitor). In cultured endothelial cells, A. melanocarpa juice increased the formation of NO as assessed by electron paramagnetic resonance spectroscopy using the spin trap iron(II)diethyldithiocarbamate, and reactive oxygen species using dihydroethidium. These responses were associated with the redox-sensitive phosphorylation of Src, Akt and eNOS. A. melanocarpa juice-derived fractions containing conjugated cyanidins and chlorogenic acids induced the phosphorylation of Akt and eNOS. The present findings indicate that A. melanocarpa juice is a potent stimulator of the endothelial formation of NO in coronary arteries; this effect involves the phosphorylation of eNOS via the redox-sensitive activation of the Src/PI3-kinase/Akt pathway mostly by conjugated cyanidins and chlorogenic acids. Copyright © 2013. Published by Elsevier Inc.
Karim, Ahmad Faisal; Chandra, Pallavi; Chopra, Aanchal; Siddiqui, Zaved; Bhaskar, Ashima; Singh, Amit; Kumar, Dhiraj
2011-11-18
Global gene expression profiling has emerged as a major tool in understanding complex response patterns of biological systems to perturbations. However, a lack of unbiased analytical approaches has restricted the utility of complex microarray data to gain novel system level insights. Here we report a strategy, express path analysis (EPA), that helps to establish various pathways differentially recruited to achieve specific cellular responses under contrasting environmental conditions in an unbiased manner. The analysis superimposes differentially regulated genes between contrasting environments onto the network of functional protein associations followed by a series of iterative enrichments and network analysis. To test the utility of the approach, we infected THP1 macrophage cells with a virulent Mycobacterium tuberculosis strain (H37Rv) or the attenuated non-virulent strain H37Ra as contrasting perturbations and generated the temporal global expression profiles. EPA of the results provided details of response-specific and time-dependent host molecular network perturbations. Further analysis identified tyrosine kinase Src as the major regulatory hub discriminating the responses between wild-type and attenuated Mtb infection. We were then able to verify this novel role of Src experimentally and show that Src executes its role through regulating two vital antimicrobial processes of the host cells (i.e. autophagy and acidification of phagolysosome). These results bear significant potential for developing novel anti-tuberculosis therapy. We propose that EPA could prove extremely useful in understanding complex cellular responses for a variety of perturbations, including pathogenic infections.
Targeting Src in Mucinous Ovarian Carcinoma
Matsuo, Koji; Nishimura, Masato; Bottsford-Miller, Justin N.; Huang1, Jie; Komurov, Kakajan; Armaiz-Pena, Guillermo N.; Shahzad, Mian M. K.; Stone, Rebecca L.; Roh, Ju Won; Sanguino, Angela M.; Lu, Chunhua; Im, Dwight D.; Rosenshien, Neil B.; Sakakibara, Atsuko; Nagano, Tadayoshi; Yamasaki, Masato; Enomoto, Takayuki; Kimura, Tadashi; Ram, Prahlad T.; Schmeler, Kathleen M.; Gallick, Gary E.; Wong, Kwong K.; Frumovitz, Michael; Sood, Anil K.
2014-01-01
PURPOSE Mucinous ovarian carcinomas have a distinct clinical pattern compared to other subtypes of ovarian carcinoma. Here, we evaluated (i) stage-specific clinical significance of mucinous ovarian carcinomas in a large cohort and (ii) the functional role of src kinase in pre-clinical models of mucinous ovarian carcinoma. EXPERIMENTAL DESIGN 1302 ovarian cancer patients including 122 (9.4%) cases of mucinous carcinoma were evaluated for survival analyses. Biological effects of src kinase inhibition were tested in a novel orthotopic mucinous ovarian cancer model (RMUG-S-ip2) using dasatinib-based therapy. RESULTS Patients with advanced-stage mucinous ovarian cancer had significantly worse survival compared to those with serous histology: median overall survival, 1.67 versus 3.41 years, p=0.002; and median survival time after recurrence of 0.53 versus 1.66 years, p<0.0001. Among multiple ovarian cancer cell lines, RMUG-S-ip2 mucinous ovarian cancer cells showed the highest src kinase activity. Moreover, oxaliplatin treatment induced phosphorylation of src kinase. This induced activity by oxaliplatin therapy was inhibited by concurrent administration of dasatinib. Targeting src with dasatinib in vivo showed significant anti-tumor effects in the RMUG-S-ip2 model, but not in the serous ovarian carcinoma (SKOV3-TR) model. Combination therapy of oxaliplatin with dasatinib further demonstrated significant effects on reducing cell viability, increasing apoptosis, and in vivo anti-tumor effects in the RMUG-S-ip2 model. CONCLUSIONS Our results suggest that poor survival of women with mucinous ovarian carcinoma is associated with resistance to cytotoxic therapy. Targeting src kinase with combination of dasatinib and oxaliplatin may be an attractive approach in this disease. PMID:21737505
Ritchie, Shawn A.; Pasha, Mohammed K.; Batten, Danielle J. P.; Sharma, Rajendra K.; Olson, Douglas J. H.; Ross, Andrew R. S.; Bonham, Keith
2003-01-01
The human SRC gene encodes pp60c–src, a non-receptor tyrosine kinase involved in numerous signaling pathways. Activation or overexpression of c-Src has also been linked to a number of important human cancers. Transcription of the SRC gene is complex and regulated by two closely linked but highly dissimilar promoters, each associated with its own distinct non-coding exon. In many tissues SRC expression is regulated by the housekeeping-like SRC1A promoter. In addition to other regulatory elements, three substantial polypurine:polypyrimidine (TC) tracts within this promoter are required for full transcriptional activity. Previously, we described an unusual factor called SRC pyrimidine-binding protein (SPy) that could bind to two of these TC tracts in their double-stranded form, but was also capable of interacting with higher affinity to all three pyrimidine tracts in their single-stranded form. Mutations in the TC tracts, which abolished the ability of SPy to interact with its double-stranded DNA target, significantly reduced SRC1A promoter activity, especially in concert with mutations in critical Sp1 binding sites. Here we expand upon our characterization of this interesting factor and describe the purification of SPy from human SW620 colon cancer cells using a DNA affinity-based approach. Subsequent in-gel tryptic digestion of purified SPy followed by MALDI-TOF mass spectrometric analysis identified SPy as heterogeneous nuclear ribonucleoprotein K (hnRNP K), a known nucleic-acid binding protein implicated in various aspects of gene expression including transcription. These data provide new insights into the double- and single-stranded DNA-binding specificity, as well as functional properties of hnRNP K, and suggest that hnRNP K is a critical component of SRC1A transcriptional processes. PMID:12595559
Antiangiogenic and Antitumor Effects of Src Inhibition in Ovarian Carcinoma
Han, Liz Y.; Landen, Charles N.; Trevino, Jose G.; Halder, Jyotsnabaran; Lin, Yvonne G.; Kamat, Aparna A.; Kim, Tae-Jin; Merritt, William M.; Coleman, Robert L.; Gershenson, David M.; Shakespeare, William C.; Wang, Yihan; Sundaramoorth, Raji; Metcalf, Chester A.; Dalgarno, David C.; Sawyer, Tomi K.; Gallick, Gary E.; Sood, Anil K.
2011-01-01
Src, a nonreceptor tyrosine kinase, is a key mediator for multiple signaling pathways that regulate critical cellular functions and is often aberrantly activated in a number of solid tumors, including ovarian carcinoma. The purpose of this study was to determine the role of activated Src inhibition on tumor growth in an orthotopic murine model of ovarian carcinoma. In vitro studies on HeyA8 and SKOV3ip1 cell lines revealed that Src inhibition by the Src-selective inhibitor, AP23846, occurred within 1 hour and responded in a dose-dependent manner. Furthermore, Src inhibition enhanced the cytotoxicity of docetaxel in both chemosensitive and chemoresistant ovarian cancer cell lines, HeyA8 and HeyA8-MDR, respectively. In vivo, Src inhibition by AP23994, an orally bioavailable analogue of AP23846, significantly decreased tumor burden in HeyA8 (P = 0.02), SKOV3ip1 (P = 0.01), as well as HeyA8-MDR (P < 0.03) relative to the untreated controls. However, the greatest effect on tumor reduction was observed in combination therapy with docetaxel (P < 0.001, P = 0.002, and P = 0.01, for the above models, respectively). Proliferating cell nuclear antigen staining showed that Src inhibition alone (P = 0.02) and in combination with docetaxel (P = 0.007) significantly reduced tumor proliferation. In addition, Src inhibition alone and in combination with docetaxel significantly down-regulated tumoral production of vascular endothelial growth factor and interleukin 8, whereas combination therapy decreased the microvessel density (P = 0.02) and significantly affected vascular permeability (P < 0.05). In summary, Src inhibition with AP23994 has potent antiangiogenic effects and significantly reduces tumor burden in preclinical ovarian cancer models. Thus, Src inhibition may be an attractive therapeutic approach for patients with ovarian carcinoma. PMID:16951177
Azam, Mohammad; Nardi, Valentina; Shakespeare, William C.; Metcalf, Chester A.; Bohacek, Regine S.; Wang, Yihan; Sundaramoorthi, Raji; Sliz, Piotr; Veach, Darren R.; Bornmann, William G.; Clarkson, Bayard; Dalgarno, David C.; Sawyer, Tomi K.; Daley, George Q.
2006-01-01
Mutation in the ABL kinase domain is the principal mechanism of imatinib resistance in patients with chronic myelogenous leukemia. Many mutations favor active kinase conformations that preclude imatinib binding. Because the active forms of ABL and SRC resemble one another, we tested two dual SRC-ABL kinase inhibitors, AP23464 and PD166326, against 58 imatinib-resistant (IMR) BCR/ABL kinase variants. Both compounds potently inhibit most IMR variants, and in vitro drug selection demonstrates that active (AP23464) and open (PD166326) conformation-specific compounds are less susceptible to resistance than imatinib. Combinations of inhibitors suppressed essentially all resistance mutations, with the notable exception of T315I. Guided by mutagenesis studies and molecular modeling, we designed a series of AP23464 analogues to target T315I. The analogue AP23846 inhibited both native and T315I variants of BCR/ABL with submicromolar potency but showed nonspecific cellular toxicity. Our data illustrate how conformational dynamics of the ABL kinase accounts for the activity of dual SRC-ABL inhibitors against IMR-mutants and provides a rationale for combining conformation specific inhibitors to suppress resistance. PMID:16754879
An SH2 domain-based tyrosine kinase assay using biotin ligase modified with a terbium(III) complex.
Sueda, Shinji; Shinboku, Yuki; Kusaba, Takeshi
2013-01-01
Src homology 2 (SH2) domains are modules of approximately 100 amino acids and are known to bind phosphotyrosine-containing sequences with high affinity and specificity. In the present work, we developed an SH2 domain-based assay for Src tyrosine kinase using a unique biotinylation reaction from archaeon Sulfolobus tokodaii. S. tokodaii biotinylation has a unique property that biotin protein ligase (BPL) forms a stable complex with its biotinylated substrate protein (BCCP). Here, an SH2 domain from lymphocyte-specific tyrosine kinase was genetically fused to a truncated BCCP, and the resulting fusion protein was labeled through biotinylation with BPL carrying multiple copies of a luminescent Tb(3+) complex. The labeled SH2 fusion proteins were employed to detect a phosphorylated peptide immobilized on the surface of the microtiter plate, where the phosphorylated peptide was produced by phosphorylation to the substrate peptide by Src tyrosine kinase. Our assay allows for a reliable determination of the activity of Src kinase lower than 10 pg/μL by a simple procedure.
Leist, Michael; Rinné, Susanne; Datunashvili, Maia; Aissaoui, Ania; Pape, Hans-Christian; Decher, Niels; Meuth, Sven G; Budde, Thomas
2017-09-01
The ascending brainstem transmitter acetylcholine depolarizes thalamocortical relay neurons while it induces hyperpolarization in local circuit inhibitory interneurons. Sustained K + currents are modulated in thalamic neurons to control their activity modes; for the interneurons the molecular nature of the underlying ion channels is as yet unknown. Activation of TASK-1 K + channels results in hyperpolarization of interneurons and suppression of their action potential firing. The modulation cascade involves a non-receptor tyrosine kinase, c-Src. The present study identifies a novel pathway for the activation of TASK-1 channels in CNS neurons that resembles cholinergic signalling and TASK-1 current modulation during hypoxia in smooth muscle cells. The dorsal part of the lateral geniculate nucleus (dLGN) is the main thalamic site for state-dependent transmission of visual information. Non-retinal inputs from the ascending arousal system and inhibition provided by γ-aminobutyric acid (GABA)ergic local circuit interneurons (INs) control neuronal activity within the dLGN. In particular, acetylcholine (ACh) depolarizes thalamocortical relay neurons by inhibiting two-pore domain potassium (K 2P ) channels. Conversely, ACh also hyperpolarizes INs via an as-yet-unknown mechanism. By using whole cell patch-clamp recordings in brain slices and appropriate pharmacological tools we here report that stimulation of type 2 muscarinic ACh receptors induces IN hyperpolarization by recruiting the G-protein βγ subunit (Gβγ), class-1A phosphatidylinositol-4,5-bisphosphate 3-kinase, and cellular and sarcoma (c-Src) tyrosine kinase, leading to activation of two-pore domain weakly inwardly rectifying K + channel (TWIK)-related acid-sensitive K + (TASK)-1 channels. The latter was confirmed by the use of TASK-1-deficient mice. Furthermore inhibition of phospholipase Cβ as well as an increase in the intracellular level of phosphatidylinositol-3,4,5-trisphosphate facilitated the muscarinic effect. Our results have uncovered a previously unknown role of c-Src tyrosine kinase in regulating IN function in the brain and identified a novel mechanism by which TASK-1 channels are activated in neurons. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Moore, S F; Hunter, R W; Hers, I
2014-05-01
Rapamycin, an inhibitor of mammalian target of rapamycin complex-1 (mTORC1), reduces platelet spreading, thrombus stability, and clot retraction. Despite an important role of mTORC1 in platelet function, little is known about how it is regulated. The objective of this study was to determine the signaling pathways that regulate mTORC1 in human platelets. Mammalian target of rapamycin complex-1 activation was assessed by measuring the phosphorylation of its downstream substrate ribosomal S6 kinase 1 (p70S6K). Thrombin or the protein kinase C (PKC) activator phorbal 12-myristate 13-acetate stimulated activation of mTORC1 in a PKC-dependent, Akt-independent manner that correlated with phosphorylation of tuberin/tuberous sclerosis 2 (TSC2) (Ser939 and Thr1462). In contrast, insulin-like growth factor 1 (IGF-1)-stimulated TSC2 phosphorylation was completely dependent on phosphoinositide 3 kinase (PI3 kinase)/Akt but did not result in any detectable mTORC1 activation. Early (Ser939 and Thr1462) and late (Thr1462) TSC2 phosphorylation in response to thrombin were directly PKC dependent, whereas later TSC2 (Ser939) and p70S6K phosphorylation were largely dependent on paracrine signaling through P2Y(12). PKC-mediated adenosine diphosphate (ADP) secretion was essential for thrombin-stimulated mTORC1 activation, as (i) ADP rescued p70S6K phosphorylation in the presence of a PKC inhibitor and (ii) P2Y(12) antagonism prevented thrombin-mediated mTORC1 activation. Rescue of mTORC1 activation with exogenous ADP was completely dependent on the Src family kinases but independent of PI3 kinase/Akt. Interestingly, although inhibition of Src blocked the ADP rescue, it had little effect on thrombin-stimulated p70S6K phosphorylation under conditions where PKC was not inhibited. These results demonstrate that thrombin activates the mTORC1 pathway in human platelets through PKC-mediated ADP secretion and subsequent activation of P2Y(12), in a manner largely independent of the canonical PI3 kinase/Akt pathway. © 2014 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.
Moore, S F; Hunter, R W; Hers, I
2014-01-01
Background Rapamycin, an inhibitor of mammalian target of rapamycin complex-1 (mTORC1), reduces platelet spreading, thrombus stability, and clot retraction. Despite an important role of mTORC1 in platelet function, little is known about how it is regulated. The objective of this study was to determine the signaling pathways that regulate mTORC1 in human platelets. Methods Mammalian target of rapamycin complex-1 activation was assessed by measuring the phosphorylation of its downstream substrate ribosomal S6 kinase 1 (p70S6K). Results Thrombin or the protein kinase C (PKC) activator phorbal 12-myristate 13-acetate stimulated activation of mTORC1 in a PKC-dependent, Akt-independent manner that correlated with phosphorylation of tuberin/tuberous sclerosis 2 (TSC2) (Ser939 and Thr1462). In contrast, insulin-like growth factor 1 (IGF-1)–stimulated TSC2 phosphorylation was completely dependent on phosphoinositide 3 kinase (PI3 kinase)/Akt but did not result in any detectable mTORC1 activation. Early (Ser939 and Thr1462) and late (Thr1462) TSC2 phosphorylation in response to thrombin were directly PKC dependent, whereas later TSC2 (Ser939) and p70S6K phosphorylation were largely dependent on paracrine signaling through P2Y12. PKC-mediated adenosine diphosphate (ADP) secretion was essential for thrombin-stimulated mTORC1 activation, as (i) ADP rescued p70S6K phosphorylation in the presence of a PKC inhibitor and (ii) P2Y12 antagonism prevented thrombin-mediated mTORC1 activation. Rescue of mTORC1 activation with exogenous ADP was completely dependent on the Src family kinases but independent of PI3 kinase/Akt. Interestingly, although inhibition of Src blocked the ADP rescue, it had little effect on thrombin-stimulated p70S6K phosphorylation under conditions where PKC was not inhibited. Conclusion These results demonstrate that thrombin activates the mTORC1 pathway in human platelets through PKC-mediated ADP secretion and subsequent activation of P2Y12, in a manner largely independent of the canonical PI3 kinase/Akt pathway. PMID:24612393
Ashour, Ahmed A; Gurbuz, Nilgun; Alpay, Sultan Neslihan; Abdel-Aziz, Abdel-Aziz H; Mansour, Ahmed M; Huo, Longfei; Ozpolat, Bulent
2014-01-01
Pancreatic ductal adenocarcinoma is one of the lethal cancers with extensive local tumour invasion, metastasis, early systemic dissemination and poorest prognosis. Thus, understanding the mechanisms regulating invasion/metastasis and epithelial–mesenchymal transition (EMT), is the key for developing effective therapeutic strategies for pancreatic cancer (PaCa). Eukaryotic elongation factor-2 kinase (eEF-2K) is an atypical kinase that we found to be highly up-regulated in PaCa cells. However, its role in PaCa invasion/progression remains unknown. Here, we investigated the role of eEF-2K in cellular invasion, and we found that down-regulation of eEF-2K, by siRNA or rottlerin, displays impairment of PaCa cells invasion/migration, with significant decreases in the expression of tissue transglutaminase (TG2), the multifunctional enzyme implicated in regulation of cell attachment, motility and survival. These events were associated with reductions in β1 integrin/uPAR/MMP-2 expressions as well as decrease in Src activity. Furthermore, inhibition of eEF-2K/TG2 axis suppresses the EMT, as demonstrated by the modulation of the zinc finger transcription factors, ZEB1/Snail, and the tight junction proteins, claudins. Importantly, while eEF-2K silencing recapitulates the rottlerin-induced inhibition of invasion and correlated events, eEF-2K overexpression, by lentivirus-based expression system, suppresses such rottlerin effects and potentiates PaCa cells invasion/migration capability. Collectively, our results show, for the first time, that eEF-2K is involved in regulation of the invasive phenotype of PaCa cells through promoting a new signalling pathway, which is mediated by TG2/β1 integrin/Src/uPAR/MMP-2, and the induction of EMT biomarkers which enhance cancer cell motility and metastatic potential. Thus, eEF-2K could represent a novel potential therapeutic target in pancreatic cancer. PMID:25215932
The tumor suppressor DAPK is reciprocally regulated by tyrosine kinase Src and phosphatase LAR.
Wang, Won-Jing; Kuo, Jean-Cheng; Ku, Wei; Lee, Yu-Ru; Lin, Feng-Chi; Chang, Yih-Leong; Lin, Yu-Min; Chen, Chun-Hau; Huang, Yuan-Ping; Chiang, Meng-Jung; Yeh, Sheng-Wen; Wu, Pei-Rung; Shen, Che-Hung; Wu, Chen-Tu; Chen, Ruey-Hwa
2007-09-07
Death-associated protein kinase (DAPK) is a calmodulin-regulated serine/threonine kinase and elicits tumor suppression function through inhibiting cell adhesion/migration and promoting apoptosis. Despite these biological functions, the signaling mechanisms through which DAPK is regulated remain largely elusive. Here, we show that the leukocyte common antigen-related (LAR) tyrosine phosphatase dephosphorylates DAPK at pY491/492 to stimulate the catalytic, proapoptotic, and antiadhesion/antimigration activities of DAPK. Conversely, Src phosphorylates DAPK at Y491/492, which induces DAPK intra-/intermolecular interaction and inactivation. Upon EGF stimulation, a rapid Src activation leads to subsequent LAR downregulation, and these two events act in synergism to inactivate DAPK, thereby facilitating tumor cell migration and invasion toward EGF. Finally, DAPK Y491/492 hyperphosphorylation is found in human cancers in which Src activity is aberrantly elevated. These results identify LAR and Src as a DAPK regulator through their reciprocal modification of DAPK Y491/492 residues and establish a functional link of this DAPK-regulatory circuit to tumor progression.
Hck is a key regulator of gene expression in alternatively activated human monocytes.
Bhattacharjee, Ashish; Pal, Srabani; Feldman, Gerald M; Cathcart, Martha K
2011-10-21
IL-13 is a Th2 cytokine that promotes alternative activation (M2 polarization) in primary human monocytes. Our studies have characterized the functional IL-13 receptor complex and the downstream signaling events in response to IL-13 stimulation in alternatively activated monocytes/macrophages. In this report, we present evidence that IL-13 induces the activation of a Src family tyrosine kinase, which is required for IL-13 induction of M2 gene expression, including 15-lipoxygenase (15-LO). Our data show that Src kinase activity regulates IL-13-induced p38 MAPK tyrosine phosphorylation via the upstream kinases MKK3 or MKK6. Our findings also reveal that the IL-13 receptor-associated tyrosine kinase Jak2 is required for the activation of both Src kinase as well as p38 MAPK. Further, we found that Src tyrosine kinase-mediated activation of p38 MAPK is required for Stat1 and Stat3 serine 727 phosphorylation in alternatively activated monocytes/macrophages. Additional studies identify Hck as the specific Src family member, stimulated by IL-13 and involved in regulating both p38 MAPK activation and p38 MAPK-mediated 15-LO expression. Finally we show that the Hck regulates the expression of other alternative state (M2)-specific genes (Mannose receptor, MAO-A, and CD36) and therefore conclude that Hck acts as a key regulator controlling gene expression in alternatively activated monocytes/macrophages.
Bairy, Santhosh Kumar; Suneel Kumar, B V S; Bhalla, Joseph Uday Tej; Pramod, A B; Ravikumar, Muttineni
2009-04-01
c-Src kinase play an important role in cell growth and differentiation and its inhibitors can be useful for the treatment of various diseases, including cancer, osteoporosis, and metastatic bone disease. Three dimensional quantitative structure-activity relationship (3D-QSAR) studies were carried out on quinazolin derivatives inhibiting c-Src kinase. Molecular field analysis (MFA) models with four different alignment techniques, namely, GLIDE, GOLD, LIGANDFIT and Least squares based methods were developed. glide based MFA model showed better results (Leave one out cross validation correlation coefficient r(2)(cv) = 0.923 and non-cross validation correlation coefficient r(2)= 0.958) when compared with other models. These results help us to understand the nature of descriptors required for activity of these compounds and thereby provide guidelines to design novel and potent c-Src kinase inhibitors.
Van Raemdonck, Katrien; Gouwy, Mieke; Lepers, Stefanie Antoinette; Van Damme, Jo; Struyf, Sofie
2014-07-01
CXC chemokines influence a variety of biological processes, such as angiogenesis, both in a physiological and pathological context. Platelet factor-4 (PF-4)/CXCL4 and its variant PF-4var/CXCL4L1 are known to favor angiostasis by inhibiting endothelial cell proliferation and chemotaxis. CXCL4L1 in particular is a potent inhibitor of angiogenesis with anti-tumoral characteristics, both through regulation of neovascularization and through attraction of activated lymphocytes. However, its underlying signaling pathways remain to be elucidated. Here, we have identified various intracellular pathways activated by CXCL4L1 in comparison with other CXCR3 ligands, including CXCL4 and interferon-γ-induced protein 10/CXCL10. Signaling experiments show involvement of the mitogen-activated protein kinase (MAPK) family in CXCR3A-transfected cells, activated lymphocytes and human microvascular endothelial cells (HMVEC). In CXCR3A transfectants, CXCL4 and CXCL4L1 activated p38 MAPK, as well as Src kinase within 30 and 5 min, respectively. Extracellular signal-regulated kinase (ERK) phosphorylation occurred in activated lymphocytes, yet was inhibited in microvascular and lymphatic endothelial cells. CXCL4L1 and CXCL4 counterbalanced the angiogenic chemokine stromal cell-derived factor-1/CXCL12 in both endothelial cell types. Notably, inhibition of ERK signaling by CXCL4L1 and CXCL4 in lymphatic endothelial cells implies that these chemokines might also regulate lymphangiogenesis. Furthermore, CXCL4, CXCL4L1 and CXCL10 slightly enhanced forskolin-stimulated cAMP production in HMVEC. Finally, CXCL4, but not CXCL4L1, induced activation of p70S6 kinase within 5 min in HMVEC. Our findings confirm that the angiostatic chemokines CXCL4L1 and CXCL4 activate both CXCR3A and CXCR3B and bring new insights into the complexity of their signaling cascades.
Maa, Ming-Chei; Leu, Tzeng-Horng
2016-06-01
As an evolutionarily conserved mechanism, innate immunity controls self-nonself discrimination to protect a host from invasive pathogens. Macrophages are major participants of the innate immune system. Through the activation of diverse Toll-like receptors (TLRs), macrophages are triggered to initiate a variety of functions including locomotion, phagocytosis, and secretion of cytokines that requires the participation of tyrosine kinases. Fgr, Hck, and Lyn are myeloid-specific Src family kinases. Despite their constitutively high expression in macrophages, their absence does not impair LPS responsiveness. In contrast, Src, a barely detectable tyrosine kinase in resting macrophages, becomes greatly inducible in response to TLR engagement, implicating its role in macrophage activation. Indeed, silencing Src suppresses the activated TLR-mediated migration, phagocytosis, and interferon-beta (IFN-β) secretion in macrophages. And these physiological defects can be restored by the introduction of siRNA-resistant Src. Notably, the elevated expression and activity of Src is inducible nitric oxide synthase (iNOS)-dependent. Due to (1) iNOS being a NF-κB target, which can be induced by various TLR ligands, (2) Src can mediate NF-κB activation, therefore, there ought to exist a loop of signal amplification that regulates macrophage physiology in response to the engagement of TLRs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chackalaparampil, I.; Mukherjee, B.B.; Peri, A.
1994-09-01
Osteopetrosis, affecting mice and humans alike, arises from reduced or impaired bone resorption, causing abnormally dense bone formation. Normal bone differentiation requires continuous resorption and remodeling by osteoclasts which are derived from monocyte/macrophage lineage in the bone marrow. It has been reported that targeted homozygous disruption of c-src proto-oncogene in mice results in the development of osteopetrosis due to impaired bone-resorbing function of osteoclast cells. However, the molecular mechanism(s) which leads to osteoclast dysfunction in c-src deficient (src{sup -/-}) mice remains unclear. Here, we report that in embryonic fibroblasts derived from homozygous Src{sup -/-} mice, the expression of the genemore » coding for osteopontin (OP), a phosphorylated glycoprotein involved in bone differentiation, is drastically repressed. OP gene expression is not, however, affected in the heterozygous (Src{sup +/-}) mutant cells of identical origin, or in the c-src expression and OP production. Moreover, OP expression in c-src-deficient cells could be rescued upon treatment with 12-0-tetradecanoyl phorbol-13-myristate-acetate or okadaic acid. These observations indicate that OP expression is regulated via an src-mediated protein kinase C signaling pathway. Since it is known that OP mediates osteoclast adherence to the bone matrix, a key event in bone differentiation, our data is most significant in that they strongly suggest that drastic inhibition of synthesis of OP prevents osteoclasts in Src{sup -/-} mice from anchoring to the bone matrix. Consequently, this disruption of osteoclast adherence impairs their ability to form bone-resorbing ruffled border, causing osteopetrosis.« less
Kramer, Benedikt; Kneissle, Marcel; Birk, Richard; Rotter, Nicole; Aderhold, Christoph
2018-05-01
Therapeutic options of locally advanced or metastatic head and neck squamous cell carcinoma (HNSCC) are limited. Src and cKIT are key protein regulators for local tumor progression. The aim of the study was to investigate the therapeutic potential of targeted therapies in human squamous cell carcinoma (HNSCC) in vitro. Therefore, the influence of the selective tyrosine kinase inhibitors niotinib, dasatinib, erlotinib, gefitinib and afatinib on Src and cKIT expression in Human papilloma virus (HPV)-positive and HPV-negative squamous cancer cells (SCC) was analyzed in vitro. ELISA was performed to evaluate the expression of Src and cKIT under the influence of nilotinib, dasatinib, erlotinib, gefitinib and afatinib (10 μmol/l) in HPV-negative and HPV-positive SCC (24-96 h of incubation). Gefitinib significantly increased cKIT expression in HPV-positive and HPV-negative cells whereas nilotinib and afatinib decreased cKIT expression in HPV-positive SCC. The influence of tyrosine kinase inhibitors in HPV-negative SCC was marginal. Surprisingly, Src expression was significantly increased by all tested tyrosine kinase inhibitors in HPV-positive SCC. The results revealed beneficial and unexpected information concerning the interaction of selective tyrosine kinase inhibitors and the tumor biology of HNSCC. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Bai, Zhengya; Hou, Shasha; Zhang, Shilei; Li, Zhongyan; Zhou, Peng
2017-04-24
Previously, we have reported a new biomolecular phenomenon spanning between protein folding and binding, termed as self-binding peptides (SBPs), where a short peptide segment in monomeric protein functions as a molecular switch by dynamically binding to/unbinding from its cognate domain in the monomer (Yang et al. J. Chem. Inf. 2015, 55, 329-342). Here, we attempt to raise the SBP as a new class of druggable targets to regulate the biological activity and function of proteins. A case study was performed on the proto-oncogene nonreceptor tyrosine kinase, c-Src, which contains two SBPs that bind separately to SH3 and SH2 domains of the kinase. State-of-the-art molecular dynamics (MD) simulations and post binding energetics analysis revealed that disrupting the kinase-intramolecular interactions of SH3 and SH2 domains with their cognate SBP ligands can result in totally different effects on the structural dynamics of c-Src kinase architecture; targeting the SH2 domain unlocks the autoinhibitory form of the kinase-this is very similar to the pTyr527 dephosphorylation that functionally activates the kinase, whereas targeting the SH3 domain can only release the domain from the tightly packed kinase but has a moderate effect on the kinase activity. Subsequently, based on the cognate SBP sequence we computationally designed a number of SH2-binding phosphopeptides using a motif grafting strategy. Fluorescence polarization (FP) assay observed that most of the designed phosphopeptides have higher binding affinity to SH2 domain as compared to the native SBP segment (K d = 53 nM). Kinase assay identified a typical dose-response relationship of phosphopeptides against kinase activation, substantiating that disruption of SH2-SBP interaction can mimic c-Src dephosphorylation and activate the kinase. Two rationally designed phosphopeptides, namely EPQpYEEIEN and EPQpYEELEN, were determined as strong binders of SH2 domain (K d = 8.3 and 15 nM, respectively) and potent activators of c-Src kinase (EC 50 = 3.2 and 41 μM, respectively).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kükenshöner, Tim; Schmit, Nadine Eliane; Bouda, Emilie
The binding of Src-homology 2 (SH2) domains to phosphotyrosine (pY) sites is critical for the autoinhibition and substrate recognition of the eight Src family kinases (SFKs). The high sequence conservation of the 120 human SH2 domains poses a significant challenge to selectively perturb the interactions of even the SFK SH2 family against the rest of the SH2 domains. We have developed synthetic binding proteins, termed monobodies, for six of the SFK SH2 domains with nanomolar affinity. Most of these monobodies competed with pY ligand binding and showed strong selectivity for either the SrcA (Yes, Src, Fyn, Fgr) or SrcB subgroupmore » (Lck, Lyn, Blk, Hck). Interactome analysis of intracellularly expressed monobodies revealed that they bind SFKs but no other SH2-containing proteins. Three crystal structures of monobody–SH2 complexes unveiled different and only partly overlapping binding modes, which rationalized the observed selectivity and enabled structure-based mutagenesis to modulate inhibition mode and selectivity. In line with the critical roles of SFK SH2 domains in kinase autoinhibition and T-cell receptor signaling, monobodies binding the Src and Hck SH2 domains selectively activated respective recombinant kinases, whereas an Lck SH2-binding monobody inhibited proximal signaling events downstream of the T-cell receptor complex. Our results show that SFK SH2 domains can be targeted with unprecedented potency and selectivity using monobodies. They are excellent tools for dissecting SFK functions in normal development and signaling and to interfere with aberrant SFK signaling networks in cancer cells.« less
Ammer, Amanda Gatesman; Kelley, Laura C.; Hayes, Karen E.; Evans, Jason V.; Lopez-Skinner, Lesly Ann; Martin, Karen H.; Frederick, Barbara; Rothschild, Brian L.; Raben, David; Elvin, Paul; Green, Tim P.; Weed, Scott A.
2010-01-01
Elevated Src kinase activity is linked to the progression of solid tumors, including head and neck squamous cell carcinoma (HNSCC). Src regulates HNSCC proliferation and tumor invasion, with the Src-targeted small molecule inhibitor saracatinib displaying potent anti-invasive effects in preclinical studies. However, the pro-invasive cellular mechanism(s) perturbed by saracatinib are unclear. The anti-proliferative and anti-invasive effects of saracatinib on HNSCC cell lines were therefore investigated in pre-clinical cell and mouse model systems. Saracatinib treatment inhibited growth, cell cycle progression and transwell Matrigel invasion in HNSCC cell lines. Dose-dependent decreases in Src activation and phosphorylation of the invasion-associated substrates focal adhesion kinase, p130 CAS and cortactin were also observed. While saracatinib did not significantly impact HNSCC tumor growth in a mouse orthotopic model of tongue squamous cell carcinoma, impaired perineural invasion and cervical lymph node metastasis was observed. Accordingly, saracatinib treatment displayed a dose-dependent inhibitory effect on invadopodia formation, extracellular matrix degradation and matrix metalloprotease 9 activation. These results suggest that inhibition of Src kinase by saracatinib impairs the pro-invasive activity of HNSCC by inhibiting Src substrate phosphorylation important for invadopodia formation and associated matrix metalloprotease activity. PMID:20505783
Cox, Dianne; Dale, Benjamin M.; Kashiwada, Masaki; Helgason, Cheryl D.; Greenberg, Steven
2001-01-01
The Src homology 2 domain–containing inositol 5′-phosphatase (SHIP) is recruited to immunoreceptor tyrosine-based inhibition motif (ITIM)–containing proteins, thereby suppressing phosphatidylinositol 3-kinase (PI 3-kinase)–dependent pathways. The role of SHIP in phagocytosis, a PI 3-kinase–dependent pathway, is unknown. Overexpression of SHIP in macrophages led to an inhibition of phagocytosis mediated by receptors for the Fc portion of IgG (FcγRs). In contrast, macrophages expressing catalytically inactive SHIP or lacking SHIP expression demonstrated enhanced phagocytosis. To determine whether SHIP regulates phagocytosis mediated by receptors that are not known to recruit ITIMs, we determined the effect of SHIP expression on complement receptor 3 (CR3; CD11b/CD18; αMβ2)–dependent phagocytosis. Macrophages overexpressing SHIP demonstrated impaired CR3-mediated phagocytosis, whereas macrophages expressing catalytically inactive SHIP demonstrated enhanced phagocytosis. CR3-mediated phagocytosis in macrophages derived from SHIP−/− mice was up to 2.5 times as efficient as that observed in macrophages derived from littermate controls. SHIP was localized to FcγR- and CR3-containing phagocytic cups and was recruited to the cytoskeleton upon clustering of CR3. In a transfected COS cell model of activation-independent CR3-mediated phagocytosis, catalytically active but not inactive SHIP also inhibited phagocytosis. We conclude that PI 3-kinase(s) and SHIP regulate multiple forms of phagocytosis and that endogenous SHIP plays a role in modulating β2 integrin outside-in signaling. PMID:11136821
Wright, Bernice; Watson, Kimberly A; McGuffin, Liam J; Lovegrove, Julie A; Gibbins, Jonathan M
2015-11-01
Flavonoids reduce cardiovascular disease risk through anti-inflammatory, anti-coagulant and anti-platelet actions. One key flavonoid inhibitory mechanism is blocking kinase activity that drives these processes. Flavonoids attenuate activities of kinases including phosphoinositide-3-kinase, Fyn, Lyn, Src, Syk, PKC, PIM1/2, ERK, JNK and PKA. X-ray crystallographic analyses of kinase-flavonoid complexes show that flavonoid ring systems and their hydroxyl substitutions are important structural features for their binding to kinases. A clearer understanding of structural interactions of flavonoids with kinases is necessary to allow construction of more potent and selective counterparts. We examined flavonoid (quercetin, apigenin and catechin) interactions with Src family kinases (Lyn, Fyn and Hck) applying the Sybyl docking algorithm and GRID. A homology model (Lyn) was used in our analyses to demonstrate that high-quality predicted kinase structures are suitable for flavonoid computational studies. Our docking results revealed potential hydrogen bond contacts between flavonoid hydroxyls and kinase catalytic site residues. Identification of plausible contacts indicated that quercetin formed the most energetically stable interactions, apigenin lacked hydroxyl groups necessary for important contacts and the non-planar structure of catechin could not support predicted hydrogen bonding patterns. GRID analysis using a hydroxyl functional group supported docking results. Based on these findings, we predicted that quercetin would inhibit activities of Src family kinases with greater potency than apigenin and catechin. We validated this prediction using in vitro kinase assays. We conclude that our study can be used as a basis to construct virtual flavonoid interaction libraries to guide drug discovery using these compounds as molecular templates. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Protein Phosphorylation during Coconut Zygotic Embryo Development1
Islas-Flores, Ignacio; Oropeza, Carlos; Hernández-Sotomayor, S.M. Teresa
1998-01-01
Evidence was obtained on the occurrence of protein threonine, serine, and tyrosine (Tyr) kinases in developing coconut (Cocos nucifera L.) zygotic embryos, based on in vitro phosphorylation of proteins in the presence of [γ-32P]ATP, alkaline treatment, and thin-layer chromatography analysis, which showed the presence of [32P]phosphoserine, [32P]phosphothreonine, and [32P]phosphotyrosine in [32P]-labeled protein hydrolyzates. Tyr kinase activity was further confirmed in extracts of embryos at different stages of development using antiphosphotyrosine monoclonal antibodies and the synthetic peptide derived from the amino acid sequence surrounding the phosphorylation site in pp60src (RR-SRC), which is specific for Tyr kinases. Anti-phosphotyrosine western blotting revealed a changing profile of Tyr-phosphorylated proteins during embryo development. Tyr kinase activity, as assayed using RR-SRC, also changed during embryo development, showing two peaks of activity, one during early and another during late embryo development. In addition, the use of genistein, a Tyr kinase inhibitor, diminished the ability of extracts to phosphorylate RR-SRC. Results presented here show the occurrence of threonine, serine, and Tyr kinases in developing coconut zygotic embryos, and suggest that protein phosphorylation, and the possible inference of Tyr phosphorylation in particular, may play a role in the coordination of the development of embryos in this species. PMID:9733545
Hari, Sanjay B.; Perera, B. Gayani K.; Ranjitkar, Pratistha; Seeliger, Markus A.; Maly, Dustin J.
2013-01-01
Over the last decade, an increasingly diverse array of potent and selective inhibitors that target the ATP-binding sites of protein kinases have been developed. Many of these inhibitors, like the clinically approved drug imatinib (Gleevec), stabilize a specific catalytically inactive ATP-binding site conformation of their kinases targets. Imatinib is notable in that it is highly selective for its kinase target, Abl, over other closely-related tyrosine kinases, like Src. In addition, imatinib is highly sensitive to the phosphorylation state of Abl's activation loop, which is believed to be a general characteristic of all inhibitors that stabilize a similar inactive ATP-binding site conformation. In this report, we perform a systematic analysis of a diverse series of ATP-competitive inhibitors that stabilize a similar inactive ATP-binding site conformation as imatinib with the tyrosine kinases Src and Abl. In contrast to imatinib, many of these inhibitors have very similar potencies against Src and Abl. Furthermore, only a subset of this class of inhibitors is sensitive to the phosphorylation state of the activation loop of these kinases. In attempting to explain this observation, we have uncovered an unexpected correlation between Abl's activation loop and another flexible active site feature, called the phosphate-binding loop (p-loop). These studies shed light on how imatinib is able to obtain its high target selectivity and reveal how the conformational preference of flexible active site regions can vary between closely related kinases. PMID:24106839
Angiotensin II stimulates basolateral 50-pS K channels in the thick ascending limb.
Wang, Mingxiao; Luan, Haiyan; Wu, Peng; Fan, Lili; Wang, Lijun; Duan, Xinpeng; Zhang, Dandan; Wang, Wen-Hui; Gu, Ruimin
2014-03-01
We used the patch-clamp technique to examine the effect of angiotensin II (ANG II) on the basolateral K channels in the thick ascending limb (TAL) of the rat kidney. Application of ANG II increased the channel activity and the current amplitude of the basolateral 50-pS K channel. The stimulatory effect of ANG II on the K channels was completely abolished by losartan, an inhibitor of type 1 angiotensin receptor (AT1R), but not by PD123319, an AT2R antagonist. Moreover, inhibition of phospholipase C (PLC) and protein kinase C (PKC) also abrogated the stimulatory effect of ANG II on the basolateral K channels in the TAL. This suggests that the stimulatory effect of ANG II on the K channels was induced by activating PLC and PKC pathways. Western blotting demonstrated that ANG II increased the phosphorylation of c-Src at tyrosine residue 416, an indication of c-Src activation. This effect was mimicked by PKC stimulator but abolished by calphostin C. Moreover, inhibition of NADPH oxidase (NOX) also blocked the effect of ANG II on c-Src tyrosine phosphorylation. The role of Src-family protein tyrosine kinase (SFK) in mediating the effect of ANG II on the basolateral K channel was further suggested by the experiments in which inhibition of SFK abrogated the stimulatory effect of ANG II on the basolateral 50-pS K channel. We conclude that ANG II increases basolateral 50-pS K channel activity via AT1R and that activation of AT1R stimulates SFK by a PLC-PKC-NOX-dependent mechanism.
Xu, Wenxiao; Wan, Qiaoqiao; Na, Sungsoo; Yokota, Hiroki; Yan, Jing-Long; Hamamura, Kazunori
2015-12-01
Chondrosarcoma is the second frequent type of primary bone cancer. In response to stress to the endoplasmic reticulum, activation of eIF2α-mediated signaling is reported to induce apoptosis. However, its effects on invasive and migratory behaviors of chondrosarcoma have not been understood. Focusing on potential roles of Src kinase, Rac1 GTPase, and MMP13, we investigated eIF2α-driven regulation of SW1353 chondrosarcoma cells. In particular, we employed two chemical agents (salubrinal, Sal; and guanabenz, Gu) that elevate the level of eIF2α phosphorylation. The result revealed that both Sal and Gu reduced invasion and motility of SW1353 chondrosarcoma cells in a dose dependent manner. Live imaging using a fluorescent resonance energy transfer (FRET) technique showed that Sal and Gu downregulated activities of Src kinase as well as Rac1 GTPase in an eIF2α dependent manner. RNA interference experiments supported an eIF2α-mediated regulatory network in the inhibitory role of Sal and Gu. Partial silencing of MMP13 also suppressed malignant phenotypes of SW1353 chondrosarcoma cells. However, MMP13 was not regulated via eIF2α since administration of Sal but not Gu reduced expression of MMP13. In summary, we demonstrate that eIF2α dependent and independent pathways regulate invasion and motility of SW1353 chondrosarcoma cells, and inactivation of Src, Rac1, and MMP13 by Sal could provide a potential adjuvant therapy for combating metastatic chondrosarcoma cells. Copyright © 2015 Elsevier Inc. All rights reserved.
Bauman, Julie E; Duvvuri, Umamaheswar; Gooding, William E; Rath, Tanya J; Gross, Neil D; Song, John; Jimeno, Antonio; Yarbrough, Wendell G; Johnson, Faye M; Wang, Lin; Chiosea, Simion; Sen, Malabika; Kass, Jason; Johnson, Jonas T; Ferris, Robert L; Kim, Seungwon; Hirsch, Fred R; Ellison, Kimberly; Flaherty, John T; Mills, Gordon B; Grandis, Jennifer R
2017-03-23
BACKGROUND. EGFR and Src family kinases are upregulated in head and neck squamous cell carcinoma (HNSCC). EGFR interacts with Src to activate STAT3 signaling, and dual EGFR-Src targeting is synergistic in HNSCC preclinical models. pSrc overexpression predicted resistance to the EGFR inhibitor, erlotinib, in a prior window trial. We conducted a 4-arm window trial to identify biomarkers associated with response to EGFR and/or Src inhibition. METHODS. Patients with operable stage II-IVa HNSCC were randomized to 7-21 days of neoadjuvant erlotinib, the Src inhibitor dasatinib, the combination of both, or placebo. Paired tumor specimens were collected before and after treatment. Pharmacodynamic expression of EGFR and Src pathway components was evaluated by IHC of tissue microarrays and reverse-phase protein array of tissue lysates. Candidate biomarkers were assessed for correlation with change in tumor size. RESULTS. From April 2009 to December 2012, 58 patients were randomized and 55 were treated. There was a significant decrease in tumor size in both erlotinib arms ( P = 0.0014); however, no effect was seen with dasatinib alone ( P = 0.24). High baseline pMAPK expression was associated with response to erlotinib ( P = 0.03). High baseline pSTAT3 was associated with resistance to dasatinib ( P = 0.099). CONCLUSIONS. Brief exposure to erlotinib significantly decreased tumor size in operable HNSCC, with no additive effect from dasatinib. Baseline pMAPK expression warrants further study as a response biomarker for anti-EGFR therapy. Basal expression of pSTAT3 may be independent of Src, explain therapeutic resistance, and preclude development of dasatinib in biomarker-unselected cohorts. TRIAL REGISTRATION. NCT00779389. FUNDING. National Cancer Institute, American Cancer Society, Pennsylvania Department of Health, V Foundation for Cancer Research, Bristol-Myers Squibb, and Astellas Pharma.
Bauman, Julie E.; Duvvuri, Umamaheswar; Gooding, William E.; Rath, Tanya J.; Gross, Neil D.; Song, John; Jimeno, Antonio; Yarbrough, Wendell G.; Johnson, Faye M.; Wang, Lin; Chiosea, Simion; Sen, Malabika; Kass, Jason; Johnson, Jonas T.; Ferris, Robert L.; Kim, Seungwon; Hirsch, Fred R.; Ellison, Kimberly; Flaherty, John T.; Mills, Gordon B.
2017-01-01
BACKGROUND. EGFR and Src family kinases are upregulated in head and neck squamous cell carcinoma (HNSCC). EGFR interacts with Src to activate STAT3 signaling, and dual EGFR-Src targeting is synergistic in HNSCC preclinical models. pSrc overexpression predicted resistance to the EGFR inhibitor, erlotinib, in a prior window trial. We conducted a 4-arm window trial to identify biomarkers associated with response to EGFR and/or Src inhibition. METHODS. Patients with operable stage II–IVa HNSCC were randomized to 7–21 days of neoadjuvant erlotinib, the Src inhibitor dasatinib, the combination of both, or placebo. Paired tumor specimens were collected before and after treatment. Pharmacodynamic expression of EGFR and Src pathway components was evaluated by IHC of tissue microarrays and reverse-phase protein array of tissue lysates. Candidate biomarkers were assessed for correlation with change in tumor size. RESULTS. From April 2009 to December 2012, 58 patients were randomized and 55 were treated. There was a significant decrease in tumor size in both erlotinib arms (P = 0.0014); however, no effect was seen with dasatinib alone (P = 0.24). High baseline pMAPK expression was associated with response to erlotinib (P = 0.03). High baseline pSTAT3 was associated with resistance to dasatinib (P = 0.099). CONCLUSIONS. Brief exposure to erlotinib significantly decreased tumor size in operable HNSCC, with no additive effect from dasatinib. Baseline pMAPK expression warrants further study as a response biomarker for anti-EGFR therapy. Basal expression of pSTAT3 may be independent of Src, explain therapeutic resistance, and preclude development of dasatinib in biomarker-unselected cohorts. TRIAL REGISTRATION. NCT00779389. FUNDING. National Cancer Institute, American Cancer Society, Pennsylvania Department of Health, V Foundation for Cancer Research, Bristol-Myers Squibb, and Astellas Pharma. PMID:28352657
Lu, Ko-Hsiu; Chen, Pei-Ni; Hsieh, Yi-Hsien; Lin, Chin-Yin; Cheng, Fu-Yuan; Chiu, Peng-Chou; Chu, Shu-Chen; Hsieh, Yih-Shou
2016-11-01
Many natural flavonoids have cytostatic and apoptotic properties; however, we little know whether the effect of synthetic 3-hydroxyflavone on metastasis and tumor growth of human osteosarcoma. Here, we tested the hypothesis that 3-hydroxyflavone suppresses human osteosarcoma cells metastasis and tumor growth. 3-hydroxyflavone, up to 50 μM without cytotoxicity, inhibited U2OS and 143B cells motility, invasiveness and migration by reducing matrix metalloproteinase (MMP)-2 and urokinase-type plasminogen activator (u-PA) and also impaired cell adhesion to gelatin. 3-hydroxyflavone significantly reduced p-focal adhesion kinase (FAK) Tyr397, p-FAK Tyr925, p-steroid receptor coactivator (Src), p-mitogen/extracellular signal-regulated kinase (MEK)1/2, p-myosin light chain (MLC)2 Ser19, epithelial cell adhesion molecule, Ras homolog gene family (Rho)A and fibronectin expressions. 3-hydroxyflavone also affected the epithelial-mesenchymal transition (EMT) by down-regulating expressions of Vimentin and α-catenin with activation of the transcription factor Slug. In nude mice xenograft model and tail vein injection model showed that 3-hydroxyflavone reduced 143B tumor growth and lung metastasis. 3-hydroxyflavone possesses the anti-metastatic activity of U2OS and 143B cells by affecting EMT and repressing u-PA/MMP-2 via FAK-Src to MEK/ERK and RhoA/MLC2 pathways and suppresses 143B tumor growth in vivo. This may lead to clinical trials of osteosarcoma chemotherapy to confirm the promising result in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chung, Byung Min; Tom, Eric; Zutshi, Neha; Bielecki, Timothy Alan; Band, Vimla; Band, Hamid
2014-01-01
Epidermal growth factor receptor (EGFR) controls a wide range of cellular processes, and aberrant EGFR signaling as a result of receptor overexpression and/or mutation occurs in many types of cancer. Tumor cells in non-small cell lung cancer (NSCLC) patients that harbor EGFR kinase domain mutations exhibit oncogene addiction to mutant EGFR, which confers high sensitivity to tyrosine kinase inhibitors (TKIs). As patients invariably develop resistance to TKIs, it is important to delineate the cell biological basis of mutant EGFR-induced cellular transformation since components of these pathways can serve as alternate therapeutic targets to preempt or overcome resistance. NSCLC-associated EGFR mutants are constitutively-active and induce ligand-independent transformation in nonmalignant cell lines. Emerging data suggest that a number of factors are critical for the mutant EGFR-dependent tumorigenicity, and bypassing the effects of TKIs on these pathways promotes drug resistance. For example, activation of downstream pathways such as Akt, Erk, STAT3 and Src is critical for mutant EGFR-mediated biological processes. It is now well-established that the potency and spatiotemporal features of cellular signaling by receptor tyrosine kinases such as EGFR, as well as the specific pathways activated, is determined by the nature of endocytic traffic pathways through which the active receptors traverse. Recent evidence indicates that NSCLC-associated mutant EGFRs exhibit altered endocytic trafficking and they exhibit reduced Cbl ubiquitin ligase-mediated lysosomal downregulation. More recent work has shown that mutant EGFRs undergo ligand-independent traffic into the endocytic recycling compartment, a behavior that plays a key role in Src pathway activation and oncogenesis. These studies are beginning to delineate the close nexus between signaling and endocytic traffic of EGFR mutants as a key driver of oncogenic processes. Therefore, in this review, we will discuss the links between mutant EGFR signaling and endocytic properties, and introduce potential mechanisms by which altered endocytic properties of mutant EGFRs may alter signaling and vice versa as well as their implications for NSCLC therapy. PMID:25493220
Signaling by Kit protein-tyrosine kinase--the stem cell factor receptor.
Roskoski, Robert
2005-11-11
Signaling by stem cell factor and Kit, its receptor, plays important roles in gametogenesis, hematopoiesis, mast cell development and function, and melanogenesis. Moreover, human and mouse embryonic stem cells express Kit transcripts. Stem cell factor exists as both a soluble and a membrane-bound glycoprotein while Kit is a receptor protein-tyrosine kinase. The complete absence of stem cell factor or Kit is lethal. Deficiencies of either produce defects in red and white blood cell production, hypopigmentation, and sterility. Gain-of-function mutations of Kit are associated with several human neoplasms including acute myelogenous leukemia, gastrointestinal stromal tumors, and mastocytomas. Kit consists of an extracellular domain, a transmembrane segment, a juxtamembrane segment, and a protein kinase domain that contains an insert of about 80 amino acid residues. Binding of stem cell factor to Kit results in receptor dimerization and activation of protein kinase activity. The activated receptor becomes autophosphorylated at tyrosine residues that serve as docking sites for signal transduction molecules containing SH2 domains. The adaptor protein APS, Src family kinases, and Shp2 tyrosyl phosphatase bind to phosphotyrosine 568. Shp1 tyrosyl phosphatase and the adaptor protein Shc bind to phosphotyrosine 570. C-terminal Src kinase homologous kinase and the adaptor Shc bind to both phosphotyrosines 568 and 570. These residues occur in the juxtamembrane segment of Kit. Three residues in the kinase insert domain are phosphorylated and attract the adaptor protein Grb2 (Tyr703), phosphatidylinositol 3-kinase (Tyr721), and phospholipase Cgamma (Tyr730). Phosphotyrosine 900 in the distal kinase domain binds phosphatidylinositol 3-kinase which in turn binds the adaptor protein Crk. Phosphotyrosine 936, also in the distal kinase domain, binds the adaptor proteins APS, Grb2, and Grb7. Kit has the potential to participate in multiple signal transduction pathways as a result of interaction with several enzymes and adaptor proteins.
Kükenshöner, Tim; Schmit, Nadine Eliane; Bouda, Emilie; Sha, Fern; Pojer, Florence; Koide, Akiko; Seeliger, Markus; Koide, Shohei; Hantschel, Oliver
2017-05-05
The binding of Src-homology 2 (SH2) domains to phosphotyrosine (pY) sites is critical for the autoinhibition and substrate recognition of the eight Src family kinases (SFKs). The high sequence conservation of the 120 human SH2 domains poses a significant challenge to selectively perturb the interactions of even the SFK SH2 family against the rest of the SH2 domains. We have developed synthetic binding proteins, termed monobodies, for six of the SFK SH2 domains with nanomolar affinity. Most of these monobodies competed with pY ligand binding and showed strong selectivity for either the SrcA (Yes, Src, Fyn, Fgr) or SrcB subgroup (Lck, Lyn, Blk, Hck). Interactome analysis of intracellularly expressed monobodies revealed that they bind SFKs but no other SH2-containing proteins. Three crystal structures of monobody-SH2 complexes unveiled different and only partly overlapping binding modes, which rationalized the observed selectivity and enabled structure-based mutagenesis to modulate inhibition mode and selectivity. In line with the critical roles of SFK SH2 domains in kinase autoinhibition and T-cell receptor signaling, monobodies binding the Src and Hck SH2 domains selectively activated respective recombinant kinases, whereas an Lck SH2-binding monobody inhibited proximal signaling events downstream of the T-cell receptor complex. Our results show that SFK SH2 domains can be targeted with unprecedented potency and selectivity using monobodies. They are excellent tools for dissecting SFK functions in normal development and signaling and to interfere with aberrant SFK signaling networks in cancer cells. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Townley, Ian K; Roux, Michelle M; Foltz, Kathy R
2006-04-01
Gamete interaction and fusion triggers a number of events that lead to egg activation and development of a new organism. A key event at fertilization is the rise in intracellular calcium. In deuterostomes, this calcium is released from the egg's endoplasmic reticulum and is necessary for proper activation. This article reviews recent data regarding how gamete interaction triggers the initial calcium release, focusing on the echinoderms (invertebrate deuterostomes) as model systems. In eggs of these animals, Src-type kinases and phospholipase C-gamma are required components of the initial calcium trigger pathway in eggs.
