Sample records for sst system performance

  1. An Assessment of the Subseasonal Forecast Performance in the Extended Global Ensemble Forecast System (GEFS)

    NASA Astrophysics Data System (ADS)

    Sinsky, E.; Zhu, Y.; Li, W.; Guan, H.; Melhauser, C.

    2017-12-01

    Optimal forecast quality is crucial for the preservation of life and property. Improving monthly forecast performance over both the tropics and extra-tropics requires attention to various physical aspects such as the representation of the underlying SST, model physics and the representation of the model physics uncertainty for an ensemble forecast system. This work focuses on the impact of stochastic physics, SST and the convection scheme on forecast performance for the sub-seasonal scale over the tropics and extra-tropics with emphasis on the Madden-Julian Oscillation (MJO). A 2-year period is evaluated using the National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS). Three experiments with different configurations than the operational GEFS were performed to illustrate the impact of the stochastic physics, SST and convection scheme. These experiments are compared against a control experiment (CTL) which consists of the operational GEFS but its integration is extended from 16 to 35 days. The three configurations are: 1) SPs, which uses a Stochastically Perturbed Physics Tendencies (SPPT), Stochastic Perturbed Humidity (SHUM) and Stochastic Kinetic Energy Backscatter (SKEB); 2) SPs+SST_bc, which uses a combination of SPs and a bias-corrected forecast SST from the NCEP Climate Forecast System Version 2 (CFSv2); and 3) SPs+SST_bc+SA_CV, which combines SPs, a bias-corrected forecast SST and a scale aware convection scheme. When comparing to the CTL experiment, SPs shows substantial improvement. The MJO skill has improved by about 4 lead days during the 2-year period. Improvement is also seen over the extra-tropics due to the updated stochastic physics, where there is a 3.1% and a 4.2% improvement during weeks 3 and 4 over the northern hemisphere and southern hemisphere, respectively. Improvement is also seen when the bias-corrected CFSv2 SST is combined with SPs. Additionally, forecast performance enhances when the scale aware convection scheme (SPs+SST_bc+SA_CV) is added, especially over the tropics. Among the three experiments, the SPs+SST_bc+SA_CV is the best configuration in MJO forecast skill.

  2. Real-time forecasting at weekly timescales of the SST and SLA of the Ligurian Sea with a satellite-based ocean forecasting (SOFT) system

    NASA Astrophysics Data System (ADS)

    ÁLvarez, A.; Orfila, A.; Tintoré, J.

    2004-03-01

    Satellites are the only systems able to provide continuous information on the spatiotemporal variability of vast areas of the ocean. Relatively long-term time series of satellite data are nowadays available. These spatiotemporal time series of satellite observations can be employed to build empirical models, called satellite-based ocean forecasting (SOFT) systems, to forecast certain aspects of future ocean states. SOFT systems can predict satellite-observed fields at different timescales. The forecast skill of SOFT systems forecasting the sea surface temperature (SST) at monthly timescales has been extensively explored in previous works. In this work we study the performance of two SOFT systems forecasting, respectively, the SST and sea level anomaly (SLA) at weekly timescales, that is, providing forecasts of the weekly averaged SST and SLA fields with 1 week in advance. The SOFT systems were implemented in the Ligurian Sea (Western Mediterranean Sea). Predictions from the SOFT systems are compared with observations and with the predictions obtained from persistence models. Results indicate that the SOFT system forecasting the SST field is always superior in terms of predictability to persistence. Minimum prediction errors in the SST are obtained during winter and spring seasons. On the other hand, the biggest differences between the performance of SOFT and persistence models are found during summer and autumn. These changes in the predictability are explained on the basis of the particular variability of the SST field in the Ligurian Sea. Concerning the SLA field, no improvements with respect to persistence have been found for the SOFT system forecasting the SLA field.

  3. Architectural Design for European SST System

    NASA Astrophysics Data System (ADS)

    Utzmann, Jens; Wagner, Axel; Blanchet, Guillaume; Assemat, Francois; Vial, Sophie; Dehecq, Bernard; Fernandez Sanchez, Jaime; Garcia Espinosa, Jose Ramon; Agueda Mate, Alberto; Bartsch, Guido; Schildknecht, Thomas; Lindman, Niklas; Fletcher, Emmet; Martin, Luis; Moulin, Serge

    2013-08-01

    The paper presents the results of a detailed design, evaluation and trade-off of a potential European Space Surveillance and Tracking (SST) system architecture. The results have been produced in study phase 1 of the on-going "CO-II SSA Architectural Design" project performed by the Astrium consortium as part of ESA's Space Situational Awareness Programme and are the baseline for further detailing and consolidation in study phase 2. The sensor network is comprised of both ground- and space-based assets and aims at being fully compliant with the ESA SST System Requirements. The proposed ground sensors include a surveillance radar, an optical surveillance system and a tracking network (radar and optical). A space-based telescope system provides significant performance and robustness for the surveillance and tracking of beyond-LEO target objects.

  4. Cool Down Experiences with the SST-1 Helium Cryogenics System before and after Current Feeders System Modification

    NASA Astrophysics Data System (ADS)

    Patel, R.; Panchal, P.; Panchal, R.; Tank, J.; Mahesuriya, G.; Sonara, D.; Srikanth, G. L. N.; Garg, A.; Bairagi, N.; Christian, D.; Patel, K.; Shah, P.; Nimavat, H.; Sharma, R.; Patel, J. C.; Gupta, N. C.; Prasad, U.; Sharma, A. N.; Tanna, V. L.; Pradhan, S.

    The SST-1 machine comprises a superconducting magnet system (SCMS), which includes TF and PF magnets. In order to charge the SCMS, we need superconducting current feeders consisting of SC feeders and vapor cooled current leads (VCCLs). We have installed all 10 (+/-) pairs of VCCLs for the TF and PF systems. While conducting initial engineering validation of the SST-1 machine, our prime objective was to produce circular plasma using only the TF system. During the SST-1 campaign I to VI, we have to stop the PF magnets cooling in order to get the cryo- stable conditions for current charging of the TF magnets system. In that case, the cooling of the PF current leads is not essential. It has been also observed that after aborting the PF system cooling, there was a limited experimental window of TF operation. Therefore, in the recent SST-1 campaign-VII, we removed the PF current leads (9 pairs) and kept only single (+/-) pair of the 10,000 A rated VCCLs to realize the charging of the TF system for the extended window of operation. We have observed a better cryogenic stability in the TF magnets after modifications in the CFS. In this paper, we report the comparison of the cool down performance for the SST-1 machine operation before and after modifications of the current feeders system.

  5. Assessment of Global Forecast Ocean Assimilation Model (FOAM) using new satellite SST data

    NASA Astrophysics Data System (ADS)

    Ascione Kenov, Isabella; Sykes, Peter; Fiedler, Emma; McConnell, Niall; Ryan, Andrew; Maksymczuk, Jan

    2016-04-01

    There is an increased demand for accurate ocean weather information for applications in the field of marine safety and navigation, water quality, offshore commercial operations, monitoring of oil spills and pollutants, among others. The Met Office, UK, provides ocean forecasts to customers from governmental, commercial and ecological sectors using the Global Forecast Ocean Assimilation Model (FOAM), an operational modelling system which covers the global ocean and runs daily, using the NEMO (Nucleus for European Modelling of the Ocean) ocean model with horizontal resolution of 1/4° and 75 vertical levels. The system assimilates salinity and temperature profiles, sea surface temperature (SST), sea surface height (SSH), and sea ice concentration observations on a daily basis. In this study, the FOAM system is updated to assimilate Advanced Microwave Scanning Radiometer 2 (AMSR2) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) SST data. Model results from one month trials are assessed against observations using verification tools which provide a quantitative description of model performance and error, based on statistical metrics, including mean error, root mean square error (RMSE), correlation coefficient, and Taylor diagrams. A series of hindcast experiments is used to run the FOAM system with AMSR2 and SEVIRI SST data, using a control run for comparison. Results show that all trials perform well on the global ocean and that largest SST mean errors were found in the Southern hemisphere. The geographic distribution of the model error for SST and temperature profiles are discussed using statistical metrics evaluated over sub-regions of the global ocean.

  6. Performance of Superconducting Current Feeder System for SST-1

    NASA Astrophysics Data System (ADS)

    Garg, A.; Nimavat, H.; Shah, P.; Patel, K.; Sonara, D.; Srikanth, G. L. N.; Bairagi, N.; Christian, D.; Patel, R.; Mahesuria, G.; Panchal, R.; Panchal, P.; Sharma, R.; Purwar, G.; Singh, G. K.; Tanna, V. L.; Pradhan, S.

    2017-02-01

    Superconducting (SC) Current Feeder System (CFS) for SST-1 (Steady state superconducting Tokamak was installed and commissioned in 2012. Since then, it has been operating successfully in successive plasma campaigns. The aim of this system is to transfer electric current from power supply at ambient temperature to SC magnets which are at 4.5 K. It consists of 10 kA vapour cooled current leads, Nb-Ti/Cu bus-bars, liquid nitrogen cooled radiation shield and liquid/vapour helium circuits. This system had been operated reliably in different scenario such as initial cool- down, electric current (ramp-up, ramp down and long-time steady state condition), cold with no current and in quench etc. In addition to this, it has fulfilled the long term operation with SST-1 with current flat top of 4.7 kA for more than 20,000 seconds. This paper highlights operational performance along with results in different aspects.

  7. SST Technology Follow-on Program - Phase I, Performance Evaluation of an SST Noise Suppressor Nozzle System. Volume 1. Suppressed Mode.

    DTIC Science & Technology

    ACOUSTIC INSULATION, *TURBOJET EXHAUST NOZZLES, *JET ENGINE NOISE, REDUCTION, JET TRANSPORT AIRCRAFT, THRUST AUGMENTATION , SUPERSONIC NOZZLES, DUCT...INLETS, CONVERGENT DIVERGENT NOZZLES, SUBSONIC FLOW, SUPERSONIC FLOW, SUPPRESSORS, TURBOJET INLETS, BAFFLES, JET PUMPS, THRUST , DRAG, TEMPERATURE

  8. The components of somatostatin and ghrelin systems are altered in neuroendocrine lung carcinoids and associated to clinical-histological features.

    PubMed

    Herrera-Martínez, Aura D; Gahete, Manuel D; Sánchez-Sánchez, Rafael; Salas, Rosa Ortega; Serrano-Blanch, Raquel; Salvatierra, Ángel; Hofland, Leo J; Luque, Raúl M; Gálvez-Moreno, María A; Castaño, Justo P

    2017-07-01

    Lung carcinoids (LCs) are rare tumors that comprise 1-5% of lung malignancies but represent 20-30% of neuroendocrine tumors. Their incidence is progressively increasing and a better characterization of these tumors is required. Alterations in somatostatin (SST)/cortistatin (CORT) and ghrelin systems have been associated to development/progression of various endocrine-related cancers, wherein they may become useful diagnostic, prognostic and therapeutic biomarkers. We aimed to evaluate the expression levels of ghrelin and SST/CORT system components in LCs, as well as to explore their putative relationship with histological/clinical characteristics. An observational retrospective study was performed; 75 LC patients with clinical/histological characteristics were included. Samples from 46 patients were processed to isolate mRNA from tumor and adjacent non-tumor region, and the expression levels of SST/CORT and ghrelin systems components, determined by quantitative-PCR, were compared to those of 7 normal lung tissues. Patient cohort was characterized by mean age 53±15 years, 48% males, 34% with tobacco exposure; 71.4/28.6% typical/atypical carcinoids, 21.7% incidental tumors, 4.3% functioning tumors, 17.7% with metastasis. SST/CORT and ghrelin system components were expressed at variable levels in a high proportion of tumors, as well as in adjacent non-tumor tissues, while a lower proportion of normal lung samples also expressed these molecules. A gradation was observed from normal non-neoplastic lung tissues, non-tumor adjacent tissue and LCs, being SST, sst4, sst5, GHS-R1a and GHS-R1b overexpressed in tumor tissue compared to normal tissue. Importantly, several SST/CORT and ghrelin system components displayed significant correlations with relevant clinical parameters, such as necrosis, peritumoral and vascular invasion, or metastasis. Altogether, these data reveal a prominent, widespread expression of key SST/CORT/ghrelin system components in LCs, where they display clinical-histological correlations, which could provide novel, valuable markers for NET patient management. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Modeling of Solid State Transformer for the FREEDM System Demonstration

    NASA Astrophysics Data System (ADS)

    Jiang, Youyuan

    The Solid State Transformer (SST) is an essential component in the FREEDM system. This research focuses on the modeling of the SST and the controller hardware in the loop (CHIL) implementation of the SST for the support of the FREEDM system demonstration. The energy based control strategy for a three-stage SST is analyzed and applied. A simplified average model of the three-stage SST that is suitable for simulation in real time digital simulator (RTDS) has been developed in this study. The model is also useful for general time-domain power system analysis and simulation. The proposed simplified av-erage model has been validated in MATLAB and PLECS. The accuracy of the model has been verified through comparison with the cycle-by-cycle average (CCA) model and de-tailed switching model. These models are also implemented in PSCAD, and a special strategy to implement the phase shift modulation has been proposed to enable the switching model simulation in PSCAD. The implementation of the CHIL test environment of the SST in RTDS is described in this report. The parameter setup of the model has been discussed in detail. One of the dif-ficulties is the choice of the damping factor, which is revealed in this paper. Also the grounding of the system has large impact on the RTDS simulation. Another problem is that the performance of the system is highly dependent on the switch parameters such as voltage and current ratings. Finally, the functionalities of the SST have been realized on the platform. The distributed energy storage interface power injection and reverse power flow have been validated. Some limitations are noticed and discussed through the simulation on RTDS.

  10. Serum levels of interleukin-33 and its soluble form receptor (sST2) are associated with cognitive performance in patients with schizophrenia.

    PubMed

    de Campos-Carli, Salvina Maria; Miranda, Aline Silva; Dias, Ingrid Caroline Silva; de Oliveira, Amanda; Cruz, Breno Fiuza; Vieira, Érica Leandro Marciano; Rocha, Natalia Pessoa; Barbosa, Izabela Guimarães; Salgado, João Vinícius; Teixeira, Antônio Lúcio

    2017-04-01

    Changes in immune system have been reported in schizophrenia. This study aimed to evaluate the involvement of IL-33, a member of the IL-1 cytokine family, in schizophrenia and its association with cognitive performance in these patients. Forty patients with chronic schizophrenia and 40 healthy subjects participated in the study. Serum levels of IL-33 and sST2 (soluble form of the IL-33 receptor) were measured using enzyme-linked immunosorbent assay (ELISA). Patients were evaluated with the Brief Assessment of Cognition in Schizophrenia (BACS) and the Schizophrenia Cognition Rating Scale (SCoRS). Patients with schizophrenia and controls presented similar serum levels of IL-33 and sST2. Levels of both markers were positively correlated with cognitive performance in patients with schizophrenia. We found a significant correlation between IL-33 and sST2 levels and cognition in schizophrenia. Our results might help in the understanding of how immune markers are associated with cognitive impairment in schizophrenia. It remains to be determined whether the association between IL-33/sST2 and cognition is restricted to patients with schizophrenia. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The single mirror small sized telescope for the Cherenkov telescope array

    NASA Astrophysics Data System (ADS)

    Heller, M.; Schioppa, E., Jr.; Porcelli, A.; Pujadas, I. Troyano; Ziętara, K.; Della Volpe, D.; Montaruli, T.; Cadoux, F.; Favre, Y.; Aguilar, J. A.; Christov, A.; Prandini, E.; Rajda, P.; Rameez, M.; Bilnik, W.; Błocki, J.; Bogacz, L.; Borkowski, J.; Bulik, T.; Frankowski, A.; Grudzińska, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Miranda, L. D. Medina; Michałowski, J.; Moderski, R.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Schovanek, P.; Seweryn, K.; Sliusar, V.; Skowron, K.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Walter, R.; Więcek, M.; Zagdański, A.; CTA Consortium

    2017-01-01

    The Small Size Telescope with Single Mirror (SST-1M) is one of the proposed types of Small Size Telescopes (SST) for the Cherenkov Telescope Array (CTA). About 70 SST telescopes will be part the CTA southern array which will also include Medium Sized Telescopes (MST) in its threshold configuration. Optimized for the detection of gamma rays in the energy range from 5 TeV to 300 TeV, the SST-1M uses a Davies-Cotton optics with a 4 m dish diameter with a field of view of 9°. The Cherenkov light resulting from the interaction of the gamma-rays in the atmosphere is focused onto a 88 cm side-to-side hexagonal photo-detection plane. The latter is composed of 1296 hollow light guides coupled to large area hexagonal silicon photomultipliers (SiPM). The SiPM readout is fully digital readout as for the trigger system. The compact and lightweight design of the SST-1M camera offiers very high performance ideal for gamma-ray observation requirement. In this contribution, the concept, design, performance and status of the first telescope prototype are presented.

  12. Group for High Resolution Sea Surface Temperature (GHRSST) analysis fields inter-comparisons—Part 2: Near real time web-based level 4 SST Quality Monitor (L4-SQUAM)

    NASA Astrophysics Data System (ADS)

    Dash, Prasanjit; Ignatov, Alexander; Martin, Matthew; Donlon, Craig; Brasnett, Bruce; Reynolds, Richard W.; Banzon, Viva; Beggs, Helen; Cayula, Jean-Francois; Chao, Yi; Grumbine, Robert; Maturi, Eileen; Harris, Andy; Mittaz, Jonathan; Sapper, John; Chin, Toshio M.; Vazquez-Cuervo, Jorge; Armstrong, Edward M.; Gentemann, Chelle; Cummings, James; Piollé, Jean-François; Autret, Emmanuelle; Roberts-Jones, Jonah; Ishizaki, Shiro; Høyer, Jacob L.; Poulter, Dave

    2012-11-01

    There are a growing number of level 4 (L4; gap-free gridded) sea surface temperature (SST) products generated by blending SST data from various sources which are available for use in a wide variety of operational and scientific applications. In most cases, each product has been developed for a specific user community with specific requirements guiding the design of the product. Consequently differences between products are implicit. In addition, anomalous atmospheric conditions, satellite operations and production anomalies may occur which can introduce additional differences. This paper describes a new web-based system called the L4 SST Quality Monitor (L4-SQUAM) developed to monitor the quality of L4 SST products. L4-SQUAM intercompares thirteen L4 products with 1-day latency in an operational environment serving the needs of both L4 SST product users and producers. Relative differences between products are computed and visualized using maps, histograms, time series plots and Hovmöller diagrams, for all combinations of products. In addition, products are compared to quality controlled in situ SST data (available from the in situ SST Quality Monitor, iQUAM, companion system) in a consistent manner. A full history of products statistics is retained in L4-SQUAM for time series analysis. L4-SQUAM complements the two other Group for High Resolution SST (GHRSST) tools, the GHRSST Multi Product Ensemble (GMPE) and the High Resolution Diagnostic Data Set (HRDDS) systems, documented in part 1 of this paper and elsewhere, respectively. Our results reveal significant differences between SST products in coastal and open ocean areas. Differences of >2 °C are often observed at high latitudes partly due to different treatment of the sea-ice transition zone. Thus when an ice flag is available, the intercomparisons are performed in two ways: including and excluding ice-flagged grid points. Such differences are significant and call for a community effort to understand their root cause and ensure consistency between SST products. Future work focuses on including the remaining daily L4 SST products, accommodating for newer L4 SSTs which resolve the diurnal variability and evaluating retrospectively regenerated L4 SSTs to support satellite data reprocessing efforts aimed at generating improved SST Climate Data Records.

  13. The Solaris-Panoptes Global Network of Robotic Telescopes and the Borowiec Satellite Laser Ranging System for SST: A Progress Report

    NASA Astrophysics Data System (ADS)

    Konacki, M.; Lejba, P.; Sybilski, P.; Pawłaszek, R.; Kozłowski, S.; Suchodolski, T.; Słonina, M.; Litwicki, M.; Sybilska, A.; Rogowska, B.; Kolb, U.; Burwitz, V.; Baader, J.; Groot, P.; Bloemen, S.; Ratajczak, M.; Hełminiak, K.; Borek, R.; Chodosiewicz, P.; Chimicz, A.

    We present an update on the preparation of our assets that consists of a robotic network of eight optical telescopes and a laser ranging station for regular services in the SST domain. We report the development of new optical assets that include a double telescope system, Panoptes-1AB, and a new astrograph on our Solaris-3 telescope at the Siding Spring Observatory, Australia. Progress in the software development necessary for smooth SST operation includes a web based portal and an XML Azure Queue scheduling for the network giving easy access to our sensors. Astrometry24.net our new prototype cloud service for fast astrometry, streak detection and measurement with precision and performance results is also described. In the laser domain, for more than a year, Space Research Centre Borowiec laser station has regularly tracked space debris cooperative and uncooperative targets. The efforts of the stations’ staff have been focused on the tracking of typical rocket bodies from the LEO regime. Additionally, a second independent laser system fully dedicated to SST activities is under development. It will allow for an increased pace of operation of our consortium in the global SST laser domain.

  14. Mount control system of the ASTRI SST-2M prototype for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Antolini, Elisa; Tosti, Gino; Tanci, Claudio; Bagaglia, Marco; Canestrari, Rodolfo; Cascone, Enrico; Gambini, Giorgio; Nucciarelli, Giuliano; Pareschi, Giovanni; Scuderi, Salvo; Stringhetti, Luca; Busatta, Andrea; Giacomel, Stefano; Marchiori, Gianpietro; Manfrin, Cristiana; Marcuzzi, Enrico; Di Michele, Daniele; Grigolon, Carlo; Guarise, Paolo

    2016-08-01

    The ASTRI SST-2M telescope is an end-to-end prototype proposed for the Small Size class of Telescopes (SST) of the future Cherenkov Telescope Array (CTA). The prototype is installed in Italy at the INAF observing station located at Serra La Nave on Mount Etna (Sicily) and it was inaugurated in September 2014. This paper presents the software and hardware architecture and development of the system dedicated to the control of the mount, health, safety and monitoring systems of the ASTRI SST-2M telescope prototype. The mount control system installed on the ASTRI SST-2M telescope prototype makes use of standard and widely deployed industrial hardware and software. State of the art of the control and automation industries was selected in order to fulfill the mount related functional and safety requirements with assembly compactness, high reliability, and reduced maintenance. The software package was implemented with the Beckhoff TwinCAT version 3 environment for the software Programmable Logical Controller (PLC), while the control electronics have been chosen in order to maximize the homogeneity and the real time performance of the system. The integration with the high level controller (Telescope Control System) has been carried out by choosing the open platform communications Unified Architecture (UA) protocol, supporting rich data model while offering compatibility with the PLC platform. In this contribution we show how the ASTRI approach for the design and implementation of the mount control system has made the ASTRI SST-2M prototype a standalone intelligent machine, able to fulfill requirements and easy to be integrated in an array configuration such as the future ASTRI mini-array proposed to be installed at the southern site of the Cherenkov Telescope Array (CTA).

  15. Somatostatin and its 2A receptor in dorsal root ganglia and dorsal horn of mouse and human: expression, trafficking and possible role in pain

    PubMed Central

    2014-01-01

    Background Somatostatin (SST) and some of its receptor subtypes have been implicated in pain signaling at the spinal level. In this study we have investigated the role of SST and its sst2A receptor (sst2A) in dorsal root ganglia (DRGs) and spinal cord. Results SST and sst2A protein and sst2 transcript were found in both mouse and human DRGs, sst2A-immunoreactive (IR) cell bodies and processes in lamina II in mouse and human spinal dorsal horn, and sst2A-IR nerve terminals in mouse skin. The receptor protein was associated with the cell membrane. Following peripheral nerve injury sst2A-like immunoreactivity (LI) was decreased, and SST-LI increased in DRGs. sst2A-LI accumulated on the proximal and, more strongly, on the distal side of a sciatic nerve ligation. Fluorescence-labeled SST administered to a hind paw was internalized and retrogradely transported, indicating that a SST-sst2A complex may represent a retrograde signal. Internalization of sst2A was seen in DRG neurons after systemic treatment with the sst2 agonist octreotide (Oct), and in dorsal horn and DRG neurons after intrathecal administration. Some DRG neurons co-expressed sst2A and the neuropeptide Y Y1 receptor on the cell membrane, and systemic Oct caused co-internalization, hypothetically a sign of receptor heterodimerization. Oct treatment attenuated the reduction of pain threshold in a neuropathic pain model, in parallel suppressing the activation of p38 MAPK in the DRGs Conclusions The findings highlight a significant and complex role of the SST system in pain signaling. The fact that the sst2A system is found also in human DRGs and spinal cord, suggests that sst2A may represent a potential pharmacologic target for treatment of neuropathic pain. PMID:24521084

  16. Serum soluble ST2 as diagnostic marker of systemic inflammatory reactive syndrome of bacterial etiology in children.

    PubMed

    Calò Carducci, Francesca Ippolita; Aufiero, Lelia Rotondi; Folgori, Laura; Vittucci, Anna Chiara; Amodio, Donato; De Luca, Maia; Li Pira, Giuseppina; Bergamini, Alberto; Pontrelli, Giuseppe; Finocchi, Andrea; D'Argenio, Patrizia

    2014-02-01

    Accurate and timely diagnosis of community-acquired bacterial versus viral infections in children with systemic inflammatory response syndrome (SIRS) remains challenging both for clinician and laboratory. In the quest of new biochemical markers to distinguish bacterial from viral infection, we have explored the possible role of the soluble secreted form of ST2 (sST2). This explorative prospective cohort study included children with SIRS who were suspected of having community-acquired infections. Plasma samples for sST2 measurement were obtained from 64 hospitalized children, 41 of whom had SIRS of bacterial etiology and 23 SIRS of viral etiology, and from 20 healthy, age- and sex-matched control children. sST2 measurement was carried out by enzyme-linked immunosorbent assay in parallel with standard measurements of procalcitonin (PCT) and C reactive protein (CRP). Our findings demonstrate that children with SIRS associated with bacterial infection present significantly increased levels of sST2, when compared with patients with SIRS of viral etiology and healthy children. More important, receiver operating characteristic curve analysis indicated that sST2 has a significant diagnostic performance with respect to early identification of SIRS of bacterial etiology, which was similar to that of PCT and greater than that of CRP. Finally, the combination of sST2 plus PCT and/or CRP, and PCT plus CRP increased their sensitivity and negative predictive value compared with sST2, PCT and CRP alone. In conclusion, sST2 level may prove useful in predicting bacterial etiology in children with SIRS.

  17. Variable School Start Times and Middle School Student's Sleep Health and Academic Performance.

    PubMed

    Lewin, Daniel S; Wang, Guanghai; Chen, Yao I; Skora, Elizabeth; Hoehn, Jessica; Baylor, Allison; Wang, Jichuan

    2017-08-01

    Improving sleep health among adolescents is a national health priority and implementing healthy school start times (SSTs) is an important strategy to achieve these goals. This study leveraged the differences in middle school SST in a large district to evaluate associations between SST, sleep health, and academic performance. This cross-sectional study draws data from a county-wide surveillance survey. Participants were three cohorts of eighth graders (n = 26,440). The school district is unique because SST ranged from 7:20 a.m. to 8:10 a.m. Path analysis and probit regression were used to analyze associations between SST and self-report measures of weekday sleep duration, grades, and homework controlling for demographic variables (sex, race, and socioeconomic status). The independent contributions of SST and sleep duration to academic performance were also analyzed. Earlier SST was associated with decreased sleep duration (χ 2  = 173, p < .0001) and deficient sleep (≤7 hours) among 45% of students. Students with SST before 7:45 a.m. were at increased risk of decreased sleep duration, academic performance, and academic effort. Path analysis models demonstrated the independent contributions of sleep duration, SST, and variable effects for demographic variables. This is the first study to evaluate the independent contributions of SST and sleep to academic performance in a large sample of middle school students. Deficient sleep was prevalent, and the earliest SST was associated with decrements in sleep and academics. These findings support the prioritization of policy initiatives to implement healthy SST for younger adolescents and highlight the importance of sleep health education disparities among race and gender groups. Copyright © 2017 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  18. The single mirror small size telescope (SST-1M) of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Bilnik, W.; Borkowski, J.; Cadoux, F.; Christov, A.; della Volpe, D.; Favre, Y.; Heller, M.; Kasperek, J.; Lyard, E.; Marszałek, A.; Moderski, R.; Montaruli, T.; Porcelli, A.; Prandini, E.; Rajda, P.; Rameez, M.; Schioppa, E., Jr.; Troyano Pujadas, I.; Zietara, K.; Blocki, J.; Bogacz, L.; Bulik, T.; Frankowski, A.; Grudzinska, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Lalik, K.; Mach, E.; Mandat, D.; Michałowski, J.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Stawarz, L.; Stodulska, M.; Stodulski, M.; Toscano, S.; Walter, R.; WiÈ©cek, M.; Zagdański, A.

    2016-07-01

    The Small Size Telescope with Single Mirror (SST-1M) is one of the proposed types of Small Size Telescopes (SST) for the Cherenkov Telescope Array (CTA). The CTA south array will be composed of about 100 telescopes, out of which about 70 are of SST class, which are optimized for the detection of gamma rays in the energy range from 5 TeV to 300 TeV. The SST-1M implements a Davies-Cotton optics with a 4 m dish diameter with a field of view of 9°. The Cherenkov light produced in atmospheric showers is focused onto a 88 cm wide hexagonal photo-detection plane, composed of 1296 custom designed large area hexagonal silicon photomultipliers (SiPM) and a fully digital readout and trigger system. The SST-1M camera has been designed to provide high performance in a robust as well as compact and lightweight design. In this contribution, we review the different steps that led to the realization of the telescope prototype and its innovative camera.

  19. An Assessment of the SST Simulation Using the Climate Forecast System Coupled to the SSiB Surface Model

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Xue, Y.; Huang, B.; Lee, J.; De Sales, F.

    2016-12-01

    A long term simulation has been conducted using the Climate Forecast System (CFSv2) coupled to the SSiB-2 land model, which consists of the Global Forecast System atmospheric model (GFS) and the Modular Ocean model - version 4 (MOM4) as the ocean component. This study evaluates the model's performance in simulating sea surface temperature (SST) mean state, trend, and inter-annual and decadal variabilities. The model is able to produce the reasonable spatial distribution of the SST climatology; however, it has prominent large scale biases. In the middle latitude of the Northern Hemisphere, major cold biases is close to the warm side of the large SST gradients, which may be associated with the weaker Kuroshio and Gulf Stream extensions that diffuse the SST gradient. IN addition, warm biases extend along the west coast of the North America continent to the high latitude, which may be related with excessive Ekman down-welling and solar radiation fluxes reaching to the surface due to the lack of cloud there. Warm biases also exist over the tropical cold tough areas in the Pacific and Atlantic. The global SST trend and interannual variations are well captured except for that in the south Hemisphere after year 2000, which is mainly contributed by the bias from the southern Pacific Ocean. Although the model fails to accurately produce ENSO events in proper years, it does reproduce the ENSO frequency well; they are skewed toward more warm events after 1990. The model also shows ability in SST decadal variation, such as the so-called inter-decadal Pacific oscillation (IPO); however, its phases seem to go reversely compared with the observation.

  20. The role of cortistatin in the human immune system.

    PubMed

    van Hagen, P Martin; Dalm, Virgil A; Staal, Frank; Hofland, Leo J

    2008-05-14

    Cortistatin (CST) is a recently described neuropeptide that shares high homology with somatostatin (somatotropin release-inhibiting factor, SRIF) and binds with high affinity to all somatostatin (sst) receptor subtypes. CST is currently known to have a widespread distribution in many human organs including the immune system. The activities specific to CST may be partially attributable to its binding to the growth hormone secretagogue (GHS)-receptor (GHS-R) and the orphan G-protein-coupled receptor MrgX2. Human immune cells produce CST, whereas macrophage lineage and activated endothelium express sst2, and human lymphocytes express sst3. The human thymus expresses sst1, 2, 3, MrgX2 and almost all immune cells express GHS-R. Moreover, at this very moment promising research with CST in experimental animal models is being performed. On the basis of these promising results, studies aiming to further evaluate the possibilities of CST as a therapeutic agent in human immune-mediated inflammatory diseases are warranted.

  1. Differential plastic changes in synthesis and binding in the mouse somatostatin system after electroconvulsive stimulation.

    PubMed

    Olesen, Mikkel Vestergaard; Gøtzsche, Casper René; Christiansen, Søren Hofman; Woldbye, David Paul Drucker

    2018-03-21

    Electroconvulsive therapy (ECT) is regularly used to treat patients with severe major depression, but the mechanisms underlying the beneficial effects remain uncertain. Electroconvulsive stimulation (ECS) regulates diverse neurotransmitter systems and induces anticonvulsant effects, properties implicated in mediating therapeutic effects of ECT. Somatostatin (SST) is a candidate for mediating these effects because it is upregulated by ECS and exerts seizure-suppressant effects. However, little is known about how ECS might affect the SST receptor system. The present study examined effects of single and repeated ECS on the synthesis of SST receptors (SSTR1-4) and SST, and SST receptor binding ([125I]LTT-SST28) in mouse hippocampal regions and piriform/parietal cortices. A complex pattern of plastic changes was observed. In the dentate gyrus, SST and SSTR1 expression and the number of hilar SST immunoreactive cells were significantly increased at 1 week after repeated ECS while SSTR2 expression was downregulated by single ECS, and SSTR3 mRNA and SST binding were elevated 24 h after repeated ECS. In hippocampal CA1 and parietal/piriform cortices, we found elevated SST mRNA levels 1 week after repeated ECS and elevated SST binding after single ECS and 24 h after repeated ECS. In hippocampal CA3, repeated ECS increased SST expression 1 week after and SST binding 24 h after. In the parietal cortex, SSTR2 mRNA expression was downregulated after single ECS while SSTR4 mRNA expression was upregulated 24 h after repeated ECS. Considering the known anticonvulsant effects of SST, it is likely that these ECS-induced neuroplastic changes in the SST system could participate in modulating neuronal excitability and potentially contribute to therapeutic effects of ECT.

  2. Evaluating operational AVHRR sea surface temperature data at the coastline using surfers

    NASA Astrophysics Data System (ADS)

    Brewin, Robert J. W.; de Mora, Lee; Billson, Oliver; Jackson, Thomas; Russell, Paul; Brewin, Thomas G.; Shutler, Jamie D.; Miller, Peter I.; Taylor, Benjamin H.; Smyth, Tim J.; Fishwick, James R.

