NASA Astrophysics Data System (ADS)
Kushnir, Yochanan; Lau, Ngar-Cheung
1992-04-01
A general circulation model was integrated with perpetual January conditions and prescribed sea surface temperature (SST) anomalies in the North Pacific. A characteristic pattern with a warm region centered northeast of Hawaii and a cold region along the western seaboard of North America was alternately added to and subtracted from the climatological SST field. Long 1350-day runs, as well as short 180-day runs, each starting from different initial conditions, were performed. The results were compared to a control integration with climatological SSTs.The model's quasi-stationary response does not exhibit a simple linear relationship with the polarity of the prescribed SST anomaly. In the short runs with a negative SST anomaly over the central ocean, a large negative height anomaly, with an equivalent barotropic vertical structure, occurs over the Gulf of Alaska. For the same SST forcing, the long run yields a different response pattern in which an anomalous high prevails over northern Canada and the Alaskan Peninsula. A significant reduction in the northward heat flux associated with baroclinic eddies and a concomitant reduction in convective heating occur along the model's Pacific storm track. In the runs with a positive SST anomaly over the central ocean, the average height response during the first 90-day period of the short runs is too weak to be significant. In the subsequent 90-day period and in the long run an equivalent barotropic low occurs downstream from the warm SST anomaly. All positive anomaly runs exhibit little change in baroclinic eddy activity or in the patterns of latent heat release. Horizontal momentum transports by baroclinic eddies appear to help sustain the quasi-stationary response in the height field regardless of the polarity of the SST anomaly. These results emphasize the important role played by baroclinic eddies in determining the quasi-stationary response to midlatitude SST anomalies. Differences between the response patterns of the short and long integrations may be relevant to future experimental design for studying air-sea interactions in the extratropies.
NASA Astrophysics Data System (ADS)
Nobre, Paulo; Srukla, J.
1996-10-01
Empirical orthogonal functions (E0Fs) and composite analyses are used to investigate the development of sea surface temperature (SST) anomaly patterns over the tropical Atlantic. The evolution of large-scale rainfall anomaly patterns over the equatorial Atlantic and South America are also investigated. 71e EOF analyses revealed that a pattern of anomalous SST and wind stress asymmetric relative to the equator is the dominant mode of interannual and longer variability over the tropical Atlantic. The most important findings of this study are as follows.Atmospheric circulation anomalies precede the development of basinwide anomalous SST patterns over the tropical Atlantic. Anomalous SST originate off the African coast simultaneously with atmospheric circulation anomalies and expand westward afterward. The time lag between wind stress relaxation (strengthening) and maximum SST warming (cooling) is about two months.Anomalous atmospheric circulation patterns over northern tropical Atlantic are phase locked to the seasonal cycle. Composite fields of SLP and wind stress over northern tropical Atlantic can be distinguished from random only within a few months preceding the March-May (MAM) season. Observational evidence is presented to show that the El Niño-Southern Oscillation phenomenon in the Pacific influences atmospheric circulation and SST anomalies over northern tropical Atlantic through atmospheric teleconnection patterns into higher latitudes of the Northern Hemisphere.The well-known droughts over northeastern Brazil (Nordeste) are a local manifestation of a much larger-scale rainfall anomaly pattern encompassing the whole equatorial Atlantic and Amazon region. Negative rainfall anomalies to the south of the equator during MAM, which is the rainy season for the Nordeste region, are related to an early withdrawal of the intertropical convergence zone toward the warm SST anomalies over the northern tropical Atlantic. Also, it is shown that precipitation anomalies over southern and northern parts of the Nordeste are out of phase: drought years over the northern Nordeste are commonly preceded by wetter years over the southern Nordeste, and vice versa.
Sensitivity of Asian Summer Monsoon precipitation to tropical sea surface temperature anomalies
NASA Astrophysics Data System (ADS)
Fan, Lei; Shin, Sang-Ik; Liu, Zhengyu; Liu, Qinyu
2016-10-01
Sensitivity of Asian Summer Monsoon (ASM) precipitation to tropical sea surface temperature (SST) anomalies was estimated from ensemble simulations of two atmospheric general circulation models (GCMs) with an array of idealized SST anomaly patch prescriptions. Consistent sensitivity patterns were obtained in both models. Sensitivity of Indian Summer Monsoon (ISM) precipitation to cooling in the East Pacific was much weaker than to that of the same magnitude in the local Indian-western Pacific, over which a meridional pattern of warm north and cold south was most instrumental in increasing ISM precipitation. This indicates that the strength of the ENSO-ISM relationship is due to the large-amplitude East Pacific SST anomaly rather than its sensitivity value. Sensitivity of the East Asian Summer Monsoon (EASM), represented by the Yangtze-Huai River Valley (YHRV, also known as the meiyu-baiu front) precipitation, is non-uniform across the Indian Ocean basin. YHRV precipitation was most sensitive to warm SST anomalies over the northern Indian Ocean and the South China Sea, whereas the southern Indian Ocean had the opposite effect. This implies that the strengthened EASM in the post-Niño year is attributable mainly to warming of the northern Indian Ocean. The corresponding physical links between these SST anomaly patterns and ASM precipitation were also discussed. The relevance of sensitivity maps was justified by the high correlation between sensitivity-map-based reconstructed time series using observed SST anomaly patterns and actual precipitation series derived from ensemble-mean atmospheric GCM runs with time-varying global SST prescriptions during the same period. The correlation results indicated that sensitivity maps derived from patch experiments were far superior to those based on regression methods.
NASA Astrophysics Data System (ADS)
Yuan, Tianle; Oreopoulos, Lazaros; Platnick, Steven E.; Meyer, Kerry
2018-05-01
Modeling studies have shown that cloud feedbacks are sensitive to the spatial pattern of sea surface temperature (SST) anomalies, while cloud feedbacks themselves strongly influence the magnitude of SST anomalies. Observational counterparts to such patterned interactions are still needed. Here we show that distinct large-scale patterns of SST and low-cloud cover (LCC) emerge naturally from objective analyses of observations and demonstrate their close coupling in a positive local SST-LCC feedback loop that may be important for both internal variability and climate change. The two patterns that explain the maximum amount of covariance between SST and LCC correspond to the Interdecadal Pacific Oscillation and the Atlantic Multidecadal Oscillation, leading modes of multidecadal internal variability. Spatial patterns and time series of SST and LCC anomalies associated with both modes point to a strong positive local SST-LCC feedback. In many current climate models, our analyses suggest that SST-LCC feedback strength is too weak compared to observations. Modeled local SST-LCC feedback strength affects simulated internal variability so that stronger feedback produces more intense and more realistic patterns of internal variability. To the extent that the physics of the local positive SST-LCC feedback inferred from observed climate variability applies to future greenhouse warming, we anticipate significant amount of delayed warming because of SST-LCC feedback when anthropogenic SST warming eventually overwhelm the effects of internal variability that may mute anthropogenic warming over parts of the ocean. We postulate that many climate models may be underestimating both future warming and the magnitude of modeled internal variability because of their weak SST-LCC feedback.
Early summer southern China rainfall variability and its oceanic drivers
NASA Astrophysics Data System (ADS)
Li, Weijing; Ren, Hong-Chang; Zuo, Jinqing; Ren, Hong-Li
2018-06-01
Rainfall in southern China reaches its annual peak in early summer (May-June) with strong interannual variability. Using a combination of observational analysis and numerical modeling, the present study investigates the leading modes of this variability and its dynamic drivers. A zonal dipole pattern termed the southern China Dipole (SCD) is found to be the dominant feature in early summer during 1979-2014, and is closely related to a low-level anomalous anticyclone over the Philippine Sea (PSAC) and a Eurasian wave-train pattern over the mid-high latitudes. Linear regressions based on observations and numerical experiments using the CAM5 model suggest that the associated atmospheric circulation anomalies in early summer are linked to decaying El Niño-Southern Oscillation-like sea surface temperature (SST) anomalies in the tropical Pacific, basin-scale SST anomalies in the tropical Indian Ocean, and meridional tripole-like SST anomalies in the North Atlantic in the previous winter to early summer. The tropical Pacific and Indian Ocean SST anomalies primarily exert an impact on the SCD through changing the polarity of the PSAC, while the North Atlantic tripole-like SST anomalies mainly exert a downstream impact on the SCD by inducing a Eurasian wave-train pattern. The North Atlantic tripole-like SST anomalies also make a relatively weak contribution to the variations of the PSAC and SCD through a subtropical teleconnection. Modeling results indicate that the three-basin combined forcing has a greater impact on the SCD and associated circulation anomalies than the individual influence from any single oceanic basin.
What drove the Pacific and North America climate anomalies in winter 2014/15?
NASA Astrophysics Data System (ADS)
Peng, Peitao; Kumar, Arun; Hu, Zeng-Zhen
2017-12-01
In late 2014 and early 2015, the canonical atmospheric response to the El Niño and Southern Oscillation (ENSO) event was not observed in the central and eastern equatorial Pacific, although Niño3.4 index exceeded the threshold for a weak El Niño. In an effort to understand why it was so, this study deconvoluted the observed 2014/15 December-January-February (DJF) mean sea surface temperature (SST), precipitation and 200 hPa stream function anomalies into the leading patterns related to the principal components of DJF SST variability. It is noted that the anomalies of these variables were primarily determined by the patterns related to two SST modes: one is the North Pacific mode (NPM), and the other the ENSO mode. The NPM was responsible for the apparent lack of coupled air-sea relationship in the central equatorial Pacific and the east-west structure of the circulation anomalies over North America, while the ENSO mode linked to SSTs in the central and eastern equatorial Pacific as well as the circulation in the central equatorial Pacific. Further, the ENSO signal in DJF 2014/15 likely evolved from the NPM pattern in winter 2013/14. Its full development, however, was impeded by the easterly anomalies in the central equatorial Pacific that was associated with negative SST anomalies in the southeastern subtropical Pacific. In addition, the analyses also indicates that the SST anomalies in the Niño3.4 region alone were not adequate for capturing the coupling of oceanic and atmospheric anomalies in the tropical Pacific, due to the fact that this index cannot distinguish whether the SST anomaly in the Niño3.4 region is associated with the ENSO mode or NPM, or both.
Equilibrium Atmospheric Response to North Atlantic SST Anomalies.
NASA Astrophysics Data System (ADS)
Kushnir, Yochanan; Held, Isaac M.
1996-06-01
The equilibrium general circulation model (GCM) response to sea surface temperature (SST) anomalies in the western North Atlantic region is studied. A coarse resolution GCM, with realistic lower boundary conditions including topography and climatological SST distribution, is integrated in perpetual January and perpetual October modes, distinguished from one another by the strength of the midlatitude westerlies. An SST anomaly with a maximum of 4°C is added to the climatological SST distribution of the model with both positive and negative polarity. These anomaly runs are compared to one another, and to a control integration, to determine the atmospheric response. In all cases warming (cooling) of the midlatitude ocean surface yields a warming (cooling) of the atmosphere over and to the east of the SST anomaly center. The atmospheric temperature change is largest near the surface and decreases upward. Consistent with this simple thermal response, the geopotential height field displays a baroclinic response with a shallow anomalous low somewhat downstream from the warm SST anomaly. The equivalent barotropic, downstream response is weak and not robust. To help interpret the results, the realistic GCM integrations are compared with parallel idealized model runs. The idealized model has full physics and a similar horizontal and vertical resolution, but an all-ocean surface with a single, permanent zonal asymmetry. The idealized and realistic versions of the GCM display compatible response patterns that are qualitatively consistent with stationary, linear, quasigeostrophic theory. However, the idealized model response is stronger and more coherent. The differences between the two model response patterns can be reconciled based on the size of the anomaly, the model treatment of cloud-radiation interaction, and the static stability of the model atmosphere in the vicinity of the SST anomaly. Model results are contrasted with other GCM studies and observations.
Midlatitude atmosphere-ocean interaction during El Nino. Part I. The north Pacific ocean
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, M.A.
Atmosphere-ocean modeling experiments are used to investigate the formation of sea surface temperature (SST) anomalies in the North Pacific Ocean during fall and winter of the El Nino year. Experiments in which the NCAR Community Climate Model (CCM) surface fields are used to force a mixed-layer ocean model in the North Pacific (no air-sea feedback) are compared to simulations in which the CCM and North Pacific Ocean model are coupled. Anomalies in the atmosphere and the North Pacific Ocean during El Nino are obtained from the difference between simulations with and without prescribed warm SST anomalies in the tropical Pacific.more » In both the forced and coupled experiments, the anomaly pattern resembles a composite of the actual SST anomaly field during El Nino: warm SSTs develop along the coast of North America and cold SSTs form in the central Pacific. In the coupled simulations, air-sea interaction results in a 25% to 50% reduction in the magnitude of the SST and mixed-layer depth anomalies, resulting in more realistic SST fields. Coupling also decreases the SST anomaly variance; as a result, the anomaly centers remain statistically significant even though the magnitude of the anomalies is reduced. Three additional sensitivity studies indicate that air-sea feedback and entrainment act to damp SST anomalies while Ekman pumping has a negligible effect on mixed-layer depth and SST anomalies in midatitudes.« less
NASA Astrophysics Data System (ADS)
Mehta, Vikram M.
1998-09-01
Gridded time series from the Global Ocean Surface Temperature Atlas were analyzed with a variety of techniques to identify spatial structures and oscillation periods of the tropical Atlantic sea surface temperature (SST) variations at decadal timescales, and to develop physical interpretations of statistical patterns of decadal SST variations. Each time series was 110 yr (1882-1991) long. The tropical Atlantic SST variations were compared with decadal variations in a 74-yr-long (1912-85) north Nordeste Brazil rainfall time series and a 106-yr-long (1886-1991) tropical Atlantic cyclone activity index time series. The tropical Atlantic SST variations were also compared with decadal variations in the extratropical Atlantic SST.Multiyear to multidecadal variations in the cross-equatorial dipole pattern identified as a dominant empirical pattern of the tropical Atlantic SST variations in earlier and present studies are shown to be variations in the approximately north-south gradient of SST anomalies. It is also shown that there was no dynamical-thermodynamical, dipole mode of SST variations during the analysis period. There was a distinct decadal timescale (12-13 yr) of SST variations in the tropical South Atlantic, whereas no distinct decadal timescale was found in the tropical North Atlantic SST variations. Approximately 80% of the coherent decadal variance in the cross-equatorial SST gradient was `explained' by coherent decadal oscillations in the tropical South Atlantic SSTs. There were three, possibly physical, modes of decadal variations in the tropical Atlantic SSTs during the analysis period. In the more energetic mode of the North Atlantic decadal SST variations, anomalies traveled into the tropical North Atlantic from the extratropical North Atlantic along the eastern boundary of the basin. The anomalies strengthened and resided in the tropical North Atlantic for several years, then frequently traveled northward into the mid-high-latitude North Atlantic along the western boundary of the basin, and completed a clockwise rotation around the North Atlantic basin. In the less energetic North Atlantic decadal mode, SST anomalies originated in the tropical-subtropical North Atlantic near the African coast, and traveled northwestward and southward. In the South Atlantic decadal SST mode, anomalies either developed in situ or traveled into the tropical South Atlantic from the subtropical South Atlantic along the eastern boundary of the basin. The anomalies strengthened and resided in the tropical South Atlantic for several years, then frequently traveled southward into the subtropical South Atlantic along the western boundary of the basin, and completed a counterclockwise rotation around the South Atlantic basin. These decadal modes were not a permanent feature of the tropical Atlantic SST variations. The tropical North and South Atlantic SST anomalies frequently extended across the equator. Uncorrelated alignments of decadal SST anomalies having opposite signs on two sides of the equator occasionally created the apperance of a dipole.Independent analyses of the north Nordeste Brazil rainfall showed physical consistency and high coherence with the cross-equatorial SST gradient oscillations at 12-13-yr period. The tropical Atlantic cyclone index showed physical consistency but moderate coherence with the tropical North Atlantic decadal SST variations. The quasi-regularity of the 12-13-yr oscillations in the cross-equatorial SST gradient may provide an opportunity for long lead-time, skillful predictions of climate anomalies in the tropical Atlantic sector.
NASA Technical Reports Server (NTRS)
Lau, K. M.; Weng, Heng-Yi
1999-01-01
A growing number of evidence indicates that there are coherent patterns of variability in sea surface temperature (SST) anomaly not only at interannual timescales, but also at decadal-to-inter-decadal timescale and beyond. The multi-scale variabilities of SST anomaly have shown great impacts on climate. In this work, we analyze multiple timescales contained in the globally averaged SST anomaly with and their possible relationship with the summer and winter rainfall in the United States over the past four decades.
NASA Astrophysics Data System (ADS)
Wen, Zhiping; Guo, Yuanyuan; Wu, Renguang
2017-04-01
The leading mode of boreal spring precipitation variability over the tropical Pacific experienced a pronounced interdecadal change around the late 1990s. The pattern before 1998 features positive precipitation anomalies over the equatorial eastern Pacific (EP) with positive principle component years. The counterpart after 1998 exhibits a westward shift of the positive center to the equatorial central Pacific (CP). Observational evidence shows that this interdecadal change in the leading mode of precipitation variability is closely associated with a distinctive sea surface temperature (SST) anomaly pattern. The westward shift of the anomalous precipitation center after 1998 is in tandem with a similar shift of maximum warming from the EP to CP. Diagnostic analyses based on a linear equation of the mixed layer temperature anomaly exhibit that an interdecadal enhancement of zonal advection (ZA) feedback process plays a vital role in the shift in the leading mode of both the tropical Pacific SST and the precipitation anomaly during spring. Moreover, the variability of the anomalous zonal current at the upper ocean dominates the ZA feedback change, while the mean zonal SST gradient associated with a La Niña-like pattern of the mean state only accounts for a relatively trivial proportion of the ZA feedback change. It was found that both the relatively rapid decaying of the SST anomalies in the EP and the La Niña-like mean state make it conceivable that the shift of the leading mode of the tropical precipitation anomaly only occurs in spring. In addition, the largest variance of the anomalous zonal current in spring might contribute to the unique interdecadal change in the tropical spring precipitation anomaly pattern.
NASA Technical Reports Server (NTRS)
Ose, Tomoaki; Mechoso, Carlos; Halpern, David
1994-01-01
Simulations with the UCLA atmospheric general circulation model (AGCM) using two different global sea surface temperature (SST) datasets for January 1979 are compared. One of these datasets is based on Comprehensive Ocean-Atmosphere Data Set (COADS) (SSTs) at locations where there are ship reports, and climatology elsewhere; the other is derived from measurements by instruments onboard NOAA satellites. In the former dataset (COADS SST), data are concentrated along shipping routes in the Northern Hemisphere; in the latter dataset High Resolution Infrared Sounder (HIRS SST), data cover the global domain. Ensembles of five 30-day mean fields are obtained from integrations performed in the perpetual-January mode. The results are presented as anomalies, that is, departures of each ensemble mean from that produced in a control simulation with climatological SSTs. Large differences are found between the anomalies obtained using COADS and HIRS SSTs, even in the Northern Hemisphere where the datasets are most similar to each other. The internal variability of the circulation in the control simulation and the simulated atmospheric response to anomalous forcings appear to be linked in that the pattern of geopotential height anomalies obtained using COADS SSTs resembles the first empirical orthogonal function (EOF 1) in the control simulation. The corresponding pattern obtained using HIRS SSTs is substantially different and somewhat resembles EOF 2 in the sector from central North America to central Asia. To gain insight into the reasons for these results, three additional simulations are carried out with SST anomalies confined to regions where COADS SSTs are substantially warmer than HIRS SSTs. The regions correspond to warm pools in the northwest and northeast Pacific, and the northwest Atlantic. These warm pools tend to produce positive geopotential height anomalies in the northeastern part of the corresponding oceans. Both warm pools in the Pacific produce large-scale circulation anomalies with a pattern that resembles that obtained using COADS SSTs as well as EOF 1 of the control simulation; the warm pool in the Atlantic does not. These results suggest that the differences obtained with COADS SSTs and HIRS SSTs are mostly due to the differences in the datasets over the northern Pacific. There was a blocking episode near Greenland in late January 1979. Both simulations with warm SST anomalies over the northwest and northeast Pacific show a tendency toward increased incidence of North Atlantic blocking; the simulation with warm SST anomalies over the northwest Atlantic shows a tendency toward decreased incidence. These results suggest that features in both SST datasets that do not have a counterpart in the other dataset contribute signficantly to the differences between the simulated and observed fields. The results of this study imply that uncertainties in current SST distributions for the world oceans can be as important as the SST anomalies themselves in terms of their impact on the atmospheric circulation. Caution should be exercised, therefore, when linking anomalous circulation and SST patterns, especially in long-range prediction.
Combined effects of recent Pacific cooling and Indian Ocean warming on the Asian monsoon.
Ueda, Hiroaki; Kamae, Youichi; Hayasaki, Masamitsu; Kitoh, Akio; Watanabe, Shigeru; Miki, Yurisa; Kumai, Atsuki
2015-11-13
Recent research indicates that the cooling trend in the tropical Pacific Ocean over the past 15 years underlies the contemporaneous hiatus in global mean temperature increase. During the hiatus, the tropical Pacific Ocean displays a La Niña-like cooling pattern while sea surface temperature (SST) in the Indian Ocean has continued to increase. This SST pattern differs from the well-known La Niña-induced basin-wide cooling across the Indian Ocean on the interannual timescale. Here, based on model experiments, we show that the SST pattern during the hiatus explains pronounced regional anomalies of rainfall in the Asian monsoon region and thermodynamic effects due to specific humidity change are secondary. Specifically, Indo-Pacific SST anomalies cause convection to intensify over the tropical western Pacific, which in turn suppresses rainfall in mid-latitude East Asia through atmospheric teleconnection. Overall, the tropical Pacific SST effect opposes and is greater than the Indian Ocean SST effect.
NASA Astrophysics Data System (ADS)
Pampuch, L.; Ambrizzi, T.
2012-12-01
The Southeast region of Brazil comprises the states of Sao Paulo, Minas Gerais, Rio de Janeiro and Espirito Santo. It occupies 10.85% of Brazilian territory and is highly urbanized. The Southeast Brazil is the biggest geoeconomic region of the country having a strong and diverse economy. Agriculture dominates in all states of the region. The main agricultural products are sugar cane, coffee, cotton, maize, cassava, rice, beans and fruits. Livestock farming is also practiced in the region. The largest herd of cattle is found in the state of Minas Gerais. These activities are highly dependent on the amount and distribution of rainfall. Studies of extreme precipitation events over Brazil have been well emphasized in the literature over the years and their relationship with anomalies of sea surface temperature (SST) in both the Pacific and the Atlantic Ocean have been analyzed. This paper investigates the extreme events occurring in southeastern Brazil from 1982 to 2004 using the technique of quantiles. The composite technique was applied to precipitation, sea level pressure anomaly (SLP) and sea surface temperature anomaly (SST) data in order to investigate the characteristics of rainfall patterns, the position and intensity of South Atlantic subtropical high (SASH) and SST anomalies in the Southern Atlantic Ocean (SAO) in the occurrence of these events and to make a distinction between dry and wet extremes. Analyzing the precipitation patterns, it was noticed that the composition of dry events throughout the Southeast Brazil has negative precipitation anomalies. Particularly, in the southern part of the region there is a large precipitation deficit, having an average of 50mm in the winter months. The composition for the wet events shows that, on average, positive precipitation anomalies with the southern region containing the highest cumulative average, reaching a positive anomaly of 100mm. The composition of SLP in the case of dry events indicates a positive anomaly of pressure on SAO close to the South America continent and a negative anomaly far from the continent. This configuration might represent a southwest movement of the SASH. For the wet events composition is possible to note an opposite configuration: an negative anomaly is seen near the South American continent and a positive one is away of it. Such a configuration may represent a weakening of SASH and a shift to northeast part of the SAO. In the composition of the SST anomalies is possible to note a different pattern for both cases with regard to the tropical Pacific, indicating that in dry years an El Niño pattern is evident and during the wet years a La Niña pattern prevails. On the other hand, for the SAO, colder SST anomalies in the dry years was observed next to the coast of South America, and during the rainy years a positive anomaly was observed away from the continent.
NASA Astrophysics Data System (ADS)
Otomi, Y.; Tachibana, Y.; Nakamura, T.
2012-12-01
In 2010, the Northern Hemisphere, in particular Russia, Europe and Japan, experienced an abnormally hot summer characterized by record-breaking warm temperatures and associated with a strongly positive Arctic Oscillation (AO). In contrast, in winter 2009/2010, the continent suffered from anomalously cold weather associated with a record-breaking negative AO. The winter-to-summer of the AO index during 2009/2010 evolved as follows: a strongly negative wintertime AO index continued until May, after which it abruptly changed, becoming strongly positive in July and continuing so until the beginning of August. The abrupt change of the AO index from strongly negative to strongly positive in 2010 thus corresponded to the change from the abnormally cold winter of 2009/2010 to the abnormally hot summer of 2010, which shows that the AO index is a good indicator of abnormal weather on a planetary-scale, and that extra-seasonal prediction of the AO is a key to long-term forecasting. In this study, we therefore aimed to examine the cause of the 2010 change in the AO index from strongly negative to strongly positive. We suggest that an oceanic memory of the strongly negative wintertime AO may have influenced the strongly positive summertime AO. The winter sea surface temperatures (SST) in the North Atlantic Ocean showed a tripolar anomaly pattern which is warm SST anomalies over the tropics and high latitudes and cold SST anomalies over the midlatitudes. The strongly negative wintertime AO would cause the warm SST anomaly in this region. The warm SST anomalies continued into summer 2010 because of the large oceanic heat capacity. In May and June, the heat flux anomaly changed from downward to upward in the tropics, and in July and August, the center of the upward anomaly moved westward. The area of the upward heat flux anomaly coincided with the area of the warm SST anomaly from May to August. The numerical model experiment showed that the tripolar SST pattern resulted in an anomalous height and wind pattern that caused a blocking high over Europe. The observed wave activity flux also seems to emanate from Europe. This midlatitude atmospheric response implies that strengthening of the positive geopotential anomalies over Europe was associated with the Atlantic tripolar SST anomaly. The positive geopotential anomaly in the area of the polar jet stream caused eastward propagation of Rossby waves, and the exceeding amplification of Rossby waves might have led to the formation of blocking anticyclones. As a consequence of these interactions, the positive AO pressure pattern can continue for a long time. Thus, a possible cause of the AO polarity reversal might be the "memory" of the negative winter AO in the North Atlantic Ocean, suggesting an interseasonal linkage of the AO in which the oceanic memory of a wintertime negative AO induces a positive AO in the following summer. Understanding of this interseasonal linkage may aid in the long-term prediction of such abnormal summer events. If this reversal pattern recurs, it might be possible to predict the summertime AO from the wintertime AO. Main parts of this study were published in Climatic Dynamics by Otomi et al, (2012).
Global sea surface temperature (SST) anomalies have a demonstrable effect on vegetation dynamics and precipitation patterns throughout the continental U.S. SST variations have been correlated with greenness (vegetation densities) and precipitation via ocean-atmospheric interactio...
The possible physical mechanism for the EAP-SR co-action
NASA Astrophysics Data System (ADS)
Gong, Zhiqiang; Feng, Guolin; Dogar, Muhammad Mubashar; Huang, Gang
2017-11-01
The anomalous characteristics of summer precipitation and atmospheric circulation in the East Asia-West Pacific Region (EA-WP) associated with the co-action of East Asia/Pacific teleconnection-Silk Road teleconnection (EAP-SR) are investigated in this study. The compositions of EAP-SR phase anomalies can be expressed as pattern I (+ +), pattern II (+ -), pattern III (- -), and pattern IV (- +) using EAP and SR indices. It is found that the spatial distribution of summer precipitation anomalies in EA-WP corresponding to pattern I (III) shows a tripole structure in the meridional direction and a zonal dipole structure in the subtropical region, while pattern II (IV) presents a tripole pattern in meridional direction with compressed and continuous anomalies in the zonal direction over the subtropical region. The similar meridional and zonal structures are also found in the geopotential height anomalies at 500-hPa, as well as wind anomalies and moisture convergence at 850-hPa. Finally, a schematic mechanism for the EAP-SR co-action upon the summer precipitation in EA-WP is built: (1) Pattern I (III) exhibits that the negative (positive) sea surface temperature (SST) anomalies over tropical East Pacific may cause the enhanced (weakened) convective activity dominating the West Pacific, trigger the positive (negative) EAP teleconnection and produce more (less) precipitation. Besides, the negative (positive) SST anomalies over the Indonesia Maritime Continent (IMC) may further weaken (strengthen) anomalous downward (upward) motion over the South China Sea (SCS), cause negative (positive) geopotential height anomalies at the middle troposphere and surrounding regions through the function of the tropical Hadley circulation. Then the negative (positive) geopotential height anomalies could motivate the positive (negative) EAP teleconnection through the northward propagation of wave-activity perturbation. Meanwhile, a positive (negative) geopotential height anomalous pattern over Eastern Europe motivates a Rossby wave train propagation from Western Europe to west-central Asia. This circumstance can cause suppressed (enhanced) convection and less (more) precipitation over northwestern India and Pakistan, which could strengthen the negative (positive) geopotential height and positive (negative) vorticity anomalies over central East Asia, resulting in a negative (positive) SR teleconnection along the Asian jet stream. A positive (negative) lobe over the Korean Peninsula and Japan corresponding to SR overlaps with a positive (negative) lobe of EAP, which strengthens the anomalous phase contrast on both sides of 120°E. Accordingly, summer precipitation anomalies in EA-WP exhibit the meridional tripole pattern and the zonal dipole pattern. (2) Pattern II (IV) indicates that the normal SST anomalies over the tropical East Pacific cause the weak tele-impact on the tropical West Pacific, while the positive (negative) SST anomalies over the IMC will lead to a negative (positive) lobe of EAP over the subtropical region. This circumstance can weaken the positive (negative) lobe of SR over subtropical region, causing compressed and continuous negative (positive) anomalies of 500-hPa geopotential height and positive (negative) surface precipitation anomalies from central East China to Japan.
NASA Technical Reports Server (NTRS)
Mehta, Vikram M.; Delworth, Thomas
1995-01-01
Sea surface temperature (SST) variability was investigated in a 200-yr integration of a global model of the coupled oceanic and atmospheric general circulations developed at the Geophysical Fluid Dynamics Laboratory (GFDL). The second 100 yr of SST in the coupled model's tropical Atlantic region were analyzed with a variety of techniques. Analyses of SST time series, averaged over approximately the same subregions as the Global Ocean Surface Temperature Atlas (GOSTA) time series, showed that the GFDL SST anomalies also undergo pronounced quasi-oscillatory decadal and multidecadal variability but at somewhat shorter timescales than the GOSTA SST anomalies. Further analyses of the horizontal structures of the decadal timescale variability in the GFDL coupled model showed the existence of two types of variability in general agreement with results of the GOSTA SST time series analyses. One type, characterized by timescales between 8 and 11 yr, has high spatial coherence within each hemisphere but not between the two hemispheres of the tropical Atlantic. A second type, characterized by timescales between 12 and 20 yr, has high spatial coherence between the two hemispheres. The second type of variability is considerably weaker than the first. As in the GOSTA time series, the multidecadal variability in the GFDL SST time series has approximately opposite phases between the tropical North and South Atlantic Oceans. Empirical orthogonal function analyses of the tropical Atlantic SST anomalies revealed a north-south bipolar pattern as the dominant pattern of decadal variability. It is suggested that the bipolar pattern can be interpreted as decadal variability of the interhemispheric gradient of SST anomalies. The decadal and multidecadal timescale variability of the tropical Atlantic SST, both in the actual and in the GFDL model, stands out significantly above the background 'red noise' and is coherent within each of the time series, suggesting that specific sets of processes may be responsible for the choice of the decadal and multidecadal timescales. Finally, it must be emphasized that the GFDL coupled ocean-atmosphere model generates the decadal and multidecadal timescale variability without any externally applied force, solar or lunar, at those timescales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, S.; Mysak, L.A.
The spatial distributions of northern North Atlantic sea surface temperature and the high-latitude Northern Hemisphere sea level pressure anomalies averaged over six consecutive warm SST winters (1951-1956) and six consecutive cold SST winters (1971-1976) are examined. Three SLP anomaly difference (i.e., warm - cold winters) centers, significant at the 5% level, are observed over the northern North Atlantic, Europe, and western Siberia. This anomaly pattern is consistent in principle with what was identified in a related analyses by Palmer and Sun, who used composite data from selected winter months. The SLP difference centers over the northern North Atlantic and westernmore » Siberia are in phase. The impact of the latter center upon the runoff from the underlying Ob and Yenisey rivers and especially the teleconnection between SST anomalies in the northern North Atlantic and runoff of those two rivers via the atmosphere are investigated. The temporal cross-correlation analyses of 50 years (1930-1979) of records of SST, precipitation, and runoff anomalies indicate that the winter SST anomalies in the northern North Atlantic are significantly correlated with the winter and following summer runoff fluctuations of the Ob and Yenisey rivers. Positive (negative) northern North Atlantic SST anomalies are related to less (more) precipitation, and hence, less (more) runoff, over western Siberia. Discussions of possible physical mechanisms and processes that lead to the above relationships are attempted. The analyses of spatial distributions of precipitation in the warm and cold SST winters suggest that precipitation fluctuations over Europe and western Siberia may be affected by shifts of cyclone tracks associated with the SST variations in the northern North Atlantic. 27 refs., 9 figs.« less
NASA Technical Reports Server (NTRS)
Yu, Jin-Yi; Lau, K. M.
2004-01-01
In this study, we perform experiments with a coupled atmosphere-ocean general circulation model (CGCM) to examine ENSO's influence on the interannual sea surface temperature (SST) variability of the tropical Indian Ocean. The control experiment includes both the Indian and Pacific Oceans in the ocean model component of the CGCM (the Indo-Pacific Run). The anomaly experiment excludes ENSOs influence by including only the Indian Ocean while prescribing monthly-varying climatological SSTs for the Pacific Ocean (the Indian-Ocean Run). In the Indo-Pacific Run, an oscillatory mode of the Indian Ocean SST variability is identified by a multi-channel singular spectral analysis (MSSA). The oscillatory mode comprises two patterns that can be identified with the Indian Ocean Zonal Mode (IOZM) and a basin-wide warming/cooling mode respectively. In the model, the IOZM peaks about 3-5 months after ENSO reaches its maximum intensity. The basin mode peaks 8 months after the IOZM. The timing and associated SST patterns suggests that the IOZM is related to ENSO, and the basin- wide warming/cooling develops as a result of the decay of the IOZM spreading SST anomalies from western Indian Ocean to the eastern Indian Ocean. In contrast, in the Indian-Ocean Run, no oscillatory modes can be identified by the MSSA, even though the Indian Ocean SST variability is characterized by east-west SST contrast patterns similar to the IOZM. In both control and anomaly runs, IOZM-like SST variability appears to be associated with forcings from fluctuations of the Indian monsoon. Our modeling results suggest that the oscillatory feature of the IOZM is primarily forced by ENSO.
Causes of Upper-Ocean Temperature Anomalies in the Tropical North Atlantic
NASA Astrophysics Data System (ADS)
Rugg, A.; Foltz, G. R.; Perez, R. C.
2016-02-01
Hurricane activity and regional rainfall are strongly impacted by upper ocean conditions in the tropical North Atlantic, defined as the region between the equator and 20°N. A previous study analyzed a strong cold sea surface temperature (SST) anomaly that developed in this region during early 2009 and was recorded by the Pilot Research Array in the Tropical Atlantic (PIRATA) moored buoy at 4°N, 23°W (Foltz et al. 2012). The same mooring shows a similar cold anomaly in the spring of 2015 as well as a strong warm anomaly in 2010, offering the opportunity for a more comprehensive analysis of the causes of these events. In this study we examine the main causes of the observed temperature anomalies between 1998 and 2015. Basin-scale conditions during these events are analyzed using satellite SST, wind, and rain data, as well as temperature and salinity profiles from the NCEP Global Ocean Data Assimilation System. A more detailed analysis is conducted using ten years of direct measurements from the PIRATA mooring at 4°N, 23°W. Results show that the cooling and warming anomalies were caused primarily by wind-driven changes in surface evaporative cooling, mixed layer depth, and upper-ocean vertical velocity. Anomalies in surface solar radiation acted to damp the wind-driven SST anomalies in the latitude bands of the ITCZ (3°-8°N). Basin-scale analyses also suggest a strong connection between the observed SST anomalies and the Atlantic Meridional Mode, a well-known pattern of SST and surface wind anomalies spanning the tropical Atlantic.
NASA Astrophysics Data System (ADS)
Kilic, Cevahir; Raible, Christoph C.
2015-04-01
It is well known that the sea surface temperature (SST) has an influence on the development and intensification of tropical cyclones (TCs). This influence has become even more important during the past decades, as TCs show an intensification, which goes along with an increase in SSTs. The influence of sea surface temperature (SST) anomalies on the hurricane characteristics are investigated in a set of sensitivity experiments employing the Weather Research and Forecasting (WRF) model. The idealised experiments are performed for the case of Hurricane Katrina in 2005. (Kilic and Raible, 2013) The first set of sensitivity experiments with basin-wide changes of the SST magnitude shows that the intensity goes along with changes in the SST, i.e., an increase in SST leads to an intensification of Katrina. Additionally, the trajectory is shifted to the west (east), with increasing (decreasing) SSTs. The main reason is a strengthening of the background flow. To gain further insights in the dynamics, the potential vorticity (PV) and its tendency (PVT) are analysed. A positive PVT is located to the moving direction relative to the TC centre. Splitting the PVT in the horizontal advection, vertical advection, and diabatic heating terms, we find that mainly the horizontal advection term contributes to this PVT maximum, due to a steering by strong environmental flow. The impact of the diabatic heating is of minor importance and, hence, the TC motion is dominated by horizontal advection. The amount of the horizontal advection as well as the amount of the diabatic heating rise with increasing SST due to the enhanced Carnot cycle. The second set of experiments investigates the influence of Loop Current eddies idealised by localised SST anomalies. The intensity of Hurricane Katrina is enhanced with increasing SSTs close to the core of a TC. Negative nearby SST anomalies reduce the intensity. The trajectory only changes if positive SST anomalies are located west or north of the hurricane centre. In this case the hurricane is attracted by the SST anomaly which causes an additional moisture source and increased vertical winds. This study confirm the linear relation between SST and TC intensity. However, in case of localised SST anomalies, the relative location to the TC core determes the gradient of the linear relation. The gradient decreases with increasing distance between SST anomaly and initialisation point. The anomalies located west and north of the initialisation point have a stronger impact than the ones located south and east, as they lie in the moving direction of the TC. Further, in terms of magnitude and pattern, the horizontal advection term of PVT does not strongly differ from the reference simulation. However, the pattern of diabatic heating term differs: A maximum of diabatic heating is still located in moving direction, but additionally the diabatic heating is found in the spiral rain bands. Thus, the vortex is drifted to the SST anomaly due to the asymmetry in the TC circulation induced by the diabatic heating term of the PVT. References Kilic, C., and C. C. Raible, Investigating the sensitivity of hurricane intensity and trajectory to sea surface temperatures using the regional model WRF, METEOROLOGISCHE ZEITSCHRIFT, 22(6), 685-698, 2013.
Influence of SST anomalies in low latitudes on atmospheric heat transport to the Arctic
NASA Astrophysics Data System (ADS)
Alekseev, Genrikh; Kuzmina, Svetlana; Glok, Natalia
2017-04-01
The purpose of the study is to assess the influence of SST anomalies in the low latitudes of the Atlantic, Indian and Pacific oceans to climatic change of the winter atmospheric meridional heat transport (MAHT) to the Arctic and to propose the mechanisms of this influence. Estimates of sensible and latent heat transport to the Arctic through the "Atlantic Gate" at 70 ° N in winter (December-February) 1980-2015 fulfilled on base ERA / Interim and monthly SST from HadISST were used. Multi-dimensional cross-correlation analysis was applied. The area and month in each ocean were found with maximal correlations between SST and winter MAHT. Mean SST in selected areas for each month of 1980-2015 were calculated and its correlations with MAHT were estimated. The correlation coefficients equal from 0.57 to 0.42, and after removing the noise increased up to 0.75 with MAHT lag from 27 to 30 months. The SST and MAHT series include together with positive trend the 5-7 years fluctuations. The mechanism of SST anomalies influence on winter MAHT to the Arctic includes the interaction of atmospheric (Hadley and Ferrel circulations, jet streams, NAO) and oceanic (Gulf Stream, the North Atlantic, the Norwegian currents) circulation patterns. To justify the proposed scheme the evaluation of the links between SST anomalies, the NAO index, the Atlantic water inflow to the Barents Sea, are investigated. The study is supported with RFBR project 15-05-03512.
Understanding the predictability of seasonal precipitation over northeast Brazil
NASA Astrophysics Data System (ADS)
Misra, Vasubandhu
2006-05-01
Using multiple long-term simulations of the Center for Ocean-Land-Atmosphere Studies (COLA) atmospheric general circulation model (AGCM) forced with observed sea surface temperature (SST), it is shown that the model has high skill in simulating the February-March-April (FMA) rainy season over northeast Brazil (Nordeste). Separate sensitivity experiments conducted with the same model that entails suppression of all variability except for the climatological annual cycle in SST over the Pacific and Atlantic Oceans reveal that this skill over Nordeste is sensitive to SST anomalies in the tropical Atlantic Ocean. However, the spatial pattern of SST anomalies in the tropical Atlantic Ocean that correlate with FMA Nordeste rainfall are in fact a manifestation of El Niño Southern Oscillation (ENSO) phenomenon in the Pacific Ocean. This study also analyzes the failure of the COLA AGCM in capturing the correct FMA precipitation anomalies over Nordeste in several years of the simulation. It is found that this failure occurs when the SST anomalies over the northern tropical Atlantic Ocean are large and not significantly correlated with contemporaneous SST anomalies over the eastern Pacific Ocean. In two of the relatively large ENSO years when the model failed to capture the correct signal of the interannual variability of precipitation over Nordeste, it was found that the meridional gradient of SST anomalies over the tropical Atlantic Ocean was inconsistent with the canonical development of ENSO. The analysis of the probabilistic skill of the model revealed that it has more skill in predicting flood years than drought. Furthermore, the model has no skill in predicting normal seasons. These model features are consistent with the model systematic errors.
NASA Astrophysics Data System (ADS)
Ding, Shuoyi; Chen, Wen; Graf, Hans-F.; Guo, Yuanyuan; Nath, Debashis
2017-11-01
In this paper, distinct patterns of boreal winter convection anomalies over the tropical Pacific and associated wave trains in the extratropics are addressed. The first leading mode (EOF1) of convection anomalies as measured by outgoing longwave radiation demonstrates an east-west oscillation of deep convection with centers over the equatorial central Pacific (CP) and over the tropical western North Pacific and the Maritime Continent. The second leading mode (EOF2) is also a dipole pattern with opposite centers straddling 170°W, possibly modifying EOF1 to some extent. Combining the first two leading modes, five major categories of tropical convection anomalies can be identified for the period 1979/80-2012/13. The comparison between these five categories and the corresponding SST anomaly patterns indicates a nonlinear relationship between convection and SST. The combination of EOF1 and EOF2 with in-phase PCs exhibits an east-west dipole pattern with opposite signs over west of the dateline and the Maritime Continent. The negative phase of the two PCs, named La Niña pattern, induces a negative Pacific/North American—positive North Atlantic Oscillation teleconnection in the extratropics. Approximately opposite responses can be detected in its positive phase, named CP El Niño pattern. The negative PC2 superposing positive PC1, named EP El Niño pattern, shows the strongest convection anomalies with enhanced (depressed) convection over the eastern (western) Pacific and leads to a Tropical/Northern Hemisphere-like teleconnection pattern and an anomalous anticyclone extending from the North Pacific to the North Atlantic. The positive PC2 with neutral PC1, named western CP pattern, shows weakly enhanced convection to the west of the dateline as a response to local SST warming around the dateline. This convection anomaly pattern, although weak, is important and excites a northeastward wave train from the tropics to Greenland, resulting in surface air temperature cooling covering the northeastern North America and warmer and wetter conditions over Western Europe.
NASA Astrophysics Data System (ADS)
Dewitte, Boris; Takahashi, Ken
2017-12-01
In this paper we investigate the evolution of moderate El Niño events during their developing phase with the objective to understand why some of them did not evolve as extreme events despite favourable conditions for the non-linear amplification of the Bjerknes feedback (i.e. warm SST in Austral winter in the eastern equatorial Pacific). Among the moderate events, two classes are considered consisting in the Eastern Pacific (EP) El Niño events and Central Pacific (CP) events. We first show that the observed SST variability across moderate El Niño events (i.e. inter-event variability) is largest in the far eastern Pacific (east of 130°W) in the Austral winter prior to their peak, which is associated to either significant warm anomaly (moderate EP El Niño) or an anomaly between weak warm and cold (moderate CP El Niño) as reveals by the EOF analysis of the SST anomaly evolution during the development phase of El Niño across the El Niño years. Singular value decomposition (SVD) analysis of SST and wind stress anomalies across the El Niño years further indicates that the inter-event SST variability is associated with an air-sea mode explaining 31% of the covariance between SST and wind stress. The associated SST pattern consists in SST anomalies developing along the coast of Ecuador in Austral fall and expanding westward as far as 130°W in Austral winter. The associated wind stress pattern features westerlies (easterlies) west of 130°W along the equator peaking around June-August for EP (CP) El Niño events. This air-sea mode is interpreted as resulting from a developing seasonal Bjerknes feedback for EP El Niño events since it is shown to be associated to a Kelvin wave response at its peak phase. However equatorial easterlies east of 130°W emerge in September that counters the growing SST anomalies associated to the air-sea mode. These have been particularly active during both the 1972 and the 2015 El Niño events. It is shown that the easterlies are connected to an off-equatorial southerly wind off the coast of Peru and Ecuador. The southerly wind is a response to the coastal SST anomalies off Peru developing from Austral fall. Implications of our results for the understanding of the seasonal ENSO dynamics and diversity are discussed in the light of the analysis of two global climate models simulating realistically ENSO diversity (GFDL_CM2.1 and CESM).
NASA Astrophysics Data System (ADS)
Zhang, Huqiang; Zhao, Y.; Moise, A.; Ye, H.; Colman, R.; Roff, G.; Zhao, M.
2018-02-01
Significant uncertainty exists in regional climate change projections, particularly for rainfall and other hydro-climate variables. In this study, we conduct a series of Atmospheric General Circulation Model (AGCM) experiments with different future sea surface temperature (SST) warming simulated by a range of coupled climate models. They allow us to assess the extent to which uncertainty from current coupled climate model rainfall projections can be attributed to their simulated SST warming. Nine CMIP5 model-simulated global SST warming anomalies have been super-imposed onto the current SSTs simulated by the Australian climate model ACCESS1.3. The ACCESS1.3 SST-forced experiments closely reproduce rainfall means and interannual variations as in its own fully coupled experiments. Although different global SST warming intensities explain well the inter-model difference in global mean precipitation changes, at regional scales the SST influence vary significantly. SST warming explains about 20-25% of the patterns of precipitation changes in each of the four/five models in its rainfall projections over the oceans in the Indo-Pacific domain, but there are also a couple of models in which different SST warming explains little of their precipitation pattern changes. The influence is weaker again for rainfall changes over land. Roughly similar levels of contribution can be attributed to different atmospheric responses to SST warming in these models. The weak SST influence in our study could be due to the experimental setup applied: superimposing different SST warming anomalies onto the same SSTs simulated for current climate by ACCESS1.3 rather than directly using model-simulated past and future SSTs. Similar modelling and analysis from other modelling groups with more carefully designed experiments are needed to tease out uncertainties caused by different SST warming patterns, different SST mean biases and different model physical/dynamical responses to the same underlying SST forcing.
White, Warren B.; Tourre, Y.M.; Barlow, M.; Dettinger, M.
2003-01-01
Biennial, interannual, and decadal signals in the Pacific basin are observed to share patterns and evolution in covarying sea surface temperature (SST), 18??C isotherm depth (Z18), zonal surface wind (ZSW), and wind stress curl (WSC) anomalies from 1955 to 1999. Each signal has warm SST anomalies propagating slowly eastward along the equator, generating westerly ZSW anomalies in their wake. These westerly ZSW anomalies produce cyclonic WSC anomalies off the equator which pump baroclinic Rossby waves in the western/central tropical North Pacific Ocean. These Rossby waves propagate westward, taking ???6, ???12, and ???36 months to reach the western boundary near ???7??N, ???12??N, and ???18??N on biennial, interannual, and decadal period scales, respectively. There, they reflect as equatorial coupled waves, propagating slowly eastward in covarying SST, Z18, and ZSW anomalies, taking ???6, ???12, and ???24 months to reach the central/eastern equatorial ocean. These equatorial coupled waves produce a delayed-negative feedback to the warm SST anomalies there. The decrease in Rossby wave phase speed with latitude, the increase in meridional scale of equatorial SST anomalies with period scale, and the associated increase in latitude of Rossby wave forcing are consistent with the delayed action oscillator (DAO) model used to explain El Nin??o. However, this is not true of the western-boundary reflection of Rossby waves into slow equatorial coupled waves. This requires modification of the extant DAO model. We construct a modified DAO model, demonstrating how the various mechanisms and the size and sources of their delays yield the resulting frequency of each signal.
NASA Astrophysics Data System (ADS)
Park, Jae-Heung; An, Soon-Il; Kug, Jong-Seong
2017-12-01
In this study, the interannual variability of sea surface temperature (SST) and its atmospheric teleconnection over the western North Pacific (WNP) toward the North Pacific/North America during boreal winter are investigated. First, we defined the WNP mode as the first empirical orthogonal function (EOF) mode of SST anomalies over the WNP region (100-165°E, 0-35°N), of which the principle component time-series are significantly correlated with several well-known climate modes such as the warm pool mode which is the second EOF mode of the tropical to North Pacific SST anomalies, North Pacific oscillation (NPO), North Pacific gyre oscillation (NPGO), and central Pacific (CP)-El Niño at 95% confidence level, but not correlated with the eastern Pacific (EP)-El Niño. The warm phase of the WNP mode (sea surface warming) is initiated by anomalous southerly winds through reduction of wind speed with the background of northerly mean winds over the WNP during boreal winter, i.e., reduced evaporative cooling. Meanwhile, the atmospheric response to the SST warming pattern and its diabatic heating further enhance the southerly wind anomaly, referred to the wind-evaporation-SST (WES) feedback. Thus, the WNP mode is developed and maintained through winter until spring, when the northerly mean wind disappears. Furthermore, it is also known that anomalous upper-level divergence associated with WNP mode leads to the NPO-like structure over the North Pacific and the east-west pressure contrast pattern over the North America through Rossby wave propagation, impacting the climate over the North Pacific and North America.
NASA Astrophysics Data System (ADS)
Chen, Zesheng; Du, Yan; Wen, Zhiping; Wu, Renguang; Wang, Chunzai
2018-06-01
This study investigates the influence of southeast tropical Indian Ocean (SETIO) sea surface temperature (SST) warming on Indo-Pacific climate during the decaying phase of the 2015/16 El Niño by using observations and model experiments. The results show that the SETIO SST warming in spring 2016 enhanced local convection and forced a "C-shape" wind anomaly pattern in the lower troposphere. The "C-shape" wind anomaly pattern over the eastern tropical Indian Ocean consists of anomalous westerly flow south of the equator and anomalous easterly flow north of the equator. The anomalous easterly flow then extended eastward into the western North Pacific (WNP) and facilitates the development or the maintenance of an anomalous anticyclone over the South China Sea (SCS). Correspondingly, the eastern part of the Bay of Bengal, the SCS and the WNP suffered less rainfall. Such precipitation features and the associated "C-shape" wind anomaly pattern shifted northward about five latitudes in summer 2016. Additionally, the SETIO warming can induce local meridional circulation anomalies, which directly affect Indo-Pacific climate. Numerical model experiments further confirm that the SETIO SST warming plays an important role in modulating Indo-Pacific climate.
Predictability of Zonal Means During Boreal Summer
NASA Technical Reports Server (NTRS)
Schubert, Siegfried; Suarez, Max J.; Pegion, Philip J.; Kistler, Michael A.; Kumar, Arun; Einaudi, Franco (Technical Monitor)
2001-01-01
This study examines the predictability of seasonal means during boreal summer. The results are based on ensembles of June-July-August (JJA) simulations (started in mid May) carried out with the NASA Seasonal-to-Interannual Prediction Project (NSIPP-1) atmospheric general circulation model (AGCM) forced with observed sea surface temperatures (SSTS) and sea ice for the years 1980-1999. We find that the predictability of the JJA extra-tropical height field is primarily in the zonal mean component of the response to the SST anomalies. This contrasts with the cold season (January-February-March) when the predictability of seasonal means in the boreal extratropics is primarily in the wave component of the El Nino/Southern Oscillation (ENSO) response. Two patterns dominate the interannual variability of the ensemble mean JJA zonal mean height field. One has maximum variance in the tropical/subtropical upper troposphere, while the other has substantial variance in middle latitudes of both hemispheres. Both are symmetric with respect to the equator. A regression analysis suggests that the tropical/subtropical pattern is associated with SST anomalies in the far eastern tropical Pacific and the Indian Ocean, while the middle latitude pattern is forced by SST anomalies in the tropical Pacific just east of the dateline. The two leading zonal height patterns are reproduced in model runs forced with the two leading JJA SST patterns of variability. A comparison with observations shows a signature of the middle latitude pattern that is consistent with the occurrence of dry and wet summers over the United States. We hypothesize that both patterns, while imposing only weak constraints on extratropical warm season continental-scale climates, may play a role in the predilection for drought or pluvial conditions.
NASA Astrophysics Data System (ADS)
Mao, Jiangyu; Wang, Ming
2018-05-01
This study investigates the structure and propagation of intraseasonal sea surface temperature (SST) variability in the South China Sea (SCS) on the 30-60-day timescale during boreal summer (May-September). TRMM-based SST, GODAS oceanic reanalysis and ERA-Interim atmospheric reanalysis datasets from 1998 to 2013 are used to examine quantitatively the atmospheric thermodynamic and oceanic dynamic mechanisms responsible for its formation. Power spectra show that the 30-60-day SST variability is predominant, accounting for 60% of the variance of the 10-90-day variability over most of the SCS. Composite analyses demonstrate that the 30-60-day SST variability is characterized by the alternate occurrence of basin-wide positive and negative SST anomalies in the SCS, with positive (negative) SST anomalies accompanied by anomalous northeasterlies (southwesterlies). The transition and expansion of SST anomalies are driven by the monsoonal trough-ridge seesaw pattern that migrates northward from the equator to the northern SCS. Quantitative diagnosis of the composite mixed-layer heat budgets shows that, within a strong 30-60-day cycle, the atmospheric thermal forcing is indeed a dominant factor, with the mixed-layer net heat flux (MNHF) contributing around 60% of the total SST tendency, while vertical entrainment contributes more than 30%. However, the entrainment-induced SST tendency is sometimes as large as the MNHF-induced component, implying that ocean processes are sometimes as important as surface fluxes in generating the 30-60-day SST variability in the SCS.
Tropical Indian Ocean warming contributions to China winter climate trends since 1960
NASA Astrophysics Data System (ADS)
Wu, Qigang; Yao, Yonghong; Liu, Shizuo; Cao, DanDan; Cheng, Luyao; Hu, Haibo; Sun, Leng; Yao, Ying; Yang, Zhiqi; Gao, Xuxu; Schroeder, Steven R.
2018-01-01
This study investigates observed and modeled contributions of global sea surface temperature (SST) to China winter climate trends in 1960-2014, including increased precipitation, warming through about 1997, and cooling since then. Observations and Atmospheric Model Intercomparison Project (AMIP) simulations with prescribed historical SST and sea ice show that tropical Indian Ocean (TIO) warming and increasing rainfall causes diabatic heating that generates a tropospheric wave train with anticyclonic 500-hPa height anomaly centers in the TIO or equatorial western Pacific (TIWP) and northeastern Eurasia (EA) and a cyclonic anomaly over China, referred to as the TIWP-EA wave train. The cyclonic anomaly causes Indochina moisture convergence and southwesterly moist flow that enhances South China precipitation, while the northern anticyclone enhances cold surges, sometimes causing severe ice storms. AMIP simulations show a 1960-1997 China cooling trend by simulating increasing instead of decreasing Arctic 500-hPa heights that move the northern anticyclone into Siberia, but enlarge the cyclonic anomaly so it still simulates realistic China precipitation trend patterns. A separate idealized TIO SST warming simulation simulates the TIWP-EA feature more realistically with correct precipitation patterns and supports the TIWP-EA teleconnection as the primary mechanism for long-term increasing precipitation in South China since 1960. Coupled Model Intercomparison Project (CMIP) experiments simulate a reduced TIO SST warming trend and weak precipitation trends, so the TIWP-EA feature is absent and strong drying is simulated in South China for 1960-1997. These simulations highlight the need for accurately modeled SST to correctly attribute regional climate trends.
Stratospheric role in interdecadal changes of El Niño impacts over Europe
NASA Astrophysics Data System (ADS)
Ayarzagüena, B.; López-Parages, J.; Iza, M.; Calvo, N.; Rodríguez-Fonseca, B.
2018-04-01
The European precipitation response to El Niño (EN) has been found to present interdecadal changes, with alternated periods of important or negligible EN impact in late winter. These periods are associated with opposite phases of multi-decadal sea surface temperature (SST) variability, which modifies the tropospheric background and EN teleconnections. In addition, other studies have shown how SST anomalies in the equatorial Pacific, and in particular, the location of the largest anomalous SST, modulate the stratospheric response to EN. Nevertheless, the role of the stratosphere on the stationarity of EN response has not been investigated in detail so far. Using reanalysis data, we present a comprehensive study of EN teleconnections to Europe including the role of the ocean background and the stratosphere in the stationarity of the signal. The results reveal multidecadal variability in the location of EN-related SST anomalies that determines different teleconnections. In periods with relevant precipitation signal over Europe, the EN SST pattern resembles Eastern Pacific EN and the stratospheric pathway plays a key role in transmitting the signal to Europe in February, together with two tropospheric wavetrains that transmit the signal in February and April. Conversely, the stratospheric pathway is not detected in periods with a weak EN impact on European precipitation, corresponding to EN-related SST anomalies primarily located over the central Pacific. SST mean state and its associated atmospheric background control the location of EN-related SST anomalies in different periods and modulate the establishment of the aforementioned stratospheric pathway of EN teleconnection to Europe too.
NASA Astrophysics Data System (ADS)
Royer, Jean-François; Chauvin, Fabrice; Daloz, Anne-Sophie
2010-05-01
The response of tropical cyclones (TC) activity to global warming has not yet reached a clear consensus in the Fourth Assessment Report (AR4) published by the Intergovernmental Panel on Climate Change (IPCC, 2007) or in the recent scientific literature. Observed series are neither long nor reliable enough for a statistically significant detection and attribution of past TC trends, and coupled climate models give widely divergent results for the future evolution of TC activity in the different ocean basins. The potential importance of the spatial structure of the future SST warming has been pointed out by Chauvin et al. (2006) in simulations performed at CNRM with the ARPEGE-Climat GCM. The current presentation describes a new set of simulations that have been performed with the ARPEGE-Climat model to try to understand the possible role of SST patterns in the TC cyclogenesis response in 15 CMIP3 coupled simulations analysed by Royer et al (2009). The new simulations have been performed with the atmospheric component of the ARPEGE-Climat GCM forced in 10 year simulations by the SST patterns from each of 15 CMIP3 simulations with different climate model at the end of the 21st century according to scenario A2. The TC analysis is based on the computation of a Convective Yearly Genesis Parameter (CYGP) and the Genesis Potential Index (GPI). The computed genesis indices for each of the ARPEGE-Climat forced simulations is compared with the indices computed directly from the initial coupled simulation. The influence of SST patterns can then be more easily assessed since all the ARPEGE-Climat simulations are performed with the same atmospheric model, whereas the original simulations used models with different parameterization and resolutions. The analysis shows that CYGP or GPI anomalies obtained with ARPEGE are as variable between each other as those obtained originally by the different IPCC models. The variety of SST patterns used to force ARPEGE explains a large part of the dispersion, though for a given SST pattern, ARPEGE does not necessarily reproduce the anomaly produced originally by the IPCC model which produced the SST anomaly. Many factors can contribute to this discrepancy, but the most prominent seems to be the absence of coupling between the forced atmospheric ARPEGE simulation and the underlying ocean. When the atmospheric model is forced by prescribed SST anomalies some retroactions between cyclogenesis and ocean are missing. There are however areas over the globe were models agree about the CYGP or GPI anomalies induced by global warming, such as the Indian Ocean that shows a better coherency in the coupled and forced responses. This could be an indication that interaction between ocean and atmosphere is not as strong there as in the other basins. Details of the results for all the other ocean basins will be presented. References: Chauvin F. and J.-F. Royer and M. Déqué , 2006: Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution. Climate Dynamics 27(4), 377-399. IPCC [Intergovernmental Panel for Climate Change], Climate change 2007: The physical science basis, in: S. Solomon et al. (eds.), Cambridge University Press. Royer JF, F Chauvin, 2009: Response of tropical cyclogenesis to global warming in an IPCC AR-4 scenario assessed by a modified yearly genesis parameter. "Hurricanes and Climate Change", J. B. Elsner and T. H. Jagger (Eds.), Springer, ISBN: 978-0-387-09409-0, pp 213-234.
Atmosphere-Ocean Variations in the Indo-Pacific Sector during ENSO Episodes.
NASA Astrophysics Data System (ADS)
Lau, Ngar-Cheung; Nath, Mary Jo
2003-01-01
The influences of El Niño-Southern Oscillation (ENSO) events on air-sea interaction in the Indian-western Pacific (IWP) Oceans have been investigated using a general circulation model. Observed monthly sea surface temperature (SST) variations in the deep tropical eastern/central Pacific (DTEP) have been inserted in the lower boundary of this model through the 1950-99 period. At all maritime grid points outside of DTEP, the model atmosphere has been coupled with an oceanic mixed layer model with variable depth. Altogether 16 independent model runs have been conducted.Composite analysis of selected ENSO episodes illustrates that the prescribed SST anomalies in DTEP affect the surface atmospheric circulation and precipitation patterns in IWP through displacements of the near-equatorial Walker circulation and generation of Rossby wave modes in the subtropics. Such atmospheric responses modulate the surface fluxes as well as the oceanic mixed layer depth, and thereby establish a well-defined SST anomaly pattern in the IWP sector several months after the peak in ENSO forcing in DTEP. In most parts of the IWP region, the net SST tendency induced by atmospheric changes has the same polarity as the local composite SST anomaly, thus indicating that the atmospheric forcing acts to reinforce the underlying SST signal.By analyzing the output from a suite of auxiliary experiments, it is demonstrated that the SST perturbations in IWP (which are primarily generated by ENSO-related atmospheric changes) can, in turn, exert notable influences on the atmospheric conditions over that region. This feedback mechanism also plays an important role in the eastward migration of the subtropical anticyclones over the western Pacific in both hemispheres.
NASA Astrophysics Data System (ADS)
Huang, Wenyu; Chen, Ruyan; Yang, Zifan; Wang, Bin; Ma, Wenqian
2017-09-01
To examine the combined effects of the different spatial patterns of the Arctic Oscillation (AO)-related sea level pressure (SLP) anomalies and the El Niño-Southern Oscillation (ENSO)-related sea surface temperature (SST) anomalies on the wintertime surface temperature anomalies over East Asia, a nonlinear method based on self-organizing maps is employed. Investigation of identified regimes reveals that the AO can affect East Asian temperature anomalies when there are significant SLP anomalies over the Arctic Ocean and northern parts of Eurasian continent. Analogously, ENSO is found to affect East Asian temperature anomalies when significant SST anomalies are present over the tropical central Pacific. The regimes with the warmest and coldest temperature anomalies over East Asia are both associated with the negative phase of the AO. The ENSO-activated, Pacific-East Asian teleconnection pattern could affect the higher latitude continental regions when the impact of the AO is switched off. When the spatial patterns of the AO and ENSO have significant, but opposite, impacts on the coastal winds, no obvious temperature anomalies can be observed over south China. Further, the circulation state with nearly the same AO and Niño3 indices may drive rather different responses in surface temperature over East Asia. The well-known continuous weakening (recovery) of the East Asian winter monsoon that occurred around 1988 (2009) can be attributed to the transitions of the spatial patterns of the SLP anomalies over the Arctic Ocean and Eurasian continent, through their modulation on the occurrences of the Ural and central Siberian blocking events.
NASA Astrophysics Data System (ADS)
Fathrio, Ibnu; Manda, Atsuyoshi; Iizuka, Satoshi; Kodama, Yasu-Masa; Ishida, Sachinobu
2018-05-01
This study presents ocean heat budget analysis on seas surface temperature (SST) anomalies during strong-weak Asian summer monsoon (southwest monsoon). As discussed by previous studies, there was close relationship between variations of Asian summer monsoon and SST anomaly in western Indian Ocean. In this study we utilized ocean heat budget analysis to elucidate the dominant mechanism that is responsible for generating SST anomaly during weak-strong boreal summer monsoon. Our results showed ocean advection plays more important role to initate SST anomaly than the atmospheric prcess (surface heat flux). Scatterplot analysis showed that vertical advection initiated SST anomaly in western Arabian Sea and southwestern Indian Ocean, while zonal advection initiated SST anomaly in western equatorial Indian Ocean.
Decadal variability of precipitation over Western North America
Cayan, D.R.; Dettinger, M.D.; Diaz, Henry F.; Graham, N.E.
1998-01-01
Decadal (>7- yr period) variations of precipitation over western North America account for 20%-50% of the variance of annual precipitation. Spatially, the decadal variability is broken into several regional [O(1000 km)] components. These decadal variations are contributed by fluctuations in precipitation from seasons of the year that vary from region to region and that are not necessarily concentrated in the wettest season(s) alone. The precipitation variations are linked to various decadal atmospheric circulation and SST anomaly patterns where scales range from regional to global scales and that emphasize tropical or extratropical connections, depending upon which precipitation region is considered. Further, wet or dry decades are associated with changes in frequency of at least a few short-period circulation 'modes' such as the Pacific-North American pattern. Precipitation fluctuations over the southwestern United States and the Saskatchewan region of western Canada are associated with extensive shifts of sea level pressure and SST anomalies, suggesting that they are components of low-frequency precipitation variability from global-scale climate proceses. Consistent with the global scale of its pressure and SST connection, the Southwest decadal precipitation is aligned with opposing precipitation fluctuations in northern Africa.Decadal (>7-yr period) variations of precipitation over western North America account for 20%-50% of the variance of annual precipitation. Spatially, the decadal variability is broken into several regional [O(1000 km)] components. These decadal variations are contributed by fluctuations in precipitation from seasons of the year that vary from region to region and that are not necessarily concentrated in the wettest season(s) alone. The precipitation variations are linked to various decadal atmospheric circulation and SST anomaly patterns where scales range from regional to global scales and that emphasize tropical or extratropical connections, depending upon which precipitation region is considered. Further, wet or dry decades are associated with changes in frequency of at least a few short-period circulation `modes' such as the Pacific-North American pattern. Precipitation fluctuations over the southwestern United States and the Saskatchewan region of western Canada are associated with extensive shifts of sea level pressure and SST anomalies, suggesting that they are components of low-frequency precipitation variability from global-scale climate processes. Consistent with the global scale of its pressure and SST connection, the Southwest decadal precipitation is aligned with opposing precipitation fluctuations in northern Africa.
Characteristics and Mechanisms of Zonal Oscillation of Western Pacific Subtropical High in Summer
NASA Astrophysics Data System (ADS)
Guan, W.; Ren, X.; Hu, H.
2017-12-01
The zonal oscillation of the western Pacific subtropical high (WPSH) influences the weather and climate over East Asia significantly. This study investigates the features and mechanisms of the zonal oscillation of the WPSH during summer on subseasonal time scales. The zonal oscillation index of the WPSH is defined by normalized subseasonal geopotential height anomaly at 500hPa averaged over the WPSH's western edge (110° - 140°E, 10° - 30°N). The index shows a predominant oscillation with a period of 10-40 days. Large positive index indicates a strong anticyclonic anomaly over East Asia and its coastal region south of 30°N at both 850hPa and 500hPa. The WPSH stretches more westward accompanied by warmer SST anomalies beneath the western edge of the WPSH. Meanwhile, above-normal precipitation is seen over the Yangtze-Huaihe river basin and below-normal precipitation over the south of the Yangtze River. Negative index suggests a more eastward position of WPSH. The anomalies in circulation and SST for negative index are almost the mirror image of those for the positive index. In early summer, the zonal shift of the WPSH is affected by both the East Asia/Pacific (EAP) teleconnection pattern and the Silk road pattern (SRP). The positive (negative) phase of the EAP pattern is characterized by a low-level anticyclonic (cyclonic) anomaly over the subtropical western Pacific, indicating the western extension (eastward retreat) of the WPSH. Comparing with the EAP pattern, the SRP forms an upper-level anticyclonic (cyclonic) anomaly in mid-latitudes of East Asia, and then leads to the westward (eastward) movement of the WPSH. In late summer, the zonal shift of the WPSH is mainly affected by the EAP pattern, because the EAP pattern in late summer is stronger than that in early summer. The zonal shift of the WPSH is also influenced by the subseasonal air-sea interaction locally. During the early stage of WPSH's westward stretch, the local SST anomaly in late summer is colder than that in early summer. This forms a more favorable condition for the increasing of local anticyclonic anomaly. Thus, the anticyclonic anomaly in late summer is stronger than that in early summer.
NASA Astrophysics Data System (ADS)
Cao, Dandan; Wu, Qigang; Hu, Aixue; Yao, Yonghong; Liu, Shizuo; Schroeder, Steven R.; Yang, Fucheng
2018-02-01
This study examines Northern Hemisphere winter (DJFM) atmospheric responses to opposite strong phases of interdecadal (low frequency, LF) Pacific sea surface temperature (SST) forcing, which resembles El Niño-Southern Oscillation (ENSO) on a longer time scale, in observations and GFDL and CAM4 model simulations. Over the Pacific-North America (PNA) sector, linear observed responses of 500-hPa height (Z500) anomalies resemble the PNA teleconnection pattern, but show a PNA-like nonlinear response because of a westward Z500 shift in the negative (LF-) relative to the positive LF (LF+) phase. Significant extratropical linear responses include a North Atlantic Oscillation (NAO)-like Z500 anomaly, a dipole-like Z500 anomaly over northern Eurasia associated with warming over mid-high latitude Eurasia, and a Southern Annular anomaly pattern associated with warming in southern land areas. Significant nonlinear Z500 responses also include a NAO-like anomaly pattern. Models forced by LF+ and LF- SST anomalies reproduce many aspects of observed linear and nonlinear responses over the Pacific-North America sector, and linear responses over southern land, but not in the North Atlantic-European sector and Eurasia. Both models simulate PNA-like linear responses in the North Pacific-North America region similar to observed, but show larger PNA-like LF+ responses, resulting in a PNA nonlinear response. The nonlinear PNA responses result from both nonlinear western tropical Pacific rainfall changes and extratropical transient eddy feedbacks. With LF tropical Pacific forcing only (LFTP+ and LFTP-, climatological SST elsewhere), CAM4 simulates a significant NAO response to LFTP-, including a linear negative and nonlinear positive NAO response.
Spring Soil Temperature Anomalies over Tibetan Plateau and Summer Droughts/Floods in East Asia
NASA Astrophysics Data System (ADS)
Xue, Y.; Li, W.; LI, Q.; Diallo, I.; Chu, P. C.; Guo, W.; Fu, C.
2017-12-01
Recurrent extreme climate events, such as droughts and floods, are important features of the climate of East Asia, especially over the Yangtze River basin. Many studies have attributed these episodes to variability and anomaly of global sea surface temperatures (SST) anomaly. In addition, snow in the Tibetan Plateau has also been considered as one of the factors affecting the Asian monsoon variability. However, studies have consistently shown that SST along is unable to explain the extreme climate events fully and snow has difficulty to use as a predictor. Remote effects of observed large-scale land surface temperature (LST) and subsurface temperature variability in Tibetan Plateau (TP) on East Asian regional droughts/floods, however, have been largely ignored. We conjecture that a temporally filtered response to snow anomalies may be preserved in the LST anomaly. In this study, evidence from climate observations and model simulations addresses the LST/SUBT effects. The Maximum Covariance Analysis (MCA) of observational data identifies that a pronounce spring LST anomaly pattern over TP is closely associated with precipitation anomalies in East Asia with a dipole pattern, i.e., negative/positive TP spring LST anomaly is associated with the summer drought/flood over the region south of the Yangtze River and wet/dry conditions to the north of the Yangtze River. Climate models were used to demonstrate a causal relationship between spring cold LST anomaly in the TP and the severe 2003 drought over the southern part of the Yangtze River in eastern Asia. This severe drought resulted in 100 x 106 kg crop yield losses and an economic loss of 5.8 billion Chinese Yuan. The modeling study suggests that the LST effect produced about 58% of observed precipitation deficit; while the SST effect produced about 32% of the drought conditions. Meanwhile, the LST and SST effects also simulated the observed flood over to the north of the Yangtze River. This suggests that inclusion of this LST effect is essential to make reliable East Asian drought/flood predictions.
Covariability of Central America/Mexico winter precipitation and tropical sea surface temperatures
NASA Astrophysics Data System (ADS)
Pan, Yutong; Zeng, Ning; Mariotti, Annarita; Wang, Hui; Kumar, Arun; Sánchez, René Lobato; Jha, Bhaskar
2018-06-01
In this study, the relationships between Central America/Mexico (CAM) winter precipitation and tropical Pacific/Atlantic sea surface temperatures (SSTs) are examined based on 68-year (1948-2015) observations and 59-year (1957-2015) atmospheric model simulations forced by observed SSTs. The covariability of the winter precipitation and SSTs is quantified using the singular value decomposition (SVD) method with observational data. The first SVD mode relates out-of-phase precipitation anomalies in northern Mexico and Central America to the tropical Pacific El Niño/La Niña SST variation. The second mode links a decreasing trend in the precipitation over Central America to the warming of SSTs in the tropical Atlantic, as well as in the tropical western Pacific and the tropical Indian Ocean. The first mode represents 67% of the covariance between the two fields, indicating a strong association between CAM winter precipitation and El Niño/La Niña, whereas the second mode represents 20% of the covariance. The two modes account for 32% of CAM winter precipitation variance, of which, 17% is related to the El Niño/La Niña SST and 15% is related to the SST warming trend. The atmospheric circulation patterns, including 500-hPa height and low-level winds obtained by linear regressions against the SVD SST time series, are dynamically consistent with the precipitation anomaly patterns. The model simulations driven by the observed SSTs suggest that these precipitation anomalies are likely a response to tropical SST forcing. It is also shown that there is significant potential predictability of CAM winter precipitation given tropical SST information.
NASA Astrophysics Data System (ADS)
Levine, P. A.; Xu, M.; Chen, Y.; Randerson, J. T.; Hoffman, F. M.
2017-12-01
Interannual variability of climatic conditions in the Amazon rainforest is associated with El Niño-Southern Oscillation (ENSO) and ocean-atmosphere interactions in the North Atlantic. Sea surface temperature (SST) anomalies in these remote ocean regions drive teleconnections with Amazonian surface air temperature (T), precipitation (P), and net ecosystem production (NEP). While SST-driven NEP anomalies have been primarily linked to T anomalies, it is unclear how much the T anomalies result directly from SST forcing of atmospheric circulation, and how much result indirectly from decreases in precipitation that, in turn, influence surface energy fluxes. Interannual variability of P associated with SST anomalies lead to variability in soil moisture (SM), which would indirectly affect T via partitioning of turbulent heat fluxes between the land surface and the atmosphere. To separate the direct and indirect influence of the SST signal on T and NEP, we performed a mechanism-denial experiment to decouple SST and SM anomalies. We used the Accelerated Climate Modeling for Energy (ACMEv0.3), with version 5 of the Community Atmosphere Model and version 4.5 of the Community Land Model. We forced the model with observed SSTs from 1982-2016. We found that SST and SM variability both contribute to T and NEP anomalies in the Amazon, with relative contributions depending on lag time and location within the Amazon basin. SST anomalies associated with ENSO drive most of the T variability at shorter lag times, while the ENSO-driven SM anomalies contribute more to T variability at longer lag times. SM variability and the resulting influence on T anomalies are much stronger in the eastern Amazon than in the west. Comparing modeled T with observations demonstrate that SST alone is sufficient for simulating the correct timing of T variability, but SM anomalies are necessary for simulating the correct magnitude of the T variability. Modeled NEP indicated that variability in carbon fluxes results from both SST and SM anomalies. As with T, SM anomalies affect NEP at a much longer lag time than SST anomalies. These results highlight the role of land-atmosphere coupling in driving climate variability within the Amazon, and suggest that land atmospheric coupling may amplify and delay carbon cycle responses to ocean-atmosphere teleconnections.
NASA Technical Reports Server (NTRS)
Schubert, Siegfried
2009-01-01
The USCLIVAR working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land-atmosphere feedbacks on regional drought. Specific questions that the runs are designed to address include, What are the mechanisms that maintain drought across the seasonal cycle and from one year to the next? What is the role of the leading patterns of SST variability, and what are the physical mechanisms linking the remote SST forcing to regional drought, including the role of land-atmosphere coupling? The runs were carried out with five different atmospheric general circulation models (AGCMs), and one coupled atmosphere-ocean model in which the model was continuously nudged to the imposed SST forcing. This talk provides an overview of the experiments and some initial results focusing on the responses to the leading patterns of annual mean SST variability consisting of a Pacific El Nino/Southern Oscillation (ENSO)-like pattern, a pattern that resembles the Atlantic Multi-decadal Oscillation (AMO), and a global trend pattern. One of the key findings is that all the AGCMs produce broadly similar (though different in detail) precipitation responses to the Pacific forcing pattern, with a cold Pacific leading to reduced precipitation and a warm Pacific leading to enhanced precipitation over most of the United States. While the response to the Atlantic pattern is less robust, there is general agreement among the models that the largest precipitation response over the U.S. tends to occur when the two oceans have anomalies of opposite sign. That is, a cold Pacific and warm Atlantic tend to produce the largest precipitation reductions, whereas a warm Pacific and cold Atlantic tend to produce the greatest precipitation enhancements. Further analysis of the response over the U.S. to the Pacific forcing highlights a number of noteworthy and to some extent unexpected results. These include a seasonal dependence of the precipitation response that is characterized by signal-to-noise ratios that peak in spring, and surface temperature signal-to-noise ratios that are both lower and show less agreement among the models than those found for the precipitation response. Another interesting result concerns what appears to be a substantially different character in the surface temperature response over the U.S. to the Pacific forcing by the only model examined here that was developed for use in numerical weather prediction. The response to the positive SST trend forcing pattern is an overall surface warming over the world's land areas with substantial regional variations that are in part reproduced in runs forced with a globally uniform SST trend forcing. The precipitation response to the trend forcing is weak in all the models. It is hoped that these early results will serve to stimulate further analysis of these simulations, as well as suggest new research on the physical mechanisms contributing to hydroclimatic variability and change throughout the world.
Issues in Establishing Causes of the 1988 Drought over North America.
NASA Astrophysics Data System (ADS)
Trenberth, Kevin E.; Branstator, Grant W.
1992-02-01
Progress toward understanding the causes of and physical mechanisms involved in the 1988 North American drought is reported. An earlier study demonstrated that major sea surface temperature (SST) anomalies in the tropical Pacific Ocean, in association with the 1988 La Niña, may have disrupted atmospheric heating patterns by changing the location and intensity of the intertropical convergence zone and that such heating anomalies could have initiated the circulation anomalies across North America responsible for the drought. A key issue of when the drought circulation anomalies developed and their relation to changes in tropical Pacific SSTs is examined. Although unusually dry soil moisture and heat waves persisted into August, the anomalous atmospheric conditions that brought on the drought occurred in April, May, and June of 1988. The evolution of the Pacific SSTs and tropical convection, as revealed by outgoing longwave radiation, is shown to be consistent with the development of the conditions favorable for initiating the drought circulation pattern in April through June of 1988. On the equator at 110°W, SST anomalies exceeded 2.75°C in only April, May, and June and were largest (4.1°C) in May 1988. The issues of how the 1988 La Niña differed from those in the past and the importance of the whole SST field in determining the anomalous diabatic heating are also discussed. Diagnostic calculations of atmospheric diabatic heating confirm that atmospheric heating anomalies existed in the tropical Pacific in association with the major SST anomalies during this time. The link between the anomalous heating and the tropical SSTs supports the view that influences external to the atmosphere were important and that the drought was not generated solely by mechanisms internal to the atmosphere. The distribution of diagnosed heating anomalies over North America, together with a planetary wave model response to idealized forcing, is described to clarify the possible role of soil moisture anomalies in perpetuating the drought. It is argued that feedback-caused soil moisture anomalies may have been secondary sources for the drought circulation but could not have been the primary instigator. For the most part, other diagnosed heating anomalies during the drought are found to have little influence on the North American region. Criteria to help judge the ability of general circulation models to simulate the drought are discussed.
Routson, Cody C.; Woodhouse, Connie A.; Overpeck, Jonathan T.; Betancourt, Julio L.; McKay, Nicholas P.
2016-01-01
Western North America (WNA) is rich in hydroclimate reconstructions, yet questions remain about the causes of decadal-to-multidecadal hydroclimate variability. Teleconnection patterns preserved in annually-resolved tree-ring reconstructed drought maps, and anomalies in a global network of proxy sea surface temperature (SST) reconstructions, were used to reassess the evidence linking ocean forcing to WNA hydroclimate variability over the past millennium. Potential forcing mechanisms of the Medieval Climate Anomaly (MCA) and individual drought and pluvial events—including two multidecadal-length MCA pluvials—were evaluated. We show strong teleconnection patterns occurred during the driest (wettest) years within persistent droughts (pluvials), implicating SSTs as a potent hydroclimate forcing mechanism. The role of the SSTs on longer timescales is more complex. Pacific teleconnection patterns show little long-term change, whereas low-resolution SST reconstructions vary over decades to centuries. While weaker than the tropical Pacific teleconnections, North Atlantic teleconnection patterns and SST reconstructions also show links to WNA droughts and pluvials, and may in part account for longer-term WNA hydroclimate changes. Nonetheless, evidence linking WNA hydroclimate to SSTs still remains sparse and nuanced—especially over long-timescales with a broader range of hydroclimatic variability than characterized during the 20th century.
NASA Astrophysics Data System (ADS)
Xue, Y.; Diallo, I.; Li, W.; Neelin, J. D.; Chu, P. C.; Vasic, R.; Zhu, Y.; LI, Q.; Robinson, D. A.
2017-12-01
Recurrent droughts/floods are high-impact meteorological events. Many studies have attributed these episodes to variability and anomaly of global sea surface temperatures (SST). However, studies have consistently shown that SST along is unable to fully explain the extreme climate events. Remote effects of large-scale spring land surface temperature (LST) and subsurface temperature (SUBT) variability in Northwest U.S. over the Rocky Mountain area on later spring-summer droughts/floods over the Southern Plains and adjacent areas, however, have been largely ignored. In this study, evidence from climate observations and model simulations addresses these effects. The Maximum Covariance Analysis of observational data identifies that a pronounce spring LST anomaly pattern over Northwest U.S. is closely associated with summer precipitation anomalies in Southern Plains: negative/positive spring LST anomaly is associated with the summer drought/flood over the Southern Plains. The global and regional weather forecast models were used to demonstrate a causal relationship. The modeling study suggests that the observed LST and SUBT anomalies produced about 29% and 31% of observed May 2015 heavy precipitation and June 2011 precipitation deficit, respectively. The analyses discovered that the LST/SUBT's downstream effects are associated with a large-scale atmospheric stationary wave extending eastward from the LST/SUBT anomaly region. For comparison, the SST effect was also tested and produced about 31% and 45% of the May 2015 heavy precipitation and June 2011 drought conditions, respectively. This study suggests that consideration of both SST and LST/SUBT anomalies are able to explain a substantial amount of variance in precipitation at sub-seasonal scale and inclusion of the LST/SUBT effect is essential to make reliable sub-seasonal and seasonal North American drought/flood predictions.
On gravity from SST, geoid from SEASAT, and plate age and fracture zones in the Pacific
NASA Technical Reports Server (NTRS)
Marsh, B. D.; Marsh, J. G.; Williamson, R. G.
1983-01-01
Data from an additional 50 satellite-to-satellite tracking (SST) passes were combined with earlier measurements of the high degree and order (n, m, 12) gravity in the central Pacific. A composite map was produced which shows good agreement with conventional GEM models. Data from the SEASAT altimeter was reduced and found to agree well with both the SST and the GEM fields. The maps are dominated especially in the east, by a pattern of roughly east-west anomalies with a transverse wavelength of about 2000 km. Further comparison with regional bathymetric data shows a remarkably close correlation with plate age. Each anomaly band is framed by those major fracture zones having large offsets. The regular spacing of these fractures seems to account for the fabric in the gravity fields. Other anomalies are accounted for by hot spots. The source of part of these anomalies is in the lithosphere itself. The possible plume size and ascent velocity necessary to supply deep mantle material to the upper mantel without complete thermal equilibration is considered.
NASA Astrophysics Data System (ADS)
Schubert; Drought Working Group, S.
2008-12-01
The USCLIVAR working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land-atmosphere feedbacks on regional drought. Specific questions that the runs are designed to address include: What are mechanisms that maintain drought across the seasonal cycle and from one year to the next. What is the role of the land? What is the role of the different ocean basins, including the impact of El Nino/Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), the Atlantic Multi-decadal Oscillation (AMO), and warming trends in the global oceans? The runs were done with several global atmospheric models including NASA/NSIPP-1, NCEP/GFS, GFDL/AM2, and NCAR CCM3 and CAM3. In addition, runs were done with the NCEP CFS (coupled atmosphere-ocean) model by employing a novel adjustment technique to nudge the coupled model towards the imposed SST forcing patterns. This talk provides an overview of the experiments and some initial results.
NASA Technical Reports Server (NTRS)
Schubert, Siegfried
2008-01-01
The US CLIVAR working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land-atmosphere feedbacks on regional drought. Specific questions that the runs are designed to address include: What are mechanisms that maintain drought across the seasonal cycle and from one year to the next. What is the role of the land? What is the role of the different ocean basins, including the impact of EL Nino/Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), the Atlantic Multi-decadal Oscillation (AMO), and warming trends in the global oceans? The runs were done with several global atmospheric models including NASA/NSIPP-1, NCEP/GFS, GFDL/AM2, and NCAR CCM3 and CAM3. In addition, runs were done with the NCEP CFS (coupled atmosphere-ocean) model by employing a novel adjustment technique to nudge the coupled model towards the imposed SST forcing patterns. This talk provides an overview of the experiments and some initial results.
Tropical Atlantic-Korea teleconnection pattern during boreal summer season
NASA Astrophysics Data System (ADS)
Ham, Yoo-Geun; Chikamoto, Yoshimitsu; Kug, Jong-Seong; Kimoto, Masahide; Mochizuki, Takashi
2017-10-01
The remote impact of tropical Atlantic sea surface temperature (SST) variability on Korean summer precipitation is examined based on observational data analysis along with the idealized and hindcast model experiments. Observations show a significant correlation (i.e. 0.64) between Korean precipitation anomalies (averaged over 120-130°E, 35-40°N) and the tropical Atlantic SST index (averaged over 60°W-20°E, 30°S-30°N) during the June-July-August (JJA) season for the 1979-2010 period. Our observational analysis and partial-data assimilation experiments using the coupled general circulation model demonstrate that tropical Atlantic SST warming induces the equatorial low-level easterly over the western Pacific through a reorganization of the global Walker Circulation, causing a decreased precipitation over the off-equatorial western Pacific. As a Gill-type response to this diabatic forcing, an anomalous low-level anticyclonic circulation appears over the Philippine Sea, which transports wet air from the tropics to East Asia through low-level southerly, resulting an enhanced precipitation in the Korean peninsula. Multi-model hindcast experiments also show that predictive skills of Korean summer precipitation are improved by utilizing predictions of tropical Atlantic SST anomalies as a predictor for Korean precipitation anomalies.
NASA Astrophysics Data System (ADS)
Tamsitt, V. M.; Talley, L. D.; Mazloff, M. R.
2014-12-01
The Southern Ocean displays a zonal dipole (wavenumber one) pattern in sea surface temperature (SST), with a cool zonal anomaly in the Atlantic and Indian sectors and a warm zonal anomaly in the Pacific sector, associated with the large northward excursion of the Malvinas and southeastward flow of the Antarctic Circumpolar Current (ACC). To the north of the cool Indian sector is the warm, narrow Agulhas Return Current (ARC). Air-sea heat flux is largely the inverse of this SST pattern, with ocean heat gain in the Atlantic/Indian, cooling in the southeastward-flowing ARC, and cooling in the Pacific, based on adjusted fluxes from the Southern Ocean State Estimate (SOSE), a ⅙° eddy permitting model constrained to all available in situ data. This heat flux pattern is dominated by turbulent heat loss from the ocean (latent and sensible), proportional to perturbations in the difference between SST and surface air temperature, which are maintained by ocean advection. Locally in the Indian sector, intense heat loss along the ARC is contrasted by ocean heat gain of 0.11 PW south of the ARC. The IPCC AR5 50 year depth-averaged 0-700 m temperature trend shows surprising similarities in its spatial pattern, with upper ocean warming in the ARC contrasted by cooling to the south. Using diagnosed heat budget terms from the most recent (June 2014) 6-year run of the SOSE we find that surface cooling in the ARC is balanced by heating from south-eastward advection by the current whereas heat gain in the ACC is balanced by cooling due to northward Ekman transport driven by strong westerly winds. These results suggest that spatial patterns in multi-decadal upper ocean temperature trends depend on regional variations in upper ocean dynamics.
NASA Astrophysics Data System (ADS)
King, Martin P.; Herceg-Bulić, Ivana; Kucharski, Fred; Keenlyside, Noel
2018-03-01
We investigate the Northern Hemisphere atmospheric circulation anomalies associated to the sea surface temperature (SST) anomalies that are related to the eastern-Pacific and central-Pacific El Nino-Southern Oscillations in the late autumn (November). This research is motivated by the need for improving understanding of the autumn climate conditions which can impact on winter climate, as well as the relative lack of study on the boreal autumn climate processes compared to winter. Using reanalysis and SST datasets available from the late nineteenth century through the recent years, we found that there are two major atmospheric responses; one is a hemispheric-wide wave number-4 pattern, another has a more annular pattern. Both of these project on the East Atlantic pattern (southward-shifted North Atlantic Oscillation) in the Atlantic sector. Which of the patterns is active is suggested to depend on the background mean flow, with the annular anomaly active in the most recent decades, while the wave-4 pattern in the decades before. This switch is associated with a change of correlation sign in the North Pacific. We discuss the robustness of this finding. The ability of two atmospheric general circulation models (ICTP-AGCM and ECHAM-AGCM) to reproduce the teleconnections is also examined. Evidence provided shows that the wave-4 pattern and the East Atlantic pattern signals can be reproduced by the models, while the shift from this to an annular response for the recent years is not found conclusively.
NASA Astrophysics Data System (ADS)
Vanyushin, George
2015-04-01
Continuous long-term database (1998-2014) on the sea surface temperature (SST) comprising results of regional satellite monitoring (the Norwegian and the Barents seas) is used to resolve several applied problems. Authors have analyzed indirect influence the SST (the NOAA satellite data) on modern cod total stock biomass (abundance of the Northeast Arctic cod at age 3+). In this study, we went on the consideration of the relationship between the SST anomalies for March-April in the main spawning ground of the cod off the Lofoten islands in the Norwegian Shelf Waters and forecasting assessment of future cod generation success and its future abundance of 3 year old. Mean monthly SST and SST anomalies are computed for the selected area on the basis of the weekly SST maps which made by using the NOAA satellites data for the period 1998-2014. Comparison of the SST anomalies in the main spawning ground with abundance of the cod year class at age 3+ shows that survival of the cod generations was inhibited on the whole as negative (below -0,1C) well as positive SST anomalies (above +1,3C) during March and April. Finally, the results indicate that poor and low middle generations of cod at age 3+ (2002, 2004, 2010) occurred in years with negative or extremely high positive the SST anomalies in the spawning area. The SST anomalies in years which were close to normal significances provide conditions for appearance middle or strong generations of cod (2001-2003, 2005-2009, 2011-2013). So, the SST and SST anomalies (by the NOAA satellite data) characterize of increase in input of warm Atlantic waters which form numerous eddies along the main stream thus creating favorable conditions for spawning and development of the cod larvae and fry and provide them with food stock, finally direct influence on forming total stock biomass of cod and helping its population forecast. Key words: satellite monitoring of SST, the Northeast Arctic cod, spawning ground, forecast of the cod year class strength at age 3+.
The Pacific SST response to volcanic eruptions over the past millennium based on the CESM-LME
NASA Astrophysics Data System (ADS)
Man, W.; Zuo, M.
2017-12-01
The impact of the northern hemispheric, tropical and southern hemispheric volcanic eruptions on the Pacific sea surface temperature (SST) and its mechanism are investigated using the Community Earth System Model Last Millennium Ensemble. Analysis of the simulations indicates that the Pacific SST features a significant El Niño-like pattern a few months after the northern hemispheric and tropical eruptions, and with a weaker such tendency after the southern hemispheric eruptions. Furthermore, the Niño3 index peaks lagging one and a half years after the northern hemispheric and tropical eruptions. Two years after all three types of volcanic eruptions, a La Niña-like pattern over the equatorial Pacific is observed, which seems to form an El Niño-Southern Oscillation (ENSO) cycle. In addition, the westerly anomalies at 850 hPa over the western-to-central Pacific appear ahead of the warm SST; hence, the El Niño-like warming over the eastern Pacific can be attributed to the weakening of the trade winds. We further examined the causes of westerly anomalies and find that a shift of the intertropical convergence zone (ITCZ) can explain the El Niño-like response to the northern hemispheric eruptions, which is not applicable for tropical or southern hemispheric eruptions. Instead, the reduction in the zonal equatorial SST gradient through the ocean dynamical thermostat mechanism, combined with the land-sea thermal contrast between the Maritime Continent (MC) and the surrounding ocean and the divergent wind induced by the decreased precipitation over the MC, can trigger the westerly anomalies over the equatorial Pacific, which is applicable for all three types of eruptions.
Shifting patterns of ENSO variability from a 492-year South Pacific coral core
NASA Astrophysics Data System (ADS)
Tangri, N.; Linsley, B. K.; Mucciarone, D.; Dunbar, R. B.
2017-12-01
Anticipating the impacts of ENSO in a changing climate requires detailed reconstructions of changes in its timing, amplitude, and spatial pattern, as well as attempts to attribute those changes to external forcing or internal variability. A continuous coral δ18O record from American Samoa, in the tropical South Pacific, sheds light on almost five centuries of these changes. We find evidence of internally-driven 50-100 year cycles with broad peaks of high variability punctuated by short transitions of low variability. We see a long, slow trend towards more frequent ENSO events, punctuated by sharp decreases in frequency; the 20th century in particular shows a strong trend towards higher-frequency ENSO. Due to the unique location of American Samoa with respect to ENSO sea surface temperature (SST) anomalies, we infer changes in the spatial pattern of ENSO. American Samoa currently lies on the ENSO 3.4 nodal line - the boomerang shape that separates waters warmed by El Niño from those that cool. Closer examination reveals that SST around American Samoa displays opposing responses to Eastern and Central Pacific ENSO events. However, this has not always been the case; in the late 19th and early 20th century, SST responded similarly to both flavors of ENSO. We interpret this to mean a geographic narrowing towards the equator of the eastern Pacific El Niño SST anomaly pattern in the first half of the 20th century.
Atlantic Induced Pan-tropical Climate Variability in the Upper-ocean and Atmosphere
NASA Astrophysics Data System (ADS)
Li, X.; Xie, S. P.; Gille, S. T.; Yoo, C.
2016-02-01
During the last three decades, tropical sea surface temperature (SST) exhibited dipole-like trends, with warming over the tropical Atlantic and Indo-Western Pacific but cooling over the Eastern Pacific. The Eastern Pacific cooling has recently been identified as a driver of the global warming hiatus. Previous studies revealed atmospheric bridges between the tropical Pacific, Atlantic, and Indian Ocean, which could potentially contribute to this zonally asymmetric SST pattern. However, the mechanisms and the interactions between these teleconnections remain unclear. To investigate these questions, we performed a `pacemaker' simulation by restoring the tropical Atlantic SST changes in a state-of-the-art climate model - the CESM1. Results show that the Atlantic plays a key role in initiating the tropical-wide teleconnections, and the Atlantic-induced anomalies contribute 55%-75% of the total tropical SST and circulation changes during the satellite era. A hierarchy of oceanic and atmospheric models are then used to investigate the physical mechanisms of these teleconnections: the Atlantic warming enhances atmospheric deep convection, drives easterly wind anomalies over the Indo-Western Pacific through the Kelvin wave, and westerly anomalies over the eastern Pacific as Rossby waves, in line with Gill's solution (Fig1a). These wind changes induce an Indo-Western Pacific warming via the wind-evaporation-SST effect, and this warming intensifies the La Niña-type response in the upper Pacific Ocean by enhancing the easterly trade winds and through the Bjerknes ocean-dynamical processes (Fig1b). The teleconnection finally develops into a tropical-wide SST dipole pattern with an enhanced trade wind and Walker circulation, similar as the observed changes during the satellite era. This mechanism reveals that the tropical ocean basins are more tightly connected than previously thought, and the Atlantic plays a key role in the tropical climate pattern formation and further the global warming hiatus. The tropical Atlantic warming is likely due to radiative forcing and Atlantic meridional overturning circulation (AMOC). Our study suggests that the AMOC may force the decadal variability of the tropical ocean and atmosphere, and thus contributes to the decadal predictability of the global climate.
No inter-gyre pathway for sea-surface temperature anomalies in the North Atlantic.
Foukal, Nicholas P; Lozier, M Susan
2016-04-22
Recent Lagrangian analyses of surface drifters have questioned the existence of a surface current connecting the Gulf Stream (GS) to the subpolar gyre (SPG) and have cast doubt on the mechanism underlying an apparent pathway for sea-surface temperature (SST) anomalies between the two regions. Here we use modelled Lagrangian trajectories to determine the fate of surface GS water and satellite SST data to analyse pathways of GS SST anomalies. Our results show that only a small fraction of the surface GS water reaches the SPG, the water that does so mainly travels below the surface mixed layer, and GS SST anomalies do not propagate into the SPG on interannual timescales. Instead, the inter-gyre heat transport as part of the Atlantic Meridional Overturning Circulation must be accomplished via subsurface pathways. We conclude that the SST in the SPG cannot be predicted by tracking SST anomalies along the GS.