Jeyaseelan, S; Kannan, M S; Briggs, R E; Thumbikat, P; Maheswaran, S K
2001-10-01
The leukotoxin (LktA) produced by Mannheimia haemolytica binds to bovine lymphocyte function-associated antigen 1 (LFA-1) and induces biological effects in bovine leukocytes in a cellular and species-specific fashion. We have previously shown that LktA also binds to porcine LFA-1 without eliciting any effects. These findings suggest that the specificity of LktA effects must entail both binding to LFA-1 and activation of signaling pathways which are present in bovine leukocytes. However, the signaling pathways leading to biological effects upon LktA binding to LFA-1 have not been characterized. In this context, several reports have indicated that ligand binding to LFA-1 results in activation of a nonreceptor tyrosine kinase (NRTK) signaling cascade. We designed experiments with the following objectives: (i) to determine whether LktA binding to LFA-1 leads to activation of NRTKs, (ii) to examine whether LktA-induced NRTK activation is target cell specific, and (iii) to determine whether LktA-induced NRTK activation is required for biological effects. We used a biologically inactive mutant leukotoxin (DeltaLktA) for comparison with LktA. Our results indicate that LktA induces tyrosine phosphorylation (TP) of the CD18 tail of LFA-1 in bovine leukocytes. The DeltaLktA mutant does not induce TP of the CD18 tail, albeit binding to bovine LFA-1. LktA-induced TP of the CD18 tail was attenuated by an NRTK inhibitor, herbimycin A; a phosphatidylinositol 3'-kinase (PI 3-kinase) inhibitor, wortmannin; and a Src kinase inhibitor, PP2, in a concentration-dependent manner. Furthermore, LktA induces TP of the CD18 tail in bovine, but not porcine, leukocytes. Moreover, LktA-induced intracellular calcium ([Ca2+]i) elevation was also inhibited by herbimycin A, wortmannin, and PP2. Thus, our data represent the first evidence that binding of LktA to bovine LFA-1 induces a species-specific NRTK signaling cascade involving PI 3-kinase and Src kinases and that this signaling cascade is required for LktA-induced biological effects.
Jeyaseelan, S.; Kannan, M. S.; Briggs, R. E.; Thumbikat, P.; Maheswaran, S. K.
2001-01-01
The leukotoxin (LktA) produced by Mannheimia haemolytica binds to bovine lymphocyte function-associated antigen 1 (LFA-1) and induces biological effects in bovine leukocytes in a cellular and species-specific fashion. We have previously shown that LktA also binds to porcine LFA-1 without eliciting any effects. These findings suggest that the specificity of LktA effects must entail both binding to LFA-1 and activation of signaling pathways which are present in bovine leukocytes. However, the signaling pathways leading to biological effects upon LktA binding to LFA-1 have not been characterized. In this context, several reports have indicated that ligand binding to LFA-1 results in activation of a nonreceptor tyrosine kinase (NRTK) signaling cascade. We designed experiments with the following objectives: (i) to determine whether LktA binding to LFA-1 leads to activation of NRTKs, (ii) to examine whether LktA-induced NRTK activation is target cell specific, and (iii) to determine whether LktA-induced NRTK activation is required for biological effects. We used a biologically inactive mutant leukotoxin (ΔLktA) for comparison with LktA. Our results indicate that LktA induces tyrosine phosphorylation (TP) of the CD18 tail of LFA-1 in bovine leukocytes. The ΔLktA mutant does not induce TP of the CD18 tail, albeit binding to bovine LFA-1. LktA-induced TP of the CD18 tail was attenuated by an NRTK inhibitor, herbimycin A; a phosphatidylinositol 3′-kinase (PI 3-kinase) inhibitor, wortmannin; and a Src kinase inhibitor, PP2, in a concentration-dependent manner. Furthermore, LktA induces TP of the CD18 tail in bovine, but not porcine, leukocytes. Moreover, LktA-induced intracellular calcium ([Ca2+]i) elevation was also inhibited by herbimycin A, wortmannin, and PP2. Thus, our data represent the first evidence that binding of LktA to bovine LFA-1 induces a species-specific NRTK signaling cascade involving PI 3-kinase and Src kinases and that this signaling cascade is required for LktA-induced biological effects. PMID:11553552
Activation of Stat3 Transcription Factor by Herpesvirus Saimiri STP-A Oncoprotein
Chung, Young-Hwa; Cho, Nam-hyuk; Garcia, Maria Ines; Lee, Sun-Hwa; Feng, Pinghui; Jung, Jae U.
2004-01-01
The saimiri transforming protein (STP) oncogene of Herpesvirus saimiri subgroup A strain 11 (STP-A11) is not required for viral replication but is required for lymphoid cell immortalization in culture and lymphoma induction in primates. We previously showed that STP-A11 interacts with cellular Src kinase through its SH2 binding motif and that this interaction elicits Src signal transduction. Here we demonstrate that STP-A11 interacts with signal transducer and activator of transcription 3 (Stat3) independently of Src association and that the amino-terminal short proline-rich motif of STP-A11 and the central linker region of Stat3 are necessary for their interaction. STP-A11 formed a triple complex with Src kinase and Stat3 where Src kinase phosphorylated Stat3, resulting in the nuclear localization and transcriptional activation of Stat3. Consequently, the constitutively active Stat3 induced by STP-A11 elicited cellular signal transduction, which ultimately induced cell survival and proliferation upon serum deprivation. Furthermore, this activity was strongly correlated with the induction of Fos, cyclin D1, and Bcl-XL expression. These results demonstrate that STP-A11 independently targets two important cellular signaling molecules, Src and Stat3, and that these proteins cooperate efficiently to induce STP-A11-mediated transformation. PMID:15163742
Effect of the SH3-SH2 domain linker sequence on the structure of Hck kinase.
Meiselbach, Heike; Sticht, Heinrich
2011-08-01
The coordination of activity in biological systems requires the existence of different signal transduction pathways that interact with one another and must be precisely regulated. The Src-family tyrosine kinases, which are found in many signaling pathways, differ in their physiological function despite their high overall structural similarity. In this context, the differences in the SH3-SH2 domain linkers might play a role for differential regulation, but the structural consequences of linker sequence remain poorly understood. We have therefore performed comparative molecular dynamics simulations of wildtype Hck and of a mutant Hck in which the SH3-SH2 domain linker is replaced by the corresponding sequence from the homologous kinase Lck. These simulations reveal that linker replacement not only affects the orientation of the SH3 domain itself, but also leads to an alternative conformation of the activation segment in the Hck kinase domain. The sequence of the SH3-SH2 domain linker thus exerts a remote effect on the active site geometry and might therefore play a role in modulating the structure of the inactive kinase or in fine-tuning the activation process itself.
Protein kinase Cδ is a critical component of Dectin-1 signaling in primary human monocytes.
Elsori, Deena H; Yakubenko, Valentin P; Roome, Talat; Thiagarajan, Praveena S; Bhattacharjee, Ashish; Yadav, Satya P; Cathcart, Martha K
2011-09-01
Zymosan, a mimic of fungal pathogens, and its opsonized form (ZOP) are potent stimulators of monocyte NADPH oxidase, resulting in the production of O(2)(.-), which is critical for host defense against fungal and bacterial pathogens and efficient immune responses; however, uncontrolled O(2)(.-) production may contribute to chronic inflammation and tissue injury. Our laboratory has focused on characterizing the signal transduction pathways that regulate NADPH oxidase activity in primary human monocytes. In this study, we examined the involvement of various pattern recognition receptors and found that Dectin-1 is the primary receptor for zymosan stimulation of O(2)(.-) via NADPH oxidase in human monocytes, whereas Dectin-1 and CR3 mediate the activation by ZOP. Further studies identified Syk and Src as important signaling components downstream of Dectin-1 and additionally identified PKCδ as a novel downstream signaling component for zymosan-induced O(2)(.-) as well as phagocytosis. Our results show that Syk and Src association with Dectin-1 is dependent on PKCδ activity and expression and demonstrate direct binding between Dectin-1 and PKCδ. Finally, our data show that PKCδ and Syk but not Src are required for Dectin-1-mediated phagocytosis. Taken together, our data identify Dectin-1 as the major PRR for zymosan in primary human monocytes and identify PKCδ as a novel downstream signaling kinase for Dectin-1-mediated regulation of monocyte NADPH oxidase and zymosan phagocytosis.
Wang, Zhe; Yan, Wei; Sun, Huimin; Xue, Peipei; Fan, Xiaoming; Zeng, Xiaoyu; Chen, Juan; Shao, Chen; Zhu, Feng
2016-01-01
T-LAK cell-originated protein kinase (TOPK), a serine/threonine protein kinase, is highly expressed in a variety of tumors and associated with a poor prognosis of human malignancies. However, the activation mechanism of TOPK is still unrevealed. Herein, first we found that Src directly bound with and phosphorylated TOPK at Y74 and Y272 in vitro. Anti-phospho-TOPK at Y74 was prepared, the endogenous phosphorylation of TOPK at Y74 was detected in colon cancer cells, and the phosphorylation was inhibited in cells expressing low levels of Src. Subsequently, we stably transfected Y74 and Y272 double mutated TOPK (TOPK-FF) into JB6 or SW480 cells, and observed that both the anchorage-independent growth ability and tumorigenesis of TOPK-FF cells were suppressed compared with those of wild type TOPK (TOPK-WT) ex vivo and in vivo. The phosphorylation level of TOPK substrate, Histone H3 at Ser10 also decreased dramatically ex vivo or in vivo. Moreover, we showed that Src could inhibit the ubiquitination of TOPK. Transiently expressed TOPK-WT was more stable than TOPK-FF in pause and chase experiment. Endogenous TOPK was more stable in Src wild type (Src+/+) MEFs than in Src knockout (Src−/−). Taken together, our results indicate that Src is a novel upstream kinase of TOPK. The phosphorylation of TOPK at Y74 and Y272 by Src increases the stability and activity of TOPK, and promotes the tumorigenesis of colon cancer. It may provide opportunities for TOPK based prognosis and targeted therapy for colon cancer patients. PMID:27016416
Locking the Active Conformation of c-Src Kinase through the Phosphorylation of the Activation Loop
Meng, Yilin; Roux, Benoît
2013-01-01
Molecular dynamics umbrella sampling simulations are used to compare the relative stability of the active conformation of the catalytic domain of c-Src kinase while the tyrosine 416 in the activation loop (A-loop) is either unphosphorylated or phosphorylated. When the A-loop is unphosphorylated, there is considerable flexiblity of the kinase. While the active conformation of the kinase is not forbidden and can be visited transiently, it is not the predominant state. This is consistent with the view that c-Src displays some catalytic activity even when the A-loop is unphosphorylated. In contrast, phosphorylation of the A-loop contributes to stabilize several structural features that are critical for catalysis, such as the hydrophobic regulatory spine, the HRD motif, and the electrostatic switch. In summary, the free energy landscape calculations demonstrate that phosphorylation of tyrosine 416 in the A-loop essentially “locks” the kinase into its catalytically competent conformation. PMID:24103328
Karoor, Vijaya; Oka, Masahiko; Walchak, Sandra J.; Hersh, Louis B.; Miller, York E.; Dempsey, Edward C.
2013-01-01
Reduced neprilysin (NEP), a cell surface metallopeptidase, which cleaves and inactivates pro-inflammatory and vasoactive peptides, predisposes the lung vasculature to exaggerated remodeling in response to hypoxia. We hypothesize that loss of NEP in pulmonary artery smooth muscle cells (PASMCs) results in increased migration and proliferation. PASMCs isolated from NEP−/− mice exhibited enhanced migration and proliferation in response to serum and PDGF, which was attenuated by NEP replacement. Inhibition of NEP by overexpression of a peptidase dead mutant or knockdown by siRNA in NEP+/+ cells increased migration and proliferation. Loss of NEP led to an increase in Src kinase activity and phosphorylation of PTEN resulting in activation of the PDGF receptor (PDGFR). Knockdown of Src kinase with siRNA or inhibition with PP2 a src kinase inhibitor decreased PDGFRY751 phosphorylation and attenuated migration and proliferation in NEP−/− SMCs. NEP substrates, endothelin-1(ET-1) or fibroblast growth factor-2 (FGF2), increased activation of Src and PDGFR in NEP+/+ cells, which was decreased by an ETAR antagonist, neutralizing antibody to FGF2 and Src inhibitor. Similar to the observations in PASMCs levels of p-PDGFR, p-Src and p-PTEN were elevated in NEP−/− lungs. ETAR antagonist also attenuated the enhanced responses in NEP−/−PASMCs and lungs. Taken together our results suggest a novel mechanism for regulation of PDGFR signaling by NEP substrates involving Src and PTEN. Strategies that increase lung NEP activity/expression or target key downstream effectors, like Src, PTEN or PDGFR, may be of therapeutic benefit in pulmonary vascular disease. PMID:23381789
Thapa, Narendra; Choi, Suyong; Hedman, Andrew; Tan, Xiaojun; Anderson, Richard A.
2013-01-01
A fundamental property of tumor cells is to defy anoikis, cell death caused by a lack of cell-matrix interaction, and grow in an anchorage-independent manner. How tumor cells organize signaling molecules at the plasma membrane to sustain oncogenic signals in the absence of cell-matrix interactions remains poorly understood. Here, we describe a role for phosphatidylinositol 4-phosphate 5-kinase (PIPK) Iγi2 in controlling anchorage-independent growth of tumor cells in coordination with the proto-oncogene Src. PIPKIγi2 regulated Src activation downstream of growth factor receptors and integrins. PIPKIγi2 directly interacted with the C-terminal tail of Src and regulated its subcellular localization in concert with talin, a cytoskeletal protein targeted to focal adhesions. Co-expression of PIPKIγi2 and Src synergistically induced the anchorage-independent growth of nonmalignant cells. This study uncovers a novel mechanism where a phosphoinositide-synthesizing enzyme, PIPKIγi2, functions with the proto-oncogene Src, to regulate oncogenic signaling. PMID:24151076
Chappell, Alfred E.; Bunz, Michael; Smoll, Eric; Dong, Hui; Lytle, Christian; Barrett, Kim E.; McCole, Declan F.
2018-01-01
Reactive oxygen species (ROS) are key mediators in a number of inflammatory conditions, including inflammatory bowel disease (IBD). ROS, including hydrogen peroxide (H2O2), modulate intestinal epithelial ion transport and are believed to contribute to IBD-associated diarrhea. Intestinal crypt fluid secretion, driven by electrogenic Cl− secretion, hydrates and sterilizes the crypt, thus reducing bacterial adherence. Here, we show that pathophysiological concentrations of H2O2 inhibit Ca2+-dependent Cl− secretion across T84 colonic epithelial cells by elevating cytosolic Ca2+, which contributes to activation of two distinct signaling pathways. One involves recruitment of the Ca2+-responsive kinases, Src and Pyk-2, as well as extracellular signal-regulated kinase (ERK). A separate pathway recruits p38 MAP kinase and phosphoinositide 3-kinase (PI3-K) signaling. The ion transport response to Ca2+-dependent stimuli is mediated in part by K+ efflux through basolateral K+ channels and Cl− uptake by the Na+-K+-2Cl− cotransporter, NKCC1. We demonstrate that H2O2 inhibits Ca2+-dependent basolateral K+ efflux and also inhibits NKCC1 activity independently of inhibitory effects on apical Cl− conductance. Thus, we have demonstrated that H2O2 inhibits Ca2+-dependent Cl− secretion through multiple negative regulatory signaling pathways and inhibition of specific ion transporters. These findings increase our understanding of mechanisms by which inflammation disturbs intestinal epithelial function and contributes to intestinal pathophysiology.—Chappell, A. E., Bunz, M., Smoll, E., Dong, H., Lytle, C., Barrett, K. E., McCole, D. F. Hydrogen peroxide inhibits Ca2+-dependent chloride secretion across colonic epithelial cells via distinct kinase signaling pathways and ion transport proteins. FASEB J. 22, 000–000 (2008) PMID:18211955
p68 Sam is a substrate of the insulin receptor and associates with the SH2 domains of p85 PI3K.
Sánchez-Margalet, V; Najib, S
1999-07-23
The 68 kDa Src substrate associated during mitosis is an RNA binding protein with Src homology 2 and 3 domain binding sites. A role for Src associated in mitosis 68 as an adaptor protein in signaling transduction has been proposed in different systems such as T-cell receptors. In the present work, we have sought to assess the possible role of Src associated in mitosis 68 in insulin receptor signaling. We performed in vivo studies in HTC-IR cells and in vitro studies using recombinant Src associated in mitosis 68, purified insulin receptor and fusion proteins containing either the N-terminal or the C-terminal Src homology 2 domain of p85 phosphatidylinositol-3-kinase. We have found that Src associated in mitosis 68 is a substrate of the insulin receptor both in vivo and in vitro. Moreover, tyrosine-phosphorylated Src associated in mitosis 68 was found to associate with p85 phosphatidylinositol-3-kinase in response to insulin, as assessed by co-immunoprecipitation studies. Therefore, Src associated in mitosis 68 may be part of the signaling complexes of insulin receptor along with p85. In vitro studies demonstrate that Src associated in mitosis 68 associates with the Src homology 2 domains of p85 after tyrosine phosphorylation by the activated insulin receptor. Moreover, tyr-phosphorylated Src associated in mitosis 68 binds with a higher affinity to the N-terminal Src homology 2 domain of p85 compared to the C-terminal Src homology 2 domain of p85, suggesting a preferential association of Src associated in mitosis 68 with the N-terminal Src homology 2 domain of p85. This association may be important for the link of the signaling with RNA metabolism.
Su, Kuo-Hui; Tsai, Jin-Yi; Kou, Yu Ru; Chiang, An-Na; Hsiao, Sheng-Huang; Wu, Yuh-Lin; Hou, Hsin-Han; Pan, Ching-Chian; Shyue, Song-Kun; Lee, Tzong-Shyuan
2009-06-01
Valsartan, a selective angiotensin II type 1 receptor (AT1R) blocker, has beneficial effects in the cardiovascular system in part by its increase of nitric oxide (NO) bioavailability, yet the mechanisms are unclear. We investigated the molecular mechanisms underlying this effect in endothelial cells (ECs). NO production was examined by Griess reagent assay, DAF-2 DA fluorescence staining and cGMP ELISA kits. Protein interaction was determined by western blotting and immunoprecipitation. Treating bovine or human aortic ECs with valsartan increased NO production, as evidenced by elevated level of stable NO metabolites and intracellular cGMP. Valsartan increased the phosphorylation but not the protein level of endothelial NO synthase (eNOS). Inhibition of phosphoinositide-3 kinase (PI3K)/Akt and Src pathways by specific inhibitors suppressed valsartan-induced NO release. In addition, valsartan increased the tyrosine residue phosphorylation of AT1R, which was attenuated by inhibition of Src but not PI3K activities. Valsartan also suppressed the interaction of eNOS and AT1R, which was blocked by Src or PI3K inhibition. Valsartan-induced NO production in ECs is mediated through Src/PI3K/Akt-dependent phosphorylation of eNOS. Valsartan-induced AT1R phosphorylation depends on Src but not PI3K, whereas valsartan-induced suppression of AT1R-eNOS interaction depends on Src/PI3K/Akt signalling. These results indicate a novel vasoprotective mechanism of valsartan in upregulating NO production in ECs.
γδT Cells Exacerbate Podocyte Injury via the CD28/B7-1-Phosphor-SRC Kinase Pathway
Chen, Wanbing; Zhang, Gaofu; Wang, Mo; Yang, Haiping
2018-01-01
Primary nephrotic syndrome (PNS) is a devastating pediatric disorder. However, its mechanism remains unclear. Previous studies detected B7-1 in podocytes; meanwhile, γδT cells play pivotal roles in immune diseases. Therefore, this study aimed to assess whether and how γδT cells impact podocytes via the CD28/B7-1 pathway. WT and TCRδ−/− mice were assessed. LPS was used to induce nephropathy. Total γδT and CD28+γδT cells were quantitated in mouse spleen and kidney samples. B7-1 and phosphor-SRC levels in the kidney were detected as well. In vitro, γδT cells from the mouse spleen were cocultured with mouse podocytes, and apoptosis rate and phosphor-SRC expression in podocytes were assessed. Compared with control mice, WT mice with LPS nephropathy showed increased amounts of γδT cells in the kidney. Kidney injury was alleviated in TCRδ−/− mice. Meanwhile, B7-1 and phosphor-SRC levels were increased in the kidney from WT mice with LPS nephropathy. CD28+γδT cells were decreased, indicating CD28 may play a role in LPS nephropathy. Immunofluorescence colocalization analysis revealed a tight association of γδT cells with B7-1 in the kidney. High B7-1 expression was detected in podocytes treated with LPS. Podocytes cocultured with γδT cells showed higher phosphor-SRC and apoptosis rate than other cell groups. Furthermore, CD28/B7-1 blockage with CTLA4-Ig in vitro relieved podocyte injury. γδT cells exacerbate podocyte injury via CD28/B7-1 signaling, with downstream involvement of phosphor-SRC. The CD28/B7-1 blocker CTLA4-Ig prevented progressive podocyte injury, providing a potential therapeutic tool for PNS. PMID:29862277
Petti, Filippo; Thelemann, April; Kahler, Jen; McCormack, Siobhan; Castaldo, Linda; Hunt, Tony; Nuwaysir, Lydia; Zeiske, Lynn; Haack, Herbert; Sullivan, Laura; Garton, Andrew; Haley, John D
2005-08-01
OSI-930, a potent thiophene inhibitor of the Kit, KDR, and platelet-derived growth factor receptor tyrosine kinases, was used to selectively inhibit tyrosine phosphorylation downstream of juxtamembrane mutant Kit in the mast cell leukemia line HMC-1. Inhibition of Kit kinase activity resulted in a rapid dephosphorylation of Kit and inhibition of the downstream signaling pathways. Attenuation of Ras-Raf-Erk (phospho-Erk, phospho-p38), phosphatidyl inositol-3' kinase (phospho-p85, phospho-Akt, phospho-S6), and signal transducers and activators of transcription signaling pathways (phospho-STAT3/5/6) were measured by affinity liquid chromatography tandem mass spectrometry, by immunoblot, and by tissue microarrays of fixed cell pellets. To more globally define additional components of Kit signaling temporally altered by kinase inhibition, a novel multiplex quantitative isobaric peptide labeling approach was used. This approach allowed clustering of proteins by temporal expression patterns. Kit kinase, which dephosphorylates rapidly upon kinase inhibition, was shown to regulate both Shp-1 and BDP-1 tyrosine phosphatases and the phosphatase-interacting protein PSTPIP2. Interactions with SH2 domain adapters [growth factor receptor binding protein 2 (Grb2), Cbl, Slp-76] and SH3 domain adapters (HS1, cortactin, CD2BP3) were attenuated by inhibition of Kit kinase activity. Functional crosstalk between Kit and the non-receptor tyrosine kinases Fes/Fps, Fer, Btk, and Syk was observed. Inhibition of Kit modulated phosphorylation-dependent interactions with pathways controlling focal adhesion (paxillin, leupaxin, p130CAS, FAK1, the Src family kinase Lyn, Wasp, Fhl-3, G25K, Ack-1, Nap1, SH3P12/ponsin) and septin-actin complexes (NEDD5, cdc11, actin). The combined use of isobaric protein quantitation and expression clustering, immunoblot, and tissue microarray strategies allowed temporal measurement signaling pathways modulated by mutant Kit inhibition in a model of mast cell leukemia.
Jin, Lily L.; Wybenga-Groot, Leanne E.; Tong, Jiefei; Taylor, Paul; Minden, Mark D.; Trudel, Suzanne; McGlade, C. Jane; Moran, Michael F.
2015-01-01
Src homology 2 (SH2) domains are modular protein structures that bind phosphotyrosine (pY)-containing polypeptides and regulate cellular functions through protein-protein interactions. Proteomics analysis showed that the SH2 domains of Src family kinases are themselves tyrosine phosphorylated in blood system cancers, including acute myeloid leukemia, chronic lymphocytic leukemia, and multiple myeloma. Using the Src family kinase Lyn SH2 domain as a model, we found that phosphorylation at the conserved SH2 domain residue Y194 impacts the affinity and specificity of SH2 domain binding to pY-containing peptides and proteins. Analysis of the Lyn SH2 domain crystal structure supports a model wherein phosphorylation of Y194 on the EF loop modulates the binding pocket that engages amino acid side chains at the pY+2/+3 position. These data indicate another level of regulation wherein SH2-mediated protein-protein interactions are modulated by SH2 kinases and phosphatases. PMID:25587033
In-situ coupling between kinase activities and protein dynamics within single focal adhesions
NASA Astrophysics Data System (ADS)
Wu, Yiqian; Zhang, Kaiwen; Seong, Jihye; Fan, Jason; Chien, Shu; Wang, Yingxiao; Lu, Shaoying
2016-07-01
The dynamic activation of oncogenic kinases and regulation of focal adhesions (FAs) are crucial molecular events modulating cell adhesion in cancer metastasis. However, it remains unclear how these events are temporally coordinated at single FA sites. Therefore, we targeted fluorescence resonance energy transfer (FRET)-based biosensors toward subcellular FAs to report local molecular events during cancer cell adhesion. Employing single FA tracking and cross-correlation analysis, we quantified the dynamic coupling characteristics between biochemical kinase activities and structural FA within single FAs. We show that kinase activations and FA assembly are strongly and sequentially correlated, with the concurrent FA assembly and Src activation leading focal adhesion kinase (FAK) activation by 42.6 ± 12.6 sec. Strikingly, the temporal coupling between kinase activation and individual FA assembly reflects the fate of FAs at later stages. The FAs with a tight coupling tend to grow and mature, while the less coupled FAs likely disassemble. During FA disassembly, however, kinase activations lead the disassembly, with FAK being activated earlier than Src. Therefore, by integrating subcellularly targeted FRET biosensors and computational analysis, our study reveals intricate interplays between Src and FAK in regulating the dynamic life of single FAs in cancer cells.
Huang, Jian; Zhao, Lei; Yang, Ping; Chen, Zhen; Ruan, Xiong Z; Huang, Ailong; Tang, Ni; Chen, Yaxi
2017-09-15
Hepatitis B virus (HBV) is designated a "metabolovirus" due to the intimate connection between the virus and host metabolism. The nutrition state of the host plays a relevant role in the severity of HBV infection. Metabolic syndrome (MS) is prone to increasing HBV DNA loads and accelerating the progression of liver disease in patients with chronic hepatitis B (CHB). Cluster of differentiation 36 (CD36), also named fatty acid translocase, is known to facilitate long-chain fatty acid uptake and contribute to the development of MS. We recently found that CD36 overexpression enhanced HBV replication. In this study, we further explored the mechanism by which CD36 overexpression promotes HBV replication. Our data showed that CD36 overexpression increased HBV replication, and CD36 knockdown inhibited HBV replication. RNA sequencing found some of the differentially expressed genes were involved in calcium ion homeostasis. CD36 overexpression elevated the cytosolic calcium level, and CD36 knockdown decreased the cytosolic calcium level. Calcium chelator BAPTA-AM could override the HBV replication increased by CD36 overexpression, and the calcium activator thapsigargin could improve the HBV replication reduced by CD36 knockdown. We further found that CD36 overexpression activated Src kinase, which plays an important role in the regulation of the store-operated Ca 2+ channel. An inhibitor of Src kinase (SU6656) significantly reduced the CD36-induced HBV replication. We identified a novel link between CD36 and HBV replication, which is associated with cytosolic calcium and the Src kinase pathway. CD36 may represent a potential therapeutic target for the treatment of CHB patients with MS. Copyright © 2017 Elsevier Inc. All rights reserved.
The Neutrophil Btk Signalosome Regulates Integrin Activation during Sterile Inflammation
Volmering, Stephanie; Block, Helena; Boras, Mark; Lowell, Clifford A.; Zarbock, Alexander
2016-01-01
SUMMARY Neutrophils are recruited from the blood to sites of sterile inflammation, where they are involved in wound healing but can also cause tissue damage. During sterile inflammation, necrotic cells release pro-inflammatory molecules including formylated peptides. However, the signaling pathway triggered by formylated peptides to integrin activation and leukocyte recruitment is unknown. By using spinning-disk confocal intravital microscopy, we examined the molecular mechanisms of leukocyte recruitment to sites of focal hepatic necrosis in vivo. We demonstrated that the Bruton’s tyrosine kinase (Btk) was required for multiple Mac-1 activation events involved in neutrophil recruitment and functions during sterile inflammation triggered by fMLF. The Src family kinase Hck, Wiskott-Aldrich-syndrome protein, and phospholipase Cγ2 were also involved in this pathway required for fMLF-triggered Mac-1 activation and neutrophil recruitment. Thus, we have identified a neutrophil Btk signalosome that is involved in a signaling pathway triggered by formylated peptides leading to the selective activation of Mac-1 and neutrophil recruitment during sterile inflammation. PMID:26777396
Dehkhoda, Farhad; Lee, Christine M. M.; Medina, Johan; Brooks, Andrew J.
2018-01-01
The growth hormone receptor (GHR), although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK)–signal transducer and activator of transcription (STAT) signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK–STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling. PMID:29487568
Wagner, Tristan; Alexandre, Matthieu; Duran, Rosario; Barilone, Nathalie; Wehenkel, Annemarie; Alzari, Pedro M; Bellinzoni, Marco
2015-05-01
Signal transduction mediated by Ser/Thr phosphorylation in Mycobacterium tuberculosis has been intensively studied in the last years, as its genome harbors eleven genes coding for eukaryotic-like Ser/Thr kinases. Here we describe the crystal structure and the autophosphorylation sites of the catalytic domain of PknA, one of two protein kinases essential for pathogen's survival. The structure of the ligand-free kinase domain shows an auto-inhibited conformation similar to that observed in human Tyr kinases of the Src-family. These results reinforce the high conservation of structural hallmarks and regulation mechanisms between prokaryotic and eukaryotic protein kinases. © 2015 Wiley Periodicals, Inc.
The Abl SH2-kinase linker naturally adopts a conformation competent for SH3 domain binding.
Chen, Shugui; Brier, Sébastien; Smithgall, Thomas E; Engen, John R
2007-04-01
The core of the Abelson tyrosine kinase (c-Abl) is structurally similar to Src-family kinases where SH3 and SH2 domains pack against the backside of the kinase domain in the down-regulated conformation. Both kinase families depend upon intramolecular association of SH3 with the linker joining the SH2 and kinase domains for suppression of kinase activity. Hydrogen deuterium exchange (HX) and mass spectrometry (MS) were used to probe intramolecular interaction of the c-Abl SH3 domain with the linker in recombinant constructs lacking the kinase domain. Under physiological conditions, the c-Abl SH3 domain undergoes partial unfolding, which is stabilized by ligand binding, providing a unique assay for SH3:linker interaction in solution. Using this approach, we observed dynamic association of the SH3 domain with the linker in the absence of the kinase domain. Truncation of the linker before W254 completely prevented cis-interaction with SH3, while constructs containing amino acids past this point showed SH3:linker interactions. The observation that the Abl linker sequence exhibits SH3-binding activity in the absence of the kinase domain is unique to Abl and was not observed with Src-family kinases. These results suggest that SH3:linker interactions may have a more prominent role in Abl regulation than in Src kinases, where the down-regulated conformation is further stabilized by a second intramolecular interaction between the C-terminal tail and the SH2 domain.
Xiang, Richard F.; Stack, Danuta; Huston, Shaunna M.; Li, Shu Shun; Ogbomo, Henry; Kyei, Stephen K.; Mody, Christopher H.
2016-01-01
The activity of Rac in leukocytes is essential for immunity. However, its role in NK cell-mediated anti-microbial signaling remains unclear. In this study, we investigated the role of Rac in NK cell mediated anti-cryptococcal killing. We found that Cryptococcus neoformans independently activates both Rac and SFK pathways in NK cells, and unlike in tumor killing, Cryptococcus initiated a novel Rac → PI3K → Erk cytotoxicity cascade. Remarkably, Rac was not required for conjugate formation, despite its essential role in NK cytotoxicity against C. neoformans. Taken together, our data show that, unlike observations with tumor cells, NK cells use a novel Rac cytotoxicity pathway in conjunction with SFK, to kill C. neoformans. PMID:26867574
Yu, Jianxiu; Deng, Rong; Zhu, Helen H; Zhang, Sharon S; Zhu, Changhong; Montminy, Marc; Davis, Roger; Feng, Gen-Sheng
2013-02-08
The Src-homology 2 (SH2) domain-containing tyrosine phosphatase Shp2 has been known to regulate various signaling pathways triggered by receptor and cytoplasmic tyrosine kinases. Here we describe a novel function of Shp2 in control of lipid metabolism by mediating degradation of fatty acid synthase (FASN). p38-phosphorylated COP1 accumulates in the cytoplasm and subsequently binds FASN through Shp2 here as an adapter, leading to FASN-Shp2-COP1 complex formation and FASN degradation mediated by ubiquitination pathway. By fasting p38 is activated and stimulates FASN protein degradation in mice. Consistently, the FASN protein levels are dramatically elevated in mouse liver and pancreas in which Shp2/Ptpn11 is selectively deleted. Thus, this study identifies a new activity for Shp2 in lipid metabolism.
Peng, Liu; Lei, Zhang; Xiao-na, Xie; Deli, Wang; Jing, Sun; Yong-sen, Wang; Zhi, Wang; Shu, Xing; Jun-feng, Ma; Wan-nan, Li; Xue-qi, Fu
2015-03-01
Protein tyrosine phosphatases (PTPs) are enzymes that catalyze protein tyrosine dephosphorylation of which Src homology phosphatase-1 (SHP-1) is one of the best-validated, a widely distributed intracellular tyrosine phosphatase that contains two SH2 domains. Down regulation of SHP-1 tyrosine phosphatases was significantly increased sensitivity to insulin in insulin signaling pathway. Through in vitro enzymatic reaction kinetics experiment, we found that the extract of Perilla stem was a potential inhibitor to δSHP-1, the catalytic domain of SHP-1 protein tyrosine phosphatase, and its IC(50) was 4ug/ml, and was more sensitive towards SHP-1than other PTPs, which indicated that SHP-1 might be a target of the extract of Perilla stem. It can strengthened the level of tyrosine phosphorylation of insulin receptor (IR) and extracellular signal-regulated protein kinase (ERK) in HepG2 cells, and then activated the insulin signaling pathway through inhibiting the protein phosphorylation of SHP-1. These results demonstrated that the extract of Perilla stem could play an important role for diabetes treatment through inhibiting the level of SHP-1 in insulin signaling pathway.
Axelrod, Mark J; Mendez, Rolando E; Khalil, Ashraf; Leimgruber, Stephanie S; Sharlow, Elizabeth R; Capaldo, Brian; Conaway, Mark; Gioeli, Daniel G; Weber, Michael J; Jameson, Mark J
2015-12-01
In head and neck squamous cell carcinoma (HNSCC), resistance to single-agent targeted therapy may be overcome by co-targeting of compensatory signaling pathways. A targeted drug screen with 120 combinations was used on 9 HNSCC cell lines. Multiple novel drug combinations demonstrated synergistic growth inhibition. Combining the insulin-like growth factor-1 receptor (IGF-1R) inhibitor, BMS754807, with either the human epidermal growth factor receptor (HER)-family inhibitor, BMS599626, or the Src-family kinase inhibitor, dasatinib, resulted in substantial synergy and growth inhibition. Depending on the cell line, these combinations induced synergistic or additive apoptosis; when synergistic apoptosis was observed, AKT phosphorylation was inhibited to a greater extent than either drug alone. Conversely, when additive apoptosis occurred, AKT phosphorylation was not reduced by the drug combination. Combined IGF-1R/HER family and IGF-1R/Src family inhibition may have therapeutic potential in HNSCC. AKT may be a node of convergence between IGF-1R signaling and pathways that compensate for IGF-1R inhibition. © 2015 Wiley Periodicals, Inc.
Thang, Nguyen Dinh; Yajima, Ichiro; Kumasaka, Mayuko Y; Ohnuma, Shoko; Yanagishita, Takeshi; Hayashi, Rumiko; Shekhar, Hossain U; Watanabe, Daisuke; Kato, Masashi
2011-01-01
Explosive increases in skin cancers have been reported in more than 36 million patients with arsenicosis caused by drinking arsenic-polluted well water. This study and previous studies showed high levels of barium as well as arsenic in the well water. However, there have been no reports showing a correlation between barium and cancer. In this study, we examined whether barium (BaCl(2)) may independently have cancer-related effects on human precancerous keratinocytes (HaCaT). Barium (5-50 µM) biologically promoted anchorage-independent growth and invasion of HaCaT cells in vitro. Barium (5 µM) biochemically enhanced activities of c-SRC, FAK, ERK and MT1-MMP molecules, which regulate anchorage-independent growth and/or invasion. A SRC kinase specific inhibitor, protein phosphatase 2 (PP2), blocked barium-mediated promotion of anchorage-independent growth and invasion with decreased c-SRC kinase activity. Barium (2.5-5 µM) also promoted anchorage-independent growth and invasion of fibroblasts (NIH3T3) and immortalized nontumorigenic melanocytes (melan-a), but not transformed cutaneous squamous cell carcinoma (HSC5 and A431) and malignant melanoma (Mel-ret) cells, with activation of c-SRC kinase. Taken together, our biological and biochemical findings newly suggest that the levels of barium shown in drinking well water independently has the cancer-promoting effects on precancerous keratinocytes, fibroblast and melanocytes in vitro.
Thang, Nguyen Dinh; Yajima, Ichiro; Kumasaka, Mayuko Y.; Ohnuma, Shoko; Yanagishita, Takeshi; Hayashi, Rumiko; Shekhar, Hossain U.; Watanabe, Daisuke; Kato, Masashi
2011-01-01
Explosive increases in skin cancers have been reported in more than 36 million patients with arsenicosis caused by drinking arsenic-polluted well water. This study and previous studies showed high levels of barium as well as arsenic in the well water. However, there have been no reports showing a correlation between barium and cancer. In this study, we examined whether barium (BaCl2) may independently have cancer-related effects on human precancerous keratinocytes (HaCaT). Barium (5–50 µM) biologically promoted anchorage-independent growth and invasion of HaCaT cells in vitro. Barium (5 µM) biochemically enhanced activities of c-SRC, FAK, ERK and MT1-MMP molecules, which regulate anchorage-independent growth and/or invasion. A SRC kinase specific inhibitor, protein phosphatase 2 (PP2), blocked barium-mediated promotion of anchorage-independent growth and invasion with decreased c-SRC kinase activity. Barium (2.5–5 µM) also promoted anchorage-independent growth and invasion of fibroblasts (NIH3T3) and immortalized nontumorigenic melanocytes (melan-a), but not transformed cutaneous squamous cell carcinoma (HSC5 and A431) and malignant melanoma (Mel-ret) cells, with activation of c-SRC kinase. Taken together, our biological and biochemical findings newly suggest that the levels of barium shown in drinking well water independently has the cancer-promoting effects on precancerous keratinocytes, fibroblast and melanocytes in vitro. PMID:22022425
De Kimpe, Line; Janssens, Katrien; Derua, Rita; Armacki, Milena; Goicoechea, Silvia; Otey, Carol; Waelkens, Etienne; Vandoninck, Sandy; Vandenheede, Jackie R; Seufferlein, Thomas; Van Lint, Johan
2009-02-01
Protein Kinase D (PKD) has been implicated in the regulation of actin turnover at the leading edge, invasion and migration. In particular, a complex between cortactin, paxillin and PKD in the invadopodia of invasive breast cancer cells has been described earlier, but so far this complex remained ill defined. Here we have investigated the possible role of PKD as a cortactin kinase. Using a mass spectrometric approach, we found that PKD phosphorylates cortactin on Ser 298 in the 6th cortactin repeat region and on Ser 348, right before the helical-proline rich domain of cortactin. We developed phosphospecific antibodies against these phosphorylated sequences, and used them as tools to follow the in vivo phosphorylation of cortactin by PKD. Examination of cortactin phosphorylation kinetics revealed that Ser 298 serves as a priming site for subsequent phosphorylation of Ser 348. Src, a well-known cortactin kinase, strongly potentiated the in vivo PKD mediated cortactin phosphorylation. This Src effect is neither mediated by pre-phosphorylation of cortactin nor by activation of PKD by Src. Phosphorylation of cortactin by PKD does not affect its subcellular localization, nor does it affect its translocation to podosomes or membrane ruffles. Moreover, there was no effect of PKD mediated cortactin phosphorylation on EGF receptor degradation and LPA induced migration. Taken together, these data establish cortactin as a novel PKD substrate and reveal a novel connection between Src and PKD.
Maruoka, Takayuki; Kitanaka, Akira; Kubota, Yoshitsugu; Yamaoka, Genji; Kameda, Tomohiro; Imataki, Osamu; Dobashi, Hiroaki; Bandoh, Shuji; Kadowaki, Norimitsu; Tanaka, Terukazu
2018-03-13
Small-cell lung cancer (SCLC) is intractable due to its high propensity for relapse. Novel agents are thus needed for SCLC treatment. Lemongrass essential oil (LG-EO) and its major constituent, citral, have been reported to inhibit the proliferation and survival of several types of cancer cells. However, the precise mechanisms through which LG-EO and citral exert their effects on SCLC cells have not been fully elucidated. SCLC cells express Src and have high levels of Src-tyrosine kinase (Src-TK) activity. In most SCLC cell lines, constitutive phosphorylation of Stat3(Y705), which is essential for its activation, has been detected. Src-TK can phosphorylate Stat3(Y705), and activated Stat3 promotes the expression of the anti-apoptotic factors Bcl-xL and Mcl-1. In the present study, LG-EO and citral prevented Src-TK from phosphorylating Stat3(Y705), resulting in decreased Bcl-xL and Mcl-1 expression, in turn suppressing the proliferation/survival of SCLC cells. To confirm these findings, the wild-type-src gene was transfected into the LU135 SCLC cell line (LU135‑wt-src), in which Src and activated phospho-Stat3(Y705) were overexpressed. The suppression of cell proliferation and the induction of apoptosis by treatment with LG-EO or citral were significantly attenuated in the LU135-wt-src cells compared with the control LU135-mock cells. The signal transducer and activator of transcription 3 (Stat3) signaling pathway is also associated with intrinsic drug resistance. LU135-wt-src cells were significantly resistant to conventional chemotherapeutic agents compared with LU135-mock cells. The combined effects of citral and each conventional chemotherapeutic agent on SCLC cells were also evaluated. The combination treatment exerted additive or more prominent effects on LU135-wt-src, LU165 and MN1112 cells, which are relatively chemoresistant SCLC cells. These findings suggest that either LG-EO or citral, alone or in combination with chemotherapeutic agents, may be a novel therapeutic option for SCLC patients.
NASA Astrophysics Data System (ADS)
Pucheta-Martínez, Encarna; Saladino, Giorgio; Morando, Maria Agnese; Martinez-Torrecuadrada, Jorge; Lelli, Moreno; Sutto, Ludovico; D'Amelio, Nicola; Gervasio, Francesco Luigi
2016-04-01
Phosphorylation of the activation loop is a fundamental step in the activation of most protein kinases. In the case of the Src tyrosine kinase, a prototypical kinase due to its role in cancer and its historic importance, phosphorylation of tyrosine 416 in the activation loop is known to rigidify the structure and contribute to the switch from the inactive to a fully active form. However, whether or not phosphorylation is able per-se to induce a fully active conformation, that efficiently binds ATP and phosphorylates the substrate, is less clear. Here we employ a combination of solution NMR and enhanced-sampling molecular dynamics simulations to fully map the effects of phosphorylation and ATP/ADP cofactor loading on the conformational landscape of Src tyrosine kinase. We find that both phosphorylation and cofactor binding are needed to induce a fully active conformation. What is more, we find a complex interplay between the A-loop and the hinge motion where the phosphorylation of the activation-loop has a significant allosteric effect on the dynamics of the C-lobe.
White, M F
1994-02-01
IRS-1 is a principal substrate of the insulin receptor tyrosine kinase. It undergoes multi-site tyrosine phosphorylation and mediates the insulin signal by associating with various signaling molecules containing Src homology 2 domains. Interleukin-4 also stimulates IRS-1 phosphorylation, and it is suspected that a few more growth factors or cytokines will be added to form a select group of receptors that utilize the IRS-1 signaling pathway. More IRS-1-like adapter molecules, such as 4PS (IRS-2), may remain to be found.
Kakae, Keiko; Ikeuchi, Masayoshi; Kuga, Takahisa; Saito, Youhei; Yamaguchi, Naoto; Nakayama, Yuji
2017-01-01
The protein-tyrosine kinase, c-Src, is involved in a variety of signaling events, including cell division. We have reported that v-Src, which is a mutant variant of the cellular proto-oncogene, c-Src, causes delocalization of Aurora B kinase, resulting in a furrow regression in cytokinesis and the generation of multinucleated cells. However, the effect of v-Src on mitotic spindle formation is unknown. Here we show that v-Src-expressing HCT116 and NIH3T3 cells undergo abnormal cell division, in which cells separate into more than two cells. Upon v-Src expression, the proportion of multinucleated cells is increased in a time-dependent manner. Flow cytometry analysis revealed that v-Src increases the number of cells having a ≥4N DNA content. Microscopic analysis showed that v-Src induces the formation of multipolar spindles with excess centrosomes. These results suggest that v-Src induces multipolar spindle formation by generating multinucleated cells. Tetraploidy activates the tetraploidy checkpoint, leading to a cell cycle arrest of tetraploid cells at the G1 phase, in which the nuclear exclusion of the transcription co-activator YAP plays a critical role. In multinucleated cells that are induced by cytochalasin B and the Plk1 inhibitor, YAP is excluded from the nucleus. However, v-Src prevents this nuclear exclusion of YAP through a decrease in the phosphorylation of YAP at Ser127 in multinucleated cells. Furthermore, v-Src decreases the expression level of p53, which also plays a critical role in the cell cycle arrest of tetraploid cells. These results suggest that v-Src promotes abnormal spindle formation in at least two ways: generation of multinucleated cells and a weakening of the tetraploidy checkpoint. Copyright © 2016 Elsevier Inc. All rights reserved.
Chandra, Pallavi; Rajmani, R S; Verma, Garima; Bhavesh, Neel Sarovar; Kumar, Dhiraj
2016-01-01
In view of emerging drug resistance among bacterial pathogens, including Mycobacterium tuberculosis, the development of novel therapeutic strategies is increasingly being sought. A recent paradigm in antituberculosis (anti-TB) drug development is to target the host molecules that are crucial for intracellular survival of the pathogen. We previously showed the importance of Src tyrosine kinases in mycobacterial pathogenesis. Here, we report that inhibition of Src significantly reduced survival of H37Rv as well as multidrug-resistant (MDR) and extremely drug-resistant (XDR) strains of M. tuberculosis in THP-1 macrophages. Src inhibition was also effective in controlling M. tuberculosis infection in guinea pigs. In guinea pigs, reduced M. tuberculosis burden due to Src inhibition also led to a marked decline in the disease pathology. In agreement with the theoretical framework of host-directed approaches against the pathogen, Src inhibition was equally effective against an XDR strain in controlling infection in guinea pigs. We propose that Src inhibitors could be developed into effective host-directed anti-TB drugs, which could be indiscriminately used against both drug-sensitive and drug-resistant strains of M. tuberculosis. IMPORTANCE The existing treatment regimen for tuberculosis (TB) suffers from deficiencies like high doses of antibiotics, long treatment duration, and inability to kill persistent populations in an efficient manner. Together, these contribute to the emergence of drug-resistant tuberculosis. Recently, several host factors were identified which help intracellular survival of Mycobacterium tuberculosis within the macrophage. These factors serve as attractive targets for developing alternate therapeutic strategies against M. tuberculosis. This strategy promises to be effective against drug-resistant strains. The approach also has potential to considerably lower the risk of emergence of new drug-resistant strains. We explored tyrosine kinase Src as a host factor exploited by virulent M. tuberculosis for intracellular survival. We show that Src inhibition can effectively control tuberculosis in infected guinea pigs. Moreover, Src inhibition ameliorated TB-associated pathology in guinea pigs. Thus, Src inhibitors have strong potential to be developed as possible anti-TB drugs.
EG-1 interacts with c-Src and activates its signaling pathway.
Lu, Ming; Zhang, Liping; Sartippour, Maryam R; Norris, Andrew J; Brooks, Mai N
2006-10-01
EG-1 is significantly elevated in breast, colorectal, and prostate cancers. Overexpression of EG-1 stimulates cellular proliferation, and targeted inhibition blocks mouse xenograft tumor growth. To further clarify the function of EG-1, we investigated its role in c-Src activation. We observed that EG-1 overexpression results in activation of c-Src, but found no evidence that EG-1 is a direct Src substrate. EG-1 also binds to other members of the Src family. Furthermore, EG-1 shows interaction with multiple other SH3- and WW-containing molecules involved in various signaling pathways. These observations suggest that EG-1 may be involved in signaling pathways including c-Src activation.
Using ancient protein kinases to unravel a modern cancer drug's mechanism
Wilson, C.; Agafonov, R. V.; Hoemberger, M.; ...
2015-02-19
Macromolecular function is rooted in energy landscapes, where sequence determines not a single structure but an ensemble of conformations. Hence, evolution modifies a protein’s function by altering its energy landscape. Consequently, we recreate the evolutionary pathway between two modern human oncogenes, Src and Abl, by reconstructing their common ancestors. Our evolutionary reconstruction combined with x-ray structures of the common ancestor and pre–steady-state kinetics reveals a detailed atomistic mechanism for selectivity of the successful cancer drug Gleevec. Gleevec affinity is gained during the evolutionary trajectory toward Abl and lost toward Src, primarily by shifting an induced-fit equilibrium that is also disruptedmore » in the clinical T315I resistance mutation. Lastly, this work reveals the mechanism of Gleevec specificity while offering insights into how energy landscapes evolve.« less
Peyton, Candace; Thomas, Peter
2011-01-01
Oocyte maturation (OM) in teleosts is under precise hormonal control by progestins and estrogens. We show here that estrogens activate an epidermal growth factor receptor (Egfr) signaling pathway in fully grown, denuded zebrafish (Danio rerio) oocytes through the G protein-coupled estrogen receptor (Gper; also known as GPR30) to maintain oocyte meiotic arrest in a germinal vesicle breakdown (GVBD) bioassay. A GPER-specific antagonist, G-15, increased spontaneous OM, indicating that the inhibitory estrogen actions on OM are mediated through Gper. Estradiol-17beta-bovine serum albumin, which cannot enter oocytes, decreased GVBD, whereas treatment with actinomycin D did not block estrogen's inhibitory effects, suggesting that estrogens act at the cell surface via a nongenomic mechanism to prevent OM. The intracellular tyrosine kinase (Src) inhibitor, PP2, blocked estrogen inhibition of OM. Expression of egfr mRNA and Egfr protein were detected in denuded zebrafish oocytes. The matrix metalloproteinase (MMP) inhibitor, ilomastat, which prevents the release of heparin-bound epidermal growth factor, increased spontaneous OM, whereas the MMP activator, interleukin-1alpha, decreased spontaneous OM. Moreover, inhibitors of EGFR (ErbB1) and extracellular-related kinase 1 and 2 (Erk1/2; official symbol Mapk3/1) increased spontaneous OM. In addition, estradiol-17beta and the GPER agonist, G-1, increased phosphorylation of Erk, and this was abrogated by simultaneous treatment with the EGFR inhibitor. Taken together, these results suggest that estrogens act through Gper to maintain meiotic arrest via an Src kinase-dependent G-protein betagamma subunit signaling pathway involving transactivation of egfr and phosphorylation of Mapk3/1. To our knowledge, this is the first evidence that EGFR signaling in vertebrate oocytes can prevent meiotic progression. PMID:21349822
Peyton, Candace; Thomas, Peter
2011-07-01
Oocyte maturation (OM) in teleosts is under precise hormonal control by progestins and estrogens. We show here that estrogens activate an epidermal growth factor receptor (Egfr) signaling pathway in fully grown, denuded zebrafish (Danio rerio) oocytes through the G protein-coupled estrogen receptor (Gper; also known as GPR30) to maintain oocyte meiotic arrest in a germinal vesicle breakdown (GVBD) bioassay. A GPER-specific antagonist, G-15, increased spontaneous OM, indicating that the inhibitory estrogen actions on OM are mediated through Gper. Estradiol-17beta-bovine serum albumin, which cannot enter oocytes, decreased GVBD, whereas treatment with actinomycin D did not block estrogen's inhibitory effects, suggesting that estrogens act at the cell surface via a nongenomic mechanism to prevent OM. The intracellular tyrosine kinase (Src) inhibitor, PP2, blocked estrogen inhibition of OM. Expression of egfr mRNA and Egfr protein were detected in denuded zebrafish oocytes. The matrix metalloproteinase (MMP) inhibitor, ilomastat, which prevents the release of heparin-bound epidermal growth factor, increased spontaneous OM, whereas the MMP activator, interleukin-1alpha, decreased spontaneous OM. Moreover, inhibitors of EGFR (ErbB1) and extracellular-related kinase 1 and 2 (Erk1/2; official symbol Mapk3/1) increased spontaneous OM. In addition, estradiol-17beta and the GPER agonist, G-1, increased phosphorylation of Erk, and this was abrogated by simultaneous treatment with the EGFR inhibitor. Taken together, these results suggest that estrogens act through Gper to maintain meiotic arrest via an Src kinase-dependent G-protein betagamma subunit signaling pathway involving transactivation of egfr and phosphorylation of Mapk3/1. To our knowledge, this is the first evidence that EGFR signaling in vertebrate oocytes can prevent meiotic progression.
Gunn, Natalie J; Gorman, Michael A; Dobson, Renwick C J; Parker, Michael W; Mulhern, Terrence D
2011-03-01
The C-terminal Src kinase (Csk) and Csk-homologous kinase (CHK) are endogenous inhibitors of the proto-oncogenic Src family of protein tyrosine kinases (SFKs). Phosphotyrosyl peptide binding to their Src-homology 2 (SH2) domains activates Csk and CHK, enhancing their ability to suppress SFK signalling; however, the detailed mechanistic basis of this activation event is unclear. The CHK SH2 was expressed in Escherichia coli and the purified protein was characterized as monomeric by synchrotron small-angle X-ray scattering in-line with size-exclusion chromatography. The CHK SH2 crystallized in 0.2 M sodium bromide, 0.1 M bis-Tris propane pH 6.5 and 20% polyethylene glycol 3350 and the best crystals diffracted to ∼1.6 Å resolution. The crystals belonged to space group P2, with unit-cell parameters a=25.8, b=34.6, c=63.2 Å, β=99.4°.
Cell Transformation by PTP1B Truncated Mutants Found in Human Colon and Thyroid Tumors.
Mei, Wenhan; Wang, Kemin; Huang, Jian; Zheng, Xinmin
2016-01-01
Expression of wild-type protein tyrosine phosphatase (PTP) 1B may act either as a tumor suppressor by dysregulation of protein tyrosine kinases or a tumor promoter through Src dephosphorylation at Y527 in human breast cancer cells. To explore whether mutated PTP1B is involved in human carcinogenesis, we have sequenced PTP1B cDNAs from human tumors and found splice mutations in ~20% of colon and thyroid tumors. The PTP1BΔE6 mutant expressed in these two tumor types and another PTP1BΔE5 mutant expressed in colon tumor were studied in more detail. Although PTP1BΔE6 revealed no phosphatase activity compared with wild-type PTP1B and the PTP1BΔE5 mutant, its expression induced oncogenic transformation of rat fibroblasts without Src activation, indicating that it involved signaling pathways independent of Src. The transformed cells were tumourigenic in nude mice, suggesting that the PTP1BΔE6 affected other molecule(s) in the human tumors. These observations may provide a novel therapeutic target for colon and thyroid cancer.
Konte, Tilen; Terpitz, Ulrich; Plemenitaš, Ana
2016-01-01
The basidiomycetous fungus Wallemia ichthyophaga grows between 1.7 and 5.1 M NaCl and is the most halophilic eukaryote described to date. Like other fungi, W. ichthyophaga detects changes in environmental salinity mainly by the evolutionarily conserved high-osmolarity glycerol (HOG) signaling pathway. In Saccharomyces cerevisiae, the HOG pathway has been extensively studied in connection to osmotic regulation, with a valuable knock-out strain collection established. In the present study, we reconstructed the architecture of the HOG pathway of W. ichthyophaga in suitable S. cerevisiae knock-out strains, through heterologous expression of the W. ichthyophaga HOG pathway proteins. Compared to S. cerevisiae, where the Pbs2 (ScPbs2) kinase of the HOG pathway is activated via the SHO1 and SLN1 branches, the interactions between the W. ichthyophaga Pbs2 (WiPbs2) kinase and the W. ichthyophaga SHO1 branch orthologs are not conserved: as well as evidence of poor interactions between the WiSho1 Src-homology 3 (SH3) domain and the WiPbs2 proline-rich motif, the absence of a considerable part of the osmosensing apparatus in the genome of W. ichthyophaga suggests that the SHO1 branch components are not involved in HOG signaling in this halophilic fungus. In contrast, the conserved activation of WiPbs2 by the S. cerevisiae ScSsk2/ScSsk22 kinase and the sensitivity of W. ichthyophaga cells to fludioxonil, emphasize the significance of two-component (SLN1-like) signaling via Group III histidine kinase. Combined with protein modeling data, our study reveals conserved and non-conserved protein interactions in the HOG signaling pathway of W. ichthyophaga and therefore significantly improves the knowledge of hyperosmotic signal processing in this halophilic fungus.