    2017-09-01

    Sea surface temperature (SST) is an essential climate variable that can be measured routinely from Earth Observation (EO) with high temporal and spatial coverage. To evaluate its suitability for an application, it is critical to know the accuracy and precision (performance) of the EO SST data. This requires comparisons with co-located and concomitant in situ data. Owing to a relatively large network of in situ platforms there is a good understanding of the performance of EO SST data in the open ocean. However, at the coastline this performance is not well known, impeded by a lack of in situ data. Here, we used in situ SST measurements collected by a group of surfers over a three year period in the coastal waters of the UK and Ireland, to improve our understanding of the performance of EO SST data at the coastline. At two beaches near the city of Plymouth, UK, the in situ SST measurements collected by the surfers were compared with in situ SST collected from two autonomous buoys located ∼7 km and ∼33 km from the coastline, and showed good agreement, with discrepancies consistent with the spatial separation of the sites. The in situ SST measurements collected by the surfers around the coastline, and those collected offshore by the two autonomous buoys, were used to evaluate the performance of operational Advanced Very High Resolution Radiometer (AVHRR) EO SST data. Results indicate: (i) a significant reduction in the performance of AVHRR at retrieving SST at the coastline, with root mean square errors in the range of 1.0 to 2.0 °C depending on the temporal difference between match-ups, significantly higher than those at the two offshore stations (0.4 to 0.6 °C); (ii) a systematic negative bias in the AVHRR retrievals of approximately 1 °C at the coastline, not observed at the two offshore stations; and (iii) an increase in the root mean square error at the coastline when the temporal difference between match-ups exceeded three hours. Harnessing new solutions to improve in situ sampling coverage at the coastline, such as tagging surfers with sensors, can improve our understanding of the performance of EO SST data in coastal regions, helping inform users interested in EO SST products for coastal applications. Yet, validating EO SST products using in situ SST data at the coastline is challenged by difficulties reconciling the two measurements, which are provided at different spatial scales in a dynamic and complex environment.

  3. Using Discrete Event Simulation for Programming Model Exploration at Extreme-Scale: Macroscale Components for the Structural Simulation Toolkit (SST).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilke, Jeremiah J; Kenny, Joseph P.

    2015-02-01

    Discrete event simulation provides a powerful mechanism for designing and testing new extreme- scale programming models for high-performance computing. Rather than debug, run, and wait for results on an actual system, design can first iterate through a simulator. This is particularly useful when test beds cannot be used, i.e. to explore hardware or scales that do not yet exist or are inaccessible. Here we detail the macroscale components of the structural simulation toolkit (SST). Instead of depending on trace replay or state machines, the simulator is architected to execute real code on real software stacks. Our particular user-space threading frameworkmore » allows massive scales to be simulated even on small clusters. The link between the discrete event core and the threading framework allows interesting performance metrics like call graphs to be collected from a simulated run. Performance analysis via simulation can thus become an important phase in extreme-scale programming model and runtime system design via the SST macroscale components.« less

  4. Surface wave effect on the upper ocean in marine forecast

    NASA Astrophysics Data System (ADS)

    Wang, Guansuo; Qiao, Fangli; Xia, Changshui; Zhao, Chang

    2015-04-01

    An Operational Coupled Forecast System for the seas off China and adjacent (OCFS-C) is constructed based on the paralleled wave-circulation coupled model, which is tested with comprehensive experiments and operational since November 1st, 2007. The main feature of the system is that the wave-induced mixing is considered in circulation model. Daily analyses and three day forecasts of three-dimensional temperature, salinity, currents and wave height are produced. Coverage is global at 1/2 degreed resolution with nested models up to 1/24 degree resolution in China Sea. Daily remote sensing sea surface temperatures (SST) are taken to relax to an analytical product as hot restarting fields for OCFS-C by the Nudging techniques. Forecasting-data inter-comparisons are performed to measure the effectiveness of OCFS-C in predicting upper-ocean quantities including SST, mixed layer depth (MLD) and subsurface temperature. The variety of performance with lead time and real-time is discussed as well using the daily statistic results for SST between forecast and satellite data. Several buoy observations and many Argo profiles are used for this validation. Except the conventional statistical metrics, non-dimension skill scores (SS) is taken to estimate forecast skill. Model SST comparisons with more one year-long SST time series from 2 buoys given a large SS value (more than 0.90). And skill in predicting the seasonal variability of SST is confirmed. Model subsurface temperature comparisons with that from a lot of Argo profiles indicated that OCFS-C has low skill in predicting subsurface temperatures between 80m and 120m. Inter-comparisons of MLD reveal that MLD from model is shallower than that from Argo profiles by about 12m. QCFS-C is successful and steady in predicting MLD. The daily statistic results for SST between 1-d, 2-d and 3-d forecast and data is adopted to describe variability of Skill in predicting SST with lead time or real time. In a word QCFS-C shows reasonable accuracy over a series of studies designed to test ability to predict upper ocean conditions.

  5. Causes of the large warm bias in the Angola-Benguela Frontal Zone in the Norwegian Earth System Model

    NASA Astrophysics Data System (ADS)

    Koseki, Shunya; Keenlyside, Noel; Demissie, Teferi; Toniazzo, Thomas; Counillon, Francois; Bethke, Ingo; Ilicak, Mehmet; Shen, Mao-Lin

    2018-06-01

    We have investigated the causes of the sea surface temperature (SST) bias in the Angola-Benguela Frontal Zone (ABFZ) of the southeastern Atlantic Ocean simulated by the Norwegian Earth System Model (NorESM). Similar to other coupled-models, NorESM has a warm SST bias in the ABFZ of up to 8 °C in the annual mean. Our analysis of NorESM reveals that a cyclonic surface wind bias over the ABFZ drives a locally excessively strong southward (0.05 m/s (relative to observation)) Angola Current displacing the ABFZ southward. A series of uncoupled stand-alone atmosphere and ocean model simulations are performed to investigate the cause of the coupled model bias. The stand-alone atmosphere model driven with observed SST exhibits a similar cyclonic surface circulation bias; while the stand-alone ocean model forced with the reanalysis data produces a warm SST in the ABFZ with a magnitude approximately half of that in the coupled NorESM simulation. An additional uncoupled sensitivity experiment shows that the atmospheric model's local negative surface wind curl generates anomalously strong Angola Current at the ocean surface. Consequently, this contributes to the warm SST bias in the ABFZ by 2 °C (compared to the reanalysis forced simulation). There is no evidence that local air-sea feedbacks among wind stress curl, SST, and sea level pressure (SLP) affect the ABFZ SST bias. Turbulent surface heat flux differences between coupled and uncoupled experiments explain the remaining 2 °C warm SST bias in NorESM. Ocean circulation, upwelling and turbulent heat flux errors all modulate the intensity and the seasonality of the ABFZ errors.

  6. Somatostatin Is Essential for the Sexual Dimorphism of GH Secretion, Corticosteroid-Binding Globulin Production, and Corticosterone Levels in Mice

    PubMed Central

    Adams, Jessica M.; Otero-Corchon, Veronica; Hammond, Geoffrey L.; Veldhuis, Johannes D.; Qi, Nathan

    2015-01-01

    Distinct male and female patterns of pituitary GH secretion produce sexually differentiated hepatic gene expression profiles, thereby influencing steroid and xenobiotic metabolism. We used a fully automated system to obtain serial nocturnal blood samples every 15 minutes from cannulated wild-type (WT) and somatostatin knockout (Sst-KO) mice to determine the role of SST, the principal inhibitor of GH release, in the generation of sexually dimorphic GH pulsatility. WT males had lower mean and median GH values, less random GH secretory bursts, and longer trough periods between GH pulses than WT females. Each of these parameters was feminized in male Sst-KO mice, whereas female Sst-KO mice had higher GH levels than all other groups, but GH pulsatility was unaffected. We next performed hepatic mRNA profiling with high-density microarrays. Male Sst-KO mice exhibited a globally feminized pattern of GH-dependent mRNA levels, but female Sst-KO mice were largely unaffected. Among the differentially expressed female-predominant genes was Serpina6, which encodes corticosteroid-binding globulin (CBG). Increased CBG was associated with elevated diurnal peak plasma corticosterone in unstressed WT females and both sexes of Sst-KO mice compared with WT males. Sst-KO mice also had exaggerated ACTH and corticosterone responses to acute restraint stress. However, consistent with their lack of phenotypic signs of excess glucocorticoids, cerebrospinal fluid concentrations of free corticosterone in Sst-KO mice were not elevated. In summary, SST is necessary for the prolonged interpulse troughs that define masculinized pituitary GH secretion. SST also contributes to sexual dimorphism of the hypothalamic-pituitary-adrenal axis via GH-dependent regulation of hepatic CBG production. PMID:25551181

  7. Gas Fuelling System for SST-1Tokamak

    NASA Astrophysics Data System (ADS)

    Dhanani, Kalpesh; Raval, D. C.; Khan, Ziauddin; Semwal, Pratibha; George, Siju; Paravastu, Yuvakiran; Thankey, Prashant; Khan, M. S.; Pradhan, Subrata

    2017-04-01

    SST-1 Tokamak, the first Indian Steady-state Superconducting experimental device is at present under operation in the Institute for Plasma Research. For plasma break down & initiation, piezoelectric valve based gas feed system is implemented as a primary requirement due to its precise control, easy handling, low construction and maintenance cost and its flexibility in the selection of the working gas. Hydrogen gas feeding with piezoelectric valve is used in the SST-1 plasma experiments. The piezoelectric valves used in SST-1 are remotely driven by a PXI based platform and are calibrated before each SST-1 plasma operation with precise control. This paper will present the technical development and the results of the gas fuelling system of SST-1.

  8. The ASTRI SST-2M prototype for the Cherenkov Telescope Array: prototype technologies goals and strategies for the future SST

    NASA Astrophysics Data System (ADS)

    Marchiori, Gianpietro; Busatta, Andrea; Giacomel, Stefano; Folla, Ivan; Valsecchi, Marco; Canestrari, Rodolfo; Bonnoli, Giacomo; Cascone, Enrico; Conconi, Paolo; Fiorini, Mauro; Giro, Enrico; La Palombara, Nicola; Pareschi, Giovanni; Perri, Luca; Rodeghiero, Gabriele; Sironi, Giorgia; Stringhetti, Luca; Toso, Giorgio; Tosti, Gino; Pellicciari, Carlo

    2014-07-01

    The Cherenkov Telescope Array (CTA) observatory will represent the next generation of Imaging Atmospheric Cherenkov Telescope. Using a combination of large-, medium-, and small-scale telescopes (LST, MST, SST, respectively), it will explore the Very High Energy domain from a few tens of GeVup to about few hundreds of TeV with unprecedented sensitivity, angular resolution and imaging quality. In this framework, the Italian ASTRI program, led by the Italian National Institute of Astrophysics (INAF) developed a 4-meter class telescope, which will adopt an aplanatic, wide-field, double-reflection optical layout in a Schwarzschild- Couder configuration. Within this program INAF assigned to the consortium between Galbiati Group and EIE Group the construction, assembly and tests activities of the prototype named ASTRI SST-2M. On the basis of the lesson learnt from the prototype, other telescopes will be produced, starting from a re-design phase, in order to optimize performances and the overall costs and production schedule for the CTA-SST telescope. This paper will firstly give an overview of the concept for the SST prototype mount structure. In this contest, the technologies adopted for the design, manufacturing and tests of the entire system will be presented. Moreover, a specific focus on the challenges of the prototype and the strategies associated with it will be provided, in order to outline the near future performance goals for this type of Cherenkov telescopes employed for Gamma ray science.

  9. The role of ocean-atmosphere interaction in Typhoon Sinlaku (2008) using a regional coupled data assimilation system

    NASA Astrophysics Data System (ADS)

    Wada, Akiyoshi; Kunii, Masaru

    2017-05-01

    For improving analyses of tropical cyclone (TC) and sea surface temperature (SST) and thereby TC simulations, a regional mesoscale strongly coupled atmosphere-ocean data assimilation system was developed with the local ensemble transform Kalman filter (LETKF) implemented with the Japan Meteorological Agency's nonhydrostatic model (NHM) coupled with a multilayer ocean model and the third-generation ocean wave model. The NHM-LETKF coupled data assimilation system was applied to Typhoon Sinlaku (2008) along with the original NHM-LETKF system to investigate the sensitivity of Sinlaku to SST assimilation with the Level 2 Pre-processed (L2P) standard product of satellite SST. SST calculated in the coupled-assimilation experiment with the coupled data assimilation system and the satellite SST (CPL) showed a better correlation with Optimally Interpolated SST than SST used in the control experiment with the original NHM-LETKF (CNTL) and SST calculated in the succession experiment with the coupled system without satellite SST (SUCC). The time series in the CPL experiment well captured the variation in the SST observed at the Kuroshio Extension Observation buoy site. In addition, TC-induced sea surface cooling was analyzed more realistically in the CPL experiment than that in the CNTL and SUCC experiments. However, the central pressure analyzed in each three experiments was overestimated compared with the Regional Specialized Meteorological Center Tokyo best-track central pressure, mainly due to the coarse horizontal resolution of 15 km. The 96 h TC simulations indicated that the CPL experiment provided more favorable initial and boundary conditions than the CNTL experiment to simulate TC tracks more accurately.

  10. 4DVAR data Assimilation with the Regional Ocean Modeling System (ROMS): Impact on the Water Mass Distributions in the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Lee, Joon-Ho; Kim, Taekyun; Pang, Ig-Chan; Moon, Jae-Hong

    2018-04-01

    In this study, we evaluate the performance of the recently developed incremental strong constraint 4-dimensional variational (4DVAR) data assimilation applied to the Yellow Sea (YS) using the Regional Ocean Modeling System (ROMS). Two assimilation experiments are compared: assimilating remote-sensed sea surface temperature (SST) and both the SST and in-situ profiles measured by shipboard CTD casts into a regional ocean modeling from January to December of 2011. By comparing the two assimilation experiments against a free-run without data assimilation, we investigate how the assimilation affects the hydrographic structures in the YS. Results indicate that the SST assimilation notably improves the model behavior at the surface when compared to the nonassimilative free-run. The SST assimilation also has an impact on the subsurface water structure in the eastern YS; however, the improvement is seasonally dependent, that is, the correction becomes more effective in winter than in summer. This is due to a strong stratification in summer that prevents the assimilation of SST from affecting the subsurface temperature. A significant improvement to the subsurface temperature is made when the in-situ profiles of temperature and salinity are assimilated, forming a tongue-shaped YS bottom cold water from the YS toward the southwestern seas of Jeju Island.

  11. SBSS Demonstrator: A design for efficient demonstration of Space-based Space Surveillance end-to-end capabilities

    NASA Astrophysics Data System (ADS)

    Utzmann, Jens; Flohrer, Tim; Schildknecht, Thomas; Wagner, Axel; Silha, Jiri; Willemsen, Philip; Teston, Frederic

    This paper presents the capabilities of a Space-Based Space Surveillance (SBSS) demonstration mission for Space Surveillance and Tracking (SST) based on a micro-satellite platform. The results have been produced in the frame of ESA’s "Assessment Study for Space Based Space Surveillance Demonstration Mission" performed by the Airbus Defence and Space consortium. Space Surveillance and Tracking is part of Space Situational Awareness (SSA) and covers the detection, tracking and cataloguing of space debris and satellites. Derived SST services comprise a catalogue of these man-made objects, collision warning, detection and characterisation of in-orbit fragmentations, sub-catalogue debris characterisation, etc. The assessment of SBSS in a SST system architecture has shown that both an operational SBSS and also already a well-designed space-based demonstrator can provide substantial performance in terms of surveillance and tracking of beyond-LEO objects. Especially the early deployment of a demonstrator, possible by using standard equipment, could boost initial operating capability and create a self-maintained object catalogue. Furthermore, unique statistical information about small-size LEO debris (mm size) can be collected in-situ. Unlike classical technology demonstration missions, the primary goal is the demonstration and optimisation of the functional elements in a complex end-to-end chain (mission planning, observation strategies, data acquisition, processing and fusion, etc.) until the final products can be offered to the users. Also past and current missions by the US (SBV, SBSS) and Canada (Sapphire, NEOSSat) underline the advantages of space-based space surveillance. The presented SBSS system concept takes the ESA SST System Requirements (derived within the ESA SSA Preparatory Program) into account and aims at fulfilling SST core requirements in a stand-alone manner. Additionally, requirments for detection and characterisation of small-sized LEO debris are considered. The evaluation of the concept has shown that an according solution can be implemented with low technological effort and risk. The paper presents details of the system concept, candidate micro-satellite platforms, the observation strategy and the results of performance simulations for space debris coverage and cataloguing accuracy.

  12. Comparison of global sst analyses for atmospheric data assimilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phoebus, P.A.; Cummings, J.A.

    1995-03-17

    Traditionally, atmospheric models were executed using a climatological estimate of the sea surface temperature (SST) to define the marine boundary layer. More recently, particularly since the deployment of remote sensing instruments and the advent of multichannel SST observations atmospheric models have been improved by using more timely estimates of the actual state of the ocean. Typically, some type of objective analysis is performed using the data from satellites along with ship, buoy, and bathythermograph observations, and perhaps even climatology, to produce a weekly or daily analysis of global SST. Some of the earlier efforts to produce real-time global temperature analysesmore » have been described by Clancy and Pollak (1983) and Reynolds (1988). However, just as new techniques have been developed for atmospheric data assimilation, improvements have been made to ocean data assimilation systems as well. In 1988, the U.S. Navy`s Fleet Numerical Meteorology and Oceanography Center (FNMOC) implemented a global three-dimensional ocean temperature analysis that was based on the optimum interpolation methodology (Clancy et al., 1990). This system, the Optimum Thermal Interpolation System (OTIS 1.0), was initially distributed on a 2.50 resolution grid, and was later modified to generate fields on a 1.250 grid (OTIS 1.1; Clancy et al., 1992). Other optimum interpolation-based analyses (OTIS 3.0) were developed by FNMOC to perform high-resolution three-dimensional ocean thermal analyses in areas with strong frontal gradients and clearly defined water mass characteristics.« less

  13. A Fuzzy Control System for Reducing Urban Runoff by a Stormwater Storage Tank

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Cai, Y.; Wang, J.

    2017-12-01

    Stormwater storage tank (SST) is a popular low impact development technology for reducing stormwater runoff in the construction of sponge city. Most researches on SST were mainly the design, pollutants removal effect, and operation assessment. While there were few researches on the automatic control of SST for reducing peak flow. In this paper, fuzzy control was introduced into the peak control of SST to improve the efficiency of reducing stormawter runoff. Firstly, the design of SST was investigated. A catchment area and return period were assumed, a SST model was manufactured, and then the storage capacity of the SST was verified. Secondly, the control parameters of the SST based on reducing stormwater runoff was analyzed, and a schematic diagram of real-time control (RTC) system based on peak control SST was established. Finally, fuzzy control system of a double input (flow and water level) and double output (inlet and outlet valve) was designed. The results showed that 1) under the different return periods (one year, three years, five years), the SST had the effect of delayed peak control and storage by increasing the detention time, 2) rainfall, pipeline flow, the influent time and the water level in the SST could be used as RTC parameters, and 3) the response curves of flow velocity and water level fluctuated very little and reached equilibrium in a short time. The combination of online monitoring and fuzzy control was feasible to control the SST automatically. This paper provides a theoretical reference for reducing stormwater runoff and improving the operation efficiency of SST.

  14. Shaping climate change in the North Atlantic sector: The role of the atmospheric response to local SST changes vs. large-scale changes

    NASA Astrophysics Data System (ADS)

    Hand, Ralf; Keenlyside, Noel; Omrani, Nour-Eddine; Greatbatch, Richard; Bader, Jürgen

    2017-04-01

    Climate change simulations robustly show a warming hole in the sub-polar North Atlantic that results from slowing of the AMOC countering the global warming signal. Here we investigate how the distinct SST spatial structures, which include a sharpening of the Gulf Stream SST gradients, influence climate change in the NA sector in winter. For this we analyse the RCP8.5 scenario simulation of the MPI Earth System Model. Additional sensitivity experiments with the atmospheric model component, ECHAM5, are performed to deconstruct the effect of the local spatial structure of the SST change from those arising from large-scale warming of the ocean, remote SST pattern changes and changed radiative forcings. The MPI model simulation shows a signifcant decrease in precipitation to the south of the GS extension region in the future, despite a strong increase in underlying SST. While directly to the north there is a significant increase in precipitation. These distinct features in the precipitation response over the North Atlantic result from the local SST. Over the Gulf Stream, the differential structure of the precipitation changes reflects the changes of the local SST gradients there. Over the subpolar gyre the increase in precipitation is partly suppressed. In this region the Subpolar Gyre the weakened AMOC causes a SST warming, that is much weaker than the warming other regions of the ocean show at the same latitude. The large-scale response, which includes the overall increase in precipitation over the NA is due to the overall warming, remote SSTs and/or directly connected to the radiative forcing.

  15. The ASTRI/CTA mini-array software system

    NASA Astrophysics Data System (ADS)

    Tosti, Gino; Schwarz, Joseph; Antonelli, Lucio Angelo; Trifoglio, Massimo; Catalano, Osvaldo; Maccarone, Maria Concetta; Leto, Giuseppe; Gianotti, Fulvio; Canestrari, Rodolfo; Giro, Enrico; Fiorini, Mauro; La Palombara, Nicola; Pareschi, Giovanni; Stringhetti, Luca; Vercellone, Stefano; Conforti, Vito; Tanci, Claudio; Bruno, Pietro; Grillo, Alessandro; Testa, Vincenzo; di Paola, Andrea; Gallozzi, Stefano

    2014-07-01

    ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is a Flagship Project financed by the Italian Ministry of Education, University and Research, and led by INAF, the Italian National Institute of Astrophysics. The main goals of the ASTRI project are the realization of an end-to-end prototype of a Small Size Telescope (SST) for the Cherenkov Telescope Array (CTA) in a dual- mirror configuration (SST-2M) and, subsequently, of a mini-array comprising seven SST-2M telescopes. The mini-array will be placed at the final CTA Southern Site, which will be part of the CTA seed array, around which the whole CTA observatory will be developed. The Mini-Array Software System (MASS) will provide a comprehensive set of tools to prepare an observing proposal, to perform the observations specified therein (monitoring and controlling all the hardware components of each telescope), to analyze the acquired data online and to store/retrieve all the data products to/from the archive. Here we present the main features of the MASS and its first version, to be tested on the ASTRI SST-2M prototype that will be installed at the INAF observing station located at Serra La Nave on Mount Etna in Sicily.

  16. Atmospheric forcing and Sea Surface Temperature response in the Gulf of Cadiz-Alboran Sea system in a 20 years simulation

    NASA Astrophysics Data System (ADS)

    Boutov, D.; Peliz, A.

    2012-04-01

    In the frame of MedEX ("Inter-basin exchange in the changing Mediterranean Sea") Project a 20 years (1989-2008) simulation at 2km resolution covering Gulf of Cadiz and Alboran Sea, forced by 9 km winds (WRF downscaling of ERA-Interim reanalysis), is analyzed and compared with observations. Statistical methods, EOF techniques and two harmonic (including annual and semi-annual frequencies) data fit were performed for the analysis. Modeled SST fields are also compared with long-term (1996-2008) in-situ buoy observations provided by Puertos del Estado (Spain) and satellite derived Pathfinder SST database. Model SSTs generally follow observations data at annual and inter-annual scales with a global error not exceeding 0.17°C (model warmer than SST). No significant warming tendency was observed in both basins during the 20 years and the Interanual variability dominates, with the series showing a cooling period from 1991 to 1993 followed by a warming period started from 1994. In particular we show that SST cooling observed in the early 1990's in the Gulf of Cadiz - Alboran system is associated with the 1991 catastrophic eruption of Pinatubo volcano (Philippines).

  17. The effects of SST Gradients on Tropical Convective Systems and Implications for Tropical Cyclogenesis

    NASA Astrophysics Data System (ADS)

    Glazer, R.; Bourassa, M. A.; Hart, R. E.

    2013-12-01

    It has long been known that generally the warmer the sea surface temperature (SST), the more possible tropical cyclone (TC) genesis is, assuming the atmosphere is supportive. The conventional wisdom has been that - apart from what the TC cools through upwelling -- one value of SST represents the state of the ocean surface in the region of the storm's inner circulation. With the advent of the satellite era and fine resolution SST datasets now becoming available, we know that in reality there are gradients of SST across which developing TCs move. The influence of those gradients on tropical convection and TC genesis is largely unknown at this time. Previous studies have shown that SST gradients can significantly impact the overlying ocean surface winds leading to areas of enhanced convergence/divergence and Vorticity (Chelton et al. 2004; O'Neill et al. 2005, 2010). The magnitude of this effect approximately increases as the surface wind increases. Work by Minobe et al. (2008) concluded that a sharp SST Gradient, over the Gulf Stream for instance, could produce enough surface wind convergence to maintain a band of precipitation along the ocean front. An analysis of satellite derived SST data over the Atlantic shows that it is not uncommon for SST gradients of 2 C/200km or more to exist in the immediate environment of a Tropical System. The authors seek to understand whether the conclusions made in previous works can be applied in the case of a developing Tropical System and whether SST Gradients exist in the Tropical Atlantic to a degree that would influence the cyclogenesis process. To address this, the effects of SST gradients on tropical cyclogenesis processes are investigated using model simulations of the Weather Research and Forecasting Model (WRF). WRF is run at cloud permitting scales (2km) for real cases of co-location between a tropical system and an SST gradient exceeding 2 C/200km in the environment of the system. In subsequent runs to this control run, the SSTs are modified to give a smaller or larger SST Gradient with the same atmospheric conditions. All cases are chosen from Atlantic Hurricane Seasons between 2002-2011. The results are then analyzed in the framework of previous studies that have sought to model and understand tropical cyclogenesis using WRF (Nolan 2007; Fang and Zhang 2010).

  18. Assimilation for skin SST in the NASA GEOS atmospheric data assimilation system.

    PubMed

    Akella, Santha; Todling, Ricardo; Suarez, Max

    2017-01-01

    The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modeling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extends beyond the thermal IR bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld, in-situ buoy measurement of near-surface SST. Evaluation of forecast skill scores show marginal to neutral benefit from the modified Ts.

  19. Assimilation for Skin SST in the NASA GEOS Atmospheric Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Akella, Santha; Todling, Ricardo; Suarez, Max

    2017-01-01

    The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modelling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near-surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extend beyond the thermal infrared bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld insitu buoy measurement of near-surface SST. Evaluation of forecast skill scores show neutral to marginal benefit from the modified Ts.

  20. Intense air-sea exchanges and heavy orographic precipitation over Italy: The role of Adriatic sea surface temperature uncertainty

    NASA Astrophysics Data System (ADS)

    Stocchi, Paolo; Davolio, Silvio

    2017-11-01

    Strong and persistent low-level winds blowing over the Adriatic basin are often associated with intense precipitation events over Italy. Typically, in case of moist southeasterly wind (Sirocco), rainfall affects northeastern Italy and the Alpine chain, while with cold northeasterly currents (Bora) precipitations are localized along the eastern slopes of the Apennines and central Italy coastal areas. These events are favoured by intense air-sea interactions and it is reasonable to hypothesize that the Adriatic sea surface temperature (SST) can affect the amount and location of precipitation. High-resolution simulations of different Bora and Sirocco events leading to severe precipitation are performed using a convection-permitting model (MOLOCH). Sensitivity experiments varying the SST initialization field are performed with the aim of evaluating the impact of SST uncertainty on precipitation forecasts, which is a relevant topic for operational weather predictions, especially at local scales. Moreover, diagnostic tools to compute water vapour fluxes across the Italian coast and atmospheric water budget over the Adriatic Sea have been developed and applied in order to characterize the air mass that feeds the precipitating systems. Finally, the investigation of the processes through which the SST influences location and intensity of heavy precipitation allows to gain a better understanding on mechanisms conducive to severe weather in the Mediterranean area and in the Adriatic basin in particular. Results show that the effect of the Adriatic SST (uncertainty) on precipitation is complex and can vary considerably among different events. For both Bora and Sirocco events, SST does not influence markedly the atmospheric water budget or the degree of moistening of air that flows over the Adriatic Sea. SST mainly affects the stability of the atmospheric boundary layer, thus influencing the flow dynamics and the orographic flow regime, and in turn, the precipitation pattern.

  1. Tank Riser Pit Decontamination System (Pit Viper) Return on Investment and Break-Even Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Joan K.; Weimar, Mark R.; Balducci, Patrick J.

    2003-06-30

    This study assessed the cost benefit of Pit Viper deployment for 80 tank farm pits between October 1, 2003 and September 30, 2012 under the technical baseline for applicable double-shell tank (DST) and single-shell tank (SST) projects. After this assessment had been completed, the U.S. Department of Energy (DOE) Richland Operations Office (RL) and Office of River Protection (ORP) published the Hanford Performance Management Plan (August 2003), which accelerated the schedule for SST retrieval. Then, DOE/CH2M HILL contract modification M064 (October 2002) and The Integrated Mission Acceleration Plan (March 2003) further accelerated SST retrieval and closure schedules. Twenty-six to 40more » tanks must be retrieved by 2006. Thus the schedule for SST pit entries is accelerated and the number of SST pit entries is increased. This study estimates the return on investment (ROI) and the number of pits where Pit Viper deployment would break even or save money over current manual practices. The results of the analysis indicate a positive return on the federal investment for deployment of the Pit Viper provided it is used on a sufficient number of pits.« less

  2. The Impact of Surface Boundary Forcing on Simulation of the 1998 Summer Drought Over the US Midwest Using Factor Separation Technique

    NASA Technical Reports Server (NTRS)

    Stein, Uri; Fox-Rabinovitz, Michael

    1999-01-01

    The factor separation (FS) technique has been utilized to evaluate quantitatively the impact of surface boundary forcings on simulation of the 1988 summer drought over the Midwestern part of the U.S. The four surface boundary forcings used are: (1)Sea Surface Temperature (SST), (2) soil moisture, (3) snow cover, and (4) sea ice. The Goddard Earth Observing System(GEOS) General Circulation Model (GCM) is used to simulate the 1988 U.S. drought. A series of sixteen simulations are performed with climatological and real 1988 surface boundary conditions. The major single and mutual synergistic factors/impacts are analyzed. The results show that SST and soil moisture are the major single pro-drought factors. The couple synergistic effect of SST and soil moisture is the major anti-drought factor. The triple synergistic impact of SST, soil moisture, and snow cover is the strongest pro-drought impact and is, therefore, the main contributor to the generation of the drought. The impact of the snow cover and sea ice anomalies for June 1988 on the drought is significant only when combined with the SST and soil moisture anomalies.

  3. Sensitivity of Surface Temperature to Oceanic Forcing via q-Flux Green’s Function Experiments. Part I: Linear Response Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fukai; Lu, Jian; Garuba, Oluwayemi

    This paper explores the use of linear response function (LRF) to relate the mean sea surface temperature (SST) response to prescribed ocean heat convergence (q-flux) forcings. Two methods for constructing the LRF based on the fluctuation-dissipation theorem (FDT) and Green’s function (GRF) are examined. A 900-year preindustrial simulation from the Community Earth System Model with a slab ocean (CESM-SOM) is used to estimate the LRF using FDT. For GRF, 106 pairs of CESM-SOM simulations with warm and cold q-flux patches are performed. FDT is found to have skill in estimating the SST response to a q-flux forcing when the localmore » SST response is strong, but it fails in inverse estimation of the q-flux forcing for a given SST pattern. In contrast, GRF is shown to be reasonably accurate in estimating both SST response and q-flux forcing. Possible degradation in FDT may be attributed to insufficient data sampling, significant departures of the SST data from Gaussian, and the non-normality of the constructed operator. The accurately estimated GRF-based LRF is used to (i) generate a global surface temperature sensitivity map that shows the q-flux forcing in higher latitudes to be three to four times more effective than in low latitudes in producing global surface warming; (ii) identify the most excitable SST mode (neutral vector) resembling Interdecadal Pacific Oscillation; and (iii) estimate a time-invariant q-flux forcing needed for maintaining the GHG-induced SST warming pattern. The GRF experiments will be used to construct LRF for other variables to further explore climate sensitivities and feedbacks.« less

  4. Research on MMC-SST Oriented AC/DC Distribution System

    NASA Astrophysics Data System (ADS)

    Xie, Xifeng; Shi, Hua; Zuo, Jianglin; Zhang, Zhigang

    2018-01-01

    A modular multilevel converter-solid state transformer (MMC-SST) oriented AC/DC Distribution System is designed. Firstly, the topology structure is introduced, MMC is adopted in the input stage, multiple DC-DC converters are adopted in the isolation stage, and a Three-Phase Four-Leg inverter is adopted in the output stage. Then, the control strategy is analysed. Finally, simulation model and an experimental prototype of MMC-SST are built, simulation and experimental results show that topology and control strategy of MMC-SST are feasible.

  5. Power and Energy Management Strategy for Solid State Transformer Interfaced DC Microgrid

    NASA Astrophysics Data System (ADS)

    Yu, Xunwei

    As a result of more and more applications of renewable energy into our ordinary life, how to construct a microgrid (MG) based on the distributed renewable energy resources and energy storages, and then to supply a reliable and flexible power to the conventional power system are the hottest topics nowadays. Comparing to the AC microgrid (AC MG), DC microgrid (DC MG) gets more attentions, because it has its own advantages, such as high efficiency, easy to integrate the DC energy sources and energy storages, and so on. Furthermore, the interaction between DC MG system and the distribution system is also an important and practical issue. In Future Renewable Electric Energy Delivery and Management Systems Center (FREEDM), the Solid State Transformer (SST) is built, which can transform the distribution system to the low AC and DC system directly (usually home application level). Thus, the SST gives a new promising solution for low voltage level MG to interface the distribution level system instead of the traditional transformer. So a SST interfaced DC MG is proposed. However, it also brings new challenges in the design and control fields for this system because the system gets more complicated, which includes distributed energy sources and storages, load, and SST. The purpose of this dissertation is to design a reliable and flexible SST interfaced DC MG based on the renewable energy sources and energy storages, which can operate in islanding mode and SST-enabled mode. Dual Half Bridge (DHB) is selected as the topology for DC/DC converter in DC MG. The DHB operation procedure and average model are analyzed, which is the basis for the system modeling, control and operation. Furthermore, two novel power and energy management strategies are proposed. The first one is a distributed energy management strategy for the DC MG operating in the SST-enabled mode. In this method, the system is not only in distributed control to increase the system reliability, but the power sharing between DC MG and SST, State of Charge (SOC) for battery, are both considered in the system energy management strategy. Then the DC MG output power is controllable and the battery is autonomous charged and discharged based on its SOC and system information without communication. The system operation modes are defined, analyzed and the simulation results verify the strategy. The second power and energy management strategy is the hierarchical control. In this control strategy, three-layer control structure is presented and defined. The first layer is the primary control for the DC MG in islanding mode, which is to guarantee the DC MG system power balance without communication to increase the system reliability. The second control layer is to implement the seamless switch for DC MG system from islanding mode to SST-enabled mode. The third control layer is the tertiary control for the system energy management and the communication is also involved. The tertiary layer not only controls the whole DC MG output power, but also manages battery module charge and discharge statuses based on its SOC. The simulation and experimental results verify the methods. Some practical issues for the SST interfaced DC MG are also investigated. Power unbalance issue of SST is analyzed and a distributed control strategy is presented to solve this problem. Simulation and experimental results verify it. Furthermore, the control strategy for SST interfaced DC MG blackout is presented and the simulation results are shown to valid it. Also a plug and play SST interfaced DC MG is constructed and demonstrated. Several battery and PV modules construct a typical DC MG and a DC source is adopted to simulate the SST. The system is in distributed control and can operate in islanding mode and SST-enabled mode. The experimental results verify that individual module can plug into and unplug from the DC MG randomly without affecting the system stability. Furthermore, the communication ports are embedded into the system and a universal communication protocol is proposed to implement the plug and play function. Specified ID is defined for individual PV and battery for system recognition. A database is built to store the whole system date for visual display, monitor and history query.