No inter-gyre pathway for sea-surface temperature anomalies in the North Atlantic
Foukal, Nicholas P.; Lozier, M. Susan
2016-01-01
Recent Lagrangian analyses of surface drifters have questioned the existence of a surface current connecting the Gulf Stream (GS) to the subpolar gyre (SPG) and have cast doubt on the mechanism underlying an apparent pathway for sea-surface temperature (SST) anomalies between the two regions. Here we use modelled Lagrangian trajectories to determine the fate of surface GS water and satellite SST data to analyse pathways of GS SST anomalies. Our results show that only a small fraction of the surface GS water reaches the SPG, the water that does so mainly travels below the surface mixed layer, and GS SST anomalies do not propagate into the SPG on interannual timescales. Instead, the inter-gyre heat transport as part of the Atlantic Meridional Overturning Circulation must be accomplished via subsurface pathways. We conclude that the SST in the SPG cannot be predicted by tracking SST anomalies along the GS. PMID:27103496
NASA Astrophysics Data System (ADS)
Grbec, Branka; Matić, Frano; Beg Paklar, Gordana; Morović, Mira; Popović, Ružica; Vilibić, Ivica
2018-02-01
This paper examines long-term series of in situ sea surface temperature (SST) data measured at nine coastal and one open sea stations along the eastern Adriatic Sea for the period 1959-2015. Monthly and yearly averages were used to document SST trends and variability, while clustering and connections to hemispheric indices were achieved by applying the Principal Component Analysis (PCA) and Self-Organizing Maps (SOM) method. Both PCA and SOM revealed the dominance of temporal changes with respect to the effects of spatial differences in SST anomalies, indicating the prevalence of hemispheric processes over local dynamics, such as bora wind spatial inhomogeneity. SST extremes were connected with blocking atmospheric patterns. A substantial warming between 1979 and 2015, in total exceeding 1 °C, was preceded by a period with a negative SST trend, implying strong multidecadal variability in the Adriatic. The strongest connection was found between yearly SST and the East Atlantic (EA) pattern, while North Atlantic Oscillation (NAO) and East Atlantic/West Russia (EAWR) patterns were found to also affect February SST values. Quantification of the Adriatic SST and their connection to hemispheric indices allow for more precise projections of future SST, considered to be rather important for Adriatic thermohaline circulation, biogeochemistry and fisheries, and sensitive to ongoing climate change.
NASA Technical Reports Server (NTRS)
Hackert, E. C.; Busalacchi, A. J.; Carton, J.; Murtugudde, R.; Arkin, P.; Evans, M. N.
2017-01-01
Indian Ocean (IO) dynamics impact ENSO predictability by influencing wind and precipitation anomalies in the Pacific. To test if the upstream influence of the IO improves ENSO validation statistics, a combination of forced ocean, atmosphere, and coupled models are utilized. In one experiment, the full tropical Indo-Pacific region atmosphere is forced by observed interannual SST anomalies. In the other, the IO is forced by climatological SST. Differences between these two forced atmospheric model experiments spotlight a much richer wind response pattern in the Pacific than previous studies that used idealized forcing and simple linear atmospheric models. Weak westerlies are found near the equator similar to earlier literature. However, at initialization strong easterlies between 30 deg. S to 10 deg. S and 0 deg. N to 25 deg. N and equatorial convergence of the meridional winds across the entire Pacific are unique findings from this paper. The large-scale equatorial divergence west of the dateline and northeasterly-to-northwesterly cross-equatorial flow converging on the equator east of the dateline in the Pacific are generated from interannual IO SST coupling. In addition, off-equatorial downwelling curl impacts large-scale oceanic waves (i.e., Rossby waves reflect as western boundary Kelvin waves). After 3 months, these downwelling equatorial Kelvin waves propagate across the Pacific and strengthen the NINO3 SST. Eventually Bjerknes feedbacks take hold in the eastern Pacific which allows this warm anomaly to grow. Coupled forecasts for NINO3 SST anomalies for 1993-2014 demonstrate that including interannual IO forcing significantly improves predictions for 3-9 month lead times.
NASA Astrophysics Data System (ADS)
Hackert, E. C.; Busalacchi, A. J.; Carton, J.; Murtugudde, R.; Arkin, P.; Evans, M. N.
2017-04-01
Indian Ocean (IO) dynamics impact ENSO predictability by influencing wind and precipitation anomalies in the Pacific. To test if the upstream influence of the IO improves ENSO validation statistics, a combination of forced ocean, atmosphere, and coupled models are utilized. In one experiment, the full tropical Indo-Pacific region atmosphere is forced by observed interannual SST anomalies. In the other, the IO is forced by climatological SST. Differences between these two forced atmospheric model experiments spotlight a much richer wind response pattern in the Pacific than previous studies that used idealized forcing and simple linear atmospheric models. Weak westerlies are found near the equator similar to earlier literature. However, at initialization strong easterlies between 30°S-10°S and 0°N-25°N and equatorial convergence of the meridional winds across the entire Pacific are unique findings from this paper. The large-scale equatorial divergence west of the dateline and northeasterly-to-northwesterly cross-equatorial flow converging on the equator east of the dateline in the Pacific are generated from interannual IO SST coupling. In addition, off-equatorial downwelling curl impacts large-scale oceanic waves (i.e., Rossby waves reflect as western boundary Kelvin waves). After 3 months, these downwelling equatorial Kelvin waves propagate across the Pacific and strengthen the NINO3 SST. Eventually Bjerknes feedbacks take hold in the eastern Pacific which allows this warm anomaly to grow. Coupled forecasts for NINO3 SST anomalies for 1993-2014 demonstrate that including interannual IO forcing significantly improves predictions for 3-9 month lead times.
Interannual Variability of Boreal Summer Rainfall in the Equatorial Atlantic
NASA Technical Reports Server (NTRS)
Gu, Guojun; Adler, Robert F.
2007-01-01
Tropical Atlantic rainfall patterns and variation during boreal summer [June-July-August (JJA)] are quantified by means of a 28-year (1979-2006) monthly precipitation dataset from the Global Precipitation Climatology Project (GPCP). Rainfall variability during boreal spring [March-April-May (MAM)] is also examined for comparison in that the most intense interannual variability is usually observed during this season. Comparable variabilities in the Intertropical Convergence Zone (ITCZ) strength and the basin-mean rainfall are found during both seasons. Interannual variations in the ITCZ's latitudinal location during JJA however are generally negligible, in contrasting to intense year-to-year fluctuations during MAM. Sea surface temperature (SST) oscillations along the equatorial region (usually called the Atlantic Nino events) and in the tropical north Atlantic (TNA) are shown to be the two major local factors modulating the tropical Atlantic climate during both seasons. During MAM, both SST modes tend to contribute to the formation of an evident interhemispheric SST gradient, thus inducing anomalous shifting of the ITCZ and then forcing a dipolar structure of rainfall anomalies across the equator primarily in the western basin. During JJA the impacts however are primarily on the ITCZ strength likely due to negligible changes in the ITCZ latitudinal location. The Atlantic Nino reaches its peak in JJA, while much weaker SST anomalies appear north of the equator in JJA than in MAM, showing decaying of the interhemispheric SST mode. SST anomalies in the tropical central-eastern Pacific (the El Nino events) have a strong impact on tropical Atlantic including both the tropical north Atlantic and the equatorial-southern Atlantic. However, anomalous warming in the tropical north Atlantic following positive SST anomalies in the tropical Pacific disappears during JJA because of seasonal changes in the large-scale circulation cutting off the ENSO influence passing through the mid-latitudes. Hence the anomalies associated with the tropical Pacific during JJA are forced through an anomalous Walker circulation primarily working on the western basin, and likely a lagged oceanic response in the equatorial region.
NASA Astrophysics Data System (ADS)
Xu, Zhiqing; Fan, Ke; Wang, HuiJun
2017-09-01
The severe drought over northeast Asia in summer 2014 and the contribution to it by sea surface temperature (SST) anomalies in the tropical Indo-Pacific region were investigated from the month-to-month perspective. The severe drought was accompanied by weak lower-level summer monsoon flow and featured an obvious northward movement during summer. The mid-latitude Asian summer (MAS) pattern and East Asia/Pacific teleconnection (EAP) pattern, induced by the Indian summer monsoon (ISM) and western North Pacific summer monsoon (WNPSM) rainfall anomalies respectively, were two main bridges between the SST anomalies in the tropical Indo-Pacific region and the severe drought. Warming in the Arabian Sea induced reduced rainfall over northeast India and then triggered a negative MAS pattern favoring the severe drought in June 2014. In July 2014, warming in the tropical western North Pacific led to a strong WNPSM and increased rainfall over the Philippine Sea, triggering a positive EAP pattern. The equatorial eastern Pacific and local warming resulted in increased rainfall over the off-equatorial western Pacific and triggered an EAP-like pattern. The EAP pattern and EAP-like pattern contributed to the severe drought in July 2014. A negative Indian Ocean dipole induced an anomalous meridional circulation, and warming in the equatorial eastern Pacific induced an anomalous zonal circulation, in August 2014. The two anomalous cells led to a weak ISM and WNPSM, triggering the negative MAS and EAP patterns responsible for the severe drought. Two possible reasons for the northward movement of the drought were also proposed.
NASA Astrophysics Data System (ADS)
Kawakubo, Y.; Alibert, C.; Yokoyama, Y.
2017-12-01
We present a seasonal reconstruction of sea surface temperature (SST) from 1578 to 2008, based on a Porites coral Sr/Ca record from the northern Ryukyus, within the Kuroshio southern recirculation gyre. Interannual SST anomalies are generally 0.5°C, making Sr/Ca-derived SST reconstructions a challenging task. Replicate measurements along adjacent coral growth axes, enabled by the laser ablation inductively coupled plasma mass spectrometry technique used here, give evidence of rather large uncertainties. Nonetheless, derived winter SST anomalies are significantly correlated with the Western Pacific atmospheric pattern which has a dominant influence on winter temperature in East Asia. Annual mean SSTs show interdecadal variations, notably cold intervals between 1670 and 1700 during the Maunder Minimum (MM) and between 1766 and 1788 characterized by a negative phase of the North Atlantic Oscillation. Cold summers in 1783 and 1784 coincide with the long-lasting Laki eruption that had a profound impact on the Northern Hemisphere climate, including the severe "Tenmei" famine in Japan. The decades between 1855 and 1900 are significantly cooler than the first half of the twentieth century, while those between 1700 and 1765, following the MM, are warmer than average. SST variability in the Ryukyus is only marginally influenced by the Pacific Decadal Oscillation, so that external forcing remains the main driver of low-frequency temperature changes. However, the close connection between the Kuroshio extension (KE) and its recirculation gyre suggests that decadal SST anomalies associated with the KE front also impact the Ryukyus, and there is a possible additional role for feedback of the Kuroshio-Oyashio variability to the large-scale atmosphere at decadal timescale.
NASA Astrophysics Data System (ADS)
Custodio, M. D.; Ramos, C. G.; Madeira, P.; de Macedo, A. L.
2013-12-01
The South American climate presents tropical, subtropical and extratropical features because of its territorial extension, being influenced by a variety of dynamical systems with different spatial and temporal scales which result in different climatic regimes in their subregions. Furthermore, the precipitation regime in South America is influenced by low-frequency phenomena as El Niño-Southern Oscillation (ENSO), the Atlantic dipole and the Madden Julian Oscilation (MJO), in other words, is directly influenced by variations of the Sea Surface Temperature (SST). Due to the importance of the precipitation for many sectors including the planning of productive activities, such as agriculture, livestock and hydropower energy, many studies about climate variations in Brazil have tried to determine and explain the mechanisms that affect the precipitation regime. However, because of complexity of the climate system, and consequently of their impacts on the global precipitation regime, its interactions are not totally understood and therefore misrepresented in numerical models used to forecast climate. The precipitation pattern over hydrographic basin which form the Brasilian National Interconnected System (Sistema Interligado Nacional-SIN) are not yet known and therefore the climate forecast of these regions still presents considerable failure that need to be corrected due to its economic importance. In this context, the purpose here is to determine the precipitation patterns on the Brazilian SIN, based on SST and circulation observed data. In a second phase a forecast climate model for these regions will be produced. In this first moment 30 years (1983 to 2012) of SST over Pacific and Atlantic Ocean were analyzed, along with wind in 850 and 200 hPa and precipitation observed data. The precipitation patterns were analyzed through statistical analyses for interannual (ENSO) and intraseasonal (MJO) anomalies for these variables over the SIN basin. Subsequently, these precipitation patterns will be used for the development of a statistical model for climate prediction for each of these regions, with which it is expected an improvement of up to 20% of climate prediction in these basins. In this first stage was evident a high correlation between precipitation in the basins of SIN and SST Pacific anomalies over the region of Niños, as well as on the coast of Chile and Peru. The effect of SST anomalies in the Niños region on precipitation in the South America is already known, however its quantification was not yet well understood. The coast of Chile determines the positioning and movement of cold fronts directly affecting rainfall in southern and southeastern of Brazil, then the correlation and rain pattern indicate the parameters for the climate prediction model. The anomalies over the Atlantic ocean present high correlation with the precipitation in North and Northeast of Brazil, as well as its connection with the Pacific anomalies. This quantification generated climatic parameters for predictions for these regions. The relationship between the canonical ENSO events and precipitation regime on the basins were also quantified which represents a high degree of assertiveness in predicting climate of these regions.
Role of Tropical Atlantic SST Variability as a Modulator of El Nino Teleconnections
NASA Technical Reports Server (NTRS)
Ham, Yoo-Geun; Sung, Mi-Kyung; An, Soon-II; Schubert, Siegfried D.; Kug, Jong-Seong
2014-01-01
The present study suggests that the off-equatorial North Atlantic (NATL) SST warming plays a significant role in modulating El Niño teleconnection and its impact on the North Atlantic and European regions. The El Niño events accompanied by NATL SST warming exhibit south-north dipole pattern over the Western Europe to Atlantic, while the ENSO teleconnection pattern without NATL warming exhibits a Rossby wave-like pattern confined over the North Pacific and western Atlantic. Especially, the El Niño events with NATL warming show positive (negative) geopotential-height anomalies over the North Atlantic (Western Europe) which resemble the negative phase of the NAO. Consistently, it is shown using a simple statistical model that NATL SSTA in addition to the tropical Pacific SSTA leads to better prediction on regional climate variation over the North Atlantic and European regions. This role of NATL SST on ENSO teleconnection is also validated and discussed in a long term simulation of coupled global circulation model (CGCM).
NASA Astrophysics Data System (ADS)
Chowdary, J. S.; Chaudhari, H. S.; Gnanaseelan, C.; Parekh, Anant; Suryachandra Rao, A.; Sreenivas, P.; Pokhrel, S.; Singh, P.
2014-04-01
This study investigates the El Niño Southern Oscillation (ENSO) teleconnections to tropical Indian Ocean (TIO) and their relationship with the Indian summer monsoon in the coupled general circulation model climate forecast system (CFS). The model shows good skill in simulating the impact of El Niño over the Indian Oceanic rim during its decay phase (the summer following peak phase of El Niño). Summer surface circulation patterns during the developing phase of El Niño are more influenced by local Sea Surface Temperature (SST) anomalies in the model unlike in observations. Eastern TIO cooling similar to that of Indian Ocean Dipole (IOD) is a dominant model feature in summer. This anomalous SST pattern therefore is attributed to the tendency of the model to simulate more frequent IOD events. On the other hand, in the model baroclinic response to the diabatic heating anomalies induced by the El Niño related warm SSTs is weak, resulting in reduced zonal extension of the Rossby wave response. This is mostly due to weak eastern Pacific summer time SST anomalies in the model during the developing phase of El Niño as compared to observations. Both eastern TIO cooling and weak SST warming in El Niño region combined together undermine the ENSO teleconnections to the TIO and south Asia regions. The model is able to capture the spatial patterns of SST, circulation and precipitation well during the decay phase of El Niño over the Indo-western Pacific including the typical spring asymmetric mode and summer basin-wide warming in TIO. The model simulated El Niño decay one or two seasons later, resulting long persistent warm SST and circulation anomalies mainly over the southwest TIO. In response to the late decay of El Niño, Ekman pumping shows two maxima over the southern TIO. In conjunction with this unrealistic Ekman pumping, westward propagating Rossby waves display two peaks, which play key role in the long-persistence of the TIO warming in the model (for more than a season after summer). This study strongly supports the need of simulating the correct onset and decay phases of El Niño/La Niña for capturing the realistic ENSO teleconnections. These results have strong implications for the forecasting of Indian summer monsoon as this model is currently being adopted as an operational model in India.
Long-term variations of SST and heat content in the Atlantic Ocean
NASA Astrophysics Data System (ADS)
Huonsou-gbo, Aubains; Servain, Jacques; Caniaux, Guy; Araujo, Moacyr; Bourlès, Bernard; Veleda, Doris
2015-04-01
Recent studies (eg. Wen et al. 2010; Servain et al. 2014) suggest that subsurface processes influence the interannual variability of sea surface temperature (SST) in the tropical Atlantic through the Meridional Overturning Circulation (MOC) with time lags of several months. In this study, we used observed SST and Ocean heat content to test such hypothesis during the period 1964-2013. First results indicate great similarities in the positive linear trends of monthly standardized anomalies of SST, upper ocean heat content (0-500m) and deeper ocean heat content (500-2000m) averaged over the whole Atlantic Ocean. Strong positive trends of SST and deeper heat content occurred in the equatorial Atlantic, while a strong positive trend of the upper heat content was observed in the northeast Atlantic. These positive trends were the highest during the last two decades. The lagged positive correlation patterns between upper heat content anomalies over the whole gridded Atlantic Ocean and SST anomalies averaged over the equatorial region (60°W-15°E; 10°N-10°S) show a slow temporal evolution, which is roughly in agreement with the upper MOC. More detailed works about the mechanism, as well as about the origin of the highest positive trend of the deeper heat content in the equatorial region, are presently under investigation. References Servain J., G. Caniaux, Y. K. Kouadio, M. J. McPhaden, M. Araujo (2014). Recent climatic trends in the tropical Atlantic. Climate Dynamics, Vol. 43, 3071-3089, DOI 10.1007/s00382-014-2168-7.
Atlantic-induced pan-tropical climate change over the past three decades
NASA Astrophysics Data System (ADS)
Li, Xichen; Xie, Shang-Ping; Gille, Sarah T.; Yoo, Changhyun
2016-03-01
During the past three decades, tropical sea surface temperature (SST) has shown dipole-like trends, with warming over the tropical Atlantic and Indo-western Pacific but cooling over the eastern Pacific. Competing hypotheses relate this cooling, identified as a driver of the global warming hiatus, to the warming trends in either the Atlantic or Indian Ocean. However, the mechanisms, the relative importance and the interactions between these teleconnections remain unclear. Using a state-of-the-art climate model, we show that the Atlantic plays a key role in initiating the tropical-wide teleconnection, and the Atlantic-induced anomalies contribute ~55-75% of the tropical SST and circulation changes during the satellite era. The Atlantic warming drives easterly wind anomalies over the Indo-western Pacific as Kelvin waves and westerly anomalies over the eastern Pacific as Rossby waves. The wind changes induce an Indo-western Pacific warming through the wind-evaporation-SST effect, and this warming intensifies the La Niña-type response in the tropical Pacific by enhancing the easterly trade winds and through the Bjerknes ocean dynamical processes. The teleconnection develops into a tropical-wide SST dipole pattern. This mechanism, supported by observations and a hierarchy of climate models, reveals that the tropical ocean basins are more tightly connected than previously thought.
NASA Technical Reports Server (NTRS)
Schubert, Siegfried; Wang, Hailan; Koster, Randal; Weaver, Scott; Gutzler, David; Dai, Aiguo; Delworth, Tom; Deser, Clara; Findell, Kristen; Fu, Rong;
2009-01-01
The USCLI VAR working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land-atmosphere feedbacks on regional drought. Specific questions that the runs are designed to address include: What are the mechanisms that maintain drought across the seasonal cycle and from one year to the next? What is the role of the leading patterns of SST variability, and what are the physical mechanisms linking the remote SST forcing to regional drought, including the role of land-atmosphere coupling? The runs were carried out with five different atmospheric general circulation models (AGCM5), and one coupled atmosphere-ocean model in which the model was continuously nudged to the imposed SST forcing. This paper provides an overview of the experiments and some initial results focusing on the responses to the leading patterns of annual mean SST variability consisting of a Pacific El Nino/Southern Oscillation (ENSO)-like pattern, a pattern that resembles the Atlantic Multi-decadal Oscillation (AMO), and a global trend pattern. One of the key findings is that all the AGCMs produce broadly similar (though different in detail) precipitation responses to the Pacific forcing pattern, with a cold Pacific leading to reduced precipitation and a warm Pacific leading to enhanced precipitation over most of the United States. While the response to the Atlantic pattern is less robust, there is general agreement among the models that the largest precipitation response over the U.S. tends to occur when the two oceans have anomalies of opposite sign. That is, a cold Pacific and warm Atlantic tend to produce the largest precipitation reductions, whereas a warm Pacific and cold Atlantic tend to produce the greatest precipitation enhancements. Further analysis of the response over the U.S. to the Pacific forcing highlights a number of noteworthy and to some extent unexpected results. These include a seasonal dependence of the precipitation response that is characterized by signal-to-noise ratios that peak in spring, and surface temperature signal-to-noise ratios that are both lower and show less agreement among the models than those found for the precipitation response. Another interesting result concerns what appears to be a substantially different character in the surface temperature response over the U.S. to the Pacific forcing by the only model examined here that was developed for use in numerical weather prediction. The response to the positive SST trend forcing pattern is an overall surface warming over the world's land areas with substantial regional variations that are in part reproduced in runs forced with a globally uniform SST trend forcing. The precipitation response to the trend forcing is weak in all the models.
Observed modes of sea surface temperature variability in the South Pacific region
NASA Astrophysics Data System (ADS)
Saurral, Ramiro I.; Doblas-Reyes, Francisco J.; García-Serrano, Javier
2018-02-01
The South Pacific (SP) region exerts large control on the climate of the Southern Hemisphere at many times scales. This paper identifies the main modes of interannual sea surface temperature (SST) variability in the SP which consist of a tropical-driven mode related to a horseshoe structure of positive/negative SST anomalies within midlatitudes and highly correlated to ENSO and Interdecadal Pacific Oscillation (IPO) variability, and another mode mostly confined to extratropical latitudes which is characterized by zonal propagation of SST anomalies within the South Pacific Gyre. Both modes are associated with temperature and rainfall anomalies over the continental regions of the Southern Hemisphere. Besides the leading mode which is related to well known warmer/cooler and drier/moister conditions due to its relationship with ENSO and the IPO, an inspection of the extratropical mode indicates that it is associated with distinct patterns of sea level pressure and surface temperature advection. These relationships are used here as plausible and partial explanations to the observed warming trend observed within the Southern Hemisphere during the last decades.
North Atlantic SST Patterns and NAO Flavors
NASA Astrophysics Data System (ADS)
Rousi, E.; Rahmstorf, S.; Coumou, D.
2017-12-01
North Atlantic SST variability results from the interaction of atmospheric and oceanic processes. The North Atlantic Oscillation (NAO) drives changes in SST patterns but is also driven by them on certain time-scales. These interactions are not very well understood and might be affected by anthropogenic climate change. Paleo reconstructions indicate a slowdown of the Atlantic Meridional Overturning Circulation (AMOC) in recent decades leading to a pronounced cold anomaly ("cold blob") in the North Atlantic (Rahmstorf et al., 2015). The latter may favor NAO to be in its negative mode. In this work, sea surface temperature (SST) patterns are studied in relation to NAO variations, with the aim of discovering preferred states and understanding their interactions. SST patterns are analyzed with Self-Organizing Maps (SOM), a clustering technique that helps identify different spatial patterns and their temporal evolution. NAO flavors refer to different longitudinal positions and tilts of the NAO action centers, also defined with SOMs. This way the limitations of the basic, index-based, NAO-definition are overcome, and the method handles different spatially shapes associated with NAO. Preliminary results show the existence of preferred combinations of SSTs and NAO flavors, which in turn affect weather and climate of Europe and North America. The possible influence of the cold blob on European weather is discussed.
Díaz, Patricio A.; Reguera, Beatriz; Ruiz-Villarreal, Manuel; Pazos, Yolanda; Velo-Suárez, Lourdes; Berger, Henrick; Sourisseau, Marc
2013-01-01
In 2012, there were exceptional blooms of D. acuminata in early spring in what appeared to be a mesoscale event affecting Western Iberia and the Bay of Biscay. The objective of this work was to identify common climatic patterns to explain the observed anomalies in two important aquaculture sites, the Galician Rías Baixas (NW Spain) and Arcachon Bay (SW France). Here, we examine climate variability through physical-biological couplings, Sea Surface Temperature (SST) anomalies and time of initiation of the upwelling season and its intensity over several decades. In 2012, the mesoscale features common to the two sites were positive anomalies in SST and unusual wind patterns. These led to an atypical predominance of upwelling in winter in the Galician Rías, and increased haline stratification associated with a southward advection of the Gironde plume in Arcachon Bay. Both scenarios promoted an early phytoplankton growth season and increased stability that enhanced D. acuminata growth. Therefore, a common climate anomaly caused exceptional blooms of D. acuminata in two distant regions through different triggering mechanisms. These results increase our capability to predict intense diarrhetic shellfish poisoning outbreaks in the early spring from observations in the preceding winter. PMID:23959151
NASA Astrophysics Data System (ADS)
Han, Tingting; He, Shengping; Wang, Huijun; Hao, Xin
2017-04-01
The relationship between the tropical Indian Ocean (TIO) and East Asian summer monsoon/precipitation has been documented in many studies. However, the precursor signals of summer precipitation in the TIO sea surface temperature (SST), which is important for climate prediction, have drawn little attention. This study identified a strong relationship between early-spring TIO SST and subsequent early-summer precipitation in Northeast China (NEC) since the late 1980s. For 1961-1986, the correlations between early-spring TIO SST and early-summer NEC precipitation were statistically insignificant; for 1989-2014, they were positively significant. Since the late 1980s, the early-spring positive TIO SST anomaly was generally followed by a significant anomalous anticyclone over Japan; that facilitated anomalous southerly winds over NEC, conveying more moisture from the North Pacific. Further analysis indicated that an early TIO SST anomaly showed robust persistence into early summer. However, the early-summer TIO SST anomaly displayed a more significant influence on simultaneous atmospheric circulation and further affected NEC precipitation since the late 1980s. In 1989-2014, the early-summer Hadley and Ferrell cell anomalies associated with simultaneous TIO SST anomaly were much more significant and extended further north to mid-latitudes, which provided a dynamic foundation for the TIO-mid-latitude connection. Correspondingly, the TIO SST anomaly could lead to significant divergence anomalies over the Mediterranean. The advections of vorticity by the divergent component of the flow effectively acted as a Rossby wave source. Thus, an apparent Rossby wave originated from the Mediterranean and propagated east to East Asia; that further influenced the NEC precipitation through modulation to the atmospheric circulation (e.g., surface wind, moisture, vertical motion).
The South Asian Monsoon and the Tropospheric Biennial Oscillation.
NASA Astrophysics Data System (ADS)
Meehl, Gerald A.
1997-08-01
A mechanism is described that involves the south Asian monsoon as an active part of the tropospheric biennial oscillation (TBO) described in previous studies. This mechanism depends on coupled land-atmosphere-ocean interactions in the Indian sector, large-scale atmospheric east-west circulations in the Tropics, convective heating anomalies over Africa and the Pacific, and tropical-midlatitude interactions in the Northern Hemisphere. A key element for the monsoon role in the TBO is land-sea or meridional tropospheric temperature contrast, with area-averaged surface temperature anomalies over south Asia that are able to persist on a 1-yr timescale without the heat storage characteristics that contribute to this memory mechanism in the ocean. Results from a global coupled general circulation model show that soil moisture anomalies contribute to land-surface temperature anomalies (through latent heat flux anomalies) for only one season after the summer monsoon. A global atmospheric GCM in perpetual January mode is run with observed SSTs with specified convective heating anomalies to demonstrate that convective heating anomalies elsewhere in the Tropics associated with the coupled ocean-atmosphere biennial mechanism can contribute to altering seasonal midlatitude circulation. These changes in the midlatitude longwave pattern, forced by a combination of tropical convective heating anomalies over East Africa, Southeast Asia, and the western Pacific (in association with SST anomalies), are then able to maintain temperature anomalies over south Asia via advection through winter and spring to set up the land-sea meridional tropospheric temperature contrast for the subsequent monsoon. The role of the Indian Ocean, then, is to provide a moisture source and a low-amplitude coupled response component for meridional temperature contrast to help drive the south Asian monsoon. The role of the Pacific is to produce shifts in regionally coupled convection-SST anomalies. These regions are tied together and mutually interact via the large-scale east-west circulation in the atmosphere and contribute to altering midlatitude circulations as well. The coupled model results, and experiments with an atmospheric GCM that includes specified convective heating anomalies, suggest that the influence of south Asian snow cover in the monsoon is not a driving force by itself, but is symptomatic of the larger-scale shift in the midlatitude longwave pattern associated with tropical SST and convective heating anomalies.
The impact of sea surface temperature on winter wheat in Iberian Peninsula
NASA Astrophysics Data System (ADS)
Capa-Morocho, Mirian; Rodríguez-Fonseca, Belen; Ruiz-Ramos, Margarita
2016-04-01
Climate variability is the main driver of changes in crops yield, especially for rainfed production systems. This is also the case of Iberian Peninsula (IP) (Capa-Morocho et al., 2014), where wheat yields are strongly dependent on seasonal rainfall amount and temporal distribution of rainfall during the growing season. Previous works have shown that large-scale oceanic patterns have a significant impact on precipitation over IP (Rodriguez-Fonseca and de Castro, 2002; Rodríguez-Fonseca et al., 2006). The existence of some predictability of precipitation has encouraged us to analyze the possible predictability of the wheat yield in the IP using sea surface temperature (SST) anomalies as predictor. For this purpose, a crop model site specific calibrated for the Northeast of IP and several reanalysis climate datasets have been used to obtain long time series of attainable wheat yield and relate their variability with SST anomalies. The results show that wheat yield anomalies are associated with changes in the Tropical Pacific (El Niño) and Atlantic (TNA) SST. For these events, the regional associated atmospheric pattern resembles the NAO, which also influences directly on the maximum temperatures and precipitation experienced by the crop during flowering and grain filling. Results from this study could have important implications for predictability issues in agricultural planning and management, such as insurance coverage, changes in sowing dates and choice of species and varieties.
NASA Astrophysics Data System (ADS)
Vanyushin, George; Bulatova, Tatiana; Klochkov, Dmitriy; Troshkov, Anatoliy; Kruzhalov, Michail
2013-04-01
In this study, the attempt to consider the relationship between sea surface anomalies of temperature (SST anomalies °C) in spawning area of the Norwegian Arctic cod off the Lofoten islands in coastal zone of the Norwegian Sea and modern cod total stock biomass including forecasting assessment of future cod generation success. Continuous long-term database of the sea surface temperature (SST) was created on the NOAA satellites data. Mean monthly SST and SST anomalies are computed for the selected area on the basis of the weekly SST maps for the period of 1998-2012. These maps were plotted with the satellite SST data, as well as information of vessels, byoies and coastal stations. All data were classified by spawning seasons (March-April) and years. The results indicate that poor and low middle generations of cod (2001, 2006, 2007) occurred in years with negative or extremely high positive anomalies in the spawning area. The SST anomalies in years which were close to normal or some more normal significances provide conditions for appearance strong or very strong generations of cod (1998, 2000, 2002, 2004, 2005, 2006, 2008, 2009). Temperature conditions in concrete years influence on different indexes of cod directly. So, the mean temperature in spawning seasons in years 1999-2005 was ≈5,0°C and SST anomaly - +0,35°C, by the way average year significances indexes of cod were: total stock biomass - 1425,0 th.t., total spawning biomass - 460,0 th.t., recruitment (age 3+) - 535,0 mln. units and landings - 530,0 th.t. In spawning seasons 2006-2012 years the average data were following: mean SST ≈6,0°C, SST anomaly - +1,29°C, total stock biomass - 2185,0 th.t., total spawning biomass - 1211,0 th.t., recruitment (age 3+) - 821,0 mln. units and landings - 600,0 th.t. The SST and SST anomalies (the NOAA satellite data) characterize increase of decrease in input of warm Atlantic waters which form numerous eddies along the flows of the main warm currents thus creating favorable conditions for development of the cod larvae and fry and provide them with food stock, finally, direct influence on forming total stock biomass of cod and helping its population forecast. Key words: satellite monitoring of SST, Northeast Arctic cod, spawning area, maps of SST, prognosis.
Interdecadal Change in SST Anomalies Associated with Winter Rainfall over South China
NASA Astrophysics Data System (ADS)
Liantong, Z.
2012-04-01
The present study investigates the interdecadal change in winter (January-February-March, or "JFM") rainfall over South China and in South China JFM rainfall-sea surface temperature (SST) relationship by using station observations for the period of 1958-2002, the Met Office Hadley Center's SST data for the period of 1900-2008, and the ERA-40 re-analysis for the period of 1958-2002. It is found that the relationship between South China JFM rainfall and SST experienced an obvious interdecadal change around the year 1978. The analyses show that the JFM rainfall anomalies during 1960-1977 and 1978-2002 were closely associated with the South China Sea (SCS) SST and El Niño-Southern Oscillation (ENSO), respectively. Moreover, southwesterly anomalies at 700 hPa dominate over the South China Sea for positive SCS SST anomaly years during 1960-1977, and for El Niño years during 1978-2002, respectively. These wind anomalies, which are associated with the enhancement of the western Pacific subtropical high, transport more moisture into South China, favoring increases in rainfall. KEY WORDS: ENSO; SCS SST; South China winter rainfall, western Pacific subtropical high.
history of Nino3.4 SST anomalies of individual forecasts Forecast anomalies Target season Nino SST Global SST Global Prec Global T2m US Prec US T2m US SM z200 NDJ 2004/2005 Nino SST Global SST Global Prec Global T2m US Prec US T2m US SM z200 DJF 2005 Nino SST Global SST Global Prec Global T2m US Prec US T2m
On gravity from SST, geoid from Seasat, and plate age and fracture zones in the Pacific
NASA Technical Reports Server (NTRS)
Marsh, B. D.; Marsh, J. G.; Williamson, R. G. (Principal Investigator)
1984-01-01
A composite map produced by combining 90 passes of SST data show good agreement with conventional GEM models. The SEASAT altimeter data were deduced and found to agree with both the SST and GEM fields. The maps are dominated (especially in the east) by a pattern of roughly east-west anomalies with a transverse wavelength of about 2000 km. Comparison with regional bathymetric data shows a remarkedly close correlation with plate age. Most anomalies in the east half of the Pacific could be partly caused by regional differences in plate age. The amplitude of these geoid or gravity anomalies caused by age differences should decrease with absolute plate age, and large anomalies (approximately 3 m) over old, smooth sea floor may indicate a further deeper source within or perhaps below the lithosphere. The possible plume size and ascent velocity necessary to supply deep mantle material to the upper mantle without complete thermal equilibration was considered. A plume emanating from a buoyant layer 100 km thick and 10,000 times less viscous than the surrounding mantle should have a diameter of about 400 km and must ascend at about 10 cm/yr to arrive still anomalously hot in the uppermost mantle.
Characteristic variations of sea surface temperature with multiple time scales in the North Pacific
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanimoto, Youichi; Hanawa, Kimio; Toba, Yoshiaki
1993-06-01
It is unclear whether the recent increases in global temperatures are really due to the increase of greenhouse gases or are a manifestation of natural variability. Temporal evolution and spectral structure of sea surface temperature (SST) anomalies in the North Pacific over the last 37 years are investigated on the three characteristic time scales: shorter than 24 months (HF), 24-60 months (ES), and longer than 60 months (DC). The leading empirical-orthogonal function (EOF) for the DC time scale is characterized by a zonally elongated monopole centered at around 40[degrees]N, 180[degrees]. The leading EOF for the HF time scale is somewhatmore » similar to that for the DC time scale, although there are two centers of action with the same polarity at the mid and western Pacific. The leading EOF for the ES time scale, however, exhibits a different pattern whose center of action at the mid Pacific is located farther southeastward. In the time evolution of the SST anomalies associated with the leading EOF of the DC time scale, several anomaly periods can be identified that last five years or longer. The transition from a persistent period to another with the opposite polarity is generally very brief, except for the one that lasts throughout the late 1960s. The EOF analysis was repeated separately on these persistent anomaly periods and the long transition period. The spatial structure of the leading EOF of the SST variability with the ES time scale is found to be sensitive to the polarity of the decadal anomaly. These results are suggestive of the possible influence of the decadal SST variability upon the spatial structure of the variability with shorter time scales. 31 refs., 8 figs.« less
NASA Astrophysics Data System (ADS)
Bladé, Ileana
1997-08-01
This study examines the extent to which the thermodynamic interactions between the midlatitude atmosphere and the underlying oceanic mixed layer contribute to the low-frequency atmospheric variability. A general circulation model, run under perpetual northern winter conditions, is coupled to a motionless constant-depth mixed layer in midlatitudes, while elsewhere the sea surface temperature (SST) is kept fixed; interannual tropical SST forcing is not included. It is found that coupling does not modify the spatial organization of the variability. The influence of coupling is manifested as a slight reddening of the spectrum of 500-mb geopotential height and a significant enhancement of the lower-tropospheric thermal variance over the oceans at very low frequencies by virtue of the mixed-layer adjustment to surface air temperature variations that occurs on those timescales. This adjustment effectively reduces the thermal damping of the atmosphere associated with surface heat fluxes (or negative oceanic feedback), thus increasing the thermal variance and the persistence of circulation anomalies.In studying the covariability between ocean and atmosphere it is found that the dominant mode of natural atmospheric variability is coupled to the leading mode of SST in each ocean, with the atmosphere leading the ocean by about one month. The cross-correlation function between oceanic and atmospheric anomalies is strongly asymmetric about zero lag. The SST structures are consistent with direct forcing by the anomalous heat fluxes implied by the concurrent surface air temperature and wind fluctuations. Additionally, composites based on large amplitude SST anomaly events contain no evidence of direct driving of atmospheric perturbations by these SST anomalies. Thus, in terms of the spatial organization of the covariability and the evolution of the coupled system from one regime to another, large-scale air-sea interaction in the model is characterized by one-way atmospheric forcing of the mixed layer.These results are qualitatively consistent with those from an earlier idealized study. They imply a subtle but fundamental role for the midlatitude oceans as stabilizing rather than directly generating atmospheric anomalies. It is argued that this scenario is relevant to the dynamics of extratropical atmosphere-ocean coupling on intraseasonal timescales at least: the model is able to qualitatively reproduce the temporal and spatial characteristics of the observed dominant patterns of interaction on these timescales, particularly over the Atlantic.
ENSO related SST anomalies and relation with surface heat fluxes over south Pacific and Atlantic
NASA Astrophysics Data System (ADS)
Chatterjee, S.; Nuncio, M.; Satheesan, K.
2017-07-01
The role of surface heat fluxes in Southern Pacific and Atlantic Ocean SST anomalies associated with El Nino Southern Oscillation (ENSO) is studied using observation and ocean reanalysis products. A prominent dipole structure in SST anomaly is found with a positive (negative) anomaly center over south Pacific (65S-45S, 120W-70W) and negative (positive) one over south Atlantic (50S-30S, 30W-0E) during austral summer (DJF) of El Nino (LaNina). During late austral spring-early summer (OND) of El Nino (LaNina), anomalous northerly (southerly) meridional moisture transport and a positive (negative) sea level pressure anomaly induces a suppressed (enhanced) latent heat flux from the ocean surface over south Pacific. This in turn results in a shallower than normal mixed layer depth which further helps in development of the SST anomaly. Mixed layer thins further due to anomalous shortwave radiation during summer and a well developed SST anomaly evolves. The south Atlantic pole exhibits exactly opposite characteristics at the same time. The contribution from the surface heat fluxes to mixed layer temperature change is found to be dominant over the advective processes over both the basins. Net surface heat fluxes anomaly is also found to be maximum during late austral spring-early summer period, with latent heat flux having a major contribution to it. The anomalous latent heat fluxes between atmosphere and ocean surface play important role in the growth of observed summertime SST anomaly. Sea-surface height also shows similar out-of-phase signatures over the two basins and are well correlated with the ENSO related SST anomalies. It is also observed that the magnitude of ENSO related anomalies over the southern ocean are weaker in LaNina years than in El Nino years, suggesting an intensified tropics-high latitude tele-connection during warm phases of ENSO.
NASA Astrophysics Data System (ADS)
Simon, S. M.; Mann, M. E.; Steinman, B. A.; Feng, S.; Zhang, Y.; Miller, S. K.
2013-12-01
Despite the immense impact that large, modern North American droughts, such as those of the 1930s and 1950s, have had on economic, social, aquacultural, and agricultural systems, they are smaller in duration and magnitude than the multidecadal megadroughts that affected North America, in particular the western United States, during the Medieval Climate Anomaly (MCA, ~ 900-1300 AD) and the Little Age (LIA, ~1450-1850 AD). Although various proxy records have been used to reconstruct the timing of these MCA and LIA megadroughts in the western United States, there still exists great uncertainty in the magnitude and spatial coherence of such droughts in the Pacific Northwest region, especially on decadal to centennial timescales. This uncertainty motivates the following study to establish a causal link between the climate forcing that induced these megadroughts and the spatiotemporal response of regional North American hydroclimates to this forcing. This study seeks to establish a better understanding of the influence of tropical Pacific and North Atlantic SSTs on North American drought during the MCA and LIA. We force NCAR's Community Atmospheric Model version 5.1.1 (CAM 5) with prescribed proxy-reconstructed tropical Pacific and North Atlantic SST anomalies from the MCA and LIA, in order to investigate the influence that these SST anomalies had on the spatiotemporal patterns of drought in North America. To isolate the effects of individual ocean basin SSTs on the North American climate system, the model experiments use a variety of SST permutations in the tropical Pacific and North Atlantic basin as external forcing. In order to quantify the spatiotemporal response of the North American climate system to these SST forcing permutations, temperature and precipitation data derived from the MCA and LIA model experiments are compared to lake sediment isotope and tree ring-based hydroclimate reconstructions from the Pacific Northwest. The spatiotemporal temperature and precipitation patterns from the model experiments indicate that in the Pacific Northwest, the MCA and LIA were anomalously wet and dry periods, respectively, a finding that is largely supported by the lake sediment records. This pattern contrasts with the dry MCA/wet LIA pattern diagnosed in model experiments for the U.S Southwest and indicated by tree ring-based proxy data. Thus, the CAM 5 model experiments confirm the wet/dry dipole pattern suggested by proxy data for the western U.S. during the MCA and LIA and highlights the role that the natural variability of tropical Pacific and North Atlantic SSTs played in driving this spatiotemporal climate pattern and its related teleconnections.
Barreira, S.; Compagnucci, R.
2007-01-01
Principal Components Analysis (PCA) in S-Mode (correlation between temporal series) was performed on sea ice monthly anomalies, in order to investigate which are the main temporal patterns, where are the homogenous areas located and how are they related to the sea surface temperature (SST). This analysis provides 9 patterns (4 in the Amundsen and Bellingshausen Seas and 5 in the Weddell Sea) that represent the most important temporal features that dominated sea ice concentration anomalies (SICA) variability in the Weddell, Amundsen and Bellingshausen Seas over the 1979-2000 period. Monthly Polar Gridded Sea Ice Concentrations data set derived from satellite information generated by NASA Team algorithm and acquired from the National Snow and Ice Data Center (NSIDC) were used. Monthly means SST are provided by the National Center for Environmental Prediction reanalysis. The first temporal pattern series obtained by PCA has its homogeneous area located at the external region of the Weddell and Bellingshausen Seas and Drake Passage, mostly north of 60°S. The second region is centered in 30°W and located at the southeast of the Weddell. The third area is localized east of 30°W and north of 60°S. South of the first area, the fourth PC series has its homogenous region, between 30° and 60°W. The last area is centered at 0° W and south of 60°S. Correlation charts between the five Principal Components series and SST were performed. Positive correlations over the Tropical Pacific Ocean were found for the five PCs when SST series preceded SICA PC series. The sign of the correlation could relate the occurrence of an El Niño/Southern Oscillation (ENSO) warm (cold) event with posterior positive (negative) anomalies of sea ice concentration over the Weddell Sea.
Indian Ocean warming during 1958-2004 simulated by a climate system model and its mechanism
NASA Astrophysics Data System (ADS)
Dong, Lu; Zhou, Tianjun; Wu, Bo
2014-01-01
The mechanism responsible for Indian Ocean Sea surface temperature (SST) basin-wide warming trend during 1958-2004 is studied based on both observational data analysis and numerical experiments with a climate system model FGOALS-gl. To quantitatively estimate the relative contributions of external forcing (anthropogenic and natural forcing) and internal variability, three sets of numerical experiments are conducted, viz. an all forcing run forced by both anthropogenic forcing (greenhouse gases and sulfate aerosols) and natural forcing (solar constant and volcanic aerosols), a natural forcing run driven by only natural forcing, and a pre-industrial control run. The model results are compared to the observations. The results show that the observed warming trend during 1958-2004 (0.5 K (47-year)-1) is largely attributed to the external forcing (more than 90 % of the total trend), while the residual is attributed to the internal variability. Model results indicate that the anthropogenic forcing accounts for approximately 98.8 % contribution of the external forcing trend. Heat budget analysis shows that the surface latent heat flux due to atmosphere and surface longwave radiation, which are mainly associated with anthropogenic forcing, are in favor of the basin-wide warming trend. The basin-wide warming is not spatially uniform, but with an equatorial IOD-like pattern in climate model. The atmospheric processes, oceanic processes and climatological latent heat flux together form an equatorial IOD-like warming pattern, and the oceanic process is the most important in forming the zonal dipole pattern. Both the anthropogenic forcing and natural forcing result in easterly wind anomalies over the equator, which reduce the wind speed, thereby lead to less evaporation and warmer SST in the equatorial western basin. Based on Bjerknes feedback, the easterly wind anomalies uplift the thermocline, which is unfavorable to SST warming in the eastern basin, and contribute to SST warming via deeper thermocline in the western basin. The easterly anomalies also drive westward anomalous equatorial currents, against the eastward climatology currents, which is in favor of the SST warming in the western basin via anomalous warm advection. Therefore, both the atmospheric and oceanic processes are in favor of the IOD-like warming pattern formation over the equator.
Interannual variability in stratiform cloudiness and sea surface temperature
NASA Technical Reports Server (NTRS)
Norris, Joel R.; Leovy, Conway B.
1994-01-01
Marine stratiform cloudiness (MSC)(stratus, stratocumulus, and fog) is widespread over subtropical oceans west of the continents and over midlatitude oceans during summer, the season when MSC has maximum influence on surface downward radiation and is most influenced by boundary-layer processes. Long-term datasets of cloudiness and sea surface teperature (SST) from surface observations from 1952 to 1981 are used to examine interannual variations in MSC and SST. Linear correlations of anomalies in seasonal MSC amount with seasonal SST anomalies are negative and significant in midlatitude and eastern subtropical oceans, especially during summer. Significant negative correlations between SST and nimbostratus and nonprecipitating midlevel cloudiness are also observed at midlatitudes during summer, suggesting that summer storm tracks shift from year to year following year-to-year meridional shifts in the SST gradient. Over the 30-yr period, there are significant upward trends in MSC amount over the northern midlatitude oceans and a significant downward trend off the coast of California. The highest correlations and trends occur where gradients in MSC and SST are strongest. During summer, correlations between SST and MSC anomalies peak at zero lag in midlatitudes where warm advection prevails, but SST lags MSC in subtropical regions where cold advection predominates. This difference is attributed to a tendency for anomalies in latent heat flux to compensate anomalies in surface downward radiation in warm advection regions but not in cold advection regions.
NASA Astrophysics Data System (ADS)
Zhang, Rong
2017-08-01
This study identifies key features associated with the Atlantic multidecadal variability (AMV) in both observations and a fully coupled climate model, e.g., decadal persistence of monthly mean subpolar North Atlantic (NA) sea surface temperature (SST) and salinity (SSS) anomalies, and high coherence at low frequency among subpolar NA SST/SSS, upper ocean heat/salt content, and the Atlantic Meridional Overturning Circulation (AMOC) fingerprint. These key AMV features, which can be used to distinguish the AMV mechanism, cannot be explained by the slab ocean model results or the red noise process but are consistent with the ocean dynamics mechanism. This study also shows that at low frequency, the correlation and regression between net surface heat flux and SST anomalies are key indicators of the relative roles of oceanic versus atmospheric forcing in SST anomalies. The oceanic forcing plays a dominant role in the subpolar NA SST anomalies associated with the AMV.
NASA Astrophysics Data System (ADS)
Ham, Yoo-Geun; Hwang, YeonJi; Lim, Young-Kwon; Kwon, Minho
2017-12-01
The inter-decadal variation of the positive relationship between the tropical Atlantic sea surface temperature (SST) and Korean precipitation during boreal summer season during 1900-2010 is examined. The 15-year moving correlation between the Tropical Atlantic SST (TAtlSST) index (SST anomalies from 30°S to 30°N and 60°W to 20°E) and Korean precipitation (precipitation anomalies from 35°-40°N to 120°-130°E) during June-July-August exhibits strong inter-decadal variation, which becomes positive at the 95% confidence level after the 1980s. Intensification of the linkage between the TAtlSST index and Korean precipitation after the 1980s is attributed to global warming via the increased background SST. The increase in the background SST over the Atlantic provides background conditions that enhance anomalous convective activity by anomalous Atlantic SST warming. Therefore, the overall atmospheric responses associated with the tropical Atlantic SST warming could intensify. The correlation between the TAtlSST index and Korean precipitation also exhibits strong inter-decadal variation within 1980-2010, which is over 0.8 during early 2000s, while it is relative low (i.e., around 0.6) during the early 1980s. The enhanced co-variability between the tropical and the mid-latitude Atlantic SST during the early 2000s indicates the intensification of TAtlSST-related Rossby wave source over the mid-latitude Atlantic, which excites stationary waves propagated from the Atlantic to the Korean peninsula across northern Europe and northeast Asia. This Rossby-wave train induces a cyclonic flow over the northern edge of the Korea, which intensifies southwesterly and results in precipitation over Korea. This observed decadal difference is well simulated by the stationary wave model experiments with a prescribed TAtlSST-related Rossby wave source over the mid-latitude Atlantic.
Wintertime East Asian Jet Stream and Its Association with the Asian-Pacific Climate
NASA Technical Reports Server (NTRS)
Yang, Song; Lau, K.-M.; Kim, K.-M.
2000-01-01
Interannual variability of the wintertime East Asian westerly jet stream and the linkage between this variability and the Asian-Pacific climate are investigated. The study emphasizes on the variability of the jet core and its association with the Asian winter monsoon, tropical convection, upper tropospheric wave patterns, and the teleconnection of the jet with other climate systems. The relationship between the jet and North Pacific sea surface temperature pattern (SST) is also explored. NCEP/NCAR reanalysis, NASA GISS surface temperature, NASA GEOS reanalysis, NOAA reconstructed SST, GPCP precipitation, and NOAA snow cover data sets are analyzed in this study. An index of the East Asian jet has been defined by the December-February means of the 200 mb zonal winds that are averaged within a box enclosing the jet maximum, which shifts only moderately from one year to another especially in the south-north direction. The jet links to a teleconnection pattern whose major climate anomalies appear over the Asian continent and western Pacific (west of the dateline). This pattern differs distinctly from the teleconnection pattern associated with El Nino/Southern Oscillation (ENSO), which causes the Pacific/North American pattern to the east of the dateline. A strong jet is accompanied clearly by an increase in the intensity of the atmospheric circulation over Asia and the Pacific. In particular, the winter monsoon strengthens over East Asia, leading to cold climate in the region, and convection intensifies over the tropical Asia-Australia sector. Changes in the jet are associated with broad-scale modification in the upper tropospheric wave patterns that leads to downstream climate anomalies over the eastern Pacific. Through this downstream influence, the East Asian jet causes climate signals in North America as well. A strong jet gives rise to warming and less snow cover in the western United States but reverse climate anomalies in the eastern part of the country, although these signals are relatively weaker than the jet-related anomalies in East Asia. There is a strong association between the East Asian jet and the North Pacific SST (NPSST). A strong jet is accompanied by a cooling in the extratropical Pacific and a warming in the tropical-subtropical Pacific. Evidence also indicates that the extratropical NPSST pattern plays a role in modulating the intensity of the jet stream. ENSO, the jet, and the NPSST are mutually interactive on certain time scales and such an interaction links closely to the climate anomalies in the Asian-Pacific-American regions.
NASA Technical Reports Server (NTRS)
Fennessy, M. J.; Shukla, J.
1988-01-01
An attempt is made to simulate the atmospheric circulation anomalies corresponding to the observed SST anomalies in the Pacific Ocean for the 18-month period of May 1982 through October 1983. A GCM is first integrated for 25 months with monthly climatological boundary conditions of SST, soil moisture, sea, ice, and albedo. Starting from day 165 of this 'control' integration, which corresponds to May 1, the 18-month integration is carried out with the same boundary conditions except that the observed monthly SST anomalies for May 1982-October 1983 are added to the climatological values in the Pacific from 40 S to 60 N. The evolution of the model-simulated circulation and rainfall anomalies are compared to actual observations for the same period, and remarkable agreement is found.
NASA Technical Reports Server (NTRS)
Curtis, Scott; Adler, Robert
2000-01-01
The ENSO phenomenon is characterized by fluctuations in the climate system of the tropical Pacific. Quantifying changes in the precipitation component of this system is important in understanding the distribution of heating in the atmosphere which drives the large-scale circulation and affects the weather patterns in the mid-latitudes. Monitoring precipitation anomalies in the Pacific is also an important component for tracking the evolution of ENSO. The most timely and complete observations of the earth come from satellite instruments. In this study, the state of the art satellite-gauge merged monthly precipitation data set from the Global Precipitation Climatology Project (GPCP) is used to depict tropical rainfall patterns during ENSO events over the past two decades and quantify these patterns using indices. This analysis will be complemented by daily precipitation data which can resolve the Madden-Julian Oscillation and westerly wind burst events. The 1997-98 El Nino and 1998-2000 La Nina were the best observed ENSO cycle in the historic record. Prior to the El Nino (in terms of anomalous warming of the east Pacific) dry anomalies over the Maritime Continent were observed in February 1997 as a westerly wind burst advected convection to the east. The largest SST anomalies occurred around November-December 1997, which were followed by the largest precipitation anomalies in the beginning of 1998. The largest precipitation departures from normal were not colocated with the SST anomalies, but were further west, In the spring of 1998 negative precipitation anomalies to the north of the equator intensified, signaling the mature phase of the El Nino. A rapid increase in the precipitation-based La Nina index from December-January 1998 to March-April 1998 signaled the coming La Nina. The 1982-1983 El Nino was comparable in strength (according to several indices) and the precipitation patterns evolved in a similar fashion. For the 1998-2000 La Nina, the coldest anomalies, were confined to the central equatorial Pacific, while the driest anomalies were found in the west Pacific,
Predictable patterns of the May-June rainfall anomaly over East Asia
NASA Astrophysics Data System (ADS)
Xing, Wen; Wang, Bin; Yim, So-Young; Ha, Kyung-Ja
2017-02-01
During early summer (May-June, MJ), East Asia (EA) subtropical front is a defining feature of Asian monsoon, which produces the most prominent precipitation band in the global subtropics. Here we show that dynamical prediction of early summer EA (20°N-45°N, 100°E-130°E) rainfall made by four coupled climate models' ensemble hindcast (1979-2010) yields only a moderate skill and cannot be used to estimate predictability. The present study uses an alternative, empirical orthogonal function (EOF)-based physical-empirical (P-E) model approach to predict rainfall anomaly pattern and estimate its potential predictability. The first three leading modes are physically meaningful and can be, respectively, attributed to (a) the interaction between the anomalous western North Pacific subtropical high and underlying Indo-Pacific warm ocean, (b) the forcing associated with North Pacific sea surface temperature (SST) anomaly, and (c) the development of equatorial central Pacific SST anomalies. A suite of P-E models is established to forecast the first three leading principal components. All predictors are 0 month ahead of May, so the prediction here is named as a 0 month lead prediction. The cross-validated hindcast results demonstrate that these modes may be predicted with significant temporal correlation skills (0.48-0.72). Using the predicted principal components and the corresponding EOF patterns, the total MJ rainfall anomaly was hindcasted for the period of 1979-2015. The time-mean pattern correlation coefficient (PCC) score reaches 0.38, which is significantly higher than dynamical models' multimodel ensemble skill (0.21). The estimated potential maximum attainable PCC is around 0.65, suggesting that the dynamical prediction models may have large rooms to improve. Limitations and future work are discussed.
Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes
NASA Technical Reports Server (NTRS)
Frankignoul, C.
1985-01-01
Current analytical models for large-scale air-sea interactions in the middle latitudes are reviewed in terms of known sea-surface temperature (SST) anomalies. The scales and strength of different atmospheric forcing mechanisms are discussed, along with the damping and feedback processes controlling the evolution of the SST. Difficulties with effective SST modeling are described in terms of the techniques and results of case studies, numerical simulations of mixed-layer variability and statistical modeling. The relationship between SST and diabatic heating anomalies is considered and a linear model is developed for the response of the stationary atmosphere to the air-sea feedback. The results obtained with linear wave models are compared with the linear model results. Finally, sample data are presented from experiments with general circulation models into which specific SST anomaly data for the middle latitudes were introduced.
Tropospheric biennial oscillation and south Asian summer monsoon rainfall in a coupled model
NASA Astrophysics Data System (ADS)
Konda, Gopinadh; Chowdary, J. S.; Srinivas, G.; Gnanaseelan, C.; Parekh, Anant; Attada, Raju; Rama Krishna, S. S. V. S.
2018-06-01
In this study Tropospheric Biennial Oscillation (TBO) and south Asian summer monsoon rainfall are examined in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFSv2) hindcast. High correlation between the observations and model TBO index suggests that the model is able to capture most of the TBO years. Spatial patterns of rainfall anomalies associated with positive TBO over the south Asian region are better represented in the model as in the observations. However, the model predicted rainfall anomaly patterns associated with negative TBO years are improper and magnitudes are underestimated compared to the observations. It is noted that positive (negative) TBO is associated with La Niña (El Niño) like Sea surface temperature (SST) anomalies in the model. This leads to the fact that model TBO is El Niño-Southern Oscillation (ENSO) driven, while in the observations Indian Ocean Dipole (IOD) also plays a role in the negative TBO phase. Detailed analysis suggests that the negative TBO rainfall anomaly pattern in the model is highly influenced by improper teleconnections allied to IOD. Unlike in the observations, rainfall anomalies over the south Asian region are anti-correlated with IOD index in CFSv2. Further, summer monsoon rainfall over south Asian region is highly correlated with IOD western pole than eastern pole in CFSv2 in contrast to the observations. Altogether, the present study highlights the importance of improving Indian Ocean SST teleconnections to south Asian summer rainfall in the model by enhancing the predictability of TBO. This in turn would improve monsoon rainfall prediction skill of the model.
Climatic anomaly affects the immune competence of California sea lions
Banuet-Martínez, Marina; Espinosa-de Aquino, Wendy; Elorriaga-Verplancken, Fernando R.; Flores-Morán, Adriana; García, Olga P.; Camacho, Mariela
2017-01-01
The past decades have been characterized by a growing number of climatic anomalies. As these anomalies tend to occur suddenly and unexpectedly, it is often difficult to procure empirical evidence of their effects on natural populations. We analysed how the recent sea surface temperature (SST) anomaly in the northeastern Pacific Ocean affects body condition, nutritional status, and immune competence of California sea lion pups. We found that pup body condition and blood glucose levels of the pups were lower during high SST events, although other biomarkers of malnutrition remained unchanged, suggesting that pups were experiencing early stages of starvation. Glucose-dependent immune responses were affected by the SST anomaly; specifically, pups born during high SST events had lower serum concentrations of IgG and IgA, and were unable to respond to an immune challenge. This means that not only were pups that were born during the SST anomaly less able to synthesize protective antibodies; they were also limited in their ability to respond rapidly to nonspecific immune challenges. Our study provides empirical evidence that atypical climatic conditions can limit energetic reserves and compromise physiological responses that are essential for the survival of a marine top predator. PMID:28658317
The Tropical Western Hemisphere Warm Pool
NASA Astrophysics Data System (ADS)
Wang, Chunzai; Enfield, David B.
The Western Hemisphere warm pool (WHWP) of water warmer than 28.5°C extends from the eastern North Pacific to the Gulf of Mexico and the Caribbean, and at its peak, overlaps with the tropical North Atlantic. It has a large seasonal cycle and its interannual fluctuations of area and intensity are significant. Surface heat fluxes warm the WHWP through the boreal spring to an annual maximum of SST and areal extent in the late summer/early fall, associated with eastern North Pacific and Atlantic hurricane activities and rainfall from northern South America to the southern tier of the United States. SST and area anomalies occur at high temperatures where small changes can have a large impact on tropical convection. Observations suggest that a positive ocean-atmosphere feedback operating through longwave radiation and associated cloudiness is responsible for the WHWP SST anomalies. Associated with an increase in SST anomalies is a decrease in atmospheric sea level pressure anomalies and an anomalous increase in atmospheric convection and cloudiness. The increase in convective activity and cloudiness results in less longwave radiation loss from the surface, which then reinforces SST anomalies.
Coupled ocean-atmosphere surface variability and its climate impacts in the tropical Atlantic region
NASA Astrophysics Data System (ADS)
Fontaine, B.; Janicot, Serge; Roucou, P.
This study examines time evolution and statistical relationships involving the two leading ocean-atmosphere coupled modes of variability in the tropical Atlantic and some climate anomalies over the tropical 120°W-60°W region using selected historical files (75-y near global SSTs and precipitation over land), more recent observed data (30-y SST and pseudo wind stress in the tropical Atlantic) and reanalyses from the US National Centers for Environmental Prediction (NCEP/NCAR) reanalysis System on the period 1968-1997: surface air temperature, sea level pressure, moist static energy content at 850 hPa, precipitable water and precipitation. The first coupled mode detected through singular value decomposition of the SST and pseudo wind-stress data over the tropical Atlantic (30°N-20°S) expresses a modulation in the thermal transequatorial gradient of SST anomalies conducted by one month leading wind-stress anomalies mainly in the tropical north Atlantic during northern winter and fall. It features a slight dipole structure in the meridional plane. Its time variability is dominated by a quasi-decadal signal well observed in the last 20-30 ys and, when projected over longer-term SST data, in the 1920s and 1930s but with shorter periods. The second coupled mode is more confined to the south-equatorial tropical Atlantic in the northern summer and explains considerably less wind-stress/SST cross-covariance. Its time series features an interannual variability dominated by shorter frequencies with increased variance in the 1960s and 1970s before 1977. Correlations between these modes and the ENSO-like Nino3 index lead to decreasing amplitude of thermal anomalies in the tropical Atlantic during warm episodes in the Pacific. This could explain the nonstationarity of meridional anomaly gradients on seasonal and interannual time scales. Overall the relationships between the oceanic component of the coupled modes and the climate anomaly patterns denote thermodynamical processes at the ocean/atmosphere interface that create anomaly gradients in the meridional plane in a way which tends to alter the north-south movement of the seasonal cycle. This appears to be consistent with the intrinsic non-dipole character of the tropical Atlantic surface variability at the interannual time step and over the recent period, but produces abnormal amplitude and/or delayed excursions of the intertropical convergence zone (ITCZ). Connections with continental rainfall are approached through three (NCEP/NCAR and observed) rainfall indexes over the Nordeste region in Brazil, and the Guinea and Sahel zones in West Africa. These indices appear to be significantly linked to the SST component of the coupled modes only when the two Atlantic modes+the ENSO-like Nino3 index are taken into account in the regressions. This suggests that thermal forcing of continental rainfall is particularly sensitive to the linear combinations of some basic SST patterns, in particular to those that create meridional thermal gradients. The first mode in the Atlantic is associated with transequatorial pressure, moist static energy and precipitable water anomaly patterns which can explain abnormal location of the ITCZ particularly in northern winter, and hence rainfall variations in Nordeste. The second mode is more associated with in-phase variations of the same variables near the southern edge of the ITCZ, particularly in the Gulf of Guinea during the northern spring and winter. It is primarily linked to the amplitude and annual phase of the ITCZ excursions and thus to rainfall variations in Guinea. Connections with Sahel rainfall are less clear due to the difficulty for the model to correctly capture interannual variability over that region but the second Atlantic mode and the ENSO-like Pacific variability are clearly involved in the Sahel climate interannual fluctuations: anomalous dry (wet) situations tend to occur when warmer (cooler) waters are present in the eastern Pacific and the gulf of Guinea in northern summer which contribute to create a northward (southward) transequatorial anomaly gradient in sea level pressure over West Africa.
NASA Astrophysics Data System (ADS)
Kim, Taekyun; Choo, Sung-Ho; Moon, Jae-Hong; Chang, Pil-Hun
2017-12-01
Unusual sea surface temperature (SST) warming occurred over the Yellow Sea (YS) in December 2004. To identify the causes of the abnormal SST warming, we conducted an analysis on atmospheric circulation anomalies induced by tropical cyclones (TCs) and their impacts on upper ocean characteristics using multiple datasets. With the analysis of various datasets, we explored a new aspect of the relationship between TC activity and SST. The results show that there is a significant link between TC activity over the Northwest Pacific (NWP) and SST in the YS. The integrated effect of consecutive TCs activity induces a large-scale atmospheric cyclonic circulation anomaly over the NWP and consequently anomalous easterly winds over the YS and East China Sea. The mechanism of the unusually warm SST in the YS can be explained by considering TCs acting as an important source of Ekman heat transport that results in substantial intrusion of relatively warm surface water into the YS interior. Furthermore, TC-related circulation anomalies contribute to the retention of the resulting warm SST anomalies in the entire YS.
NASA Astrophysics Data System (ADS)
Lea, D. W.; de Garidel-Thoron, T.; Bard, E. G.; Kienast, M.
2016-12-01
Proxy paleoclimate data provides an important constrain on climate sensitivity. The tropics have been identified as a region which primarily responds to greenhouse gas forcing (GHF). The SENSETROP (Sensitivity of the Tropics) group has identified the LGM, HS1 and HS2 as key time windows to test the hypothesis that SST anomalies recorded by two geochemical paleothermometers, Mg/Ca and UK37', can be used to establish tropical climate response and, via the magnitude and spatial pattern of these anomalies, provide robust comparisons to the output of general circulation models. This work is a logical extension of prior efforts such as CLIMAP and MARGO, which largely relied on faunal SST proxies that are affected by other factors such as productivity or water column structure. With this goal in mind we have developed the SENSETROP database of published and unpublished Mg/Ca and UK37' data from low latitude (30° N to 30° S) marine cores spanning the last glacial cycle. The database contains 78 Mg/Ca records and 40 UK37' records, distributed between the tropical ocean basins: 49 in the Pacific Ocean, 32 in the Indian Ocean, and 27 in the Atlantic Ocean. Most of the cores are confined to the ocean margins. All of the data come from well dated records that include radiocarbon. As a test of the database, we determined the average SST anomaly during the LGM, 19,000-23,000 yr BP, relative to the late Holocene, 0-4,000 yr BP, from select records that contain at least 4 SST points in each time window for which the SDs < 0.75 °C. For G. ruber (all morphotypes) Mg/Ca, the recorded anomaly from 23 cores is -2.6 ± 0.6 °C, based on >1100 individual determinations. For UK37', the recorded anomaly for 14 cores is -2.4 ± 0.9 °C, based on >400 individual determinations. Agreement between these two independent proxies increases confidence in the LGM cooling level. The new results from the SENSETROP database show a strong level of homogeneity throughout the tropics, with slightly ( 0.3 °C) greater cooling in the NH. These results are in marked contrast to MARGO, which showed a strong level of heterogeneity in tropical SST. The new SENSETROP results are consistent with a primary control of greenhouse gas forcing on tropical SSTs during the LGM. Extension of these results to ECS determinations suggests values consistent with the IPCC canonical range.
NASA Technical Reports Server (NTRS)
Kahn, W. D.; Klosko, S. M.; Wells, W. T.
1982-01-01
Advances in satellite tracking data accuracy and coverage over the past 15 years have led to major improvements in global geopotential models. But the spacial resolution of the gravity field obtained solely from satellite dynamics sensed by tracking data is still of the order of 1000 km. Attention is given to an approach which will provide information regarding the fine structure of the gravity field on the basis of an application of local corrections to the global field. According to this approach, a basic satellite to satellite tracked (SST) range-rate measurement is constructed from the link between a ground station, a geosynchronous satellite (ATS 6), and a near-earth satellite (Apollo or GEOS 3). Attention is given to a mathematical model, the simulation of SST gravity anomaly estimation accuracies, a gravity anomaly estimation from GEOS 3/ATS 6 and Apollo/ATS 6 SST observations, and an evaluation of the mean gravity anomalies determined from SST.
NASA Technical Reports Server (NTRS)
Miller, Ron; Jiang, Xing-Jian; Travis, Larry (Technical Monitor)
2001-01-01
Tropical Atlantic SST shows a (statistically well-defined) decadal time scale in a 104-year simulation of unforced variability by a coupled general circulation model (CGCM). The SST anomalies superficially resemble observed Tropical Atlantic variability (TAV), and are associated with changes in the atmospheric circulation. Brazilian rainfall is modulated with a decadal time scale, along with the strength of the Atlantic trade winds, which are associated with variations in evaporation and the net surface heat flux. However, in contrast to observed tropical Atlantic variability, the trade winds damp the associated anomalies in ocean temperature, indicating a negative feedback. Tropical SST anomalies in the CGCM, though opposed by the surface heat flux, are advected in from the Southern Hemisphere mid-latitudes. These variations modulate the strength of the thermohaline circulation (THC): warm, salty anomalies at the equator sink drawing cold, fresh mid-latitude water. Upon reaching the equator, the latter inhibit vertical overturning and advection from higher latitudes, which allows warm, salty anomalies to reform, returning the cycle to its original state. Thus, the cycle results from advection of density anomalies and the effect of these anomalies upon the rate of vertical overturning and surface advection. This decadal modulation of Tropical Atlantic SST and the thermohaline circulation is correlated with ocean heat transport to the Northern Hemisphere high latitudes and Norwegian Sea SST. Because of the central role of equatorial convection, we question whether this mechanism is present in the current climate, although we speculate that it may have operated in palaeo times, depending upon the stability of the tropical water column.
NASA Astrophysics Data System (ADS)
Gill, E.; Rajagopalan, B.; Molnar, P. H.; Marchitto, T. M., Jr.; Kushnir, Y.
2016-12-01
We develop a multiproxy reduced-dimension methodology that blends magnesium calcium (Mg/Ca) and alkenone (UK'37) paleo sea surface temperature (SST) records from the eastern and western equatorial Pacific to recreate snapshots of full field SSTs and zonal wind anomalies from 10 to 2 ka BP in 2000-year increments. In the reconstruction, the zonal SST difference (average west Pacific SST minus average east Pacific SST) is largest at 10 ka (0.26°C), with coldest SST anomalies of -0.9°C in the eastern equatorial Pacific and concurrent easterly maximum zonal wind anomalies of 7 m s-1 throughout the central Pacific. From 10 to 2 ka, the entire equatorial Pacific warms, but at a faster rate in the east than in the west. These patterns are broadly consistent with previous inferences of reduced El Niño-Southern Oscillation variability associated with a cooler and/or "La Niña-like" state during the early to middle Holocene. At present there is a strong negative correlation between tropical pacific SSTs and Indian summer monsoon strength. Assuming ENSO-monsoon teleconnections were the same during early Holocene, we would expect a cooler tropical Pacific to enhance the summer Indian monsoon. To test this idea, we used the same tropical Pacific SST proxy records and a similar reduced-dimension technique to reconstruct fields of Arabian Sea wind-stress curl and Indian summer monsoon precipitation. Reconstructions for 10 ka reveal wind-stress curl anomalies of 30% greater than present day off the coastlines of Oman and Yemen, which suggest greater coastal upwelling and an enhanced monsoon jet during this time. Spatial rainfall reconstructions reveal the greatest difference in precipitation at 10 ka over the core monsoon region ( 20-60% greater than present day). Specifically, reconstructions from 10 ka reveal 40-60% greater rainfall over North West India, a region home to abundant paleo-lake records spanning the Holocene but is at present remarkably dry ( 200-450 mm of annual rainfall). These findings advance the hypothesis that teleconnections from the tropical Pacific contributed to, if not accounted for, greater early to middle Holocene wetness over India as recorded by various (e.g., cave, lacustrine, river discharge) paleoclimate proxies throughout the monsoon region.
NASA Astrophysics Data System (ADS)
Frankignoul, C.
2017-12-01
Observational evidence of an atmospheric response to the North Atlantic horseshoe SST anomalies has been accumulating since the late 90's, suggesting that it drives a negative NAO response during late fall/early winter. The North Atlantic horseshoe SST anomaly is in part stochastically driven by the atmosphere, but at low frequency it is correlated with the Atlantic Multidecadal Oscillation (AMO). Correspondingly, an atmospheric response to the AMO has been detected at low frequency in winter, with a positive AMO phase leading a negative NAO-like pattern, consistent with sensitivity studies with atmospheric general circulation models. Both the subpolar and tropical components of the AMO seem to contribute to its influence on the atmosphere. As North Atlantic SST changes reflects internally-generated SST fluctuations as well the response to anthropogenic and other external forcing, the AMO is sensitive to the way the forced SST signal is removed; estimates of the natural variability of the AMO vary by as much as a factor of two between estimation methods, leading to possible biases in its alleged impacts. Since an intensification of the Atlantic meridional overturning circulation (AMOC) leads the AMO and drives a negative NAO in many climate models, albeit with different lead times, the relation between AMO and AMOC will be discussed, as well as possible links with the North Pacific and sea ice variability.
Importance of ocean mesoscale variability for air-sea interactions in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Putrasahan, D. A.; Kamenkovich, I.; Le Hénaff, M.; Kirtman, B. P.
2017-06-01
Mesoscale variability of currents in the Gulf of Mexico (GoM) can affect oceanic heat advection and air-sea heat exchanges, which can influence climate extremes over North America. This study is aimed at understanding the influence of the oceanic mesoscale variability on the lower atmosphere and air-sea heat exchanges. The study contrasts global climate model (GCM) with 0.1° ocean resolution (high resolution; HR) with its low-resolution counterpart (1° ocean resolution with the same 0.5° atmosphere resolution; LR). The LR simulation is relevant to current generation of GCMs that are still unable to resolve the oceanic mesoscale. Similar to observations, HR exhibits positive correlation between sea surface temperature (SST) and surface turbulent heat flux anomalies, while LR has negative correlation. For HR, we decompose lateral advective heat fluxes in the upper ocean into mean (slowly varying) and mesoscale-eddy (fast fluctuations) components. We find that the eddy flux divergence/convergence dominates the lateral advection and correlates well with the SST anomalies and air-sea latent heat exchanges. This result suggests that oceanic mesoscale advection supports warm SST anomalies that in turn feed surface heat flux. We identify anticyclonic warm-core circulation patterns (associated Loop Current and rings) which have an average diameter of 350 km. These warm anomalies are sustained by eddy heat flux convergence at submonthly time scales and have an identifiable imprint on surface turbulent heat flux, atmospheric circulation, and convective precipitation in the northwest portion of an averaged anticyclone.
NASA Astrophysics Data System (ADS)
Ao, Juan; Sun, Jianqi
2016-05-01
The possible mechanism behind the variability in the dipole pattern of boreal winter precipitation over East Asia is analyzed in this study. The results show that the SST anomalies (SSTAs) over the South Pacific Ocean (SPO) in boreal autumn are closely related to the variability in the dipole pattern of boreal winter precipitation over East Asia. The physical link between the boreal autumn SPO SSTAs and the boreal winter East Asian precipitation dipole pattern is shown to mainly be the seasonal persistence of the SPO SSTAs themselves. The seasonal persistence of the SPO SSTAs can memorize and transport the signal of the boreal autumn SSTAs to the following winter, and then stimulates a meridional teleconnection pattern from the SH to the NH, resulting in a meridional dipole pattern of atmospheric circulation over East Asia in boreal winter. As a major influencing factor, this dipole pattern of the atmospheric circulation can finally lead to the anomalous precipitation dipole pattern over East Asia in boreal winter. These observed physical processes are further confirmed in this study through numerical simulation. The evidence from this study, showing the impact of the SPO SSTAs in boreal autumn, not only deepens our understanding of the variability in East Asian boreal winter precipitation, but also provides a potentially useful predictor for precipitation in the region.
NASA Astrophysics Data System (ADS)
Zheng, Fei; Li, Jianping; Ding, Ruiqiang
2017-11-01
There is increasing evidence of the possible role of extratropical forcing in the evolution of ENSO. The Southern Hemisphere Annular Mode (SAM) is the dominant mode of atmospheric circulation in the Southern Hemisphere extratropics. This study shows that the austral summer (December-January-February; DJF) SAM may also influence the amplitude of ENSO decay during austral autumn (March-April-May; MAM). The mechanisms associated with this SAM-ENSO relationship can be briefly summarized as follows: The SAM is positively (negatively) correlated with SST in the Southern Hemisphere middle (high) latitudes. This dipole-like SST anomaly pattern is referred to as the Southern Ocean Dipole (SOD). The DJF SOD, caused by the DJF SAM, could persist until MAM and then influence atmospheric circulation, including trade winds, over the Niño3.4 area. Anomalous trade winds and SST anomalies over the Niño3.4 area related to the DJF SAM are further developed through the Bjerkness feedback, which eventually results in a cooling (warming) over the Niño3.4 area followed by the positive (negative) DJF SAM.
Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?
Ma, Xiaohui; Chang, Ping; Saravanan, R; Montuoro, Raffaele; Hsieh, Jen-Shan; Wu, Dexing; Lin, Xiaopei; Wu, Lixin; Jing, Zhao
2015-12-04
High-resolution satellite measurements of surface winds and sea-surface temperature (SST) reveal strong coupling between meso-scale ocean eddies and near-surface atmospheric flow over eddy-rich oceanic regions, such as the Kuroshio and Gulf Stream, highlighting the importance of meso-scale oceanic features in forcing the atmospheric planetary boundary layer (PBL). Here, we present high-resolution regional climate modeling results, supported by observational analyses, demonstrating that meso-scale SST variability, largely confined in the Kuroshio-Oyashio confluence region (KOCR), can further exert a significant distant influence on winter rainfall variability along the U.S. Northern Pacific coast. The presence of meso-scale SST anomalies enhances the diabatic conversion of latent heat energy to transient eddy energy, intensifying winter cyclogenesis via moist baroclinic instability, which in turn leads to an equivalent barotropic downstream anticyclone anomaly with reduced rainfall. The finding points to the potential of improving forecasts of extratropical winter cyclones and storm systems and projections of their response to future climate change, which are known to have major social and economic impacts, by improving the representation of ocean eddy-atmosphere interaction in forecast and climate models.
Positive Low Cloud and Dust Feedbacks Amplify Tropical North Atlantic Multidecadal Variability
NASA Technical Reports Server (NTRS)
Yuan, Tianle; Oraiopoulos, Lazaros; Zelinka, Mark; Yu, Hongbin; Norris, Joel R.; Chin, Mian; Platnick, Steven; Meyer, Kerry
2016-01-01
The Atlantic Multidecadal Oscillation (AMO) is characterized by a horseshoe pattern of sea surface temperature (SST) anomalies and has a wide range of climatic impacts. While the tropical arm of AMO is responsible for many of these impacts, it is either too weak or completely absent in many climate model simulations. Here we show, using both observational and model evidence, that the radiative effect of positive low cloud and dust feedbacks is strong enough to generate the tropical arm of AMO, with the low cloud feedback more dominant. The feedbacks can be understood in a consistent dynamical framework: weakened tropical trade wind speed in response to a warm middle latitude SST anomaly reduces dust loading and low cloud fraction over the tropical Atlantic, which warms the tropical North Atlantic SST. Together they contribute to appearance of the tropical arm of AMO. Most current climate models miss both the critical wind speed response and two positive feedbacks though realistic simulations of them may be essential for many climatic studies related to the AMO.
Positive low cloud and dust feedbacks amplify tropical North Atlantic Multidecadal Oscillation
Yuan, Tianle; Oreopoulos, Lazaros; Zelinka, Mark; ...
2016-02-04
The Atlantic Multidecadal Oscillation (AMO) is characterized by a horseshoe pattern of sea surface temperature (SST) anomalies and has a wide range of climatic impacts. While the tropical arm of AMO is responsible for many of these impacts, it is either too weak or completely absent in many climate model simulations. Here we show, using both observational and model evidence, that the radiative effect of positive low cloud and dust feedbacks is strong enough to generate the tropical arm of AMO, with the low cloud feedback more dominant. The feedbacks can be understood in a consistent dynamical framework: weakened tropicalmore » trade wind speed in response to a warm middle latitude SST anomaly reduces dust loading and low cloud fraction over the tropical Atlantic, which warms the tropical North Atlantic SST. Together they contribute to the appearance of the tropical arm of AMO. Most current climate models miss both the critical wind speed response and two positive feedbacks though realistic simulations of them may be essential for many climatic studies related to the AMO.« less
Evolution and impact of the 2016 negative Indian Ocean Dipole
NASA Astrophysics Data System (ADS)
Iskandar, I.; Lestari, D. O.; Utari, P. A.; Supardi; Rozirwan; Khakim, M. Y. N.; Poerwono, P.; Setiabudidaya, D.
2018-03-01
Strong negative Indian Ocean Dipole (IOD) event took place in the tropical Indian Ocean during 2016. Based on the Dipole Mode Index (DMI), the event has shown two peaks: in July and September. It is shown that the second peak was stronger than the first peak. Evolution of the event has started in May, reached its first peak in July, weaken in August, but rebounded and came to its second peak in September. The event was terminated in November. Robust sea surface temperature (SST) dipole patterns were observed during both peaks. In July, the SST anomaly in the eastern (western) pole of the IOD reached +1°C (-1.5°C). Meanwhile, during the second peak of the event, the SST anomaly in the eastern (western) pole of the IOD rose (fall) to nearly +2.5°C (-1°C). As a consequence, strong convective activities were observed over the maritime continent causing heavy rainfall during the peak of the event. On the other hand, there was a significant reduce of the rainfall over the eastern Africa during the peak of the event.
NASA Astrophysics Data System (ADS)
Vaid, B. H.
2017-02-01
The association of the biweekly intraseasonal (BWI) oscillation in the Sea Surface Temperature (SST) over the South China Sea (SCS) and the Western North Pacific Summer Monsoon is authenticated using version 4 the Tropical Rainfall Measuring Mission Microwave Imager data (SST and rain) and heat fluxes from Ocean Atmosphere Flux project data during 1998-2012. The results suggest that the SCS involves ocean-atmosphere coupling on biweekly timescales. The positive biweekly SST anomalies lead the rain anomalies over the SCS by 3 days, with a significant correlation coefficient ( r = 0.6, at 99 % significance levels) between the SST-rain anomalies. It is evident from lead/lag correlation between biweekly SST and zonal wind shear that warm ocean surface induced by wind shear may contribute to a favorable condition of the convective activity over the SCS. The present study suggests that ocean-to-atmospheric processes induced by the BWI oscillation in the SCS SST results in enhanced sea level pressure and surface shortwave radiation flux during the summer monsoon. Besides, it is observed that the SCS BWI oscillation in the changes of SST causes a feedback in the atmosphere by modifying the atmospheric instability. This suggests that the active/break biweekly cycle of the SST over the SCS is related by sea level pressure, surface heat fluxes and atmospheric instability. The potential findings here indicate that the biweekly SST over the SCS play an important role in the eastward and the southward propagation of the biweekly anomalies in the Western North Pacific.
How much of the interannual variability of East Asian summer rainfall is forced by SST?
NASA Astrophysics Data System (ADS)
He, Chao; Wu, Bo; Li, Chunhui; Lin, Ailan; Gu, Dejun; Zheng, Bin; Zhou, Tianjun
2016-07-01
It is widely accepted that the interannual variability of East Asian summer rainfall is forced by sea surface temperature (SST), and SST anomalies are widely used as predictors of East Asian summer rainfall. But it is still not very clear what percentage of the interannual rainfall variability is contributed by SST anomalies. In this study, Atmospheric general circulation model simulations forced by observed interannual varying SST are compared with those forced by the fixed annual cycle of SST climatology, and their ratios of interannual variance (IAV) are analyzed. The output of 12 models from the 5th Phase of Coupled Model Intercomparison Project (CMIP5) are adopted, and idealized experiments are done by Community Atmosphere Model version 4 (CAM4). Both the multi-model median of CMIP5 models and CAM4 experiments show that only about 18 % of the IAV of rainfall over East Asian land (EAL) is explained by SST, which is significantly lower than the tropical western Pacific, but comparable to the mid-latitude western Pacific. There is no significant difference between the southern part and the northern part of EAL in the percentages of SST contribution. The remote SST anomalies regulates rainfall over EAL probably by modulating the horizontal water vapor transport rather than the vertical motion, since the horizontal water vapor transport into EAL is strongly modulated by SST but the vertical motion over EAL is not. Previous studies argued about the relative importance of tropical Indian Ocean and tropical Pacific Ocean to East Asian summer rainfall anomalies. Our idealized experiments performed by CAM4 suggest that the contributions from these two ocean basins are comparable to each other, both of which account for approximately 6 % of the total IAV of rainfall over EAL.
La Niña diversity and Northwest Indian Ocean Rim teleconnections
Hoell, Andrew; Funk, Christopher C.; Barlow, Mathew
2014-01-01
The differences in tropical Pacific sea surface temperature (SST) expressions of El Niño-Southern Oscillation (ENSO) events of the same phase have been linked with different global atmospheric circulation patterns. This study examines the dynamical forcing of precipitation during October–December (OND) and March–May (MAM) over East Africa and during December–March (DJFM) over Central-Southwest Asia for 1950–2010 associated with four tropical Pacific SST patterns characteristic of La Niña events, the cold phase of ENSO. The self-organizing map method along with a statistical distinguishability test was used to isolate La Niña events, and seasonal precipitation forcing was investigated in terms of the tropical overturning circulation and thermodynamic and moisture budgets. Recent La Niña events with strong opposing SST anomalies between the central and western Pacific Ocean (phases 3 and 4), force the strongest global circulation modifications and drought over the Northwest Indian Ocean Rim. Over East Africa during MAM and OND, subsidence is forced by an enhanced tropical overturning circulation and precipitation reductions are exacerbated by increases in moisture flux divergence. Over Central-Southwest Asia during DJFM, the thermodynamic forcing of subsidence is primarily responsible for precipitation reductions, with moisture flux divergence acting as a secondary mechanism to reduce precipitation. Eastern Pacific La Niña events in the absence of west Pacific SST anomalies (phases 1 and 2), are associated with weaker global teleconnections, particularly over the Indian Ocean Rim. The weak regional teleconnections result in statistically insignificant precipitation modifications over East Africa and Central-Southwest Asia.
Air-sea interaction in the tropical Pacific Ocean
NASA Technical Reports Server (NTRS)
Allison, L. J.; Steranka, J.; Holub, R. J.; Hansen, J.; Godshall, F. A.; Prabhakara, C.
1972-01-01
Charts of 3-month sea surface temperature (SST) anomalies in the eastern tropical Pacific Ocean were produced for the period 1949 to 1970. The anomalies along the United States and South American west coasts and in the eastern tropical Pacific appeared to be oscillating in phase during this period. Similarly, the satellite-derived cloudiness for each of four quadrants of the Pacific Ocean (130 deg E to 100 deg W, 30 deg N to 25 deg S) appeared to be oscillating in phase. In addition, a global tropical cloudiness oscillation from 30 deg N to 30 deg S was noted from 1965 to 1970, by using monthly satellite television nephanalyses. The SST anomalies were found to have a good degree of correlation both positive and negative with the following monthly geophysical parameters: (1) satellite-derived cloudiness, (2) strength of the North and South Pacific semipermanent anticyclones, (3) tropical Pacific island rainfall, and (4) Darwin surface pressure. Several strong direct local and crossequatorial relationships were noted. In particular, the high degree of correlation between the tropical island rainfall and the SST anomalies (r = +0.93) permitted the derivation of SST's for the tropical Pacific back to 1905. The close occurrence of cold tropical SST and North Pacific 700-mb positive height anomalies with central United States drought conditions was noted.
Anatomy of North Pacific Decadal Variability.
NASA Astrophysics Data System (ADS)
Schneider, Niklas; Miller, Arthur J.; Pierce, David W.
2002-03-01
A systematic analysis of North Pacific decadal variability in a full-physics coupled ocean-atmosphere model is executed. The model is an updated and improved version of the coupled model studied by Latif and Barnett. Evidence is sought for determining the details of the mechanism responsible for the enhanced variance of some variables at 20-30-yr timescales. The possible mechanisms include a midlatitude gyre ocean-atmosphere feedback loop, stochastic forcing, remote forcing, or sampling error.Decadal variability in the model is expressed most prominently in anomalies of upper-ocean streamfunction, sea surface temperature (SST), and latent surface heat flux in the Kuroshio-Oyashio extension (KOE) region off Japan. The decadal signal off Japan is initiated by changes in strength and position of the Aleutian low. The atmospheric perturbations excite SST anomalies in the central and eastern North Pacific (with opposing signs and canonical structure). The atmospheric perturbations also change the Ekman pumping over the North Pacific, which excites equivalent barotropic Rossby waves that carry thermocline depth perturbations toward the west. This gyre adjustment results in a shift in the border between subtropical and subpolar gyres after about five years. This process consequently excites SST anomalies (bearing the same sign as the central North Pacific) in the KOE region. The SST anomalies are generated by subsurface temperature anomalies that are brought to the surface during winter by deep mixing and are damped by air-sea winter heat exchange (primarily latent heat flux). This forcing of the atmosphere by the ocean in the KOE region is associated with changes of winter precipitation over the northwestern Pacific Ocean. The polarity of SST and Ekman pumping is such that warm central and cool eastern Pacific anomalies are associated with a deep thermocline, a poleward shift of the border between subtropical and subpolar gyres, and warm SST anomalies and an increase of rain in the KOE region.The preponderance of variance at decadal timescales in the KOE results from the integration of stochastic Ekman pumping along Rossby wave trajectories. The Ekman pumping is primarily due to atmospheric variability that expresses itself worldwide including in the tropical Pacific. A positive feedback between the coupled model KOE SST (driven by the ocean streamfunction) and North Pacific Ekman pumping is consistent with the enhanced variance of the coupled model at 20-30-yr periods. However, the time series are too short to unambiguously distinguish this positive feedback hypothesis from sampling variability. No evidence is found for a midlatitude gyre ocean-atmosphere delayed negative feedback loop.Comparisons with available observations confirm the seasonality of the forcing, the up to 5-yr time lag between like-signed central North Pacific and KOE SST anomalies, and the associated damping of SST in the KOE region by the latent heat flux. The coupled model results also suggest that observed SST anomalies in the KOE region may be predictable from the history of the wind-stress curl over the North Pacific.
On Simulating the Mid-western-us Drought of 1988 with a GCM
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Mocko, D. M.; Lau, William K.-M.; Atlas, R.
2002-01-01
The primary cause of the midwestern North American drought in the summer of 1988 has been identified to be the La Nina SST anomalies. Yet with the SST anomalies prescribed, this drought has not been simulated satisfactorily by any general circulation model. Seven simulation-experiments, each containing an ensemble of 4-sets of simulations, were conducted with the GEOS GCM for both 1987 and 1988. All simulations started from January 1 and continued through the end of August. In the first baseline case, Case 1, only the SST anomalies and some vegetation parameters were prescribed, while everything else (such as soil moisture, snow-cover, and clouds) was interactive. The GCM did produce some of the circulation features of a drought over North America, but they could only be identified on the planetary scales. The 1988 minus 1987 precipitation differences show that the GCM was successful in simulating reduced precipitation in the mid-west, but the accompanying circulation anomalies were not well simulated, leading one to infer that the GCM has simulated the drought for the wrong reason. To isolate the causes for this unremarkable circulation, analyzed winds and soil moisture were prescribed in Case 2 and Case 3 as continuous updates by direct replacement of the GCM-predicted fields. These cases show that a large number of simulation biases emanate from wind biases that are carried into the North American region from surroundings regions. Inclusion of soil moisture also helps to ameliorate the strong feedback, perhaps even stronger than that of the real atmosphere, between soil moisture and precipitation. Case 2 simulated one type of surface temperature anomaly pattern, whereas Case 3 with the prescribed soil moisture produced another.
NASA Astrophysics Data System (ADS)
Parton, W. J.; Del Grosso, S. J.; Smith, W. K.; Chen, M.
2017-12-01
The El Nino Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) are multi-annual to multi-decadal climate patterns defined by ocean temperature anomalies that can strongly modulate climate variability. Here we evaluated the impacts of PDO and ENSO sea surface temperature (SST) anomalies on observed grassland above ground plant production (ANPP; 1940 to 2015), spring (April to July) cumulative actual evapotranspiration (iAET; 1900 to 2015) , and satellite-derived growing season (April to October) cumulative normalized difference vegetation index (iNDVI 1982 to 2015) across the United States Great Plains. The results showed that grassland ANPP is well correlated to iAET (r2=0.69) and iNDVI (r2=0.50 to 0.70) for the Cheyenne Wyoming and Northeastern Colorado long-term ANPP sites. At the site scale, during the negative phase of the PDO, we find ANPP is much lower (25%) and that variability of iAET, iNDVI, and ANPP are much higher (2 to 3 times) compared to the warm phase PDO. Further, we find there is a high frequency of below normal iAET when PDO and ENSO SST's are both negative, while there is a high frequency of above normal iAET when PDO and ENSO values are positive. At the regional scale, iAET, iNDVI, and modeled ANPP data sets show that plant production and iAET values are high in the southern Great Plains and low in the northern Great Plains when spring PDO and ENSO are both in the positive phase, while the opposite pattern is observed when both PDO and ENSO are both in the negative phase. Variability of iAET, iNDVI, and modeled ANPP are much higher in the central Great Plains during the negative phase PDO. We demonstrate clearly that the PDO and ENSO SST anomalies have large impacts on mean and variability of grassland plant production across the Great Plains.
NASA Astrophysics Data System (ADS)
Zorita, Eduardo; Frankignoul, Claude
1997-02-01
The climate variability in the North Atlantic sector is investigated in a 325-yr integration of the ECHAM1/ LSG coupled ocean-atmosphere general circulation model. At the interannual timescale, the coupled model behaves realistically and sea surface temperature (SST) anomalies arise as a response of the oceanic surface layer to the stochastic forcing by the atmosphere, with the heat exchanges both generating and damping the SST anomalies. In the ocean interior, the temperature spectra are red up to a period of about 20 years, and substantial decadal fluctuations are found in the upper kilometer or so of the water column. Using extended empirical orthogonal function analysis, two distinct quasi-oscillatory modes of ocean-atmosphere variability are identified, with dominant periods of about 20 and 10 years, respectively. The oceanic changes in both modes reflect the direct forcing by the atmosphere through anomalous air-sea fluxes and Ekman pumping, which after some delay affects the intensity of the subtropical and subpolar gyres. The SST is also strongly modulated by the gyre currents. In the thermocline, the temperature and salinity fluctuations are in phase, as if caused by thermocline displacements, and they have no apparent connection with the thermohaline circulation. The 20-yr mode is the most energetic one; it is easily seen in the thermocline and can be found in SST data, but it is not detected in the atmosphere alone. As there is no evidence of positive ocean-atmosphere feedback, the 20-yr mode primarily reflects the passive response of the ocean to atmospheric fluctuations, which may be in part associated with climate anomalies appearing a few years earlier in the North Pacific. The 10-yr mode is more surface trapped in the ocean. Although the mode is most easily seen in the temperature variations of the upper few hundred meters of the ocean, it is also detected in the atmosphere alone and thus appears to be a coupled ocean-atmosphere mode. In both modes, the surface heat flux acts neutrally on the associated SST anomalies once they have been generated, so that their persistence appears to be due in part to an overall adjustment of the air-sea heat exchanges to the SST patterns.
Causes of Long-Term Drought in the United States Great Plains
NASA Technical Reports Server (NTRS)
Schubert, Siegfried D.; Suarez, Max J.; Pegion, Philip J.; Koster, Randal
2002-01-01
The United States Great Plains (USGP) experienced a number of multi-year droughts during the last century, most notably the droughts of the 1930s and 1950s. This study examines the causes of such droughts using ensembles of long term (1930-1999) simulations carried out with the NASA Seasonal-to-Interannual Prediction Project (NSIPP-1) atmospheric general circulation model (AGCM) forced with observed sea surface temperatures (SSTs). The results show that the model produces long-term (multi-year) variations in the USGP precipitation that are similar to those observed. A correlative analysis suggests that the ensemble mean low frequency (time scales longer than about 6 years) rainfall variations in the USGP are linked to a pan-Pacific pattern of SST variability that is the leading empirical orthogonal function (EOF) in the low frequency SST data. The link between the SST and the Great Plains precipitation is confirmed in idealized AGCM simulations, in which the model is forced by the 2 polarities of the pan-Pacific SST pattern. The idealized simulations further show that it is primarily the tropical part of the SST anomalies that influence the USGP. As such, the USGP tend to have above normal precipitation when the tropical Pacific SSTs are above normal, while there is a tendency for drought when the tropical SSTs are cold. The upper tropospheric response to the pan-Pacific SST EOF shows a global-scale pattern with a strong wave response in the Pacific and a substantial zonally-symmetric component in which USGP pluvial (drought) conditions are associated with reduced (enhanced) heights throughout the extra-tropics. The potential predictability of rainfall in the USGP associated with SSTs is rather modest, with on average about 1/3 of the total low frequency rainfall variance forced by SST anomalies. Further idealized experiments with climatological SST, suggest that the remaining low frequency variance in the USGP precipitation is the result of interactions with soil moisture. In particular, simulations with soil moisture feedback show a six-fold increase in the variance in annual USGP precipitation compared with simulations in which the soil feedback is excluded. In addition to increasing variance, the interactions with the soil introduce year-to-year memory in the hydrological cycle that is consistent with a red noise process, in which the low frequencies in the deep soil are the result of integrating a net forcing (precipitation-evaporation-runoff) that is white noise on interannual time scales. As such, the role of low frequency SST variability is to introduce a bias to the net forcing on the soil moisture that drives the random process preferentially to either wet or dry conditions.
Predictability and prediction of the total number of winter extremely cold days over China
NASA Astrophysics Data System (ADS)
Luo, Xiao; Wang, Bin
2018-03-01
The current dynamical climate models have limited skills in predicting winter temperature in China. The present study uses physics-based empirical models (PEMs) to explore the sources and limits of the seasonal predictability in the total number of extremely cold days (NECD) over China. A combined cluster-rotated EOF analysis reveals two sub-regions of homogeneous variability among hundreds of stations, namely the Northeast China (NE) and Main China (MC). This reduces the large-number of predictands to only two indices, the NCED-NE and NCED-MC, which facilitates detection of the common sources of predictability for all stations. The circulation anomalies associated with the NECD-NE exhibit a zonally symmetric Arctic Oscillation-like pattern, whereas those associated with the NECD-MC feature a North-South dipolar pattern over Asia. The predictability of the NECD originates from SST and snow cover anomalies in the preceding September and October. However, the two regions have different SST predictors: The NE predictor is in the western Eurasian Arctic while the MC predictor is over the tropical-North Pacific. The October snow cover predictors also differ: The NE predictor primarily resides in the central Eurasia while the MC predictor is over the western and eastern Eurasia. The PEM prediction results suggest that about 60% (55%) of the total variance of winter NECD over the NE (Main) China are likely predictable 1 month in advance. The NECD at each station can also be predicted by using the four predictors that were detected for the two indices. The cross-validated temporal correlation skills exceed 0.70 at most stations. The physical mechanisms by which the autumn Arctic sea ice, snow cover, and tropical-North Pacific SST anomalies affect winter NECD over the NE and Main China are discussed.