Jin, Lily L; Wybenga-Groot, Leanne E; Tong, Jiefei; Taylor, Paul; Minden, Mark D; Trudel, Suzanne; McGlade, C Jane; Moran, Michael F
2015-03-01
Src homology 2 (SH2) domains are modular protein structures that bind phosphotyrosine (pY)-containing polypeptides and regulate cellular functions through protein-protein interactions. Proteomics analysis showed that the SH2 domains of Src family kinases are themselves tyrosine phosphorylated in blood system cancers, including acute myeloid leukemia, chronic lymphocytic leukemia, and multiple myeloma. Using the Src family kinase Lyn SH2 domain as a model, we found that phosphorylation at the conserved SH2 domain residue Y(194) impacts the affinity and specificity of SH2 domain binding to pY-containing peptides and proteins. Analysis of the Lyn SH2 domain crystal structure supports a model wherein phosphorylation of Y(194) on the EF loop modulates the binding pocket that engages amino acid side chains at the pY+2/+3 position. These data indicate another level of regulation wherein SH2-mediated protein-protein interactions are modulated by SH2 kinases and phosphatases. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Global Impact of Oncogenic Src on a Phosphotyrosine Proteome
Luo, Weifeng; Slebos, Robbert J.; Hill, Salisha; Li, Ming; Brábek, Jan; Amanchy, Ramars; Chaerkady, Raghothama; Pandey, Akhilesh; Ham, Amy-Joan L.; Hanks, Steven K.
2008-01-01
Elevated activity of Src, the first characterized protein-tyrosine kinase, is associated with progression of many human cancers, and Src has attracted interest as a therapeutic target. Src is known to act in various receptor signaling systems to impact cell behavior, yet it remains likely that the spectrum of Src protein substrates relevant to cancer is incompletely understood. To better understand the cellular impact of deregulated Src kinase activity, we extensively applied a mass spectrometry shotgun phosphotyrosine (pTyr) proteomics strategy to obtain global pTyr profiles of Src-transformed mouse fibroblasts as well as their nontransformed counterparts. A total of 867 peptides representing 563 distinct pTyr sites on 374 different proteins were identified from the Src-transformed cells, while 514 peptides representing 275 pTyr sites on 167 proteins were identified from nontransformed cells. Distinct characteristics of the two profiles were revealed by spectral counting, indicative of pTyr site relative abundance, and by complementary quantitative analysis using stable isotope labeling with amino acids in cell culture (SILAC). While both pTyr profiles are replete with sites on signaling and adhesion/cytoskeletal regulatory proteins, the Src-transformed profile is more diverse with enrichment in sites on metabolic enzymes and RNA and protein synthesis and processing machinery. Forty-three pTyr sites (32 proteins) are predicted as major biologically relevant Src targets on the basis of frequent identification in both cell populations. This select group, of particular interest as diagnostic biomarkers, includes well-established Src sites on signaling/adhesion/cytoskeletal proteins, but also uncharacterized sites of potential relevance to the transformed cell phenotype. PMID:18563927
Lin, Yen -Lin; Meng, Yilin; Huang, Lei; ...
2014-10-22
Gleevec is a potent inhibitor of Abl tyrosine kinase but not of the highly homologous c-Src kinase. Because the ligand binds to an inactive form of the protein in which an Asp-Phe-Gly structural motif along the activation loop adopts a so-called DFG-out conformation, it was suggested that binding specificity was controlled by a “conformational selection” mechanism. In this context, the binding affinity displayed by the kinase inhibitor G6G poses an intriguing challenge. Although it possesses a chemical core very similar to that of Gleevec, G6G is a potent inhibitor of both Abl and c-Src kinases. Both inhibitors bind to themore » DFG-out conformation of the kinases, which seems to be in contradiction with the conformational selection mechanism. To address this issue and display the hidden thermodynamic contributions affecting the binding selectivity, molecular dynamics free energy simulations with explicit solvent molecules were carried out. Relative to Gleevec, G6G forms highly favorable van der Waals dispersive interactions upon binding to the kinases via its triazine functional group, which is considerably larger than the corresponding pyridine moiety in Gleevec. Upon binding of G6G to c-Src, these interactions offset the unfavorable free energy cost of the DFG-out conformation. When binding to Abl, however, G6G experiences an unfavorable free energy penalty due to steric clashes with the phosphate-binding loop, yielding an overall binding affinity that is similar to that of Gleevec. Such steric clashes are absent when G6G binds to c-Src, due to the extended conformation of the phosphate-binding loop.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Tianjun; Commodore, Lois; Huang, Wei-Sheng
2010-09-30
Bcr-Abl is the oncogenic protein tyrosine kinase responsible for chronic myeloid leukemia (CML). Treatment of the disease with imatinib (Gleevec) often results in drug resistance via kinase mutations at the advanced phases of the disease, which has necessitated the development of new mutation-resistant inhibitors, notably against the T315I gatekeeper mutation. As part of our efforts to discover such mutation resistant Abl inhibitors, we have focused on optimizing purine template kinase inhibitors, leading to the discovery of potent DFG-in and DFG-out series of Abl inhibitors that are also potent Src inhibitors. Here we present crystal structures of Abl bound by twomore » such inhibitors, based on a common N9-arenyl purine, and that represent both DFG-in and -out binding modes. In each structure the purine template is bound deeply in the adenine pocket and the novel vinyl linker forms a non-classical hydrogen bond to the gatekeeper residue, Thr315. Specific template substitutions promote either a DFG-in or -out binding mode, with the kinase binding site adjusting to optimize molecular recognition. Bcr-Abl T315I mutant kinase is resistant to all currently marketed Abl inhibitors, and is the focus of intense drug discovery efforts. Notably, our DFG-out inhibitor, AP24163, exhibits modest activity against this mutant, illustrating that this kinase mutant can be inhibited by DFG-out class inhibitors. Furthermore our DFG-out inhibitor exhibits dual Src-Abl activity, absent from the prototypical DFG-out inhibitor, imatinib as well as its analog, nilotinib. The data presented here provides structural guidance for the further design of novel potent DFG-out class inhibitors against Src, Abl and Abl T315I mutant kinases.« less
An evolutionary switch in ND2 enables Src kinase regulation of NMDA receptors
NASA Astrophysics Data System (ADS)
Scanlon, David P.; Bah, Alaji; Krzeminski, Mickaël; Zhang, Wenbo; Leduc-Pessah, Heather L.; Dong, Yi Na; Forman-Kay, Julie D.; Salter, Michael W.
2017-05-01
The non-receptor tyrosine kinase Src is a key signalling hub for upregulating the function of N-methyl D-aspartate receptors (NMDARs). Src is anchored within the NMDAR complex via NADH dehydrogenase subunit 2 (ND2), a mitochondrially encoded adaptor protein. The interacting regions between Src and ND2 have been broadly identified, but the interaction between ND2 and the NMDAR has remained elusive. Here we generate a homology model of ND2 and dock it onto the NMDAR via the transmembrane domain of GluN1. This interaction is enabled by the evolutionary loss of three helices in bilaterian ND2 proteins compared to their ancestral homologues. We experimentally validate our model and demonstrate that blocking this interaction with an ND2 fragment identified in our experimental studies prevents Src-mediated upregulation of NMDAR currents in neurons. Our findings establish the mode of interaction between an NMDAR accessory protein with one of the core subunits of the receptor.
Caporali, Simona; Imai, Manami; Altucci, Lucia; Cancemi, Massimo; Caristi, Silvana; Cicatiello, Luigi; Matarese, Filomena; Penta, Roberta; Sarkar, Dipak K.; Bresciani, Francesco; Weisz, Alessandro
2003-01-01
Estrogens control cell growth and viability in target cells via an interplay of genomic and extragenomic pathways not yet elucidated. Here, we show evidence that cell proliferation and survival are differentially regulated by estrogen in rat pituitary tumor PR1 cells. Pico- to femtomolar concentrations of 17β-estradiol (E2) are sufficient to foster PR1 cell proliferation, whereas nanomolar concentrations of the same are needed to prevent cell death that occurs at a high rate in these cells in the absence of hormone. Activation of endogenous (PRL) or transfected estrogen-responsive genes occurs at the same, higher concentrations of E2 required to promote cell survival, whereas stimulation of cyclin D3 expression and DNA synthesis occur at lower E2 concentrations. Similarly, the pure antiestrogen ICI 182,780 inhibits estrogen response element-dependent trans-activation and cell death more effectively than cyclin-cdk activity, G1-S transition, or DNA synthesis rate. In antiestrogen-treated and/or estrogen-deprived cells, death is due predominantly to apoptosis. Estrogen-induced cell survival, but not E2-dependent cell cycle progression, can be prevented by an inhibitor of c-Src kinase or by blockade of the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling pathway. These data indicate the coexistence of two distinguishable estrogen signaling pathways in PR1 cells, characterized by different functions and sensitivity to hormones and antihormones. PMID:12960425
Ror2-Src signaling in metastasis of mouse melanoma cells is inhibited by NRAGE.
Lai, Shan-Shan; Xue, Bin; Yang, Yang; Zhao, Li; Chu, Chao-Shun; Hao, Jia-Yin; Wen, Chuan-Jun
2012-11-01
The receptor tyrosine kinase (RTK) Ror2 plays important roles in developmental morphogenesis and mediates the filopodia formation in Wnt5a-induced cell migration. However, the function of Ror2 in noncanonical Wnt signaling resulting in cancer metastasis is largely unknown. Here, we show that Ror2 expression is higher in the highly metastatic murine B16-BL6 melanoma cells than in the low metastatic variant B16 cells. Overexpression of Ror2 increases the metastasis ability of B16 cells, and knockdown of Ror2 reduces the migration ability of B16-BL6 cells. Furthermore, the inhibition of Src kinase activity is critical for the Ror2-mediated cell migration upon Wnt5a treatment. The C-terminus of Ror2, which is deleted in brachydactyly type B (BDB), is essential for the mutual interaction with the SH1 domain of Src. Intriguingly, the Neurotrophin receptor-interacting MAGE homologue (NRAGE), which, as we previously reported, can remodel the cellular skeleton and inhibit cell-cell adhesion and metastasis of melanoma and pancreatic cancer, sharply blocks the interaction between Src and Ror2 and inhibits Ror2-mediated B16 cell migration by decreasing the activity of Src and focal adhesion kinase (FAK). Our data show that Ror2 is a potential factor in the tumorigenesis and metastasis in a Src-dependent manner that is negatively regulated by NRAGE. Copyright © 2012. Published by Elsevier Inc.
Ionotropic glutamate receptors: regulation by G-protein-coupled receptors.
Rojas, Asheebo; Dingledine, Raymond
2013-04-01
The function of many ion channels is under dynamic control by coincident activation of G-protein-coupled receptors (GPCRs), particularly those coupled to the Gαs and Gαq family members. Such regulation is typically dependent on the subunit composition of the ionotropic receptor or channel as well as the GPCR subtype and the cell-specific panoply of signaling pathways available. Because GPCRs and ion channels are so highly represented among targets of U.S. Food and Drug Administration-approved drugs, functional cross-talk between these drug target classes is likely to underlie many therapeutic and adverse effects of marketed drugs. GPCRs engage a myriad of signaling pathways that involve protein kinases A and C (PKC) and, through PKC and interaction with β-arrestin, Src kinase, and hence the mitogen-activated-protein-kinase cascades. We focus here on the control of ionotropic glutamate receptor function by GPCR signaling because this form of regulation can influence the strength of synaptic plasticity. The amino acid residues phosphorylated by specific kinases have been securely identified in many ionotropic glutamate (iGlu) receptor subunits, but which of these sites are GPCR targets is less well known even when the kinase has been identified. N-methyl-d-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and heteromeric kainate receptors are all downstream targets of GPCR signaling pathways. The details of GPCR-iGlu receptor cross-talk should inform a better understanding of how synaptic transmission is regulated and lead to new therapeutic strategies for neuropsychiatric disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caruso, Joseph A.; Stemmer, Paul M.; Dombkowski, Alan
2014-04-01
Network and protein–protein interaction analyses of proteins undergoing Hg{sup 2+}-induced phosphorylation and dephosphorylation in Hg{sup 2+}-intoxicated mouse WEHI-231 B cells identified Lyn as the most interconnected node. Lyn is a Src family protein tyrosine kinase known to be intimately involved in the B cell receptor (BCR) signaling pathway. Under normal signaling conditions the tyrosine kinase activity of Lyn is controlled by phosphorylation, primarily of two well known canonical regulatory tyrosine sites, Y-397 and Y-508. However, Lyn has several tyrosine residues that have not yet been determined to play a major role under normal signaling conditions, but are potentially important sitesmore » for phosphorylation following mercury exposure. In order to determine how Hg{sup 2+} exposure modulates the phosphorylation of additional residues in Lyn, a targeted MS assay was developed. Initial mass spectrometric surveys of purified Lyn identified 7 phosphorylated tyrosine residues. A quantitative assay was developed from these results using the multiple reaction monitoring (MRM) strategy. WEHI-231 cells were treated with Hg{sup 2+}, pervanadate (a phosphatase inhibitor), or anti-Ig antibody (to stimulate the BCR). Results from these studies showed that the phosphoproteomic profile of Lyn after exposure of the WEHI-231 cells to a low concentration of Hg{sup 2+} closely resembled that of anti-Ig antibody stimulation, whereas exposure to higher concentrations of Hg{sup 2+} led to increases in the phosphorylation of Y-193/Y-194, Y-501 and Y-508 residues. These data indicate that mercury can disrupt a key regulatory signal transduction pathway in B cells and point to phospho-Lyn as a potential biomarker for mercury exposure. - Highlights: • Inorganic mercury (Hg{sup 2+}) induces changes in the WEHI-231 B cell phosphoproteome. • The B cell receptor (BCR) signaling pathway was the pathway most affected by Hg{sup 2+}. • The Src family phosphoprotein kinase Lyn was the most interconnected node. • Lyn is likely central to the immunotoxic potential of Hg{sup 2+}. • Lyn phosphorylation profiles may be biomarkers for Hg{sup 2+} intoxication of B cells.« less
Yago, Tadayuki; Shao, Bojing; Miner, Jonathan J; Yao, Longbiao; Klopocki, Arkadiusz G; Maeda, Kenichiro; Coggeshall, K Mark; McEver, Rodger P
2010-07-22
In inflamed venules, neutrophils rolling on E-selectin induce integrin alpha(L)beta(2)-dependent slow rolling on intercellular adhesion molecule-1 by activating Src family kinases (SFKs), DAP12 and Fc receptor-gamma (FcRgamma), spleen tyrosine kinase (Syk), and p38. E-selectin signaling cooperates with chemokine signaling to recruit neutrophils into tissues. Previous studies identified P-selectin glycoprotein ligand-1 (PSGL-1) as the essential E-selectin ligand and Fgr as the only SFK that initiate signaling to slow rolling. In contrast, we found that E-selectin engagement of PSGL-1 or CD44 triggered slow rolling through a common, lipid raft-dependent pathway that used the SFKs Hck and Lyn as well as Fgr. We identified the Tec kinase Bruton tyrosine kinase as a key signaling intermediate between Syk and p38. E-selectin engagement of PSGL-1 was dependent on its cytoplasmic domain to activate SFKs and slow rolling. Although recruiting phosphoinositide-3-kinase to the PSGL-1 cytoplasmic domain was reported to activate integrins, E-selectin-mediated slow rolling did not require phosphoinositide-3-kinase. Studies in mice confirmed the physiologic significance of these events for neutrophil slow rolling and recruitment during inflammation. Thus, E-selectin triggers common signals through distinct neutrophil glycoproteins to induce alpha(L)beta(2)-dependent slow rolling.
Direct Interactions with the Integrin β1 Cytoplasmic Tail Activate the Abl2/Arg Kinase*
Simpson, Mark A.; Bradley, William D.; Harburger, David; Parsons, Maddy; Calderwood, David A.; Koleske, Anthony J.
2015-01-01
Integrins are heterodimeric α/β extracellular matrix adhesion receptors that couple physically to the actin cytoskeleton and regulate kinase signaling pathways to control cytoskeletal remodeling and adhesion complex formation and disassembly. β1 integrins signal through the Abl2/Arg (Abl-related gene) nonreceptor tyrosine kinase to control fibroblast cell motility, neuronal dendrite morphogenesis and stability, and cancer cell invasiveness, but the molecular mechanisms by which integrin β1 activates Arg are unknown. We report here that the Arg kinase domain interacts directly with a lysine-rich membrane-proximal segment in the integrin β1 cytoplasmic tail, that Arg phosphorylates the membrane-proximal Tyr-783 in the β1 tail, and that the Arg Src homology domain then engages this phosphorylated region in the tail. We show that these interactions mediate direct binding between integrin β1 and Arg in vitro and in cells and activate Arg kinase activity. These findings provide a model for understanding how β1-containing integrins interact with and activate Abl family kinases. PMID:25694433
Weir, Marion E.; Mann, Jacqueline E.; Corwin, Thomas; Fulton, Zachary W.; Hao, Jennifer M.; Maniscalco, Jeanine F.; Kenney, Marie C.; Roque, Kristal M. Roman; Chapdelaine, Elizabeth F.; Stelzl, Ulrich; Deming, Paula B.; Ballif, Bryan A.; Hinkle, Karen L.
2016-01-01
Src family tyrosine kinases (SFKs) are critical players in normal and aberrant biological processes. While phosphorylation importantly-regulates SFKs at two known tyrosines, large-scale phosphoproteomics have revealed four additional tyrosines commonly-phosphorylated in SFKs. We found these novel tyrosines to be autophosphorylation sites. Mimicking phosphorylation at the site C-terminal to the activation loop decreased Fyn activity. Phosphomimetics and direct phosphorylation at the three SH2 domain sites increased Fyn activity while reducing phosphotyrosine-dependent interactions. While 68% of human SH2 domains exhibit conservation of at least one of these tyrosines, few have been found phosphorylated except when found in cis to a kinase domain. PMID:27001024
Src promotes delta opioid receptor (DOR) desensitization by interfering with receptor recycling.
Archer-Lahlou, Elodie; Audet, Nicolas; Amraei, Mohammad Gholi; Huard, Karine; Paquin-Gobeil, Mélanie; Pineyro, Graciela
2009-01-01
Abstract An important limitation in the clinical use of opiates is progressive loss of analgesic efficacy over time. Development of analgesic tolerance is tightly linked to receptor desensitization. In the case of delta opioid receptors (DOR), desensitization is especially swift because receptors are rapidly internalized and are poorly recycled to the membrane. In the present study, we investigated whether Src activity contributed to this sorting pattern and to functional desensitization of DORs. A first series of experiments demonstrated that agonist binding activates Src and destabilizes a constitutive complex formed by the spontaneous association of DORs with the kinase. Src contribution to DOR desensitization was then established by showing that pre-treatment with Src inhibitor PP2 (20 microM; 1 hr) or transfection of a dominant negative Src mutant preserved DOR signalling following sustained exposure to an agonist. This protection was afforded without interfering with endocytosis, but suboptimal internalization interfered with PP2 ability to preserve DOR signalling, suggesting a post-endocytic site of action for the kinase. This assumption was confirmed by demonstrating that Src inhibition by PP2 or its silencing by siRNA increased membrane recovery of internalized DORs and was further corroborated by showing that inhibition of recycling by monensin or dominant negative Rab11 (Rab11S25N) abolished the ability of Src blockers to prevent desensitization. Finally, Src inhibitors accelerated recovery of DOR-Galphal3 coupling after desensitization. Taken together, these results indicate that Src dynamically regulates DOR recycling and by doing so contributes to desensitization of these receptors.
Pelosi, Giuseppe; Gasparini, Patrizia; Conte, Davide; Fabbri, Alessandra; Perrone, Federica; Tamborini, Elena; Pupa, Serenella M; Ciravolo, Valentina; Caserini, Roberto; Rossi, Giulio; Cavazza, Alberto; Papotti, Mauro; Nakatani, Yukio; Maisonneuve, Patrick; Pastorino, Ugo; Sozzi, Gabriella
2016-05-01
Genetic alterations suitable for targeted therapy are poorly known issues in pulmonary sarcomatoid carcinoma (PSC), an uncommon and life-threatening family of non-small cell lung cancers. Ninety-eight PSCs were assessed for MNNG HOS Transforming gene (MET) and anaplastic lymphoma receptor tyrosine kinase gene (ALK) status by fluorescence in situ hybridization (FISH) and for relevant protein expression by immunohistochemical analysis, also taking advantage of phosphorylated (p-) antibodies. Moreover, levels of ALK and MET mRNA were also determined by real-time polymerase chain reaction and Western blot analysis for downstream activation pathways involving p-MET, p-protein kinase B, p-mitogen-activated protein kinase, p-SRC proto-oncogene tyrosine-protein kinase, and p-focal adhesion kinase (p-FAK). MET amplification was detected by FISH in 25 of 98 PSCs (25.6%) and ALK amplification (but not the relevant rearrangement) was found in 16 of 98 (16.3%), with all ALK-amplified tumors also showing MET amplification (p < 0.0001). Nine PSCs, however, showed MET amplification without any ALK gene alteration. ALK protein expression was always lacking, whereas MET and p-MET were confined to the relevant amplified tumors only. Increased levels of ALK and MET mRNA were detectable in tumors with no direct relationship between mRNA content, protein expression, or alterations detected by FISH. Western blot assays showed complete activation of downstream signal pathways up to p-SRC proto-oncogene tyrosine-protein kinase, and p-focal adhesion kinase recruitment in MET and ALK-coamplified tumors only, whereas isolated MET amplification, MET and ALK borderline amplification (5%-10% of tumor cells with ≥15 copies of the relevant gene), or negative tumors showing eusomy or chromosome polysomy were confined to p-mitogen-activated protein kinase, p-protein kinase B, and/or p-MET activation. Multivariate survival analysis pushed a higher percentage of MET altered cells or a higher value of MET copy gain per cell to marginally emerge for overall survival (p = 0.140) and disease-free survival (p = 0.060), respectively. ALK and MET seemed to act as synergistic, nonrandom coactivators of downstream signal when coamplified in a subset of patients with PSC, thus likely suggesting a combined mechanism of oncogene addiction. These alterations could be a suitable target for therapy based on specific inhibitors. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Alvarado, John Jeff; Tarafdar, Sreya; Yeh, Joanne I; Smithgall, Thomas E
2014-10-10
HIV-1 Nef supports high titer viral replication in vivo and is essential for AIDS progression. Nef function depends on interactions with multiple host cell effectors, including Hck and other Src-family kinases. Here we describe the x-ray crystal structure of Nef in complex with the Hck SH3-SH2 regulatory region to a resolution of 1.86 Å. The complex crystallized as a dimer of complexes, with the conserved Nef PXXPXR motif engaging the Hck SH3 domain. A new intercomplex contact was found between SH3 Glu-93, and Nef Arg-105. Mutagenesis of Hck SH3 Glu-93 interfered with Nef·Hck complex formation and kinase activation in cells. The Hck SH2 domains impinge on the N-terminal region of Nef to stabilize a dimer conformation that exposes Asp-123, a residue critical for Nef function. Our results suggest that in addition to serving as a kinase effector for Nef, Hck binding may reorganize the Nef dimer for functional interaction with other signaling partners. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Alvarado, John Jeff; Tarafdar, Sreya; Yeh, Joanne I.; Smithgall, Thomas E.
2014-01-01
HIV-1 Nef supports high titer viral replication in vivo and is essential for AIDS progression. Nef function depends on interactions with multiple host cell effectors, including Hck and other Src-family kinases. Here we describe the x-ray crystal structure of Nef in complex with the Hck SH3-SH2 regulatory region to a resolution of 1.86 Å. The complex crystallized as a dimer of complexes, with the conserved Nef PXXPXR motif engaging the Hck SH3 domain. A new intercomplex contact was found between SH3 Glu-93, and Nef Arg-105. Mutagenesis of Hck SH3 Glu-93 interfered with Nef·Hck complex formation and kinase activation in cells. The Hck SH2 domains impinge on the N-terminal region of Nef to stabilize a dimer conformation that exposes Asp-123, a residue critical for Nef function. Our results suggest that in addition to serving as a kinase effector for Nef, Hck binding may reorganize the Nef dimer for functional interaction with other signaling partners. PMID:25122770
Cooper, J A; Simon, M A; Kussick, S J
1996-11-01
Vertebrate Src can be activated by specific mutations to become oncogenic. Analogous mutations in Drosophila Src64 (DSrc) induce abnormal differentiation of photoreceptor cells when expressed ectopically in the developing Drosophila adult eye. We have investigated the roles that the adapter protein, Downstream of receptor kinases (Drk), and the SH2 domain-containing tyrosine phosphatase, Corkscrew (Csw), play in this process. We find that dominant-negative mutations in either the drk or csw genes ameliorate the developmental abnormalities induced by activated DSrc. This suggests that Drk and Csw are required downstream of, or parallel to, DSrc. Csw does not act solely as an upstream activator of DSrc. The results are discussed in relation to potential roles for the vertebrate homologues of Drk and Csw (Grb2 and SHP2, respectively) in the transformation of fibroblasts by vertebrate Src.
Massa, Fabienne; Devader, Christelle; Béraud-Dufour, Sophie; Brau, Frédéric; Coppola, Thierry; Mazella, Jean
2013-05-01
The neurotensin (NT) receptor-3 (NTSR3), also called sortilin, is thought to display several functions including a role as a receptor or a co-receptor, in the sorting to plasma membrane and to lysosomes, and in the regulated secretion. The aim of this study was to investigate the function of the soluble form of NTSR3 (sNTSR3) released from several cell lines including colonic cancer cells. The human adenocarcinoma epithelial cell line HT29 has been used to monitor the release, the binding and internalization of sNTSR3 by radioreceptor assays and confocal microscopy. The modulation of the intracellular signaling pathways by the protein has been investigated by using Fura-2 fluorescence calcium imaging microscopy and Western blots analysis. We demonstrated that sNTSR3 specifically binds and internalizes into HT29 cells. This binding, independent from the transactivation of the epidermal growth factor receptor, leads to the increase of intracellular calcium concentration and to the activation of a FAK/Src-dependent activation of the PI3 kinase pathway. In conclusion, sNTSR3 released from the membrane bound NTSR3 is a functional protein able to activate intracellular pathways involved in cell survival but probably not in cell growth. Copyright © 2013 Elsevier Ltd. All rights reserved.
Heppner, David E; Hristova, Milena; Dustin, Christopher M; Danyal, Karamatullah; Habibovic, Aida; van der Vliet, Albert
2016-10-28
The epidermal growth factor receptor (EGFR) plays a critical role in regulating airway epithelial homeostasis and responses to injury. Activation of EGFR is regulated by redox-dependent processes involving reversible cysteine oxidation by reactive oxygen species (ROS) and involves both ligand-dependent and -independent mechanisms, but the precise source(s) of ROS and the molecular mechanisms that control tyrosine kinase activity are incompletely understood. Here, we demonstrate that stimulation of EGFR activation by ATP in airway epithelial cells is closely associated with dynamic reversible oxidation of cysteine residues via sequential sulfenylation and S-glutathionylation within EGFR and the non-receptor-tyrosine kinase Src. Moreover, the intrinsic kinase activity of recombinant Src or EGFR was in both cases enhanced by H 2 O 2 but not by GSSG, indicating that the intermediate sulfenylation is the activating modification. H 2 O 2 -induced increase in EGFR tyrosine kinase activity was not observed with the C797S variant, confirming Cys-797 as the redox-sensitive cysteine residue that regulates kinase activity. Redox-dependent regulation of EGFR activation in airway epithelial cells was found to strongly depend on activation of either the NADPH oxidase DUOX1 or the homolog NOX2, depending on the activation mechanism. Whereas DUOX1 and Src play a primary role in EGFR transactivation by wound-derived signals such as ATP, direct ligand-dependent EGFR activation primarily involves NOX2 with a secondary role for DUOX1 and Src. Collectively, our findings establish that redox-dependent EGFR kinase activation involves a dynamic and reversible cysteine oxidation mechanism and that this activation mechanism variably involves DUOX1 and NOX2. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Palovuori, Riitta; Sormunen, Raija; Eskelinen, Sinikka
2003-12-01
The effects of Src tyrosine kinase activation in subconfluent temperature sensitive (ts)-Src-transformed Madin-Darby canine kidney (MDCK) cells were analyzed by shifting them from nonpermissive (40.5 degrees C) to permissive (35 degrees C) temperature. Already, in 15 minutes, adherens junction components were released from the lateral walls and accumulated to basal surfaces. Simultaneously, membranous actin staining vanished, actin bundles appeared at the basal surface, and the cells flattened. The only component phosphorylated and translocated after the shift to 35 degrees C was p120ctn. The epithelial-mesenchymal transition could be inhibited by a specific inhibitor of Src kinase, PP2, or by inhibiting endocytosis. Therefore, Src activation was responsible for the transition, but not because of phosphorylation of adherens junction components but by way of activation of endocytic machinery and RhoGTPase. Expression of an RacGEF, Tiam-1 (T-lymphoma invasion and metastasis gene 1), prevented flattening of Src-transformed MDCK cells at 35 degrees C and resulted in accumulation of cadherin to lateral membranes. In the case where the Src-MDCK cells were cultivated at 35 degrees C and shifted for short time periods to 40.5 degrees C, cadherin rapidly returned to lateral membranes, whereas actin and p120ctn followed hours afterward. This further supports the view that cadherin internalization is the primary target of Src kinase. We also looked at the cell morphology and distribution of cadherin and Tiam-1 in cells grown in three-dimensional gels composed of collagen and laminin or in Matrigel. At nonpermissive temperature, both Src-MDCK and Tiam-1-transfected Src-MDCK cells exhibited nonpolarized morphology in collagen I, a loose cluster in the mixture of collagen I and laminin, and a differentiated cyst in Matrigel. In growth factor-depleted Matrigel, the Src-MDCK cells grew in nondifferentiated clusters, whereas Tiam-1-transfected cells went to apoptosis. The differentiated phenotype of both cell lines could be rescued by Matrigel-conditioned medium, platelet-derived growth factor, or cholera toxin. Concomitantly, both cadherin and Tiam-1 were recruited to lateral membranes. Therefore, cadherin and Tiam-1 seem to be the key players in the differentiation process of MDCK cells.
Ichihara, Eiki; Westover, David; Meador, Catherine B; Yan, Yingjun; Bauer, Joshua A; Lu, Pengcheng; Ye, Fei; Kulick, Amanda; de Stanchina, Elisa; McEwen, Robert; Ladanyi, Marc; Cross, Darren; Pao, William; Lovly, Christine M
2017-06-01
Mutant-selective EGFR tyrosine kinase inhibitors (TKI), such as osimertinib, are active agents for the treatment of EGFR -mutant lung cancer. Specifically, these agents can overcome the effects of the T790M mutation, which mediates resistance to first- and second-generation EGFR TKI, and recent clinical trials have documented their efficacy in patients with EGFR -mutant lung cancer. Despite promising results, therapeutic efficacy is limited by the development of acquired resistance. Here we report that Src family kinases (SFK) and focal adhesion kinase (FAK) sustain AKT and MAPK pathway signaling under continuous EGFR inhibition in osimertinib-sensitive cells. Inhibiting either the MAPK pathway or the AKT pathway enhanced the effects of osimertinib. Combined SFK/FAK inhibition exhibited the most potent effects on growth inhibition, induction of apoptosis, and delay of acquired resistance. SFK family member YES1 was amplified in osimertinib-resistant EGFR -mutant tumor cells, the effects of which were overcome by combined treatment with osimertinib and SFK inhibitors. In conclusion, our data suggest that the concomitant inhibition of both SFK/FAK and EGFR may be a promising therapeutic strategy for EGFR -mutant lung cancer. Cancer Res; 77(11); 2990-3000. ©2017 AACR . ©2017 American Association for Cancer Research.
Janez, A; Worrall, D S; Imamura, T; Sharma, P M; Olefsky, J M
2000-09-01
Osmotic shock treatment of 3T3-L1 adipocytes causes an increase in glucose transport activity and translocation of GLUT4 protein similar to that elicited by insulin treatment. Insulin stimulation of GLUT4 translocation and glucose transport activity was completely inhibited by wortmannin, however, activation by osmotic shock was only partially blocked. Additionally, we have found that the newly identified insulin receptor substrate Gab-1 (Grb2-associated binder-1) is tyrosine-phosphorylated following sorbitol stimulation. Treatment of cells with the tyrosine kinase inhibitor genistein inhibited osmotic shock-stimulated Gab-1 phosphorylation as well as shock-induced glucose transport. Furthermore, pretreatment with the selective Src family kinase inhibitor PP2 completely inhibited the ability of sorbitol treatment to cause tyrosine phosphorylation of Gab-1. We have also shown that microinjection of anti-Gab-1 antibody inhibits osmotic shock-induced GLUT4 translocation. Furthermore, phosphorylated Gab-1 binds and activates phosphatidylinositol 3-kinase (PI3K) in response to osmotic shock. The PI3K activity associated with Gab-1 was 82% of that associated with anti-phosphotyrosine antibodies, indicating that Gab-1 is the major site for PI3K recruitment following osmotic shock stimulation. Although wortmannin only causes a partial block of osmotic shock-stimulated glucose uptake, wortmannin completely abolishes Gab-1 associated PI3K activity. This suggests that other tyrosine kinase-dependent pathways, in addition to the Gab-1-PI3K pathway, contribute to osmotic shock-mediated glucose transport. To date, Gab-1 is the first protein identified as a member of the osmotic shock signal transduction pathway.
Tanaka, Hiroaki; Akagi, Ken-ichi; Oneyama, Chitose; Tanaka, Masakazu; Sasaki, Yuichi; Kanou, Takashi; Lee, Young-Ho; Yokogawa, Daisuke; Dobenecker, Marc-Werner; Nakagawa, Atsushi; Okada, Masato; Ikegami, Takahisa
2013-01-01
Proteins with Src homology 2 (SH2) domains play major roles in tyrosine kinase signaling. Structures of many SH2 domains have been studied, and the regions involved in their interactions with ligands have been elucidated. However, these analyses have been performed using short peptides consisting of phosphotyrosine followed by a few amino acids, which are described as the canonical recognition sites. Here, we report the solution structure of the SH2 domain of C-terminal Src kinase (Csk) in complex with a longer phosphopeptide from the Csk-binding protein (Cbp). This structure, together with biochemical experiments, revealed the existence of a novel binding region in addition to the canonical phosphotyrosine 314-binding site of Cbp. Mutational analysis of this second region in cells showed that both canonical and novel binding sites are required for tumor suppression through the Cbp-Csk interaction. Furthermore, the data indicate an allosteric connection between Cbp binding and Csk activation that arises from residues in the βB/βC loop of the SH2 domain. PMID:23548896
Khameneh, Hanif Javanmard; Ho, Adrian W S; Spreafico, Roberto; Derks, Heidi; Quek, Hazel Q Y; Mortellaro, Alessandra
2017-01-01
Despite a long history and extensive usage of insoluble aluminum salts (alum) as vaccine adjuvants, the molecular mechanisms underpinning Ag-specific immunity upon vaccination remain unclear. Dendritic cells (DCs) are crucial initiators of immune responses, but little is known about the molecular pathways used by DCs to sense alum and, in turn, activate T and B cells. In this article, we show that alum adjuvanticity requires IL-2 specifically released by DCs, even when T cell secretion of IL-2 is intact. We demonstrate that alum, as well as other sterile particulates, such as uric acid crystals, induces DCs to produce IL-2 following initiation of actin-mediated phagocytosis that leads to Src and Syk kinase activation, Ca 2+ mobilization, and calcineurin-dependent activation of NFAT, the master transcription factor regulating IL-2 expression. Using chimeric mice, we show that DC-derived IL-2 is required for maximal Ag-specific proliferation of CD4 + T cells and optimal humoral responses following alum-adjuvanted immunization. These data identify DC-derived IL-2 as a key mediator of alum adjuvanticity in vivo and the Src-Syk pathway as a potential leverage point in the rational design of novel adjuvants. Copyright © 2016 by The American Association of Immunologists, Inc.
Weir, Marion E; Mann, Jacqueline E; Corwin, Thomas; Fulton, Zachary W; Hao, Jennifer M; Maniscalco, Jeanine F; Kenney, Marie C; Roman Roque, Kristal M; Chapdelaine, Elizabeth F; Stelzl, Ulrich; Deming, Paula B; Ballif, Bryan A; Hinkle, Karen L
2016-04-01
Src family tyrosine kinases (SFKs) are critical players in normal and aberrant biological processes. While phosphorylation importantly regulates SFKs at two known tyrosines, large-scale phosphoproteomics have revealed four additional tyrosines commonly phosphorylated in SFKs. We found these novel tyrosines to be autophosphorylation sites. Mimicking phosphorylation at the C-terminal site to the activation loop decreased Fyn activity. Phosphomimetics and direct phosphorylation at the three SH2 domain sites increased Fyn activity while reducing phosphotyrosine-dependent interactions. While 68% of human SH2 domains exhibit conservation of at least one of these tyrosines, few have been found phosphorylated except when found in cis to a kinase domain. © 2016 Federation of European Biochemical Societies.
Revisiting the ERK/Src cortactin switch
Kelley, Laura C; Hayes, Karen E; Ammer, Amanda Gatesman; Martin, Karen H
2011-01-01
The filamentous (F)-actin regulatory protein cortactin plays an important role in tumor cell movement and invasion by promoting and stabilizing actin related protein (Arp)2/3-mediated actin networks necessary for plasma membrane protrusion. Cortactin is a substrate for ERK1/2 and Src family kinases, with previous in vitro findings demonstrating ERK1/2 phosphorylation of cortactin as a positive and Src phosphorylation as a negative regulatory event in promoting Arp2/3 activation through neuronal Wiskott Aldrich Syndrome protein (N-WASp). Evidence for this regulatory cortactin “switch” in cells has been hampered due to the lack of phosphorylation-specific antibodies that recognize ERK1/2-phosphorylated cortactin. Our findings with phosphorylation-specific antibodies against these ERK1/2 sites (pS405 and pS418) indicate that cortactin can be co-phosphorylated at 405/418 and tyrosine residues targeted by Src family tyrosine kinases. These results indicate that the ERK/Src cortactin switch is not the sole mechanism by which ERK1/2 and tyrosine phosphorylation events regulate cortactin function in cell systems. PMID:21655441
Hirotani, Shinichi; Higuchi, Yoshiharu; Nishida, Kazuhiko; Nakayama, Hiroyuki; Yamaguchi, Osamu; Hikoso, Shungo; Takeda, Toshihiro; Kashiwase, Kazunori; Watanabe, Tetsuya; Asahi, Michio; Taniike, Masayuki; Tsujimoto, Ikuko; Matsumura, Yasushi; Sasaki, Terukatsu; Hori, Masatsugu; Otsu, Kinya
2004-06-01
G-protein-coupled receptor agonists including endothelin-1 (ET-1) and phenylephrine (PE) induce hypertrophy in neonatal ventricular cardiomyocytes. Others and we previously reported that Rac1 signaling pathway plays an important role in this agonist-induced cardiomyocyte hypertrophy. In this study reported here, we found that a Ca(2+)-sensitive non-receptor tyrosine kinase, proline-rich tyrosine kinase 2 (Pyk2)/cell adhesion kinase beta (CAKbeta), is involved in ET-1- and PE-induced cardiomyocyte hypertrophy medicated through Rac1 activation. ET-1, PE or the Ca(2+) inophore, ionomycin, stimulated a rapid increase in tyrosine phosphorylation of Pyk2. The tyrosine phosphorylation of Pyk2 was suppressed by the Ca(2+) chelator, BAPTA. ET-1- or PE-induced increases in [(3)H]-leucine incorporation and expression of atrial natriuretic factor and the enhancement of sarcomere organization. Infection of cardiomyocytes with an adenovirus expressing a mutant Pyk2 which lacked its kinase domain or its ability to bind to c-Src, eliminated ET-1- and PE-induced hypertrophic responses. Inhibition of Pyk2 activation also suppressed Rac1 activation and reactive oxygen species (ROS) production. These findings suggest that the signal transduction pathway leading to hypertrophy involves Ca(2+)-induced Pyk2 activation followed by Rac1-dependent ROS production.
Honda, Takuya; Morii, Mariko; Nakayama, Yuji; Suzuki, Ko; Yamaguchi, Noritaka; Yamaguchi, Naoto
2018-01-18
v-Src is the first identified oncogene product and has a strong tyrosine kinase activity. Much of the literature indicates that v-Src expression induces anchorage-independent and infinite cell proliferation through continuous stimulation of growth signaling by v-Src activity. Although all of v-Src-expressing cells are supposed to form transformed colonies, low frequencies of v-Src-induced colony formation have been observed so far. Using cells that exhibit high expression efficiencies of inducible v-Src, we show that v-Src expression causes cell-cycle arrest through p21 up-regulation despite ERK activation. v-Src expression also induces chromosome abnormalities and unexpected suppression of v-Src expression, leading to p21 down-regulation and ERK inactivation. Importantly, among v-Src-suppressed cells, only a limited number of cells gain the ability to re-proliferate and form transformed colonies. Our findings provide the first evidence that v-Src-driven transformation is attributed to chromosome abnormalities, but not continuous stimulation of growth signaling, possibly through stochastic genetic alterations.
Louria-Hayon, Igal; Frelin, Catherine; Ruston, Julie; Gish, Gerald; Jin, Jing; Kofler, Michael M.; Lambert, Jean-Philippe; Adissu, Hibret A.; Milyavsky, Michael; Herrington, Robert; Minden, Mark D.; Dick, John E.; Gingras, Anne-Claude; Iscove, Norman N.; Pawson, Tony
2013-01-01
The Lnk (Sh2b3) adaptor protein dampens the response of hematopoietic stem cells and progenitors (HSPCs) to a variety of cytokines by inhibiting JAK2 signaling. As a consequence, Lnk−/− mice develop hematopoietic hyperplasia, which progresses to a phenotype resembling the nonacute phase of myeloproliferative neoplasm. In addition, Lnk mutations have been identified in human myeloproliferative neoplasms and acute leukemia. We find that Lnk suppresses the development of radiation-induced acute B-cell malignancies in mice. Lnk-deficient HSPCs recover more effectively from irradiation than their wild-type counterparts, and this resistance of Lnk−/− HSPCs to radiation underlies the subsequent emergence of leukemia. A search for the mechanism responsible for radiation resistance identified the cytokine IL-11 as being critical for the ability of Lnk−/− HSPCs to recover from irradiation and subsequently become leukemic. In IL-11 signaling, wild-type Lnk suppresses tyrosine phosphorylation of the Src homology region 2 domain-containing phosphatase-2/protein tyrosine phosphatase nonreceptor type 11 and its association with the growth factor receptor-bound protein 2, as well as activation of the Erk MAP kinase pathway. Indeed, Src homology region 2 domain-containing phosphatase-2 has a binding motif for the Lnk Src Homology 2 domain that is phosphorylated in response to IL-11 stimulation. IL-11 therefore drives a pathway that enhances HSPC radioresistance and radiation-induced B-cell malignancies, but is normally attenuated by the inhibitory adaptor Lnk. PMID:24297922
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Xu-Qian; Liu, Xiang-Fan; Yao, Ling
Highlights: •A novel FAK splicing mutation identified in breast tumor. •FAK-Del33 mutation promotes cell migration and invasion. •FAK-Del33 mutation regulates FAK/Src signal pathway. -- Abstract: Focal adhesion kinase (FAK) regulates cell adhesion, migration, proliferation, and survival. We identified a novel splicing mutant, FAK-Del33 (exon 33 deletion, KF437463), in both breast and thyroid cancers through colony sequencing. Considering the low proportion of mutant transcripts in samples, this mutation was detected by TaqMan-MGB probes based qPCR. In total, three in 21 paired breast tissues were identified with the FAK-Del33 mutation, and no mutations were found in the corresponding normal tissues. When introducedmore » into a breast cell line through lentivirus infection, FAK-Del33 regulated cell motility and migration based on a wound healing assay. We demonstrated that the expression of Tyr397 (main auto-phosphorylation of FAK) was strongly increased in FAK-Del33 overexpressed breast tumor cells compared to wild-type following FAK/Src RTK signaling activation. These results suggest a novel and unique role of the FAK-Del33 mutation in FAK/Src signaling in breast cancer with significant implications for metastatic potential.« less
The selectivity of protein kinase inhibitors: a further update
Bain, Jenny; Plater, Lorna; Elliott, Matt; Shpiro, Natalia; Hastie, C. James; Mclauchlan, Hilary; Klevernic, Iva; Arthur, J. Simon C.; Alessi, Dario R.; Cohen, Philip
2007-01-01
The specificities of 65 compounds reported to be relatively specific inhibitors of protein kinases have been profiled against a panel of 70–80 protein kinases. On the basis of this information, the effects of compounds that we have studied in cells and other data in the literature, we recommend the use of the following small-molecule inhibitors: SB 203580/SB202190 and BIRB 0796 to be used in parallel to assess the physiological roles of p38 MAPK (mitogen-activated protein kinase) isoforms, PI-103 and wortmannin to be used in parallel to inhibit phosphatidylinositol (phosphoinositide) 3-kinases, PP1 or PP2 to be used in parallel with Src-I1 (Src inhibitor-1) to inhibit Src family members; PD 184352 or PD 0325901 to inhibit MKK1 (MAPK kinase-1) or MKK1 plus MKK5, Akt-I-1/2 to inhibit the activation of PKB (protein kinase B/Akt), rapamycin to inhibit TORC1 [mTOR (mammalian target of rapamycin)–raptor (regulatory associated protein of mTOR) complex], CT 99021 to inhibit GSK3 (glycogen synthase kinase 3), BI-D1870 and SL0101 or FMK (fluoromethylketone) to be used in parallel to inhibit RSK (ribosomal S6 kinase), D4476 to inhibit CK1 (casein kinase 1), VX680 to inhibit Aurora kinases, and roscovitine as a pan-CDK (cyclin-dependent kinase) inhibitor. We have also identified harmine as a potent and specific inhibitor of DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A) in vitro. The results have further emphasized the need for considerable caution in using small-molecule inhibitors of protein kinases to assess the physiological roles of these enzymes. Despite being used widely, many of the compounds that we analysed were too non-specific for useful conclusions to be made, other than to exclude the involvement of particular protein kinases in cellular processes. PMID:17850214
Molecular mechanism of the Syk activation switch.
Tsang, Emily; Giannetti, Anthony M; Shaw, David; Dinh, Marie; Tse, Joyce K Y; Gandhi, Shaan; Ho, Hoangdung; Wang, Sandra; Papp, Eva; Bradshaw, J Michael
2008-11-21
Many immune signaling pathways require activation of the Syk tyrosine kinase to link ligation of surface receptors to changes in gene expression. Despite the central role of Syk in these pathways, the Syk activation process remains poorly understood. In this work we quantitatively characterized the molecular mechanism of Syk activation in vitro using a real time fluorescence kinase assay, mutagenesis, and other biochemical techniques. We found that dephosphorylated full-length Syk demonstrates a low initial rate of substrate phosphorylation that increases during the kinase reaction due to autophosphorylation. The initial rate of Syk activity was strongly increased by either pre-autophosphorylation or binding of phosphorylated immune tyrosine activation motif peptides, and each of these factors independently fully activated Syk. Deletion mutagenesis was used to identify regions of Syk important for regulation, and residues 340-356 of the SH2 kinase linker region were identified to be important for suppression of activity before activation. Comparison of the activation processes of Syk and Zap-70 revealed that Syk is more readily activated by autophosphorylation than Zap-70, although both kinases are rapidly activated by Src family kinases. We also studied Syk activity in B cell lysates and found endogenous Syk is also activated by phosphorylation and immune tyrosine activation motif binding. Together these experiments show that Syk functions as an "OR-gate" type of molecular switch. This mechanism of switch-like activation helps explain how Syk is both rapidly activated after receptor binding but also sustains activity over time to facilitate longer term changes in gene expression.
Saha, Supriya K.; Gordan, John D.; Kleinstiver, Benjamin P.; Vu, Phuong; Najem, Mortada S.; Yeo, Jia-Chi; Shi, Lei; Kato, Yasutaka; Levin, Rebecca S.; Webber, James T.; Damon, Leah J.; Egan, Regina K.; Greninger, Patricia; McDermott, Ultan; Garnett, Mathew J.; Jenkins, Roger L.; Rieger-Christ, Kimberly M.; Sullivan, Travis B.; Hezel, Aram F.; Liss, Andrew S.; Mizukami, Yusuke; Goyal, Lipika; Ferrone, Cristina R.; Zhu, Andrew X.; Joung, J. Keith; Shokat, Kevan M.; Benes, Cyril H.; Bardeesy, Nabeel
2017-01-01
Intrahepatic cholangiocarcinoma (ICC) is an aggressive liver bile duct malignancy exhibiting frequent isocitrate dehydrogenase (IDH1/IDH2) mutations. Through a high-throughput drug screen of a large panel of cancer cell lines including 17 biliary tract cancers, we found that IDH mutant (IDHm) ICC cells demonstrate a striking response to the multi-kinase inhibitor dasatinib, with the highest sensitivity among 682 solid tumor cell lines. Using unbiased proteomics to capture the activated kinome and CRISPR/Cas9-based genome editing to introduce dasatinib-resistant ‘gatekeeper’ mutant kinases, we identified SRC as a critical dasatinib target in IDHm ICC. Importantly, dasatinib-treated IDHm xenografts exhibited pronounced apoptosis and tumor regression. Our results show that IDHm ICC cells have a unique dependency on SRC and suggest that dasatinib may have therapeutic benefit against IDHm ICC. Moreover, these proteomic and genome-editing strategies provide a systematic and broadly applicable approach to define targets of kinase inhibitors underlying drug responsiveness. PMID:27231123
Bazzani, Lorenzo; Donnini, Sandra; Finetti, Federica; Christofori, Gerhard; Ziche, Marina
2017-01-01
Prostaglandin E2 (PGE2) interacts with tyrosine kinases receptor signaling in both tumor and stromal cells supporting tumor progression. Here we demonstrate that in non-small cell lung carcinoma (NSCLC) cells, A549 and GLC82, PGE2 promotes nuclear translocation of epidermal growth factor receptor (nEGFR), affects gene expression and induces cell growth. Indeed, cyclin D1, COX-2, iNOS and c-Myc mRNA levels are upregulated following PGE2 treatment. The nuclear localization sequence (NLS) of EGFR as well as its tyrosine kinase activity are required for the effect of PGE2 on nEGFR and downstream signaling activities. PGE2 binds its bona fide receptor EP3 which by activating SRC family kinases, induces ADAMs activation which, in turn, releases EGFR-ligands from the cell membrane and promotes nEGFR. Amphiregulin (AREG) and Epiregulin (EREG) appear to be involved in nEGFR promoted by the PGE2/EP3-SRC axis. Pharmacological inhibition or silencing of the PGE2/EP3/SRC-ADAMs signaling axis or EGFR ligands i.e. AREG and EREG expression abolishes nEGFR induced by PGE2. In conclusion, PGE2 induces NSCLC cell proliferation by EP3 receptor, SRC-ADAMs activation, EGFR ligands shedding and finally, phosphorylation and nEGFR. Since nuclear EGFR is a hallmark of cancer aggressiveness, our findings reveal a novel mechanism for the contribution of PGE2 to tumor progression. PMID:28415726
Reeves, Patrick M.; Smith, Scott K.; Olson, Victoria A.; Thorne, Steve H.; Bornmann, William; Damon, Inger K.; Kalman, Daniel
2011-01-01
Vaccinia virus (VacV) enters mammalian cells, replicates extranuclearly, and produces virions that move to the cell surface along microtubules, fuse with the plasma membrane, and move from infected cells toward apposing cells on actin-filled membranous protrusions or actin tails. To form actin tails, cell-associated enveloped virions (CEV) require Abl and Src family tyrosine kinases. Furthermore, release of CEV from the cell requires Abl but not Src family tyrosine kinases and is blocked by imatinib mesylate (STI-571; Gleevec), an Abl family kinase inhibitor used to treat chronic myelogenous leukemia in humans. Here we demonstrate that the Poxviridae family members monkeypox virus (MPX) and variola virus (VarV) use conserved mechanisms for actin motility and extracellular enveloped virion (EEV) release. Furthermore, we show that imatinib mesylate is effective in a mouse model of infection with VacV, whether delivered prophylactically or postinfection, and restricts spread of virions from the site of inoculation. While inhibitors of both Src and Abl family kinases, such as dasatinib (BMS-354825; Sprycel), are effective in limiting dissemination of VacV, VarV, and MPX in vitro, members of this class of drugs appear to have immunosuppressive effects in vivo that preclude their use as anti-infectives. Together, these data suggest a possible utility for imatinib mesylate in treating smallpox or MPX infections or complications associated with vaccination. PMID:20962097
Burrows, Natalie; Telfer, Brian; Brabant, Georg; Williams, Kaye J
2013-09-01
Undifferentiated follicular and anaplastic thyroid tumours often respond poorly to radiotherapy and show increased metastatic potential. We evaluated radiation-induced effects on metastasis in thyroid carcinoma cells and tumours, mechanistically focusing on phosphatidylinositide 3-kinase (PI3K) and associated pathways. Migration was analysed in follicular (FTC133) and anaplastic (8505c) cells following radiotherapy (0-6 Gray) with concomitant pharmacological (GDC-0941) or genetic inhibition of PI3K. Hypoxia-inducible factor-1 (HIF-1)-activity was measured using luciferase reporter assays and was inhibited using a dominant-negative variant. Activation and subcellular localisation of target proteins were assessed via Western blot and immunofluorescence. In vivo studies used FTC133 xenografts with metastatic lung dissemination assessed ex vivo. Radiation induced migration in a HIF-dependent manner in FTC133 cells but decreased migration in 8505c's. Post-radiation HIF-activity correlated with migratory phenotype. PI3K-targeting inhibited migration under basal and irradiated conditions through inhibition of HIF-1α, Rho-GTPase expression/activity and localisation whilst having little effect on src/FAK. In vivo, radiation induced PI3K, HIF, Rho-GTPases and src but only PI3K, HIF and Rho-GTPases were inhibited by GDC-0941. Co-treatment with GDC-0941 and radiation significantly reduced metastatic dissemination versus radiotherapy alone. Radiation modifies metastatic characteristics of thyroid carcinoma cells, which can be successfully inhibited by targeting PI3K using GDC-0941 in vitro and in vivo. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Ta, Huy Q; Thomas, Keena S; Schrecengost, Randy S; Bouton, Amy H
2008-11-01
Resistance to chemotherapy remains a major obstacle for the treatment of breast cancer. Understanding the molecular mechanism(s) of resistance is crucial for the development of new effective therapies to treat this disease. This study examines the putative role of p130(Cas) (Cas) in resistance to the cytotoxic agent Adriamycin. High expression of Cas in primary breast tumors is associated with the failure to respond to the antiestrogen tamoxifen and poor prognosis, highlighting the potential clinical importance of this molecule. Here, we show a novel association between Cas and resistance to Adriamycin. We show that Cas overexpression renders MCF-7 breast cancer cells less sensitive to the growth inhibitory and proapoptotic effects of Adriamycin. The catalytic activity of the nonreceptor tyrosine kinase c-Src, but not the epidermal growth factor receptor, is critical for Cas-mediated protection from Adriamycin-induced death. The phosphorylation of Akt and extracellular signal-regulated kinase 1/2 (ERK1/2) is elevated in Cas-overexpressing cells treated with Adriamycin, whereas expression of the proapoptotic protein Bak is decreased. Conversely, Cas depletion in the more resistant T47D and MDA-MB-231 cell lines increases sensitivity to Adriamycin. Based on these data, we propose that Cas activates growth and survival pathways regulated by c-Src, Akt, and ERK1/2 that lead to the inhibition of mitochondrial-mediated apoptosis in the presence of Adriamycin. Because Cas is frequently expressed at high levels in breast cancers, these findings raise the possibility of resensitizing Cas-overexpressing tumors to chemotherapy through perturbation of Cas signaling pathways.