  6. Assimilation for skin SST in the NASA GEOS atmospheric data assimilation system

    PubMed Central

    Akella, Santha; Todling, Ricardo; Suarez, Max

    2018-01-01

    The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modeling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extends beyond the thermal IR bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld, in-situ buoy measurement of near-surface SST. Evaluation of forecast skill scores show marginal to neutral benefit from the modified Ts. PMID:29628531

  7. Assessing Australian Rainfall Projections in Two Model Resolutions

    NASA Astrophysics Data System (ADS)

    Taschetto, A.; Haarsma, R. D.; Sen Gupta, A.

    2016-02-01

    Australian climate is projected to change with increases in greenhouse gases. The IPCC reports an increase in extreme daily rainfall across the country. At the same time, mean rainfall over southeast Australia is projected to reduce during austral winter, but to increase during austral summer, mainly associated with changes in the surrounding oceans. Climate models agree better on the future reduction of average rainfall over the southern regions of Australia compared to the increase in extreme rainfall events. One of the reasons for this disagreement may be related to climate model limitations in simulating the observed mechanisms associated with the mid-latitude weather systems, in particular due to coarse model resolutions. In this study we investigate how changes in sea surface temperature (SST) affect Australian mean and extreme rainfall under global warming, using a suite of numerical experiments at two model resolutions: about 126km (T159) and 25km (T799). The numerical experiments are performed with the earth system model EC-EARTH. Two 6-member ensembles are produced for the present day conditions and a future scenario. The present day ensemble is forced with the observed daily SST from the NOAA National Climatic Data Center from 2002 to 2006. The future scenario simulation is integrated from 2094 to 2098 using the present day SST field added onto the future SST change created from a 17-member ensemble based on the RCP4.5 scenario. Preliminary results show an increase in extreme rainfall events over Tasmania associated with enhanced convection driven by the Tasman Sea warming. We will further discuss how the projected changes in SST will impact the southern mid-latitude weather systems that ultimately affect Australian rainfall.

  8. Simulation of Tropical Rainfall Variability

    NASA Astrophysics Data System (ADS)

    Bader, J.; Latif, M.

    2002-12-01

    The impact of sea surface temperature (SST) - especially the role of the tropical Atlantic meridional SST gradient and the El Nino-Southern Oscillation - on precipitation is investigated with the atmospheric general circulation model ECHAM4/T42. Ensemble experiments - driven with observed SST - show that Atlantic SST has a significant influence on precipitation over West Africa and northeast Brazil. SST sensitivity experiments were performed in which the climatological SST was enhanced or decreased by one Kelvin in certain ocean areas. Changing SST in the eastern tropical Atlantic caused only significant changes along the Guinea Coast, with a positive anomaly (SSTA) increasing rainfall and a negative SSTA reducing it. The response was nearly linear. Changing SST in other ocean areas caused significant changes over West Africa, especially in the Sahel area. The response is found to be non linear, with only negative SSTA leading to significant reduction in Sahel rainfall. Also, the impact of the SSTAs from the different ocean regions was not additive with respect to the rainfall. The influence of SST on precipitation over northeast Brazil (Nordeste) was also investigated. Three experiments were performed in which the climatological SST was enhanced/decreased or decreased/enhanced by one Kelvin in the North/South Atlantic and increased by two Kelvin in the Nino3 ocean area. All experiments caused significant changes over Nordeste, with an enhanced/reduced SST gradient in the Atlantic increasing/reducing rainfall. The response was nearly linear. The main effect of the Atlantic SST gradient was a shift of the ITCZ, caused by trade wind changes. The ''El Nino'' event generates a significant reduction in Nordeste rainfall. A significant positive SLP anomaly occurs in northeast Brazil which may be associated with the descending branch of the Walker circulation. Also a significant positive SLP over the Atlantic from 30S to 10N north occurs. This results in a reduced SLP gradient from the subtropical highs to the equator and a weakening of the trade winds.

  9. Merging of multi-temporal SST data at South China Sea

    NASA Astrophysics Data System (ADS)

    Ng, H. G.; MatJafri, M. Z.; Abdullah, K.; Lim, H. S.

    2008-10-01

    The sea surface temperature (SST) mapping could be performed with a wide spatial and temporal extent in a reasonable time limit. The space-borne sensor of AVHRR was widely used for the purpose. However, the current SST retrieval techniques for infrared channels were limited only for the cloud-free area, because the electromagnetic waves in the infrared wavelengths could not penetrate the cloud. Therefore, the SST availability was low for the single image. To overcome this problem, we studied to produce the composite of three day's SST map. The diurnal changes of SST data are quite stable through a short period of time if no abrupt natural disaster occurrence. Therefore, the SST data of three consecutive days with nearly coincident daily time were merged in order to create a three day's composite SST data. The composite image could increase the SST availability. In this study, we acquired the level 1b AVHRR (Advanced Very High Resolution Radiometer) images from Malaysia Center of Remote Sensing (MACRES). The images were first preprocessed and the cloud and land areas were masked. We made some modifications on the technique of obtaining the threshold value for cloud masking. The SST was estimated by using the day split MCSST algorithm. The cloud free water pixels availability were computed and compared. The mean of SST for three day's composite data were calculated and a SST map was generated. The cloud free water pixels availability were computed and compared. The SST data availability was increased by merging the SST data.

  10. Octreotide and pasireotide (dis)similarly inhibit pituitary tumor cells in vitro.

    PubMed

    Ibáñez-Costa, Alejandro; Rivero-Cortés, Esther; Vázquez-Borrego, Mari C; Gahete, Manuel D; Jiménez-Reina, Luis; Venegas-Moreno, Eva; de la Riva, Andrés; Arráez, Miguel Ángel; González-Molero, Inmaculada; Schmid, Herbert A; Maraver-Selfa, Silvia; Gavilán-Villarejo, Inmaculada; García-Arnés, Juan Antonio; Japón, Miguel A; Soto-Moreno, Alfonso; Gálvez, María A; Luque, Raúl M; Castaño, Justo P

    2016-11-01

    Somatostatin analogs (SSA) are the mainstay of pharmacological treatment for pituitary adenomas. However, some patients escape from therapy with octreotide, a somatostatin receptor 2 (sst2)-preferring SSA, and pasireotide, a novel multi-sst-preferring SSA, may help to overcome this problem. It has been proposed that correspondence between sst1-sst5 expression pattern and SSA-binding profile could predict patient's response. To explore the cellular/molecular features associated with octreotide/pasireotide response, we performed a parallel comparison of their in vitro effects, evaluating sst1-sst5 expression, intracellular Ca 2+ signaling ([Ca 2+ ] i ), hormone secretion and cell viability, in a series of 85 pituitary samples. Somatotropinomas expressed sst5>sst2, yet octreotide reduced [Ca 2+ ] i more efficiently than pasireotide, while both SSA similarly decreased growth hormone release/expression and viability. Corticotropinomas predominantly expressed sst5, but displayed limited response to pasireotide, while octreotide reduced functional endpoints. Non-functioning adenomas preferentially expressed sst3 but, surprisingly, both SSA increased cell viability. Prolactinomas mainly expressed sst1 but were virtually unresponsive to SSA. Finally, both SSA decreased [Ca 2+ ] i in normal pituitaries. In conclusion, both SSA act in vitro on pituitary adenomas exerting both similar and distinct effects; however, no evident correspondence was found with the sst1-sst5 profile. Thus, it seems plausible that additional factors, besides the simple abundance of a given sst, critically influence the SSA response. © 2016 Society for Endocrinology.

  11. Theoretical algorithms for satellite-derived sea surface temperatures

    NASA Astrophysics Data System (ADS)

    Barton, I. J.; Zavody, A. M.; O'Brien, D. M.; Cutten, D. R.; Saunders, R. W.; Llewellyn-Jones, D. T.

    1989-03-01

    Reliable climate forecasting using numerical models of the ocean-atmosphere system requires accurate data sets of sea surface temperature (SST) and surface wind stress. Global sets of these data will be supplied by the instruments to fly on the ERS 1 satellite in 1990. One of these instruments, the Along-Track Scanning Radiometer (ATSR), has been specifically designed to provide SST in cloud-free areas with an accuracy of 0.3 K. The expected capabilities of the ATSR can be assessed using transmission models of infrared radiative transfer through the atmosphere. The performances of several different models are compared by estimating the infrared brightness temperatures measured by the NOAA 9 AVHRR for three standard atmospheres. Of these, a computationally quick spectral band model is used to derive typical AVHRR and ATSR SST algorithms in the form of linear equations. These algorithms show that a low-noise 3.7-μm channel is required to give the best satellite-derived SST and that the design accuracy of the ATSR is likely to be achievable. The inclusion of extra water vapor information in the analysis did not improve the accuracy of multiwavelength SST algorithms, but some improvement was noted with the multiangle technique. Further modeling is required with atmospheric data that include both aerosol variations and abnormal vertical profiles of water vapor and temperature.

  12. Impact of tropical Atlantic sea-surface temperature biases on the simulated atmospheric circulation and precipitation over the Atlantic region: An ECHAM6 model study

    NASA Astrophysics Data System (ADS)

    Eichhorn, Astrid; Bader, Jürgen

    2017-09-01

    As many coupled atmosphere-ocean general circulation models, the coupled Earth System Model developed at the Max Planck Institute for Meteorology suffers from severe sea-surface temperature (SST) biases in the tropical Atlantic. We performed a set of SST sensitivity experiments with its atmospheric model component ECHAM6 to understand the impact of tropical Atlantic SST biases on atmospheric circulation and precipitation. The model was forced by a climatology of observed global SSTs to focus on simulated seasonal and annual mean state climate. Through the superposition of varying tropical Atlantic bias patterns extracted from the MPI-ESM on top of the control field, this study investigates the relevance of the seasonal variation and spatial structure of tropical Atlantic biases for the simulated response. Results show that the position and structure of the Intertropical Convergence Zone (ITCZ) across the Atlantic is significantly affected, exhibiting a dynamically forced shift of annual mean precipitation maximum to the east of the Atlantic basin as well as a southward shift of the oceanic rain belt. The SST-induced changes in the ITCZ in turn affect seasonal rainfall over adjacent continents. However not only the ITCZ position but also other effects arising from biases in tropical Atlantic SSTs, e.g. variations in the wind field, change the simulation of precipitation over land. The seasonal variation and spatial pattern of tropical Atlantic SST biases turns out to be crucial for the simulated atmospheric response and is essential for analyzing the contribution of SST biases to coupled model mean state biases. Our experiments show that MPI-ESM mean-state biases in the Atlantic sector are mainly driven by SST biases in the tropical Atlantic while teleconnections from other basins seem to play a minor role.

  13. Simulation of Rainfall Variability Over West Africa

    NASA Astrophysics Data System (ADS)

    Bader, J.; Latif, M.

    The impact of sea surface temperature (SST) and vegetation on precipitation over West Africa is investigated with the atmospheric general circulation model ECHAM4.x/T42. Ensemble experiments -driven with observed SST- show that At- lantic SST has a significant influence on JJA precipitation over West Africa. Four- teen experiments were performed in which the climatological SST was enhanced or decreased by one Kelvin in certain ocean areas. Changing SST in the eastern tropi- cal Atlantic only caused significant changes along the Guinea Coast, with a positive SSTA increasing rainfall and a negative reducing it. The response was nearly linear. Changing SST in other ocean areas caused significant changes over West Africa, es- pecially in the Sahel area. The response is found to be non linear, with only negative SSTA leading to significant reduction in Sahel rainfall. Also, the impact of the SSTAs from the different ocean regions was not additive with respect to the rainfall. Four simulations with a coupled model (the simple dynamic vegetation model (SVege) and the ECHAM4-AGCM were coupled) were also performed, driven with observed SST from 1945 to 1998. The standard ECHAM-AGCM -forced by the same observed SST- was able to reproduce the drying trend from the fifties to the mid-eighties in the Sahel, but failed to mirror the magnitude of the rainfall anomalies. The coupled model was not only able to reproduce this drying trend, but was also able to better reproduce the amplitudes of the rainfall anomalies. The dynamic vegetation acted like an amplifier, increasing the SST induced rainfall anomalies.

  14. Self-System Therapy for Distress Associated with Persistent Low Back Pain: A Randomized Clinical Trial

    PubMed Central

    Waters, Sandra J.; McKee, Daphne C.; Campbell, Lisa C.; Shelby, Rebecca A.; Dixon, Kim E.; Fras, Anne Marie; Keefe, Francis J.

    2015-01-01

    Objective Persistent low back pain (PLBP) is associated with vulnerability to depression. PLBP frequently requires major changes in occupation and lifestyle, which can lead to a sense of failing to attain one’s personal goals (self-discrepancy). Method We conducted a clinical trial to examine the efficacy of self-system therapy (SST), a brief structured therapy for depression based on self-discrepancy theory. A total of 101 patients with PLBP and clinically significant depressive symptoms were randomized either to SST, pain education, or standard care. Results Patients receiving SST showed significantly greater improvement in depressive symptoms. Reduction in self-discrepancy predicted reduction in depressive symptoms only within the SST condition. Conclusions Findings support the utility of SST for individuals facing persistent pain and associated depression. PMID:26079438

  15. Peptide receptor targeting in cancer: the somatostatin paradigm.

    PubMed

    Barbieri, Federica; Bajetto, Adriana; Pattarozzi, Alessandra; Gatti, Monica; Würth, Roberto; Thellung, Stefano; Corsaro, Alessandro; Villa, Valentina; Nizzari, Mario; Florio, Tullio

    2013-01-01

    Peptide receptors involved in pathophysiological processes represent promising therapeutic targets. Neuropeptide somatostatin (SST) is produced by specialized cells in a large number of human organs and tissues. SST primarily acts as inhibitor of endocrine and exocrine secretion via the activation of five G-protein-coupled receptors, named sst1-5, while in central nervous system, SST acts as a neurotransmitter/neuromodulator, regulating locomotory and cognitive functions. Critical points of SST/SST receptor biology, such as signaling pathways of individual receptor subtypes, homo- and heterodimerization, trafficking, and cross-talk with growth factor receptors, have been extensively studied, although functions associated with several pathological conditions, including cancer, are still not completely unraveled. Importantly, SST exerts antiproliferative and antiangiogenic effects on cancer cells in vitro, and on experimental tumors in vivo. Moreover, SST agonists are clinically effective as antitumor agents for pituitary adenomas and gastro-pancreatic neuroendocrine tumors. However, SST receptors being expressed by tumor cells of various tumor histotypes, their pharmacological use is potentially extendible to other cancer types, although to date no significant results have been obtained. In this paper the most recent findings on the expression and functional roles of SST and SST receptors in tumor cells are discussed.

  16. Development of a Support Application and a Textbook for Practicing Facial Expression Detection for Students with Visual Impairment

    ERIC Educational Resources Information Center

    Saito, Hirotaka; Ando, Akinobu; Itagaki, Shota; Kawada, Taku; Davis, Darold; Nagai, Nobuyuki

    2017-01-01

    Until now, when practicing facial expression recognition skills in nonverbal communication areas of SST, judgment of facial expression was not quantitative because the subjects of SST were judged by teachers. Therefore, we thought whether SST could be performed using facial expression detection devices that can quantitatively measure facial…

  17. Preliminary study of the Suomi NPP VIIRS detector-level spectral response function effects for the long-wave infrared bands M15 and M16

    NASA Astrophysics Data System (ADS)

    Padula, Francis; Cao, Changyong

    2014-09-01

    The Suomi NPP Visible Infrared Imaging Radiometer Suite (VIIRS) Sea Surface Temperature (SST) Environmental Data Record (EDR) team observed an anomalous striping pattern in the SST data. To assess possible causes due to the detector-level Spectral Response Functions (SRFs), a study was conducted to compare the radiometric response of the detector-level and operation band averaged SRFs of VIIRS bands M15 & M16 using simulated blackbody radiance data and clear-sky ocean radiances under different atmospheric conditions. It was concluded that the SST product is likely impacted by small differences in detector-level SRFs, and that if users require optimal system performance detector-level processing is recommended. Future work will investigate potential SDR product improvements through detector-level processing in support of the generation of Suomi NPP VIIRS climate quality SDRs.

  18. Shuttle swimming test in young water polo players: reliability, responsiveness and age-related value.

    PubMed

    Melchiorri, Giovanni; Viero, Valerio; Triossi, Tamara; Padua, Elvira; Bonifazi, Marco

    2017-11-01

    This study investigated the applicability of a sport-specific test, the Shuttle Swim Test, in young water polo players to measure RSA. The aims were: to assess the reliability and to measure the responsiveness of the SST in young water polo athletes, and to provide age-related values of SST. Three hundred thirty-three elite athletes (18.3±5.1 years) were involved in the study. Of these, 99 were young people under 13 (13.1±0.5 years) who also underwent measurements for reliability and responsiveness of the SST The following six measures was used to assess anthropometric characteristics of the sample: height, weight, chest circumference, hip circumference, waist circumference, and arm span. Two performance measures were performed on dry land: push up and chin up. Reliability and responsiveness were measured by comparing the average speed of two trials: SST1 was 1.48±0.13 m·s-1 and SST2 1.47±.12 m·s-1. The SST showed good reliability in younger athletes (r=0.96). The Minimal Detectable Change is 0.06 m·s-1 (6 seconds of the total time) which corresponds to 3.6% of the average value measured, confirming the good responsiveness of the test. Coaches and researchers can use this value in the interpretation of the SST test results: changes below these values could be related to a measurement error. The various age-related values reported may help technicians to better interpret the performance of their athletes during competition.

  19. Warm layer and cool skin corrections for bulk water temperature measurements for air-sea interaction studies

    NASA Astrophysics Data System (ADS)

    Alappattu, Denny P.; Wang, Qing; Yamaguchi, Ryan; Lind, Richard J.; Reynolds, Mike; Christman, Adam J.

    2017-08-01

    The sea surface temperature (SST) relevant to air-sea interaction studies is the temperature immediately adjacent to the air, referred to as skin SST. Generally, SST measurements from ships and buoys are taken at depths varies from several centimeters to 5 m below the surface. These measurements, known as bulk SST, can differ from skin SST up to O(1°C). Shipboard bulk and skin SST measurements were made during the Coupled Air-Sea Processes and Electromagnetic ducting Research east coast field campaign (CASPER-East). An Infrared SST Autonomous Radiometer (ISAR) recorded skin SST, while R/V Sharp's Surface Mapping System (SMS) provided bulk SST from 1 m water depth. Since the ISAR is sensitive to sea spray and rain, missing skin SST data occurred in these conditions. However, SMS measurement is less affected by adverse weather and provided continuous bulk SST measurements. It is desirable to correct the bulk SST to obtain a good representation of the skin SST, which is the objective of this research. Bulk-skin SST difference has been examined with respect to meteorological factors associated with cool skin and diurnal warm layers. Strong influences of wind speed, diurnal effects, and net longwave radiation flux on temperature difference are noticed. A three-step scheme is established to correct for wind effect, diurnal variability, and then for dependency on net longwave radiation flux. Scheme is tested and compared to existing correction schemes. This method is able to effectively compensate for multiple factors acting to modify bulk SST measurements over the range of conditions experienced during CASPER-East.

  20. Differential somatostatin, CXCR4 chemokine and endothelin A receptor expression in WHO grade I-IV astrocytic brain tumors.

    PubMed

    Lange, Franziska; Kaemmerer, Daniel; Behnke-Mursch, Julianne; Brück, Wolfgang; Schulz, Stefan; Lupp, Amelie

    2018-04-25

    Glioblastomas represent the most common primary malignant tumor of the nervous system and the most frequent type of astrocytic tumors. Despite improved therapeutic options, prognosis has remained exceptionally poor over the last two decades. Therefore, new treatment approaches are urgently needed. An overexpression of somatostatin (SST) as well as chemokine CXCR4 and endothelin A (ETA) receptors has been shown for many types of cancer. Respective expression data for astrocytic brain tumors, however, are scarce and contradictory. SST subtype, CXCR4 and ETA expression was comparatively evaluated in a total of 57 grade I-IV astrocytic tumor samples by immunohistochemistry using well-characterized monoclonal antibodies. Overall, receptor expression on the tumor cells was only very low. SST5 was the most prominently expressed receptor, followed by SST3, ETA, SST2 and CXCR4. In contrast, tumor capillaries displayed strong SST2, SST3, SST5, CXCR4 and ETA expression. Presence of SST5, CXCR4 and ETA on tumor cells and of SST3, CXCR4 and ETA on microvessels gradually increased from grade II to grade IV tumors. Ki-67 values correlated significantly with CXCR4 expression on tumor cells and with vascular SST3, CXCR4 or ETA positivity. SST5 or CXCR4 positivity of tumor cells and vascular SST3 or CXCR4 expression negatively correlated with patient outcome. Though having some prognostic value, SST, CXCR4 or ETA expression on astrocytic tumor cells is clearly of no therapeutic relevance. Indirect targeting of these highly vascularized tumors via SST3, SST5, CXCR4 or ETA on the microvessels, in contrast, may represent a promising additional therapeutic strategy.

  1. On the Use of Ocean Dynamic Temperature for Hurricane Intensity Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaguru, Karthik; Foltz, Gregory R.; Leung, L. Ruby

    Sea surface temperature (SST) and the Tropical Cyclone Heat Potential (TCHP) are metrics used to incorporate the ocean's influence on hurricane intensification in the National Hurricane Center's Statistical Hurricane Intensity Prediction Scheme (SHIPS). While both SST and TCHP serve as useful measures of the upper-ocean heat content, they do not accurately represent ocean stratification effects. Here we show that replacing SST in the SHIPS framework with a dynamic temperature (Tdy), which accounts for the oceanic negative feedback to the hurricane's intensity arising from storm-induced vertical mixing and sea-surface cooling, improves the model performance. While the model with SST and TCHPmore » explains nearly 41% of the variance in 36-hr intensity changes, replacing SST with Tdy increases the variance explained to nearly 44%. Our results suggest that representation of the oceanic feedback, even through relatively simple formulations such as Tdy, may improve the performance of statistical hurricane intensity prediction models such as SHIPS.« less

  2. Sensitivity of Offshore Surface Fluxes and Sea Breezes to the Spatial Distribution of Sea-Surface Temperature

    NASA Astrophysics Data System (ADS)

    Lombardo, Kelly; Sinsky, Eric; Edson, James; Whitney, Michael M.; Jia, Yan

    2018-03-01

    A series of numerical sensitivity experiments is performed to quantify the impact of sea-surface temperature (SST) distribution on offshore surface fluxes and simulated sea-breeze dynamics. The SST simulations of two mid-latitude sea-breeze events over coastal New England are performed using a spatially-uniform SST, as well as spatially-varying SST datasets of 32- and 1-km horizontal resolutions. Offshore surface heat and buoyancy fluxes vary in response to the SST distribution. Local sea-breeze circulations are relatively insensitive, with minimal differences in vertical structure and propagation speed among the experiments. The largest thermal perturbations are confined to the lowest 10% of the sea-breeze column due to the relatively high stability of the mid-Atlantic marine atmospheric boundary layer (ABL) suppressing vertical mixing, resulting in the depth of the marine layer remaining unchanged. Minimal impacts on the column-averaged virtual potential temperature and sea-breeze depth translates to small changes in sea-breeze propagation speed. This indicates that the use of datasets with a fine-scale SST may not produce more accurate sea-breeze simulations in highly stable marine ABL regimes, though may prove more beneficial in less stable sub-tropical environments.

  3. Rasch analysis indicates that the Simple Shoulder Test is robust, but minor item modifications and attention to gender differences should be considered.

    PubMed

    Raman, Jayaprakash; MacDermid, Joy C; Walton, David; Athwal, George S

    Repeated cross-sectional study. Multiple studies have evaluated the psychometric properties of the Simple Shoulder Test (SST) through traditional methods supporting it as valid and reliable. Since the evidentiary pool supporting the use of the SST has only partially addressed key measurement properties and the development of SST pre-dates the common use of Rasch model, validation of SST has become a necessity to establish as a reliable and valid PRO for shoulder conditions. To date, no study has analysed SST through Rasch, a modern method for analyzing properties of measurement tools. The purpose of this study was to perform a Rasch analysis of the SST to assess the overall fit to the Rasch model, individual item fit, gender-based DIF, local dependency of items and the unidimensionality of the scale. A secondary purpose was to determine the stability of fit to the Rasch model when captured pre-operatively or post-operatively. Patients completed SST before surgery and between 6 months and 1 year after surgery. Rasch analysis was performed to analyse the carious properties of SST through the Rasch model. SST appears to be robust when tested against the Rasch model. Rasch analysis has highlighted potential areas for to improve in the SST questionnaire. The potential areas to improve are to consider questions that measure the ability of a person to lift the arm above shoulder level and to consider gender differences when measuring the ability to carry weights with the affected arm. This study adds to previous body of empirical evidence arising classical measurement approaches that have suggested that the SST has robust measurement properties, by providing evidence of adequate fit to the Rasch model after minor adjustments. The results of this study should provide confidence to clinicians on SST who wish to use a brief shoulder-specific measure in their practice. The SST appears to be robust when tested against the Rasch model despite some potential areas for improvement. The potential areas that should be explored in future Rasch analyses are the questions that measure the ability of a person to lift the arm above shoulder level and the potential for gender differences when measuring the ability to carry weights with the affected arm. Copyright © 2017 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  4. Are Sea Surface Temperature satellite measurements reliable proxies of lagoon temperature in the South Pacific?

    NASA Astrophysics Data System (ADS)

    Van Wynsberge, Simon; Menkes, Christophe; Le Gendre, Romain; Passfield, Teuru; Andréfouët, Serge

    2017-12-01

    In remote coral reef environments, lagoon and reef in situ measurements of temperature are scarce. Sea Surface Temperature (SST) measured by satellite has been frequently used as a proxy of the lagoon temperature experienced by coral reef organisms (TL) especially during coral bleaching events. However, the link between SST and TL is poorly characterized. First, we compared the correlation between various SST series and TL from 2012 to 2016 in three atolls and one island in the Central South Pacific Ocean. Simple linear correlation between SST and TL ranged between 0.44 and 0.97 depending on lagoons, localities of sensors, and type of SST data. High-resolution-satellite-measurements of SST inside the lagoons did not outperform oceanic SST series, suggesting that SST products are not adapted for small lagoons. Second, we modelled the difference between oceanic SST and TL as a function of the drivers of lagoon water renewal and mixing, namely waves, tide, wind, and season. The multivariate models reduced significantly the bias between oceanic SST and TL. In atoll lagoons, and probably in other hydrodynamically semi-open systems, a correction taking into account these factors is necessary when SST are used to characterize organisms' thermal stress thresholds.

  5. The Aqua-planet Experiment (APE): Response to Changed Meridional SST Profile

    NASA Technical Reports Server (NTRS)

    Williamson, David L.; Blackburn, Michael; Nakajima, Kensuke; Ohfuchi, Wataru; Takahashi, Yoshiyuki O.; Hayashi, Yoshi-Yuki; Nakamura, Hisashi; Ishiwatari, Masaki; Mcgregor, John L.; Borth, Hartmut; hide

    2013-01-01

    This paper explores the sensitivity of Atmospheric General Circulation Model (AGCM) simulations to changes in the meridional distribution of sea surface temperature (SST). The simulations are for an aqua-planet, a water covered Earth with no land, orography or sea- ice and with specified zonally symmetric SST. Simulations from 14 AGCMs developed for Numerical Weather Prediction and climate applications are compared. Four experiments are performed to study the sensitivity to the meridional SST profile. These profiles range from one in which the SST gradient continues to the equator to one which is flat approaching the equator, all with the same maximum SST at the equator. The zonal mean circulation of all models shows strong sensitivity to latitudinal distribution of SST. The Hadley circulation weakens and shifts poleward as the SST profile flattens in the tropics. One question of interest is the formation of a double versus a single ITCZ. There is a large variation between models of the strength of the ITCZ and where in the SST experiment sequence they transition from a single to double ITCZ. The SST profiles are defined such that as the equatorial SST gradient flattens, the maximum gradient increases and moves poleward. This leads to a weakening of the mid-latitude jet accompanied by a poleward shift of the jet core. Also considered are tropical wave activity and tropical precipitation frequency distributions. The details of each vary greatly between models, both with a given SST and in the response to the change in SST. One additional experiment is included to examine the sensitivity to an off-equatorial SST maximum. The upward branch of the Hadley circulation follows the SST maximum off the equator. The models that form a single precipitation maximum when the maximum SST is on the equator shift the precipitation maximum off equator and keep it centered over the SST maximum. Those that form a double with minimum on the equatorial maximum SST shift the double structure off the equator, keeping the minimum over the maximum SST. In both situations only modest changes appear in the shifted profile of zonal average precipitation. When the upward branch of the Hadley circulation moves into the hemisphere with SST maximum, the zonal average zonal, meridional and vertical winds all indicate that the Hadley cell in the other hemisphere dominates.

  6. Global Ocean Forecast System (GOFS) Version 2.6. User’s Manual

    DTIC Science & Technology

    2010-03-31

    odimens.D, which takes the rivers.dat flow levels, inputs an SST and sea surface salinity (SSS) climatology from GDEM , and outputs the orivs_1.D...Center for Medium-range Weather Forecast GB GigaByte GDEM Global Digital Elevation Map GOFS Global Ocean Forecast System HPCMP High Performance

  7. The contrasting response of Hadley circulation to different meridional structure of sea surface temperature in CMIP5

    NASA Astrophysics Data System (ADS)

    Feng, Juan; Li, Jianping; Zhu, Jianlei; Li, Yang; Li, Fei

    2018-02-01

    The response of the Hadley circulation (HC) to the sea surface temperature (SST) is determined by the meridional structure of SST and varies according to the changing nature of this meridional structure. The capability of the models from the phase 5 of the Coupled Model Intercomparison Project (CMIP5) is utilized to represent the contrast response of the HC to different meridional SST structures. To evaluate the responses, the variations of HC and SST were linearly decomposed into two components: the equatorially asymmetric (HEA for HC, and SEA for SST) and equatorially symmetric (HES for HC, and SES for SST) components. The result shows that the climatological features of HC and tropical SST (including the spatial structures and amplitude) are reasonably simulated in all the models. However, the response contrast of HC to different SST meridional structures shows uncertainties among models. This may be due to the fact that the long-term temporal variabilities of HEA, HES, and SEA are limited reproduced in the models, although the spatial structures of their long-term variabilities are relatively reasonably simulated. These results indicate that the performance of the CMIP5 models to simulate long-term temporal variability of different meridional SST structures and related HC variations plays a fundamental role in the successful reproduction of the response of HC to different meridional SST structures.

  8. Saturated Salt Solution Method: A Useful Cadaver Embalming for Surgical Skills Training

    PubMed Central

    Hayashi, Shogo; Homma, Hiroshi; Naito, Munekazu; Oda, Jun; Nishiyama, Takahisa; Kawamoto, Atsuo; Kawata, Shinichi; Sato, Norio; Fukuhara, Tomomi; Taguchi, Hirokazu; Mashiko, Kazuki; Azuhata, Takeo; Ito, Masayuki; Kawai, Kentaro; Suzuki, Tomoya; Nishizawa, Yuji; Araki, Jun; Matsuno, Naoto; Shirai, Takayuki; Qu, Ning; Hatayama, Naoyuki; Hirai, Shuichi; Fukui, Hidekimi; Ohseto, Kiyoshige; Yukioka, Tetsuo; Itoh, Masahiro

    2014-01-01

    Abstract This article evaluates the suitability of cadavers embalmed by the saturated salt solution (SSS) method for surgical skills training (SST). SST courses using cadavers have been performed to advance a surgeon's techniques without any risk to patients. One important factor for improving SST is the suitability of specimens, which depends on the embalming method. In addition, the infectious risk and cost involved in using cadavers are problems that need to be solved. Six cadavers were embalmed by 3 methods: formalin solution, Thiel solution (TS), and SSS methods. Bacterial and fungal culture tests and measurement of ranges of motion were conducted for each cadaver. Fourteen surgeons evaluated the 3 embalming methods and 9 SST instructors (7 trauma surgeons and 2 orthopedists) operated the cadavers by 21 procedures. In addition, ultrasonography, central venous catheterization, and incision with cauterization followed by autosuture stapling were performed in some cadavers. The SSS method had a sufficient antibiotic effect and produced cadavers with flexible joints and a high tissue quality suitable for SST. The surgeons evaluated the cadavers embalmed by the SSS method to be highly equal to those embalmed by the TS method. Ultrasound images were clear in the cadavers embalmed by both the methods. Central venous catheterization could be performed in a cadaver embalmed by the SSS method and then be affirmed by x-ray. Lungs and intestines could be incised with cauterization and autosuture stapling in the cadavers embalmed by TS and SSS methods. Cadavers embalmed by the SSS method are sufficiently useful for SST. This method is simple, carries a low infectious risk, and is relatively of low cost, enabling a wider use of cadavers for SST. PMID:25501070

  9. Saturated salt solution method: a useful cadaver embalming for surgical skills training.

    PubMed

    Hayashi, Shogo; Homma, Hiroshi; Naito, Munekazu; Oda, Jun; Nishiyama, Takahisa; Kawamoto, Atsuo; Kawata, Shinichi; Sato, Norio; Fukuhara, Tomomi; Taguchi, Hirokazu; Mashiko, Kazuki; Azuhata, Takeo; Ito, Masayuki; Kawai, Kentaro; Suzuki, Tomoya; Nishizawa, Yuji; Araki, Jun; Matsuno, Naoto; Shirai, Takayuki; Qu, Ning; Hatayama, Naoyuki; Hirai, Shuichi; Fukui, Hidekimi; Ohseto, Kiyoshige; Yukioka, Tetsuo; Itoh, Masahiro

    2014-12-01

    This article evaluates the suitability of cadavers embalmed by the saturated salt solution (SSS) method for surgical skills training (SST). SST courses using cadavers have been performed to advance a surgeon's techniques without any risk to patients. One important factor for improving SST is the suitability of specimens, which depends on the embalming method. In addition, the infectious risk and cost involved in using cadavers are problems that need to be solved. Six cadavers were embalmed by 3 methods: formalin solution, Thiel solution (TS), and SSS methods. Bacterial and fungal culture tests and measurement of ranges of motion were conducted for each cadaver. Fourteen surgeons evaluated the 3 embalming methods and 9 SST instructors (7 trauma surgeons and 2 orthopedists) operated the cadavers by 21 procedures. In addition, ultrasonography, central venous catheterization, and incision with cauterization followed by autosuture stapling were performed in some cadavers. The SSS method had a sufficient antibiotic effect and produced cadavers with flexible joints and a high tissue quality suitable for SST. The surgeons evaluated the cadavers embalmed by the SSS method to be highly equal to those embalmed by the TS method. Ultrasound images were clear in the cadavers embalmed by both the methods. Central venous catheterization could be performed in a cadaver embalmed by the SSS method and then be affirmed by x-ray. Lungs and intestines could be incised with cauterization and autosuture stapling in the cadavers embalmed by TS and SSS methods. Cadavers embalmed by the SSS method are sufficiently useful for SST. This method is simple, carries a low infectious risk, and is relatively of low cost, enabling a wider use of cadavers for SST.