Sea Surface Salinity signatures of tropical instability waves: New evidences from SMOS
NASA Astrophysics Data System (ADS)
Yin, Xiaobin; Boutin, Jacqueline; Reverdin, Gilles; Lee, Tong; Martin, Nicolas
2014-05-01
The European Space Agency's (ESA) Soil Moisture and Ocean Salinity (SMOS) mission, launched in November 2009, has been providing global maps of sea surface salinity (SSS) since 2010. SSS measurements from the SMOS satellite during June 2010 and December 2012 provide an unprecedented space-borne observation of the salinity structure of tropical instability waves (TIWs) including strong La Niña conditions during recent years. We use SMOS level 3 SSS maps averaged over 100 x 100 km2 with a 10-day running window and sampled daily over a 0.25 x 0.25° grid generated at Laboratoire d'Océanographie et du Climat: Expérimentation et Approches Numériques (http://catds.ifremer.fr/Products/Available-products-from-CEC-OS/Locean-v2013) [Boutin et al., 2013; Yin et al., 2012]. We also analyze daily SST from the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) produced on an operational basis at the UK Met Office using optimal interpolation [Donlon et al., 2011]. From a time-longitude section in the eastern Pacific ocean, westward propagations of SSS and SST anomalies along 2° N became apparent west of 90° W during June 2010 - March 2011 and June 2011 - March 2012, coincident with negative indexes in the NINO3 and NINO3.4 regions. The 33-day SSS anomaly and SST anomaly appeared together approximately in the same time and regions. The 17-day SSS anomaly is less clear than the 17-day SST anomaly. The SSS anomaly has approximate amplitude of 0.5 practical salinity scale (pss) and the SST anomaly has approximate amplitude of 2 ° C. Then, we focus on analysis of SSS and SST anomalies during June to December 2010. During this period the tropical Pacific was characterized by a strong La Niña, providing favorable conditions for the occurrence of TIWs. The high anomalies and meridional gradients of both SSS and SST appear north of the equator west of 100° W. Near 100W, they straddle the equator where South Pacific water and eastern edge upwelling water with high salinity meets the fresher Inter-tropical Convergence Zone water. SSS anomaly and SST anomaly vary in opposite phase and the amplitude of SSS anomaly is approximately 1/5 of SST anomaly. The westward propagation speed of SSS is approximately between 0.6 m/s and 1.5 m/s depending on latitude and dominant period of TIWs. Poleward propagations of waves are also observed at around 100° W. The results demonstrate the important value of SMOS SSS in studying TIWs. Reference Boutin, J., N. Martin, G. Reverdin, X. Yin and F. Gaillard (2013), Sea surface freshening inferred from SMOS and ARGO salinity: Impact of rain, Ocean Sci., 9, 183-192, doi:10.5194/os-9-183-2013. Donlon, C. J., M. Martin, J. D. Stark, J. Roberts-Jones, E. Fiedler and W. Wimmer (2012), The Operational Sea Surface Temperature and Sea Ice analysis (OSTIA), Remote Sensing of the Environment, 116, 140-158, doi: 10.1016/j.rse.2010.10.017. Yin, X., J. Boutin, and P. Spurgeon (2012), First assessment of SMOS data over open ocean: part I Pacific Ocean, IEEE Trans. Geosci. Remote Sens. 50(5), 1648-1661.
NASA Astrophysics Data System (ADS)
Chen, Wei; Lee, June-Yi; Lu, Riyu; Dong, Buwen; Ha, Kyung-Ja
2015-10-01
The tropical North Atlantic (TNA) sea surface temperature (SST) has been identified as one of regulators on the boreal summer climate over the western North Pacific (WNP), in addition to SSTs in the tropical Pacific and Indian Oceans. The major physical process proposed is that the TNA warming induces a pair of cyclonic circulation anomaly over the eastern Pacific and negative precipitation anomalies over the eastern to central tropical Pacific, which in turn lead to an anticyclonic circulation anomaly over the western to central North Pacific. This study further demonstrates that the modulation of the TNA warming to the WNP summer climate anomaly tends to be intensified under background of the weakened Atlantic thermohaline circulation (THC) by using a water-hosing experiment. The results suggest that the weakened THC induces a decrease in thermocline depth over the TNA region, resulting in the enhanced sensitivity of SST variability to wind anomalies and thus intensification of the interannual variation of TNA SST. Under the weakened THC, the atmospheric responses to the TNA warming are westward shifted, enhancing the anticyclonic circulation and negative precipitation anomaly over the WNP. This study supports the recent finding that the negative phase of the Atlantic multidecadal oscillation after the late 1960s has been favourable for the strengthening of the connection between TNA SST variability and WNP summer climate and has important implications for seasonal prediction and future projection of the WNP summer climate.
NASA Astrophysics Data System (ADS)
Liu, Jingpeng; Ren, Hong-Li; Li, Weijing; Zuo, Jinqing
2018-03-01
Precipitation in southern China during boreal summer (June to August) shows a substantial interdecadal variability on the timescale longer than 8 years. In this study, based on the analysis of singular value decomposition, we diagnose the leading mode of interdecadal covariability between the observational precipitation in southern China and the sea surface temperature (SST) in the Indian Ocean. Results indicate that there exist a remarkable southern China zonal dipole (SCZD) pattern of interdecadal variability of summer precipitation and an interdecadal Indian Ocean basin mode (ID-IOBM) of SST. It is found that the SCZD is evidently covaried with the ID-IOBM, which may induce anomalous inter-hemispheric vertical circulation and atmospheric Kelvin waves. During the warm phase of the ID-IOBM, an enhanced lower-level convergence and upper-level divergence exist over the tropical Indian Ocean, which is a typical Gill-Matsuno-type response to the SST warming. Meanwhile, the accompanied upper-level outflow anomalies further converge over the Indo-China peninsula, resulting in a lower-level anticyclone that contributes to reduction of the eastward moisture transport from the Bay of Bengal to the west part of southern China. In addition, the Kelvin wave-like pattern, as a response of the warm ID-IOBM phase, further induces the lower-level anticyclonic anomaly over the South China Sea-Philippines. Such an anticyclonic circulation is favorable for more water vapor transport from the East China Sea into the east part of southern China. Therefore, the joint effects of the anomalous inter-hemispheric vertical circulation and the Kelvin wave-like pattern associated with the ID-IOBM may eventually play a key role in generating the SCZD pattern.
NASA Astrophysics Data System (ADS)
Ramu, Dandi A.; Chowdary, Jasti S.; Ramakrishna, S. S. V. S.; Kumar, O. S. R. U. B.
2018-04-01
Realistic simulation of large-scale circulation patterns associated with El Niño-Southern Oscillation (ENSO) is vital in coupled models in order to represent teleconnections to different regions of globe. The diversity in representing large-scale circulation patterns associated with ENSO-Indian summer monsoon (ISM) teleconnections in 23 Coupled Model Intercomparison Project Phase 5 (CMIP5) models is examined. CMIP5 models have been classified into three groups based on the correlation between Niño3.4 sea surface temperature (SST) index and ISM rainfall anomalies, models in group 1 (G1) overestimated El Niño-ISM teleconections and group 3 (G3) models underestimated it, whereas these teleconnections are better represented in group 2 (G2) models. Results show that in G1 models, El Niño-induced Tropical Indian Ocean (TIO) SST anomalies are not well represented. Anomalous low-level anticyclonic circulation anomalies over the southeastern TIO and western subtropical northwest Pacific (WSNP) cyclonic circulation are shifted too far west to 60° E and 120° E, respectively. This bias in circulation patterns implies dry wind advection from extratropics/midlatitudes to Indian subcontinent. In addition to this, large-scale upper level convergence together with lower level divergence over ISM region corresponding to El Niño are stronger in G1 models than in observations. Thus, unrealistic shift in low-level circulation centers corroborated by upper level circulation changes are responsible for overestimation of ENSO-ISM teleconnections in G1 models. Warm Pacific SST anomalies associated with El Niño are shifted too far west in many G3 models unlike in the observations. Further large-scale circulation anomalies over the Pacific and ISM region are misrepresented during El Niño years in G3 models. Too strong upper-level convergence away from Indian subcontinent and too weak WSNP cyclonic circulation are prominent in most of G3 models in which ENSO-ISM teleconnections are underestimated. On the other hand, many G2 models are able to represent most of large-scale circulation over Indo-Pacific region associated with El Niño and hence provide more realistic ENSO-ISM teleconnections. Therefore, this study advocates the importance of representation/simulation of large-scale circulation patterns during El Niño years in coupled models in order to capture El Niño-monsoon teleconnections well.
Physics Constrained Stochastic-Statistical Models for Extended Range Environmental Prediction
2014-09-30
pressure ( SLP ), respectively]. A major finding of this work, illustrated in Figure 1, is that the North Pacific patterns identified in [1] are part of...Figure II 1. Reconstruction of sea ice concentration, SST, and SLP anomalies in the arctic using NLSA reemergence modes during an active phase of...to reemerge. The geostrophic winds associated with the annular SLP pattern in the right-hand column are cold Northerlies (warm Southerlies) in the
Causes of the 2011-14 California Drought
NASA Technical Reports Server (NTRS)
Seager, Richard; Hoerling, Martin; Schubert, Siegfried; Wang, Hailan; Lyon, Bradfield; Kumar, Arun; Nakamura, Jennifer; Henderson, Naomi
2015-01-01
The causes of the California drought during November-April winters of 2011/12-2013/14 are analyzed using observations and ensemble simulations with seven atmosphere models forced by observed SSTs. Historically, dry California winters are most commonly associated with a ridge off the west coast but no obvious SST forcing. Wet winters are most commonly associated with a trough off the west coast and an El Nino event. These attributes of dry and wet winters are captured by many of the seven models. According to the models, SST forcing can explain up to a third of California winter precipitation variance. SST forcing was key to sustaining a high pressure ridge over the west coast and suppressing precipitation during the three winters. In 2011/12 this was a response to a La Nina event, whereas in 2012/13 and 2013/14 it appears related to a warm west-cool east tropical Pacific SST pattern. All models contain a mode of variability linking such tropical Pacific SST anomalies to a wave train with a ridge off the North American west coast. This mode explains less variance than ENSO and Pacific decadal variability, and its importance in 2012/13 and 2013/14 was unusual. The models from phase 5 of CMIP (CMIP5) project rising greenhouse gases to cause changes in California all-winter precipitation that are very small compared to recent drought anomalies. However, a long-term warming trend likely contributed to surface moisture deficits during the drought. As such, the precipitation deficit during the drought was dominated by natural variability, a conclusion framed by discussion of differences between observed and modeled tropical SST trends.
Laureano-Rosario, Abdiel E; Symonds, Erin M; Rueda-Roa, Digna; Otis, Daniel; Muller-Karger, Frank E
2017-12-19
Enterococci concentration variability at Escambron Beach, San Juan, Puerto Rico, was examined in the context of environmental conditions observed during 2005-2015. Satellite-derived sea surface temperature (SST), turbidity, direct normal irradiance, and dew point were combined with local precipitation, winds, and mean sea level (MSL) observations in a stepwise multiple regression analyses (Akaike Information Criteria model selection). Precipitation, MSL, irradiance, SST, and turbidity explained 20% of the variation in observed enterococci concentrations based upon these analyses. Changes in these parameters preceded increases in enterococci concentrations by 24 h up to 11 days, particularly during positive anomalies of turbidity, SST, and 480-960 mm of accumulated (4 days) precipitation, which relates to bacterial ecology. Weaker, yet still significant, increases in enterococci concentrations were also observed during positive dew point anomalies. Enterococci concentrations decreased with elevated irradiance and MSL anomalies. Unsafe enterococci concentrations per US EPA recreational water quality guidelines occurred when 4-day cumulative precipitation ranged 481-960 mm; irradiance < 667 W·m -2 ; daily average turbidity anomaly >0.005 sr -1 ; SST anomaly >0.8 °C; and 3-day average MSL anomaly <-18.8 cm. This case study shows that satellite-derived environmental data can be used to inform future water quality studies and protect human health.
A Modeling Study of the Causes and Predictability of the Spring 2011 Extreme U.S. Weather Activity
NASA Technical Reports Server (NTRS)
Schubert, Siegfried D.; Chang, Yehui; Wang, Hailan; Koster, Randal; Suarez, Max
2016-01-01
This study examines the causes and predictability of the spring 2011 U.S. extreme weather using the Modern-Era Retrospective Analysis for Research and Applications (MERRA) and Goddard Earth Observing System Model, version 5, (GEOS-5) atmospheric general circulation model simulations. The focus is on assessing the impact on precipitation of sea surface temperature (SST) anomalies, land conditions, and large-scale atmospheric modes of variability. A key result is that the April record-breaking precipitation in the Ohio River valley was primarily the result of the unforced development of a positive North Atlantic Oscillation (NAO)-like mode of variability with unusually large amplitude, limiting the predictability of the precipitation in that region at 1-month leads. SST forcing (La Nia conditions) contributed to the broader continental-scale pattern of precipitation anomalies, producing drying in the southern plains and weak wet anomalies in the northeast, while the impact of realistic initial North American land conditions was to enhance precipitation in the upper Midwest and produce deficits in the Southeast. It was further found that 1) the 1 March atmospheric initial condition was the primary source of the ensemble mean precipitation response over the eastern United States in April (well beyond the limit of weather predictability), suggesting an influence on the initial state of the previous SST forcing and/or tropospheric/stratospheric coupling linked to an unusually persistent and cold polar vortex; and 2) stationary wave model experiments suggest that the SST-forced base state for April enhanced the amplitude of the NAO response compared to that of the climatological state, though the impact is modest and can be of either sign.
NASA Astrophysics Data System (ADS)
Fang, J.
2017-12-01
The structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean- atmosphere system are examined in this study, using the NCEP/NCAR atmospheric reanalysis, HadISST SST and Simple Ocean Data Assimilation data for 1960-2010. The midlatitude decadal anomalies associated with the Pacific Decadal Oscillation are identified, being characterized by an equivalent barotropic atmospheric low (high) pressure over a cold (warm) oceanic surface. Such a unique configuration of decadal anomalies can be maintained by an unstable ocean-atmosphere interaction mechanism in the midlatitudes, which is hypothesized as follows. Associated with a warm PDO phase, an initial midlatitude surface westerly anomaly accompanied with intensified Aleutian low tends to force a negative SST anomaly by increasing upward surface heat fluxes and driving southward Ekman current anomaly. The SST cooling tends to increase the meridional SST gradient, thus enhancing the subtropical oceanic front. As an adjustment of the atmospheric boundary layer to the enhanced oceanic front, the low-level atmospheric meridional temperature gradient and thus the low-level atmospheric baroclinicity tend to be strengthened, inducing more active transient eddy activities that increase transient eddy vorticity forcing. The vorticity forcing that dominates the total atmospheric forcing tends to produce an equivalent barotropic atmospheric low pressure north of the initial westerly anomaly, intensifying the initial anomalies of the midlatitude surface westerly and Aleutian low. Therefore, it is suggested that the midlatitude ocean-atmosphere interaction can provide a positive feedback mechanism for the development of initial anomaly, in which the oceanic front and the atmospheric transient eddy are the indispensable ingredients. Such a positive ocean-atmosphere feedback mechanism is fundamentally responsible for the observed decadal anomalies in the midlatitude North Pacific ocean-atmosphere system.
NASA Astrophysics Data System (ADS)
Sun, Cheng; Li, Jianping; Kucharski, Fred; Xue, Jiaqing; Li, Xiang
2018-04-01
The spatial structure of Atlantic multidecadal oscillation (AMO) is analyzed and compared between the observations and simulations from slab ocean models (SOMs) and fully coupled models. The observed sea surface temperature (SST) pattern of AMO is characterized by a basin-wide monopole structure, and there is a significantly high degree of spatial coherence of decadal SST variations across the entire North Atlantic basin. The observed SST anomalies share a common decadal-scale signal, corresponding to the basin-wide average (i. e., the AMO). In contrast, the simulated AMO in SOMs (AMOs) exhibits a tripole-like structure, with the mid-latitude North Atlantic SST showing an inverse relationship with other parts of the basin, and the SOMs fail to reproduce the observed strong spatial coherence of decadal SST variations associated with the AMO. The observed spatial coherence of AMO SST anomalies is identified as a key feature that can be used to distinguish the AMO mechanism. The tripole-like SST pattern of AMOs in SOMs can be largely explained by the atmosphere-forced thermodynamics mechanism due to the surface heat flux changes associated with the North Atlantic Oscillation (NAO). The thermodynamic forcing of AMOs by the NAO gives rise to a simultaneous inverse NAO-AMOs relationship at both interannual and decadal timescales and a seasonal phase locking of the AMOs variability to the cold season. However, the NAO-forced thermodynamics mechanism cannot explain the observed NAO-AMO relationship and the seasonal phase locking of observed AMO variability to the warm season. At decadal timescales, a strong lagged relationship between NAO and AMO is observed, with the NAO leading by up to two decades, while the simultaneous correlation of NAO with AMO is weak. This lagged relationship and the spatial coherence of AMO can be well understood from the view point of ocean dynamics. A time-integrated NAO index, which reflects the variations in Atlantic meridional overturning circulation (AMOC) and northward ocean heat transport caused by the accumulated effect of NAO forcing, reasonably well captures the observed multidecadal fluctuations in the AMO. Further analysis using the fully coupled model simulations provides direct modeling evidence that the observed spatial coherence of decadal SST variations across North Atlantic basin can be reproduced only by including the AMOC-related ocean dynamics, and the AMOC acts as a common forcing signal that results in a spatially coherent variation of North Atlantic SST.
Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?
Ma, Xiaohui; Chang, Ping; Saravanan, R.; Montuoro, Raffaele; Hsieh, Jen-Shan; Wu, Dexing; Lin, Xiaopei; Wu, Lixin; Jing, Zhao
2015-01-01
High-resolution satellite measurements of surface winds and sea-surface temperature (SST) reveal strong coupling between meso-scale ocean eddies and near-surface atmospheric flow over eddy-rich oceanic regions, such as the Kuroshio and Gulf Stream, highlighting the importance of meso-scale oceanic features in forcing the atmospheric planetary boundary layer (PBL). Here, we present high-resolution regional climate modeling results, supported by observational analyses, demonstrating that meso-scale SST variability, largely confined in the Kuroshio-Oyashio confluence region (KOCR), can further exert a significant distant influence on winter rainfall variability along the U.S. Northern Pacific coast. The presence of meso-scale SST anomalies enhances the diabatic conversion of latent heat energy to transient eddy energy, intensifying winter cyclogenesis via moist baroclinic instability, which in turn leads to an equivalent barotropic downstream anticyclone anomaly with reduced rainfall. The finding points to the potential of improving forecasts of extratropical winter cyclones and storm systems and projections of their response to future climate change, which are known to have major social and economic impacts, by improving the representation of ocean eddy–atmosphere interaction in forecast and climate models. PMID:26635077
Low frequency North Atlantic SST variability: Weather noise forcing and coupled response
NASA Astrophysics Data System (ADS)
Fan, Meizhu
A method to diagnose the causes of low frequency SST variability is developed, tested and applied in an ideal case and real climate. In the ideal case, a free simulation of the COLA CGCM is taken as synthetic observations. For real climate, we take NCEP reanalysis atmospheric data and Reynolds SST as observations. Both the synthetic and actual observation data show that weather noise is the main component of atmospheric variability at subtropics and high-latitude. Diagnoses of results from the ideal case suggest that most of the synthetic observed SST variability can be reproduced by the weather noise surface fluxes forcing. This includes the "observed" low frequency SST patterns in the North Atlantic and their corresponding time evolution. Among all the noise surface fluxes, heat flux plays a major role. The results from simulations using actual observations also suggest that the observed SST variability is mostly atmospheric weather noise forced. The regional atmospheric noise forcing, especially the heat flux noise forcing, is the major source of the low frequency SST variability in the North Atlantic. The observed SST tripole mode has about a 12 year period and it can be reasonably reproduced by the weather noise forcing in terms of its period, spatial pattern and variance. Based on our diagnosis, it is argued that the SST tripole is mainly forced by local atmospheric heat flux noise. The gyre circulation plays a secondary role: the anomalous gyre circulation advects mean thermal features across the inter-gyre boundary, and the mean gyre advection carries SST anomalies along the inter-gyre boundary. The diagnosis is compared with a delayed oscillator theory. We find that the delayed oscillator theory is not supported and that the SST tripole mode is forced by weather noise heat flux noise. However, the result may be model dependent.
NASA Astrophysics Data System (ADS)
Kajtar, Jules B.; Santoso, Agus; McGregor, Shayne; England, Matthew H.; Baillie, Zak
2018-02-01
The strengthening of the Pacific trade winds in recent decades has been unmatched in the observational record stretching back to the early twentieth century. This wind strengthening has been connected with numerous climate-related phenomena, including accelerated sea-level rise in the western Pacific, alterations to Indo-Pacific ocean currents, increased ocean heat uptake, and a slow-down in the rate of global-mean surface warming. Here we show that models in the Coupled Model Intercomparison Project phase 5 underestimate the observed range of decadal trends in the Pacific trade winds, despite capturing the range in decadal sea surface temperature (SST) variability. Analysis of observational data suggests that tropical Atlantic SST contributes considerably to the Pacific trade wind trends, whereas the Atlantic feedback in coupled models is muted. Atmosphere-only simulations forced by observed SST are capable of recovering the time-variation and the magnitude of the trade wind trends. Hence, we explore whether it is the biases in the mean or in the anomalous SST patterns that are responsible for the under-representation in fully coupled models. Over interannual time-scales, we find that model biases in the patterns of Atlantic SST anomalies are the strongest source of error in the precipitation and atmospheric circulation response. In contrast, on decadal time-scales, the magnitude of the model biases in Atlantic mean SST are directly linked with the trade wind variability response.
NASA Technical Reports Server (NTRS)
Jones, Jason; Burbank, Renane; Billiot, Amanda; Schultz, Logan
2011-01-01
This presentation discusses use of 4 kilometer satellite-based sea surface temperature (SST) data to monitor and assess coral reef areas of the Florida Keys. There are growing concerns about the impacts of climate change on coral reef systems throughout the world. Satellite remote sensing technology is being used for monitoring coral reef areas with the goal of understanding the climatic and oceanic changes that can lead to coral bleaching events. Elevated SST is a well-documented cause of coral bleaching events. Some coral monitoring studies have used 50 km data from the Advanced Very High Resolution Radiometer (AVHRR) to study the relationships of sea surface temperature anomalies to bleaching events. In partnership with NOAA's Office of National Marine Sanctuaries and the University of South Florida's Institute for Marine Remote Sensing, this project utilized higher resolution SST data from the Terra's Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR. SST data for 2000-2010 was employed to compute sea surface temperature anomalies within the study area. The 4 km SST anomaly products enabled visualization of SST levels for known coral bleaching events from 2000-2010.
Midlatitude atmosphere-ocean interaction during El Nino. Part II. The northern hemisphere atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, M.A.
The influence of midlatitude air-sea interaction on the atmospheric anomalies associated with El Nino is investigated by coupling the Community Climate Model to a mixed-layer ocean model in the North Pacific. Prescribed El Nino conditions, warm sea surface temperatures (SST) in the tropical Pacific, cause a southward displacement and strengthening of the Aleutian Low. This results in enhanced (reduced) advection of cold Asian air over the west-central (northwest) Pacific and northward advection of warm air over the eastern Pacific. Allowing air-sea feedback in the North Pacific slightly modified the El Nino-induced near-surface wind, air temperature, and precipitation anomalies. The anomalousmore » cyclonic circulation over the North Pacific is more concentric and shifted slightly to the east in the coupled simulations. Air-sea feedback also damped the air temperature anomalies over most of the North Pacific and reduced the precipitation rate above the cold SST anomaly that develops in the central Pacific. The simulated North Pacific SST anomalies and the resulting Northern Hemisphere atmospheric anomalies are roughly one-third as large as those related to the prescribed El Nino conditions in a composite of five cases. The composite geopotential height anomalies associated with changes in the North Pacific SSTs have an equivalent barotropic structure and range from -65 m to 50 m at the 200-mb level. Including air-sea feedback in the North Pacific tended to damp the atmospheric anomalies caused by the prescribed El Nino conditions in the tropical Pacific. As a result, the zonally elongated geopotential height anomalies over the West Pacific are reduced and shifted to the east. However, the atmospheric changes associated with the North Pacific SST anomalies vary widely among the five cases.« less
East Asian Summer Monsoon Rainfall: A Historical Perspective of the 1998 Flood over Yangtze River
NASA Technical Reports Server (NTRS)
Weng, H.-Y.; Lau, K.-M.
1999-01-01
One of the main factors that might have caused the disastrous flood in China during 1998 summer is long-term variations that include a trend indicating increasing monsoon rainfall over the Yangtze River Valley. China's 160-station monthly rainfall anomaly for the summers of 1955-98 is analyzed for exploring such long-term variations. Singular value decomposition (SVD) between the summer rainfall and the global sea surface temperature (SST) anomalies reveals that the rainfall over Yangtze River Valley is closely related to global and regional SST variabilities at both interannual and interdecadal timescales. SVD1 mode links the above normal rainfall condition in central China to an El Nino-like SSTA distribution, varying on interannual timescale modified by a trend during the period. SVD3 mode links positive rainfall anomaly in Yangtze River Valley to the warm SST anomaly in the subtropical western Pacific, varying on interannual timescales modified by interdecadal timescales. This link tends to be stronger when the Nino3 area becomes colder and the western subtropical Pacific becomes warmer. The 1998 summer is a transition season when the 1997/98 El Nino event was in its decaying phase, and the SST in the Nino3 area emerged below normal anomaly while the subtropical western Pacific SST above normal. Thus, the first and third SVD modes become dominant in 1998 summer, favoring more Asian summer monsoon rainfall over the Yangtze River Valley.
The Effect of Ocean Currents on Sea Surface Temperature Anomalies
NASA Technical Reports Server (NTRS)
Stammer, Detlef; Leeuwenburgh, Olwijn
2000-01-01
We investigate regional and global-scale correlations between observed anomalies in sea surface temperature and height. A strong agreement between the two fields is found over a broad range of latitudes for different ocean basins. Both time-longitude plots and wavenumber-frequency spectra suggest an advective forcing of SST anomalies by a first-mode baroclinic wave field on spatial scales down to 400 km and time scales as short as 1 month. Even though the magnitude of the mean background temperature gradient is determining for the effectiveness of the forcing, there is no obvious seasonality that can be detected in the amplitudes of SST anomalies. Instead, individual wave signatures in the SST can in some cases be followed over periods of two years. The phase relationship between SST and SSH anomalies is dependent upon frequency and wavenumber and displays a clear decrease of the phase lag toward higher latitudes where the two fields come into phase at low frequencies. Estimates of the damping coefficient are larger than generally obtained for a purely atmospheric feedback. From a global frequency spectrum a damping time scale of 2-3 month was found. Regionally results are very variable and range from 1 month near strong currents to 10 month at low latitudes and in the sub-polar North Atlantic. Strong agreement is found between the first global EOF modes of 10 day averaged and spatially smoothed SST and SSH grids. The accompanying time series display low frequency oscillations in both fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, B.; Schneider, E.K.
1995-10-01
Two surface wind stress datasets for 1979-91, one based on observations and the other from an investigation of the COLA atmospheric general circulation model (AGCM) with prescribed SST, are used to drive the GFDL ocean general circulation model. These two runs are referred to as the control and COLA experiments, respectively. Simulated SST and upper-ocean heat contents (HC) in the tropical Pacific Ocean are compared with observations and between experiments. Both simulation reproduced the observed mean SST and HC fields as well as their annual cycles realistically. Major errors common to both runs are colder than observed SST in themore » eastern equatorial ocean and HC in the western Pacific south of the equator, with errors generally larger in the COLA experiment. New errors arising from the AGCM wind forcing include higher SST near the South American coast throughout the year and weaker HC gradients along the equator in boreal spring. The former is associated with suppressed coastal upwelling by weak along shore AGCM winds, and the latter is caused by weaker equatorial easterlies in boreal spring. The low-frequency ENSO fluctuations are also realistic for both runs. Correlations between the observed and simulated SST anomalies from the COLA simulation are as high as those from the control run in the central equatorial Pacific. A major problem in the COLA simulation is the appearance of unrealistic tropical cold anomalies during the boreal spring of mature El Nino years. These anomalies propagate along the equator from the western Pacific to the eastern coast in about three months, and temporarily eliminate the warm SST and HC anomalies in the eastern Pacific. This erroneous oceanic response in the COLA simulation is caused by a reversal of the westerly wind anomalies on the equator, associated with an unrealistic southward shift of the ITCZ in boreal spring during El Nino events. 66 refs., 16 figs.« less
Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation
NASA Astrophysics Data System (ADS)
Kucharski, F.; Sun, C.; Li, J.; Jin, F. F.; Kang, I. S.; Ding, R.
2017-12-01
Observational analysis suggests that the western tropical Pacific (WTP) sea surface temperature (SST) shows predominant variability over multidecadal time scales, which is unlikely to be explained by the Interdecadal Pacific Oscillation. Here we show that this variability is largely explained by the remote Atlantic multidecadal oscillation (AMO). A suite of Atlantic Pacemaker experiments successfully reproduces the WTP multidecadal variability and the AMO-WTP SST connection. The AMO warm SST anomaly generates an atmospheric teleconnection to the North Pacific, which weakens the Aleutian low and subtropical North Pacific westerlies. The wind changes induce a subtropical North Pacific SST warming through wind-evaporation-SST effect, and in response to this warming, the surface winds converge towards the subtropical North Pacific from the tropics, leading to anomalous cyclonic circulation and low pressure over the WTP region. The warm SST anomaly further develops due to the SST-sea level pressure-cloud-longwave radiation positive feedback. Our findings suggest that the Atlantic Ocean acts as a key pacemaker for the western Pacific decadal climate variability.
Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation
NASA Astrophysics Data System (ADS)
Sun, Cheng; Kucharski, Fred; Li, Jianping; Jin, Fei-Fei; Kang, In-Sik; Ding, Ruiqiang
2017-07-01
Observational analysis suggests that the western tropical Pacific (WTP) sea surface temperature (SST) shows predominant variability over multidecadal time scales, which is unlikely to be explained by the Interdecadal Pacific Oscillation. Here we show that this variability is largely explained by the remote Atlantic multidecadal oscillation (AMO). A suite of Atlantic Pacemaker experiments successfully reproduces the WTP multidecadal variability and the AMO-WTP SST connection. The AMO warm SST anomaly generates an atmospheric teleconnection to the North Pacific, which weakens the Aleutian low and subtropical North Pacific westerlies. The wind changes induce a subtropical North Pacific SST warming through wind-evaporation-SST effect, and in response to this warming, the surface winds converge towards the subtropical North Pacific from the tropics, leading to anomalous cyclonic circulation and low pressure over the WTP region. The warm SST anomaly further develops due to the SST-sea level pressure-cloud-longwave radiation positive feedback. Our findings suggest that the Atlantic Ocean acts as a key pacemaker for the western Pacific decadal climate variability.
Rueda-Roa, Digna; Otis, Daniel; Muller-Karger, Frank E.
2017-01-01
Enterococci concentration variability at Escambron Beach, San Juan, Puerto Rico, was examined in the context of environmental conditions observed during 2005–2015. Satellite-derived sea surface temperature (SST), turbidity, direct normal irradiance, and dew point were combined with local precipitation, winds, and mean sea level (MSL) observations in a stepwise multiple regression analyses (Akaike Information Criteria model selection). Precipitation, MSL, irradiance, SST, and turbidity explained 20% of the variation in observed enterococci concentrations based upon these analyses. Changes in these parameters preceded increases in enterococci concentrations by 24 h up to 11 days, particularly during positive anomalies of turbidity, SST, and 480–960 mm of accumulated (4 days) precipitation, which relates to bacterial ecology. Weaker, yet still significant, increases in enterococci concentrations were also observed during positive dew point anomalies. Enterococci concentrations decreased with elevated irradiance and MSL anomalies. Unsafe enterococci concentrations per US EPA recreational water quality guidelines occurred when 4-day cumulative precipitation ranged 481–960 mm; irradiance < 667 W·m−2; daily average turbidity anomaly >0.005 sr−1; SST anomaly >0.8 °C; and 3-day average MSL anomaly <−18.8 cm. This case study shows that satellite-derived environmental data can be used to inform future water quality studies and protect human health. PMID:29257092
Simulation of Rainfall Variability Over West Africa
NASA Astrophysics Data System (ADS)
Bader, J.; Latif, M.
The impact of sea surface temperature (SST) and vegetation on precipitation over West Africa is investigated with the atmospheric general circulation model ECHAM4.x/T42. Ensemble experiments -driven with observed SST- show that At- lantic SST has a significant influence on JJA precipitation over West Africa. Four- teen experiments were performed in which the climatological SST was enhanced or decreased by one Kelvin in certain ocean areas. Changing SST in the eastern tropi- cal Atlantic only caused significant changes along the Guinea Coast, with a positive SSTA increasing rainfall and a negative reducing it. The response was nearly linear. Changing SST in other ocean areas caused significant changes over West Africa, es- pecially in the Sahel area. The response is found to be non linear, with only negative SSTA leading to significant reduction in Sahel rainfall. Also, the impact of the SSTAs from the different ocean regions was not additive with respect to the rainfall. Four simulations with a coupled model (the simple dynamic vegetation model (SVege) and the ECHAM4-AGCM were coupled) were also performed, driven with observed SST from 1945 to 1998. The standard ECHAM-AGCM -forced by the same observed SST- was able to reproduce the drying trend from the fifties to the mid-eighties in the Sahel, but failed to mirror the magnitude of the rainfall anomalies. The coupled model was not only able to reproduce this drying trend, but was also able to better reproduce the amplitudes of the rainfall anomalies. The dynamic vegetation acted like an amplifier, increasing the SST induced rainfall anomalies.
European Climate and Pinot Noir Grape-Harvest Dates in Burgundy, since the 17th Century
NASA Astrophysics Data System (ADS)
Tourre, Y. M.
2011-12-01
Time-series of growing season air temperature anomalies in the Parisian region and of 'Pinot Noir' grape-harvest dates (GHD) in Burgundy (1676-2004) are analyzed in the frequency-domain. Variability of both time-series display three significant frequency-bands (peaks significant at the 5% level) i.e., a low-frequency band (multi-decadal) with a 25-year peak period; a 3-to-8 year band period (inter-annual) with a 3.1-year peak period; and a 2-to-3 year band period (quasi-biennial) with a 2.4-year peak period. Joint sea surface temperature/sea level pressure (SST/SLP) empirical orthogonal functions (EOF) analyses during the 20th century, along with spatio-temporal patterns for the above frequency-bands are presented. It is found that SST anomalies display early significant spatial SST patterns in the North Atlantic Ocean (air temperature lagging by 6 months) similar to those obtained from EOF analyses. It is thus proposed that the robust power spectra for the above frequency-bands could be linked with Atlantic climate variability metrics modulating Western European climate i.e., 1) the global Multi-decadal Oscillation (MDO) with its Atlantic Multi-decadal Oscillation (AMO) footprint; 2) the Atlantic Inter-Annual (IA) fluctuations; and 3) the Atlantic Quasi-Biennial (QB) fluctuations, respectively. Moreover these specific Western European climate signals have effects on ecosystem health and can be perceived as contributors to the length of the growing season and the timing of GHD in Burgundy. Thus advance knowledge on the evolution and phasing of the above climate fluctuations become important elements for viticulture and wine industry management. It is recognized that anthropogenic effects could have modified time-series patterns presented here, particularly since the mid 1980s.
NASA Astrophysics Data System (ADS)
Persechino, A.; Marsh, R.; Sinha, B.; Megann, A. P.; Blaker, A. T.; New, A. L.
2012-08-01
A wide range of statistical tools is used to investigate the decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) and associated key variables in a climate model (CHIME, Coupled Hadley-Isopycnic Model Experiment), which features a novel ocean component. CHIME is as similar as possible to the 3rd Hadley Centre Coupled Model (HadCM3) with the important exception that its ocean component is based on a hybrid vertical coordinate. Power spectral analysis reveals enhanced AMOC variability for periods in the range 15-30 years. Strong AMOC conditions are associated with: (1) a Sea Surface Temperature (SST) anomaly pattern reminiscent of the Atlantic Multi-decadal Oscillation (AMO) response, but associated with variations in a northern tropical-subtropical gradient; (2) a Surface Air Temperature anomaly pattern closely linked to SST; (3) a positive North Atlantic Oscillation (NAO)-like pattern; (4) a northward shift of the Intertropical Convergence Zone. The primary mode of AMOC variability is associated with decadal changes in the Labrador Sea and the Greenland Iceland Norwegian (GIN) Seas, in both cases linked to the tropical activity about 15 years earlier. These decadal changes are controlled by the low-frequency NAO that may be associated with a rapid atmospheric teleconnection from the tropics to the extratropics. Poleward advection of salinity anomalies in the mixed layer also leads to AMOC changes that are linked to processes in the Labrador Sea. A secondary mode of AMOC variability is associated with interannual changes in the Labrador and GIN Seas, through the impact of the NAO on local surface density.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Li, Tim
2017-02-01
Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.
Response of the Asian summer monsoon to changes in El Niño properties
NASA Astrophysics Data System (ADS)
Annamalai, H.; Liu, P.
2005-04-01
Diagnostics from observed precipitation and National Centers for Environmental Prediction-National Center for Atmospheric Research re-analysis products reveal that after the 1976-77 climate shift in the Pacific there was a dramatic change in the response of the Indian summer monsoon (ISM) to El Niño, particularly during the months of July and August. Based on 1950-75 (PRE76) and 1977-2001 (POST76) El Niño composites: the western North Pacific monsoon (WNPM) was stronger than normal in both periods; the ISM was weaker than normal during the entire monsoon season in PRE76, but in POST76 was weaker only during the onset and withdrawal phases. In terms of observed sea surface temperature (SST) during July-August, the major differences between the two periods are the presence of cold SST anomalies over the Indo-Pacific warm pool and the intensity of warm SST anomalies in the central Pacific in POST76. The effect of these differences on the ISM is investigated in a suite of experiments with an Atmospheric General Circulation Model (AGCM) that has a realistic monsoon precipitation climatology.Separate ten-member ensemble simulations with the AGCM were conducted for PRE76 and POST76 El Niño events with SST anomalies inserted as follows: (i) tropical Indo-Pacific (TIP), (ii) tropical Pacific only (TPO), and (iii) tropical Indian Ocean only (TIO). Qualitatively, TPO solutions reproduce the observed differences in the monsoon response in both periods. Specifically, during July-August of POST76 the cold SST anomalies in conjunction with remote subsidence suppress precipitation (3-5 mm day-1) over the maritime continent and equatorial central Indian Ocean. Inclusion of Indian Ocean SST anomalies in the TIP runs further suppresses precipitation over the entire equatorial Indian Ocean. The low-level anticyclonic circulation anomalies that develop as a Rossby-wave response to these convective anomalies increase the south-westerlies over the northern Indian Ocean, and favour a stronger ISM and WNPM. During PRE76 the non-occurrence of cold SST anomalies over the Indo-Pacific warm pool reinforces El Niño's suppression on the ISM.In contrast, TIO solutions show a reduced ISM during July-August of POST76; the solutions, however, show a significant effect on the WNPM during both PRE76 and POST76 periods. It is argued that SSTs over the entire tropical Indo-Pacific region need to be considered to understand the El Niño Southern Oscillation-monsoon linkage, and to make predictions of rainfall over India and the western North Pacific.
Intraseasonal sea surface warming in the western Indian Ocean by oceanic equatorial Rossby waves
NASA Astrophysics Data System (ADS)
Rydbeck, Adam V.; Jensen, Tommy G.; Nyadjro, Ebenezer S.
2017-05-01
A novel process is identified whereby equatorial Rossby (ER) waves maintain warm sea surface temperature (SST) anomalies against cooling by processes related to atmospheric convection in the western Indian Ocean. As downwelling ER waves enter the western Indian Ocean, SST anomalies of +0.15°C develop near 60°E. These SST anomalies are hypothesized to stimulate convective onset of the Madden-Julian Oscillation. The upper ocean warming that manifests in response to downwelling ER waves is examined in a mixed layer heat budget using observational and reanalysis products, respectively. In the heat budget, horizontal advection is the leading contributor to warming, in part due to an equatorial westward jet of 80 cm s-1 associated with downwelling ER waves. When anomalous currents associated with ER waves are removed in the budget, the warm intraseasonal temperature anomaly in the western Indian Ocean is eliminated in observations and reduced by 55% in reanalysis.
Dynamics of Monsoon-Induced Biennial Variability in ENSO
NASA Technical Reports Server (NTRS)
Kim, Kyu-Myong; Lau, K.-M.; Einaudi, Franco (Technical Monitor)
2000-01-01
The mechanism of the quasi-biennial tendency in El Nino Southern Oscillation (ENSO)-monsoon coupled system is investigated using an intermediate coupled model. The monsoon wind forcing is prescribed as a function of Sea Surface Temperature (SST) anomalies based on the relationship between zonal wind anomalies over the western Pacific to sea level change in the equatorial eastern Pacific. The key mechanism of quasi-biennial tendency in El Nino evolution is found to be in the strong coupling of ENSO to monsoon wind forcing over the western Pacific. Strong boreal summer monsoon wind forcing, which lags the maximum SST anomaly in the equatorial eastern Pacific approximately 6 months, tends to generate Kelvin waves of the opposite sign to anomalies in the eastern Pacific and initiates the turnabout in the eastern Pacific. Boreal winter monsoon forcing, which has zero lag with maximum SST in the equatorial eastern Pacific, tends to damp the ENSO oscillations.
Indian summer monsoon rainfall variability in response to differences in the decay phase of El Niño
NASA Astrophysics Data System (ADS)
Chowdary, Jasti S.; Harsha, H. S.; Gnanaseelan, C.; Srinivas, G.; Parekh, Anant; Pillai, Prasanth; Naidu, C. V.
2017-04-01
In general the Indian summer monsoon (ISM) rainfall is near normal or excess during the El Niño decay phase. Nevertheless the impact of large variations in decaying El Niño on the ISM rainfall and circulation is not systematically examined. Based on the timing of El Niño decay with respect to boreal summer season, El Niño decay phases are classified into three types in this study using 142 years of sea surface temperature (SST) data, which are as follows: (1) early-decay (ED; decay during spring), (2) mid-summer decay (MD; decay by mid-summer) and (3) no-decay (ND; no decay in summer). It is observed that ISM rainfall is above normal/excess during ED years, normal during MD years and below normal/deficit in ND years, suggesting that the differences in El Niño decay phase display profound impact on the ISM rainfall. Tropical Indian Ocean (TIO) SST warming, induced by El Niño, decays rapidly before the second half of the monsoon season (August and September) in ED years, but persists up to the end of the season in MD years, whereas TIO warming maintained up to winter in ND case. Analysis reveals the existence of strong sub-seasonal ISM rainfall variations in the summer following El Niño years. During ED years, strong negative SST anomalies develop over the equatorial central-eastern Pacific by June and are apparent throughout the summer season accompanied by anomalous moisture divergence and high sea level pressure (SLP). The associated moisture convergence and low SLP over ISM region favour excess rainfall (mainly from July onwards). This circulation and rainfall anomalies are highly influenced by warm TIO SST and Pacific La Niña conditions in ED years. Convergence of southwesterlies from Arabian Sea and northeasterlies from Bay of Bengal leads to positive rainfall over most part of the Indian subcontinent from August onwards in MD years. ND years are characterized by negative rainfall anomaly spatial pattern and weaker circulation over India throughout the summer season, which are mainly due to persisting El Niño related warm SST anomalies over the Pacific. Atmospheric general circulation model simulation supports our hypothesis that El Niño decay variations modulate ISM rainfall and circulation.
The effects of the Indo-Pacific warm pool on the stratosphere
NASA Astrophysics Data System (ADS)
Zhou, Xin; Li, Jianping; Xie, Fei; Ding, Ruiqiang; Li, Yanjie; Zhao, Sen; Zhang, Jiankai; Li, Yang
2017-03-01
Sea surface temperature (SST) in the Indo-Pacific warm pool (IPWP) plays a key role in influencing East Asian climate, and even affects global-scale climate change. This study defines IPWP Niño and IPWP Niña events to represent the warm and cold phases of IPWP SST anomalies, respectively, and investigates the effects of these events on stratospheric circulation and temperature. Results from simulations forced by observed SST anomalies during IPWP Niño and Niña events show that the tropical lower stratosphere tends to cool during IPWP Niño events and warm during IPWP Niña events. The responses of the northern and southern polar vortices to IPWP Niño events are fairly symmetric, as both vortices are significantly warmed and weakened. However, the responses of the two polar vortices to IPWP Niña events are of opposite sign: the northern polar vortex is warmed and weakened, but the southern polar vortex is cooled and strengthened. These features are further confirmed by composite analysis using reanalysis data. A possible dynamical mechanism connecting IPWP SST to the stratosphere is suggested, in which IPWP Niño and Niña events excite teleconnections, one similar to the Pacific-North America pattern in the Northern Hemisphere and a Rossby wave train in the Southern Hemisphere, which project onto the climatological wave in the mid-high latitudes, intensifying the upward propagation of planetary waves into the stratosphere and, in turn, affecting the polar vortex.
NASA Astrophysics Data System (ADS)
Wang, Wenhui; Cao, Changyong; Ignatov, Alex; Li, Zhenglong; Wang, Likun; Zhang, Bin; Blonski, Slawomir; Li, Jun
2017-09-01
The Suomi NPP VIIRS thermal emissive bands (TEB) have been performing very well since data became available on January 20, 2012. The longwave infrared bands at 11 and 12 um (M15 and M16) are primarily used for sea surface temperature (SST) retrievals. A long standing anomaly has been observed during the quarterly warm-up-cool-down (WUCD) events. During such event daytime SST product becomes anomalous with a warm bias shown as a spike in the SST time series on the order of 0.2 K. A previous study (CAO et al. 2017) suggested that the VIIRS TEB calibration anomaly during WUCD is due to a flawed theoretical assumption in the calibration equation and proposed an Ltrace method to address the issue. This paper complements that study and presents operational implementation and validation of the Ltrace method for M15 and M16. The Ltrace method applies bias correction during WUCD only. It requires a simple code change and one-time calibration parameter look-up-table update. The method was evaluated using colocated CrIS observations and the SST algorithm. Our results indicate that the method can effectively reduce WUCD calibration anomaly in M15, with residual bias of 0.02 K after the correction. It works less effectively for M16, with residual bias of 0.04 K. The Ltrace method may over-correct WUCD calibration biases, especially for M16. However, the residual WUCD biases are small in both bands. Evaluation results using the SST algorithm show that the method can effectively remove SST anomaly during WUCD events.
NASA Astrophysics Data System (ADS)
Herrera-Cervantes, H.; Lluch-Cota, S. E.; Lluch-Cota, D. B.; Gutiérrez-de-Velasco, G.
2014-05-01
Interannual correlation between satellite-derived sea surface temperature (SST) and surface chlorophyll a (Chl a) are examined in the coastal upwelling zone off Punta Eugenia on the west coast of the Baja California Peninsula, an area than has been identified as having intense biological productivity and oceanographic transition between midlatitude and tropical ocean conditions. We used empirical orthogonal functions (EOF) analysis separately and jointly on the two fields from 1997 through 2007, a time period dominated by different remote forcing: ENSO (El Niño-Southern Oscillation) conditions (weak, moderate and strong) and the largest intrusion of subarctic water reported in the last 50 years. Coastal upwelling index anomalies (CUI) and the multivariate ENSO index (MEI) were used to identify the influence of local (wind stress) and remote (ENSO) forcing over the interannual variability of both variables. The spatial pattern of the individual EOF1 analysis showed the greater variability of SST and Chl a offshore, their corresponding amplitude time series presented the highest peaks during the strong 1997-2000 El Niño-La Niña cycles and during the 2002-2004 period associated to the intrusion of subarctic water. The MEI is well correlated with the individual SST principal component (R ≈ 0.67, P < 0.05) and poorly with the individual Chl a principal component (R = -0.13). The joint EOF1 and the SST-Chl a correlation patterns show the area where both variables covary tightly; a band near the coast where the largest correlations occurred (| R | > 0.4) mainly regulated by ENSO cycles. This was spatially revealed when we calculated the homogeneous correlations for the 1997-1999 El Niño-La Niña period and during the 2002-2004 period, the intrusion of subarctic water period. Both, SST and Chl a showed higher coupling and two distinct physical-biological responses: on average ENSO influence was observed clearly along the coast mostly in SST, while the subarctic water influence, observed offshore and in Bahía Vizcaíno, mostly in Chl a. We found coastal chlorophyll blooms off Punta Eugenia during the 2002-2003 period, an enrichment pattern similar to that observed off the coast of Oregon. These chlorophyll blooms are likely linked to high wind stress anomalies during 2002, mainly at high latitudes. This observation may provide an explanation of why Punta Eugenia is one of the most important biological action centers on the Pacific coast.
NASA Astrophysics Data System (ADS)
Ham, Yoo-Geun
2017-08-01
This study analyzes a reduction in the asymmetry of El Niño Southern-Oscillation (ENSO) amplitude due to global warming in Coupled Model Intercomparison Project Phase 5 models. The multimodel-averaged Niño3 skewness during December-February season decreased approximately 40% in the RCP4.5 scenario compared to that in the historical simulation. The change in the nonlinear relationship between sea surface temperature (SST) and precipitation is a key factor for understanding the reduction in ENSO asymmetry due to global warming. In the historical simulations, the background SST leading to the greatest precipitation sensitivity (SST for Maximum Precipitation Sensitivity, SST_MPS) occurs when the positive SST anomaly is located over the equatorial central Pacific. Therefore, an increase in climatological SST due to global warming weakens the atmospheric response during El Niño over the central Pacific. However, the climatological SST over this region in the historical simulation is still lower than the SST_MPS for the negative SST anomaly; therefore, a background SST increase due to global warming can further increase precipitation sensitivity. The atmospheric feedbacks during La Niña are enhanced and increase the La Niña amplitude due to global warming.
NASA Astrophysics Data System (ADS)
Okajima, S.; Nakamura, H.; Nishii, K.; Miyasaka, T.; Kuwano-Yoshida, A.; Taguchi, B.
2016-02-01
A decadal-scale warm SST anomaly observed in the North Pacific subarctic frontal zone (SAFZ) tends to accompany a basin-scale anticyclonic anomaly in the troposphere that peaks in January. A set of sensitivity experiments conducted with an AGCM simulates an anticyclonic ensemble response over the North Pacific in January. As observed, the simulated anticyclonic response is in equivalent barotropic structure and maintained mainly through energy conversion from the ensemble mean circulation realized under the climatological SST, suggesting that the anomaly may have a characteristic of a dynamical mode. Conversion of both available potential energy (APE) and kinetic energy (KE) from the mean flow is important for the observed anomaly, while only the former is important for the model response. This is because the model response is located to the north of the jet core region whereas the observed anomaly is straddling the jet exit region, which appears to be in correspondence to the northwestward displacement of the center of the dominant atmospheric internal variability in our model relative to the observed center. Transient eddy feedback forcing also acts to maintain the observed anomaly rather efficiently, while its efficiency is much lower for the simulated response, which seems to be consistent with the poleward displacement of the anticyclonic response from the jet and stormtrack axes. A multi-decadal integration of our coupled GCM also suggests that atmospheric internal variability may be important for determining atmospheric response to the decadal SST variability of the SAFZ.
Forced and Free Intra-Seasonal Variability Over the South Asian Monsoon Region Simulated by 10 AGCMs
NASA Technical Reports Server (NTRS)
Wu, Man Li C.; Kang, In-Sik; Waliser, Duane; Atlas, Robert (Technical Monitor)
2001-01-01
This study examines intra-seasonal (20-70 day) variability in the South Asian monsoon region during 1997/98 in ensembles of 10 simulations with 10 different atmospheric general circulation models. The 10 ensemble members for each model are forced with the same observed weekly sea surface temperature (SST) but differ from each other in that they are started from different initial atmospheric conditions. The results show considerable differences between the models in the simulated 20-70 day variability, ranging from much weaker to much stronger than the observed. A key result is that the models do produce, to varying degrees, a response to the imposed weekly SST. The forced variability tends to be largest in the Indian and western Pacific Oceans where, for some models, it accounts for more than 1/4 of the 20-70 day intra-seasonal variability in the upper level velocity potential during these two years. A case study of a strong observed MJO (intraseasonal oscillation) event shows that the models produce an ensemble mean eastward propagating signal in the tropical precipitation field over the Indian Ocean and western Pacific, similar to that found in the observations. The associated forced 200 mb velocity potential anomalies are strongly phase locked with the precipitation anomalies, propagating slowly to the east (about 5 m/s) with a local zonal wave number two pattern that is generally consistent with the developing observed MJO. The simulated and observed events are, however, approximately in quadrature, with the simulated response 2 leading by 5-10 days. The phase lag occurs because, in the observations, the positive SST anomalies develop upstream of the main convective center in the subsidence region of the MJO, while in the simulations, the forced component is in phase with the SST. For all the models examined here, the intraseasonal variability is dominated by the free (intra-ensemble) component. The results of our case study show that the free variability has a predominately zonal wave number one pattern, and has propagation speeds (10 - 15 m/s) that are more typical of observed MJO behavior away from the convectively active regions. The free variability appears to be synchronized with the forced response, at least, during the strong event examined here. The results of this study support the idea that coupling with SSTs plays an important, though probably not dominant, role in the MJO. The magnitude of the atmospheric response to the SST appears to be in the range of 15% - 30% of the 20-70 day variability over much of the tropical eastern Indian and western Pacific Oceans. The results also highlight the need to use caution when interpreting atmospheric model simulations in which the prescribed SST resolve MJO time scales.
NASA Astrophysics Data System (ADS)
Ferreira, B. P.; Costa, M. B. S. F.; Coxey, M. S.; Gaspar, A. L. B.; Veleda, D.; Araujo, M.
2013-06-01
In 2010, high sea surface temperatures that were recorded in several parts of the world and caused coral bleaching and coral mortality were also recorded in the southwest Atlantic Ocean, between latitudes 0°S and 8°S. This paper reports on coral bleaching and diseases in Rocas Atoll and Fernando de Noronha archipelago and examines their relationship with sea surface temperature (SST) anomalies recorded by PIRATA buoys located at 8°S30°W, 0°S35°W, and 0°S23°W. Adjusted satellite data were used to derive SST climatological means at buoy sites and to derive anomalies at reef sites. The whole region was affected by the elevated temperature anomaly that persisted through 2010, reaching 1.67 °C above average at reef sites and 1.83 °C above average at buoys sites. A significant positive relationship was found between the percentage of coral bleaching that was observed on reef formations and the corresponding HotSpot SST anomaly recorded by both satellite and buoys. These results indicate that the warming observed in the ocean waters was followed by a warming at the reefs. The percentage of bleached corals persisting after the subsidence of the thermal stress, and disease prevalence increased through 2010, after two periods of thermal stress. The in situ temperature anomaly observed during the 2009-2010 El Niño event was equivalent to the anomaly observed during the 1997-1998 El Niño event, explaining similar bleaching intensity. Continued monitoring efforts are necessary to further assess the relationship between bleaching severity and PIRATA SST anomalies and improve the use of this new dataset in future regional bleaching predictions.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Sun, X.; Yang, X. Q.
2017-12-01
East Asian summer precipitation (EASP) is highly complicated in both temporal and spatial variabilities at interdecadal time scales, with various time periods and anomalous spatial distribution patterns. The joint influences of three dominant interdecadal signals, i.e., Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO) and Indian Ocean Basin Mode (IOBM), are revealed to be responsible for most of the interdecadal variabilities of EASP in this study, which, however, are not the simply linear combinations of their individual climate effects. Specifically, when PDO and AMO are in antiphase, SST anomalies of the same signs appear in both North Pacific and North Atlantic, the Asian westerly jet (AWJ) is accelerated and acts as a waveguide, favoring a zonally orientated Rossby wave train from North Atlantic to northern East Asia across the mid-high latitude Eurasia. Correspondingly, interdecadal precipitation anomalies exhibit a meridional tripole mode over East China. When PDO and AMO are in phase with oppositely signed SST anomalies in North Pacific and North Atlantic, the waveguide mechanism doesn't work since AWJ is significantly reduced, and the Rossby wave train from North Atlantic travels to South Asia along the great circle path, causing anomalous Indian summer monsoon precipitation (ISMP). In turn, by triggering another Rossby wave trains along both the mid-latitudes and coastal regions of East Asia, the ISMP anomalies induce a meridional dipole mode of interdecadal precipitation anomalies over East China. Through the ISMP and the same dynamical processes, IOBM is more important for the interdecadal precipitation anomalies over northern East Asia.
Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation
Sun, Cheng; Kucharski, Fred; Li, Jianping; Jin, Fei-Fei; Kang, In-Sik; Ding, Ruiqiang
2017-01-01
Observational analysis suggests that the western tropical Pacific (WTP) sea surface temperature (SST) shows predominant variability over multidecadal time scales, which is unlikely to be explained by the Interdecadal Pacific Oscillation. Here we show that this variability is largely explained by the remote Atlantic multidecadal oscillation (AMO). A suite of Atlantic Pacemaker experiments successfully reproduces the WTP multidecadal variability and the AMO–WTP SST connection. The AMO warm SST anomaly generates an atmospheric teleconnection to the North Pacific, which weakens the Aleutian low and subtropical North Pacific westerlies. The wind changes induce a subtropical North Pacific SST warming through wind–evaporation–SST effect, and in response to this warming, the surface winds converge towards the subtropical North Pacific from the tropics, leading to anomalous cyclonic circulation and low pressure over the WTP region. The warm SST anomaly further develops due to the SST–sea level pressure–cloud–longwave radiation positive feedback. Our findings suggest that the Atlantic Ocean acts as a key pacemaker for the western Pacific decadal climate variability. PMID:28685765
NASA Astrophysics Data System (ADS)
Pezzi, L. P.; Cavalcanti, I. F. A.
The role of tropical Atlantic sea surface temperature (SST) anomalies during ENSO episodes over northeast Brazil (Nordeste) is investigated using the CPTEC/COLA Atmospheric General Circulation Model (AGCM). Four sets of integrations are performed using SST in El Niño and La Niña (ENSO) episodes, changing the SST of the Atlantic Ocean. A positive dipole (SST higher than normal in the tropical North Atlantic and below normal in the tropical South Atlantic) and a negative dipole (opposite conditions), are set as the boundary conditions of SST in the Atlantic Ocean. The four experiments are performed using El Niño or La Niña SST in all oceans, except in the tropical Atlantic where the two phases of the SST dipole are applied. Five initial conditions were integrated in each case in order to obtain four ensemble results. The positive SST dipole over the tropical Atlantic Ocean and El Niño conditions over the Pacific Ocean resulted in dry conditions over the Nordeste. When the negative dipole and El Niño conditions over the Pacific Ocean were applied, the results showed precipitation above normal over the north of Nordeste. When La Niña conditions over Pacific Ocean were tested together with a negative dipole, positive precipitation anomalies occurred over the whole Nordeste. Using the positive dipole over the tropical Atlantic, the precipitation over Nordeste was below average. During La Niña episodes, the Atlantic Ocean conditions have a larger effect on the precipitation of Nordeste than the Pacific Ocean. In El Niño conditions, only the north region of Nordeste is affected by the Atlantic SST. Other tropical areas of South America show a change only in the intensity of anomalies. Central and southeast regions of South America are affected by the Atlantic conditions only during La Niña conditions, whereas during El Niño these regions are influenced only by conditions in the Pacific Ocean.
An out of phase coupling between the atmosphere and the ocean over the North Atlantic Ocean
NASA Astrophysics Data System (ADS)
Ribera, Pedro; Ordoñez, Paulina; Gallego, David; Peña-Ortiz, Cristina
2017-04-01
An oscillation band, with a period ranging between 40 and 60 years, has been identified as the most intense signal over the North Atlantic Ocean using several oceanic and atmospheric reanalyses between 1856 and the present. This signal represents the Atlantic Multidecadal Oscillation, an oscillation between warmer and colder than normal conditions in SST. Simultaneously, those changes in SST are accompanied by changes in atmospheric conditions represented by surface pressure, temperature and circulation. In fact, the evolution of the surface pressure pattern along this oscillation shows a North Atlantic Oscillation-like pattern, suggesting the existence of an out of phase coupling between atmospheric and oceanic conditions. Further analysis shows that the evolution of the oceanic SST distribution modifies atmospheric baroclinic conditions in the mid to high latitudes of the North Atlantic and leads the atmospheric variability by 6-7 years. If AMO represents the oceanic conditons and NAO represents the atmospheric variability then it could be said that AMO of one sign leads NAO of the opposite sign with a lag of 6-7 years. On the other hand, the evolution of atmospheric conditions, represented by pressure distribution patterns, favors atmospheric circulation anomalies and induces a heat advection which tends to change the sign of the existing SST distribution and oceanic conditions with a lag of 16-17 years. In this case, NAO of one sign leads AMO of the same sign with a lag of 16-17 years.
Yamamoto, Ayako; Palter, Jaime B
2016-03-15
Northern Hemisphere climate responds sensitively to multidecadal variability in North Atlantic sea surface temperature (SST). It is therefore surprising that an imprint of such variability is conspicuously absent in wintertime western European temperature, despite that Europe's climate is strongly influenced by its neighbouring ocean, where multidecadal variability in basin-average SST persists in all seasons. Here we trace the cause of this missing imprint to a dynamic anomaly of the atmospheric circulation that masks its thermodynamic response to SST anomalies. Specifically, differences in the pathways Lagrangian particles take to Europe during anomalous SST winters suppress the expected fluctuations in air-sea heat exchange accumulated along those trajectories. Because decadal variability in North Atlantic-average SST may be driven partly by the Atlantic Meridional Overturning Circulation (AMOC), the atmosphere's dynamical adjustment to this mode of variability may have important implications for the European wintertime temperature response to a projected twenty-first century AMOC decline.
NASA Astrophysics Data System (ADS)
Carella, G.; Kennedy, J. J.; Berry, D. I.; Hirahara, S.; Merchant, C. J.; Morak-Bozzo, S.; Kent, E. C.
2018-01-01
Lack of reliable observational metadata represents a key barrier to understanding sea surface temperature (SST) measurement biases, a large contributor to uncertainty in the global surface record. We present a method to identify SST measurement practice by comparing the observed SST diurnal cycle from individual ships with a reference from drifting buoys under similar conditions of wind and solar radiation. Compared to existing estimates, we found a larger number of engine room-intake (ERI) reports post-World War II and in the period 1960-1980. Differences in the inferred mixture of observations lead to a systematic warmer shift of the bias adjusted SST anomalies from 1980 compared to previous estimates, while reducing the ensemble spread. Changes in mean field differences between bucket and ERI SST anomalies in the Northern Hemisphere over the period 1955-1995 could be as large as 0.5°C and are not well reproduced by current bias adjustment models.
The impact of ENSO on regional chlorophyll-a anomaly in the Arafura Sea
NASA Astrophysics Data System (ADS)
Dewi, D. M. P. R.; Fatmasari, D.; Kurniawan, A.; Munandar, M. A.
2018-03-01
The El Niño-Southern Oscillation (ENSO) is a naturally occurring phenomenon that involves fluctuating ocean temperature in the equatorial Pacific. ENSO influences ocean climate variability in Indonesia including the Arafura Sea. The relationship between oceanic chlorophyll-a and ENSO has been the focus of study over the past decade. Here we examine the impact of ENSO on regional chlorophyll-a anomaly in the Papua waters using 14 years of chlorophyll-a and sea surface temperature (SST) data from AQUA MODIS and sea level anomaly data from AVISO. It is found that when El Niño events occur the negative SST anomaly in the Papua waters as well as the enhanced upwelling cause the increase of chlorophyll-a concentration. The highest chlorophyll-a concentration (> 1 mg–cm-3) occured during El Niño and observed around the Aru archipelago. In contrast during La Niña event, the positive SST anomaly in Papua waters and the suppressed upwelling cause the decrease of chlorophyll-a concentration. Our results suggest that during El Niño (La Niña), the enhanced (suppressed) upwelling related to the significant decreasing (increasing) of sea level anomaly.
NASA Astrophysics Data System (ADS)
Otomi, Yuriko; Tachibana, Yoshihiro; Nakamura, Tetsu
2013-04-01
In 2010, the Northern Hemisphere, in particular Russia and Japan, experienced an abnormally hot summer characterized by record-breaking warm temperatures and associated with a strongly positive Arctic Oscillation (AO), that is, low pressure in the Arctic and high pressure in the midlatitudes. In contrast, the AO index the previous winter and spring (2009/2010) was record-breaking negative. The AO polarity reversal that began in summer 2010 can explain the abnormally hot summer. The winter sea surface temperatures (SST) in the North Atlantic Ocean showed a tripolar anomaly pattern—warm SST anomalies over the tropics and high latitudes and cold SST anomalies over the midlatitudes—under the influence of the negative AO. The warm SST anomalies continued into summer 2010 because of the large oceanic heat capacity. A model simulation strongly suggested that the AO-related summertime North Atlantic oceanic warm temperature anomalies remotely caused blocking highs to form over Europe, which amplified the positive summertime AO. Thus, a possible cause of the AO polarity reversal might be the "memory" of the negative winter AO in the North Atlantic Ocean, suggesting an interseasonal linkage of the AO in which the oceanic memory of a wintertime negative AO induces a positive AO in the following summer. Understanding of this interseasonal linkage may aid in the long-term prediction of such abnormal summer events.
NASA Astrophysics Data System (ADS)
Tachibana, Yoshihiro; Otomi, Yuriko; Nakamura, Tetsu
2013-04-01
In 2010, the Northern Hemisphere, in particular Russia and Japan, experienced an abnormally hot summer characterized by record-breaking warm temperatures and associated with a strongly positive Arctic Oscillation (AO), that is, low pressure in the Arctic and high pressure in the midlatitudes. In contrast, the AO index the previous winter and spring (2009/2010) was record-breaking negative. The AO polarity reversal that began in summer 2010 can explain the abnormally hot summer. The winter sea surface temperatures (SST) in the North Atlantic Ocean showed a tripolar anomaly pattern—warm SST anomalies over the tropics and high latitudes and cold SST anomalies over the midlatitudes—under the influence of the negative AO. The warm SST anomalies continued into summer 2010 because of the large oceanic heat capacity. A model simulation strongly suggested that the AO-related summertime North Atlantic oceanic warm temperature anomalies remotely caused blocking highs to form over Europe, which amplified the positive summertime AO. Thus, a possible cause of the AO polarity reversal might be the "memory" of the negative winter AO in the North Atlantic Ocean, suggesting an interseasonal linkage of the AO in which the oceanic memory of a wintertime negative AO induces a positive AO in the following summer. Understanding of this interseasonal linkage may aid in the long-term prediction of such abnormal summer events.
NASA Astrophysics Data System (ADS)
Zhang, Xinchang; Zhong, Shanshan; Wu, Zhiwei; Li, Yun
2017-06-01
This study investigates the typhoon genesis frequency (TGF) in the dominant season (July to October) in Western North Pacific (WNP) using observed data in 1965-2015. Of particular interest is the predictability of the TGF and associated preseason sea surface temperature (SST) in the Pacific. It is found that, the TGF is positively related to a tri-polar pattern of April SST anomalies in North Pacific (NP{T}_{Apr}), while it is negatively related to SST anomalies over the Coral Sea (CSS{T}_{Apr}) off east coast of Australia. The NP{T}_{Apr} leads to large anomalous cyclonic circulation over North Pacific. The anomalous southwesterly weakens the northeast trade wind, decreases evaporation, and induces warm water in central tropical North Pacific. As such, the warming effect amplifies the temperature gradient in central tropical North Pacific, which in turn maintains the cyclonic wind anomaly in the west tropical Pacific, which favors the typhoon genesis in WNP. In the South Pacific, the CSS{T}_{Apr} supports the typhoon formation over the WNP by (a) strengthening the cross-equatorial flows and enhancing the Inter-tropical Convergence Zone; (b) weakening southeast and northeast trade wind, and keeping continuous warming in the center of tropical Pacific. The influence of both NP{T}_{Apr} and CSS{T}_{Apr} can persistently affect the zonal wind in the tropical Pacific and induce conditions favorable for the typhoon genesis in the typhoon season. A Poisson regression model using NP{T}_{Apr} and CSS}{T}_{Apr} is developed to predict the TGF and a promising skill is achieved.
NASA Astrophysics Data System (ADS)
Yim, So-Young; Wang, Bin; Kwon, MinHo
2014-03-01
East Asian (EA) summer monsoon shows considerable differences in the mean state and principal modes of interannual variation between early summer (May-June, MJ) and late summer (July-August, JA). The present study focuses on the early summer (MJ) precipitation variability. We find that the interannual variation of the MJ precipitation and the processes controlling the variation have been changed abruptly around the mid-1990s. The rainfall anomaly represented by the leading empirical orthogonal function has changed from a dipole-like pattern in pre-95 epoch (1979-1994) to a tripole-like pattern in post-95 epoch (1995-2010); the prevailing period of the corresponding principal component has also changed from 3-5 to 2-3 years. These changes are concurrent with the changes of the corresponding El Nino-Southern Oscillation (ENSO) evolutions. During the pre-95 epoch, the MJ EA rainfall anomaly is coupled to a slow decay of canonical ENSO events signified by an eastern Pacific warming, which induces a dipole rainfall feature over EA. On the other hand, during the post-95 epoch the anomalous MJ EA rainfall is significantly linked to a rapid decay of a central Pacific warming and a distinct tripolar sea surface temperature (SST) in North Atlantic. The central Pacific warming-induced Philippine Sea anticyclone induces an increased rainfall in southern China and decreased rainfall in central eastern China. The North Atlantic Oscillation-related tripolar North Atlantic SST anomaly induces a wave train that is responsible for the increase northern EA rainfall. Those two impacts form the tripole-like rainfall pattern over EA. Understanding such changes is important for improving seasonal to decadal predictions and long-term climate change in EA.
NASA Astrophysics Data System (ADS)
Priya, R. Kanmani Shanmuga; Balaguru, B.; Ramakrishnan, S.
2013-10-01
The capabilities of evolving satellite remote sensing technology, combined with conventional data collection techniques, provide a powerful tool for efficient and cost effective management of living marine resources. Fishes are the valuable living marine resources producing food, profit and pleasure to the human community. Variations in oceanic condition play a role in natural fluctuations of fish stocks. The Satellite Altimeter derived Merged Sea Level Anomaly(MSLA) results in the better understanding of ocean variability and mesosclae oceanography and provides good possibility to reveal the zones of high dynamic activity. This study comprised the synergistic analysis of signatures of SEAWIFS derived chlorophyll concentration, National Oceanic and Atmospheric Administration-Advanced Very High Resolution Radiometer(NOAA-AVHRR) derived Sea Surface Temperature and the monthly Merged Sea Level Anomaly data derived from Topex/Poseidon, Jason-1 and ERS-1 Altimeters for the past 7 years during the period from 1998 to 2004. The overlapping Chlorophyll, SST and MSLA were suggested for delineating Potential Fishing Zones (PFZs). The Chlorophyll and SST data set were found to have influenced by short term persistence from days to week while MSLA signatures of respective features persisted for longer duration. Hence, the study used Altimeter derived MSLA as an index for long term variability detection of fish catches along with Chlorophyll and SST images and the maps showing PFZs of the study area were generated. The real time Fishing statistics of the same duration were procured from FSI Mumbai. The catch contours were generated with respect to peak spectra of chlorophyll variation and trough spectra of MSLA and SST variation. The vice- a- versa patterns were observed in the poor catch contours. The Catch Per Unit Effort (CPUE) for each fishing trail was calculated to normalize the fish catch. Based on the statistical analysis the actual CPUEs were classified at each probable MSLA depth zones and plotted on the same images.
Assessment of the 1997-1998 Asian Monsoon Anomalies
NASA Technical Reports Server (NTRS)
Lau, William K.-M.; Wu, H.-T.
1999-01-01
Using State-of-the-art satellite-gauge monthly rainfall estimate and optimally interpolated sea surface temperature (SST) data, we have assessed the 1997-98 Asian monsoon anomalies in terms of three basic causal factors: basin-scale SST, regional coupling, and internal variability. Singular Value Decomposition analysis of rainfall and SST are carried out globally over the entire tropics and regionally over the Asian monsoon domain. Contributions to monsoon rainfall predictability by various factors are evaluated from cumulative anomaly correlation with dominant regional SVD modes. Results reveal a dominant, large-scale monsoon-El Nino coupled mode with well-defined centers of action in the near-equatorial monsoon regions. it is noted that some subcontinental regions such as all-India, or arbitrarily chosen land regions over East Asia, while important socio-economically, are not near the centers of influence from El Nino, hence are not necessarily representative of the response of the entire monsoon region to El Nino. The observed 1997-98 Asian monsoon anomalies are found to be very complex with approximately 34% of the anomalies attributable to basin- scale SST influence associated with El Nino. Regional coupled processes contribute an additional 19%, leaving about 47% due to internal dynamics. Also noted is that the highest monsoon predictability is not necessary associated with major El Nino events (e.g. 1997, 1982) but rather in non-El Nino years (e.g. 1980, 1988) when contributions from the regional coupled modes far exceed those from the basin-scale SST. The results suggest that in order to improve monsoon seasonal-to-interannual predictability, there is a need to exploit not only monsoon-El Nino relationship, but also monsoon regional coupled processes and their modulation by long-term climate change.
NASA Astrophysics Data System (ADS)
Prasetyo, Yudo; Nabilah, Farras
2017-12-01
Climate change occurs in 1998-2016 brings significant alteration in the earth surface. It is affects an extremely anomaly temperature such as El Nino and La Nina or mostly known as ENSO (El Nino Southern Oscillation). West Java is one of the regions in Indonesia that encounters the impact of this phenomenon. Climate change due to ENSO also affects food production and other commodities. In this research, processing data method is conducted using programming language to process SST data and rainfall data from 1998 to 2016. The data are sea surface temperature from NOAA satellite, SST Reynolds (Sea Surface Temperature) and daily rainfall temperature from TRMM satellite. Data examination is done using analysis of rainfall spatial pattern and sea surface temperature (SST) where is affected by El Nino and La Nina phenomenon. This research results distribution map of SST and rainfall for each season to find out the impacts of El Nino and La Nina around West Java. El Nino and La Nina in Java Sea are occurring every August to February. During El Nino, sea surface temperature is between 27°C - 28°C with average temperature on 27.71°C. Rainfall intensity is 1.0 mm/day - 2.0 mm/day and the average are 1.63 mm/day. During La Nina, sea surface temperature is between 29°C - 30°C with average temperature on 29.06°C. Rainfall intensity is 9.0 mm/day - 10 mm/day, and the average is 9.74 mm/day. The correlation between rainfall and SST is 0,413 which is expresses a fairly strong correlation between parameters. The conclusion is, during La Nina SST and rainfall increase. While during El Nino SST and rainfall decrease. Hopefully this research could be a guideline to plan disaster mitigation in West Java region that is related extreme climate change.
Branches Global Climate & Weather Modeling Mesoscale Modeling Marine Modeling and Analysis Contact EMC , state and local government Web resources and services. Real-time, global, sea surface temperature (RTG_SST_HR) analysis For a regional map, click the desired area in the global SST analysis and anomaly maps
Mechanisms of northeastern Brazil rainfall anomalies due to Southern Tropical Atlantic variability
NASA Astrophysics Data System (ADS)
Neelin, J.; Su, H.
2004-05-01
Observational studies have shown that the rainfall anomalies in eastern equatorial South America, including Nordeste Brazil, have a positive correlation with tropical southern Atlantic sea surface temperature (SST) anomalies. Such relationships are reproduced in model simulations with the quasi-equilibrium tropical circulation model (QTCM), which includes a simple land model. A suite of model ensemble experiments is analysed using observed SST over the tropical oceans, the tropical Atlantic and the tropical southern Atlantic (30S-0), respectively (with climatological SST in the remainder of the oceans). Warm tropical south Atlantic SST anomalies yield positive precipitation anomalies over the Nordeste and the southern edge of the Atlantic marine intertropical convergence zone (ITCZ). Mechanisms associated with moisture variations are responsible for the land precipitation changes. Increases in moisture over the Atlantic cause positive anomalies in moisture advection, spreading increased moisture downwind. Where the basic state is far from the convective stability threshold, moisture changes have little effect, but the margins of the climatological convection zone are affected. The increased moisture supply due to advection is enhanced by increases in low-level convergence required by moist static energy balances. The moisture convergence term is several times larger, but experiments altering the moisture advection confirm that the feedback is initiated by wind acting on moisture gradient. This mechanism has several features in common with the recently published "upped-ante" mechanism for El Nino impacts on this region. In that case, the moisture gradient is initiated by warm free tropospheric temperature anomalies increasing the typical value of low-level moisture required to sustain convection in the convection zones. Both mechanisms suggest the usefulness of coordinating ocean and land in situ observations of boundary layer moisture.
Interannual and Decadal Variability of Summer Rainfall over South America
NASA Technical Reports Server (NTRS)
Zhou, Jiayu; Lau, K.-M.
1999-01-01
Using the CPC (Climate Prediction Center) Merged Analysis of Precipitation product along with the Goddard Earth Observing System reanalysis and the Climate Analysis Center sea surface temperature (SST) data, we conduct a diagnostic study of the interannual and decadal scale variability of summer rainfall over South America. Results show three leading modes of rainfall variation identified with interannual, decadal, and long-term trend variability. Together, these modes explain more than half the total variance. The first mode is highly correlated with El Nino/southern oscillation (ENSO), showing severe drought over Northeast Brazil and copious rainfall over the Ecuador coast and the area of Uruguay-Southern Brazil in El Nino years. This pattern is attributed to the large scale zonal shift of the Walker circulation and local Hadley cell anomaly induced by positive (negative) SST anomaly over the eastern (western) equatorial Pacific. In El Nino years, two convective belts indicated by upper tropospheric velocity potential trough and mid-tropospheric rising motion, which are somewhat symmetric about the equator, extend toward the northeast and the southeast into the tropical North and South Atlantic respectively. Sandwiched between the ascent is a region of descending motion over Northeast Brazil. The southern branch of the anomalous Hadley cell is dynamically linked to the increase of rainfall over Uruguay-Southern Brazil. The regional response of anomalous circulation shows a stronger South American summer monsoon and an enhanced (weakened) subtropical high over the South Atlantic (South Pacific) Ocean. The decadal variation displays a meridional shift of the Intertropical Convergence Zone (ITCZ), which is tie to the anomalous cross-equatorial SST gradient over the Atlantic and the eastern Pacific. In conjunction with this mode is a large scale mass swing between the polar regions and midlatitudes in both hemispheres. Over the South Atlantic and the South Pacific, the changes of the strength of the subtropical high and the associated surface wind are dynamically consistent with the distribution of local SST anomalies, suggesting the importance of the atmospheric forcing in the decadal time scale. The decadal mode also presents a weak summer monsoon in its positive phase, which reduces the moisture supply from the equatorial Atlantic and the Amazon Basin and results in negative rainfall anomalies over the central Andes and Gran Chaco. The long-term trend shows decrease of rainfall from the northwest coast to the southeast subtropical region and a southward shift of Atlantic ITCZ that leads to increased rainfall over northern and eastern Brazil. Our result shows a close link of this mode to the observed SST warming trend over the subtropical South Atlantic and a remote connection to the interdecadal SST variation over the extratropical North Atlantic found in previous studies.
Poore, R.Z.; DeLong, K.L.; Richey, J.N.; Quinn, T.M.
2009-01-01
A comparison of a Mg/Ca-based sea-surface temperature (SST)-anomaly record from the northern Gulf of Mexico, a calculated index of variability in observed North Atlantic SST known as the Atlantic Multidecadal Oscillation (AMO), and a tree-ring reconstruction of the AMO contain similar patterns of variation over the last 110 years. Thus, the multidecadal variability observed in the instrumental record is present in the tree-ring and Mg/Ca proxy data. Frequency analysis of the Gulf of Mexico SST record and the tree-ring AMO reconstruction from 1550 to 1990 found similar multidecadal-scale periodicities (???30-60 years). This multidecadal periodicity is about half the observed (60-80 years) variability identified in the AMO for the 20th century. The historical records of hurricane landfalls reveal increased landfalls in the Gulf Coast region during time intervals when the AMO index is positive (warmer SST), and decreased landfalls when the AMO index is negative (cooler SST). Thus, we conclude that alternating intervals of high and low hurricane landfall occurrences may continue on multidecadal timescales along the northern Gulf Coast. However, given the short length of the instrumental record, the actual frequency and stability of the AMO are uncertain, and additional AMO proxy records are needed to establish the character of multidecadal-scale SST variability in the North Atlantic. ?? 2009 US Government.
Tropopause Pressure May Explain California Droughts and Wet Period
NASA Astrophysics Data System (ADS)
Mazdiyasni, O.; AghaKouchak, A.
2017-12-01
Sea surface temperatures and teleconnection patterns such as El Nino/La Nina are considered the main culprits behind major California droughts. However, the underlying relationship between sea surface temperatures (SSTs) and precipitation anomalies is relatively weak. In 2015-2016 the most extreme El Nino did not lead to a wet season as expected, which triggered a series of studies on this topic. Here we show that tropopause level pressure in a region in the northeastern Pacific Ocean (dubbed the PARS-NEP region) plays a major role in whether California will experience a wet or dry year and often dominates the role of SST-based teleconnections. Our results indicate that pressure in the PARS-NEP region Granger-Causes precipitation in California during the wet season. We show that when pressure in the PARS-NEP region is in the lower (upper) tertile, 85% of wet seasons across California have a positive (negative) precipitation anomaly. The observed relationship between PARS-NEP and California precipitation is stronger than all the commonly used SST-based climatic indictors frequently used for understanding causes of droughts.
Yamamoto, Ayako; Palter, Jaime B.
2016-01-01
Northern Hemisphere climate responds sensitively to multidecadal variability in North Atlantic sea surface temperature (SST). It is therefore surprising that an imprint of such variability is conspicuously absent in wintertime western European temperature, despite that Europe's climate is strongly influenced by its neighbouring ocean, where multidecadal variability in basin-average SST persists in all seasons. Here we trace the cause of this missing imprint to a dynamic anomaly of the atmospheric circulation that masks its thermodynamic response to SST anomalies. Specifically, differences in the pathways Lagrangian particles take to Europe during anomalous SST winters suppress the expected fluctuations in air–sea heat exchange accumulated along those trajectories. Because decadal variability in North Atlantic-average SST may be driven partly by the Atlantic Meridional Overturning Circulation (AMOC), the atmosphere's dynamical adjustment to this mode of variability may have important implications for the European wintertime temperature response to a projected twenty-first century AMOC decline. PMID:26975331
North Pacific Decadal Variability in the GEOS-5 Atmosphere-Ocean Model
NASA Technical Reports Server (NTRS)
Achuthavarier, Deepthi; Schubert, Siegfried D.; Vikhliaev, Yury V.
2013-01-01
This study examines the mechanisms of the Pacific decadal oscillation (PDO) in the GEOS-5 general circulation model. The model simulates a realistic PDO pattern that is resolved as the first empirical orthogonal function (EOF) of winter sea surface temperature (SST). The simulated PDO is primarily forced by Aleutian low through Ekman transport and surface fluxes, and shows a red spectrum without any preferred periodicity. This differs from the observations, which indicate a greater role of El Nino-Southern Oscillation (ENSO) forcing, and likely reflects the too short time scale of the simulated ENSO. The geostrophic transport in response to the Aleutian low is limited to the Kuroshio-Oyashio Extension, and is unlikely the main controlling factor in this model, although it reinforces the Ekman-induced SST anomalies. The delay between the Aleutian low and the PDO is relatively short (1 year) suggesting that the fast Ekman response (rather than Rossby wave propagation) sets the SST pattern immediately following an Aleutian low fluctuation. The atmospheric feedback (response to the SST) is only about 25 of the forcing and never evolves into an Aleutian low completely, instead projecting onto the North Pacific Oscillation (NPO), a meridional dipole in sea level pressure (SLP). The lack of preferred periodicity and weak atmospheric response bothindicate a coupled oscillation is an unlikely mechanism for the PDO in this model. In agreement with recent studies, the NPO is correlated with the North Pacific Gyre Oscillation (NPGO), which is another leading EOF of the North Pacific SST. A possible connection between the PDO and the NPGO is discussed.
NASA Astrophysics Data System (ADS)
Wu, Renguang; Cao, Xi
2017-06-01
The present study contrasts interannual variations in the intensity of boreal summer 10-20-day and 30-60-day intraseasonal oscillations (ISOs) over the tropical western North Pacific and their factors. A pronounced difference is found in the relationship of the two ISOs to El Niño-Southern Oscillation. The 10-20-day ISO intensity is enhanced during El Niño developing summer, whereas the 30-60-day ISO intensity is enhanced during La Niña decaying summer. The above different relationship is interpreted as follows. The equatorial central and eastern Pacific SST anomalies modify vertical wind shear, lower-level moisture, and vertical motion in a southeast-northwest oriented band from the equatorial western Pacific to the tropical western North Pacific where the 10-20-day ISOs originate and propagate. These background field changes modulate the amplitude of 10-20-day ISOs. Preceding equatorial central and eastern Pacific SST anomalies induce SST anomalies in the North Indian Ocean in summer, which in turn modify vertical wind shear and vertical motion over the tropical western North Pacific. The modified background fields influence the amplitude of the 30-60-day ISOs when they reach the tropical western North Pacific from the equatorial region. A feedback of ISO intensity on local SST change is identified in the tropical western North Pacific likely due to a net effect of ISOs on surface heat flux anomalies. This feedback is more prominent from the 10-20-day than the 30-60-day ISO intensity change.
Far-Field Simulation of the Hawaiian Wake: Sea Surface Temperature and Orographic Effects(.
NASA Astrophysics Data System (ADS)
Hafner, Jan; Xie, Shang-Ping
2003-12-01
Recent satellite observations reveal far-reaching effects of the Hawaiian Islands on surface wind, cloud, ocean current, and sea surface temperature (SST) that extend leeward over an unusually long distance (>1000 km). A three-dimensional regional atmospheric model with full physics is used to investigate the cause of this long wake. While previous wind wake studies tend to focus on regions near the islands, the emphasis here is the far-field effects of SST and orography well away from the Hawaiian Islands. In response to an island-induced SST pattern, the model produces surface wind and cloud anomaly patterns that resemble those observed by satellites. In particular, anomalous surface winds are found to converge onto a zonal band of warmer water, with cloud liquid water content enhanced over it but reduced on the northern and southern sides. In the vertical, a two-cell meridional circulation develops of a baroclinic structure with the rising motion and thicker clouds over the warm water band. The model response in the wind and cloud fields supports the hypothesis that ocean atmosphere interaction is crucial for sustaining the island effects over a few thousand kilometers.Near Hawaii, mountains generate separate wind wakes in the model lee of individual islands as observed by satellites. Under orographic forcing, the model simulates the windward cloud line and the southwest-tilted cloud band leeward of the Big Island. In the far field, orographically induced wind perturbations are found to be in geostrophic balance with pressure anomalies, indicative of quasigeostrophic Rossby wave propagation. A shallow-water model is developed for disturbances trapped in the inversion-capped planetary boundary layer. The westward propagation of Rossby waves is found to increase the wake length significantly, consistent with the three-dimensional simulation.
Secular spring rainfall variability at local scale over Ethiopia: trend and associated dynamics
NASA Astrophysics Data System (ADS)
Tsidu, Gizaw Mengistu
2017-10-01
Spring rainfall secular variability is studied using observations, reanalysis, and model simulations. The joint coherent spatio-temporal secular variability of gridded monthly gauge rainfall over Ethiopia, ERA-Interim atmospheric variables and sea surface temperature (SST) from Hadley Centre Sea Ice and SST (HadISST) data set is extracted using multi-taper method singular value decomposition (MTM-SVD). The contemporaneous associations are further examined using partial Granger causality to determine presence of causal linkage between any of the climate variables. This analysis reveals that only the northwestern Indian Ocean secular SST anomaly has direct causal links with spring rainfall over Ethiopia and mean sea level pressure (MSLP) over Africa inspite of the strong secular covariance of spring rainfall, SST in parts of subtropical Pacific, Atlantic, Indian Ocean and MSLP. High secular rainfall variance and statistically significant linear trend show consistently that there is a massive decline in spring rain over southern Ethiopia. This happened concurrently with significant buildup of MSLP over East Africa, northeastern Africa including parts of the Arabian Peninsula, some parts of central Africa and SST warming over all ocean basins with the exception of the ENSO regions. The east-west pressure gradient in response to the Indian Ocean warming led to secular southeasterly winds over the Arabian Sea, easterly over central Africa and equatorial Atlantic. These flows weakened climatological northeasterly flow over the Arabian Sea and southwesterly flow over equatorial Atlantic and Congo basins which supply moisture into the eastern Africa regions in spring. The secular divergent flow at low level is concurrent with upper level convergence due to the easterly secular anomalous flow. The mechanisms through which the northwestern Indian Ocean secular SST anomaly modulates rainfall are further explored in the context of East Africa using a simplified atmospheric general circulation model (AGCM) coupled to mixed-layer oceanic model. The rainfall anomaly (with respect to control simulation), forced by the northwestern Indian Ocean secular SST anomaly and averaged over the 30-year period, exhibits prevalence of dry conditions over East and equatorial Africa in agreement with observation. The atmospheric response to secular SST warming anomaly led to divergent flow at low levels and subsidence at the upper troposphere over regions north of 5° S on the continent and vice versa over the Indian Ocean. This surface difluence over East Africa, in addition to its role in suppressing convective activity, deprives the region of moisture supply from the Indian Ocean as well as the Atlantic and Congo basins.
Peak-summer East Asian rainfall predictability and prediction part II: extratropical East Asia
NASA Astrophysics Data System (ADS)
Yim, So-Young; Wang, Bin; Xing, Wen
2016-07-01
The part II of the present study focuses on northern East Asia (NEA: 26°N-50°N, 100°-140°E), exploring the source and limit of the predictability of the peak summer (July-August) rainfall. Prediction of NEA peak summer rainfall is extremely challenging because of the exposure of the NEA to midlatitude influence. By examining four coupled climate models' multi-model ensemble (MME) hindcast during 1979-2010, we found that the domain-averaged MME temporal correlation coefficient (TCC) skill is only 0.13. It is unclear whether the dynamical models' poor skills are due to limited predictability of the peak-summer NEA rainfall. In the present study we attempted to address this issue by applying predictable mode analysis method using 35-year observations (1979-2013). Four empirical orthogonal modes of variability and associated major potential sources of variability are identified: (a) an equatorial western Pacific (EWP)-NEA teleconnection driven by EWP sea surface temperature (SST) anomalies, (b) a western Pacific subtropical high and Indo-Pacific dipole SST feedback mode, (c) a central Pacific-El Nino-Southern Oscillation mode, and (d) a Eurasian wave train pattern. Physically meaningful predictors for each principal component (PC) were selected based on analysis of the lead-lag correlations with the persistent and tendency fields of SST and sea-level pressure from March to June. A suite of physical-empirical (P-E) models is established to predict the four leading PCs. The peak summer rainfall anomaly pattern is then objectively predicted by using the predicted PCs and the corresponding observed spatial patterns. A 35-year cross-validated hindcast over the NEA yields a domain-averaged TCC skill of 0.36, which is significantly higher than the MME dynamical hindcast (0.13). The estimated maximum potential attainable TCC skill averaged over the entire domain is around 0.61, suggesting that the current dynamical prediction models may have large rooms to improve. Limitations and future work are also discussed.
Decadal fluctuations in the western Pacific recorded by long precipitation records in Taiwan
NASA Astrophysics Data System (ADS)
Huang, Wan-Ru; Wang, S.-Y. Simon; Guan, Biing T.
2018-03-01
A 110-year precipitation record in Taiwan, located at the western edge of the subtropical North Pacific, depicts a pronounced quasi-decadal oscillation (QDO). The QDO in Taiwan exhibits a fluctuating relationship with the similar decadal variations of sea surface temperature (SST) anomalies in the central equatorial Pacific, known as the Pacific QDO. A regime change was observed around 1960, such that the decadal variation of Taiwan's precipitation became more synchronized with the Pacific QDO's coupled evolutions of SST and atmospheric circulation than before, while the underlying pattern of the Pacific QOD did not change. Using long-term reanalysis data and CMIP5 single-forcing experiments, the presented analysis suggests that increased SST in the subtropical western Pacific and the strengthened western extension of the North Pacific subtropical anticyclone may have collectively enhanced the relationship between the Taiwan precipitation and the Pacific QDO. This finding provides possible clues to similar regime changes in quasi-decadal variability observed around the western Pacific rim.
NASA Astrophysics Data System (ADS)
Chu, Cuijiao; Yang, Xiu-Qun; Sun, Xuguang; Yang, Dejian; Jiang, Yiquan; Feng, Tao; Liang, Jin
2018-04-01
Observation reveals that the tropical Pacific-Indian Ocean (TPIO) has experienced a pronounced interdecadal warming since the end of the 1970s. Meanwhile, the wintertime midlatitude Northern Hemispheric atmospheric circulation and East Asian climate have also undergone substantial interdecadal changes. The effect of the TPIO warming on these interdecadal changes are identified by a suite of AMIP-type atmospheric general circulation model experiments in which the model is integrated from September 1948 to December 1999 with prescribed historical, observed realistic sea surface temperature (SST) in a specific region and climatological SST elsewhere. Results show that the TPIO warming reproduces quite well the observed Northern Hemispheric wintertime interdecadal changes, suggesting that these interdecadal changes primarily originate from the TPIO warming. However, each sub-region of TPIO has its own distinct contribution. Comparatively, the tropical central-eastern Pacific (TCEP) and tropical western Pacific (TWP) warming makes dominant contributions to the observed positive-phase PNA-like interdecadal anomaly over the North Pacific sector, while the tropical Indian Ocean (TIO) warming tends to cancel these contributions. Meanwhile, the TIO and TWP warming makes dominant contributions to the observed positive NAO-like interdecadal anomaly over the North Atlantic sector as well as the interdecadal anomalies over the Eurasian sector, although the TWP warming's contribution is relatively small. These remote responses are directly attributed to the TPIO warming-induced tropical convection, rainfall and diabatic heating increases, in which the TIO warming has the most significant effect. Moreover, the TPIO warming excites a Gill-type pattern anomaly over the tropical western Pacific, with a low-level anticyclonic circulation anomaly over the Philippine Sea. Of three sub-regions, the TIO warming dominates such a pattern, although the TWP warming tends to cancel this effect. The anticyclonic circulation anomaly intensifies the southwesterly flow that transfers more moisture from the Bay of Bengal to East Asia and considerably increases the winter precipitation over the southern East Asia. This is strongly supported by the observational fact that there has been a significant interdecadal increase of winter precipitation over the southern China since the end of the 1970s.
NASA Astrophysics Data System (ADS)
Merchant, Christopher J.; Embury, Owen; Rayner, Nick A.; Berry, David I.; Corlett, Gary K.; Lean, Katie; Veal, Karen L.; Kent, Elizabeth C.; Llewellyn-Jones, David T.; Remedios, John J.; Saunders, Roger
2012-12-01
A new record of sea surface temperature (SST) for climate applications is described. This record provides independent corroboration of global variations estimated from SST measurements made in situ. Infrared imagery from Along-Track Scanning Radiometers (ATSRs) is used to create a 20 year time series of SST at 0.1° latitude-longitude resolution, in the ATSR Reprocessing for Climate (ARC) project. A very high degree of independence of in situ measurements is achieved via physics-based techniques. Skin SST and SST estimated for 20 cm depth are provided, with grid cell uncertainty estimates. Comparison with in situ data sets establishes that ARC SSTs generally have bias of order 0.1 K or smaller. The precision of the ARC SSTs is 0.14 K during 2003 to 2009, from three-way error analysis. Over the period 1994 to 2010, ARC SSTs are stable, with better than 95% confidence, to within 0.005 K yr-1(demonstrated for tropical regions). The data set appears useful for cleanly quantifying interannual variability in SST and major SST anomalies. The ARC SST global anomaly time series is compared to the in situ-based Hadley Centre SST data set version 3 (HadSST3). Within known uncertainties in bias adjustments applied to in situ measurements, the independent ARC record and HadSST3 present the same variations in global marine temperature since 1996. Since the in situ observing system evolved significantly in its mix of measurement platforms and techniques over this period, ARC SSTs provide an important corroboration that HadSST3 accurately represents recent variability and change in this essential climate variable.
Are we near the predictability limit of tropical Indo-Pacific sea surface temperatures?
NASA Astrophysics Data System (ADS)
Newman, Matthew; Sardeshmukh, Prashant D.
2017-08-01
The predictability of seasonal anomalies worldwide rests largely on the predictability of tropical sea surface temperature (SST) anomalies. Tropical forecast skill is also a key metric of climate models. We find, however, that despite extensive model development, the tropical SST forecast skill of the operational North American Multi-Model Ensemble (NMME) of eight coupled atmosphere-ocean models remains close both regionally and temporally to that of a vastly simpler linear inverse model (LIM) derived from observed covariances of SST, sea surface height, and wind fields. The LIM clearly captures the essence of the predictable SST dynamics. The NMME and LIM skills also closely track and are only slightly lower than the potential skill estimated using the LIM's forecast signal-to-noise ratios. This suggests that the scope for further skill improvement is small in most regions, except in the western equatorial Pacific where the NMME skill is currently much lower than the LIM skill.
Influence of the Summer NAO on the Spring-NAO-Based Predictability of the East Asian Summer Monsoon
NASA Astrophysics Data System (ADS)
Zheng, Fei
2017-04-01
The dominant mode of atmospheric circulation over the North Atlantic region is the North Atlantic Oscillation (NAO). The boreal spring NAO may imprint its signal on contemporaneous sea surface temperature (SST), leading to a North Atlantic SST tripolar pattern (NAST). This pattern persists into the following summer and modulates the East Asian summer monsoon (EASM). Previous studies have shown that the summer NAST is caused mainly by the preceding spring NAO, whereas the contemporaneous summer NAO plays a secondary role. The results of this study illustrate that, even if the summer NAO plays a secondary role, it may also perturb summer SST anomalies caused by the spring NAO. There are two types of perturbation caused by the summer NAO. If the spring and summer NAO patterns have the same (opposite) polarities, the summer NAST tends to be enhanced (reduced) by the summer NAO, and the correlation between the spring NAO and EASM is usually stronger (weaker). In the former (latter) case, the spring-NAO-based prediction of the EASM tends to have better (limited) skill. These results indicate that it is important to consider the evolution of the NAO when forecasting the EASM, particular when there is a clear reversal in the polarity of the NAO, because it may impair the spring-NAO-based EASM prediction.