Zhi, Xiaofei; Tao, Jinqiu; Xie, Kunling; Zhu, Yi; Li, Zheng; Tang, Jie; Wang, Weizhi; Xu, Hao; Zhang, Jingjing; Xu, Zekuan
2014-04-28
The membrane mucin MUC4 is aberrantly expressed in multiple cancers and is of clinical significance to diagnosis and prognosis in pancreatic cancer. However, the role of MUC4 in angiogenesis and the potential association among these malignant capabilities have not been explored. In this study, we investigated the collective signaling mechanisms associated with MUC4-induced growth, metastasis and angiogenesis in pancreatic cancer. Knockdown of MUC4 in two pancreatic cancer cell lines led to downregulation of lysosomal degradation of E-cadherin by Src kinase through downregulation of pFAK and pSrc pathway. The downregulation of lysosomal degradation of E-cadherin in turn induced the formation of E-cadherin/β-catenin complex and membrane translocation of β-catenin, resulting in the downregulation of Wnt/β-catenin signaling pathway. Thus, the Wnt/β-catenin target genes c-Myc, Cyclin D1, CD44 and VEGF were down-regulated and their malignant functions proliferation, metastasis and angiogenesis were reduced. Taken together, MUC4-induced nuclear translocation of β-catenin is a novel mechanism for growth, metastasis and angiogenesis of pancreatic cancer. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Barbieri, M Alejandro; Kong, Chen; Chen, Pin-I; Horazdovsky, Bruce F; Stahl, Philip D
2003-08-22
Activated epidermal growth factor receptors (EGFRs) recruit intracellular proteins that mediate receptor signaling and endocytic trafficking. Rin1, a multifunctional protein, has been shown to regulate EGFR internalization (1). Here we show that EGF stimulation induces a specific, rapid, and transient membrane recruitment of Rin1 and that recruitment is dependent on the Src homology 2 (SH2) domain of Rin1. Immunoprecipitation of EGFR is accompanied by co-immunoprecipitation of Rin1 in a time- and ligand-dependent manner. Association of Rin1 and specifically the SH2 domain of Rin1 with the EGFR was dependent on tyrosine phosphorylation of the intracellular domain of the EGFR. The recruitment of Rin1, observed by light microscopy, indicated that although initially cytosolic, Rin1 was recruited to both plasma membrane and endosomes following EGF addition. Moreover, the expression of the SH2 domain of Rin1 substantially impaired the internalization of EGF without affecting internalization of transferrin. Finally, we found that Rin1 co-immunoprecipitated with a number of tyrosine kinase receptors but not with cargo endocytic receptors. These results indicate that Rin1 provides a link via its SH2 domain between activated tyrosine kinase receptors and the endocytic pathway through the recruitment and activation of Rab5a.
Tian, Meng; Xu, Jian; Lei, Gang; Lombroso, Paul J.; Jackson, Michael F.; MacDonald, John F.
2016-01-01
N-methyl-D-aspartate receptors (NMDARs) are necessary for the induction of synaptic plasticity and for the consolidation of learning and memory. NMDAR function is tightly regulated by functionally opposed families of kinases and phosphatases. Herein we show that the striatal-enriched protein tyrosine phosphatase (STEP) is recruited by Gαq-coupled receptors, including the M1 muscarinic acetylcholine receptor (M1R), and opposes the Src tyrosine kinase-mediated increase in the function of NMDARs composed of GluN2A. STEP activation by M1R stimulation requires IP3Rs and can depress NMDA-evoked currents with modest intracellular Ca2+ buffering. Src recruitment by M1R stimulation requires coincident NMDAR activation and can augment NMDA-evoked currents with high intracellular Ca2+ buffering. Our findings suggest that Src and STEP recruitment is contingent on differing intracellular Ca2+ dynamics that dictate whether NMDAR function is augmented or depressed following M1R stimulation. PMID:27857196
Rodriguez, Elena M; Dunham, Elizabeth E; Martin, G Steven
2009-10-01
Atypical protein kinase C (aPKC) isoforms have been shown to mediate Src-dependent signaling in response to growth factor stimulation. To determine if aPKC activity contributes to the transformed phenotype of cells expressing oncogenic Src, we have examined the activity and function of aPKCs in 3T3 cells expressing viral Src (v-Src). aPKC activity and tyrosine phosphorylation were found to be elevated in some but not all clones of mouse fibroblasts expressing v-Src. aPKC activity was inhibited either by addition of a membrane-permeable pseudosubstrate, by expression of a dominant-negative aPKC, or by RNAi-mediated knockdown of specific aPKC isoforms. aPKC activity contributes to morphological transformation and stress fiber disruption, and is required for migration of Src-transformed cells and for their ability to polarize at the edge of a monolayer. The lambda isoform of aPKC is specifically required for invasion through extracellular matrix in Boyden chamber assays and for degradation of the extracellular matrix in in situ zymography assays. Tyrosine phosphorylation of aPKClambda is required for its ability to promote cell invasion. The defect in invasion upon aPKC inhibition appears to result from a defect in the assembly and/or function of podosomes, invasive adhesions on the ventral surface of the cell that are sites of protease secretion. aPKC was also found to localize to podosomes of v-Src transformed cells, suggesting a direct role for aPKC in podosome assembly and/or function. We conclude that basal or elevated aPKC activity is required for the ability of Src-transformed cells to degrade and invade the extracellular matrix. Copyright 2009 Wiley-Liss, Inc.
Lindfors, Hanna E; Drijfhout, Jan Wouter; Ubbink, Marcellus
2012-06-01
The interaction between the tyrosine kinases Src and focal adhesion kinase (FAK) is a key step in signaling processes from focal adhesions. The phosphorylated tyrosine residue 397 in FAK is able to bind the Src SH2 domain. To establish the extent of the FAK binding motif, the binding affinity of the SH2 domain for phosphorylated and unphosphorylated FAK-derived peptides of increasing length was determined and compared with that of the internal Src SH2 binding site. It is shown that the FAK peptides have higher affinity than the internal binding site and that seven negative residues adjacent to the core SH2 binding motif increase the binding constant 30-fold. A rigid spin-label incorporated in the FAK peptides was used to establish on the basis of paramagnetic relaxation enhancement whether the peptide-protein complex is well defined. A large spread of the paramagnetic effects on the surface of the SH2 domain suggests that the peptide-protein complex exhibits dynamics, despite the high affinity of the peptide. The strong electrostatic interaction between the positive side of the SH2 domain and the negative peptide results in a high affinity but may also favor a dynamic interaction. Copyright © 2012 Wiley Periodicals, Inc.
Kubota, Sho; Fukumoto, Yasunori; Aoyama, Kazumasa; Ishibashi, Kenichi; Yuki, Ryuzaburo; Morinaga, Takao; Honda, Takuya; Yamaguchi, Noritaka; Kuga, Takahisa; Tomonaga, Takeshi; Yamaguchi, Naoto
2013-01-01
Protein tyrosine phosphorylation regulates a wide range of cellular processes at the plasma membrane. Recently, we showed that nuclear tyrosine phosphorylation by Src family kinases (SFKs) induces chromatin structural changes. In this study, we identify KRAB-associated protein 1 (KAP1/TIF1β/TRIM28), a component of heterochromatin, as a nuclear tyrosine-phosphorylated protein. Tyrosine phosphorylation of KAP1 is induced by several tyrosine kinases, such as Src, Lyn, Abl, and Brk. Among SFKs, Src strongly induces tyrosine phosphorylation of KAP1. Nucleus-targeted Lyn potentiates tyrosine phosphorylation of KAP1 compared with intact Lyn, but neither intact Fyn nor nucleus-targeted Fyn phosphorylates KAP1. Substitution of the three tyrosine residues Tyr-449/Tyr-458/Tyr-517, located close to the HP1 binding-motif, into phenylalanine ablates tyrosine phosphorylation of KAP1. Immunostaining and chromatin fractionation show that Src and Lyn decrease the association of KAP1 with heterochromatin in a kinase activity-dependent manner. KAP1 knockdown impairs the association of HP1α with heterochromatin, because HP1α associates with KAP1 in heterochromatin. Intriguingly, tyrosine phosphorylation of KAP1 decreases the association of HP1α with heterochromatin, which is inhibited by replacement of endogenous KAP1 with its phenylalanine mutant (KAP1-Y449F/Y458F/Y517F, KAP1–3YF). In DNA damage, KAP1–3YF repressed transcription of p21. These results suggest that nucleus-localized tyrosine kinases, including SFKs, phosphorylate KAP1 at Tyr-449/Tyr-458/Tyr-517 and inhibit the association of KAP1 and HP1α with heterochromatin. PMID:23645696
Lee, Y G; Lee, W M; Kim, J Y; Lee, J Y; Lee, I-K; Yun, B-S; Rhee, M H; Cho, J Y
2008-06-01
Mushrooms are popular both as food and as a source of natural compounds of biopharmaceutical interest. Some mushroom-derived compounds such as beta-glucan have been shown to be immunostimulatory; this study explores the anti-inflammatory properties of hispidin analogues derived from the mushroom, Inonotus xeranticus. We sought to identify the molecular mechanism of action of these hispidin analogues by determining their effects on lipopolysaccharide (LPS)-mediated inflammatory responses in a macrophage cell line. The production of inflammatory mediators was determined by Griess assay, reverse transcription-PCR and ELISA. The inhibitory effect of davalliactone on LPS-induced activation of signalling cascades was assessed by western blotting, immunoprecipitation and direct kinase assay. In activated RAW264.7 cells, davallialactone strongly downregulated LPS-mediated inflammatory responses, including NO production, prostaglandin E2 release, expression of proinflammatory cytokine genes and cell surface expression of co-stimulatory molecules. Davallialactone treatment did not alter cell viability or morphology. Davallialactone was found to exert its anti-inflammatory effects by inhibiting a signalling cascade that activates nuclear factor kappa B via PI3K, Akt and IKK, but not mitogen-activated protein kinases. Treatment with davallialactone affected the phosphorylation of these signalling proteins, but not their level of expression. These inhibitory effects were not due to the interruption of toll-like receptor 4 binding to CD14. In particular, davallialactone strongly inhibited the LPS-induced phosphorylation and kinase activity of Src, implying that Src may be a potential pharmacological target of davallialactone. Our data suggest that davallialactone, a small molecule found in edible mushrooms, has anti-inflammatory activity. Davallialactone can be developed as a pharmaceutically valuable anti-Src kinase agent.
Gupte, Sachin A; Kaminski, Pawel M; George, Shimran; Kouznestova, Lioubov; Olson, Susan C; Mathew, Rajamma; Hintze, Thomas H; Wolin, Michael S
2009-04-01
Protein kinase C (PKC) stimulation of NAD(P)H oxidases (Nox) is an important component of multiple vascular disease processes; however, the relationship between oxidase activation and the regulation of vascular smooth muscle contraction by PKC remains poorly understood. Therefore, we examined the signaling cascade of PKC-elicited Nox activation and the role of superoxide and hydrogen peroxide in mediating PKC-induced vascular contraction. Endothelium-denuded bovine coronary arteries showed a PKC-dependent basal production of lucigenin (5 muM)-detected Nox oxidase-derived superoxide, which was stimulated fourfold by PKC activation with 10 muM phorbol 12,13-dibutyrate (PDBu). PDBu appeared to increase superoxide generation by Nox2 through both p47(phox) and peroxide-dependent Src activation mechanisms based on the actions of inhibitors, properties of Src phosphorylation, and the loss of responses in aorta from mice deficient in Nox2 and p47(phox). The actions of inhibitors of contractile regulating mechanisms, scavengers of superoxide and peroxide, and responses in knockout mouse aortas suggest that a major component of the contraction elicited by PDBu appeared to be mediated through peroxide derived from Nox2 activation stimulating force generation through Rho kinase and calmodulin kinase-II mechanisms. Superoxide generated by PDBu also attenuated relaxation to nitroglycerin. Peroxide-derived from Nox2 activation by PKC appeared to be a major contributor to the thromboxane A(2) receptor agonist U46619 (100 nM)-elicited contraction of coronary arteries. Thus a p47(phox) and Src kinase activation of peroxide production by Nox2 appears to be an important contributor to vascular contractile mechanisms mediated through activation of PKC.
Faraldo-Gómez, José D; Roux, Benoît
2007-08-21
Regulation of signaling pathways in the cell often involves multidomain allosteric enzymes that are able to adopt alternate active or inactive conformations in response to specific stimuli. It is therefore of great interest to elucidate the energetic and structural determinants that govern the conformational plasticity of these proteins. In this study, free-energy computations have been used to address this fundamental question, focusing on one important family of signaling enzymes, the Src tyrosine kinases. Inactivation of these enzymes depends on the formation of an assembly comprising a tandem of SH3 and SH2 modules alongside a catalytic domain. Activation results from the release of the SH3 and SH2 domains, which are then believed to be structurally uncoupled by virtue of a flexible peptide link. In contrast to this view, this analysis shows that inactivation depends critically on the intrinsic propensity of the SH3-SH2 tandem to adopt conformations that are conducive to the assembled inactive state, even when no interactions with the rest of the kinase are possible. This funneling of the available conformational space is encoded within the SH3-SH2 connector, which appears to have evolved to modulate the flexibility of the tandem in solution. To further substantiate this notion, we show how constitutively activating mutations in the SH3-SH2 connector shift the assembly equilibrium toward the disassembled, active state. Based on a similar analysis of several constructs of the kinase complex, we propose that assembly is characterized by the progressive optimization of the protein's conformational energy, with little or no energetic frustration.
Wojcik, John; Lamontanara, Allan Joaquim; Grabe, Grzegorz; Koide, Akiko; Akin, Louesa; Gerig, Barbara; Hantschel, Oliver; Koide, Shohei
2016-01-01
Bcr-Abl is a constitutively active kinase that causes chronic myelogenous leukemia. We have shown that a tandem fusion of two designed binding proteins, termed monobodies, directed to the interaction interface between the Src homology 2 (SH2) and kinase domains and to the phosphotyrosine-binding site of the SH2 domain, respectively, inhibits the Bcr-Abl kinase activity. Because the latter monobody inhibits processive phosphorylation by Bcr-Abl and the SH2-kinase interface is occluded in the active kinase, it remained undetermined whether targeting the SH2-kinase interface alone was sufficient for Bcr-Abl inhibition. To address this question, we generated new, higher affinity monobodies with single nanomolar KD values targeting the kinase-binding surface of SH2. Structural and mutagenesis studies revealed the molecular underpinnings of the monobody-SH2 interactions. Importantly, the new monobodies inhibited Bcr-Abl kinase activity in vitro and in cells, and they potently induced cell death in chronic myelogenous leukemia cell lines. This work provides strong evidence for the SH2-kinase interface as a pharmacologically tractable site for allosteric inhibition of Bcr-Abl. PMID:26912659
Szafran, Adam T.; Stephan, Cliff; Bolt, Michael; Mancini, Maureen G.; Marcelli, Marco; Mancini, Michael A.
2018-01-01
Background AR-V7 is an androgen receptor (AR) splice variant that lacks the ligand-binding domain and is isolated from prostate cancer cell lines. Increased expression of AR-V7 is associated with the transition from hormone-sensitive prostate cancer to more advanced castration-resistant prostate cancer (CRPC). Due to the loss of the ligand-binding domain, AR-V7 is not responsive to traditional AR-targeted therapies, and the mechanisms that regulate AR-V7 are still incompletely understood. Therefore, we aimed to explore existing classes of small molecules that may regulate AR-V7 expression and intracellular localization and their potential therapeutic role in CRPC. Methods We used AR high-content analysis (AR-HCA) to characterize the effects of a focused library of well-characterized clinical compounds on AR-V7 expression at the single-cell level in PC3 prostate cancer cells stably expressing green fluorescent protein (GFP)-AR-V7 (GFP-AR-V7:PC3). In parallel, an orthogonal AR-HCA screen of a small interfering (si)RNA library targeting 635 protein kinases was performed in GFP-AR-V7:PC3. The effect of the Src-Abl inhibitor PD 180970 was further characterized using cell-proliferation assays, quantitative PCR, and western blot analysis in multiple hormone-sensitive and CRPC cell lines. Results Compounds that tended to target Akt, Abl, and Src family kinases (SFKs) decreased overall AR-V7 expression, nuclear translocation, absolute nuclear level, and/or altered nuclear distribution. We identified 20 protein kinases that, when knocked down, either decreased nuclear GFP-AR-V7 levels or altered AR-V7 nuclear distribution, a set that included the SFKs Src and Fyn. The Src-Abl dual kinase inhibitor PD180970 decreased expression of AR-V7 by greater than 46% and decreased ligand-independent transcription of AR target genes in the 22RV1 human prostate carcinoma cell line. Further, PD180970 inhibited androgen-independent cell proliferation in endogenous–AR-V7–expressing prostate cancer cell lines and also overcame bicalutamide resistance observed in the 22RV1 cell line. Conclusions SFKs, especially Src and Fyn, may be important upstream regulators of AR-V7 expression and represent promising targets in a subset of CRPCs expressing high levels of AR-V7. PMID:27699828
Vanderploeg, Jessica; Jacobs, J. Roger
2017-01-01
Congenital heart defects, clinically identified in both small and large animals, are multifactorial and complex. Although heritable factors are known to have a role in cardiovascular disease, the full genetic aetiology remains unclear. Model organism research has proven valuable in providing a deeper understanding of the essential factors in heart development. For example, mouse knock-out studies reveal a role for the Integrin adhesion receptor in cardiac tissue. Recent research in Drosophila melanogaster (the fruit fly), a powerful experimental model, has demonstrated that the link between the extracellular matrix and the cell, mediated by Integrins, is required for multiple aspects of cardiogenesis. Here we test the hypothesis that Integrins signal to the heart cells through Src42A kinase. Using the powerful genetics and cell biology analysis possible in Drosophila, we demonstrate that Src42A acts in early events of heart tube development. Careful examination of mutant heart tissue and genetic interaction data suggests that Src42A’s role is independent of Integrin and the Integrin-related Focal Adhesion Kinase. Rather, Src42A acts non-autonomously by promoting programmed cell death of the amnioserosa, a transient tissue that neighbors the developing heart. PMID:29056682
Estrogen receptor alpha phosphorylation and its functional impact in human breast cancer.
Anbalagan, Muralidharan; Rowan, Brian G
2015-12-15
Estrogen receptor α (ERα) is a member of the nuclear receptor superfamily of transcription factors that regulates cell proliferation, differentiation and homeostasis in various tissues. Sustained exposure to estrogen/estradiol (E2) increases the risk of breast, endometrial and ovarian cancers. ERα function is also regulated by phosphorylation through various kinase signaling pathways that will impact various ERα functions including chromatin interaction, coregulator recruitment and gene expression, as well impact breast tumor growth/morphology and breast cancer patient response to endocrine therapy. However, many of the previously characterized ERα phosphorylation sites do not fully explain the impact of receptor phosphorylation on ERα function. This review discusses work from our laboratory toward understanding a role of ERα site-specific phosphorylation in ERα function and breast cancer. The key findings discussed in this review are: (1) the effect of site specific ERα phosphorylation on temporal recruitment of ERα and unique coactivator complexes to specific genes; (2) the impact of stable disruption of ERα S118 and S167 phosphorylation in breast cancer cells on eliciting unique gene expression profiles that culminate in significant effects on breast cancer growth/morphology/migration/invasion; (3) the Src kinase signaling pathway that impacts ERα phosphorylation to alter ERα function; and (4) circadian disruption by light exposure at night leading to elevated ERK1/2 and Src kinase and phosphorylation of ERα, concomitant with tamoxifen resistance in breast tumor models. Results from these studies demonstrate that even changes to single ERα phosphorylation sites can have a profound impact on ERα function in breast cancer. Future work will extend beyond single site phosphorylation analysis toward identification of specific patterns/profiles of ERα phosphorylation under different physiological/pharmacological conditions to understand how common phosphorylation profiles in breast cancer program specific physiological endpoints such as growth, apoptosis, migration/invasion, and endocrine therapy response. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Shakibaei, Mehdi; Mobasheri, Ali; Lueders, Cora; Busch, Franziska; Shayan, Paviz; Goel, Ajay
2013-01-01
Objective Development of treatment resistance and adverse toxicity associated with classical chemotherapeutic agents highlights the need for safer and effective therapeutic approaches. Herein, we examined the effectiveness of a combination treatment regimen of 5-fluorouracil (5-FU) and curcumin in colorectal cancer (CRC) cells. Methods Wild type HCT116 cells and HCT116+ch3 cells (complemented with chromosome 3) were treated with curcumin and 5-FU in a time- and dose-dependent manner and evaluated by cell proliferation assays, DAPI staining, transmission electron microscopy, cell cycle analysis and immunoblotting for key signaling proteins. Results The individual IC50 of curcumin and 5-FU were approximately 20 µM and 5 µM in HCT116 cells and 5 µM and 1 µM in HCT116+ch3 cells, respectively (p<0.05). Pretreatment with curcumin significantly reduced survival in both cells; HCT116+ch3 cells were considerably more sensitive to treatment with curcumin and/or 5-FU than wild-type HCT116 cells. The IC50 values for combination treatment were approximately 5 µM and 1 µM in HCT116 and 5 µM and 0.1 µM in HCT116+ch3, respectively (p<0.05). Curcumin induced apoptosis in both cells by inducing mitochondrial degeneration and cytochrome c release. Cell cycle analysis revealed that the anti-proliferative effect of curcumin and/or 5-FU was preceded by accumulation of CRC cells in the S cell cycle phase and induction of apoptosis. Curcumin potentiated 5-FU-induced expression or cleavage of pro-apoptotic proteins (caspase-8, -9, -3, PARP and Bax), and down-regulated anti-apoptotic (Bcl-xL) and proliferative (cyclin D1) proteins. Although 5-FU activated NF-κB/PI-3K/Src pathway in CRC cells, this was down-regulated by curcumin treatment through inhibition of IκBα kinase activation and IκBα phosphorylation. Conclusions Combining curcumin with conventional chemotherapeutic agents such as 5-FU could provide more effective treatment strategies against chemoresistant colon cancer cells. The mechanisms involved may be mediated via NF-κB/PI-3K/Src pathways and NF-κB regulated gene products. PMID:23451189
He, Yuan; Kapoor, Ashish; Cook, Sara; Liu, Shubai; Xiang, Yang; Rao, Christopher V.; Kenis, Paul J. A.; Wang, Fei
2011-01-01
Establishing new adhesions at the extended leading edges of motile cells is essential for stable polarity and persistent motility. Despite recent identification of signaling pathways that mediate polarity and chemotaxis in neutrophils, little is known about molecular mechanisms governing cell–extracellular-matrix (ECM) adhesion in these highly polarized and rapidly migrating cells. Here, we describe a signaling pathway in neutrophils that is essential for localized integrin activation, leading edge attachment and persistent migration during chemotaxis. This pathway depends upon Gi-protein-mediated activation and leading edge recruitment of Lyn, a non-receptor tyrosine kinase belonging to the Src kinase family. We identified the small GTPase Rap1 as a major downstream effector of Lyn to regulate neutrophil adhesion during chemotaxis. Depletion of Lyn in neutrophil-like HL-60 cells prevented chemoattractant-induced Rap1 activation at the leading edge of the cell, whereas ectopic expression of Rap1 largely rescued the defects induced by Lyn depletion. Furthermore, Lyn controls spatial activation of Rap1 by recruiting the CrkL–C3G protein complex to the leading edge. Together, these results provide novel mechanistic insights into the poorly understood signaling network that controls leading edge adhesion during chemotaxis of neutrophils, and possibly other amoeboid cells. PMID:21628423
Modderman, P W; von dem Borne, A E; Sonnenberg, A
1994-01-01
P-selectin is a 140 kDa membrane glycoprotein found in secretory granules of platelets and endothelial cells where it is rapidly translocated to the plasma membrane upon cell activation. It then functions as a receptor for various types of leucocytes. Metabolic labelling of resting platelets with 32Pi showed that P-selectin is primarily phosphorylated on serine residues, although some tyrosine phosphorylation was observed as well. However, tyrosine phosphorylation of P-selectin was greatly stimulated by treatment with the permeating phosphatase inhibitor, pervanadate. When P-selectin immunoprecipitates were incubated with [gamma-32P]ATP (in vitro kinase assay), a fraction of P-selectin was phosphorylated on its tyrosine residues by a co-precipitated kinase. P-selectin phosphorylated in vitro co-migrated with 140 kDa surface-labelled 125I-P-selectin during SDS/PAGE under reducing conditions. Under non-reducing conditions, however, phosphorylated P-selectin was disulphide-linked to unknown protein(s) in a 205 kDa complex. In vitro kinase assays of the most abundant platelet tyrosine kinase, pp60c-src, demonstrated the presence of similar 140 and 205 kDa phosphorylated proteins in SDS/PAGE under reducing and non-reducing conditions respectively. Extraction and reprecipitation studies with proteins phosphorylated in vitro indicated that P-selectin and pp60c-src form a 205 kDa 1:1 disulphide-linked complex. In the complex, pp60c-src autophosphorylation is inhibited and P-selectin is phosphorylated on tyrosine residues. As protein disulphides in the cytoplasm of intact cells are extremely rare, our results suggest that P-selectin and pp60c-src, which co-localize in platelet dense granules, may be non-covalently associated and spontaneously form disulphide bridges during lysis. In addition, the observed tyrosine phosphorylation of P-selectin in intact platelets suggests that its function might be regulated by phosphorylation by pp60c-src. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7514867
Patil, Rohan; Das, Suranjana; Stanley, Ashley; Yadav, Lumbani; Sudhakar, Akulapalli; Varma, Ashok K
2010-08-16
Weak intermolecular interactions such as hydrogen bonding and hydrophobic interactions are key players in stabilizing energetically-favored ligands, in an open conformational environment of protein structures. However, it is still poorly understood how the binding parameters associated with these interactions facilitate a drug-lead to recognize a specific target and improve drugs efficacy. To understand this, comprehensive analysis of hydrophobic interactions, hydrogen bonding and binding affinity have been analyzed at the interface of c-Src and c-Abl kinases and 4-amino substituted 1H-pyrazolo [3, 4-d] pyrimidine compounds. In-silico docking studies were performed, using Discovery Studio software modules LigandFit, CDOCKER and ZDOCK, to investigate the role of ligand binding affinity at the hydrophobic pocket of c-Src and c-Abl kinase. Hydrophobic and hydrogen bonding interactions of docked molecules were compared using LigPlot program. Furthermore, 3D-QSAR and MFA calculations were scrutinized to quantify the role of weak interactions in binding affinity and drug efficacy. The in-silico method has enabled us to reveal that a multi-targeted small molecule binds with low affinity to its respective targets. But its binding affinity can be altered by integrating the conformationally favored functional groups at the active site of the ligand-target interface. Docking studies of 4-amino-substituted molecules at the bioactive cascade of the c-Src and c-Abl have concluded that 3D structural folding at the protein-ligand groove is also a hallmark for molecular recognition of multi-targeted compounds and for predicting their biological activity. The results presented here demonstrate that hydrogen bonding and optimized hydrophobic interactions both stabilize the ligands at the target site, and help alter binding affinity and drug efficacy.
Stanley, Ashley; Yadav, Lumbani; Sudhakar, Akulapalli; Varma, Ashok K.
2010-01-01
Background Weak intermolecular interactions such as hydrogen bonding and hydrophobic interactions are key players in stabilizing energetically-favored ligands, in an open conformational environment of protein structures. However, it is still poorly understood how the binding parameters associated with these interactions facilitate a drug-lead to recognize a specific target and improve drugs efficacy. To understand this, comprehensive analysis of hydrophobic interactions, hydrogen bonding and binding affinity have been analyzed at the interface of c-Src and c-Abl kinases and 4-amino substituted 1H-pyrazolo [3, 4-d] pyrimidine compounds. Methodology In-silico docking studies were performed, using Discovery Studio software modules LigandFit, CDOCKER and ZDOCK, to investigate the role of ligand binding affinity at the hydrophobic pocket of c-Src and c-Abl kinase. Hydrophobic and hydrogen bonding interactions of docked molecules were compared using LigPlot program. Furthermore, 3D-QSAR and MFA calculations were scrutinized to quantify the role of weak interactions in binding affinity and drug efficacy. Conclusions The in-silico method has enabled us to reveal that a multi-targeted small molecule binds with low affinity to its respective targets. But its binding affinity can be altered by integrating the conformationally favored functional groups at the active site of the ligand-target interface. Docking studies of 4-amino-substituted molecules at the bioactive cascade of the c-Src and c-Abl have concluded that 3D structural folding at the protein-ligand groove is also a hallmark for molecular recognition of multi-targeted compounds and for predicting their biological activity. The results presented here demonstrate that hydrogen bonding and optimized hydrophobic interactions both stabilize the ligands at the target site, and help alter binding affinity and drug efficacy. PMID:20808434
Shaifta, Yasin; MacKay, Charles E.; Irechukwu, Nneka; O'Brien, Katie A.; Wright, David B.; Ward, Jeremy P. T.
2017-01-01
Key points Transforming growth‐factor‐β (TGF‐β) and RhoA/Rho‐kinase are independently implicated in the airway hyper‐responsiveness associated with asthma, but how these proteins interact is not fully understood.We examined the effects of pre‐treatment with TGF‐β on expression and activity of RhoA, Rho‐kinase and ARHGEF1, an activator of RhoA, as well as on bradykinin‐induced contraction, in airway smooth muscle.TGF‐β enhanced bradykinin‐induced RhoA translocation, Rho‐kinase‐dependent phosphorylation and contraction, but partially suppressed bradykinin‐induced RhoA activity (RhoA‐GTP content).TGF‐β enhanced the expression of ARHGEF1, while a small interfering RNA against ARHGEF1 and a RhoGEF inhibitor prevented the effects of TGF‐β on RhoA and Rho‐kinase activity and contraction, respectively.ARHGEF1 expression was also enhanced in airway smooth muscle from asthmatic patients and ovalbumin‐sensitized mice.ARHGEF1 is a key TGF‐β target gene, an important regulator of Rho‐kinase activity and therefore a potential therapeutic target for the treatment of asthmatic airway hyper‐responsiveness. Abstract Transforming growth factor‐β (TGF‐β), RhoA/Rho‐kinase and Src‐family kinases (SrcFK) have independently been implicated in airway hyper‐responsiveness, but how they interact to regulate airway smooth muscle contractility is not fully understood. We found that TGF‐β pre‐treatment enhanced acute contractile responses to bradykinin (BK) in isolated rat bronchioles, and inhibitors of RhoGEFs (Y16) and Rho‐kinase (Y27632), but not the SrcFK inhibitor PP2, prevented this enhancement. In cultured human airway smooth muscle cells (hASMCs), TGF‐β pre‐treatment enhanced the protein expression of the Rho guanine nucleotide exchange factor ARHGEF1, MLC20, MYPT‐1 and the actin‐severing protein cofilin, but not of RhoA, ROCK2 or c‐Src. In hASMCs, acute treatment with BK triggered subcellular translocation of ARHGEF1 and RhoA and enhanced auto‐phosphorylation of SrcFK and phosphorylation of MYPT1 and MLC20, but induced de‐phosphorylation of cofilin. TGF‐β pre‐treatment amplified the effects of BK on RhoA translocation and MYPT1/MLC20 phosphorylation, but suppressed the effects of BK on RhoA‐GTP content, SrcFK auto‐phosphorylation and cofilin de‐phosphorylation. In hASMCs, an ARHGEF1 small interfering RNA suppressed the effects of BK and TGF‐β on RhoA‐GTP content, RhoA translocation and MYPT1 and MLC20 phosphorylation, but minimally influenced the effects of TGF‐β on cofilin expression and phosphorylation. ARHGEF1 expression was also enhanced in ASMCs of asthmatic patients and in lungs of ovalbumin‐sensitized mice. Our data indicate that TGF‐β enhances BK‐induced contraction, RhoA translocation and Rho‐kinase activity in airway smooth muscle largely via ARHGEF1, but independently of SrcFK and total RhoA‐GTP content. A role for smooth muscle ARHGEF1 in asthmatic airway hyper‐responsiveness is worthy of further investigation. PMID:29071730
Development of Coactivator-Dependent, First-in-Class Therapies for Breast Cancer
2014-09-01
star: AMP-activated protein kinase stimulates fat absorption. Cell Metab. 13:1–2 53. Reineke EL, York B, Stashi E, et al. 2012. SRC-2 coactivator...receptor/SRC-3 protein complexes achieved by our group are providing powerful new insights into understanding the conformation of intact, full...length proteins in a complex and should provide valuable new information on the mechanism of action of SRC SMIs as well. 15. SUBJECT TERMS Breast
SRC activates TAZ for intestinal tumorigenesis and regeneration.
Byun, Mi Ran; Hwang, Jun-Ha; Kim, A Rum; Kim, Kyung Min; Park, Jung Il; Oh, Ho Taek; Hwang, Eun Sook; Hong, Jeong-Ho
2017-12-01
Proto-oncogene tyrosine-protein kinase Src (cSRC) is involved in colorectal cancer (CRC) development and damage-induced intestinal regeneration, although the cellular mechanisms involved are poorly understood. Here, we report that transcriptional coactivator with PDZ binding domain (TAZ) is activated by cSRC, regulating CRC cell proliferation and tumor formation, where cSRC overexpression increases TAZ expression in CRC cells. In contrast, knockdown of cSRC decreases TAZ expression. Additionally, direct phosphorylation of TAZ at Tyr316 by cSRC stimulates nuclear localization and facilitates transcriptional enhancer factor TEF-3 (TEAD4)-mediated transcription. However, a TAZ phosphorylation mutant significantly decreased cell proliferation, wound healing, colony forming, and tumor formation. In a CRC mouse model, Apc Min/+ , activated SRC expression was associated with increased TAZ expression in polyps and TAZ depletion decreased polyp formation. Moreover, intestinal TAZ knockout mice had intestinal regeneration defects following γ-irradiation. Finally, significant correspondence between SRC activation and TAZ overexpression was observed in CRC patients. These results suggest that TAZ is a critical factor for SRC-mediated intestinal tumor formation and regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.
Obata, Y; Horikawa, K; Takahashi, T; Akieda, Y; Tsujimoto, M; Fletcher, J A; Esumi, H; Nishida, T; Abe, R
2017-01-01
Gastrointestinal stromal tumors (GISTs) are caused by gain-of-function mutations in the Kit receptor tyrosine kinase. Most primary GIST patients respond to the Kit inhibitor imatinib, but this drug often becomes ineffective because of secondary mutations in the Kit kinase domain. The characteristic intracellular accumulation of imatinib-sensitive and -resistant Kit protein is well documented, but its relationship to oncogenic signaling remains unknown. Here, we show that in cancer tissue from primary GIST patients as well as in cell lines, mutant Kit accumulates on the Golgi apparatus, whereas normal Kit localizes to the plasma membrane (PM). In imatinib-resistant GIST with a secondary Kit mutation, Kit localizes predominantly on the Golgi apparatus. Both imatinib-sensitive and imatinib-resistant Kit (Kit(mut)) become fully auto-phosphorylated only on the Golgi and only if in a complex-glycosylated form. Kit(mut) accumulates on the Golgi during the early secretory pathway, but not after endocytosis. The aberrant kinase activity of Kit(mut) prevents its export from the Golgi to the PM. Furthermore, Kit(mut) on the Golgi signals and activates the phosphatidylinositol 3-kinase–Akt (PI3K–Akt) pathway, signal transducer and activator of transcription 5 (STAT5), and the Mek–Erk pathway. Blocking the biosynthetic transport of Kit(mut) to the Golgi from the endoplasmic reticulum inhibits oncogenic signaling. PM localization of Kit(mut) is not required for its signaling. Activation of Src-family tyrosine kinases on the Golgi is essential for oncogenic Kit signaling. These results suggest that the Golgi apparatus serves as a platform for oncogenic Kit signaling. Our study demonstrates that Kit(mut)’s pathogenicity is related to its mis-localization, and may offer a new strategy for treating imatinib-resistant GISTs. PMID:28192400
Guo, Huaijian; Cruz-Munoz, Mario-Ernesto; Wu, Ning; Robbins, Michael; Veillette, André
2015-01-01
Signaling lymphocytic activation molecule F7 (SLAMF7) is a receptor present on immune cells, including natural killer (NK) cells. It is also expressed on multiple myeloma (MM) cells. This led to development of an anti-SLAMF7 antibody, elotuzumab, showing efficacy against MM. SLAMF7 mediates activating or inhibitory effects in NK cells, depending on whether cells express or do not express the adaptor EAT-2. Since MM cells lack EAT-2, we elucidated the inhibitory effectors of SLAMF7 in EAT-2-negative NK cells and tested whether these effectors were triggered in MM cells. SLAMF7-mediated inhibition in NK cells lacking EAT-2 was mediated by SH2 domain-containing inositol phosphatase 1 (SHIP-1), which was recruited via tyrosine 261 of SLAMF7. Coupling of SLAMF7 to SHIP-1 required Src kinases, which phosphorylated SLAMF7. Although MM cells lack EAT-2, elotuzumab did not induce inhibitory signals in these cells. This was at least partly due to a lack of CD45, a phosphatase required for Src kinase activation. A defect in SLAMF7 function was also observed in CD45-deficient NK cells. Hence, SLAMF7-triggered inhibition is mediated by a mechanism involving Src kinases, CD45, and SHIP-1 that is defective in MM cells. This defect might explain why elotuzumab eliminates MM cells by an indirect mechanism involving the activation of NK cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
SH2-dependent autophosphorylation within the Tec family kinase Itk.
Joseph, Raji E; Severin, Andrew; Min, Lie; Fulton, D Bruce; Andreotti, Amy H
2009-08-07
The Tec family kinase, Itk (interleukin-2 tyrosine kinase), undergoes an in cis autophosphorylation on Y180 within its Src homology 3 (SH3) domain. Autophosphorylation of the Itk SH3 domain by the Itk kinase domain is strictly dependent on the presence of the intervening Src homology 2 (SH2) domain. A direct docking interaction between the Itk kinase and SH2 domains brings the Itk SH3 domain into the active site where Y180 is then phosphorylated. We now identify the residues on the surface of the Itk SH2 domain responsible for substrate docking and show that this SH2 surface mediates autophosphorylation in the full-length Itk molecule. The canonical phospholigand binding site on the SH2 domain is not involved in substrate docking, instead the docking site consists of side chains from three loop regions (AB, EF and BG) and part of the betaD strand. These results are extended into Btk (Bruton's tyrosine kinase), a Tec family kinase linked to the B-cell deficiency X-linked agammaglobulinemia (XLA). Our results suggest that some XLA-causing mutations might impair Btk phosphorylation.
Pastuhov, Strahil Iv; Fujiki, Kota; Tsuge, Anna; Asai, Kazuma; Ishikawa, Sho; Hirose, Kazuya; Matsumoto, Kunihiro; Hisamoto, Naoki
2016-09-14
The mechanisms that govern the ability of specific neurons to regenerate their axons after injury are not well understood. In Caenorhabditis elegans, the initiation of axon regeneration is positively regulated by the JNK-MAPK pathway. In this study, we identify two components functioning upstream of the JNK pathway: the Ste20-related protein kinase MAX-2 and the Rac-type GTPase CED-10. CED-10, when bound by GTP, interacts with MAX-2 and functions as its upstream regulator in axon regeneration. CED-10, in turn, is activated by axon injury via signals initiated from the integrin α-subunit INA-1 and the nonreceptor tyrosine kinase SRC-1 and transmitted via the signaling module CED-2/CrkII-CED-5/Dock180-CED-12/ELMO. This module is also known to regulate the engulfment of apoptotic cells during development. Our findings thus reveal that the molecular machinery used for engulfment of apoptotic cells also promotes axon regeneration through activation of the JNK pathway. The molecular mechanisms of axon regeneration after injury remain poorly understood. In Caenorhabditis elegans, the initiation of axon regeneration is positively regulated by the JNK-MAPK pathway. In this study, we show that integrin, Rac-GTPase, and several other molecules, all of which are known to regulate engulfment of apoptotic cells during development, also regulate axon regeneration. This signaling module activates the JNK-MAPK cascade via MAX-2, a PAK-like protein kinase that binds Rac. Our findings thus reveal that the molecular machinery used for engulfment of apoptotic cells also promotes axon regeneration through activation of the JNK pathway. Copyright © 2016 the authors 0270-6474/16/369710-12$15.00/0.
Yankee, Thomas M; Solow, Sasha A; Draves, Kevin D; Clark, Edward A
2003-01-01
Adapter proteins play a critical role in regulating signals triggered by Ag receptor cross-linking. These small molecules link receptor proximal events with downstream signaling pathways. In this study, we explore the expression and function of the Grb2-related protein of the lymphoid system (GrpL)/Grb2-related adaptor downstream of Shc adapter protein in human B cells. GrpL is expressed in naive B cells and is down-regulated following B cell Ag receptor ligation. By contrast, germinal center and memory B cells express little or no GrpL. Using human B cell lines, we detected constitutive interactions between GrpL and B cell linker protein, Src homology (SH)2 domain-containing leukocyte protein of 76 kDa, hemopoietic progenitor kinase 1, and c-Cbl. The N-terminal SH3 domain of GrpL binds c-Cbl while the C-terminal SH3 domain binds B cell linker protein and SH2 domain-containing leukocyte protein of 76 kDa. Exogenous expression of GrpL in a GrpL-negative B cell line leads to enhanced Ag receptor-induced extracellular signal-related kinase and p38 mitogen-activated protein kinase phosphorylation. Thus, GrpL expression in human B cell subsets appears to regulate Ag receptor-mediated signaling events.
Guo, Zhiqiang; Zhao, Chuncheng; Wang, Zheng
2014-09-26
To identify critical genes and biological pathways in acute lung injury (ALI), a comparative analysis of gene expression profiles of patients with ALI + sepsis compared with patients with sepsis alone were performed with bioinformatic tools. GSE10474 was downloaded from Gene Expression Omnibus, including a collective of 13 whole blood samples with ALI + sepsis and 21 whole blood samples with sepsis alone. After pre-treatment with robust multichip averaging (RMA) method, differential analysis was conducted using simpleaffy package based upon t-test and fold change. Hierarchical clustering was also performed using function hclust from package stats. Beisides, functional enrichment analysis was conducted using iGepros. Moreover, the gene regulatory network was constructed with information from Kyoto Encyclopedia of Genes and Genomes (KEGG) and then visualized by Cytoscape. A total of 128 differentially expressed genes (DEGs) were identified, including 47 up- and 81 down-regulated genes. The significantly enriched functions included negative regulation of cell proliferation, regulation of response to stimulus and cellular component morphogenesis. A total of 27 DEGs were significantly enriched in 16 KEGG pathways, such as protein digestion and absorption, fatty acid metabolism, amoebiasis, etc. Furthermore, the regulatory network of these 27 DEGs was constructed, which involved several key genes, including protein tyrosine kinase 2 (PTK2), v-src avian sarcoma (SRC) and Caveolin 2 (CAV2). PTK2, SRC and CAV2 may be potential markers for diagnosis and treatment of ALI. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5865162912987143.
Frequent amplification of PTP1B is associated with poor survival of gastric cancer patients.
Wang, Na; She, Junjun; Liu, Wei; Shi, Jing; Yang, Qi; Shi, Bingyin; Hou, Peng
2015-01-01
The protein tyrosine phosphatase 1B (PTP1B), a non-transmembrane protein tyrosine phosphatase, has been implicated in gastric pathogenesis. Several lines of recent evidences have shown that PTP1B is highly amplified in breast and prostate cancers. The aim of this study was to investigate PTP1B amplification in gastric cancer and its association with poor prognosis of gastric cancer patients, and further determine the role of PTP1B in gastric tumorigenesis. Our data demonstrated that PTP1B was significantly up-regulated in gastric cancer tissues as compared with matched normal gastric tissues by using quantitative RT-PCR (qRT-PCR) assay. In addition, copy number analysis showed that PTP1B was amplified in 68/131 (51.9%) gastric cancer cases, whereas no amplification was found in the control subjects. Notably, PTP1B amplification was positively associated with its protein expression, and was significantly related to poor survival of gastric cancer patients. Knocking down PTP1B expression in gastric cancer cells significantly inhibited cell proliferation, colony formation, migration and invasion, and induced cell cycle arrested and apoptosis. Mechanically, PTP1B promotes gastric cancer cell proliferation, survival and invasiveness through modulating Src-related signaling pathways, such as Src/Ras/MAPK and Src/phosphatidylinositol-3-kinase (PI3K)/Akt pathways. Collectively, our data demonstrated frequent overexpression and amplification PTP1B in gastric cancer, and further determined the oncogenic role of PTP1B in gastric carcinogenesis. Importantly, PTP1B amplification predicts poor survival of gastric cancer patients.
Horn, Jessica; Wang, Xiaoqian; Reichardt, Peter; Stradal, Theresia E; Warnecke, Nicole; Simeoni, Luca; Gunzer, Matthias; Yablonski, Deborah; Schraven, Burkhart; Kliche, Stefanie
2009-11-01
Engagement of the TCR or of chemokine receptors such as CXCR4 induces adhesion and migration of T cells via so-called inside-out signaling pathways. The molecular processes underlying inside-out signaling events are as yet not completely understood. In this study, we show that TCR- and CXCR4-mediated activation of integrins critically depends on the membrane recruitment of the adhesion- and degranulation-promoting adapter protein (ADAP)/Src kinase-associated phosphoprotein of 55 kDa (SKAP55)/Rap1-interacting adapter protein (RIAM)/Rap1 module. We further demonstrate that the Src homology 2 domain containing leukocyte-specific phosphoprotein of 76 kDa (SLP76) is crucial for TCR-mediated inside-out signaling and T cell/APC interaction. Besides facilitating membrane recruitment of ADAP, SKAP55, and RIAM, SLP76 regulates TCR-mediated inside-out signaling by controlling the activation of Rap1 as well as Rac-mediated actin polymerization. Surprisingly, however, SLP76 is not mandatory for CXCR4-mediated inside-out signaling. Indeed, both CXCR4-induced T cell adhesion and migration are not affected by loss of SLP76. Moreover, after CXCR4 stimulation, the ADAP/SKAP55/RIAM/Rap1 module is recruited to the plasma membrane independently of SLP76. Collectively, our data indicate a differential requirement for SLP76 in TCR- vs CXCR4-mediated inside-out signaling pathways regulating T cell adhesion and migration.
Prewitt, Allison R.; Ghose, Sampa; Frump, Andrea L.; Datta, Arumima; Austin, Eric D.; Kenworthy, Anne K.; de Caestecker, Mark P.
2015-01-01
Hereditary pulmonary arterial hypertension (HPAH) is a rare, fatal disease of the pulmonary vasculature. The majority of HPAH patients inherit mutations in the bone morphogenetic protein type 2 receptor gene (BMPR2), but how these promote pulmonary vascular disease is unclear. HPAH patients have features of pulmonary endothelial cell (PEC) dysfunction including increased vascular permeability and perivascular inflammation associated with decreased PEC barrier function. Recently, frameshift mutations in the caveolar structural protein gene Caveolin-1 (CAV-1) were identified in two patients with non-BMPR2-associated HPAH. Because caveolae regulate endothelial function and vascular permeability, we hypothesized that defects in caveolar function might be a common mechanism by which BMPR2 mutations promote pulmonary vascular disease. To explore this, we isolated PECs from mice carrying heterozygous null Bmpr2 mutations (Bmpr2+/−) similar to those found in the majority of HPAH patients. We show that Bmpr2+/− PECs have increased numbers and intracellular localization of caveolae and caveolar structural proteins CAV-1 and Cavin-1 and that these defects are reversed after blocking endocytosis with dynasore. SRC kinase is also constitutively activated in Bmpr2+/− PECs, and localization of CAV-1 to the plasma membrane is restored after treating Bmpr2+/− PECs with the SRC kinase inhibitor 3-(4-chlorophenyl)-1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (PP2). Late outgrowth endothelial progenitor cells isolated from HPAH patients show similar increased activation of SRC kinase. Moreover, Bmpr2+/− PECs have impaired endothelial barrier function, and barrier function is restored after treatment with PP2. These data suggest that heterozygous null BMPR2 mutations promote SRC-dependent caveolar trafficking defects in PECs and that this may contribute to pulmonary endothelial barrier dysfunction in HPAH patients. PMID:25411245
Anselm, Eric; Chataigneau, Marta; Ndiaye, Mamadou; Chataigneau, Thierry; Schini-Kerth, Valérie B
2007-01-15
An enhanced endothelial formation of nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF), is thought to contribute to the protective effect of moderate consumption of red wine on coronary diseases. The present study has characterized endothelium-dependent relaxations to Concord grape juice (CGJ), a non-alcoholic rich source of grape-derived polyphenols, in the coronary artery. Porcine coronary artery rings were suspended in organ chambers for the measurement of changes in isometric tension in the presence of indomethacin. NO formation was assessed by electron spin resonance spectroscopy, and the phosphorylation of Src, Akt and endothelial NO synthase (eNOS) by Western blot analysis in cultured endothelial cells. Endothelium-dependent relaxations to CGJ were slightly but significantly reduced by L-NA, not affected by charybdotoxin (CTX) plus apamin (APA, two inhibitors of EDHF-mediated responses) whereas the combination of L-NA, CTX plus APA reduced maximal relaxation to about 50%. In the presence of CTX plus APA, relaxations to CGJ were markedly reduced by the membrane permeant mimetic of superoxide dismutase (SOD), MnTMPyP, the membrane permeant analogue of catalase polyethyleneglycol-catalase (PEG-catalase), PP2, an inhibitor of Src kinase, and by wortmannin, an inhibitor of the PI3-kinase. CGJ stimulated the formation of reactive oxygen species and the N(omega)-nitro-L-arginine-, PP2- and wortmannin-sensitive formation of NO in endothelial cells. The formation of NO was associated with a redox-sensitive and time-dependent phosphorylation of Src, Akt and eNOS. CGJ induces endothelium-dependent relaxations of coronary arteries, which involve a NO-mediated component and also, to a minor extent, an EDHF-mediated component. In addition, CGJ-induced NO formation is due to the redox-sensitive activation of Src kinase with the subsequent PI3-kinase/Akt-dependent phosphorylation of eNOS.
Src mediates cigarette smoke-induced resistance to tyrosine kinase inhibitors in NSCLC cells.
Filosto, Simone; Baston, David S; Chung, Samuel; Becker, Cathleen R; Goldkorn, Tzipora
2013-08-01
The EGF receptor (EGFR) is a proto-oncogene commonly dysregulated in several cancers including non-small cell lung carcinoma (NSCLC) and, thus, is targeted for treatment using tyrosine kinase inhibitors (TKI) such as erlotinib. However, despite the efficacy observed in patients with NSCLC harboring oncogenic variants of the EGFR, general ineffectiveness of TKIs in patients with NSCLC who are current and former smokers necessitates identification of novel mechanisms to overcome this phenomenon. Previously, we showed that NSCLC cells harboring either wild-type (WT) EGFR or oncogenic mutant (MT) L858R EGFR become resistant to the effects of TKIs when exposed to cigarette smoke, evidenced by their autophosphorylation and prolonged downstream signaling. Here, we present Src as a target mediating cigarette smoke-induced resistance to TKIs in both WT EGFR- and L858R MT EGFR-expressing NSCLC cells. First, we show that cigarette smoke exposure of A549 cells leads to time-dependent activation of Src, which then abnormally binds to the WT EGFR causing TKI resistance, contrasting previous observations of constitutive binding between inactive Src and TKI-sensitive L858R MT EGFR. Next, we show that Src inhibition restores TKI sensitivity in cigarette smoke-exposed NSCLC cells, preventing EGFR autophosphorylation in the presence of erlotinib. Furthermore, we show that overexpression of a dominant-negative Src (Y527F/K295R) restores TKI sensitivity to A549 exposed to cigarette smoke. Importantly, the TKI resistance that emerges even in cigarette smoke-exposed L858R EGFR-expressing NSCLC cells could be eliminated with Src inhibition. Together, these findings offer new rationale for using Src inhibitors for treating TKI-resistant NSCLC commonly observed in smokers.
Src mediates cigarette smoke-induced resistance to tyrosine kinase inhibitors in NSCLC cells
Filosto, Simone; Baston, David S.; Chung, Samuel; Becker, Cathleen R.; Goldkorn, Tzipora
2015-01-01
The EGF Receptor (EGFR) is a proto-oncogene commonly dysregulated in several cancers including non-small cell lung cancer (NSCLC) and, thus, is targeted for treatment using tyrosine kinase inhibitors (TKIs) such as Erlotinib. However, despite the efficacy observed in NSCLC patients harboring oncogenic variants of the EGFR, general ineffectiveness of TKIs in NSCLC patients who are current and former smokers necessitates identification of novel mechanisms to overcome this phenomenon. Previously, we showed that NSCLC cells harboring either wild-type (WT) EGFR or oncogenic mutant (MT) L858R EGFR become resistant to the effects of TKIs when exposed to cigarette smoke (CS), evidenced by their auto-phosphorylation and prolonged downstream signaling. Here, we present Src as a target mediating CS-induced resistance to TKIs in both WT EGFR and L858R MT EGFR expressing NSCLC cells. First, we show that CS exposure of A549 cells leads to time-dependent activation of Src which then abnormally binds to the WT EGFR causing TKI resistance, contrasting previous observations of constitutive binding between inactive Src and TKI-sensitive L858R MT EGFR. Next, we demonstrate that Src inhibition restores TKI sensitivity in CS-exposed NSCLC cells, preventing EGFR auto-phosphorylation in the presence of Erlotinib. Furthermore, we show that over-expression of a dominant-negative Src (Y527F/K295R) restores TKI sensitivity to A549 exposed to CS. Importantly, the TKI resistance that emerges even in CS-exposed L858R EGFR expressing NSCLC cells could be eliminated with Src inhibition. Together, these findings offer new rationale for using Src inhibitors for treating TKI-resistant NSCLC commonly observed in smokers. PMID:23686837
Molecular pathways of platelet factor 4/CXCL4 signaling.
Kasper, Brigitte; Petersen, Frank
2011-01-01
The platelet-derived chemokine CXCL4 takes a specific and unique position within the family of chemotactic cytokines. Today, much attention is directed to CXCL4's capacity to inhibit angiogenesis and to promote innate immune responses, which makes this chemokine an interesting tool and target for potential intervention in tumor growth and inflammation. However, such attempts demand a comprehensive knowledge on the molecular mechanisms and pathways underlying the corresponding cellular functions. At least two structurally different receptors, CXCR3-B and a chondroitin sulfate proteoglycan, are capable of binding CXCL4 and to induce a specific intracellular signaling machinery. While signaling mediated by CXCR3-B involves Gs proteins, elevated cAMP levels, and p38 MAP kinase, signaling via proteoglycans appears to be more complicated and varies strongly between the cell types analyzed. In CXCL4-activated neutrophils and monocytes, tyrosine kinases of the Src family and Syk as well as monomeric GTPases and members of the MAP kinase family have been identified as essential intracellular signals. Most intriguingly, signaling does not proceed in a linear sequence of events but in a repeated activation of certain transducing elements like Rac2 or sphingosine kinase 1. Depending on the downstream targets, such biphasic kinetics either leads to a redundant and prolonged activation of a single pathway or to a timely separated initiation of disparate signals and functions. Results of the studies reviewed here help to understand the molecular basis of CXCL4's functional diversity and provide insights into integrated signaling processes in general. Copyright © 2011 Elsevier GmbH. All rights reserved.
JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38
Yi, Young-Su
2017-01-01
Since previous studies have reported that hydroquinone (HQ) exerted immunosuppressive and anti-inflammatory activity, various HQ derivatives have been synthesized and their biological activities investigated. In this study, we explored the anti-inflammatory activity of JS-III-49, a novel HQ derivative, in macrophage-mediated inflammatory responses. JS-III-49 suppressed the production of the inflammatory mediators nitric oxide (NO) and prostaglandin E2 (PGE2) and down-regulated the mRNA expression of the inflammatory enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as the expression of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-1b without cytotoxicity in LPS-stimulated RAW264.7 cells. JS-III-49 inhibited nuclear translocation of the NF-kB transcription factors p65 and p50 by directly targeting Akt, an upstream kinase of the NF-kB pathway, in LPS-stimulated RAW264.7 cells. However, JS-III-49 did not directly inhibit the kinase activities of Src and Syk, which are upstream kinases of Akt, in LPS-stimulated RAW264.7 cells. Moreover, JS-III-49 suppressed the nuclear translocation of c-Fos, one of the components of AP-1, by specifically targeting p38, an upstream mitogen-activated protein kinase (MAPK) in the AP-1 pathway in LPS-stimulated RAW264.7 cells. These results suggest that JS-III-49 plays an anti-inflammatory role in LPS-stimulated macrophages by targeting Akt and p38 in the NF-kB and AP-1 pathways, respectively. PMID:28461777
JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38.