  10. Haloperidol 2 mg impairs inhibition but not visuospatial attention.

    PubMed

    Logemann, H N Alexander; Böcker, Koen B E; Deschamps, Peter K H; van Harten, Peter N; Koning, Jeroen; Kemner, Chantal; Logemann-Molnár, Zsófia; Kenemans, J Leon

    2017-01-01

    The dopaminergic system has been implicated in visuospatial attention and inhibition, but the exact role has yet to be elucidated. Scarce literature suggests that attenuation of dopaminergic neurotransmission negatively affects attentional focusing and inhibition. To the best of our knowledge, this is the first study that evaluated the effect of dopaminergic antagonism on stopping performance. Dopaminergic neurotransmission was attenuated in 28 healthy male participants by using 2 mg haloperidol. A repeated-measures placebo-controlled crossover design was implemented, and performance indices of attention and inhibition were assessed in the visual spatial cueing task (VSC) and stop signal task (SST). Additionally, the effect of haloperidol on motoric parameters was assessed. It was expected that haloperidol as contrasted to placebo would result in a reduction of the "validity effect," the benefit of valid cueing as opposed to invalid cueing of a target in terms of reaction time. Furthermore, an increase in stop signal reaction time (SSRT) in the SST was expected. Results partially confirmed the hypothesis. Haloperidol negatively affected inhibitory motor control in the SST as indexed by SSRT, but there were no indications that haloperidol affected bias or disengagement in the VSC task as indicated by a lack of an effect on RTs. Pertaining to secondary parameters, motor activity increased significantly under haloperidol. Haloperidol negatively affected reaction time variability and errors in both tasks, as well as omissions in the SST, indicating a decreased sustained attention, an increase in premature responses, and an increase in lapses of attention, respectively.

  11. How is the surface Atlantic water inflow through the Gibraltar Strait forecasted? A lagrangian validation of operational oceanographic services in the Alboran Sea and the Western Mediterranean

    NASA Astrophysics Data System (ADS)

    Sotillo, M. G.; Amo-Baladrón, A.; Padorno, E.; Garcia-Ladona, E.; Orfila, A.; Rodríguez-Rubio, P.; Conti, D.; Madrid, J. A. Jiménez; de los Santos, F. J.; Fanjul, E. Alvarez

    2016-11-01

    An exhaustive validation of some of the operational ocean forecast products available in the Gibraltar Strait and the Alboran Sea is here presented. The skill of two ocean model solutions (derived from the Eulerian ocean forecast systems, such as the regional CMEMS IBI and the high resolution PdE SAMPA) in reproducing the complex surface dynamics in the above areas is evaluated. To this aim, in-situ measurements from the MEDESS-GIB drifter buoy database (comprising the Lagrangian positions, derived velocities and SST values) are used as the observational reference and the temporal coverage for the validation is 3 months (September to December 2014). Two metrics, a Lagrangian separation distance and a skill score, have been applied to evaluate the performance of the modelling systems in reproducing the observed trajectories. Furthermore, the SST validation with in-situ data is carried out by means of validating the model solutions with L3 satellite SST products. The Copernicus regional IBI products are evaluated in an extended domain, beyond the Alboran Sea, and covering western Mediterranean waters. This analysis reveals some strengths of the presented regional solution (i.e. realistic values of the Atlantic Jet in the Strait of Gibraltar area, realistic simulation of the Algerian Current). However, some shortcomings are also identified, with the major one being related to the simulated geographical position and intensity of the Alboran Gyres, particularly the western one. This performance limitation affects the IBI-modelled surface circulation in the entire Alboran Sea. On the other hand, the SAMPA system shows a more accurate model performance and it realistically reproduces the observed surface circulation in the area. The results reflect the effectiveness of the dynamical downscaling performed through the SAMPA system with respect to the regional IBI solution (in which SAMPA is nested), providing an objective measure of the potential added values introduced by the SAMPA downscaling solution in the Alboran Sea.

  12. Expression of Somatostatin, cortistatin, and their receptors, as well as dopamine receptors, but not of neprilysin, are reduced in the temporal lobe of Alzheimer's disease patients.

    PubMed

    Gahete, Manuel D; Rubio, Alicia; Durán-Prado, Mario; Avila, Jesús; Luque, Raúl M; Castaño, Justo P

    2010-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by severe cognitive deficit, wherein the impairment of episodic memory is the major hallmark. AD patients exhibit augmented accumulation of amyloid-beta (Abeta) and hyperphosphorylated tau protein in specific brain regions. In addition, several neuropeptides/neurotransmitter axes clearly associated with cognitive processes, Abeta turnover, and tau phosphorylation have also been found to be impaired in AD, such as somatostatin (SST)/cortistatin (CST) and dopamine (DA) systems. However, to date there is no precise quantitative data on the expression of these systems in the human brain of AD and normal patients. Here we measured by quantitative real-time PCR the mRNA levels of SST/CST, their receptors (sst1-5 and DA receptors (drd1-5) in addition to neprilysin (a SST-regulated enzyme involved in Abeta degradation) in three regions of the temporal lobe, one of the cortical regions most severely affected by AD. Our results reveal that some components of SST/CST- and DA-axes are divergently altered in the three areas of AD patients. Despite this region-specific regulation, an overall, common reduction of these systems was observed in the temporal lobe of AD patients. Conversely, neprilysin expression was not altered in AD, suggesting that Abeta accumulation observed in AD is due to a lack of neprilysin activation by SST rather than to a reduction of its expression. Collectively, our results define a comprehensive scenario wherein reduction of ssts, drds, and sst ligands SST and CST, could be involved, at least in part, in some of the more important defects observed in AD.

  13. Cogeneration steam turbines from Siemens: New solutions

    NASA Astrophysics Data System (ADS)

    Kasilov, V. F.; Kholodkov, S. V.

    2017-03-01

    The Enhanced Platform system intended for the design and manufacture of Siemens AG turbines is presented. It combines organizational and production measures allowing the production of various types of steam-turbine units with a power of up to 250 MWel from standard components. The Enhanced Platform designs feature higher efficiency, improved reliability, better flexibility, longer overhaul intervals, and lower production costs. The design features of SST-700 and SST-900 steam turbines are outlined. The SST-700 turbine is used in backpressure steam-turbine units (STU) or as a high-pressure cylinder in a two-cylinder condensing turbine with steam reheat. The design of an SST-700 single-cylinder turbine with a casing without horizontal split featuring better flexibility of the turbine unit is presented. An SST-900 turbine can be used as a combined IP and LP cylinder (IPLPC) in steam-turbine or combined-cycle power units with steam reheat. The arrangements of a turbine unit based on a combination of SST-700 and SST-900 turbines or SST-500 and SST-800 turbines are presented. Examples of this combination include, respectively, PGU-410 combinedcycle units (CCU) with a condensing turbine and PGU-420 CCUs with a cogeneration turbine. The main equipment items of a PGU-410 CCU comprise an SGT5-4000F gas-turbine unit (GTU) and STU consisting of SST-700 and SST-900RH steam turbines. The steam-turbine section of a PGU-420 cogeneration power unit has a single-shaft turbine unit with two SST-800 turbines and one SST-500 turbine giving a power output of N el. STU = 150 MW under condensing conditions.

  14. Ensemble-Based Parameter Estimation in a Coupled General Circulation Model

    DOE PAGES

    Liu, Y.; Liu, Z.; Zhang, S.; ...

    2014-09-10

    Parameter estimation provides a potentially powerful approach to reduce model bias for complex climate models. Here, in a twin experiment framework, the authors perform the first parameter estimation in a fully coupled ocean–atmosphere general circulation model using an ensemble coupled data assimilation system facilitated with parameter estimation. The authors first perform single-parameter estimation and then multiple-parameter estimation. In the case of the single-parameter estimation, the error of the parameter [solar penetration depth (SPD)] is reduced by over 90% after ~40 years of assimilation of the conventional observations of monthly sea surface temperature (SST) and salinity (SSS). The results of multiple-parametermore » estimation are less reliable than those of single-parameter estimation when only the monthly SST and SSS are assimilated. Assimilating additional observations of atmospheric data of temperature and wind improves the reliability of multiple-parameter estimation. The errors of the parameters are reduced by 90% in ~8 years of assimilation. Finally, the improved parameters also improve the model climatology. With the optimized parameters, the bias of the climatology of SST is reduced by ~90%. Altogether, this study suggests the feasibility of ensemble-based parameter estimation in a fully coupled general circulation model.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Liu, Z.; Zhang, S.

    Parameter estimation provides a potentially powerful approach to reduce model bias for complex climate models. Here, in a twin experiment framework, the authors perform the first parameter estimation in a fully coupled ocean–atmosphere general circulation model using an ensemble coupled data assimilation system facilitated with parameter estimation. The authors first perform single-parameter estimation and then multiple-parameter estimation. In the case of the single-parameter estimation, the error of the parameter [solar penetration depth (SPD)] is reduced by over 90% after ~40 years of assimilation of the conventional observations of monthly sea surface temperature (SST) and salinity (SSS). The results of multiple-parametermore » estimation are less reliable than those of single-parameter estimation when only the monthly SST and SSS are assimilated. Assimilating additional observations of atmospheric data of temperature and wind improves the reliability of multiple-parameter estimation. The errors of the parameters are reduced by 90% in ~8 years of assimilation. Finally, the improved parameters also improve the model climatology. With the optimized parameters, the bias of the climatology of SST is reduced by ~90%. Altogether, this study suggests the feasibility of ensemble-based parameter estimation in a fully coupled general circulation model.« less

  16. Role of subsurface ocean in decadal climate predictability over the South Atlantic.

    PubMed

    Morioka, Yushi; Doi, Takeshi; Storto, Andrea; Masina, Simona; Behera, Swadhin K

    2018-06-04

    Decadal climate predictability in the South Atlantic is explored by performing reforecast experiments using a coupled general circulation model with two initialization schemes; one is assimilated with observed sea surface temperature (SST) only, and the other is additionally assimilated with observed subsurface ocean temperature and salinity. The South Atlantic is known to undergo decadal variability exhibiting a meridional dipole of SST anomalies through variations in the subtropical high and ocean heat transport. Decadal reforecast experiments in which only the model SST is initialized with the observation do not predict well the observed decadal SST variability in the South Atlantic, while the other experiments in which the model SST and subsurface ocean are initialized with the observation skillfully predict the observed decadal SST variability, particularly in the Southeast Atlantic. In-depth analysis of upper-ocean heat content reveals that a significant improvement of zonal heat transport in the Southeast Atlantic leads to skillful prediction of decadal SST variability there. These results demonstrate potential roles of subsurface ocean assimilation in the skillful prediction of decadal climate variability over the South Atlantic.

  17. Study of Sea Surface Temperatures changes due to tropical cyclone fanoos in the southwest Bay of Bengal using satellite and argo observations

    NASA Astrophysics Data System (ADS)

    Krishna Kailasam, Muni

    Sea surface temperature (SST) plays an important role in the studies of global climate system and as a boundary condition for operational numerical forecasts. Estimation of SST has tra-ditionally been performed with satellite based sensors operating in the infrared (IR) portion of the electromagnetic spectrum, where the ocean emissivity is close to unity. The National Oceanic and Atmospheric Administration (NOAA) satellite series, the GOES Imagers on the Geostationary Operational Environmental Satellites, the Along Track Scanning Radiometer (ATSR) on the European Remote Sensing satellites and the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA EOS platform are successful examples of IR sen-sors currently used for operational SST retrievals. Significant progress in SST retrieval from remote sensing data came with the introduction of a new low-frequency channel (10.7 GHz) on microwave (MW) sensors. The anthropogenic effects over a period of time resulted in increase of infrared absorbers such as greenhouse gases and absorbing aerosol would produce increase of both daytime maximum and nighttime minimum temperatures. In contrast, the increases of visible reflectors such as sulfate aerosols and low cloud amount would result in a decrease of the daytime maximum temperature. Solar radiation, wind stress and vertical mixing are known to be the three major factors impacting the SST seasonal variations. In the present study, impact of absorbing aerosols on the sea surface temperature (SST) over Bay of Bengal (BoB) region was investigated. Increased aerosol loading over BoB was observed due to advection of aerosols from continental region consisting of absorbing particles primarily from dust and biomass burning. This increased loading over BoB resulted in reduction of surface reaching solar radiation. Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) de-rived SST over BoB showed negative correlation with OMI-Aerosol Index (AI) (R = 0.87) and Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) AOD550 (R = 0.77) suggesting reduction in SST due to absorption of incoming solar radiation by aerosols.

  18. Intensified Indian Ocean climate variability during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Thirumalai, K.; DiNezro, P.; Tierney, J. E.; Puy, M.; Mohtadi, M.

    2017-12-01

    Climate models project increased year-to-year climate variability in the equatorial Indian Ocean in response to greenhouse gas warming. This response has been attributed to changes in the mean climate of the Indian Ocean associated with the zonal sea-surface temperature (SST) gradient. According to these studies, air-sea coupling is enhanced due to a stronger SST gradient driving anomalous easterlies that shoal the thermocline in the eastern Indian Ocean. We propose that this relationship between the variability and the zonal SST gradient is consistent across different mean climate states. We test this hypothesis using simulations of past and future climate performed with the Community Earth System Model Version 1 (CESM1). We constrain the realism of the model for the Last Glacial Maximum (LGM) where CESM1 simulates a mean climate consistent with a stronger SST gradient, agreeing with proxy reconstructions. CESM1 also simulates a pronounced increase in seasonal and interannual variability. We develop new estimates of climate variability on these timescales during the LGM using δ18O analysis of individual foraminifera (IFA). IFA data generated from four different cores located in the eastern Indian Ocean indicate a marked increase in δ18O-variance during the LGM as compared to the late Holocene. Such a significant increase in the IFA-δ18O variance strongly supports the modeling simulations. This agreement further supports the dynamics linking year-to-year variability and an altered SST gradient, increasing our confidence in model projections.

  19. Evaluation of NASA GEOS-ADAS Modeled Diurnal Warming Through Comparisons to SEVIRI and AMSR2 SST Observations

    NASA Astrophysics Data System (ADS)

    Gentemann, C. L.; Akella, S.

    2018-02-01

    An analysis of the ocean skin Sea Surface Temperature (SST) has been included in the Goddard Earth Observing System (GEOS) - Atmospheric Data Assimilation System (ADAS), Version 5 (GEOS-ADAS). This analysis is based on the GEOS atmospheric general circulation model (AGCM) that simulates near-surface diurnal warming and cool skin effects. Analysis for the skin SST is performed along with the atmospheric state, including Advanced Very High Resolution Radiometer (AVHRR) satellite radiance observations as part of the data assimilation system. One month (September, 2015) of GEOS-ADAS SSTs were compared to collocated satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and Advanced Microwave Scanning Radiometer 2 (AMSR2) SSTs to examine how the GEOS-ADAS diurnal warming compares to the satellite measured warming. The spatial distribution of warming compares well to the satellite observed distributions. Specific diurnal events are analyzed to examine variability within a single day. The dependence of diurnal warming on wind speed, time of day, and daily average insolation is also examined. Overall the magnitude of GEOS-ADAS warming is similar to the warming inferred from satellite retrievals, but several weaknesses in the GEOS-AGCM simulated diurnal warming are identified and directly related back to specific features in the formulation of the diurnal warming model.

  20. An improved ENSO simulation by representing chlorophyll-induced climate feedback in the NCAR Community Earth System Model.

    PubMed

    Kang, Xianbiao; Zhang, Rong-Hua; Gao, Chuan; Zhu, Jieshun

    2017-12-07

    The El Niño-Southern oscillation (ENSO) simulated in the Community Earth System Model of the National Center for Atmospheric Research (NCAR CESM) is much stronger than in reality. Here, satellite data are used to derive a statistical relationship between interannual variations in oceanic chlorophyll (CHL) and sea surface temperature (SST), which is then incorporated into the CESM to represent oceanic chlorophyll -induced climate feedback in the tropical Pacific. Numerical runs with and without the feedback (referred to as feedback and non-feedback runs) are performed and compared with each other. The ENSO amplitude simulated in the feedback run is more accurate than that in the non-feedback run; quantitatively, the Niño3 SST index is reduced by 35% when the feedback is included. The underlying processes are analyzed and the results show that interannual CHL anomalies exert a systematic modulating effect on the solar radiation penetrating into the subsurface layers, which induces differential heating in the upper ocean that affects vertical mixing and thus SST. The statistical modeling approach proposed in this work offers an effective and economical way for improving climate simulations.

  1. Performance and quality assessment of the recent updated CMEMS global ocean monitoring and forecasting real-time system

    NASA Astrophysics Data System (ADS)

    Le Galloudec, Olivier; Lellouche, Jean-Michel; Greiner, Eric; Garric, Gilles; Régnier, Charly; Drévillon, Marie; Drillet, Yann

    2017-04-01

    Since May 2015, Mercator Ocean opened the Copernicus Marine Environment and Monitoring Service (CMEMS) and is in charge of the global eddy resolving ocean analyses and forecast. In this context, Mercator Ocean currently delivers in real-time daily services (weekly analyses and daily forecast) with a global 1/12° high resolution system. The model component is the NEMO platform driven at the surface by the IFS ECMWF atmospheric analyses and forecasts. Observations are assimilated by means of a reduced-order Kalman filter with a 3D multivariate modal decomposition of the forecast error. It includes an adaptive-error estimate and a localization algorithm. Along track altimeter data, satellite Sea Surface Temperature and in situ temperature and salinity vertical profiles are jointly assimilated to estimate the initial conditions for numerical ocean forecasting. A 3D-Var scheme provides a correction for the slowly-evolving large-scale biases in temperature and salinity. R&D activities have been conducted at Mercator Ocean these last years to improve the real-time 1/12° global system for recent updated CMEMS version in 2016. The ocean/sea-ice model and the assimilation scheme benefited of the following improvements: large-scale and objective correction of atmospheric quantities with satellite data, new Mean Dynamic Topography taking into account the last version of GOCE geoid, new adaptive tuning of some observational errors, new Quality Control on the assimilated temperature and salinity vertical profiles based on dynamic height criteria, assimilation of satellite sea-ice concentration, new freshwater runoff from ice sheets melting, … This presentation will show the impact of some updates separately, with a particular focus on adaptive tuning experiments of satellite Sea Level Anomaly (SLA) and Sea Surface Temperature (SST) observations errors. For the SLA, the a priori prescribed observation error is globally greatly reduced. The median value of the error changed from 5cm to 2.5cm in a few assimilation cycles. For the SST, we chose to maintain the median value of the error to 0.4°C. The spatial distribution of the SST error follows the model physics and atmospheric variability. Either for SLA or SST, we improve the performances of the system using this adaptive tuning. The overall behavior of the system integrating all updates reporting on the products quality improvements will be also discussed, highlighting the level of performance and the reliability of the new system.

  2. Sea Surface Temperature Records Using Sr/Ca Ratios in a Siderastrea siderea Coral from SE Cuba

    NASA Astrophysics Data System (ADS)

    Fargher, H. A.; Hughen, K. A.; Ossolinski, J. E.; Bretos, F.; Siciliano, D.; Gonzalez, P.

    2015-12-01

    Sea surface temperature (SST) variability from Cuba remains relatively unknown compared to the rest of the Caribbean. Cuba sits near an inflection point in the spatial pattern of SST from the North Atlantic Oscillation (NAO), and long SST records from the region could reveal changes in the influence of this climate system through time. A Siderastrea siderea coral from the Jardínes de la Reina in southern Cuba was drilled to obtain a 220 year long archive of environmental change. The genus Siderastrea has not been extensively studied as an SST archive, yet Sr/Ca ratios in the Cuban core show a clear seasonal signal and strong correlation to instrumental SST data (r2 = 0.86 and 0.36 for monthly and interannual (winter season) timescales, respectively). Annual growth rates (linear extension) of the coral are observed to have a minor influence on Sr/Ca variability, but do not show a direct correlation to SST on timescales from annual to multidecadal. Sr/Ca measurements from the Cuban coral are used to reconstruct monthly and seasonal (winter, summer) SST extending back more than two centuries. Wintertime SST in southern Cuba is compared to other coral Sr/Ca records of winter-season SST from locations sensitive to the NAO in order to investigate the stationarity of the NAO SST 'fingerprint' through time.

  3. Sea Surface Temperature Products and Research Associated with GHRSST

    NASA Astrophysics Data System (ADS)

    Kaiser-Weiss, Andrea K.; Minnett, Peter J.; Kaplan, Alexey; Wick, Gary A.; Castro, Sandra; Llewellyn-Jones, David; Merchant, Chris; LeBorgne, Pierre; Beggs, Helen; Donlon, Craig J.

    2012-03-01

    GHRSST serves its user community through the specification of operational Sea Surface Temperature (SST) products (Level 2, Level 3 and Level 4) based on international consensus. Providers of SST data from individual satellites create and deliver GHRSST-compliant near-real time products to a global GHRSST data assembly centre and a long-term stewardship facility. The GHRSST-compliant data include error estimates and supporting data for interpretation. Groups organised within GHRSST perform research on issues relevant to applying SST for air-sea exchange, for instance the Diurnal Variability Working Group (DVWG) analyses the evolution of the skin temperature. Other GHRSST groups concentrate on improving the SST estimate (Estimation and Retrievals Working Group EARWiG) and on improving the error characterization, (Satellite SST Validation Group, ST-VAL) and on improving the methods for SST analysis (Inter-Comparison Technical Advisory Group, IC-TAG). In this presentation we cover the data products and the scientific activities associated with GHRSST which might be relevant for investigating ocean-atmosphere interactions.

  4. Interleukin-33/ST2 system attenuates aldosterone-induced adipogenesis and inflammation.

    PubMed

    Martínez-Martínez, Ernesto; Cachofeiro, Victoria; Rousseau, Elodie; Álvarez, Virginia; Calvier, Laurent; Fernández-Celis, Amaya; Leroy, Céline; Miana, María; Jurado-López, Raquel; Briones, Ana M; Jaisser, Frederic; Zannad, Faiez; Rossignol, Patrick; López-Andrés, Natalia

    2015-08-15

    Interleukin-33 (IL-33) but not soluble ST2 (sST2) exerts anti-inflammatory and protective effects in several tissues. Aldosterone, a proinflammatory mediator which promotes adipogenesis, is elevated in obese patients. The aim of this study was to investigate the interactions between IL-33/ST2 system and Aldosterone in adipose tissue. Rats fed a high fat diet presented increased sST2 expression, diminished IL-33/sST2 ratio and enhanced levels of differentiation and inflammation in adipose tissue as compared to controls. A similar pattern was observed in adipose tissue from C57BL/6 Aldosterone-treated mice. In both animal models, Aldosterone was correlated with sST2. Treatment of 3T3-L1 adipocytes with IL-33 delayed adipocyte differentiation diminished lipid accumulation and decreased inflammation. Aldosterone decreased IL-33 and increased sST2 expressions in differentiated adipocytes. Aldosterone-induced adipocyte differentiation and inflammation were blocked by IL-33 treatment, but sST2 did not exert any effects. The crosstalk between IL-33/ST2 and Aldosterone could be relevant in the metabolic consequences of obesity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. An equilibrium model for the coupled ocean-atmosphere boundary layer in the tropics

    NASA Technical Reports Server (NTRS)

    Sui, C.-H.; Lau, K.-M.; Betts, Alan K.

    1991-01-01

    An atmospheric convective boundary layer (CBL) model is coupled to an ocean mixed-layer (OML) model in order to study the equilibrium state of the coupled system in the tropics, particularly in the Pacific region. The equilibrium state of the coupled system is solved as a function of sea-surface temperature (SST) for a given surface wind and as a function of surface wind for a given SST. It is noted that in both cases, the depth of the CBL and OML increases and the upwelling below the OML decreases, corresponding to either increasing SST or increasing surface wind. The coupled ocean-atmosphere model is solved iteratively as a function of surface wind for a fixed upwelling and a fixed OML depth, and it is observed that SST falls with increasing wind in both cases. Realistic gradients of mixed-layer depth and upwelling are observed in experiments with surface wind and SST prescribed as a function of longitude.

  6. Role of upper-ocean on the intensity of Bay of Bengal cyclone `Phailin' as revealed by coupled simulation using Mesoscale Coupled Modeling System (WRF-ROMS)

    NASA Astrophysics Data System (ADS)

    Mani, B.; Mandal, M.

    2016-12-01

    Numerical prediction of tropical cyclone (TC) track has improved significantly in recent years, but not the intensity. It is well accepted that TC induced sea surface temperature (SST) cooling in conjunction with pre-existing upper-ocean features have major influences on tropical cyclone intensity. Absence of two-way atmosphere-ocean feedback in the stand-alone atmosphere models has major consequences on their prediction of TC intensity. The present study investigates the role of upper-ocean on prediction of TC intensity and track based on coupled and uncoupled simulation of the Bay of Bengal (BoB) cyclone `Phailin'. The coupled simulation is conducted with the Mesoscale Coupled Modeling System (MCMS) which is a fully coupled atmosphere-ocean modeling system that includes the non-hydrostatic atmospheric model (WRF-ARW) and the three-dimensional hydrostatic ocean model (ROMS). The uncoupled simulation is performed using the atmosphere component of MCMS i.e., the customized version of WRF-ARW for BoB cyclones with prescribed (RTG) SST. The track and intensity of the storm is significantly better simulated by the MCMS and closely followed the observation. The peak intensity, landfall position and time are accurately predicted by MCMS, whereas the uncoupled simulation over predicted the storm intensity. Validation of storm induced SST cooling with the merged microwave-infrared satellite SST indicates that the MCMS simulation shows better correlation both in terms of spatial spread of cold wake and its magnitude. The analysis also suggests that the Pre-existing Cyclonic Eddy (PCE) observed adjacent to the storm enhanced the TC induced SST cooling. It is observed that the response of SST (i.e., cooling) to storm intensity is 12hr with 95% statistical significance. The air-sea enthalpy flux shows a clear asymmetry between Front Left (FL) and Rear Right (RR) regime to the storm center where TC induced cooling is more than 0.5K/24hr. The analysis of atmospheric boundary layer reveals the formation of persistent stable boundary layer (SBL) over the cold wake, which caused asymmetry in TC structure by quelling convection in the rainbands downstream to the cold wake. The present study signifies the importance of using MCMS in prediction of the BoB cyclone and encourages further investigation with more cyclone cases.

  7. Increased serum concentrations of soluble ST2 predict mortality after burn injury.

    PubMed

    Hacker, Stefan; Dieplinger, Benjamin; Werba, Gregor; Nickl, Stefanie; Roth, Georg A; Krenn, Claus G; Mueller, Thomas; Ankersmit, Hendrik J; Haider, Thomas

    2018-06-27

    Large burn injuries induce a systemic response in affected patients. Soluble ST2 (sST2) acts as a decoy receptor for interleukin-33 (IL-33) and has immunosuppressive effects. sST2 has been described previously as a prognostic serum marker. Our aim was to evaluate serum concentrations of sST2 and IL-33 after thermal injury and elucidate whether sST2 is associated with mortality in these patients. We included 32 burn patients (total body surface area [TBSA] >10%) admitted to our burn intensive care unit and compared them to eight healthy probands. Serum concentrations of sST2 and IL-33 were measured serially using an enzyme-linked immunosorbent assay (ELISA) technique. The mean TBSA was 32.5%±19.6%. Six patients (18.8%) died during the hospital stay. Serum analyses showed significantly increased concentrations of sST2 and reduced concentrations of IL-33 in burn patients compared to healthy controls. In our study cohort, higher serum concentrations of sST2 were a strong independent predictor of mortality. Burn injuries cause an increment of sST2 serum concentrations with a concomitant reduction of IL-33. Higher concentrations of sST2 are associated with increased in-hospital mortality in burn patients.

  8. Multi-scale Quantitative Precipitation Forecasting Using ...

    EPA Pesticide Factsheets

    Global sea surface temperature (SST) anomalies can affect terrestrial precipitation via ocean-atmosphere interaction known as climate teleconnection. Non-stationary and non-linear characteristics of the ocean-atmosphere system make the identification of the teleconnection signals difficult to be detected at a local scale as it could cause large uncertainties when using linear correlation analysis only. This paper explores the relationship between global SST and terrestrial precipitation with respect to long-term non-stationary teleconnection signals during 1981-2010 over three regions in North America and one in Central America. Empirical mode decomposition as well as wavelet analysis is utilized to extract the intrinsic trend and the dominant oscillation of the SST and precipitation time series in sequence. After finding possible associations between the dominant oscillation of seasonal precipitation and global SST through lagged correlation analysis, the statistically significant SST regions are extracted based on the correlation coefficient. With these characterized associations, individual contribution of these SST forcing regions linked to the related precipitation responses are further quantified through nonlinear modeling with the aid of extreme learning machine. Results indicate that the non-leading SST regions also contribute a salient portion to the terrestrial precipitation variability compared to some known leading SST regions. In some cases, these

  9. A 20 year independent record of sea surface temperature for climate from Along-Track Scanning Radiometers

    NASA Astrophysics Data System (ADS)

    Merchant, Christopher J.; Embury, Owen; Rayner, Nick A.; Berry, David I.; Corlett, Gary K.; Lean, Katie; Veal, Karen L.; Kent, Elizabeth C.; Llewellyn-Jones, David T.; Remedios, John J.; Saunders, Roger

    2012-12-01

    A new record of sea surface temperature (SST) for climate applications is described. This record provides independent corroboration of global variations estimated from SST measurements made in situ. Infrared imagery from Along-Track Scanning Radiometers (ATSRs) is used to create a 20 year time series of SST at 0.1° latitude-longitude resolution, in the ATSR Reprocessing for Climate (ARC) project. A very high degree of independence of in situ measurements is achieved via physics-based techniques. Skin SST and SST estimated for 20 cm depth are provided, with grid cell uncertainty estimates. Comparison with in situ data sets establishes that ARC SSTs generally have bias of order 0.1 K or smaller. The precision of the ARC SSTs is 0.14 K during 2003 to 2009, from three-way error analysis. Over the period 1994 to 2010, ARC SSTs are stable, with better than 95% confidence, to within 0.005 K yr-1(demonstrated for tropical regions). The data set appears useful for cleanly quantifying interannual variability in SST and major SST anomalies. The ARC SST global anomaly time series is compared to the in situ-based Hadley Centre SST data set version 3 (HadSST3). Within known uncertainties in bias adjustments applied to in situ measurements, the independent ARC record and HadSST3 present the same variations in global marine temperature since 1996. Since the in situ observing system evolved significantly in its mix of measurement platforms and techniques over this period, ARC SSTs provide an important corroboration that HadSST3 accurately represents recent variability and change in this essential climate variable.

  10. The Dependence of Cloud-SST Feedback on Circulation Regime and Timescale

    NASA Astrophysics Data System (ADS)

    Middlemas, E.; Clement, A. C.; Medeiros, B.

    2017-12-01

    Studies suggest cloud radiative feedback amplifies internal variability of Pacific sea surface temperature (SST) on interannual-and-longer timescales, though only a few modeling studies have tested the quantitative importance of this feedback (Bellomo et al. 2014b, Brown et al. 2016, Radel et al. 2016 Burgman et al. 2017). We prescribe clouds from a previous control run in the radiation module in Community Atmospheric Model (CAM5-slab), a method called "cloud-locking". By comparing this run to a control run, in which cloud radiative forcing can feedback on the climate system, we isolate the effect of cloud radiative forcing on SST variability. Cloud-locking prevents clouds from radiatively interacting with atmospheric circulation, water vapor, and SST, while maintaining a similar mean state to the control. On all timescales, cloud radiative forcing's influence on SST variance is modulated by the circulation regime. Cloud radiative forcing amplifies SST variance in subsiding regimes and dampens SST variance in convecting regimes. In this particular model, a tug of war between latent heat flux and cloud radiative forcing determines the variance of SST, and the winner depends on the timescale. On decadal-and-longer timescales, cloud radiative forcing plays a relatively larger role than on interannual-and-shorter timescales, while latent heat flux plays a smaller role. On longer timescales, the absence of cloud radiative feedback changes SST variance in a zonally asymmetric pattern in the Pacific Ocean that resembles an IPO-like pattern. We also present an analysis of cloud feedback's role on Pacific SST variability among preindustrial control CMIP5 models to test the model robustness of our results. Our results suggest that circulation plays a crucial role in cloud-SST feedbacks across the globe and cloud radiative feedbacks cannot be ignored when studying SST variability on decadal-and-longer timescales.

  11. Analysis of the VIIRS cloud mask, comparison with the NAVOCEANO cloud mask, and how they complement each other

    NASA Astrophysics Data System (ADS)

    Cayula, Jean-François P.; May, Douglas A.; McKenzie, Bruce D.

    2014-05-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Mask (VCM) Intermediate Product (IP) has been developed for use with Suomi National Polar-orbiting Partnership (NPP) VIIRS Environmental Data Record (EDR) products. In particular, the VIIRS Sea Surface Temperature (SST) EDR relies on VCM to identify cloud contaminated observations. Unfortunately, VCM does not appear to perform as well as cloud detection algorithms for SST. This may be due to similar but different goals of the two algorithms. VCM is concerned with detecting clouds while SST is interested in identifying clear observations. The result is that in undetermined cases VCM defaults to "clear," while the SST cloud detection defaults to "cloud." This problem is further compounded because classic SST cloud detection often flags as "cloud" all types of corrupted data, thus making a comparison with VCM difficult. The Naval Oceanographic Office (NAVOCEANO), which operationally produces a VIIRS SST product, relies on cloud detection from the NAVOCEANO Cloud Mask (NCM), adapted from cloud detection schemes designed for SST processing. To analyze VCM, the NAVOCEANO SST process was modified to attach the VCM flags to all SST retrievals. Global statistics are computed for both day and night data. The cases where NCM and/or VCM tag data as cloud-contaminated or clear can then be investigated. By analyzing the VCM individual test flags in conjunction with the status of NCM, areas where VCM can complement NCM are identified.