Decadal Air-Sea Interaction in the North Atlantic Based on Observations and Modeling Results
NASA Technical Reports Server (NTRS)
Hakkinen, Sirpa
1998-01-01
The decadal, 12-14 year, cycle observed in the North Atlantic SST and tide gauge data was examined using the NCEP/NCAR reanalyses, COADS data and an ocean model simulation. Besides this decadal mode, a shorter, subdecadal period of about 8 years exists in tide gauge data north of 40N, in the subpolar SST and in the winter North Atlantic Oscillation (NAO) index and in subpolar winter heat flux values. The decadal cycle is a well separated mode in a singular spectrum analysis (SSA) for a time series of SST EOF mode 1 with a center over the Gulf Stream extension. Tide gauge and SST data are consistent in that both show a significant subdecadal periodicity exclusively in the subpolar gyre, but in subtropics the 12-14 year period is the prominent, but nonstationary, decadal signal. The main finding of this study is that this 12-14 year cycle can be constructed based on the leading mode of the surface heat flux. This connection to the surface heat flux implicates the participation of the thermohaline circulation in the decadal cycle. During the cycle starting from the positive index phase of NAO, SST and oceanic heat content anomalies are created in subtropics due to local heat flux and intensification of the thermohaline circulation. The anomalies advect to the subpolar gyre where they are amplified by local heat flux and are part of the negative feedback of thermohaline circulation on itself. Consequently the oceanic thermohaline circulation slows down and the opposite cycle starts. The oscillatory nature would not be possible without the active atmospheric participation in the cycle, because it provides the unstable interaction through heat flux, without it, the oceanic mode would be damped. This analysis suggests that the two principal modes of heat flux variability, corresponding to patterns similar to North Atlantic Oscillation (NAO) and Western Atlantic (WA), are part of the same decadal cycle and an indirect measure of the north-south movement of the storm tracks.
Main processes of the Atlantic cold tongue interannual variability
NASA Astrophysics Data System (ADS)
Planton, Yann; Voldoire, Aurore; Giordani, Hervé; Caniaux, Guy
2018-03-01
The interannual variability of the Atlantic cold tongue (ACT) is studied by means of a mixed-layer heat budget analysis. A method to classify extreme cold and warm ACT events is proposed and applied to ten various analysis and reanalysis products. This classification allows 5 cold and 5 warm ACT events to be selected over the period 1982-2007. Cold (warm) ACT events are defined by the presence of negative (positive) sea surface temperature (SST) anomalies at the center of the equatorial Atlantic in late boreal spring, preceded by negative (positive) zonal wind stress anomalies in the western equatorial Atlantic. An ocean general circulation model capable of reconstructing the interannual variability of the ACT correctly is used to demonstrate that cold ACT events develop rapidly from May to June mainly due to intense cooling by vertical mixing and horizontal advection. The simulated cooling at the center of the basin is the result of the combined effects of non-local and local processes. The non-local process is an upwelling associated with an eastward-propagating Kelvin wave, which makes the mixed-layer more shallow and preconditions the upper layers to be cooled by an intense heat loss at the base of the mixed-layer, which is amplified by a stronger local injection of energy from the atmosphere. The early cooling by vertical mixing in March is also shown to be a good predictor of June cooling. In July, horizontal advection starts to warm the mixed-layer abnormally and damps SST anomalies. The advection anomalies, which result from changes in the horizontal temperature gradient, are associated in some cases with the propagation of Rossby waves along the equator. During warm ACT events, processes are reversed, generating positive SST anomalies: a downwelling Kelvin wave triggers stratification anomalies and mixed-layer depth anomalies, amplified by a weaker injection of energy from the atmosphere in May-June. In July, warm ACT events are abnormally cooled due to negative horizontal advection anomalies resulting from processes similar to those that occur during cold ACT events. This additional cooling process extends the period of cooling of the ACT, reducing SST anomalies.
NASA Technical Reports Server (NTRS)
Schubert, Siegfried; Wang, Hailan; Suarez, Max; Koster, Randal
2010-01-01
The USCLIV AR working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land-atmosphere feedbacks on regional drought. The runs were done with several global atmospheric models including NASA/NSIPP-l, NCEP/GFS, GFDLlAM2, and NCAR CCM3 and CAM3.5. Specific questions that the runs are designed to address include: What are mechanisms that maintain drought across the seasonal cycle and from one year to the next. To what extent can droughts develop independently of ocean variability due to year-to-year memory that may be inherent to the land. What is the role of the different ocean basins? Here we focus on the potential predictability of drought conditions over the United States. Specific issues addressed include the seasonality and regionality of the signal-to-noise ratios associated with Pacific and Atlantic SST forcing, and the sensitivity of the results to the climatological stationary waves simulated by the different AGCMs.
Vertical Motion Changes Related to North-East Brazil Rainfall Variability: a GCM Simulation
NASA Astrophysics Data System (ADS)
Roucou, Pascal; Oribe Rocha de Aragão, José; Harzallah, Ali; Fontaine, Bernard; Janicot, Serge
1996-08-01
The atmospheric structure over north-east Brazil during anomalous rainfall years is studied in the 11 levels of the outputs of the Laboratoire de Météorologie Dynamique atmospheric general circulation model (LMD AGCM). Seven 19-year simulations were performed using observed sea-surface temperature (SST) corresponding to the period 1970- 1988. The ensemble mean is calculated for each month of the period, leading to an ensemble-averaged simulation. The simulated March-April rainfall is in good agreement with observations. Correlations of simulated rainfall and three SST indices relative to the equatorial Pacific and northern and southern parts of the Atlantic Ocean exhibit stronger relationships in the simulation than in the observations. This is particularly true with the SST gradient in the Atlantic (Atlantic dipole). Analyses on 200 ;hPa velocity potential, vertical velocity, and vertical integral of the zonal component of mass flux are performed for years of abnormal rainfall and positive/negative SST anomalies in the Pacific and Atlantic oceans in March-April during the rainy season over the Nordeste region. The results at 200 hPa show a convergence anomaly over Nordeste and a divergence anomaly over the Pacific concomitant with dry seasons associated with warm SST anomalies in the Pacific and warm (cold) waters in the North (South) Atlantic. During drought years convection inside the ITCZ indicated by the vertical velocity exhibits a displacement of the convection zone corresponding to a northward migration of the ITCZ. The east-west circulation depicted by the zonal divergent mass flux shows subsiding motion over Nordeste and ascending motion over the Pacific in drought years, accompanied by warm waters in the eastern Pacific and warm/cold waters in northern/southern Atlantic. Rainfall variability of the Nordeste rainfall is linked mainly to vertical motion and SST variability through the migration of the ITCZ and the east-west circulation.
NASA Astrophysics Data System (ADS)
Prasanna, V.
2016-06-01
The warm (cold) phase of El Niño (La Niña) and its impact on all Indian Summer Monsoon rainfall (AISMR) relationship is explored for the past 100 years. The 103-year (1901-2003) data from the twentieth century reanalysis datasets (20CR) and other major reanalysis datasets for southwest monsoon season (JJAS) is utilized to find out the simultaneous influence of the El Niño Southern Oscillation (ENSO)-AISMR relationship. Two cases such as wet, dry monsoon years associated with ENSO(+) (El Niño), ENSO(-) (La Niña) and Non-ENSO (neutral) events have been discussed in detail using observed rainfall and three-dimensional 20CR dataset. The dry and wet years associated with ENSO and Non-ENSO periods show significant differences in the spatial pattern of rainfall associated with three-dimensional atmospheric composite, the 20CR dataset has captured the anomalies quite well. During wet (dry) years, the rainfall is high (low), i.e. 10 % above (below) average from the long-term mean and this wet or dry condition occur both during ENSO and Non-ENSO phases. The Non-ENSO year dry or wet composites are also focused in detail to understand, where do the anomalous winds come from unlike in the ENSO case. The moisture transport is coherent with the changes in the spatial pattern of AISMR and large-scale feature in the 20CR dataset. Recent 50-year trend (1951-2000) is also analyzed from various available observational and reanalysis datasets to see the influence of Indo-Pacific SST and moist processes on the South Asian summer monsoon rainfall trend. Apart from the Indo-Pacific sea surface temperatures (SST), the moisture convergence and moisture transport among India (IND), Equatorial Indian Ocean (IOC) and tropical western pacific (WNP) is also important in modifying the wet or dry cycles over India. The mutual interaction among IOC, WNP and IND in seasonal timescales is significant in modifying wet and dry cycles over the Indian region and the seasonal anomalies.
NASA Technical Reports Server (NTRS)
Lau, K. M.; Kim, K. M.; Li, J. Y.
2001-01-01
In this Chapter, aspects of global teleconnections associated with the interannual variability of the Asian summer monsoon (ASM) are discussed. The basic differences in the basic dynamics of the South Asian Monsoon and the East Asian monsoon, and their implications on global linkages are discussed. Two teleconnection modes linking ASM variability to summertime precipitation over the continental North America were identified. These modes link regional circulation and precipitation anomalies over East Asia and continental North America, via coupled atmosphere-ocean variations over the North Pacific. The first mode has a large zonally symmetrical component and appears to be associated with subtropical jetstream variability and the second mode with Rossby wave dispersion. Both modes possess strong sea surface temperature (SST) expressions in the North Pacific. Results show that the two teleconnection modes may have its origin in intrinsic modes of sea surface temperature variability in the extratropical oceans, which are forced in part by atmospheric variability and in part by air-sea interaction. The potential predictability of the ASM associated with SST variability in different ocean basins is explored using a new canonical ensemble correlation prediction scheme. It is found that SST anomalies in tropical Pacific, i.e., El Nino, is the most dominant forcing for the ASM, especially over the maritime continent and eastern Australia. SST anomalies in the India Ocean may trump the influence from El Nino in western Australia and western maritime continent. Both El Nino, and North Pacific SSTs contribute to monsoon precipitation anomalies over Japan, southern Korea, northern and central China. By optimizing SST variability signals from the world ocean basins using CEC, the overall predictability of ASM can be substantially improved.
An Assessment of the Impact of the 1997-98 El Nino on the Asian-Australian Monsoon
NASA Technical Reports Server (NTRS)
Lau, K.-M.; Wu, H.-T.
1999-01-01
Using state-of-the-art satellite-gauge monthly rainfall estimate and optimally interpolated sea surface temperature (SST) data, we have assessed the 1997-98 AA-monsoon anomalies in terms of three basic causal factors: basin-scale SST, regional coupling, and internal variability. Singular Value Decomposition analyses of rainfall and SST are carried out globally over the entire tropics and regionally over the AA-monsoon domain. Contributions to monsoon rainfall predictability by various factors are evaluated from cumulative anomaly correlation with dominant regional SVD modes. Results reveal a dominant, large-scale monsoon-El Nino coupled mode with well-defined centers of action in the near-equatorial monsoon regions during the boreal summer and winter respectively. The observed 1997-98 AA-monsoon anomalies are found to be very complex with approximately 34% of the anomalies of the Asian (boreal) summer monsoon and 74% of the Australia (austral) monsoon attributable to basin-scale SST influence associated with El Nino. Regional coupled processes contribute an additional 19% and 10%, leaving about 47% and 16% due to internal dynamics for the boreal and austral monsoon respectively. For the boreal summer monsoon, it is noted that the highest monsoon predictability is not necessary associated with major El Nino events (e.g. 1997, 1982) but rather in non-El Nino years (e.g. 1980, 1988) when contributions from the regional coupled modes far exceed those from the basin-scale SST. The results suggest that in order to improve monsoon seasonal-to-interannual predictability, there is a need to exploit not only monsoon-El Nino relationship, but also intrinsic monsoon regional coupled processes.
NASA Astrophysics Data System (ADS)
Pillai, Prasanth A.; Sahai, A. K.
2016-08-01
Boreal summer intraseasonal oscillation (BSISO) has complex spatial structure due to the co-existence of equatorial eastward and off-equatorial northward propagation in the equatorial Indian Ocean. As a result, equatorial Indian Ocean convection has simultaneous northward and eastward (NE), northward only (N-only) and eastward only (E-only) propagations. It is well established that the convection propagates in the direction of increasing moist static energy (MSE). The moisture and MSE budget analysis reveals that the horizontal advection of anomalous MSE contributes to positive MSE tendency, which is in agreement with the horizontal advection of column integrated moisture anomaly. Northward movement of warm SST and the anomalous moisture advected by zonal wind are the major initiative for the northward propagation of convection from the equatorial Indian Ocean in both NE and N-only category. At the same time warm SST anomaly in the equatorial west Pacific along with moisture advection caused by anomalous meridional wind is important for the equatorial eastward branch of NE propagation. As these anomalies in the west Pacific moves northward, equatorial Indian Ocean convection establishes over the equatorial west Pacific. The absence of these processes confines the BSISO in northward direction for N-only category. In the case of E-only movement, warm SST anomaly and moisture advection by zonal component of wind causes the eastward propagation of convection. Boundary layer moisture convergence always remains east of convection center in E-only propagation, while it coincides with convection centre in other two categories. Thus the present study concludes that the difference in underlying SST and atmospheric circulation in tropical Indo-west Pacific oceanic regions encourage the differential propagation of BSISO convection through moisture dynamics.
Mechanism for Surface Warming in the Equatorial Pacific during 1994-95
NASA Technical Reports Server (NTRS)
Rienecker, Michele M.; Borovikov, Anna; Schopf, Paul S.
1999-01-01
Mechanisms controlling the variation in sea surface temperature warm event in the equatorial Pacific were investigated through ocean model simulations. In addition, the mechanisms of the climatological SST cycle were investigated. The dominant mechanisms governing the seasonal cycle of SST vary significantly across the basin. In the western Pacific the annual cycle of SST is primarily in response to external heat flux. In the central basin the magnitude of zonal advection is comparable to that of the external heat flux. In the eastern basin the role of zonal advection is reduced and the vertical mixing is more important. In the easternmost equatorial Pacific the vertical entrainment contribution is as large as that of vertical diffusion. The model estimate of the vertical mixing contribution to the mixed layer heat budget compared well with estimates obtained by analysis of observations using the same diagnostic vertical mixing scheme. During 1994- 1995 the largest positive SST anomaly was observed in the mid-basin and was related to reduced latent heat flux due to weak surface winds. In the western basin the initial warming was related to enhanced external heating and reduced cooling effects of both vertical mixing and horizontal advection associated with weaker than usual wind stress. In the eastern Pacific where winds were not significantly anomalous throughout 1994-1995, only a moderate warm surface anomaly was detected. This is in contrast to strong El Nino events where the SST anomaly is largest in the eastern basin and, as shown by previous studies, the anomaly is due to zonal advection rather than anomalous surface heat flux. The end of the warm event was marked by cooling in July 1995 everywhere across the equatorial Pacific.
NASA Astrophysics Data System (ADS)
Zhang, Mengqi; Sun, Jianqi
2017-12-01
The boreal spring relationship between variabilities of East China precipitation (ECP) and tropical Ocean sea surface temperature (SST) during the period 1951-2014 is investigated in this study. The results show that the leading mode of the ECP variability exhibits an enhanced response to the anomalous El Niño-Southern Oscillation (ENSO)-like SST after the late 1970s, when the SST underwent a decadal change, with two positive centers over the eastern tropical Pacific (ETP) and tropical Indian Ocean (TIO). To further understand the relative roles of the ETP and TIO SST anomalies (SSTAs) in the variability of ECP after the late 1970s, partial regression and correlation methods are used. It is found that, without the contribution of the TIO, ETP SSTA plays a limited role in the variability of ECP after the late 1970s; comparatively, a significant correlation between TIO SST and ECP is identified during the same period, when the ETP signal is linearly removed. Physical analyses show that, after the late 1970s, the TIO SSTA affects East Asian atmospheric circulation in two ways: by exciting a zonal wave-train pattern over the mid-latitude Eurasian Continent and by inducing anomalous convection over the Maritime Continent. Via these two mechanisms, the TIO SST variability results in an anomalous East Asian trough and vertical motion over East China and consequently leads to anomalous precipitation over the region. The physical processes linking the ECP and TIO SST are confirmed by an atmospheric general circulation model experiment forced with idealized TIO warming.
Causes and Consequences of Exceptional North Atlantic Heat Loss in Recent Winters
NASA Astrophysics Data System (ADS)
Josey, Simon; Grist, Jeremy; Duchez, Aurelie; Frajka-Williams, Eleanor; Hirschi, Joel; Marsh, Robert; Sinha, Bablu
2016-04-01
The mid-high latitude North Atlantic loses large amounts of heat to the atmosphere in winter leading to dense water formation. An examination of reanalysis datasets (ERA-Interim, NCEP/NCAR) reveals that heat loss in the recent winters 2013-14 and 2014-15 was exceptionally strong. The causes and consequences of this extraordinary ocean heat loss will be discussed. In 2013-2014, the net air-sea heat flux anomaly averaged over the whole winter exceeded 100 Wm-2 in the eastern subpolar gyre (the most extreme in the period since 1979 spanned by ERA-Interim). The causes of this extreme heat loss will be shown to be severe latent and sensible heat fluxes driven primarily by anomalously strong westerly airflows from North America and northerly airflows originating in the Nordic Seas. The associated sea level pressure anomaly field reflects the dominance of the second mode of atmospheric variability, the East Atlantic Pattern (EAP) over the North Atlantic Oscillation (NAO) in this winter. The extreme winter heat loss had a significant impact on the ocean extending from the sea surface into the deeper layers and a re-emergent cold Sea Surface Temperature (SST) anomaly is evident in November 2014. The following winter 2014-15 experienced further extreme heat loss that served to amplify the strength of the re-emergent SST anomaly. By summer 2015, an unprecedented cold mid-latitude North Atlantic Ocean surface temperature anomaly is evident in observations and has been widely referred to as the 'big blue blob'. The role played by the extreme surface heat loss in the preceding winters in generating this feature and it subsequent evolution through winter 2015-16 will be explored.
A Tropical View of Atlantic Multidecadal SST Variability over the Last Two Millennia
NASA Astrophysics Data System (ADS)
Wurtzel, J. B.; Black, D. E.; Thunell, R.; Peterson, L. C.; Tappa, E. J.; Rahman, S.
2011-12-01
Instrumental and proxy-reconstructions show the existence of a 60-80 year periodicity in Atlantic sea surface temperature (SST), known as the Atlantic Multidecadal Oscillation (AMO). The AMO is correlated with circum-tropical Atlantic climate phenomena such as Sahel and Nordeste rainfall, as well as Atlantic hurricane patterns. Though it has been suggested that the AMO is controlled by thermohaline circulation, much debate exists as to whether the SST fluctuations are a result of anthropogenic forcing or natural climate variability. Our ability to address this issue has been limited by instrumental SST records that rarely extend back more than 50-100 years and proxy reconstructions that are largely terrestrial-based. Here we present a high-resolution marine sediment-derived reconstruction of seasonal tropical Atlantic SSTs from the Cariaco Basin spanning the past two millennia that is correlated with instrumental SSTs and the AMO for the period of overlap. The full record demonstrates that seasonality is largely controlled by variations in winter/spring SST. Wavelet analysis of the proxy data suggest that variability in the 60-80 year band evolved 250 years ago, while 40-60 year periodicities dominate earlier parts of the record. At least over the last millennia, multidecadal- and centennial- scale SST variability in the tropical Atlantic appears related to Atlantic meridional overturning circulation (AMOC) fluctuations and its associated northward heat transport that in turn may be driven by solar variability. An inverse correlation between the tropical proxy annual average SST record and Δ14C indicates that the tropics experienced positive SST anomalies during times of reduced solar activity, possibly as a result of decreased AMOC strength (Figure 1).
NASA Astrophysics Data System (ADS)
Xu, Kang; Huang, Qing-Lan; Tam, Chi-Yung; Wang, Weiqiang; Chen, Sheng; Zhu, Congwen
2018-03-01
The impacts of the eastern-Pacific (EP) and central-Pacific (CP) El Niño-Southern Oscillation (ENSO) on the southern China wintertime rainfall (SCWR) have been investigated. Results show that wintertime rainfall over most stations in southern China is enhanced (suppressed) during the EP (CP) El Niño, which are attributed to different atmospheric responses in the western North Pacific (WNP) and South China Sea (SCS) during two types of ENSO. When EP El Niño occurs, an anomalous low-level anticyclone is present over WNP/the Philippines region, resulting in stronger-than-normal southwesterlies over SCS. Such a wind branch acts to suppress East Asian winter monsoon (EAWM) and enhance moisture supply, implying surplus SCWR. During CP El Niño, however, anomalous sinking and low-level anticyclonic flow are found to cover a broad region in SCS. These circulation features are associated with moisture divergence over the northern part of SCS and suppressed SCWR. General circulation model experiments have also been conducted to study influence of various tropical sea surface temperature (SST) patterns on the EAWM atmospheric circulation. For EP El Niño, formation of anomalous low-level WNP anticyclone is jointly attributed to positive/negative SST anomalies (SSTA) over the central-to-eastern/ western equatorial Pacific. However, both positive and negative CP Niño-related-SSTA, located respectively over the central Pacific and WNP/SCS, offset each other and contribute a weak but broad-scale anticyclone centered at SCS. These results suggest that, besides the vital role of SST warming, SST cooling over SCS/WNP during two types of El Niño should be considered carefully for understanding the El Niño-EAWM relationship.
Ocean Chlorophyll as a Precursor of ENSO: An Earth System Modeling Study
NASA Astrophysics Data System (ADS)
Park, Jong-Yeon; Dunne, John P.; Stock, Charles A.
2018-02-01
Ocean chlorophyll concentration, a proxy for phytoplankton, is strongly influenced by internal ocean dynamics such as those associated with El Niño-Southern Oscillation (ENSO). Observations show that ocean chlorophyll responses to ENSO generally lead sea surface temperature (SST) responses in the equatorial Pacific. A long-term global Earth system model simulation incorporating marine biogeochemical processes also exhibits a preceding chlorophyll response. In contrast to simulated SST anomalies, which significantly lag the wind-driven subsurface heat response to ENSO, chlorophyll anomalies respond rapidly. Iron was found to be the key factor connecting the simulated surface chlorophyll anomalies to the subsurface ocean response. Westerly wind bursts decrease central Pacific chlorophyll by reducing iron supply through wind-driven thermocline deepening but increase western Pacific chlorophyll by enhancing the influx of coastal iron from the maritime continent. Our results mechanistically support the potential for chlorophyll-based indices to inform seasonal ENSO forecasts beyond previously identified SST-based indices.
OceanXtremes: Scalable Anomaly Detection in Oceanographic Time-Series
NASA Astrophysics Data System (ADS)
Wilson, B. D.; Armstrong, E. M.; Chin, T. M.; Gill, K. M.; Greguska, F. R., III; Huang, T.; Jacob, J. C.; Quach, N.
2016-12-01
The oceanographic community must meet the challenge to rapidly identify features and anomalies in complex and voluminous observations to further science and improve decision support. Given this data-intensive reality, we are developing an anomaly detection system, called OceanXtremes, powered by an intelligent, elastic Cloud-based analytic service backend that enables execution of domain-specific, multi-scale anomaly and feature detection algorithms across the entire archive of 15 to 30-year ocean science datasets.Our parallel analytics engine is extending the NEXUS system and exploits multiple open-source technologies: Apache Cassandra as a distributed spatial "tile" cache, Apache Spark for in-memory parallel computation, and Apache Solr for spatial search and storing pre-computed tile statistics and other metadata. OceanXtremes provides these key capabilities: Parallel generation (Spark on a compute cluster) of 15 to 30-year Ocean Climatologies (e.g. sea surface temperature or SST) in hours or overnight, using simple pixel averages or customizable Gaussian-weighted "smoothing" over latitude, longitude, and time; Parallel pre-computation, tiling, and caching of anomaly fields (daily variables minus a chosen climatology) with pre-computed tile statistics; Parallel detection (over the time-series of tiles) of anomalies or phenomena by regional area-averages exceeding a specified threshold (e.g. high SST in El Nino or SST "blob" regions), or more complex, custom data mining algorithms; Shared discovery and exploration of ocean phenomena and anomalies (facet search using Solr), along with unexpected correlations between key measured variables; Scalable execution for all capabilities on a hybrid Cloud, using our on-premise OpenStack Cloud cluster or at Amazon. The key idea is that the parallel data-mining operations will be run "near" the ocean data archives (a local "network" hop) so that we can efficiently access the thousands of files making up a three decade time-series. The presentation will cover the architecture of OceanXtremes, parallelization of the climatology computation and anomaly detection algorithms using Spark, example results for SST and other time-series, and parallel performance metrics.
Cahyarini, Sri Yudawati; Zinke, Jens; Troelstra, Simon; Suharsono; Aldrian, Edvin; Hoeksema, B W
2016-09-30
The ability of massive Porites corals to faithfully record temperature is assessed. Porites corals from Kepulauan Seribu were sampled from one inshore and one offshore site and analyzed for their Sr/Ca variation. The results show that Sr/Ca of the offshore coral tracked SST, while Sr/Ca variation of the inshore coral tracked ambient air temperature. In particular, the inshore SST variation is related to air temperature anomalies of the urban center of Jakarta. The latter we relate to air-sea interactions modifying inshore SST associated with the land-sea breeze mechanism and/or monsoonal circulation. The correlation pattern of monthly coral Sr/Ca with the Niño3.4 index and SEIO-SST reveals that corals in the Seribu islands region respond differently to remote forcing. An opposite response is observed for inshore and offshore corals in response to El Niño onset, yet similar to El Niño mature phase (December to February). SEIO SSTs co-vary strongly with SST and air temperature variability across the Seribu island reef complex. The results of this study clearly indicate that locations of coral proxy record in Indonesia need to be chosen carefully in order to identify the seasonal climate response to local and remote climate and anthropogenic forcing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Arctic sea ice loss and recent extreme cold winter in Eurasia
NASA Astrophysics Data System (ADS)
Mori, Masato; Watanabe, Masahiro; Ishii, Masayoshi; Kimoto, Masahide
2014-05-01
Extreme cold winter over the Eurasia has occurred more frequently in recent years. Observational evidence in recent studies shows that the wintertime cold anomalies over the Eurasia are associated with decline of Arctic sea ice in preceding autumn to winter season. However, the tropical and/or mid-latitude sea surface temperature (SST) anomalies have great influence on the mid- and high-latitude atmospheric variability, it is difficult to isolate completely the impacts of sea ice change from observational data. In this study, we examine possible linkage between the Arctic sea ice loss and the extreme cold winter over the Eurasia using a state-of-the-art MIROC4 (T106L56) atmospheric general circulation model (AGCM) to assess the pure atmospheric responses to sea ice reduction. We perform two sets of experiments with different realistic sea ice boundary conditions calculated by composite of observed sea ice concentration; one is reduced sea ice extent case (referred to as LICE run) and another is enhanced case (HICE run). In both experiments, the model is integrated 6-month from September to February with 100-member ensemble under the climatological SST boundary condition. The difference in ensemble mean of each experiment (LICE minus HICE) shows cold anomalies over the Eurasia in winter and its spatial pattern is very similar to corresponding observation, though the magnitude is smaller than observation. This result indicates that a part of observed cold anomaly can be attributed to the Arctic sea ice loss. We would like to introduce more important results and mechanisms in detail in my presentation.
A note on Bjerkne's hypothesis for North Atlantic variability
NASA Astrophysics Data System (ADS)
Bryan, Kirk; Stouffer, Ron
1991-01-01
On decadal time-scales the historical surface temperature record over land in the Northern Hemisphere is dominated by polar amplified variations. These variations are coherent with SST anomalies concentrated in the Northwest Atlantic, but extending with lesser amplitude into the North Pacific as well. Bierknes suggested that multi-year SST anomalies in the subpolar North Atlantic were due to irregular changes in the intensity of the thermohaline circulation. In support of the Bjerknes hypothesis there is evidence that winter overturning in the Labrador Sea was suppressed for a brief period from 1967-1969 by a cap of relative fresh water at the surface. Cause and effect are unclear, but this event was associated with a marked cooling of the entire Northern Hemisphere. The difference in SST averaged over the Northern Hemisphere oceans and SST averaged over the Southern Hemisphere oceans from the equator to 40°S is coherent with Sahel summer rainfall on decadal time scales. Empirical evidence is supported by numerical experiments with the British Meteorological Office atmospheric climate model which simulate augmented monsoonal rainfall in the Sahel region of Africa in response to realistic warm SST anomalies in the Northwest Atlantic. A coupled ocean-atmosphere global model exhibits two equilibrium climate states. One has an active thermohaline circulation in the North Atlantic and the other does not. The two climate states provide an extreme example which illustrates the type of large scale air sea interaction Bjerknes visualized as a mechanism for North Atlantic climate variability on decadal time-scales.
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.; Marshall, Susan; Oglesby, Robert; Roads, John; Sohn, Byung-Ju; Arnold, James E. (Technical Monitor)
2001-01-01
The continuing debate over feedback mechanisms governing tropical sea surface temperatures (SSTs) and tropical climate in general has highlighted the diversity of potential checks and balances within the climate system. Competing feedbacks due to changes in surface evaporation, water vapor, and cloud long- and shortwave radiative properties each may serve critical roles in stabilizing or destabilizing the climate system. It is also intriguing that even those climate variations having origins internal to the climate system - changes in ocean heat transport for example, apparently require complementary equilibrating effects by changes in atmospheric energy fluxes. Perhaps the best observational evidence of this is the relatively invariant nature of tropically averaged net radiation exiting the top-of-atmosphere (TOA) as measured by broadband satellite sensors over the past two decades. Thus, analyzing how these feedback mechanisms are operating within the context of current interannual variability may offer considerable insight for anticipating future climate change. In this paper we focus primarily on interannual variations of ocean evaporative fluxes and their significance for coupled water and energy cycles within the tropical climate system. In particular, we use both the da Silva estimates of surface fluxes (based on the Comprehensive Ocean Atmosphere Data Set, COADS) and numerical simulations from several global climate models to examine evaporation sensitivity to perturbations in SST associated with warm and cold ENSO events. The specific questions we address are as follows: (1) What recurring patterns of surface wind and humidity anomalies are present during ENSO and how do they combine to yield systematic evaporation anomalies?, (2) What is the resulting tropical ocean mean evaporation-SST sensitivity associated with this climate perturbation?, and (3) What role does this evaporation play in tropical heat and water balance over tropical oceanic regions? We use the da Silva ocean flux data to identify composite structure of departures of latent heat flux from climatology. We also show how these patterns arise out of associated wind and humidity anomaly distributions. Our preliminary work shows that evaporation sensitivity estimates from the da Silva / COADS data, computed for the tropical oceans (30 degrees N/S) are in the neighborhood of 5 to 6 W/square m K. Model estimates are also quite close to this figure. This rate is only slightly less than a rate corresponding to constant relative humidity; however, substantial regional departures from constant relative humidity are present. These patterns are robust and we relate the associated wind and humidity fluctuations noted in previous investigations to the derived evaporation anomalies. Finally, these results are interpreted with other data from the Earth radiation Budget Experiment (ERBE), Global Precipitation Climatology Project (GPCP) and NASA's Surface Radiation Budget (SRB) data set to characterize the tropical energetics of ENSO-related climate variability.
Tropical Forcing of the Summer East Atlantic Pattern
NASA Astrophysics Data System (ADS)
Wulff, C. Ole; Greatbatch, Richard J.; Domeisen, Daniela I. V.; Gollan, Gereon; Hansen, Felicitas
2017-11-01
The Summer East Atlantic (SEA) mode is the second dominant mode of summer low-frequency variability in the Euro-Atlantic region. Using reanalysis data, we show that SEA-related circulation anomalies significantly influence temperatures and precipitation over Europe. We present evidence that part of the interannual SEA variability is forced by diabatic heating anomalies of opposing signs in the tropical Pacific and Caribbean that induce an extratropical Rossby wave train. This precipitation dipole is related to SST anomalies characteristic of the developing El Niño-Southern Oscillation phases. Seasonal hindcast experiments forced with observed sea surface temperatures (SSTs) exhibit skill at capturing the interannual SEA variability corroborating the proposed mechanism and highlighting the possibility for improved prediction of boreal summer variability. Our results indicate that tropical forcing of the SEA likely played a role in the dynamics of the 2015 European heat wave.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Jin-Ho; Leung, Lai-Yung R.
This study assesses the relative influence of soil moisture memory and tropical sea surface temperature (SST) in seasonal rainfall over the contiguous United States. Using observed precipitation, the NINO3.4 index and soil moisture and evapotranspiration simulated by a land surface model for 61 years, analysis was performed using partial correlations to evaluate to what extent land surface and SST anomaly of El Niño and Southern Oscillation (ENSO) can affect seasonal precipitation over different regions and seasons. Results show that antecedent soil moisture is as important as concurrent ENSO condition in controlling rainfall anomalies over the U.S., but they generally dominatemore » in different seasons with SST providing more predictability during winter while soil moisture, through its linkages to evapotranspiration and snow water, has larger influence in spring and early summer. The proposed methodology is applicable to climate model outputs to evaluate the intensity of land-atmosphere coupling and its relative importance.« less
Simulation of Tropical Rainfall Variability
NASA Astrophysics Data System (ADS)
Bader, J.; Latif, M.
2002-12-01
The impact of sea surface temperature (SST) - especially the role of the tropical Atlantic meridional SST gradient and the El Nino-Southern Oscillation - on precipitation is investigated with the atmospheric general circulation model ECHAM4/T42. Ensemble experiments - driven with observed SST - show that Atlantic SST has a significant influence on precipitation over West Africa and northeast Brazil. SST sensitivity experiments were performed in which the climatological SST was enhanced or decreased by one Kelvin in certain ocean areas. Changing SST in the eastern tropical Atlantic caused only significant changes along the Guinea Coast, with a positive anomaly (SSTA) increasing rainfall and a negative SSTA reducing it. The response was nearly linear. Changing SST in other ocean areas caused significant changes over West Africa, especially in the Sahel area. The response is found to be non linear, with only negative SSTA leading to significant reduction in Sahel rainfall. Also, the impact of the SSTAs from the different ocean regions was not additive with respect to the rainfall. The influence of SST on precipitation over northeast Brazil (Nordeste) was also investigated. Three experiments were performed in which the climatological SST was enhanced/decreased or decreased/enhanced by one Kelvin in the North/South Atlantic and increased by two Kelvin in the Nino3 ocean area. All experiments caused significant changes over Nordeste, with an enhanced/reduced SST gradient in the Atlantic increasing/reducing rainfall. The response was nearly linear. The main effect of the Atlantic SST gradient was a shift of the ITCZ, caused by trade wind changes. The ''El Nino'' event generates a significant reduction in Nordeste rainfall. A significant positive SLP anomaly occurs in northeast Brazil which may be associated with the descending branch of the Walker circulation. Also a significant positive SLP over the Atlantic from 30S to 10N north occurs. This results in a reduced SLP gradient from the subtropical highs to the equator and a weakening of the trade winds.
Southern Indian Ocean SST as a modulator for the progression of Indian summer monsoon
NASA Astrophysics Data System (ADS)
Shahi, Namendra Kumar; Rai, Shailendra; Mishra, Nishant
2018-01-01
This study explores the possibility of southern Indian Ocean (SIO) sea surface temperature (SST) as a modulator for the early phase of Indian summer monsoon and its possible physical mechanism. A dipole-like structure is obtained from the empirical orthogonal function (EOF) analysis which is similar to an Indian Ocean subtropical dipole (IOSD) found earlier. A subtropical dipole index (SDI) is defined based on the SST anomaly over the positive and negative poles. The regression map of rainfall over India in the month of June corresponding to the SDI during 1983-2013 shows negative patterns along the Western Ghats and Central India. However, the regression pattern is insignificant during 1952-1982. The multiple linear regression models and partial correlation analysis also indicate that the SDI acts as a dominant factor to influence the rainfall over India in the month of June during 1983-2013. The similar result is also obtained with the help of composite rainfall over the land points of India in the month of June for positive (negative) SDI events. It is also observed that the positive (negative) SDI delays (early) the onset dates of Indian monsoon over Kerala during the time domain of our study. The study is further extended to identify the physical mechanism of this impact, and it is found that the heating (cooling) in the region covering SDI changes the circulation pattern in the SIO and hence impacts the progression of monsoon in India.
NASA Astrophysics Data System (ADS)
Feigin, A. M.; Mukhin, D.; Volodin, E. M.; Gavrilov, A.; Loskutov, E. M.
2013-12-01
The new method of decomposition of the Earth's climate system into well separated spatial-temporal patterns ('climatic modes') is discussed. The method is based on: (i) generalization of the MSSA (Multichannel Singular Spectral Analysis) [1] for expanding vector (space-distributed) time series in basis of spatial-temporal empirical orthogonal functions (STEOF), which makes allowance delayed correlations of the processes recorded in spatially separated points; (ii) expanding both real SST data, and longer by several times SST data generated numerically, in STEOF basis; (iii) use of the numerically produced STEOF basis for exclusion of 'too slow' (and thus not represented correctly) processes from real data. The application of the method allows by means of vector time series generated numerically by the INM RAS Coupled Climate Model [2] to separate from real SST anomalies data [3] two climatic modes possessing by noticeably different time scales: 3-5 and 9-11 years. Relations of separated modes to ENSO and PDO are investigated. Possible applications of spatial-temporal climatic patterns concept to prognosis of climate system evolution is discussed. 1. Ghil, M., R. M. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, et al. (2002) "Advanced spectral methods for climatic time series", Rev. Geophys. 40(1), 3.1-3.41. 2. http://83.149.207.89/GCM_DATA_PLOTTING/GCM_INM_DATA_XY_en.htm 3. http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.v2/.ssta/
Patterns of climate variability in the western Equatorial Pacific during the Common Era
NASA Astrophysics Data System (ADS)
Esswein, K. L.; Rosenthal, Y.; Linsley, B. K.; Oppo, D.
2011-12-01
The distribution of sea surface temperature (SST) and salinity in the western Pacific warm pool (WPWP) has major implications for climate variability in the tropical Pacific and beyond. The spatial and temporal patterns of SST and salinity affect the complex relationships among the prevailing tropical climate systems primarily, the Australian-Asian Monsoon and El nino Southern Oscillation (ENSO) as well as inter-ocean surface circulation associated with the Indonesian throughflow (ITF). Reconstructing the variability of the WPWP surface hydrography during the most recent climate anomalies of the Common Era will provide insights into modern climate change in this region. Previous studies suggest SST cooling of ~1 °C during the Little Ice Age (LIA) 1550-1850 CE and close to modern SST during the Medieval Warm Period (MWP) 950-1100 CE. Further, these studies suggest enhanced (decreased) precipitation over Indonesia during the LIA (MWP) consistent with reconstructions of migration patterns of the intertropical convergence zone (ITCZ) as recorded in speleothem records in China. The available ocean records are, however, limited to the Makassar Strait. Here we present three new Mg/Ca-SST records from multi- and gravity cores in the northern Makassar, Bali Basin and Flores in the Indonesian Seas. These records allow us to validate previous results from the Makassar Strait and to constrain the geographic extent of past temperature and salinity changes within the WPWP. By using reconstructions of the stable oxygen isotopic composition (δ18O) of seawater derived from planktonic foraminiferal Mg/Ca and δ18O we further assess the complex interactions between the influence of the meridional systems (ITCZ) and the zonal effects of ENSO on the regional hydrology. Chronological control for both records is derived from the presence of ash layers of known historical eruptions. Exceptionally high sedimentation rates of 100 cm per 1000 years further allow a comparison between our new SST records with the instrumental record and provide a decadal scale resolution over the past two millennia. Our results from both the Bali Basin and Flores sea validate previous observations from the Makassar Strait indicating that modern SST in the WPWP are about 1 °C higher than during the LIA but do not exceed SSTs recorded during the MWP. These recent temperature trends in the WPWP are thus unlike the modern 'hockey-stick-like' warming trend observed mostly in Northern Hemisphere temperature reconstructions. Further our results support that the mode of SST change found in the Makassar Straits is indeed representative of the whole WPWP.
NASA Astrophysics Data System (ADS)
Ronchail, Josyane; Cochonneau, Gérard; Molinier, Michel; Guyot, Jean-Loup; Chaves, Adriana Goretti De Miranda; Guimarães, Valdemar; de Oliveira, Eurides
2002-11-01
Rainfall variability in the Amazon basin is studied in relation to sea-surface temperatures (SSTs) in the equatorial Pacific and the northern and southern tropical Atlantic during the 1977-99 period, using the HiBAm original rainfall data set and complementary cluster and composite analyses.The northeastern part of the basin, north of 5 °S and east of 60 °W, is significantly related with tropical SSTs: a rainier wet season is observed when the equatorial Pacific and the northern (southern) tropical Atlantic are anomalously cold (warm). A shorter and drier wet season is observed during El Niño events and negative rainfall anomalies are also significantly associated with a warm northern Atlantic in the austral autumn and a cold southern Atlantic in the spring. The northeastern Amazon rainfall anomalies are closely related with El Niño-southern oscillation during the whole year, whereas the relationships with the tropical Atlantic SST anomalies are mainly observed during the autumn. A time-space continuity is observed between El Niño-related rainfall anomalies in the northeastern Amazon, those in the northern Amazon and south-eastern Amazon, and those in northern South America and in the Nordeste of Brazil.A reinforcement of certain rainfall anomalies is observed when specific oceanic events combine. For instance, when El Niño and cold SSTs in the southern Atlantic are associated, very strong negative anomalies are observed in the whole northern Amazon basin. Nonetheless, the comparison of the cluster and the composite analyses results shows that the rainfall anomalies in the northeastern Amazon are not always associated with tropical SST anomalies.In the southern and western Amazon, significant tropical SST-related rainfall anomalies are very few and spatially variable. The precipitation origins differ from those of the northeastern Amazon: land temperature variability, extratropical perturbations and moisture advection are important rainfall factors, as well as SSTs. This could partially explain why: (a) the above-mentioned signals weaken or disappear, with the exception of the relative dryness that is observed at the peak of an El Niño event and during the dry season when northern Atlantic SSTs are warmer than usual; (b) rainfall anomalies tend to resemble those of southeastern South America, noticeably at the beginning and the end of El Niño and La Niña events; (c) some strong excesses of rain are not associated with any SST anomalies and merit further investigation.
NASA Technical Reports Server (NTRS)
Cook, Benjamin; Seager, Richard; Miller, R. L.
2010-01-01
We use an early twentieth century (1908-1958) atmospheric reanalysis, based on assimilation of surface and sea level pressure observations, to contrast atmospheric circulation during two periods of persistent drought in North America: 1932-1939 (the Dust Bowl) and 1948-1957. Primary forcing for both droughts is believed to come from anomalous sea surface temperatures (SSTs): a warm Atlantic and a cool eastern tropical Pacific. For boreal winter (October-March) in the 1950s, a stationary wave pattern originating from the tropical Pacific is present, with positive centers over the north Pacific and north Atlantic ocean basins and a negative center positioned over northwest North America and the tropical/subtropical Pacific. This wave train is largely absent for the 1930s drought; boreal winter height anomalies are organized much more zonally, with positive heights extending across northern North America. For boreal summer (April-September) during the 1930s, a strong upper level ridge is centered over the Great Plains; this feature is absent during the 1950s and appears to be linked to a weakening of the Great Plains low-level jet (GPLLJ). Subsidence anomalies are co-located over the centers of each drought: in the central Great Plains for the 1930s and in a band extending from the southwest to the southeastern United States for the 1950s. The location and intensity of this subsidence during the 1948-1957 drought is a typical response to a cold eastern tropical Pacific, but for 1932-1939 deviates in terms of the expected intensity, location, and spatial extent. Overall, circulation anomalies during the 1950s drought appear consistent with the expected response to the observed SST forcing. This is not the case for the 1930s, implying some other causal factor may be needed to explain the Dust Bowl drought anomalies. In addition to SST forcing, the 1930s were also characterized by massive alterations to the land surface, including regional-scale devegetation from crop failures and intensive wind erosion and dust storms. Incorporation of these land surface factors into a general circulation model greatly improves the simulation of precipitation and subsidence anomalies during this drought, relative to simulations with SST forcing alone. Even with additional forcing from the land surface, however, the model still has difficulty reproducing some of the other circulation anomalies, including weakening of the GPLLJ and strengthening of the upper level ridge during AMJJAS. This may be due to either weaknesses in the model or uncertainties in the boundary condition estimates. Still, analysis of the circulation anomalies supports the conclusion of an earlier paper (Cook et al. in Proc Natl Acad Sci 106:4997, 2009), demonstrating that land degradation factors are consistent with the anomalous nature of the Dust Bowl drought.
Bay of Bengal Exhibits Warming Trend During the Younger Dryas: Implications of AMOC
NASA Astrophysics Data System (ADS)
Panmei, Champoungam; Divakar Naidu, Pothuri; Mohtadi, Mahyar
2017-12-01
A sharp decline in temperature during the Younger Dryas (YD) preceding the current warmer Holocene is well documented in climate archives from the Northern Hemisphere high latitudes. Although the magnitude of YD cooling varied spatially, the response of YD cooling was well documented in the Atlantic and Pacific Oceans but not in the Indian Ocean. Here we investigate whether the modern remote forcing of tropical Indian Ocean sea surface temperature (SST) by Northern Hemisphere climate changes holds true for events such as the YD. Our SST reconstruction from the western Bay of Bengal exhibits an overall warming of ˜1.8°C during the YD. We further compared our data with other existing Mg/Ca-based SST records from the Northern Indian Ocean and found no significant negative SST anomalies in both the Arabian Sea and the Bay of Bengal compared to pre- and post-YD, suggesting that no apparent cooling occurred during the YD in the Northern Indian Ocean. In contrast, most part of the YD exhibits positive SST anomalies in the Northern Indian Ocean that coincide with the slowdown of the Atlantic Meridional Overturning Circulation during this period.
NASA Technical Reports Server (NTRS)
Stein, Uri; Fox-Rabinovitz, Michael
1999-01-01
The factor separation (FS) technique has been utilized to evaluate quantitatively the impact of surface boundary forcings on simulation of the 1988 summer drought over the Midwestern part of the U.S. The four surface boundary forcings used are: (1)Sea Surface Temperature (SST), (2) soil moisture, (3) snow cover, and (4) sea ice. The Goddard Earth Observing System(GEOS) General Circulation Model (GCM) is used to simulate the 1988 U.S. drought. A series of sixteen simulations are performed with climatological and real 1988 surface boundary conditions. The major single and mutual synergistic factors/impacts are analyzed. The results show that SST and soil moisture are the major single pro-drought factors. The couple synergistic effect of SST and soil moisture is the major anti-drought factor. The triple synergistic impact of SST, soil moisture, and snow cover is the strongest pro-drought impact and is, therefore, the main contributor to the generation of the drought. The impact of the snow cover and sea ice anomalies for June 1988 on the drought is significant only when combined with the SST and soil moisture anomalies.
NASA Astrophysics Data System (ADS)
Tommasi, D.; Stock, C. A.
2016-02-01
It is well established that environmental fluctuations affect the productivity of numerous fish stocks. Recent advances in prediction capability of dynamical global forecast systems, such as the state of the art NOAA Geophysical Fluid dynamics Laboratory (GFDL) 2.5-FLOR model, allow for climate predictions of fisheries-relevant variables at temporal scales relevant to the fishery management decision making process. We demonstrate that the GFDL FLOR model produces skillful seasonal SST anomaly predictions over the continental shelf , where most of the global fish yield is generated. The availability of skillful SST projections at this "fishery relevant" scale raises the potential for better constrained estimates of future fish biomass and improved harvest decisions. We assessed the utility of seasonal SST coastal shelf predictions for fisheries management using the case study of Pacific sardine. This fishery was selected because it is one of the few to already incorporate SST into its harvest guideline, and show a robust recruitment-SST relationship. We quantified the effectiveness of management under the status quo harvest guideline (HG) and under alternative HGs including future information at different levels of uncertainty. Usefulness of forecast SST to management was dependent on forecast uncertainty. If the standard deviation of the SST anomaly forecast residuals was less than 0.65, the alternative HG produced higher long-term yield and stock biomass, and reduced the probability of either catch or stock biomass falling below management-set threshold values as compared to the status quo. By contrast, probability of biomass falling to extremely low values increased as compared to the status quo for all alternative HGs except for a perfectly known future SST case. To safeguard against occurrence of such low probability but costly events, a harvest cutoff biomass also has to be implemented into the HG.
SST cooling along coastal Java and Sumatra during positive Indian Ocean Dipole events
NASA Astrophysics Data System (ADS)
Delman, A. S.; McClean, J.; Sprintall, J.; Talley, L. D.; Bryan, F.; Johnson, B. K.; Carton, J.
2016-02-01
The evolution of positive Indian Ocean Dipole (pIOD) events is driven in part by anomalous SST cooling near the coasts of Java and Sumatra. However, the mechanisms and timeline of surface temperature changes near these two islands are distinct. Satellite data and mixed layer budgets in a forced ocean model simulation with 0.1° spatial resolution were used to characterize the dominant influences on SST in each region during pIOD events. Along the south coast of Java, where upwelling from southeasterly trade winds happens seasonally in June-September, strengthening/weakening of the trade winds has little effect on the interannual variability of SST. Instead, remotely-forced upwelling Kelvin waves are the primary mechanism for producing anomalous Java SST cooling in the early stages of a pIOD event. Other mechanisms that affect Java SST anomalies include inflows from the interior Indonesian Seas, mesoscale eddies, and air-sea heat fluxes; these influences can hasten the decay of cool Java SST anomalies and therefore may impact the strength and duration of pIOD events. Along the west coast of Sumatra, surface cooling is initially delayed by a deeper thermocline and a salinity-stratified barrier layer. Hence upwelling Kelvin waves do not substantially affect SST near Sumatra during the first 2-3 months of Java SST cooling; however, they do help drive surface cooling near Sumatra once the barrier layer has been sufficiently eroded by waters of decreasing temperature and increasing salinity. Upwelling Kelvin wave activity in the equatorial Indian Ocean starting in April is also shown to be a robust predictor of pIOD events later in the calendar year.
Emerging role of Indian ocean on Indian northeast monsoon
NASA Astrophysics Data System (ADS)
Yadav, Ramesh Kumar
2013-07-01
This study examines the emerging role of Indian Ocean sea surface temperature (SST) on the inter-annual variability (IAV) of Indian north-east monsoon rainfall (NEMR). The IAV of NEMR is associated with the warm SST anomaly over east Bay-of-Bengal (BoB) (88.5oE-98.5oE; 8.5oN-15.5oN) and cool SST anomaly over east equatorial Indian Ocean (80.5oE-103.5oE; 6.5oS-3.5oN). The gradient of SST between these boxes (i.e. northern box minus southern box) shows strong and robust association with the Indian NEMR variability in the recent decades. For establishing the teleconnections, SST, mean sea level pressure, North Indian Ocean tropical storm track, and circulation data have been used. The study reveals that during the positive SST gradient years, the inter-tropical convergence zone (ITCZ) shifts northwards over the East Indian Ocean. The tropical depressions, storms and cyclones formed in the North Indian Ocean moves more zonally and strike the southern peninsular India and hence excess NEMR. While, during the negative SST gradient years, the ITCZ shifts southwards over the Indian Ocean. The tropical depressions, storms and cyclones formed in the North Indian Ocean moves more northwestward direction and after crossing 15oN latitude re-curve to north-east direction towards head BoB and misses southern peninsular India and hence, deficient NEMR.
NASA Astrophysics Data System (ADS)
Inatsu, Masaru; Mukougawa, Hitoshi; Xie, Shang-Ping
2003-10-01
Midwinter storm track response to zonal variations in midlatitude sea surface temperatures (SSTs) has been investigated using an atmospheric general circulation model under aquaplanet and perpetual-January conditions. Zonal wavenumber-1 SST variations with a meridionally confined structure are placed at various latitudes. Having these SST variations centered at 30°N leads to a zonally localized storm track, while the storm track becomes nearly zonally uniform when the same SST forcing is moved farther north at 40° and 50°N. Large (small) baroclinic energy conversion north of the warm (cold) SST anomaly near the axis of the storm track (near 40°N) is responsible for the large (small) storm growth. The equatorward transfer of eddy kinetic energy by the ageostrophic motion and the mechanical damping are important to diminish the storm track activity in the zonal direction.Significant stationary eddies form in the upper troposphere, with a ridge (trough) northeast of the warm (cold) SST anomaly at 30°N. Heat and vorticity budget analyses indicate that zonally localized condensational heating in the storm track is the major cause for these stationary eddies, which in turn exert a positive feedback to maintain the localized storm track by strengthening the vertical shear near the surface. These results indicate an active role of synoptic eddies in inducing deep, tropospheric-scale response to midlatitude SST variations. Finally, the application of the model results to the real atmosphere is discussed.
Benedict, James J.; Pritchard, Michael S.; Collins, William D.
2015-11-23
The superparameterized Community Atmosphere Model (SPCAM) is used to investigate the impact and geographic sensitivity of positive Indian Ocean Dipole (+IOD) sea-surface temperatures (SSTs) on Madden-Julian oscillation (MJO) propagation. The goal is to clarify potentially appreciable +IOD effects on MJO dynamics detected in prior studies by using a global model with explicit convection representation. Prescribed climatological October SSTs and variants of the SST distribution from October 2006, a +IOD event, force the model. Modest MJO convection weakening over the Maritime Continent occurs when either climatological SSTs, or +IOD SST anomalies restricted to the Indian Ocean, are applied. However, severe MJOmore » weakening occurs when either +IOD SST anomalies are applied globally or restricted to the equatorial Pacific. MJO disruption is associated with time-mean changes in the zonal wind profile and lower moist static energy (MSE) in subsiding air masses imported from the Subtropics by Rossby-like gyres. On intraseasonal scales, MJO disruption arises from significantly smaller MSE accumulation, weaker meridional advective moistening, and overactive submonthly eddies that mix drier subtropical air into the path of MJO convection. These results (1) demonstrate that SPCAM reproduces observed time-mean and intraseasonal changes during +IOD episodes, (2) reaffirm the role that submonthly eddies play in MJO propagation and show that such multiscale interactions are sensitive to interannual SST states, and (3) suggest that boreal fall +IOD SSTs local to the Indian Ocean have a significantly smaller impact on Maritime Continent MJO propagation compared to contemporaneous Pacific SST anomalies which, for October 2006, resemble El Ninõ-like conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benedict, James J.; Pritchard, Michael S.; Collins, William D.
The superparameterized Community Atmosphere Model (SPCAM) is used to investigate the impact and geographic sensitivity of positive Indian Ocean Dipole (+IOD) sea-surface temperatures (SSTs) on Madden-Julian oscillation (MJO) propagation. The goal is to clarify potentially appreciable +IOD effects on MJO dynamics detected in prior studies by using a global model with explicit convection representation. Prescribed climatological October SSTs and variants of the SST distribution from October 2006, a +IOD event, force the model. Modest MJO convection weakening over the Maritime Continent occurs when either climatological SSTs, or +IOD SST anomalies restricted to the Indian Ocean, are applied. However, severe MJOmore » weakening occurs when either +IOD SST anomalies are applied globally or restricted to the equatorial Pacific. MJO disruption is associated with time-mean changes in the zonal wind profile and lower moist static energy (MSE) in subsiding air masses imported from the Subtropics by Rossby-like gyres. On intraseasonal scales, MJO disruption arises from significantly smaller MSE accumulation, weaker meridional advective moistening, and overactive submonthly eddies that mix drier subtropical air into the path of MJO convection. These results (1) demonstrate that SPCAM reproduces observed time-mean and intraseasonal changes during +IOD episodes, (2) reaffirm the role that submonthly eddies play in MJO propagation and show that such multiscale interactions are sensitive to interannual SST states, and (3) suggest that boreal fall +IOD SSTs local to the Indian Ocean have a significantly smaller impact on Maritime Continent MJO propagation compared to contemporaneous Pacific SST anomalies which, for October 2006, resemble El Ninõ-like conditions.« less
Impacts of winter NPO on subsequent winter ENSO: sensitivity to the definition of NPO index
NASA Astrophysics Data System (ADS)
Chen, Shangfeng; Wu, Renguang
2018-01-01
This study investigates the linkage between boreal winter North Pacific Oscillation (NPO) and subsequent winter El Niño-Southern Oscillation (ENSO) based on seven different NPO indices. Results show that the influence of winter NPO on the subsequent winter El Niño is sensitive to how the NPO is defined. A significant NPO-El Niño connection is obtained when the NPO-related anomalous cyclone over the subtropical North Pacific extends to near-equatorial regions. The anomalous cyclone induces warm sea surface temperature (SST) anomalies through modulating surface heat fluxes. These warm SST anomalies are able to maintain into the following spring and summer through an air-sea coupled process and in turn induce significant westerly wind anomalies over the tropical western Pacific. In contrast, the NPO-El Niño relationship is unclear when the NPO-related anomalous cyclone over the subtropical North Pacific is confined to off-equatorial regions and cannot induce significant warm SST anomalies over the subtropical North Pacific. The present study suggests that definitions of NPO should be taken into account when using NPO to predict ENSO. In particular, we recommend defining the NPO index based on the empirical orthogonal function technique over appropriate region that does not extend too far north.
Global Precipitation Patterns Associated with ENSO and Tropical Circulations
NASA Technical Reports Server (NTRS)
Curtis, Scott; Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric
1999-01-01
Tropical precipitation and the accompanying latent heat release is the engine that drives the global circulation. An increase or decrease in rainfall in the tropics not only leads to the local effects of flooding or drought, but contributes to changes in the large scale circulation and global climate system. Rainfall in the tropics is highly variable, both seasonally (monsoons) and interannually (ENSO). Two experimental observational data sets, developed under the auspices of the Global Precipitation Climatology Project (GPCP), are used in this study to examine the relationships between global precipitation and ENSO and extreme monsoon events over the past 20 years. The V2x79 monthly product is a globally complete, 2.5 deg x 2.5 deg, satellite-gauge merged data set that covers the period 1979 to the present. Indices based on patterns of satellite-derived rainfall anomalies in the Pacific are used to analyze the teleconnections between ENSO and global precipitation, with emphasis on the monsoon systems. It has been well documented that dry (wet) Asian monsoons accompany warm (cold) ENSO events. However, during the summer seasons of the 1997/98 ENSO the precipitation anomalies were mostly positive over India and the Bay of Bengal, which may be related to an epoch-scale variability in the Asian monsoon circulation. The North American monsoon may be less well linked to ENSO, but a positive precipitation anomaly was observed over Mexico around the September following the 1997/98 event. For the twenty-year record, precipitation and SST patterns in the tropics are analyzed during wet and dry monsoons. For the Asian summer monsoon, positive rainfall anomalies accompany two distinct patterns of tropical precipitation and a warm Indian Ocean. Negative anomalies coincide with a wet Maritime Continent.
NASA Astrophysics Data System (ADS)
Watterson, I. G.
2010-05-01
Rainfall in southeastern Australia has declined in recent years, particularly during austral autumn over the state of Victoria. A recent study suggests that sea surface temperature (SST) variations in both the Indonesian Throughflow (ITF) region and in a meridional dipole in the central Indian Ocean have influenced Victorian late autumn rainfall since 1950. However, it remains unclear to what extent SSTs in these and other regions force such a teleconnection. Analysis of a 1080 year simulation by the climate model CSIRO Mk3.5 shows that the model Victorian rainfall is correlated rather realistically with SSTs but that part of the above relationships is due to the model ENSO. Furthermore, the remote patterns of pressure, rainfall, and land temperature greatly diminish when the data are lagged by 1 month, suggesting that the true forcing by the persisting SSTs is weak. In a series of simulations of the atmospheric Mk3.5 with idealized SST anomalies, raised SSTs to the east of Indonesia lower the simulated Australian rainfall, while those to the west raise it. A positive ITF anomaly lowers pressure over Australia, but with little effect on Victorian rainfall. The meridional dipole and SSTs to the west and southeast of Australia have little direct effect on southeastern Australia in the model. The results suggest that tropical SSTs predominate as an influence on Victorian rainfall. However, the SST indices appear to explain only a fraction of the observed trend, which in the case of decadal means remains within the range of unforced variability simulated by Mk3.5.
NASA Astrophysics Data System (ADS)
Gong, Zhiqiang; Dogar, Muhammad Mubashar Ahmad; Qiao, Shaobo; Hu, Po; Feng, Guolin
2017-09-01
This study examines the ability of the Beijing Climate Center Climate System Model (BCC_CSM) to predict the meridional pattern of summer precipitation over East Asia-Northwest Pacific (EA-NWP) and its East Asia-Pacific (EAP) teleconnection. The differences of summer precipitation modes of the empirical orthogonal function and the bias of atmospheric circulations over EA-NWP are analyzed to determine the reason for the precipitation prediction errors. Results indicate that the BCC_CSM could not reproduce the positive-negative-positive meridional tripole pattern from south to north that differs markedly from that observed over the last 20 years. This failure can be attributed to the bias of the BCC_CSM hindcasts of the summer EAP teleconnection and the low predictability of 500 hPa at the mid-high latitude lobe of the EAP. Meanwhile, the BCC_CSM hindcasts' deficiencies of atmospheric responses to SST anomalies over the Indonesia maritime continent (IMC) resulted in opposite and geographically shifted geopotential anomalies at 500 hPa as well as wind and vorticity anomalies at 850 hPa, rendering the BCC_CSM unable to correctly reproduce the EAP teleconnection pattern. Understanding these two problems will help further improve BCC_CSM's summer precipitation forecasting ability over EA-NWP.
The Use of Principal Components in Long-Range Forecasting
NASA Astrophysics Data System (ADS)
Chern, Jonq-Gong
Large-scale modes of the global sea surface temperatures and the Northern Hemisphere tropospheric circulation are described by principal component analysis. The first and the second SST components well describe the El Nino episodes, and the El Nino index (ENI), suggested in this study, is consistent with the winter Southern Oscillation index (SOI), where this ENI is a composite component of the weighted first and second SST components. The large-scale interactive modes of the coupling ocean-atmosphere system are identified by cross-correlation analysis The result shows that the first SST component is strongly correlated with the first component of geopotential height in lead time of 6 months. In the El Nino-Southern Oscillation (ENSO) evolution, the El Nino mode strongly influences the winter tropospheric circulation in the mid -latitudes for up to three leading seasons. The regional long-range variation of climate is investigated with these major components of the SST and the tropospheric circulation. In the mid-latitude, the climate of the central United States shows a weak linkage with these large-scale circulations, and the climate of the western United States appears to be consistently associated with the ENSO modes. These El Nino modes also show a dominant influence on Eastern Asia as evidenced in Taiwan Mei-Yu patterns. Possible regional long-range forecasting schemes, utilizing the complementary characteristics of the winter El Nino mode and SST anomalies, are examined with the Taiwan Mei-Yu.
NASA Astrophysics Data System (ADS)
Li, Zhenning; Yang, Song
2017-11-01
The influences of spring-to-summer sea surface temperature (SST) anomalies in different domains of the Indian Ocean (IO) on the Asian summer monsoon are investigated by conducting a series of numerical experiments using the NCAR CAM4 model. It is found that, to a certain extent, the springtime IO SST anomalies can persist to the summer season. The spring-to-summer IO SST anomalies associated with the IO basin warming mode are strongly linked to the summer climate over Asia, especially the South Asian monsoon (SAM) and the East Asian monsoon. Among this connection, the warming of tropical IO plays the most critical role, and the warming of southern IO is important for monsoon variation and prediction prior to the full development of the monsoon. The atmospheric response to IO basin wide warming is similar with that to tropical IO warming. The influence of northern IO warming on the SAM, however, is opposite to the effect of southern IO warming. Meanwhile, the discrepancies between the results from idealized SST forcing simulations and observations, especially for the southern IO, reveal that the dominant role of air-sea interaction in the monsoon-IO coupled system cannot be ignored. Moreover, the springtime northern IO warming seems to favor an early onset or a stronger persistence of the SAM.
Recent SST trends and Flood Disasters in Brazil
NASA Astrophysics Data System (ADS)
Yamashiki, Y.; Behera, S. K.; Inoue, S.; Netrananda, S.; Silva, R. D.; Takara, K. T.; Yamagata, T.
2010-12-01
We analyzed recent variations in the sea surface temperature (SST) anomalies of Pacific and Atlantic Oceans to understand their roles in extreme discharge of Amazon River Basin. In general, higher than monthly average discharge appears when La Niña condition forms and lower than monthly average discharge appears when El Niño condition forms. We also investigated the relationship between SST anomalies and recent floods in Brazil during the period of 1980-2010. Most severe floods (e.g. 2003 and 2010 Rio de Janeiro-São Paulo Flood) in austral summer occurred when El Niño Modoki appears in the Pacific Ocean. In addition, warm waters in tropical South Atlantic Ocean between American and African Coast also helped the moisture convergence to the affected region. Floods in some other locations (for example, Itaipava flood occurred in Maranhao State in 2008) occurred when a La Niña Modoki appeared in Pacific Ocean. These flood disasters in Brazil associated with climate phenomena may increase due to warmer SST trend under the global warming stress.
Effects of Northern Hemisphere Sea Surface Temperature Changes on the Global Air Quality
NASA Astrophysics Data System (ADS)
Yi, K.; Liu, J.
2017-12-01
The roles of regional sea surface temperature (SST) variability on modulating the climate system and consequently the air quality are investigated using the Community Earth System Model (CESM). Idealized, spatially uniform SST anomalies of +/- 1 °C are superimposed onto the North Pacific, North Atlantic, and North Indian Oceans individually. Ignoring the response of natural emissions, our simulations suggest large seasonal and regional variability of surface O3 and PM2.5 concentrations in response to SST anomalies, especially during boreal summers. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv while increases the anthropogenic PM2.5 concentrations from 0.5 to 3 µg m-3. We implement the integrated process rate (IPR) analysis in CESM and find that meteorological transport in response to SST changes is the key process causing air pollutant perturbations in most cases. During boreal summers, the increase in tropical SST over different ocean basins enhances deep convection, which significantly increases the air temperature over the upper troposphere and trigger large-scale subsidence over nearby and remote regions. These processes tend to increase tropospheric stability and suppress rainfall at lower mid-latitudes. Consequently, it reduces the vertical transport of O3 to the surface while facilitating the accumulation of PM2.5 concentrations over most regions. In addition, this regional SST warming may also considerably suppress intercontinental transport of air pollution as confirmed with idealized CO-like tracers. Our findings indicate a robust linkage between basin-scale SST variability and regional air quality, which can help local air quality management.
Impact of a permanent El Niño (El Padre) and Indian Ocean Dipole in warm Pliocene climates
Shukla, Sonali P.; Chandler, Mark A.; Jonas, Jeff; Sohl, Linda E.; Mankoff, Ken; Dowsett, Harry J.
2009-01-01
Pliocene sea surface temperature data, as well as terrestrial precipitation and temperature proxies, indicate warmer than modern conditions in the eastern equatorial Pacific and imply permanent El Niño–like conditions with impacts similar to those of the 1997/1998 El Niño event. Here we use a general circulation model to examine the global-scale effects that result from imposing warm tropical sea surface temperature (SST) anomalies in both modern and Pliocene simulations. Observed SSTs from the 1997/1998 El Niño event were used for the anomalies and incorporate Pacific warming as well as a prominent Indian Ocean Dipole event. Both the permanent El Niño (also called El Padre) and Indian Ocean Dipole (IOD) conditions are necessary to reproduce temperature and precipitation patterns consistent with the global distribution of Pliocene proxy data. These patterns may result from the poleward propagation of planetary waves from the strong convection centers associated with the El Niño and IOD.
Interaction between Tropical Atlantic Variability and El Niño-Southern Oscillation.
NASA Astrophysics Data System (ADS)
Saravanan, R.; Chang, Ping
2000-07-01
The interaction between tropical Atlantic variability and El Niño-Southern Oscillation (ENSO) is investigated using three ensembles of atmospheric general circulation model integrations. The integrations are forced by specifying observed sea surface temperature (SST) variability over a forcing domain. The forcing domain is the global ocean for the first ensemble, limited to the tropical ocean for the second ensemble, and further limited to the tropical Atlantic region for the third ensemble. The ensemble integrations show that extratropical SST anomalies have little impact on tropical variability, but the effect of ENSO is pervasive in the Tropics. Consistent with previous studies, the most significant influence of ENSO is found during the boreal spring season and is associated with an anomalous Walker circulation. Two important aspects of ENSO's influence on tropical Atlantic variability are noted. First, the ENSO signal contributes significantly to the `dipole' correlation structure between tropical Atlantic SST and rainfall in the Nordeste Brazil region. In the absence of the ENSO signal, the correlations are dominated by SST variability in the southern tropical Atlantic, resulting in less of a dipole structure. Second, the remote influence of ENSO also contributes to positive correlations between SST anomalies and downward surface heat flux in the tropical Atlantic during the boreal spring season. However, even when ENSO forcing is absent, the model integrations provide evidence for a positive surface heat flux feedback in the deep Tropics, which is analyzed in a companion study by Chang et al. The analysis of model simulations shows that interannual atmospheric variability in the tropical Pacific-Atlantic system is dominated by the interaction between two distinct sources of tropical heating: (i) an equatorial heat source in the eastern Pacific associated with ENSO and (ii) an off-equatorial heat source associated with SST anomalies near the Caribbean. Modeling this Caribbean heat source accurately could be very important for seasonal forecasting in the Central American-Caribbean region.
Tropical cloud feedbacks and natural variability of climate
NASA Technical Reports Server (NTRS)
Miller, R. L.; Del Genio, A. D.
1994-01-01
Simulations of natural variability by two general circulation models (GCMs) are examined. One GCM is a sector model, allowing relatively rapid integration without simplification of the model physics, which would potentially exclude mechanisms of variability. Two mechanisms are found in which tropical surface temperature and sea surface temperature (SST) vary on interannual and longer timescales. Both are related to changes in cloud cover that modulate SST through the surface radiative flux. Over the equatorial ocean, SST and surface temperature vary on an interannual timescale, which is determined by the magnitude of the associated cloud cover anomalies. Over the subtropical ocean, variations in low cloud cover drive SST variations. In the sector model, the variability has no preferred timescale, but instead is characterized by a 'red' spectrum with increasing power at longer periods. In the terrestrial GCM, SST variability associated with low cloud anomalies has a decadal timescale and is the dominant form of global temperature variability. Both GCMs are coupled to a mixed layer ocean model, where dynamical heat transports are prescribed, thus filtering out El Nino-Southern Oscillation (ENSO) and thermohaline circulation variability. The occurrence of variability in the absence of dynamical ocean feedbacks suggests that climatic variability on long timescales can arise from atmospheric processes alone.
Improved management of small pelagic fisheries through seasonal climate prediction.
Tommasi, Désirée; Stock, Charles A; Pegion, Kathleen; Vecchi, Gabriel A; Methot, Richard D; Alexander, Michael A; Checkley, David M
2017-03-01
Populations of small pelagic fish are strongly influenced by climate. The inability of managers to anticipate environment-driven fluctuations in stock productivity or distribution can lead to overfishing and stock collapses, inflexible management regulations inducing shifts in the functional response to human predators, lost opportunities to harvest populations, bankruptcies in the fishing industry, and loss of resilience in the human food supply. Recent advances in dynamical global climate prediction systems allow for sea surface temperature (SST) anomaly predictions at a seasonal scale over many shelf ecosystems. Here we assess the utility of SST predictions at this "fishery relevant" scale to inform management, using Pacific sardine as a case study. The value of SST anomaly predictions to management was quantified under four harvest guidelines (HGs) differing in their level of integration of SST data and predictions. The HG that incorporated stock biomass forecasts informed by skillful SST predictions led to increases in stock biomass and yield, and reductions in the probability of yield and biomass falling below socioeconomic or ecologically acceptable levels. However, to mitigate the risk of collapse in the event of an erroneous forecast, it was important to combine such forecast-informed harvest controls with additional harvest restrictions at low biomass. © 2016 by the Ecological Society of America.
Estimating the Ocean Flow Field from Combined Sea Surface Temperature and Sea Surface Height Data
NASA Technical Reports Server (NTRS)
Stammer, Detlef; Lindstrom, Eric (Technical Monitor)
2002-01-01
This project was part of a previous grant at MIT that was moved over to the Scripps Institution of Oceanography (SIO) together with the principal investigator. The final report provided here is concerned only with the work performed at SIO since January 2000. The primary focus of this project was the study of the three-dimensional, absolute and time-evolving general circulation of the global ocean from a combined analysis of remotely sensed fields of sea surface temperature (SST) and sea surface height (SSH). The synthesis of those two fields was performed with other relevant physical data, and appropriate dynamical ocean models with emphasis on constraining ocean general circulation models by a combination of both SST and SSH data. The central goal of the project was to improve our understanding and modeling of the relationship between the SST and its variability to internal ocean dynamics, and the overlying atmosphere, and to explore the relative roles of air-sea fluxes and internal ocean dynamics in establishing anomalies in SST on annual and longer time scales. An understanding of those problems will feed into the general discussion on how SST anomalies vary with time and the extend to which they interact with the atmosphere.
NASA Astrophysics Data System (ADS)
Perez Arango, J. D.; Lintner, B. R.; Lyon, B.
2016-12-01
Although many aspects of the tropical response to ENSO are well-known, the spatial characteristics of the rainfall response to ENSO remain relatively unexplored. Moreover, in current generation climate models, the spatial signatures of the ENSO tropical teleconnection are more uncertain than other aspects of ENSO variability, such as the amplitude of rainfall anomalies. Following the approach of Lyon (2004) and Lyon and Barnston (2005), we analyze here integrated measures of the spatial extent of drought and pluvial conditions in the tropics and their relationship to ENSO in observations as well as simulations of Phase 5 of the Coupled Model Intercomparison Project (CMIP5) with prescribed SST forcing. We compute diagnostics including the model ensemble-means and standard deviations of moderate, intermediate, and severe droughts and pluvials and the lagged correlations with respect to ENSO-based SST indices like NINO3. Overall, in a tropics-wide sense, the models generally capture the areal extent of observed droughts and pluvials and their phasing with respect to ENSO. However, at more local scales, e.g., tropical South America, the simulated metrics agree less strongly with observations, underscoring the role of errors in the spatial patterns of ENSO-induced rainfall anomalies.
NASA Astrophysics Data System (ADS)
Chamorro, Adolfo; Echevin, Vincent; Colas, François; Oerder, Vera; Tam, Jorge; Quispe-Ccalluari, Carlos
2018-01-01
The physical processes driving the wind intensification in a coastal band of 100 km off Peru during the intense 1997-1998 El Niño (EN) event were studied using a regional atmospheric model. A simulation performed for the period 1994-2000 reproduced the coastal wind response to local sea surface temperature (SST) forcing and large scale atmospheric conditions. The model, evaluated with satellite data, represented well the intensity, seasonal and interannual variability of alongshore (i.e. NW-SE) winds. An alongshore momentum budget showed that the pressure gradient was the dominant force driving the surface wind acceleration. The pressure gradient tended to accelerate the coastal wind, while turbulent vertical mixing decelerated it. A quasi-linear relation between surface wind and pressure gradient anomalies was found. Alongshore pressure gradient anomalies were caused by a greater increase in near-surface air temperature off the northern coast than off the southern coast, associated with the inhomogeneous SST warming. Vertical profiles of wind, mixing coefficient, and momentum trends showed that the surface wind intensification was not caused by the increase of turbulence in the planetary boundary layer. Moreover, the temperature inversion in the vertical mitigated the development of pressure gradient due to air convection during part of the event. Sensitivity experiments allowed to isolate the respective impacts of the local SST forcing and large scale condition on the coastal wind intensification. It was primarily driven by the local SST forcing whereas large scale variability associated with the South Pacific Anticyclone modulated its effects. Examination of other EN events using reanalysis data confirmed that intensifications of alongshore wind off Peru were associated with SST alongshore gradient anomalies, as during the 1997-1998 event.
A Time Series of Mean Global Sea Surface Temperature from the Along-Track Scanning Radiometers
NASA Astrophysics Data System (ADS)
Veal, Karen L.; Corlett, Gary; Remedios, John; Llewellyn-Jones, David
2010-12-01
A climate data set requires a long time series of consistently processed data with suitably long periods of overlap of different instruments which allows characterization of any inter-instrument biases. The data obtained from ESA's three Along-Track Scanning Radiometers (ATSRs) together comprise an 18 year record of SST with overlap periods of at least 6 months. The data from all three ATSRs has been consistently processed. These factors together with the stability of the instruments and the precision of the derived SST makes this data set eminently suitable for the construction of a time series of SST that complies with many of the GCOS requirements for a climate data set. A time series of global and regional average SST anomalies has been constructed from the ATSR version 2 data set. An analysis of the overlap periods of successive instruments was used to remove intra-series biases and align the series to a common reference. An ATSR climatology has been developed and has been used to calculate the SST anomalies. The ATSR-1 time series and the AATSR time series have been aligned to ATSR-2. The largest adjustment is ~0.2 K between ATSR-2 and AATSR which is suspected to be due to a shift of the 12 μm filter function for AATSR. An uncertainty of 0.06 K is assigned to the relative anomaly record that is derived from the dual three-channel night-time data. A relative uncertainty of 0.07 K is assigned to the dual night-time two-channel record, except in the ATSR-1 period (1994-1996) where it is larger.
Data-Model Comparison of Pliocene Sea Surface Temperature
NASA Astrophysics Data System (ADS)
Dowsett, H. J.; Foley, K.; Robinson, M. M.; Bloemers, J. T.
2013-12-01
The mid-Piacenzian (late Pliocene) climate represents the most geologically recent interval of long-term average warmth and shares similarities with the climate projected for the end of the 21st century. As such, its fossil and sedimentary record represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. We present the first systematic comparison of Pliocene sea surface temperatures (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) and the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional (mid- to high latitude North Atlantic and tropics) and dynamic (upwelling) situations where there is discord between reconstructed SST and the PlioMIP simulations. These differences can lead to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction. Scatter plot of multi-model-mean anomalies (squares) and PRISM3 data anomalies (large blue circles) by latitude. Vertical bars on data anomalies represent the variability of warm climate phase within the time-slab at each locality. Small colored circles represent individual model anomalies and show the spread of model estimates about the multi-model-mean. While not directly comparable in terms of the development of the means nor the meaning of variability, this plot provides a first order comparison of the anomalies. Encircled areas are a, PRISM low latitude sites outside of upwelling areas; b, North Atlantic coastal sequences and Mediterranean sites; c, large anomaly PRISM sites from the northern hemisphere. Numbers identify Ocean Drilling Program sites.
New perspectives of the interannual variability of the Asian-Australian monsoon
NASA Astrophysics Data System (ADS)
Wang, B.
2003-04-01
What is the dominant mode of the interannual variability of the Asian-Australian monsoon? Our analysis reveals two off-equatorial surface anticyclones (or cyclones) dominating the evolving A-AM anomalies. One anomalous anticyclone is located over the South Indian Ocean (SIO) during the El Niño developing year and the other occurs over the western North Pacific (WNP), which attains maximum intensity during El Niño mature and persists through the subsequent spring and summer. What mechanisms are responsible for this dominant mode? It has been a prevailing perspective that El Niño/La Niña and warm-pool SST anomalies primarily force the A-AM anomalies. In contrasting to this traditional view, we demonstrate that El Niño forcing alone can explain neither the amplification of the SIO anticyclone nor the maintenance of the WNP anticyclone; the warm pool SST anomalies are largely a result of the anomalous monsoon. We propose that the dominant A-AM mode is attributed to the combined effect of remote El Niño forcing, local monsoon-warm ocean interaction, and the annual cycle of background circulation. The local atmosphere-warm ocean interaction contributes considerably to these monsoon anomalies. The atmosphere-ocean conditions in the SIO and WNP are similar, namely, an east-west anomalous SST dipole with cold water to the east and warm water to the west of the anticyclone center. These coherent conditions result from a positive feedback between the anomalous descending Rossby waves and SST dipole, which intensifies the SIO anticyclone during El Niño growth and maintains the WNP anticyclone during its decay. The atmosphere-ocean interaction in the two regions share common wind-evaporation/entrainment and cloud/radiation feedbacks but differ in the roles of oceanic dynamics in SST variability. The annual cycle of the atmospheric background circulation, on one hand, controls the nature of the local atmosphere-warm ocean interaction; on the other hand, considerably modifies the atmospheric response to remote El Niño forcing. During the summer of El Niño development, a tilted anticyclonic ridge originating from the maritime continent and extending to south India exhibits considerable equatorial asymmetry, which results from the effects of easterly vertical shear on Rossby waves. The extended SVD results also reveal a prominent biennial tendency of the A-AM anomalies, suggesting that the tropospheric biennial oscillation (TBO) is essentially a phenomenon concurring with the turnabout of El Niño and La Niña events. The understanding obtained in this study leads to a new paradigm for TBO.
Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability
NASA Astrophysics Data System (ADS)
Tokinaga, Hiroki; Xie, Shang-Ping; Mukougawa, Hitoshi
2017-06-01
With amplified warming and record sea ice loss, the Arctic is the canary of global warming. The historical Arctic warming is poorly understood, limiting our confidence in model projections. Specifically, Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing. Here, we show that the concurrent phase shift of Pacific and Atlantic interdecadal variability modes is the major driver for the rapid early 20th-century Arctic warming. Atmospheric model simulations successfully reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early 20th-century Arctic warming is associated with positive SST anomalies over the tropical and North Atlantic and a Pacific SST pattern reminiscent of the positive phase of the Pacific decadal oscillation. Atmospheric circulation changes are important for the early 20th-century Arctic warming. The equatorial Pacific warming deepens the Aleutian low, advecting warm air into the North American Arctic. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. Coupled ocean-atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, negative-to-positive phase shift of the Pacific and Atlantic interdecadal modes. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region.
Sensitivity of the Tropical Pacific Ocean to Precipitation Induced Freshwater Flux
NASA Technical Reports Server (NTRS)
Yang, Song; Lau, K.-M.; Schopf, Paul S.
1999-01-01
We have performed a series of experiments using an ocean model to study the sensitivity of tropical Pacific Ocean to variations in precipitation induced freshwater fluxes. Variations in these fluxes arise from natural causes on all time scales. In addition, estimates of these fluxes are uncertain because of differences among measurement techniques. The model used is a quasi-isopycnal model, covering the Pacific from 40 S to 40 N. The surface forcing is constructed from observed wind stress, evaporation, precipitation, and surface temperature (SST) fields. The heat flux is produced with an iterative technique so as to maintain the model close to the observed climatology, but with only a weak damping to that climatology. Climatological estimates of evaporation are combined with various estimates of precipitation to determine the net surface freshwater flux. Results indicate that increased freshwater input decreases salinity as expected, but increases temperatures in the upper ocean. Using the freshwater flux estimated from the Microwave Sounding Unit leads to a warming of up to 0.6 C in the western Pacific over a case with zero net freshwater flux. SST is sensitive to the discrepancies among different precipitation observations, with root-mean-square differences in SST on the order of 0.2-0.3 C. The change in SST is more pronounced in the eastern Pacific, with differences of over 1 C found among the various precipitation products. Interannual variation in precipitation during El Nino events leads to increased warming. During the winter of 1982-83, freshwater flux accounts for about 0.4 C (approximately 10-15% of the maximum warming) of the surface warming in the central-eastern Pacific. Thus, the error of SST caused by the discrepancies in precipitation products is more than half of the SST anomaly produced by the interannual variability of observed precipitation. Further experiments, in which freshwater flux anomalies are imposed in the western, central, and eastern Pacific, show that the influence of net freshwater flux is also spatially dependent. The imposition of freshwater flux in the far western Pacific leads to a trapping of salinity anomaly to the surface layers near the equator. An identical flux imposed in the central Pacific produces deeper and off-equatorial salinity anomalies. The contrast between these two simulations is consistent with other simulations of the western Pacific barrier layer information.
Revisiting the false alarm in the 2014 El Niño prediction
NASA Astrophysics Data System (ADS)
Shin, C. S.; Huang, B.
2016-12-01
In early 2014, most dynamic forecast models predicted a developing strong El Niño in the following winter. However, this forecast turned out to be a representative case of the false alarms since 2000. In this study, a set of CFSv2 ensemble seasonal reforecast is conducted to examine some possible causes of the unrealistic El Niño prediction in 2014. Zooming in on the NINO3.4 index, the ensemble-mean reforecast initialized in April 2014 predicted a very strong El Niño as the 1997-98 one with most ensemble members warmer than the observations. In contrast, the ensemble-mean reforecast initialized in January (July) 2014 predicted a slower growth (a decline) of the NINO3.4 index for 12-month lead (from November to the spring in 2015), with the spreads of the ensemble members enveloping the observations. Since the observed SST anomalies in equatorial eastern Pacific changed its polarity in late March from the coldest SST anomalies in February accompanied by strong easterly wind to warmer SST in mid April, the atmospheric and oceanic instantaneous initial states in early April 2014 may misrepresent these intra-seasonal variations, possibly resulting in warm bias in equatorial Pacific even at 0-month lead. Our experiments show that colder ocean surface initial conditions in tropical eastern Pacific tend to hinder developing warm SST anomalies in equatorial eastern Pacific and weaken the Bjerknes-type air-sea feedback in the summer of 2014, which reduce excessive westerly wind (warm SST anomalies) in equatorial western Pacific (near the Dateline) and decrease the air-sea feedback. As a result, the predicted amplitude of NINO3.4 at the peak phase is comparable to the observed one, suggesting that the initial condition errors are partially responsible for the false alarm in the 2014 El Niño prediction issued in the spring. Nonetheless, the initial condition errors could not account for easterly wind burst observed in mid June associated with enhanced extratropical anti-cyclonic atmospheric circulation anomalies in the Southern Hemisphere, which is regarded as another major factor to stall the El Niño occurrence in 2014. What drives this anomalous atmospheric forcing in mid June and how much it contributes to a more realistic prediction of the 2014 El Niño will also be discussed.
Bimodality and regime behavior in atmosphere-ocean interactions during the recent climate change
NASA Astrophysics Data System (ADS)
Fallah, Bijan; Sodoudi, Sahar
2015-06-01
Maximum covariance analysis (MCA) and isometric feature mapping (Isomap) are applied to investigate the spatio-temporal atmosphere-ocean interactions otherwise hidden in observational data for the period of 1979-2010. Despite an established long-term surface warming trend for the whole northern hemisphere, sea surface temperatures (SST) in the East Pacific have remained relatively constant for the period of 2001-2010. Our analysis reveals that SST anomaly probability density function of the leading two Isomap components is bimodal. We conclude that Isomap shows the existence of two distinct regimes in surface ocean temperature, resembling the break and active phases of rainfall over equatorial land areas. These regimes occurred within two separated time windows during the past three decades. Strengthening of trade winds over Pacific was coincident with the cold phase of east equatorial Pacific. This pattern was reversed during the warm phase of east equatorial Pacific. The El Niño event of 1997/1998 happened within the transition mode between these two regimes and may be a trigger for the SST changes in the Pacific. Furthermore, we suggest that Isomap, compared with MCA, provides more information about the behavior and predictability of the inter-seasonal atmosphere-ocean interactions.
Analysis of variability of tropical Pacific sea surface temperatures
NASA Astrophysics Data System (ADS)
Davies, Georgina; Cressie, Noel
2016-11-01
Sea surface temperature (SST) in the Pacific Ocean is a key component of many global climate models and the El Niño-Southern Oscillation (ENSO) phenomenon. We shall analyse SST for the period November 1981-December 2014. To study the temporal variability of the ENSO phenomenon, we have selected a subregion of the tropical Pacific Ocean, namely the Niño 3.4 region, as it is thought to be the area where SST anomalies indicate most clearly ENSO's influence on the global atmosphere. SST anomalies, obtained by subtracting the appropriate monthly averages from the data, are the focus of the majority of previous analyses of the Pacific and other oceans' SSTs. Preliminary data analysis showed that not only Niño 3.4 spatial means but also Niño 3.4 spatial variances varied with month of the year. In this article, we conduct an analysis of the raw SST data and introduce diagnostic plots (here, plots of variability vs. central tendency). These plots show strong negative dependence between the spatial standard deviation and the spatial mean. Outliers are present, so we consider robust regression to obtain intercept and slope estimates for the 12 individual months and for all-months-combined. Based on this mean-standard deviation relationship, we define a variance-stabilizing transformation. On the transformed scale, we describe the Niño 3.4 SST time series with a statistical model that is linear, heteroskedastic, and dynamical.
Influence of finite-time Lyapunov exponents on winter precipitation over the Iberian Peninsula
NASA Astrophysics Data System (ADS)
Garaboa-Paz, Daniel; Lorenzo, Nieves; Pérez-Muñuzuri, Vicente
2017-05-01
Seasonal forecasts have improved during the last decades, mostly due to an increase in understanding of the coupled ocean-atmosphere dynamics, and the development of models able to predict the atmosphere variability. Correlations between different teleconnection patterns and severe weather in different parts of the world are constantly evolving and changing. This paper evaluates the connection between winter precipitation over the Iberian Peninsula and the large-scale tropospheric mixing over the eastern Atlantic Ocean. Finite-time Lyapunov exponents (FTLEs) have been calculated from 1979 to 2008 to evaluate this mixing. Our study suggests that significant negative correlations exist between summer FTLE anomalies and winter precipitation over Portugal and Spain. To understand the mechanisms behind this correlation, summer anomalies of the FTLE have also been correlated with other climatic variables such as the sea surface temperature (SST), the sea level pressure (SLP) or the geopotential. The East Atlantic (EA) teleconnection index correlates with the summer FTLE anomalies, confirming their role as a seasonal predictor for winter precipitation over the Iberian Peninsula.
NASA Astrophysics Data System (ADS)
Holbrook, Neil J.; Chan, Peter S.-L.; Venegas, Silvia A.
2005-03-01
This paper investigates oscillatory and propagating patterns of normalized surface and subsurface temperature anomalies (from the seasonal cycle) in the southwest Pacific Ocean using an extended empirical orthogonal function (EEOF) analysis. The temperature data (and errors) are from the Digital Atlas of Southwest Pacific upper Ocean Temperatures (DASPOT). These data are 3 monthly in time (January, April, July, and October), 2° × 2° in space, and 5 m in the vertical to 450-m depths. The temperature anomalies in the EEOF analysis are normalized by the objective mapping temperature errors at each grid point. They are also Butterworth filtered in the 3-7-yr band to examine interannual variations in the temperature field. The oscillating and propagating patterns of the modes are examined across four vertical levels: the surface, and 100-, 250-, and 450-m depths.The dominant mode EEOF (70% of the total variance of the filtered data) oscillates in a 4-4.5-yr quasi-periodic manner that is consistent with El Niño-Southern Oscillation (ENSO). Anomalies peak first at the surface in the subtropics between New Caledonia and Fiji (centered around 17°S, 177°E), then 6 months later in the tropical far west centered around the Solomon Islands (5°S, 153°-157°E), with a maximum at the base of the mixed layer (100 m) and upper thermocline (250 m), and then eastward in the northeast of the southwest Pacific region (0°-10°S, 160°E-180°). Mode 2 (25% variance of the filtered data) has a periodicity of 3-3.5 yr, with centers of action in all four vertical levels. The mode-2 patterns are consistent with variations in the subtropical gyre circulation, including the East Australian Current and its separation, and are continuous with the Tasman Front. Two spatial dipoles are apparent: (i) one in sea surface temperature (SST) at about 5°S, straddling west-east either side of the Solomon Islands, consistent with the classic Pacific-wide ENSO SST anomaly mode, and (ii) a subsurface dipole pattern, with centers in the Solomon Islands region at 100- and 250-m depths, and the western Tasman Sea (27°-33°S, 157°-161°E) at 250- and 450-m depths, consistent with dynamic changes in the gyre intensity.
NASA Astrophysics Data System (ADS)
Cai, Jiaxi; Xu, Jianjun; Guan, Zhaoyong; Powell, Alfred M.
2016-10-01
Based on previous study by Xu and Chan (J Clim 14:418-433, 2001), two types of El Niño distinguished by the onset time, a Spring (SP) type and a Summer (SU) type, have been investigated from 1871 through 2011. As can be classified by the spatial patterns of sea surface temperature anomaly into the Warm Pool (WP) and Cold Tongue (CT) El Niño, the temporal features of the CT are dominated by the SP events whereas the SU events mostly display the spatial pattern of WP or Mixed events. The approximate 140-year data analysis shows that the frequency of SP events tends to increase in the most recent 30 years (1980-2009) while the SU events show very strong activity in the beginning of the twentieth century (1900-1929), which are closely associated with the decadal changes in oceanic and atmospheric background conditions. The air-sea processes indicate that the pattern of sea surface temperature (SST) gradient between tropical and extratropical Pacific Ocean on decadal time scales is related to the sea level pressure distribution, which tends to produce wind anomalies. The wind anomalies in turn affect the SST anomalies on inter-annual time scales over the equatorial areas and finally result in the early onset of El Niño in SP time or late onset of El Nino in SU time. A spring onset El Niño favors a Kelvin wave that propagates across the basin and a summer onset favors a Kelvin wave that does not traverse the basin or the related effects are not strong enough. The early or late onset of El Niño significantly impacts the precipitation distribution correlated with the monsoon systems including the Asian-Australian monsoon and North-South American monsoon. The El Niño-monsoon relationship is modulated by decadal changes in atmospheric and oceanic background conditions. The precipitation in the monsoonal area circling the Pacific Ocean exhibits characteristic quasi-biennial variations that are closely associated with the onset time of El Niño events, especially with the early onset of El Niño. For the Spring (SP) type, drought is observed over the central China, Australia, southwestern North America and northern South America in boreal summer, but the opposite pattern appears in the subsequent summer of the following year.
Atlantic Multidecadal Oscillation footprint on global high cloud cover
NASA Astrophysics Data System (ADS)
Vaideanu, Petru; Dima, Mihai; Voiculescu, Mirela
2017-12-01
Due to the complexity of the physical processes responsible for cloud formation and to the relatively short satellite database of continuous data records, cloud behavior in a warming climate remains uncertain. Identifying physical links between climate modes and clouds would contribute not only to a better understanding of the physical processes governing their formation and dynamics, but also to an improved representation of the clouds in climate models. Here, we identify the global footprint of the Atlantic Multidecadal Oscillation (AMO) on high cloud cover, with focus on the tropical and North Atlantic, tropical Pacific and on the circum-Antarctic sector. In the tropical band, the sea surface temperature (SST) and high cloud cover (HCC) anomalies are positively correlated, indicating a dominant role played by convection in mediating the influence of the AMO-related SST anomalies on the HCC field. The negative SST-HCC correlation observed in North Atlantic could be explained by the reduced meridional temperature gradient induced by the AMO positive phase, which would be reflected in less storms and negative HCC anomalies. A similar negative SST-HCC correlation is observed around Antarctica. The corresponding negative correlation around Antarctica could be generated dynamically, as a response to the intensified upward motion in the Ferrel cell. Despite the inherent imperfection of the observed and reanalysis data sets, the AMO footprint on HCC is found to be robust to the choice of dataset, statistical method, and specific time period considered.
NASA Astrophysics Data System (ADS)
Yi, Kan; Liu, Junfeng; Ban-Weiss, George; Zhang, Jiachen; Tao, Wei; Cheng, Yanli; Tao, Shu
2017-07-01
The response of surface ozone (O3) concentrations to basin-scale warming and cooling of Northern Hemisphere oceans is investigated using the Community Earth System Model (CESM). Idealized, spatially uniform sea surface temperature (SST) anomalies of ±1 °C are individually superimposed onto the North Pacific, North Atlantic, and North Indian oceans. Our simulations suggest large seasonal and regional variability in surface O3 in response to SST anomalies, especially in the boreal summer. The responses of surface O3 associated with basin-scale SST warming and cooling have similar magnitude but are opposite in sign. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv. With fixed emissions, SST increases in a specific ocean basin in the Northern Hemisphere tend to increase the summertime surface O3 concentrations over upwind regions, accompanied by a widespread reduction over downwind continents. We implement the integrated process rate (IPR) analysis in CESM and find that meteorological O3 transport in response to SST changes is the key process causing surface O3 perturbations in most cases. During the boreal summer, basin-scale SST warming facilitates the vertical transport of O3 to the surface over upwind regions while significantly reducing the vertical transport over downwind continents. This process, as confirmed by tagged CO-like tracers, indicates a considerable suppression of intercontinental O3 transport due to increased tropospheric stability at lower midlatitudes induced by SST changes. Conversely, the responses of chemical O3 production to regional SST warming can exert positive effects on surface O3 levels over highly polluted continents, except South Asia, where intensified cloud loading in response to North Indian SST warming depresses both the surface air temperature and solar radiation, and thus photochemical O3 production. Our findings indicate a robust linkage between basin-scale SST variability and continental surface O3 pollution, which should be considered in regional air quality management.
Droughts in Amazonia: Spatiotemporal Variability, Teleconnections, and Seasonal Predictions
NASA Astrophysics Data System (ADS)
Lima, Carlos H. R.; AghaKouchak, Amir
2017-12-01
Most Amazonia drought studies have focused on rainfall deficits and their impact on river discharges, while the analysis of other important driver variables, such as temperature and soil moisture, has attracted less attention. Here we try to better understand the spatiotemporal dynamics of Amazonia droughts and associated climate teleconnections as characterized by the Palmer Drought Severity Index (PDSI), which integrates information from rainfall deficit, temperature anomalies, and soil moisture capacity. The results reveal that Amazonia droughts are most related to one dominant pattern across the entire region, followed by two seesaw kind of patterns: north-south and east-west. The main two modes are correlated with sea surface temperature (SST) anomalies in the tropical Pacific and Atlantic oceans. The teleconnections associated with global SST are then used to build a seasonal forecast model for PDSI over Amazonia based on predictors obtained from a sparse canonical correlation analysis approach. A unique feature of the presented drought prediction method is using only a few number of predictors to avoid excessive noise in the predictor space. Cross-validated results show correlations between observed and predicted spatial average PDSI up to 0.60 and 0.45 for lead times of 5 and 9 months, respectively. To the best of our knowledge, this is the first study in the region that, based on cross-validation results, leads to appreciable forecast skills for lead times beyond 4 months. This is a step forward in better understanding the dynamics of Amazonia droughts and improving risk assessment and management, through improved drought forecasting.