Yi, Young-Su; Kim, Mi-Yeon; Cho, Jae Youl
2017-05-01
Since previous studies have reported that hydroquinone (HQ) exerted immunosuppressive and anti-inflammatory activity, various HQ derivatives have been synthesized and their biological activities investigated. In this study, we explored the anti-inflammatory activity of JS-III-49, a novel HQ derivative, in macrophage-mediated inflammatory responses. JS-III-49 suppressed the production of the inflammatory mediators nitric oxide (NO) and prostaglandin E 2 (PGE 2 ) and down-regulated the mRNA expression of the inflammatory enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as the expression of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-1b without cytotoxicity in LPS-stimulated RAW264.7 cells. JS-III-49 inhibited nuclear translocation of the NF-kB transcription factors p65 and p50 by directly targeting Akt, an upstream kinase of the NF-kB pathway, in LPS-stimulated RAW264.7 cells. However, JS-III-49 did not directly inhibit the kinase activities of Src and Syk, which are upstream kinases of Akt, in LPS-stimulated RAW264.7 cells. Moreover, JS-III-49 suppressed the nuclear translocation of c-Fos, one of the components of AP-1, by specifically targeting p38, an upstream mitogen-activated protein kinase (MAPK) in the AP-1 pathway in LPS-stimulated RAW264.7 cells. These results suggest that JS-III-49 plays an anti-inflammatory role in LPS-stimulated macrophages by targeting Akt and p38 in the NF-kB and AP-1 pathways, respectively.
Impact of the Anticancer Drug NT157 on Tyrosine Kinase Signaling Networks.
Su, Shih-Ping; Flashner-Abramson, Efrat; Klein, Shoshana; Gal, Mor; Lee, Rachel S; Wu, Jianmin; Levitzki, Alexander; Daly, Roger J
2018-05-01
The small-molecule drug NT157 has demonstrated promising efficacy in preclinical models of a number of different cancer types, reflecting activity against both cancer cells and the tumor microenvironment. Two known mechanisms of action are degradation of insulin receptor substrates (IRS)-1/2 and reduced Stat3 activation, although it is possible that others exist. To interrogate the effects of this drug on cell signaling pathways in an unbiased manner, we have undertaken mass spectrometry-based global tyrosine phosphorylation profiling of NT157-treated A375 melanoma cells. Bioinformatic analysis of the resulting dataset resolved 5 different clusters of tyrosine-phosphorylated peptides that differed in the directionality and timing of response to drug treatment over time. The receptor tyrosine kinase AXL exhibited a rapid decrease in phosphorylation in response to drug treatment, followed by proteasome-dependent degradation, identifying an additional potential target for NT157 action. However, NT157 treatment also resulted in increased activation of p38 MAPK α and γ, as well as the JNKs and specific Src family kinases. Importantly, cotreatment with the p38 MAPK inhibitor SB203580 attenuated the antiproliferative effect of NT157, while synergistic inhibition of cell proliferation was observed when NT157 was combined with a Src inhibitor. These findings provide novel insights into NT157 action on cancer cells and highlight how globally profiling the impact of a specific drug on cellular signaling networks can identify effective combination treatments. Mol Cancer Ther; 17(5); 931-42. ©2018 AACR . ©2018 American Association for Cancer Research.
Battistone, M A; Da Ros, V G; Salicioni, A M; Navarrete, F A; Krapf, D; Visconti, P E; Cuasnicú, P S
2013-09-01
In all mammalian species studied so far, sperm capacitation correlates with an increase in protein tyrosine (Tyr) phosphorylation mediated by a bicarbonate-dependent cAMP/protein kinase A (PKA) pathway. Recent studies in mice revealed, however, that a Src family kinase (SFK)-induced inactivation of serine/threonine (Ser/Thr) phosphatases is also involved in the signaling pathways leading to Tyr phosphorylation. In view of these observations and with the aim of getting a better understanding of the signaling pathways involved in human sperm capacitation, in the present work we investigated the involvement of both the cAMP/PKA and SFK/phosphatase pathways in relation to the capacitation state of the cells. For this purpose, different signaling events and sperm functional parameters were analyzed as a function of capacitation time. Results revealed a very early bicarbonate-dependent activation of PKA indicated by the rapid (1 min) increase in both phospho-PKA substrates and cAMP levels (P < 0.05). However, a complete pattern of Tyr phosphorylation was detected only after 6-h incubation at which time sperm exhibited the ability to undergo the acrosome reaction (AR) and to penetrate zona-free hamster oocytes. Sperm capacitated in the presence of the SFK inhibitor SKI606 showed a decrease in both PKA substrate and Tyr phosphorylation levels, which was overcome by exposure of sperm to the Ser/Thr phosphatase inhibitor okadaic acid (OA). However, OA was unable to induce phosphorylation when sperm were incubated under PKA-inhibitory conditions (i.e. in the absence of bicarbonate or in the presence of PKA inhibitor). Moreover, the increase in PKA activity by exposure to a cAMP analog and a phosphodiesterase inhibitor did not overcome the inhibition produced by SKI606. Whereas the presence of SKI606 during capacitation produced a negative effect (P < 0.05) on sperm motility, progesterone-induced AR and fertilizing ability, none of these inhibitions were observed when sperm were exposed to SKI606 and OA. Interestingly, different concentrations of inhibitors were required to modulate human and mouse capacitation revealing the species specificity of the molecular mechanisms underlying this process. In conclusion, our results describe for the first time the involvement of both PKA activation and Ser/Thr phosphatase down-regulation in functional human sperm capacitation and provide convincing evidence that early PKA-dependent phosphorylation is the convergent regulatory point between these two signaling pathways.
Wojcik, John; Lamontanara, Allan Joaquim; Grabe, Grzegorz; Koide, Akiko; Akin, Louesa; Gerig, Barbara; Hantschel, Oliver; Koide, Shohei
2016-04-15
Bcr-Abl is a constitutively active kinase that causes chronic myelogenous leukemia. We have shown that a tandem fusion of two designed binding proteins, termed monobodies, directed to the interaction interface between the Src homology 2 (SH2) and kinase domains and to the phosphotyrosine-binding site of the SH2 domain, respectively, inhibits the Bcr-Abl kinase activity. Because the latter monobody inhibits processive phosphorylation by Bcr-Abl and the SH2-kinase interface is occluded in the active kinase, it remained undetermined whether targeting the SH2-kinase interface alone was sufficient for Bcr-Abl inhibition. To address this question, we generated new, higher affinity monobodies with single nanomolar KD values targeting the kinase-binding surface of SH2. Structural and mutagenesis studies revealed the molecular underpinnings of the monobody-SH2 interactions. Importantly, the new monobodies inhibited Bcr-Abl kinase activity in vitro and in cells, and they potently induced cell death in chronic myelogenous leukemia cell lines. This work provides strong evidence for the SH2-kinase interface as a pharmacologically tractable site for allosteric inhibition of Bcr-Abl. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Mahankali, Madhu; Henkels, Karen M.; Speranza, Francis; Gomez-Cambronero, Julian
2015-01-01
ABSTRACT Timely activation of Aurora kinase A (AURA, also known as AURKA) is vital for centrosome formation and the progression of mitosis. Nonetheless, it is still unclear if and when other cellular functions are activated by AURA. We report here that Src phosphorylates and activates AURA at T288, and AURA also activates focal adhesion kinase (FAK, also known as PTK2), leading to initiation of cell movement. An additional and new way by which AURA is regulated, is by phospholipase D2 (PLD2), which causes AURA activation. In addition, AURA phosphorylates PLD, so both proteins engage in a positive reinforcement loop. AURA and PLD2 form a protein–protein complex and colocalize to cytoplasmic regions in cells. The reason why PLD activates AURA is because of the production of phosphatidic acid by the lipase, which binds directly to AURA, with the region E171–E211 projected to be a phosphatidic-acid-binding pocket. Furthermore, this direct interaction with phosphatidic acid enhances tubulin polymerization and cooperates synergistically with AURA, FAK and Src in yielding a fully effectual cellular migration. Thus, Src and FAK, and PLD and phosphatidic acid are new upstream regulators of AURA that mediate its role in the non-mitotic cellular function of cell migration. PMID:25501815
Phosphorylation of Nephrin Triggers Its Internalization by Raft-Mediated Endocytosis
Qin, Xiao-Song; Shono, Akemi; Yamamoto, Akitsugu; Kurihara, Hidetake; Doi, Toshio
2009-01-01
Proper localization of nephrin determines integrity of the glomerular slit diaphragm. Slit diaphragm proteins assemble into functional signaling complexes on a raft-based platform, but how the trafficking of these proteins coordinates with their signaling function is unknown. Here, we demonstrate that a raft-mediated endocytic (RME) pathway internalizes nephrin. Nephrin internalization was slower with raft-mediated endocytosis than with classic clathrin-mediated endocytosis. Ultrastructurally, the RME pathway consisted of noncoated invaginations and was dependent on cholesterol and dynamin. Nephrin constituted a stable, signaling-competent microdomain through interaction with Fyn, a Src kinase, and podocin, a scaffold protein. Tyrosine phosphorylation of nephrin triggered its own RME-mediated internalization. Protamine-induced hyperphosphorylation of nephrin led to noncoated invaginations predominating over coated pits. These results demonstrate that an RME pathway couples nephrin internalization to its own signaling, suggesting that RME promotes proper spatiotemporal assembly of slit diaphragms during podocyte development or injury. PMID:19850954
Neurotrophic factors switch between two signaling pathways that trigger axonal growth.
Paveliev, Mikhail; Lume, Maria; Velthut, Agne; Phillips, Matthew; Arumäe, Urmas; Saarma, Mart
2007-08-01
Integration of multiple inputs from the extracellular environment, such as extracellular matrix molecules and growth factors, is a crucial process for cell function and information processing in multicellular organisms. Here we demonstrate that co-stimulation of dorsal root ganglion neurons with neurotrophic factors (NTFs) - glial-cell-line-derived neurotrophic factor, neurturin or nerve growth factor - and laminin leads to axonal growth that requires activation of Src family kinases (SFKs). A different, SFK-independent signaling pathway evokes axonal growth on laminin in the absence of the NTFs. By contrast, axonal branching is regulated by SFKs both in the presence and in the absence of NGF. We propose and experimentally verify a Boolean model of the signaling network triggered by NTFs and laminin. Our results demonstrate that NTFs provide an environmental cue that triggers a switch between separate pathways in the cell signaling network.
Bornet, Olivier; Nouailler, Matthieu; Feracci, Michaël; Sebban-Kreuzer, Corinne; Byrne, Deborah; Halimi, Hubert; Morelli, Xavier; Badache, Ali; Guerlesquin, Françoise
2014-06-05
Overexpression of the ErbB2 receptor tyrosine kinase is associated with most aggressive tumors in breast cancer patients and is thus one of the main investigated therapeutic targets. Human ErbB2 C-terminal domain is an unstructured anchor that recruits specific adaptors for signaling cascades resulting in cell growth, differentiation and migration. Herein, we report the presence of a SH3 binding motif in the proline rich unfolded ErbB2 C-terminal region. NMR analysis of this motif supports a PPII helix conformation and the binding to Fyn-SH3 domain. The interaction of a kinase of the Src family with ErbB2 C-terminal domain could contribute to synergistic intracellular signaling and enhanced oncogenesis. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Shaoying; Seong, Jihye; Wang, Yi; Chang, Shiou-Chi; Eichorst, John Paul; Ouyang, Mingxing; Li, Julie Y.-S.; Chien, Shu; Wang, Yingxiao
2014-07-01
Focal adhesions (FAs) are dynamic subcellular structures crucial for cell adhesion, migration and differentiation. It remains an enigma how enzymatic activities in these local complexes regulate their structural remodeling in live cells. Utilizing biosensors based on fluorescence resonance energy transfer (FRET), we developed a correlative FRET imaging microscopy (CFIM) approach to quantitatively analyze the subcellular coordination between the enzymatic Src activation and the structural FA disassembly. CFIM reveals that the Src kinase activity only within the microdomain of lipid rafts at the plasma membrane is coupled with FA dynamics. FA disassembly at cell periphery was linearly dependent on this raft-localized Src activity, although cells displayed heterogeneous levels of response to stimulation. Within lipid rafts, the time delay between Src activation and FA disassembly was 1.2 min in cells seeded on low fibronectin concentration ([FN]) and 4.3 min in cells on high [FN]. CFIM further showed that the level of Src-FA coupling, as well as the time delay, was regulated by cell-matrix interactions, as a tight enzyme-structure coupling occurred in FA populations mediated by integrin αvβ3, but not in those by integrin α5β1. Therefore, different FA subpopulations have distinctive regulation mechanisms between their local kinase activity and structural FA dynamics.
Gonzalez, Eva; Nagiel, Aaron; Lin, Alison J; Golan, David E; Michel, Thomas
2004-09-24
Caveolin-1 is a scaffolding/regulatory protein that interacts with diverse signaling molecules in endothelial cells. To explore the role of this protein in receptor-modulated signaling pathways, we transfected bovine aortic endothelial cells (BAEC) with small interfering RNA (siRNA) duplexes to down-regulate caveolin-1 expression. Transfection of BAEC with duplex siRNA targeted against caveolin-1 mRNA selectively "knocked-down" the expression of caveolin-1 by approximately 90%, as demonstrated by immunoblot analyses of BAEC lysates. We used discontinuous sucrose gradients to purify caveolin-containing lipid rafts from siRNA-treated endothelial cells. Despite the near-total down-regulation of caveolin-1 expression, the lipid raft targeting of diverse signaling proteins (including the endothelial isoform of nitric-oxide synthase, Src-family tyrosine kinases, Galphaq and the insulin receptor) was unchanged. We explored the consequences of caveolin-1 knockdown on kinase pathways modulated by the agonists sphingosine-1 phosphate (S1P) and vascular endothelial growth factor (VEGF). siRNA-mediated caveolin-1 knockdown enhanced basal as well as S1P- and VEGF-induced phosphorylation of the protein kinase Akt and did not modify the basal or agonist-induced phosphorylation of extracellular signal-regulated kinases 1/2. Caveolin-1 knock-down also significantly enhanced the basal and agonist-induced activity of the small GTPase Rac. We used siRNA to down-regulate Rac expression in BAEC, and we observed that Rac knockdown significantly reduced basal, S1P-, and VEGF-induced Akt phosphorylation, suggesting a role for Rac activation in the caveolin siRNA-mediated increase in Akt phosphorylation. By using siRNA to knockdown caveolin-1 and Rac expression in cultured endothelial cells, we have found that caveolin-1 does not seem to be required for the targeting of signaling molecules to caveolae/lipid rafts and that caveolin-1 differentially modulates specific kinase pathways in endothelial cells. Copyright 2004 American Society for Biochemistry and Molecular Biology, Inc.
Castillejo-López, Casimiro; Delgado-Vega, Angélica M; Wojcik, Jerome; Kozyrev, Sergey V; Thavathiru, Elangovan; Wu, Ying-Yu; Sánchez, Elena; Pöllmann, David; López-Egido, Juan R; Fineschi, Serena; Domínguez, Nicolás; Lu, Rufei; James, Judith A; Merrill, Joan T; Kelly, Jennifer A; Kaufman, Kenneth M; Moser, Kathy L; Gilkeson, Gary; Frostegård, Johan; Pons-Estel, Bernardo A; D'Alfonso, Sandra; Witte, Torsten; Callejas, José Luis; Harley, John B; Gaffney, Patrick M; Martin, Javier; Guthridge, Joel M; Alarcón-Riquelme, Marta E
2012-01-01
Altered signalling in B cells is a predominant feature of systemic lupus erythematosus (SLE). The genes BANK1 and BLK were recently described as associated with SLE. BANK1 codes for a B-cell-specific cytoplasmic protein involved in B-cell receptor signalling and BLK codes for an Src tyrosine kinase with important roles in B-cell development. To characterise the role of BANK1 and BLK in SLE, a genetic interaction analysis was performed hypothesising that genetic interactions could reveal functional pathways relevant to disease pathogenesis. The GPAT16 method was used to analyse the gene-gene interactions of BANK1 and BLK. Confocal microscopy was used to investigate co-localisation, and immunoprecipitation was used to verify the physical interaction of BANK1 and BLK. Epistatic interactions between BANK1 and BLK polymorphisms associated with SLE were observed in a discovery set of 279 patients and 515 controls from northern Europe. A meta-analysis with 4399 European individuals confirmed the genetic interactions between BANK1 and BLK. As BANK1 was identified as a binding partner of the Src tyrosine kinase LYN, the possibility that BANK1 and BLK could also show a protein-protein interaction was tested. The co-immunoprecipitation and co-localisation of BLK and BANK1 were demonstrated. In a Daudi cell line and primary naive B cells endogenous binding was enhanced upon B-cell receptor stimulation using anti-IgM antibodies. This study shows a genetic interaction between BANK1 and BLK, and demonstrates that these molecules interact physically. The results have important consequences for the understanding of SLE and other autoimmune diseases and identify a potential new signalling pathway.
Genetic and Physical Interaction of the B-Cell SLE-Associated Genes BANK1 and BLK
Castillejo-López, Casimiro; Delgado-Vega, Angélica M.; Wojcik, Jerome; Kozyrev, Sergey V.; Thavathiru, Elangovan; Wu, Ying-Yu; Sánchez, Elena; Pöllmann, David; López-Egido, Juan R.; Fineschi, Serena; Domínguez, Nicolás; Lu, Rufei; James, Judith A.; Merrill, Joan T.; Kelly, Jennifer A.; Kaufman, Kenneth M.; Moser, Kathy; Gilkeson, Gary; Frostegård, Johan; Pons-Estel, Bernardo A.; D’Alfonso, Sandra; Witte, Torsten; Callejas, José Luis; Harley, John B.; Gaffney, Patrick; Martin, Javier; Guthridge, Joel M.; Alarcón-Riquelme, Marta E.
2012-01-01
Objectives Altered signaling in B-cells is a predominant feature of systemic lupus erythematosus (SLE). The genes BANK1 and BLK were recently described as associated with SLE. BANK1 codes for a B-cell-specific cytoplasmic protein involved in B-cell receptor signaling and BLK codes for an Src tyrosine kinase with important roles in B-cell development. To characterize the role of BANK1 and BLK in SLE, we performed a genetic interaction analysis hypothesizing that genetic interactions could reveal functional pathways relevant to disease pathogenesis. Methods We Used the method GPAT16 to analyze the gene-gene interactions of BANK1 and BLK. Confocal microscopy was used to investigate co-localization, and immunoprecipitation was used to verify the physical interaction of BANK1 and BLK. Results Epistatic interactions between BANK1 and BLK polymorphisms associated with SLE were observed in a discovery set of 279 patients and 515 controls from Northern Europe. A meta-analysis with 4399 European individuals confirmed the genetic interactions between BANK1 and BLK. As BANK1 was identified as a binding partner of the Src tyrosine kinase LYN, we tested the possibility that BANK1 and BLK could also show a protein-protein interaction. We demonstrated co-immunoprecipitation and co-localization of BLK and BANK1. In a Daudi cell line and primary naïve B-cells the endogenous binding was enhanced upon B-cell receptor stimulation using anti-IgM antibodies. Conclusions Here, we show a genetic interaction between BANK1 and BLK, and demonstrate that these molecules interact physically. Our results have important consequences for the understanding of SLE and other autoimmune diseases and identify a potential new signaling pathway. PMID:21978998
bullwinkle and shark regulate dorsal-appendage morphogenesis in Drosophila oogenesis.
Tran, David H; Berg, Celeste A
2003-12-01
bullwinkle (bwk) regulates embryonic anteroposterior patterning and, through a novel germline-to-soma signal, morphogenesis of the eggshell dorsal appendages. We screened for dominant modifiers of the bullwinkle mooseantler eggshell phenotype and identified shark, which encodes an SH2-domain, ankyrin-repeat tyrosine kinase. At the onset of dorsal-appendage formation, shark is expressed in a punctate pattern in the squamous stretch cells overlying the nurse cells. Confocal microscopy with cell-type-specific markers demonstrates that the stretch cells act as a substrate for the migrating dorsal-appendage-forming cells and extend cellular projections towards them. Mosaic analyses reveal that shark is required in follicle cells for cell migration and chorion deposition. Proper shark RNA expression in the stretch cells requires bwk activity, while restoration of shark expression in the stretch cells suppresses the bwk dorsal-appendage phenotype. These results suggest that shark plays an important downstream role in the bwk-signaling pathway. Candidate testing implicates Src42A in a similar role, suggesting conservation with a vertebrate signaling pathway involving non-receptor tyrosine kinases.
2013-01-01
Background Src tyrosine kinase activates inducible nitric oxide synthase (iNOS) and, in turn, nitric oxide production as a means to transduce cell migration. Src tyrosine kinase plays a key proximal role to control α9β1 signaling. Our recent studies have clearly demonstrated the role of α9β1 integrin in matrix metalloproteinase-9 (MMP-9) and/or urokinase plasminogen activator receptor (uPAR)-mediated glioma cell migration. In the present study, we evaluated the involvement of α9β1 integrin-iNOS pathway in MMP-9- and/or uPAR-mediated glioma cell migration. Methods MMP-9 and uPAR shRNAs and overexpressing plasmids were used to downregulate and upregulate these molecules, respectively in U251 glioma cells and 5310 glioma xenograft cells. The effect of treatments on migration and invasion potential of these glioma cells were assessed by spheroid migration, wound healing, and Matrigel invasion assays. In order to attain the other objectives we also performed immunocytochemical, immunohistochemical, RT-PCR, Western blot and fluorescence-activated cell sorting (FACS) analysis. Results Immunohistochemical analysis revealed the prominent association of iNOS with glioblastoma multiforme (GBM). Immunofluorescence analysis showed prominent expression of iNOS in glioma cells. MMP-9 and/or uPAR knockdown by respective shRNAs reduced iNOS expression in these glioma cells. RT-PCR analysis revealed elevated iNOS mRNA expression in either MMP-9 or uPAR overexpressed glioma cells. The migration potential of MMP-9- and/or uPAR-overexpressed U251 glioma cells was significantly inhibited after treatment with L-NAME, an inhibitor of iNOS. Similarly, a significant inhibition of the invasion potential of the control or MMP-9/uPAR-overexpressed glioma cells was noticed after L-NAME treatment. A prominent reduction of iNOS expression was observed in the tumor regions of nude mice brains, which were injected with 5310 glioma cells, after MMP-9 and/or uPAR knockdown. Protein expressions of cSrc, phosphoSrc and p130Cas were reduced with simultaneous knockdown of both MMP-9 and uPAR. Conclusions Taken together, our results from the present and earlier studies clearly demonstrate that α9β1 integrin-mediated cell migration utilizes the iNOS pathway, and inhibition of the migratory potential of glioma cells by simultaneous knockdown of MMP-9 and uPAR could be attributed to the reduced α9β1 integrin and iNOS levels. PMID:24325546
Samak, Geetha; Chaudhry, Kamaljit K; Gangwar, Ruchika; Narayanan, Damodaran; Jaggar, Jonathan H; Rao, RadhaKrishna
2015-02-01
Disruption of intestinal epithelial tight junctions is an important event in the pathogenesis of ulcerative colitis. Dextran sodium sulfate (DSS) induces colitis in mice with symptoms similar to ulcerative colitis. However, the mechanism of DSS-induced colitis is unknown. We investigated the mechanism of DSS-induced disruption of intestinal epithelial tight junctions and barrier dysfunction in Caco-2 cell monolayers in vitro and mouse colon in vivo. DSS treatment resulted in disruption of tight junctions, adherens junctions and actin cytoskeleton leading to barrier dysfunction in Caco-2 cell monolayers. DSS induced a rapid activation of c-Jun N-terminal kinase (JNK), and the inhibition or knockdown of JNK2 attenuated DSS-induced tight junction disruption and barrier dysfunction. In mice, DSS administration for 4 days caused redistribution of tight junction and adherens junction proteins from the epithelial junctions, which was blocked by JNK inhibitor. In Caco-2 cell monolayers, DSS increased intracellular Ca(2+) concentration, and depletion of intracellular Ca(2+) by 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester) (BAPTA/AM) or thapsigargin attenuated DSS-induced JNK activation, tight junction disruption and barrier dysfunction. Knockdown of apoptosis signal-regulated kinase 1 (Ask1) or MKK7 blocked DSS-induced tight junction disruption and barrier dysfunction. DSS activated c-Src by a Ca2+ and JNK-dependent mechanism. Inhibition of Src kinase activity or knockdown of c-Src blocked DSS-induced tight junction disruption and barrier dysfunction. DSS increased tyrosine phosphorylation of occludin, zonula occludens-1 (ZO-1), E-cadherin and β-catenin. SP600125 abrogated DSS-induced tyrosine phosphorylation of junctional proteins. Recombinant JNK2 induced threonine phosphorylation and auto-phosphorylation of c-Src. The present study demonstrates that Ca(2+)/Ask1/MKK7/JNK2/cSrc signalling cascade mediates DSS-induced tight junction disruption and barrier dysfunction.
Szafran, Adam T; Stephan, Cliff; Bolt, Michael; Mancini, Maureen G; Marcelli, Marco; Mancini, Michael A
2017-01-01
AR-V7 is an androgen receptor (AR) splice variant that lacks the ligand-binding domain and is isolated from prostate cancer cell lines. Increased expression of AR-V7 is associated with the transition from hormone-sensitive prostate cancer to more advanced castration-resistant prostate cancer (CRPC). Due to the loss of the ligand-binding domain, AR-V7 is not responsive to traditional AR-targeted therapies, and the mechanisms that regulate AR-V7 are still incompletely understood. Therefore, we aimed to explore existing classes of small molecules that may regulate AR-V7 expression and intracellular localization and their potential therapeutic role in CRPC. We used AR high-content analysis (AR-HCA) to characterize the effects of a focused library of well-characterized clinical compounds on AR-V7 expression at the single-cell level in PC3 prostate cancer cells stably expressing green fluorescent protein (GFP)-AR-V7 (GFP-AR-V7:PC3). In parallel, an orthogonal AR-HCA screen of a small interfering (si)RNA library targeting 635 protein kinases was performed in GFP-AR-V7:PC3. The effect of the Src-Abl inhibitor PD 180970 was further characterized using cell-proliferation assays, quantitative PCR, and western blot analysis in multiple hormone-sensitive and CRPC cell lines. Compounds that tended to target Akt, Abl, and Src family kinases (SFKs) decreased overall AR-V7 expression, nuclear translocation, absolute nuclear level, and/or altered nuclear distribution. We identified 20 protein kinases that, when knocked down, either decreased nuclear GFP-AR-V7 levels or altered AR-V7 nuclear distribution, a set that included the SFKs Src and Fyn. The Src-Abl dual kinase inhibitor PD180970 decreased expression of AR-V7 by greater than 46% and decreased ligand-independent transcription of AR target genes in the 22RV1 human prostate carcinoma cell line. Further, PD180970 inhibited androgen-independent cell proliferation in endogenous-AR-V7-expressing prostate cancer cell lines and also overcame bicalutamide resistance observed in the 22RV1 cell line. SFKs, especially Src and Fyn, may be important upstream regulators of AR-V7 expression and represent promising targets in a subset of CRPCs expressing high levels of AR-V7. Prostate 77:82-93, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
SH2 domains: modulators of nonreceptor tyrosine kinase activity.
Filippakopoulos, Panagis; Müller, Susanne; Knapp, Stefan
2009-12-01
The Src homology 2 (SH2) domain is a sequence-specific phosphotyrosine-binding module present in many signaling molecules. In cytoplasmic tyrosine kinases, the SH2 domain is located N-terminally to the catalytic kinase domain (SH1) where it mediates cellular localization, substrate recruitment, and regulation of kinase activity. Initially, structural studies established a role of the SH2 domain stabilizing the inactive state of Src family members. However, biochemical characterization showed that the presence of the SH2 domain is frequently required for catalytic activity, suggesting a crucial function stabilizing the active state of many nonreceptor tyrosine kinases. Recently, the structure of the SH2-kinase domain of Fes revealed that the SH2 domain stabilizes the active kinase conformation by direct interactions with the regulatory helix alphaC. Stabilizing interactions between the SH2 and the kinase domains have also been observed in the structures of active Csk and Abl. Interestingly, mutations in the SH2 domain found in human disease can be explained by SH2 domain destabilization or incorrect positioning of the SH2. Here we summarize our understanding of mechanisms that lead to tyrosine kinase activation by direct interactions mediated by the SH2 domain and discuss how mutations in the SH2 domain trigger kinase inactivation.
Larsen, Sarah L.; Laenkholm, Anne-Vibeke; Duun-Henriksen, Anne Katrine; Bak, Martin; Lykkesfeldt, Anne E.; Kirkegaard, Tove
2015-01-01
The underlying mechanisms leading to antiestrogen resistance in estrogen-receptor α (ER)-positive breast cancer is still poorly understood. The aim of this study was therefore to identify biomarkers and novel treatments for antiestrogen resistant breast cancer. We performed a kinase inhibitor screen on antiestrogen responsive T47D breast cancer cells and T47D-derived tamoxifen and fulvestrant resistant cell lines. We found that dasatinib, a broad-spectrum kinase inhibitor, inhibited growth of the antiestrogen resistant cells compared to parental T47D cells. Furthermore western blot analysis showed increased expression and phosphorylation of Src in the resistant cells and that dasatinib inhibited phosphorylation of Src and also signaling via Akt and Erk in all cell lines. Immunoprecipitation revealed Src: ER complexes only in the parental T47D cells. In fulvestrant resistant cells, Src formed complexes with the Human Epidermal growth factor Receptor (HER)1 and HER2. Neither HER receptors nor ER were co-precipitated with Src in the tamoxifen resistant cell lines. Compared to treatment with dasatinib alone, combined treatment with dasatinib and fulvestrant had a stronger inhibitory effect on tamoxifen resistant cell growth, whereas dasatinib in combination with tamoxifen had no additive inhibitory effect on fulvestrant resistant growth. When performing immunohistochemical staining on 268 primary tumors from breast cancer patients who had received tamoxifen as first line endocrine treatment, we found that membrane expression of Src in the tumor cells was significant associated with reduced disease-free and overall survival. In conclusion, Src was identified as target for treatment of antiestrogen resistant T47D breast cancer cells. For tamoxifen resistant T47D cells, combined treatment with dasatinib and fulvestrant was superior to treatment with dasatinib alone. Src located at the membrane has potential as a new biomarker for reduced benefit of tamoxifen. PMID:25706943
Roles of cell-cell adhesion-dependent tyrosine phosphorylation of Gab-1.
Shinohara, M; Kodama, A; Matozaki, T; Fukuhara, A; Tachibana, K; Nakanishi, H; Takai, Y
2001-06-01
Gab-1 is a multiple docking protein that is tyrosine phosphorylated by receptor tyrosine kinases such as c-Met, hepatocyte growth factor/scatter factor receptor, and epidermal growth factor receptor. We have now demonstrated that cell-cell adhesion also induces marked tyrosine phosphorylation of Gab-1 and that disruption of cell-cell adhesion results in its dephosphorylation. An anti-E-cadherin antibody decreased cell-cell adhesion-dependent tyrosine phosphorylation of Gab-1, whereas the expression of E-cadherin specifically induced tyrosine phosphorylation of Gab-1. A relatively selective inhibitor of Src family kinases reduced cell-cell adhesion-dependent tyrosine phosphorylation of Gab-1, whereas expression of a dominant-negative mutant of Csk increased it. Disruption of cell-cell adhesion, which reduced tyrosine phosphorylation of Gab-1, also reduced the activation of mitogen-activated protein kinase and Akt in response to cell-cell adhesion. These results indicate that E-cadherin-mediated cell-cell adhesion induces tyrosine phosphorylation by a Src family kinase of Gab-1, thereby regulating the activation of Ras/MAP kinase and phosphatidylinositol 3-kinase/Akt cascades.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhengfu, He; Hu, Zhang; Huiwen, Miao
The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs.more » Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice.« less
Shakibaei, M; John, T; De Souza, P; Rahmanzadeh, R; Merker, H J
1999-09-15
We have examined the mechanism by which collagen-binding integrins co-operate with insulin-like growth factor-I (IGF-I) receptors (IGF-IR) to regulate chondrocyte phenotype and differentiation. Adhesion of chondrocytes to anti-beta1 integrin antibodies or collagen type II leads to phosphorylation of cytoskeletal and signalling proteins localized at focal adhesions, including alpha-actinin, vinculin, paxillin and focal adhesion kinase (FAK). These stimulate docking proteins such as Shc (Src-homology collagen). Moreover, exposure of collagen type II-cultured chondrocytes to IGF-I leads to co-immunoprecipitation of Shc protein with the IGF-IR and with beta1, alpha1 and alpha5 integrins, but not with alpha3 integrin. Shc then associates with growth factor receptor-bound protein 2 (Grb2), an adaptor protein and extracellular signal-regulated kinase. The expression of the docking protein Shc occurs only when chondrocytes are bound to collagen type II or integrin antibodies and increases when IGF-I is added, suggesting a collaboration between integrins and growth factors in a common/shared biochemical signalling pathway. Furthermore, these results indicate that focal adhesion assembly may facilitate signalling via Shc, a potential common target for signal integration between integrin and growth-factor signalling regulatory pathways. Thus, the collagen-binding integrins and IGF-IR co-operate to regulate focal adhesion components and these signalling pathways have common targets (Shc-Grb2 complex) in subcellular compartments, thereby linking to the Ras-mitogen-activated protein kinase signalling pathway. These events may play a role during chondrocyte differentiation.
Haendeler, Judith; Hoffmann, Jörg; Diehl, J Florian; Vasa, Mariuca; Spyridopoulos, Ioakim; Zeiher, Andreas M; Dimmeler, Stefanie
2004-04-02
Aging is associated with a rise in intracellular reactive oxygen species (ROS) and a loss of telomerase reverse transcriptase activity. Incubation with H2O2 induced the nuclear export of telomerase reverse transcriptase (TERT) into the cytosol in a Src-family kinase-dependent manner. Therefore, we investigated the hypothesis that age-related increase in reactive oxygen species (ROS) may induce the nuclear export of TERT and contribute to endothelial cell senescence. Continuous cultivation of endothelial cells resulted in an increased endogenous formation of ROS starting after 29 population doublings (PDL). This increase was accompanied by mitochondrial DNA damage and preceded the onset of replicative senescence at PDL 37. Along with the enhanced formation of ROS, we detected an export of nuclear TERT protein from the nucleus into the cytoplasm and an activation of the Src-kinase. Moreover, the induction of premature senescence by low concentrations of H2O2 was completely blocked with the Src-family kinase inhibitor PP2, suggesting a crucial role for Src-family kinases in the induction of endothelial cell aging. Incubation with the antioxidant N-acetylcysteine, from PDL 26, reduced the intracellular ROS formation and prevented mitochondrial DNA damage. Likewise, nuclear export of TERT protein, loss in the overall TERT activity, and the onset of replicative senescence were delayed by incubation with N-acetylcysteine. Low doses of the statin, atorvastatin (0.1 micromol/L), had also effects similar to those of N-acetylcysteine. We conclude that both antioxidants and statins can delay the onset of replicative senescence by counteracting the increased ROS production linked to aging of endothelial cells.
Jücker, M; Feldman, R A
1996-01-01
We have used a human GM-CSF-dependent hematopoietic cell line that responds to physiological concentrations of hGM-CSF to analyze a set of signaling events that occur in normal myelopoiesis and whose deregulation may lead to leukemogenesis. Stimulation of these cells with hGM-CSF induced the assembly of multimeric complexes that contained known and novel phosphotyrosyl proteins. One of the new proteins was a major phosphotyrosyl substrate of 76-85 kDa (p80) that was directly associated with the p85 subunit of phosphatidylinositol (PI) 3-kinase through the SH2 domains of p85. p80 also associated with the beta subunit of the activated hGM-CSF receptor, and assembly of this complex correlated with activation of PI 3-kinase. A second phosphotyrosyl protein we identified, p140, associated with the Shc and Grb2 adapter proteins by direct binding to a novel phosphotyrosine-interacting domain located at the N-terminus of Shc. and to the SH3 domains of Grb2, respectively. The Shc/p140/Grb2 complex was found to be constitutively activated in acute myeloid leukemia cells, indicating that activation of this pathway may be a necessary step in the development of some leukemias. The p80/p85/PI 3-kinase and the Shc/Grb2/p140 complexes were tightly associated with Src family kinases, which were prime candidates for phosphorylation of Shc, p80, p140 and other phosphotyrosyl substrates present in these complexes. Our studies suggest that p80 and p140 may link the hGM-CSF receptor to the PI 3-kinase and Shc/Grb2/ras signaling pathways, respectively, and that abnormal activation of hGM-CSF-dependent targets may play a role in leukemogenesis.
Aggregation of lipid rafts activates c-met and c-Src in non-small cell lung cancer cells.
Zeng, Juan; Zhang, Heying; Tan, Yonggang; Sun, Cheng; Liang, Yusi; Yu, Jinyang; Zou, Huawei
2018-05-30
Activation of c-Met, a receptor tyrosine kinase, induces radiation therapy resistance in non-small cell lung cancer (NSCLC). The activated residual of c-Met is located in lipid rafts (Duhon et al. Mol Carcinog 49:739-49, 2010). Therefore, we hypothesized that disturbing the integrity of lipid rafts would restrain the activation of the c-Met protein and reverse radiation resistance in NSCLC. In this study, a series of experiments was performed to test this hypothesis. NSCLC A549 and H1993 cells were incubated with methyl-β-cyclodextrin (MβCD), a lipid raft inhibitor, at different concentrations for 1 h before the cells were X-ray irradiated. The following methods were used: clonogenic (colony-forming) survival assays, flow cytometry (for cell cycle and apoptosis analyses), immunofluorescence microscopy (to show the distribution of proteins in lipid rafts), Western blotting, and biochemical lipid raft isolation (purifying lipid rafts to show the distribution of proteins in lipid rafts). Our results showed that X-ray irradiation induced the aggregation of lipid rafts in A549 cells, activated c-Met and c-Src, and induced c-Met and c-Src clustering to lipid rafts. More importantly, MβCD suppressed the proliferation of A549 and H1993 cells, and the combination of MβCD and radiation resulted in additive increases in A549 and H1993 cell apoptosis. Destroying the integrity of lipid rafts inhibited the aggregation of c-Met and c-Src to lipid rafts and reduced the expression of phosphorylated c-Met and phosphorylated c-Src in lipid rafts. X-ray irradiation induced the aggregation of lipid rafts and the clustering of c-Met and c-Src to lipid rafts through both lipid raft-dependent and lipid raft-independent mechanisms. The lipid raft-dependent activation of c-Met and its downstream pathways played an important role in the development of radiation resistance in NSCLC cells mediated by c-Met. Further studies are still required to explore the molecular mechanisms of the activation of c-Met and c-Src in lipid rafts induced by radiation.
Coffey, Marcus J; Jarvis, Gavin E; Gibbins, Jonathan M; Coles, Barbara; Barrett, Natasha E; Wylie, Oliver R E; O'Donnell, Valerie B
2004-06-25
Lipoxygenases (LOX) contribute to vascular disease and inflammation through generation of bioactive lipids, including 12-hydro(pero)xyeicosatetraenoic acid (12-H(P)ETE). The physiological mechanisms that acutely control LOX product generation in mammalian cells are uncharacterized. Human platelets that contain a 12-LOX isoform (p12-LOX) were used to define pathways that activate H(P)ETE synthesis in the vasculature. Collagen and collagen-related peptide (CRP) (1 to 10 microg/mL) acutely induced platelet 12-H(P)ETE synthesis. This implicated the collagen receptor glycoprotein VI (GPVI), which signals via the immunoreceptor-based activatory motif (ITAM)-containing FcRgamma chain. Conversely, thrombin only activated at high concentrations (> 0.2 U/mL), whereas U46619 and ADP alone were ineffective. Collagen or CRP-stimulated 12-H(P)ETE generation was inhibited by staurosporine, PP2, wortmannin, BAPTA/AM, EGTA, and L-655238, implicating src-tyrosine kinases, PI3-kinase, Ca2+ mobilization, and p12-LOX translocation. In contrast, protein kinase C (PKC) inhibition potentiated 12-H(P)ETE generation. Finally, activation of the immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing platelet endothelial cell adhesion molecule (PECAM-1) inhibited p12-LOX product generation. This study characterizes a receptor-dependent pathway for 12-H(P)ETE synthesis via the collagen receptor GPVI, which is negatively regulated by PECAM-1 and PKC, and demonstrates a novel link between immune receptor signaling and lipid mediator generation in the vasculature.
Ivakine, Evgueni A.; Lam, Emily; Deurloo, Marielle; Dida, Joana; Zirngibl, Ralph A.
2015-01-01
Abstract Src is a nonreceptor protein tyrosine kinase that is expressed widely throughout the central nervous system and is involved in diverse biological functions. Mice homozygous for a spontaneous mutation in Src (Src thl/thl) exhibited hypersociability and hyperactivity along with impairments in visuospatial, amygdala-dependent, and motor learning as well as an increased startle response to loud tones. The phenotype of Src thl/thl mice showed significant overlap with Williams-Beuren syndrome (WBS), a disorder caused by the deletion of several genes, including General Transcription Factor 2-I (GTF2I). Src phosphorylation regulates the movement of GTF2I protein (TFII-I) between the nucleus, where it is a transcriptional activator, and the cytoplasm, where it regulates trafficking of transient receptor potential cation channel, subfamily C, member 3 (TRPC3) subunits to the plasma membrane. Here, we demonstrate altered cellular localization of both TFII-I and TRPC3 in the Src mutants, suggesting that disruption of Src can phenocopy behavioral phenotypes observed in WBS through its regulation of TFII-I. PMID:26464974
Rohon, Peter; Divoka, Martina; Calabkova, Lenka; Mojzikova, Renata; Katrincsakova, Beata; Rusinakova, Zuzana; Lapcikova, Anna; Raida, Ludek; Faber, Edgar; Jarosova, Marie; Divoky, Vladimir; Indrak, Karel
2011-06-01
This is a case report of a 51 year old male with marked splenomegaly, basophilia, severe thrombocytopenia, anemia and high SFKL phosphorylation downstream of Bcr-Abl, investigated for association of the e6a2 BCR-ABL fusion gene and marked basophilia. The treatment strategy implications in patients with Philadelphia positive CML are described. RT-PCR and sequencing were carried out on the peripheral blood leukocytes to detect the type of BCR-ABL transcript. The BCR-ABL mutational status was assessed using sequencing of the RT-PCR products. The in vitro test of sensitivity to TKIs was based on detecting inhibited phosphorylation of the Crkl and Phospho-Src family kinases (SFK, Tyr416) using immunodetection. The cytogenetics revealed 90% of Ph+ (Philadelphia) cells in the bone marrow aspirate with no additional clonal chromosomal abnormalities at diagnosis. This correlated with an accelerated phase of the CML. Sequencing analysis of reverse transcribed and PCR amplified BCR-ABL transcript revealed a rare e6a2 fusion, with no evidence for Bcr-Abl kinase domain mutation. Western blot analysis showed high phosphorylation (activation) of Crkl and the Src family of kinases (P-SFK). In vitro test of sensitivity of the patients' leukemic cells to imatinib demonstrated sensitivity of Bcr-Abl tyrosine kinase to imatinib, as assessed by a decrease in phosphorylated Crkl and the disappearance of P-SFK, suggesting that P-Src reflects only the Bcr-Abl-dependent Src activity. The initial treatment strategy was reduced imatinib and search for an unrelated hematopoietic stem cell donor (according to the ELN recommendations). The patient was allografted with peripheral stem cells from an HLA- identical male donor but on day +70 graft failure occurred. He was allografted again with the peripheral stem cells from an HLA-identical female donor, engrafted on day +15 and showed 100% donor chimerism with no evidence of the e6a2 BCR-ABL fusion transcript on day +30. The clinical disease course in patients with the rare e6a2 BCR-ABL transcript variant is aggressive. This may be the result of increased kinase activity due to partial loss of the guanine exchange factor/dbl-like domain which mediates the interaction with several Ras-like G-proteins involved in cell proliferation, signal transduction, and cytoskeletal organization. For the above reasons, these patients should receive stem cell transplant immediately after a short course of treatment with imatinib/ dual Src/Abl kinase inhibitor or they should be registered in clinical trials with experimental agents.
El-Hashim, Ahmed Z; Khajah, Maitham A; Renno, Waleed M; Babyson, Rhema S; Uddin, Mohib; Benter, Ibrahim F; Ezeamuzie, Charles; Akhtar, Saghir
2017-08-30
The molecular mechanisms underlying asthma pathogenesis are poorly characterized. In this study, we investigated (1) whether Src mediates epidermal growth factor receptor (EGFR) transactivation; (2) if ERK1/2, PI3Kδ/Akt and NF-κB are signaling effectors downstream of Src/EGFR activation; and (3) if upstream inhibition of Src/EGFR is more effective in downregulating the allergic inflammation than selective inhibition of downstream signaling pathways. Allergic inflammation resulted in increased phosphorylation of EGFR, Akt, ERK1/2 and IκB in the lung tissues from ovalbumin (OVA)-challenged BALB/c mice. Treatment with inhibitors of Src (SU6656) or EGFR (AG1478) reduced EGFR phosphorylation and downstream signaling which resulted in the inhibition of the OVA-induced inflammatory cell influx in bronchoalveolar lavage fluid (BALF), perivascular and peribronchial inflammation, fibrosis, goblet cell hyper/metaplasia and airway hyper-responsiveness. Treatment with pathway-selective inhibitors for ERK1/2 (PD89059) and PI3Kδ/Akt (IC-87114) respectively, or an inhibitor of NF-κB (BAY11-7085) also reduced the OVA-induced asthmatic phenotype but to a lesser extent compared to Src/EGFR inhibition. Thus, Src via EGFR transactivation and subsequent downstream activation of multiple pathways regulates the allergic airway inflammatory response. Furthermore, a broader upstream inhibition of Src/EGFR offers an attractive therapeutic alternative in the treatment of asthma relative to selectively targeting the individual downstream signaling effectors.
el-Sabeawy, F; Wang, S; Overstreet, J; Miller, M; Lasley, B; Enan, E
1998-06-01
Different doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (0.1, 1, 5, and 10 micrograms/kg body wt) were administered i.p. to 21-day-old male Sprague-Dawley rats. Control animals received the same volume of the vehicle (acetone:corn oil, 1:19). Body weight and daily food intake were recorded during the 90-day time course of the study. Random samples of five rats were sacrificed at 34, 49, 62, and 90 days of age. Epidermal growth factor receptor (EGFR) in whole testis was measured, as were the activities of c-Src kinase, protein tyrosine kinase (PTK), mitogen-activated protein 2 kinase (MAP2K also termed as Erk2), protein kinase A (PKA), and protein kinase C (PKC). Testicular tissue from 90-day-old rats was evaluated for histopathology, and sperm numbers in whole testis were counted to estimate daily sperm production. The motility of sperm in the vas deferens and caudal segments of the epididymis of 90-day-old rats was measured by computer assisted sperm analysis (CASA) and the function of the sperm was tested by assessment of acrosome reactions. A dose of 10 micrograms/kg resulted in testicular atrophy and histopathologic examination revealed a decrease in the diameter of the seminiferous tubules. Sertoli cell nuclei were clearly seen, but the spermatogonial population was totally absent. Lower doses of TCDD did not affect testicular histology, but doses as low as 1 microgram/kg significantly decreased testicular sperm numbers and affected some sperm functions (motility parameters and acrosome reactions) in 90-day-old rats. Significant decreases in EGFR were found in 34-day-old rats and this effect on EGFR was sustained until the end of the experiment (90 days). Although TCDD significantly increased c-Src kinase activity in immature and mature rats, opposite effects of TCDD on activities of PTK, PKA, and PKC were found in 34-day-old rats vs 49-, 62-, and 90-day-old rats. When 10 micrograms TCDD/kg was administered to 21-day-old rat, 24-h after c-Src kinase inhibitor geldanamycin, there was no testicular atrophy and no change in the daily sperm production was found. These findings provide evidence for involvement of Src kinase signaling and EGFR in the mechanism by which TCDD disrupts testicular development and subsequently affects testis function.
Hunyady, László; Catt, Kevin J
2006-05-01
Angiotensin II (Ang II) activates a wide spectrum of signaling responses via the AT1 receptor (AT1R) that mediate its physiological control of blood pressure, thirst, and sodium balance and its diverse pathological actions in cardiovascular, renal, and other cell types. Ang II-induced AT1R activation via Gq/11 stimulates phospholipases A2, C, and D, and activates inositol trisphosphate/Ca2+ signaling, protein kinase C isoforms, and MAPKs, as well as several tyrosine kinases (Pyk2, Src, Tyk2, FAK), scaffold proteins (G protein-coupled receptor kinase-interacting protein 1, p130Cas, paxillin, vinculin), receptor tyrosine kinases, and the nuclear factor-kappaB pathway. The AT1R also signals via Gi/o and G11/12 and stimulates G protein-independent signaling pathways, such as beta-arrestin-mediated MAPK activation and the Jak/STAT. Alterations in homo- or heterodimerization of the AT1R may also contribute to its pathophysiological roles. Many of the deleterious actions of AT1R activation are initiated by locally generated, rather than circulating, Ang II and are concomitant with the harmful effects of aldosterone in the cardiovascular system. AT1R-mediated overproduction of reactive oxygen species has potent growth-promoting, proinflammatory, and profibrotic actions by exerting positive feedback effects that amplify its signaling in cardiovascular cells, leukocytes, and monocytes. In addition to its roles in cardiovascular and renal disease, agonist-induced activation of the AT1R also participates in the development of metabolic diseases and promotes tumor progression and metastasis through its growth-promoting and proangiogenic activities. The recognition of Ang II's pathogenic actions is leading to novel clinical applications of angiotensin-converting enzyme inhibitors and AT1R antagonists, in addition to their established therapeutic actions in essential hypertension.
SRC Inhibition Reduces NR2B Surface Expression and Synaptic Plasticity in the Amygdala
ERIC Educational Resources Information Center
Sinai, Laleh; Duffy, Steven; Roder, John C.
2010-01-01
The Src protein tyrosine kinase plays a central role in the regulation of N-methyl-d-aspartate receptor (NMDAR) activity by regulating NMDAR subunit 2B (NR2B) surface expression. In the amygdala, NMDA-dependent synaptic plasticity resulting from convergent somatosensory and auditory inputs contributes to emotional memory; however, the role of Src…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parry, G.; Bartholomew, J.A.; Blssell, M.J.
1980-07-01
We report here a study of the mechanisms leading to loss of growth control in chicken embryo fibroblasts transformed by Rous sarcoma virus (RSV). We have been particularly concerned with the role of the src gene in this process, and have used RSV mutants temperature sensitive (ts) for transformation to investigate the nature of the growth regulatory lesion. The two principal findings were (1) the stationary phase of the cell cycle (G{sub 1}) in chick embryo fibroblasts seems to have two distinct regulatory compartments (using the terminology of Brooks et al. we refer to these as 'Q' and 'A' states).more » When rendered stationary at 41.5 C by serum deprivation, normal cells enter a Q state, but cells infected with the ts-mutant occupy an A state. (2) Whereas normal cells can occupy either state depending on culture conditions, the ts-infected cells, at 41.5 C, do not seem to enter Q even though a known src gene product, a kinase, is reported to be inactive at this temperature. We discuss the possibility that viral factors other than the active src protein kinase influence growth control in infected cultures.« less
Kinase detection with gallium nitride based high electron mobility transistors
Makowski, Matthew S.; Bryan, Isaac; Sitar, Zlatko; Arellano, Consuelo; Xie, Jinqiao; Collazo, Ramon; Ivanisevic, Albena
2013-01-01
A label-free kinase detection system was fabricated by the adsorption of gold nanoparticles functionalized with kinase inhibitor onto AlGaN/GaN high electron mobility transistors (HEMTs). The HEMTs were operated near threshold voltage due to the greatest sensitivity in this operational region. The Au NP/HEMT biosensor system electrically detected 1 pM SRC kinase in ionic solutions. These results are pertinent to drug development applications associated with kinase sensing. PMID:23918992
Fragale, Alessandra; Tartaglia, Marco; Wu, Jie; Gelb, Bruce D
2004-03-01
Noonan syndrome is a developmental disorder with dysmorphic facies, short stature, cardiac defects, and skeletal anomalies, which can be caused by missense PTPN11 mutations. PTPN11 encodes Src homology 2 domain-containing tyrosine phosphatase 2 (SHP2 or SHP-2), a protein tyrosine phosphatase that acts in signal transduction downstream to growth factor, hormone, and cytokine receptors. We compared the functional effects of three Noonan syndrome-causative PTPN11 mutations on SHP2's phosphatase activity, interaction with a binding partner, and signal transduction. All SHP2 mutants had significantly increased basal phosphatase activity compared to wild type, but that activity varied significantly between mutants and was further increased after epidermal growth factor stimulation. Cells expressing SHP2 mutants had prolonged extracellular signal-regulated kinase 2 activation, which was ligand-dependent. Binding of SHP2 mutants to Grb2-associated binder-1 was increased and sustained, and tyrosine phosphorylation of both proteins was prolonged. Coexpression of Grb2-associated binder-1-FF, which lacks SHP2 binding motifs, blocked the epidermal growth factor-mediated increase in SHP2's phosphatase activity and resulted in a dramatic reduction of extracellular signal-regulated kinase 2 activation. Taken together, these results document that Noonan syndrome-associated PTPN11 mutations increase SHP2's basal phosphatase activity, with greater activation when residues directly involved in binding at the interface between the N-terminal Src homology 2 and protein tyrosine phosphatase domains are altered. The SHP2 mutants prolonged signal flux through the RAS/mitogen-activated protein kinase (ERK2/MAPK1) pathway in a ligand-dependent manner that required docking through Grb2-associated binder-1 (GAB1), leading to increased cell proliferation. Copyright 2004 Wiley-Liss, Inc.
Mittal, Yash; Pavlova, Yelena; Garcia-Marcos, Mikel; Ghosh, Pradipta
2011-09-16
GIV (Gα-interacting vesicle-associated protein, also known as Girdin) is a bona fide enhancer of PI3K-Akt signals during a diverse set of biological processes, e.g. wound healing, macrophage chemotaxis, tumor angiogenesis, and cancer invasion/metastasis. We recently demonstrated that tyrosine phosphorylation of GIV by receptor and non-receptor-tyrosine kinases is a key step that is required for GIV to directly bind and enhance PI3K activity. Here we report the discovery that Src homology 2-containing phosphatase-1 (SHP-1) is the major protein-tyrosine phosphatase that targets two critical phosphotyrosines within GIV and antagonizes phospho-GIV-dependent PI3K enhancement in mammalian cells. Using phosphorylation-dephosphorylation assays, we demonstrate that SHP-1 is the major and specific protein-tyrosine phosphatase that catalyzes the dephosphorylation of tyrosine-phosphorylated GIV in vitro and inhibits ligand-dependent tyrosine phosphorylation of GIV downstream of both growth factor receptors and GPCRs in cells. In vitro binding and co-immunoprecipitation assays demonstrate that SHP-1 and GIV interact directly and constitutively and that this interaction occurs between the SH2 domain of SHP-1 and the C terminus of GIV. Overexpression of SHP-1 inhibits tyrosine phosphorylation of GIV and formation of phospho-GIV-PI3K complexes, and specifically suppresses GIV-dependent activation of Akt. Consistently, depletion of SHP-1 enhances peak tyrosine phosphorylation of GIV, which coincides with an increase in peak Akt activity. We conclude that SHP-1 antagonizes the action of receptor and non-receptor-tyrosine kinases on GIV and down-regulates the phospho-GIV-PI3K-Akt axis of signaling.
Itk tyrosine kinase substrate docking is mediated by a nonclassical SH2 domain surface of PLCgamma1.
Min, Lie; Joseph, Raji E; Fulton, D Bruce; Andreotti, Amy H
2009-12-15
Interleukin-2 tyrosine kinase (Itk) is a Tec family tyrosine kinase that mediates signaling processes after T cell receptor engagement. Activation of Itk requires recruitment to the membrane via its pleckstrin homology domain, phosphorylation of Itk by the Src kinase, Lck, and binding of Itk to the SLP-76/LAT adapter complex. After activation, Itk phosphorylates and activates phospholipase C-gamma1 (PLC-gamma1), leading to production of two second messengers, DAG and IP(3). We have previously shown that phosphorylation of PLC-gamma1 by Itk requires a direct, phosphotyrosine-independent interaction between the Src homology 2 (SH2) domain of PLC-gamma1 and the kinase domain of Itk. We now define this docking interface using a combination of mutagenesis and NMR spectroscopy and show that disruption of the Itk/PLCgamma1 docking interaction attenuates T cell signaling. The binding surface on PLCgamma1 that mediates recognition by Itk highlights a nonclassical binding activity of the well-studied SH2 domain providing further evidence that SH2 domains participate in important signaling interactions beyond recognition of phosphotyrosine.