  12. Adaptive synchrosqueezing based on a quilted short-time Fourier transform

    NASA Astrophysics Data System (ADS)

    Berrian, Alexander; Saito, Naoki

    2017-08-01

    In recent years, the synchrosqueezing transform (SST) has gained popularity as a method for the analysis of signals that can be broken down into multiple components determined by instantaneous amplitudes and phases. One such version of SST, based on the short-time Fourier transform (STFT), enables the sharpening of instantaneous frequency (IF) information derived from the STFT, as well as the separation of amplitude-phase components corresponding to distinct IF curves. However, this SST is limited by the time-frequency resolution of the underlying window function, and may not resolve signals exhibiting diverse time-frequency behaviors with sufficient accuracy. In this work, we develop a framework for an SST based on a "quilted" short-time Fourier transform (SST-QSTFT), which allows adaptation to signal behavior in separate time-frequency regions through the use of multiple windows. This motivates us to introduce a discrete reassignment frequency formula based on a finite difference of the phase spectrum, ensuring computational accuracy for a wider variety of windows. We develop a theoretical framework for the SST-QSTFT in both the continuous and the discrete settings, and describe an algorithm for the automatic selection of optimal windows depending on the region of interest. Using synthetic data, we demonstrate the superior numerical performance of SST-QSTFT relative to other SST methods in a noisy context. Finally, we apply SST-QSTFT to audio recordings of animal calls to demonstrate the potential of our method for the analysis of real bioacoustic signals.

  13. High Resolution Upwelling Cycles in Guaymas and Cariaco Basins over the late Holocene: Coupling Between the Western Atlantic and Eastern Pacific?

    NASA Astrophysics Data System (ADS)

    Goni, M. A.

    2005-12-01

    The recent past history of sea surface temperature (SST) conditions in two wind-dominated upwelling systems, Guaymas Basin (Gulf of California) and Cariaco Basin (Venezuela) was investigated using the alkenone-based UK'37 index. Both of these systems undergo marked seasonal SST changes of 4-10 degrees C, which are associated with wind-driven upwelling and thermal stratification cycles. Both Guaymas and Cariaco Basins are also characterized by suboxic to anoxic bottom waters that result in undisturbed, varved sediments. Confirmation that the seasonal SST trends are accurately incorporated into the UK'37 ratios of sinking particles was achieved using sediment trap samples. Analyses of sediment cores from Guaymas and Cariaco Basins yielded high-resolution (decadal) records of SST conditions in the overlying water column from 1700 to 2000 AD. The trends in the UK'37 index revealed general increases in the SST at both sites over that last 300 years associated with the end of the little ice age. However, in addition to this long-term trend, higher-frequency (~ 50 years) changes in SST that ranged from 1-3 degrees C were observed. We speculate that these decadal trends in SST reflect variations in the intensity of wind-driven upwelling at these sites. Most interestingly, there is a marked contrast in the timing of the SST values between Guaymas and Cariaco so that periods of enhanced upwelling in Guyamas Basin are characterized by decreased upwelling in Cariaco Basin (and vice versa). We propose that these contrasting records reflect differences in the response of wind-driven upwelling to changes in the position of the Intertropical Convergence Zone over the western Atlantic and the subtropical High over the eastern Pacific. The connection between these two upwelling systems and its significance for paleoreconstruction studies will be explored further.

  14. The Effect of Environmental Conditions on Tropical Deep Convective Systems Observed from the TRMM Satellite

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Wielicki, Bruce A.; Minnis, Patrick; Chambers, Lin H.; Xu, Kuan-Man; Hu, Yongxiang; Fan, Tai-Fang

    2005-01-01

    This study uses measurements of radiation and cloud properties taken between January and August 1998 by three Tropical Rainfall Measuring Mission (TRMM) instruments, the Clouds and the Earth's Radiant Energy System (CERES) scanner, the TRMM Microwave Imager (TMI), and the Visible and InfraRed Scanner (VIRS), to evaluate the variations of tropical deep convective systems (DCS) with sea surface temperature (SST) and precipitation. This study finds that DCS precipitation efficiency increases with SST at a rate of approx. 2%/K. Despite increasing rainfall efficiency, the cloud areal coverage rises with SST at a rate of about 7%/K in the warm tropical seas. There, the boundary layer moisture supply for deep convection and the moisture transported to the upper troposphere for cirrus-anvil cloud formation increase by approx. 6.3%/K and approx. 4.0%/K, respectively. The changes in cloud formation efficiency, along with the increased transport of moisture available for cloud formation, likely contribute to the large rate of increasing DCS areal coverage. Although no direct observations are available, the increase of cloud formation efficiency with rising SST is deduced indirectly from measurements of changes in the ratio of DCS ice water path and boundary layer water vapor amount with SST. Besides the cloud areal coverage, DCS cluster effective sizes also increase with precipitation. Furthermore, other cloud properties, such as cloud total water and ice water paths, increase with SST. These changes in DCS properties will produce a negative radiative feedback for the earth's climate system due to strong reflection of shortwave radiation by the DCS. These results significantly differ from some previous hypothesized dehydration scenarios for warmer climates, and have great potential in testing current cloud-system resolving models and convective parameterizations of general circulation models.

  15. Highly Increased 125I-JR11 Antagonist Binding In Vitro Reveals Novel Indications for sst2 Targeting in Human Cancers.

    PubMed

    Reubi, Jean Claude; Waser, Beatrice; Mäcke, Helmut; Rivier, Jean

    2017-02-01

    There is recent in vitro and in vivo evidence that somatostatin receptor subtype 2 (sst 2 ) antagonists are better tools to target neuroendocrine tumors (NETs) than sst 2 agonists. Indeed, antagonists bind to a greater number of sst 2 sites than agonists. Whether sst 2 antagonists could be used successfully to target non-NETs, expressing low sst 2 density, is unknown. Here, we compare quantitatively 125 I-JR11 sst 2 antagonist binding in vitro with that of the sst 2 agonist 125 I-Tyr 3 -octreotide in large varieties of non-NET and NET. In vitro receptor autoradiography was performed with 125 I-JR11 and 125 I-Tyr 3 -octreotide in cancers from prostate, breast, colon, kidney, thyroid, and lymphoid tissues as well as NETs as reference. In general, 125 I-JR11 binds to many more sst 2 sites than 125 I-Tyr 3 -octreotide. In 13 breast cancers, 8 had a low binding (mean density, 844 ± 168 dpm/mg of tissue) with the agonist whereas 12 had a high binding (mean density, 4,447 ± 1,128 dpm/mg of tissue) with the antagonist. All 12 renal cell cancers showed a low binding of sst 2 with the agonist (mean density, 348 ± 49 dpm/mg of tissue) whereas all cases had a high sst 2 binding with the antagonist (mean density, 3,777 ± 582 dpm/mg of tissue). One of 5 medullary thyroid cancers was positive with the agonist, whereas 5 of 5 were positive with the antagonist. In 15 non-Hodgkin lymphomas, many more sst 2 sites were labeled with the antagonist than with the agonist. In 14 prostate cancers, none had sst 2 binding with the agonist and only 4 had a weak binding with the antagonist. None of 17 colon cancers showed sst 2 sites with the agonist, and only 3 cases were weakly positive with the antagonist. In the various tumor types, adjacent sst 2 -expressing tissues such as vessels, lymphocytes, nerves, mucosa, or stroma were more strongly labeled with the antagonist than with the agonist. The reference NET cases, incubated with a smaller amount of tracer, were also found to have many more sst 2 sites measured with the antagonist. All renal cell cancers and most breast cancers, non-Hodgkin lymphomas, and medullary thyroid cancers represent novel indications for the in vivo radiopeptide targeting of sst 2 by sst 2 antagonists, comparable to NET radiotargeting with sst 2 agonists. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  16. The first experiments in SST-1

    NASA Astrophysics Data System (ADS)

    Pradhan, S.; Khan, Z.; Tanna, V. L.; Sharma, A. N.; Doshi, K. J.; Prasad, U.; Masand, H.; Kumar, Aveg; Patel, K. B.; Bhandarkar, M. K.; Dhongde, J. R.; Shukla, B. K.; Mansuri, I. A.; Varadarajulu, A.; Khristi, Y. S.; Biswas, P.; Gupta, C. N.; Sharma, D. K.; Raval, D. C.; Srinivasan, R.; Pandya, S. P.; Atrey, P. K.; Sharma, P. K.; Patel, P. J.; Patel, H. S.; Santra, P.; Parekh, T. J.; Dhanani, K. R.; Paravastu, Y.; Pathan, F. S.; Chauhan, P. K.; Khan, M. S.; Tank, J. K.; Panchal, P. N.; Panchal, R. N.; Patel, R. J.; George, S.; Semwal, P.; Gupta, P.; Mahesuriya, G. I.; Sonara, D. P.; Jayswal, S. P.; Sharma, M.; Patel, J. C.; Varmora, P. P.; Patel, D. J.; Srikanth, G. L. N.; Christian, D. R.; Garg, A.; Bairagi, N.; Babu, G. R.; Panchal, A. G.; Vora, M. M.; Singh, A. K.; Sharma, R.; Raju, D.; Kulkarni, S. V.; Kumar, M.; Manchanda, R.; Joisa, S.; Tahiliani, K.; Pathak, S. K.; Patel, K. M.; Nimavat, H. D.; Shah, P. R.; Chudasma, H. H.; Raval, T. Y.; Sharma, A. L.; Ojha, A.; Parghi, B. R.; Banaudha, M.; Makwana, A. R.; Chowdhuri, M. B.; Ramaiya, N.; kumar, A.; Raval, J. V.; Gupta, S.; Purohit, S.; Kaur, R.; Adhiya, A. N.; Jha, R.; Kumar, S.; Nagora, U. C.; Siju, V.; Thomas, J.; Chaudhari, V. R.; Patel, K. G.; Ambulkar, K. K.; Dalakoti, S.; Virani, C. G.; Parmar, P. R.; Thakur, A. L.; Das, A.; Bora, D.; the SST-1 Team

    2015-10-01

    A steady state superconducting tokamak (SST-1) has been commissioned after the successful experimental and engineering validations of its critical sub-systems. During the ‘engineering validation phase’ of SST-1; the cryostat was demonstrated to be leak-tight in all operational scenarios, 80 K thermal shields were demonstrated to be uniformly cooled without regions of ‘thermal runaway and hot spots’, the superconducting toroidal field magnets were demonstrated to be cooled to their nominal operational conditions and charged up to 1.5 T of the field at the major radius. The engineering validations further demonstrated the assembled SST-1 machine shell to be a graded, stress-strain optimized and distributed thermo-mechanical device, apart from the integrated vacuum vessel being validated to be UHV compatible etc. Subsequently, ‘field error components’ in SST-1 were measured to be acceptable towards plasma discharges. A successful breakdown in SST-1 was obtained in SST-1 in June 2013 assisted with electron cyclotron pre-ionization in the second harmonic mode, thus marking the ‘first plasma’ in SST-1 and the arrival of SST-1 into the league of contemporary steady state devices. Subsequent to the first plasma, successful repeatable plasma start-ups with E ˜ 0.4 V m-1, and plasma current in excess of 70 kA for 400 ms assisted with electron cyclotron heating pre-ionization at a field of 1.5 T have so far been achieved in SST-1. Lengthening the plasma pulse duration with lower hybrid current drive, confinement and transport in SST-1 plasmas and magnetohydrodynamic activities typical to large aspect ratio SST-1 discharges are presently being investigated in SST-1. In parallel, SST-1 has uniquely demonstrated reliable cryo-stable high field operation of superconducting TF magnets in the two-phase cooling mode, operation of vapour-cooled current leads with cold gas instead of liquid helium and an order less dc joint resistance in superconducting magnet winding packs with high transport currents. In parallel, SST-1 is also continually getting up-graded with first wall integration, superconducting central solenoid installation and over-loaded MgB2-brass based current leads etc. Phase-1 of SST-1 up-gradation is scheduled by the first half of 2015, after which long pulse plasma experiments in both circular and elongated configurations have been planned in SST-1.

  17. Preparation and biological evaluation of 64Cu-CB-TE2A-sst2-ANT, a somatostatin antagonist for PET imaging of somatostatin receptor-positive tumors.

    PubMed

    Wadas, Thaddeus J; Eiblmaier, Martin; Zheleznyak, Alexander; Sherman, Christopher D; Ferdani, Riccardo; Liang, Kexian; Achilefu, Samuel; Anderson, Carolyn J

    2008-11-01

    Recently, the somatostatin receptor subtype 2 (SSTR2) selective antagonist sst2-ANT was determined to have a high affinity for SSTR2. Additionally, 111In-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-sst2-ANT showed high uptake in an SSTR2-transfected, tumor-bearing mouse model and suggested that radiolabeled SSTR2 antagonists may be superior to agonists for imaging SSTR2-positive tumors. This report describes the synthesis and evaluation of 64Cu-CB-4,11-bis(carboxymethyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane-sst2-ANT (64Cu-CB-TE2A-sst2-ANT) as a PET radiopharmaceutical for the in vivo imaging of SSTR2-positive tumors. Receptor-binding studies were performed to determine the dissociation constant of the radiopharmaceutical 64Cu-CB-TE2A-sst2-ANT using AR42J rat pancreatic tumor cell membranes. The internalization of 64Cu-CB-TE2A-sst2-ANT was compared with that of the 64Cu-labeled agonist 64Cu-CB-TE2A-tyrosine3-octreotate (64Cu-CB-TE2A-Y3-TATE) in AR42J cells. Both radiopharmaceuticals were also compared in vivo through biodistribution studies using healthy rats bearing AR42J tumors, and small-animal PET/CT of 64Cu-CB-TE2A-sst2-ANT was performed. The dissociation constant value for the radiopharmaceutical was determined to be 26 +/- 2.4 nM, and the maximum number of binding sites was 23,000 fmol/mg. 64Cu-CB-TE2A-sst2-ANT showed significantly less internalization than did 64Cu-CB-TE2A-Y3-TATE at time points from 15 min to 4 h. Biodistribution studies revealed that the clearance of 64Cu-CB-TE2A-sst2-ANT from the blood was rapid, whereas the clearance of 64Cu-CB-TE2A-sst2-ANT from the liver and kidneys was more modest at all time points. Tumor-to-blood and tumor-to-muscle ratios were determined to be better for 64Cu-CB-TE2A-sst2-ANT than those for 64Cu-CB-TE2A-Y3-TATE at the later time points, although liver and kidney uptake was significantly higher. Small-animal imaging using 64Cu-CB-TE2A-sst2-ANT revealed excellent tumor-to-background contrast at 4 h after injection, and standardized uptake values remained high even after 24 h. The PET radiopharmaceutical 64Cu-CB-TE2A-sst2-ANT is an attractive agent, worthy of future study as a PET radiopharmaceutical for the imaging of somatostatin receptor-positive tumors.

  18. Ciguatera fish poisoning and climate change: analysis of National Poison Center Data in the United States, 2001-2011.

    PubMed

    Gingold, Daniel B; Strickland, Matthew J; Hess, Jeremy J

    2014-06-01

    Warm sea surface temperatures (SSTs) are positively related to incidence of ciguatera fish poisoning (CFP). Increased severe storm frequency may create more habitat for ciguatoxic organisms. Although climate change could expand the endemic range of CFP, the relationship between CFP incidence and specific environmental conditions is unknown. We estimated associations between monthly CFP incidence in the contiguous United States and SST and storm frequency in the Caribbean basin. We obtained information on 1,102 CFP-related calls to U.S. poison control centers during 2001-2011 from the National Poison Data System. We performed a time-series analysis using Poisson regression to relate monthly CFP call incidence to SST and tropical storms. We investigated associations across a range of plausible lag structures. Results showed associations between monthly CFP calls and both warmer SSTs and increased tropical storm frequency. The SST variable with the strongest association linked current monthly CFP calls to the peak August SST of the previous year. The lag period with the strongest association for storms was 18 months. If climate change increases SST in the Caribbean 2.5-3.5 °C over the coming century as projected, this model implies that CFP incidence in the United States is likely to increase 200-400%. Using CFP calls as a marker of CFP incidence, these results clarify associations between climate variability and CFP incidence and suggest that, all other things equal, climate change could increase the burden of CFP. These findings have implications for disease prediction, surveillance, and public health preparedness for climate change.

  19. Shield evaluation and performance testing at the USMB`s Strategic Structures Testing Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barczak, T.M.; Gearhart, D.F.

    1996-12-31

    Historically, shield performance testing is conducted by the support manufacturers at European facilities. The U.S. Bureau of Mines (USBM) has conducted extensive research in shield Mechanics and is now opening its Strategic Structures Testing (SST) Laboratory to the mining industry for shield performance testing. The SST Laboratory provides unique shield testing capabilities using the Mine Roof Simulator (MRS) load frame. The MRS provides realistic and cost-effective shield evaluation by combining both vertical and horizontal loading into a single load cycle; whereas, several load cycles would be required to obtain this loading in a static frame. In addition to these advantages,more » the USBM acts as an independent research organization to provide an unbiased assessment of shield performance. This paper describes the USBM`s shield testing program that is designed specifically to simulate in-service mining conditions using the unique the capabilities of the SST Laboratory.« less

  20. Broadband IR Measurements for Modis Validation

    NASA Technical Reports Server (NTRS)

    Jessup, Andrew T.

    2003-01-01

    The primary objective of this research was the development and deployment of autonomous shipboard systems for infrared measurement of ocean surface skin temperature (SST). The focus was on demonstrating long-term, all-weather capability and supplying calibrated skin SST to the MODIS Ocean Science Team (MOCEAN). A secondary objective was to investigate and account for environmental factors that affect in situ measurements of SST for validation of satellite products. We developed and extensively deployed the Calibrated, InfraRed, In situ Measurement System, or CIRIMS, for at-sea validation of satellite-derived SST. The design goals included autonomous operation at sea for up to 6 months and an accuracy of +/- 0.1 C. We used commercially available infrared pyrometers and a precision blackbody housed in a temperature-controlled enclosure. The sensors are calibrated at regular interval using a cylindro-cone target immersed in a temperature-controlled water bath, which allows the calibration points to follow the ocean surface temperature. An upward-looking pyrometer measures sky radiance in order to correct for the non-unity emissivity of water, which can introduce an error of up to 0.5 C. One of the most challenging aspects of the design was protection against the marine environment. A wide range of design strategies to provide accurate, all-weather measurements were investigated. The CIRIMS uses an infrared transparent window to completely protect the sensor and calibration blackbody from the marine environment. In order to evaluate the performance of this approach, the design incorporates the ability to make measurements with and without the window in the optical path.

  1. Characterization and commissioning of the SST-1M camera for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Bilnik, W.; Błocki, J.; Bogacz, L.; Borkowski, J.; Bulik, T.; Cadoux, F.; Christov, A.; Curyło, M.; della Volpe, D.; Dyrda, M.; Favre, Y.; Frankowski, A.; Grudnik, Ł.; Grudzińska, M.; Heller, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Medina Miranda, L. D.; Michałowski, J.; Moderski, R.; Montaruli, T.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Porcelli, A.; Prandini, E.; Rajda, P.; Rameez, M.; Schioppa, E., Jr.; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Troyano Pujadas, I.; Walter, R.; Wiȩcek, M.; Zagdański, A.; Ziȩtara, K.; Żychowski, P.

    2017-02-01

    The Cherenkov Telescope Array (CTA), the next generation very high energy gamma-rays observatory, will consist of three types of telescopes: large (LST), medium (MST) and small (SST) size telescopes. The SSTs are dedicated to the observation of gamma-rays with energy between a few TeV and a few hundreds of TeV. The SST array is expected to have 70 telescopes of different designs. The single-mirror small size telescope (SST-1 M) is one of the proposed telescope designs under consideration for the SST array. It will be equipped with a 4 m diameter segmented mirror dish and with an innovative camera based on silicon photomultipliers (SiPMs). The challenge is not only to build a telescope with exceptional performance but to do it foreseeing its mass production. To address both of these challenges, the camera adopts innovative solutions both for the optical system and readout. The Photo-Detection Plane (PDP) of the camera is composed of 1296 pixels, each made of a hollow, hexagonal light guide coupled to a hexagonal SiPM designed by the University of Geneva and Hamamatsu. As no commercial ASIC would satisfy the CTA requirements when coupled to such a large sensor, dedicated preamplifier electronics have been designed. The readout electronics also use an innovative approach in gamma-ray astronomy by adopting a fully digital approach. All signals coming from the PDP are digitized in a 250 MHz Fast ADC and stored in ring buffers waiting for a trigger decision to send them to the pre-processing server where calibration and higher level triggers will decide whether the data are stored. The latest generation of FPGAs is used to achieve high data rates and also to exploit all the flexibility of the system. As an example each event can be flagged according to its trigger pattern. All of these features have been demonstrated in laboratory measurements on realistic elements and the results of these measurements will be presented in this contribution.

  2. Effect of treatment with depot somatostatin analogue octreotide on primary hyperparathyroidism (PHP) in multiple endocrine neoplasia type 1 (MEN1) patients.

    PubMed

    Faggiano, Antongiulio; Tavares, Lidice Brandao; Tauchmanova, Libuse; Milone, Francesco; Mansueto, Gelsomina; Ramundo, Valeria; De Caro, Maria Laura Del Basso; Lombardi, Gaetano; De Rosa, Gaetano; Colao, Annamaria

    2008-11-01

    In patients with multiple endocrine neoplasia type 1 (MEN1), expression of somatostatin receptor (SST) in parathyroid adenomas and effectiveness of therapy with somatostatin analogues on primary hyperparathyroidism (PHP) have been scarcely investigated. To evaluate the effects of depot long acting octreotide (OCT-LAR) in patients with MEN1-related PHP. Eight patients with a genetically confirmed MEN1, presenting both PHP and duodeno-pancreatic neuroendocrine tumours (NET), were enrolled. The initial treatment was OCT-LAR 30 mg every 4 weeks. This therapy was established to stabilize the duodeno-pancreatic NET before to perform parathyroidectomy for PHP. Before OCT-LAR therapy, a SST scintigraphy was performed in all patients. SST subtype 2A immunohistochemistry was performed on parathyroid tumour samples from three patients undergone parathyroidectomy after OCT-LAR therapy. Serum concentrations of PTH, calcium and phosphorus as well as the 24-h urine calcium : creatinine ratio and the renal threshold phosphate concentration were evaluated before and after OCT-LAR. After OCT-LAR therapy, hypercalcaemia and hypercalciuria normalized in 75% and 62.5% of patients, respectively, and serum phosphorus and renal threshold phosphate significantly increased. Serum PTH concentrations significantly decreased in all patients and normalized in two of them. SST subtype 2A immunostaining was found in all parathyroid adenomas investigated, while SST scintigraphy showed a positive parathyroid tumour uptake in three of eight patients (37.5%). Six months of OCT-LAR therapy controlled hypercalcaemia and hypercalciuria in two-thirds of patients with MEN1-related PHP. Direct OCT-LAR effects mediated by binding to SST expression on parathyroid tumour cells are likely the main mechanism to explain the activity of this compound on calcium and phosphorus abnormalities in MEN1 PHP.

  3. A comparison of Argo nominal surface and near-surface temperature for validation of AMSR-E SST

    NASA Astrophysics Data System (ADS)

    Liu, Zenghong; Chen, Xingrong; Sun, Chaohui; Wu, Xiaofen; Lu, Shaolei

    2017-05-01

    Satellite SST (sea surface temperature) from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) is compared with in situ temperature observations from Argo profiling floats over the global oceans to evaluate the advantages of Argo NST (near-surface temperature: water temperature less than 1 m from the surface). By comparing Argo nominal surface temperature ( 5 m) with its NST, a diurnal cycle caused by daytime warming and nighttime cooling was found, along with a maximum warming of 0.08±0.36°C during 14:00-15:00 local time. Further comparisons between Argo 5-m temperature/Argo NST and AMSR-E SST retrievals related to wind speed, columnar water vapor, and columnar cloud water indicate warming biases at low wind speed (<5 m/s) and columnar water vapor >28 mm during daytime. The warming tendency is more remarkable for AMSR-E SST/Argo 5-m temperature compared with AMSR-E SST/Argo NST, owing to the effect of diurnal warming. This effect of diurnal warming events should be excluded before validation for microwave SST retrievals. Both AMSR-E nighttime SST/Argo 5-m temperature and nighttime SST/Argo NST show generally good agreement, independent of wind speed and columnar water vapor. From our analysis, Argo NST data demonstrated their advantages for validation of satellite-retrieved SST.

  4. Heat flux exchange estimation by using ATSR SST data in TOGA area

    NASA Astrophysics Data System (ADS)

    Xue, Yong; Lawrence, Sean P.; Llewellyn-Jones, David T.

    1995-12-01

    The study of phenomena such as ENSO requires consideration of the dynamics and thermodynamics of the coupled ocean-atmosphere system. The dynamic and thermal properties of the atmosphere and ocean are directly affected by air-sea transfers of fluxes of momentum, heat and moisture. In this paper, we present results of turbulent heat fluxes calculated by using two years (1992 and 1993) monthly average TOGA data and ATSR SST data in TOGA area. A comparison with published results indicates good qualitative agreement. Also, we compared the results of heat flux exchange by using ATSR SST data and by using the TOGA bucket SST data. The ATSR SST data set has been shown to be useful in helping to estimate the large space scale heat flux exchange.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Yongkang; De Sales, Fernando; Lau, William K. -M.

    The Sahel climate system had experienced one of the strongest interdecadal climate variabilities and the longest drought on the planet in the twentieth century. Most modeling studies on the decadal variability of the Sahel climate so far have focused on the role of anomalies in either sea surface temperature (SST), land surface processes, or aerosols concentration. The Second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II) is designed to improve understanding of the possible roles and feedback of SST, land use land cover change (LULCC), and aerosols forcings in the Sahel climate system at seasonal to decadal scales.more » The WAMME II strategy is to apply observationally based anomaly forcing, i.e., “idealized but realistic” forcing, in simulations by general circulation models’ (GCMs) and regional climate models’ (RCMs) to test the relative impacts of such forcings in producing/amplifying the Sahelian seasonal and decadal climate variability, including the 20th century drought. To test individual ocean’s SST effect, a special approach in the experimental design is taken to avoid undermine its effect. This is the first multi-model experiment specifically designed to simultaneously evaluate relative contributions of multiple-external forcings to the Sahel drought. This paper presents the major results and preliminary findings of the WAMME II SST experiment, including each ocean’s contribution to the global SST effect, as well as comparison of the SST effect with the LULCC effect. The common empirical orthogonal functions and other analyses are applied to assess and comprehend the discrepancies among the models. In general, the WAMME II models have reached a consensus on SST’s major contribution to the great Sahel drought and show that with the maximum possible SST forcing, it can produce up to 60% of the absolute amount of precipitation difference between the 1980s and the 1950s. This paper has 3 also delineated the role of SSTs in triggering and maintaining the Sahel drought, suggesting a potential predictability of WAM development linked to SST. Among different ocean basins, the Pacific and Indian Ocean SSTs have the greatest impact on the 1980s drought. The WAMME II, however, fails to reach a consensus on the role of the Mediterranean Sea SST. The changes in circulation, moisture flux convergence, and associated surface energy balances are the main mechanisms for the SST effect. The paper also compares the SST effect with the LULCC effects. It is shown that the prescribed land forcing produces about 40% of the precipitation difference between the 1980s and the 1950s, which is less than SST contribution but still of first order in the Sahel climate system. The role of land surface processes in responding to and amplifying the drought has also been identified. The results demonstrate that catastrophic consequences likely occur in the regional climate when SST anomalies in individual ocean basins and in land conditions combine synergistically to favor drought. Due to limited ensemble members, aerosol effects are not compared. Since the SST and land forcing in the real world are likely smaller than specified in this study, further investigations on the effects of aerosols as well as of other external forcings, such as greenhouse gases, and of atmospheric internal variability, are necessary. Moreover, although the WAMEE II models support a general consensus on SST and LULCC effects, there are still large discrepancies in how these models produce the Sahel drought in the 1980s. Better atmospheric observational and analysis data including more processes and components are necessary to validate and constrain models, and to guide further model development and improvement.« less

  6. How much of the interannual variability of East Asian summer rainfall is forced by SST?

    NASA Astrophysics Data System (ADS)

    He, Chao; Wu, Bo; Li, Chunhui; Lin, Ailan; Gu, Dejun; Zheng, Bin; Zhou, Tianjun

    2016-07-01

    It is widely accepted that the interannual variability of East Asian summer rainfall is forced by sea surface temperature (SST), and SST anomalies are widely used as predictors of East Asian summer rainfall. But it is still not very clear what percentage of the interannual rainfall variability is contributed by SST anomalies. In this study, Atmospheric general circulation model simulations forced by observed interannual varying SST are compared with those forced by the fixed annual cycle of SST climatology, and their ratios of interannual variance (IAV) are analyzed. The output of 12 models from the 5th Phase of Coupled Model Intercomparison Project (CMIP5) are adopted, and idealized experiments are done by Community Atmosphere Model version 4 (CAM4). Both the multi-model median of CMIP5 models and CAM4 experiments show that only about 18 % of the IAV of rainfall over East Asian land (EAL) is explained by SST, which is significantly lower than the tropical western Pacific, but comparable to the mid-latitude western Pacific. There is no significant difference between the southern part and the northern part of EAL in the percentages of SST contribution. The remote SST anomalies regulates rainfall over EAL probably by modulating the horizontal water vapor transport rather than the vertical motion, since the horizontal water vapor transport into EAL is strongly modulated by SST but the vertical motion over EAL is not. Previous studies argued about the relative importance of tropical Indian Ocean and tropical Pacific Ocean to East Asian summer rainfall anomalies. Our idealized experiments performed by CAM4 suggest that the contributions from these two ocean basins are comparable to each other, both of which account for approximately 6 % of the total IAV of rainfall over EAL.

  7. Model Predictive Control of A Matrix-Converter Based Solid State Transformer for Utility Grid Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Yaosuo

    The matrix converter solid state transformer (MC-SST), formed from the back-to-back connection of two three-to-single-phase matrix converters, is studied for use in the interconnection of two ac grids. The matrix converter topology provides a light weight and low volume single-stage bidirectional ac-ac power conversion without the need for a dc link. Thus, the lifetime limitations of dc-bus storage capacitors are avoided. However, space vector modulation of this type of MC-SST requires to compute vectors for each of the two MCs, which must be carefully coordinated to avoid commutation failure. An additional controller is also required to control power exchange betweenmore » the two ac grids. In this paper, model predictive control (MPC) is proposed for an MC-SST connecting two different ac power grids. The proposed MPC predicts the circuit variables based on the discrete model of MC-SST system and the cost function is formulated so that the optimal switch vector for the next sample period is selected, thereby generating the required grid currents for the SST. Simulation and experimental studies are carried out to demonstrate the effectiveness and simplicity of the proposed MPC for such MC-SST-based grid interfacing systems.« less

  8. Overall behaviour of PFC integrated SST-1 vacuum system

    NASA Astrophysics Data System (ADS)

    Khan, Ziauddin; Raval, Dilip C.; Paravasu, Yuvakiran; Semwal, Pratibha; Dhanani, Kalpeshkumar R.; George, Siju; Shoaib, Mohammad; Prakash, Arun; Babu, Gattu R.; Thankey, Prashant; Pathan, Firozkhan S.; Pradhan, Subrata

    2017-04-01

    As a part of phase-I up-gradation of Steady-state Superconducting Tokamak (SST-1), Graphite Plasma Facing Components (PFCs) have been integrated inside SST-1 vacuum vessel as a first wall (FW) during Nov 14 and May 2015. The SST-1 FW has a total surface area of the installed PFCs exposed to plasma is ∼ 40 m2 which is nearly 50% of the total surface area of stainless steel vacuum chamber (∼75 m2). The volume of the vessel within the PFCs is ∼ 16 m3. After the integration of PFCs, the entire vessel as well as the PFC cooling/baking circuits has been qualified with an integrated helium leak tightness of < 1.0 x 10-8 mbar 1/s. The pumping system of the SST-1 vacuum vessel comprises of one number of Roots’ pump, four numbers of turbomolecular pumps and a cryopump. After the initial pump down, the PFCs were baked at 250 °C for nearly 20 hours employing hot nitrogen gas to remove the absorbed water vapours. Thereafter, Helium glow discharges cleaning were carried out towards the removal of surface impurities. The pump down characteristics of SST-1 vacuum chamber and the changes in the residual gaseous impurities after the installation of the PFCs will be discussed in this paper.

  9. Effects of Northern Hemisphere Sea Surface Temperature Changes on the Global Air Quality

    NASA Astrophysics Data System (ADS)

    Yi, K.; Liu, J.

    2017-12-01

    The roles of regional sea surface temperature (SST) variability on modulating the climate system and consequently the air quality are investigated using the Community Earth System Model (CESM). Idealized, spatially uniform SST anomalies of +/- 1 °C are superimposed onto the North Pacific, North Atlantic, and North Indian Oceans individually. Ignoring the response of natural emissions, our simulations suggest large seasonal and regional variability of surface O3 and PM2.5 concentrations in response to SST anomalies, especially during boreal summers. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv while increases the anthropogenic PM2.5 concentrations from 0.5 to 3 µg m-3. We implement the integrated process rate (IPR) analysis in CESM and find that meteorological transport in response to SST changes is the key process causing air pollutant perturbations in most cases. During boreal summers, the increase in tropical SST over different ocean basins enhances deep convection, which significantly increases the air temperature over the upper troposphere and trigger large-scale subsidence over nearby and remote regions. These processes tend to increase tropospheric stability and suppress rainfall at lower mid-latitudes. Consequently, it reduces the vertical transport of O3 to the surface while facilitating the accumulation of PM2.5 concentrations over most regions. In addition, this regional SST warming may also considerably suppress intercontinental transport of air pollution as confirmed with idealized CO-like tracers. Our findings indicate a robust linkage between basin-scale SST variability and regional air quality, which can help local air quality management.

  10. The relative importance of ENSO and tropical Atlantic sea surface temperature anomalies for seasonal precipitation over South America: a numerical study

    NASA Astrophysics Data System (ADS)

    Pezzi, L. P.; Cavalcanti, I. F. A.