North-western Mediterranean sea-breeze circulation in a regional climate system model
NASA Astrophysics Data System (ADS)
Drobinski, Philippe; Bastin, Sophie; Arsouze, Thomas; Béranger, Karine; Flaounas, Emmanouil; Stéfanon, Marc
2017-04-01
In the Mediterranean basin, moisture transport can occur over large distance from remote regions by the synoptic circulation or more locally by sea breezes, driven by land-sea thermal contrast. Sea breezes play an important role in inland transport of moisture especially between late spring and early fall. In order to explicitly represent the two-way interactions at the atmosphere-ocean interface in the Mediterranean region and quantify the role of air-sea feedbacks on regional meteorology and climate, simulations at 20 km resolution performed with WRF regional climate model (RCM) and MORCE atmosphere-ocean regional climate model (AORCM) coupling WRF and NEMO-MED12 in the frame of HyMeX/MED-CORDEX are compared. One result of this study is that these simulations reproduce remarkably well the intensity, direction and inland penetration of the sea breeze and even the existence of the shallow sea breeze despite the overestimate of temperature over land in both simulations. The coupled simulation provides a more realistic representation of the evolution of the SST field at fine scale than the atmosphere-only one. Temperature and moisture anomalies are created in direct response to the SST anomaly and are advected by the sea breeze over land. However, the SST anomalies are not of sufficient magnitude to affect the large-scale sea-breeze circulation. The temperature anomalies are quickly damped by strong surface heating over land, whereas the water vapor mixing ratio anomalies are transported further inland. The inland limit of significance is imposed by the vertical dilution in a deeper continental boundary-layer.
Subseasonal Reversal of East Asian Surface Temperature Variability in Winter 2014/15
NASA Astrophysics Data System (ADS)
Xu, Xinping; Li, Fei; He, Shengping; Wang, Huijun
2018-06-01
Although there has been a considerable amount of research conducted on the East Asian winter-mean climate, subseasonal surface air temperature (SAT) variability reversals in the early and late winter remain poorly understood. In this study, we focused on the recent winter of 2014/15, in which warmer anomalies dominated in January and February but colder conditions prevailed in December. Moreover, Arctic sea-ice cover (ASIC) in September-October 2014 was lower than normal, and warmer sea surface temperature (SST) anomalies occurred in the Niño4 region in winter, together with a positive Pacific Decadal Oscillation (PDO|+) phase. Using observational data and CMIP5 historical simulations, we investigated the PDO|+ phase modulation upon the winter warm Niño4 phase (autumn ASIC reduction) influence on the subseasonal SAT variability of East Asian winter. The results show that, under a PDO|+ phase modulation, warm Niño4 SST anomalies are associated with a subseasonal delay of tropical surface heating and subsequent Hadley cell and Ferrel cell intensification in January-February, linking the tropical and midlatitude regions. Consistently, the East Asian jet stream (EAJS) is significantly decelerated in January-February and hence promotes the warm anomalies over East Asia. Under the PDO|+ phase, the decrease in ASIC is related to cold SST anomalies in the western North Pacific, which increase the meridional temperature gradient and generate an accelerated and westward-shifted EAJS in December. The westward extension of the EAJS is responsible for the eastward-propagating Rossby waves triggered by declining ASIC and thereby favors the connection between ASIC and cold conditions over East Asia.
NASA Astrophysics Data System (ADS)
Zinke, Jens; Browning, Stuart A.; Hoell, Andrew; Goodwin, Ian D.
2017-04-01
The Maritime Continent (MC) is the hydrological power house of the planet being collocated within the Indo-Pacific Warm Pool, where sea surface temperatures (SST) exceed 28°C associated with strong convective rainfall year-round. The convective activity over the Maritime Continent associated with the El Niño-Southern Oscillation (ENSO) is intimately linked to large- scale variations in the climate system and global rainfall-drought patterns. New research has shown that during both El Niño and La Niña events the global impacts in terms of atmospheric circulation and precipitation were more severe when the SST anomalies in the westernmost Pacific (WP; 0-10°N, 130-150°E) were strongly opposing those in the central Pacific (Niño4 region; 5°S-5°N, 160-210°E) than when the west Pacific SST anomalies were near neutral. This temperature gradient is referred to as the West Pacific Gradient (WPG; Hoell and Funk, 2013; Zinke et al., 2015). A positive WPG is when WP SST anomalies are colder than those in the central Pacific, thus El-Niño-like conditions prevail. Recent changes in the WPG towards a negative phase, combined with strong WP warming after the Indo-Pacific climate regime shift of the late 1990s, are driving significant thermal anomalies from the Indonesian seas to the southern coast of Western Australia and along the southwest Pacific (Zinke et al., 2015). The reconstruction of the WPG for the past Millennium might provide novel insights into past tropical climate variability since more long proxy archives are available to assess the WPG than for the Niño3.4 region. WPG variability over the past millennium is reconstructed using an experimental paleoclimate based reanalysis (PaleoR). PaleoR is analogous to modern reanalysis products, but constrained by paleoclimate data instead of meteorological observations (Goodwin et al., 2014). PaleoR employs an offline assimilation scheme where each year (or decade) is individually reconstructed by using information from a multivariate proxy data array to select best matching analogues from the Last Millennial Ensemble simulations (LME; Otto-Bliesner et al., 2015). The PaleoR approach preserves dynamical relationships between ocean and atmospheric variables and accommodates periods of non-stationary teleconnections. Our results reveal a sustained positive WPG between AD 1250 to 1650 (a period that Goodwin et al. 2014 identified as being persistent El Niño like) and a mostly negative WPG between AD 1650 and 2000, the latter interrupted by multi-decadal periods with a positive WPG centered around 1760, 1830 and 1900. The periods between AD 1125-1175 and 1185-1250 were characterized by a negative WPG (a period that Goodwin et al. 2014 identified as being persistent La Niña like) with positive WPG excursions in decades around AD 1000-1050, 1100 and 1175. We investigate the spatial climate anomaly fields for periods of sustained positive and negative WPG to reveal potential global climate teleconnections in terms of SST, rainfall, winds and sea-level pressure during the past Millennium. References Goodwin et al. 2014, P. Natl. A. Sci., 111, 14716-14721 Hoell and Funk 2013, J. Clim., 26, 9545-9562 Otto-Bliesner et al., 2015, B. Am. Meteorol. Soc., doi:10.1175/BAMS-D-14-00233.1 Zinke et al. 2015, Nature Communications, 6:8562, doi: 10.1038/ncomms9562
NASA Astrophysics Data System (ADS)
Surge, D. M.; Barrett, J. H.
2013-12-01
Proxy records reconstructing marine climatic conditions across the transition between the Medieval Climate Anomaly (MCA; ~900-1350 AD) and Little Ice Age (LIA; ~1350-1850) are strongly biased towards decadal to annual resolution and summer/growing seasons. Here we present new archives of seasonal variability in North Atlantic sea surface temperature (SST) from shells of the European limpet, Patella vulgata, which accumulated in Viking and medieval shell and fish middens at Quoygrew on Westray, Orkney. SST was reconstructed at submonthly resolution using oxygen isotope ratios preserved in shells from the 12th and mid 15th centuries (MCA and LIA, respectively). MCA shells recorded warmer summers and colder winters by ~2 degrees C relative to the late 20th Century (1961-1990). Therefore, seasonality was higher during the MCA relative to the late 20th century. Without the benefit of seasonal resolution, SST averaged from shell time series would be weighted toward the fast-growing summer season, resulting in the conclusion that the early MCA was warmer than the late 20th century by ~1°C. This conclusion is broadly true for the summer season, but not true for the winter season. Higher seasonality and cooler winters during early medieval times may result from a weakened North Atlantic Oscillation index. In contrast, the LIA shells have a more a variable inter-annual pattern. Some years record cooler summers and winters relative to the MCA shells and late 20th century, whereas other years record warmer summers and cooler winters similar to the MCA shells. Our findings provide a new test for the accuracy of seasonal amplitudes resulting from paleoclimate model experiments.
The role of internal variability in prolonging the California drought
NASA Astrophysics Data System (ADS)
Buenning, N. H.; Stott, L. D.
2015-12-01
The current drought in California has been one of the driest on record. Using atmospheric general circulation models (AGCMs), recent studies have demonstrated that the low precipitation anomalies observed during the first three winters of the current drought are mostly attributable to changes in sea surface temperature (SST) and sea ice forcing. Here we show through AGCM simulations that the fourth and latest winter of the current drought is not attributable to SST and sea ice forcing, but instead a consequence of higher internal variability. Using the Global Spectral Model (GSM) we demonstrate how the surface forcing reproduces dry conditions over California for the first three winters of the current drought, similar to what other models produced. However, when forced with the SST and sea ice conditions for the winter of 2014-2015, GSM robustly simulates high precipitation conditions over California. This significantly differs with observed precipitation anomalies, which suggests a model deficiency or large influence of internal variability within the climate system during the winter of 2014-2015. Ensemble simulations with 234 realizations reveal that the surface forcing created a broader range of precipitation possibilities over California. Thus, the surface forcing caused a greater degree of internal variations, which was driven by a reduced latitudinal temperature gradient and amplified planetary waves over the Pacific. Similar amplified waves are also seen in 21st century climate projections of upper-level geopotential heights, suggesting that 21st century precipitation over California will become more variable and increasingly difficult to predict on seasonal timescales. When an El Nino pattern is applied to the surface forcing the precipitation further increases and the variance amongst model realizations is reduced, which indicates a strong likelihood of an anomalously wet 2015-2016 winter season.
Patterns of interannual climate variability in large marine ecosystems
NASA Astrophysics Data System (ADS)
Soares, Helena Cachanhuk; Gherardi, Douglas Francisco Marcolino; Pezzi, Luciano Ponzi; Kayano, Mary Toshie; Paes, Eduardo Tavares
2014-06-01
The purpose of this study is to investigate the vulnerability of the Brazilian and western African Large Marine Ecosystems (LMEs) to local and remote forcing, including the Pacific Decadal Oscillation (PDO) regime shift. The analyses are based on the total and partial correlation between climate indices (Niño3, tropical South Atlantic (TSA), tropical North Atlantic (TNA) and Antarctic oscillation (AAO) and oceanic and atmospheric variables (sea surface temperature (SST), wind stress, Ekman transport, sea level pressure and outgoing longwave radiation). Differences in the correlation fields between the cold and warm PDO indicate that this mode exerts a significant impact on the thermodynamic balance of the ocean-atmosphere system on the South Atlantic ocean, mainly in the South Brazil and Benguela LMEs. The PDO regime shift also resulted in an increase in the spatial variability of SST and wind stress anomalies, mainly along the western African LMEs. Another important finding is the strong AAO influence on the SST anomalies (SSTA) in the South Brazil LME. It is also striking that TSA modulates the relation between El Niño-Southern Oscillation (ENSO) and SSTA, by reducing the influence of ENSO on SSTA during the warm PDO period in the North and East Brazil LMEs and in the Guinea Current LME. The relation between AAO and SSTA on the tropical area is also influenced by the TSA. The results shown here give a clear indication that future ecosystem-based management actions aimed at the conservation of marine resources under climate change need to consider the high complexity of basin-scale interactions between local and remote climate forcings, including their effects on the ocean-atmosphere system of the South Atlantic ocean.
NASA Technical Reports Server (NTRS)
Wang, Hailan; Schubert, Siegfried D.
2013-01-01
The dominant pattern of annual mean SST variability in the Pacific (in its cold phase) produces pronounced precipitation deficits over the continental United States (U.S.) throughout the annual cycle. This study investigates the physical and dynamical processes through which the cold Pacific pattern affects the U.S. precipitation, particularly the causes for the peak dry impacts in fall, as well as the nature of the differences between the summer and fall responses. Results, based on observations and reanalyses, show that the peak precipitation deficit over the U.S. during fall is primarily due to reduced atmospheric moisture transport from the Gulf of Mexico into the central and eastern U.S., and secondarily due to a reduction in local evaporation from land-atmosphere feedback. The former is associated with a strong and systematic low-level northeasterly flow anomaly over the southeastern U.S. that counteracts the northwest branch of the climatological flow associated with the north Atlantic subtropical high. The above northeasterly anomaly is maintained by both diabatic heating anomalies in the nearby Intra-American Seas and diabatic cooling anomalies in the tropical Pacific. In contrast, the modest summertime precipitation deficit over the U.S. is mainly the result of local land-atmosphere feedback; the rather weak and disorganized atmospheric circulation anomalies over and to the south of the U.S. make little contribution. An evaluation of NSIPP-1 AGCM simulations shows it to be deficient in simulating the warm season tropical convection responses over the Intra-American Seas to the cold Pacific pattern and thereby the precipitation responses over the U.S., a problem that appears to be common to many AGCMs.
NASA Technical Reports Server (NTRS)
Lau, K. M.; Weng, H. Y.; Einaudi, Franco (Technical Monitor)
2001-01-01
In this paper, we present results showing that summertime precipitation anomalies over North America and East Asia may be linked via pan-Pacific teleconnection patterns, which are components of two dominant recurring global climate modes. The first mode (Mode-1) features an inverse relationship between rainfall anomaly over the US Midwest/central to the eastern/southeastern regions, coupled to a mid-tropospheric high-low pressure system over the northwest and southeast of the US, which regulates low level moisture transport from the Gulf of Mexico to the Midwest. The regional circulation pattern appears to be a part of a global climate mode spanning Eurasia, the North Pacific, North America, and the Atlantic. This mode is associated with coherent fluctuations of jetstream variability over East Asia, and Eurasia, SST in the North Pacific and the North Atlantic. While Mode-1 is moderately correlated with El Nino-Southern Oscillation (ENSO), it appears to be distinct from it, with strong influences from mid-latitude or possibly from higher latitude processes. Results show that Mode-1 not only has an outstanding contribution to the great flood of 1993, it has large contribution to the US precipitation anomalies in other years. Also noted is an apparent increase in influence of Mode-1 on US summertime precipitation in the last two decades since 1977.
Sea surface temperatures of the mid-Piacenzian Warm Period: A comparison of PRISM3 and HadCM3
Dowsett, H.J.; Haywood, A.M.; Valdes, P.J.; Robinson, M.M.; Lunt, D.J.; Hill, D.J.; Stoll, D.K.; Foley, K.M.
2011-01-01
It is essential to document how well the current generation of climate models performs in simulating past climates to have confidence in their ability to project future conditions. We present the first global, in-depth comparison of Pliocene sea surface temperature (SST) estimates from a coupled ocean–atmosphere climate model experiment and a SST reconstruction based on proxy data. This enables the identification of areas in which both the climate model and the proxy dataset require improvement.In general, the fit between model-produced SST anomalies and those formed from the available data is very good. We focus our discussion on three regions where the data–model anomaly exceeds 2 °C. 1) In the high latitude North Pacific, a systematic model error may result in anomalies that are too cold. Also, the deeper Pliocene thermocline may cause disagreement along the California margin; either the upwelling in the model is too strong or the modeled thermocline is not deep enough. 2) In the North Atlantic, the model predicts cooling in the center of a data-based warming trend that steadily increases with latitude from + 1.5 °C to >+ 6 °C. The discrepancy may arise because the modeled North Atlantic Current is too zonal compared to reality, which is reinforced by the lowering of the altitude of the Pliocene Western Cordillera Mountains. In addition, the model's use of modern bathymetry in the higher latitudes may have led the model to underestimate the northward penetration of warmer surface water into the Arctic. 3) Finally, though the data and model show good general agreement across most of the Southern Ocean, a few locations show offsets due to the modern land–sea mask used in the model.Additional considerations could account for many of the modest data–model anomalies, such as differences between calibration climatologies, the oversimplification of the seasonal cycle, and differences between SST proxies (i.e. seasonality and water depth). New SST estimates from data-sparse and regionally important areas will greatly enhance our ability to judge model performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Yongkang; De Sales, Fernando; Lau, William K. -M.
The Sahel climate system had experienced one of the strongest interdecadal climate variabilities and the longest drought on the planet in the twentieth century. Most modeling studies on the decadal variability of the Sahel climate so far have focused on the role of anomalies in either sea surface temperature (SST), land surface processes, or aerosols concentration. The Second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II) is designed to improve understanding of the possible roles and feedback of SST, land use land cover change (LULCC), and aerosols forcings in the Sahel climate system at seasonal to decadal scales.more » The WAMME II strategy is to apply observationally based anomaly forcing, i.e., “idealized but realistic” forcing, in simulations by general circulation models’ (GCMs) and regional climate models’ (RCMs) to test the relative impacts of such forcings in producing/amplifying the Sahelian seasonal and decadal climate variability, including the 20th century drought. To test individual ocean’s SST effect, a special approach in the experimental design is taken to avoid undermine its effect. This is the first multi-model experiment specifically designed to simultaneously evaluate relative contributions of multiple-external forcings to the Sahel drought. This paper presents the major results and preliminary findings of the WAMME II SST experiment, including each ocean’s contribution to the global SST effect, as well as comparison of the SST effect with the LULCC effect. The common empirical orthogonal functions and other analyses are applied to assess and comprehend the discrepancies among the models. In general, the WAMME II models have reached a consensus on SST’s major contribution to the great Sahel drought and show that with the maximum possible SST forcing, it can produce up to 60% of the absolute amount of precipitation difference between the 1980s and the 1950s. This paper has 3 also delineated the role of SSTs in triggering and maintaining the Sahel drought, suggesting a potential predictability of WAM development linked to SST. Among different ocean basins, the Pacific and Indian Ocean SSTs have the greatest impact on the 1980s drought. The WAMME II, however, fails to reach a consensus on the role of the Mediterranean Sea SST. The changes in circulation, moisture flux convergence, and associated surface energy balances are the main mechanisms for the SST effect. The paper also compares the SST effect with the LULCC effects. It is shown that the prescribed land forcing produces about 40% of the precipitation difference between the 1980s and the 1950s, which is less than SST contribution but still of first order in the Sahel climate system. The role of land surface processes in responding to and amplifying the drought has also been identified. The results demonstrate that catastrophic consequences likely occur in the regional climate when SST anomalies in individual ocean basins and in land conditions combine synergistically to favor drought. Due to limited ensemble members, aerosol effects are not compared. Since the SST and land forcing in the real world are likely smaller than specified in this study, further investigations on the effects of aerosols as well as of other external forcings, such as greenhouse gases, and of atmospheric internal variability, are necessary. Moreover, although the WAMEE II models support a general consensus on SST and LULCC effects, there are still large discrepancies in how these models produce the Sahel drought in the 1980s. Better atmospheric observational and analysis data including more processes and components are necessary to validate and constrain models, and to guide further model development and improvement.« less
NASA Technical Reports Server (NTRS)
Liu, W.; Hu, H.; Xie, X.
1999-01-01
Liu et al.[1998] (hereafter referred as LTH), superimposed wind velocity anomalies observed by the NASA Scatterometer (NSCAT) on the map of sea surface temperature (SST) anomalies observed by the Advanced Very High Resolution Radiometer (AVHRR) in the Pacific at the end of May 1997, and illustrated that the three regions of anomalous warming in the North Pacific Ocean are related to wind anomalies through different mechanisms.
Predictable and unpredictable modes of seasonal mean precipitation over Northeast China
NASA Astrophysics Data System (ADS)
Ying, Kairan; Frederiksen, Carsten S.; Zhao, Tianbao; Zheng, Xiaogu; Xiong, Zhe; Yi, Xue; Li, Chunxiang
2018-04-01
This study investigates the patterns of interannual variability that arise from the potentially predictable (slow) and unpredictable (intraseasonal) components of seasonal mean precipitation over Northeast (NE) China, using observations from a network of 162 meteorological stations for the period 1961-2014. A variance decomposition method is applied to identify the sources of predictability, as well as the sources of prediction uncertainty, for January-February-March (JFM), April-May-June (AMJ), July-August-September (JAS) and October-November-December (OND). The averaged potential predictability (ratio of slow to total variance) of NE China precipitation has the highest value of 0.32 during JAS and lowest value of 0.1 in AMJ. Possible sources of seasonal prediction for the leading predictable precipitation EOF modes come from the SST anomalies in the Japan Sea, as well as the North Atlantic during JFM, the Indian Ocean SST in AMJ, and the eastern tropical Pacific SST in JAS and OND. The prolonged linear trend, which is seen in the principal component time series of the leading predictable mode in JFM and OND, may also serve as a source of predictability. The Polar-Eurasia and Northern Annular Mode atmospheric teleconnection patterns are closely connected with the leading and the second predictable mode of JAS, respectively. The Hadley cell circulation is closely related to the leading predictable mode of OND. The leading/second unpredictable precipitation modes for all these four seasons show a similar monopole/dipole structure, and can be largely attributed to the intraseasonal variabilities of the atmosphere.
Is ENSO part of an Indo-Pacific phenomenon?
NASA Astrophysics Data System (ADS)
Wieners, Claudia; de Ruijter, Wilhelmus; Dijkstra, Henk
2015-04-01
The Seychelles Dome (SD) - a thermocline ridge in the West Indian Ocean - is a dynamically active region with a strong Sea Surface Temperature (SST)-atmosphere coupling and located at the origin of the Madden-Julian Oscillation. Analysis of observational data suggests that it might influence El Niño occurrence and evolution at a lead time of 1.5 years. We find a negative correlation between SD SST in boreal summer and Nino3.4 SST about 18 months later. Such a correlation might be a mere side-effect of the fact that ENSO has influence on the SD - El Niño (La Niña) is followed by a warm (cool) SD after about 3-6 months - and of the cyclicity of ENSO with a preferred period of about 4 years. However, we find the correlation to be significantly stronger than one would expect in that case, implying that the SD contains information linearly independent from ENSO. A Multi-channel Singular Spectrum analysis (MSSA) on tropical SST, zonal wind and zonal wind variability reveals three significant oscillations. All of these show ENSO-like behaviour in the Pacific Ocean, with East Pacific SST anomalies being followed by anomalies of the same sign in the SD region after 3-5 months. Wind patterns propagate from the Indian to the Pacific Ocean. These findings suggest that the Indian and Pacific Oceans act as a unified system. The slower two oscillations, with periods around 4 years, have the strongest ENSO signal in the East Pacific (like a `Cold Tongue El Niño'). Compared to them, the fastest oscillation, with a period of 2.5 years, has a stronger signal in the Central Pacific (more resembling a `Warm Pool El Niño'). Because of the short period of the fastest mode, the time elapsed between an SD anomaly and the following ENSO anomaly (of opposite sign) is only 11 months - much less than the 18 months lag at which the correlation between SD and ENSO is minimal. This suggests that while the Cold Tongue El Niño's tend to be preceded by a cool SD event at a lead time suitable for SD-ENSO influence, Warm Pool El Niño's are not. From the MSSA and a composite analysis we find evidence for two (possibly interrelated) physical mechanisms by which the SD might influence ENSO. In the first one, there is subsidence above the cool SD, leading to westerly winds in the Indian Ocean and inducing enhanced convection above Indonesia. The resulting inflow from the West Pacific (an easterly wind) favours the creation of a large Pacific Warm Water Volume that can be released into the East Pacific in boreal spring/summer following the cool SD event. In the second mechanism, the cool SD favours a strong zonal wind variability above the West Pacific on intraseasonal time scales, part of which can be attributed to SD influence on the Madden-Julian oscillation. This intraseasonal variability (westerly wind bursts...) can trigger warm Kelvin waves that might initiate El Niño.
NASA Astrophysics Data System (ADS)
Tyrrell, Nicholas L.; Dommenget, Dietmar; Frauen, Claudia; Wales, Scott; Rezny, Mike
2015-04-01
In global warming scenarios, global land surface temperatures () warm with greater amplitude than sea surface temperatures (SSTs), leading to a land/sea warming contrast even in equilibrium. Similarly, the interannual variability of is larger than the covariant interannual SST variability, leading to a land/sea contrast in natural variability. This work investigates the land/sea contrast in natural variability based on global observations, coupled general circulation model simulations and idealised atmospheric general circulation model simulations with different SST forcings. The land/sea temperature contrast in interannual variability is found to exist in observations and models to a varying extent in global, tropical and extra-tropical bands. There is agreement between models and observations in the tropics but not the extra-tropics. Causality in the land-sea relationship is explored with modelling experiments forced with prescribed SSTs, where an amplification of the imposed SST variability is seen over land. The amplification of to tropical SST anomalies is due to the enhanced upper level atmospheric warming that corresponds with tropical moist convection over oceans leading to upper level temperature variations that are larger in amplitude than the source SST anomalies. This mechanism is similar to that proposed for explaining the equilibrium global warming land/sea warming contrast. The link of the to the dominant mode of tropical and global interannual climate variability, the El Niño Southern Oscillation (ENSO), is found to be an indirect and delayed connection. ENSO SST variability affects the oceans outside the tropical Pacific, which in turn leads to a further, amplified and delayed response of.
WES feedback and the Atlantic Meridional Mode: observations and CMIP5 comparisons
NASA Astrophysics Data System (ADS)
Amaya, Dillon J.; DeFlorio, Michael J.; Miller, Arthur J.; Xie, Shang-Ping
2017-09-01
The Atlantic Meridional Mode (AMM) is the dominant mode of tropical SST/wind coupled variability. Modeling studies have implicated wind-evaporation-SST (WES) feedback as the primary driver of the AMM's evolution across the Atlantic basin; however, a robust coupling of the SST and winds has not been shown in observations. This study examines observed AMM growth, propagation, and decay as a result of WES interactions. Investigation of an extended maximum covariance analysis shows that boreal wintertime atmospheric forcing generates positive SST anomalies (SSTA) through a reduction of surface evaporative cooling. When the AMM peaks in magnitude during spring and summer, upward latent heat flux anomalies occur over the warmest SSTs and act to dampen the initial forcing. In contrast, on the southwestern edge of the SSTA, SST-forced cross-equatorial flow reduces the strength of the climatological trade winds and provides an anomalous latent heat flux into the ocean, which causes southwestward propagation of the initial atmosphere-forced SSTA through WES dynamics. Additionally, the lead-lag relationship of the ocean and atmosphere indicates a transition from an atmosphere-forcing-ocean regime in the northern subtropics to a highly coupled regime in the northern tropics that is not observed in the southern hemisphere. CMIP5 models poorly simulate the latitudinal transition from a one-way interaction to a two-way feedback, which may explain why they also struggle to reproduce spatially coherent interactions between tropical Atlantic SST and winds. This analysis provides valuable insight on how meridional modes act as links between extratropical and tropical variability and focuses future research aimed at improving climate model simulations.
Impact of La Niña and La Niña Modoki on Indonesia rainfall variability
NASA Astrophysics Data System (ADS)
Hidayat, R.; Juniarti, MD; Ma’rufah, U.
2018-05-01
La Niña events are indicated by cooling SST in central and eastern equatorial Pacific. While La Niña Modoki occurrences are indicated by cooling SST in central Pacific and warming SST in western and eastern equatorial Pacific. These two events are influencing rainfall variability in several regions including Indonesia. The objective of this study is to analyse the impact of La Niña and La Niña Modoki on Indonesian rainfall variability. We found the Nino 3.4 index is highly correlated (r = -0.95) with Indonesian rainfall. Positive rainfall anomalies up to 200 mm/month occurred mostly in Indonesian region during La Niña events, but in DJF several areas of Sumatera, Kalimantan and eastern Indonesia tend to have negative rainfall. During La Niña Modoki events, positive rainfall anomaly (up to 50 mm/month) occurred in Sumatera Island, Kalimantan, Java and eastern Indonesia in DJF and up to 175 mm/month occurred only in Java Island in MAM season. La Niña events have strong cooling SST in central and eastern equatorial Pacific (-1.5°C) in DJF. While La Niña Modoki events warming SST occurred in western and eastern equatorial Pacific (0.75°C) and cooling SST in central Pacific (- 0.75°C) in DJF and MAM. Walker circulation in La Niña Modoki events (on DJF and MAM) showed strong convergence in eastern Pacific, and weak convergence in western Pacific (Indonesia).
Observation of El Nino by the Nimbus-7 SMMR
NASA Technical Reports Server (NTRS)
Hwang, P. H.; Macmillan, D. S.; Fu, C. C.; Kim, S. T.; Han, Daesoo; Gloersen, P.
1986-01-01
The quality of Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) derived SST, water vapor, and windspeed are assessed, and these parameters are used to study the El Nino event of 1982-1983 in the equatorial Pacific region from 120 deg to the South American coast. The features of the anomaly fields for these parameters, and the connections between these fields, are discussed. Anomaly fields are found to be qualitatively consistent with outgoing longwave radiation anomaly fields and wind vector anomaly fields.
Seasonal Predictions with the GEOS GCM
NASA Technical Reports Server (NTRS)
Schubert, Siegfried; Chang, Yehui; Suarez, Max
1999-01-01
A number of ensembles of seasonal forecasts have recently been completed as part of NASA's Seasonal to Interannual Prediction Project (NSIPP). The focus is on the extratropical response of the atmosphere to observed Surface Sea Temperature (SST) anomalies during boreal winter. The prediction experiments consist of nine forecasts starting from slightly different initial conditions for each year of the 15 year period 1981-95, employing version 2 of the Goddard Earth Observing System (GEOS) atmospheric Global Circulation Models (GCM). The initial conditions are obtained from the NASA GEOS-1 reanalysis data. Comparisons with a companion set of six long-term simulations with observed SST (starting in 1978, so they have no memory of the initial conditions for the periods of interest) are used to assess the relative contributions of the initial conditions and SST anomalies to forecast skill ranging from daily to seasonal time scales. The ensembles are used to isolate the signal, and to assess the nature of the inherent variability (noise) of the forecasts.
EnOI-IAU Initialization Scheme Designed for Decadal Climate Prediction System IAP-DecPreS
NASA Astrophysics Data System (ADS)
Wu, Bo; Zhou, Tianjun; Zheng, Fei
2018-02-01
A decadal climate prediction system named as IAP-DecPreS was constructed in the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, based on a fully coupled model FGOALS-s2 and a newly developed initialization scheme, referred to as EnOI-IAU. In this paper, we introduce the design of the EnOI-IAU scheme, assess the accuracies of initialization integrations using the EnOI-IAU and preliminarily evaluate hindcast skill of the IAP-DecPreS. The EnOI-IAU scheme integrates two conventional assimilation approaches, ensemble optimal interpolation (EnOI) and incremental analysis update (IAU). The EnOI and IAU were applied to calculate analysis increments and incorporate them into the model, respectively. Three continuous initialization (INIT) runs were conducted for the period of 1950-2015, in which observational sea surface temperature (SST) from the HadISST1.1 and subsurface ocean temperature profiles from the EN4.1.1 data set were assimilated. Then nine-member 10 year long hindcast runs initiated from the INIT runs were conducted for each year in the period of 1960-2005. The accuracies of the INIT runs are evaluated from the following three aspects: upper 700 m ocean temperature, temporal evolution of SST anomalies, and dominant interdecadal variability modes, Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO). Finally, preliminary evaluation of the ensemble mean of the hindcast runs suggests that the IAP-DecPreS has skill in the prediction of the PDO-related SST anomalies in the midlatitude North Pacific and AMO-related SST anomalies in the tropical North Atlantic.
NASA Astrophysics Data System (ADS)
Yang, Sinil; Oh, Jaiho
2018-02-01
Seasonal extreme wave statistics were reproduced by using the 25-km-grid global wave model of WAVEWATCH-III. The results showed that the simulated wave dataset for the present climate (1979-2009) was similar to Climate Forecast System Reanalysis (CFSR) wave data. Statistics such as the root mean squared error (RMSE) and correlation coefficient (CC) over the western North Pacific (WNP) basin were 0.5 m and 0.69 over the analysis domain. The largest trends and standard deviation were around the southern coast of Japan and western edge of the WNP. Linear regression analysis was employed to identify the relationship between the leading principal components (PCs) of significant wave heights (SWHs) in the peak season of July to September and sea surface temperature (SST) anomalies in the equatorial Pacific. The results indicated that the inter-annual variability of SWH can be associated with the El Niño-Southern Oscillation in the peak season. The CC between the first PC of the SWH and anomalies in the Nino 3.4 SST index was also significant at a 99% confidence level. Significant variations in the SWH are affected by tropical cyclones (TCs) caused by increased SST anomalies. The genesis and development of simulated TCs can be important to the variation in SWHs for the WNP in the peak season. Therefore, we can project the variability of SWHs through TC activity based on changes in SST conditions for the equatorial Pacific in the future.
NASA Astrophysics Data System (ADS)
Snow, T.; Shepherd, B.; Abdalati, W.; Scambos, T. A.
2016-12-01
Dynamic processes at marine-terminating outlet glaciers are responsible for over one-third of Greenland Ice Sheet (GIS) mass loss. Enhanced intrusion of warm ocean waters at the termini of these glaciers has contributed to elevated rates of ice thinning and terminus retreat over the last two decades. In situ oceanographic measurements and modeling studies show that basal melting of glaciers and subglacial discharge can cause buoyant plumes of water to rise to the fjord surface and influence fjord circulation characteristics. The temperature of these surface waters holds clues about ice-ocean interactions and small-scale circulation features along the glacier terminus that could contribute to outlet glacier mass loss, but the magnitude and duration of temperature variability remains uncertain. Satellite remote sensing has proven very effectiver for acquiring sea surface temperatuer (SST) data from these remote regions on a long-term, consistent basis and shows promise for identifying temperature anomalies at the ice front. However, these data sets have not been widely utilized to date. Here, we use satellite-derived sea surface temperatures to identify fjord surface outflow characteristics from 2000 to present at the Petermann Glacier, which drains 4% of the GIS and is experiencing 80% of its mass loss from basal melt. We find a general SST warming trend that coincides with early sea ice breakup and precedes two major calving events and ice speedup that began in 2010. Persistent SST anomalies along the terminus provide evidence of warm outflow that is consistent with buoyant plume model predictions. However, the anomalies are not evident early in the time series, suggesting that ocean inflow and ice-ocean interactions have experienced a regime shift since 2000. Our results provide valuable insight into fjord circulation patterns and the forcing mechanisms that contribute to terminus retreat. Comparing our results to ongoing modeling experiments, time series from other outlet glaciers, and coincident in situ measurements, will help to further explain the physical processes occurring at the ice-ocean boundary and provide useful insights into the changes taking place at other GIS marine-terminating outlet glaciers.
NASA Astrophysics Data System (ADS)
Mukougawa, H.; Mabuchi, M.
2012-04-01
Characteristics of extratropical planetary flow regimes in the Northern Hemisphere associated with prevailing spatial patterns of temperature anomaly distribution in the winter season (DJF) over the Far East are examined based on 2D phase space spanned by the leading two EOFs of the Far East low-frequency temperature variation by the use of ERA-40 reanalysis dataset from 1957/58 to 2001/02 winter and NOAA OLR dataset from 1979/80 to 2001/02 winter. The first EOF of 10-day low-pass filtered 850-hPa temperature anomaly in the winter season over the Far East (25˚N-50˚N, 120˚E-150˚E) represents a coherent temperature variation over the whole domain while the second EOF corresponds to a meridional dipole pattern with a node around 40˚N. These two leading EOFs explain 76% of the total temperature variance over the Far East. Regression analysis of 250-hPa height anomaly with respect to the corresponding PCs shows that EOF1 and EOF2 are related to the Eurasian (EU) and the West Pacific (WP) pattern, respectively. The PDF of 850-hPa low-frequency temperature anomaly is estimated by the kernel density estimation method of Kimoto and Ghil (1993) in 2D phase space spanned by the leading 2 PCs. Inhomogeneity of the observed PDF from the bivariate Gaussianity is evaluated by a nonparametric method, and we find the existence of two distinct regimes with significantly greater PDF than the Gaussianity: One regime (regime A) represents an atmospheric state with low temperature anomaly over the whole Far East region, especially over Western Japan. The other regime (regime B) corresponds to a state with a prevailing weak positive temperature anomaly over the Far East. Finally, a composite analysis of 250-hPa height anomaly associated with regime A based on the 2D phase space reveals its time evolution as follows: Blocking developing over the Alaska 15 days (day -15) before the mature phase of regime A has a retrograde phase velocity and resides over the Sea of Okhotsk. After day -10, the EU pattern emanating from cyclonic anomaly over Europe creates a cyclonic anomaly over Western Japan and an anticyclonic anomaly over East Siberia. The anticyclonic anomaly is also amplified through the superposition of the retrograding blocking. Then, regime A comprising the EU pattern and the WP pattern with a dominant negative height anomaly over Western Japan causes a strong cold surge in Southeast Asia. Moreover, the analysis on the OLR dataset reveals that an upper-tropospheric Rossby wave train emanating from the Bay of Bengal due to an anomalous convective activity over the South China Sea also plays an important role in forming the cyclonic anomaly over Western Japan. We will discuss the recent high occurrence probability of regime A in connection with the warming trend of the SST over the western Pacific due to the global warming.
NASA Astrophysics Data System (ADS)
Leyba, Inés M.; Saraceno, Martín; Solman, Silvina A.
2017-10-01
Heat fluxes between the ocean and the atmosphere largely represent the link between the two media. A possible mechanism of interaction is generated by mesoscale ocean eddies. In this work we evaluate if eddies in Southwestern Atlantic (SWA) Ocean may significantly affect flows between the ocean and the atmosphere. Atmospherics conditions associated with eddies were examined using data of sea surface temperature (SST), sensible (SHF) and latent heat flux (LHF) from NCEP-CFSR reanalysis. On average, we found that NCEP-CFSR reanalysis adequately reflects the variability expected from eddies in the SWA, considering the classical eddy-pumping theory: anticyclonic (cyclonic) eddies cause maximum positive (negative) anomalies with maximum mean anomalies of 0.5 °C (-0.5 °C) in SST, 6 W/m2 (-4 W/m2) in SHF and 12 W/m2 (-9 W/m2) in LHF. However, a regional dependence of heat fluxes associated to mesoscale cyclonic eddies was found: in the turbulent Brazil-Malvinas Confluence (BMC) region they are related with positive heat flux anomaly (ocean heat loss), while in the rest of the SWA they behave as expected (ocean heat gain). We argue that eddy-pumping do not cool enough the center of the cyclonic eddies in the BMC region simply because most of them trapped very warm waters when they originate in the subtropics. The article therefore concludes that in the SWA: (1) a robust link exists between the SST anomalies generated by eddies and the local anomalous heat flow between the ocean and the atmosphere; (2) in the BMC region cyclonic eddies are related with positive heat anomalies, contrary to what is expected.
The delineation and interpretation of the Earth's gravity field
NASA Technical Reports Server (NTRS)
Marsh, B. D.
1983-01-01
The observed changes in velocity with time are reduced relative to the well-determined low degree and order GEM field model and accelerations are found by analytical differentiation of the range rates. This new map is essentially identical to the first map and we have produced a composite map by combining all 90 passes of SST data. The resolution of the map is at worst about 5 deg and much better in most places. A comparison of this map with conventional GEM models shows very good agreement. A reduction of the SEASAT altimeter data has also been carried out for an additional comparison. Although the SEASAT geoid contains much more high frequency information, it agrees very well with both the SST and GEM fields. The maps are dominated (especially in the east) by a pattern of roughly east-west anomalies with a transverse wavelength of about 2000 km. A further comparison with regional bathymetric data shows a remarkably close correlation with plate age.
The complex influence of ENSO on droughts in Ecuador
NASA Astrophysics Data System (ADS)
Vicente-Serrano, S. M.; Aguilar, E.; Martínez, R.; Martín-Hernández, N.; Azorin-Molina, C.; Sanchez-Lorenzo, A.; El Kenawy, A.; Tomás-Burguera, M.; Moran-Tejeda, E.; López-Moreno, J. I.; Revuelto, J.; Beguería, S.; Nieto, J. J.; Drumond, A.; Gimeno, L.; Nieto, R.
2017-01-01
In this study, we analyzed the influence of El Niño-Southern Oscillation (ENSO) on the spatio-temporal variability of droughts in Ecuador for a 48-year period (1965-2012). Droughts were quantified from 22 high-quality and homogenized time series of precipitation and air temperature by means of the Standardized Precipitation Evapotranspiration Index. In addition, the propagation of two different ENSO indices (El Niño 3.4 and El Niño 1 + 2 indices) and other atmospheric circulation processes (e.g., vertical velocity) on different time-scales of drought severity were investigated. The results showed a very complex influence of ENSO on drought behavior across Ecuador, with two regional patterns in the evolution of droughts: (1) the Andean chain with no changes in drought severity, and (2) the Western plains with less severe and frequent droughts. We also detected that drought variability in the Andes mountains is explained by the El Niño 3.4 index [sea surface temperature (SST) anomalies in the central Pacific], whereas the Western plains are much more driven by El Niño 1 + 2 index (SST anomalies in the eastern Pacific). Moreover, it was also observed that El Niño and La Niña phases enhance droughts in the Andes and Western plains regions, respectively. The results of this work could be crucial for predicting and monitoring drought variability and intensity in Ecuador.
NASA Technical Reports Server (NTRS)
Xue, Yongkang; De Sales, Fernando; Lau, William K-M; Boone, Aaron; Kim, Kyu-Myong; Mechoso, Carlos R.; Wang, Guiling; Kucharski, Fred; Schiro, Kathleen; Hosaka, Masahiro;
2016-01-01
The second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II) is designed to improve understanding of the possible roles and feedbacks of sea surface temperature (SST), land use land cover change (LULCC), and aerosols forcings in the Sahel climate system at seasonal to decadal scales. The WAMME II strategy is to apply prescribed observationally based anomaly forcing, i.e., idealized but realistic forcing, in simulations by climate models to test the relative impacts of such forcings in producingamplifying the Sahelian seasonal and decadal climate variability, including the great 20th century drought. This is the first multi-model experiment specifically designed to simultaneously evaluate relative contributions of multiple external forcings to the Sahel decadal precipitation anomalies between the 1980s and the 1950s that is used to characterize the Sahel 1980s drought in this study. The WAMME II models have consistently demonstrated that SST is the major contributor to the 20th century Sahel drought. Under the influence of the maximum possible SST forcing, WAMME II model ensemble mean can produce up to 60 of the precipitation difference between the 1980s and the 1950s. The present paper also delineated the role of SSTs in triggering and maintaining the Sahel drought. The impact of SSTs in individual oceans is also examined and consensus and discrepancies are reported. Among the different ocean basins, the WAMME II models show the consensus that the Indian Ocean SST has the largest impact on the precipitation temporal evolution associated with the ITCZ movement before the WAM onset while the Pacific Ocean SST greatly contributes to the summer WAM drought. This paper also compares the SST effect with the LULCC effect. Results show that with prescribed land forcing the WAMME II model ensemble mean produces about 40 of the precipitation difference between the 1980s and the 1950s, which is less than the SST contribution but still of first order in the Sahel climate system. The role of land surface processes 61 in responding to and amplifying the drought is also identified. The results suggest that catastrophic consequences are likely to occur in the regional Sahel climate when SST anomalies in individual ocean basins and in land conditions combine synergistically to favor drought. These preliminary WAMME results need to be further evaluated with different experimental designs and different models.
Córdoba-Chacón, José; Gahete, Manuel D.; Castaño, Justo P.; Kineman, Rhonda D.
2011-01-01
Somatostatin (SST) inhibits growth hormone (GH) secretion and regulates multiple processes by signaling through its receptors sst1–5. Differential expression of SST/ssts may contribute to sex-specific GH pattern and fasting-induced GH rise. To further delineate the tissue-specific roles of SST and sst1–5 in these processes, their expression patterns were evaluated in hypothalamus, pituitary, and stomach of male and female mice under fed/fasted conditions in the presence (wild type) or absence (SST-knockout) of endogenous SST. Under fed conditions, hypothalamic/stomach SST/ssts expression did not differ between sexes, whereas male pituitary expressed more SST and sst2A/2B/3/5A/5TMD2/5TMD1 and less sst1, and male pituitary cell cultures were more responsive to SST inhibitory actions on GH release compared with females. This suggests that local pituitary SST/ssts can contribute to the sexually dimorphic pattern of GH release. Fasting (48 h) reduced stomach sst2A/B and hypothalamic SST/sst2A expression in both sexes, whereas it caused a generalized downregulation of pituitary sst subtypes in male and of sst2A only in females. Thus, fasting can reduce SST sensitivity across tissues and SST input to the pituitary, thereby jointly contributing to enhance GH release. In SST-knockout mice, lack of SST differentially altered sst subtype expression levels in both sexes, supporting an important role for SST in sex-dependent control of GH axis. Evaluation of SST, IGF-I, and glucocorticoid effects on hypothalamic and pituitary cell cultures revealed that these hormones could directly account for alterations in sst2/5 expression in the physiological states examined. Taken together, these results indicate that changes in SST output and sensitivity can contribute critically to precisely define, in a tissue-dependent manner, the sex-specific metabolic regulation of the GH axis. PMID:20943754
Role of North Indian Ocean Air-Sea Interaction in Summer Monsoon Intraseasonal Oscillation
NASA Astrophysics Data System (ADS)
Zhang, L.; Han, W.; Li, Y.
2017-12-01
Air-sea coupling processes over the North Indian Ocean associated with Indian summer monsoon intraseasonal oscillation (MISO) are analyzed. Observations show that MISO convection anomalies affect underlying sea surface temperature (SST) through changes in surface shortwave radiation (via cloud cover change) and surface latent heat flux (associated with surface wind speed change). In turn, SST anomalies determine the changing rate of MISO precipitation (dP/dt): warm (cold) SST anomalies cause increasing (decreasing) precipitation rate through increasing (decreasing) surface convergence. Air-sea interaction gives rise to a quadrature relationship between MISO precipitation and SST anomalies. A local air-sea coupling model (LACM) is established based on these observed physical processes, which is a damped oscillatory system with no external forcing. The period of LACM is proportional to the square root of mean state mixed layer depth , assuming other physical parameters remain unchanged. Hence, LACM predicts a relatively short (long) MISO period over the North Indian Ocean during the May-June monsoon developing (July-August mature) phase when is shallow (deep). This result is consistent with observed MISO statistics. An oscillatory external forcing of a typical 30-day period is added to LACM, representing intraseasonal oscillations originated from the equatorial Indian Ocean and propagate into the North Indian Ocean. The period of LACM is then determined by both the inherent period associated with local air-sea coupling and the period of external forcing. It is found that resonance occurs when , amplifying the MISO in situ. This result explains the larger MISO amplitude during the monsoon developing phase compared to the mature phase, which is associated with seasonal cycle of . LACM, however, fails to predict the observed small MISO amplitude during the September-October monsoon decaying phase, when is also shallow. This deficiency might be associated with the neglect of oceanic processes in LACM.
Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability
Tokinaga, Hiroki; Xie, Shang-Ping; Mukougawa, Hitoshi
2017-01-01
With amplified warming and record sea ice loss, the Arctic is the canary of global warming. The historical Arctic warming is poorly understood, limiting our confidence in model projections. Specifically, Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing. Here, we show that the concurrent phase shift of Pacific and Atlantic interdecadal variability modes is the major driver for the rapid early 20th-century Arctic warming. Atmospheric model simulations successfully reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early 20th-century Arctic warming is associated with positive SST anomalies over the tropical and North Atlantic and a Pacific SST pattern reminiscent of the positive phase of the Pacific decadal oscillation. Atmospheric circulation changes are important for the early 20th-century Arctic warming. The equatorial Pacific warming deepens the Aleutian low, advecting warm air into the North American Arctic. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. Coupled ocean–atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, negative-to-positive phase shift of the Pacific and Atlantic interdecadal modes. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region. PMID:28559341
NASA Technical Reports Server (NTRS)
Eitzen, Zachary A.; Xu, Kuan-Man; Wong, Takmeng
2011-01-01
Simulations of climate change have yet to reach a consensus on the sign and magnitude of the changes in physical properties of marine boundary layer clouds. In this study, the authors analyze how cloud and radiative properties vary with SST anomaly in low-cloud regions, based on five years (March 2000 - February 2005) of Clouds and the Earth s Radiant Energy System (CERES) -- Terra monthly gridded data and matched European Centre for Medium-Range Weather Forecasts (ECMWF) meteorological reanalaysis data. In particular, this study focuses on the changes in cloud radiative effect, cloud fraction, and cloud optical depth with SST anomaly. The major findings are as follows. First, the low-cloud amount (-1.9% to -3.4% /K) and the logarithm of low-cloud optical depth (-0.085 to -0.100/K) tend to decrease while the net cloud radiative effect (3.86 W/m(exp 2)/ K) becomes less negative as SST anomalies increase. These results are broadly consistent with previous observational studies. Second, after the changes in cloud and radiative properties with SST anomaly are separated into dynamic, thermodynamic, and residual components, changes in the dynamic component (taken as the vertical velocity at 700 hPa) have relatively little effect on cloud and radiative properties. However, the estimated inversion strength decreases with increasing SST, accounting for a large portion of the measured decreases in cloud fraction and cloud optical depth. The residual positive change in net cloud radiative effect (1.48 W/m(exp 2)/ K) and small changes in low-cloud amount (-0.81% to 0.22% /K) and decrease in the logarithm of optical depth (-0.035 to -0.046/ K) with SST are interpreted as a positive cloud feedback, with cloud optical depth feedback being the dominant contributor. Last, the magnitudes of the residual changes differ greatly among the six low-cloud regions examined in this study, with the largest positive feedbacks (approximately 4 W/m(exp 2)/ K) in the southeast and northeast Atlantic regions and a slightly negative feedback (-0.2 W/m(exp 2)/ K) in the south-central Pacific region. Because the retrievals of cloud optical depth and/or cloud fraction are difficult in the presence of aerosols, the transport of heavy African continental aerosols may contribute to the large magnitudes of estimated cloud feedback in the two Atlantic regions.
NASA Astrophysics Data System (ADS)
Williams, C.; Kniveton, D.; Layberry, R.
2009-04-01
It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. In this research, high resolution satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA) are used as a basis for undertaking model experiments using a state-of-the-art regional climate model. The MIRA dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. Once the model's ability to reproduce extremes has been assessed, idealised regions of sea surface temperature (SST) anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, results from sensitivity testing of the regional climate model's domain size are briefly presented, before a comparison of simulated daily rainfall from the model with the satellite-derived dataset. Secondly, simulations of current climate and rainfall extremes from the model are compared to the MIRA dataset at daily timescales. Finally, the results from the idealised SST experiments are presented, suggesting highly nonlinear associations between rainfall extremes remote SST anomalies.
NASA Astrophysics Data System (ADS)
Woodson, Anna Lee; Leorri, Eduardo; Culver, Stephen J.; Mallinson, David J.; Parham, Peter R.; Thunell, Robert C.; Vijayan, V. R.; Curtis, Scott
2017-06-01
To test whether low latitude shallow shelf deposits can provide high resolution paleoclimatic records, we utilized two cores from the Holocene sedimentary fill of incised valleys on the Sunda Shelf off Sarawak, Malaysia. We developed a new sea-surface temperature (SST) record based on planktonic foraminiferal Mg/Ca for the last 7200 years. This record reveals several significant shifts between warmer and colder conditions. Temperatures averaged 27.5 °C ca. 7200 cal. years BP, then climbed to 28.2 °C from 6500 to 5500 cal. years BP. At 5500-4500 cal. years BP we identified the coldest period (26.8 °C) of the analyzed period. For the last 4500 years SST again averaged 27.5 °C but the profile is rather variable. The last ca. 1000 years recorded the warmest SST averaging 28.5 °C. We record, for the first time in this region, a cool interval, ca. 1000 years in duration, centered on 5000 cal years BP concomitant with a wet period recorded in Borneo. The record also reflects a warm interval from ca. 1000 to 500 cal years BP that may represent the Medieval Climate Anomaly. Variations in the East Asian Monsoon (EAM) and solar activity are considered as potential drivers of SST trends. However, hydrology changes related to the El Niño-Southern Oscillation (ENSO) variability, shifts of the Western Pacific Warm Pool and migration of the Intertropical Convergence Zone are more likely to have impacted our SST temporal trend. Our findings indicate that climatic patterns in the region might be in phase with ENSO and out of phase with the EAM.
NASA Astrophysics Data System (ADS)
Adnan Abid, Mohammad; Almazroui, Mansour; Kucharski, Fred
2017-04-01
Summer seasonal rainfall falls mainly over the south and southwestern parts of the Arabian Peninsula (AP). The relationship between this mean summer seasonal rainfall pattern and El Niño Southern Oscillation (ENSO) is analyzed with the aid of a 15-member ensemble of simulations using the King Abdulaziz University (KAU) Atmospheric Global Climate Model (AGCM). Each simulation is forced with Hadley Sea Surface Temperature (SST) for the period 1980-2015. The southwestern peninsula rainfall is linked towith the SST anomalies in the central-eastern pacific region. This relation is established through an atmospheric teleconnection which shows an upper-level convergence (divergence) anomalies over the southern Arabian Peninsula compensating the central-eastern Pacific region upper-level divergence (convergence) anomalies for the warm (cold) El Niño Southern Oscillaton (ENSO) phase. The upper-level convergence (divergence) over the southern Arabian Peninsula leads to sinking (rising) motion, low-level divergence (convergence) and consequently to reduced (enhanced) rainfall. The correlation coefficient between the observed area-averged Niño3.4 index and athe South Arabian Rainfall Index (SARI) is -0.54. This indicates that AP receives less rainfall during the warm (El Niño) phase, while the opposite happens in the cold (La Niña) El Niño Southern Oscillaton (ENSO) phase. The lower tropospheric cyclonic circulation anomalies strongly modulate the ENSO-related rainfall in the region. Overall, the model shows a 43% potential predictability (PP) for the Southern Arabian Peninsula Rainfall Index (SARI). Further, the predictability during the warm ENSO (El Niño) events is higher than during cold ENSO (La Niña) events. This is not only because of a stronger signal, but also noise reduction contributes to the increase of the regional PP in El Niño compared to that of La Niña years.
Recent climate extremes associated with the West Pacific Warming Mode
Funk, Chris; Hoell, Andrew
2017-01-01
Here we analyze empirical orthogonal functions (EOFs) of observations and a 30 member ensemble of Community Earth System Model version 1 (CESM1) simulations, and suggest that precipitation declines in the Greater Horn of Africa (GHA) and the northern Middle East/Southwestern Asia (NME/SWE: Iran, Iraq, Kuwait, Syria, Saudi Arabia north of 25°N, Israel, Jordan, and Lebanon) may be interpreted as an interaction between La Niña-like decadal variability and the West Pacific Warming Mode (WPWM). While they exhibit different SST patterns, warming of the Pacific cold tongue (ENSO) and warming of the western Pacific (WPWM) produce similar warm pool diabatic forcing, Walker circulation anomalies, and terrestrial teleconnections. CESM1 SST EOFs indicate that both La Niña-like WPWM warming and El Niño-like east Pacific warming will be produced by climate change. The temporal frequency of these changes, however, are distinct. WPWM varies decadally, while ENSO is dominated by interannual variability. Future WPWM and ENSO warming may manifest as a tendency toward warm West Pacific SST, punctuated by extreme warm East Pacific events. WPWM EOFs from Global Precipitation Climatology Project (GPCP) precipitation also identify dramatic WPWM-related declines in the Greater Horn of Africa and NME/SWE.
NASA Astrophysics Data System (ADS)
Jayaram, Chiranjivi; Kumar, P. K. Dinesh
2018-03-01
Upwelling phenomenon along the eastern boundaries of global ocean has received greater attention in the recent times due to its environmental and economic significance in the global warming and the scenario of changing climate as opined by IPCC AR5. In this context, the availabile satellite data on sea surface winds, sea surface temperature (SST), sea level anomaly (SLA) and chlorophyll-a concentration (Chl-a), for the period 1981-2016 were analyzed to identify the coastal upwelling pattern in the Southeastern Arabian Sea (SEAS). Synergistic approach, using winds, SST, SLA and Chl-a revealed that strong upwelling was prevailing between 8°N and 12°N. During the study period, geographical differences existed in the peak values of upwelling favorable conditions considered for study. Analysis of the alongshore winds which are conducive for upwelling were observed to be curtailed towards the northern part of the study region between 2005 and 2010. Also, the strength of upwelling reduced during the strong ENSO years of 1997 and 2015. Linear regression based trend analysis of upwelling indices like Ekman transport, SST and chlorophyll along the coast, during the upwelling period, revealed slight increase in the strength towards the southern region while it decreased to the north during the study period.
NASA Astrophysics Data System (ADS)
Radenac, Marie-Hélène; Léger, Fabien; Messié, Monique; Dutrieux, Pierre; Menkes, Christophe; Eldin, Gérard
2016-04-01
Satellite observations of wind, sea level and derived currents, sea surface temperature (SST), and chlorophyll are used to expand our understanding of the physical and biological variability of the ocean surface north of New Guinea. Based on scarce cruise and mooring data, previous studies differentiated a trade wind situation (austral winter) when the New Guinea Coastal Current (NGCC) flows northwestward and a northwest monsoon situation (austral summer) when a coastal upwelling develops and the NGCC reverses. This circulation pattern is confirmed by satellite observations, except in Vitiaz Strait where the surface northwestward flow persists. We find that intraseasonal and seasonal time scale variations explain most of the variance north of New Guinea. SST and chlorophyll variabilities are mainly driven by two processes: penetration of Solomon Sea waters and coastal upwelling. In the trade wind situation, the NGCC transports cold Solomon Sea waters through Vitiaz Strait in a narrow vein hugging the coast. Coastal upwelling is generated in westerly wind situations (westerly wind event, northwest monsoon). Highly productive coastal waters are advected toward the equator and, during some westerly wind events, toward the eastern part of the warm pool. During El Niño, coastal upwelling events and northward penetration of Solomon Sea waters combine to influence SST and chlorophyll anomalies.
NASA Astrophysics Data System (ADS)
Thakur, B.; Pathak, P.; Kalra, A.; Ahmad, S.
2016-12-01
The identification of primary drivers of streamflow may prove beneficial in forecasting streamflow in the Midwestern U.S. In the past researches, streamflow in the region have been strongly correlated with El Niño-Southern Oscillation (ENSO), Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO). The present study takes in to account the pre-defined Pacific and Atlantic Ocean regions (e.g., ENSO, PDO, AMO) along with new regions with an intent to identify new significantly correlated regions. This study assesses the interrelationship between sea surface temperatures (SST) anomalies in the Pacific and Atlantic Ocean and seasonal streamflow in the Midwestern U.S. Average Pacific and Atlantic Ocean SST anomalies, were calculated for 2 different 3 month series: September-November and December-February so as to create a lead time varying from 3 to 9 months. Streamflow were averaged for three seasons: spring (April-June), spring-summer (April-August) and summer (June-August). The correlation between streamflow and SST is analyzed using singular value decomposition for a period of 1960-2013. The result of the study showed several regions-other than the known Pacific and Atlantic Ocean regions- that were significantly correlated with streamflow stations. Higher correlation between the climate indices and streamflow were observed as the lead time decreased. The identification of the associations between SST and streamflow and significant SST regions in the Pacific and Atlantic Ocean may enhance the skill of streamflow predictability and water management in the region.
NASA Astrophysics Data System (ADS)
Liu, Ge; Wu, Renguang; Zhang, Yuanzhi; Nan, Sulan
2014-07-01
The summer snow anomalies over the Tibetan Plateau (TP) and their effects on climate variability are often overlooked, possibly due to the fact that some datasets cannot properly capture summer snow cover over high terrain. The satellite-derived Equal-Area Scalable Earth grid (EASE-grid) dataset shows that snow still exists in summer in the western part and along the southern flank of the TP. Analysis demonstrates that the summer snow cover area proportion (SCAP) over the TP has a significant positive correlation with simultaneous precipitation over the mei-yu-baiu (MB) region on the interannual time scale. The close relationship between the summer SCAP and summer precipitation over the MB region could not be simply considered as a simultaneous response to the Silk Road pattern and the SST anomalies in the tropical Indian Ocean and tropical central-eastern Pacific. The SCAP anomaly has an independent effect and may directly modulate the land surface heating and, consequently, vertical motion over the western TP, and concurrently induce anomalous vertical motion over the North Indian Ocean via a meridional vertical circulation. Through a zonal vertical circulation over the tropics and a Kelvin wave-type response, anomalous vertical motion over the North Indian Ocean may result in an anomalous high over the western North Pacific and modulate the convective activity in the western Pacific warm pool, which stimulates the East Asia-Pacific (EAP) pattern and eventually affects summer precipitation over the MB region.
Role of subsurface ocean in decadal climate predictability over the South Atlantic.
Morioka, Yushi; Doi, Takeshi; Storto, Andrea; Masina, Simona; Behera, Swadhin K
2018-06-04
Decadal climate predictability in the South Atlantic is explored by performing reforecast experiments using a coupled general circulation model with two initialization schemes; one is assimilated with observed sea surface temperature (SST) only, and the other is additionally assimilated with observed subsurface ocean temperature and salinity. The South Atlantic is known to undergo decadal variability exhibiting a meridional dipole of SST anomalies through variations in the subtropical high and ocean heat transport. Decadal reforecast experiments in which only the model SST is initialized with the observation do not predict well the observed decadal SST variability in the South Atlantic, while the other experiments in which the model SST and subsurface ocean are initialized with the observation skillfully predict the observed decadal SST variability, particularly in the Southeast Atlantic. In-depth analysis of upper-ocean heat content reveals that a significant improvement of zonal heat transport in the Southeast Atlantic leads to skillful prediction of decadal SST variability there. These results demonstrate potential roles of subsurface ocean assimilation in the skillful prediction of decadal climate variability over the South Atlantic.
NASA Astrophysics Data System (ADS)
Bertacchi Uvo, Cintia; Repelli, Carlos A.; Zebiak, Stephen E.; Kushnir, Yochanan
1998-04-01
The monthly patterns of northeast Brazil (NEB) precipitation are analyzed in relation to sea surface temperature (SST) in the tropical Pacific and Atlantic Oceans, using singular value decomposition. It is found that the relationships between precipitation and SST in both basins vary considerably throughout the rainy season (February-May). In January, equatorial Pacific SST is weakly correlated with precipitation in small areas of southern NEB, but Atlantic SST shows no significant correlation with regional precipitation. In February, Pacific SST is not well related to precipitation, but south equatorial Atlantic SST is positively correlated with precipitation over the northern Nordeste, the latter most likely reflecting an anomalously early (or late) southward migration of the ITCZ precipitation zone. During March, equatorial Pacific SST is negatively correlated with Nordeste precipitation, but no consistent relationship between precipitation and Atlantic SST is found. Atlantic SST-precipitation correlations for April and May are the strongest found among all months or either ocean. Precipitation in the Nordeste is positively correlated with SST in the south tropical Atlantic and negatively correlated with SST in the north tropical Atlantic. These relationships are strong enough to determine the structure of the seasonal mean SST-precipitation correlations, even though the corresponding patterns for the earlier months of the season are quite different. Pacific SST-precipitation correlations for April and May are similar to those for March. Extreme wet (dry) years for the Nordeste occur when both Pacific and Atlantic SST patterns for April and May occur simultaneously. A separate analysis reinforces previous findings in showing that SST in the tropical Pacific and the northern tropical Atlantic are positively correlated and that tropical Pacific-south Atlantic correlations are negligible.Time-lagged analyses show the potential for forecasting either seasonal mean or monthly precipitation patterns with some degree of skill. In some instances, individual monthly mean SST versus seasonal mean (February-May) precipitation relationships differ considerably from the corresponding monthly SST versus monthly precipitation relationships. It is argued that the seasonal mean relationships result from the relatively strong monthly relationships toward the end of the season, combined with the considerable persistence of SST in both oceans.
On the Role of SST Forcing in the 2011 and 2012 Extreme U.S. Heat and Drought: A Study in Contrasts
NASA Technical Reports Server (NTRS)
Wang, Hailan; Schubert, Siegfried; Koster, Randal; Ham, Yoo-Geun; Suarez, Max
2013-01-01
This study compares the extreme heat and drought that developed over the United States in 2011 and 2012 with a focus on the role of SST forcing. Experiments with the NASA GEOS-5 atmospheric general circulation model show that the winter/spring response over the U.S. to the Pacific SST is remarkably similar for the two years despite substantial differences in the tropical Pacific SST. As such, the pronounced winter and early spring temperature differences between the two years (warmth confined to the south in 2011 and covering much of the continent in 2012) primarily reflect differences in the contributions from the Atlantic and Indian Oceans, with both acting to cool the east and upper mid-west during 2011, while during 2012 the Indian Ocean reinforced the Pacific-driven continental-wide warming and the Atlantic played a less important role. During late spring and summer of 2011 the tropical Pacific SST force a continued warming and drying over the southern U.S., though considerably weaker than observed. Nevertheless, the observed anomalies fall within the models intra-ensemble spread. In contrast, the rapid development of intense heat and drying over the central U.S. during June and July of 2012 falls outside the models intra-ensemble spread. The response to the SST (a northward expansion of a modest summer warming linked to the Atlantic) gives little indication that 2012 would produce record-breaking precipitation deficits and heat in the central Great Plains. A diagnosis of the 2012 observed circulation anomalies shows that the most extreme heat and drought was tied to the development of a stationary Rossby wave and an associated anomalous upper tropospheric high maintained by weather transients.
NASA Astrophysics Data System (ADS)
Chowdary, Jasti S.; Srinivas, G.; Du, Yan; Gopinath, K.; Gnanaseelan, C.; Parekh, Anant; Singh, Prem
2018-03-01
Indian summer monsoon (ISM) rainfall during 2016 exhibited a prominent month-to-month fluctuations over India, with below normal rainfall in June and August and above normal rainfall in July. The factors determining the month-to-month fluctuations in ISM rainfall during 2016 are investigated with main focus on the Indo-Pacific climatic anomalies. Warm sea surface temperature (SST) anomalies associated with super El Niño 2015 disappeared by early summer 2016 over the central and eastern Pacific. On the other hand, negative Indian Ocean dipole (IOD) like SST anomaly pattern over the equatorial Indian Ocean and anomalous anticyclonic circulation over the western North Pacific (WNP) are reported in summer 2016 concurrently with decaying El Niño/developing La Niña phase. Observations revealed that the low rainfall over central north India in June is due to moisture divergence caused by the westward extension of ridge corresponding to WNP anticyclone and subsidence induced by local Hadley cell partly related to negative IOD. Low level convergence of southeasterly wind from Bay of Bengal associated with weak WNP anticyclone and northwesterly wind corresponding to anticyclonic circulation over the northwest India remarkably contributed to positive rainfall in July over most of the Indian subcontinent. While reduced rainfall over the Indian subcontinent in August 2016 is associated with the anomalous moisture transport from ISM region to WNP region, in contrast to July, due to local cyclogenesis corroborated by number of tropical cyclones in the WNP. In addition to this, subsidence related to strong convection supported by cyclonic circulation over the WNP also resulted in low rainfall over the ISM region. Coupled General Circulation model sensitivity experiments confirmed that strong convective activities associated with cyclonic circulation over the WNP is primarily responsible for the observed negative ISM rainfall anomalies in August 2016. It is noted that the Indo-Western Pacific circulation anomalies in August 2016 are well predicted when the coupled model is initiated with initial conditions from end of July and beginning of August compared to May. This analysis suggests the importance of the WNP circulation in forcing strong sub-seasonal/month to month rainfall variations over India.
Intensified ENSO-Driven Precipitation Teleconnections in the Future
NASA Astrophysics Data System (ADS)
Bonfils, C.; Santer, B. D.; Phillips, T. J.; Marvel, K.; Leung, L. R.; Doutriaux, C.
2014-12-01
The El Niño-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. Most climate models project an increase in the frequency of extreme El Niño events under increased greenhouse-gas (GHG) forcing. However, it is unclear how other aspects of ENSO and ENSO-driven teleconnections will evolve in the future. Here, we identify in 20th century sea-surface temperature (SST) observations a time-invariant ENSO-like (ENSOL) pattern that is largely uncontaminated by GHG forcing. We use this pattern to investigate the future precipitation (P) response to ENSO-like SST anomalies. Models that better capture observed ENSOL characteristics produce P teleconnection patterns that are in better accord with observations and more stationary in the 21st century. We decompose the future P response to ENSOL into the sum of three terms: (1) the change in P mean state, (2) the historical P response to ENSOL, and (3) a future enhancement in the P response to ENSOL. In many regions, this last term can aggravate the P extremes associated with ENSO variability. This simple decomposition allows us to identify regions likely to experience ENSOL-induced P changes that are without precedent in the current climate. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Multi-scale Quantitative Precipitation Forecasting Using ...
Global sea surface temperature (SST) anomalies can affect terrestrial precipitation via ocean-atmosphere interaction known as climate teleconnection. Non-stationary and non-linear characteristics of the ocean-atmosphere system make the identification of the teleconnection signals difficult to be detected at a local scale as it could cause large uncertainties when using linear correlation analysis only. This paper explores the relationship between global SST and terrestrial precipitation with respect to long-term non-stationary teleconnection signals during 1981-2010 over three regions in North America and one in Central America. Empirical mode decomposition as well as wavelet analysis is utilized to extract the intrinsic trend and the dominant oscillation of the SST and precipitation time series in sequence. After finding possible associations between the dominant oscillation of seasonal precipitation and global SST through lagged correlation analysis, the statistically significant SST regions are extracted based on the correlation coefficient. With these characterized associations, individual contribution of these SST forcing regions linked to the related precipitation responses are further quantified through nonlinear modeling with the aid of extreme learning machine. Results indicate that the non-leading SST regions also contribute a salient portion to the terrestrial precipitation variability compared to some known leading SST regions. In some cases, these
NASA Astrophysics Data System (ADS)
Pillai, Prasanth A.; Rao, Suryachandra A.; Das, Renu S.; Salunke, Kiran; Dhakate, Ashish
2017-10-01
The present study assess the potential predictability of boreal summer (June through September, JJAS) tropical sea surface temperature (SST) and Indian summer monsoon rainfall (ISMR) using high resolution climate forecast system (CFSv2-T382) hindcasts. Potential predictability is computed using relative entropy (RE), which is the combined effect of signal strength and model spread, while the correlation between ensemble mean and observations represents the actual skill. Both actual and potential skills increase as lead time decreases for Niño3 index and equatorial East Indian Ocean (EEIO) SST anomaly and both the skills are close to each other for May IC hindcasts at zero lead. At the same time the actual skill of ISMR and El Niño Modoki index (EMI) are close to potential skill for Feb IC hindcasts (3 month lead). It is interesting to note that, both actual and potential skills are nearly equal, when RE has maximum contribution to individual year's prediction skill and its relationship with absolute error is insignificant or out of phase. The major contribution to potential predictability is from ensemble mean and the role of ensemble spread is limited for Pacific SST and ISMR hindcasts. RE values are able to capture the predictability contribution from both initial SST and simultaneous boundary forcing better than ensemble mean, resulting in higher potential skill compared to actual skill for all ICs. For Feb IC hindcasts at 3 month lead time, initial month SST (Feb SST) has important predictive component for El Niño Modoki and ISMR leading to higher value of actual skill which is close to potential skill. This study points out that even though the simultaneous relationship between ensemble mean ISMR and global SST is similar for all ICs, the predictive component from initial SST anomalies are captured well by Feb IC (3 month lead) hindcasts only. This resulted in better skill of ISMR for Feb IC (3 month lead) hindcasts compared to May IC (0 month lead) hindcasts. Lack of proper contribution from initial SST and teleconnections induces large absolute error for ISMR in May IC hindcasts resulting in very low actual skill. Thus the use of potential predictability skill and actual skill collectively help to understand the fidelity of the model for further improvement by differentiating the role of initial SST and simultaneous boundary forcing to some extent.
Impact of ENSO longitudinal position on teleconnections to the NAO
NASA Astrophysics Data System (ADS)
Zhang, Wenjun; Wang, Ziqi; Stuecker, Malte F.; Turner, Andrew G.; Jin, Fei-Fei; Geng, Xin
2018-02-01
While significant improvements have been made in understanding how the El Niño-Southern Oscillation (ENSO) impacts both North American and Asian climate, its relationship with the North Atlantic Oscillation (NAO) remains less clear. Observations indicate that ENSO exhibits a highly complex relationship with the NAO-associated atmospheric circulation. One critical contribution to this ambiguous ENSO/NAO relationship originates from ENSO's diversity in its spatial structure. In general, both eastern (EP) and central Pacific (CP) El Niño events tend to be accompanied by a negative NAO-like atmospheric response. However, for two different types of La Niña the NAO response is almost opposite. Thus, the NAO responses for the CP ENSO are mostly linear, while nonlinear NAO responses dominate for the EP ENSO. These contrasting extra-tropical atmospheric responses are mainly attributed to nonlinear air-sea interactions in the tropical eastern Pacific. The local atmospheric response to the CP ENSO sea surface temperature (SST) anomalies is highly linear since the air-sea action center is located within the Pacific warm pool, characterized by relatively high climatological SSTs. In contrast, the EP ENSO SST anomalies are located in an area of relatively low climatological SSTs in the eastern equatorial Pacific. Here only sufficiently high positive SST anomalies during EP El Niño events are able to overcome the SST threshold for deep convection, while hardly any anomalous convection is associated with EP La Niña SSTs that are below this threshold. This ENSO/NAO relationship has important implications for NAO seasonal prediction and places a higher requirement on models in reproducing the full diversity of ENSO.
NASA Astrophysics Data System (ADS)
Zhan, Ruifen; Chen, Baode; Ding, Yihui
2018-01-01
This study investigated the impact of sea surface temperature (SST) in several important areas of the Indian-Pacific basin on tropical cyclone (TC) activity over the western North Pacific (WNP) during the developing years of three super El Niño events (1982, 1997, and 2015) based on observations and numerical simulations. During the super El Niño years, TC intensity was enhanced considerably, TC days increased, TC tracks mostly recurved along the coasts, and fewer TCs made landfall in China. These characteristics are similar to the strong ENSO-TC relationship but further above the climatological means than in strong El Niño years. It indicates that super El Niño events play a dominant role in the intensities and tracks of WNP TCs. However, there were clear differences in both numbers and positions of TC genesis among the different super El Niño years. These features could be attributed to the collective impact of SST anomalies (SSTAs) in the tropical central-eastern Pacific and East Indian Ocean (EIO) and the SST gradient (SSTG) between the southwestern Pacific and the western Pacific warm pool. During 2015, the EIO SSTA was extremely warm and the anomalous anticyclone in the western WNP was enhanced, resulting in fewer TCs than normal. In 1982, the EIO SSTA and spring SSTG showed negative anomalies, followed by an increased anomalous cyclone in the western WNP and equatorial vertical wind shear. This intensified the conversion of eddy kinetic energy from large-scale flows, favorable for the westward shift of TC genesis. Consequently, anomalous TC activities during the super El Niño years resulted mainly from combined SSTA impacts of different key areas over the Indian-Pacific basin.
Statistical downscaling forecast of Chinese winter temperature based on the autumn SST anomalies
NASA Astrophysics Data System (ADS)
Lu, J.
2017-12-01
This study investigates the impacts of the autumn sea surface temperature anomalies (SSTA) on interannual variations of Chinese winter temperature, and discusses the potential predictability of December-January-February (DJF) 2-m air temperature anomalies (TSA) over China based on the intimate linkage between the DJF TSA and autumn SSTA. According to the Empirical Orthogonal Function (EOF) analysis, three leading EOF modes jointly account for 80% of the total TSA variances and are characterized by a homogeneous spatial pattern, a north-south seesaw and a cross structure. The first three EOFs exhibit a stable feature revealed by cross-validation, suggesting the potential predictability of the DJF TSA. The EOF1 mode is influenced by changes in the intensities of the Siberian High (SH), East Asian winter monsoon (EAWM) and East Asian Trough related to an Eurasian pattern teleconnection, which can be tracked back to September-October-November (SON) SSTA associated with two SSTA tripole patterns in the North Pacific and North Atlantic, a dipole mode in the Indian Ocean and an ENSO-like mode in the equatorial and subtropical Pacific. However, the Arctic Oscillation plays an important role in the second mode. The teleconnection connecting the atmospheric circulation anomalies in two hemispheres indicates that the configuration of global SON SSTA induces the two annular modes and causes a TSA oscillation between the northern and southern parts of China. The third mode is related to the westward shift of the SH and western pathway EAWM, which are attributed to two dipole modes in the North Pacific and South Pacific, Atlantic Multidecadal Oscillation and Indian Ocean Basin Mode. Therefore a physically-based statistical model is established based on autumn SSTA indices. Cross-validation suggests that this statistical downscaling forecast model shows a good performance in predicting the DJF TSA.
NASA Astrophysics Data System (ADS)
Lavender, Sally L.; Hoeke, Ron K.; Abbs, Deborah J.
2018-03-01
Tropical cyclones (TCs) result in widespread damage associated with strong winds, heavy rainfall and storm surge. TC Yasi was one of the most powerful TCs to impact the Queensland coast since records began. Prior to Yasi, the SSTs in the Coral Sea were higher than average by 1-2 °C, primarily due to the 2010/2011 La Niña event. In this study, a conceptually simple idealised sensitivity analysis is performed using a high-resolution regional model to gain insight into the influence of SST on the track, size, intensity and associated rainfall of TC Yasi. A set of nine simulations with uniform SST anomalies of between -4 and 4 °C applied to the observed SSTs are analysed. The resulting surface winds and pressure are used to force a barotropic storm surge model to examine the influence of SST on the associated storm surge of TC Yasi. An increase in SST results in an increase in intensity, precipitation and integrated kinetic energy of the storm; however, there is little influence on track prior to landfall. In addition to an increase in precipitation, there is a change in the spatial distribution of precipitation as the SST increases. Decreases in SSTs result in an increase in the radius of maximum winds due to an increase in the asymmetry of the storm, although the radius of gale-force winds decreases. These changes in the TC characteristics also lead to changes in the associated storm surge. Generally, cooler (warmer) SSTs lead to reduced (enhanced) maximum storm surges. However, the increase in surge reaches a maximum with an increase in SST of 2 °C. Any further increase in SST does not affect the maximum surge but the total area and duration of the simulated surge increases with increasing upper ocean temperatures. A large decrease in maximum storm surge height occurs when a negative SST anomaly is applied, suggesting if TC Yasi had occurred during non-La Niña conditions the associated storm surge may have been greatly diminished, with a decrease in storm surge height of over 3 m when the SST is reduced by 2 °C. In summary, increases in SST lead to an increase in the potential destructiveness of TCs with regard to intensity, precipitation and storm surge, although this relationship is not linear.
NASA Astrophysics Data System (ADS)
Lickley, M.; Solomon, S.
2017-12-01
Southern Africa rainfall (SAR) is generally projected to decrease during the 21st century as a result of climate change, though there is some disagreement regarding the location and magnitude of this reduction in General Circulation Models (GCMs). Here we examine the robustness of the rainfall response to sea surface temperature (SST) anomalies. Previous work argues that warmer SSTs in the Indian Ocean suppress SAR. Other studies argue that El Niños lead to suppressed SAR. We examine the SAR response to SST anomalies in the Indian Ocean, Atlantic Ocean and ENSO 3.4 region both in observations and in two large ensembles of GCMs run over the 20th and 21st century. We find that ENSO SSTs are most correlated with SAR, while correlations between SAR and the Indian Ocean are dominated by their respective responses to ENSO. This relationship appears to persist under a warming background state.
NASA Technical Reports Server (NTRS)
Robertson, F. R.; Fitzjarrald, D. E.; Sohn, B.-J.; Arnold, James E. (Technical Monitor)
2001-01-01
The da Silva, Young and Levitus Surface Marine Atlas, based on observations from the Comprehensive Ocean Atmosphere Data Set (COADS) Release 1, has been used to investigate the relationship between evaporation and sea-surface temperature (SST) over the global oceans. For the period 1950 to 1987 SST, surface latent heat flux, and other related variables have been filtered to minimize data uncertainties and to focus upon interannual variations associated with warm (El Nino) and cold (La Nina) ENSO events. Compositing procedures have enabled identification of systematic variations in latent heat fluxes accompanying these events and the relationship to spatial anomalies in ocean surface wind speed and humidity. The evaporation response associated with ENSO sea surface temperature (SST) variability is systematic in nature and composed of offsetting contributions from the surface wind and humidity variations. During warm events exceeding 1.0 S.D. delta SST, increases in the surface humidity deficit, delta(qs-qa), between the surface and 2m height dominate regions of positive SST anomalies and lead to increases in evaporation of almost 2 Wm (exp -2) at deltaSST = 0.23 K. Despite the increases in specific humidity, relative humidity decreases slightly in regions of elevated SSTs. For the most part, variations in wind speed are consistent with previous investigations. Weakening of the equatorial easterlies (and generation of westerlies) between 160 degrees E and 140 degrees W dominates during the early phases of warm events. Elevated wind speeds in adjacent subtropical regions and in the eastern equatorial Pacific subsequently develop too. The net contribution of these winds, which reflect adjustments in Hadley and Walker circulation components is toward reduced evaporation. Results for cold periods are approximately similar, but opposite in sign to warm events, though evidence of different temporal evolution is noted.
SST and OLR relationship during Indian summer monsoon: a coupled climate modelling perspective
NASA Astrophysics Data System (ADS)
Chaudhari, Hemantkumar S.; Hazra, Anupam; Pokhrel, Samir; Chakrabarty, Chandrima; Saha, Subodh Kumar; Sreenivas, P.
2018-04-01
The study mainly investigates sea surface temperature (SST) and outgoing longwave radiation (OLR) relationships in coupled climate model. To support the analysis, high-level cloud and OLR relationship is also investigated. High-level cloud and OLR relationship depicts significant negative correlation over the entire monsoon regime. Coupled climate model is able to produce the same. SST and OLR relationship in observation also depicts significant negative relationship, in particular, over the Equatorial Eastern Indian Ocean (EIO) region. Climate Forecast System version 2 (CFSv2) is able to portray the negative relationship over EIO region; however, it is underestimated as compared to observation. Significant negative correlations elucidate that local SSTs regulate the convection and further it initiates Bjerknes feedback in the central Indian Ocean. It connotes that SST anomalies during monsoon period tend to be determined by oceanic forcing. The heat content of the coastal Bay of Bengal shows highest response to EIO SST by a lag of 1 month. It suggests that the coastal region of the Bay of Bengal is marked by coastally trapped Kelvin waves, which might have come from EIO at a time lag of 1 month. Sea surface height anomalies, depth at 20 °C isotherms and depth at 26 isotherms also supports the above hypothesis. Composite analysis based on EIO index and coupled climate model sensitivity experiments also suggest that the coastal Bay of Bengal region is marked by coastally trapped Kelvin waves, which are propagated from EIO at a time lag of 1 month. Thus, SST and OLR relationship pinpoints that the Bay of Bengal OLR (convection) is governed by local ocean-atmospheric coupling, which is influenced by the delayed response from EIO brought forward through oceanic planetary waves at a lag of 1 month. These results have utmost predictive value for seasonal and extended range forecasting. Thus, OLR and SST relationship can constitute a pivotal role in investigating the atmosphere-ocean interaction.
The role of the tropical West Pacific in the extreme northern hemisphere winter of 2013/14
NASA Astrophysics Data System (ADS)
Watson, Peter; Weisheimer, Antje; Knight, Jeff; Palmer, Tim
2016-04-01
In the 2013/14 winter, the eastern USA was exceptionally cold, the Bering Strait region was exceptionally warm, California was in the midst of drought and the UK suffered severe flooding. It has been suggested that elevated SSTs in the tropical West Pacific (TWPAC) were partly to blame due to their producing a Rossby wavetrain that propagated into the extratropics. We find that seasonal forecasts with the tropical atmosphere relaxed towards a reanalysis give 2013/14 winter-mean anomalies with strong similarities to those observed in the Northern Hemisphere, indicating that low-latitude anomalies had a role in the development of the extremes. Relaxing just the TWPAC produces a strong wavetrain over the North Pacific and North America in January, but not in the winter-mean. This suggests that anomalies in this region alone had a large influence, but cannot explain the extremes through the whole winter. We also examine the response to applying the observed TWPAC SST anomalies in two atmospheric general circulation models. We find that this does produce winter-mean anomalies in the North Pacific and North America resembling those observed, but that the tropical forcing of Rossby waves due to the applied SST anomalies appears stronger than that in reanalysis, except in January. Therefore both experiments indicate that the TWPAC influence was important, but the true strength of the TWPAC influence is uncertain. None of the experiments indicate a strong systematic impact of the TWPAC anomalies on Europe.
NASA Astrophysics Data System (ADS)
Rai, P.; Joshi, M.; Dimri, A. P.; Turner, A. G.
2017-08-01
The climate of the Indian subcontinent is dominated by rainfall arising from the Indian summer monsoon (ISM) during June to September. Intraseasonal variability during the monsoon is characterized by periods of heavy rainfall interspersed by drier periods, known as active and break events respectively. Understanding and predicting such events is of vital importance for forecasting human impacts such as water resources. The Somali Jet is a key regional feature of the monsoon circulation. In the present study, we find that the spatial structure of Somali Jet potential vorticity (PV) anomalies varies considerably during active and break periods. Analysis of these anomalies shows a mechanism whereby sea surface temperature (SST) anomalies propagate north/northwestwards through the Arabian Sea, caused by a positive feedback loop joining anomalies in SST, convection, modification of PV by diabatic heating and mixing in the atmospheric boundary layer, wind-stress curl, and ocean upwelling processes. The feedback mechanism is consistent with observed variability in the coupled ocean-atmosphere system on timescales of approximately 20 days. This research suggests that better understanding and prediction of monsoon intraseasonal variability in the South Asian monsoon may be gained by analysis of the day-to-day dynamical evolution of PV in the Somali Jet.
NASA Astrophysics Data System (ADS)
Rai, P.; Joshi, M.; Dimri, A. P.; Turner, A. G.
2018-06-01
The climate of the Indian subcontinent is dominated by rainfall arising from the Indian summer monsoon (ISM) during June to September. Intraseasonal variability during the monsoon is characterized by periods of heavy rainfall interspersed by drier periods, known as active and break events respectively. Understanding and predicting such events is of vital importance for forecasting human impacts such as water resources. The Somali Jet is a key regional feature of the monsoon circulation. In the present study, we find that the spatial structure of Somali Jet potential vorticity (PV) anomalies varies considerably during active and break periods. Analysis of these anomalies shows a mechanism whereby sea surface temperature (SST) anomalies propagate north/northwestwards through the Arabian Sea, caused by a positive feedback loop joining anomalies in SST, convection, modification of PV by diabatic heating and mixing in the atmospheric boundary layer, wind-stress curl, and ocean upwelling processes. The feedback mechanism is consistent with observed variability in the coupled ocean-atmosphere system on timescales of approximately 20 days. This research suggests that better understanding and prediction of monsoon intraseasonal variability in the South Asian monsoon may be gained by analysis of the day-to-day dynamical evolution of PV in the Somali Jet.
The role of external forcing and Pacific trade winds in recent changes of the global climate system
NASA Astrophysics Data System (ADS)
Friedman, Andrew; Gastineau, Guillaume; Khodri, Myriam
2017-04-01
The Pacific trade winds experienced an unprecedented strengthening since the mid 1990s. Several studies have proposed that the increased Pacific trade winds were associated with the reduced rate of global mean surface temperature warming in the first decade of the 21st century, as well as far-reaching atmospheric teleconnections. We designed a set of ensemble partial coupling experiments using the IPSL-CM5A-LR coupled model that allow us to cleanly distinguish the influence of Pacific trade wind variability from that of external forcing over the past few decades. In this study, we quantify the respective impacts of these processes on surface temperature, ocean heat content, and atmospheric teleconnections. We designed two ensembles of coupled simulations using partial coupling with the IPSL-CM5A-LR model to separate the Pacific internal variability and that of external radiative forcing. We prescribe surface wind stress in the tropical Pacific (20°S to 20°N) from 1979-2014 in two ensembles of 30 members each: (1) Prescribed climatological model wind stress, which allows us to estimate the influence of external radiative forcing in the absence of variability within the Pacific Ocean. (2) Wind stress anomalies from ERA-Interim reanalysis added to the model wind stress climatology, which accounts for the effects of both external radiative forcing and the wind stress variability. We find that the observed wind stress anomalies account for the pattern of eastern tropical Pacific cooling when compared to the climatology experiment, so that it resembles the observed trends from 1992-2011. The tropical Pacific shows dominant heat uptake in the western Pacific above the 20°C isotherm, which contributed to slow the warming of tropical SST during the 2000s. The trade wind increase is associated with a strengthening of the Pacific Walker circulation, and zonal shifts in tropical rainfall. Despite tropical SST biases which affect the response of tropical rainfall and the location of deep convection, the wind stress anomaly forcing effectively simulates the wave train pattern emanating from the tropical Pacific, and associated extratropical teleconnections such as a weakening of the Aleutian Low and drought in North America.
Seasonality of the Tropical Intraseasonal Oscillations: Sensitivity to Mean Background State
NASA Astrophysics Data System (ADS)
Singh, Bohar
This study investigates the seasonality of tropical intraseasonal oscillations (TISO) in Earths current climate and its relationship with the inter-hemispherical migration of the climatological mean maximum sea surface temperature (SST) and the tropical core of the low-level westerly wind. TISO is identified with anomalies of atmospheric convection with large spatial scale (105 km2) that characteristically exist on the intra-seasonal time scale (20- 100 days period). A new method for tracking the large spatial scale features of convective anomalies, measured by outgoing long-wave radiation (OLR), is developed, based on a two-stage Kalman filter predictor-corrector method. Two dominant components of TISO (eastward-propagating and northward-propagating) are classified, and it is found that TISO remains active throughout the year, with eastward propagation of TISO events occurring from November to April and northward propagating events occurring from May to October. The eastward events have a phase speed of 4 m/s, while the northward events propagate at 2 m/s in both the Indian and Pacific Ocean basins. A composite analysis of the mean background states (zonal wind, SST and low-level moisture) reveals that the co-occurrence of warm climatological SST and mean westerly wind plays an important role in the direction of propagation and geographical location of TISO. It is hypothesized that the geographical location of TISO occurrences is coupled with SST, moisture and lower tropospheric circulation. The seasonal migration of the mean background state is a potential determinant of the seasonal changes in the characteristics of TISO. A Lagrangian composite analysis with respect to the center of mass of the each convective cloud system was done separately for eastward-propagating TISO events, northward propagating TISO events over the Indian Ocean and northward-propagating TISO events over the west Pacific Ocean. The analysis suggests that the average size of eastward propagating events is 106 km2 and the OLR anomaly at the center of convection is -50 W/m 2, and size of northward propagating events is 106 km 2 and the OLR anomaly at the center of convection is -45 W/ m2. The spatial asymmetry in the mean background state composite moisture, moist static energy, moisture convergence, and vertical velocity all suggest that the development phase of convection lies east of the convection center. A slight shift in moisture anomalies ahead of the convection center and moistening (drying) ahead of (behind) the convection is found in both eastward and northward propagating TISO events. An analysis of the individual terms from the anomalous vertically-integrated moisture budget suggests that vertical moisture advection dominates the local tendency of moisture, but it is balanced by the moisture sink term due to precipitation and evaporation. Column processes (the sum of vertical moisture advection and the moisture sinks) compete with the large drying produced by the horizontal moisture advection. Horizontal moisture advection that brings dry moisture anomalies into the convection area from behind the convective center is common to all three kinds of TISO. Horizontal moisture advection also plays an important role in the moistening ahead of the convection in eastward-propagating and northward-propagating events in the Indian Ocean. Moistening ahead of convection in northward-propagating events in the west Pacific Ocean is accomplished primarily by column processes. To test the hypothesis that the climatological SST maximum and the tropical core of the westerly low-level wind guide the development and propagation of TISO, a series of sensitivity experiments is performed. In these experiments, with initial conditions taken from early boreal summer in several selected years of the free run of the SP-CAM4 (a super-parameterized version of the Community Atmospheric Model, version 4), the lower boundary condition is prescribed as the climatological mean, seasonally varying SST in boreal winter. A companion set of sensitivity experiments is made with early boreal winter initial conditions and prescribed SST from the boreal summer. The four sets of runs were analyzed as was done with the observations. The results of these experiments indicate that the regionality and seasonality of TISO are closely coupled to the SST and the low- level circulation. The SST in the tropics must reach a required threshold for convection to occur, while the low-level circulation controls the direction of propagation by controlling the location of moisture convergence. A moisture budget analysis of the observations and control simulation with the model indicates that both eastward and northward propagating TISO events propagate according to the moisture mode, that is, dynamics are strongly regulated by the processes that control the growth of moisture. TISO remains active throughout the year in both the model and observations. During the boreal summer, when the maximum SST migrates into the northern hemisphere, the SST in this hemisphere becomes conducive for convection organization. The horizontal shear line in the northern hemisphere in the mean background zonal wind during boreal summer modulates the northward horizontal moisture advection. The convection then moves northward in the Indian and west Pacific Ocean basins. During boreal winter, when the maximum SST and low-level westerlies are located in the southern hemisphere, the SST in this hemisphere becomes conducive for convection organization. The mean background wind and anomalies together advect anomalously dry air into the convective region and advect anomalously moist air preferentially on the east side of the convective region, leading to eastward propagation. Column processes in both eastward and northward propagating events maintain the convection by competing with excessive drying produced by the horizontal advection. Column processes also help in moistening ahead of the convection. The analysis is unique insofar as it relies on a new method for tracking intra-seasonal propagating convection anomalies in the tropics and an event-centric Lagrangian moisture budget analysis. The results of the analysis and the sensitivity tests are consistent with published work showing that the moisture mode is the dominant mechanism for propagating organized convection in the tropics.
North Pacific decadal variability: insights from a biennial ENSO environment
NASA Astrophysics Data System (ADS)
Achuthavarier, Deepthi; Schubert, Siegfried D.; Vikhliaev, Yury V.
2017-08-01
This study examines the mechanisms of the Pacific decadal oscillation (PDO) in the NASA GEOS-5 general circulation model (GCM). Similar to several other state-of-the-art GCMs, the El Niño-Southern Oscillation (ENSO) simulated by the GEOS-5 has a strong biennial periodicity. Since this is a model bias that precludes a strong role of ENSO, it provides a unique environment to assess the other leading mechanisms of North Pacific decadal variability. Despite the biennial ENSO periodicity, the model simulates a realistic PDO pattern in the North Pacific that is resolved as the first empirical orthogonal function (EOF) of winter mean sea surface temperature (SST). The spectrum of the PDO indicates no preferred periodicity. The SST anomalies associated with the PDO, particularly its basin wide structure, are primarily forced by the Aleutian low through Ekman transport. The slow geostrophic transport in association with the meridional adjustment of the subtropical gyre is limited to a narrow region in the Kuroshio-Oyashio extension, north of 40°N. The atmosphere's response to the PDO, while weak, projects onto the North Pacific Oscillation (NPO), a meridional dipole in sea level pressure. Both the lack of preferred periodicity and the weak atmospheric response indicate an air-sea coupled oscillation is an unlikely mechanism in this model. In agreement with recent studies, the NPO is correlated with the North Pacific Gyre Oscillation, which is another leading EOF of North Pacific SST variability. The results emphasize the role of atmospheric variability in the North Pacific SST modes, thereby bringing into question the potential for their predictability.
North Pacific Decadal Variability: Insights from a Biennial ENSO Environment
NASA Technical Reports Server (NTRS)
Achuthavarier, Deepthi; Schubert, Siegfried D.; Vikhliaev, Yury V.
2016-01-01
This study examines the mechanisms of the Pacific decadal oscillation (PDO) in the NASA GEOS-5 general circulation model (GCM). Similar to several other state-of-the-art GCMs, the El Niño-Southern Oscillation (ENSO) simulated by the GEOS-5 has a strong biennial periodicity. Since this is a model bias that precludes a strong role of ENSO, it provides a unique environment to assess the other leading mechanisms of North Pacific decadal variability. Despite the biennial ENSO periodicity, the model simulates a realistic PDO pattern in the North Pacific that is resolved as the first empirical orthogonal function (EOF) of winter mean sea surface temperature (SST). The spectrum of the PDO indicates no preferred periodicity. The SST anomalies associated with the PDO, particularly its basin wide structure, are primarily forced by the Aleutian low through Ekman transport. The slow geostrophic transport in association with the meridional adjustment of the subtropical gyre is limited to a narrow region in the Kuroshio-Oyashio extension, north of 40degN. The atmosphere's response to the PDO, while weak, projects onto the North Pacific Oscillation (NPO), a meridional dipole in sea level pressure. Both the lack of preferred periodicity and the weak atmospheric response indicate an air-sea coupled oscillation is an unlikely mechanism in this model. In agreement with recent studies, the NPO is correlated with the North Pacific Gyre Oscillation, which is another leading EOF of North Pacific SST variability. The results emphasize the role of atmospheric variability in the North Pacific SST modes, thereby bringing into question the potential for their predictability.
Understanding multidecadal variability in ENSO amplitude
NASA Astrophysics Data System (ADS)
Russell, A.; Gnanadesikan, A.
2013-12-01
Sea surface temperatures (SSTs) in the tropical Pacific vary as a result of the coupling between the ocean and atmosphere driven largely by the El Niño - Southern Oscillation (ENSO). ENSO has a large impact on the local climate and hydrology of the tropical Pacific, as well as broad-reaching effects on global climate. ENSO amplitude is known to vary on long timescales, which makes it very difficult to quantify its response to climate change and constrain the physical processes that drive it. In order to assess the extent of unforced multidecadal changes in ENSO variability, a linear regression of local SST changes is applied to the GFDL CM2.1 model 4000-yr pre-industrial control run. The resulting regression coefficient strengths, which represent the sensitivity of SST changes to thermocline depth and zonal wind stress, vary by up to a factor of 2 on multi-decadal time scales. This long-term modulation in ocean-atmosphere coupling is highly correlated with ENSO variability, but do not explain the reasons for such variability. Variation in the relationship between SST changes and wind stress points to a role for changing stratification in the central equatorial Pacific in modulating ENSO amplitudes with stronger stratification reducing the response to winds. The main driving mechanism we have identified for higher ENSO variance are changes in the response of zonal winds to SST anomalies. The shifting convection and precipitation patterns associated with the changing state of the atmosphere also contribute to the variability of the regression coefficients. These mechanisms drive much of the variability in ENSO amplitude and hence ocean-atmosphere coupling in the tropical Pacific.
Warm Anomaly Effects on California Current Phytoplankton
NASA Astrophysics Data System (ADS)
Gomez Ocampo, E.; Gaxiola-Castro, G.; Beier, E.; Durazo, R.
2016-02-01
Positive temperature anomalies were reported in the NE Pacific Ocean since the boreal winter of 2013-2014. Previous studies showed that these anomalies were caused by lower than normal rates of heat loss from the ocean to the atmosphere and by relatively weak cold water advection to the upper ocean. Anomalous Sea Surface Temperature (SST), Absolute Dynamic Topography (ADT), and Chlorophyll (CHL) obtained from monthly remote sensing data were registered in the California Current region during August 2014. Anomalies appeared around the coastal and oceanic zones, particularly in the onshore zone between Monterey Bay, California and Magdalena Bay, Baja California. High positive SST anomalous values up to 4ºC above the long-term mean, 20 cm in ADT, and less of 4.5 mg m-3 of CHL were registered. Changes of 20 cm in ADT above the average are equivalent to 50 m thermocline deepening considering typical values of stratification for the area, which in turn influenced the availability of nutrients and light for phytoplankton growth in the euphotic zone. To examine the influence of the warm anomaly on phytoplankton production, we fitted with Generalized Additive Models the relationship between monthly primary production satellite data and ADT. Primary production inferred from the model, showed during August 2014 high negative anomalies (up to 0.5 gC m-2 d1) in the coastal zone. The first empirical orthogonal function of ADT and PP revealed that the highest ADT anomalies and the lowest primary production occurred off the Baja California Peninsula, between Punta Eugenia and Cabo San Lucas. Preliminary conclusions showed that warm anomaly affected negatively to phytoplankton organisms during August 2014, being this evident by low biomass and negative primary production anomalies as result of pycnocline deepens.