Cavalcanti, Fernanda N; Lucas, Thais F G; Lazari, Maria Fatima M; Porto, Catarina S
2015-06-01
Expression of the estrogen receptor ESR1 is higher in the corpus than it is in the initial segment/caput and cauda of the epididymis. ESR1 immunostaining in the corpus has been localized not only in the nuclei but also in the cytoplasm and apical membrane, which indicates that ESR1 plays a role in membrane-initiated signaling. The present study investigated whether ESR1 mediates the activation of rapid signaling pathways by estradiol (E2) in the epididymis. We investigated the effect of E2 and the ESR1-selective agonist (4,4',4''-(4-propyl-(1H)-pyrazole-1,3,5-triyl)trisphenol (PPT) on the activation of extracellular signal-regulated protein kinases (ERK1/2), CREB protein, and ETS oncogene-related protein (ELK1). Treatment with PPT did not affect ERK1/2 phosphorylation in the cauda, but it rapidly increased ERK1/2 phosphorylation in the initial segment/caput and corpus of the epididymis. PPT also activated CREB and ELK1 in the corpus of the epididymis. The PPT-induced phosphorylation of ERK1/2, CREB, and ELK1 was blocked by the ESR1-selective antagonist MPP and by pretreatment with a non-receptor tyrosine kinase SRC inhibitor, an EGFR kinase inhibitor, an MEK1/2 inhibitor, and a phosphatidylinositol-3-kinase inhibitor. In conclusion, these results indicate that the corpus, which is a region with high expression of the estrogen receptor ESR1, is a major target in the epididymis for the activation of rapid signaling by E2. The sequence of events that follow E2 interaction with ESR1 includes the SRC-mediated transactivation of EGFR and the phosphorylation of ERK1/2, CREB, and ELK1. This rapid estrogen signaling may modulate gene expression in the corpus of the epididymis, and it may play a role in the dynamic microenvironment of the epididymal lumen. © 2015 Society for Endocrinology.
Barel, M; Le Romancer, M; Frade, R
2001-03-01
We previously demonstrated that CR2 activation on human B lymphocyte surface triggered tyrosine phosphorylation of a p95 component and its interaction with p85 subunit of phosphatidylinositol 3' (PI 3) kinase. Despite identical molecular mass of 95 kDa, this tyrosine phosphorylated p95 molecule was not CD19, the proto-oncogene Vav, or the adaptator Gab1. To identify this tyrosine phosphorylated p95 component, we first purified it by affinity chromatography on anti-phosphotyrosine mAb covalently linked to Sepharose 4B, followed by polyacrylamide gel electrophoresis. Then, the isolated 95-kDa tyrosine phosphorylated band was submitted to amino acid analysis by mass spectrometry; the two different isolated peptides were characterized by amino acid sequences 100% identical with two different domains of nucleolin, localized between aa 411--420 and 611--624. Anti-nucleolin mAb was used to confirm the antigenic properties of this p95 component. Functional studies demonstrated that CR2 activation induced, within a brief span of 2 min, tyrosine phosphorylation of nucleolin and its interaction with Src homology 2 domains of the p85 subunit of PI 3 kinase and of 3BP2 and Grb2, but not with Src homology 2 domains of Fyn and Gap. These properties of nucleolin were identical with those of the p95 previously described and induced by CR2 activation. Furthermore, tyrosine phosphorylation of nucleolin was also induced in normal B lymphocytes by CR2 activation but neither by CD19 nor BCR activation. These data support that tyrosine phosphorylation of nucleolin and its interaction with PI 3 kinase p85 subunit constitute one of the earlier steps in the specific intracellular signaling pathway of CR2.
Elbediwy, Ahmed; Vincent-Mistiaen, Zoé I; Thompson, Barry J
2016-07-01
The YAP/TAZ family of transcriptional co-activators drives cell proliferation in epithelial tissues and cancers. Yet, how YAP and TAZ are physiologically regulated remains unclear. Here we review recent reports that YAP and TAZ act primarily as sensors of epithelial cell polarity, being inhibited when cells differentiate an apical membrane domain, and being activated when cells contact the extracellular matrix via their basal membrane domain. Apical signalling occurs via the canonical Crumbs/CRB-Hippo/MST-Warts/LATS kinase cascade to phosphorylate and inhibit YAP/TAZ. Basal signalling occurs via Integrins and Src family kinases to phosphorylate and activate YAP/TAZ. Thus, YAP/TAZ is localised to the nucleus in basal stem/progenitor cells and cytoplasm in differentiated squamous cells or columnar cells. In addition, other signals such as mechanical forces, tissue damage and possibly receptor tyrosine kinases (RTKs) can influence MST-LATS or Src family kinase activity to modulate YAP/TAZ activity. © 2016 The Authors BioEssays Published by WILEY Periodicals, Inc.
Shoelson, S E; Sivaraja, M; Williams, K P; Hu, P; Schlessinger, J; Weiss, M A
1993-01-01
SH2 (src-homology 2) domains define a newly recognized binding motif that mediates the physical association of target phosphotyrosyl proteins with downstream effector enzymes. An example of such phosphoprotein-effector coupling is provided by the association of phosphatidylinositol 3-kinase (PI 3-kinase) with specific phosphorylation sites within the PDGF receptor, the c-Src/polyoma virus middle T antigen complex and the insulin receptor substrate IRS-1. Notably, phosphoprotein association with the SH2 domains of p85 also stimulates an increase in catalytic activity of the PI 3-kinase p110 subunit, which can be mimicked by phosphopeptides corresponding to targeted phosphoprotein phosphorylation sites. To investigate how phosphoprotein binding to the p85 SH2 domain stimulates p110 catalytic activation, we have examined the differential effects of phosphotyrosine and PDGF receptor-, IRS-1- and c-Src-derived phosphopeptides on the conformation of an isolated SH2 domain of PI 3-kinase. Although phosphotyrosine and both activating and non-activating phosphopeptides bind to the SH2 domain, activating phosphopeptides bind with higher affinity and induce a qualitatively distinct conformational change as monitored by CD and NMR spectroscopy. Amide proton exchange and protease protection assays further show that high affinity, specific phosphopeptide binding induces non-local dynamic SH2 domain stabilization. Based on these findings we propose that specific phosphoprotein binding to the p85 subunit induces a change in SH2 domain structure which is transmitted to the p110 subunit and regulates enzymatic activity by an allosteric mechanism. Images PMID:8382612
NASA Astrophysics Data System (ADS)
Jett, John Edward, Jr.
The dissertation has been divided into two parts to accurately reflect the two distinct areas of interest pursued during my matriculation in the School of Pharmacy at West Virginia University. In Part I, I discuss research probing the nature of electron transfer in the Cytochrome P450 family of proteins, a group of proteins well-known for their role in drug metabolism. In Part II, I focus on in silico and in vitro work developed in concert to probe protein structure and protein-protein interactions involved in actin filament reorganization and cellular motility. Part I. Cytochrome P450s (P450s) are an important class of enzymes known to metabolize a variety of endogenous and xenobiotic compounds. P450s are most commonly found in liver and intestinal endothelial cells and are responsible for the metabolism of approximately 75% of pharmaceutical drugs on the market. CYP2C9---one of the six major P450 isoforms---is responsible for ˜20% of drug metabolism. Elucidation of the factors that affect in vitro drug metabolism is crucial to the accurate prediction of in vivo drug metabolism kinetics. Currently, the two major techniques for studying in vitro drug metabolism are solution-based. However, it is known that the results of solution-based studies can vary from in vivo drug metabolism. One reason suggested to account for this variation is the state of P450 oligomer formation in solution compared to the in vivo environment, where P450s are membrane-bound. To understand the details of how oligomer formation affects in vitro drug metabolism, it is imperative that techniques be developed which will allow for the unequivocal control of oligomer formation without altering other experimental parameters. Our long term goal of this research is to develop methods to more accurately predict in vivo drug metabolism from in vitro data. This section of the dissertation will discuss the development of a platform consisting of a doped silicon surface containing a large array of gold nanopillars, the immobilization of CYP2C9 enzymes to those nanopillars, and the utilization of the array to perform conductive probe atomic force microscopy experiments examining the electron transfer process of CYP2C9 in the absence and presence of substrate molecules. Part II. The Src protein has been known to play a role in cancer cell progression for over 30 years. The function of a non-receptor tyrosine kinase such as Src is to relay extracellular signals through intracellular tyrosine phosphorylation. As a tyrosine kinase, Src and the cellular signaling pathways it is involved in play many functional roles in the cell, both in cellular proliferation and in cytoskeletal dynamics, cell adhesion, motility and invasion. Two of the many proteins comprising Src cellular signaling pathways are actin filament associated protein of 110 kDa (AFAP-110) and cortactin. AFAP-110 is a known activator of Src; one mechanism to abrogate the AFAP-110-induced activation of Src is to inhibit their colocalization within the cell. This colocalization is expected to occur when the pleckstrin homology (PH1 and PH2) domains of AFAP-110 are allowed to interact with membrane-bound phospholipids. Cortactin, on the other hand, is a cytosolic protein capable of being phosphorylated on various tyrosine residues, activating it and allowing it to interact with actin. The Src homology 2 (SH2) domain of Src has been shown to be capable of interacting with cortactin, an association which will be probed here. This section of the dissertation will discuss the use of molecular modeling techniques to develop structural models of the AFAP-110 PH1 and PH2 domains and use them to make predictions about how the protein interacts with phospholipids in the plasma membrane and how they might be stabilized to interact with other proteins. Structural models were designed using homology modeling methods, docking programs were used to predict key residues of AFAP-110 involved in binding to phospholipids and mutational analyses was used to test those predictions. This section will also discuss the use of molecular modeling techniques to explore protein-protein interactions between cortactin and Src. These include docking experiments and binding interaction analyses between Src and key areas of cortactin known to be involved in protein-protein interactions with Src. The data point to a cysteine-cysteine interaction between the two proteins, a result which is confirmed through in vitro experiments in collaboration with the lab of Dr. Scott Weed.
The oncogenic tyrosine kinase Lyn impairs the pro-apoptotic function of Bim.
Aira, Lazaro E; Villa, Elodie; Colosetti, Pascal; Gamas, Parvati; Signetti, Laurie; Obba, Sandrine; Proics, Emma; Gautier, Fabien; Bailly-Maitre, Béatrice; Jacquel, Arnaud; Robert, Guillaume; Luciano, Frédéric; Juin, Philippe P; Ricci, Jean-Ehrland; Auberger, Patrick; Marchetti, Sandrine
2018-04-01
Phosphorylation of Ser/Thr residues is a well-established modulating mechanism of the pro-apoptotic function of the BH3-only protein Bim. However, nothing is known about the putative tyrosine phosphorylation of this Bcl-2 family member and its potential impact on Bim function and subsequent Bax/Bak-mediated cytochrome c release and apoptosis. As we have previously shown that the tyrosine kinase Lyn could behave as an anti-apoptotic molecule, we investigated whether this Src family member could directly regulate the pro-apoptotic function of Bim. In the present study, we show that Bim is phosphorylated onto tyrosine residues 92 and 161 by Lyn, which results in an inhibition of its pro-apoptotic function. Mechanistically, we show that Lyn-dependent tyrosine phosphorylation of Bim increases its interaction with anti-apoptotic members such as Bcl-xL, therefore limiting mitochondrial outer membrane permeabilization and subsequent apoptosis. Collectively, our data uncover one molecular mechanism through which the oncogenic tyrosine kinase Lyn negatively regulates the mitochondrial apoptotic pathway, which may contribute to the transformation and/or the chemotherapeutic resistance of cancer cells.
Csk regulates angiotensin II-induced podocyte apoptosis.
Zhang, Lu; Ren, Zhilong; Yang, Qian; Ding, Guohua
2016-07-01
Increasing data have shown that angiotensin II (Ang II) perpetuates podocyte injury and promotes progression to end-stage kidney disease. The mechanism underlying Ang II-induced podocyte apoptosis has not been established. C-terminal Src kinase (Csk) is a cytoplasmic kinase that interacts with scaffolding proteins involved in cell growth, adhesion, and polarization, and the role of Csk in regulating cellular apoptosis has gradually attracted attention. This study evaluates the role of Csk in Ang II-induced podocyte apoptosis. In vivo, Wistar rats were randomly subjected to a normal saline or Ang II infusion. In vitro, we exposed differentiated mouse podocytes to Ang II. Ang II increased Csk expression and induced podocyte apoptosis, stimulated Csk translocation and binding to Caveolin-1, and stimulated decreased Fyn pY416, increased Fyn pY529, and nephrin dephosphorylation. Csk knockdown prevented Ang II-induced podocyte apoptosis, reduced Fyn kinase inactivation, and increased the interaction between nephrin and the activated form of Fyn, accompanied by a reduced interaction between Csk and Caveolin-1. These findings indicate that Ang II induces podocyte injury via a Csk-dependent pathway.
Huang, Chao; Zhang, Zhe; Chen, Lihan; Lee, Hank W; Ayrapetov, Marina K; Zhao, Ting C; Hao, Yimei; Gao, Jinsong; Yang, Chunzhang; Mehta, Gautam U; Zhuang, Zhengping; Zhang, Xiaoren; Hu, Guohong; Chin, Y Eugene
2018-06-01
Posttranslational modifications of mammalian c-Src N-terminal and C-terminal domains regulate distinct functions. Myristoylation of G 2 controls its cell membrane association and phosphorylation of Y419/Y527 controls its activation or inactivation, respectively. We provide evidence that Src-cell membrane association-dissociation and catalytic activation-inactivation are both regulated by acetylation. In EGF-treated cells, CREB binding protein (CBP) acetylates an N-terminal lysine cluster (K5, K7, and K9) of c-Src to promote dissociation from the cell membrane. CBP also acetylates the C-terminal K401, K423, and K427 of c-Src to activate intrinsic kinase activity for STAT3 recruitment and activation. N-terminal domain phosphorylation (Y14, Y45, and Y68) of STAT3 by c-Src activates transcriptionally active dimers of STAT3. Moreover, acetyl-Src translocates into nuclei, where it forms the Src-STAT3 enhanceosome for gene regulation and cancer cell proliferation. Thus, c-Src acetylation in the N-terminal and C-terminal domains play distinct roles in Src activity and regulation. Significance: CBP-mediated acetylation of lysine clusters in both the N-terminal and C-terminal regions of c-Src provides additional levels of control over STAT3 transcriptional activity. Cancer Res; 78(11); 2825-38. ©2018 AACR . ©2018 American Association for Cancer Research.
McArthur, Jeffrey R.; Cuny, Hartmut; Clark, Richard J.; Adams, David J.
2014-01-01
Neuronal Cav2.1 (P/Q-type), Cav2.2 (N-type), and Cav2.3 (R-type) calcium channels contribute to synaptic transmission and are modulated through G protein–coupled receptor pathways. The analgesic α-conotoxin Vc1.1 acts through γ-aminobutyric acid type B (GABAB) receptors (GABABRs) to inhibit Cav2.2 channels. We investigated GABABR-mediated modulation by Vc1.1, a cyclized form of Vc1.1 (c-Vc1.1), and the GABABR agonist baclofen of human Cav2.1 or Cav2.3 channels heterologously expressed in human embryonic kidney cells. 50 µM baclofen inhibited Cav2.1 and Cav2.3 channel Ba2+ currents by ∼40%, whereas c-Vc1.1 did not affect Cav2.1 but potently inhibited Cav2.3, with a half-maximal inhibitory concentration of ∼300 pM. Depolarizing paired pulses revealed that ∼75% of the baclofen inhibition of Cav2.1 was voltage dependent and could be relieved by strong depolarization. In contrast, baclofen or Vc1.1 inhibition of Cav2.3 channels was solely mediated through voltage-independent pathways that could be disrupted by pertussis toxin, guanosine 5′-[β-thio]diphosphate trilithium salt, or the GABABR antagonist CGP55845. Overexpression of the kinase c-Src significantly increased inhibition of Cav2.3 by c-Vc1.1. Conversely, coexpression of a catalytically inactive double mutant form of c-Src or pretreatment with a phosphorylated pp60c-Src peptide abolished the effect of c-Vc1.1. Site-directed mutational analyses of Cav2.3 demonstrated that tyrosines 1761 and 1765 within exon 37 are critical for inhibition of Cav2.3 by c-Vc1.1 and are involved in baclofen inhibition of these channels. Remarkably, point mutations introducing specific c-Src phosphorylation sites into human Cav2.1 channels conferred c-Vc1.1 sensitivity. Our findings show that Vc1.1 inhibition of Cav2.3, which defines Cav2.3 channels as potential targets for analgesic α-conotoxins, is caused by specific c-Src phosphorylation sites in the C terminus. PMID:24688019
Thrombin-induced glucose transport via Src–p38 MAPK pathway in vascular smooth muscle cells
Kanda, Yasunari; Watanabe, Yasuhiro
2005-01-01
Thrombin is a mitogen for vascular smooth muscle cells (VSMC) and has been implicated in the development in atherosclerosis. However, little is known about the role of thrombin in glucose transport in VSMC. In this study, we examined the effect of thrombin on glucose uptake in rat A10 VSMC. We found that thrombin induced glucose uptake in a dose-dependent manner while hirudin, a potent thrombin inhibitor, prevented glucose uptake in the cells. PP2, a selective inhibitor of Src, prevented the thrombin-induced glucose uptake, but did not affect insulin-induced uptake. We also examined whether mitogen-activated protein kinase (MAPK) inhibitors influenced thrombin-induced glucose uptake. The p38 MAPK inhibitor (SB203580) inhibited thrombin-induced glucose uptake, but the MEK inhibitor (PD98059) did not. In contrast to thrombin, SB203580 did not affect insulin-induced glucose uptake. Furthermore, thrombin failed to translocate the insulin-sensitive glucose transporter GLUT4. These findings suggest that thrombin stimulates glucose transport via Src and subsequent p38 MAPK activation in VSMC. PMID:15951827
Saporito, Michael S; Ochman, Alexander R; Lipinski, Christopher A; Handler, Jeffrey A; Reaume, Andrew G
2012-07-01
2(1H)-pyrimidinone,5-(3-methylphenoxy) (MLR-1023) is a candidate for the treatment of type 2 diabetes. The current studies were aimed at determining the mechanism by which MLR-1023 mediates glycemic control. In these studies, we showed that MLR-1023 reduced blood glucose levels without increasing insulin secretion in vivo. We have further determined that MLR-1023 did not activate peroxisome proliferator-activated α, δ, and γ receptors or glucagon-like peptide-1 receptors or inhibit dipeptidyl peptidase-4 or α-glucosidase enzyme activity. However, in an in vitro broad kinase screen MLR-1023 activated the nonreceptor-linked Src-related tyrosine kinase Lyn. MLR-1023 increased the V(max) of Lyn with an EC(50) of 63 nM. This Lyn kinase activation was ATP binding site independent, indicating that MLR-1023 regulated the kinase through an allosteric mechanism. We have established a link between Lyn activation and blood glucose lowering with studies showing that the glucose-lowering effects of MLR-1023 were abolished in Lyn knockout mice, consistent with existing literature linking Lyn kinase and the insulin-signaling pathway. In summary, these studies describe MLR-1023 as a unique blood glucose-lowering agent and show that MLR-1023-mediated blood glucose lowering depends on Lyn kinase activity. These results, coupled with other results (J Pharmacol Exp Ther 342:23-32, 2012), suggest that MLR-1023 and Lyn kinase activation may be a new treatment modality for type 2 diabetes.
NASA Astrophysics Data System (ADS)
Naudin, Cécile; Sirvent, Audrey; Leroy, Cédric; Larive, Romain; Simon, Valérie; Pannequin, Julie; Bourgaux, Jean-François; Pierre, Josiane; Robert, Bruno; Hollande, Frédéric; Roche, Serge
2014-01-01
The adaptor SLAP is a negative regulator of receptor signalling in immune cells but its role in human cancer is ill defined. Here we report that SLAP is abundantly expressed in healthy epithelial intestine but strongly downregulated in 50% of colorectal cancer. SLAP overexpression suppresses cell tumorigenicity and invasiveness while SLAP silencing enhances these transforming properties. Mechanistically, SLAP controls SRC/EPHA2/AKT signalling via destabilization of the SRC substrate and receptor tyrosine kinase EPHA2. This activity is independent from CBL but requires SLAP SH3 interaction with the ubiquitination factor UBE4A and SLAP SH2 interaction with pTyr594-EPHA2. SRC phosphorylates EPHA2 on Tyr594, thus creating a feedback loop that promotes EPHA2 destruction and thereby self-regulates its transforming potential. SLAP silencing enhances SRC oncogenicity and sensitizes colorectal tumour cells to SRC inhibitors. Collectively, these data establish a tumour-suppressive role for SLAP in colorectal cancer and a mechanism of SRC oncogenic induction through stabilization of its cognate substrates.
CD25 and CD69 induction by α4β1 outside-in signalling requires TCR early signalling complex proteins
Cimo, Ann-Marie; Ahmed, Zamal; McIntyre, Bradley W.; Lewis, Dorothy E.; Ladbury, John E.
2013-01-01
Distinct signalling pathways producing diverse cellular outcomes can utilize similar subsets of proteins. For example, proteins from the TCR (T-cell receptor) ESC (early signalling complex) are also involved in interferon-α receptor signalling. Defining the mechanism for how these proteins function within a given pathway is important in understanding the integration and communication of signalling networks with one another. We investigated the contributions of the TCR ESC proteins Lck (lymphocyte-specific kinase), ZAP-70 (ζ-chain-associated protein of 70 kDa), Vav1, SLP-76 [SH2 (Src homology 2)-domain-containing leukocyte protein of 76 kDa] and LAT (linker for activation of T-cells) to integrin outside-in signalling in human T-cells. Lck, ZAP-70, SLP-76, Vav1 and LAT were activated by α4β1 outside-in signalling, but in a manner different from TCR signalling. TCR stimulation recruits ESC proteins to activate the mitogen-activated protein kinase ERK (extracellular-signal-regulated kinase). α4β1 outside-in-mediated ERK activation did not require TCR ESC proteins. However, α4β1 outside-in signalling induced CD25 and co-stimulated CD69 and this was dependent on TCR ESC proteins. TCR and α4β1 outside-in signalling are integrated through the common use of TCR ESC proteins; however, these proteins display functionally distinct roles in these pathways. These novel insights into the cross-talk between integrin outside-in and TCR signalling pathways are highly relevant to the development of therapeutic strategies to overcome disease associated with T-cell deregulation. PMID:23758320
Targeted therapies in development for non-small cell lung cancer
Reungwetwattana, Thanyanan; Dy, Grace Kho
2013-01-01
The iterative discovery in various malignancies during the past decades that a number of aberrant tumorigenic processes and signal transduction pathways are mediated by “druggable” protein kinases has led to a revolutionary change in drug development. In non-small cell lung cancer (NSCLC), the ErbB family of receptors (e.g., EGFR [epidermal growth factor receptor], HER2 [human epidermal growth factor receptor 2]), RAS (rat sarcoma gene), BRAF (v-raf murine sarcoma viral oncogene homolog B1), MAPK (mitogen-activated protein kinase) c-MET (c-mesenchymal-epithelial transition), FGFR (fibroblast growth factor receptor), DDR2 (discoidin domain receptor 2), PIK3CA (phosphatidylinositol-4,5-bisphosphate3-kinase, catalytic subunit alpha)), PTEN (phosphatase and tensin homolog), AKT (protein kinase B), ALK (anaplastic lym phoma kinase), RET (rearranged during transfection), ROS1 (reactive oxygen species 1) and EPH (erythropoietin-producing hepatoma) are key targets of various agents currently in clinical development. These oncogenic targets exert their selective growth advantage through various intercommunicating pathways, such as through RAS/RAF/MEK, phosphoinositide 3-kinase/AKT/mammalian target of rapamycin and SRC-signal transduction and transcription signaling. The recent clinical studies, EGFR tyrosine kinase inhibitors and crizotinib were considered as strongly effective targeted therapies in metastatic NSCLC. Currently, five molecular targeted agents were approved for treatment of advanced NSCLC: Gefitinib, erlotinib and afatinib for positive EGFR mutation, crizotinib for positive echinoderm microtubule-associated protein-like 4 (EML4)-ALK translocation and bevacizumab. Moreover, oncogenic mutant proteins are subject to regulation by protein trafficking pathways, specifically through the heat shock protein 90 system. Drug combinations affecting various nodes in these signaling and intracellular processes are predicted and demonstrated to be synergistic and advantageous in overcoming treatment resistance compared with monotherapy approaches. Understanding the role of the tumor microenvironment in the development and maintenance of the malignant phenotype provided additional therapeutic approaches as well. More recently, improved knowledge on tumor immunology has set the stage for promising immunotherapies in NSCLC. This review will focus on the rationale for the development of targeted therapies in NSCLC and the various strategies employed in preventing or overcoming the inevitable occurrence of treatment resistance. PMID:24574860
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soeda, Shuhei; Nakayama, Yuji, E-mail: nakayama@mb.kyoto-phu.ac.jp; Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414
Src-family tyrosine kinases are aberrantly activated in cancers, and this activation is associated with malignant tumor progression. v-Src, encoded by the v-src transforming gene of the Rous sarcoma virus, is a mutant variant of the cellular proto-oncogene c-Src. Although investigations with temperature sensitive mutants of v-Src have shown that v-Src induces many oncogenic processes, the effects on cell division are unknown. Here, we show that v-Src inhibits cellular proliferation of HCT116, HeLa S3 and NIH3T3 cells. Flow cytometry analysis indicated that inducible expression of v-Src results in an accumulation of 4N cells. Time-lapse analysis revealed that binucleation is induced throughmore » the inhibition of cytokinesis, a final step of cell division. The localization of Mklp1, which is essential for cytokinesis, to the spindle midzone is inhibited in v-Src-expressing cells. Intriguingly, Aurora B, which regulates Mklp1 localization at the midzone, is delocalized from the spindle midzone and the midbody but not from the metaphase chromosomes upon v-Src expression. Mklp2, which is responsible for the relocation of Aurora B from the metaphase chromosomes to the spindle midzone, is also lost from the spindle midzone. These results suggest that v-Src inhibits cytokinesis through the delocalization of Mklp1 and Aurora B from the spindle midzone, resulting in binucleation. -- Highlights: • v-Src inhibits cell proliferation of HCT116, HeLa S3 and NIH3T3 cells. • v-Src induces binucleation together with cytokinesis failure. • v-Src causes delocalization of Mklp1, Aurora B and INCENP from the spindle midzone.« less
Schaper, F; Gendo, C; Eck, M; Schmitz, J; Grimm, C; Anhuf, D; Kerr, I M; Heinrich, P C
1998-11-01
Stimulation of the interleukin-6 (IL-6) signalling pathway occurs via the IL-6 receptor-glycoprotein 130 (IL-6R-gp130) receptor complex and results in the regulation of acute-phase protein genes in liver cells. Ligand binding to the receptor complex leads to tyrosine phosphorylation and activation of Janus kinases (Jak), phosphorylation of the signal transducing subunit gp130, followed by recruitment and phosphorylation of the signal transducer and activator of transcription factors STAT3 and STAT1 and the src homology domain (SH2)-containing protein tyrosine phosphatase (SHP2). The tyrosine phosphorylated STAT factors dissociate from the receptor, dimerize and translocate to the nucleus where they bind to enhancer sequences of IL-6 target genes. Phosphorylated SHP2 is able to bind growth factor receptor bound protein (grb2) and thus might link the Jak/STAT pathway to the ras/raf/mitogen-activated protein kinase pathway. Here we present data on the dose-dependence, kinetics and kinase requirements for SHP2 phosphorylation after the activation of the signal transducer, gp130, of the IL-6-type family receptor complex. When human fibrosarcoma cell lines deficient in Jak1, Jak2 or tyrosine kinase 2 (Tyk2) were stimulated with IL-6-soluble IL-6R complexes it was found that only in Jak1-, but not in Jak 2- or Tyk2-deficient cells, SHP2 activation was greatly impaired. It is concluded that Jak1 is required for the tyrosine phosphorylation of SHP2. This phosphorylation depends on Tyr-759 in the cytoplasmatic domain of gp130, since a Tyr-759-->Phe exchange abrogates SHP2 activation and in turn leads to elevated and prolonged STAT3 and STAT1 activation as well as enhanced acute-phase protein gene induction. Therefore, SHP2 plays an important role in acute-phase gene regulation.
Paul, James M; Toosi, Behzad; Vizeacoumar, Frederick S; Bhanumathy, Kalpana Kalyanasundaram; Li, Yue; Gerger, Courtney; El Zawily, Amr; Freywald, Tanya; Anderson, Deborah H; Mousseau, Darrell; Kanthan, Rani; Zhang, Zhaolei; Vizeacoumar, Franco J; Freywald, Andrew
2016-08-02
Application of tumor genome sequencing has identified numerous loss-of-function alterations in cancer cells. While these alterations are difficult to target using direct interventions, they may be attacked with the help of the synthetic lethality (SL) approach. In this approach, inhibition of one gene causes lethality only when another gene is also completely or partially inactivated. The EPHB6 receptor tyrosine kinase has been shown to have anti-malignant properties and to be downregulated in multiple cancers, which makes it a very attractive target for SL applications. In our work, we used a genome-wide SL screen combined with expression and interaction network analyses, and identified the SRC kinase as a SL partner of EPHB6 in triple-negative breast cancer (TNBC) cells. Our experiments also reveal that this SL interaction can be targeted by small molecule SRC inhibitors, SU6656 and KX2-391, and can be used to improve elimination of human TNBC tumors in a xenograft model. Our observations are of potential practical importance, since TNBC is an aggressive heterogeneous malignancy with a very high rate of patient mortality due to the lack of targeted therapies, and our work indicates that FDA-approved SRC inhibitors may potentially be used in a personalized manner for treating patients with EPHB6-deficient TNBC. Our findings are also of a general interest, as EPHB6 is downregulated in multiple malignancies and our data serve as a proof of principle that EPHB6 deficiency may be targeted by small molecule inhibitors in the SL approach.
Huang, Yi-Wen; Chuang, Chun-Yi; Hsieh, Yih-Shou; Chen, Pei-Ni; Yang, Shun-Fa; Shih-Hsuan-Lin; Chen, Yang-Yu; Lin, Chiao-Wen; Chang, Yu-Chao
2017-03-01
Raspberries (Rubus idaeus L.) have been extensively studies worldwide because of their beneficial effects on health. Recently reports indicate that crude extracts of Rubus idaeus (RIE) have antioxidant and anticancer ability. The aim of this study was to evaluate the mechanism of its antimetastatic ability in oral cancer cells. In this study, SCC-9 and SAS oral cancer cells were subjected to a treatment with RIE and then analyzed the effect of RIE on migration and invasion. The addition of RIE inhibited the migration and invasion ability of oral cancer cells. Real time PCR, western blot and zymography analysis demonstrated that mRNA, protein expression and enzyme activity of matrix metalloproteinases-2 (MMP-2) were down-regulated by RIE. Moreover, the phosphorylation of Focal adhesion kinase (FAK), src, and extracellular signal-regulated kinase (ERK) were inhibited after RIE treatment. In conclusion, these results demonstrated that RIE exerted an inhibitory effect of migration and invasion in oral cancer cells and alter metastasis by suppression of MMP-2 expression through FAK/Scr/ERK signaling pathway. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1037-1046, 2017. © 2016 Wiley Periodicals, Inc.
Theoretical Insights Reveal Novel Motions in Csk’s SH3 Domain That Control Kinase Activation
Barkho, Sulyman; Pierce, Levi C. T.; Li, Sheng; Adams, Joseph A.; Jennings, Patricia A.
2015-01-01
The Src family of tyrosine kinases (SFKs) regulate numerous aspects of cell growth and differentiation and are under the principal control of the C-terminal Src Kinase (Csk). Although Csk and SFKs share conserved kinase, SH2 and SH3 domains, they differ considerably in three-dimensional structure, regulatory mechanism, and the intrinsic kinase activities. Although the SH2 and SH3 domains are known to up- or down-regulate tyrosine kinase function, little is known about the global motions in the full-length kinase that govern these catalytic variations. We use a combination of accelerated Molecular Dynamics (aMD) simulations and experimental methods to provide a new view of functional motions in the Csk scaffold. These computational studies suggest that high frequency vibrations in the SH2 domain are coupled through the N-terminal lobe of the kinase domain to motions in the SH3 domain. The effects of these reflexive movements on the kinase domain can be viewed using both Deuterium Exchange Mass Spectrometry (DXMS) and steady-state kinetic methods. Removal of several contacts, including a crystallographically unobserved N-terminal segment, between the SH3 and kinase domains short-circuit these coupled motions leading to reduced catalytic efficiency and stability of N-lobe motifs within the kinase domain. The data expands the model of Csk’s activation whereby separate domains productively interact with two diametrically opposed surfaces of the kinase domain. Such reversible transitions may organize the active structure of the tyrosine kinase domain of Csk. PMID:26030592
Braunger, J; Schleithoff, L; Schulz, A S; Kessler, H; Lammers, R; Ullrich, A; Bartram, C R; Janssen, J W
1997-06-05
Ufo/Axl belongs to a new family of receptor tyrosine kinases with an extracellular structure similar to that of neural cell adhesion molecules. In order to elucidate intracellular signaling, the cytoplasmic moiety of Ufo/Axl was used to screen an expression library according to the CORT (cloning of receptor targets) method. Three putative Ufo substrates were identified: phospholipase Cgamma1 (PLCgamma), as well as p85alpha and p85beta subunits of phosphatidylinositol 3'-kinase (PI3-kinase). Subsequently, chimeric EGFR/Ufo receptors consisting of the extracellular domains of the epidermal growth factor receptor (EGFR) and the transmembrane and intracellular moiety of Ufo were engineered. Using different far-Western blot analyses and coimmunoprecipitation assays, receptor binding of PLCgamma and p85 proteins as well as GRB2, c-src and lck was examined in vitro and in vivo. Competitive inhibition of substrate binding and mutagenesis experiments with EGFR/Ufo constructs revealed C-terminal tyrosine 821 (EILpYVNMDEG) as a docking site for multiple effectors, namely PLCgamma, p85 proteins, GRB2, c-src and lck. Tyrosine 779 (DGLpYALMSRC) demonstrated an additional, but lower binding affinity for the p85 proteins in vitro. In addition, binding of PLCgamma occurred through tyrosine 866 (AGRpYVLCPST). Moreover, our in vivo data indicate that further direct or indirect binding sites for PLCgamma, GRB2, c-src and lck on the human Ufo receptor may exist.
Mikkola, Esa T; Gahmberg, Carl G
2010-06-18
The protein tyrosine kinase C-terminal Src kinase (Csk) is activated by the engagement of its Src homology (SH) 2 domain. However, the molecular mechanism required for this is not completely understood. The crystal structure of the active Csk indicates that Csk could be activated by contact between the SH2 domain and the beta3-alphaC loop in the N-terminal lobe of the kinase domain. To study the importance of this interaction for the SH2-domain-mediated activation of Csk, we mutated the amino acid residues forming the contacts between the SH2 domain and the beta3-alphaC loop. The mutation of the beta3-alphaC loop Ala228 to glycine and of the SH2 domain Tyr116, Tyr133, Leu138, and Leu149 to alanine resulted in the inability of the SH2 domain ligand to activate Csk. Furthermore, the overexpressed Csk mutants A228G, Y133A/Y116A, L138A, and L149A were unable to efficiently inactivate endogenous Src in human embryonic kidney 293 cells. The results suggest that the SH2-domain-mediated activation of Csk is dependent on the binding of the beta3-alphaC loop Ala228 to the hydrophobic pocket formed by the side chains of Tyr116, Tyr133, Leu138, and Leu149 on the surface of the SH2 domain. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Stulnig, Thomas M.; Berger, Markus; Sigmund, Thomas; Raederstorff, Daniel; Stockinger, Hannes; Waldhäusl, Werner
1998-01-01
Polyunsaturated fatty acids (PUFAs) exert immunosuppressive effects, but the molecular alterations leading to T cell inhibition are not yet elucidated. Signal transduction seems to involve detergent-resistant membrane domains (DRMs) acting as functional rafts within the plasma membrane bilayer with Src family protein tyrosine kinases being attached to their cytoplasmic leaflet. Since DRMs include predominantly saturated fatty acyl moieties, we investigated whether PUFAs could affect T cell signaling by remodeling of DRMs. Jurkat T cells cultured in PUFA-supplemented medium showed a markedly diminished calcium response when stimulated via the transmembrane CD3 complex or glycosyl phosphatidylinositol (GPI)- anchored CD59. Immunofluorescence studies indicated that CD59 but not Src family protein tyrosine kinase Lck remained in a punctate pattern after PUFA enrichment. Analysis of DRMs revealed a marked displacement of Src family kinases (Lck, Fyn) from DRMs derived from PUFA-enriched T cells compared with controls, and the presence of Lck in DRMs strictly correlated with calcium signaling. In contrast, GPI-anchored proteins (CD59, CD48) and ganglioside GM1, both residing in the outer membrane leaflet, remained in the DRM fraction. In conclusion, PUFA enrichment selectively modifies the cytoplasmic layer of DRMs and this alteration could underlie the inhibition of T cell signal transduction by PUFAs. PMID:9813086
Honda, Zen-Ichiro; Suzuki, Takeshi; Honda, Hiroaki
2009-12-01
The activation mechanisms of Src family kinases (SFKs) involve the dissociation of the intramolecular interaction between the Src homology (SH) 3 and kinase domain. This process is mediated by the intermolecular attack of outer ligands to the SH3 domain. By using a yeast two-hybrid screen, we isolated a relevant ligand involved in the activation mechanisms of SFKs. This molecule was found to be identical to a recently recognized kinetochore protein--designated as centromere protein (CENP)-V--which is required for the progression of mitosis. We show here that human CENP-V plays further roles in cell dynamics; the proline-rich region of human CENP-V associates with the SH3 domains of SFKs and potently activates SFKs, whereas another domain of CENP-V that possesses a highly conserved cysteine array confers the ability to associate with stabilized microtubules (MTs). Human CENP-V distributes to the cell protrusion and to the leading edge of migrating cells in response to external stimuli, and depletion of CENP-V by RNA interference significantly attenuates closure of a scratch wound. These findings indicate that human CENP-V is involved in directional cell motility as well as in the progression of mitosis, as a scaffolding molecule that links MTs and SFKs.
Coactivator SRC-2–dependent metabolic reprogramming mediates prostate cancer survival and metastasis
Dasgupta, Subhamoy; Putluri, Nagireddy; Long, Weiwen; Zhang, Bin; Wang, Jianghua; Kaushik, Akash K.; Arnold, James M.; Bhowmik, Salil K.; Stashi, Erin; Brennan, Christine A.; Rajapakshe, Kimal; Coarfa, Cristian; Mitsiades, Nicholas; Ittmann, Michael M.; Chinnaiyan, Arul M.; Sreekumar, Arun; O’Malley, Bert W.
2015-01-01
Metabolic pathway reprogramming is a hallmark of cancer cell growth and survival and supports the anabolic and energetic demands of these rapidly dividing cells. The underlying regulators of the tumor metabolic program are not completely understood; however, these factors have potential as cancer therapy targets. Here, we determined that upregulation of the oncogenic transcriptional coregulator steroid receptor coactivator 2 (SRC-2), also known as NCOA2, drives glutamine-dependent de novo lipogenesis, which supports tumor cell survival and eventual metastasis. SRC-2 was highly elevated in a variety of tumors, especially in prostate cancer, in which SRC-2 was amplified and overexpressed in 37% of the metastatic tumors evaluated. In prostate cancer cells, SRC-2 stimulated reductive carboxylation of α-ketoglutarate to generate citrate via retrograde TCA cycling, promoting lipogenesis and reprogramming of glutamine metabolism. Glutamine-mediated nutrient signaling activated SRC-2 via mTORC1-dependent phosphorylation, which then triggered downstream transcriptional responses by coactivating SREBP-1, which subsequently enhanced lipogenic enzyme expression. Metabolic profiling of human prostate tumors identified a massive increase in the SRC-2–driven metabolic signature in metastatic tumors compared with that seen in localized tumors, further implicating SRC-2 as a prominent metabolic coordinator of cancer metastasis. Moreover, SRC-2 inhibition in murine models severely attenuated the survival, growth, and metastasis of prostate cancer. Together, these results suggest that the SRC-2 pathway has potential as a therapeutic target for prostate cancer. PMID:25664849
2004-01-01
We have previously shown that CD32A (or FcγRIIA), one of the main opsonin receptors, was rapidly insolubilized and degraded in intact neutrophils after its cross-linking. In view of these experimental difficulties, the early signalling steps in response to CD32A activation were studied in purified plasma membranes of neutrophils. After CD32A cross-linking in these fractions, the tyrosine phosphorylation of two major substrates, the receptor itself and the tyrosine kinase Syk, was observed. Phosphorylation of these two proteins was observed only in the presence of orthovanadate, indicating the presence, in the membranes, of one or more tyrosine phosphatases that maintain CD32A dephosphorylation. The tyrosine phosphorylation of these two proteins was inhibited by the Src kinase inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). The ligation of CD32A led to its recruitment to a previously uncharacterized subset of high-density flotillin-1-positive DRMs (detergent-resistant membranes). The changes in the solubility properties of CD32A were observed in the absence of added ATP; therefore, they were probably not secondary to the tyrosine phosphorylation of the receptor, rather they preceded it. Src kinases as well as Syk were constitutively present in DRMs of high and low density and no evident changes in their distribution were detected after cross-linking of CD32A. Pretreatment of plasma membranes with methyl-β-cyclodextrin did not inhibit the recruitment of CD32A to DRMs, although it led to the loss of the Src kinase Lyn from these fractions. In addition, methyl-β-cyclodextrin inhibited the tyrosine phosphorylation of CD32A and Syk induced by cross-linking of CD32A. This membrane model allowed us to observe a movement of CD32A from detergent-soluble regions of the membranes to DRMs, where it joined Src kinases and Syk and became tyrosine-phosphorylated. PMID:15130090
Csk Homologous Kinase, a Potential Regulator of CXCR4-mediated Breast Cancer Cell Metastasis
2010-08-31
SH2 ) and SH3 domains and lacks the consensus tyrosine phosphorylation and myristylation sites found in Src family kinases . CHK has been shown to...0350 TITLE: Csk Homologous Kinase , a Potential Regulator of CXCR4-mediated Breast Cancer Cell Metastasis PRINCIPAL INVESTIGATOR: Byeong-Chel...1 AUG 2009 - 31 JUL 2010 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-09-1-0350 Csk Homologous Kinase , a Potential Regulator
Sumitomo, M; Milowsky, M I; Shen, R; Navarro, D; Dai, J; Asano, T; Hayakawa, M; Nanus, D M
2001-04-15
G-protein coupled receptor (GPCR) agonists such as neuropeptides activate the insulin-like growth factor-1 receptor (IGF-IR) or the serine-threonine protein kinase Akt, suggesting that neuropeptides-GPCR signaling can cross-communicate with IGF-IR-Akt signaling pathways. Neutral endopeptidase 24.11 (NEP) is a cell-surface peptidase that cleaves and inactivates the neuropeptides endothelin-1 (ET-1) and bombesin, which are implicated in progression to androgen-independent prostate cancer (PC). We investigated the mechanisms of NEP regulation of neuropeptide-mediated cell survival in PC cells, including whether neuropeptide substrates of NEP induce phosphorylations of IGF-IR and Akt in PC cells. Western analyses revealed ET-1 and bombesin treatment induced phosphorylation of IGF-IRbeta and Akt independent of IGF-I in TSU-Pr1, DU145, and PC-3 PC cells, which lack NEP expression, but not in NEP-expressing LNCaP cells. Recombinant NEP and induced NEP expression in TSU-Pr1 cells using a tetracycline-repressive expression system inhibited ET-1-mediated phosphorylation of IGF-IRbeta and Akt, and blocked the protective effects of ET-1 against apoptosis induced by serum starvation. Incubation of TSU-Pr1 cells with specific kinase inhibitors together with ET-1 or bombesin showed that IGF-IR activation is required for neuropeptide-induced Akt phosphorylation, and that neuropeptide-induced Akt activation is predominantly mediated by Src and phosphatidylinositol 3-kinase but not by mitogen-activated protein kinase or protein kinase C. These data show that the neuropeptides ET-1 and bombesin stimulate ligand-independent activation of the IGF-IR, which results in Akt activation, and that this cross-communication between GPCR and IGF-IR signaling is inhibited by NEP.
IRS-1 activates phosphatidylinositol 3'-kinase by associating with src homology 2 domains of p85.
Myers, M G; Backer, J M; Sun, X J; Shoelson, S; Hu, P; Schlessinger, J; Yoakim, M; Schaffhausen, B; White, M F
1992-01-01
IRS-1 is an insulin receptor substrate that undergoes tyrosine phosphorylation and associates with the phosphatidylinositol (PtdIns) 3'-kinase immediately after insulin stimulation. Recombinant IRS-1 protein was tyrosine phosphorylated by the insulin receptor in vitro and associated with the PtdIns 3'-kinase from lysates of quiescent 3T3 fibroblasts. Bacterial fusion proteins containing the src homology 2 domains (SH2 domains) of the 85-kDa subunit (p85) of the PtdIns 3'-kinase bound quantitatively to tyrosine phosphorylated, but not unphosphorylated, IRS-1, and this association was blocked by phosphotyrosine-containing synthetic peptides. Moreover, the phosphorylated peptides and the SH2 domains each inhibited binding of PtdIns 3'-kinase to IRS-1. Phosphorylated IRS-1 activated PtdIns 3'-kinase in anti-p85 immunoprecipitates in vitro, and this activation was blocked by SH2 domain fusion proteins. These data suggest that the interaction between PtdIns 3'-kinase and IRS-1 is mediated by tyrosine phosphorylated motifs on IRS-1 and the SH2 domains of p85, and IRS-1 activates PtdIns 3'-kinase by binding to the SH2 domains of p85. Thus, IRS-1 likely serves to transmit the insulin signal by binding and regulating intracellular enzymes containing SH2 domains. Images PMID:1332046
Protein Kinase Activity Decreases with Higher Braak Stages of Alzheimer’s Disease Pathology
Rosenberger, Andrea F.N.; Hilhorst, Riet; Coart, Elisabeth; García Barrado, Leandro; Naji, Faris; Rozemuller, Annemieke J.M.; van der Flier, Wiesje M.; Scheltens, Philip; Hoozemans, Jeroen J.M.; van der Vies, Saskia M.
2015-01-01
Alzheimer’s disease (AD) is characterized by a long pre-clinical phase (20–30 years), during which significant brain pathology manifests itself. Disease mechanisms associated with pathological hallmarks remain elusive. Most processes associated with AD pathogenesis, such as inflammation, synaptic dysfunction, and hyper-phosphorylation of tau are dependent on protein kinase activity. The objective of this study was to determine the involvement of protein kinases in AD pathogenesis. Protein kinase activity was determined in postmortem hippocampal brain tissue of 60 patients at various stages of AD and 40 non-demented controls (Braak stages 0-VI) using a peptide-based microarray platform. We observed an overall decrease of protein kinase activity that correlated with disease progression. The phosphorylation of 96.7% of the serine/threonine peptides and 37.5% of the tyrosine peptides on the microarray decreased significantly with increased Braak stage (p-value <0.01). Decreased activity was evident at pre-clinical stages of AD pathology (Braak I-II). Increased phosphorylation was not observed for any peptide. STRING analysis in combination with pathway analysis and identification of kinases responsible for peptide phosphorylation showed the interactions between well-known proteins in AD pathology, including the Ephrin-receptor A1 (EphA1), a risk gene for AD, and sarcoma tyrosine kinase (Src), which is involved in memory formation. Additionally, kinases that have not previously been associated with AD were identified, e.g., protein tyrosine kinase 6 (PTK6/BRK), feline sarcoma oncogene kinase (FES), and fyn-associated tyrosine kinase (FRK). The identified protein kinases are new biomarkers and potential drug targets for early (pre-clinical) intervention. PMID:26519433
Src-like adaptor protein (SLAP) regulates B cell receptor levels in a c-Cbl-dependent manner.
Dragone, Leonard L; Myers, Margaret D; White, Carmen; Gadwal, Shyam; Sosinowski, Tomasz; Gu, Hua; Weiss, Arthur
2006-11-28
Src-like adaptor protein (SLAP) and c-Cbl recently have been shown to cooperate in regulating T cell receptor (TCR) levels in developing T cells. SLAP also is expressed in developing B cells, and its deficiency leads to alterations in B cell receptor (BCR) levels and B cell development. Hence, we hypothesized that SLAP and c-Cbl may cooperate during B cell development to regulate BCR levels. In mice deficient in both SLAP and c-Cbl, we found that B cell development is altered, suggesting that they function through intersecting pathways. To study the mechanism by which SLAP and c-Cbl alter BCR levels, we coexpressed them in a mature mouse B cell line (Bal-17). First we determined that SLAP associates with proximal components of the BCR complex after stimulation and internalization. Coexpression of SLAP and c-Cbl in Bal-17 led to decreased surface and total BCR levels. This decrease in BCR levels depended on intact Src homology 2 (SH2) and C-terminal domains of SLAP. In addition, a mutation in the SH2 domain of SLAP blocked its colocalization with c-Cbl and the BCR complex, whereas deletion of the C terminus did not affect its localization. Last, coexpression of SLAP and c-Cbl altered BCR complex recycling. This alteration in BCR complex recycling depended on enzymatically active c-Cbl and Src family kinases, as well as the intact SH2 and C-terminal domains of SLAP. These data suggest that SLAP has a conserved function in B and T cells by adapting c-Cbl to the antigen-receptor complex and targeting it for degradation.
Src-like adaptor protein (SLAP) regulates B cell receptor levels in a c-Cbl-dependent manner
Dragone, Leonard L.; Myers, Margaret D.; White, Carmen; Gadwal, Shyam; Sosinowski, Tomasz; Gu, Hua; Weiss, Arthur
2006-01-01
Src-like adaptor protein (SLAP) and c-Cbl recently have been shown to cooperate in regulating T cell receptor (TCR) levels in developing T cells. SLAP also is expressed in developing B cells, and its deficiency leads to alterations in B cell receptor (BCR) levels and B cell development. Hence, we hypothesized that SLAP and c-Cbl may cooperate during B cell development to regulate BCR levels. In mice deficient in both SLAP and c-Cbl, we found that B cell development is altered, suggesting that they function through intersecting pathways. To study the mechanism by which SLAP and c-Cbl alter BCR levels, we coexpressed them in a mature mouse B cell line (Bal-17). First we determined that SLAP associates with proximal components of the BCR complex after stimulation and internalization. Coexpression of SLAP and c-Cbl in Bal-17 led to decreased surface and total BCR levels. This decrease in BCR levels depended on intact Src homology 2 (SH2) and C-terminal domains of SLAP. In addition, a mutation in the SH2 domain of SLAP blocked its colocalization with c-Cbl and the BCR complex, whereas deletion of the C terminus did not affect its localization. Last, coexpression of SLAP and c-Cbl altered BCR complex recycling. This alteration in BCR complex recycling depended on enzymatically active c-Cbl and Src family kinases, as well as the intact SH2 and C-terminal domains of SLAP. These data suggest that SLAP has a conserved function in B and T cells by adapting c-Cbl to the antigen-receptor complex and targeting it for degradation. PMID:17110436
Myosin light chain kinase and Src control membrane dynamics in volume recovery from cell swelling
Barfod, Elisabeth T.; Moore, Ann L.; Van de Graaf, Benjamin G.; Lidofsky, Steven D.
2011-01-01
The expansion of the plasma membrane, which occurs during osmotic swelling of epithelia, must be retrieved for volume recovery, but the mechanisms are unknown. Here we have identified myosin light chain kinase (MLCK) as a regulator of membrane internalization in response to osmotic swelling in a model liver cell line. On hypotonic exposure, we found that there was time-dependent phosphorylation of the MLCK substrate myosin II regulatory light chain. At the sides of the cell, MLCK and myosin II localized to swelling-induced membrane blebs with actin just before retraction, and MLCK inhibition led to persistent blebbing and attenuated cell volume recovery. At the base of the cell, MLCK also localized to dynamic actin-coated rings and patches upon swelling, which were associated with uptake of the membrane marker FM4-64X, consistent with sites of membrane internalization. Hypotonic exposure evoked increased biochemical association of the cell volume regulator Src with MLCK and with the endocytosis regulators cortactin and dynamin, which colocalized within these structures. Inhibition of either Src or MLCK led to altered patch and ring lifetimes, consistent with the concept that Src and MLCK form a swelling-induced protein complex that regulates volume recovery through membrane turnover and compensatory endocytosis under osmotic stress. PMID:21209319
Puri, Rajinder N; Fan, Ya-Ping; Rattan, Satish
2002-08-01
We examined the role of mitogen-activated protein kinase (p(44/42) MAPK) in ANG II-induced contraction of lower esophageal sphincter (LES) and internal anal sphincter (IAS) smooth muscles. Studies were performed in the isolated smooth muscles and cells (SMC). ANG II-induced changes in the levels of phosphorylation of different signal transduction and effector proteins were determined before and after selective inhibitors. ANG II-induced contraction of the rat LES and IAS SMC was inhibited by genistein, PD-98059 [a specific inhibitor of MAPK kinases (MEK 1/2)], herbimycin A (a pp60(c-src) inhibitor), and antibodies to pp60(c-src) and p(120) ras GTPase-activating protein (p(120) rasGAP). ANG II-induced contraction of the tonic smooth muscles was accompanied by an increase in tyrosine phosphorylation of p(120) rasGAP. These were attenuated by genistein but not by PD-98059. ANG II-induced increase in phosphorylations of p(44/42) MAPKs and caldesmon was attenuated by both genistein and PD-98059. We conclude that pp60(c-src) and p(44/42) MAPKs play an important role in ANG II-induced contraction of LES and IAS smooth muscles.
Xu, Qifang; Malecka, Kimberly L.; Fink, Lauren; Jordan, E. Joseph; Duffy, Erin; Kolander, Samuel; Peterson, Jeffrey; Dunbrack, Roland L.
2016-01-01
Protein kinase autophosphorylation is a common regulatory mechanism in cell signaling pathways. Crystal structures of several homomeric protein kinase complexes have a serine, threonine, or tyrosine autophosphorylation site of one kinase monomer located in the active site of another monomer, a structural complex that we call an “autophosphorylation complex.” We developed and applied a structural bioinformatics method to identify all such autophosphorylation kinase complexes in X-ray crystallographic structures in the Protein Data Bank (PDB). We identified 15 autophosphorylation complexes in the PDB, of which 5 complexes had not previously been described in the publications describing the crystal structures. These 5 consist of tyrosine residues in the N-terminal juxtamembrane regions of colony stimulating factor 1 receptor (CSF1R, Tyr561) and EPH receptor A2 (EPHA2, Tyr594), tyrosine residues in the activation loops of the SRC kinase family member LCK (Tyr394) and insulin-like growth factor 1 receptor (IGF1R, Tyr1166), and a serine in a nuclear localization signal region of CDC-like kinase 2 (CLK2, Ser142). Mutations in the complex interface may alter autophosphorylation activity and contribute to disease; therefore we mutated residues in the autophosphorylation complex interface of LCK and found that two mutations impaired autophosphorylation (T445V and N446A) and mutation of Pro447 to Ala, Gly, or Leu increased autophosphorylation. The identified autophosphorylation sites are conserved in many kinases, suggesting that, by homology, these complexes may provide insight into autophosphorylation complex interfaces of kinases that are relevant drug targets. PMID:26628682
Berta, Ágnes I.; Boesze-Battaglia, Kathleen; Magyar, Attila; Szél, Ágoston; Kiss, Anna L.
2014-01-01
Numerous biochemical and morphological studies have provided insight into the distribution pattern of caveolin-1 and the presence of membrane rafts in the vertebrate retina. To date however, studies have not addressed the localization profile of raft specific proteins during development. Therefore the purpose of our studies was to follow the localization pattern of caveolin-1, phosphocaveolin-1 and c-src in the developing retina and compare it to that observed in adults. Specific antibodies were used to visualize the distribution of caveolin-1, c-src, a kinase phosphorylating caveolin-1, and phospho-caveolin-1. The labeling pattern of this scaffolded complex was compared to those of rhodopsin and rhodopsin kinase. Samples were analyzed at various time points during postnatal development and compared to adult retinas. The immunocytochemical studies were complemented with immunoblots and immunoprecipitation studies. In the mature retina caveolin-1 and c-src localized mainly to the cell body and IS of photoreceptors, with only very weakly labeled OS. In contrast, phospho-caveolin-1 was only detectable in the OS of photoreceptors. During development we followed the expression and distribution profile of these proteins in a temporal sequence with special attention to the period when OS formation is most robust. Double labeling immunocytochemistry and immunoprecipitation showed rhodopsin to colocalize and co-immunoprecipitate with caveolin-1 and c-src. Individual punctate structures between the outer limiting membrane and the outer plexiform layer were seen at P10 to be labeled by both rhodopsin and caveolin-1 as well as by rhodopsin and c-src, respectively. These studies suggest that membrane raft specific proteins are co-distributed during development, thereby pointing to a role for such complexes in OS formation. In addition, the presence of small punctate structures containing caveolin-1, c-src and rhodopsin raise the possibility that these proteins may transport together to OS during development and that caveolin-1 exists predominantly in a phosphorylated form in the OS. PMID:21938483
Antimitochondrial Autoantibodies in Pemphigus Vulgaris
Marchenko, Steve; Chernyavsky, Alexander I.; Arredondo, Juan; Gindi, Vivian; Grando, Sergei A.