    The role of tropical Atlantic sea surface temperature (SST) anomalies during ENSO episodes over northeast Brazil (Nordeste) is investigated using the CPTEC/COLA Atmospheric General Circulation Model (AGCM). Four sets of integrations are performed using SST in El Niño and La Niña (ENSO) episodes, changing the SST of the Atlantic Ocean. A positive dipole (SST higher than normal in the tropical North Atlantic and below normal in the tropical South Atlantic) and a negative dipole (opposite conditions), are set as the boundary conditions of SST in the Atlantic Ocean. The four experiments are performed using El Niño or La Niña SST in all oceans, except in the tropical Atlantic where the two phases of the SST dipole are applied. Five initial conditions were integrated in each case in order to obtain four ensemble results. The positive SST dipole over the tropical Atlantic Ocean and El Niño conditions over the Pacific Ocean resulted in dry conditions over the Nordeste. When the negative dipole and El Niño conditions over the Pacific Ocean were applied, the results showed precipitation above normal over the north of Nordeste. When La Niña conditions over Pacific Ocean were tested together with a negative dipole, positive precipitation anomalies occurred over the whole Nordeste. Using the positive dipole over the tropical Atlantic, the precipitation over Nordeste was below average. During La Niña episodes, the Atlantic Ocean conditions have a larger effect on the precipitation of Nordeste than the Pacific Ocean. In El Niño conditions, only the north region of Nordeste is affected by the Atlantic SST. Other tropical areas of South America show a change only in the intensity of anomalies. Central and southeast regions of South America are affected by the Atlantic conditions only during La Niña conditions, whereas during El Niño these regions are influenced only by conditions in the Pacific Ocean.

  11. Adrenal suppression in patients taking inhaled glucocorticoids is highly prevalent and management can be guided by morning cortisol

    PubMed Central

    Woods, Conor P; Argese, Nicola; Chapman, Matthew; Boot, Christopher; Webster, Rachel; Dabhi, Vijay; Grossman, Ashley B; Toogood, Andrew A; Arlt, Wiebke; Stewart, Paul M; Crowley, Rachel K; Tomlinson, Jeremy W

    2015-01-01

    Context Up to 3% of US and UK populations are prescribed glucocorticoids (GC). Suppression of the hypothalamo–pituitary–adrenal axis with the potential risk of adrenal crisis is a recognized complication of therapy. The 250 μg short Synacthen stimulation test (SST) is the most commonly used dynamic assessment to diagnose adrenal insufficiency. There are challenges to the use of the SST in routine clinical practice, including both the staff and time constraints and a significant recent increase in Synacthen cost. Methods We performed a retrospective analysis to determine the prevalence of adrenal suppression due to prescribed GCs and the utility of a morning serum cortisol for rapid assessment of adrenal reserve in the routine clinical setting. Results In total, 2773 patients underwent 3603 SSTs in a large secondary/tertiary centre between 2008 and 2013 and 17.9% (n=496) failed the SST. Of 404 patients taking oral, topical, intranasal or inhaled GC therapy for non-endocrine conditions, 33.2% (n=134) had a subnormal SST response. In patients taking inhaled GCs without additional GC therapy, 20.5% (34/166) failed an SST and suppression of adrenal function increased in a dose-dependent fashion. Using receiver operating characteristic curve analysis in patients currently taking inhaled GCs, a basal cortisol ≥348 nmol/l provided 100% specificity for passing the SST; a cortisol value <34 nmol/l had 100% sensitivity for SST failure. Using these cut-offs, 50% (n=83) of SSTs performed on patients prescribed inhaled GCs were unnecessary. Conclusion Adrenal suppression due to GC treatment, particularly inhaled GCs, is common. A basal serum cortisol concentration has utility in helping determine which patients should undergo dynamic assessment of adrenal function. PMID:26294794

  12. Calibration of the Concorde radiation detection instrument and measurements at SST altitude.

    DOT National Transportation Integrated Search

    1971-06-01

    Performance tests were carried out on a solar cosmic radiation detection instrument developed for the Concorde SST. The instrument calibration curve (log dose-rate vs instrument reading) was reasonably linear from 0.004 to 1 rem/hr for both gamma rad...

  13. Operational use of high-resolution sst in a coupled sea ice-ocean model

    NASA Astrophysics Data System (ADS)

    Albretsen, A.

    2003-04-01

    A high-latitude, near real time, sea surface temperature (SST) product with 10 km resolution is developed at the Norwegian Meteorological Institute (met.no) through the EUMETSAT project OSI-SAF (Ocean and Sea Ice Satellite Application Facility). The product covers the Atlantic Ocean from 50N to 90N and is produced twice daily. A digitized SST and sea ice map is produced manually once a week at the Ice Mapping Service at met.no using all available information from the previous week. This map is the basis for a daily SST analysis, in which the most recent OSI-SAF SST products are successively overlaid. The resulting SST analysis field is then used in a simple data assimilation scheme in a coupled ice-ocean model to perform daily 10 days forecasts of ocean and sea ice variables. Also, the associated OSI-SAF sea ice concentration product, built from different polar orbiting satellites, is assimilated into the sea ice model. Preliminary estimates of impact on forecast skill and error statistics will be presented.

  14. Immediate effects of different schedules of somatostatin on portal pressure in patients with liver cirrhosis.

    PubMed

    Zhang, C; Xu, J-M; Kong, D-R; Min, X-K; Chen, R

    2013-06-01

    Somatostatin (SST) is used for the treatment of acute variceal bleeding based on its ability to decrease portal pressure and collateral blood flow. To date, no studies have focused on the immediate-early effects (between 1 and 30 min) of SST. The aim of this study was to compare the efficacy of different schedules of SST therapy with placebo on portal pressure in patients with portal hypertension treated with portal-azygous disconnection and to test whether an increase in bolus or infusion dose can improve the clinical efficacy of SST therapy.   Patients were treated with four different schedules: (a) standard dose (n = 11): one 250 μg bolus + a continuous infusion of 250 μg/h; (b) medium dose (n = 10): 500 μg bolus + a continuous infusion of 250 μg/h; (c) high dose (n = 10): 250 μg bolus + a continuous infusion of 500 μg/h; (d) control (n = 10): an injection of placebo (saline) followed by a placebo infusion. Following SST or placebo administration, portal pressure, central venous pressure (CVP), systemic blood pressure and heart rate (HR) were measured at 1, 3, 5, 7, 10 and 30 min.   The three schedules of SST induced a marked, rapid and highly significant decrease in portal pressure. The decline in portal pressure was moderate at 1 min (P < 0·040), achieved a peak effect at 5 min (P < 0·009) and remained decreased at 30 min. The effect of SST on portal pressure was significantly greater than placebo from 1 min after administration. There were no significant differences in portal pressure decrease between the three schedules of SST. The three schedules of SST and the placebo schedule did not induce significant changes in HR, systemic blood pressure and CVP.   This study shows that SST is effective in decreasing portal pressure within 30 min of administration in patients with liver cirrhosis. The clinical schedule used in this study was reasonable and safe. © 2013 Blackwell Publishing Ltd.

  15. Homologous upregulation of sst2 somatostatin receptor expression in the rat arcuate nucleus in vivo.

    PubMed

    Tannenbaum, G S; Turner, J; Guo, F; Videau, C; Epelbaum, J; Beaudet, A

    2001-07-01

    In vitro studies using various cell systems have provided conflicting results regarding homologous regulation of somatostatin (SRIH) receptors, and information on whether SRIH regulates the expression of its own receptors in vivo is lacking. In the present study we examined, by in situ hybridization, the effects of pretreatment with the sst2-preferring SRIH analog, octreotide, in vivo, on mRNA levels of two SRIH receptor subtypes, sst1 and sst2, in rat brain and pituitary. (125)I-[DTrp(8)]-SRIH binding was also measured in these regions. Three hours after the iv injection of 50 microg octreotide to conscious adult male rats, there was a 46% increase (p < 0.01) in the labeling density of sst2 mRNA-expressing cells in the hypothalamic arcuate nucleus compared to normal saline-pretreated controls, but not in any of the other brain regions examined. Computer-assisted image analysis revealed that 3 h exposure to octreotide significantly (p < 0.01) augmented both the number and labeling density of sst2 mRNA-expressing cells in the arcuate nucleus, compared to those in saline-treated controls. By contrast, within the anterior pituitary gland, in vivo exposure to octreotide did not affect the expression of sst2 mRNA. No changes in sst1 mRNA-expressing cells were observed after octreotide treatment in any of the regions measured, indicating that the observed effects were homologous, i.e. specific of the receptor subtype stimulated. Octreotide pretreatment was also without effect on the density of (125)I-[DTrp(8)]-SRIH binding in either the arcuate nucleus or pituitary. These results demonstrate, for the first time, that SRIH preexposure in vivo upregulates the expression of a subtype of its own receptors, sst2, within the central nervous system. They further suggest that pretreatment with SRIH in vivo does not cause sst2 receptor desensitization in arcuate nucleus and pituitary. Such homologous regulatory mechanisms may play an important role in the neuroendocrine control of growth hormone (GH) secretion by the arcuate nucleus. Copyright 2001 S. Karger AG, Basel

  16. Impacts of SST Patterns on Rapid Intensification of Typhoon Megi (2010)

    NASA Astrophysics Data System (ADS)

    Kanada, Sachie; Tsujino, Satoki; Aiki, Hidenori; Yoshioka, Mayumi K.; Miyazawa, Yasumasa; Tsuboki, Kazuhisa; Takayabu, Izuru

    2017-12-01

    Typhoon Megi (2010), a very intense tropical cyclone with a minimum central pressure of 885 hPa, was characterized by especially rapid intensification. We investigated this intensification process by a simulation experiment using a high-resolution (0.02° × 0.02°) three-dimensional atmosphere-ocean coupled regional model. We also performed a sensitivity experiment with a time-fixed sea surface temperature (SST). The coupled model successfully simulated the minimum central pressure of Typhoon Megi, whereas the fixed SST experiment simulated an excessively low minimum central pressure of 839 hPa. The simulation results also showed a close relationship between the radial SST profiles and the rapid intensification process. Because the warm sea increased near-surface water vapor and hence the convective available potential energy, the high SST in the eye region facilitated tall and intense updrafts inside the radius of maximum wind speed and led to the start of rapid intensification. In contrast, high SST outside this radius induced local secondary updrafts that inhibited rapid intensification even if the mean SST in the core region exceeded 29.0°C. These secondary updrafts moved inward and eventually merged with the primary eyewall updrafts. Then the storm intensified rapidly when the high SST appeared in the eye region. Thus, the changes in the local SST pattern around the storm center strongly affected the rapid intensification process by modulating the radial structure of core convection. Our results also show that the use of a high-resolution three-dimensional atmosphere-ocean coupled model offers promise for improving intensity forecasts of tropical cyclones.

  17. Identification of the receptors for somatostatin (SST) and cortistatin (CST) in chickens and investigation of the roles of cSST28, cSST14, and cCST14 in inhibiting cGHRH1-27NH2-induced growth hormone secretion in cultured chicken pituitary cells.

    PubMed

    Meng, Fengyan; Huang, Guian; Gao, Shunyu; Li, Juan; Yan, Zhenxin; Wang, Yajun

    2014-03-25

    Somatostatin receptors (SSTRs) are proposed to mediate the actions of somatostatin (SST) and its related peptide, cortistatin (CST), in vertebrates. However, the identity, functionality, and tissue expression of these receptors remain largely unknown in most non-mammalian vertebrates including birds. In this study, five SSTRs (named cSSTR1, cSSTR2, cSSTR3, cSSTR4, cSSTR5) were cloned from chicken brain by RT-PCR. Using a pGL3-CRE-luciferase reporter system, we demonstrated that activation of each cSSTR expressed in CHO cells by cSST28, cSST14 and cCST14 treatment could inhibit forskolin-induced luciferase activity of CHO cells, indicating the functional coupling of all cSSTRs to Gi protein(s). Interestingly, cSSTR1-4 expressed in CHO cells could be activated by cSST28, cSST14 and cCST14 with high potencies, suggesting that they may function as the receptors common for these peptides. In contrast, cSSTR5 could be potently activated by cSST28 only, indicating that it is a cSST28-specific receptor. Using RT-PCR, wide expression of cSSTRs was detected in chicken tissues including pituitary. In accordance with their expression in pituitary, cSST28, cSST14, and cCST14 were demonstrated to inhibit basal and novel cGHRH1-27NH2-induced GH secretion in cultured chicken pituitary cells dose-dependently (0-10nM) by Western blot analysis, suggesting the involvement of cSSTR(s) common for these peptides in mediating their inhibitory actions. Collectively, our study establishes a molecular basis to elucidate the roles of SST/CST in birds and provide insights into the roles of SST/CST in vertebrates, such as their conserved actions on pituitary. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Computer-Assisted Interactive Documentary and Performance Arts in Illimitable Space

    NASA Astrophysics Data System (ADS)

    Sheridan, William Michael

    Winter can bring significant snow storm systems or nor'easters to New England. Understanding each factor which can affect nor'easters will allow forecasters to better predict the subsequent weather conditions. One important parameter is the sea surface temperature (SST) of the Atlantic Ocean, where many of these systems strengthen and gain much of their structure. The Weather Research and Forecasting (WRF) model was used to simulate four different nor'easters (Mar 2007, Dec 2007, Jan 2008, Dec 2010) using both observed and warmed SSTs. For the wanner SST simulations, the SSTs over the model domain were increased by 1°C. This change increased the total surface heat fluxes in all of the storms, and the resulting simulated storms were all more intense. The influence on the amount of snowfall over land was highly variable, depending on how close to the coastline the storms were and temperatures across the region.

  19. Somatostatin Signaling in Neuronal Cilia Is Criticalfor Object Recognition Memory

    PubMed Central

    Einstein, Emily B.; Patterson, Carlyn A.; Hon, Beverly J.; Regan, Kathleen A.; Reddi, Jyoti; Melnikoff, David E.; Mateer, Marcus J.; Schulz, Stefan; Johnson, Brian N.

    2010-01-01

    Most neurons possess a single, nonmotile cilium that projects out from the cell surface. These microtubule-based organelles are important in brain development and neurogenesis; however, their function in mature neurons is unknown. Cilia express a complement of proteins distinct from other neuronal compartments, one of which is the somatostatin receptor subtype SST3. We show here that SST3 is critical for object recognition memory in mice. sst3 knock-out mice are severely impaired in discriminating novel objects, whereas they retain normal memory for object location. Further, systemic injection of an SST3 antagonist (ACQ090) disrupts recall of familiar objects in wild-type mice. To examine mechanisms of SST3, we tested synaptic plasticity in CA1 hippocampus. Electrically evoked long-term potentiation (LTP) was normal in sst3 knock-out mice, while adenylyl cyclase/cAMP-mediated LTP was impaired. The SST3 antagonist also disrupted cAMP-mediated LTP. Basal cAMP levels in hippocampal lysate were reduced in sst3 knock-out mice compared with wild-type mice, while the forskolin-induced increase in cAMP levels was normal. The SST3 antagonist inhibited forskolin-stimulated cAMP increases, whereas the SST3 agonist L-796,778 increased basal cAMP levels in hippocampal slices but not hippocampal lysate. Our results show that somatostatin signaling in neuronal cilia is critical for recognition memory and suggest that the cAMP pathway is a conserved signaling motif in cilia. Neuronal cilia therefore represent a novel nonsynaptic compartment crucial for signaling involved in a specific form of synaptic plasticity and in novelty detection. PMID:20335466

  20. A dual but asymmetric role of the dorsal anterior cingulate cortex in response inhibition and switching from a non-salient to salient action

    PubMed Central

    Manza, Peter; Hu, Sien; Chao, Herta H.; Zhang, Sheng; Leung, Hoi-Chung; Li, Chiang-shan R.

    2016-01-01

    Response inhibition and salience detection are among the most studied psychological constructs of cognitive control. Despite a growing body of work, how inhibition and salience processing interact and engage regional brain activations remains unclear. Here, we examined this issue in a stop signal task (SST), where a prepotent response needs to be inhibited to allow an alternative, less dominant response. Sixteen adult individuals performed two versions of the SST each with 25% (SST25) and 75% (SST75) of stop trials. We posited that greater regional activations to the infrequent trial type in each condition (i.e., to stop as compared to go trials in SST25 and to go as compared to stop trials in SST75) support salience detection. Further, successful inhibition in stop trials requires attention to the stop signal to trigger motor inhibition, and the stop signal reaction time (SSRT) has been used to index the efficiency of motor response inhibition. Therefore, greater regional activations to stop as compared to go success trials in association with the stop signal reaction time (SSRT) serves to expedite response inhibition. In support of an interactive role, the dorsal anterior cingulate cortex (dACC) increases activation to salience detection in both SST25 and SST75, but only mediates response inhibition in SST75. Thus, infrequency response in the dACC supports motor inhibition only when stopping has become a routine. In contrast, although the evidence is less robust, the pre-supplementary motor area (pre-SMA) increases activity to the infrequent stimulus and supports inhibition in both SST25 and SST75. These findings clarify a unique role of the dACC and add to the literature that distinguishes dACC and pre-SMA functions in cognitive control. PMID:27126003

  1. A dual but asymmetric role of the dorsal anterior cingulate cortex in response inhibition and switching from a non-salient to salient action.

    PubMed

    Manza, Peter; Hu, Sien; Chao, Herta H; Zhang, Sheng; Leung, Hoi-Chung; Li, Chiang-Shan R

    2016-07-01

    Response inhibition and salience detection are among the most studied psychological constructs of cognitive control. Despite a growing body of work, how inhibition and salience processing interact and engage regional brain activations remains unclear. Here, we examined this issue in a stop signal task (SST), where a prepotent response needs to be inhibited to allow an alternative, less dominant response. Sixteen adult individuals performed two versions of the SST each with 25% (SST25) and 75% (SST75) of stop trials. We posited that greater regional activations to the infrequent trial type in each condition (i.e., to stop as compared to go trials in SST25 and to go as compared to stop trials in SST75) support salience detection. Further, successful inhibition in stop trials requires attention to the stop signal to trigger motor inhibition, and the stop signal reaction time (SSRT) has been used to index the efficiency of motor response inhibition. Therefore, greater regional activations to stop as compared to go success trials in association with the stop signal reaction time (SSRT) serve to expedite response inhibition. In support of an interactive role, the dorsal anterior cingulate cortex (dACC) increases activation to salience detection in both SST25 and SST75, but only mediates response inhibition in SST75. Thus, infrequency response in the dACC supports motor inhibition only when stopping has become a routine. In contrast, although the evidence is less robust, the pre-supplementary motor area (pre-SMA) increases activity to the infrequent stimulus and supports inhibition in both SST25 and SST75. These findings clarify a unique role of the dACC and add to the literature that distinguishes dACC and pre-SMA functions in cognitive control. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Affordable Options for Ground-Based, Large-Aperture Optical Space Surveillance Systems

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Beason, J. D.; Kiziah, R.; Spillar, E.; Vestrand, W. T.; Cox, D.; McGraw, J.; Zimmer, P.; Holland, C.

    2013-09-01

    The Space Surveillance Telescope (SST) developed by the Defense Advanced Research Projects Agency (DARPA) - has demonstrated significant capability improvements over legacy ground-based optical space surveillance systems. To fulfill better the current and future space situational awareness (SSA) requirements, the Air Force would benefit from a global network of such telescopes, but the high cost to replicate the SST makes such an acquisition decision difficult, particularly in an era of fiscal austerity. Ideally, the Air Force needs the capabilities provided by the SST, but at a more affordable price. To address this issue, an informal study considered a total of 67 alternative optical designs, with each being evaluated for cost, complexity and SSA performance. One promising approach identified in the study uses a single mirror at prime focus with a small number of corrective lenses. This approach results in telescopes that are less complex and estimated to be less expensive than replicated SSTs. They should also be acquirable on shorter time scales. Another approach would use a modest network of smaller telescopes for space surveillance. This approach provides significant cost advantages but faces some challenges with very dim objects. In this paper, we examine the cost and SSA utility for each of the 67 designs considered.

  3. Simulation of tropical cyclone activity over the western North Pacific based on CMIP5 models

    NASA Astrophysics Data System (ADS)

    Shen, Haibo; Zhou, Weican; Zhao, Haikun

    2017-09-01

    Based on the Coupled Model Inter-comparison Project 5 (CMIP5) models, the tropical cyclone (TC) activity in the summers of 1965-2005 over the western North Pacific (WNP) is simulated by a TC dynamically downscaling system. In consideration of diversity among climate models, Bayesian model averaging (BMA) and equal-weighed model averaging (EMA) methods are applied to produce the ensemble large-scale environmental factors of the CMIP5 model outputs. The environmental factors generated by BMA and EMA methods are compared, as well as the corresponding TC simulations by the downscaling system. Results indicate that BMA method shows a significant advantage over the EMA. In addition, impacts of model selections on BMA method are examined. To each factor, ten models with better performance are selected from 30 CMIP5 models and then conduct BMA, respectively. As a consequence, the ensemble environmental factors and simulated TC activity are similar with the results from the 30 models' BMA, which verifies the BMA method can afford corresponding weight for each model in the ensemble based on the model's predictive skill. Thereby, the existence of poor performance models will not particularly affect the BMA effectiveness and the ensemble outcomes are improved. Finally, based upon the BMA method and downscaling system, we analyze the sensitivity of TC activity to three important environmental factors, i.e., sea surface temperature (SST), large-scale steering flow, and vertical wind shear. Among three factors, SST and large-scale steering flow greatly affect TC tracks, while average intensity distribution is sensitive to all three environmental factors. Moreover, SST and vertical wind shear jointly play a critical role in the inter-annual variability of TC lifetime maximum intensity and frequency of intense TCs.

  4. Experimental and Numerical Analysis of Performance Discontinuity of a Pump-Turbine under Pumping Mode

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Burgstaller, R.; Lai, X.; Gehrer, A.; Kefalas, A.; Pang, Y.

    2016-11-01

    The performance discontinuity of a pump-turbine under pumping mode is harmful to stable operation of units in hydropower station. In this paper, the performance discontinuity phenomenon of the pump-turbine was studied by means of experiment and numerical simulation. In the experiment, characteristics of the pump-turbine with different diffuser vane openings were tested in order to investigate the effect of pumping casing to the performance discontinuity. While other effects such as flow separation and rotating stall are known to have an effect on the discontinuity, the present studied test cases show that prerotation is the dominating effect for the instability, positions of the positive slope of characteristics are almost the same in different diffuser vane opening conditions. The impeller has principal effect to the performance discontinuity. In the numerical simulation, CFD analysis of tested pump-turbine has been done with k-ω and SST turbulence model. It is found that the position of performance curve discontinuity corresponds to flow recirculation at impeller inlet. Flow recirculation at impeller inlet is the cause of the discontinuity of characteristics curve. It is also found that the operating condition of occurrence of flow recirculation at impeller inlet is misestimated with k-ω and SST turbulence model. Furthermore, the original SST model has been modified. We predict the occurrence position of flow recirculation at impeller inlet correctly with the modified SST turbulence model, and it also can improve the prediction accuracy of the pump- turbine performance at the same time.

  5. Estimating the Ocean Flow Field from Combined Sea Surface Temperature and Sea Surface Height Data

    NASA Technical Reports Server (NTRS)

    Stammer, Detlef; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    This project was part of a previous grant at MIT that was moved over to the Scripps Institution of Oceanography (SIO) together with the principal investigator. The final report provided here is concerned only with the work performed at SIO since January 2000. The primary focus of this project was the study of the three-dimensional, absolute and time-evolving general circulation of the global ocean from a combined analysis of remotely sensed fields of sea surface temperature (SST) and sea surface height (SSH). The synthesis of those two fields was performed with other relevant physical data, and appropriate dynamical ocean models with emphasis on constraining ocean general circulation models by a combination of both SST and SSH data. The central goal of the project was to improve our understanding and modeling of the relationship between the SST and its variability to internal ocean dynamics, and the overlying atmosphere, and to explore the relative roles of air-sea fluxes and internal ocean dynamics in establishing anomalies in SST on annual and longer time scales. An understanding of those problems will feed into the general discussion on how SST anomalies vary with time and the extend to which they interact with the atmosphere.

  6. Social Skills Training and ADHD-What Works?

    PubMed

    Mikami, Amori Yee; Smit, Sophie; Khalis, Adri

    2017-10-30

    Many children and adolescents with attention-deficit/hyperactivity disorder (ADHD) have difficulties in their social skills and peer relationships. Because social problems exacerbate later maladjustment in ADHD populations, it is important to address this serious impairment. Although social skills training (SST) is a common intervention approach, evidence to date suggests that SST has limited efficacy, at least when provided in traditional, clinic-based settings. The current review summarizes recent advances to traditional SST approaches that may potentially enhance their efficacy. We identify two promising directions in which SST may be modified to make it more efficacious for ADHD populations. The first direction involves providing increased reinforcement and reminders of appropriate social behavior at the point of performance to youth with ADHD (e.g., in vivo, in real life peer situations as opposed to in the clinic). We note the importance of ensuring that youth with ADHD are receptive to such reminders. The second direction involves encouraging peers to be more socially accepting and inclusive of youth with ADHD. This avenue has been understudied in the literature to date. SST for children and adolescents with ADHD may be enhanced by providing more in vivo reminders and feedback at the point of performance and by making efforts to alter peers' impressions about youth with ADHD.

  7. Cognitive Frames of Reference and Strategic Thinking

    DTIC Science & Technology

    1991-04-05

    Elliot Jaques and T. 0. Jacobs, whose Stratified Systems Theory (SST) links leadership requirements to organizational functions. SST emphasizes the...reverse if necessary and identify by block number) Using Stratified Systems Theory and the research on expertise as a conceptual framework, this study...Stratified Systems Theory and the research on expertise as a conceptual framework, this study explored the differences in the structure and content of the

  8. Influence of secondary settling tank performance on suspended solids mass balance in activated sludge systems.

    PubMed

    Patziger, M; Kainz, H; Hunze, M; Józsa, J

    2012-05-01

    Secondary settling is the final step of the activated sludge-based biological waste water treatment. Secondary settling tanks (SSTs) are therefore an essential unit of producing a clear effluent. A further important function of SSTs is the sufficient thickening to achieve highly concentrated return sludge and biomass within the biological reactor. In addition, the storage of activated sludge is also needed in case of peak flow events (Ekama et al., 1997). Due to the importance of a high SST performance the problem has long been investigated (Larsen, 1977; Krebs, 1991; Takács et al., 1991; Ekama et al., 1997; Freimann, 1999; Patziger et al., 2005; Bürger et al., 2011), however, a lot of questions are still to solve regarding e.g. the geometrical features (inflow, outflow) and operations (return sludge control, scraper mechanism, allowable maximum values of surface overflow rates). In our study we focused on SSTs under dynamic load considering both the overall unsteady behaviour and the features around the peaks, investigating the effect of various sludge return strategies as well as the inlet geometry on SST performance. The main research tool was a FLUENT-based novel mass transport model consisting of two modules, a 2D axisymmetric SST model and a mixed reactor model of the biological reactor (BR). The model was calibrated and verified against detailed measurements of flow and concentration patterns, sludge settling, accompanied with continuous on-line measurement of in- and outflow as well as returned flow rates of total suspended solids (TSS) and water. As to the inlet arrangement a reasonable modification of the geometry could result in the suppression of the large scale flow structures of the sludge-water interface thus providing a significant improvement in the SST performance. Furthermore, a critical value of the overflow rate (q(crit)) was found at which a pronounced large scale circulation pattern develops in the vertical plane, the density current in such a way hitting the outer wall of the SST, turning then to the vertical direction accompanied with significant flow velocities. This phenomenon strengthens with the hydraulic load and can entrain part of the sludge thus resulting in unfavourable turbid effluent. As a representative case study an operating circular SST most commonly used in practice was investigated. Focusing on the sludge return strategies, it was found that up to a threshold peak flow rate the most efficient way is to keep the return sludge flow rate constant, at 0.4Q(MAX). However, once the inflow rate exceeds the threshold value the return sludge flow rate should be slowly increased up to 0.6Q(MAX), performed in a delayed manner, about 20-30 min after the threshold value is exceeded. For preserving the methodology outlined in the present paper, other types of SSTs, however, need further individual investigations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Development and application of screening tools for biodegradation in water-sediment systems and soil.

    PubMed

    Junker, Thomas; Coors, Anja; Schüürmann, Gerrit

    2016-02-15

    Two new screening-test systems for biodegradation in water-sediment systems (WSST; Water-Sediment Screening Tool) and soil (SST; Soil Screening Tool) were developed in analogy with the water-only test system OECD 301C (MITI-test). The test systems could be applied successfully to determine reproducible experimental mineralization rates and kinetics on the screening-test level for fifteen organic chemicals in water (MITI), water-sediment (WSST) and soil (SST). Substance-specific differences were observed for mineralization compared among the three test systems. Based on mineralization rate and mineralization half-life, the fifteen compounds could be grouped into four biodegradation categories: substances with high mineralization and a half-life <28 days in (1) all three test systems, (2) only in the MITI test and in the WSST, (3) only in the SST, and (4) none of the test systems. The observed differences between the MITI results and the WSST and SST biodegradation rates of the compounds do not reflect their (reversible) sorption into organic matter in terms of experimental K(oc) values and log D values for the relevant pH range. Regarding mineralization kinetics we recommend to determine the lag-phase, mineralization half-life and mineralization rate using a 5-parameter logistic regression for degradation curves with and without lag-phase. Experimental data obtained with the WSST and the SST could be verified by showing good agreement with biodegradation data from databases and literature for the majority of compounds tested. Thus, these new screening-tools for water-sediment and soil are considered suitable to determine sound and reliable quantitative mineralization data including mineralization kinetics in addition to the water-only ready biodegradability tests according to OECD 301. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. The control, monitor, and alarm system for the ICT equipment of the ASTRI SST-2M telescope prototype for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Gianotti, Fulvio; Fioretti, Valentina; Tanci, Claudio; Conforti, Vito; Tacchini, Alessandro; Leto, Giuseppe; Gallozzi, Stefano; Bulgarelli, Andrea; Trifoglio, Massimo; Malaguti, Giuseppe; Zoli, Andrea

    2014-07-01

    ASTRI is an Italian flagship project whose first goal is the realization of an end-to-end telescope prototype, named ASTRI SST-2M, for the Cherenkov Telescope Array (CTA). The prototype will be installed in Italy during Fall 2014. A second goal will be the realization of the ASTRI/CTA mini-array which will be composed of seven SST-2M telescopes placed at the CTA Southern Site. The Information and Communication Technology (ICT) equipment necessary to drive the infrastructure for the ASTRI SST-2M prototype is being designed as a complete and stand-alone computer center. The design goal is to obtain basic ICT equipment that might be scaled, with a low level of redundancy, for the ASTRI/CTA mini-array, taking into account the necessary control, monitor and alarm system requirements. The ICT equipment envisaged at the Serra La Nave observing station in Italy, where the ASTRI SST-2M telescope prototype will operate, includes computers, servers and workstations, network devices, an uninterruptable power supply system, and air conditioning systems. Suitable hardware and software tools will allow the parameters related to the behavior and health of each item of equipment to be controlled and monitored. This paper presents the proposed architecture and technical solutions that integrate the ICT equipment in the framework of the Observatory Control System package of the ASTRI/CTA Mini- Array Software System, MASS, to allow their local and remote control and monitoring. An end-toend test case using an Internet Protocol thermometer is reported in detail.

  11. Sensitivity of Pacific Cold Tongue and Double-ITCZ Bias to Convective Parameterization

    NASA Astrophysics Data System (ADS)

    Woelfle, M.; Bretherton, C. S.; Pritchard, M. S.; Yu, S.

    2016-12-01

    Many global climate models struggle to accurately simulate annual mean precipitation and sea surface temperature (SST) fields in the tropical Pacific basin. Precipitation biases are dominated by the double intertropical convergence zone (ITCZ) bias where models exhibit precipitation maxima straddling the equator while only a single Northern Hemispheric maximum exists in observations. The major SST bias is the enhancement of the equatorial cold tongue. A series of coupled model simulations are used to investigate the sensitivity of the bias development to convective parameterization. Model components are initialized independently prior to coupling to allow analysis of the transient response of the system directly following coupling. These experiments show precipitation and SST patterns to be highly sensitive to convective parameterization. Simulations in which the deep convective parameterization is disabled forcing all convection to be resolved by the shallow convection parameterization showed a degradation in both the cold tongue and double-ITCZ biases as precipitation becomes focused into off-equatorial regions of local SST maxima. Simulations using superparameterization in place of traditional cloud parameterizations showed a reduced cold tongue bias at the expense of additional precipitation biases. The equatorial SST responses to changes in convective parameterization are driven by changes in near equatorial zonal wind stress. The sensitivity of convection to SST is important in determining the precipitation and wind stress fields. However, differences in convective momentum transport also play a role. While no significant improvement is seen in these simulations of the double-ITCZ, the system's sensitivity to these changes reaffirm that improved convective parameterizations may provide an avenue for improving simulations of tropical Pacific precipitation and SST.

  12. The ICT monitoring system of the ASTRI SST-2M prototype proposed for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Gianotti, F.; Bruno, P.; Tacchini, A.; Conforti, V.; Fioretti, V.; Tanci, C.; Grillo, A.; Leto, G.; Malaguti, G.; Trifoglio, M.

    2016-08-01

    In the framework of the international Cherenkov Telescope Array (CTA) observatory, the Italian National Institute for Astrophysics (INAF) has developed a dual mirror, small sized, telescope prototype (ASTRI SST-2M), installed in Italy at the INAF observing station located at Serra La Nave, Mt. Etna. The ASTRI SST-2M prototype is the basis of the ASTRI telescopes that will form the mini-array proposed to be installed at the CTA southern site during its preproduction phase. This contribution presents the solutions implemented to realize the monitoring system for the Information and Communication Technology (ICT) infrastructure of the ASTRI SST-2M prototype. The ASTRI ICT monitoring system has been implemented by integrating traditional tools used in computer centers, with specific custom tools which interface via Open Platform Communication Unified Architecture (OPC UA) to the Alma Common Software (ACS) that is used to operate the ASTRI SST-2M prototype. The traditional monitoring tools are based on Simple Network Management Protocol (SNMP) and commercial solutions and features embedded in the devices themselves. They generate alerts by email and SMS. The specific custom tools convert the SNMP protocol into the OPC UA protocol and implement an OPC UA server. The server interacts with an OPC UA client implemented in an ACS component that, through the ACS Notification Channel, sends monitor data and alerts to the central console of the ASTRI SST-2M prototype. The same approach has been proposed also for the monitoring of the CTA onsite ICT infrastructures.