Detecting Global Hydrological Cycle Intensification in Sea Surface Salinity
NASA Astrophysics Data System (ADS)
Poague, J.; Stine, A.
2016-12-01
Global warming is expected to intensify the global hydrological cycle, but significant regional differences exist in the predicted response. The proposed zonal mean thermodynamic response is enhanced horizontal moisture transport associated with increased saturation vapor pressure, which in turn drives additional net precipitation in the tropics and at high latitudes and additional net evaporation in the subtropics. Sea surface salinity (SSS) anomalies are forced from above by changes in evaporation minus precipitation (E-P) and thus will respond to changes in the global hydrological cycle, opening the possibility of using historical SSS anomalies to diagnose the response of the hydrological cycle to warming. We estimate zonal mean SSS trends in the Atlantic and Pacific ocean basins from 1955-2015 to test whether historical changes in the global hydrological cycle are consistent with a primarily thermodynamic response. Motivated by this observation, we calculate the sensitivity of basin zonal-mean SSS anomalies to sea surface temperature (SST) forcing as a function of timescale to diagnose and estimate the signal-to-noise ratio of the purely thermodynamic signal as a function of timescale. High-frequency variability in SSS anomalies is likely to be influenced by variability in atmospheric circulation, complicating the attribution of the link between basin zonal-mean SSS anomalies and global SST anomalies. We therefore estimate the basin zonal mean SSS anomaly response to the major modes of large-scale dynamic variability. We find a strong correlation between detrended zonal-mean SSS anomalies and the Pacific-North American index (R=0.71,P<0.01) in the Pacific Ocean. We interpret the relationship between zonal mean SSS anomalies and temperature in terms of the relative contribution of thermodynamic and dynamic processes.
Effect of climate-ocean changes on the abundance of Pacific saury.
Gong, Yeong; Suh, Young Sang
2013-01-01
Effects of ocean climate changes on the population structure and abundance of Pacific saury (Cololabis sira) were investigated on the basis of climate indices, sea surface temperature (SST) anomalies, catch and body size information from the Tsushima Warm Current (TWC) region (Yellow Sea, East China Sea and East/Japan Sea) during the period 1950-2010. It is suggested that oceanic regime shifts in the early 1970s, late 1980s and late 1990s occurred in the TWC region in winter, but the regime shifts in the mid-1970s and in the late 1980s were not evident in the spring SST anomaly series. The abundance and body size of Pacific saury fluctuated in association with the winter oceanic changes in the TWC region. The catch rates and abundance of large size saury were far bellow average during their northward migrations in the TWC region in the years with abnormally cool winters (e.g., 1963, 1970, 1977, 1981-1989 and 2006) and above average in the years with warm winters. These patterns demonstrate decadal-scale variations together with large inter-annual fluctuations in the structure and abundance of Pacific saury in association with the climatic-oceanic changes. These results, along with an alternation of dominant pelagic fish species, indicate the status of the saury population in the TWC region is in good condition, similar to that in the Kuroshio-Oyashio Current (KOC) region during the warm regime after the late 1980s climate regime shift.
Coherent climate anomalies over the Indo-western Pacific in post-El Niño summer
NASA Astrophysics Data System (ADS)
Kosaka, Y.; Xie, S. P.; DU, Y.; Hu, K.; Chowdary, J. S.; Huang, G.
2016-12-01
El Niño typically peaks in boreal winter, and the associated equatorial Pacific sea surface temperature (SST) signal dissipates before subsequent summer. Its impact, however, outlasts until boreal summer in the Indo-western Pacific, featuring basin-wide Indian Ocean warming and tropical Northwestern Pacific cooling accompanied by the Pacific-Japan (PJ) teleconnection pattern with surface anomalous anticyclone (AAC) extending from the Philippine Sea to the northern Indian Ocean. Two formation mechanisms have been proposed for these climate anomalies in post-El Niño-Southern Oscillation (ENSO) summer. One hypothesis invokes the wind-evaporation-SST (WES) feedback in the tropical Northwestern Pacific, while the other points to inter-basin feedback between the Indian Ocean and tropical Northwestern Pacific. Based on a coupled model experiment, we propose an ocean-atmosphere coupled mode that synthesizes the two mechanisms. This Indo-western Pacific Ocean capacitor (IPOC) mode evolves seasonally from spring to summer under seasonal migration of background state. In spring, the WES feedback is operative in association with the tropical Northwestern Pacific cooling, while in summer the Indian Ocean warming and the inter-basin interaction maintains the AAC. While the IPOC mode is independent of ENSO in mechanism, ENSO can drive this mode in its decay phase. This excitation, however, has undergone substantial interdecadal modulations, depending on ENSO amplitude and persistence of Indian Ocean warming. The ENSO-IPOC correlation is high after the mid-1970s and at the beginning of the 20th century, but low in between.
Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models
NASA Astrophysics Data System (ADS)
Kostov, Yavor; Marshall, John; Hausmann, Ute; Armour, Kyle C.; Ferreira, David; Holland, Marika M.
2017-03-01
We investigate how sea surface temperatures (SSTs) around Antarctica respond to the Southern Annular Mode (SAM) on multiple timescales. To that end we examine the relationship between SAM and SST within unperturbed preindustrial control simulations of coupled general circulation models (GCMs) included in the Climate Modeling Intercomparison Project phase 5 (CMIP5). We develop a technique to extract the response of the Southern Ocean SST (55°S-70°S) to a hypothetical step increase in the SAM index. We demonstrate that in many GCMs, the expected SST step response function is nonmonotonic in time. Following a shift to a positive SAM anomaly, an initial cooling regime can transition into surface warming around Antarctica. However, there are large differences across the CMIP5 ensemble. In some models the step response function never changes sign and cooling persists, while in other GCMs the SST anomaly crosses over from negative to positive values only 3 years after a step increase in the SAM. This intermodel diversity can be related to differences in the models' climatological thermal ocean stratification in the region of seasonal sea ice around Antarctica. Exploiting this relationship, we use observational data for the time-mean meridional and vertical temperature gradients to constrain the real Southern Ocean response to SAM on fast and slow timescales.
2014-01-01
Background Sho-saiko-to (SST) (also known as so-shi-ho-tang or xiao-chai-hu-tang) has been widely prescribed for chronic liver diseases in traditional Oriental medicine. Despite the substantial amount of clinical evidence for SST, its molecular mechanism has not been clearly identified at a genome-wide level. Methods By using a microarray, we analyzed the temporal changes of messenger RNA (mRNA) and microRNA expression in primary mouse hepatocytes after SST treatment. The pattern of genes regulated by SST was identified by using time-series microarray analysis. The biological function of genes was measured by pathway analysis. For the identification of the exact targets of the microRNAs, a permutation-based correlation method was implemented in which the temporal expression of mRNAs and microRNAs were integrated. The similarity of the promoter structure between temporally regulated genes was measured by analyzing the transcription factor binding sites in the promoter region. Results The SST-regulated gene expression had two major patterns: (1) a temporally up-regulated pattern (463 genes) and (2) a temporally down-regulated pattern (177 genes). The integration of the genes and microRNA demonstrated that 155 genes could be the targets of microRNAs from the temporally up-regulated pattern and 19 genes could be the targets of microRNAs from the temporally down-regulated pattern. The temporally up-regulated pattern by SST was associated with signaling pathways such as the cell cycle pathway, whereas the temporally down-regulated pattern included drug metabolism-related pathways and immune-related pathways. All these pathways could be possibly associated with liver regenerative activity of SST. Genes targeted by microRNA were moreover associated with different biological pathways from the genes not targeted by microRNA. An analysis of promoter similarity indicated that co-expressed genes after SST treatment were clustered into subgroups, depending on the temporal expression patterns. Conclusions We are the first to identify that SST regulates temporal gene expression by way of microRNA. MicroRNA targets and non-microRNA targets moreover have different biological roles. This functional segregation by microRNA would be critical for the elucidation of the molecular activities of SST. PMID:24410935
Song, Kwang Hoon; Kim, Yun Hee; Kim, Bu-Yeo
2014-01-11
Sho-saiko-to (SST) (also known as so-shi-ho-tang or xiao-chai-hu-tang) has been widely prescribed for chronic liver diseases in traditional Oriental medicine. Despite the substantial amount of clinical evidence for SST, its molecular mechanism has not been clearly identified at a genome-wide level. By using a microarray, we analyzed the temporal changes of messenger RNA (mRNA) and microRNA expression in primary mouse hepatocytes after SST treatment. The pattern of genes regulated by SST was identified by using time-series microarray analysis. The biological function of genes was measured by pathway analysis. For the identification of the exact targets of the microRNAs, a permutation-based correlation method was implemented in which the temporal expression of mRNAs and microRNAs were integrated. The similarity of the promoter structure between temporally regulated genes was measured by analyzing the transcription factor binding sites in the promoter region. The SST-regulated gene expression had two major patterns: (1) a temporally up-regulated pattern (463 genes) and (2) a temporally down-regulated pattern (177 genes). The integration of the genes and microRNA demonstrated that 155 genes could be the targets of microRNAs from the temporally up-regulated pattern and 19 genes could be the targets of microRNAs from the temporally down-regulated pattern. The temporally up-regulated pattern by SST was associated with signaling pathways such as the cell cycle pathway, whereas the temporally down-regulated pattern included drug metabolism-related pathways and immune-related pathways. All these pathways could be possibly associated with liver regenerative activity of SST. Genes targeted by microRNA were moreover associated with different biological pathways from the genes not targeted by microRNA. An analysis of promoter similarity indicated that co-expressed genes after SST treatment were clustered into subgroups, depending on the temporal expression patterns. We are the first to identify that SST regulates temporal gene expression by way of microRNA. MicroRNA targets and non-microRNA targets moreover have different biological roles. This functional segregation by microRNA would be critical for the elucidation of the molecular activities of SST.
The Low-Frequency Variability of the Tropical Atlantic Ocean
NASA Technical Reports Server (NTRS)
Haekkinen, Sirpa; Mo, Kingtse C.; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
Upper ocean temperature variability in the tropical Atlantic is examined from the Comprehensive Ocean Atmosphere Data Set (COADS) as well as from an ocean model simulation forced by COADS anomalies appended to a monthly climatology. Our findings are as follows: Only the sea surface temperatures (SST) in the northern tropics are driven by heat fluxes, while the southern tropical variability arises from wind driven ocean circulation changes. The subsurface temperatures in the northern and southern tropics are found to have a strong linkage to buoyancy forcing changes in the northern North Atlantic. Evidence for Kelvin-like boundary wave propagation from the high latitudes is presented from the model simulation. This extratropical influence is associated with wintertime North Atlantic Oscillation (NAO) forcing and manifests itself in the northern and southern tropical temperature anomalies of the same sign at depth of 100-200 meters as result of a Rossby wave propagation away from the eastern boundary in the wake of the boundary wave passage. The most apparent association of the southern tropical sea surface temperature anomalies (STA) arises with the anomalous cross-equatorial winds which can be related to both NAO and the remote influence from the Pacific equatorial region. These teleconnections are seasonal so that the NAO impact on the tropical SST is the largest it mid-winter but in spring and early summer the Pacific remote influence competes with NAO. However, NAO appears to have a more substantial role than the Pacific influence at low frequencies during the last 50 years. The dynamic origin of STA is indirectly confirmed from the SST-heat flux relationship using ocean model experiments which remove either anomalous wind stress forcing or atmospheric forcing anomalies contributing to heat exchange.
NASA Astrophysics Data System (ADS)
Ying, Jun; Huang, Ping; Lian, Tao; Tan, Hongjian
2018-05-01
An excessive cold tongue is a common bias among current climate models, and considered an important source of bias in projections of tropical Pacific climate change under global warming. Specifically, the excessive cold tongue bias is closely related to the tropical Pacific SST warming (TPSW) pattern. In this study, we reveal that two processes are the critical mechanisms by which the excessive cold tongue bias influences the projection of the TPSW pattern, based on 32 models from phase 5 of Coupled Model Intercomparison Projection (CMIP5). On the one hand, by assuming that the shortwave (SW) radiation to SST feedback is linearly correlated to the cold tongue SST, the excessive cold tongue bias can induce an overly weak negative SW-SST feedback in the central Pacific, which can lead to a positive SST warming bias in the central to western Pacific (around 150°E-140°W). Moreover, the overly weak local atmospheric dynamics response to SST is a key process of the overly weak SW-SST feedback, compared with the cloud response to atmospheric dynamics and the SW radiation response to cloud. On the other hand, the overly strong ocean zonal overturning circulation associated with the excessive cold tongue bias results in an overestimation of the ocean dynamical thermostat effect, with enhanced ocean stratification under global warming, leading to a negative SST warming bias in the central and eastern Pacific (around 170°W-120°W). These two processes jointly form a positive SST warming bias in the western Pacific, contributing to a La Niña-like warming bias. Therefore, we suggest a more realistic climatological cold tongue SST is needed for a more reliable projection of the TPSW pattern.
The Mg - SST relationship in mollusc shells: is there a rule? Examples from three tropical species
NASA Astrophysics Data System (ADS)
Lazareth, C. E.; Guzmán, N.; Lecornec, F.; Cabioch, G.; Ortlieb, L.
2009-04-01
The geochemistry of mollusc shells is currently viewed as a powerful tool for paleoenvironmental reconstructions. Indeed, molluscs are ubiquitous animals, with a worldly geographical and environmental distribution, providing various environmental records. Moreover, mollusc shells are abundantly found in fossil and archaeological settings. In the paleoclimatic reconstructions, the sea-surface temperatures (SST) are a key parameter. If shell stable oxygen isotope signatures can provide accurate SST records, this proxy is also influenced by the water isotopic composition. To find another tracer which would depend on the SST solely, the relationship between Mg content changes in mollusc shell and SST has been investigated for a few years. Nevertheless, if the reliability of shell Mg as SST tracer has been proven in some species, this is clearly not a "universal" and definitive rule. To reconstruct the past tropical SSTs, Mg calibration studies were undertaken on Concholepas concholepas (gastropod, South America), Protothaca thaca (bivalve, South America) and Tridacna squamosa (bivalve, New Caledonia). The very high-resolution (infra-daily) analyses of the C. concholepas gastropod revealed a significant metabolism control, at the nyctemeral scale, on the Mg incorporation into the calcite shell layer. Over a two months period, the Mg fluctuations in C. concholepas shell do not match with the SST instrumental measurements. Mg content changes along the aragonitic shell growth axis of several living P. thaca from a same Peruvian site are significantly different indicating no relationship between Mg and SST. The Mg variations measured in a Chilean P. thaca shell are, surprisingly, similar to variations of the instrumental SST. Unless this quite reliable relationship between P. thaca shell and SST is confirmed, and that the inter-site difference in Mg response to environmental forcing is understood, P. thaca shell Mg cannot be used as SST proxy. Lastly, a preliminary work carried out on the external aragonitic shell layer of T. squamosa showed that, over 14 months of growth, Mg and SST are well conversely correlated but the seasonal cycle is interrupted by a Mg peak that corresponds to a shell growth anomaly. Additional studies, especially dedicated on anomalies-related Mg increases, must be performed to validate the T. squamosa shell as a reliable SST proxy. Considering previous works and the results presented here, one can definitively conclude that, at least, calibration procedures are indispensable before using Mg as a SST proxy in mollusc shells. In addition, further work specifically directed towards the role of the metabolism on the incorporation of Mg in mollusc shells could be the key to understand, and thus to use, this proxy for which, at the present time, no single rule is applicable to molluscs. Contribution of the CONCHAS (PNEDC), CENSOR (6th PCRD) and BioCalc (ESF) projects. "This study was financed and conducted in the frame of the EU-project CENSOR (Climate variability and El Nino Southern Oscillation: Impacts for natural resources and management, contract 511071) and is CENSOR publication 0375".
Variability of the western Pacific warm pool structure associated with El Niño
NASA Astrophysics Data System (ADS)
Hu, Shijian; Hu, Dunxin; Guan, Cong; Xing, Nan; Li, Jianping; Feng, Junqiao
2017-10-01
Sea surface temperature (SST) structure inside the western Pacific warm pool (WPWP) is usually overlooked because of its distinct homogeneity, but in fact it possesses a clear meridional high-low-high pattern. Here we show that the SST low in the WPWP is significantly intensified in July-October of El Niño years (especially extreme El Niño years) and splits the 28.5 °C-isotherm-defined WPWP (WPWP split for simplification). Composite analysis and heat budget analysis indicate that the enhanced upwelling due to positive wind stress curl anomaly and western propagating upwelling Rossby waves account for the WPWP split. Zonal advection at the eastern edge of split region plays a secondary role in the formation of the WPWP split. Composite analysis and results from a Matsuno-Gill model with an asymmetric cooling forcing imply that the WPWP split seems to give rise to significant anomalous westerly winds and intensify the following El Niño event. Lead-lag correlation shows that the WPWP split slightly leads the Niño 3.4 index.
NASA Astrophysics Data System (ADS)
Kaneko, D.; Sakuma, H.
2014-12-01
The first author has been developing RSEM crop-monitoring system using satellite-based assessment of photosynthesis, incorporating meteorological conditions. Crop production comprises of several stages and plural mechanisms based on leaf photosynthesis, surface energy balance, and the maturing of grains after fixation of CO2, along with water exchange through soil vegetation-atmosphere transfer. Grain production in prime countries appears to be randomly perturbed regionally and globally. Weather for crop plants reflects turbulent phenomena of convective and advection flows in atmosphere and surface boundary layer. It has been difficult for scientists to simulate and forecast weather correctly for sufficiently long terms to crop harvesting. However, severely poor harvests related to continental events must originate from a consistent mechanism of abnormal energetic flow in the atmosphere through both land and oceans. It should be remembered that oceans have more than 100 times of energy storage compared to atmosphere and ocean currents represent gigantic energy flows, strongly affecting climate. Anomalies of Sea Surface Temperature (SST), globally known as El Niño, Indian Ocean dipole, and Atlantic Niño etc., affect the seasonal climate on a continental scale. The authors aim to combine monitoring and seasonal forecasting, considering such mechanisms through land-ocean biosphere transfer. The present system produces assessments for all continents, specifically monitoring agricultural fields of main crops. Historical regions of poor and good harvests are compared with distributions of SST anomalies, which are provided by NASA GSFC. Those comparisons fairly suggest that the Worst harvest in 1993 and the Best in 1994 relate to the offshore distribution of low temperature anomalies and high gaps in ocean surface temperatures. However, high-temperature anomalies supported good harvests because of sufficient solar radiation for photosynthesis, and poor harvests because of insufficient precipitation. Integrated rates of photosynthesis on prime grains with planted areas were compared with the SST anomalies in poor and good harvests years. Other factors for poor harvest such as rainfall, solar radiation in addition to the intensity of winds as a measure of pressure perturbations need to be studied.
Monitoring abnormal bio-optical and physical properties in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Arnone, Robert; Jones, Brooke
2017-05-01
The dynamic bio-optical and physical ocean properties within the Gulf of Mexico (GoM) have been identified by the Ocean Weather Laboratory. Ocean properties from VIIRS satellite (Chlorophyll and Bio-Optics and SST) and ocean-circulation models (currents, SST and salinity) were used to identify regions of dynamic changing properties. The degree of environmental change is defined by the dynamic anomaly of bio-optical and physical environmental properties (DAP). A Mississippi River plume event (Aug 2015) that extended to Key West was used to demonstrate the anomaly products. Locations where normal and abnormal ocean properties occur determine ecological and physical hotspots in the GoM, which can be used for adaptive sampling of ocean processes. Methods are described to characterize the weekly abnormal environmental properties using differences with a previous baseline 8 week mean with a 2 week lag. The intensity of anomaly is quantified using levels of standard deviation of the baseline and can be used to recognize ocean events and provide decision support for adaptive sampling. The similarities of the locations of different environmental property anomalies suggest interaction between the bio-optical and physical properties. A coral bleaching event at the Flower Garden Banks Marine Protected Area is represented by the salinity anomaly. Results identify ocean regions for sampling to reduce data gaps and improve monitoring of bio-optical and physical properties.
Sea surface temperature anomalies driven by oceanic local forcing in the Brazil-Malvinas Confluence
NASA Astrophysics Data System (ADS)
da Silveira, Isabel Porto; Pezzi, Luciano Ponzi
2014-03-01
Sea surface temperature (SST) anomaly events in the Brazil-Malvinas Confluence (BMC) were investigated through wavelet analysis and numerical modeling. Wavelet analysis was applied to recognize the main spectral signals of SST anomaly events in the BMC and in the Drake Passage as a first attempt to link middle and high latitudes. The numerical modeling approach was used to clarify the local oceanic dynamics that drive these anomalies. Wavelet analysis pointed to the 8-12-year band as the most energetic band representing remote forcing between high to middle latitudes. Other frequencies observed in the BMC wavelet analysis indicate that part of its variability could also be forced by low-latitude events, such as El Niño. Numerical experiments carried out for the years of 1964 and 1992 (cold and warm El Niño-Southern Oscillation (ENSO) phases) revealed two distinct behaviors that produced negative and positive sea surface temperature anomalies on the BMC region. The first behavior is caused by northward cold flow, Río de la Plata runoff, and upwelling processes. The second behavior is driven by a southward excursion of the Brazil Current (BC) front, alterations in Río de la Plata discharge rates, and most likely by air-sea interactions. Both episodes are characterized by uncoupled behavior between the surface and deeper layers.
Interbasin effects of the Indian Ocean on Pacific decadal climate change
NASA Astrophysics Data System (ADS)
Mochizuki, Takashi; Kimoto, Masahide; Watanabe, Masahiro; Chikamoto, Yoshimitsu; Ishii, Masayoshi
2016-07-01
We demonstrate the significant impact of the Indian Ocean on the Pacific climate on decadal timescales by comparing two sets of data assimilation experiments (pacemaker experiments) conducted over recent decades. For the Indian Ocean of an atmosphere-ocean coupled global climate model, we assimilate ocean temperature and salinity anomalies defined as deviations from climatology or as anomalies with the area-averaged changes for the Indian Ocean subtracted. When decadal sea surface temperature (SST) trends are observed to be strong over the Indian Ocean, the equatorial thermocline uniformly deepens, and the model simulates the eastward tendencies of surface wind aloft. Surface winds strongly converge around the maritime continent, and the associated strengthening of the Walker circulation suppresses an increasing trend in the equatorial Pacific SST through ocean thermocline shoaling, similar to common changes associated with seasonal Indian Ocean warming.
The Tropical Western Hemisphere Warm Pool
NASA Astrophysics Data System (ADS)
Wang, C.; Enfield, D. B.
2002-12-01
The paper describes and examines variability of the tropical Western Hemisphere warm pool (WHWP) of water warmer than 28.5oC. The WHWP is the second-largest tropical warm pool on Earth. Unlike the Eastern Hemisphere warm pool in the western Pacific, which straddles the equator, the WHWP is entirely north of the equator. At various stages of development the WHWP extends over parts of the eastern North Pacific, the Gulf of Mexico, the Caribbean, and the western tropical North Atlantic. It has a large seasonal cycle and its interannual fluctuations of area and intensity are significant. Surface heat fluxes warm the WHWP through the boreal spring to an annual maximum of SST and WHWP area in the late summer/early fall, associated with eastern North Pacific and Atlantic hurricane activities and rainfall from northern South America to the southern tier of the United States. Observations suggest that a positive ocean-atmosphere feedback operating through longwave radiation and associated cloudiness seems to operate in the WHWP. During winter preceding large warm pool, there is an alteration of the Walker and Hadley circulation cells that serves as a "tropospheric bridge" for transferring Pacific ENSO effects to the Atlantic sector and inducing initial warming of warm pool. Associated with the warm SST anomalies is a decrease in sea level pressure anomalies and an anomalous increase in atmospheric convection and cloudiness. The increase in convective activity and cloudiness results in less net longwave radiation loss from the sea surface, which then reinforces SST anomalies.
Understanding the double peaked El Niño in coupled GCMs
NASA Astrophysics Data System (ADS)
Graham, Felicity S.; Wittenberg, Andrew T.; Brown, Jaclyn N.; Marsland, Simon J.; Holbrook, Neil J.
2017-03-01
Coupled general circulation models (CGCMs) simulate a diverse range of El Niño-Southern Oscillation behaviors. "Double peaked" El Niño events—where two separate centers of positive sea surface temperature (SST) anomalies evolve concurrently in the eastern and western equatorial Pacific—have been evidenced in Coupled Model Intercomparison Project version 5 CGCMs and are without precedent in observations. The characteristic CGCM double peaked El Niño may be mistaken for a central Pacific warming event in El Niño composites, shifted westwards due to the cold tongue bias. In results from the Australian Community Climate and Earth System Simulator coupled model, we find that the western Pacific warm peak of the double peaked El Niño event emerges due to an excessive westward extension of the climatological cold tongue, displacing the region of strong zonal SST gradients towards the west Pacific. A coincident westward shift in the zonal current anomalies reinforces the western peak in SST anomalies, leading to a zonal separation between the warming effect of zonal advection (in the west Pacific) and that of vertical advection (in the east Pacific). Meridional advection and net surface heat fluxes further drive growth of the western Pacific warm peak. Our results demonstrate that understanding historical CGCM El Niño behaviors is a necessary precursor to interpreting projections of future CGCM El Niño behaviors, such as changes in the frequency of eastern Pacific El Niño events, under global warming scenarios.
Barron, J.A.; Bukry, D.; Field, D.
2010-01-01
Santa Barbara Basin (SBB) diatom and silicoflagellate assemblages are quantified from a box core record spanning AD 1940-2001 and an Ocean Drilling Program Hole 893A record from ???220 BC to AD 1880. The combined relative abundance of the diatoms Fragilariopsis doliolus and Nitzschia interrupteseriata from continuous two-year sampling intervals in the box core varies with sea surface temperature (SST), suggesting its utility in SST reconstruction. The assemblage data from the ODP 893A record indicate a broad interval of generally cooler SSTs between ???AD 800 and 1350, which corresponds to the Medieval Climate Anomaly (MCA), a period of generally warmer temperatures across other regions of the northern hemisphere. The assemblages also indicate an interval of generally warmer SSTs between ???AD 1400 and 1800, a period of otherwise global cooling referred to as the Little Ice Age (LIA). The changes in assemblages of diatoms and silicoflagellates support the hypothesis that the widespread droughts of the Medieval Climate Anomaly in the Western US were associated with cooler eastern North Pacific SST. The box core assemblages have higher percentages of tropical and subtropical compared to temperate and subpolar species than the ODP samples, reflecting a response of phytoplankton communities to an unusual 20th century warming. Pseudonitzschia australis, a diatom linked with domoic acid production, begins to become more common (>3% of the diatom assemblage) in the box core only after AD 1985, suggesting a link to anthropogenic activity. ?? 2008 Elsevier Ltd and INQUA.
NASA Astrophysics Data System (ADS)
Silva, Carlos Batista; Silva, Maria Elisa Siqueira; Ambrizzi, Tércio
2017-07-01
This paper investigates possible linear relationships between climate, hydrology, and oceanic surface variability in the Pantanal region (in South America's central area), over interannual and interdecadal time ranges. In order to verify the mentioned relations, lagged correlation analysis and linear adjustment between river discharge at the Pantanal region and sea surface temperature were used. Composite analysis for atmospheric fields, air humidity flux divergence, and atmospheric circulation at low and high levels, for the period between 1970 and 2003, was analyzed. Results suggest that the river discharge in the Pantanal region is linearly associated with interdecadal and interannual oscillations in the Pacific and Atlantic oceans, making them good predictors to continental hydrological variables. Considering oceanic areas, 51 % of the annual discharge in the Pantanal region can be linearly explained by mean sea surface temperature (SST) in the Subtropical North Pacific, Tropical North Pacific, Extratropical South Pacific, and Extratropical North Atlantic over the period. Considering a forecast approach in seasonal scale, 66 % of the monthly discharge variance in Pantanal, 3 months ahead of SST, is explained by the oceanic variables, providing accuracy around 65 %. Annual discharge values in the Pantanal region are strongly related to the Pacific Decadal Oscillation (PDO) variability (with 52 % of linear correlation), making it possible to consider an interdecadal variability and a consequent subdivision of the whole period in three parts: 1st (1970-1977), 2nd (1978-1996), and 3rd (1997-2003) subperiods. The three subperiods coincide with distinct PDO phases: negative, positive, and negative, respectively. Convergence of humidity flux at low levels and the circulation pattern at high levels help to explain the drier and wetter subperiods. During the wetter 2nd subperiod, the air humidity convergence at low levels is much more evident than during the other two drier subperiods, which mostly show air humidity divergence. While the drier periods are particularly characterized by the strengthening of northerly wind over the center of South America, including the Pantanal region, the wetter period is characterized by its weakening. The circulation pattern at 850 hPa levels during the drier subperiods shows anticyclonic anomalies centered over east central South America. Also, the drier subperiods (1st and 3rd) are characterized by negative stream function anomalies over southeastern South America and adjacent South Atlantic, and the wetter subperiod is characterized by positive stream function anomalies. In the three subperiods, one can see mean atmospheric patterns associated with Rossby wave propagation coming from the South Pacific basin—similar to the Pacific South America pattern, but with reverse signals between the wetter and the drier periods. This result suggests a possible relationship between climatic patterns over southeastern South America regions and the Pacific conditions in a decadal scale.
Evolution of Tropical and Extratropical Precipitation Anomalies During the 1997 to 1999 ENSO Cycle
NASA Technical Reports Server (NTRS)
Curtis, Scott; Adler, Robert; Huffman, George; Nelkin, Eric; Bolvin, David; Einaudi, Franco (Technical Monitor)
2000-01-01
The 1997-1999 ENSO period was very powerful, but also well observed. Multiple satellite rainfall estimates combined with gauge observations allow for a quantitative analysis of precipitation anomalies in the tropics and elsewhere accompanying the 1997-99 ENSO cycle. An examination of the evolution of the El Nino and accompanying precipitation anomalies revealed that a dry Maritime Continent preceded the formation of positive SST anomalies in the eastern Pacific Ocean. 30-60 day oscillations in the winter of 1996/97 may have contributed to this lag relationship. Furthermore, westerly wind burst events may have maintained the drought over the Maritime Continent. The warming of the equatorial Pacific was then followed by an increase in convection. A rapid transition from El Nino to La Nina occurred in May 1998, but as early as October-November 1997 precipitation indices captured substantial changes in Pacific rainfall anomalies. The global precipitation patterns for this event were in good agreement with the strong consistent ENSO-related precipitation signals identified in earlier studies. Differences included a shift in precipitation anomalies over Africa during the 1997-98 El Nino and unusually wet conditions over northeast Australia during the later stages of the El Nino. Also, the typically wet region in the north tropical Pacific was mostly dry during the 1998-99 La Nina. Reanalysis precipitation was compared to observations during this time period and substantial differences were noted. In particular, the model had a bias towards positive precipitation anomalies and the magnitudes of the anomalies in the equatorial Pacific were small compared to the observations. Also, the evolution of the precipitation field, including the drying of the Maritime Continent and eastward progression of rainfall in the equatorial Pacific was less pronounced for the model compared to the observations.
NASA Astrophysics Data System (ADS)
O'Mara, N. A.; Kelly, C. S.; Herbert, T.
2017-12-01
Laminated sediment cores taken from the San Lazaro Basin (SLB) (25.18N, 112.66W) located off the coast of Baja California in the subtropical eastern Pacific were geochemically analyzed for alkenone and sterol biomarkers to reconstruct sea surface temperature (SST) and marine productivity from 850-1980 CE. High sedimentation rates, low bottom water dissolved oxygen, and high marine productivity in combination with the San Lazaro Basin's location within the dynamic transition zone between the tropical and subtropical eastern Pacific, make it a prime location to study variability of tropical and subtropical modes of climate variability. This study focuses on the impacts and variability of the El Niño Southern Oscillation and the Pacific Decadal Oscillation on the subtropical eastern Pacific. SST and coccolithophore productivity (n=730) for 2 mm sections of sediment corresponding to 1 measurement every 1.8 years were reconstructed using the Uk'37 unsaturation index and C37 alkenone concentration. The high resolution of this record allowed for the analysis of variability of SST and productivity on decadal timescales. Brassicasterol concentrations were calculated for a limited number of samples (n=44) to assess diatom productivity. High spectral power was found at periods of 20-30 years in SST and productivity records indicating a strong influence of the PDO on the SLB, making this the first marine based record directly relevant to PDO reconstructions that continuously spans the last millennium. Cool and productive (warm and less productive) waters were observed in the southern California Current in the Medieval Climate Anomaly 900-1200 CE (Little Ice Age 1400-1800 CE) supporting previous reconstructions that warmer (cooler) SST are linked to both reduced (enhanced) phytoplankton productivity. Additionally, cool (warm) SST were also associated with dry (wet) conditions in the American Southwest indicating that changes in the PDO has had a significant impact on drought in this region over the past millennium.
Hostetler, S.; Pisias, N.; Mix, A.
2006-01-01
The faunal and floral gradients that underlie the CLIMAP (1981) sea-surface temperature (SST) reconstructions for the Last Glacial Maximum (LGM) reflect ocean temperature gradients and frontal positions. The transfer functions used to reconstruct SSTs from biologic gradients are biased, however, because at the warmest sites they display inherently low sensitivity in translating fauna to SST and they underestimate SST within the euphotic zones where the pycnocline is strong. Here we assemble available data and apply a statistical approach to adjust for hypothetical biases in the faunal-based SST estimates of LGM temperature. The largest bias adjustments are distributed in the tropics (to address low sensitivity) and subtropics (to address underestimation in the euphotic zones). The resulting SSTs are generally in better agreement than CLIMAP with recent geochemical estimates of glacial-interglacial temperature changes. We conducted a series of model experiments using the GENESIS general atmospheric circulation model to assess the sensitivity of the climate system to our bias-adjusted SSTs. Globally, the new SST field results in a modeled LGM surface-air cooling relative to present of 6.4 ??C (1.9 ??C cooler than that of CLIMAP). Relative to the simulation with CLIMAP SSTs, modeled precipitation over the oceans is reduced by 0.4 mm d-1 (an anomaly -0.4 versus 0.0 mm d-1 for CLIMAP) and increased over land (an anomaly -0.2 versus -0.5 mm d-1 for CLIMAP). Regionally strong responses are induced by changes in SST gradients. Data-model comparisons indicate improvement in agreement relative to CLIMAP, but differences among terrestrial data inferences and simulated moisture and temperature remain. Our SSTs result in positive mass balance over the northern hemisphere ice sheets (primarily through reduced summer ablation), supporting the hypothesis that tropical and subtropical ocean temperatures may have played a role in triggering glacial changes at higher latitudes.
NASA Technical Reports Server (NTRS)
Wu, Man Li C.; Schubert, Siegfried; Einaudi, Franco (Technical Monitor)
2000-01-01
Predictability of the 1997 and 1998 South Asian summer monsoons is examined using National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalyses, and 100 two-year simulations with ten different Atmospheric General Circulation Models (AGCMs) with prescribed sea surface temperature (SST). We focus on the intraseasonal variations of the south Asian summer monsoon associated with the Madden-Julian Oscillation (MJO). The NCEP/NCAR reanalysis shows a clear coupling between SST anomalies and upper level velocity potential anomalies associated with the MJO. We analyze several MJO events that developed during the 1997 and 1998 focusing of the coupling with the SST. The same analysis is carried out for the model simulations. Remarkably, the ensemble mean of the two-year AGCM simulations show a signature of the observed MJO events. The ensemble mean simulated MJO events are approximately in phase with the observed events, although they are weaker, the period of oscillation is somewhat longer, and their onset is delayed by about ten days compared with the observations. Details of the analysis and comparisons among the ten AMIP2 (Atmospheric Model Intercomparison Project) models will be presented in the conference.
Recruitment success of different fish stocks in the North Sea in relation to climate variability
NASA Astrophysics Data System (ADS)
Dippner, Joachim W.
1997-09-01
Long-term data of year class strengths of different commercially harvested fish stocks based on a virtual population analysis (VPA) are available from ICES. The anomalies of these long-term data sets of year class strength are analyzed using Empirical Orthogonal Functions (EOFs) and are related to climate variability: the anomalies of the sea surface temperature (SST) in the northern North Sea and the North Atlantic Oscillation (NAO) index. A Canonical Correlation Analysis (CCA) between the leading eigenmodes is performed. The results suggest that the variability in the fish recruitment of western mackerel and three gadoids, namely North Sea cod, North Sea saithe, and North Sea whiting is highly correlated to the variability of the North Sea SST which is directly influenced by the NAO. For North Sea haddock and herring no meaningful correlation exists to North Sea SST and NAO. The results allow the conclusion that is seems possible to predict long-term changes in the fish recruitment from climate change scenarios for North Sea cod, North Sea saithe and western mackerel. Furthermore, the results indicate the possibility of recruitment failure for North Sea cod, North Sea whiting, and western mackerel in the case of global warming.
Simulation of different types of ENSO impacts on South Asian Monsoon in CCSM4
NASA Astrophysics Data System (ADS)
Islam, Siraj ul; Tang, Youmin
2017-02-01
It has been found in observation that there are different types of influences of El Nino Southern Oscillation (ENSO) on the South Asian Monsoon (SAM). A correct description and representation of these teleconnections is critical for climate models to simulate and predict SAM. In this study, we examine these teleconnections in NCAR CAM4 and CCSM4 models, including the strength and weakness of these models in preserving different types of ENSO-SAM relationships. By using observational and simulation dataset, the composite analysis, based on specific selection criteria, is performed for both SAM rainfall and the eastern equatorial Pacific sea surface temperature (SST) anomalies. Anomalous SAM rainfall is characterized in three different types i.e. the indirect influence of the SST anomalies of preceding winter (DJF-only), direct influence of the SST anomalies of concurrent summer (JJAS-only) and the combined influence of both preceding winter and concurrent summer (DJF&JJAS). The analysis reveals that CAM4 uncoupled simulation can reasonably well reproduce the anomalous SAM rainfall in DJF-only and DJF&JJAS types whereas the model fails to simulate the anomalous rainfall in the JJAS-only type. The better performance of CAM4, particularly in DJF&JJAS type, comes from its realistic simulation of moisture content and thermal contrast. Its failure to preserve the ENSO-SAM relationship of JJAS-only type is due to the absence of ENSO induced warming in Northern Indian Ocean via atmospheric circulation which is indirectly linked to the lack of air-sea coupling. The role of Indian Ocean in controlling the ENSO-SAM teleconnections of the DJF&JJAS type is further investigated using CAM4 sensitivity experiments. It is found that in absence of Indian Ocean SST, the anomalous SAM summer rainfall suppresses in the DJF&JJAS type, suggesting the important modulation by Indian Ocean SST probably through the preceding winter equatorial Pacific SST forcing and the atmospheric circulations. On the other hand, CCSM4 shows large systematical errors in DJF-only and DJF&JJAS types and reproduce weak anomalous SAM rainfall. The failure of CCSM4 in simulating DJF-only and DJF&JJAS types is found mainly due to the errors in its SST simulation. The JJAS-only type is better reproduced in the CCSM4 simulation as compared to CAM4 and observation composites. Strong convergence over the SAM region which intensifies the anomalous SAM is seen to be responsible for its better simulation in this type. It is found that the atmospheric circulations in CCSM4 contribute more than the thermal contrast in modulating the intensity of anomalous rainfall in JJAS-only type. This study suggests that, although air-sea coupling is important for better SAM simulation and its relationship with ENSO, the SST bias in coupled model can significantly degrade ENSO-SAM relationship.
Causes of the Extreme Dry Conditions Over California During Early 2013
NASA Technical Reports Server (NTRS)
Wang, Hailan; Schubert, Siegfried D.
2014-01-01
The 2013 SST anomalies produced a predilection for California drought, whereas the long-term warming trend appears to make no appreciable contribution because of the counteraction between its dynamical and thermodynamic effects.
Intercomparison of the Extended Reconstructed Sea Surface Temperature v4 and v3b Datasets
NASA Astrophysics Data System (ADS)
Wang, Jinping; Chen, Xianyao
2018-04-01
Version 4 (v4) of the Extended Reconstructed Sea Surface Temperature (ERSST) dataset is compared with its precedent, the widely used version 3b (v3b). The essential upgrades applied to v4 lead to remarkable differences in the characteristics of the sea surface temperature (SST) anomaly (SSTa) in both the temporal and spatial domains. First, the largest discrepancy of the global mean SSTa values around the 1940s is due to ship-observation corrections made to reconcile observations from buckets and engine intake thermometers. Second, differences in global and regional mean SSTa values between v4 and v3b exhibit a downward trend (around -0.032°C per decade) before the 1940s, an upward trend (around 0.014°C per decade) during the period of 1950-2015, interdecadal oscillation with one peak around the 1980s, and two troughs during the 1960s and 2000s, respectively. This does not derive from treatments of the polar or the other data-void regions, since the difference of the SSTa does not share the common features. Third, the spatial pattern of the ENSO-related variability of v4 exhibits a wider but weaker cold tongue in the tropical region of the Pacific Ocean compared with that of v3b, which could be attributed to differences in gap-filling assumptions since the latter features satellite observations whereas the former features in situ ones. This intercomparison confirms that the structural uncertainty arising from underlying assumptions on the treatment of diverse SST observations even in the same SST product family is the main source of significant SST differences in the temporal domain. Why this uncertainty introduces artificial decadal oscillations remains unknown.
NASA Technical Reports Server (NTRS)
Emery, William J.; Yu, Yunyue; Wick, Gary A.; Schluessel, Peter; Reynolds, Richard W.
1994-01-01
A new satellite sea surface temperature (SST) algorithm is developed that uses nearly coincident measurements from the microwave special sensor microwave imager (SSM/I) to correct for atmospheric moisture attenuation of the infrared signal from the advanced very high resolution radiometer (AVHRR). This new SST algorithm is applied to AVHRR imagery from the South Pacific and Norwegian seas, which are then compared with simultaneous in situ (ship based) measurements of both skin and bulk SST. In addition, an SST algorithm using a quadratic product of the difference between the two AVHRR thermal infrared channels is compared with the in situ measurements. While the quadratic formulation provides a considerable improvement over the older cross product (CPSST) and multichannel (MCSST) algorithms, the SSM/I corrected SST (called the water vapor or WVSST) shows overall smaller errors when compared to both the skin and bulk in situ SST observations. Applied to individual AVHRR images, the WVSST reveals an SST difference pattern (CPSST-WVSST) similar in shape to the water vapor structure while the CPSST-quadratic SST difference appears unrelated in pattern to the nearly coincident water vapor pattern. An application of the WVSST to week-long composites of global area coverage (GAC) AVHRR data demonstrates again the manner in which the WVSST corrects the AVHRR for atmospheric moisture attenuation. By comparison the quadratic SST method underestimates the SST corrections in the lower latitudes and overestimates the SST in th e higher latitudes. Correlations between the AVHRR thermal channel differences and the SSM/I water vapor demonstrate the inability of the channel difference to represent water vapor in the midlatitude and high latitudes during summer. Compared against drifting buoy data the WVSST and the quadratic SST both exhibit the same general behavior with the relatively small differences with the buoy temperatures.
NASA Astrophysics Data System (ADS)
Williams, C.; Kniveton, D.; Layberry, R.
2007-12-01
It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable extreme events, due to a number of factors including extensive poverty, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of a state-of-the-art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. Once the model's ability to reproduce extremes has been assessed, idealised regions of SST anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, results from sensitivity testing of the UK Meteorological Office Hadley Centre's climate model's domain size are firstly presented. Then simulations of current climate from the model, operating in both regional and global mode, are compared to the MIRA dataset at daily timescales. Thirdly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset. Finally, the results from the idealised SST experiments are briefly presented, suggesting associations between rainfall extremes and both local and remote SST anomalies.
Impacts of Tropical North Atlantic SST on Western North Pacific Landfalling Tropical Cyclones
NASA Astrophysics Data System (ADS)
Zhang, W.; Gao, S.; Chen, Z.
2017-12-01
This study examines the impacts of tropical North Atlantic (TNA) sea surface temperature (SST) anomaly (SSTA) on tropical cyclones (TCs) making landfall over East Asia. We find that TNA SSTA has significant negative correlations with the frequency of TCs making landfall over China, Vietnam, Korea and Japan, and the entire East Asia. TNA SST influences the frequency of TC landfalls over these regions by regulating TC genesis location and frequency and steering flow associated with modulated environmental conditions. During cold TNA SST years, larger low-level relative vorticity and weaker vertical wind shear lead to more TC formations in the northern SCS and to the east of Philippines, and larger low-level relative vorticity, higher mid-level relative humidity, and weaker vertical wind shear result in more TC formations over the eastern part of WNP. Anomalous northeasterly steering flow favors more TCs to move westward or west-northwestward and make landfall over Vietnam, South China and Taiwan Island and thus in the entire China, and more TCs take regular northeastward recurving tracks and make landfall over Korea and Japan because of insignificant steering flow anomalies in the vicinity. The modulation of large-scale environments by TNA SSTA may be through two possible pathways proposed in previous studies, i.e., Indian Ocean relaying effect and subtropical eastern Pacific relaying effect. Our results suggest that TNA SSTA is a potential predictor for the frequency of TCs making landfall over China, Vietnam, Korea and Japan, and the entire East Asia.
S-NPP VIIRS thermal emissive band gain correction during the blackbody warm-up-cool-down cycle
NASA Astrophysics Data System (ADS)
Choi, Taeyoung J.; Cao, Changyong; Weng, Fuzhong
2016-09-01
The Suomi National Polar orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) has onboard calibrators called blackbody (BB) and Space View (SV) for Thermal Emissive Band (TEB) radiometric calibration. In normal operation, the BB temperature is set to 292.5 K providing one radiance level. From the NOAA's Integrated Calibration and Validation System (ICVS) monitoring system, the TEB calibration factors (F-factors) have been trended and show very stable responses, however the BB Warm-Up-Cool-Down (WUCD) cycles provide detectors' gain and temperature dependent sensitivity measurements. Since the launch of S-NPP, the NOAA Sea Surface Temperature (SST) group noticed unexpected global SST anomalies during the WUCD cycles. In this study, the TEB Ffactors are calculated during the WUCD cycle on June 17th 2015. The TEB F-factors are analyzed by identifying the VIIRS On-Board Calibrator Intermediate Product (OBCIP) files to be Warm-Up or Cool-Down granules. To correct the SST anomaly, an F-factor correction parameter is calculated by the modified C1 (or b1) values which are derived from the linear portion of C1 coefficient during the WUCD. The F-factor correction factors are applied back to the original VIIRS SST bands showing significantly reducing the F-factor changes. Obvious improvements are observed in M12, M14 and M16, but corrections effects are hardly seen in M16. Further investigation is needed to find out the source of the F-factor oscillations during the WUCD.
Measuring the potential utility of seasonal climate predictions
NASA Astrophysics Data System (ADS)
Tippett, Michael K.; Kleeman, Richard; Tang, Youmin
2004-11-01
Variation of sea surface temperature (SST) on seasonal-to-interannual time-scales leads to changes in seasonal weather statistics and seasonal climate anomalies. Relative entropy, an information theory measure of utility, is used to quantify the impact of SST variations on seasonal precipitation compared to natural variability. An ensemble of general circulation model (GCM) simulations is used to estimate this quantity in three regions where tropical SST has a large impact on precipitation: South Florida, the Nordeste of Brazil and Kenya. We find the yearly variation of relative entropy is strongly correlated with shifts in ensemble mean precipitation and weakly correlated with ensemble variance. Relative entropy is also found to be related to measures of the ability of the GCM to reproduce observations.
Chen, Shangfeng; Chen, Wen; Yu, Bin
2018-05-02
Previous studies indicated that the spring Arctic Oscillation (AO) exerts significant influences on the subsequent winter El Niño-Southern Oscillation (ENSO). This analysis suggests that the spring AO-ENSO linkage is highly modulated by its preceding November AO. When November and the subsequent spring AO indices are in phase, the spring AO has a pronounced influence on ENSO. However, when the November and spring AO indices are out of phase, the spring AO-ENSO connection disappears. Modulation of the November AO on the spring AO-ENSO connection is mainly through the constructive and destructive superposition of the November and spring AO associated sea surface temperature (SST) anomalies in the tropical central-eastern Pacific in spring and summer, as well as the SST anomalies developed further in the tropical Pacific via the positive air-sea feedback.
NASA Astrophysics Data System (ADS)
Feng, Guolin; Zou, Meng; Qiao, Shaobo; Zhi, Rong; Gong, Zhiqiang
2018-03-01
This study investigates the changing relationship between the December North Atlantic Oscillation (NAO) and the following February East Asian trough (EAT) throughout the past 60 years. We found that the relationship between the December NAO and the following February EAT is significantly enhanced after the late 1980s compared with the period before the late 1980s. The changing relationship mainly results from the enhanced relationship between the December NAO and the following February North Atlantic mid-latitudes' sea surface temperature (SST) anomalies (NAMA) during the same period. During the period after the late 1980s, the persistent positive (negative) NAO pattern from December to the following January contributes to a positive (negative) NAMA, which reaches its maximum magnitude in the following February and excites an anomalous wave train along the North Atlantic and northern Eurasia, and significantly impacts the EAT. During the period before the late 1980s, the positive (negative) NAO pattern during December cannot persist into the following January, and the related positive (negative) NAMA is insignificant during the following February, causing the response of the simultaneous EAT to be insignificant as well. Moreover, there exists a significant impact of the December NAO on the December-January NAMA after the late 1980s, while the December-January NAMA is relatively less affected by the December NAO before the late 1980s. As a result, the simultaneous response of the atmospheric circulation anomalies to the December-January NAMA are evident before the late 1980s, and the positive (negative) NAMA can excite an anomalous wave train along the North Atlantic and northern Eurasia and significantly deepen (shallow) the downstream EAT. By contrast, after involving a feature of atmosphere forcing of SST, the simultaneous feedback of the December-January NAMA on EAT is significantly decreased after the 1980s.
Cholera forecast for Dhaka, Bangladesh, with the 2015-2016 El Niño: Lessons learned
Martinez, Pamela P.; Reiner, Robert C.; Cash, Benjamin A.; Rodó, Xavier; Shahjahan Mondal, Mohammad; Roy, Manojit; Yunus, Mohammad; Faruque, A. S. G.; Huq, Sayeeda; King, Aaron A.; Pascual, Mercedes
2017-01-01
A substantial body of work supports a teleconnection between the El Niño-Southern Oscillation (ENSO) and cholera incidence in Bangladesh. In particular, high positive anomalies during the winter (Dec-Feb) in sea surface temperatures (SST) in the tropical Pacific have been shown to exacerbate the seasonal outbreak of cholera following the monsoons from August to November. Climate studies have indicated a role of regional precipitation over Bangladesh in mediating this long-distance effect. Motivated by this previous evidence, we took advantage of the strong 2015–2016 El Niño event to evaluate the predictability of cholera dynamics for the city in recent times based on two transmission models that incorporate SST anomalies and are fitted to the earlier surveillance records starting in 1995. We implemented a mechanistic temporal model that incorporates both epidemiological processes and the effect of ENSO, as well as a previously published statistical model that resolves space at the level of districts (thanas). Prediction accuracy was evaluated with “out-of-fit” data from the same surveillance efforts (post 2008 and 2010 for the two models respectively), by comparing the total number of cholera cases observed for the season to those predicted by model simulations eight to twelve months ahead, starting in January each year. Although forecasts were accurate for the low cholera risk observed for the years preceding the 2015–2016 El Niño, the models also predicted a high probability of observing a large outbreak in fall 2016. Observed cholera cases up to Oct 2016 did not show evidence of an anomalous season. We discuss these predictions in the context of regional and local climate conditions, which show that despite positive regional rainfall anomalies, rainfall and inundation in Dhaka remained low. Possible explanations for these patterns are given together with future implications for cholera dynamics and directions to improve their prediction for the city. PMID:28253325
Cholera forecast for Dhaka, Bangladesh, with the 2015-2016 El Niño: Lessons learned.
Martinez, Pamela P; Reiner, Robert C; Cash, Benjamin A; Rodó, Xavier; Shahjahan Mondal, Mohammad; Roy, Manojit; Yunus, Mohammad; Faruque, A S G; Huq, Sayeeda; King, Aaron A; Pascual, Mercedes
2017-01-01
A substantial body of work supports a teleconnection between the El Niño-Southern Oscillation (ENSO) and cholera incidence in Bangladesh. In particular, high positive anomalies during the winter (Dec-Feb) in sea surface temperatures (SST) in the tropical Pacific have been shown to exacerbate the seasonal outbreak of cholera following the monsoons from August to November. Climate studies have indicated a role of regional precipitation over Bangladesh in mediating this long-distance effect. Motivated by this previous evidence, we took advantage of the strong 2015-2016 El Niño event to evaluate the predictability of cholera dynamics for the city in recent times based on two transmission models that incorporate SST anomalies and are fitted to the earlier surveillance records starting in 1995. We implemented a mechanistic temporal model that incorporates both epidemiological processes and the effect of ENSO, as well as a previously published statistical model that resolves space at the level of districts (thanas). Prediction accuracy was evaluated with "out-of-fit" data from the same surveillance efforts (post 2008 and 2010 for the two models respectively), by comparing the total number of cholera cases observed for the season to those predicted by model simulations eight to twelve months ahead, starting in January each year. Although forecasts were accurate for the low cholera risk observed for the years preceding the 2015-2016 El Niño, the models also predicted a high probability of observing a large outbreak in fall 2016. Observed cholera cases up to Oct 2016 did not show evidence of an anomalous season. We discuss these predictions in the context of regional and local climate conditions, which show that despite positive regional rainfall anomalies, rainfall and inundation in Dhaka remained low. Possible explanations for these patterns are given together with future implications for cholera dynamics and directions to improve their prediction for the city.
Remotely-sensed sea surface temperatuares (SST) of Northeaster Pacific Coastal Zones
Sea surface temperature (SST) is an important indicator of long-term trends and geographical temperature patterns; however there have been relatively few long-term records of SST in near-coastal habitats. In situ SST measurements are irregular in both space and time. Therefore, w...
Forced and Internal Multi-Decadal Variability in the North Atlantic and their Climate Impacts
NASA Astrophysics Data System (ADS)
Ting, M.
2017-12-01
Atlantic Multidecadal Variability (AMV), a basin-wide North Atlantic sea surface temperature warming or cooling pattern varying on decadal and longer time scales, is one of the most important climate variations in the Atlantic basin. The AMV has shown to be associated with significant climate impacts regionally and globally, from Atlantic hurricane activities, frequency and severity of droughts across North America, as well as rainfall anomalies across the African Sahel and northeast Brazil. Despite the important impacts of the AMV, its mechanisms are not completely understood. In particular, it is not clear how much of the historical Atlantic SST fluctuations were forced by anthropogenic sources such as greenhouse warming and aerosol cooling, versus driven internally by changes in the coupled ocean-atmosphere processes in the Atlantic. Using climate models such as the NCAR large ensemble simulations, we were able to successfully separate the forced and internally generated North Atlantic sea surface temperature anomalies through a signal-to-noise maximizing Empirical Orthogonal Function (S/N EOF) analysis method. Two forced modes were identified with one representing a hemispherical symmetric mode and one asymmetric mode. The symmetric mode largely represents the greenhouse forced component while the asymmetric mode resembles the anthropogenic aerosol forcing. When statistically removing both of the forced modes, the residual multidecadal Atlantic SST variability shows a very similar structure as the AMV in the preindustrial simulation. The distinct climate impacts of each of these modes are also identified and the implications and challenges for decadal climate prediction will be discussed.
Interannual Weakening of the Tropical Pacific Walker Circulation Due to Strong Tropical Volcanism
NASA Astrophysics Data System (ADS)
Miao, Jiapeng; Wang, Tao; Wang, Huijun; Sun, Jianqi
2018-06-01
In order to examine the response of the tropical Pacific Walker circulation (PWC) to strong tropical volcanic eruptions (SVEs), we analyzed a three-member long-term simulation performed with HadCM3, and carried out four additional CAM4 experiments. We found that the PWC shows a significant interannual weakening after SVEs. The cooling effect from SVEs is able to cool the entire tropics. However, cooling over the Maritime Continent is stronger than that over the central-eastern tropical Pacific. Thus, non-uniform zonal temperature anomalies can be seen following SVEs. As a result, the sea level pressure gradient between the tropical Pacific and the Maritime Continent is reduced, which weakens trade winds over the tropical Pacific. Therefore, the PWC is weakened during this period. At the same time, due to the cooling subtropical and midlatitude Pacific, the Intertropical Convergence Zone (ITCZ) and South Pacific convergence zone (SPCZ) are weakened and shift to the equator. These changes also contribute to the weakened PWC. Meanwhile, through the positive Bjerknes feedback, weakened trade winds cause El Niño-like SST anomalies over the tropical Pacific, which in turn further influence the PWC. Therefore, the PWC significantly weakens after SVEs. The CAM4 experiments further confirm the influences from surface cooling over the Maritime Continent and subtropical/midlatitude Pacific on the PWC. Moreover, they indicate that the stronger cooling over the Maritime Continent plays a dominant role in weakening the PWC after SVEs. In the observations, a weakened PWC and a related El Niño-like SST pattern can be found following SVEs.
NASA Astrophysics Data System (ADS)
Simionato, Claudia; Clara, Moira Luz; Jaureguizar, Andrés
2017-04-01
The Southwestern Atlantic Continental Shelf is characterized by large SST variability which origin remains unknown. In this work, we use blended SST data provided by NOAA CoastWatch Program, which combine the information coming from infrared and microwave sensors to provide daily images of an intermediate spatial resolution (11 km) with a noise floor of less than 0.2 °C. The data base starts at the middle of 2002, when an increase in signal variance is observed due to the fact that the Advanced Microwave Scanning Radiometer became available and as a consequence to its near all-weather coverage. Several years of observations are thus available, and even though the temporal and spatial resolution of these data is intermediate, they are reasonable for observing and characterizing the most significant patterns of SST variability in the (atmospheric) synoptic to intra-seasonal time scales, so as to help on understanding the physical processes which occur in the area and their forcing mechanisms. As we hypothesize that most of the variability in those time scales is wind forced, the study is complemented with the use of atmospheric observations -coming from remote sensing and reanalysis-. To perform the analysis, the long-term trend, inter-annual and seasonal variability are subtracted to the SST data to obtain the signal on intra-seasonal time scales. Then, Principal Components (EOF) analysis is applied to the data and composites of SST and several meteorological variables (wind, sea level pressure, air temperature, OLR, etc.) are computed for the days when the leading modes are active. It is found that the first three modes account for more than 70% of the variance. Modes 1 and 2 seem to be related to atmospheric waves generated in the tropical Pacific. Those waves, through atmospheric teleconnections, affect the SST on the southwestern South Atlantic Continental Shelf very rapidly. The oceanic anomalies exceed 0.7°C and are quite persistent. Mode 2 seems to be forced by an atmospheric 3-4 mode and might be related to SAM. Besides showing the impact of intra-seasonal atmospheric variability on the ocean at mid latitudes, the knowledge of the connections between the ocean and the atmosphere could aid on improving the ocean predictability on those time scales.
Funk, Christopher C.; Hoell, Andrew; Daithi Stone,
2014-01-01
While the SST trend mode has resulted in large SST increases that appear associated with an equatorial precipitation dipole response contrasting increases over the western Pacific and decreases over the central Pacific, the location of most of this warming is to the west of the key sensitivity areas identified in our CMIP5 composite. Removing this warming did not increase the CAM5 precipitation over California in a statistically significant manner, thus there appears to be little evidence that this long term warming trend contributed substantially to the 2013 and 2014 drought events. This result appears consistent with the lack of a long term downward trend in California precipitation. California precipitation does appear to be sensitive to north Pacific SST, and climate change models indicate substantial warming. If SST events like the unprecedented 2014 north Pacific SST anomaly become more common, California could also experience more frequent droughts. In addition, given the strong thermal control on evaporation, snowmelt, and water resources in California, the long-term warming is continuing to exert a growing stress on water availability.
Impacts of Pacific SSTs on California Winter Precipitation
NASA Astrophysics Data System (ADS)
Myoung, B.; Kafatos, M.
2017-12-01
Consecutive below-normal precipitation years and resulted multi-year droughts are critical issues as the recent 2012-2015 drought of California caused tremendous socio-economic damages. However, studies on the causes of the multi-year droughts lack. In this study, focusing on the three multi-year droughts (1999-2002, 2007-2009, and 2012-2015) in California during the last two decades, we investigated the atmospheric and oceanic characteristics of the three drought events for winter (December-February, DJF) in order to understand large-scale circulations that are responsible for initiation, maintenance, and termination of the droughts. It was found that abnormally developed upper-tropospheric ridges over the North Pacific are primarily responsible for precipitation deficits and then droughts. These ridges developed when negative sea surface temperature anomalies (SSTs) including La Niña events are pervasive in the tropical Pacific. After 3 or 4 years, the droughts ended under the opposite conditions; upper-tropospheric troughs in the North Pacific with El Niño events in the tropics. Results of Empirical Orthogonal Function (EOF) analysis for the 41-year (1974/75-2014/15) 500 hPa geopotential height in DJF revealed that, during the drought periods, the positive phases of the first and second EOF mode (EOF1+ and EOF2+, respectively) were active one by one, positioning upper-tropospheric ridges over the North Pacific. While EOF1+ is associated with cold tropical central Pacific and negative Pacific Decadal Oscillation (PDO), EOF2+ is associated with the tropical east-west SST dipole pattern (i.e., warm western tropical Pacific and cool eastern tropical Pacific near the southern Peru). Based on these results, we developed a regression model for winter precipitation. While dominant SST factors differ by decades, for the recent two decades (1994/1995-2014/2015), 56% variability of DJF precipitation is explained by the tropical east-west SST dipole pattern and PDO (NINO3.4 signal removed) together. These results suggest that SST variability not only in the western/eastern tropical Pacific but also in the North Pacific independently contribute to precipitation variability and long-term droughts in California.
Contribution of tropical instability waves to ENSO irregularity
NASA Astrophysics Data System (ADS)
Holmes, Ryan M.; McGregor, Shayne; Santoso, Agus; England, Matthew H.
2018-05-01
Tropical instability waves (TIWs) are a major source of internally-generated oceanic variability in the equatorial Pacific Ocean. These non-linear phenomena play an important role in the sea surface temperature (SST) budget in a region critical for low-frequency modes of variability such as the El Niño-Southern Oscillation (ENSO). However, the direct contribution of TIW-driven stochastic variability to ENSO has received little attention. Here, we investigate the influence of TIWs on ENSO using a 1/4° ocean model coupled to a simple atmosphere. The use of a simple atmosphere removes complex intrinsic atmospheric variability while allowing the dominant mode of air-sea coupling to be represented as a statistical relationship between SST and wind stress anomalies. Using this hybrid coupled model, we perform a suite of coupled ensemble forecast experiments initiated with wind bursts in the western Pacific, where individual ensemble members differ only due to internal oceanic variability. We find that TIWs can induce a spread in the forecast amplitude of the Niño 3 SST anomaly 6-months after a given sequence of WWBs of approximately ± 45% the size of the ensemble mean anomaly. Further, when various estimates of stochastic atmospheric forcing are added, oceanic internal variability is found to contribute between about 20% and 70% of the ensemble forecast spread, with the remainder attributable to the atmospheric variability. While the oceanic contribution to ENSO stochastic forcing requires further quantification beyond the idealized approach used here, our results nevertheless suggest that TIWs may impact ENSO irregularity and predictability. This has implications for ENSO representation in low-resolution coupled models.
NASA Technical Reports Server (NTRS)
Rodriguez-Fonseca, Belen; Mohino, Elsa; Mechoso, Carlos R.; Caminade, Cyril; Biasutti, Michela; Gaetani, Marco; Garcia-Serrano, J.; Vizy, Edward K.; Cook, Kerry; Xue, Yongkang;
2015-01-01
The Sahel experienced a severe drought during the 1970s and 1980s after wet periods in the 1950s and 1960s. Although rainfall partially recovered since the 1990s, the drought had devastating impacts on society. Most studies agree that this dry period resulted primarily from remote effects of sea surface temperature (SST) anomalies amplified by local land surface-atmosphere interactions. This paper reviews advances made during the last decade to better understand the impact of global SST variability on West African rainfall at interannual to decadal time scales. At interannual time scales, a warming of the equatorial Atlantic and Pacific/Indian Oceans results in rainfall reduction over the Sahel, and positive SST anomalies over the Mediterranean Sea tend to be associated with increased rainfall. At decadal time scales, warming over the tropics leads to drought over the Sahel, whereas warming over the North Atlantic promotes increased rainfall. Prediction systems have evolved from seasonal to decadal forecasting. The agreement among future projections has improved from CMIP3 to CMIP5, with a general tendency for slightly wetter conditions over the central part of the Sahel, drier conditions over the western part, and a delay in the monsoon onset. The role of the Indian Ocean, the stationarity of teleconnections, the determination of the leader ocean basin in driving decadal variability, the anthropogenic role, the reduction of the model rainfall spread, and the improvement of some model components are among the most important remaining questions that continue to be the focus of current international projects.
NASA Astrophysics Data System (ADS)
Drumond, Anita Rodrigues De Moraes; Ambrizzi, Tércio
2005-06-01
Precipitation deficits were observed over southeastern, northeastern and Central Brazil during the 2001 Austral Summer. They contributed to the worsening of the energy crisis that was occurring in the country. A low-level anomalous anticyclonic circulation observed over eastern Brazil enhanced the deviation of moisture transport that usually occurs from the Amazon Basin to southeastern Brazil and inhibited the occurrence of South Atlantic Convergence Zone events in that period. However, an anomalous low-level northerly moisture flux was observed over the La Plata Basin, and positive precipitation anomalies occurred over Bolivia, Paraguay, northeastern Argentina and southern Brazil. Using the ensemble technique, a numerical study was carried out to investigate the role of different sea surface temperature (SST) forcings observed over this anomalous South American atmospheric circulation. Reynolds SST monthly means were used as boundary conditions to study the influence of South Atlantic, South Indian, South Pacific and Equatorial Pacific oceans. The simulations were run from September 2000 to April 2001 using the Community Climate Model version 3.6 General Circulation Model. Ten integrations using different initial conditions were done to each experiment. Numerical experiments suggested that the combined influence of South Pacific and Equatorial Pacific oceans could be responsible for the drought observed over Central Brazil. These experiments simulated the low-level anticyclonic anomaly observed over eastern Brazil. However, both experiments have poorly reproduced the intensity of the anomalous low-level northerly moisture flux observed over the La Plata Basin. Therefore, the intensity of the simulated precipitation anomalies over the subtropical regions was much weaker than observed.
How predictable are equatorial Atlantic surface winds?
NASA Astrophysics Data System (ADS)
Richter, Ingo; Doi, Takeshi; Behera, Swadhin
2017-04-01
Sensitivity tests with the SINTEX-F general circulation model (GCM) as well as experiments from the Coupled Model Intercomparison Project phase 5 (CMIP5) are used to examine the extent to which sea-surface temperature (SST) anomalies contribute to the variability and predictability of monthly mean surface winds in the equatorial Atlantic. In the SINTEX-F experiments, a control experiment with prescribed observed SST for the period 1982-2014 is modified by inserting climatological values in certain regions, thereby eliminating SST anomalies. When SSTs are set to climatology in the tropical Atlantic only (30S to 30N), surface wind variability over the equatorial Atlantic (5S-5N) decreases by about 40% in April-May-June (AMJ). This suggests that about 60% of surface wind variability is due to either internal atmospheric variability or SSTs anomalies outside the tropical Atlantic. A further experiment with climatological SSTs in the equatorial Pacific indicates that another 10% of variability in AMJ may be due to remote influences from that basin. Experiments from the CMIP5 archive, in which climatological SSTs are prescribed globally, tend to confirm the results from SINTEX-F but show a wide spread. In some models, the equatorial Atlantic surface wind variability decreases by more than 90%, while in others it even increases. Overall, the results suggest that about 50-60% of surface wind variance in AMJ is predictable, while the rest is due to internal atmospheric variability. Other months show significantly lower predictability. The relatively strong internal variability as well as the influence of remote SSTs suggest a limited role for coupled ocean-atmosphere feedbacks in equatorial Atlantic variability.
Coupled modes of rainfall over China and the pacific sea surface temperature in boreal summertime
NASA Astrophysics Data System (ADS)
Li, Chun; Ma, Hao
2011-09-01
In addition, the possible atmospheric teleconnections of the coupled rainfall and SST modes were discussed. For the ENSO-NC mode, anomalous low-pressure and high-pressure over the Asian continent induces moisture divergence over North China and reduces summer rainfall there. For the WTP-YRV mode, East Asia-Pacific teleconnection induces moisture convergence over the Yangtze River valley and enhances the summer rainfall there. The TPMM SST and the summer rainfall anomalies over the YRVL are linked by a circumglobal, wave-train-like, atmospheric teleconnection.
Reforecasting the 1972-73 ENSO Event and the Monsoon Drought Over India
NASA Astrophysics Data System (ADS)
Shukla, J.; Huang, B.; Shin, C. S.
2016-12-01
This paper presents the results of reforcasting the 1972-73 ENSO event and the Indian summer monsoon drought using the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2), initialized with the European Centre for Medium-Range Weather Forecasts (ECMWF) global ocean reanalysis version 4, and observation-based land and atmosphere reanalyses. The results of this paper demonstrate that if the modern day climate models were available during the 1970's, even with the limited observations at that time, it should have been possible to predict the 1972-73 ENSO event and the associated monsoon drought. These results further suggest the necessity of continuing to develop realistic models of the climate system for accurate and reliable seasonal predictions. This paper also presents a comparison of the 1972-73 El Niño reforecast with the 1997-98 case. As the strongest event during 1958-78, the 1972-73 El Niño is distinguished from the 1997-98 one by its early termination. Initialized in the spring season, the forecast system predicted the onset and development of both events reasonably well, although the reforecasts underestimate the ENSO peaking magnitudes. On the other hand, the reforecasts initialized in spring and fall of 1972 persistently predicted lingering wind and SST anomalies in the eastern equatorial Pacific during the spring of 1973. Initialized in fall of 1997, the reforecast also grossly overestimates the peaking westerly wind and warm SST anomalies in the 1997-98 El Niño.In 1972-73, both the Eastern Pacific SST anomalies (for example Nino 3 Index) and the summer monsoon drought over India and the adjoining areas were predicted remarkably well. In contrast, the Eastern Pacific SST anomalies for the 1997-98 event were predicted well, but the normal summer monsoon rainfall over India of 1997 was not predicted by the model. This case study of the 1972-73 event is part of a larger, comprehensive reforecast project undertaken by one of the coauthors (Bohua Huang, see the paper by Huang et al. Reforecasting the ENSO Events in the Past Fifty-Seven Years (1958-2014) in another AGU session) in which seasonal hindcasts are being carried out for each of the 57 years (1958-2014) using CFSv2.
NASA Astrophysics Data System (ADS)
Xu, Y.; Pearson, S. P.; Kilbourne, K.
2013-12-01
Tropical sea surface temperature (SST) has been implicated as a driver of climate changes during the Medieval Climate Anomaly (MCA, 950-1300 A.D.) but little data exists from the tropical oceans during this time period. We collected three modern and seven sub-fossil Diploria strigosa coral colonies from an overwash deposit on Anegada, British Virgin Islands (18.73 °N, 63.33 °W) in order to reconstruct climate in the northeastern Caribbean and Tropical North Atlantic during the MCA. The first step in our reconstruction was to verify the climate signal from this species at this site. We sub-sampled the modern corals along thecal walls with an average sampling resolution of 11-13 samples per year. Sr/Ca ratios measured in the sub-samples were calibrated to temperature using three different calibration techniques (ordinary least squares, reduced major axis, and weighted least squares (WLS)) on the monthly data that includes the seasonal cycles and on the monthly anomaly data. WLS regression accounts for unequal errors in the x and y terms, so we consider it the most robust technique. The WLS regression slope between gridded SST and coral Sr/Ca is similar to the previous two calibrations of this species. Mean Sr/Ca for each of the three modern corals is 8.993 × 0.004 mmol/mol, 9.127 × 0.003 mmol/mol, and 8.960 × 0.007 mmol/mol. These straddle the mean Diploria strigosa Sr/Ca found by Giry et al., (2010), 9.080 mmol/mol, at a site with nearly the same mean SST as Anegada (27.4 °C vs. 27.5 °C). The climatological seasonal cycles for SST derived from the modern corals are statistically indistinguishable from the seasonal cycles in the instrumental SST data. The coral-based seasonal cycles have ranges of 2.70 × 0.31 °C, 2.65 × 0.08 °C and 2.71 × 0.53 °C. These results indicate that this calibration can be applied to our sub-fossil coral data. We applied the WLS calibration to monthly-resolution Sr/Ca data from multiple sub-fossil corals dating to the medieval period with initial U-series dates near the top of the cores ranging from 1277 × 5 A.D. to 1327 × 5 A.D. Initial Sr/Ca results from the first sub-fossil coral have a seasonal range of 2.65 × 0.27 °C when converted to temperature units with our modern calibration, indicating no significant change from modern times. However, the mean Sr/Ca for this coral is very high (9.388 mmol/mol) compared to the modern corals. We explore the potential causes for this discrepancy in our study. Because reconstructing the mean SST during the Medieval Climate Anomaly may be difficult without temporal overlap with modern corals, our focus is on interannual variability. The coral Sr/Ca based monthly SST anomalies for both modern and sub-fossil corals have larger interannual variances than the instrumental record. One explanation for this is that the SSTs derived from sub-fossil corals are local data for which one expects larger variances than the instrumental data averaged over a 2 x 2 ° grid. This species shows great promise for future paleoclimate reconstructions.
NASA Astrophysics Data System (ADS)
Zhou, T.; Song, F.
2014-12-01
The climatology and inter-annual variability of East Asian summer monsoon (EASM) simulated by 34 Coupled Model Intercomparison Project phase 5 (CMIP5) coupled general circulation models (CGCMs) are evaluated. To estimate the role of air-sea coupling, 17 CGCMs are compared to their corresponding atmospheric general circulation models (AGCMs). The climatological low-level monsoon circulation and mei-yu/changma/baiu rainfall band are improved in CGCMs from AGCMs. The improvement is at the cost of the local cold sea surface temperature (SST) biases in CGCMs, since they decrease the surface evaporation and enhance the circulation. The inter-annual EASM pattern is evaluated by a skill formula and the highest/lowest 8 models are selected to investigate the skill origins. The observed Indian Ocean (IO) warming, tropical eastern Indian Ocean (TEIO) rainfall anomalies and Kelvin wave response are captured well in high-skill models, while these features are not present in low-skill models. Further, the differences in the IO warming between high-skill and low-skill models are rooted in the preceding ENSO simulation. Hence, the IO-WPAC teleconnection is important for CGCMs, similar to AGCMs. However, compared to AGCMs, the easterly anomalies in the southern flank of the WPAC make the TEIO warmer in CGCMs by reducing the climatological monsoon westerlies and decreasing the surface evaporation. The warmer TEIO induces the stronger precipitation anomalies and intensifies the teleconnection. Hence, the inter-annual EASM pattern is better simulated in CGCMs than that in AGCMs. Key words: CMIP5, CGCMs, air-sea coupling, AGCMs, inter-annual EASM pattern, ENSO, IO-WPAC teleconnection
Why did the 2015/16 El Niño Fail to Bring Excessive Precipitation to California?
NASA Astrophysics Data System (ADS)
Jong, B. T.; Ting, M.; Seager, R.; Lee, D. E.
2016-12-01
California has experienced severe drought in recent years posing great challenges to water resources, agriculture, and land management. El Niño, as the prime sources of seasonal to interannual climate predictability, offers the potential of alleviation of drought in California. Here, El Niño's impacts on California winter precipitation are examined. Our results, based on the observations during 1901-2010, show that El Niño's influence on precipitation strengthens from early to late winter even as El Niño weakens. The cause of the nonlinear relationship between sea surface temperature anomaly (SSTA) amplitude and teleconnection strength is the late winter warming of the climatological mean SST over the tropical eastern Pacific, allowing more active and eastward extending tropical deep convection anomaly. The 2015/16 El Niño, one of the strongest events in recent history, did not bring the heavy precipitation to California anticipated based on model forecasts and experience with the previous two strong El Niños, 1982/83 and 1997/98. North American Multi-Model Ensemble (NMME) 3-month average forecasts of SST from February 1 2016, models overestimated the Niño3 SSTA, compared to what actually occurred and, consistently, forecast heavier than observed California precipitation. The too high Niño3 SSTA drove too strong deep convection anomalies in the eastern tropical Pacific, triggering a too strong teleconnection that made the forecast California precipitation too wet. Thus, the faster than forecast decay in Niño3 SST anomalies at the end of the 2015/16 El Niño is one possible reason why the event failed to bring excess precipitation to California in the late winter. Controlled GCM experiments support this hypothesis and show that the teleconnection forced by the multimodel mean forecast of 2016 February-March-April SSTAs is stronger than the one forced by the observed SSTAs. Within the NMME those models that more correctly forecast the decay of El Niño 2015/16 also more correctly forecast modest precipitation anomalies over California.
NASA Astrophysics Data System (ADS)
Lawman, A. E.; Quinn, T. M.; Partin, J. W.; Taylor, F. W.; Thirumalai, K.; WU, C. C.; Shen, C. C.
2016-12-01
The Medieval Climate Anomaly (MCA: 950-1250 CE) is identified as a period during the last 2 millennia with Northern Hemisphere surface temperatures similar to the present. However, our understanding of tropical climate variability during the MCA is poorly constrained due to a lack of proxy records. We investigate the El Niño-Southern Oscillation (ENSO), the leading mode of global interannual variability, during the MCA using geochemical records developed from well preserved fossilized corals from the tropical southwest Pacific (Tasmaloum, Vanuatu; 15° 37' S, 166° 54.5' E). We use paired coral Sr/Ca and δ18O measurements to reconstruct sea surface temperature (SST) and the δ18O of seawater (a proxy for salinity) variability associated with ENSO. We present Sr/Ca and δ18O data from a 1.68-m-long Porites lutea coral head collected from Tasmaloum, Vanuatu. An absolute U/Th date of 1127.1 ± 2.7 CE indicates that the selected coral lived during the MCA. Preliminary assessment of >65 years of monthly resolved Sr/Ca data yields a mean value of 8.937 ± 0.120 mmol/mol (2σ, n = 757), and an average seasonal cycle of 0.156 ± 0.009 mmol/mol or 2.7 ± 0.1°C based on modern Sr/Ca-SST calibrations. We find that the magnitude and variability of the SST seasonal cycle is comparable to gridded and in situ SST datasets for Vanuatu as well as a published, modern 165 year-long coral record from Sabine Bank, Vanuatu, located 90 km to the SW of Tasmaloum. Applying a 2-8 year band pass filter to the Sr/Ca time series, we identify 8 El Niño and 3 La Niña events based on Sr/Ca (SST) anomalies. Preliminary assessment of >45 years of paired δ18O measurements yields a mean value of -4.67 ± 0.43‰ (2σ, n = 373). We also identify ENSO activity in the 2-8 year band pass filtered data. We expect to develop a 120-year record of paired coral Sr/Ca and δ18O measurements when data acquisition is complete, which will be used to investigate the frequency and magnitude of ENSO events during the MCA.
The enso signal in the lower stratosphere: propagation via rossby waves.
NASA Astrophysics Data System (ADS)
Calvo, N.; Garcia Herrera, R.; Garcia, R.; Gallego, D.; Gimeno, L.; Hernandez, E.; Ribera, P.
2003-04-01
The ENSO signal on the lower stratosphere has been analyzed through the study of the relationship between SST in the Tropical Pacific and lower stratospheric temperatures from the Microwave Sounding Unit (MSU) using the t4 channel, which is sensitive to lower stratospheric temperature. Lagged point correlations have been calculated between the Niño3.4 index and MSU t4 monthly anomaly series at each grid point for the whole globe from January 1979 through December 2000. Correlation values are very similar in both tropics and extratropics, but their signs are opposite: positive in extratropical regions and negative in the tropics. Moreover, the significant correlation signal is longer lasting at middle latitudes, from lag 9 to lag 6, and much shorter in the Tropics, where it is significant only at lags 0 and 3. In the extratropical area, four regions are significant: Eurasia, the Southern Indian Ocean, and the North and South Pacific Oceans. The signal in Eurasia is the first to be observed (at lag 9) and it could be considered as a predictor of extreme ENSO events. The Pacific Ocean shows the PNA and PSA patterns. There, the signal appears earlier in the Southern Hemisphere (lag 6) because wind conditions at boreal summer (usually lag 6) do not favour the propagation of Rossby waves into the stratosphere. Further, the shape of the correlation patterns suggests that only planetary waves are able to propagate the ENSO signal into the stratosphere. In the tropics, the ENSO signal takes the form of a pair of Rossby gyres, observed in the Pacific Ocean at lags 0 and 3 as two regions of significant correlation located symmetricaly north and south of the Equator. The same analysis has been carried out for a period without any extreme events (SST anomalies in the Niño3.4 region smaller than 1 standard desviation), in which case no signal is observed in the lower stratosphere. This suggests that only strong ENSO (defined by anomalies larger than 1 standard desviation in the Niño3.4 area) produce a signal in the stratosphere. On the other hand, the signal does not appear to show any influence from the QBO. Taken together, all these results show that Rossby waves play a central role in the propagation of the ENSO signal into the stratosphere.
NASA Astrophysics Data System (ADS)
Olio, M.; Peres dos Santos, R.; Tepsich, P.; Martins, A. M.
2016-02-01
In this study, data on the distribution of blue whales (Balaenoptera musculus), fin whales (Balaenoptera physalus), sei whales (Balaenoptera borealis) and humpback whales (Megaptera novaeangliae) in the waters around Faial and Pico islands (Azores archipelago, NE Atlantic) were collected during three years (2012 to 2014) for the months of March to July. During this period of time, we recorded 518 encounters with these species, being 73 in 2012, 86 in 2013 and 359 in 2014. Recordings were made during whale watching trips from two whale watching companies in those islands. In an attempt to understand better the different yearly occurrences, we used MODIS/AQUA-derived Sea Surface Temperature (SST) and Ocean Colour (chlorophyll a) to calculate weekly, bi-weekly, monthly, seasonal and yearly averages. Seasonal effects were removed from the data as well, to infer possible trends with time (2011 to 2014). Climatological anomalies were also calculated using MODIS data from 2003 to 2014. Results show that both years 2011 and 2012 present SST and OC negative anomalies through out the whole years. Higher chlorophyll a positive anomalies are observed during the spring of 2014. Maximum SST and chlorophyll a values ranged between 15.4 to 24.0 C and from 0.0 to 0.3 mg m-3, respectively. Sea surface tempature minimum and maxima anomalies ranged from -1.023 and 1.008 both for 2012, and -0.138 and 0.144 for chlorophyll a (for 2012 and 2014, respectively). Preliminary results suggest that phytoplankton concentration may explain the distribution of some whales species, particulary in 2014 where whale records were highest. These results are being further developed looking at mesoscale variability episodical occurrences on weekly to yearly data. Key words: baleen whales, whale watching, spatial and temporal distribution, remote sensing, mesoscale variability.
Equatorial Pacific forcing of western Amazonian precipitation during Heinrich Stadial 1.
Zhang, Yancheng; Zhang, Xu; Chiessi, Cristiano M; Mulitza, Stefan; Zhang, Xiao; Lohmann, Gerrit; Prange, Matthias; Behling, Hermann; Zabel, Matthias; Govin, Aline; Sawakuchi, André O; Cruz, Francisco W; Wefer, Gerold
2016-10-25
Abundant hydroclimatic evidence from western Amazonia and the adjacent Andes documents wet conditions during Heinrich Stadial 1 (HS1, 18-15 ka), a cold period in the high latitudes of the North Atlantic. This precipitation anomaly was attributed to a strengthening of the South American summer monsoon due to a change in the Atlantic interhemispheric sea surface temperature (SST) gradient. However, the physical viability of this mechanism has never been rigorously tested. We address this issue by combining a thorough compilation of tropical South American paleorecords and a set of atmosphere model sensitivity experiments. Our results show that the Atlantic SST variations alone, although leading to dry conditions in northern South America and wet conditions in northeastern Brazil, cannot produce increased precipitation over western Amazonia and the adjacent Andes during HS1. Instead, an eastern equatorial Pacific SST increase (i.e., 0.5-1.5 °C), in response to the slowdown of the Atlantic Meridional Overturning Circulation during HS1, is crucial to generate the wet conditions in these regions. The mechanism works via anomalous low sea level pressure over the eastern equatorial Pacific, which promotes a regional easterly low-level wind anomaly and moisture recycling from central Amazonia towards the Andes.
NASA Astrophysics Data System (ADS)
Wengel, C.; Latif, M.; Park, W.; Harlaß, J.; Bayr, T.
2018-02-01
The El Niño/Southern Oscillation (ENSO) is characterized by a seasonal phase locking, with strongest eastern and central equatorial Pacific sea surface temperature (SST) anomalies during boreal winter and weakest SST anomalies during boreal spring. In this study, key feedbacks controlling seasonal ENSO phase locking in the Kiel Climate Model (KCM) are identified by employing Bjerknes index stability analysis. A large ensemble of simulations with the KCM is analyzed, where the individual runs differ in either the number of vertical atmospheric levels or coefficients used in selected atmospheric parameterizations. All integrations use the identical ocean model. The ensemble-mean features realistic seasonal ENSO phase locking. ENSO phase locking is very sensitive to changes in the mean-state realized by the modifications described above. An excessive equatorial cold tongue leads to weak phase locking by reducing the Ekman feedback and thermocline feedback in late boreal fall and early boreal winter. Seasonal ENSO phase locking also is sensitive to the shortwave feedback as part of the thermal damping in early boreal spring, which strongly depends on eastern and central equatorial Pacific SST. The results obtained from the KCM are consistent with those from models participating in the Coupled Model Intercomparison Project phase 5 (CMIP5).
Lix, J K; Venkatesan, R; Grinson, George; Rao, R R; Jineesh, V K; Arul, Muthiah M; Vengatesan, G; Ramasundaram, S; Sundar, R; Atmanand, M A
2016-03-01
The Andaman coral reef region experienced mass bleaching events during 1998 and 2010. The purpose of this study is to investigate the role of the El Niño in the coral reef bleaching events of the Andaman region. Both Niño 3.4 and 3 indices were examined to find out the relationship between the mass bleaching events and El Niño, and correlated with sea surface temperature (SST) anomalies in the Andaman Sea. The result shows that abnormal warming and mass bleaching events in the Andaman Sea were seen only during strong El Niño years of 1997-1998 and 2009-2010. The Andaman Sea SST was more elevated and associated with El Niño Modoki (central Pacific El Niño) than conventional El Niño (eastern Pacific El Niño) occurrences. It is suggested that the development of hot spot patterns around the Andaman Islands during May 1998 and April-May 2010 may be attributed to zonal shifts in the Walker circulation driven by El Niño during the corresponding period.
Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection
Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju
2016-01-01
Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection. PMID:26838053
Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection.
Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju
2016-02-03
Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection.
NASA Astrophysics Data System (ADS)
Amiri, S.
2016-12-01
Harmful algal blooms (HAB's) include a large subset of toxigenic phytoplankton and microbial species responsible for shutting down major fisheries, impairing water quality and threatening public health. Oceanographic and anthropogenic effects on HAB's in concert with climactic stressors may have interactive effects influencing HAB blooms to persist longer than historically documented. This 3 year time-series explores the interactive effects of the SST anomaly known as the Warm Blob across the coastal Pacific on the bloom progression and persistence of the toxigenic Pseudo-nitzschia bloom across the West Coast, ranging from the gulf of Alaska to the Santa Barbara Channel (SBC). This study also explores direct links of the Warm Blob event on nutrient and oxygen concentrations spatially across the Santa Barbara Channel with the highest levels of domoic acid concentrations recorded from the coast wide mega bloom. MODIS and SeaWIFS Satellite imagery of chlorophyll and SST monthly averaged values of the SBC were identified to better understand the regional distribution of the Warm Blob on phytoplankton community structure. These images were ground truthed with monthly samples from 7 transects across the SBC with the Plumes and Blooms time-series, LTER sites and local pier sites across the Santa Barbara County. Preliminary data suggest an interesting correlation with Pseudo-nitzschia species outcompeting other phytoplankton species within the SBC during the 3 degree averaged increase of SST conditions with the Warm Blob event. *Data is still being processed and results should be analyzed before October 2016.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perigaud C.; Dewitte, B.
The Zebiak and Cane model is used in its {open_quotes}uncoupled mode,{close_quotes} meaning that the oceanic model component is driven by the Florida State University (FSU) wind stress anomalies over 1980-93 to simulate sea surface temperature anomalies, and these are used in the atmospheric model component to generate wind anomalies. Simulations are compared with data derived from FSU winds, International Satellite Cloud Climatology Project cloud convection, Advanced Very High Resolution Radiometer SST, Geosat sea level, 20{degrees}C isotherm depth derived from an expendable bathythermograph, and current velocities estimated from drifters or current-meter moorings. Forced by the simulated SST, the atmospheric model ismore » fairly successful in reproducing the observed westerlies during El Nino events. The model fails to simulate the easterlies during La Nina 1988. The simulated forcing of the atmosphere is in very poor agreement with the heating derived from cloud convection data. Similarly, the model is fairly successful in reproducing the warm anomalies during El Nino events. However, it fails to simulate the observed cold anomalies. Simulated variations of thermocline depth agree reasonably well with observations. The model simulates zonal current anomalies that are reversing at a dominant 9-month frequency. Projecting altimetric observations on Kelvin and Rossby waves provides an estimate of zonal current anomalies, which is consistent with the ones derived from drifters or from current meter moorings. Unlike the simulated ones, the observed zonal current anomalies reverse from eastward during El Nino events to westward during La Nina events. The simulated 9-month oscillations correspond to a resonant mode of the basin. They can be suppressed by cancelling the wave reflection at the boundaries, or they can be attenuated by increasing the friction in the ocean model. 58 refs., 14 figs., 6 tabs.« less
Climate variability and Dinophysis acuta blooms in an upwelling system.
Díaz, Patricio A; Ruiz-Villarreal, Manuel; Pazos, Yolanda; Moita, Teresa; Reguera, Beatriz
2016-03-01
Dinophysis acuta is a frequent seasonal lipophilic toxin producer in European Atlantic coastal waters associated with thermal stratification. In the Galician Rías, populations of D. acuta with their epicentre located off Aveiro (northern Portugal), typically co-occur with and follow those of Dinophysis acuminata during the upwelling transition (early autumn) as a result of longshore transport. During hotter than average summers, D. acuta blooms also occur in August in the Rías, when they replace D. acuminata. Here we examined a 30-year (1985-2014) time series of D. acuta from samples collected by the same method in the Galician Rías. Our main objective was to identify patterns of distribution and their relation with climate variability, and to explain the exceptional summer blooms of D. acuta in 1989-1990. A dome-shaped relationship was found between summer upwelling intensity and D. acuta blooms; cell maxima were associated with conditions where the balance between upwelling intensity and heating, leading to deepened thermoclines, combined with tidal phase (3 days after neap tides) created windows of opportunity for this species. The application of a generalized additive model based on biological (D. acuta inoculum) and environmental predictors (Cumulative June-August upwelling CUI JJA , average June-August SST JJA and tidal range) explained more than 70% of the deviance for the exceptional summer blooms of D. acuta, through a combination of moderate (35,000-50,000m 3 s -1 km -1 ) summer upwelling (CUI JJA ), thermal stratification (SST JJA >17°C) and moderate tidal range (∼2.5m), provided D. acuta cells (inoculum) were present in July. There was no evidence of increasing trends in D. acuta bloom frequency/intensity nor a clear relationship with NAO or other long-term climatic cycles. Instead, the exceptional summer blooms of 1989-1990 appeared linked to extreme hydroclimatic anomalies (high positive anomalies in SST and NAO index), which affected most of the European Atlantic coast. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
A Centennial Episode of Weak East Asian Summer Monsoon in the Midst of the Medieval Warming
NASA Astrophysics Data System (ADS)
Jin, C.; Liu, J.; Wang, B.; Wang, Z.; Yan, M.
2017-12-01
Recent paleo-proxy evidences suggested that the East Asian summer monsoon (EASM) was generally strong (i.e., northern China wet and southern China dry) during the Medieval Warm Period (MWP, 9th to the mid-13th century), however, there was a centennial period (around 11th century) during which the EASM was weak. This study aims to explore the causes of this centennial weak EASM episode and in general, what controls the centennial variability of the EASM in the pre-industrial period of AD 501-1850. With the Community Earth System Model (CESM), a suit of control and forced experiments were conducted for the past 2000 years. The model run with all external forcings simulates a warm period of EA from AD 801-1250 with a generally increased summer mean precipitation over the northern EA; however, during the 11th century (roughly from AD 980 to AD 1100), the EASM is significantly weaker than the other periods during the MWP. We find that on the multi-decadal to centennial time scale, a strong EASM is associated with a La Nina-like Indo-Pacific warming and the opposite is also true. This sea surface temperature (SST) anomaly pattern represents the leading EOF mode of centennial SST variations, and it is primarily forced by the solar radiation and volcanic activity, whereas the land use/land cover and greenhouse gases as well as internal dynamics play a negligible role. During the MWP, the solar forcing plays a dominate role in supporting the SST variation as the volcanic activity is weak. The weakening of the EASM during the AD 980-1100 is attributed to the relatively low solar radiation, which leads to a prevailing El Nino-like Indo-Pacific cooling with strongest cooling occurring in the equatorial western Pacific. The suppressed convection over the equatorial western Pacific directly induces a Philippine Sea anticyclone anomaly, which increases southern China precipitation, meanwhile suppresses Philippine Sea precipitation, exciting a meridional teleconnection that induces anomalous northerly winds and dry conditions over the northern China, weakening the EASM.
Tropical cyclone cooling combats region-wide coral bleaching.
Carrigan, Adam D; Puotinen, Marji
2014-05-01
Coral bleaching has become more frequent and widespread as a result of rising sea surface temperature (SST). During a regional scale SST anomaly, reef exposure to thermal stress is patchy in part due to physical factors that reduce SST to provide thermal refuge. Tropical cyclones (TCs - hurricanes, typhoons) can induce temperature drops at spatial scales comparable to that of the SST anomaly itself. Such cyclone cooling can mitigate bleaching across broad areas when well-timed and appropriately located, yet the spatial and temporal prevalence of this phenomenon has not been quantified. Here, satellite SST and historical TC data are used to reconstruct cool wakes (n=46) across the Caribbean during two active TC seasons (2005 and 2010) where high thermal stress was widespread. Upon comparison of these datasets with thermal stress data from Coral Reef Watch and published accounts of bleaching, it is evident that TC cooling reduced thermal stress at a region-wide scale. The results show that during a mass bleaching event, TC cooling reduced thermal stress below critical levels to potentially mitigate bleaching at some reefs, and interrupted natural warming cycles to slow the build-up of thermal stress at others. Furthermore, reconstructed TC wave damage zones suggest that it was rare for more reef area to be damaged by waves than was cooled (only 12% of TCs). Extending the time series back to 1985 (n = 314), we estimate that for the recent period of enhanced TC activity (1995-2010), the annual probability that cooling and thermal stress co-occur is as high as 31% at some reefs. Quantifying such probabilities across the other tropical regions where both coral reefs and TCs exist is vital for improving our understanding of how reef exposure to rising SSTs may vary, and contributes to a basis for targeting reef conservation. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Gerlitz, Lars; Gafurov, Abror; Apel, Heiko; Unger-Sayesteh, Katy; Vorogushyn, Sergiy; Merz, Bruno
2016-04-01
Statistical climate forecast applications typically utilize a small set of large scale SST or climate indices, such as ENSO, PDO or AMO as predictor variables. If the predictive skill of these large scale modes is insufficient, specific predictor variables such as customized SST patterns are frequently included. Hence statistically based climate forecast models are either based on a fixed number of climate indices (and thus might not consider important predictor variables) or are highly site specific and barely transferable to other regions. With the aim of developing an operational seasonal forecast model, which is easily transferable to any region in the world, we present a generic data mining approach which automatically selects potential predictors from gridded SST observations and reanalysis derived large scale atmospheric circulation patterns and generates robust statistical relationships with posterior precipitation anomalies for user selected target regions. Potential predictor variables are derived by means of a cellwise correlation analysis of precipitation anomalies with gridded global climate variables under consideration of varying lead times. Significantly correlated grid cells are subsequently aggregated to predictor regions by means of a variability based cluster analysis. Finally for every month and lead time, an individual random forest based forecast model is automatically calibrated and evaluated by means of the preliminary generated predictor variables. The model is exemplarily applied and evaluated for selected headwater catchments in Central and South Asia. Particularly the for winter and spring precipitation (which is associated with westerly disturbances in the entire target domain) the model shows solid results with correlation coefficients up to 0.7, although the variability of precipitation rates is highly underestimated. Likewise for the monsoonal precipitation amounts in the South Asian target areas a certain skill of the model could be detected. The skill of the model for the dry summer season in Central Asia and the transition seasons over South Asia is found to be low. A sensitivity analysis by means on well known climate indices reveals the major large scale controlling mechanisms for the seasonal precipitation climate of each target area. For the Central Asian target areas, both, the El Nino Southern Oscillation and the North Atlantic Oscillation are identified as important controlling factors for precipitation totals during moist spring season. Drought conditions are found to be triggered by a warm ENSO phase in combination with a positive phase of the NAO. For the monsoonal summer precipitation amounts over Southern Asia, the model suggests a distinct negative response to El Nino events.
Pfeiffer, M; Zinke, J; Dullo, W-C; Garbe-Schönberg, D; Latif, M; Weber, M E
2017-10-31
The western Indian Ocean has been warming faster than any other tropical ocean during the 20 th century, and is the largest contributor to the global mean sea surface temperature (SST) rise. However, the temporal pattern of Indian Ocean warming is poorly constrained and depends on the historical SST product. As all SST products are derived from the International Comprehensive Ocean-Atmosphere dataset (ICOADS), it is challenging to evaluate which product is superior. Here, we present a new, independent SST reconstruction from a set of Porites coral geochemical records from the western Indian Ocean. Our coral reconstruction shows that the World War II bias in the historical sea surface temperature record is the main reason for the differences between the SST products, and affects western Indian Ocean and global mean temperature trends. The 20 th century Indian Ocean warming pattern portrayed by the corals is consistent with the SST product from the Hadley Centre (HadSST3), and suggests that the latter should be used in climate studies that include Indian Ocean SSTs. Our data shows that multi-core coral temperature reconstructions help to evaluate the SST products. Proxy records can provide estimates of 20 th century SST that are truly independent from the ICOADS data base.
NASA Astrophysics Data System (ADS)
Lawman, A. E.; Quinn, T. M.; Partin, J. W.; Taylor, F. W.; Thirumalai, K.; WU, C. C.; Shen, C. C.