2010-01-01
A loss of epidermal cohesion in pemphigus vulgaris (PV) results from autoantibody action on keratinocytes (KCs) activating the signaling kinases and executioner caspases that damage KCs, causing their shrinkage, detachment from neighboring cells, and rounding up (apoptolysis). In this study, we found that PV antibody binding leads to activation of epidermal growth factor receptor kinase, Src, p38 MAPK, and JNK in KCs with time pattern variations from patient to patient. Both extrinsic and intrinsic apoptotic pathways were also activated. Although Fas ligand neutralizing antibody could inhibit the former pathway, the mechanism of activation of the latter remained unknown. PV antibodies increased cytochrome c release, suggesting damage to mitochondria. The immunoblotting experiments revealed penetration of PVIgG into the subcellular mitochondrial fraction. The antimitochondrial antibodies from different PV patients recognized distinct combinations of antigens with apparent molecular sizes of 25, 30, 35, 57, 60, and 100 kDa. Antimitochondrial antibodies were pathogenic because their absorption abolished the ability of PVIgG to cause keratinocyte detachment both in vitro and in vivo. The downstream signaling of antimitochondrial antibodies involved JNK and late p38 MAPK activation, whereas the signaling of anti-desmoglein 3 (Dsg3) antibody involved JNK and biphasic p38 MAPK activation. Using KCs grown from Dsg3−/− mice, we determined that Dsg3 did not serve as a surrogate antigen allowing antimitochondrial antibodies to enter KCs. The PVIgG-induced activation of epidermal growth factor receptor and Src was affected neither in Dsg3−/− KCs nor due to absorption of antimitochondrial antibodies. These results demonstrated that apoptolysis in PV is a complex process initiated by at least three classes of autoantibodies directed against desmosomal, mitochondrial, and other keratinocyte self-antigens. These autoantibodies synergize with the proapoptotic serum and tissue factors to trigger both extrinsic and intrinsic pathways of cell death and break the epidermal cohesion, leading to blisters. Further elucidation of the primary signaling events downstream of PV autoantigens will be crucial for the development of a more successful therapy for PV patients. PMID:20007702
Ohmichi, M; Decker, S J; Saltiel, A R
1992-10-01
Growth factor receptor tyrosine kinases can form stable associations with intracellular proteins that contain src homology (SH) 2 domains, including the p85 regulatory subunit of phosphatidylinositol (PI)-3 kinase. The activation of this enzyme by growth factors is evaluated in PC12 pheochromocytoma cells and NIH 3T3 fibroblasts expressing the pp140c-trk nerve growth factor (NGF) receptor (3T3-c-trk). NGF causes the rapid stimulation of PI-3 kinase activity detected in anti-phosphotyrosine, but not in anti-trk, immunoprecipitates. This effect coincides with the tyrosine phosphorylation of two proteins, with molecular masses of of 100 kd and 110 kd, that coimmunoprecipitate with p85. Similar phosphorylation patterns are induced when an immobilized fusion protein containing the amino-terminal SH2 domain of p85 is used to precipitate tyrosine-phosphorylated proteins. Thus, although NGF produces the rapid activation of PI-3 kinase through a mechanism that involves tyrosine phosphorylation, there is no evidence for tyrosine phosphorylation of p85, or for its ligand-dependent association with the NGF receptor. Perhaps another phosphoprotein may link the NGF receptor to this enzyme.
Chemical shift assignments of the partially deuterated Fyn SH2-SH3 domain.
Kieken, Fabien; Loth, Karine; van Nuland, Nico; Tompa, Peter; Lenaerts, Tom
2018-04-01
Src Homology 2 and 3 (SH2 and SH3) are two key protein interaction modules involved in regulating the activity of many proteins such as tyrosine kinases and phosphatases by respective recognition of phosphotyrosine and proline-rich regions. In the Src family kinases, the inactive state of the protein is the direct result of the interaction of the SH2 and the SH3 domain with intra-molecular regions, leading to a closed structure incompetent with substrate modification. Here, we report the 1 H, 15 N and 13 C backbone- and side-chain chemical shift assignments of the partially deuterated Fyn SH3-SH2 domain and structural differences between tandem and single domains. The BMRB accession number is 27165.
Molecular Mechanisms of Hormone-Refractory Prostate Cancer
2005-02-01
Helsinki, Finland Bmx/Etk, a member of the Tec/ Btk family of nonrecep- signals that lead to the regulation of cell motility (reviewed in tor kinases...member of the with anti-Cas antibodies. Tec/ Btk family of tyrosine kinases (37). In addition to the SH2, In vitro immunocomplex kinase assays were...which corre- MgC12). The immunoprecipitates were equally divided and resuspendedon in 18 g1 of kinase buffer with or without 1 tM Src inhibitor SU6656
SRC family kinases as novel therapeutic targets to treat breast cancer brain metastases.
Zhang, Siyuan; Huang, Wen-Chien; Zhang, Lin; Zhang, Chenyu; Lowery, Frank J; Ding, Zhaoxi; Guo, Hua; Wang, Hai; Huang, Suyun; Sahin, Aysegul A; Aldape, Kenneth D; Steeg, Patricia S; Yu, Dihua
2013-09-15
Despite better control of early-stage disease and improved overall survival of patients with breast cancer, the incidence of life-threatening brain metastases continues to increase in some of these patients. Unfortunately, other than palliative treatments there is no effective therapy for this condition. In this study, we reveal a critical role for Src activation in promoting brain metastasis in a preclinical model of breast cancer and we show how Src-targeting combinatorial regimens can treat HER2(+) brain metastases in this model. We found that Src was hyperactivated in brain-seeking breast cancer cells derived from human cell lines or from patients' brain metastases. Mechanistically, Src activation promoted tumor cell extravasation into the brain parenchyma via permeabilization of the blood-brain barrier. When combined with the EGFR/HER2 dual-targeting drug lapatinib, an Src-targeting combinatorial regimen prevented outgrowth of disseminated breast cancer cells through the induction of cell-cycle arrest. More importantly, this combinatorial regimen inhibited the outgrowth of established experimental brain metastases, prolonging the survival of metastases-bearing mice. Our results provide a rationale for clinical evaluation of Src-targeting regimens to treat patients with breast cancer suffering from brain metastasis. ©2013 AACR.
Pan-SRC kinase inhibition blocks B-cell receptor oncogenic signaling in non-Hodgkin lymphoma.
Battistello, Elena; Katanayeva, Natalya; Dheilly, Elie; Tavernari, Daniele; Donaldson, Maria C; Bonsignore, Luca; Thome, Margot; Christie, Amanda L; Murakami, Mark A; Michielin, Olivier; Ciriello, Giovanni; Zoete, Vincent; Oricchio, Elisa
2018-05-24
In diffuse large B-cell lymphoma (DLBCL), activation of the B-cell receptor (BCR) promotes multiple oncogenic signals, which are essential for tumor proliferation. Inhibition of the Bruton's tyrosine kinase (BTK), a BCR downstream target, is therapeutically effective only in a subgroup of patients with DLBCL. Here, we used lymphoma cells isolated from patients with DLBCL to measure the effects of targeted therapies on BCR signaling and to anticipate response. In lymphomas resistant to BTK inhibition, we show that blocking BTK activity enhanced tumor dependencies from alternative oncogenic signals downstream of the BCR, converging on MYC upregulation. To completely ablate the activity of the BCR, we genetically and pharmacologically repressed the activity of the SRC kinases LYN, FYN, and BLK, which are responsible for the propagation of the BCR signal. Inhibition of these kinases strongly reduced tumor growth in xenografts and cell lines derived from patients with DLBCL independent of their molecular subtype, advancing the possibility to be relevant therapeutic targets in broad and diverse groups of DLBCL patients. © 2018 by The American Society of Hematology.
Casini, Nadia; Forte, Iris Maria; Mastrogiovanni, Gianmarco; Pentimalli, Francesca; Angelucci, Adriano; Festuccia, Claudio; Tomei, Valentina; Ceccherini, Elisa; Di Marzo, Domenico; Schenone, Silvia; Botta, Maurizio; Giordano, Antonio; Indovina, Paola
2015-01-01
Recent data suggest that SRC family kinases (SFKs) could represent potential therapeutic targets for rhabdomyosarcoma (RMS), the most common soft-tissue sarcoma in children. Here, we assessed the effect of a recently developed selective SFK inhibitor (a pyrazolo[3,4-d]pyrimidine derivative, called SI221) on RMS cell lines. SI221, which showed to be mainly effective against the SFK member YES, significantly reduced cell viability and induced apoptosis, without affecting non-tumor cells, such as primary human skin fibroblasts and differentiated C2C12 cells. Moreover, SI221 decreased in vitro cell migration and invasion and reduced tumor growth in a RMS xenograft model. SFK inhibition also induced muscle differentiation in RMS cells by affecting the NOTCH3 receptor-p38 mitogen-activated protein kinase (MAPK) axis, which regulates the balance between proliferation and differentiation. Overall, our findings suggest that SFK inhibition, besides reducing RMS cell growth and invasive potential, could also represent a differentiation therapeutic strategy for RMS. PMID:25762618
Cullen, Sarah; Ponnappan, Subramaniam; Ponnappan, Usha
2015-01-01
Alternative redox stimuli such as pervanadate or hypoxia/reoxygenation, induce transcription factor NF-κB by phospho-tyrosine-dependent and proteasome-independent mechanisms. While considerable attention has been paid to the absence of proteasomal regulation of tyrosine phosphorylated IκBα, there is a paucity of information regarding proteasomal regulation of signaling events distinct from tyrosine phosphorylation of IκBα. To delineate roles for the ubiquitin-proteasome pathway in the phospho-tyrosine dependent mechanism of NF-κB induction, we employed the proteasome inhibitor, Aclacinomycin, and the phosphotyrosine phosphatase inhibitor, pervanadate (PV). Results from these studies demonstrate that phospho-IκBα (Tyr-42) is not subject to proteasomal degradation in a murine stromal epithelial cell line, confirming results previously reported. Correspondingly, proteasome inhibition had no discernable effect on the key signaling intermediaries, Src and ERK1/2, involved in the phospho-tyrosine mechanisms regulating PV-mediated activation of NF-κB. Consistent with previous reports, a significant redox imbalance leading to the activation of tyrosine kinases, as occurs with pervanadate, is required for the induction of NF-κB. Strikingly, our studies demonstrate that proteasome inhibition can potentiate oxidative stress associated with PV-stimulation without impacting kinase activation, however, other cellular implications for this increase in intracellular oxidation remain to be fully delineated. PMID:25671697
Phosphorylated c-MPL tyrosine 591 regulates thrombopoietin-induced signaling
Sangkhae, Veena; Saur, Sebastian Jonas; Kaushansky, Alexis; Kaushansky, Kenneth; Hitchcock, Ian Stuart
2018-01-01
Thrombopoietin (TPO) is the primary regulator of platelet production, affecting cell survival, proliferation and differentiation through binding to and stimulation of the cell surface receptor c-MPL. Activating mutations in c-MPL constitutively stimulate downstream signaling pathways, leading to aberrant hematopoiesis and contribute to development of myeloproliferative neoplasms. Several studies have mapped the tyrosine residues within the cytoplasmic domain of c-MPL that mediate these cellular signals; however, secondary signaling pathways are incompletely understood. In this study we focused on c-MPL tyrosine 591 (Y591). We found Y591 of wild-type c-MPL to be phosphorylated in the presence of TPO. Additionally, eliminating Y591 phosphorylation by mutation to Phe resulted in decreased total receptor phosphorylation. Using an SH2/PTB domain binding microarray, we identified novel c-MPL binding partners for phosphorylated Y591, including Src homology phosphatase-1 (SHP-1), spleen tyrosine kinase (SYK) and Bruton's tyrosine kinase (BTK). The functional significance of binding partners was determined through siRNA treatment of Ba/F3-MPL cells, confirming that the increase in pERK1/2 resulting from removal of Y591 may be mediated by SYK. These findings identify a novel negative regulatory pathway that controls TPO-mediated signaling, advancing our understanding of the mechanisms required for successful maintenance of hematopoietic stem cells and megakaryocyte development. PMID:24607955
Bosbach, Benedikt; Rossi, Ferdinand; Yozgat, Yasemin; Loo, Jennifer; Zhang, Jennifer Q; Berrozpe, Georgina; Warpinski, Katherine; Ehlers, Imke; Veach, Darren; Kwok, Andrew; Manova, Katia; Antonescu, Cristina R; DeMatteo, Ronald P; Besmer, Peter
2017-10-03
Gastrointestinal stromal tumors (GISTs) predominantly harbor activating mutations in the receptor tyrosine kinase KIT. To genetically dissect in vivo the requirement of different signal transduction pathways emanating from KIT for tumorigenesis, the oncogenic Kit V558Δ mutation was combined with point mutations abrogating specific phosphorylation sites on KIT. Compared with single-mutant Kit V558Δ/+ mice, double-mutant Kit V558Δ;Y567F/Y567F knock-in mice lacking the SRC family kinase-binding site on KIT (pY567) exhibited attenuated MAPK signaling and tumor growth. Surprisingly, abrogation of the PI3K-binding site (pY719) in Kit V558Δ;Y719F/Y719F mice prevented GIST development, although the interstitial cells of Cajal (ICC), the cells of origin of GIST, were normal. Pharmacologic inhibition of the PI3K pathway in tumor-bearing Kit V558Δ/+ mice with the dual PI3K/mTOR inhibitor voxtalisib, the pan-PI3K inhibitor pilaralisib, and the PI3K-alpha-restricted inhibitor alpelisib each diminished tumor proliferation. The addition of the MEK inhibitor PD-325901 or binimetinib further decreased downstream KIT signaling. Moreover, combining PI3K and MEK inhibition was effective against imatinib-resistant Kit V558Δ;T669I/+ tumors.
Bosbach, Benedikt; Rossi, Ferdinand; Yozgat, Yasemin; Loo, Jennifer; Zhang, Jennifer Q.; Berrozpe, Georgina; Warpinski, Katherine; Ehlers, Imke; Kwok, Andrew; Manova, Katia; Antonescu, Cristina R.; DeMatteo, Ronald P.; Besmer, Peter
2017-01-01
Gastrointestinal stromal tumors (GISTs) predominantly harbor activating mutations in the receptor tyrosine kinase KIT. To genetically dissect in vivo the requirement of different signal transduction pathways emanating from KIT for tumorigenesis, the oncogenic KitV558Δ mutation was combined with point mutations abrogating specific phosphorylation sites on KIT. Compared with single-mutant KitV558Δ/+ mice, double-mutant KitV558Δ;Y567F/Y567F knock-in mice lacking the SRC family kinase-binding site on KIT (pY567) exhibited attenuated MAPK signaling and tumor growth. Surprisingly, abrogation of the PI3K-binding site (pY719) in KitV558Δ;Y719F/Y719F mice prevented GIST development, although the interstitial cells of Cajal (ICC), the cells of origin of GIST, were normal. Pharmacologic inhibition of the PI3K pathway in tumor-bearing KitV558Δ/+ mice with the dual PI3K/mTOR inhibitor voxtalisib, the pan-PI3K inhibitor pilaralisib, and the PI3K-alpha–restricted inhibitor alpelisib each diminished tumor proliferation. The addition of the MEK inhibitor PD-325901 or binimetinib further decreased downstream KIT signaling. Moreover, combining PI3K and MEK inhibition was effective against imatinib-resistant KitV558Δ;T669I/+ tumors. PMID:28923937
Townley, Ian K; Schuyler, Erin; Parker-Gür, Michelle; Foltz, Kathy R
2009-03-15
Egg activation at fertilization in deuterostomes requires a rise in intracellular Ca(2+), which is released from the egg's endoplasmic reticulum. In sea urchins, a Src Family Kinase (SpSFK1) is necessary for the PLCgamma-mediated signaling event that initiates this Ca(2+) release (Giusti, A.F., O'Neill, F.J., Yamasu, K., Foltz, K.R. and Jaffe, L.A., 2003. Function of a sea urchin egg Src family kinase in initiating Ca2+ release at fertilization. Dev. Biol. 256, 367-378.). Annotation of the Strongylocentrotus purpuratus genome sequence led to the identification of additional, predicted SFKs (Bradham, C.A., Foltz, D.R., Beane, W.S., Amone, M.I., Rizzo, F., Coffman, J.A., Mushegian, A., Goel, M., Morales, J., Geneviere, A.M., Lapraz, F., Robertson, A.J., Kelkar, H., Loza-Coll, M., Townley, I.K., Raisch, M., Roux, M.M., Lepage, T., Gache, C., McClay, D.R., Manning, G., 2006. The sea urchin kinome: a first look. Dev. Biol. 300, 180-193.; Roux, M.M., Townley, I.K., Raisch, M., Reade, A., Bradham, C., Humphreys, G., Gunaratne, H.J., Killian, C.E., Moy, G., Su, Y.H., Ettensohn, C.A., Wilt, F., Vacquier, V.D., Burke, R.D., Wessel, G. and Foltz, K.R., 2006. A functional genomic and proteomic perspective of sea urchin calcium signaling and egg activation. Dev. Biol. 300, 416-433.). Here, we describe the cloning and characterization of these 4 additional SFKs and test their function during the initial Ca(2+) release at fertilization using the dominant-interfering microinjection method coupled with Ca(2+) recording. While two of the new SFKs (SpFrk and SpSFK3) are necessary for Ca(2+) release, SpSFK5 appears dispensable for early egg to embryo transition events. Interestingly, SpSFK7 may be involved in preventing precocious release of Ca(2+). Binding studies indicate that only SpSFK1 is capable of direct interaction with PLCgamma. Immunolocalization studies suggest that one or more SpSFK and PLCgamma are localized to the egg cortex and at the site of sperm-egg interaction. Collectively, these data indicate that more than one SFK is involved in the Ca(2+) release pathway at fertilization.
Jang, Eun Jin; Seok, Young Mi; Arterburn, Jeffrey B; Olatunji, Lawrence A; Kim, In Kyeom
2013-10-01
The G protein-coupled oestrogen receptor-1 (GPER-1) agonist G1 induces endothelium-dependent relaxation. Activation of the epidermal growth factor (EGF) receptor leads to transduction of signals from the plasma membrane for the release of nitric oxide. We tested the hypothesis that G1 induces endothelium-dependent vasorelaxation through activation of the EGF receptor. Rat aortic rings were mounted in organ baths. After pretreatment with various inhibitors, aortic rings contracted with 11,9-epoxymethano-prostaglandin F2α or KCl were subjected to relaxation by G1. G1 induced endothelium-dependent vasorelaxation, which was attenuated by pretreatment with either L -N(ω) -nitroarginine methyl ester (L -NAME), an inhibitor of nitric oxide synthase, or (3aS,4R,9bR)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline HB-EGF, heparin-binding EGF-like growth factor, a GPER-1 antagonist. Neither a general oestrogen receptor antagonist, ICI 182 780, nor a selective oestrogen receptor-α antagonist, methyl-piperidino-pyrazole dihydrochloride (MPP), had an effect on G1-induced vasorelaxation. However, pretreatment with EGF receptor blockers, AG1478 or DAPH, resulted in attenuated G1-induced vasorelaxation. In addition, pretreatment with Src inhibitor 4-amino-3-(4-chlorophenyl)-1-(t-butyl)-1H-pyrazolo[3,4-d]pyrimidine, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine or Akt inhibitor VIII also resulted in attenuated vascular relaxation induced by the cumulative addition of G1. However, neither phosphatidylinositol-3 kinase inhibitors LY294002 and wortmannin nor an extracellular signal-regulated kinase inhibitor 1,4-diamino-2,3-dicyano-1,4-bis(o-aminophenylmercapto) butadiene monoethanolate had effect on vascular relaxation induced by the cumulative addition of G1. G1 induces endothelium-dependent vasorelaxation through Src-mediated activation of the EGF receptor and the Akt pathway in rat aorta. © 2013 Royal Pharmaceutical Society.
Adaptor proteins in protein kinase C-mediated signal transduction.
Schechtman, D; Mochly-Rosen, D
2001-10-01
Spatial and temporal organization of signal transduction is essential in determining the speed and precision by which signaling events occur. Adaptor proteins are key to organizing signaling enzymes near their select substrates and away from others in order to optimize precision and speed of response. Here, we describe the role of adaptor proteins in determining the specific function of individual protein kinase C (PKC) isozymes. These isozyme-selective proteins were called collectively RACKs (receptors for activated C-kinase). The role of RACKs in PKC-mediated signaling was determined using isozyme-specific inhibitors and activators of the binding of each isozyme to its respective RACK. In addition to anchoring activated PKC isozymes, RACKs anchor other signaling enzymes. RACK1, the anchoring protein for activated betaIIPKC, binds for example, Src tyrosine kinase, integrin, and phosphodiesterase. RACK2, the epsilonPKC-specific RACK, is a coated-vesicle protein and thus is involved in vesicular release and cell-cell communication. Therefore, RACKs are not only adaptors for PKC, but also serve as adaptor proteins for several other signaling enzymes. Because at least some of the proteins that bind to RACKs, including PKC itself, regulate cell growth, modulating their interactions with RACKs may help elucidate signaling pathways leading to carcinogenesis and could result in the identification of novel therapeutic targets.
Regulation of VH Replacement by B Cell Receptor (BCR)-mediated Signaling in Human Immature B Cells
Liu, Jing; Lange, Miles D.; Hong, Sang Yong; Xie, Wanqin; Xu, Kerui; Huang, Lin; Yu, Yangsheng; Ehrhardt, Götz R. A.; Zemlin, Michael; Burrows, Peter D.; Su, Kaihong; Carter, Robert H.; Zhang, Zhixin
2013-01-01
VH replacement provides a unique RAG-mediated recombination mechanism to edit non-functional IgH genes or IgH genes encoding self reactive B cell receptors (BCRs) and contributes to the diversification of antibody repertoire in mouse and human. Currently, it is not clear how VH replacement is regulated during early B lineage cell development. Here we show that crosslinking BCRs induces VH replacement in human EU12 μHC+ cells and in the newly emigrated immature B cells purified from peripheral blood of healthy donors or tonsillar samples. BCR signaling-induced VH replacement is dependent on the activation of Syk and Src kinases; but is inhibited by CD19 co-stimulation, presumably through activation of the PI3 kinase pathway. These results show for the first time that VH replacement is regulated by BCR-mediated signaling in human immature B cells, which can be modulated by physiological and pharmacological treatments. PMID:23630348
Wang, Weiye; Xu, Suowen; Yin, Meimei; Jin, Zheng Gen
2015-02-15
Growth factors and their downstream receptor tyrosine kinases (RTKs) mediate a number of biological processes controlling cell function. Adaptor (docking) proteins, which consist exclusively of domains and motifs that mediate molecular interactions, link receptor activation to downstream effectors. Recent studies have revealed that Grb2-associated-binders (Gab) family members (including Gab1, Gab2, and Gab3), when phosphorylated on tyrosine residues, provide binding sites for multiple effector proteins, such as Src homology-2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) and phosphatidylinositol 3-kinase (PI3K) regulatory subunit p85, thereby playing important roles in transducing RTKs-mediated signals into pathways with diversified biological functions. Here, we provide an up-to-date overview on the domain structure and biological functions of Gab1, the most intensively studied Gab family protein, in growth factor signaling and biological functions, with a special focus on angiogenesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Kim, Ki Mo; Kim, No Soo; Kim, Jinhee; Park, Jong-Shik; Yi, Jin Mu; Lee, Jun; Bang, Ok-Sun
2013-01-01
Magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, has been reported to possess anticancer activity. Recent studies have also demonstrated that magnolol inhibits cell growth and induces the apoptosis of cancer cells. However, the effects of magnolol on vascular endothelial growth factor (VEGF)-induced angiogenesis in endothelial cells have not been studied. In the present study, we have used human umbilical vein endothelial cells (HUVECs) to investigate the antiangiogenic effect and molecular mechanism of magnolol. Magnolol inhibited the VEGF-induced proliferation, chemotactic motility and tube formation of HUVECs in vitro as well as the vessel sprouting of the aorta ex vivo. Furthermore, magnolol inhibited VEGF-induced Ras activation and subsequently suppressed extracellular signal-regulated kinase (ERK), phosphatidylinositol-3-kinase (PI3K)/Akt and p38, but not Src and focal adhesion kinase (FAK). Interestingly, the knockdown of Ras by short interfering RNA produced inhibitory effects that were similar to the effects of magnolol on VEGF-induced angiogenic signaling events, such as ERK and Akt/eNOS activation, and resulted in the inhibition of proliferation, migration, and vessel sprouting in HUVECs. In combination, these results demonstrate that magnolol is an inhibitor of angiogenesis and suggest that this compound could be a potential candidate in the treatment of angiogenesis-related diseases.
Tourdot, Benjamin E.; Brenner, Michelle K.; Keough, Kathleen C.; Holyst, Trudy; Newman, Peter J.; Newman, Debra K.
2013-01-01
The activation state of many blood and vascular cells is tightly controlled by a delicate balance between receptors that contain immunoreceptor tyrosine-based activation motifs (ITAMs) and those that contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Precisely how the timing of cellular activation by ITAM-coupled receptors is regulated by ITIM-containing receptors is, however, poorly understood. Using platelet endothelial cell adhesion molecule 1 (PECAM-1) as a prototypical ITIM-bearing receptor, we demonstrate that initiation of inhibitory signaling occurs via a novel, sequential process in which Src family kinases phosphorylate the C-terminal ITIM, thereby enabling phosphorylation of the N-terminal ITIM of PECAM-1 by other Src homology 2 domain-containing non-receptor tyrosine kinases (NRTKs). NRTKs capable of mediating the second phosphorylation event include C-terminal Src kinase (Csk) and Bruton’s tyrosine kinase (Btk). Btk and Csk function downstream of phosphatidylinositol 3-kinase (PI3K) activation during ITAM-dependent platelet activation. In ITAM-activated platelets that were treated with a PI3K inhibitor, PECAM-1 was phosphorylated but did not bind the tandem SH2 domain-containing tyrosine phosphatase SHP-2, indicating that it was not phosphorylated on its N-terminal ITIM. Csk bound to and phosphorylated PECAM-1 more efficiently than did Btk, and required its SH2 domain to perform these functions. Additionally, the phosphorylation of the N-terminal ITIM of Siglec-9 by Csk is enhanced by the prior phosphorylation of its C-terminal ITIM, providing evidence that the ITIMs of other dual ITIM-containing receptors are also sequentially phosphorylated. On the basis of these findings, we propose that sequential ITIM phosphorylation provides a general mechanism for precise temporal control over the recruitment and activation of tandem SH2 domain-containing tyrosine phosphatases that dampen ITAM-dependent signals. PMID:23418871
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Rae-Kwon; Yoon, Chang-Hwan; Hyun, Kyung-Hwan
2010-11-26
Research highlights: {yields} Activation of Lymphocyte-specific protein tyrosine kinase (LCK) is involved in the fractionated radiation-induced expansion of glioma stem-like cells. {yields} Inhibition of LCK prevents acquisition of fractionated radiation-induced resistance to chemotherapeutic treatment. {yields} LCK activity is critical for the maintenance of self-renewal in glioma stem-like cells. -- Abstract: Brain cancers frequently recur or progress as focal masses after treatment with ionizing radiation. Radiation used to target gliomas may expand the cancer stem cell population and enhance the aggressiveness of tumors; however, the mechanisms underlying the expansion of cancer stem cell population after radiation have remained unclear. In thismore » study, we show that LCK (lymphocyte-specific protein tyrosine kinase) is involved in the fractionated radiation-induced expansion of the glioma-initiating cell population and acquisition of resistance to anticancer treatments. Fractionated radiation caused a selective increase in the activity of LCK, a Src family non-receptor tyrosine kinase. The activities of other Src family kinases Src, Fyn, and Lyn were not significantly increased. Moreover, knockdown of LCK expression with a specific small interfering RNA (siRNA) effectively blocked fractionated radiation-induced expansion of the CD133{sup +} cell population. siRNA targeting of LCK also suppressed fractionated radiation-induced expression of the glioma stem cell marker proteins CD133, Nestin, and Musashi. Expression of the known self-renewal-related proteins Notch2 and Sox2 in glioma cells treated with fractionated radiation was also downregulated by LCK inhibition. Moreover, siRNA-mediated knockdown of LCK effectively restored the sensitivity of glioma cells to cisplatin and etoposide. These results indicate that the non-receptor tyrosine kinase LCK is critically involved in fractionated radiation-induced expansion of the glioma-initiating cell population and decreased cellular sensitivity to anticancer treatments. These findings may provide pivotal insights in the context of fractionated radiation-based therapeutic interventions in brain cancer.« less
Zambuzzi, Willian F.; Bonfante, Estevam A.; Jimbo, Ryo; Hayashi, Mariko; Andersson, Martin; Alves, Gutemberg; Takamori, Esther R.; Beltrão, Paulo J.; Coelho, Paulo G.; Granjeiro, José M.
2014-01-01
Background It is known that physico/chemical alterations on biomaterial surfaces have the capability to modulate cellular behavior, affecting early tissue repair. Such surface modifications are aimed to improve early healing response and, clinically, offer the possibility to shorten the time from implant placement to functional loading. Since FAK and Src are intracellular proteins able to predict the quality of osteoblast adhesion, this study evaluated the osteoblast behavior in response to nanometer scale titanium surface texturing by monitoring FAK and Src phosphorylations. Methodology Four engineered titanium surfaces were used for the study: machined (M), dual acid-etched (DAA), resorbable media microblasted and acid-etched (MBAA), and acid-etch microblasted (AAMB). Surfaces were characterized by scanning electron microscopy, interferometry, atomic force microscopy, x-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. Thereafter, those 4 samples were used to evaluate their cytotoxicity and interference on FAK and Src phosphorylations. Both Src and FAK were investigated by using specific antibody against specific phosphorylation sites. Principal Findings The results showed that both FAK and Src activations were differently modulated as a function of titanium surfaces physico/chemical configuration and protein adsorption. Conclusions It can be suggested that signaling pathways involving both FAK and Src could provide biomarkers to predict osteoblast adhesion onto different surfaces. PMID:24999733
Hussain, Alamdar; Mohammad, Dara K; Gustafsson, Manuela O; Uslu, Merve; Hamasy, Abdulrahman; Nore, Beston F; Mohamed, Abdalla J; Smith, C I Edvard
2013-03-08
The inducible T cell kinase-spleen tyrosine kinase (ITK-SYK) oncogene consists of the Tec homology-pleckstrin homology domain of ITK and the kinase domain of SYK, and it is believed to be the cause of peripheral T cell lymphoma. We and others have recently demonstrated that this fusion protein is constitutively tyrosine-phosphorylated and is transforming both in vitro and in vivo. To gain a deeper insight into the molecular mechanism(s) underlying its activation and signaling, we mutated a total of eight tyrosines located in the SYK portion of the chimera into either phenylalanine or to the negatively charged glutamic acid. Although mutations in the interdomain-B region affected ITK-SYK kinase activity, they only modestly altered downstream signaling events. In contrast, mutations that were introduced in the kinase domain triggered severe impairment of downstream signaling. Moreover, we show here that SLP-76 is critical for ITK-SYK activation and is particularly required for the ITK-SYK-dependent phosphorylation of SYK activation loop tyrosines. In Jurkat cell lines, we demonstrate that expression of ITK-SYK fusion requires an intact SLP-76 function and significantly induces IL-2 secretion and CD69 expression. Furthermore, the SLP-76-mediated induction of IL-2 and CD69 could be further enhanced by SYK or ZAP-70, but it was independent of their kinase activity. Notably, ITK-SYK expression in SYF cells phosphorylates SLP-76 in the absence of SRC family kinases. Altogether, our data suggest that ITK-SYK exists in the active conformation state and is therefore capable of signaling without SRC family kinases or stimulation of the T cell receptor.
Hussain, Alamdar; Mohammad, Dara K.; Gustafsson, Manuela O.; Uslu, Merve; Hamasy, Abdulrahman; Nore, Beston F.; Mohamed, Abdalla J.; Smith, C. I. Edvard
2013-01-01
The inducible T cell kinase-spleen tyrosine kinase (ITK-SYK) oncogene consists of the Tec homology-pleckstrin homology domain of ITK and the kinase domain of SYK, and it is believed to be the cause of peripheral T cell lymphoma. We and others have recently demonstrated that this fusion protein is constitutively tyrosine-phosphorylated and is transforming both in vitro and in vivo. To gain a deeper insight into the molecular mechanism(s) underlying its activation and signaling, we mutated a total of eight tyrosines located in the SYK portion of the chimera into either phenylalanine or to the negatively charged glutamic acid. Although mutations in the interdomain-B region affected ITK-SYK kinase activity, they only modestly altered downstream signaling events. In contrast, mutations that were introduced in the kinase domain triggered severe impairment of downstream signaling. Moreover, we show here that SLP-76 is critical for ITK-SYK activation and is particularly required for the ITK-SYK-dependent phosphorylation of SYK activation loop tyrosines. In Jurkat cell lines, we demonstrate that expression of ITK-SYK fusion requires an intact SLP-76 function and significantly induces IL-2 secretion and CD69 expression. Furthermore, the SLP-76-mediated induction of IL-2 and CD69 could be further enhanced by SYK or ZAP-70, but it was independent of their kinase activity. Notably, ITK-SYK expression in SYF cells phosphorylates SLP-76 in the absence of SRC family kinases. Altogether, our data suggest that ITK-SYK exists in the active conformation state and is therefore capable of signaling without SRC family kinases or stimulation of the T cell receptor. PMID:23293025
Protein C receptor stimulates multiple signaling pathways in breast cancer cells.
Wang, Daisong; Liu, Chunye; Wang, Jingqiang; Jia, Yingying; Hu, Xin; Jiang, Hai; Shao, Zhi-Ming; Zeng, Yi Arial
2018-01-26
The protein C receptor (PROCR) has emerged as a stem cell marker in several normal tissues and has also been implicated in tumor progression. However, the functional role of PROCR and the signaling mechanisms downstream of PROCR remain poorly understood. Here, we dissected the PROCR signaling pathways in breast cancer cells. Combining protein array, knockdown, and overexpression methods, we found that PROCR concomitantly activates multiple pathways. We also noted that PROCR-dependent ERK and PI3k-Akt-mTOR signaling pathways proceed through Src kinase and transactivation of insulin-like growth factor 1 receptor (IGF-1R). These pathway activities led to the accumulation of c-Myc and cyclin D1. On the other hand, PROCR-dependent RhoA-ROCK-p38 signaling relied on coagulation factor II thrombin receptor (F2R). We confirmed these findings in primary cells isolated from triple-negative breast cancer-derived xenografts (PDX) that have high expression of PROCR. To the best our knowledge, this is the first comprehensive study of PROCR signaling in breast cancer cells, and its findings also shed light on the molecular mechanisms of PROCR in stem cells in normal tissue. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Identification of pivotal genes and pathways for spinal cord injury via bioinformatics analysis
Zhu, Zonghao; Shen, Qiang; Zhu, Liang; Wei, Xiaokang
2017-01-01
The present study aimed to identify key genes and pathways associated with spinal cord injury (SCI) and subsequently investigate possible therapeutic targets for the condition. The array data of GSE20907 was downloaded from the Gene Expression Omnibus database and 24 gene chips, including 3-day, 4-day, 1-week, 2-week and 1-month post-SCI together with control propriospinal neurons, were used for the analysis. The raw data was normalized and then the differentially expressed genes (DEGs) in the (A) 2-week post-SCI group vs. control group, (B) 1-month post-SCI group vs. control group, (C) 1-month and 2-week post-SCI group vs. control group, and (D) all post-SCI groups vs. all control groups, were analyzed with a limma package. Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses for DEGs were performed. Cluster analysis was performed using ClusterOne plugins. All the DEGs identified were associated with immune and inflammatory responses. Signal transducer and activator of transcription 3 (STAT3), erb-B2 receptor tyrosine kinase 4 (ERBB4) and cytochrome B-245, α polypeptide (CYBA) were in the network diagrams of (A), (C) and (D), respectively. The enrichment analysis of DEGs identified in all samples demonstrated that the DEGs were also enriched in the chemokine signaling pathway (enriched in STAT3) and the high-affinity immunoglobulin E receptor (FcεRI) signaling pathway [enriched in proto-oncogene, src family tyrosine kinase (LYN)]. Immune and inflammatory responses serve significant roles in SCI. STAT3, ERBB4 and CYBA may be key genes associated with SCI at certain stages. Furthermore, STAT3 and LYN may be involved in the development of SCI via the chemokine and FcεRI signaling pathways, respectively. PMID:28731189
Emerging pharmaceutical therapies for COPD.
Lakshmi, Sowmya P; Reddy, Aravind T; Reddy, Raju C
2017-01-01
COPD, for which cigarette smoking is the major risk factor, remains a worldwide burden. Current therapies provide only limited short-term benefit and fail to halt progression. A variety of potential therapeutic targets are currently being investigated, including COPD-related proinflammatory mediators and signaling pathways. Other investigational compounds target specific aspects or complications of COPD such as mucus hypersecretion and pulmonary hypertension. Although many candidate therapies have shown no significant effects, other emerging therapies have improved lung function, pulmonary hypertension, glucocorticoid sensitivity, and/or the frequency of exacerbations. Among these are compounds that inhibit the CXCR2 receptor, mitogen-activated protein kinase/Src kinase, myristoylated alanine-rich C kinase substrate, selectins, and the endothelin receptor. Activation of certain transcription factors may also be relevant, as a large retrospective cohort study of COPD patients with diabetes found that the peroxisome proliferator-activated receptor γ (PPARγ) agonists rosiglitazone and pioglitazone were associated with reduced COPD exacerbation rate. Notably, several therapies have shown efficacy only in identifiable subgroups of COPD patients, suggesting that subgroup identification may become more important in future treatment strategies. This review summarizes the status of emerging therapeutic pharmaceuticals for COPD and highlights those that appear most promising.
Emerging pharmaceutical therapies for COPD
Lakshmi, Sowmya P; Reddy, Aravind T; Reddy, Raju C
2017-01-01
COPD, for which cigarette smoking is the major risk factor, remains a worldwide burden. Current therapies provide only limited short-term benefit and fail to halt progression. A variety of potential therapeutic targets are currently being investigated, including COPD-related proinflammatory mediators and signaling pathways. Other investigational compounds target specific aspects or complications of COPD such as mucus hypersecretion and pulmonary hypertension. Although many candidate therapies have shown no significant effects, other emerging therapies have improved lung function, pulmonary hypertension, glucocorticoid sensitivity, and/or the frequency of exacerbations. Among these are compounds that inhibit the CXCR2 receptor, mitogen-activated protein kinase/Src kinase, myristoylated alanine-rich C kinase substrate, selectins, and the endothelin receptor. Activation of certain transcription factors may also be relevant, as a large retrospective cohort study of COPD patients with diabetes found that the peroxisome proliferator-activated receptor γ (PPARγ) agonists rosiglitazone and pioglitazone were associated with reduced COPD exacerbation rate. Notably, several therapies have shown efficacy only in identifiable subgroups of COPD patients, suggesting that subgroup identification may become more important in future treatment strategies. This review summarizes the status of emerging therapeutic pharmaceuticals for COPD and highlights those that appear most promising. PMID:28790817
Zhang, Feng; Yu, Jingwen; Yang, Tao; Xu, Dan; Chi, Zhixia; Xia, Yanheng; Xu, Zhiheng
2016-05-27
Disturbance of neuronal migration may cause various neurological disorders. Both the transforming growth factor-β (TGF-β) signaling and microcephaly-associated protein WDR62 are important for neuronal migration during brain development; however, the underlying molecular mechanisms involved remain unclear. We show here that knock-out or knockdown of Tak1 (TGFβ-activated kinase 1) and Jnk2 (c-Jun N-terminal kinase 2) perturbs neuronal migration during cortical development and that the migration defects incurred by knock-out and/or knockdown of Tβr2 (type II TGF-β receptor) or Tak1 can be partially rescued by expression of TAK1 and JNK2, respectively. Furthermore, TAK1 forms a protein complex with RAC1 and two scaffold proteins of the JNK pathway, the microcephaly-associated protein WDR62 and the RAC1-interacting protein POSH (plenty of Src homology). Components of the complex coordinate with each other in the regulation of TAK1 as well as JNK activities. We suggest that unique JNK protein complexes are involved in the diversified biological and pathological functions during brain development and pathogenesis of diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Nyga, Rémy; Pecquet, Christian; Harir, Noria; Gu, Haihua; Dhennin-Duthille, Isabelle; Régnier, Aline; Gouilleux-Gruart, Valérie; Lassoued, Kaïss; Gouilleux, Fabrice
2005-08-15
The active forms of STAT5A (signal transducer and activator of transcription 5A) and STAT5B are able to relieve the cytokine dependence of haematopoietic cells and to induce leukaemia in mice. We have demonstrated previously that activation of the PI3K (phosphoinositide 3-kinase) signalling cascade plays a major role in cell growth and survival induced by these proteins. Interaction between STAT5 and p85, the regulatory subunit of the PI3K, has been suggested to be required for this activation. We show in the present study that the scaffolding protein Gab2 [Grb2 (growth-factor-receptor-bound protein 2)-associated binder-2] is an essential component of this interaction. Gab2 is persistently tyrosine-phosphorylated in Ba/F3 cells expressing caSTAT5 (constitutively activated STAT5), independent of JAK2 (Janus kinase 2) activation where it interacts with STAT5, p85 and Grb2, but not with Shp2 [SH2 (Src homology 2)-domain-containing tyrosine phosphatase] proteins. Interaction of STAT5 with Gab2 was also observed in Ba/F3 cells stimulated with interleukin-3 or expressing the oncogenic fusion protein Tel-JAK2. The MAPKs (mitogen-activated protein kinases) ERK1 (extracellular-signal-regulated kinase 1) and ERK2 were constitutively activated in the caSTAT5-expressing cells and were found to be required for caSTAT5-induced cell proliferation. Overexpression of Gab2-3YF, a mutant of Gab2 incapable of binding PI3K, inhibited the proliferation and survival of caSTAT5-expressing cells as well as ERK1/2 and Akt/protein kinase B phosphorylation. Taken together, our results indicate that Gab2 is required for caSTAT5-induced cell proliferation by regulating both the PI3K/Akt and the Ras/MAPK pathways.
2005-01-01
The active forms of STAT5A (signal transducer and activator of transcription 5A) and STAT5B are able to relieve the cytokine dependence of haematopoietic cells and to induce leukaemia in mice. We have demonstrated previously that activation of the PI3K (phosphoinositide 3-kinase) signalling cascade plays a major role in cell growth and survival induced by these proteins. Interaction between STAT5 and p85, the regulatory subunit of the PI3K, has been suggested to be required for this activation. We show in the present study that the scaffolding protein Gab2 [Grb2 (growth-factor-receptor-bound protein 2)-associated binder-2] is an essential component of this interaction. Gab2 is persistently tyrosine-phosphorylated in Ba/F3 cells expressing caSTAT5 (constitutively activated STAT5), independent of JAK2 (Janus kinase 2) activation where it interacts with STAT5, p85 and Grb2, but not with Shp2 [SH2 (Src homology 2)-domain-containing tyrosine phosphatase] proteins. Interaction of STAT5 with Gab2 was also observed in Ba/F3 cells stimulated with interleukin-3 or expressing the oncogenic fusion protein Tel–JAK2. The MAPKs (mitogen-activated protein kinases) ERK1 (extracellular-signal-regulated kinase 1) and ERK2 were constitutively activated in the caSTAT5-expressing cells and were found to be required for caSTAT5-induced cell proliferation. Overexpression of Gab2-3YF, a mutant of Gab2 incapable of binding PI3K, inhibited the proliferation and survival of caSTAT5-expressing cells as well as ERK1/2 and Akt/protein kinase B phosphorylation. Taken together, our results indicate that Gab2 is required for caSTAT5-induced cell proliferation by regulating both the PI3K/Akt and the Ras/MAPK pathways. PMID:15833084
Pandey, A; Liu, X; Dixon, J E; Di Fiore, P P; Dixit, V M
1996-05-03
Adapter proteins containing Src homology 2 (SH2) domains link transmembrane receptor protein-tyrosine kinases to downstream signal transducing molecules. A family of SH2 containing adapter proteins including Grb7 and Grb10 has been recently identified. We had previously shown that Grb10 associates with Ret via its SH2 domain in an activation-dependent manner (Pandey, A., Duan, H., Di Fiore, P.P., and Dixit, V.M. (1995) J. Biol, Chem. 270, 21461-21463). We now demonstrate that the related adapter molecule Grb7 also associates with Ret in vitro and in vivo, and that the binding of the SH2 domain of Grb7 to Ret is direct. This binding is dependent upon Ret autophosphorylation since Grb7 is incapable of binding a kinase-defective mutant of Ret. Thus two members of the Grb family, Grb7 and Grb10, likely relay signals emanating from Ret to other, as yet, unidentified targets within the cell.
Hem, C D; Ekornhol, M; Granum, S; Sundvold-Gjerstad, V; Spurkland, A
2017-02-01
The T cell-specific adaptor protein (TSAd) contains several protein interaction domains, and is merging as a modulator of T cell activation. Several interaction partners for the TSAd proline-rich region and phosphotyrosines have been identified, including the Src and Tec family kinases lymphocyte-specific protein tyrosine kinase and interleukin 2-inducible T cell kinase. Via its Src homology 2 (SH2) domain, TSAd may thus function as a link between these enzymes and other signalling molecules. However, few binding partners to the TSAd SH2 domain in T cells are hitherto known. Through the use of in silico ligand prediction, peptide spot arrays, pull-down and immunoprecipitation experiments, we here report novel interactions between the TSAd SH2 domain and CD6 phosphotyrosine (pTyr) 629 and linker of activated T cells (LAT) pTyr 171 , pTyr 191 and pTyr 226 . © 2016 The Foundation for the Scandinavian Journal of Immunology.
PKCδ activated by c-MET enhances infiltration of human glioblastoma cells through NOTCH2 signaling
Kang, Seok-Gu; Kim, Rae-Kwon; Cui, Yan-Hong; Lee, Hae-June; Kim, Min-Jung; Lee, Jae-Seong; Kim, In-Gyu; Suh, Yongjoon; Lee, Su-Jae
2016-01-01
Poor prognosis of glioblastoma (GBM) is attributable to the propensity of tumor cells to infiltrate into the brain parenchyma. Protein kinase C (PKC) isozymes are highly expressed or aberrantly activated in GBM. However, how this signaling node translates to GBM cell invasiveness remains unknown. Here, we report that among PKC isoforms, PKCδ is strongly associated with infiltration of GBM cells. Notably, PKCδ enhanced Tyr418 phosphorylation of the non-receptor tyrosine kinase SRC, which in turn activated STAT3 and subsequent NOTCH2 signaling, ultimately leading to GBM cell invasiveness. Furthermore, we showed that PKCδ was aberrantly activated in GBM cells by c-MET, a receptor tyrosine kinase hyperactivated in GBM. In agreement, inhibition either component in the c-MET/PKCδ/SRC/STAT3 signaling axis effectively blocked the NOTCH2 signaling and invasiveness of GBM cells. Taken together, our findings shed a light on the signaling mechanisms behind the constitutive activation of PKCδ signaling in GBM. PMID:26700818
ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation
Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias
2016-01-01
The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265
Estrogen Receptor Folding Modulates cSrc Kinase SH2 Interaction via a Helical Binding Mode.
Nieto, Lidia; Tharun, Inga M; Balk, Mark; Wienk, Hans; Boelens, Rolf; Ottmann, Christian; Milroy, Lech-Gustav; Brunsveld, Luc
2015-11-20
The estrogen receptors (ERs) feature, next to their transcriptional role, important nongenomic signaling actions, with emerging clinical relevance. The Src Homology 2 (SH2) domain mediated interaction between cSrc kinase and ER plays a key role in this; however the molecular determinants of this interaction have not been elucidated. Here, we used phosphorylated ER peptide and semisynthetic protein constructs in a combined biochemical and structural study to, for the first time, provide a quantitative and structural characterization of the cSrc SH2-ER interaction. Fluorescence polarization experiments delineated the SH2 binding motif in the ER sequence. Chemical shift perturbation analysis by nuclear magnetic resonance (NMR) together with molecular dynamics (MD) simulations allowed us to put forward a 3D model of the ER-SH2 interaction. The structural basis of this protein-protein interaction has been compared with that of the high affinity SH2 binding sequence GpYEEI. The ER features a different binding mode from that of the "two-pronged plug two-hole socket" model in the so-called specificity determining region. This alternative binding mode is modulated via the folding of ER helix 12, a structural element directly C-terminal of the key phosphorylated tyrosine. The present findings provide novel molecular entries for understanding nongenomic ER signaling and targeting the corresponding disease states.
Righino, Benedetta; Pirolli, Davide; Radicioni, Giorgia; Marzano, Valeria; Longhi, Renato; Arcovito, Alessandro; Sanna, Maria Teresa; De Rosa, Maria Cristina; Paoluzi, Serena; Cesareni, Gianni; Messana, Irene; Castagnola, Massimo; Vitali, Alberto
2016-09-01
Human saliva contains hundreds of small proline-rich peptides originated by the proteolytic cleavage of the salivary basic Proline-Rich Proteins. Nevertheless only for few of them a specific biological activity has been assigned to date. Among them, the 1932 Da peptide (p1932) has been patented as an anti-HIV agent. In order to shed light on the possible mechanism of action of this peptide, we assessed in this study, by means of molecular dynamics calculations, circular dichroism and FTIR spectroscopic techniques, that p1932 has an intrinsic propensity to adopt a polyproline-II helix arrangement. This structural feature combined with the presence of PxxP motifs in its primary structure, represents an essential property for the exploitation of several biological activities. Next to these findings, we recently demonstrated the ability of this peptide to be internalized within cells of the oral mucosa, thus we focused onto a possible intracellular target, represented by the SH3 domains family. Its ability to interact with selected SH3 domains was finally assayed by Surface Plasmon Resonance spectroscopy. As a result, only Fyn, Hck, and c-Src SH3 domains gave positive results in terms of interaction, showing dissociation constants ranging from nanomolar to micromolar values having the best performer a KD of 148 nM. It is noteworthy that all the interacting domains belong to the Src kinases family, suggesting a role for p1932 as a modulator of the signal transduction pathways mediated by these kinases. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 714-725, 2016. © 2016 Wiley Periodicals, Inc.
Lindfors, Hanna E; Venkata, Bharat Somireddy; Drijfhout, Jan W; Ubbink, Marcellus
2011-02-18
The interaction between a peptide encompassing the SH3 and SH2 binding motifs of focal adhesion kinase (FAK) and the Src SH3-SH2 domains has been investigated with NMR spectroscopy and calorimetry. The binding to both motifs is anti-cooperative. Reduction of the long linker connecting the motifs does not lead to cooperativity. Short linkers that do not allow simultaneous intramolecular binding of the peptide to both motifs cause peptide-mediated dimerisation, even with a linker of only three amino acids. The role of the SH3 binding motif is discussed in view of the independent nature of the SH interactions. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Lusková, Petra; Dráber, Petr
2004-01-01
Mast cells and basophils are major effector cells in the immunoglobulin E (IgE)-dependent allergic reactions as well as in the innate immunity. They are distributed throughout the body and, upon allergen exposure, are stimulated via the high affinity IgE receptor (FcepsilonRI) to release several pro-inflammatory mediators such as leukotrienes, immunoregulatory cytokines and histamine. FcepsilonRI-mediated signaling is initiated by tyrosine phosphorylation of FcepsilonRI subunits by Src family kinase Lyn, which is followed by an activation of Syk/Zap family kinase Syk. The activated kinases then in turn phosphorylate and activate other enzymes [phospholipase Cgamma (PLCgamma) isoforms, phosphatidylinositol-3 kinase (PI3K) isoforms, protein kinase C (PKC) isoforms, Bruton's tyrosine kinase (Btk) and others], adaptors [linker for activation of T cells (LAT), Cbl, Grb2 and others] and GTP exchange factors/GTPases (Vav, Ras, Rho, and others), and subsequently induce the mobilization of stored and extracellular Ca(2+). These and other biochemical events lead within seconds and minutes to the secretory response and later to the production of chemokines. This review is focused on the use of tyrosine kinase inhibitors specific for Src family kinases (PP1/PP2, SU6656 and CT5269), Syk kinase (piceatannol, ER-27319 and BAY 61-3606) and Btk (terreic acid and LFM-A13) for a modulation of FcepsilonRI-mediated signaling in mast cells. Potential use of the inhibitors in the treatment of inflammatory and allergy diseases as well as future directions in the development of highly specific tyrosine kinases inhibitors of new generations and their use in an intended modulation of mast cell signaling are discussed.
Sakai, T; Kawakatsu, H; Fujita, M; Yano, J; Owada, M K
1998-02-01
In previous work, we established a new monoclonal antibody that specifically recognizes the active form of c-Src tyrosine kinase (Kawakatsu et al, 1996). To determine whether c-Src is active in colorectal tumorigenesis, we examined the expression of an active form of c-Src in human normal mucosa, hyperplastic polyps, adenomas, and adenocarcinomas. The tissue distribution of the active form of c-Src was studied by immunohistochemistry using this antibody, termed Clone 28. Among 66 cases of adenoma tested, 61 (92%) showed positive staining (adenoma with mild atypia, 3 of 3; adenoma with moderate atypia, 38 of 42; adenoma with severe atypia, 20 of 21). In contrast to the frequent and intense staining in adenomas, adenocarcinoma showed weak staining with less frequency in 4 of 16 (25%) cases. The number of specimens with positive staining in well- and moderately differentiated adenocarcinomas was limited to an early stage. The active form of c-Src mainly localized to the nuclear membrane and the perinuclear region. These results provide the first direct evidence that the activation of c-Src appears to be an early event in colonic carcinogenesis in situ. The findings of the present study thus allow us to propose a molecular mechanism involving c-Src activation in the process of malignant transformation of the human colonic neoplastic cells.
Chen, Weirong; Wan, Xiaoxiao; Ukah, Tobechukwu K; Miller, Mindy M; Barik, Subhasis; Cattin-Roy, Alexis N; Zaghouani, Habib
2016-11-01
To contain autoimmunity, pathogenic T cells must be eliminated or diverted from reaching the target organ. Recently, we defined a novel form of T cell tolerance whereby treatment with Ag downregulates expression of the chemokine receptor CXCR3 and prevents diabetogenic Th1 cells from reaching the pancreas, leading to suppression of type 1 diabetes (T1D). This report defines the signaling events underlying Ag-induced chemokine receptor-mediated tolerance. Specifically, we show that the mammalian target of rapamycin complex 1 (mTORC1) is a major target for induction of CXCR3 downregulation and crippling of Th1 cells. Indeed, Ag administration induces upregulation of programmed death-ligand 1 on dendritic cells in a T cell-dependent manner. In return, programmed death-ligand 1 interacts with the constitutively expressed programmed death-1 on the target T cells and stimulates docking of Src homology 2 domain-containing tyrosine phosphatase 2 phosphatase to the cytoplasmic tail of programmed death-1. Active Src homology 2 domain-containing tyrosine phosphatase 2 impairs the signaling function of the PI3K/protein kinase B (AKT) pathway, leading to functional defect of mTORC1, downregulation of CXCR3 expression, and suppression of T1D. Thus, mTORC1 component of the metabolic pathway serves as a target for chemokine receptor-mediated T cell tolerance and suppression of T1D. Copyright © 2016 by The American Association of Immunologists, Inc.
Maninová, Miloslava; Klímová, Zuzana; Parsons, J Thomas; Weber, Michael J; Iwanicki, Marcin P; Vomastek, Tomáš
2013-06-12
The establishment of cell polarity is an essential step in the process of cell migration. This process requires precise spatiotemporal coordination of signaling pathways that in most cells create the typical asymmetrical profile of a polarized cell with nucleus located at the cell rear and the microtubule organizing center (MTOC) positioned between the nucleus and the leading edge. During cell polarization, nucleus rearward positioning promotes correct microtubule organizing center localization and thus the establishment of front-rear polarity and directional migration. We found that cell polarization and directional migration require also the reorientation of the nucleus. Nuclear reorientation is manifested as temporally restricted nuclear rotation that aligns the nuclear axis with the axis of cell migration. We also found that nuclear reorientation requires physical connection between the nucleus and cytoskeleton mediated by the LINC (linker of nucleoskeleton and cytoskeleton) complex. Nuclear reorientation is controlled by coordinated activity of lysophosphatidic acid (LPA)-mediated activation of GTPase Rho and the activation of integrin, FAK (focal adhesion kinase), Src, and p190RhoGAP signaling pathway. Integrin signaling is spatially induced at the leading edge as FAK and p190RhoGAP are predominantly activated or localized at this location. We suggest that integrin activation within lamellipodia defines cell front, and subsequent FAK, Src, and p190RhoGAP signaling represents the polarity signal that induces reorientation of the nucleus and thus promotes the establishment of front-rear polarity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Molecular Mechanisms of Hormone-Refractory Prostate Cancer
2006-02-01
FIN-00014 Helsinki, Finland Bmx/Etk, a member of the Tec/ Btk family of nonrecep- tor kinases, has recently been shown to mediate cell motility in...Bmx, which is a member of the Tec/ Btk family of tyrosine kinases (37). In addition to the SH2, SH3, and kinase domains, the Tec family of tyrosine...divided and resuspended in 18 l of kinase buffer with or without 1 M Src inhibitor SU6656 in the presence of either 2 g of GST or 2 g of GST-CasSD
Csk Homologous Kinase, a Potential Regulator of CXCR4-Medicated Breast Cancer Cell Metastasis
2011-08-01
is a non-receptor tyrosine kinase and a second member of the Csk family. Like Csk, CHK has Src homology 2 ( SH2 ) and SH3 domains and lacks the...MSCV-retroviral vectors encoding either wild-type CHK or kinase -dead CHK or wild type SH2 domain or SH2 -R147A or SH2 -G129A. All these constructs were... Kinase , a Potential Regulator of CXCR4-Medicated Breast Cancer Cell Metastasis Byeong-Chel Lee The University of Pittsburgh Pittsburgh, PA 15213
Dynamic organization of myristoylated Src in the live cell plasma membrane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Adam W.; Huang, Hector H.; Endres, Nicholas F.