  13. Mechanisms of the intensification of the upwelling-favorable winds during El Niño 1997-1998 in the Peruvian upwelling system

    NASA Astrophysics Data System (ADS)

    Chamorro, Adolfo; Echevin, Vincent; Colas, François; Oerder, Vera; Tam, Jorge; Quispe-Ccalluari, Carlos

    2018-01-01

    The physical processes driving the wind intensification in a coastal band of 100 km off Peru during the intense 1997-1998 El Niño (EN) event were studied using a regional atmospheric model. A simulation performed for the period 1994-2000 reproduced the coastal wind response to local sea surface temperature (SST) forcing and large scale atmospheric conditions. The model, evaluated with satellite data, represented well the intensity, seasonal and interannual variability of alongshore (i.e. NW-SE) winds. An alongshore momentum budget showed that the pressure gradient was the dominant force driving the surface wind acceleration. The pressure gradient tended to accelerate the coastal wind, while turbulent vertical mixing decelerated it. A quasi-linear relation between surface wind and pressure gradient anomalies was found. Alongshore pressure gradient anomalies were caused by a greater increase in near-surface air temperature off the northern coast than off the southern coast, associated with the inhomogeneous SST warming. Vertical profiles of wind, mixing coefficient, and momentum trends showed that the surface wind intensification was not caused by the increase of turbulence in the planetary boundary layer. Moreover, the temperature inversion in the vertical mitigated the development of pressure gradient due to air convection during part of the event. Sensitivity experiments allowed to isolate the respective impacts of the local SST forcing and large scale condition on the coastal wind intensification. It was primarily driven by the local SST forcing whereas large scale variability associated with the South Pacific Anticyclone modulated its effects. Examination of other EN events using reanalysis data confirmed that intensifications of alongshore wind off Peru were associated with SST alongshore gradient anomalies, as during the 1997-1998 event.

  14. Sea surface temperature 1871-2099 in 38 cells in the Caribbean region.

    PubMed

    Sheppard, Charles; Rioja-Nieto, Rodolfo

    2005-09-01

    Sea surface temperature (SST) data with monthly resolution are provided for 38 cells in the Caribbean Sea and Bahamas region, plus Bermuda. These series are derived from the HadISST1 data set for historical time (1871-1999) and from the HadCM3 coupled climate model for predicted SST (1950-2099). Statistical scaling of the forecast data sets are performed to produce confluent SST series according to a now established method. These SST series are available for download. High water temperatures in 1998 killed enormous amounts of corals in tropical seas, though in the Caribbean region the effects at that time appeared less marked than in the Indo-Pacific. However, SSTs are rising in accordance with world-wide trends and it has been predicted that temperature will become increasingly important in this region in the near future. Patterns of SST rise within the Caribbean region are shown, and the importance of sub-regional patterns within this biologically highly interconnected area are noted.

  15. Interdecadal variability in pan-Pacific and global SST, revisited

    NASA Astrophysics Data System (ADS)

    Tung, Ka-Kit; Chen, Xianyao; Zhou, Jiansong; Li, King-Fai

    2018-05-01

    Interest in the "Interdecadal Pacific Oscillation (IPO)" in the global SST has surged recently on suggestions that the Pacific may be the source of prominent interdecadal variations observed in the global-mean surface temperature possibly through the mechanism of low-frequency modulation of the interannual El Nino-Southern Oscillation (ENSO) phenomenon. IPO was defined by performing empirical orthogonal function (EOF) analysis of low-pass filtered SST. The low-pass filtering creates its unique set of mathematical problems—in particular, mode mixing—and has led to some questions, many unanswered. To understand what these EOFs are, we express them first in terms of the recently developed pairwise rotated EOFs of the unfiltered SST, which can largely separate the high and low frequency bands without resorting to filtering. As reported elsewhere, the leading rotated dynamical modes (after the global warming trend) of the unfiltered global SST are: ENSO, Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). IPO is not among them. The leading principal component (PC) of the low-pass filtered global SST is usually defined as IPO and it is seen to comprise of ENSO, PDO and AMO in various proportions depending on the filter threshold. With decadal filtering, the contribution of the interannual ENSO is understandably negligible. The leading dynamical mode of the filtered global SST is mostly AMO, and therefore should not have been called the Interdecadal "Pacific" Oscillation. The leading dynamical mode of the filtered pan-Pacific SST is mostly PDO. This and other low-frequency variability that have the action center in the Pacific, from either the pan-Pacific or global SST, have near zero global mean.

  16. Comparison of intracorporeal single-stapled and double-stapled anastomosis in laparoscopic low anterior resection for rectal cancer: a case-control study.

    PubMed

    Kim, Hye Jin; Choi, Gyu-Seog; Park, Jun Seok; Park, Soo Yeun

    2013-01-01

    Recently, a single-stapled technique (SST) was performed instead of the conventional double-stapled technique (DST) in laparoscopic low anterior resection for anastomosis, by placement of intracorporeal purse-string sutures on the distal rectum with transanal specimen extraction. This study aimed to compare the short-term outcomes between the two anastomotic techniques. Between July 2007 and April 2010, 60 patients underwent SST by laparoscopic or robotic procedure. These patients were matched 1:2 by age, gender, date of surgery, and tumor stage with 120 patients who underwent conventional DST in laparoscopic low anterior resection. The robotic-assisted operative approach was used more frequently in the SST group than in the DST group (61.7 % vs. 3.3 %, p < 0.001). The mean operative time was 203.9 (range, 120-400) min for the SST group and 167.6 (range, 90-300) min for the DST group (p < 0.001). For specimen removal, the transanal approach was used in the SST group, while the transabdominal approach was used for the DST group. The pain score (visual analogue scale) of the SST group was lower (4.5 vs. 5.6, p < 0.001), although postoperative recovery was similar. Pathological examination revealed that the distal resection margin was significantly longer in the SST group (3.1 vs. 2.5 cm, p = 0.018). Postoperative morbidity including anastomotic leakage was similar in both groups. SST yielded equivalent short-term outcomes when compared to conventional DST and provided the advantages of minimal access and a longer distal resection margin. Therefore, SST in lower anterior resection may be a useful alternative to conventional DST.

  17. Not So Giants: Mice Lacking Both Somatostatin and Cortistatin Have High GH Levels but Show No Changes in Growth Rate or IGF-1 Levels.

    PubMed

    Pedraza-Arévalo, S; Córdoba-Chacón, J; Pozo-Salas, A I; L-López, F; de Lecea, L; Gahete, M D; Castaño, J P; Luque, R M

    2015-06-01

    Somatostatin (SST) and cortistatin (CORT) are two highly related neuropeptides involved in the regulation of various endocrine secretions. In particular, SST and CORT are two primary negative regulators of GH secretion. Consequently, single SST or CORT knockout mice exhibit elevated GH levels; however, this does not lead to increased IGF-1 levels or somatic growth. This apparent lack of correspondence has been suggested to result from compensatory mechanisms between both peptides. To test this hypothesis, in this study we explored, for the first time, the consequences of simultaneously deleting endogenous SST and CORT by generating a double SST/CORT knockout mouse model and exploring its endocrine and metabolic phenotype. Our results demonstrate that simultaneous deletion of SST and CORT induced a drastic elevation of endogenous GH levels, which, surprisingly, did not lead to changes in growth rate or IGF-1 levels, suggesting the existence of additional factors/systems that, in the absence of endogenous SST and CORT, could counteract GH actions. Notably, elevation in circulating GH levels were not accompanied by changes in pituitary GH expression or by alterations in the expression of its main regulators (GHRH and ghrelin) or their receptors (GHRH receptor, GHS receptor, or SST/CORT receptors) at the hypothalamic or pituitary level. However, although double-SST/CORT knockout male mice exhibited normal glucose and insulin levels, they had improved insulin sensitivity compared with the control mice. Therefore, these results suggest the existence of an intricate interplay among the known (SST/CORT), and likely unknown, inhibitory components of the GH/IGF-1 axis to regulate somatic growth and glucose/insulin homeostasis.

  18. Process optimization of helium cryo plant operation for SST-1 superconducting magnet system

    NASA Astrophysics Data System (ADS)

    Panchal, P.; Panchal, R.; Patel, R.; Mahesuriya, G.; Sonara, D.; Srikanth G, L. N.; Garg, A.; Christian, D.; Bairagi, N.; Sharma, R.; Patel, K.; Shah, P.; Nimavat, H.; Purwar, G.; Patel, J.; Tanna, V.; Pradhan, S.

    2017-02-01

    Several plasma discharge campaigns have been carried out in steady state superconducting tokamak (SST-1). SST-1 has toroidal field (TF) and poloidal field (PF) superconducting magnet system (SCMS). The TF coils system is cooled to 4.5 - 4.8 K at 1.5 - 1.7 bar(a) under two phase flow condition using 1.3 kW helium cryo plant. Experience revealed that the PF coils demand higher pressure heads even at lower temperatures in comparison to TF coils because of its longer hydraulic path lengths. Thermal run away are observed within PF coils because of single common control valve for all PF coils in distribution system having non-uniform lengths. Thus it is routine practice to stop the cooling of PF path and continue only TF cooling at SCMS inlet temperature of ˜ 14 K. In order to achieve uniform cool down, different control logic is adopted to make cryo stable system. In adopted control logic, the SCMS are cooled down to 80 K at constant inlet pressure of 9 bar(a). After authorization of turbine A/B, the SCMS inlet pressure is gradually controlled by refrigeration J-T valve to achieve stable operation window for cryo system. This paper presents process optimization for cryo plant operation for SST-1 SCMS.

  19. Pathfinder Sea Surface Temperature Climate Data Record

    NASA Astrophysics Data System (ADS)

    Baker-Yeboah, S.; Saha, K.; Zhang, D.; Casey, K. S.

    2016-02-01

    Global sea surface temperature (SST) fields are important in understanding ocean and climate variability. The NOAA National Centers for Environmental Information (NCEI) develops and maintains a high resolution, long-term, climate data record (CDR) of global satellite SST. These SST values are generated at approximately 4 km resolution using Advanced Very High Resolution Radiometer (AVHRR) instruments aboard NOAA polar-orbiting satellites going back to 1981. The Pathfinder SST algorithm is based on the Non-Linear SST algorithm using the modernized NASA SeaWiFS Data Analysis System (SeaDAS). Coefficients for this SST product were generated using regression analyses with co-located in situ and satellite measurements. Previous versions of Pathfinder included level 3 collated (L3C) products. Pathfinder Version 5.3 includes level 2 pre-processed (L2P), level 3 Uncollated (L3C), and L3C products. Notably, the data were processed in the cloud using Amazon Web Services and are made available through all of the modern web visualization and subset services provided by the THREDDS Data Server, the Live Access Server, and the OPeNDAP Hyrax Server.In this version of Pathfinder SST, anomalous hot-spots at land-water boundaries are better identified and the dataset includes updated land masks and sea ice data over the Antarctic ice shelves. All quality levels of SST values are generated, giving the user greater flexibility and the option to apply their own cloud-masking procedures. Additional improvements include consistent cloud tree tests for NOAA-07 and NOAA-19 with respect to the other sensors, improved SSTs in sun glint areas, and netCDF file format improvements to ensure consistency with the latest Group for High Resolution SST (GHRSST) requirements. This quality controlled satellite SST field is a reference environmental data record utilized as a primary resource of SST for numerous regional and global marine efforts.

  20. Asymmetric Response of the Equatorial Pacific SST to Climate Warming and Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fukai; Luo, Yiyong; Lu, Jian

    The response of the equatorial Pacific Ocean to heat fluxes of equal amplitude but opposite sign is investigated using the Community Earth System Model (CESM). Results show a strong asymmetry in SST changes. In the eastern equatorial Pacific (EEP), the warming responding to the positive forcing exceeds the cooling to the negative forcing; while in the western equatorial Pacific (WEP), it is the other way around and the cooling surpasses the warming. This leads to a zonal dipole asymmetric structure, with positive values in the east and negative values in the west. A surface heat budget analysis suggests that themore » SST asymmetry is mainly resulted from the oceanic horizontal advection and vertical entrainment, with both of their linear and nonlinear components playing a role. For the linear component, its change appears to be more significant over the EEP (WEP) in the positive (negative) forcing scenario, favoring the seesaw pattern of the SST asymmetry. For the nonlinear component, its change acts to warm (cool) the EEP (WEP) in both scenarios, also favorable for the development of the SST asymmetry. Additional experiments with a slab ocean confirm the dominant role of ocean dynamical processes for this SST asymmetry. The net surface heat flux, in contrast, works to reduce the SST asymmetry through its shortwave radiation and latent heat flux components, with the former being related to the nonlinear relationship between SST and convection, and the latter being attributable to Newtonian damping and air-sea stability effects. The suppressing effect of shortwave radiation on SST asymmetry is further verified by partially coupled overriding experiments.« less

  1. Asymmetric response of the equatorial Pacific SST to climate warming and cooling

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Liu, F.; Lu, J.

    2017-12-01

    The response of the equatorial Pacific Ocean to heat fluxes of equal amplitude but opposite sign is investigated using the Community Earth System Model (CESM). Results show a strong asymmetry in SST changes. In the eastern equatorial Pacific (EEP), the warming responding to the positive forcing exceeds the cooling to the negative forcing; while in the western equatorial Pacific (WEP), it is the other way around and the cooling surpasses the warming. This leads to a zonal dipole asymmetric structure, with positive values in the east and negative values in the west. A surface heat budget analysis suggests that the SST asymmetry is mainly resulted from the oceanic horizontal advection and vertical entrainment, with both of their linear and nonlinear components playing a role. For the linear component, its change appears to be more significant over the EEP (WEP) in the positive (negative) forcing scenario, favoring the seesaw pattern of the SST asymmetry. For the nonlinear component, its change acts to warm (cool) the EEP (WEP) in both scenarios, also favorable for the development of the SST asymmetry. Additional experiments with a slab ocean confirm the dominant role of ocean dynamical processes for this SST asymmetry. The net surface heat flux, in contrast, works to reduce the SST asymmetry through its shortwave radiation and latent heat flux components, with the former being related to the nonlinear relationship between SST and convection, and the latter being attributable to Newtonian damping and air-sea stability effects. The suppressing effect of shortwave radiation on SST asymmetry is further verified by partially coupled overriding experiments.

  2. Implementation of a flow-dependent background error correlation length scale formulation in the NEMOVAR OSTIA system

    NASA Astrophysics Data System (ADS)

    Fiedler, Emma; Mao, Chongyuan; Good, Simon; Waters, Jennifer; Martin, Matthew

    2017-04-01

    OSTIA is the Met Office's Operational Sea Surface Temperature (SST) and Ice Analysis system, which produces L4 (globally complete, gridded) analyses on a daily basis. Work is currently being undertaken to replace the original OI (Optimal Interpolation) data assimilation scheme with NEMOVAR, a 3D-Var data assimilation method developed for use with the NEMO ocean model. A dual background error correlation length scale formulation is used for SST in OSTIA, as implemented in NEMOVAR. Short and long length scales are combined according to the ratio of the decomposition of the background error variances into short and long spatial correlations. The pre-defined background error variances vary spatially and seasonally, but not on shorter time-scales. If the derived length scales applied to the daily analysis are too long, SST features may be smoothed out. Therefore a flow-dependent component to determining the effective length scale has also been developed. The total horizontal gradient of the background SST field is used to identify regions where the length scale should be shortened. These methods together have led to an improvement in the resolution of SST features compared to the previous OI analysis system, without the introduction of spurious noise. This presentation will show validation results for feature resolution in OSTIA using the OI scheme, the dual length scale NEMOVAR scheme, and the flow-dependent implementation.

  3. Recent Upgrades to NASA SPoRT Initialization Datasets for the Environmental Modeling System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Lafontaine, Frank J.; Molthan, Andrew L.; Zavodsky, Bradley T.; Rozumalski, Robert A.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed several products for its NOAA/National Weather Service (NWS) partners that can initialize specific fields for local model runs within the NOAA/NWS Science and Training Resource Center Environmental Modeling System (EMS). The suite of SPoRT products for use in the EMS consists of a Sea Surface Temperature (SST) composite that includes a Lake Surface Temperature (LST) analysis over the Great Lakes, a Great Lakes sea-ice extent within the SST composite, a real-time Green Vegetation Fraction (GVF) composite, and NASA Land Information System (LIS) gridded output. This paper and companion poster describe each dataset and provide recent upgrades made to the SST, Great Lakes LST, GVF composites, and the real-time LIS runs.

  4. The integrated value of sST2 and global longitudinal strain in the early stratification of patients with severe aortic valve stenosis: a translational imaging approach.

    PubMed

    Fabiani, Iacopo; Conte, Lorenzo; Pugliese, Nicola Riccardo; Calogero, Enrico; Barletta, Valentina; Di Stefano, Rossella; Santoni, Tatiana; Scatena, Cristian; Bortolotti, Uberto; Naccarato, Antonio Giuseppe; Petronio, Anna Sonia; Di Bello, Vitantonio

    2017-12-01

    Aortic valve stenosis (AVS) is associated with significant myocardial fibrosis (MF). Global longitudinal strain (GLS) is a sensible indicator of systolic dysfunction. ST2 is a member of the interleukin (IL)-1 receptor family and a modulator of hypertrophic and fibrotic responses. We aimed at assessing: (a) the association between adverse LV remodeling, LV functional parameters (including GLS) and sST2 level. (b) The association between MF (detected by endo-myocardial biopsy) and sST2 in patients with AVS undergoing surgical valve replacement. Twenty-two patients with severe AVS and preserved EF underwent aortic valve replacement. They performed laboratory analysis, including serum ST2 (sST2), echocardiography and inter-ventricular septum biopsy to assess MF (%). We included ten controls for comparison. Compared to controls, patients showed higher sST2 levels (p < 0.0001). sST2 showed correlation with Age (r = 0.58; p = 0.0004), E/e' average (r = 0.58; p = 0.0007), GLS (r = 0.61; p = 0.0002), LAVi (r = 0.51; p = 0.003), LVMi (r = 0.43; p = 0.01), sPAP (r = 0.36; p = 0.04) and SVi (r = -0.47; p < 0.005). No correlation was found between MF and sST2. At ROC analysis, a sST2 ≥ 284 ng/mL had the best accuracy to discriminate controls from patients with impaired GLS, i.e. GLS ≤ 17% (AUC 0.80; p = 0.003; sensitivity 95%; specificity 83%) and increased E/e' average (AUC 0.87; p = 0.0001; sensitivity 96%; specificity 74%). At multivariate regression analysis GLS resulted the only independent predictor of sST2 levels (R 2  = 0.35; p =  0.0004). Patients with severe AVS present elevated sST2 levels. LV GLS resulted the only independent predictor of sST2 levels.

  5. Estimates of Single Sensor Error Statistics for the MODIS Matchup Database Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Kumar, C.; Podesta, G. P.; Minnett, P. J.; Kilpatrick, K. A.

    2017-12-01

    Sea surface temperature (SST) is a fundamental quantity for understanding weather and climate dynamics. Although sensors aboard satellites provide global and repeated SST coverage, a characterization of SST precision and bias is necessary for determining the suitability of SST retrievals in various applications. Guidance on how to derive meaningful error estimates is still being developed. Previous methods estimated retrieval uncertainty based on geophysical factors, e.g. season or "wet" and "dry" atmospheres, but the discrete nature of these bins led to spatial discontinuities in SST maps. Recently, a new approach clustered retrievals based on the terms (excluding offset) in the statistical algorithm used to estimate SST. This approach resulted in over 600 clusters - too many to understand the geophysical conditions that influence retrieval error. Using MODIS and buoy SST matchups (2002 - 2016), we use machine learning algorithms (recursive and conditional trees, random forests) to gain insight into geophysical conditions leading to the different signs and magnitudes of MODIS SST residuals (satellite SSTs minus buoy SSTs). MODIS retrievals were first split into three categories: < -0.4 C, -0.4 C ≤ residual ≤ 0.4 C, and > 0.4 C. These categories are heavily unbalanced, with residuals > 0.4 C being much less frequent. Performance of classification algorithms is affected by imbalance, thus we tested various rebalancing algorithms (oversampling, undersampling, combinations of the two). We consider multiple features for the decision tree algorithms: regressors from the MODIS SST algorithm, proxies for temperature deficit, and spatial homogeneity of brightness temperatures (BTs), e.g., the range of 11 μm BTs inside a 25 km2 area centered on the buoy location. These features and a rebalancing of classes led to an 81.9% accuracy when classifying SST retrievals into the < -0.4 C and -0.4 C ≤ residual ≤ 0.4 C categories. Spatial homogeneity in BTs consistently appears as a very important variable for classification, suggesting that unidentified cloud contamination still is one of the causes leading to negative SST residuals. Precision and accuracy of error estimates from our decision tree classifier are enhanced using this knowledge.

  6. Late Pliocene Sea Surface Temperature contrast in the Benguela upwelling as recorded by foraminiferal Mg/Ca and alkenones

    NASA Astrophysics Data System (ADS)

    Leduc, G.; Garbe-Schoenberg, C.; Regenberg, M.; Schneider, R. R.

    2011-12-01

    Alkenone-based sea surface temperature (SST) in the Benguela region reveal quite warm and stable conditions between ~3.0 and 2.0 Ma, coinciding with a period of very high diatom production as revealed by mass accumulation rates (MAR) of biogenic opal (Marlow et al., 2000, Science; Etourneau et al., 2009, Geology). Such a pattern is difficult to believe with the general perception that high diatom productivity results from strong coastal upwelling associated with pronounced Surface Ocean cooling. Therefore we assessed whether different paleothermometers from the same sedimentary archive (i.e. ODP site 1082) provide different results for the Namibian upwelling system by performing a comparison between alkenone-derived temperatures and those from the planktonic foraminifera Globigerinoides bulloides, a species known to proliferate in upwelling regions. We used laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for multiple in situ determination of Mg/Ca in single tests of G. bulloides. These measurements allow monitoring of contaminant phases linked to Mg-rich clays (monitored by Al/Ca) and Mn-rich foraminiferal tests, which contain substantial high Mg (monitored by Mn/Ca) (Pena et al., 2005, G-cubed). Moreover, using LA-ICP-MS measurements for Mg/Ca ratios on single specimens allows estimating the range of seasonal or vertical temperature variability by considering the intra-sample variance in the SST estimated from different specimens and/or different chambers within the same specimen. When compared to the Pliocene alkenone SST record, the Mg/Ca-ratios imply SSTs colder by ~10°C. A similar contrast in SST estimates between these two proxies was reported for the last 20 ka in the same region (Farmer et al., 2005, Paleoceanography). Such discrepancy can be reconciled by assuming that the two SST proxies are either strongly skewed towards warm (non-upwelling) and cold (upwelling) conditions for alkenones and Mg/Ca SST, respectively, or by the possibility that G. bulloides captures a temperature signal integrated over a larger water depth range. If representative for a specific season, downcore SST estimates from the two proxies may provide reliable evidences for changes in the seasonal temperature contrasts and thus upwelling intensity during the Pliocene. Even if the absolute temperature contrasts recorded between these two proxies have not dramatically changed between the Pliocene and Late Quaternary, the range of SST estimates between single specimen Mg/Ca values may hint to changes in past upwelling intensity. Accordingly, the scattering of intra-sample Mg/Ca values tends to increase together with the opal MAR, probably reflecting enhanced temperature contrasts at times of intense upwelling and diatom production which occurred during the cold season, one feature that is not captured by alkenone SST records.

  7. Impact of Variable SST on Simulated Warm Season Precipitation

    NASA Astrophysics Data System (ADS)

    Saleeby, S. M.; Cotton, W. R.

    2007-05-01

    The Colorado State University - Regional Atmospheric Modeling System (CSU-RAMS) is being used to examine the variability in monsoon-related warm season precipitation over Mexico and the United States due to variability in SST. Given recent improvements and increased resolution in satellite derived SSTs it is pertinent to examine the sensitivity of the RAMS model to the variety of SST data sources that are available. In particular, we are examining this dependence across continental scales over the full warm season, as well as across the regional scale centered around the Gulf of California on time scales of individual surge events. In this study we performed an ensemble of simulations that include the 2002, 2003, and 2004 warm seasons with use of the Climatology, Reynold's, AVHRR, and MODIS SSTs. From the seasonal 90-day simulations with 30km grid spacing, it was found that variations in surface latent heat flux are directly linked to differences in SST. Regions with cooler (warmer) SST have decreased (increased) moisture flux from the ocean which is in proportion to the magnitude of the SST difference. Over the eastern Pacific, differences in low-level horizontal moisture flux show a general trend toward reduced fluxes over cooler waters and very little inland impact. Over the Gulf of Mexico, however, there is substantial variability for each dataset comparison, despite having only limited variability among the SST data. Causes of this unexpected variability are not straight-forward. Precipitation impacts are greatest near the southern coast of Mexico and along the Sierra Madres. Precipitation variability over the CONUS is rather chaotic and is limited to areas impacted by the Gulf of Mexico or monsoon convection. Another unexpected outcome is the lack of variability in areas near the northern Gulf of California where SST and latent heat flux variability is a maximum. From the 7-day surge period simulations at 7km grid spacing, we found that SST differences on the higher resolution nested grid reveal fine scale variability that is otherwise smoothed out or unapparent on the coarser grid. Unlike the coarse grid, the latent heat flux, temperature, and moisture transport differences on the fine grid reveal an inland impact. This is likely due to fine scale variability in onshore moisture transport and sea- breeze circulations which may alter monsoonal convection and precipitation. However, only the largest SST differences (spatially and in magnitude) tend to invoke large, coherent responses in moisture flux. The SST variability at high resolution produces relatively large differences in precipitation that are focused along the slopes of the SMO, with a tendency toward greater variability along the western slope adjacent to the coast. The precipitation differences are of fine resolution, with variability of +/- 30 mm (over 5 days) along the length of the SMO. Variability on the fine grid also invokes precipitation changes over AZ/NM that are not resolved on the coarse grid. Vertical cross-sections examined along the GoC during the surge episode revealed variations in the moisture and temperature structure of the surge. The cooler SSTs in the climatological dataset produced the greatest variability compared to the other datasets. The surge produced from climatology SSTs was nearly 5g/kg drier and up to 4°C cooler compared to surges influenced by the SST datasets. The overall northward propagation of the surge appeared unaffected by the SSTs.

  8. Asteroid Detection Results Using the Space Surveillance Telescope

    NASA Astrophysics Data System (ADS)

    Ruprecht, Jessica D.; Ushomirsky, Gregory; Woods, Deborah F.; Viggh, Herbert E. M.; Varey, Jacob; Cornell, Mark E.; Stokes, Grant

    2015-11-01

    From 1998-2013, MIT Lincoln Laboratory operated a highly successful near-Earth asteroid search program using two 1-m optical telescopes located at the MIT Lincoln Laboratory Experimental Test Site (ETS) in Socorro, N.M. In 2014, the Lincoln Near-Earth Asteroid Research (LINEAR) program successfully transitioned operations from the two 1-m telescopes to the 3.5-m Space Surveillance Telescope (SST) located at Atom Site on White Sands Missile Range, N.M. This paper provides a summary of first-year performance and results for the LINEAR program with SST and provides an update on recent improvements to the moving-object pipeline architecture that increase utility of SST data for NEO discovery and improve sensitivity to fast-moving objects. Ruprecht et al. (2014) made predictions for SST NEO search productivity as a function of population model. This paper assesses the NEO search performance of SST in the first 1.5 years of operation and compares results to model predictions.This work is sponsored by the Defense Advanced Research Projects Agency and the National Aeronautics and Space Administration under Air Force Contract #FA8721-05-C-0002. The views, opinions, and/or findings contained in this article/presentation are those of the authors / presenters and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. Distribution Statement A: Approved for public release, distribution unlimited.

  9. Asteroid Detection Results Using the Space Surveillance Telescope

    NASA Astrophysics Data System (ADS)

    Ruprecht, J.; Ushomirsky, G.; Woods, D.; Viggh, H.; Varey, J.; Cornell, M.; Stokes, G.

    From 1998-2013, MIT Lincoln Laboratory operated a highly successful near-Earth asteroid search program using two 1-m optical telescopes located at the MIT Lincoln Laboratory Experimental Test Site (ETS) in Socorro, N.M. In 2014, the Lincoln Near-Earth Asteroid Research (LINEAR) program successfully transitioned operations from the two 1-m telescopes to the 3.5-m Space Surveillance Telescope (SST) located at Atom Site on White Sands Missile Range, N.M. This paper provides a summary of first-year performance and results for the LINEAR program with SST and provides an update on recent improvements to the moving-object pipeline architecture that increase utility of SST data for NEO discovery and improve sensitivity to fast-moving objects. Ruprecht et al. (2014) made predictions for SST NEO search productivity as a function of population model. This paper assesses the NEO search performance of SST in the first 1.5 years of operation and compares results to model predictions. This work is sponsored by the Defense Advanced Research Projects Agency and the National Aeronautics and Space Administration under Air Force Contract #FA8721-05-C-0002. The views, opinions, and/or findings contained in this article/presentation are those of the authors / presenters and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. Distribution Statement A: Approved for public release, distribution unlimited.

  10. Novel Directional Protection Scheme for the FREEDM Smart Grid System

    NASA Astrophysics Data System (ADS)

    Sharma, Nitish

    This research primarily deals with the design and validation of the protection system for a large scale meshed distribution system. The large scale system simulation (LSSS) is a system level PSCAD model which is used to validate component models for different time-scale platforms, to provide a virtual testing platform for the Future Renewable Electric Energy Delivery and Management (FREEDM) system. It is also used to validate the cases of power system protection, renewable energy integration and storage, and load profiles. The protection of the FREEDM system against any abnormal condition is one of the important tasks. The addition of distributed generation and power electronic based solid state transformer adds to the complexity of the protection. The FREEDM loop system has a fault current limiter and in addition, the Solid State Transformer (SST) limits the fault current at 2.0 per unit. Former students at ASU have developed the protection scheme using fiber-optic cable. However, during the NSF-FREEDM site visit, the National Science Foundation (NSF) team regarded the system incompatible for the long distances. Hence, a new protection scheme with a wireless scheme is presented in this thesis. The use of wireless communication is extended to protect the large scale meshed distributed generation from any fault. The trip signal generated by the pilot protection system is used to trigger the FID (fault isolation device) which is an electronic circuit breaker operation (switched off/opening the FIDs). The trip signal must be received and accepted by the SST, and it must block the SST operation immediately. A comprehensive protection system for the large scale meshed distribution system has been developed in PSCAD with the ability to quickly detect the faults. The validation of the protection system is performed by building a hardware model using commercial relays at the ASU power laboratory.

  11. Estimation of the Ocean Skin Temperature using the NASA GEOS Atmospheric Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Akella, Santha; Todling, Ricardo; Suarez, Max

    2016-01-01

    This report documents the status of the development of a sea surface temperature (SST) analysis for the Goddard Earth Observing System (GEOS) Version-5 atmospheric data assimilation system (ADAS). Its implementation is part of the steps being taken toward the development of an integrated earth system analysis. Currently, GEOS-ADAS SST is a bulk ocean temperature (from ocean boundary conditions), and is almost identical to the skin sea surface temperature. Here we describe changes to the atmosphere-ocean interface layer of the GEOS-atmospheric general circulation model (AGCM) to include near surface diurnal warming and cool-skin effects. We also added SST relevant Advanced Very High Resolution Radiometer (AVHRR) observations to the GEOS-ADAS observing system. We provide a detailed description of our analysis of these observations, along with the modifications to the interface between the GEOS atmospheric general circulation model, gridpoint statistical interpolation-based atmospheric analysis and the community radiative transfer model. Our experiments (with and without these changes) show improved assimilation of satellite radiance observations. We obtained a closer fit to withheld, in-situ buoys measuring near-surface SST. Evaluation of forecast skill scores corroborate improvements seen in the observation fits. Along with a discussion of our results, we also include directions for future work.

  12. Forecasting decadal changes in sea surface temperatures and coral bleaching within a Caribbean coral reef

    NASA Astrophysics Data System (ADS)

    Li, Angang; Reidenbach, Matthew A.

    2014-09-01

    Elevated sea surface temperature (SST) caused by global warming is one of the major threats to coral reefs. While increased SST has been shown to negatively affect the health of coral reefs by increasing rates of coral bleaching, how changes to atmospheric heating impact SST distributions, modified by local flow environments, has been less understood. This study aimed to simulate future water flow patterns and water surface heating in response to increased air temperature within a coral reef system in Bocas del Toro, Panama, located within the Caribbean Sea. Water flow and SST were modeled using the Delft3D-FLOWcomputer simulation package. Locally measured physical parameters, including bathymetry, astronomic tidal forcing, and coral habitat distribution were input into the model and water flow, and SST was simulated over a four-month period under present day, as well as projected warming scenarios in 2020s, 2050s, and 2080s. Changes in SST, and hence the thermal stress to corals, were quantified by degree heating weeks. Results showed that present-day reported bleaching sites were consistent with localized regions of continuous high SST. Regions with highest SST were located within shallow coastal sites adjacent to the mainland or within the interior of the bay, and characterized by low currents with high water retention times. Under projected increases in SSTs, shallow reef areas in low flow regions were found to be hot spots for future bleaching.

  13. Remote SST Forcing and Local Land-Atmosphere Moisture Coupling as Drivers of Amazon Temperature and Carbon Cycle Variability

    NASA Astrophysics Data System (ADS)

    Levine, P. A.; Xu, M.; Chen, Y.; Randerson, J. T.; Hoffman, F. M.

    2017-12-01

    Interannual variability of climatic conditions in the Amazon rainforest is associated with El Niño-Southern Oscillation (ENSO) and ocean-atmosphere interactions in the North Atlantic. Sea surface temperature (SST) anomalies in these remote ocean regions drive teleconnections with Amazonian surface air temperature (T), precipitation (P), and net ecosystem production (NEP). While SST-driven NEP anomalies have been primarily linked to T anomalies, it is unclear how much the T anomalies result directly from SST forcing of atmospheric circulation, and how much result indirectly from decreases in precipitation that, in turn, influence surface energy fluxes. Interannual variability of P associated with SST anomalies lead to variability in soil moisture (SM), which would indirectly affect T via partitioning of turbulent heat fluxes between the land surface and the atmosphere. To separate the direct and indirect influence of the SST signal on T and NEP, we performed a mechanism-denial experiment to decouple SST and SM anomalies. We used the Accelerated Climate Modeling for Energy (ACMEv0.3), with version 5 of the Community Atmosphere Model and version 4.5 of the Community Land Model. We forced the model with observed SSTs from 1982-2016. We found that SST and SM variability both contribute to T and NEP anomalies in the Amazon, with relative contributions depending on lag time and location within the Amazon basin. SST anomalies associated with ENSO drive most of the T variability at shorter lag times, while the ENSO-driven SM anomalies contribute more to T variability at longer lag times. SM variability and the resulting influence on T anomalies are much stronger in the eastern Amazon than in the west. Comparing modeled T with observations demonstrate that SST alone is sufficient for simulating the correct timing of T variability, but SM anomalies are necessary for simulating the correct magnitude of the T variability. Modeled NEP indicated that variability in carbon fluxes results from both SST and SM anomalies. As with T, SM anomalies affect NEP at a much longer lag time than SST anomalies. These results highlight the role of land-atmosphere coupling in driving climate variability within the Amazon, and suggest that land atmospheric coupling may amplify and delay carbon cycle responses to ocean-atmosphere teleconnections.