2017-12-01
The Medieval Climate Anomaly (MCA: 950-1250 CE) is identified as a period during the last 2 millennia with Northern Hemisphere surface temperatures similar to the present. However, our understanding of tropical climate variability during the MCA is poorly constrained due to a lack of sub-annually resolved proxy records. We investigate seasonal and interannual variability during the MCA using geochemical records developed from two well preserved Porites lutea fossilized corals from the tropical southwest Pacific (Tasmaloum, Vanuatu; 15.6°S, 166.9°E). Absolute U/Th dates of 1127.1 ± 2.7 CE and 1105.1 ± 3.0 CE indicate that the selected fossil corals lived during the MCA. We use paired coral Sr/Ca and δ18O measurements to reconstruct sea surface temperature (SST) and the δ18O of seawater (a proxy for salinity). To provide context for the fossil coral records and test whether the mean state and climate variability at Vanuatu during the MCA is similar to the modern climate, our analysis also incorporates two modern coral records from Sabine Bank (15.9°S, 166.0°E) and Malo Channel (15.7°S, 167.2°E), Vanuatu for comparison. We quantify the uncertainty in our modern and fossil coral SST estimates via replication with multiple, overlapping coral records. Both the modern and fossil corals reproduce their respective mean SST value over their common period of overlap, which is 25 years in both cases. Based on over 100 years of monthly Sr/Ca data from each time period, we find that SSTs at Vanuatu during the MCA are 1.3 ± 0.7°C cooler relative to the modern. We also find that the median amplitude of the annual cycle is 0.8 ± 0.3°C larger during the MCA relative to the modern. Multiple data analysis techniques, including the standard deviation and the difference between the 95th and 5th percentiles of the annual SST cycle estimates, also show that the MCA has greater annual SST variability relative to the modern. Stable isotope data acquisition is ongoing, and when complete we will have a suite of records of paired coral Sr/Ca and δ18O measurements. We will apply similar statistical techniques developed for the Sr/Ca-SST record to also investigate variability in the δ18O of seawater (salinity). Modern salinity variability at Vanuatu arises due to hydrological anomalies associated with the El Niño-Southern Oscillation in the tropical Pacific.
El Niño–Southern Oscillation diversity and Southern Africa teleconnections during Austral Summer
Hoell, Andrew; Funk, Christopher C.; Magadzire, Tamuka; Zinke, Jens; Husak, Gregory J.
2014-01-01
A wide range of sea surface temperature (SST) expressions have been observed during the El Niño–Southern Oscillation events of 1950–2010, which have occurred simultaneously with different global atmospheric circulations. This study examines the atmospheric circulation and precipitation during December–March 1950–2010 over the African Continent south of 15∘S, a region hereafter known as Southern Africa, associated with eight tropical Pacific SST expressions characteristic of El Niño and La Niña events. The self-organizing map method along with a statistical distinguishability test was used to isolate the SST expressions of El Niño and La Niña. The seasonal precipitation forcing over Southern Africa associated with the eight SST expressions was investigated in terms of the horizontal winds, moisture budget and vertical motion. El Niño events, with warm SST across the east and central Pacific Ocean and warmer than average SST over the Indian Ocean, are associated with precipitation reductions over Southern Africa. The regional precipitation reductions are forced primarily by large-scale mid-tropospheric subsidence associated with anticyclonic circulation in the upper troposphere. El Niño events with cooler than average SST over the Indian Ocean are associated with precipitation increases over Southern Africa associated with lower tropospheric cyclonic circulation and mid-tropospheric ascent. La Niña events, with cool SST anomalies over the central Pacific and warm SST over the west Pacific and Indian Ocean, are associated with precipitation increases over Southern Africa. The regional precipitation increases are forced primarily by lower tropospheric cyclonic circulation, resulting in mid-tropospheric ascent and an increased flux of moisture into the region.
Influence of Mean State Changes on the Structure of ENSO in a Tropical Coupled GCM.
NASA Astrophysics Data System (ADS)
Codron, Francis; Vintzileos, Augustin; Sadourny, Robert
2001-03-01
This study examines the response of the climate simulated by the Institut Pierre Simon Laplace tropical Pacific coupled general circulation model to two changes in parameterization: an improved coupling scheme at the coast, and the introduction of a saturation mixing ratio limiter in the water vapor advection scheme, which improves the rainfall distribution over and around orography. The main effect of these modifications is the suppression of spurious upwelling off the South American coast in Northern Hemisphere summer. Coupled feedbacks then extend this warming over the whole basin in an El Niño-like structure, with a maximum at the equator and in the eastern part of the basin. The mean precipitation pattern widens and moves equatorward as the trade winds weaken.This warmer mean state leads to a doubling of the standard deviation of interannual SST anomalies, and to a longer ENSO period. The structure of the ENSO cycle also shifts from westward propagation in the original simulation to a standing oscillation. The simulation of El Niño thus improves when compared to recent observed events. The study of ENSO spatial structure and lagged correlations shows that these changes of El Niño characteristics are caused by both the increase of amplitude and the modification of the spatial structure of the wind stress response to SST anomalies.These results show that both the mean state and variability of the tropical ocean can be very sensitive to biases or forcings, even geographically localized. They may also give some insight into the mechanisms responsible for the changes in ENSO characteristics due to decadal variability or climate change.
Surface Ozone Variability and Trends over the South African Highveld from 1990 to 2007
NASA Technical Reports Server (NTRS)
Balashov, Nikolay V.; Thompson, Anne M.; Piketh, Stuart J.; Langerman, Kristy E.
2014-01-01
Surface ozone is a secondary air pollutant formed from reactions between nitrogen oxides (NOx = NO + NO2) and volatile organic compounds in the presence of sunlight. In this work we examine effects of the climate pattern known as the El Niño-Southern Oscillation (ENSO) and NOx variability on surface ozone from 1990 to 2007 over the South African Highveld, a heavily populated region in South Africa with numerous industrial facilities. Over summer and autumn (December-May) on the Highveld, El Niño, as signified by positive sea surface temperature (SST) anomalies over the central Pacific Ocean, is typically associated with drier and warmer than normal conditions favoring ozone formation. Conversely, La Niña, or negative SST anomalies over the central Pacific Ocean, is typically associated with cloudier and above normal rainfall conditions, hindering ozone production. We use a generalized regression model to identify any linear dependence that the Highveld ozone, measured at five air quality monitoring stations, may have on ENSO and NOx. Our results indicate that four out of the five stations exhibit a statistically significant sensitivity to ENSO at some point over the December-May period where El Niño amplifies ozone formation and La Niña reduces ozone formation. Three out of the five stations reveal statistically significant sensitivity to NOx variability, primarily in winter and spring. Accounting for ENSO and NOx effects throughout the study period of 18 years, two stations exhibit statistically significant negative ozone trends in spring, one station displays a statistically significant positive trend in August, and two stations show no statistically significant change in surface ozone.
Understanding Southern Ocean SST Trends in Historical Simulations and Observations
NASA Astrophysics Data System (ADS)
Kostov, Yavor; Ferreira, David; Marshall, John; Armour, Kyle
2017-04-01
Historical simulations with CMIP5 global climate models do not reproduce the observed 1979-2014 Southern Ocean (SO) cooling, and most ensemble members predict gradual warming around Antarctica. In order to understand this discrepancy and the mechanisms behind the SO cooling, we analyze output from 19 CMIP5 models. For each ensemble member we estimate the characteristic responses of SO SST to step changes in greenhouse gas (GHG) forcing and in the seasonal indices of the Southern Annular Mode (SAM). Using these step-response functions and linear convolution theory, we reconstruct the original CMIP5 simulations of 1979-2014 SO SST trends. We recover the CMIP5 ensemble mean trend, capture the intermodel spread, and reproduce very well the behavior of individual models. We thus suggest that GHG forcing and the SAM are major drivers of the simulated 1979-2014 SO SST trends. In consistence with the seasonal signature of the Antarctic ozone hole, our results imply that the summer (DJF) and fall (MAM) SAM exert a particularly important effect on the SO SST. In some CMIP5 models the SO SST response to SAM partially counteracts the warming due to GHG forcing, while in other ensemble members the SAM-induced SO SST trends complement the warming effect of GHG forcing. The compensation between GHG and SAM-induced SO SST anomalies is model-dependent and is determined by multiple factors. Firstly, CMIP5 models have different characteristic SST step response functions to SAM. Kostov et al. (2016) relate these differences to biases in the models' climatological SO temperature gradients. Secondly, many CMIP5 historical simulations underestimate the observed positive trends in the DJF and MAM seasonal SAM indices. We show that this affects the models' ability to reproduce the observed SO cooling. Last but not least, CMIP5 models differ in their SO SST step response functions to GHG forcing. Understanding the diverse behavior of CMIP5 models helps shed light on the physical processes that drive SST trends in the real SO.
NASA Astrophysics Data System (ADS)
Giannakis, D.; Slawinska, J. M.
2016-12-01
The variability of the Indo-Pacific Ocean on interannual to multidecadal timescales is investigated in a millennial control run of CCSM4 and in observations using a recently introduced technique called Nonlinear Laplacian Spectral Analysis (NLSA). Through this technique, drawbacks associated with ad hoc pre-filtering of the input data are avoided, enabling recovery of low-frequency and intermittent modes not accessible previously via classical approaches. Here, a multiscale hierarchy of modes is identified for Indo-Pacific SST and numerous linkages between these patterns are revealed. On interannual timescales, a mode with spatiotemporal pattern corresponding to the fundamental component of ENSO emerges, along with modulations of the annual cycle by ENSO in agreement with ENSO combination mode theory. In spatiotemporal reconstructions, these patterns capture the seasonal southward migration of SST and zonal wind anomalies associated with termination of El Niño and La Niña events. Notably, this family of modes explains a significant portion of SST variance in Eastern Indian Ocean regions employed in the definition of Indian Ocean dipole (IOD) indices, suggesting that it should be useful for understanding the linkage of these indices with ENSO and the interaction of the Indian and Pacific Oceans. In model data, we find that the ENSO and ENSO combination modes are modulated on multidecadal timescales by a mode predominantly active in the western tropical Pacific - we call this mode West Pacific Multidecadal Oscillation (WPMO). Despite the relatively low variance explained by this mode, its dynamical role appears to be significant as it has clear sign-dependent modulating relationships with the interannual modes carrying most of the variance. In particular, cold WPMO events are associated with anomalous Central Pacific westerlies favoring stronger ENSO events, while warm WPMO events suppress ENSO activity. Moreover, the WPMO has significant climatic impacts as demonstrated here through its strong correlation with decadal precipitation over Australia. As an extension of this work, we discuss the deterministic and stochastic aspects of the variability of these modes and their potential predictability based on nonparametric kernel analog forecasting techniques.
ENSO Atmospheric Teleconnections and Their Response to Greenhouse Gas Forcing
NASA Astrophysics Data System (ADS)
Yeh, Sang-Wook; Cai, Wenju; Min, Seung-Ki; McPhaden, Michael J.; Dommenget, Dietmar; Dewitte, Boris; Collins, Matthew; Ashok, Karumuri; An, Soon-Il; Yim, Bo-Young; Kug, Jong-Seong
2018-03-01
El Niño and Southern Oscillation (ENSO) is the most prominent year-to-year climate fluctuation on Earth, alternating between anomalously warm (El Niño) and cold (La Niña) sea surface temperature (SST) conditions in the tropical Pacific. ENSO exerts its impacts on remote regions of the globe through atmospheric teleconnections, affecting extreme weather events worldwide. However, these teleconnections are inherently nonlinear and sensitive to ENSO SST anomaly patterns and amplitudes. In addition, teleconnections are modulated by variability in the oceanic and atmopsheric mean state outside the tropics and by land and sea ice extent. The character of ENSO as well as the ocean mean state have changed since the 1990s, which might be due to either natural variability or anthropogenic forcing, or their combined influences. This has resulted in changes in ENSO atmospheric teleconnections in terms of precipitation and temperature in various parts of the globe. In addition, changes in ENSO teleconnection patterns have affected their predictability and the statistics of extreme events. However, the short observational record does not allow us to clearly distinguish which changes are robust and which are not. Climate models suggest that ENSO teleconnections will change because the mean atmospheric circulation will change due to anthropogenic forcing in the 21st century, which is independent of whether ENSO properties change or not. However, future ENSO teleconnection changes do not currently show strong intermodel agreement from region to region, highlighting the importance of identifying factors that affect uncertainty in future model projections.
Global sea surface temperature (SST) anomalies can affect terrestrial precipitation via ocean-atmosphere interaction known as climate teleconnection. Non-stationary and non-linear characteristics of the ocean-atmosphere system make the identification of the teleconnection signals...
Analysis of the 1877-78 ENSO episode and comparison with 1982-83
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiladis, G.N.; Diaz, H.F.
A comparison of the 1877-78 and 1982-83 El Nino/Southern Oscillation (ENSO) events was made using monthly and seasonal values of sea surface temperature (SST) and station pressure in the tropics, sea level pressure (SLP) in North America and the North Atlantic, temperature in North America and precipitation in several key areas around the globe. SST anomalies in the eastern tropical Pacific, heavy rains in coastal Peru and extreme pressure anomalies across the Pacific and Indian Oceans during 1877-78 indicate an ENSO event of comparable magnitude to that during 1982-83. Both events were also associated with drought conditions in the Indonesianmore » region, India, South Africa, northeastern Brazil and Hawaii. Wintertime teleconnections in the midlatitudes of the Northern Hemisphere were similar in terms of SLP from the North Pacific to Europe, resulting in significantly higher than normal temperatures over most of the US and extreme rains in California.« less
Cayan, Daniel R.; Miller, Arthur J.; Barnett, Tim P.; Graham, Nicholas E.; Ritchie, Jack N.; Oberhuber, Josef M.
1995-01-01
The 19-year simulation of the Pacific basin by the monthly marine data-forced OPYC model displays good skill in reproducing SST variability. These results represent the first hindcast of which we are aware that uses both observed total heat-flux and wind-stress anomalies as forcing for such a long time interval. There is close agreement between the model SSTs and those observed in many regions of the Pacific, including the tropics and the northern extratropics. Besides performing credibly on the monthly time scale, the model captures the essence of low-frequency variability over the North Pacific, including aspects of a marked basin-wide change that occurred in 1976-1977. In the model's detailed heat budget, the anomalous air-sea heat fluxes, entrainment, and to a lesser extent horizontal advection, force thermal-anomaly changes in the mixed layer. Each of these components was apparently involved in the 1976-1977 decadal SST shift.
Perspectives on the causes of exceptionally low 2015 snowpack in the western United States
NASA Astrophysics Data System (ADS)
Mote, Philip W.; Rupp, David E.; Li, Sihan; Sharp, Darrin J.; Otto, Friederike; Uhe, Peter F.; Xiao, Mu; Lettenmaier, Dennis P.; Cullen, Heidi; Allen, Myles R.
2016-10-01
Augmenting previous papers about the exceptional 2011-2015 California drought, we offer new perspectives on the "snow drought" that extended into Oregon in 2014 and Washington in 2015. Over 80% of measurement sites west of 115°W experienced record low snowpack in 2015, and we estimate a return period of 400-1000 years for California's snowpack under the questionable assumption of stationarity. Hydrologic modeling supports the conclusion that 2015 was the most severe on record by a wide margin. Using a crowd-sourced superensemble of regional climate model simulations, we show that both human influence and sea surface temperature (SST) anomalies contributed strongly to the risk of snow drought in Oregon and Washington: the contribution of SST anomalies was about twice that of human influence. By contrast, SSTs and humans appear to have played a smaller role in creating California's snow drought. In all three states, the anthropogenic effect on temperature exacerbated the snow drought.
The 2014-2015 Warming Anomaly in the Southern California Current System: Glider Observations
NASA Astrophysics Data System (ADS)
Zaba, K. D.; Rudnick, D. L.
2016-02-01
During 2014-2015, basin-wide patterns of oceanic and atmospheric anomalies affected surface waters throughout the North Pacific Ocean. We present regional physical and biological effects of the warming, as observed by our autonomous underwater gliders in the southern California Current System (SCCS). Established in 2006, the California Glider Network provides sustained subsurface observations for monitoring the coastal effects of large-scale climate variability. Along repeat sections that extend to 350-500 km in offshore distance and 500 m in depth, Spray gliders have continuously occupied CalCOFI lines 66.7, 80, and 90 for nearly nine years. Following a sawtooth trajectory, the gliders complete each dive in approximately 3 hours and over 3 km. Measured variables include pressure, temperature, salinity, chlorophyll fluorescence, and velocity. For each of the three lines, a comprehensive climatology has been constructed from the multiyear timeseries. The ongoing surface-intensified warming anomaly, which began locally in early 2014 and persists through present, is unprecedented in the glider climatology. Reaching up to 5°C, positive temperature anomalies have been generally confined to the upper 50 m and persistent for over 20 months. The timing of the warming was in phase along each glider line but out of phase with equatorial SST anomalies, suggesting a decoupling of tropical and mid-latitude dynamics. Concurrent physical oceanographic anomalies included a depressed thermocline and high stratification. An induced biological response was apparent in the deepening of the subsurface chlorophyll fluorescence maximum. Ancillary atmospheric data from the NCEP North American Mesoscale (NAM) model indicate that a combination of surface forcing anomalies, namely high downward heat flux and weak wind stress magnitude, caused the unusual warm, downwelling conditions. With a strong El Niño event in the forecast for winter 2015-2016, our sustained glider network will continue to measure the evolution of the shallow warm pool in the SCCS and its potential interaction with ENSO-related anomalies.
NASA Astrophysics Data System (ADS)
Funk, C. C.; Shukla, S.; Hoerling, M. P.; Robertson, F. R.; Hoell, A.; Liebmann, B.
2013-12-01
During boreal spring, eastern portions of Kenya and Somalia have experienced more frequent droughts since 1999. Given the region's high levels of food insecurity, better predictions of these droughts could provide substantial humanitarian benefits. We show that dynamical-statistical seasonal climate forecasts, based on the latest generation of coupled atmosphere-ocean and uncoupled atmospheric models, effectively predict boreal spring rainfall in this area. Skill sources are assessed by comparing ensembles driven with full-ocean forcing with ensembles driven with ENSO-only sea surface temperatures (SSTs). Our analysis suggests that both ENSO and non-ENSO Indo-Pacific SST forcing have played an important role in the increase in drought frequencies. Over the past 30 years, La Niña drought teleconnections have strengthened, while non-ENSO Indo-Pacific convection patterns have also supported increased (decreased) Western Pacific (East African) rainfall. To further examine the relative contribution of ENSO, low frequency warming and the Pacific Decadal Oscillation, we present decompositions of ECHAM5, GFS, CAM4 and GMAO AMIP simulations. These decompositions suggest that rapid warming in the western Pacific and steeper western-to-central Pacific SST gradients have likely played an important role in the recent intensification of the Walker circulation, and the associated increase in East African aridity. A linear combination of time series describing the Pacific Decadal Oscillation and the strength of Indo-Pacific warming are shown to track East African rainfall reasonably well. The talk concludes with a few thoughts linking the potentially important interplay of attribution and prediction. At least for recent East African droughts, it appears that a characteristic Indo-Pacific SST and precipitation anomaly pattern can be linked statistically to support forecasts and attribution analyses. The combination of traditional AGCM attribution analyses with simple yet physically plausible statistical estimation procedures may help us better untangle some climate mysteries.
Numerical Simulation of Atmospheric Response to Pacific Tropical Instability Waves(.
NASA Astrophysics Data System (ADS)
Small, R. Justin; Xie, Shang-Ping; Wang, Yuqing
2003-11-01
Tropical instability waves (TIWs) are 1000-km-long waves that appear along the sea surface temperature (SST) front of the equatorial cold tongue in the eastern Pacific. The study investigates the atmospheric planetary boundary layer (PBL) response to TIW-induced SST variations using a high-resolution regional climate model. An investigation is made of the importance of pressure gradients induced by changes in air temperature and moisture, and vertical mixing, which is parameterized in the model by a 1.5-level turbulence closure scheme. Significant turbulent flux anomalies of sensible and latent heat are caused by changes in the air sea temperature and moisture differences induced by the TIWs. Horizontal advection leads to the occurrence of the air temperature and moisture extrema downwind of the SST extrema. High and low hydrostatic surface pressures are then located downwind of the cold and warm SST patches, respectively. The maximum and minimum wind speeds occur in phase with SST, and a thermally direct circulation is created. The momentum budget indicates that pressure gradient, vertical mixing, and horizontal advection dominate. In the PBL the vertical mixing acts as a frictional drag on the pressure-gradient-driven winds. Over warm SST the mixed layer deepens relative to over cold SST. The model simulations of the phase and amplitude of wind velocity, wind convergence, and column-integrated water vapor perturbations due to TIWs are similar to those observed from satellite and in situ data.
The Asian-Australian Monsoon and El Niño-Southern Oscillation in the NCAR Climate System Model*.
NASA Astrophysics Data System (ADS)
Meehl, Gerald A.; Arblaster, Julie M.
1998-06-01
Features associated with the Asian-Australian monsoon system and El Niño-Southern Oscillation (ENSO) are described in the National Center for Atmospheric Research (NCAR) global coupled Climate System Model (CSM). Simulation characteristics are compared with a version of the atmospheric component of the CSM, the NCAR CCM3, run with time-evolving SSTs from 1950 to 1994, and with observations. The CSM is shown to represent most major features of the monsoon system in terms of mean climatology, interannual variability, and connections to the tropical Pacific. This includes a representation of the Southern Oscillation links between strong Asian-Australian monsoons and associated negative SST anomalies in the eastern equatorial Pacific. The equatorial SST gradient across the Pacific in the CSM is shown to be similar to the observed with somewhat cooler mean SSTs across the entire Pacific by about 1°-2°C. The seasonal cycle of SSTs in the eastern equatorial Pacific has the characteristic signature seen in the observations of relatively warmer SSTs propagating westward in the first half of the year followed by the reestablishment of the cold tongue with relatively colder SSTs propagating westward in the second half of the year. Like other global coupled models, the propagation is similar to the observed but with the establishment of the relatively warmer water in the first half of the year occurring about 1-2 months later than observed. The seasonal cycle of precipitation in the tropical eastern Pacific is also similar to other global coupled models in that there is a tendency for a stronger-than-observed double ITCZ year round, particularly in northern spring, but with a well-reproduced annual maximum of ITCZ strength north of the equator in the second half of the year. Time series of area-averaged SSTs for the NINO3 region in the eastern equatorial Pacific show that the CSM is producing about 60% of the amplitude of the observed variability in that region, consistent with most other global coupled models. Global correlations between NINO3 time series, global surface temperatures, and sea level pressure (SLP) show that the CSM qualitatively reproduces the major spatial patterns associated with the Southern Oscillation (lower SLP in the central and eastern tropical Pacific when NINO3 SSTs are relatively warmer and higher SLP over the far western Pacific and Indian Oceans, with colder water in the northwest and southwest Pacific). Indices of Asian-Australian monsoon strength are negatively correlated with NINO3 SSTs as in the observations. Spectra of time series of Indian monsoon, Australian monsoon, and NINO3 SST indices from the CSM show amplitude peaks in the Southern Oscillation and tropospheric biennial oscillation frequencies (3-6 yr and about 2.3 yr, respectively) as observed. Lag correlations between the NINO3 SST index and upper-ocean heat content along the equator show eastward propagation of heat content anomalies with a phase speed of about 0.3 m s1, compared to observed values of roughly 0.2 m s1. Composites of El Niño (La Niña) events in the CSM show similar seasonal evolution to composites of observed events with warming (cooling) of greater than several tenths of a degree beginning early in northern spring of year 0 and diminishing around northern spring of year +1, but with a secondary resurgence in the CSM events later in northern spring of year +1. The CSM also shows the largest amplitude ENSO SST and low-level wind anomalies in the western tropical Pacific, with enhanced interannual variability of SSTs extending northeastward and southeastward toward the subtropics, compared to largest interannual SST variability in the central and eastern tropical Pacific in the observations.
Shen, Lu; Mickley, Loretta J
2017-03-07
We develop a statistical model to predict June-July-August (JJA) daily maximum 8-h average (MDA8) ozone concentrations in the eastern United States based on large-scale climate patterns during the previous spring. We find that anomalously high JJA ozone in the East is correlated with these springtime patterns: warm tropical Atlantic and cold northeast Pacific sea surface temperatures (SSTs), as well as positive sea level pressure (SLP) anomalies over Hawaii and negative SLP anomalies over the Atlantic and North America. We then develop a linear regression model to predict JJA MDA8 ozone from 1980 to 2013, using the identified SST and SLP patterns from the previous spring. The model explains ∼45% of the variability in JJA MDA8 ozone concentrations and ∼30% variability in the number of JJA ozone episodes (>70 ppbv) when averaged over the eastern United States. This seasonal predictability results from large-scale ocean-atmosphere interactions. Warm tropical Atlantic SSTs can trigger diabatic heating in the atmosphere and influence the extratropical climate through stationary wave propagation, leading to greater subsidence, less precipitation, and higher temperatures in the East, which increases surface ozone concentrations there. Cooler SSTs in the northeast Pacific are also associated with more summertime heatwaves and high ozone in the East. On average, models participating in the Atmospheric Model Intercomparison Project fail to capture the influence of this ocean-atmosphere interaction on temperatures in the eastern United States, implying that such models would have difficulty simulating the interannual variability of surface ozone in this region.
Mickley, Loretta J.
2017-01-01
We develop a statistical model to predict June–July–August (JJA) daily maximum 8-h average (MDA8) ozone concentrations in the eastern United States based on large-scale climate patterns during the previous spring. We find that anomalously high JJA ozone in the East is correlated with these springtime patterns: warm tropical Atlantic and cold northeast Pacific sea surface temperatures (SSTs), as well as positive sea level pressure (SLP) anomalies over Hawaii and negative SLP anomalies over the Atlantic and North America. We then develop a linear regression model to predict JJA MDA8 ozone from 1980 to 2013, using the identified SST and SLP patterns from the previous spring. The model explains ∼45% of the variability in JJA MDA8 ozone concentrations and ∼30% variability in the number of JJA ozone episodes (>70 ppbv) when averaged over the eastern United States. This seasonal predictability results from large-scale ocean–atmosphere interactions. Warm tropical Atlantic SSTs can trigger diabatic heating in the atmosphere and influence the extratropical climate through stationary wave propagation, leading to greater subsidence, less precipitation, and higher temperatures in the East, which increases surface ozone concentrations there. Cooler SSTs in the northeast Pacific are also associated with more summertime heatwaves and high ozone in the East. On average, models participating in the Atmospheric Model Intercomparison Project fail to capture the influence of this ocean–atmosphere interaction on temperatures in the eastern United States, implying that such models would have difficulty simulating the interannual variability of surface ozone in this region. PMID:28223483
NASA Astrophysics Data System (ADS)
Colleoni, Florence; Florindo, Fabio; McKay, Robert; Golledge, Nicholas; Sangiorgi, Francesca; Montoli, Enea; Masina, Simona; Cherchi, Annalisa; De Santis, Laura
2017-04-01
Sea Surface Temperatures (SST) reconstructions have shown that the Pliocene global zonal and meridional temperature gradients were different from today, implying changes of atmospheric and oceanic circulations, and thus of the main teleconnections. The impact of the main atmospheric teleconnections on the surface mass balance (SMB) of the Antarctic ice sheet (AIS) in the past has been seldom investigated. The ANDRILL marine record have shown that at the end of the Pliocene, the ice sheet expanded in the Ross Sea concomitantly with the expansion of the sea ice cover. This would have enhanced the formation of bottom waters that in turn, would have fostered upwelling along the West African coast and along the coast of Peru. The impact of Antarctica on the tropical climate dynamics has been shown by previous studies. To close the loop, this work investigates the impact of the tropical and high-latitude SST cooling on the main atmospheric teleconnections and then on the Antarctic SMB through the Plio/Pleistocene transition. Idealized Atmospheric General Circulation Model simulations are performed, in which high-latitude and tropical SST cooling are prescribed starting from the Pliocene SST. The atmospheric conditions obtained are then used to force an ice sheet model and a stand-alone energy balance model to investigate the impact on the SMB of the two main atmospheric teleconnections active in the Southern Hemisphere, namely the Southern Annular Mode (SAM) and the Pacific-South-American oscillation (PSA. In agreement with ANDRILL marine records, results show that the Easterlies strengthen along the Antarctic coasts during the Plio/Pleistocene transition. This, however, occurs only after cooling the tropical SSTs in the AGCM simulations. More importantly, the cooling of the tropical SST, through the strengthening of the PSA, has the largest influence on the spatial distribution of the climatic anomalies over Antarctica. This explains most of the SMB patterns simulated by the ice sheet model. In particular, the PSA fosters positive SMB over the Victoria Land, the Wilson Basin, the Aurora Basin and Prydz Bay that were partly deglaciated during the warm Pliocene. While the amplitude of the ice thickness changes due to the SAM and the PSA remains of the same order of today, i.e, few tens of meters, the main impact occurs in strategic areas of the AIS dynamics.
Global Precipitation during the 1997-98 El Nino and Initiation of the 1998-99 La Nina
NASA Technical Reports Server (NTRS)
Curtis, Scott; Adler, Robert; Huffman, George; Nelkin, Eric; Bolvin, David
1999-01-01
The 1997-99 ENSO (El nino Southern Oscillation) cycle was very powerful, but also well observed. The best satellite rainfall estimates combined with gauge observations allow for a global analysis of precipitation anomalies accompanying the 1997-98 El Nino and initiation of the 1998-99 La Nina. For the period April 1997 to March 1998 the central to eastern Pacific, southeastern and western U.S., Argentina, eastern Africa, South China, eastern Russia, and North Atlantic were all more than two standard deviations wetter than normal. During the same year the Maritime Continent, eastern Indian Ocean, subtropical North Pacific, northeastern South America, and much of the mid- latitude southern oceans were more than two standard deviations drier than normal. An analysis of the evolution of the El Nino and accompanying precipitation anomalies revealed that a dry Maritime Continent led the formation of the El Nino SST (Sea Surface Temperature), while in the central Pacific, precipitation anomalies lagged the El Nino SST by a season. A rapid transition from El Nino to La Nina occurred in May 1998, but as early as October-November 1997 precipitation indices captured precursor changes in Pacific rainfall anomalies. Differences were found between observed and modeled [NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis] precipitation anomalies for 1997 and 98. In particular, the model had a bias towards positive precipitation anomalies and the magnitudes of the anomalies in the equatorial Pacific were small compared to the observations. Also, the evolution of the precipitation field, including the drying of the Maritime Continent and eastward progression of rainfall in the equatorial Pacific, was less pronounced for the model compared to the observations. One degree daily estimates of rainfall show clearly the MaddenJulian Oscillation and related westerly wind burst events over the Maritime Continent, which are key indicators for the onset of El Nino.
SST Patterns, Atmospheric Variability, and Inferred Sensitivities in the CMIP5 Model Archive
NASA Astrophysics Data System (ADS)
Marvel, K.; Pincus, R.; Schmidt, G. A.
2017-12-01
An emerging consensus suggests that global mean feedbacks to increasing temperature are not constant in time. If feedbacks become more positive in the future, the equilibrium climate sensitivity (ECS) inferred from recent observed global energy budget constraints is likely to be biased low. Time-varying feedbacks are largely tied to evolving sea-surface temperature patterns. In particular, recent anomalously cool conditions in the tropical Pacific may have triggered feedbacks that are not reproduced in equilibrium simulations where the tropical Pacific and Southern Ocean have had time to warm. Here, we use AMIP and CMIP5 historical simulations to explore the ECS that may be inferred over the recent historical period. We find that in all but one CMIP5 model, the feedbacks triggered by observed SST patterns are significantly less positive than those arising from historical simulations in which SST patterns are allowed to evolve unconstrained. However, there are substantial variations in feedbacks even when the SST pattern is held fixed, suggesting that atmospheric and land variability contribute to uncertainty in the estimates of ECS obtained from recent observations of the global energy budget.
On the dynamic forcing of short-term climate fluctuations by feedback mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiter, E.R.
1979-09-01
The energies involved in the general circulation of the atmosphere, especially the zonal available potential energy, show considerable interannual variability, suggesting the presence of various internal feedback mechanisms in the ocean-atmosphere system. Sea-surface temperature (SST) variations appear to have some effect on the hydrological cycle. The possible existence of feedback mechanisms between ocean and atmosphere seem to be evident in some of the data from the North Pacific and North Atlantic. One of these proposed mechanisms involves the variation in the convergence between the North and South Pacific trade-wind systems and is strongly reflected in rainfall variability within the drymore » region of the equatorial Pacific. Similar variations appear in low-latitude SST anomalies. The convergence between the two trade-wind systems in the Atlantic region also undergoes marked interannual variations. This quasi-biennial oscillation (QBO) in trade-wind convergence over the Atlantic appears to be tied to the global QBO of equatorial stratospheric winds and to regional rainfall regimes in the dry region of northeastern Brazil. A variability pattern of SST's with a QBO has been detected off the coast of Senegal, in the Gulf of Guinea and even in the Gulf Stream as it leaves the North American continental shelf. Possible physical connections between some of these QBO's are pointed out by a hypothetical feedback model. It is also suggested that interaction of a QBO with the annual cycle may lead to beating frequencies resembling climatic trends of a duration of several years.« less
Study of the global and regional climatic impacts of ENSO magnitude using SPEEDY AGCM
NASA Astrophysics Data System (ADS)
Dogar, Muhammad Mubashar; Kucharski, Fred; Azharuddin, Syed
2017-03-01
ENSO is considered as a strong atmospheric teleconnection that has pronounced global and regional circulation effects. It modifies global monsoon system, especially, Asian and African monsoons. Previous studies suggest that both the frequency and magnitude of ENSO events have increased over the last few decades resulting in a need to study climatic impacts of ENSO magnitude both at global and regional scales. Hence, to better understand the impact of ENSO amplitude over the tropical and extratropical regions focussing on the Asian and African domains, ENSO sensitivity experiments are conducted using ICTPAGCM (`SPEEDY'). It is anticipated that the tropical Pacific SST forcing will be enough to produce ENSO-induced teleconnection patterns; therefore, the model is forced using NINO3.4 regressed SST anomalies over the tropical Pacific only. SPEEDY reproduces the impact of ENSO over the Pacific, North and South America and African regions very well. However, it underestimates ENSO teleconnection patterns and associated changes over South Asia, particularly in the Indian region, which suggests that the tropical Pacific SST forcing is not sufficient to represent ENSO-induced teleconnection patterns over South Asia. Therefore, SST forcing over the tropical Indian Ocean together with air-sea coupling is also required for better representation of ENSO-induced changes in these regions. Moreover, results obtained by this pacemaker experiment show that ENSO impacts are relatively stronger over the Inter-Tropical Convergence Zone (ITCZ) compared to extratropics and high latitude regions. The positive phase of ENSO causes weakening in rainfall activity over African tropical rain belt, parts of South and Southeast Asia, whereas, the La Niña phase produces more rain over these regions during the summer season. Model results further reveal that ENSO magnitude has a stronger impact over African Sahel and South Asia, especially over the Indian region because of its significant impact over the tropical Atlantic and the Indian Ocean through Walker circulation. ENSO-induced negative (positive) NAO-like response and associated changes over Southern Europe and North Africa get significantly strong following increased intensity of El Niño (La Niña) in the northern (southern) hemisphere in the boreal winter (summer) season. We further find that ENSO magnitude significantly impacts Hadley and Walker circulations. The positive phase of ENSO (El Niño) overall strengthens Hadley cell and a reverse is true for the La Niña phase. ENSO-induced strengthening and weakening of Hadley cell induces significant impact over South Asian and African ITCZ convective regions through modification of ITCZ/monsoon circulation system.
Thermodynamic ocean-atmosphere Coupling and the Predictability of Nordeste rainfall
NASA Astrophysics Data System (ADS)
Chang, P.; Saravanan, R.; Giannini, A.
2003-04-01
The interannual variability of rainfall in the northeastern region of Brazil, or Nordeste, is known to be very strongly correlated with sea surface temperature (SST) variability, of Atlantic and Pacific origin. For this reason the potential predictability of Nordeste rainfall is high. The current generation of state-of-the-art atmospheric models can replicate the observed rainfall variability with high skill when forced with the observed record of SST variability. The correlation between observed and modeled indices of Nordeste rainfall, in the AMIP-style integrations with two such models (NSIPP and CCM3) analyzed here, is of the order of 0.8, i.e. the models explain about 2/3 of the observed variability. Assuming that thermodynamic, ocean-atmosphere heat exchange plays the dominant role in tropical Atlantic SST variability on the seasonal to interannual time scale, we analyze its role in Nordeste rainfall predictability using an atmospheric general circulation model coupled to a slab ocean model. Predictability experiments initialized with observed December SST show that thermodynamic coupling plays a significant role in enhancing the persistence of SST anomalies, both in the tropical Pacific and in the tropical Atlantic. We show that thermodynamic coupling is sufficient to provide fairly accurate forecasts of tropical Atlantic SST in the boreal spring that are significantly better than the persistence forecasts. The consequences for the prediction of Nordeste rainfall are analyzed.
The role of SST variability in the simulation of the MJO
NASA Astrophysics Data System (ADS)
Stan, Cristiana
2017-12-01
The sensitivity of the Madden-Julian Oscillation to high-frequency variability (period 1-5 days) of sea surface temperature (SST) is investigated using numerical experiments with the super-parameterized Community Climate System Model. The findings of this study emphasize the importance of air-sea interactions in the simulation of the MJO, and stress the necessity of an accurate representation of ocean variability on short time scales. Eliminating 1-5-day variability of surface boundary forcing reduces the intraseasonal variability (ISV) of the tropics during the boreal winter. The ISV spectrum becomes close to the red noise background spectrum. The variability of atmospheric circulation shifts to longer time scales. In the absence of high-frequency variability of SST the MJO power gets confined to wavenumbers 1-2 and the magnitude of westward power associated with Rossby waves increases. The MJO convective activity propagating eastward from the Indian Ocean does not cross the Maritime Continent, and convection in the western Pacific Ocean is locally generated. In the Indian Ocean convection tends to follow the meridional propagation of SST anomalies. The response of the MJO to 1-5-day variability in the SST is through the charging and discharging mechanisms contributing to the atmospheric column moist static energy before and after peak MJO convection. Horizontal advection and surface fluxes show the largest sensitivity to SST perturbations.
The Oceanic Contribution to Atlantic Multi-Decadal Variability
NASA Astrophysics Data System (ADS)
Wills, R. C.; Armour, K.; Battisti, D. S.; Hartmann, D. L.
2017-12-01
Atlantic multi-decadal variability (AMV) is typically associated with variability in ocean heat transport (OHT) by the Atlantic Meridional Overturning Circulation (AMOC). However, recent work has cast doubt on this connection by showing that slab-ocean climate models, in which OHT cannot vary, exhibit similar variability. Here, we apply low-frequency component analysis to isolate the variability of Atlantic sea-surface temperatures (SSTs) that occurs on decadal and longer time scales. In observations and in pre-industrial control simulations of comprehensive climate models, we find that AMV is confined to the extratropics, with the strongest temperature anomalies in the North Atlantic subpolar gyre. We show that warm subpolar temperatures are associated with a strengthened AMOC, increased poleward OHT, and local heat fluxes from the ocean into the atmosphere. In contrast, the traditional index of AMV based on the basin-averaged SST anomaly shows warm temperatures preceded by heat fluxes from the atmosphere into the ocean, consistent with the atmosphere driving this variability, and shows a weak relationship with AMOC. The autocorrelation time of the basin-averaged SST index is 1 year compared to an autocorrelation time of 5 years for the variability of subpolar temperatures. This shows that multi-decadal variability of Atlantic SSTs is sustained by OHT variability associated with AMOC, while atmosphere-driven SST variability, such as exists in slab-ocean models, contributes primarily on interannual time scales.
On the Causes and Dynamics of the Early Twentieth Century North American Pluvial
NASA Technical Reports Server (NTRS)
Cook, Benjamin I.; Seager, Richard; Miller, Ron L.
2011-01-01
The early twentieth century North American pluvial (1905-1917) was one of the most extreme wet periods of the last five hundred years and directly led to overly generous water allotments in the water-limited American West. Here we examine the causes and dynamics of the pluvial event using a combination of observation-based data sets and general circulation model (GCM) experiments. The character of the moisture surpluses during the pluvial differed by region, alternately driven by increased precipitation (the Southwest), low evaporation from cool temperatures (the Central Plains), or a combination of the two (the Pacific Northwest). Cool temperature anomalies covered much of the west and persisted through most months, part of a globally extensive period of cooler land and sea surface temperatures (SST). Circulation during boreal winter favored increased moisture import and precipitation in the southwest, while other regions and seasons were characterized by near normal or reduced precipitation. Anomalies in the mean circulation, precipitation, and SST fields are partially consistent with the relatively weak El Nino forcing during the pluvial, and also reflect the impact of positive departures in the Arctic Oscillation that occurred in ten of the thirteen pluvial winters. Differences between the reanalysis dataset, an independent statistical drought model, and GCM simulations highlight some of the remaining uncertainties in understanding the full extent of SST forcing of North American hydroclimatic variability.
Late Holocene sea level variability and Atlantic Meridional Overturning Circulation
Cronin, Thomas M.; Farmer, Jesse R.; Marzen, R. E.; Thomas, E.; Varekamp, J.C.
2014-01-01
Pre-twentieth century sea level (SL) variability remains poorly understood due to limits of tide gauge records, low temporal resolution of tidal marsh records, and regional anomalies caused by dynamic ocean processes, notably multidecadal changes in Atlantic Meridional Overturning Circulation (AMOC). We examined SL and AMOC variability along the eastern United States over the last 2000 years, using a SL curve constructed from proxy sea surface temperature (SST) records from Chesapeake Bay, and twentieth century SL-sea surface temperature (SST) relations derived from tide gauges and instrumental SST. The SL curve shows multidecadal-scale variability (20–30 years) during the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA), as well as the twentieth century. During these SL oscillations, short-term rates ranged from 2 to 4 mm yr−1, roughly similar to those of the last few decades. These oscillations likely represent internal modes of climate variability related to AMOC variability and originating at high latitudes, although the exact mechanisms remain unclear. Results imply that dynamic ocean changes, in addition to thermosteric, glacio-eustatic, or glacio-isostatic processes are an inherent part of SL variability in coastal regions, even during millennial-scale climate oscillations such as the MCA and LIA and should be factored into efforts that use tide gauges and tidal marsh sediments to understand global sea level rise.
NASA Astrophysics Data System (ADS)
Covarrubias, S.; Potts, D.; Siciliano, D.; Andrews, A.; Franks, R.
2013-12-01
Coral reefs near their latitudinal and ecological limits may be affected disproportionately by global climate changes, especially by changing sea surface temperatures (SST's). One such reef is Kure Atoll, the northernmost reef in the Hawaiian chain. Kure Atoll experiences dramatic temperature and seasonal differences throughout the year. Tracking these fluctuations is important for understanding recent physical forces affecting coral growth in such marginal reefs, and for predicting likely responses to future climate and oceanic changes. We used Sr/Ca ratios of a 50cm Porites evermanni coral core collected in Kure (September 2002) as a SST proxy for reconstructing a temperature timescale spanning the length of the core (~62 years). After cutting a 5 mm thick slab through the center growth axis and X-raying it to identify annual density banding, we extracted 4 equally-spaced samples from each annual increment to quantify, seasonal, inter-annual, and decadal SST patterns. We measured Sr and Ca concentrations by Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). We then converted Sr/Ca ratios (mmol/mol) to SST using published equations, and calibrated the more recent SST estimates against satellite-based SST imagery and instrumental records from Midway Atoll (ca. 90 km to SE). We coupled the ICP-OES data with Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) scans along the core to provide higher temporal resolution for interpreting intra-seasonal and inter-seasonal trends. Higher resolution of temperature dating can help us interpret strong inter-seasonal changes not readily seen with low resolution measurements, giving us the ability to track temperature anomalies at interannual and decadal timescales, such as El Niño/Southern Oscillation or La Niña/North Pacific Decadal Oscillation. Further, the SST signature from the Sr/Ca analyses are being used in conjunction with bomb radiocarbon signals in order to establish a complete timeline of when carbon isotope spikes appear in this region from large scale atomic testing. Changes in 14C along the length of our core have important implications for understanding regional oceanic circulation, and for the life history age validation of marine organisms, including long-lived fishes whose calcareous otoliths retain a 14C signal. These results have direct application for improved management of commercially important reef and bottom fishes of Hawaii. By tracing the bomb 14C signal in the otolith (ear bone) of regional fishes, important population parameters can be validated (e.g. age of maturity and longevity). At present, the bomb 14C record is incomplete for the Hawaiian Archipelago, but the work presented will fill the void.
The Dependence of Cloud-SST Feedback on Circulation Regime and Timescale
NASA Astrophysics Data System (ADS)
Middlemas, E.; Clement, A. C.; Medeiros, B.
2017-12-01
Studies suggest cloud radiative feedback amplifies internal variability of Pacific sea surface temperature (SST) on interannual-and-longer timescales, though only a few modeling studies have tested the quantitative importance of this feedback (Bellomo et al. 2014b, Brown et al. 2016, Radel et al. 2016 Burgman et al. 2017). We prescribe clouds from a previous control run in the radiation module in Community Atmospheric Model (CAM5-slab), a method called "cloud-locking". By comparing this run to a control run, in which cloud radiative forcing can feedback on the climate system, we isolate the effect of cloud radiative forcing on SST variability. Cloud-locking prevents clouds from radiatively interacting with atmospheric circulation, water vapor, and SST, while maintaining a similar mean state to the control. On all timescales, cloud radiative forcing's influence on SST variance is modulated by the circulation regime. Cloud radiative forcing amplifies SST variance in subsiding regimes and dampens SST variance in convecting regimes. In this particular model, a tug of war between latent heat flux and cloud radiative forcing determines the variance of SST, and the winner depends on the timescale. On decadal-and-longer timescales, cloud radiative forcing plays a relatively larger role than on interannual-and-shorter timescales, while latent heat flux plays a smaller role. On longer timescales, the absence of cloud radiative feedback changes SST variance in a zonally asymmetric pattern in the Pacific Ocean that resembles an IPO-like pattern. We also present an analysis of cloud feedback's role on Pacific SST variability among preindustrial control CMIP5 models to test the model robustness of our results. Our results suggest that circulation plays a crucial role in cloud-SST feedbacks across the globe and cloud radiative feedbacks cannot be ignored when studying SST variability on decadal-and-longer timescales.
Weather-forced variations of Central and East Pacific ENSO events
NASA Astrophysics Data System (ADS)
Alexander, M. A.; Newman, M.; Shin, S.
2010-12-01
It has been suggested that a possible outcome of climate change is an increase in the occurrence of “Modoki” or central Pacific El Nino events relative to canonical eastern Pacific El Nino events, and that this change may already be occurring. Such a determination, however, is complicated by possible natural variations of the two types of events. How large a change in the relative occurrence can be expected from purely internal variability? To explore this question, a “patterns-based” red noise null hypothesis is constructed from 40 years of observed seasonally-averaged SST, 20 deg C thermocline depth, and surface zonal wind stress anomalies. Patterns-based (or multivariate) red noise differs from “local” (or univariate) red noise since it allows for non-local advective processes; for example, weather noise driving surface wind stress in one location to produce an ocean response in a different location. It is shown that natural random variations of the central Pacific to east Pacific El Nino occurrence ratio are large enough that they could account for all past observed differences as well as all differences found in the SRESA1B runs of all AR4 climate models. Additionally, the correlation between Nino3 and Nino4 SST indices over 30-yr periods can range between 0.7 and 0.9 simply due to such variations in noise, with apparent multidecadal “trends” during which the value increases or decreases. Further analysis shows the different spatial patterns of “noise” (i.e., random weather forcing) that can lead to the development of central vs. eastern Pacific ENSO events or various combinations thereof.
Interannual Variability of OLR as Observed by AIRS and CERES
NASA Technical Reports Server (NTRS)
Susskind, Joel; Molnar, Gyula; Iredell, Lena; Loeb, Norman G.
2012-01-01
This paper compares spatial anomaly time series of OLR (Outgoing Longwave Radiation) and OLR(sub CLR) (Clear Sky OLR) as determined using observations from CERES Terra and AIRS over the time period September 2002 through June 2011. Both AIRS and CERES show a significant decrease in global mean and tropical mean OLR over this time period. We find excellent agreement of the anomaly time-series of the two OLR data sets in almost every detail, down to 1 deg X 1 deg spatial grid point level. The extremely close agreement of OLR anomaly time series derived from observations by two different instruments implies that both sets of results must be highly stable. This agreement also validates to some extent the anomaly time series of the AIRS derived products used in the computation of the AIRS OLR product. The paper also examines the correlations of anomaly time series of AIRS and CERES OLR, on different spatial scales, as well as those of other AIRS derived products, with that of the NOAA Sea Surface Temperature (SST) product averaged over the NOAA Nino-4 spatial region. We refer to these SST anomalies as the El Nino Index. Large spatially coherent positive and negative correlations of OLR anomaly time series with that of the El Nino Index are found in different spatial regions. Anomalies of global mean, and especially tropical mean, OLR are highly positively correlated with the El Nino Index. These correlations explain that the recent global and tropical mean decreases in OLR over the period September 2002 through June 2011, as observed by both AIRS and CERES, are primarily the result of a transition from an El Nino condition at the beginning of the data record to La Nina conditions toward the end of the data period. We show that the close correlation of global mean, and especially tropical mean, OLR anomalies with the El Nino Index can be well accounted for by temporal changes of OLR within two spatial regions which lie outside the NOAA Nino-4 region, in which anomalies of cloud cover and mid-tropospheric water vapor are both highly negatively correlated with the El Nino Index. Agreement of the AIRS and CERES OLR(sub CLR) anomaly time series is less good, which may be a result of the large sampling differences in the ensemble of cases included in each OLR(sub CLR) data set.
Corals record long-term Leeuwin current variability including Ningaloo Niño/Niña since 1795
Zinke, J.; Rountrey, A.; Feng, M.; Xie, S.-P.; Dissard, D.; Rankenburg, K.; Lough, J.M.; McCulloch, M.T.
2014-01-01
Variability of the Leeuwin current (LC) off Western Australia is a footprint of interannual and decadal climate variations in the tropical Indo-Pacific. La Niña events often result in a strengthened LC, high coastal sea levels and unusually warm sea surface temperatures (SSTs), termed Ningaloo Niño. The rarity of such extreme events and the response of the southeastern Indian Ocean to regional and remote climate forcing are poorly understood owing to the lack of long-term records. Here we use well-replicated coral SST records from within the path of the LC, together with a reconstruction of the El Niño-Southern Oscillation to hindcast historical SST and LC strength from 1795 to 2010. We show that interannual and decadal variations in SST and LC strength characterized the past 215 years and that the most extreme sea level and SST anomalies occurred post 1980. These recent events were unprecedented in severity and are likely aided by accelerated global ocean warming and sea-level rise. PMID:24686736
Donner, Simon D
2011-07-01
Over the past 30 years, warm thermal disturbances have become commonplace on coral reefs worldwide. These periods of anomalous sea surface temperature (SST) can lead to coral bleaching, a breakdown of the symbiosis between the host coral and symbiotic dinoflagellates which reside in coral tissue. The onset of bleaching is typically predicted to occur when the SST exceeds a local climatological maximum by 1 degrees C for a month or more. However, recent evidence suggests that the threshold at which bleaching occurs may depend on thermal history. This study uses global SST data sets (HadISST and NOAA AVHRR) and mass coral bleaching reports (from Reefbase) to examine the effect of historical SST variability on the accuracy of bleaching prediction. Two variability-based bleaching prediction methods are developed from global analysis of seasonal and interannual SST variability. The first method employs a local bleaching threshold derived from the historical variability in maximum annual SST to account for spatial variability in past thermal disturbance frequency. The second method uses a different formula to estimate the local climatological maximum to account for the low seasonality of SST in the tropics. The new prediction methods are tested against the common globally fixed threshold method using the observed bleaching reports. The results find that estimating the bleaching threshold from local historical SST variability delivers the highest predictive power, but also a higher rate of Type I errors. The second method has the lowest predictive power globally, though regional analysis suggests that it may be applicable in equatorial regions. The historical data analysis suggests that the bleaching threshold may have appeared to be constant globally because the magnitude of interannual variability in maximum SST is similar for many of the world's coral reef ecosystems. For example, the results show that a SST anomaly of 1 degrees C is equivalent to 1.73-2.94 standard deviations of the maximum monthly SST for two-thirds of the world's coral reefs. Coral reefs in the few regions that experience anomalously high interannual SST variability like the equatorial Pacific could prove critical to understanding how coral communities acclimate or adapt to frequent and/or severe thermal disturbances.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Vecchi, Gabriel A.; Murakami, Hiroyuki; Villarini, Gabriele; Delworth, Thomas L.; Yang, Xiaosong; Jia, Liwei
2018-01-01
Over the 1997-2014 period, the mean frequency of western North Pacific (WNP) tropical cyclones (TCs) was markedly lower ( 18%) than the period 1980-1996. Here we show that these changes were driven by an intensification of the vertical wind shear in the southeastern/eastern WNP tied to the changes in the Walker circulation, which arose primarily in response to the enhanced sea surface temperature (SST) warming in the North Atlantic, while the SST anomalies associated with the negative phase of the Pacific Decadal Oscillation in the tropical Pacific and the anthropogenic forcing play only secondary roles. These results are based on observations and experiments using the Geophysical Fluid Dynamics Laboratory Forecast-oriented Low-ocean Resolution Coupled Climate Model coupled climate model. The present study suggests a crucial role of the North Atlantic SST in causing decadal changes to WNP TC frequency.
Ryan, H.F.; Noble, M.
2002-01-01
Long-term monthly sea level and sea surface temperature (SST) anomalies from central California show that during winter months, positive anomalies are associated with El Nin??o events and the negative ones with La Nin??a events. There is no significant impact on monthly mean anomalies associated with Pacific decadal oscillations, although there is a tendency for more extreme events and greater variance during positive decadal oscillations. The very strong 1997-1998 El Nin??o was analyzed with respect to the long-term historic record to assess the forcing mechanisms for sea level and SST. Beginning in the spring of 1997, we observed several long-period (> 30days) fluctuations in daily sea level with amplitudes of over 10 cm at San Francisco, California. Fluctuations of poleward long-period alongshore wind stress anomalies (AWSA) are coherent with the sea level anomalies. However, the wind stress cannot entirely account for the observed sea level signals. The sea level fluctuations are also correlated with sea level fluctuations observed further south at Los Angeles and Tumaco, Columbia, which showed a poleward phase propagation of the sea level signal. We suggest that the sea level fluctuations were, to a greater degree, forced by the passage of remotely generated and coastally trapped waves that were generated along the equator and propagated to the north along the west coast of North America. However, both local and remote AWSA can significantly modulate the sea level signals. The arrival of coastally trapped waves began in the spring of 1997, which is earlier than previous strong El Nin??o events such as the 1982-1983 event. Published by Elsevier Science Ltd.
Diagnosing MJO Destabilization and Propagation with the Moisture and MSE Budgets
NASA Astrophysics Data System (ADS)
Maloney, Eric; Wolding, Brandon
2015-04-01
Novel diagnostics obtained as an extension of empirical orthogonal function analysis are used as a composting basis to gain insight into MJO dynamics through examination of reanalysis moisture and moist static energy budgets. The net effect of vertical moisture advection and cloud processes was found to be a modest positive feedback to column moisture anomalies during both enhanced and suppressed phases of the MJO. This positive feedback is regionally strengthened by anomalous surface fluxes of latent heat. The modulation of horizontal synoptic scale eddy mixing acts as a negative feedback to column moisture anomalies, while anomalous winds acting against the mean state moisture gradient aid in eastward propagation. These processes act in a systematic fashion across the Indian Ocean and oceanic regions of the Maritime Continent. The ability to approximately close the MSE budget serves an important role in constraining the moisture budget, whose residual is several times larger than the total and horizontal advective moisture tendencies. Comparison with TRMM precipitation anomalies suggests that the moisture budget residual results from an underestimation by ERAi of variations in both total precipitation and vertical moisture advection associated with the MJO. The results of this study support the concept of the MJO as a moisture-mode. This analysis is extended to examine the impact of boundary layer convergence driven by MJO SST anomalies on the vertically-integrated moisture budget. Results from a coupled version of the SP-CAM suggest that SST-driven moisture convergence anomalies are of a sufficient amplitude to be important for MJO propagation and destabilization, and may help explain why coupled models produce better simulations of the MJO than uncoupled models.
Late Holocene Sea Surface Temperature Trends in the Eastern Tropical Pacific
NASA Astrophysics Data System (ADS)
Rustic, G. T.; Koutavas, A.; Marchitto, T. M., Jr.
2015-12-01
The Eastern Tropical Pacific (ETP) is a highly dynamic ocean region capable of exerting influencing on global climate as illustrated by the El Niño-Southern Oscillation (ENSO). The sea surface temperature (SST) history of this region in past millennia is poorly constrained due to the lack of in situ records with appropriate resolution. Here we present a ~2700 year sub-centennially resolved SST reconstruction from Mg/Ca ratios of the planktonic foraminifer Globigerinoides ruber from Galápagos sediments. The ETP SST record exhibits a long-term cooling trend of over 0.2°C/ky that is similar to Northern Hemisphere multi-proxy temperature trends suggesting a common origin, likely due to insolation forcing. The ETP remains in-phase with Northern Hemisphere climate records through the warm Roman Climate Optimum (~0-400CE), cooler Dark Ages Cold Period (~450-850CE), and through the peak warming of the Medieval Climate Anomaly (900-1150 CE) when SST is within error of modern. Following peak MCA, the ETP cooled rapidly and then rebounded at ~1500 CE during the coldest portion of the Little Ice Age. Overall the data suggest an out-of-phase relationship during much of the last millennium, which we attribute to dynamical adjustments consistent with the "dynamical ocean thermostat" mechanism. Further evidence for these dynamical adjustments comes from reconstructions of the east-west zonal SST gradient using existing Mg/Ca SST reconstructions from the western Pacific warm pool. The last millennium has been the most dynamic period over the past 2700 years, with significant (~1 °C) SST variability in the ETP and modulation of the zonal gradient. A combination of dynamical and thermodynamic mechanisms are invoked to explain the region's complex SST history.
Seasonal Prediction with the GEOS GCM
NASA Technical Reports Server (NTRS)
Suarez, Max; Schubert, S.; Chang, Y.
1999-01-01
A number of ensembles of seasonal forecasts have recently been completed as part of NASA's Seasonal to Interannual Prediction Project (NSIPP). The focus is on the extratropical response of the atmosphere to observed SST anomalies during boreal winter. Each prediction consists of nine forecasts starting from slightly different initial conditions. Forecasts are done for every winter from 1981 to 1995 using Version 2 of the GEOS GCM. Comparisons with six long-term integrations (1978-1995) using the same model are used to separate the contributions of initial and boundary conditions to forecast skill. The forecasts also allow us to isolate the SSt forced response (the signal) from the atmosphere's natural variability (the noise).
Tropical pacing of Antarctic sea ice increase
NASA Astrophysics Data System (ADS)
Schneider, D. P.
2015-12-01
One reason why coupled climate model simulations generally do not reproduce the observed increase in Antarctic sea ice extent may be that their internally generated climate variability does not sync with the observed phases of phenomena like the Pacific Decadal Oscillation (PDO) and ENSO. For example, it is unlikely for a free-running coupled model simulation to capture the shift of the PDO from its positive to negative phase during 1998, and the subsequent ~15 year duration of the negative PDO phase. In previously presented work based on atmospheric models forced by observed tropical SSTs and stratospheric ozone, we demonstrated that tropical variability is key to explaining the wind trends over the Southern Ocean during the past ~35 years, particularly in the Ross, Amundsen and Bellingshausen Seas, the regions of the largest trends in sea ice extent and ice season duration. Here, we extend this idea to coupled model simulations with the Community Earth System Model (CESM) in which the evolution of SST anomalies in the central and eastern tropical Pacific is constrained to match the observations. This ensemble of 10 "tropical pacemaker" simulations shows a more realistic evolution of Antarctic sea ice anomalies than does its unconstrained counterpart, the CESM Large Ensemble (both sets of runs include stratospheric ozone depletion and other time-dependent radiative forcings). In particular, the pacemaker runs show that increased sea ice in the eastern Ross Sea is associated with a deeper Amundsen Sea Low (ASL) and stronger westerlies over the south Pacific. These circulation patterns in turn are linked with the negative phase of the PDO, characterized by negative SST anomalies in the central and eastern Pacific. The timing of tropical decadal variability with respect to ozone depletion further suggests a strong role for tropical variability in the recent acceleration of the Antarctic sea ice trend, as ozone depletion stabilized by late 1990s, prior to the most recent major shift in tropical climate. In the pacemaker runs, the positive sea ice trend in the eastern Ross Sea is stronger during the most recent period (~2000-2014) than it is during period of rapid ozone depletion (~1980-1996).
NASA Astrophysics Data System (ADS)
Lehmann, E.
2016-12-01
On interannual time scales the atmosphere affects significantly fluctuations in the geodetic quantity of length-of-day (LOD). This effect is directly proportional to perturbations in the relative angular momentum of the atmosphere (AAM) computed from zonal winds. During El Niño events tropospheric westerlies increase due to elevated sea surface temperatures (SST) in the Pacific inducing peak anomalies in relative AAM and correspondingly, in LOD. However, El Niño events affect LOD variations differently strong and the causes of this varying effect are yet not clear. Here, we investigate the LOD-El Niño relationship in the 20th and 21st century (1982-2100) whether the quantity of LOD can be used as a geophysical tool to assess variability and change in a future climate. In our analysis we applied a windowed discrete Fourier transform on all de-seasonalized data to remove climatic signals outside of the El Niño frequency band. LOD (data: IERS) was related in space and time to relative AAM and SSTs (data: ERA-40 reanalysis, IPCC ECHAM05-OM1 20C, A1B). Results from mapped Pearson correlation coefficients and time frequency behavior analysis identified a teleconnection pattern that we term the EN≥65%-index. The EN≥65%-index prescribes a significant change in variation in length-of-day of +65% and more related to (1) SST anomalies of >2° in the Pacific Niño region (160°E-80°W, 5°S-5°N), (2) corresponding stratospheric warming anomalies of the quasi-biennial oscillation (QBO), and (3) strong westerly winds in the lower equatorial stratosphere. In our analysis we show that the coupled atmosphere-ocean conditions prescribed in the EN≥65%-index apply to the extreme El Niño events of 19982/83 and 1997/98, and to 75% of all El Niño events in the last third of the 21st century. At that period of time the EN≥65%-index describes a projected altered base state of the equatorial Pacific that shows almost continuous El Niño conditions under climate warming.
NASA Astrophysics Data System (ADS)
Liu, Zhenchen; Lu, Guihua; He, Hai; Wu, Zhiyong; He, Jian
2018-01-01
Reliable drought prediction is fundamental for water resource managers to develop and implement drought mitigation measures. Considering that drought development is closely related to the spatial-temporal evolution of large-scale circulation patterns, we developed a conceptual prediction model of seasonal drought processes based on atmospheric and oceanic standardized anomalies (SAs). Empirical orthogonal function (EOF) analysis is first applied to drought-related SAs at 200 and 500 hPa geopotential height (HGT) and sea surface temperature (SST). Subsequently, SA-based predictors are built based on the spatial pattern of the first EOF modes. This drought prediction model is essentially the synchronous statistical relationship between 90-day-accumulated atmospheric-oceanic SA-based predictors and SPI3 (3-month standardized precipitation index), calibrated using a simple stepwise regression method. Predictor computation is based on forecast atmospheric-oceanic products retrieved from the NCEP Climate Forecast System Version 2 (CFSv2), indicating the lead time of the model depends on that of CFSv2. The model can make seamless drought predictions for operational use after a year-to-year calibration. Model application to four recent severe regional drought processes in China indicates its good performance in predicting seasonal drought development, despite its weakness in predicting drought severity. Overall, the model can be a worthy reference for seasonal water resource management in China.
The potential of air-sea interactions for improving summertime North Atlantic seasonal forecasts
NASA Astrophysics Data System (ADS)
Ossó, Albert; Shaffrey, Len; Dong, Buwen; Sutton, Rowan
2017-04-01
Delivering skillful summertime seasonal forecasts of the Northern Hemisphere (NH) mid-latitude climate is a key unresolved issue for the climate science community. Current climate models have some skill in forecasting the wintertime NH mid-latitude circulation but very limited skill during summertime. To explore the potential predictability of the summertime climate we analyze lagged correlation patterns between the SSTs and summer atmospheric circulation in the North Atlantic both in observations and climate model outputs. We find observational evidence in the ERA-Interim (1979-2015) reanalysis and the HadSLP2 and HadISST data of an SST pattern forced by late winter atmospheric circulation persisting from winter to early summer that excites an anticyclonic summer SLP anomaly west of the British Isles. We show that the atmospheric response is driven through the action of turbulent heat fluxes and changes on the background baroclinicity. The lagged atmospheric response to the SSTs could be exploited for summertime predictability over Western Europe. We find a statistical significant correlation of over 0.6 between April-May North Atlantic SSTs and the June-August North Atlantic SLP anomaly. The previous findings are further explored using 120 years of coupled ocean-atmosphere HadGEM3-GC2 model simulation. The climate model qualitatively reproduces the observed spatial relationship between the late winter and spring SSTs and summertime circulation, although the correlations are substantially weaker than observed.
NASA Astrophysics Data System (ADS)
Cook, B.; Williams, P.; Mankin, J. S.; Seager, R.; Smerdon, J. E.; Singh, D.
2017-12-01
Coastal droughts simultaneously affecting California, Oregon, and Washington are rare, but have extensive and severe impacts (e.g., wildfire, agriculture). To better understand these events, we use historical observations to investigate: (1) drought variability along the Pacific Coast of the Contiguous United States and (2) years when extreme drought affects the entire coast. The leading pattern of cold-season (October-March) precipitation variability along the Pacific Coast favors spatially coherent moisture anomalies, accounts for >40% of the underlying variance, and is forced primarily by internal atmospheric dynamics. This contrasts with a much weaker dipole mode ( 20% of precipitation variability) characterized by anti-phased moisture anomalies across 40N and strong correlations with tropical Pacific sea surface temperatures (SSTs). Sixteen coastal-wide summer droughts occurred from 1895-2016 (clustering in the 1920s-1930s and post-2000), events most strongly linked with the leading precipitation mode and internal atmospheric variability. The frequency of landfalling atmospheric rivers south of 40N is sharply reduced during coastal droughts, but not north of this boundary where their frequency is more strongly influenced by the dipole. The lack of a consistent pattern of SST forcing during coastal droughts suggests little potential for skillful predictions of these events at the seasonal scale. However, their tendency to cluster in time and the impact of warming during recent droughts may help inform decadal and longer-term drought risks.
Interannual and intra-annual variability of rainfall in Haiti (1905-2005)
NASA Astrophysics Data System (ADS)
Moron, Vincent; Frelat, Romain; Jean-Jeune, Pierre Karly; Gaucherel, Cédric
2015-08-01
The interannual variability of annual and monthly rainfall in Haiti is examined from a database of 78 rain gauges in 1905-2005. The spatial coherence of annual rainfall is rather low, which is partly due to Haiti's rugged landscape, complex shoreline, and surrounding warm waters (mean sea surface temperatures >27 °C from May to December). The interannual variation of monthly rainfall is mostly shaped by the intensity of the low-level winds across the Caribbean Sea, leading to a drier- (or wetter-) than-average rainy season associated with easterly (or westerly) anomalies, increasing (or decreasing) winds. The varying speed of low-level easterlies across the Caribbean basin may reflect at least four different processes during the year: (1) an anomalous trough/ridge over the western edge of the Azores high from December to February, peaking in January; (2) a zonal pressure gradient between Eastern Pacific and the tropical Northern Atlantic from May/June to September, with a peak in August (i.e. lower-than-average rainfall in Haiti is associated with positive sea level pressure anomalies over the tropical North Atlantic and negative sea level pressure anomalies over the Eastern Pacific); (3) a local ocean-atmosphere coupling between the speed of the Caribbean Low Level Jet and the meridional sea surface temperature (SST) gradient across the Caribbean basin (i.e. colder-than-average SST in the southern Caribbean sea is associated with increased easterlies and below-average rainfall in Haiti). This coupling is triggered when the warmest Caribbean waters move northward toward the Gulf of Mexico; (4) in October/November, a drier- (or wetter-) than-usual rainy season is related to an almost closed anticyclonic (or cyclonic) anomaly located ENE of Haiti on the SW edge of the Azores high. This suggests a main control of the interannual variations of rainfall by intensity, track and/or recurrence of tropical depressions traveling northeast of Haiti. During this period, the teleconnection of Haitian rainfall with synchronous Atlantic and Eastern Pacific SST is at a minimum.
NASA Astrophysics Data System (ADS)
Ummenhofer, Caroline C.; Kulüke, Marco; Tierney, Jessica E.
2018-04-01
East African hydroclimate exhibits considerable variability across a range of timescales, with implications for its population that depends on the region's two rainy seasons. Recent work demonstrated that current state-of-the-art climate models consistently underestimate the long rains in boreal spring over the Horn of Africa while overestimating the short rains in autumn. This inability to represent the seasonal cycle makes it problematic for climate models to project changes in East African precipitation. Here we consider whether this bias also has implications for understanding interannual and decadal variability in the East African long and short rains. Using a consistent framework with an unforced multi-century global coupled climate model simulation, the role of Indo-Pacific variability for East African rainfall is compared across timescales and related to observations. The dominant driver of East African rainfall anomalies critically depends on the timescale under consideration: Interannual variations in East African hydroclimate coincide with significant sea surface temperature (SST) anomalies across the Indo-Pacific, including those associated with the El Niño-Southern Oscillation (ENSO) in the eastern Pacific, and are linked to changes in the Walker circulation, regional winds and vertical velocities over East Africa. Prolonged drought/pluvial periods in contrast exhibit anomalous SST predominantly in the Indian Ocean and Indo-Pacific warm pool (IPWP) region, while eastern Pacific anomalies are insignificant. We assessed dominant frequencies in Indo-Pacific SST and found the eastern equatorial Pacific dominated by higher-frequency variability in the ENSO band, while the tropical Indian Ocean and IPWP exhibit lower-frequency variability beyond 10 years. This is consistent with the different contribution to regional precipitation anomalies for the eastern Pacific versus Indian Ocean and IPWP on interannual and decadal timescales, respectively. In the model, the dominant low-frequency signal seen in the observations in the Indo-Pacific is not well-represented as it instead exhibits overly strong variability on subdecadal timescales. The overly strong ENSO-teleconnection likely contributes to the overestimated role of the short rains in the seasonal cycle in the model compared to observations.
A multimodel approach to interannual and seasonal prediction of Danube discharge anomalies
NASA Astrophysics Data System (ADS)
Rimbu, Norel; Ionita, Monica; Patrut, Simona; Dima, Mihai
2010-05-01
Interannual and seasonal predictability of Danube river discharge is investigated using three model types: 1) time series models 2) linear regression models of discharge with large-scale climate mode indices and 3) models based on stable teleconnections. All models are calibrated using discharge and climatic data for the period 1901-1977 and validated for the period 1978-2008 . Various time series models, like autoregressive (AR), moving average (MA), autoregressive and moving average (ARMA) or singular spectrum analysis and autoregressive moving average (SSA+ARMA) models have been calibrated and their skills evaluated. The best results were obtained using SSA+ARMA models. SSA+ARMA models proved to have the highest forecast skill also for other European rivers (Gamiz-Fortis et al. 2008). Multiple linear regression models using large-scale climatic mode indices as predictors have a higher forecast skill than the time series models. The best predictors for Danube discharge are the North Atlantic Oscillation (NAO) and the East Atlantic/Western Russia patterns during winter and spring. Other patterns, like Polar/Eurasian or Tropical Northern Hemisphere (TNH) are good predictors for summer and autumn discharge. Based on stable teleconnection approach (Ionita et al. 2008) we construct prediction models through a combination of sea surface temperature (SST), temperature (T) and precipitation (PP) from the regions where discharge and SST, T and PP variations are stable correlated. Forecast skills of these models are higher than forecast skills of the time series and multiple regression models. The models calibrated and validated in our study can be used for operational prediction of interannual and seasonal Danube discharge anomalies. References Gamiz-Fortis, S., D. Pozo-Vazquez, R.M. Trigo, and Y. Castro-Diez, Quantifying the predictability of winter river flow in Iberia. Part I: intearannual predictability. J. Climate, 2484-2501, 2008. Gamiz-Fortis, S., D. Pozo-Vazquez, R.M. Trigo, and Y. Castro-Diez, Quantifying the predictability of winter river flow in Iberia. Part II: seasonal predictability. J. Climate, 2503-2518, 2008. Ionita, M., G. Lohmann, and N. Rimbu, Prediction of spring Elbe river discharge based on stable teleconnections with global temperature and precipitation. J. Climate. 6215-6226, 2008.
Large-amplitude internal waves benefit corals during thermal stress.
Wall, M; Putchim, L; Schmidt, G M; Jantzen, C; Khokiattiwong, S; Richter, C
2015-01-22
Tropical scleractinian corals are particularly vulnerable to global warming as elevated sea surface temperatures (SSTs) disrupt the delicate balance between the coral host and their algal endosymbionts, leading to symbiont expulsion, mass bleaching and mortality. While satellite sensing of SST has proved a reliable predictor of coral bleaching at the regional scale, there are large deviations in bleaching severity and mortality on the local scale that are poorly understood. Here, we show that internal waves play a major role in explaining local coral bleaching and mortality patterns in the Andaman Sea. Despite a severe region-wide SST anomaly in May 2010, frequent upslope intrusions of cold sub-pycnocline waters due to breaking large-amplitude internal waves (LAIW) mitigated coral bleaching and mortality in shallow waters. In LAIW-sheltered waters, by contrast, bleaching-susceptible species suffered severe bleaching and total mortality. These findings suggest that LAIW benefit coral reefs during thermal stress and provide local refugia for bleaching-susceptible corals. LAIW are ubiquitous in tropical stratified waters and their swash zones may thus be important conservation areas for the maintenance of coral diversity in a warming climate. Taking LAIW into account can significantly improve coral bleaching predictions and provide a valuable tool for coral reef conservation and management. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Interannual to Decadal SST Variability in the Tropical Indian Ocean
NASA Astrophysics Data System (ADS)
Wang, G.; Newman, M.; Han, W.
2017-12-01
The Indian Ocean has received increasing attention in recent years for its large impacts on regional and global climate. However, due mainly to the close interdependence of the climate variation within the Tropical Pacific and the Indian Ocean, the internal sea surface temperature (SST) variability within the Indian Ocean has not been studied extensively on longer time scales. In this presentation we will show analysis of the interannual to decadal SST variability in the Tropical Indian Ocean in observations and Linear Inverse Model (LIM) results. We also compare the decoupled Indian Ocean SST variability from the Pacific against fully coupled one based on LIM integrations, to test the factors influence the features of the leading SST modes in the Indian Ocean. The result shows the Indian Ocean Basin (IOB) mode, which is strongly related to global averaged SST variability, passively responses to the Pacific variation. Without tropical Indo-Pacific coupling interaction, the intensity of IOB significantly decreases by 80%. The Indian Ocean Dipole (IOD) mode demonstrates its independence from the Pacific SST variability since the IOD does not change its long-term characteristics at all without inter-basin interactions. The overall SSTA variance decreases significantly in the Tropical Indian Ocean in the coupling restricted LIM runs, especially when the one-way impact from the Pacific to the Indian Ocean is turned off, suggesting that most of the variability in the Indian Ocean comes from the Pacific influence. On the other hand, the Indian Ocean could also transport anomalies to the Pacific, making the interaction a complete two-way process.
Adams, Jessica M.; Otero-Corchon, Veronica; Hammond, Geoffrey L.; Veldhuis, Johannes D.; Qi, Nathan
2015-01-01
Distinct male and female patterns of pituitary GH secretion produce sexually differentiated hepatic gene expression profiles, thereby influencing steroid and xenobiotic metabolism. We used a fully automated system to obtain serial nocturnal blood samples every 15 minutes from cannulated wild-type (WT) and somatostatin knockout (Sst-KO) mice to determine the role of SST, the principal inhibitor of GH release, in the generation of sexually dimorphic GH pulsatility. WT males had lower mean and median GH values, less random GH secretory bursts, and longer trough periods between GH pulses than WT females. Each of these parameters was feminized in male Sst-KO mice, whereas female Sst-KO mice had higher GH levels than all other groups, but GH pulsatility was unaffected. We next performed hepatic mRNA profiling with high-density microarrays. Male Sst-KO mice exhibited a globally feminized pattern of GH-dependent mRNA levels, but female Sst-KO mice were largely unaffected. Among the differentially expressed female-predominant genes was Serpina6, which encodes corticosteroid-binding globulin (CBG). Increased CBG was associated with elevated diurnal peak plasma corticosterone in unstressed WT females and both sexes of Sst-KO mice compared with WT males. Sst-KO mice also had exaggerated ACTH and corticosterone responses to acute restraint stress. However, consistent with their lack of phenotypic signs of excess glucocorticoids, cerebrospinal fluid concentrations of free corticosterone in Sst-KO mice were not elevated. In summary, SST is necessary for the prolonged interpulse troughs that define masculinized pituitary GH secretion. SST also contributes to sexual dimorphism of the hypothalamic-pituitary-adrenal axis via GH-dependent regulation of hepatic CBG production. PMID:25551181
How are warm and cool years in the California Current related to ENSO?
NASA Astrophysics Data System (ADS)
Fiedler, Paul C.; Mantua, Nathan J.
2017-07-01
The tropical El Niño-Southern Oscillation (ENSO) is a dominant mode of interannual variability that impacts climate throughout the Pacific. The California Current System (CCS) in the northeast Pacific warms and cools from year to year, with or without a corresponding tropical El Niño or La Niña event. We update the record of warm and cool events in the CCS for 1950-2016 and use composite sea level pressure (SLP) and surface wind anomalies to explore the atmospheric forcing mechanisms associated with tropical and CCS warm and cold events. CCS warm events are associated with negative SLP anomalies in the NE Pacific—a strong and southeastward displacement of the wintertime Aleutian Low, a weak North Pacific High, and a regional pattern of cyclonic wind anomalies that are poleward over the CCS. We use a first-order autoregressive model to show that regional North Pacific forcing is predominant in SST variations throughout most of the CCS, while remote tropical forcing is more important in the far southern portion of the CCS. In our analysis, cool events in the CCS tend to be more closely associated with tropical La Niña than are warm events in the CCS with tropical El Niño; the forcing of co-occurring cool events is analogous, but nearly opposite, to that of warm events.
Thermal refugia against coral bleaching throughout the northern Red Sea.
Osman, Eslam O; Smith, David J; Ziegler, Maren; Kürten, Benjamin; Conrad, Constanze; El-Haddad, Khaled M; Voolstra, Christian R; Suggett, David J
2018-02-01
Tropical reefs have been impacted by thermal anomalies caused by global warming that induced coral bleaching and mortality events globally. However, there have only been very few recordings of bleaching within the Red Sea despite covering a latitudinal range of 15° and consequently it has been considered a region that is less sensitive to thermal anomalies. We therefore examined historical patterns of sea surface temperature (SST) and associated anomalies (1982-2012) and compared warming trends with a unique compilation of corresponding coral bleaching records from throughout the region. These data indicated that the northern Red Sea has not experienced mass bleaching despite intensive Degree Heating Weeks (DHW) of >15°C-weeks. Severe bleaching was restricted to the central and southern Red Sea where DHWs have been more frequent, but far less intense (DHWs <4°C-weeks). A similar pattern was observed during the 2015-2016 El Niño event during which time corals in the northern Red Sea did not bleach despite high thermal stress (i.e. DHWs >8°C-weeks), and bleaching was restricted to the central and southern Red Sea despite the lower thermal stress (DHWs < 8°C-weeks). Heat stress assays carried out in the northern (Hurghada) and central (Thuwal) Red Sea on four key reef-building species confirmed different regional thermal susceptibility, and that central Red Sea corals are more sensitive to thermal anomalies as compared to those from the north. Together, our data demonstrate that corals in the northern Red Sea have a much higher heat tolerance than their prevailing temperature regime would suggest. In contrast, corals from the central Red Sea are close to their thermal limits, which closely match the maximum annual water temperatures. The northern Red Sea harbours reef-building corals that live well below their bleaching thresholds and thus we propose that the region represents a thermal refuge of global importance. © 2017 John Wiley & Sons Ltd.
Predictability of the 1997 and 1998 South Asian Summer Monsoons
NASA Technical Reports Server (NTRS)
Schubert, Siegfred D.; Wu, Man Li
2000-01-01
The predictability of the 1997 and 1998 south Asian summer monsoon winds is examined from an ensemble of 10 Atmospheric General Circulation Model (AGCM) simulations with prescribed sea surface temperatures (SSTs) and soil moisture, The simulations are started in September 1996 so that they have lost all memory of the atmospheric initial conditions for the periods of interest. The model simulations show that the 1998 monsoon is considerably more predictable than the 1997 monsoon. During May and June of 1998 the predictability of the low-level wind anomalies is largely associated with a local response to anomalously warm Indian Ocean SSTs. Predictability increases late in the season (July and August) as a result of the strengthening of the anomalous Walker circulation and the associated development of easterly low level wind anomalies that extend westward across India and the Arabian Sea. During these months the model is also the most skillful with the observations showing a similar late-season westward extension of the easterly CD wind anomalies. The model shows little predictability or skill in the low level winds over southeast Asia during, 1997. Predictable wind anomalies do occur over the western Indian Ocean and Indonesia, however, over the Indian Ocean they are a response to SST anomalies that were wind driven and they show no skill. The reduced predictability in the low level winds during 1997 appears to be the result of a weaker (compared with 1998) simulated anomalous Walker circulation, while the reduced skill is associated with pronounced intraseasonal activity that is not well captured by the model. Remarkably, the model does produce an ensemble mean Madden-Julian Oscillation (MJO) response that is approximately in phase with (though weaker than) the observed MJ0 anomalies. This is consistent with the idea that SST coupling may play an important role in the MJO.
NASA Astrophysics Data System (ADS)
Dash, Prasanjit; Ignatov, Alexander; Martin, Matthew; Donlon, Craig; Brasnett, Bruce; Reynolds, Richard W.; Banzon, Viva; Beggs, Helen; Cayula, Jean-Francois; Chao, Yi; Grumbine, Robert; Maturi, Eileen; Harris, Andy; Mittaz, Jonathan; Sapper, John; Chin, Toshio M.; Vazquez-Cuervo, Jorge; Armstrong, Edward M.; Gentemann, Chelle; Cummings, James; Piollé, Jean-François; Autret, Emmanuelle; Roberts-Jones, Jonah; Ishizaki, Shiro; Høyer, Jacob L.; Poulter, Dave
2012-11-01
There are a growing number of level 4 (L4; gap-free gridded) sea surface temperature (SST) products generated by blending SST data from various sources which are available for use in a wide variety of operational and scientific applications. In most cases, each product has been developed for a specific user community with specific requirements guiding the design of the product. Consequently differences between products are implicit. In addition, anomalous atmospheric conditions, satellite operations and production anomalies may occur which can introduce additional differences. This paper describes a new web-based system called the L4 SST Quality Monitor (L4-SQUAM) developed to monitor the quality of L4 SST products. L4-SQUAM intercompares thirteen L4 products with 1-day latency in an operational environment serving the needs of both L4 SST product users and producers. Relative differences between products are computed and visualized using maps, histograms, time series plots and Hovmöller diagrams, for all combinations of products. In addition, products are compared to quality controlled in situ SST data (available from the in situ SST Quality Monitor, iQUAM, companion system) in a consistent manner. A full history of products statistics is retained in L4-SQUAM for time series analysis. L4-SQUAM complements the two other Group for High Resolution SST (GHRSST) tools, the GHRSST Multi Product Ensemble (GMPE) and the High Resolution Diagnostic Data Set (HRDDS) systems, documented in part 1 of this paper and elsewhere, respectively. Our results reveal significant differences between SST products in coastal and open ocean areas. Differences of >2 °C are often observed at high latitudes partly due to different treatment of the sea-ice transition zone. Thus when an ice flag is available, the intercomparisons are performed in two ways: including and excluding ice-flagged grid points. Such differences are significant and call for a community effort to understand their root cause and ensure consistency between SST products. Future work focuses on including the remaining daily L4 SST products, accommodating for newer L4 SSTs which resolve the diurnal variability and evaluating retrospectively regenerated L4 SSTs to support satellite data reprocessing efforts aimed at generating improved SST Climate Data Records.
NASA Astrophysics Data System (ADS)
Arieli, Ruthie Nina; Almogi-Labin, Ahuva; Abramovich, Sigal; Herut, Barak
2010-05-01
Scientific and public awareness to global warming increased significantly lately. In the Mediterranean Sea the current rate of warming stands at 0.028 °C/year in accordance with the forecast of global warming of 0.2 °C per decade. The aim of this study is to examine the effects of locally elevated vs. natural SST on benthic foraminifera, which are known to be sensitive bioindicators of environmental change. The thermal patch originating from the "Orot Rabin" power plant off the coast of Israel was chosen as a sampling area for this research since it presents a unique small-scale analog for expected future rise in SST. Ten monthly sampling campaigns were performed during a period of one year in 4 stations located along a temperature gradient of approximately 10 °C, from the discharge site of the heated seawater to a few kilometers south. Benthic foraminifera were collected from a shoreface complex of macroalgae and sediments trapped within. The SST varied between winter, 25/18 °C and summer, 36/31 °C along the transect. During the summer, the addition of the temperature anomaly to the already extreme summer temperatures becomes a biologically threat. The natural seasonal variability, depicted best by station 4 located beyond the thermal patch, shows that foraminifera reach maximal abundance in winter and spring. A significant negative correlation was found between SST in all stations and benthic foraminiferal assemblage characteristics. The abundance, species richness and species diversity show negative correlation with the SST anomaly throughout most of the sampling period, though the species diversity was not as significant as the abundance. The total foraminiferal abundance was significantly lower at the thermally polluted stations, especially during the summer, but also throughout the entire year, indicating that the thermal pollution has a detrimental effect on benthic foraminifera, irrelevant to the natural cyclic changes in SST. The foraminiferal abundances decrease drastically as the SST rises, reaching minimal abundances when the SST rises above 30 °C, indicating that this temperature may be a critical threshold above which foraminiferal growth and reproduction are severely retarded. Species richness reached extremely low values at the thermally polluted stations during the summer, with a minimum of 3 species compared to a maximum of 24 in the natural, unaffected station 4. This indicates that some species have adapted to the elevated temperatures better than others. The foraminiferal assemblage, composed mostly of epiphytic species, contains a total of 42 species with six species dominating the assemblage. Out of the six dominant species Rosalina globularis, Tretomphalus bulloides and Textularia agglutinans show a clear preference to the winter months, while species belonging Lachlanella reach maximum abundances in spring and Pararotalia spinigera in summer. The miliolids, Lachlanella sp. 1 and sp. 2 seem to have high tolerance to the elevated SST and even survived the most extreme summer temperatures at the thermally polluted stations. In this research we show that even a rise, as small as 2 °C, in SST can have serious ramifications on the benthic community characteristics living in the near shore environment. If foraminifera are affected to such an extent it is not unlikely that other more developed marine creatures will be negatively affected as well, either directly by the rise in SST or via the decrease in organisms lower down the marine food chain, such as foraminifera.
Large-Scale Spatial Distribution Patterns of Gastropod Assemblages in Rocky Shores
Miloslavich, Patricia; Cruz-Motta, Juan José; Klein, Eduardo; Iken, Katrin; Weinberger, Vanessa; Konar, Brenda; Trott, Tom; Pohle, Gerhard; Bigatti, Gregorio; Benedetti-Cecchi, Lisandro; Shirayama, Yoshihisa; Mead, Angela; Palomo, Gabriela; Ortiz, Manuel; Gobin, Judith; Sardi, Adriana; Díaz, Juan Manuel; Knowlton, Ann; Wong, Melisa; Peralta, Ana C.
2013-01-01
Gastropod assemblages from nearshore rocky habitats were studied over large spatial scales to (1) describe broad-scale patterns in assemblage composition, including patterns by feeding modes, (2) identify latitudinal pattern of biodiversity, i.e., richness and abundance of gastropods and/or regional hotspots, and (3) identify potential environmental and anthropogenic drivers of these assemblages. Gastropods were sampled from 45 sites distributed within 12 Large Marine Ecosystem regions (LME) following the NaGISA (Natural Geography in Shore Areas) standard protocol (www.nagisa.coml.org). A total of 393 gastropod taxa from 87 families were collected. Eight of these families (9.2%) appeared in four or more different LMEs. Among these, the Littorinidae was the most widely distributed (8 LMEs) followed by the Trochidae and the Columbellidae (6 LMEs). In all regions, assemblages were dominated by few species, the most diverse and abundant of which were herbivores. No latitudinal gradients were evident in relation to species richness or densities among sampling sites. Highest diversity was found in the Mediterranean and in the Gulf of Alaska, while highest densities were found at different latitudes and represented by few species within one genus (e.g. Afrolittorina in the Agulhas Current, Littorina in the Scotian Shelf, and Lacuna in the Gulf of Alaska). No significant correlation was found between species composition and environmental variables (r≤0.355, p>0.05). Contributing variables to this low correlation included invasive species, inorganic pollution, SST anomalies, and chlorophyll-a anomalies. Despite data limitations in this study which restrict conclusions in a global context, this work represents the first effort to sample gastropod biodiversity on rocky shores using a standardized protocol across a wide scale. Our results will generate more work to build global databases allowing for large-scale diversity comparisons of rocky intertidal assemblages. PMID:23967204
Regional patterns of the change in annual-mean tropical rainfall under global warming
NASA Astrophysics Data System (ADS)
Huang, P.
2013-12-01
Projection of the change in tropical rainfall under global warming is a major challenge with great societal implications. The current study analyzes the 18 models from the Coupled Models Intercomparison Project, and investigates the regional pattern of annual-mean rainfall change under global warming. With surface warming, the climatological ascending pumps up increased surface moisture and leads rainfall increase over the tropical convergence zone (wet-get-wetter effect), while the pattern of sea surface temperature (SST) increase induces ascending flow and then increasing rainfall over the equatorial Pacific and the northern Indian Ocean where the local oceanic warming exceeds the tropical mean temperature increase (warmer-get-wetter effect). The background surface moisture and SST also can modify warmer-get-wetter effect: the former can influence the moisture change and contribute to the distribution of moist instability change, while the latter can suppress the role of instability change over the equatorial eastern Pacific due to the threshold effect of convection-SST relationship. The wet-get-wetter and modified warmer-get-wetter effects form a hook-like pattern of rainfall change over the tropical Pacific and an elliptic pattern over the northern Indian Ocean. The annual-mean rainfall pattern can be partly projected based on current rainfall climatology, while it also has great uncertainties due to the uncertain change in SST pattern.
DeLong, K.L.; Poore, R.Z.; Reich, C.D.; Flannery, J.A.; Maupin, Christopher R.; Quinn, T.M.
2010-01-01
Paleoclimatologists have reconstructed century-long records of sea surface temperature (SST) in the Pacific using the Sr/Ca of massive corals, whereas similar reconstructions in the Atlantic have not proceeded at the same pace. Past research in the Florida Keys has focused on Montastrea spp., an abundant and fast-growing massive coral, thus a good candidate for climate reconstructions. However, coral records from the Florida Keys are complicated by freshwater flux, which varies the Sr/Ca in seawater, thus confounding the Sr/Ca to SST signal. In this research, we compared the monthly Sr/Ca variations in three massive corals species (Montastraea faveolata, Diploria strigosa, and Siderastrea siderea) from the same reef in the nearly pristine Dry Tortugas National Park (24.70N, 82.80W) at the southwestern extent of the Florida Keys. This location is ideal for a calibration study as hourly water temperature records are available and the remote reef is far from mainland freshwater influence. These corals experienced the same environmental conditions (water depth, clarity, Sr/Ca of seawater, etc.) but differ in the mean annual growth rates (0.86 ±0.10 (1σ) cm/year M. faveolata; 0.67 ±0.04 (1σ) cm/year D. strigosa; 0.44 ±0.04 (1σ) cm/year S. siderea). The mean Sr/Ca values are not the same but decrease with mean annual growth rates (9.201 ±0.091 (1σ) mmol/mol M. faveolata; 9.177 ±0.081 (1σ) mmol/mol D. strigosa; 8.964 ±0.12 (1σ) mmol/mol S. siderea), thus supporting the “vital effect” or biological differences during calcification between coral species. The amplitude of the seasonal cycle in Sr/Ca varies with the slower growing S. sidereahaving the largest mean amplitude and D. strigosa the smallest (0.340 mmol/mol S. siderea; 0.284 mmol/mol M. faveolata; 0.238 mmol/mol D. strigosa). We confirmed our sampling methods by conducting several intracolony and intercolony coral Sr/Ca replication tests and found a high correlation in all tests (>0.95 S. siderea; >0.90 D. strigosa; >0.83 M. faveolata; p < 0.05). The weighted linear regression of monthly coral Sr/Ca to mean monthly SST revealed that S. sidereacaptured the seasonal and interannual variability in SST (r = -0.97, -0.61 monthly and monthly anomalies, respectively, p < 0.05). The other corals have reduced correlation with monthly anomalies and do not capture the seasonal variability with the same fidelity as S. siderea. All three corals were sampled along the thecal wall following the same procedures; however, each coral species has a different skeletal structure, density, and micro-scale growth patterns. We hypothesize the thecal wall of S. siderea calcifies at a continuous rate along the time-growth axis whereas the wall of D. strigosa and M. faveolata reflects a more complex signal. Of the three species, the slow growing S. siderea provides a robust reconstruction of mean monthly SST for the Dry Tortugas thus suitable for longer centennial-scale reconstructions.
2015-09-30
SST), sea surface height anomaly (SSH), chlorophyll a concentration (Chla), and primary productivity (PP). These data are available on similar...between the high and low area, and in areas with low abundance, chlorophyll a concentration was also a significant explanatory variable. For fin
The Role of Reversed Equatorial Zonal Transport in Terminating an ENSO Event
NASA Astrophysics Data System (ADS)
Chen, H. C.; Hu, Z. Z.; Huang, B.; Sui, C. H.
2016-02-01
In this study, we demonstrate that a sudden reversal of anomalous equatorial zonal current at the peaking ENSO phase triggers the rapid termination of an ENSO event. Throughout an ENSO cycle, the anomalous equatorial zonal current is strongly controlled by the concavity of the anomalous thermocline meridional structure near the equator. During the ENSO developing phase, the anomalous zonal current in the central and eastern Pacific generally enhances the ENSO growth through its zonal SST advection. In the mature phase of ENSO, however, the equatorial thermocline depth anomalies are reflected in the eastern Pacific and slowly propagate westward off the equator in both hemispheres. As a result, the concavity of the thermocline anomalies near the equator is reversed, i.e., the off-equatorial thermocline depth anomalies become higher than that on the equator for El Niño events and lower for La Niño events. This meridional change of thermocline structure reverses zonal transport rapidly in the central-to-eastern equatorial Pacific, which weakens the ENSO SST anomalies by reversed advection. More importantly, the reversed zonal mass transport weakens the existing zonal tilting of equatorial thermocline and suppresses the thermocline feedback. Both processes are concentrated in the eastern equatorial Pacific and can be effective on subseasonal time scales. These current reversal effects are built-in to the ENSO peak phase and independent of the zonal wind effect on thermocline slope. It functions as an oceanic control on ENSO evolution during both El Niño and La Niña events.
NASA Astrophysics Data System (ADS)
Meehl, Gerald A.; van Loon, Harry; Arblaster, Julie M.
2017-07-01
The semiannual oscillation (SAO) is a twice-yearly northward movement (in May-June-July (MJJ) and November-December-January (NDJ)) of the circumpolar trough of sea level pressure (SLP) in the Southern Hemisphere with effects throughout the troposphere. During MJJ the second harmonic of SLP, describing the SAO, has low values of SLP north of 50°S in the subtropical South Pacific, while the first harmonic, which is dominant over the Australian sector, increases to its peak. This once-a-year peak in negative SLP gradients (decreasing to the east) between Australia and the ocean to its east extends to the equatorial Pacific. Southern Oscillation warm events since 1950, with an intensification of this seasonal cycle, have larger-amplitude SST anomalies in the eastern equatorial Pacific in MJJ and during the following mature phase in NDJ. Weak amplification of the seasonal cycle in MJJ tends to be followed by larger-amplitude SST anomalies in the central equatorial Pacific during NDJ.
Response of the Antarctic Stratosphere to Two Types of El Nino Events
NASA Technical Reports Server (NTRS)
Hurwitz, M. M.; Newman, P. A.; Oman, L. D.; Molod, A. M.
2010-01-01
This study is the first to identify a robust El Nino/Southern Oscillation (ENSO) signal in the Antarctic stratosphere. El Nino events are classified as either conventional "cold tongue" events (positive SST anomalies in the Nino 3 region) or "warm pool" events (positive SST anomalies in the Nino 4 region). The ERA-40, NCEP and MERRA meteorological reanalyses are used to show that the Southern Hemisphere stratosphere responds differently to these two types of El Nino events. Consistent with previous studies, "cold tongue" events do not impact temperatures in the Antarctic stratosphere. During "warm pool" El Nino events, the poleward extension and increased strength of the South Pacific Convergence Zone (SPCZ) favor an enhancement of planetary wave activity during the SON season. On average, these conditions lead to higher polar stratospheric temperatures and a weakening of the Antarctic polar jet in November and December, as compared with neutral ENSO years. The phase of the quasi-biennial oscillation (QBO) modulates the stratospheric response to "warm pool" El Nino events: the strongest planetary wave driving events are coincident with the easterly phase of the QBO.
Global climate anomalies and potential infectious disease risks: 2014-2015.
Chretien, Jean-Paul; Anyamba, Assaf; Small, Jennifer; Britch, Seth; Sanchez, Jose L; Halbach, Alaina C; Tucker, Compton; Linthicum, Kenneth J
2015-01-26
The El Niño/Southern Oscillation (ENSO) is a global climate phenomenon that impacts human infectious disease risk worldwide through droughts, floods, and other climate extremes. Throughout summer and fall 2014 and winter 2015, El Niño Watch, issued by the US National Oceanic and Atmospheric Administration, assessed likely El Niño development during the Northern Hemisphere fall and winter, persisting into spring 2015. We identified geographic regions where environmental conditions may increase infectious disease transmission if the predicted El Niño occurs using El Niño indicators (Sea Surface Temperature [SST], Outgoing Longwave Radiation [OLR], and rainfall anomalies) and literature review of El Niño-infectious disease associations. SSTs in the equatorial Pacific and western Indian Oceans were anomalously elevated during August-October 2014, consistent with a developing weak El Niño event. Teleconnections with local climate is evident in global precipitation patterns, with positive OLR anomalies (drier than average conditions) across Indonesia and coastal southeast Asia, and negative anomalies across northern China, the western Indian Ocean, central Asia, north-central and northeast Africa, Mexico/Central America, the southwestern United States, and the northeastern and southwestern tropical Pacific. Persistence of these conditions could produce environmental settings conducive to increased transmission of cholera, dengue, malaria, Rift Valley fever, and other infectious diseases in regional hotspots as during previous El Niño events. The current development of weak El Niño conditions may have significant potential implications for global public health in winter 2014-spring 2015. Enhanced surveillance and other preparedness measures in predicted infectious disease hotspots could mitigate health impacts.