The spatial organization of lipid-anchored proteins in the plasma membrane directly influences cell signaling, but measuring such organization in situ is experimentally challenging. The canonical oncogene, c-Src, is a lipid anchored protein that plays a key role in integrin-mediated signal transduction within focal adhesions and cell–cell junctions. Because of its activity in specific plasma membrane regions, structural motifs within the protein have been hypothesized to play an important role in its subcellular localization. This study used a combination of time-resolved fluorescence fluctuation spectroscopy and super-resolution microscopy to quantify the dynamic organization of c-Src in live cell membranes. Pulsed-interleaved excitation fluorescencemore » cross-correlation spectroscopy (PIE–FCCS) showed that a small fraction of c-Src transiently sorts into membrane clusters that are several times larger than the monomers. Photoactivated localization microscopy (PALM) confirmed that c-Src partitions into clusters with low probability and showed that the characteristic size of the clusters is 10–80 nm. Finally, time-resolved fluorescence anisotropy measurements were used to quantify the rotational mobility of c-Src to determine how it interacts with its local environment. Altogether, these results build a quantitative description of the mobility and clustering behavior of the c-Src nonreceptor tyrosine kinase in the live cell plasma membrane.« less
Dynamic organization of myristoylated Src in the live cell plasma membrane
Smith, Adam W.; Huang, Hector H.; Endres, Nicholas F.; ...
2016-01-15
The spatial organization of lipid-anchored proteins in the plasma membrane directly influences cell signaling, but measuring such organization in situ is experimentally challenging. The canonical oncogene, c-Src, is a lipid anchored protein that plays a key role in integrin-mediated signal transduction within focal adhesions and cell–cell junctions. Because of its activity in specific plasma membrane regions, structural motifs within the protein have been hypothesized to play an important role in its subcellular localization. This study used a combination of time-resolved fluorescence fluctuation spectroscopy and super-resolution microscopy to quantify the dynamic organization of c-Src in live cell membranes. Pulsed-interleaved excitation fluorescencemore » cross-correlation spectroscopy (PIE–FCCS) showed that a small fraction of c-Src transiently sorts into membrane clusters that are several times larger than the monomers. Photoactivated localization microscopy (PALM) confirmed that c-Src partitions into clusters with low probability and showed that the characteristic size of the clusters is 10–80 nm. Finally, time-resolved fluorescence anisotropy measurements were used to quantify the rotational mobility of c-Src to determine how it interacts with its local environment. Altogether, these results build a quantitative description of the mobility and clustering behavior of the c-Src nonreceptor tyrosine kinase in the live cell plasma membrane.« less
Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okabe, Seiichi, E-mail: okabe@tokyo-med.ac.jp; Tauchi, Tetsuzo; Tanaka, Yuko
2013-06-07
Highlights: •Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells okabe et al. •Imatinib or nilotinib resistance was involved Src family kinase. •The BCR-ABL point mutation (E334V) was highly resistant to imatinib or nilotinib. •Ponatinib was a powerful strategy against imatinib or nilotinib resistant Ph-positive cells. -- Abstract: Because a substantial number of patients with chronic myeloid leukemia acquire resistance to ABL tyrosine kinase inhibitors (TKIs), their management remains a challenge. Ponatinib, also known as AP24534, is an oral multi-targeted TKI. Ponatinib is currently being investigated in a pivotal phase 2 clinical trial. In the present study, we analyzedmore » the molecular and functional consequences of ponatinib against imatinib- or nilotinib-resistant (R) K562 and Ba/F3 cells. The proliferation of imatinib- or nilotinib-resistant K562 cells did not decrease after treatment with imatinib or nilotinib. Src family kinase Lyn was activated. Point mutation Ba/F3 cells (E334 V) were also highly resistant to imatinib and nilotinib. Treatment with ponatinib for 72 h inhibited the growth of imatinib- and nilotinib-resistant cells. The phosphorylation of BCR-ABL, Lyn, and Crk-L was reduced. This study demonstrates that ponatinib has an anti-leukemia effect by reducing ABL and Lyn kinase activity and this information may be of therapeutic relevance.« less
Shakespeare, William; Yang, Michael; Bohacek, Regine; Cerasoli, Franklin; Stebbins, Karin; Sundaramoorthi, Raji; Azimioara, Mihai; Vu, Chi; Pradeepan, Selvi; Metcalf, Chester; Haraldson, Chad; Merry, Taylor; Dalgarno, David; Narula, Surinder; Hatada, Marcos; Lu, Xiaode; van Schravendijk, Marie Rose; Adams, Susan; Violette, Shelia; Smith, Jeremy; Guan, Wei; Bartlett, Catherine; Herson, Jay; Iuliucci, John; Weigele, Manfred; Sawyer, Tomi
2000-01-01
Targeted disruption of the pp60src (Src) gene has implicated this tyrosine kinase in osteoclast-mediated bone resorption and as a therapeutic target for the treatment of osteoporosis and other bone-related diseases. Herein we describe the discovery of a nonpeptide inhibitor (AP22408) of Src that demonstrates in vivo antiresorptive activity. Based on a cocrystal structure of the noncatalytic Src homology 2 (SH2) domain of Src complexed with citrate [in the phosphotyrosine (pTyr) binding pocket], we designed 3′,4′-diphosphonophenylalanine (Dpp) as a pTyr mimic. In addition to its design to bind Src SH2, the Dpp moiety exhibits bone-targeting properties that confer osteoclast selectivity, hence minimizing possible undesired effects on other cells that have Src-dependent activities. The chemical structure AP22408 also illustrates a bicyclic template to replace the post-pTyr sequence of cognate Src SH2 phosphopeptides such as Ac-pTyr-Glu-Glu-Ile (1). An x-ray structure of AP22408 complexed with Lck (S164C) SH2 confirmed molecular interactions of both the Dpp and bicyclic template of AP22408 as predicted from molecular modeling. Relative to the cognate phosphopeptide, AP22408 exhibits significantly increased Src SH2 binding affinity (IC50 = 0.30 μM for AP22408 and 5.5 μM for 1). Furthermore, AP22408 inhibits rabbit osteoclast-mediated resorption of dentine in a cellular assay, exhibits bone-targeting properties based on a hydroxyapatite adsorption assay, and demonstrates in vivo antiresorptive activity in a parathyroid hormone-induced rat model. PMID:10944210
Ko, Hyun-Kyung; Guo, Li-wu; Su, Bing; Gao, Lingqiu; Gelman, Irwin H.
2014-01-01
Chemotaxis is controlled by interactions between receptors, Rho-family GTPases, phosphatidylinositol 3-kinases, and cytoskeleton remodeling proteins. We investigated how the metastasis suppressor, SSeCKS, attenuates chemotaxis. Chemotaxis activity inversely correlated with SSeCKS levels in mouse embryo fibroblasts (MEF), DU145 and MDA-MB-231 cancer cells. SSeCKS loss induced chemotactic velocity and linear directionality, correlating with replacement of leading edge lamellipodia with fascin-enriched filopodia-like extensions, the formation of thickened longitudinal F-actin stress fibers reaching to filopodial tips, relative enrichments at the leading edge of phosphatidylinositol (3,4,5)P3 (PIP3), Akt, PKC-ζ, Cdc42-GTP and active Src (SrcpoY416), and a loss of Rac1. Leading edge lamellipodia and chemotaxis inhibition in SSeCKS-null MEF could be restored by full-length SSeCKS or SSeCKS deleted of its Src-binding domain (ΔSrc), but not by SSeCKS deleted of its three MARCKS (myristylated alanine-rich C kinase substrate) polybasic domains (ΔPBD), which bind PIP2 and PIP3. The enrichment of activated Cdc42 in SSeCKS-null leading edge filopodia correlated with recruitment of the Cdc42-specific guanine nucleotide exchange factor, Frabin, likely recruited via multiple PIP2/3-binding domains. Frabin knockdown in SSeCKS-null MEF restores leading edge lamellipodia and chemotaxis inhibition. However, SSeCKS failed to co-immunoprecipitate with Rac1, Cdc42 or Frabin. Consistent with the notion that chemotaxis is controlled by SSeCKS-PIP (vs. -Src) scaffolding activity, constitutively-active phosphatidylinositol 3-kinase could override the ability of the Src inhibitor, SKI-606, to suppress chemotaxis and filopodial enrichment of Frabin in SSeCKS-null MEF. Our data suggest a role for SSeCKS in controlling Rac1 vs. Cdc42-induced cellular dynamics at the leading chemotactic edge through the scaffolding of phospholipids and signal mediators, and through the reorganization of the actin cytoskeleton controlling directional movement. PMID:25356636
Fibronectin induces macrophage migration through a SFK-FAK/CSF-1R pathway.
Digiacomo, Graziana; Tusa, Ignazia; Bacci, Marina; Cipolleschi, Maria Grazia; Dello Sbarba, Persio; Rovida, Elisabetta
2017-07-04
Integrins, following binding to proteins of the extracellular matrix (ECM) including collagen, laminin and fibronectin (FN), are able to transduce molecular signals inside the cells and to regulate several biological functions such as migration, proliferation and differentiation. Besides activation of adaptor molecules and kinases, integrins transactivate Receptor Tyrosine Kinases (RTK). In particular, adhesion to the ECM may promote RTK activation in the absence of growth factors. The Colony-Stimulating Factor-1 Receptor (CSF-1R) is a RTK that supports the survival, proliferation, and motility of monocytes/macrophages, which are essential components of innate immunity and cancer development. Macrophage interaction with FN is recognized as an important aspect of host defense and wound repair. The aim of the present study was to investigate on a possible cross-talk between FN-elicited signals and CSF-1R in macrophages. FN induced migration in BAC1.2F5 and J774 murine macrophage cell lines and in human primary macrophages. Adhesion to FN determined phosphorylation of the Focal Adhesion Kinase (FAK) and Src Family Kinases (SFK) and activation of the SFK/FAK complex, as witnessed by paxillin phosphorylation. SFK activity was necessary for FAK activation and macrophage migration. Moreover, FN-induced migration was dependent on FAK in either murine macrophage cell lines or human primary macrophages. FN also induced FAK-dependent/ligand-independent CSF-1R phosphorylation, as well as the interaction between CSF-1R and β1. CSF-1R activity was necessary for FN-induced macrophage migration. Indeed, genetic or pharmacological inhibition of CSF-1R prevented FN-induced macrophage migration. Our results identified a new SFK-FAK/CSF-1R signaling pathway that mediates FN-induced migration of macrophages.
Wagner, Melany J; Smiley, James R
2009-12-01
Herpes simplex virus (HSV) tegument proteins are released into the cytoplasm during viral entry and hence are among the first viral proteins encountered by an infected cell. Despite the implied importance of these proteins in the evasion of host defenses, the function of some, like virion protein 11/12 (VP11/12), have not been clearly defined. Previously, we reported that VP11/12 is strongly tyrosine phosphorylated during the infection of lymphocytes but not in fibroblasts or an epithelial cell line (G. Zahariadis, M. J. Wagner, R. C. Doepker, J. M. Maciejko, C. M. Crider, K. R. Jerome, and J. R. Smiley, J. Virol. 82:6098-6108, 2008). We also showed that tyrosine phosphorylation depends in part on the activity of the lymphocyte-specific Src family kinase (SFK) Lck in Jurkat T cells. These data suggested that VP11/12 is a substrate of Lck and that Lck is activated during HSV infection. Here, we show that HSV infection markedly increases the fraction of Lck phosphorylated on its activation loop tyrosine (Y394), a feature characteristic of activated Lck. A previous report implicated the immediate-early protein ICP0 and the viral serine/threonine kinases US3 and UL13 in the induction of a similar activated phenotype of SFKs other than Lck in fibroblasts and suggested that ICP0 interacts directly with SFKs through their SH3 domain. However, we were unable to detect an interaction between ICP0 and Lck in T lymphocytes, and we show that ICP0, US3, and UL13 are not strictly required for Lck activation. In contrast, VP11/12 interacted with Lck or Lck signaling complexes and was strictly required for Lck activation during HSV infection. Thus, VP11/12 likely modulates host cell signaling pathways for the benefit of the virus.
Auger, Céline; Ogden, David
2010-08-15
Metabotropic glutamate receptors type 1 (mGluR1s) and ionotropic AMPA receptors (AMPARs) are colocalized at parallel fibre (PF) to Purkinje cell synapses of the cerebellum. Single stimulation of PFs activates fast AMPAR excitatory postsynaptic currents, whereas the activation of mGluR1s requires burst stimulation. mGluR1s signal through several pathways in Purkinje cells and the most prominent is the activation of a slow EPSC (sEPSC). To separate the two synaptic currents, studies of the sEPSC have commonly been performed in the presence of AMPA/KA receptor antagonists. We show here in rat cerebellar slices that inhibition of the fast EPSC by AMPAR antagonists strongly and selectively potentiates the mGluR1 sEPSC, showing a negative regulation of mGluR1 by AMPAR. This effect is observed with low concentrations of NBQX (300 nM to 1 microM), with the selective AMPAR antagonist GYKI 53655 and also with gamma-DGG, a low affinity glutamate receptor antagonist. When photorelease of glutamate from MNI-glutamate was used to study the postsynaptic responses in isolation, AMPAR inhibition produced a similar potentiation of the mGluR1 sEPSC, showing that the interaction is postsynaptic. Finally, perfusion of the postsynaptic cell with PP1, an inhibitor of src-family tyrosine kinase, increased the amplitude of the mGluR1 sEPSC and occluded the effect of AMPAR inhibition. Thus, at PF to Purkinje cell synapses, AMPAR activation inhibits the mGluR1 sEPSC via activation of a src-family tyrosine kinase. Consequently mGluR1 signalling will be more sensitive to spillover of glutamate than to local synaptic release. Furthermore, it will be enhanced at silent PF synapses which are the majority in Purkinje cells.
Xu, Xiuduan; Wang, Hongli; Liu, Shasha; Xing, Chen; Liu, Yang; Aodengqimuge; Zhou, Wei; Yuan, Xiaoyan; Ma, Yongfu; Hu, Meiru; Hu, Yongliang; Zou, Shuxian; Gu, Ye; Peng, Shuangqing; Yuan, Shengtao; Li, Weiping; Ma, Yuanfang; Song, Lun
2016-10-02
ABSTARCT Epidemiological and clinical studies have increasingly shown that fine particulate matter (PM2.5) is associated with a number of pathological respiratory diseases, such as bronchitis, asthma, and chronic obstructive pulmonary disease, which share the common feature of airway inflammation induced by particle exposure. Thus, understanding how PM2.5 triggers inflammatory responses in the respiratory system is crucial for the study of PM2.5 toxicity. In the current study, we found that exposing human bronchial epithelial cells (immortalized Beas-2B cells and primary cells) to PM2.5 collected in the winter in Wuhan, a city in southern China, induced a significant upregulation of VEGFA (vascular endothelial growth factor A) production, a signaling event that typically functions to control chronic airway inflammation and vascular remodeling. Further investigations showed that macroautophagy/autophagy was induced upon PM2.5 exposure and then mediated VEGFA upregulation by activating the SRC (SRC proto-oncogene, non-receptor tyrosine kinase)-STAT3 (signal transducer and activator of transcription 3) pathway in bronchial epithelial cells. By exploring the upstream signaling events responsible for autophagy induction, we revealed a requirement for TP53 (tumor protein p53) activation and the expression of its downstream target DRAM1 (DNA damage regulated autophagy modulator 1) for the induction of autophagy. These results thus extend the role of TP53-DRAM1-dependent autophagy beyond cell fate determination under genotoxic stress and to the control of proinflammatory cytokine production. Moreover, PM2.5 exposure strongly induced the activation of the ATR (ATR serine/threonine kinase)-CHEK1/CHK1 (checkpoint kinase 1) axis, which subsequently triggered TP53-dependent autophagy and VEGFA production in Beas-2B cells. Therefore, these findings suggest a novel link between processes regulating genomic integrity and airway inflammation via autophagy induction in bronchial epithelial cells under PM2.5 exposure.
Wagner, Melany J.; Smiley, James R.
2009-01-01
Herpes simplex virus (HSV) tegument proteins are released into the cytoplasm during viral entry and hence are among the first viral proteins encountered by an infected cell. Despite the implied importance of these proteins in the evasion of host defenses, the function of some, like virion protein 11/12 (VP11/12), have not been clearly defined. Previously, we reported that VP11/12 is strongly tyrosine phosphorylated during the infection of lymphocytes but not in fibroblasts or an epithelial cell line (G. Zahariadis, M. J. Wagner, R. C. Doepker, J. M. Maciejko, C. M. Crider, K. R. Jerome, and J. R. Smiley, J. Virol. 82:6098-6108, 2008). We also showed that tyrosine phosphorylation depends in part on the activity of the lymphocyte-specific Src family kinase (SFK) Lck in Jurkat T cells. These data suggested that VP11/12 is a substrate of Lck and that Lck is activated during HSV infection. Here, we show that HSV infection markedly increases the fraction of Lck phosphorylated on its activation loop tyrosine (Y394), a feature characteristic of activated Lck. A previous report implicated the immediate-early protein ICP0 and the viral serine/threonine kinases US3 and UL13 in the induction of a similar activated phenotype of SFKs other than Lck in fibroblasts and suggested that ICP0 interacts directly with SFKs through their SH3 domain. However, we were unable to detect an interaction between ICP0 and Lck in T lymphocytes, and we show that ICP0, US3, and UL13 are not strictly required for Lck activation. In contrast, VP11/12 interacted with Lck or Lck signaling complexes and was strictly required for Lck activation during HSV infection. Thus, VP11/12 likely modulates host cell signaling pathways for the benefit of the virus. PMID:19776125
ERK3 signals through SRC-3 coactivator to promote human lung cancer cell invasion
Long, Weiwen; Foulds, Charles E.; Qin, Jun; Liu, Jian; Ding, Chen; Lonard, David M.; Solis, Luisa M.; Wistuba, Ignacio I.; Qin, Jun; Tsai, Sophia Y.; Tsai, Ming-Jer; O’Malley, Bert W.
2012-01-01
In contrast to the well-studied classic MAPKs, such as ERK1/2, little is known concerning the regulation and substrates of the atypical MAPK ERK3 signaling cascade and its function in cancer progression. Here, we report that ERK3 interacted with and phosphorylated steroid receptor coactivator 3 (SRC-3), an oncogenic protein overexpressed in multiple human cancers at serine 857 (S857). This ERK3-mediated phosphorylation at S857 was essential for interaction of SRC-3 with the ETS transcription factor PEA3, which promotes upregulation of MMP gene expression and proinvasive activity in lung cancer cells. Importantly, knockdown of ERK3 or SRC-3 inhibited the ability of lung cancer cells to invade and form tumors in the lung in a xenograft mouse model. In addition, ERK3 was found to be highly upregulated in human lung carcinomas. Our study identifies a previously unknown role for ERK3 in promoting lung cancer cell invasiveness by phosphorylating SRC-3 and regulating SRC-3 proinvasive activity by site-specific phosphorylation. As such, ERK3 protein kinase may be an attractive target for therapeutic treatment of invasive lung cancer. PMID:22505454
Seetharam, Divya; Mineo, Chieko; Gormley, Andrew K; Gibson, Linda L; Vongpatanasin, Wanpen; Chambliss, Ken L; Hahner, Lisa D; Cummings, Melissa L; Kitchens, Richard L; Marcel, Yves L; Rader, Daniel J; Shaul, Philip W
2006-01-06
Vascular disease risk is inversely related to circulating levels of high-density lipoprotein (HDL) cholesterol. However, the mechanisms by which HDL provides vascular protection are unclear. The disruption of endothelial monolayer integrity is an important contributing factor in multiple vascular disorders, and vascular lesion severity is tempered by enhanced endothelial repair. Here, we show that HDL stimulates endothelial cell migration in vitro in a nitric oxide-independent manner via scavenger receptor B type I (SR-BI)-mediated activation of Rac GTPase. This process does not require HDL cargo molecules, and it is dependent on the activation of Src kinases, phosphatidylinositol 3-kinase, and p44/42 mitogen-activated protein kinases. Rapid initial stimulation of lamellipodia formation by HDL via SR-BI, Src kinases, and Rac is also demonstrable. Paralleling the in vitro findings, carotid artery reendothelialization after perivascular electric injury is blunted in apolipoprotein A-I(-/-) mice, and reconstitution of apolipoprotein A-I expression rescues normal reendothelialization. Furthermore, reendothelialization is impaired in SR-BI(-/-) mice. Thus, HDL stimulates endothelial cell migration via SR-BI-initiated signaling, and these mechanisms promote endothelial monolayer integrity in vivo.
Park, Eun Hye; Kim, Seokho; Jo, Ji Yoon; Kim, Su Jin; Hwang, Yeonsil; Kim, Jin-Man; Song, Si Young; Lee, Dong-Ki; Koh, Sang Seok
2013-03-01
Collagen triple helix repeat containing-1 (CTHRC1) is a secreted protein involved in vascular remodeling, bone formation and developmental morphogenesis. CTHRC1 has recently been shown to be expressed in human cancers such as breast cancer and melanoma. In this study, we show that CTHRC1 is highly expressed in human pancreatic cancer tissues and plays a role in the progression and metastasis of the disease. CTHRC1 promoted primary tumor growth and metastatic spread of cancer cells to distant organs in orthotopic xenograft tumor mouse models. Overexpression of CTHRC1 in cancer cells resulted in increased motility and adhesiveness, whereas these cellular activities were diminished by down-regulation of the protein. CTHRC1 activated several key signaling molecules, including Src, focal adhesion kinase, paxillin, mitogen-activated protein kinase kinase (MEK), extracellular signal-regulated kinase and Rac1. Treatment with chemical inhibitors of Src, MEK or Rac1 and expression of dominant-negative Rac1 attenuated CTHRC1-induced cell migration and adhesion. Collectively, our results suggest that CTHRC1 has a role in pancreatic cancer progression and metastasis by regulating migration and adhesion activities of cancer cells.
Young, Adelaide Ij; Timpson, Paul; Gallego-Ortega, David; Ormandy, Christopher J; Oakes, Samantha R
2017-12-21
Myeloid cell leukemia-1 (MCL-1), closely related to B-cell lymphoma 2 (BCL-2), has a well-established role in cell survival and has emerged as an important target for cancer therapeutics. We have demonstrated that inhibiting MCL-1 is efficacious in suppressing tumour progression in pre-clinical models of breast cancer and revealed that in addition to its role in cell survival, MCL-1 modulated cellular invasion. Utilizing a MCL-1-specific genetic antagonist, we found two possible mechanisms; firstly MCL-1 directly binds to and alters the phosphorylation of the cytoskeletal remodeling protein, Cofilin, a protein important for cytoskeletal remodeling during invasion, and secondly MCL-1 modulates the levels SRC family kinases (SFKs) and their targets. These data provide evidence that MCL-1 activities are not limited to endpoints of extracellular and intracellular signaling culminating in cell survival as previously thought, but can directly modulate the output of SRC family kinases signaling during cellular invasion. Here we review the pleotropic roles of MCL-1 and discuss the implications of this newly discovered effect on protein kinase signaling for the development of cancer therapeutics.
Law, Mary E; Ferreira, Renan B; Davis, Bradley J; Higgins, Paul J; Kim, Jae-Sung; Castellano, Ronald K; Chen, Sixue; Luesch, Hendrik; Law, Brian K
2016-08-05
While localized malignancies often respond to available therapies, most disseminated cancers are refractory. Novel approaches, therefore, are needed for the treatment of metastatic disease. CUB domain-containing protein1 (CDCP1) plays an important role in metastasis and drug resistance; the mechanism however, is poorly understood. Breast cancer cell lines were engineered to stably express EGFR, CDCP1 or phosphorylation site mutants of CDCP1. These cell lines were used for immunoblot analysis or affinity purification followed by immunoblot analysis to assess protein phosphorylation and/or protein complex formation with CDCP1. Kinase activity was evaluated using phosphorylation site-specific antibodies and immunoblot analysis in in vitro kinase assays. Protein band excision and mass spectrometry was utilized to further identify proteins complexed with CDCP1 or ΔCDCP1, which is a mimetic of the cleaved form of CDCP1. Cell detachment was assessed using cell counting. This paper reports that CDCP1 forms ternary protein complexes with Src and EGFR, facilitating Src activation and Src-dependent EGFR transactivation. Importantly, we have discovered that a class of compounds termed Disulfide bond Disrupting Agents (DDAs) blocks CDCP1/EGFR/Src ternary complex formation and downstream signaling. CDCP1 and EGFR cooperate to induce detachment of breast cancer cells from the substratum and to disrupt adherens junctions. Analysis of CDCP1-containing complexes using proteomics techniques reveals that CDCP1 associates with several proteins involved in cell adhesion, including adherens junction and desmosomal cadherins, and cytoskeletal elements. Together, these results suggest that CDCP1 may facilitate loss of adhesion by promoting activation of EGFR and Src at sites of cell-cell and cell-substratum contact.
Hassoun, Shimaa M; Abdel-Rahman, Noha; Eladl, Entsar I; El-Shishtawy, Mamdouh M
2017-06-01
Angiogenesis plays important roles in progression of hepatocellular carcinoma. The antiangiogenic mechanisms of vitexicarpine are not fully defined. Therefore, we conducted the following study to evaluate the antiangiogenic mechanism and antitumor activity of vitexicarpine in vivo model of hepatocellular carcinoma through modulation of vascular endothelial growth factor signaling pathway. Hepatocellular carcinoma was induced in Sprague Dawley rats by thioacetamide. Hepatocellular carcinoma was assessed by measuring serum alpha-fetoprotein and investigating liver sections stained with hematoxylin/eosin. Hepatocellular carcinoma rats were injected with vitexicarpine (150 mg/kg) for 2 weeks. Hepatic vascular endothelial growth factor was measured by enzyme-linked immunosorbent assay. Protein and expression of hepatic phospho-Ser473-AKT (p-AKT) and phospho-Tyr419-Src (p-Src) were determined. The apoptotic pathway was evaluated by assessment of protein expression of caspase-3. Vitexicarpine increased rats' survival time and decreased serum alpha-fetoprotein as well as it ameliorated fibrosis and massive hepatic tissue breakdown. It attenuated hepatocellular carcinoma-induced protein and gene expression of vascular endothelial growth factor, p-AKT, p-Src, and caspase-3. In conclusion, this study suggests that vitexicarpine possesses both antiangiogenic and antitumor activities through inhibition of vascular endothelial growth factor, p-AKT/AKT, and p-Src with subsequent inhibition of apoptotic pathway.
BDNF released during neuropathic pain potentiates NMDA receptors in primary afferent terminals
Chen, Wenling; Walwyn, Wendy; Ennes, Helena S.; Kim, Hyeyoung; McRoberts, James A.; Marvizón, Juan Carlos G.
2014-01-01
NMDA receptors in primary afferent terminals can contribute to hyperalgesia by increasing neurotransmitter release. In rats and mice, we found that the ability of intrathecal NMDA to induce neurokinin 1 receptor (NK1R) internalization (a measure of substance P release) required a previous injection of BDNF. Selective knock-down of NMDA receptors in primary afferents decreased NMDA-induced NK1R internalization, confirming the presynaptic location of these receptors. The effect of BDNF was mediated by tropomyosin-related kinase B (trkB) receptors and not p75 neurotrophin receptors (p75NTR), because it was not produced by proBDNF and was inhibited by the trkB antagonist ANA-12 but not by the p75NTR inhibitor TAT-Pep5. These effects are probably mediated through the truncated form of the trkB receptor as there is little expression of full-length trkB in dorsal root ganglion (DRG) neurons. Src family kinase inhibitors blocked the effect of BDNF, suggesting that trkB receptors promote the activation of these NMDA receptors by Src family kinase phosphorylation. Western blots of cultured DRG neurons revealed that BDNF increased Tyr1472 phosphorylation of the NR2B subunit of the NMDA receptor, known to have a potentiating effect. Patch-clamp recordings showed that BDNF, but not proBDNF, increased NMDA receptor currents in cultured DRG neurons. NMDA-induced NK1R internalization was also enabled in a neuropathic pain model or by activating dorsal horn microglia with lipopolysaccharide. These effects were decreased by a BDNF scavenger, a trkB receptor antagonist and an Src family kinase inhibitor, indicating that BDNF released by microglia potentiates NMDA receptors in primary afferents during neuropathic pain. PMID:24611998
HIV-1 Activates T Cell Signaling Independently of Antigen to Drive Viral Spread.
Len, Alice C L; Starling, Shimona; Shivkumar, Maitreyi; Jolly, Clare
2017-01-24
HIV-1 spreads between CD4 T cells most efficiently through virus-induced cell-cell contacts. To test whether this process potentiates viral spread by activating signaling pathways, we developed an approach to analyze the phosphoproteome in infected and uninfected mixed-population T cells using differential metabolic labeling and mass spectrometry. We discovered HIV-1-induced activation of signaling networks during viral spread encompassing over 200 cellular proteins. Strikingly, pathways downstream of the T cell receptor were the most significantly activated, despite the absence of canonical antigen-dependent stimulation. The importance of this pathway was demonstrated by the depletion of proteins, and we show that HIV-1 Env-mediated cell-cell contact, the T cell receptor, and the Src kinase Lck were essential for signaling-dependent enhancement of viral dissemination. This study demonstrates that manipulation of signaling at immune cell contacts by HIV-1 is essential for promoting virus replication and defines a paradigm for antigen-independent T cell signaling. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Levy-Apter, Einat; Finkelshtein, Eynat; Vemulapalli, Vidyasiri; Li, Shawn S-C; Bedford, Mark T; Elson, Ari
2014-12-26
The non-receptor isoform of protein-tyrosine phosphatase ϵ (cyt-PTPe) supports adhesion of bone-resorbing osteoclasts by activating Src downstream of integrins. Loss of cyt-PTPe reduces Src activity in osteoclasts, reduces resorption of mineralized matrix both in vivo and in cell culture, and induces mild osteopetrosis in young female PTPe KO mice. Activation of Src by cyt-PTPe is dependent upon this phosphatase undergoing phosphorylation at its C-terminal Tyr-638 by partially active Src. To understand how cyt-PTPe activates Src, we screened 73 Src homology 2 (SH2) domains for binding to Tyr(P)-638 of cyt-PTPe. The SH2 domain of GRB2 bound Tyr(P)-638 of cyt-PTPe most prominently, whereas the Src SH2 domain did not bind at all, suggesting that GRB2 may link PTPe with downstream molecules. Further studies indicated that GRB2 is required for activation of Src by cyt-PTPe in osteoclast-like cells (OCLs) in culture. Overexpression of GRB2 in OCLs increased activating phosphorylation of Src at Tyr-416 and of cyt-PTPe at Tyr-638; opposite results were obtained when GRB2 expression was reduced by shRNA or by gene inactivation. Phosphorylation of cyt-PTPe at Tyr-683 and its association with GRB2 are integrin-driven processes in OCLs, and cyt-PTPe undergoes autodephosphorylation at Tyr-683, thus limiting Src activation by integrins. Reduced GRB2 expression also reduced the ability of bone marrow precursors to differentiate into OCLs and reduced the fraction of OCLs in which podosomal adhesion structures assume organization typical of active, resorbing cells. We conclude that GRB2 physically links cyt-PTPe with Src and enables cyt-PTPe to activate Src downstream of activated integrins in OCLs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Xiao, Guo-Sheng; Zhang, Yan-Hui; Wu, Wei; Sun, Hai-Ying; Wang, Yan; Li, Gui-Rong
2017-03-01
The ultra-rapidly activating delayed rectifier K + current I Kur (encoded by K v 1.5 or KCNA5) plays an important role in human atrial repolarization. The present study investigates the regulation of this current by protein tyrosine kinases (PTKs). Whole-cell patch voltage clamp technique and immunoprecipitation and Western blotting analysis were used to investigate whether the PTK inhibitors genistein, tyrphostin AG556 (AG556) and PP2 regulate human atrial I Kur and hKv1.5 channels stably expressed in HEK 293 cells. Human atrial I Kur was decreased by genistein (a broad-spectrum PTK inhibitor) and AG556 (a highly selective EGFR TK inhibitor) in a concentration-dependent manner. Inhibition of I Kur induced by 30 μM genistein or 10 μM AG556 was significantly reversed by 1 mM orthovanadate (a protein tyrosine phosphatase inhibitor). Similar results were observed in HEK 293 cells stably expressing hK v 1.5 channels. On the other hand, the Src family kinase inhibitor PP2 (1 μM) slightly enhanced I Kur and hK v 1.5 current, and the current increase was also reversed by orthovanadate. Immunoprecipitation and Western blotting analysis showed that genistein, AG556, and PP2 decreased tyrosine phosphorylation of hK v 1.5 channels and that the decrease was countered by orthovanadate. The PTK inhibitors genistein and AG556 decrease human atrial I Kur and cloned hK v 1.5 channels by inhibiting EGFR TK, whereas the Src kinase inhibitor PP2 increases I Kur and hK v 1.5 current. These results imply that EGFR TK and the soluble Src kinases may have opposite effects on human atrial I Kur . © 2017 The British Pharmacological Society.
Signal Transduction Pathways through TRK‐A and TRK‐B Receptors in Human Neuroblastoma Cells
Kuroda, Hiroshi; Horii, Yoshihiro; Moritake, Hiroshi; Tanaka, Takeo; Hattori, Seisuke
2001-01-01
Little is known about the signal transduction pathways of TRK family receptors in neuroblastoma (NB) cells. In this study, an NB cell line, designated MP‐N‐TS, was established from an adrenal tumor taken from a 2‐year‐old boy. This cell line expressed both TRK‐A and TRK‐B receptors, which is rare in a single NB cell line. Therefore, the MP‐N‐TS cell line was used to determine whether the signal transduction through these constitutive receptors is functional. Three neurotrophins, nerve growth factor (NGF), brain‐derived neurotrophic factor (BDNF) and neurotrophin‐4/ 5 (NT‐4/5), induced tyrosine phosphorylation of panTRK, and BDNF and NT‐4/5 induced tyrosine phosphorylation of TRK‐B. Tyrosine phosphorylation of panTRK and/or TRK‐B by the neurotro‐phins was inhibited in the presence of a tyrosine kinase inhibitor K252a. Tyrosine phosphorylation of Src homologous and collagen (She), extracellular signal‐regulated kinase (ERK)‐l and ERK‐2, and phospholipase C‐γl (PLC‐γl) was increased by the three neurotrophins and the increase was inhibited in the presence of K252a. Activation of Ras, detected as the GTP‐bound form of Ras, was induced by the three neurotrophins. The neurotrophins did not modulate the expressions of TRK‐A or TRK‐B mRNA, but they did induce the expression of c‐fos mRNA. Exogenous NGF induced weak neurite outgrowth, whereas exogenous BDNF and NT‐4/5 induced distinct neurite outgrowth. Exogenous BDNF and NT‐4/5 increased the number of viable cells, while NGF did not. Our results demonstrate that the signal transduction pathways through TRK‐A and TRK‐B in MP‐N‐TS cells are functional and similar, and the main downstream signaling pathways from the three neurotrophins are mitogen‐activated protein kinase (MAPK) cascades through She, activated Ras, ERK‐1 and ERK‐2, and the transduction pathway through PLC‐γl. Further, BDNF and NT‐4/5 increased cell viability. The MP‐N‐TS cell line should be useful for clarifying the TRK‐A and TRK‐B signaling pathways responsible for the different prognoses in patients with NB. PMID:11223544
Tu, Yizeng; Li, Fugang; Wu, Chuanyue
1998-01-01
Many of the protein–protein interactions that are essential for eukaryotic intracellular signal transduction are mediated by protein binding modules including SH2, SH3, and LIM domains. Nck is a SH3- and SH2-containing adaptor protein implicated in coordinating various signaling pathways, including those of growth factor receptors and cell adhesion receptors. We report here the identification, cloning, and characterization of a widely expressed, Nck-related adaptor protein termed Nck-2. Nck-2 comprises primarily three N-terminal SH3 domains and one C-terminal SH2 domain. We show that Nck-2 interacts with PINCH, a LIM-only protein implicated in integrin-linked kinase signaling. The PINCH-Nck-2 interaction is mediated by the fourth LIM domain of PINCH and the third SH3 domain of Nck-2. Furthermore, we show that Nck-2 is capable of recognizing several key components of growth factor receptor kinase-signaling pathways including EGF receptors, PDGF receptor-β, and IRS-1. The association of Nck-2 with EGF receptors was regulated by EGF stimulation and involved largely the SH2 domain of Nck-2, although the SH3 domains of Nck-2 also contributed to the complex formation. The association of Nck-2 with PDGF receptor-β was dependent on PDGF activation and was mediated solely by the SH2 domain of Nck-2. Additionally, we have detected a stable association between Nck-2 and IRS-1 that was mediated primarily via the second and third SH3 domain of Nck-2. Thus, Nck-2 associates with PINCH and components of different growth factor receptor-signaling pathways via distinct mechanisms. Finally, we provide evidence indicating that a fraction of the Nck-2 and/or Nck-1 proteins are associated with the cytoskeleton. These results identify a novel Nck-related SH2- and SH3-domain–containing protein and suggest that it may function as an adaptor protein connecting the growth factor receptor-signaling pathways with the integrin-signaling pathways. PMID:9843575
Insogna, K; Tanaka, S; Neff, L; Horne, W; Levy, J; Baron, R
1997-01-01
We and others have observed that in response to treatment with Colony Stimulating Factor-1 (CSF-1) neonatal rat osteoclasts demonstrate rapid cytoplasmic spreading. The receptor for CSF-1, c-Fms, is expressed in osteoclasts, possesses intrinsic tyrosine-kinase activity, and signals via rapid phosphorylation of selected proteins. It has been reported previously that c-Src becomes tyrosine phosphorylated following CSF-1 treatment of fibroblasts overexpressing c-Fms. We therefore examined the cellular events associated with CSF-1-induced spreading in osteoclasts and what role, if any, c-Src played in these processes. Confocal microscopic studies using phosphotyrosine (P-tyr) monoclonal antibodies demonstrated that CSF-1 induced a significant dose- and time-dependent increase in P-tyr labeling of neonatal rat osteoclasts. Phalloidin staining was consistent with partial to complete disassembly of the actin attachment ring with redistribution of actin to the spreading cytoplasmic edge of the cell. Quantitation of cellular F-actin using NBD-phallicidin confirmed a decrease in polymerized actin following exposure to CSF-1. In contrast, CSF-1 failed to induce any cytoplasmic spreading in osteoclasts isolated from mice with targeted disruption of the src gene. Further, in src- osteoclasts no well defined attachment ring could be identified. To investigate cell-signaling events associated with osteoclast spreading, detergent lysates were made from purified multinucleated osteoclast-like cells (OCLs) obtained by coculturing murine bone marrow and osteoblasts with calcitriol. Western blot analyses of lysates from control and CSF-1-treated normal cells indicated that several proteins were specifically phosphorylated in response to CSF-1, most notably proteins of 165, 60, and 85-90 kDa. Immunoprecipitation studies revealed that the 165 and 60 kDa proteins were, respectively, c-Fms and c-Src. The c-Src kinase activity was increased 2.9-fold following CSF-1 treatment. The 85-90 kDa protein is as yet unidentified. Since activated receptor tyrosine kinases may induce spreading in part by reducing phosphoinositol 4,5-bisphosphate (PIP2) binding to actin-associated proteins, a monoclonal antibody to PIP2 was used to assess the nature of PIP2 binding proteins in OCLs. Proteins of 85-90 kDa, 43 kDa, and 30 kDa were consistently demonstrated to bind PIP2. Further, the PIP2 content of the 85-90 kDa protein appeared to decrease with CSF-1 treatment. Whether this protein represents the phosphoprotein of the same M.W. is unclear. We also examined the effect of CSF-1 on the PIP2 content of alpha-actinin. Alpha-actinin showed low-level PIP2 binding, which was demonstrable only after immuno-precipitation and did not change with CSF-1 treatment. However, CSF-1 did cause a significant decline in the phosphotyrosine content of alpha-actinin. In contrast, in src- OCLs, CSF-1 induced more prolonged phosphorylation of c-Fms, and the 85-90 kDa protein was markedly hypophosphorylated. Further, alpha-actinin did not dephosphorylate in src- cells. We conclude that CSF-1-induced osteoclast spreading is accompanied by rapid reorganization of the actin cytoskeleton and phosphorylation of several cellular substrates, including c-Fms and c-Src. PIP2 binding to at least one protein appears to decrease with CSF-1 treatment, which may favor actin depolymerization. The reduced tyrosine phosphorylation of alpha-actinin could effect its ability to bind to actin. Thus c-Src may play an important role in these cellular events since in its absence, osteoclasts do not spread and signaling events downstream are altered. Whether these changes relate in part to the basal abnormalities in the cytoskeletal organization of src- osteoclasts remains to be determined.
Gao, Zhihua; Yang, Jun; Huang, Yun; Yu, Yingnian
2005-03-01
Many environmental factors, such as ultraviolet (UV) and arsenic, can induce the clustering of cell surface receptors, including epidermal growth factor receptor (EGFR). This is accompanied by the phosphorylation of the receptors and the activation of ensuing cellular signal transduction pathways, which are implicated in the various cellular responses caused by the exposure to these factors. In this study, we have shown that N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), an alkylating agent, also induced the clustering of EGFR in human amnion FL cells, which was similar in morphology to that of epidermal growth factor treatment. However, MNNG treatment did not activate Ras, the downstream mediator in EGFR signaling pathway, as compared to EGF treatment. The autophosphorylation of tyrosine residues Y1068 and Y1173 at the intracellular domain of EGFR, which is related to Ras activation under EGF treatment, was also not observed by MNNG exposure. Interestingly, although MNNG did not affect the binding of EGF to EGFR, MNNG can interfere with EGF function. For instance, pre-incubating FL cells with MNNG inhibited the autophosphorylation of EGFR by EGF treatment, as well as the activation of Ras. In addition, the phosphorylation of Y845 on EGFR by EGF, which is mediated through c-Src or related kinases but not autophosphorylation, was also affected by MNNG. Therefore, MNNG may influence the tyrosine kinase activity as well as the phosphorylation of EGFR through its interaction with EGFR.
Abudula, Abulizi; Grabbe, Annika; Brechmann, Markus; Polaschegg, Christian; Herrmann, Nadine; Goldbeck, Ingo; Dittmann, Kai; Wienands, Jürgen
2007-09-28
The family of SLPs (Src homology 2 domain-containing leukocyte adaptor proteins) are cytoplasmic signal effectors of lymphocyte antigen receptors. A main function of SLP is to orchestrate the assembly of Ca(2+)-mobilizing enzymes at the inner leaflet of the plasma membrane. For this purpose, SLP-76 in T cells utilizes the transmembrane adaptor LAT, but the mechanism of SLP-65 membrane anchoring in B cells remains an enigma. We now employed two genetic reconstitution systems to unravel structural requirements of SLP-65 for the initiation of Ca(2+) mobilization and subsequent activation of gene transcription. First, mutational analysis of SLP-65 in DT40 B cells revealed that its C-terminal Src homology 2 domain controls efficient tyrosine phosphorylation by the kinase Syk, plasma membrane recruitment, as well as downstream signaling to NFAT activation. Second, we dissected these processes by expressing SLP-65 in SLP-76-deficient T cells and found that a kinase-independent adaptor function of Syk is required to link phosphorylated SLP-65 to Ca(2+) mobilization. These approaches unmask a mechanistic complexity of SLP-65 activation and coupling to signaling cascades in that Syk is upstream as well as downstream of SLP-65. Moreover, membrane anchoring of the SLP-65-assembled Ca(2+) initiation complex, which appears to be fundamentally different from that of closely related SLP-76, does not necessarily involve a B cell-specific component.
Araujo, John C; Poblenz, Ann; Corn, Paul; Parikh, Nila U; Starbuck, Michael W; Thompson, Jerry T; Lee, Francis; Logothetis, Christopher J; Darnay, Bryant G
2009-11-01
Therapies to target prostate cancer bone metastases have only limited effects. New treatments are focused on the interaction between cancer cells, bone marrow cells and the bone matrix. Osteoclasts play an important role in the development of bone tumors caused by prostate cancer. Since Src kinase has been shown to be necessary for osteoclast function, we hypothesized that dasatinib, a Src family kinase inhibitor, would reduce osteoclast activity and prostate cancer (PC-3) cell-induced osteoclast formation. Dasatinib inhibited RANKL-induced osteoclast differentiation of bone marrow-derived monocytes with an EC(50) of 7.5 nM. PC-3 cells, a human prostate cancer cell line, were able to differentiate RAW 264.7 cells, a murine monocytic cell line, into osteoclasts, and dasatinib inhibited this differentiation. In addition, conditioned medium from PC-3 cell cultures was able to differentiate RAW 264.7 cells into osteoclasts and this too, was inhibited by dasatinib. Even the lowest concentration of dasatinib, 1.25 nmol, inhibited osteoclast differentiation by 29%. Moreover, dasatinib inhibited osteoclast activity by 58% as measured by collagen 1 release. We performed in vitro experiments utilizing the Src family kinase inhibitor dasatinib to target osteoclast activation as a means of inhibiting prostate cancer bone metastases. Dasatinib inhibits osteoclast differentiation of mouse primary bone marrow-derived monocytes and PC-3 cell-induced osteoclast differentiation. Dasatinib also inhibits osteoclast degradation activity. Inhibiting osteoclast differentiation and activity may be an effective targeted therapy in patients with prostate cancer bone metastases.
Anselm, Eric; Socorro, Vanesca Frota Madeira; Dal-Ros, Stéphanie; Schott, Christa; Bronner, Christian; Schini-Kerth, Valérie B
2009-03-01
This study determined whether the Crataegus (Hawthorn species) special extract WS 1442 stimulates the endothelial formation of nitric oxide (NO), a vasoprotective factor, and characterized the underlying mechanism. Vascular reactivity was assessed in porcine coronary artery rings, reactive oxygen species (ROS) formation in artery sections by microscopy, and phosphorylation of Akt and endothelial NO synthase (eNOS) in endothelial cells by Western blot analysis. WS 1442 caused endothelium-dependent relaxations in coronary artery rings, which were reduced by N-nitro-L-arginine (a competitive inhibitor of NO synthase) and by charybdotoxin plus apamin (two inhibitors of endothelium-derived hyperpolarizing factor-mediated responses). Relaxations to WS 1442 were inhibited by intracellular ROS scavengers and inhibitors of Src and PI3-kinase, but not by an estrogen receptor antagonist. WS 1442 stimulated the endothelial formation of ROS in artery sections, and a redox-sensitive phosphorylation of Akt and eNOS in endothelial cells. WS 1442 induced endothelium-dependent NO-mediated relaxations of coronary artery rings through the redox-sensitive Src/PI3-kinase/Akt-dependent phosphorylation of eNOS.
Qin, Bo; Zhou, Junlan
2015-01-01
Angiotensin (Ang) II is the major bioactive peptide of the renin-angiotensin system (RAS); it contributes to the pathogenesis of hypertension by inducing vascular contraction and adverse remodeling, thus elevated peripheral resistance. Ang II also activates Src family kinases (SFK) in the vascular system, which has been implicated in cell proliferation and migration. However, the role of SFK in Ang II-induced hypertension is largely unknown. In this study, we found that administration of a SFK inhibitor SU6656 markedly lowered the level of systemic BP in Ang II-treated mice, which was associated with an attenuated phosphorylation of the smooth-muscle myosin-light-chain (MLC) in the mesenteric resistant arteries. In the cultured human coronary artery smooth muscle cells (SMCs), pretreatment with SU6656 blocked Ang II-induced MLC phosphorylation and contraction. These results for the first time demonstrate that SFK directly regulate vascular contractile machinery to influence BP. Thus our study provides an additional mechanistic link between Ang II and vasoconstriction via SFK-enhanced MLC phosphorylation in SMCs, and suggests that targeted inhibition of Src may provide a new therapeutic opportunity in the treatment of hypertension.
Combining biophysical methods to analyze the disulfide bond in SH2 domain of C-terminal Src kinase.
Liu, Dongsheng; Cowburn, David
2016-01-01
The Src Homology 2 (SH2) domain is a structurally conserved protein domain that typically binds to a phosphorylated tyrosine in a peptide motif from the target protein. The SH2 domain of C-terminal Src kinase (Csk) contains a single disulfide bond, which is unusual for most SH2 domains. Although the global motion of SH2 domain regulates Csk function, little is known about the relationship between the disulfide bond and binding of the ligand. In this study, we combined X-ray crystallography, solution NMR, and other biophysical methods to reveal the interaction network in Csk. Denaturation studies have shown that disulfide bond contributes significantly to the stability of SH2 domain, and crystal structures of the oxidized and C122S mutant showed minor conformational changes. We further investigated the binding of SH2 domain to a phosphorylated peptide from Csk-binding protein upon reduction and oxidation using both NMR and fluorescence approaches. This work employed NMR, X-ray cryptography, and other biophysical methods to study a disulfide bond in Csk SH2 domain. In addition, this work provides in-depth understanding of the structural dynamics of Csk SH2 domain.
Bełtowski, Jerzy; Jazmroz-Wiśniewska, Anna
2014-01-01
Many experimental and clinical studies have demonstrated that elevated leptin concentration in patients with obesity/metabolic syndrome contributes to the pathogenesis of cardiovascular disorders including arterial hypertension, atherosclerosis, restenosis after coronary angioplasty and myocardial hypertrophy. Receptor tyrosine kinases belonging to the ErbB family, especially ErbB1 (epidermal growth factor receptor) and ErbB2 are abundantly expressed in the blood vessels and the heart. EGFR is activated not only by its multiple peptide ligands but also by many other factors including angiotensin II, endothelin-1, norepinephrine, thrombin and prorenin; the phenomenon referred to as "transactivation". Augmented EGFR signaling contributes to abnormalities of vascular tone and renal sodium handling as well as vascular remodeling and myocardial hypertrophy through various intracellular mechanisms, in particular extracellular signal-regulated kinases (ERK) and phosphoinositide 3-kinase (PI3K). Recent experimental studies indicate that chronically elevated leptin transactivates the EGFR through the mechanisms requiring reactive oxygen species and cytosolic tyrosine kinase, c-Src. In addition, hyperleptinemia increases ErbB2 activity in the arterial wall. Stimulation of EGFR and ErbB2 downstream signaling pathways such as ERK and PI3K in the vascular wall and the kidney may contribute to the increase in vascular tone, enhanced tubular sodium reabsorption as well as vascular and renal lesions in hyperleptinemic obese subjects.
2014-10-01
carcinoma with different signaling pathways characteristic of each histo- logical pattern. eIF4E-driven protein translation pathway is el - evated in...and 4EBP1 ( Epitomics ); Histone H3, AKT, and p4EBP1 (Thr37/46); pErk1/ 2 (T202/Y204), pSTAT3 (Y705), Sox2, MTA1, Src, and pSrc (Y416) (Cell Signaling
Chellaiah, Meenakshi A; Schaller, Michael D
2009-08-01
PTP-PEST is involved in the regulation of sealing ring formation in osteoclasts. In this article, we have shown a regulatory role for PTP-PEST on dephosphorylation of c-Src at Y527 and phosphorylation at Y418 in the catalytic site. Activation of Src in osteoclasts by over-expression of PTP-PEST resulted in the phosphorylation of cortactin at Y421 and WASP at Y294. Also enhanced as a result, is the interaction of Src, cortactin, and Arp2 with WASP. Moreover, the number of osteoclasts displaying sealing ring and bone resorbing activity was increased in response to PTP-PEST over-expression as compared with control osteoclasts. Cells expressing constitutively active-Src (527YDeltaF) simulate the effects mediated by PTP-PEST. Treatment of osteoclasts with a bisphosphonate alendronate or a potent PTP inhibitor PAO decreased the activity and phosphorylation of Src at Y418 due to reduced dephosphorylation state at Y527. Therefore, Src-mediated phosphorylation of cortactin and WASP as well as the formation of WASP.cortactin.Arp2 complex and sealing ring were reduced in these osteoclasts. Similar effects were observed in osteoclasts treated with an Src inhibitor PP2. We have shown that bisphosphonates could modulate the function of osteoclasts by inhibiting downstream signaling mediated by PTP-PEST/Src, in addition to its effect on the inhibition of the post-translational modification of small GTP-binding proteins such as Rab, Rho, and Rac as shown by others. The promising effects of the inhibitors PP2 and PAO on osteoclast function suggest a therapeutic approach for patients with bone metastases and osteoporosis as an alternative to bisphosphonates.
Endo, Akinori; Ly, Tony; Pippa, Raffaella; Bensaddek, Dalila; Nicolas, Armel; Lamond, Angus I
2017-01-06
Tumor invasion into surrounding stromal tissue is a hallmark of high grade, metastatic cancers. Oncogenic transformation of human epithelial cells in culture can be triggered by activation of v-Src kinase, resulting in increased cell motility, invasiveness, and tumorigenicity and provides a valuable model for studying how changes in gene expression cause cancer phenotypes. Here, we show that epithelial cells transformed by activated Src show increased levels of DNA methylation and that the methylation inhibitor 5-azacytidine (5-AzaC) potently blocks the increased cell motility and invasiveness induced by Src activation. A proteomic screen for chromatin regulators acting downstream of activated Src identified the replication-dependent histone chaperone CAF1 as an important factor for Src-mediated increased cell motility and invasion. We show that Src causes a 5-AzaC-sensitive decrease in both mRNA and protein levels of the p150 (CHAF1A) and p60 (CHAF1B), subunits of CAF1. Depletion of CAF1 in untransformed epithelial cells using siRNA was sufficient to recapitulate the increased motility and invasive phenotypes characteristic of transformed cells without activation of Src. Maintaining high levels of CAF1 by exogenous expression suppressed the increased cell motility and invasiveness phenotypes when Src was activated. These data identify a critical role of CAF1 in the dysregulation of cell invasion and motility phenotypes seen in transformed cells and also highlight an important role for epigenetic remodeling through DNA methylation for Src-mediated induction of cancer phenotypes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Lamoral-Theys, Delphine; Wauthoz, Nathalie; Heffeter, Petra; Mathieu, Véronique; Jungwirth, Utte; Lefranc, Florence; Nève, Jean; Dubois, Jacques; Dufrasne, François; Amighi, Karim; Berger, Walter; Gailly, Philippe; Kiss, Robert
2012-01-01
Abstract Cancer cells exhibit de-regulation of multiple cellular signalling pathways and treatments of various types of cancers with polyphenols are promising. We recently reported the synthesis of a series of 33 novel divanillic and trivanillic polyphenols that displayed anticancer activity, at least in vitro, through inhibiting various kinases. This study revealed that minor chemical modifications of a trivanillate scaffold could convert cytotoxic compounds into cytostatic ones. Compound 13c, a tri-chloro derivative of trivanillic ester, displayed marked inhibitory activities against FGF-, VEGF-, EGF- and Src-related kinases, all of which are implicated not only in angiogenesis but also in the biological aggressiveness of various cancer types. The pan-anti-kinase activity of 13c occurs at less than one-tenth of its mean IC50in vitro growth inhibitory concentrations towards a panel of 12 cancer cell lines. Of the 26 kinases for which 13c inhibited their activity by >75%, eight (Yes, Fyn, FGF-R1, EGFR, Btk, Mink, Ret and Itk) are implicated in control of the actin cytoskeleton organization to varying degrees. Compound 13c accordingly impaired the typical organization of the actin cytoskeleton in human U373 glioblastoma cells. The pan-anti-kinase activity and actin cytoskeleton organization impairment provoked by 13c concomitantly occurs with calcium homeostasis impairment but without provoking MDR phenotype activation. All of these anticancer properties enabled 13c to confer therapeutic benefits in vivo in a mouse melanoma pseudometastatic lung model. These data argue in favour of further chemically modifying trivanillates to produce novel and potent anticancer drugs. PMID:21810170