Mean state dependence of ENSO diversity resulting from an intermediate coupled model
NASA Astrophysics Data System (ADS)
Xie, Ruihuang; Jin, Fei-Fei; Mu, Mu
2016-04-01
ENSO diversity is referred to the event-to-event differences in the amplitude, longitudinal location of maximum sea surface temperature (SST) anomalies and evolutional mechanisms, as manifested in both observation data and climate model simulations. Previous studies argued that westerly wind burst (WWB) has strong influence on ENSO diversity. Here, we bring evidences, from a modified intermediate complexity Zebiak-Cane (ZC) coupled model, to illustrate that the ENSO diversity is also determined by the mean states. Stabilities of the linearized ZC model reveal that the mean state with weak (strong) wind stress and deep (shallow) thermocline prefers ENSO variation in the equitorial eastern (central) Pacific with a four-year (two-year) period. Weak wind stress and deep thermocline make the thermocline (TH) feedback the dominant contribution to the growth of ENSO SST anomalies, whereas the opposite mean state favors the zonal advective (ZA) feedback. Different leading dynamical SST-controller makes ENSO display its diversity. In a mean state that resembles the recent climate in the tropical Pacific, the four-year and two-year ENSO variations coexist with similar growth rate. Even without WWB forcing, the nonlinear integration results with adjusted parameters in this special mean state also present at least two types of El Niño, in which the maximum warming rates are contributed by either TH or ZA feedback. The consistency between linear and nonlinear model results indicates that the ENSO diversity is dependent on the mean states.
NASA Astrophysics Data System (ADS)
Mary, Yannick; Eynaud, Frédérique; Colin, Christophe; Rossignol, Linda; Brocheray, Sandra; Mojtahid, Meryem; Garcia, Jennifer; Peral, Marion; Howa, Hélène; Zaragosi, Sébastien; Cremer, Michel
2017-03-01
This paper documents the evolution over the last 10 kyr of one of the key parameters of climate: sea-surface temperatures (SSTs) in the North Atlantic. We focus on the southern Bay of Biscay, a highly sensitive oceanographic area regarding the dynamics of the North Atlantic subpolar and subtropical gyres (SPG and STG respectively). This site furthermore offers unique sedimentary environments characterized by exceptional accumulation rates, enabling the study of Holocene archives at (infra)centennial scales. Our results mainly derive from planktonic foraminiferal association analysis on two cores from the southern Landes Plateau. These associations are used as the basis of modern analogue technique transfer functions to track past hydrographical changes. SST reconstructions were thus obtained at an exceptional resolution and compared to a compilation of Holocene records from the northeastern North Atlantic. From this regional perspective are shown fundamental timing differences between the gyre dynamics, nuancing classical views of a simple meridional overturning cell. Our study highlights that western Europe underwent significant oscillations of (annual) SST during the last 10 kyr. During well-known intervals of mild boreal climate, warm shifts of more than 3 °C per century are accurately concomitant with positive sea-surface temperature anomalies and rise of micropalaeontological indicators of gyre dynamics in the northern North Atlantic, pointing to periods of greater intensity of the North Atlantic Current (SPG cell especially). Conversely, the SST signal records short-term cold anomalies which could be related to weaker SPG dynamics.
Impact of Lateral Mixing in the Ocean on El Nino in Fully Coupled Climate Models
NASA Astrophysics Data System (ADS)
Gnanadesikan, A.; Russell, A.; Pradal, M. A. S.; Abernathey, R. P.
2016-02-01
Given the large number of processes that can affect El Nino, it is difficult to understand why different climate models simulate El Nino differently. This paper focusses on the role of lateral mixing by mesoscale eddies. There is significant disagreement about the value of the mixing coefficient ARedi which parameterizes the lateral mixing of tracers. Coupled climate models usually prescribe small values of this coefficient, ranging between a few hundred and a few thousand m2/s. Observations, however, suggest values that are much larger. We present a sensitivity study with a suite of Earth System Models that examines the impact of varying ARedi on the amplitude of El Nino. We examine the effect of varying a spatially constant ARedi over a range of values similar to that seen in the IPCC AR5 models, as well as looking at two spatially varying distributions based on altimetric velocity estimates. While the expectation that higher values of ARedi should damp anomalies is borne out in the model, it is more than compensated by a weaker damping due to vertical mixing and a stronger response of atmospheric winds to SST anomalies. Under higher mixing, a weaker zonal SST gradient causes the center of convection over the Warm pool to shift eastward and to become more sensitive to changes in cold tongue SSTs . Changes in the SST gradient also explain interdecadal ENSO variability within individual model runs.
Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review
NASA Astrophysics Data System (ADS)
Li, Tim; Wang, Bin; Wu, Bo; Zhou, Tianjun; Chang, Chih-Pei; Zhang, Renhe
2017-12-01
The western North Pacific anomalous anticyclone (WNPAC) is an important atmospheric circulation system that conveys El Niño impact on East Asian climate. In this review paper, various theories on the formation and maintenance of the WNPAC, including warm pool atmosphere-ocean interaction, Indian Ocean capacitor, a combination mode that emphasizes nonlinear interaction between ENSO and annual cycle, moist enthalpy advection/Rossby wave modulation, and central Pacific SST forcing, are discussed. It is concluded that local atmosphere-ocean interaction and moist enthalpy advection/Rossby wave modulation mechanisms are essential for the initial development and maintenance of the WNPAC during El Niño mature winter and subsequent spring. The Indian Ocean capacitor mechanism does not contribute to the earlier development but helps maintain the WNPAC in El Niño decaying summer. The cold SST anomaly in the western North Pacific, although damped in the summer, also plays a role. An interbasin atmosphere-ocean interaction across the Indo-Pacific warm pool emerges as a new mechanism in summer. In addition, the central Pacific cold SST anomaly may induce the WNPAC during rapid El Niño decaying/La Niña developing or La Niña persisting summer. The near-annual periods predicted by the combination mode theory are hardly detected from observations and thus do not contribute to the formation of the WNPAC. The tropical Atlantic may have a capacitor effect similar to the tropical Indian Ocean.
NASA Astrophysics Data System (ADS)
Shin, So-Jung; An, Soon-Il
2018-02-01
Two leading but independent modes of Northern Pacific atmospheric circulation: the North Pacific Oscillation (NPO) and the Pacific Meridional Mode (PMM), are known external triggers of the El Niño-Southern Oscillation (ENSO) by the sequential migration of sea surface temperature (SST) anomalies into the tropics possibly by means of wind-evaporation-SST (WES) feedbacks. Because of the similar roles of NPO and PMM, most previous studies have explored them with no separation. Here, we investigate their independent and combined effects in triggering ENSO, and find that when the NPO and PMM occur simultaneously during spring, ENSO or ENSO-like SST anomalies are generated during the following winter; whereas when either the NPO or PMM occur alone, ENSO events rarely occur. Furthermore, the relationship between NPO and PMM shows noticeable interdecadal variability, which is related to decadal changes in the mean upper-level jet stream over the North Pacific. Changes in the upper-level jet stream modify the location of the center of the Aleutian Low, which plays a role in bridging the NPO and PMM processes, especially when it migrates to the southwest. The period when NPO and PMM are well correlated coincides somewhat with the active ENSO period, and vice versa, indicating that a more efficient trigger due to combined NPO-PMM processes results in a higher variation of ENSO. Finally, analysis of the coupled model control simulations strongly supports our observational analysis results.
Sea surface temperature 1871-2099 in 38 cells in the Caribbean region.
Sheppard, Charles; Rioja-Nieto, Rodolfo
2005-09-01
Sea surface temperature (SST) data with monthly resolution are provided for 38 cells in the Caribbean Sea and Bahamas region, plus Bermuda. These series are derived from the HadISST1 data set for historical time (1871-1999) and from the HadCM3 coupled climate model for predicted SST (1950-2099). Statistical scaling of the forecast data sets are performed to produce confluent SST series according to a now established method. These SST series are available for download. High water temperatures in 1998 killed enormous amounts of corals in tropical seas, though in the Caribbean region the effects at that time appeared less marked than in the Indo-Pacific. However, SSTs are rising in accordance with world-wide trends and it has been predicted that temperature will become increasingly important in this region in the near future. Patterns of SST rise within the Caribbean region are shown, and the importance of sub-regional patterns within this biologically highly interconnected area are noted.
State and Parameter Estimation for a Coupled Ocean--Atmosphere Model
NASA Astrophysics Data System (ADS)
Ghil, M.; Kondrashov, D.; Sun, C.
2006-12-01
The El-Nino/Southern-Oscillation (ENSO) dominates interannual climate variability and plays, therefore, a key role in seasonal-to-interannual prediction. Much is known by now about the main physical mechanisms that give rise to and modulate ENSO, but the values of several parameters that enter these mechanisms are an important unknown. We apply Extended Kalman Filtering (EKF) for both model state and parameter estimation in an intermediate, nonlinear, coupled ocean--atmosphere model of ENSO. The coupled model consists of an upper-ocean, reduced-gravity model of the Tropical Pacific and a steady-state atmospheric response to the sea surface temperature (SST). The model errors are assumed to be mainly in the atmospheric wind stress, and assimilated data are equatorial Pacific SSTs. Model behavior is very sensitive to two key parameters: (i) μ, the ocean-atmosphere coupling coefficient between SST and wind stress anomalies; and (ii) δs, the surface-layer coefficient. Previous work has shown that δs determines the period of the model's self-sustained oscillation, while μ measures the degree of nonlinearity. Depending on the values of these parameters, the spatio-temporal pattern of model solutions is either that of a delayed oscillator or of a westward propagating mode. Estimation of these parameters is tested first on synthetic data and allows us to recover the delayed-oscillator mode starting from model parameter values that correspond to the westward-propagating case. Assimilation of SST data from the NCEP-NCAR Reanalysis-2 shows that the parameters can vary on fairly short time scales and switch between values that approximate the two distinct modes of ENSO behavior. Rapid adjustments of these parameters occur, in particular, during strong ENSO events. Ways to apply EKF parameter estimation efficiently to state-of-the-art coupled ocean--atmosphere GCMs will be discussed.
Climate Teleconnections and Recent Patterns of Human and Animal Disease Outbreaks
Anyamba, Assaf; Linthicum, Kenneth J.; Small, Jennifer L.; Collins, Kathrine M.; Tucker, Compton J.; Pak, Edwin W.; Britch, Seth C.; Eastman, James Ronald; Pinzon, Jorge E.; Russell, Kevin L.
2012-01-01
Background Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Although Rift Valley fever outbreaks have been known to follow periods of above-normal rainfall, the timing of the outbreak events has largely been unknown. Similarly, there is inadequate knowledge on climate drivers of chikungunya outbreaks. We analyze a variety of climate and satellite-derived vegetation measurements to explain the coupling between patterns of climate variability and disease outbreaks of Rift Valley fever and chikungunya. Methods and Findings We derived a teleconnections map by correlating long-term monthly global precipitation data with the NINO3.4 sea surface temperature (SST) anomaly index. This map identifies regional hot-spots where rainfall variability may have an influence on the ecology of vector borne disease. Among the regions are Eastern and Southern Africa where outbreaks of chikungunya and Rift Valley fever occurred 2004–2009. Chikungunya and Rift Valley fever case locations were mapped to corresponding climate data anomalies to understand associations between specific anomaly patterns in ecological and climate variables and disease outbreak patterns through space and time. From these maps we explored associations among Rift Valley fever disease occurrence locations and cumulative rainfall and vegetation index anomalies. We illustrated the time lag between the driving climate conditions and the timing of the first case of Rift Valley fever. Results showed that reported outbreaks of Rift Valley fever occurred after ∼3–4 months of sustained above-normal rainfall and associated green-up in vegetation, conditions ideal for Rift Valley fever mosquito vectors. For chikungunya we explored associations among surface air temperature, precipitation anomalies, and chikungunya outbreak locations. We found that chikungunya outbreaks occurred under conditions of anomalously high temperatures and drought over Eastern Africa. However, in Southeast Asia, chikungunya outbreaks were negatively correlated (p<0.05) with drought conditions, but positively correlated with warmer-than-normal temperatures and rainfall. Conclusions/Significance Extremes in climate conditions forced by the El Niño/Southern Oscillation (ENSO) lead to severe droughts or floods, ideal ecological conditions for disease vectors to emerge, and may result in epizootics and epidemics of Rift Valley fever and chikungunya. However, the immune status of livestock (Rift Valley fever) and human (chikungunya) populations is a factor that is largely unknown but very likely plays a role in the spatial-temporal patterns of these disease outbreaks. As the frequency and severity of extremes in climate increase, the potential for globalization of vectors and disease is likely to accelerate. Understanding the underlying patterns of global and regional climate variability and their impacts on ecological drivers of vector-borne diseases is critical in long-range planning of appropriate disease and disease-vector response, control, and mitigation strategies. PMID:22292093
Climate teleconnections and recent patterns of human and animal disease outbreaks.
Anyamba, Assaf; Linthicum, Kenneth J; Small, Jennifer L; Collins, Kathrine M; Tucker, Compton J; Pak, Edwin W; Britch, Seth C; Eastman, James Ronald; Pinzon, Jorge E; Russell, Kevin L
2012-01-01
Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Although Rift Valley fever outbreaks have been known to follow periods of above-normal rainfall, the timing of the outbreak events has largely been unknown. Similarly, there is inadequate knowledge on climate drivers of chikungunya outbreaks. We analyze a variety of climate and satellite-derived vegetation measurements to explain the coupling between patterns of climate variability and disease outbreaks of Rift Valley fever and chikungunya. We derived a teleconnections map by correlating long-term monthly global precipitation data with the NINO3.4 sea surface temperature (SST) anomaly index. This map identifies regional hot-spots where rainfall variability may have an influence on the ecology of vector borne disease. Among the regions are Eastern and Southern Africa where outbreaks of chikungunya and Rift Valley fever occurred 2004-2009. Chikungunya and Rift Valley fever case locations were mapped to corresponding climate data anomalies to understand associations between specific anomaly patterns in ecological and climate variables and disease outbreak patterns through space and time. From these maps we explored associations among Rift Valley fever disease occurrence locations and cumulative rainfall and vegetation index anomalies. We illustrated the time lag between the driving climate conditions and the timing of the first case of Rift Valley fever. Results showed that reported outbreaks of Rift Valley fever occurred after ∼3-4 months of sustained above-normal rainfall and associated green-up in vegetation, conditions ideal for Rift Valley fever mosquito vectors. For chikungunya we explored associations among surface air temperature, precipitation anomalies, and chikungunya outbreak locations. We found that chikungunya outbreaks occurred under conditions of anomalously high temperatures and drought over Eastern Africa. However, in Southeast Asia, chikungunya outbreaks were negatively correlated (p<0.05) with drought conditions, but positively correlated with warmer-than-normal temperatures and rainfall. Extremes in climate conditions forced by the El Niño/Southern Oscillation (ENSO) lead to severe droughts or floods, ideal ecological conditions for disease vectors to emerge, and may result in epizootics and epidemics of Rift Valley fever and chikungunya. However, the immune status of livestock (Rift Valley fever) and human (chikungunya) populations is a factor that is largely unknown but very likely plays a role in the spatial-temporal patterns of these disease outbreaks. As the frequency and severity of extremes in climate increase, the potential for globalization of vectors and disease is likely to accelerate. Understanding the underlying patterns of global and regional climate variability and their impacts on ecological drivers of vector-borne diseases is critical in long-range planning of appropriate disease and disease-vector response, control, and mitigation strategies.
NASA Astrophysics Data System (ADS)
Hackerott, J. A.; Mesquita, M. D. S.; Camargo, R. D.; Pezzi, L. P.
2014-12-01
Several studies show that near surface winds acquire anticyclonic (cyclonic) vorticity and accelerate (decelerate) when flow in the same direction as positive (negative) orientation of the Sea Surface Temperature (SST) gradient. Many of them were made over different oceanic thermal fronts in the world analyzing contrasts in SST gradients. However, still remains much uncertainty about how strong is this wind modulation, particularly on areas in need of studies and in-situ data, such as the Brazil-Malvinas Confluence Region (BMC) where intense SST gradients are found. This study brings results of the Weather Research and Forecasting (WRF) model simulations, configured with nested grids, where it is compared the influence of distinct synoptic patterns observed at BMC where three different SST patterns are imposed to WRF. These patterns are: (1) with a typical smoothed SST field, named as Control; (2) Small Eddy, which is the same as Control but adding an eddy of 1° radius and a +2°C amplitude; and (3) Intense Eddy, which is also the same as Control, but where an eddy of 1° radius and +4°C amplitude is added. The artificial imposed eddy is analogous to the SST patterns observed at BMC, with different intensities. The simulations were integrated for 76 hours using initial and lateral boundary conditions from the Global Forecast System (GFS) model with 0.5° resolution. The results showed that the wind at 10m height is influenced by the diurnal cycle of turbulence in the Marine Atmospheric Boundary Layer (MABL) modified by variations in SST. The wind magnitude changes up to 1m.s-1 over a 4/50°C.km-1 SST gradient and 0.6m.s-1 over a 2/50°C.km-1 SST gradient. This effect generates meso-scale disturbances that propagate to larger scales leading to disturbances in remote areas. Thus, the preliminary analyses are suggesting that there is an interaction between the meso and synoptic scale playing a role. Mechanisms such this one might not be captured by atmospheric global models used in low spatial resolution. Often, that is the case seen on operational models.
NASA Astrophysics Data System (ADS)
Luo, Jing-Jia; Masson, Sebastien; Behera, Swadhin; Shingu, Satoru; Yamagata, Toshio
2005-11-01
Predictabilities of tropical climate signals are investigated using a relatively high resolution Scale Interaction Experiment Frontier Research Center for Global Change (FRCGC) coupled GCM (SINTEX-F). Five ensemble forecast members are generated by perturbing the model’s coupling physics, which accounts for the uncertainties of both initial conditions and model physics. Because of the model’s good performance in simulating the climatology and ENSO in the tropical Pacific, a simple coupled SST-nudging scheme generates realistic thermocline and surface wind variations in the equatorial Pacific. Several westerly and easterly wind bursts in the western Pacific are also captured.Hindcast results for the period 1982 2001 show a high predictability of ENSO. All past El Niño and La Niña events, including the strongest 1997/98 warm episode, are successfully predicted with the anomaly correlation coefficient (ACC) skill scores above 0.7 at the 12-month lead time. The predicted signals of some particular events, however, become weak with a delay in the phase at mid and long lead times. This is found to be related to the intraseasonal wind bursts that are unpredicted beyond a few months of lead time. The model forecasts also show a “spring prediction barrier” similar to that in observations. Spatial SST anomalies, teleconnection, and global drought/flood during three different phases of ENSO are successfully predicted at 9 12-month lead times.In the tropical North Atlantic and southwestern Indian Ocean, where ENSO has predominant influences, the model shows skillful predictions at the 7 12-month lead times. The distinct signal of the Indian Ocean dipole (IOD) event in 1994 is predicted at the 6-month lead time. SST anomalies near the western coast of Australia are also predicted beyond the 12-month lead time because of pronounced decadal signals there.
NASA Astrophysics Data System (ADS)
Kaneko, D.
2016-12-01
Climate change appears to have manifested itself along with abnormal meteorological disasters. Instability caused by drought and flood disasters is producing poor harvests because of poor photosynthesis and pollination. Fluctuations of extreme phenomena are increasing rapidly because amplitudes of change are much greater than average trends. A fundamental cause of these phenomena derives from increased stored energy inside ocean waters. Geophysical and biochemical modeling of crop production can elucidate complex mechanisms under seasonal climate anomalies. The models have progressed through their combination with global climate reanalysis, environmental satellite data, and harvest data on the ground. This study examined adaptation of crop production to advancing abnormal phenomena related to global climate change. Global environmental surface conditions, i.e., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. Basic streams of the concepts of modeling rely upon continental energy flow and carbon circulation among crop vegetation, land surface atmosphere combining energy advection from ocean surface anomalies. Global environmental surface conditions, e.g., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. The method of validating the modeling relies upon carbon partitioning in biomass and grains through carbon flow by photosynthesis using carbon dioxide unit in photosynthesis. Results of computations done for this study show global distributions of actual evaporation, stomata opening, and photosynthesis, presenting mechanisms related to advection effects from SST anomalies in the Pacific, Atlantic, and Indian oceans on global and continental croplands. For North America, climate effects appear clearly in severe atmospheric phenomena, which have caused drought and forest fires through seasonal advection thermal effects on potential evaporation by winds blowing eastward over California, the Grand Canyon, Monument Valley, and into the Great Plains. These coupled SST photosynthesis models constitute an advanced approach for crop modeling in the era of recent new climate.
Using an atmospheric boundary layer model to force global ocean models
NASA Astrophysics Data System (ADS)
Abel, Rafael; Böning, Claus
2014-05-01
Current practices in the atmospheric forcing of ocean model simulations can lead to unphysical behaviours. The problem lies in the bulk formulation of the turbulent air-sea fluxes in the conjunction with a prescribed, and unresponsive, atmospheric state (as given by reanalysis products). This can have impacts both on mesoscale processes as well as on the dynamics of the large-scale circulation. First, a possible local mismatch between the given atmospheric state and evolving sea surface temperature (SST) signatures can occur, especially for mesoscale features such as frontal areas, eddies, or near the sea ice edge. Any ocean front shift or evolution of mesoscale anomalies results in excessive, unrealistic surface fluxes due to the lack of atmospheric adaptation. Second, a subtle distortion in the sensitive balance of feedback processes being critical for the thermohaline circulation. Since the bulk formulations assume an infinite atmospheric heat capacity, resulting SST anomalies are strongly damped even on basin-scales (e.g. from trends in the Atlantic meridional overturning circulation). In consequence, an important negative feedback is eliminated, rendering the system excessively susceptible to small anomalies (or errors) in the freshwater fluxes. Previous studies (Seager et al., 1995, J. Clim.) have suggested a partial forcing issue remedy that aimed for a physically more realistic determination of air-sea fluxes by allowing some (thermodynamic) adaptation of the atmospheric boundary layer to SST changes. In this study a modernized formulation of this approach (Deremble et al., 2013, Mon. Weather Rev.; 'CheapAML') is implemented in a global ocean-ice model with moderate resolution (0.5°; ORCA05). In a set of experiments we explore the solution behaviour of this forcing approach (where only the winds are prescribed, while atmospheric temperature and humidity are computed), contrasting it with the solution obtained from the classical bulk formulation with a non-responsive atmosphere.
Impacts of SST Patterns on Rapid Intensification of Typhoon Megi (2010)
NASA Astrophysics Data System (ADS)
Kanada, Sachie; Tsujino, Satoki; Aiki, Hidenori; Yoshioka, Mayumi K.; Miyazawa, Yasumasa; Tsuboki, Kazuhisa; Takayabu, Izuru
2017-12-01
Typhoon Megi (2010), a very intense tropical cyclone with a minimum central pressure of 885 hPa, was characterized by especially rapid intensification. We investigated this intensification process by a simulation experiment using a high-resolution (0.02° × 0.02°) three-dimensional atmosphere-ocean coupled regional model. We also performed a sensitivity experiment with a time-fixed sea surface temperature (SST). The coupled model successfully simulated the minimum central pressure of Typhoon Megi, whereas the fixed SST experiment simulated an excessively low minimum central pressure of 839 hPa. The simulation results also showed a close relationship between the radial SST profiles and the rapid intensification process. Because the warm sea increased near-surface water vapor and hence the convective available potential energy, the high SST in the eye region facilitated tall and intense updrafts inside the radius of maximum wind speed and led to the start of rapid intensification. In contrast, high SST outside this radius induced local secondary updrafts that inhibited rapid intensification even if the mean SST in the core region exceeded 29.0°C. These secondary updrafts moved inward and eventually merged with the primary eyewall updrafts. Then the storm intensified rapidly when the high SST appeared in the eye region. Thus, the changes in the local SST pattern around the storm center strongly affected the rapid intensification process by modulating the radial structure of core convection. Our results also show that the use of a high-resolution three-dimensional atmosphere-ocean coupled model offers promise for improving intensity forecasts of tropical cyclones.
Atmosphere-Warm Ocean Interaction and Its Impacts on Asian-Australian Monsoon Variation(.
NASA Astrophysics Data System (ADS)
Wang, Bin; Wu, Renguang; Li, Tim
2003-04-01
Asian-Australian monsoon (A-AM) anomalies depend strongly on phases of El Niño (La Niña). Based on this distinctive feature, a method of extended singular value decomposition analysis was developed to analyze the changing characteristics of A-AM anomalies during El Niño (La Niña) from its development to decay. Two off-equatorial surface anticyclones dominate the A-AM anomalies during an El Niño-one over the south Indian Ocean (SIO) and the other over the western North Pacific (WNP). The SIO anticyclone, which affects climate conditions over the Indian Ocean, eastern Africa, and India, originates during the summer of a growing El Niño, rapidly reaches its peak intensity in fall, and decays when El Niño matures. The WNP anticyclone, on the other hand, forms in fall, attains maximum intensity after El Niño matures, and persists through the subsequent spring and summer, providing a prolonged impact on the WNP and east Asian climate. The monsoon anomalies associated with a La Niña resemble those during an El Niño but with cyclonic anomalies. From the development summer to the decay summer of an El Niño (La Niña), the anomalous sea level pressure, low-level winds, and vertical motion tend to reverse their signs in the equatorial Indian and western Pacific Oceans (10°S-20°N, 40°-160°E). This suggests that the tropospheric biennial oscillation is intimately linked to the turnabouts of El Niño and La Niña.The remote El Niño forcing alone can explain neither the unusual amplification of the SIO anticyclone during a developing El Niño nor the maintenance of the WNP anticyclone during a decaying El Niño. The atmosphere-ocean conditions in the two anticyclone regions are similar, namely, a zonal sea surface temperature (SST) dipole with cold water to the east and warm water to the west of the anticyclone center. These conditions result from positive feedback between the anomalous anticyclone and the SST dipole, which intensifies the coupled mode in the SIO during El Niño growth and maintains the coupled mode in the WNP during El Niño decay. The interactions in the two anticyclone regions share common wind evaporation/entrainment and cloud-radiation feedback processes but they differ with regard to the oceanic dynamics (vertical and horizontal advection and thermocline adjustment by oceanic waves). The outcome of the interactions in both regions, however, depends crucially on the climatological surface winds. The SIO-coupled mode is triggered by El Niño-induced subsidence and alongshore winds off the coast of Sumatra. However, other independent El Niño local and remote forcing can also trigger this coupled mode.The traditional view has regarded SST anomalies in the Indian and western Pacific Oceans as causing the A-AM variability. The present analysis suggests that the SST anomalies in these warm ocean regions are, to a large extent, a result of anomalous monsoons. Thus, the atmosphere-warm ocean interaction may significantly modify the impacts of remote El Niño forcing and should be regarded as one of the physical factors that determine the variability of the A-AM.During the summer of El Niño development, the remote El Niño forcing plays a major role in the A-AM anomalies that exhibit obvious equatorial asymmetry. A tilted anticyclonic ridge originates in the Maritime Continent and extends to southern India, weakening the Indian monsoon while strengthening the WNP monsoon. Numerical modeling experiments suggest that the mean monsoon circulation enhances the equatorial Rossby wave response in the easterly vertical shear region of the Northern Hemisphere and creates the equatorial asymmetry.
NASA Astrophysics Data System (ADS)
ÁLvarez, A.; Orfila, A.; Tintoré, J.
2004-03-01
Satellites are the only systems able to provide continuous information on the spatiotemporal variability of vast areas of the ocean. Relatively long-term time series of satellite data are nowadays available. These spatiotemporal time series of satellite observations can be employed to build empirical models, called satellite-based ocean forecasting (SOFT) systems, to forecast certain aspects of future ocean states. SOFT systems can predict satellite-observed fields at different timescales. The forecast skill of SOFT systems forecasting the sea surface temperature (SST) at monthly timescales has been extensively explored in previous works. In this work we study the performance of two SOFT systems forecasting, respectively, the SST and sea level anomaly (SLA) at weekly timescales, that is, providing forecasts of the weekly averaged SST and SLA fields with 1 week in advance. The SOFT systems were implemented in the Ligurian Sea (Western Mediterranean Sea). Predictions from the SOFT systems are compared with observations and with the predictions obtained from persistence models. Results indicate that the SOFT system forecasting the SST field is always superior in terms of predictability to persistence. Minimum prediction errors in the SST are obtained during winter and spring seasons. On the other hand, the biggest differences between the performance of SOFT and persistence models are found during summer and autumn. These changes in the predictability are explained on the basis of the particular variability of the SST field in the Ligurian Sea. Concerning the SLA field, no improvements with respect to persistence have been found for the SOFT system forecasting the SLA field.
NASA Astrophysics Data System (ADS)
Cahyarini, Sri Yudawati; Pfeiffer, Miriam; Nurhati, Intan Suci; Aldrian, Edvin; Dullo, Wolf-Christian; Hetzinger, Steffen
2014-07-01
The Indonesian Throughflow (ITF), which represents the global ocean circulation connecting the Pacific Warm Pool to the Indian Ocean, strongly influences the Indo-Pacific climate. ITF monitoring since the late 1990s using mooring buoys have provided insights on seasonal and interannual time scales. However, the absence of longer records limits our perspective on its evolution over the past century. Here, we present sea surface temperature (SST) and salinity (SSS) proxy records from Timor Island located at the ITF exit passage via paired coral δ18O and Sr/Ca measurements spanning the period 1914-2004. These high-resolution proxy based climate data of the last century highlights improvements and cautions when interpreting paleoclimate records of the Indonesian region. If the seasonality of SST and SSS is not perfectly in phase, the application of coral Sr/Ca thermometry improves SST reconstructions compared to estimates based on coral δ18O only. Our records also underline the importance of ocean advection besides rainfall on local SSS in the region. Although the El Niño/Southern Oscillation (ENSO) causes larger anomalies relative to the Indian Ocean Dipole (IOD), Timor coral-based SST and SSS records robustly correlate with IOD on interannual time scales, whereas ENSO only modifies Timor SST. Similarly, Timor SST and SSS are strongly linked to Indian Ocean decadal-scale variations that appear to lead Timor oceanographic conditions by about 1.6-2 years. Our study sheds new light on the complex signatures of Indo-Pacific climate modes on SST and SSS dynamics of the ITF. This article was corrected on 8 AUG 2014. See the end of the full text for details.
The Chennai extreme rainfall event in 2015: The Bay of Bengal connection
NASA Astrophysics Data System (ADS)
Boyaj, Alugula; Ashok, Karumuri; Ghosh, Subimal; Devanand, Anjana; Dandu, Govardhan
2018-04-01
Southeast India experienced a heavy rainfall during 30 Nov-2 Dec 2015. Particularly, the Chennai city, the fourth major metropolitan city in India with a population of 5 million, experienced extreme flooding and causalities. Using various observed/reanalysed datasets, we find that the concurrent southern Bay of Bengal (BoB) sea surface temperatures (SST) were anomalously warm. Our analysis shows that BoB sea surface temperature anomalies (SSTA) are indeed positively, and significantly, correlated with the northeastern Indian monsoonal rainfall during this season. Our sensitivity experiments carried out with the Weather Research and Forecasting (WRF) model at 25 km resolution suggest that, while the strong concurrent El Niño conditions contributed to about 21.5% of the intensity of the extreme Chennai rainfall through its signals in the local SST mentioned above, the warming trend in BoB SST also contributed equally to the extremity of the event. Further, the El Niño southern oscillation (ENSO) impacts on the intensity of the synoptic events in the BoB during the northeast monsoon are manifested largely through the local SST in the BoB as compared through its signature in the atmospheric circulations over the BoB.
Morioka, Yushi; Doi, Takeshi; Behera, Swadhin K
2018-01-26
Decadal climate variability in the southern Indian Ocean has great influences on southern African climate through modulation of atmospheric circulation. Although many efforts have been made to understanding physical mechanisms, predictability of the decadal climate variability, in particular, the internally generated variability independent from external atmospheric forcing, remains poorly understood. This study investigates predictability of the decadal climate variability in the southern Indian Ocean using a coupled general circulation model, called SINTEX-F. The ensemble members of the decadal reforecast experiments were initialized with a simple sea surface temperature (SST) nudging scheme. The observed positive and negative peaks during late 1990s and late 2000s are well reproduced in the reforecast experiments initiated from 1994 and 1999, respectively. The experiments initiated from 1994 successfully capture warm SST and high sea level pressure anomalies propagating from the South Atlantic to the southern Indian Ocean. Also, the other experiments initiated from 1999 skillfully predict phase change from a positive to negative peak. These results suggest that the SST-nudging initialization has the essence to capture the predictability of the internally generated decadal climate variability in the southern Indian Ocean.
NASA Astrophysics Data System (ADS)
Singh, Prem; Gnanaseelan, C.; Chowdary, J. S.
2017-12-01
The present study investigates the relationship between extreme north-east (NE) monsoon rainfall (NEMR) over the Indian peninsula region and El Niño forcing. This turns out to be a critical science issue especially after the 2015 Chennai flood. The puzzle being while most El Niños favour good NE monsoon, some don't. In fact some El Niño years witnessed deficit NE monsoon. Therefore two different cases (or classes) of El Niños are considered for analysis based on standardized NEMR index and Niño 3.4 index with case-1 being both Niño-3.4 and NEMR indices greater than +1 and case-2 being Niño-3.4 index greater than +1 and NEMR index less than -1. Composite analysis suggests that SST anomalies in the central and eastern Pacific are strong in both cases but large differences are noted in the spatial distribution of SST over the Indo-western Pacific region. This questions our understanding of NEMR as mirror image of El Niño conditions in the Pacific. It is noted that the favourable excess NEMR in case-1 is due to anomalous moisture transport from Bay of Bengal and equatorial Indian Ocean to southern peninsular India. Strong SST gradient between warm western Indian Ocean (and Bay of Bengal) and cool western Pacific induced strong easterly wind anomalies during NE monsoon season favour moisture transport towards the core NE monsoon region. Further anomalous moisture convergence and convection over the core NE monsoon region supported positive rainfall anomalies in case-1. While in case-2, weak SST gradients over the Indo-western Pacific and absence of local low level convergence over NE monsoon region are mainly responsible for deficit rainfall. The ocean dynamics in the Indian Ocean displayed large differences during case-1 and case-2, suggesting the key role of Rossby wave dynamics in the Indian Ocean on NE monsoon extremes. Apart from the large scale circulation differences the number of cyclonic systems land fall for case-1 and case-2 have also contributed for variations in NE monsoon rainfall extremes during El Niño years. This study indicates that despite having strong warming in the central and eastern Pacific, NE monsoon rainfall variations over the southern peninsular India is mostly determined by SST gradient over the Indo-western Pacific region and number of systems formation in the Bay of Bengal and their land fall. The paper concludes that though the favourable large scale circulation induced by Pacific is important in modulating the NE monsoon rainfall the local air sea interaction plays a key role in modulating or driving rainfall extremes associated with El Niño.
NASA Astrophysics Data System (ADS)
Clement, A. C.; Bellomo, K.; Murphy, L.
2013-12-01
Large scale warming and cooling periods of the North Atlantic is known as the Atlantic Multidecadal Oscillation (AMO). The pattern of warming and cooling in the North Atlantic Ocean over the 20th century that has a characteristic spatial structure with maximum warming in the mid-latitudes and subtropics. This has been most often attributed to changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC), which in turn affects poleward heat transport. A recent modeling study by Booth et al. (2012), however, suggested that aerosols can explain both the spatial pattern and temporal history of Atlantic SST through indirect effects of aerosols on cloud cover; although this idea is controversial (Zhang et al., 2013). We have found observational evidence that changes in cloud amount can drive SST changes on multi-decadal timescale. We hypothesize that a positive local feedback between SST and cloud radiative effect amplifies SST and gives rise to the observed pattern of SST change. During cool North Atlantic periods, a southward shift of the ITCZ strengthens the trade winds in the tropical North Atlantic and increases low-level cloud cover, which acts to amplify the SST cooling in the North Atlantic. During warm periods in the North Atlantic, the opposite response occurs. We are testing whether the amplitude of this feedback is realistically simulated in the CMIP5 models, and whether inter-model differences in the amplitude of the feedback can explain differences in model simulations of Atlantic multi-decadal variability.
The modulated annual cycle: an alternative reference frame for climate anomalies
NASA Astrophysics Data System (ADS)
Wu, Zhaohua; Schneider, Edwin K.; Kirtman, Ben P.; Sarachik, E. S.; Huang, Norden E.; Tucker, Compton J.
2008-12-01
In climate science, an anomaly is the deviation of a quantity from its annual cycle. There are many ways to define annual cycle. Traditionally, this annual cycle is taken to be an exact repeat of itself year after year. This stationary annual cycle may not reflect well the intrinsic nonlinearity of the climate system, especially under external forcing. In this paper, we re-examine the reference frame for anomalies by re-examining the annual cycle. We propose an alternative reference frame for climate anomalies, the modulated annual cycle (MAC) that allows the annual cycle to change from year to year, for defining anomalies. In order for this alternative reference frame to be useful, we need to be able to define the instantaneous annual cycle: we therefore also introduce a new method to extract the MAC from climatic data. In the presence of a MAC, modulated in both amplitude and frequency, we can then define an alternative version of an anomaly, this time with respect to the instantaneous MAC rather than a permanent and unchanging AC. Based on this alternative definition of anomalies, we re-examine some familiar physical processes: in particular SST re-emergence and ENSO phase locking to the annual cycle. We find that the re-emergence mechanism may be alternatively interpreted as an explanation of the change of the annual cycle instead of an explanation of the interannual to interdecadal persistence of SST anomalies. We also find that the ENSO phase locking can largely be attributed to the residual annual cycle (the difference of the MAC and the corresponding traditional annual cycle) contained in the traditional anomaly, and, therefore, can be alternatively interpreted as a part of the annual cycle phase locked to the annual cycle itself. In addition to the examples of reinterpretation of physics of well known climate phenomena, we also present an example of the implications of using a MAC against which to define anomalies. We show that using MAC as a reference framework for anomaly can bypass the difficulty brought by concepts such as “decadal variability of summer (or winter) climate” for understanding the low-frequency variability of the climate system. The concept of an amplitude and frequency modulated annual cycle, a method to extract it, and its implications for the interpretation of physical processes, all may contribute potentially to a more consistent and fruitful way of examining past and future climate variability and change.
Mixed layer modeling in the East Pacific warm pool during 2002
NASA Astrophysics Data System (ADS)
Van Roekel, Luke P.; Maloney, Eric D.
2012-06-01
Two vertical mixing models (the modified dynamic instability model of Price et al.; PWP, and K-Profile Parameterizaton; KPP) are used to analyze intraseasonal sea surface temperature (SST) variability in the northeast tropical Pacific near the Costa Rica Dome during boreal summer of 2002. Anomalies in surface latent heat flux and shortwave radiation are the root cause of the three intraseasonal SST oscillations of order 1°C amplitude that occur during this time, although surface stress variations have a significant impact on the third event. A slab ocean model that uses observed monthly varying mixed layer depths and accounts for penetrating shortwave radiation appears to well-simulate the first two SST oscillations, but not the third. The third oscillation is associated with small mixed layer depths (<5 m) forced by, and acting with, weak surface stresses and a stabilizing heat flux that cause a transient spike in SST of 2°C. Intraseasonal variations in freshwater flux due to precipitation and diurnal flux variability do not significantly impact these intraseasonal oscillations. These results suggest that a slab ocean coupled to an atmospheric general circulation model, as used in previous studies of east Pacific intraseasonal variability, may not be entirely adequate to realistically simulate SST variations. Further, while most of the results from the PWP and KPP models are similar, some important differences that emerge are discussed.
NOAA Coral Reef Watch: Decision Support Tools for Coral Reef Managers
NASA Astrophysics Data System (ADS)
Rauenzahn, J.; Eakin, C.; Skirving, W. J.; Burgess, T.; Christensen, T.; Heron, S. F.; Li, J.; Liu, G.; Morgan, J.; Nim, C.; Parker, B. A.; Strong, A. E.
2010-12-01
A multitude of natural and anthropogenic stressors exert substantial influence on coral reef ecosystems and contribute to bleaching events, slower coral growth, infectious disease outbreaks, and mortality. Satellite-based observations can monitor, at a global scale, environmental conditions that influence both short-term and long-term coral reef ecosystem health. From research to operations, NOAA Coral Reef Watch (CRW) incorporates paleoclimatic, in situ, and satellite-based biogeophysical data to provide near-real-time and forecast information and tools to help managers, researchers, and other stakeholders interpret coral health and stress. CRW has developed an operational, near-real-time product suite that includes sea surface temperature (SST), SST time series data, SST anomaly charts, coral bleaching HotSpots, and Degree Heating Weeks (DHW). Bi-weekly global SST analyses are based on operational nighttime-only SST at 50-km resolution. CRW is working to develop high-resolution products to better address thermal stress on finer scales and is applying climate models to develop seasonal outlooks of coral bleaching. Automated Satellite Bleaching Alerts (SBAs), available at Virtual Stations worldwide, provide the only global early-warning system to notify managers of changing reef environmental conditions. Currently, CRW is collaborating with numerous domestic and international partners to develop new tools to address ocean acidification, infectious diseases of corals, combining light and temperature to detect coral photosystem stress, and other parameters.
Seasonal differences of model predictability and the impact of SST in the Pacific
NASA Astrophysics Data System (ADS)
Lang, X. M.; Wang, H. J.
2005-01-01
Both seasonal potential predictability and the impact of SST in the Pacific on the forecast skill over China are investigated by using a 9-level global atmospheric general circulation model developed at the Institute of Atmospheric Physics under the Chinese Academy of Sciences (IAP9L-ACCM). For each year during 1970 to 1999, the ensemble consists of seven integrations started from consecutive observational daily atmospheric fields and forced by observational monthly SST. For boreal winter, spring and summer, the variance ratios of the SST-forced variability to the total variability and the differences in the spatial correlation coefficients of seasonal mean fields in special years versus normal years are computed respectively. It follows that there are slightly inter-seasonal differences in the model potential predictability in the Tropics. At northern middle and high latitudes, prediction skill is generally low in spring and relatively high either in summer for surface air temperature and middle and upper tropospheric geopotential height or in winter for wind and precipitation. In general, prediction skill rises notably in western China, especially in northwestern China, when SST anomalies (SSTA) in the Ni (n) over tildeo-3 region are significant. Moreover, particular attention should be paid to the SSTA in the North Pacific (NP) if one aims to predict summer climate over the eastern part of China, i.e., northeastern China, North China and southeastern China.
Anticipating U.S. severe droughts - A NASA NEWS initiative on extremes
NASA Astrophysics Data System (ADS)
Wang, S.; Oglesby, R. J.; Hilburn, K. A.; Barandiaran, D.; Pan, M.; Pinker, R. T.; Wang, H.; Santanello, J. A.
2013-12-01
The 2012-2013 drought may not have been predictable as based on current schemes employed for such purposes, but it may have been anticipatable due to knowledge of key precursors such as favorable (remote) SST patterns, and reduced regional soil moisture and winter snow packs. A working group was assembled under the NASA Energy and Water cycle Study (NEWS) to examine the extent to which the 2012 drought could be anticipated and to put recent severe droughts in perspective. A recent NOAA report analyzing the drought of 2012 in the central US has concluded that the drought was not inherently predictable, representing a very anomalous atmospheric circulation pattern. This ';predictability' is based on what happened in the atmosphere, and further, depends on the capabilities of the predictive schemes currently employed. The current prediction schemes emphasize the role of the large-scale atmospheric circulation, but the extent to which the long wave patterns and subsequent short wave effects can be predicted in advance remains unclear. These schemes generally lack full consideration of the local surface state, especially the effect of precursor anomalies in key elements such as soil moisture and snow pack. It is also not clear how well they account for the effects of either interannual or lower-frequency oceanic anomaly patterns. The role of the aforesaid precursors, combined with knowledge of their state, allow some assessment of the ';likelihood' of drought that is not currently being considered. For example, by late winter of 2012 much of the central US was already experiencing dry conditions, including reduced soil moisture, and the snowpack in the Rockies was well below normal. SST patterns appear to have been largely neutral. While the manifestation of the resultant drought also critically dependent on the large-scale atmospheric circulation that subsequently developed, it is clear that the region was preconditioned towards being dry. The other factor about precursors of drought in the previous year. The Drought Monitor data indicated that the 2011 drought remains stronger than the 2012 one in the ';exceptional' category. This feature reflects the different scales in the atmospheric teleconnection pattern and the comparison of the two events can help determine the soil moisture (or lack of) impact on 2012's widespread drought that persisted into 2013. Our hypothesis is that even if one cannot predict the future atmospheric circulation patterns with much certainty for a given year, we may still be able to make some assessment of whether or not a drought may be likely to occur. We refer to this as anticipating drought. As precursors such as soil moisture and snowpack become important in potentially enhancing and prolonging the drought as it occurs, the actual drought that does subsequently occur will depend closely in magnitude and duration on the atmospheric circulation that unfolds.
North Pacific warming and intense northwestern U.S. wildfires
Yongqiang Liu
2006-01-01
The tropical Pacific sea surface temperature (SST) anomalies such as La Nina have been an important predictor for wildfires in the southeastern and southwestern U.S. This study seeks seasonal predictors for wildfires in the northwestern U.S., a region with the most intense wildfires among various continental U.S. regions. Singular value decomposition and regression...
A Modeling Study of the On-Going Drought and Heat Wave over the United States
NASA Technical Reports Server (NTRS)
Schubert, S.; Wang, H.; Koster, R.; Suarez, M.
2012-01-01
Ensembles of AGCM experiments have been conducted to examine the causes of the on-going drought and heat wave affecting much of the United States. The results show that the drought and hot temperatures that have been especially severe over Texas and parts of Mexico since late 2010 are the result of a combination of SST forcing from both the tropical Pacific and the tropical Atlantic, with the latter playing a particularly important role during later half of the summer of 2011, and the warm SSTs off the East Coast contributing to the warm conditions along the East Coast. An extension of the model simulations into the summer of 2012 suggests that the warm conditions are again primarily driven by SST forcing - despite the return of the tropical Pacific to neutral conditions. The results of additional experiments currently being conducted to separate the influences of the 2012 SST anomalies in the various ocean basins will be discussed.
A cool Southwest Indian Ocean connection to El Niño events
NASA Astrophysics Data System (ADS)
Wieners, Claudia; Manola, Iris; Ridderinkhof, Wim; Dijkstra, Henk; von der Heydt, Anna; Kirtman, Benjamin; Selten, Frank; de Ruijter, Wilhelmus
2014-05-01
Recent studies have shown that anomalously high sea surface temperatures (SST) in the southeastern equatorial Indian Ocean (IO) can influence early El Niño development by modulating the winds over the western Pacific. We have collected observational evidence for a dynamic connection between relatively cool SST developments in the southwestern Indian Ocean and the following years' El Niño. These cool anomalies appear over the so-called Seychelles thermocline Dome. Depending on strength and timing they generate a fast atmospheric response by stimulating an Indo-Pacific atmospheric bridge that leads to enhanced convection over the western Pacific. The slow oceanic response involves a pathway of upwelling Rossby and Kelvin waves that propagate towards and across the equator. We will present the first results of a series of dedicated climate model experiments. They were designed to stimulate the response of the coupled system to the SST cooling using a global climate model. First results seem to support the observational analysis.
A volcanic wind-stress origin of the Atlantic Multidecadal Oscillation
NASA Astrophysics Data System (ADS)
Birkel, S. D.; Mayewski, P. A.; Maasch, K. A.; Auger, J.; Lyon, B.
2016-12-01
The Atlantic Multidecadal Oscillation (AMO) is a mode of sea-surface temperature (SST) variability in the North Atlantic that has significant impact on global climate. Most previous studies ascribe the origin of the AMO to oceanic mechanisms, and suggest only a limited role for the atmosphere. Here, we suggest that the AMO is manifested from basin-wide changes in surface wind stress that arise in response to episodic volcanic activity. Our interpretation is based on historical SST, reanalysis, and stratospheric aerosol optical thickness data, wherein it is evident that cool (warm) intervals of the AMO coincide with emergence of strong (weak) winds and high (low) volcanic activity. We find that SST excursions ultimately develop from atmospheric forcing as volcanic events project onto the North Atlantic Oscillation (NAO). A volcanic signature is particularly evident beneath the westerlies in the subpolar region south of Greenland, where several large SST excursions occur coincident with identifiable major eruptions. High latitude surface waters cool when NAO+ circulation, which includes a deepened Icelandic Low, draws cold flow out of the Labrador Sea and into the subpolar region. Important feedbacks that cause SST anomalies to spread across the basin include cloud cover, wind-driven upwelling, and entrainment of Saharan dust into the tropical easterlies. Finally, we speculate that cooling in the North Atlantic observed since 2011 could be linked to renewed volcanic activity over Iceland, namely from the eruptions of Grímsvötn (2011) and Bárðarbunga (2014). An important question remains how North Atlantic SST variability will evolve as atmospheric circulation becomes increasingly modified by human activity.
NASA Astrophysics Data System (ADS)
Goodkin, N. F.; Hughen, K. A.; Cohen, A. L.; Curry, W. B.; Doney, S. C.
2006-12-01
The North Atlantic Oscillation (NAO) is a meridional oscillation in atmospheric mass measured by pressure anomalies between Iceland (65°N, 23°W) and the Azores (38°N, 26°W) (Hurrell, 1995). Changes between the positive and negative phase of the NAO strongly influence weather patterns across the US, Europe and the Middle East. A shift in recent decades toward a sustained positive NAO has raised questions about the influence of greenhouse gas emissions on this system. Unfortunately, instrumental records are too short to identify the natural baseline variability of the NAO, and NAO reconstructions generally encompass only land-based proxies, excluding ocean processes. Winter-time sea surface temperatures (SST) in the Sargasso Sea have previously been shown to correlate to the NAO (Visbeck et al., 2001), and thus a long winter SST record based on proxy data could be used to reconstruct NAO variability back in time. Here we present an annually resolved winter-time strontium to calcium ratio (Sr/Ca) record from a 220-year old brain coral (Diploria labyrinthiformis) collected from the south shore of Bermuda. Brain coral is prevalent in Bermuda and shows distinct annual banding in its skeleton providing precise age models. Winter-time coral Sr/Ca has previously been shown to accurately record winter SST free from growth rate influences (Goodkin et al., 2005), and that relationship is confirmed here. Cross-spectral analysis between winter-time coral Sr/Ca and four instrumental and proxy records of the NAO (Hurrell, 1995, Jones et al., 1997, Luterbacher et al., 2001, Cook et al., 2002) show two frequencies of coherence with >95% confidence. At periods greater than 20 years and between 3 and 5 years, the coral Sr/Ca effectively captures the NAO variability. Filtering the coral record to these frequencies and comparing to the instrumental and proxy records, including another marine-based NAO reconstruction from the North and Norwegian Seas (Schoene et al., 2003), show strong agreement and provide information about the differences between high and low frequency responses to the NAO. At high frequencies, SST at Bermuda shows a positive correlation to the NAO, as predicted by the tri-pole SST response (Visbeck et al., 2001), and succeeds well at capturing amplitude variability. At low frequencies, however, Bermuda SST shows a negative correlation to the NAO, different than the response predicted by the high frequency tri-pole pattern. One possible explanation for this shift is a response to changes in the meridional overturning circulation (MOC), which is believed to show variability at lower frequencies (Curry et al., 2003) and which may be driving changes in both SST and the NAO. Over 50 years during the late 20th century warming (1950-1999), the amplitude of the Sr/Ca-based NAO record at 3-5 year periods is 20% greater than that found during an equivalent interval at the end of the LIA (1800- 1849). Low-frequency (20-50 year) variability also appears larger during the second half of the 20th century, compared to the LIA. These results indicate a change in NAO variability at different mean temperatures, with larger amplitude changes during warmer climates. However, a sustained positive NAO during the late LIA does not appear to support the hypothesis of a linear relationship between mean NAO and mean hemispheric temperature, as observed during the late 20th century warming.
Environmental signatures associated with cholera epidemics
Constantin de Magny, Guillaume; Murtugudde, Raghu; Sapiano, Mathew R. P.; Nizam, Azhar; Brown, Christopher W.; Busalacchi, Antonio J.; Yunus, Mohammad; Nair, G. Balakrish; Gil, Ana I.; Lanata, Claudio F.; Calkins, John; Manna, Byomkesh; Rajendran, Krishnan; Bhattacharya, Mihir Kumar; Huq, Anwar; Sack, R. Bradley; Colwell, Rita R.
2008-01-01
The causative agent of cholera, Vibrio cholerae, has been shown to be autochthonous to riverine, estuarine, and coastal waters along with its host, the copepod, a significant member of the zooplankton community. Temperature, salinity, rainfall and plankton have proven to be important factors in the ecology of V. cholerae, influencing the transmission of the disease in those regions of the world where the human population relies on untreated water as a source of drinking water. In this study, the pattern of cholera outbreaks during 1998–2006 in Kolkata, India, and Matlab, Bangladesh, and the earth observation data were analyzed with the objective of developing a prediction model for cholera. Satellite sensors were used to measure chlorophyll a concentration (CHL) and sea surface temperature (SST). In addition, rainfall data were obtained from both satellite and in situ gauge measurements. From the analyses, a statistically significant relationship between the time series for cholera in Kolkata, India, and CHL and rainfall anomalies was determined. A statistically significant one month lag was observed between CHL anomaly and number of cholera cases in Matlab, Bangladesh. From the results of the study, it is concluded that ocean and climate patterns are useful predictors of cholera epidemics, with the dynamics of endemic cholera being related to climate and/or changes in the aquatic ecosystem. When the ecology of V. cholerae is considered in predictive models, a robust early warning system for cholera in endemic regions of the world can be developed for public health planning and decision making. PMID:19001267
The Modulated Annual Cycle: An Alternative Reference Frame for Climate Anomalies
NASA Astrophysics Data System (ADS)
Wu, Z.
2007-12-01
In climate science, an anomaly is the deviation of a quantity from its annual cycle (AC). There are many ways to define annual cycle. Traditionally, the annual cycle is taken to be an exact repetition of itself year after year. This stationary annual cycle may not reflect well the intrinsic nonlinearity of the climate system, especially under external forcing. In this study, we have reexamined the reference frame for anomalies by reexamining the annual cycle. We propose an alternative reference frame, the modulated annual cycle (MAC) that allows the annual cycle to change from year to year, for defining anomalies. In order for this alternative reference frame to be useful, we need to be able to define the instantaneous annual cycle. We therefore also introduce a new method to extract the MAC from climatic data. In the presence of an MAC, modulated in both amplitude and frequency, we can then define an alternative version of an anomaly, this time with respect to the instantaneous MAC rather than a permanent and unchanging AC. Based on this alternative definition of anomalies, we reexamine some familiar physical processes: in particular, the sea surface temperature (SST) reemergence and the ENSO phase locking to the annual cycle. We find that the re-emergence mechanism may be alternatively interpreted as an explanation of the change of the annual cycle instead of the interannual to interdecadal persistence of SST anomalies. We also find that the ENSO phase locking can largely be attributed to the residual annual cycle (the difference of the MAC and the corresponding traditional annual cycle) contained in the traditional anomaly, and, therefore, can be alternatively interpreted as a part of the annual cycle phase locked to the annual cycle itself. Two additional examples are also presented of the implications of using a MAC against which to define anomalies. We show that using MAC as a reference framework for anomaly can bypass the difficulty brought by concepts such as "decadal variability of summer (or winter) climate" for understanding the low-frequency variability of the climate system. We also point out the drawbacks related to the stationary assumption in previous studies of extreme weather and climate and propose instead the appropriateness of choosing a non-stationary framework to study extreme weather and climate events. The concept of an amplitude and frequency modulated annual cycle, a method to extract it, and its implications for the interpretation of physical processes, all may contribute potentially to a more consistent and fruitful way of examining past and future climate variability and change.
NASA Astrophysics Data System (ADS)
He, Shengping; Wang, Huijun; Gao, Yongqi; Li, Fei
2018-03-01
This study reveals an intensified influence of December Arctic Oscillation (AO) on the subsequent January surface air temperature (SAT) over Eurasia and North Africa in recent decades. The connection is statistically insignificant during 1957/58-1979/80 (P1), which becomes statistically significant during 1989/90-2011/12 (P2). The possible causes are further investigated. Associated with positive December AO during P2, significant anomalous anticyclone emerges over the central North Atlantic, which is accompanied with significant westerly and easterly anomalies along 45°-65°N and 20°-40°N, respectively. This favors the significant influence of December AO on the subsequent January SAT and atmospheric circulation over Eurasia and North Africa via triggering the North Atlantic tripole sea surface temperature (SST) anomaly that persists into the subsequent January. By contrast, the December AO-related anomalous anticyclone during P1 is weak and is characterized by two separate centers located in the eastern and western North Atlantic. Correspondingly, the westerly and easterly anomalies over the North Atlantic Ocean are weak and the-related tripole SST anomaly is not well formed, unfavorable for the persistent impact of the December AO into the subsequent January. Further analyses indicate that the different anomalous anticyclone associated with the December AO over the North Atlantic may be induced by the strengthened synoptic-scale eddy feedbacks over the North Atlantic, which may be related to the interdecadal intensification of the storm track activity. Additionally, the planetary stationary wave related to the December AO propagates from surface into upper stratosphere at mid-latitudes during P2, which further propagates downward to the troposphere and causes anomalous atmospheric circulation in the subsequent January.
NASA Astrophysics Data System (ADS)
Geng, Xin; Zhang, Wenjun; Stuecker, Malte F.; Liu, Peng; Jin, Fei-Fei; Tan, Guirong
2017-10-01
This work investigates the decadal modulation of the El Niño-Southern Oscillation (ENSO)-East Asian winter monsoon (EAWM) relationship by the Atlantic Multidecadal Oscillation (AMO). A stable ENSO-EAWM relationship is found during the positive AMO phase but not during the negative phase. While the impact of El Niño events on the EAWM does not depend on the AMO phase, a different picture is observed for La Niña events. The La Niña boreal winter season coincides with a strengthened EAWM during a positive AMO phase and a weakened EAWM during a negative AMO phase. We suggest that the AMO's modulating effect mainly comprises two pathways that influence ENSO's impact on the EAWM. On one hand, when La Niña coincides with a positive AMO, the warm SST anomalies over the western North Pacific (WNP) are amplified both in intensity and spatial extent, which favors strengthened WNP cyclonic anomalies and an enhanced EAWM. During La Niña with a negative AMO, only very weak SST anomalies occur over the WNP with reduced WNP cyclonic anomalies that are confined to the tropics, thus having little effect on the EAWM. On the other hand, an eastward-propagating Rossby wavetrain across the mid-high latitudes of Eurasia during a warm AMO phase strengthens the Siberian high and thus leads to a strengthened EAWM, while during a cold AMO phase the Siberian high is weakened, leading to a reduced EAWM. In contrast, El Niño and its associated atmospheric responses are relatively strong and stable, independent of the AMO phase. These results carry important implications to the seasonal-to-interannual predictability associated with ENSO.
Change of ENSO characteristics in response to global warming
NASA Astrophysics Data System (ADS)
Sun, X.; Xia, Y.; Yan, Y.; Feng, W.; Huang, F.; Yang, X. Q.
2017-12-01
By using datasets of HadISST monthly SST from 1895 to 2014 and 600-year simulations of two CESM model experiments with/without doubling of CO2 concentration, ENSO characteristics are compared pre- and post- global warming. The main results are as follows. Due to global warming, the maximum climatological SST warming occurs in the tropical western Pacific (La Niña-like background warming) and the tropical eastern Pacific (El Niño-like background warming) for observations and model, respectively, resulting in opposite zonal SST gradient anomalies in the tropical Pacific. The La Niña-like background warming induces intense surface divergence in the tropical central Pacific, which enhances the easterly trade winds in the tropical central-western Pacific and shifts the strongest ocean-atmosphere coupling westward, correspondingly. On the contrary, the El Niño-like background warming causes westerly winds in the whole tropical Pacific and moves the strongest ocean-atmosphere coupling eastward. Under the La Niña-like background warming, ENSO tends to develop and mature in the tropical central Pacific, because the background easterly wind anomaly weakens the ENSO-induced westerly wind anomaly in the tropical western Pacific, leading to the so-called "Central Pacific ENSO (CP ENSO)". However, the so-called "Eastern Pacific ENSO (EP ENSO)" is likely formed due to increased westerly wind anomaly by the El Niño-like background warming. ENSO lifetime is significantly extended under both the El Niño-like and the La Niña-like background warmings, and especially, it can be prolonged by up to 3 months in the situation of El Niño-like background warming. The prolonged El Nino lifetime mainly applies to extreme El Niño events, which is caused by earlier outbreak of the westerly wind bursts, shallower climatological thermocline depth and weaker "discharge" rate of the ENSO warm signal in response to global warming. Results from both observations and the model also show that the frequency of ENSO events greatly increases due to global warming, and many more extreme El Niño and La Niña events appear under the El Niño-like and the La Niña-like background warmings, respectively. This study reconciles the phenomena and mechanisms of different characteristics of ENSO changes in observations and models.
Observed Oceanic and Terrestrial Drivers of North African Climate
NASA Astrophysics Data System (ADS)
Yu, Y.; Notaro, M.; Wang, F.; Mao, J.; Shi, X.; Wei, Y.
2015-12-01
Hydrologic variability can pose a serious threat to the poverty-stricken regions of North Africa. Yet, the current understanding of oceanic versus terrestrial drivers of North African droughts/pluvials is largely model-based, with vast disagreement among models. In order to identify the observed drivers of North African climate and develop a benchmark for model evaluations, the multivariate Generalized Equilibrium Feedback Assessment (GEFA) is applied to observations, remotely sensed data, and reanalysis products. The identified primary oceanic drivers of North African rainfall variability are the Atlantic, tropical Indian, and tropical Pacific Oceans and Mediterranean Sea. During the summer monsoon, positive tropical eastern Atlantic sea-surface temperature (SST) anomalies are associated with a southward shift of the Inter-Tropical Convergence Zone, enhanced ocean evaporation, and greater precipitable water across coastal West Africa, leading to increased West African monsoon (WAM) rainfall and decreased Sahel rainfall. During the short rains, positive SST anomalies in the western tropical Indian Ocean and negative anomalies in the eastern tropical Indian Ocean support greater easterly oceanic flow, evaporation over the western ocean, and moisture advection to East Africa, thereby enhancing rainfall. The sign, magnitude, and timing of observed vegetation forcing on rainfall vary across North Africa. The positive feedback of leaf area index (LAI) on rainfall is greatest during DJF for the Horn of Africa, while it peaks in autumn and is weakest during the summer monsoon for the Sahel. Across the WAM region, a positive LAI anomaly supports an earlier monsoon onset, increased rainfall during the pre-monsoon, and decreased rainfall during the wet season. Through unique mechanisms, positive LAI anomalies favor enhanced transpiration, precipitable water, and rainfall across the Sahel and Horn of Africa, and increased roughness, ascent, and rainfall across the WAM region. The current study represents the first attempt to separate the observed roles of oceanic and vegetation feedbacks across North Africa, and provides observational benchmark for model evaluation.
Octreotide and pasireotide (dis)similarly inhibit pituitary tumor cells in vitro.
Ibáñez-Costa, Alejandro; Rivero-Cortés, Esther; Vázquez-Borrego, Mari C; Gahete, Manuel D; Jiménez-Reina, Luis; Venegas-Moreno, Eva; de la Riva, Andrés; Arráez, Miguel Ángel; González-Molero, Inmaculada; Schmid, Herbert A; Maraver-Selfa, Silvia; Gavilán-Villarejo, Inmaculada; García-Arnés, Juan Antonio; Japón, Miguel A; Soto-Moreno, Alfonso; Gálvez, María A; Luque, Raúl M; Castaño, Justo P
2016-11-01
Somatostatin analogs (SSA) are the mainstay of pharmacological treatment for pituitary adenomas. However, some patients escape from therapy with octreotide, a somatostatin receptor 2 (sst2)-preferring SSA, and pasireotide, a novel multi-sst-preferring SSA, may help to overcome this problem. It has been proposed that correspondence between sst1-sst5 expression pattern and SSA-binding profile could predict patient's response. To explore the cellular/molecular features associated with octreotide/pasireotide response, we performed a parallel comparison of their in vitro effects, evaluating sst1-sst5 expression, intracellular Ca 2+ signaling ([Ca 2+ ] i ), hormone secretion and cell viability, in a series of 85 pituitary samples. Somatotropinomas expressed sst5>sst2, yet octreotide reduced [Ca 2+ ] i more efficiently than pasireotide, while both SSA similarly decreased growth hormone release/expression and viability. Corticotropinomas predominantly expressed sst5, but displayed limited response to pasireotide, while octreotide reduced functional endpoints. Non-functioning adenomas preferentially expressed sst3 but, surprisingly, both SSA increased cell viability. Prolactinomas mainly expressed sst1 but were virtually unresponsive to SSA. Finally, both SSA decreased [Ca 2+ ] i in normal pituitaries. In conclusion, both SSA act in vitro on pituitary adenomas exerting both similar and distinct effects; however, no evident correspondence was found with the sst1-sst5 profile. Thus, it seems plausible that additional factors, besides the simple abundance of a given sst, critically influence the SSA response. © 2016 Society for Endocrinology.
NASA Astrophysics Data System (ADS)
Bhowmick, R.; Trepanier, J. C.
2017-12-01
Australia's northern and eastern coasts are highly affected by tropical cyclones (TC) occurring over the southeast Indian Ocean (SEIO) and southwest Pacific Ocean (SWPO) each year from October to May. TC prediction along the Australian coast is difficult because of the unpredictable nature of the TC tracks. TCs over this region are dependent on many climatological conditions, especially sea surface temperatures (SST) and upper ocean heat content (UOHC). TCs over the SWPO and SEIO are also sensitive to the El Niño Southern Oscillation, which causes seasonal, annual and decadal SST variations and variation in TC formation and strength. The SWPO and SEIO have experienced increasing temperatures in recent decades, and the trend may be related to a variety of atmospheric/oceanic changes, including changes to SST variability induced by changes in atmospheric aerosols. The aim of this paper is to study the influence of aerosol loading, defined by aerosol optical depth (AOD), on infrared SST (IRSST) anomalies, UOHC, and the number of days with named TCs (events with maximum sustained winds at least 17 m s-1) occurring over the SWPO and SEIO from 1985 - 2015.Granger causality is used to study the predictive capacity of ocean temperature variables and AOD for named TC days. Monthly satellite and meteorological data are examined to find spatial and temporal patterns of TC days with the different independent variables. Preliminary results show a positive relationship between AOD and TC days. Other sources of variability besides AOD over a longer time period are included here to provide a robust scenario of SWPO and SEIO's response to aerosol loading ultimately influencing TC formation. This study furthers the understanding of how TC incidence varies as a function of ocean temperature variability due to AOD variability in the SWPO and SEIO regions. This information is useful for the advancement of seasonal TC forecasting and hazard assessment and risk management strategies by incorporating aerosol as a cause for TC variability.
The Amazon hydrometeorology: Climatology, variability and links to changes in weather patterns
NASA Astrophysics Data System (ADS)
Fernandes, Katia De Avila
My thesis focuses on improving the quantification of the hydrological cycle and understanding the atmospheric processes that link weather to climate in the Amazon River basin. By using ERA40 and independent observations, I assess how well we can estimate the surface water budget in the Amazon River basin. I find that ERA40 basin wide annual precipitation (P) overall agrees with observations showing a slight underestimation of 10% in average, whereas runoff (R) is underestimated by a larger margin (˜25%). Observed residual of precipitation and runoff (denoted as P-R) is better estimated by ERA40 P-R than actual ET which includes soil moisture nudging. The causes for said discrepancies were found to partly relate to soil moisture nudging that needs to be applied during the dry season to produce realistic ET and compensate for the low soil moisture recharge during the previous wet season. Insufficient recharge may in part be caused by underestimation of rainfall amount and intensity; moreover the shallow root layer in the model does not represent the deep soil water reservoir characteristic of the Amazonian forest. Whether the hydrological cycle and weather patterns in the Amazon have changed during the past few decades is a highly debatable but central question for detecting climate change in the region. The second part of my thesis focus on the physical links between rainfall changes detected in observations, and changes of synoptic scale systems as represented by ERA40. My results suggest that an observed delayed wet season onset is consistent with a decreasing number of cold air incursion (CAI) days in southern Amazon for the period 1979--2001. The variability of CAI into southern Amazon is related to the variability of SST upstream of South America in the tropical Pacific and Indian Oceans. A Singular Value Decomposition Analysis (SVD) between CAI days and global SST reveal three main modes of co-variability. The first mode describes the effect of the El Nino-Southern Oscillation. During El Nino (La Nina) a strong (weak) subtropical jet stream over South America tends to prevent transient systems from moving to southern Amazon, resulting in decreased (increased) CAI days during SON. The second mode of co-variability shows an anomalously warm western Indian Ocean also related to strong subtropical jet stream, except the jet is positioned farther north in South America, which along with the absence of a well defined subpolar jet stream, favors the northward displacement of transient waves into central South America, but show little response in southern Amazon. The CAI days reconstructed from the first and second modes do not present any significant trend in southern Amazon. CAI days reconstructed from the third mode of co-variability on the other hand, reproduces the SON observed trend in almost its entirety. The third mode of co-variability describes negative (positive) anomalies in CAI days associated with cold (warm) SST anomalies in the eastern tropical Pacific, anomalous wavetrain in the Southern Hemisphere and Walker Cell displacement that are unfavorable (favorable) to the incursion of CAI into southern Amazon. The temporal evolution of this mode correlates negatively with the Pacific Decadal Oscillation, suggesting that the recent gradual shift in PDO polarity reflected on the interannual response of Southern Pacific atmospheric patterns, hence on the behavior of transients propagation. The negative PDO index and its related atmospheric patterns are in agreement with the reduced observed CAI days, which also related to a delayed wet season onset in the southern Amazon.
Global Climate Anomalies and Potential Infectious Disease Risks: 2014-2015
Chretien, Jean-Paul; Anyamba, Assaf; Small, Jennifer; Britch, Seth; Sanchez, Jose L.; Halbach, Alaina C.; Tucker, Compton; Linthicum, Kenneth J.
2015-01-01
Background: The El Niño/Southern Oscillation (ENSO) is a global climate phenomenon that impacts human infectious disease risk worldwide through droughts, floods, and other climate extremes. Throughout summer and fall 2014 and winter 2015, El Niño Watch, issued by the US National Oceanic and Atmospheric Administration, assessed likely El Niño development during the Northern Hemisphere fall and winter, persisting into spring 2015. Methods: We identified geographic regions where environmental conditions may increase infectious disease transmission if the predicted El Niño occurs using El Niño indicators (Sea Surface Temperature [SST], Outgoing Longwave Radiation [OLR], and rainfall anomalies) and literature review of El Niño-infectious disease associations. Results: SSTs in the equatorial Pacific and western Indian Oceans were anomalously elevated during August-October 2014, consistent with a developing weak El Niño event. Teleconnections with local climate is evident in global precipitation patterns, with positive OLR anomalies (drier than average conditions) across Indonesia and coastal southeast Asia, and negative anomalies across northern China, the western Indian Ocean, central Asia, north-central and northeast Africa, Mexico/Central America, the southwestern United States, and the northeastern and southwestern tropical Pacific. Persistence of these conditions could produce environmental settings conducive to increased transmission of cholera, dengue, malaria, Rift Valley fever, and other infectious diseases in regional hotspots as during previous El Niño events. Discussion and Conclusions: The current development of weak El Niño conditions may have significant potential implications for global public health in winter 2014-spring 2015. Enhanced surveillance and other preparedness measures in predicted infectious disease hotspots could mitigate health impacts. PMID:25685635
Coupling of Indian and East Asian Monsoon Precipitation in July-August
NASA Astrophysics Data System (ADS)
Day, J. A.; Fung, I. Y.; Risi, C. M.
2014-12-01
Recent work suggests that summer rainfall in the Indian and East Asian monsoons results from different mechanisms. The onset of intense convection in India is mediated by Hadley Cell transitions, whereas frontal rainfall in China (most notably during Meiyu season in June) arises from forced meridional convergence and zonal heat transport in the wake of the Tibetan Plateau. However, the leading mode of July-August interannual rainfall variability for All-Asia (defined as the region within 68E-140E and 5N-45N) demonstrates a statistically significant coupling between monthly anomalies in India and China. In particular, positive anomalies along the Himalayan Foothills are associated with positive anomalies along the Yangtze River, and also with negative anomalies over central India and northern and southern China. The entire pattern reverses in dry years over the Himalayan Foothills. This coupling is not significantly correlated with ENSO, the leading mode of global interannual variability. We propose that a channel of moisture transport links the Bay of Bengal to the Yangtze River valley across the high terrain of the Yunnan Plateau, on the southeast edge of the Tibetan Plateau. This channel only activates in July, when the maximum of moist static energy (MSE) shifts to land, and weakens in September with the cooling of Bay of Bengal SST. Our mechanism is substantiated by analysis of output from the LMDZ5 model, which includes a high-resolution nested grid nudged to reanalysis, improving the simulation of the Indian Monsoon and performance near high topography. Potential changes in moisture transport across the Yunnan Plateau under 21st century warming conditions may lead to modified interannual variability of Asian rainfall.
NASA Technical Reports Server (NTRS)
Pascolini-Campbell, M.; Seager, Richard; Pinson, Ariane; Cook, Benjamin I.
2017-01-01
Study region: The Upper Rio Grande (URG) flows from its headwaters in Colorado, U.S., and provides an important source of water to millions of people in the U.S. states of Colorado, New Mexico, Texas, and also Mexico. Study focus: We reassess the explanatory power of the relationship of sea surface temperatures (SST) on URG streamflow variability on interannual to interdecadal timescales. We find a significant amount of the variance of spring-summer URG streamflow cannot be fully explained by SST. New hydrological insights: We find that the interdecadal teleconnection between SST and streamflow is more clear than on interannual timescales. The highest ranked years tend to be clustered during positive phases of the Pacific Decadal Oscillation (PDO). During the periods of decadal high flow (1900-1920, and 1979-1995), Pacific SST resembles a positive PDO pattern and the Atlantic a negative Atlantic Multidecadal Oscillation (AMO) pattern; an interbasin pattern shown in prior studies to be conducive to high precipitation and streamflow. To account for the part of streamflow variance not explained by SST, we analyze atmospheric Reanalysis data for the months preceding the highest spring-summer streamflow events. A variety of atmospheric configurations are found to precede the highest flow years through anomalous moisture convergence. This lack of consistency suggests that, on interannual timescales, weather and not climate can dominate the generation of high streamflow events.
Aquarius reveals salinity structure of tropical instability waves
NASA Astrophysics Data System (ADS)
Lee, Tong; Lagerloef, Gary; Gierach, Michelle M.; Kao, Hsun-Ying; Yueh, Simon; Dohan, Kathleen
2012-06-01
Sea surface salinity (SSS) measurements from the Aquarius/SAC-D satellite during September-December 2011 provide the first satellite observations of the salinity structure of tropical instability waves (TIWs) in the Pacific. The related SSS anomaly has a magnitude of approximately ±0.5 PSU. Different from sea surface temperature (SST) and sea surface height anomaly (SSHA) where TIW-related propagating signals are stronger a few degrees away from the equator, the SSS signature of TIWs is largest near the equator in the eastern equatorial Pacific where salty South Pacific water meets the fresher Inter-tropical Convergence Zone water. The dominant westward propagation speed of SSS near the equator is approximately 1 m/s. This is twice as fast as the 0.5 m/s TIW speed widely reported in the literature, typically from SST and SSHA away from the equator. This difference is attributed to the more dominant 17-day TIWs near the equator that have a 1 m/s dominant phase speed and the stronger 33-day TIWs away from the equator that have a 0.5 m/s dominant phase speed. The results demonstrate the important value of Aquarius in studying TIWs.
Mid-Piacensian mean annual sea surface temperature: an analysis for data-model comparisons
Dowsett, Harry J.; Robinson, Marci M.; Foley, Kevin M.; Stoll, Danielle K.
2010-01-01
Numerical models of the global climate system are the primary tools used to understand and project climate disruptions in the form of future global warming. The Pliocene has been identified as the closest, albeit imperfect, analog to climate conditions expected for the end of this century, making an independent data set of Pliocene conditions necessary for ground truthing model results. Because most climate model output is produced in the form ofmean annual conditions, we present a derivative of the USGS PRISM3 Global Climate Reconstruction which integrates multiple proxies of sea surface temperature (SST) into single surface temperature anomalies. We analyze temperature estimates from faunal and floral assemblage data,Mg/Ca values and alkenone unsaturation indices to arrive at a single mean annual SST anomaly (Pliocene minus modern) best describing each PRISM site, understanding that multiple proxies should not necessarily show concordance. The power of themultiple proxy approach lies within its diversity, as no two proxies measure the same environmental variable. This data set can be used to verify climate model output, to serve as a starting point for model inter-comparisons, and for quantifying uncertainty in Pliocene model prediction in perturbed physics ensembles.
Determining critical groundwater level to prevent degraded peatland from severe peat fire
NASA Astrophysics Data System (ADS)
Putra, E. I.; Cochrane, M. A.; Vetrita, Y.; Graham, L.; Saharjo, B. H.
2018-05-01
Peat fires have been a severe recurrent problem for Indonesia, but droughts due to prolonged dry season aggravate burning conditions. To get a better understanding of this issue, we studied fire conditions in a portion of the ex-Mega Rice Project (MRP) area, Central Kalimantan. To examine fire season and hydrology factors affecting peat fires we analyzed daily TRMM data, Nino 3.4 SST Anomalies, and changing groundwater levels (GWL) from 300 dipwells. Our results quantify time-lags between the period of lowest precipitation and the lowest GWL; providing some ability to predict fire risk in advance of the lowest GWL. The rise of Nino 3.4 SST anomalies is significant risk factors for peat fire as they signify dry months which may yield large fire occurrences. GWL in 2011 was lower than in 2012, but fires were more frequent in 2012, indicating that low precipitation amounts in the wet season of 2011/2012 left the peat in a dry condition early in 2012. Most of the fires occurred in areas with GWL less than -30 cm, powerfully illustrating the importance of maintaining GWL at more than -10 cm, to prevent degraded peatlands from experiencing surface and deep peat fires.
NASA Astrophysics Data System (ADS)
Seo, H.; Kwon, Y. O.; Joyce, T. M.; Ummenhofer, C.
2016-12-01
This study examines the North Atlantic atmospheric circulation response to the meridional shift of Gulf Stream path using a large-ensemble, high-resolution, and hemispheric-scale WRF simulations. The model is forced with wintertime SST anomalies derived from a wide range of Gulf Stream shift scenarios. The key result of the model experiments, supported in part by an independent analysis of a reanalysis data set, is that the large-scale, quasi-steady North Atlantic circulation response is unambiguously nonlinear about the sign and amplitude of chosen SST anomalies. This nonlinear response prevails over the weak linear response and resembles the negative North Atlantic Oscillation, the leading intrinsic mode of variability in the model and the observations. Further analysis of the associated dynamics reveals that the nonlinear responses are accompanied by the anomalous southward shift of the North Atlantic eddy-driven jet stream, which is reinforced nearly equally by the high-frequency transient eddy feedback and the low-frequency high-latitude wave breaking events. The result highlights the importance of the intrinsically nonlinear transient eddy dynamics and eddy-mean flow interactions in generating the nonlinear forced response to the meridional shift in the Gulf Stream.
NASA Astrophysics Data System (ADS)
Black, D. E.; Thunell, R. C.; Kaplan, A.; Abahazi, M. A.; Tappa, E. J.
2007-05-01
Here we present an eight century tropical Atlantic SST record based on foraminiferal Mg/Ca recovered from Cariaco Basin sediments that have been calibrated to historical instrumental SSTs. Spatial correlations indicate that the proxy record is representative of SSTs over much of the Caribbean and tropical Atlantic. The Mg/Ca-SST record also correlates well with global land and sea surface temperature anomalies, and captures decadal-scale variations in Atlantic tropical storm and hurricane frequency over the late-19th and 20th centuries. The long-term record displays a surprising amount of variability for a tropical location under essentially modern boundary conditions. The tropical North Atlantic does not appear to have experienced a pronounced Medieval Warm Period relative to the complete record. However, strong Little Ice Age cooling of as much as 3 °C occurred between A. D. 1525 and 1625. Spring SSTs gradually rose between A. D. 1650 and 1900 followed by a 2.5 °C warming over the twentieth century. Viewed in the context of the complete record, twentieth century temperatures are not the warmest in the entire record on average, but they do show the largest increase in magnitude and fastest rate of SST change over the last eight hundred years. Spectral analysis of the Mg/Ca-SST data suggests that 2-5 and ~13 year SST variability that is characteristic of tropical Atlantic instrumental records may change through time.
ENSO Precipitation Variations as Seen by GPM and TRMM Radar and Passive Microwave Observations
NASA Astrophysics Data System (ADS)
Adler, R. F.; Wang, J. J.
2017-12-01
Tropical precipitation variations related to ENSO are the largest-scale such variations both spatially and in magnitude and are also the main driver of surface temperature-surface rainfall relationships on the inter-annual scale. GPM (and TRMM before it) provide a unique capability to examine these relations with both the passive and active microwave approaches. Documenting the phase and magnitudes of these relationships are important to understand these large-scale processes and to validate climate models. However, as past research by the authors have shown, the results of these relations have been different for passive vs. radar retrievals. In this study we re-examine these relations with the new GPM Version 5 products, focusing on the 2015-2016 El Nino event. The recent El Nino peaked in Dec. 2015 through Feb. 2016 with the usual patterns of precipitation anomalies across the Tropics as evident in both the GPM GMI and the Near Surface (NS) DPR (single frequency) retrievals. Integrating both the rainfall anomalies and the SST anomalies over the entire tropical ocean area (25N-25S) and comparing how they vary as a function of time on a monthly scale during the GPM era (2014-2017), the radar-based results show contrasting results to those from the GMI-based (and GPCP) results. The passive microwave data (GMI and GPCP) indicates a slope of 17%/C for the precipitation variations, while the radar NS indicates about half that ( 8%/C). This NS slope is somewhat less than calculated before with GPM's V4 data, but is larger than obtained with TRMM PR data ( 0%/C) for an earlier period during the TRMM era. Very similar results as to the DPR NS calculations are also obtained for rainfall at 2km and 4km altitude and for the Combined (DPR + GMI) product. However, at 6km altitude, although the reflectivity and rainfall magnitudes are much less than at lower altitudes, the slope of the rainfall/SST relation is 17%/C, the same as calculated with the passive microwave data. The reasons for these differences are explored and lead to conclusions that the radar-based estimates of surface rainfall with GPM have limitations (and are negatively biased) in relatively intense rainfall and this leads to an underestimation of large-scale rainfall under El Nino conditions, where more oceanic rainfall, and more intense rainfall are prevalent.
Wu, Henry C; Felis, Thomas; Scholz, Denis; Giry, Cyril; Kölling, Martin; Jochum, Klaus P; Scheffers, Sander R
2017-11-20
Explanations of the Classic Maya civilization demise on the Yucatán Peninsula during the Terminal Classic Period (TCP; ~CE 750-1050) are controversial. Multiyear droughts are one likely cause, but the role of the Caribbean Sea, the dominant moisture source for Mesoamerica, remains largely unknown. Here we present bimonthly-resolved snapshots of reconstructed sea surface temperature (SST) and salinity (SSS) variability in the southern Caribbean from precisely dated fossil corals. The results indicate pronounced interannual to decadal SST and SSS variability during the TCP, which may be temporally coherent to precipitation anomalies on the Yucatán. Our results are best explained by changed Caribbean SST gradients affecting the Caribbean low-level atmospheric jet with consequences for Mesoamerican precipitation, which are possibly linked to changes in Atlantic Meridional Overturning Circulation strength. Our findings provide a new perspective on the anomalous hydrological changes during the TCP that complement the oft-suggested southward displacement of the Intertropical Convergence Zone. We advocate for a strong role of Caribbean SST and SSS condition changes and related ocean-atmosphere interactions that notably influenced the propagation and transport of precipitation to the Yucatán Peninsula during the TCP.
The Teleconnection Between Atlantic Sea Surface Temperature and Eastern Pacific Tropical Cyclones
NASA Astrophysics Data System (ADS)
Patricola, C. M.; Saravanan, R.; Chang, P.
2016-12-01
The El Niño-Southern Oscillation (ENSO) is a major source of seasonal tropical cyclone (TC) predictability, in both local and remote ocean basins. Unusually warm eastern tropical Pacific sea-surface temperature (SST) during El Niño tends not only to enhance local TC activity in the eastern North Pacific (ENP) but also to suppress Atlantic TCs via well-known teleconnections. Here, we demonstrate that Atlantic SST variability likewise exerts a significant influence on remote TC activity in the eastern Pacific basin using observations and 27 km resolution tropical channel model simulations. Observed and simulated accumulated cyclone energy in the ENP is substantially reduced during the positive phase of the Atlantic Meridional Mode (AMM), which is characterized by warm and cool SST anomalies in the northern and southern tropical Atlantic respectively, and vice versa during the cool AMM phase. We find that the observed anti-correlation in seasonal TC activity between the Atlantic and ENP basins is driven by interannual climate variability in both the tropical Pacific (ENSO) and Atlantic (AMM). The physical mechanisms that drive the teleconnection between Atlantic SST and ENP TC activity will also be presented. This work provides information that can be used to improve seasonal forecasts and future projections of ENP tropical cyclone activity.
Southern Ocean Climate and Sea Ice Anomalies Associated with the Southern Oscillation
NASA Technical Reports Server (NTRS)
Kwok, R.; Comiso, J. C.
2001-01-01
The anomalies in the climate and sea ice cover of the Southern Ocean and their relationships with the Southern Oscillation (SO) are investigated using a 17-year of data set from 1982 through 1998. We correlate the polar climate anomalies with the Southern Oscillation index (SOI) and examine the composites of these anomalies under the positive (SOI > 0), neutral (0 > SOI > -1), and negative (SOI < -1) phases of SOL The climate data set consists of sea-level pressure, wind, surface air temperature, and sea surface temperature fields, while the sea ice data set describes its extent, concentration, motion, and surface temperature. The analysis depicts, for the first time, the spatial variability in the relationship of the above variables and the SOL The strongest correlation between the SOI and the polar climate anomalies are found in the Bellingshausen, Amundsen and Ross sea sectors. The composite fields reveal anomalies that are organized in distinct large-scale spatial patterns with opposing polarities at the two extremes of SOI, and suggest oscillating climate anomalies that are closely linked to the SO. Within these sectors, positive (negative) phases of the SOI are generally associated with lower (higher) sea-level pressure, cooler (warmer) surface air temperature, and cooler (warmer) sea surface temperature in these sectors. Associations between these climate anomalies and the behavior of the Antarctic sea ice cover are clearly evident. Recent anomalies in the sea ice cover that are apparently associated with the SOI include: the record decrease in the sea ice extent in the Bellingshausen Sea from mid- 1988 through early 199 1; the relationship between Ross Sea SST and ENSO signal, and reduced sea ice concentration in the Ross Sea; and, the shortening of the ice season in the eastern Ross Sea, Amundsen Sea, far western Weddell Sea, and the lengthening of the ice season in the western Ross Sea, Bellingshausen Sea and central Weddell Sea gyre over the period 1988-1994. Four ENSO episodes over the last 17 years contributed to a negative mean in the SOI (-0.5). In each of these episodes, significant retreats in the Bellingshausen/Amundsen Sea were observed providing direct confirmation of the impact of SO on the Antarctic sea ice cover.
NASA Astrophysics Data System (ADS)
Barron, J. A.; Metcalfe, S. E.; Davies, S. J.
2014-12-01
We evaluate proxy reconstructions of Holocene records precipitation in the North American Monsoon region (SW US and northern Mexico) and regions to the south (southern Mexico, Central America, and the Caribbean). Seventy-seven precipitation records are tabulated at 2-3 kyr increments for the past 12 kyr, with results displayed mainly on maps. Sites currently dominated by summer precipitation, coupled with proxy records that distinguish summer vs. winter vegetation are used to estimate summer precipitation. Resulting patterns of precipitation variability are evaluated against SST reconstructions from surrounding tropical seas -eastern tropical Pacific, Gulf of California (GoC), Caribbean, and Gulf of Mexico (GoM), which are source areas for summer precipitation. During the Younger Dryas, ca. 12 ka, widespread drying in southern regions contrasted with evidence for wetter conditions in multiple records from the SW US. By 9 ka wetter conditions had spread to the southern regions, likely reflecting an increased Caribbean low-level jet associated with an enhanced Bermuda High. Pacific westerlies contributed significant winter precipitation to the southwestern US and northernmost Mexico at 9 ka. The modern geographical pattern of summer precipitation was established by 6 ka, as the Bermuda High moved northward following the demise of the Laurentide Ice Sheet. SSTs in the GoC and GoM increased, and the NAM strengthened. Increased regional precipitation differences are apparent by 4 ka, likely reflecting enhanced ENSO variability. Most of the southern region experienced increased precipitation during the Medieval Climate Anomaly (MCA), whereas winter drought dominated in the north. In contrast, much of the Little Ice Age (LIA) was characterized by generally drier conditions in Central America and Mexico, with wetter conditions in the SW US. Results are broadly supportive of enhanced La Niña-like conditions during the MCA vs. increased ENSO variability during the LIA.
Changes in the Probability of Extreme Events: Where to Look for their Causes?
NASA Astrophysics Data System (ADS)
Groisman, P. Y.; Gulev, S. K.
2011-12-01
When wet or dry events are extraordinary and are associated with flooding, water shortages, severe vegetation stress, crop failures, property losses, and harm to human health, we name them extremes. Numerous observational studies show that in the past several decades precipitation has become more intense over most of the extra-tropics. At the same time, (and often in the same regions) precipitation events may occur more or less frequently or come in sequences of prolonged no-rain and wet periods. Each extreme event which manifests itself is a consequence of individual factors that are difficult to foresee. However, when these events occur more frequently, we must admit that there are changes in the probability of their occurrence and try to estimate why this happens. For example, in attempts to project prolonged extreme events (such as droughts) in a given season, climatologists used to look for their precursors in the Earth system "memory" that include anomalies in sea ice (SI) and snow cover extents (SCE), sea surface temperature (SST), and soil moisture and for their patterns (e.g., Southern Oscillation). However, the major "memory" component of the Earth system is the Earth Climate System itself. It began changing (IPCC 2007) and is not any longer a constant factor: SST, SI, and SCE anomalies of the past now became "climatology" and it is time to include this new reality in our analyses of the frequency and intensity of extreme events. Furthermore, land use, urban development, industrial development, and water management keep changing landscapes and, there are good reasons to believe that regional environmental changes feed back causing in some areas changes in the probability of extreme events. The central United States is among the regions where the strongest increase in intense rainfall in the 20th century has been documented. This raises the question of how precipitation patterns in the central US will evolve in the future: Will the recent trends toward increases in intense rainfall continue? We present and try to substantiate a hypothesis that the observed changes in characteristics of precipitation in the central US during the 20th century have been produced by interactions of local and regional land use change with global climate changes. We shall describe climatological and anthropogenic precursors of several extreme outbreaks over the northern extratropics. These precursors were waiting for their time and manifested themselves when the time became right. For example, in order to anticipate changes in the probability of the future heat outbreaks over Europe (including European Russia), the factors that control prolonged summer anticyclone conditions over the region should be thoroughly monitored and skillfully projected. Apparently, anomalies and/or trends in regional mean surface air temperature and precipitation are not the best among these precursors.
Stengel, Andreas; Rivier, Jean; Taché, Yvette
2013-04-01
Somatostatin-14 was discovered in 1973 in the hypothalamus as a peptide inhibiting growth hormone release. Somatostatin interacts with five receptor subtypes (sst(1-5)) which are widely distributed in the brain with a distinct, but overlapping, expression pattern. During the last few years, the development of highly selective peptide agonists and antagonists provided new insight to characterize the role of somatostatin receptor subtypes in the pleiotropic actions of somatostatin. Recent evidence in rodents indicates that the activation of selective somatostatin receptor subtypes in the brain blunts stress-corticotropin-releasing factor (CRF) related ACTH release (sst2/5), sympathetic-adrenal activaton (sst5), stimulation of colonic motility (sst1), delayed gastric emptying (sst5), suppression of food intake (sst2) and the anxiogenic-like (sst2) response. These findings suggest that brain somatostatin signaling pathways may play an important role in dampening CRF-mediated endocrine, sympathetic, behavioral and visceral responses to stress. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Narapusetty, Balachandrudu
2017-06-01
The sensitivity of the sea-surface temperature (SST) prediction skill to the atmospheric internal variability (weather noise) in the North Pacific (20∘-60∘N;120∘E-80∘W) on decadal timescales is examined using state-of-the-art Climate Forecasting System model version 2 (CFS) and a variation of CFS in an Interactive Ensemble approach (CFSIE), wherein six copies of atmospheric components with different perturbed initial states of CFS are coupled with the same ocean model by exchanging heat, momentum and fresh water fluxes dynamically at the air-sea interface throughout the model integrations. The CFSIE experiments are designed to reduce weather noise and using a few ten-year long forecasts this study shows that reduction in weather noise leads to lower SST forecast skill. To understand the pathways that cause the reduced SST prediction skill, two twenty-year long forecasts produced with CFS and CFSIE for 1980-2000 are analyzed for the ocean subsurface characteristics that influence SST due to the reduction in weather noise in the North Pacific. The heat budget analysis in the oceanic mixed layer across the North Pacific reveals that weather noise significantly impacts the heat transport in the oceanic mixed layer. In the CFSIE forecasts, the reduced weather noise leads to increased variations in heat content due to shallower mixed layer, diminished heat storage and enhanced horizontal heat advection. The enhancement of the heat advection spans from the active Kuroshio regions of the east coast of Japan to the west coast of continental United States and significantly diffuses the basin-wide SST anomaly (SSTA) contrasts and leads to reduction in the SST prediction skill in decadal forecasts.
NASA Technical Reports Server (NTRS)
Schubert, S.; Stewart, R.; Wang, H.; Barlow, M.; Berbery, H.; Cai, W.; Hoerling, M.; Kanikicharla, K.; Koster, R.; Lyon, B.;
2016-01-01
Drought affects virtually every region of the world, and potential shifts in its character in a changing climate are a major concern. This article presents a synthesis of current understanding of meteorological drought, with a focus on the large-scale controls on precipitation afforded by sea surface temperature (SST anomalies), land surface feedbacks, and radiative forcings. The synthesis is primarily based on regionally-focused articles submitted to the Global Drought Information System (GDIS) collection together with new results from a suite of atmospheric general circulation model experiments intended to integrate those studies into a coherent view of drought worldwide. On interannual time scales, the preeminence of ENSO as a driver of meteorological drought throughout much of the Americas, eastern Asia, Australia, and the Maritime Continent is now well established, whereas in other regions (e.g., Europe, Africa, and India), the response to ENSO is more ephemeral or nonexistent. Northern Eurasia, central Europe, as well as central and eastern Canada stand out as regions with little SST-forced impacts on precipitation interannual time scales. Decadal changes in SST appear to be a major factor in the occurrence of long-term drought, as highlighted by apparent impacts on precipitation of the late 1990s 'climate shifts' in the Pacific and Atlantic SST. Key remaining research challenges include (i) better quantification of unforced and forced atmospheric variability as well as land/atmosphere feedbacks, (ii) better understanding of the physical basis for the leading modes of climate variability and their predictability, and (iii) quantification of the relative contributions of internal decadal SST variability and forced climate change to long-term drought.
Simulated variability of the Atlantic meridional overturning circulation
NASA Astrophysics Data System (ADS)
Bentsen, M.; Drange, H.; Furevik, T.; Zhou, T.
To examine the multi-annual to decadal scale variability of the Atlantic Meridional Overturning Circulation (AMOC) we conducted a four-member ensemble with a daily reanalysis forced, medium-resolution global version of the isopycnic coordinate ocean model MICOM, and a 300-years integration with the fully coupled Bergen Climate Model (BCM). The simulations of the AMOC with both model systems yield a long-term mean value of 18 Sv and decadal variability with an amplitude of 1-3 Sv. The power spectrum of the inter-annual to decadal scale variability of the AMOC in BCM generally follows the theoretical red noise spectrum, with indications of increased power near the 20-years period. Comparison with observational proxy indices for the AMOC, e.g. the thickness of the Labrador Sea Water, the strength of the baroclinic gyre circulation in the North Atlantic Ocean, and the surface temperature anomalies along the mean path of the Gulf Stream, shows similar trends and phasing of the variability, indicating that the simulated AMOC variability is robust and real. Mixing indices have been constructed for the Labrador, the Irminger and the Greenland-Iceland-Norwegian (GIN) seas. While convective mixing in the Labrador and the GIN seas are in opposite phase, and linked to the NAO as observations suggest, the convective mixing in the Irminger Sea is in phase with or leads the Labrador Sea. Newly formed deep water is seen as a slow, anomalous cold and fresh, plume flowing southward along the western continental slope of the Atlantic Ocean, with a return flow of warm and saline water on the surface. In addition, fast-travelling topographically trapped waves propagate southward along the continental slope towards equator, where they go east and continue along the eastern rim of the Atlantic. For both types of experiments, the Northern Hemisphere sea level pressure and 2 m temperature anomaly patterns computed based on the difference between climate states with strong and weak AMOC yields a NAO-like pattern with intensified Icelandic low and Azores high, and a warming of 0.25-0.5 °C of the central North Atlantic sea-surface temperature (SST). The reanalysis forced simulations indicate a coupling between the Labrador Sea Water production rate and an equatorial Atlantic SST index in accordance with observations. This coupling is not identified in the coupled simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fukai; Lu, Jian; Garuba, Oluwayemi
This paper explores the use of linear response function (LRF) to relate the mean sea surface temperature (SST) response to prescribed ocean heat convergence (q-flux) forcings. Two methods for constructing the LRF based on the fluctuation-dissipation theorem (FDT) and Green’s function (GRF) are examined. A 900-year preindustrial simulation from the Community Earth System Model with a slab ocean (CESM-SOM) is used to estimate the LRF using FDT. For GRF, 106 pairs of CESM-SOM simulations with warm and cold q-flux patches are performed. FDT is found to have skill in estimating the SST response to a q-flux forcing when the localmore » SST response is strong, but it fails in inverse estimation of the q-flux forcing for a given SST pattern. In contrast, GRF is shown to be reasonably accurate in estimating both SST response and q-flux forcing. Possible degradation in FDT may be attributed to insufficient data sampling, significant departures of the SST data from Gaussian, and the non-normality of the constructed operator. The accurately estimated GRF-based LRF is used to (i) generate a global surface temperature sensitivity map that shows the q-flux forcing in higher latitudes to be three to four times more effective than in low latitudes in producing global surface warming; (ii) identify the most excitable SST mode (neutral vector) resembling Interdecadal Pacific Oscillation; and (iii) estimate a time-invariant q-flux forcing needed for maintaining the GHG-induced SST warming pattern. The GRF experiments will be used to construct LRF for other variables to further explore climate sensitivities and feedbacks.« less