  14. Impact of chlorophyll bias on the tropical Pacific mean climate in an earth system model

    NASA Astrophysics Data System (ADS)

    Lim, Hyung-Gyu; Park, Jong-Yeon; Kug, Jong-Seong

    2017-12-01

    Climate modeling groups nowadays develop earth system models (ESMs) by incorporating biogeochemical processes in their climate models. The ESMs, however, often show substantial bias in simulated marine biogeochemistry which can potentially introduce an undesirable bias in physical ocean fields through biogeophysical interactions. This study examines how and how much the chlorophyll bias in a state-of-the-art ESM affects the mean and seasonal cycle of tropical Pacific sea-surface temperature (SST). The ESM used in the present study shows a sizeable positive bias in the simulated tropical chlorophyll. We found that the correction of the chlorophyll bias can reduce the ESM's intrinsic cold SST mean bias in the equatorial Pacific. The biologically-induced cold SST bias is strongly affected by seasonally-dependent air-sea coupling strength. In addition, the correction of chlorophyll bias can improve the annual cycle of SST by up to 25%. This result suggests a possible modeling approach in understanding the two-way interactions between physical and chlorophyll biases by biogeophysical effects.

  15. A Causal-Comparative Analysis of the Effects of a Student Support Team (SST) Intervention Model at a Secondary School

    ERIC Educational Resources Information Center

    Johnson, Mid D.

    2010-01-01

    The purpose of this research was to identify and examine the effectiveness of a "Student Support Team" (SST) intervention model designed to increase the performance of struggling secondary students and to help them achieve prescribed state standards on the mathematics "Texas Assessment of Knowledge and Skills (TAKS)"…

  16. The role of SSTs in the development of explosive cyclogenesis: The storm of 21-22 January 2004 in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Katsafados, P.; Mavromatidis, E.; Papadopoulos, A.; Pytharoulis, I.

    2009-09-01

    During the last two decades much attention has been given to the extra-tropical cyclonic systems that develop at an unusually rapid rate. The first synoptic and climatological study of such explosively developing storm has been documented by Sanders and Gyakum (1980). They defined an extra-tropical cyclone as "bomb" when its central sea-level pressure deepens by at least 1hPa per hour for 24 hours at a latitude of 60 0N. Strong sea surface temperature (SST) gradients accompanied with high surface fluxes of heat (latent and sensible) appear to characterize the favorable environment for the marine bomb development. Various modeling studies seem to suggest different roles of the SST and heat flux in forcing the extra-tropical atmosphere. Although models are sensitive to the lower boundary conditions, it is not clear if the forcing from different types of SST can significantly impact a given simulation of a rapid developing cyclonic system. To this end, comparative numerical simulations of an explosive cyclogenesis event in marine environment were performed based on a non-hydrostatic limited area model. Reanalysis and satellite-measured SSTs were both used as model lower boundary conditions. The aim of this study is to investigate the sensitivity of storm characteristics to the different SST sources. The case of 21-22 January 2004 was chosen for analysis due to its intensity and impact in the coastal areas of Southern Greece. According to the MEDEX database (MEDiteranean EXperiment) this event was among the three deepest cyclones found in the entire Mediterranean during last decades. Model simulations on high spatiotemporal resolution resolved mesoscale features triggered by the different nature of SSTs. Although the atmospheric response was significant in terms of rain bands and surface fluxes, the phase and the structure of the system were not affected by the different boundary conditions forcing. In more details, the shifted rain bands, as they were simulated with reanalysis and satellite-measured SST forcing, are related with the different representation of the transition speed of the storm. These precipitation patterns are mainly attributed to the stronger surface fluxes of heat that impose a deeper destabilization of the boundary layer. Stronger surface fluxes, with differences exceeding 150 Wm-2, were predicted when the generally warmer reanalysis SSTs were used.

  17. Assessing the Utility of Seasonal SST Forecasts to the Fisheries Management Process: a Pacific Sardine Case Study

    NASA Astrophysics Data System (ADS)

    Tommasi, D.; Stock, C. A.

    2016-02-01

    It is well established that environmental fluctuations affect the productivity of numerous fish stocks. Recent advances in prediction capability of dynamical global forecast systems, such as the state of the art NOAA Geophysical Fluid dynamics Laboratory (GFDL) 2.5-FLOR model, allow for climate predictions of fisheries-relevant variables at temporal scales relevant to the fishery management decision making process. We demonstrate that the GFDL FLOR model produces skillful seasonal SST anomaly predictions over the continental shelf , where most of the global fish yield is generated. The availability of skillful SST projections at this "fishery relevant" scale raises the potential for better constrained estimates of future fish biomass and improved harvest decisions. We assessed the utility of seasonal SST coastal shelf predictions for fisheries management using the case study of Pacific sardine. This fishery was selected because it is one of the few to already incorporate SST into its harvest guideline, and show a robust recruitment-SST relationship. We quantified the effectiveness of management under the status quo harvest guideline (HG) and under alternative HGs including future information at different levels of uncertainty. Usefulness of forecast SST to management was dependent on forecast uncertainty. If the standard deviation of the SST anomaly forecast residuals was less than 0.65, the alternative HG produced higher long-term yield and stock biomass, and reduced the probability of either catch or stock biomass falling below management-set threshold values as compared to the status quo. By contrast, probability of biomass falling to extremely low values increased as compared to the status quo for all alternative HGs except for a perfectly known future SST case. To safeguard against occurrence of such low probability but costly events, a harvest cutoff biomass also has to be implemented into the HG.

  18. What spatial scales are believable for climate model projections of sea surface temperature?

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Lester; Halloran, Paul R.; Mumby, Peter J.; Stephenson, David B.

    2014-09-01

    Earth system models (ESMs) provide high resolution simulations of variables such as sea surface temperature (SST) that are often used in off-line biological impact models. Coral reef modellers have used such model outputs extensively to project both regional and global changes to coral growth and bleaching frequency. We assess model skill at capturing sub-regional climatologies and patterns of historical warming. This study uses an established wavelet-based spatial comparison technique to assess the skill of the coupled model intercomparison project phase 5 models to capture spatial SST patterns in coral regions. We show that models typically have medium to high skill at capturing climatological spatial patterns of SSTs within key coral regions, with model skill typically improving at larger spatial scales (≥4°). However models have much lower skill at modelling historical warming patters and are shown to often perform no better than chance at regional scales (e.g. Southeast Asian) and worse than chance at finer scales (<8°). Our findings suggest that output from current generation ESMs is not yet suitable for making sub-regional projections of change in coral bleaching frequency and other marine processes linked to SST warming.

  19. Sea surface temperature measurements by the along-track scanning radiometer on the ERS 1 satellite: Early results

    NASA Astrophysics Data System (ADS)

    Mutlow, C. T.; ZáVody, A. M.; Barton, I. J.; Llewellyn-Jones, D. T.

    1994-11-01

    The along-track scanning radiometer (ATSR) was launched in July 1991 on the European Space Agency's first remote sensing satellite, ERS 1. An initial analysis of ATSR data demonstrates that the sea surface temperature (SST) can be measured from space with very high accuracy. Comparison of simultaneous measurements of SST made from ATSR and from a ship-borne radiometer show that they agree to within 0.3°C. To assess data consistency, a complementary analysis of SST data from ATSR was also carried out. The ATSR global SST field was compared on a daily basis with daily SST analysis of the United Kingdom Meteorological Office (UKMO). The ATSR global field is consistently within 1.0°C of the UKMO analysis. Also, to demonstrate the benefits of along-track scanning SST determination, the ATSR SST data were compared with high-quality bulk temperature observations from drifting buoys. The likely causes of the differences between ATSR and the bulk temperature data are briefly discussed. These results provide early confidence in the quantitative benefit of ATSR's two-angle view of the Earth and its high radiometric performance and show a significant advance on the data obtained from other spaceborne sensors. It should be noted that these measurements were made at a time when the atmosphere was severely contaminated with volcanic aerosol particles, which degrade infrared measurements of the Earth's surface made from space.

  20. Somatostatin and its receptors contribute in a tissue-specific manner to the sex-dependent metabolic (fed/fasting) control of growth hormone axis in mice

    PubMed Central

    Córdoba-Chacón, José; Gahete, Manuel D.; Castaño, Justo P.; Kineman, Rhonda D.

    2011-01-01

    Somatostatin (SST) inhibits growth hormone (GH) secretion and regulates multiple processes by signaling through its receptors sst1–5. Differential expression of SST/ssts may contribute to sex-specific GH pattern and fasting-induced GH rise. To further delineate the tissue-specific roles of SST and sst1–5 in these processes, their expression patterns were evaluated in hypothalamus, pituitary, and stomach of male and female mice under fed/fasted conditions in the presence (wild type) or absence (SST-knockout) of endogenous SST. Under fed conditions, hypothalamic/stomach SST/ssts expression did not differ between sexes, whereas male pituitary expressed more SST and sst2A/2B/3/5A/5TMD2/5TMD1 and less sst1, and male pituitary cell cultures were more responsive to SST inhibitory actions on GH release compared with females. This suggests that local pituitary SST/ssts can contribute to the sexually dimorphic pattern of GH release. Fasting (48 h) reduced stomach sst2A/B and hypothalamic SST/sst2A expression in both sexes, whereas it caused a generalized downregulation of pituitary sst subtypes in male and of sst2A only in females. Thus, fasting can reduce SST sensitivity across tissues and SST input to the pituitary, thereby jointly contributing to enhance GH release. In SST-knockout mice, lack of SST differentially altered sst subtype expression levels in both sexes, supporting an important role for SST in sex-dependent control of GH axis. Evaluation of SST, IGF-I, and glucocorticoid effects on hypothalamic and pituitary cell cultures revealed that these hormones could directly account for alterations in sst2/5 expression in the physiological states examined. Taken together, these results indicate that changes in SST output and sensitivity can contribute critically to precisely define, in a tissue-dependent manner, the sex-specific metabolic regulation of the GH axis. PMID:20943754

  1. Contrasting Indian Ocean SST Variability With and Without ENSO Influence: A Coupled Atmosphere-Ocean GCM Study

    NASA Technical Reports Server (NTRS)

    Yu, Jin-Yi; Lau, K. M.

    2004-01-01

    In this study, we perform experiments with a coupled atmosphere-ocean general circulation model (CGCM) to examine ENSO's influence on the interannual sea surface temperature (SST) variability of the tropical Indian Ocean. The control experiment includes both the Indian and Pacific Oceans in the ocean model component of the CGCM (the Indo-Pacific Run). The anomaly experiment excludes ENSOs influence by including only the Indian Ocean while prescribing monthly-varying climatological SSTs for the Pacific Ocean (the Indian-Ocean Run). In the Indo-Pacific Run, an oscillatory mode of the Indian Ocean SST variability is identified by a multi-channel singular spectral analysis (MSSA). The oscillatory mode comprises two patterns that can be identified with the Indian Ocean Zonal Mode (IOZM) and a basin-wide warming/cooling mode respectively. In the model, the IOZM peaks about 3-5 months after ENSO reaches its maximum intensity. The basin mode peaks 8 months after the IOZM. The timing and associated SST patterns suggests that the IOZM is related to ENSO, and the basin- wide warming/cooling develops as a result of the decay of the IOZM spreading SST anomalies from western Indian Ocean to the eastern Indian Ocean. In contrast, in the Indian-Ocean Run, no oscillatory modes can be identified by the MSSA, even though the Indian Ocean SST variability is characterized by east-west SST contrast patterns similar to the IOZM. In both control and anomaly runs, IOZM-like SST variability appears to be associated with forcings from fluctuations of the Indian monsoon. Our modeling results suggest that the oscillatory feature of the IOZM is primarily forced by ENSO.

  2. Analyzing the Effects of Climate Change on Sea Surface Temperature in Monitoring Coral Reef Health in the Florida Keys Using Sea Surface Temperature Data

    NASA Technical Reports Server (NTRS)

    Jones, Jason; Burbank, Renane; Billiot, Amanda; Schultz, Logan

    2011-01-01

    This presentation discusses use of 4 kilometer satellite-based sea surface temperature (SST) data to monitor and assess coral reef areas of the Florida Keys. There are growing concerns about the impacts of climate change on coral reef systems throughout the world. Satellite remote sensing technology is being used for monitoring coral reef areas with the goal of understanding the climatic and oceanic changes that can lead to coral bleaching events. Elevated SST is a well-documented cause of coral bleaching events. Some coral monitoring studies have used 50 km data from the Advanced Very High Resolution Radiometer (AVHRR) to study the relationships of sea surface temperature anomalies to bleaching events. In partnership with NOAA's Office of National Marine Sanctuaries and the University of South Florida's Institute for Marine Remote Sensing, this project utilized higher resolution SST data from the Terra's Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR. SST data for 2000-2010 was employed to compute sea surface temperature anomalies within the study area. The 4 km SST anomaly products enabled visualization of SST levels for known coral bleaching events from 2000-2010.

  3. Gadoxetic Acid-Enhanced MRI and Sonoelastography: Non-Invasive Assessments of Chemoprevention of Liver Fibrosis in Thioacetamide-Induced Rats with Sho-Saiko-To

    PubMed Central

    Chen, Ya-Wen; Tsai, Meng-Yuan; Pan, Huay-Ben; Tseng, Hui-Hwa; Hung, Yu-Ting; Chou, Chen-Pin

    2014-01-01

    Background This study aimed to compare the performance of gadoxetic acid -enhanced magnetic resonance imaging (MRI) and sonoelastography in evaluating chemopreventive effects of Sho-Saiko-To (SST) in thioacetamide (TAA)-induced early liver fibrosis in rats. Materials and Methods Ten of Sprague-Dawley rats receiving TAA (200 mg/kg of body weight) intraperitoneal injection were divided into three groups: Group 1 (TAA only, n = 3), Group 2 (TAA +0.25 g/kg SST, n = 4) and Group 3 (TAA+1 g/kg SST, n = 3). Core needle liver biopsy at week 2 and liver specimens after sacrifice at week 6 confirmed liver fibrosis using histological examinations, including Sirius red staining, Ishak and Metavir scoring systems. Gadoxetic acid-enhanced MRI and shear-wave sonoelastography were employed to evaluate liver fibrosis. The expression of hepatic transporter organic anion transporter 1 (Oatp1), multidrug-resistant protein 2 (Mrp2) and alpha-smooth muscle actin (α-Sma) were also analyzed in each group by immunohistochemistry (IHC) and Western blot. Results According to histological grading by Sirius red staining, Ishak scores of liver fibrosis in Groups 1, 2 and 3 were 3, 2 and 1, respectively. As shown in gadoxetic acid-enhanced MRI, the ratio of relative enhancement was significantly lower in Group 1 (1.87±0.21) than in Group 2 of low-dose (2.82±0.25) and Group 3 of high-dose (2.72±0.12) SST treatment at 10 minutes after gadoxetic acid intravenous injection (p<0.05). Sonoelastography showed that the mean difference before and after experiments in Groups 1, 2 and 3 were 4.66±0.1, 4.4±0.57 and 3±0.4 KPa (p<0.1), respectively. Chemopreventive effects of SST reduced the Mrp2 protein level (p<0.01) but not Oatp1 and α-Sma levels. Conclusion Sonoelastography and gadoxetic acid-enhanced MRI could monitor the treatment effect of SST in an animal model of early hepatic fibrosis. PMID:25490034

  4. An assessment of TropFlux and NCEP air-sea fluxes on ROMS simulations over the Bay of Bengal region

    NASA Astrophysics Data System (ADS)

    Dey, Dipanjan; Sil, Sourav; Jana, Sudip; Pramanik, Saikat; Pandey, P. C.

    2017-12-01

    This study presents an assessment of the TropFlux and the National Centers for Environmental Prediction (NCEP) reanalysis air-sea fluxes in simulating the surface and subsurface oceanic parameters over the Bay of Bengal (BoB) region during 2002-2014 using the Regional Ocean Modelling System (ROMS). The assessment has been made by comparing the simulated fields with in-situ and satellite observations. The simulated surface and subsurface temperatures in the TropFlux forced experiment (TropFlux-E) show better agreement with the Research Moored Array for African-Asian-Australian Monsoon Analysis (RAMA) and Argo observations than the NCEP forced experiment (NCEP-E). The BoB domain averaged sea surface temperature (SST) simulated in the NCEP-E is consistently cooler than the satellite SST, with a root mean square error (RMSE) of 0.79 °C. Moreover, NCEP-E shows a limitation in simulating the observed seasonal cycle of the SST due to substantial underestimation of the pre-monsoon SST peak. These limitations are mostly due to the lower values of the NCEP net heat flux. The seasonal and interannual variations of SST in the TropFlux-E are better comparable to the observations with correlations and skills more than 0.80 and 0.90 respectively. However, SST is overestimated during summer monsoon periods mainly due to higher net heat flux. The superiority of TropFlux forcing over the NCEP reanalysis can also be seen when simulating the interannual variabilities of the magnitude and vertical extent of Wyrtki jets at two equatorial RAMA buoy locations. The jet is weaker in the NCEP-E relative to the TropFlux-E and observations. The simulated sea surface height anomalies (SSHA) from both the experiments are able to capture the regions of positive and negative SSHA with respect to satellite-derived altimeter data with better performance in the TropFlux-E. The speed of the westward propagating Rossby wave along 18°N in the TropFlux-E is found to be about 4.7 cm/s, which is close to the theoretical phase speed of Rossby waves.

  5. The super greenhouse effect in a warming world: the role of dynamics and thermodynamics

    NASA Astrophysics Data System (ADS)

    Kashinath, Karthik; O'Brien, Travis; Collins, William

    2016-04-01

    Over warm tropical oceans the increase in greenhouse trapping with increasing SST can be faster than that of the surface emission, resulting in a decrease in clear sky outgoing longwave radiation at the top of the atmosphere (OLR) when SST increases, also known as the super greenhouse effect (SGE). If the SGE is directly linked to SST changes, there are profound implications for positive climate feedbacks in the tropics. We show that CMIP5 models perform well in simulating the observed clear-sky greenhouse effect in the present day. Using global warming experiments we show that the onset and shutdown SST of the SGE, as well as the magnitude of the SGE, increase as the convective threshold SST increases. To account for an increasing convective threshold SST we use an invariant coordinate for convection proposed in a recent study [Williams et al., GRL (2009)]. However, even after accounting for the increase in tropical SST (by normalizing the SGE by surface emission) and accounting for the increase in the threshold temperature for convection (by using the invariant coordinate) we find that the models predict a distinct increase in the clear-sky greenhouse effect in a warmed world. This suggests that thermodynamics (i.e. SST) plays a crucial role in regulating the increasing clear sky greenhouse effect in a warming world. We use theoretical arguments to estimate this increase in SGE and derive its dependence on SST. Finally, as shown in previous studies, we confirm that the increase in the clear-sky greenhouse effect is primarily due to upper tropospheric moistening. Although the absolute increase in upper tropospheric water vapor is small compared to that of the lower troposphere, since the absorptivity scales with fractional changes in water vapor, the contribution of the upper troposphere is more significant, as shown by Chung et al., PNAS (2014).

  6. Decadal changes in the Canary Current Upwelling Ecosystem

    NASA Astrophysics Data System (ADS)

    Santos, A. M.; Luis, J. M.; Relvas-Almeida, P.

    2013-12-01

    The Canary Current Upwelling System (CCUS) covers the latitudinal range 12-43 degrees N and has some singularities in relation to the other three major Eastern Boundary Upwelling Systems (EBUS), namely a major interruption in the continuity of the system at the Strait of Gibraltar and it is the only one with a sardine species from a different genus (Sardina vs Sardinops). Long-term trends in ocean temperature and coastal upwelling were investigated using the AVHRR Pathfinder SST (sea surface temperature) Version 5.1 dataset, in situ SST from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS), and upwelling indices from the Pacific Fisheries Environmental Laboratory (PFEL). The analysis is applied to the eastern boundary of the North Atlantic, from 10 to 45 degrees N extending until 30 degrees W, focusing mainly in the CCUS because the strong dynamic link between the atmosphere and the ocean makes upwelling regions highly sensitive to global change and ideal to monitor and investigate its effects. The detail in SST variability results in a large extent from the fine analysis and the numerical processing carefully designed to avoid trend bias in the climatological studies. The obtained fields of SST trends show a generalized warming of the entire region. However, alternate patches of significantly different warming rates are observed, ranging from large scale down to mesoscale. Known coastal upwelling features are seen to warm at a lower rate than corresponding offshore waters, pointing to an intensification of the upwelling in the last decades. Wind data are used to attempt to explain the variability of some upwelling structures. Our results evidence the main role that mesoscale processes play in the modulation of the spatial and temporal variability of SST, namely at the decadal scale. This result prevents any global conclusion about the intensification of the upwelling at the scale of the entire CCUS. The bulk of the sardine population is located in the southern part of CCUS off NW Africa. Important fluctuations in landings have been observed in the last 70 years but they seem to be out of phase between the two sub-regions - the northern CCUS (Iberia) and southern CCUS (NW Africa). The explanation for these fluctuations has been related, at least partially, to environmental drivers but also to changes in exploitation. Landing time series of sardine, anchovy and sardinella were used to perform an exploratory analysis to investigate the relationships between small pelagic fish species in the CCUS and decadal changes in SST and coastal upwelling. This is a contribution to FCT (Portuguese Science and Technology Foundation) funded projects LONGUP (PTDC/AAC-CLI/105296/2008) and MODELA (PTDC/MAR/098643/2008).

  7. Response of the global surface ozone distribution to Northern Hemisphere sea surface temperature changes: implications for long-range transport

    NASA Astrophysics Data System (ADS)

    Yi, Kan; Liu, Junfeng; Ban-Weiss, George; Zhang, Jiachen; Tao, Wei; Cheng, Yanli; Tao, Shu

    2017-07-01

    The response of surface ozone (O3) concentrations to basin-scale warming and cooling of Northern Hemisphere oceans is investigated using the Community Earth System Model (CESM). Idealized, spatially uniform sea surface temperature (SST) anomalies of ±1 °C are individually superimposed onto the North Pacific, North Atlantic, and North Indian oceans. Our simulations suggest large seasonal and regional variability in surface O3 in response to SST anomalies, especially in the boreal summer. The responses of surface O3 associated with basin-scale SST warming and cooling have similar magnitude but are opposite in sign. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv. With fixed emissions, SST increases in a specific ocean basin in the Northern Hemisphere tend to increase the summertime surface O3 concentrations over upwind regions, accompanied by a widespread reduction over downwind continents. We implement the integrated process rate (IPR) analysis in CESM and find that meteorological O3 transport in response to SST changes is the key process causing surface O3 perturbations in most cases. During the boreal summer, basin-scale SST warming facilitates the vertical transport of O3 to the surface over upwind regions while significantly reducing the vertical transport over downwind continents. This process, as confirmed by tagged CO-like tracers, indicates a considerable suppression of intercontinental O3 transport due to increased tropospheric stability at lower midlatitudes induced by SST changes. Conversely, the responses of chemical O3 production to regional SST warming can exert positive effects on surface O3 levels over highly polluted continents, except South Asia, where intensified cloud loading in response to North Indian SST warming depresses both the surface air temperature and solar radiation, and thus photochemical O3 production. Our findings indicate a robust linkage between basin-scale SST variability and continental surface O3 pollution, which should be considered in regional air quality management.

  8. The General Circulation Model Response to a North Pacific SST Anomaly: Dependence on Time Scale and Pattern Polarity.

    NASA Astrophysics Data System (ADS)

    Kushnir, Yochanan; Lau, Ngar-Cheung

    1992-04-01

    A general circulation model was integrated with perpetual January conditions and prescribed sea surface temperature (SST) anomalies in the North Pacific. A characteristic pattern with a warm region centered northeast of Hawaii and a cold region along the western seaboard of North America was alternately added to and subtracted from the climatological SST field. Long 1350-day runs, as well as short 180-day runs, each starting from different initial conditions, were performed. The results were compared to a control integration with climatological SSTs.The model's quasi-stationary response does not exhibit a simple linear relationship with the polarity of the prescribed SST anomaly. In the short runs with a negative SST anomaly over the central ocean, a large negative height anomaly, with an equivalent barotropic vertical structure, occurs over the Gulf of Alaska. For the same SST forcing, the long run yields a different response pattern in which an anomalous high prevails over northern Canada and the Alaskan Peninsula. A significant reduction in the northward heat flux associated with baroclinic eddies and a concomitant reduction in convective heating occur along the model's Pacific storm track. In the runs with a positive SST anomaly over the central ocean, the average height response during the first 90-day period of the short runs is too weak to be significant. In the subsequent 90-day period and in the long run an equivalent barotropic low occurs downstream from the warm SST anomaly. All positive anomaly runs exhibit little change in baroclinic eddy activity or in the patterns of latent heat release. Horizontal momentum transports by baroclinic eddies appear to help sustain the quasi-stationary response in the height field regardless of the polarity of the SST anomaly. These results emphasize the important role played by baroclinic eddies in determining the quasi-stationary response to midlatitude SST anomalies. Differences between the response patterns of the short and long integrations may be relevant to future experimental design for studying air-sea interactions in the extratropies.

  9. Effects of southeastern Pacific sea surface temperature on the double-ITCZ bias in NCAR CESM1

    NASA Astrophysics Data System (ADS)

    Song, F.; Zhang, G. J.

    2016-12-01

    The double-intertropical convergence zone (ITCZ) is a long-standing bias in the coupled general circulation models (CGCMs). The warm biases in southeastern Pacific (SEP) sea surface temperature (SST) are also evident in many CGCMs. In this study, the role of SEP SST in the double-ITCZ is investigated by prescribing the observed SEP SST in the Community Earth System Model version 1 (CESM1). Both the double-ITCZ and dry equator problems are significantly improved with SEP SST prescribed. The colder SST over the SEP increases the southeasterly winds extending outside the prescribed SST region, cooling the ocean there via increased evaporation. The enhanced descending motion over the SEP strengthens the Walker circulation, so the low-level wind convergence in the tropical western Pacific is increased. The reduced wind speed leads to warmer SST and stronger convection there. The stronger convection in turn leads to more cloud and reduces the incoming solar radiation, cooling the SST. These competing effects between radiative heat flux and latent heat flux make the atmospheric heat flux secondary to the ocean dynamics in the western Pacific warming. The increased easterly winds over the equatorial Pacific enhance upwelling and shoal the thermocline over the eastern Pacific. This Bjerknes feedback plays an important role in the improvement of dry equator. The changes of surface wind and wind curl also lead to weaker South Equatorial Countercurrent and stronger South Equatorial Current, preventing the warm water from expanding eastward, thereby improving both the double-ITCZ and dry equator.

  10. The Transition of High-Resolution NASA MODIS Sea Surface Temperatures into the WRF Environmental Modeling System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Jedlove, Gary J.; Santos, Pablo; Medlin, Jeffrey M.; Rozumalski, Robert A.

    2009-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Moderate Resolution Imaging Spectroradiometer (MODIS) sea surface temperature (SST) composite at 2-km resolution that has been implemented in version 3 of the National Weather Service (NWS) Weather Research and Forecasting (WRF) Environmental Modeling System (EMS). The WRF EMS is a complete, full physics numerical weather prediction package that incorporates dynamical cores from both the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). The installation, configuration, and execution of either the ARW or NMM models is greatly simplified by the WRF EMS to encourage its use by NWS Weather Forecast Offices (WFOs) and the university community. The WRF EMS is easy to run on most Linux workstations and clusters without the need for compilers. Version 3 of the WRF EMS contains the most recent public release of the WRF-NMM and ARW modeling system (version 3 of the ARW is described in Skamarock et al. 2008), the WRF Pre-processing System (WPS) utilities, and the WRF Post-Processing program. The system is developed and maintained by the NWS National Science Operations Officer Science and Training Resource Coordinator. To initialize the WRF EMS with high-resolution MODIS SSTs, SPoRT developed the composite product consisting of MODIS SSTs over oceans and large lakes with the NCEP Real-Time Global (RTG) filling data over land points. Filling the land points is required due to minor inconsistencies between the WRF land-sea mask and that used to generate the MODIS SST composites. This methodology ensures a continuous field that adequately initializes all appropriate arrays in WRF. MODIS composites covering the Gulf of Mexico, western Atlantic Ocean and the Caribbean are generated daily at 0400, 0700, 1600, and 1900 UTC corresponding to overpass times of the NASA Aqua and Terra polar orbiting satellites. The MODIS SST product is output in gridded binary-1 (GRIB-1) data format for a seamless incorporation into WRF via the WPS utilities. The full-resolution, 1-km MODIS product is sub-sampled to 2-km grid spacing due to limitations in handling very large dimensions in the GRIB-1 data format. The GRIB-1 files are posted online at ftp://ftp.nsstc.org/sstcomp/WRF/, which is directly accessed by the WRF EMS scripts. The MODIS SST composites are also downloaded to the EMS data server, which is accessible by the WRF EMS users and NWS WFOs. The SPoRT MODIS SST composite provides the model with superior detail of the ocean gradients around Florida and surrounding waters, whereas the operational RTG SST typically depicts a relatively smooth field and is not able to capture sharp horizontal gradients in SST. Differences of 2-3 C are common over small horizontal distances, leading to enhanced SST gradients on either side of the Gulf Stream and along the edges of the cooler shelf waters. These sharper gradients can in turn produce atmospheric responses in simulated temperature and wind fields as depicted in LaCasse et al. Differences in atmospheric verification statistics over a several month study were generally small in the vicinity of south Florida; however, the validation of SSTs at specific buoy locations revealed important improvements in the biases and RMS errors, especially in the vicinity of the cooler shelf waters off the east-central Florida coast. A current weakness in the MODIS SST product is the occurrence of occasional discontinuities caused by high latency in SST coverage due to persistent cloud cover. An enhanced method developed by Jedlovec et al. (2009, GHRSST User Symposium) reduces the occurrence of these problems by adding Advanced Microwave Scanning Radiometer -- EOS (AMSR-E) SST data to the compositing process. Enhanced SST composites are produced over the ocean regions surrounding the Continental U.S. at four times each day corresponding to Terra and Aqua equator crossing times. For a given day and overpass time, both MODInd AMSR-E data from the previous seven days form a collection used in the compositing. At each MODIS pixel, cloud-free SST values from the collection are used to form a weighted average based on their latency (number of days from the current day). In this way, recent SST data are given more weight than older data. One of the primary issues involved in incorporating the AMSR-E microwave data in the composites is the tradeoff between the decreased spatial resolution of the AMSR-E data (25 km) and the increased coverage due to its near all-weather capability. Currently, the AMSR-E is given a weight of 20% compared to MODIS data, thereby preserving the spatial structure observed in the MODIS data. Day-time (night-time) AMSR-E SST data from Aqua are used with both Terra and Aqua MODIS day-time (night-time) SST data sets.

  11. Error Estimation of Pathfinder Version 5.3 SST Level 3C Using Three-way Error Analysis

    NASA Astrophysics Data System (ADS)

    Saha, K.; Dash, P.; Zhao, X.; Zhang, H. M.

    2017-12-01

    One of the essential climate variables for monitoring as well as detecting and attributing climate change, is Sea Surface Temperature (SST). A long-term record of global SSTs are available with observations obtained from ships in the early days to the more modern observation based on in-situ as well as space-based sensors (satellite/aircraft). There are inaccuracies associated with satellite derived SSTs which can be attributed to the errors associated with spacecraft navigation, sensor calibrations, sensor noise, retrieval algorithms, and leakages due to residual clouds. Thus it is important to estimate accurate errors in satellite derived SST products to have desired results in its applications.Generally for validation purposes satellite derived SST products are compared against the in-situ SSTs which have inaccuracies due to spatio/temporal inhomogeneity between in-situ and satellite measurements. A standard deviation in their difference fields usually have contributions from both satellite as well as the in-situ measurements. A real validation of any geophysical variable must require the knowledge of the "true" value of the said variable. Therefore a one-to-one comparison of satellite based SST with in-situ data does not truly provide us the real error in the satellite SST and there will be ambiguity due to errors in the in-situ measurements and their collocation differences. A Triple collocation (TC) or three-way error analysis using 3 mutually independent error-prone measurements, can be used to estimate root-mean square error (RMSE) associated with each of the measurements with high level of accuracy without treating any one system a perfectly-observed "truth". In this study we are estimating the absolute random errors associated with Pathfinder Version 5.3 Level-3C SST product Climate Data record. Along with the in-situ SST data, the third source of dataset used for this analysis is the AATSR reprocessing of climate (ARC) dataset for the corresponding period. All three SST observations are collocated, and statistics of difference between each pair is estimated. Instead of using a traditional TC analysis we have implemented the Extended Triple Collocation (ETC) approach to estimate the correlation coefficient of each measurement system w.r.t. the unknown target variable along with their RMSE.

  12. Prediction of ENSO episodes using canonical correlation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnston, A.G.; Ropelewski, C.F.

    Canonical correlation analysis (CCA) is explored as a multivariate linear statistical methodology with which to forecast fluctuations of the El Nino/Southern Oscillation (ENSO) in real time. CCA is capable of identifying critical sequences of predictor patterns that tend to evolve into subsequent pattern that can be used to form a forecast. The CCA model is used to forecast the 3-month mean sea surface temperature (SST) in several regions of the tropical Pacific and Indian oceans for projection times of 0 to 4 seasons beyond the immediately forthcoming season. The predictor variables, representing the climate situation in the four consecutive 3-monthmore » periods ending at the time of the forecast, are (1) quasi-global seasonal mean sea level pressure (SLP) and (2) SST in the predicted regions themselves. Forecast skill is estimated using cross-validation, and persistence is used as the primary skill control measure. Results indicate that a large region in the eastern equatorial Pacific (120[degrees]-170[degrees] W longitude) has the highest overall predictability, with excellent skill realized for winter forecasts made at the end of summer. CCA outperforms persistence in this region under most conditions, and does noticeably better with the SST included as a predictor in addition to the SLP. It is demonstrated that better forecast performance at the longer lead times would be obtained if some significantly earlier (i.e., up to 4 years) predictor data were included, because the ability to predict the lower-frequency ENSO phase changes would increase. The good performance of the current system at shorter lead times appears to be based largely on the ability to predict ENSO evolution for events already in progress. The forecasting of the eastern tropical Pacific SST using CCA is now done routinely on a monthly basis for a O-, 1-, and 2-season lead at the Climate Analysis Center.« less

  13. Operational and troubleshooting experiences in the SST-1 cryogenic system

    NASA Astrophysics Data System (ADS)

    Mahesuria, G.; Panchal, P.; Panchal, R.; Patel, R.; Sonara, D.; Gupta, N. C.; Srikanth, G. L. N.; Christian, D.; Garg, A.; Bairagi, N.; Patel, K.; Shah, P.; Nimavat, H.; Sharma, R.; Patel, J. C.; Tank, J.; Tanna, V. L.; Pradhan, S.

    2014-01-01

    Recently, the cooldown and current charging campaign have been carried out towards the demonstration of the first successful plasma discharge in the steady state superconducting Tokomak (SST-1). The SST-1 machine consists of cable-in-conduit wound superconducting toroidal as well as poloidal coils, cooled using 1.3 kW at 4.5 K helium refrigerator -cum- liquefier (HRL) system. The cryo system provides the two-phase helium at 0.13 MPa at 4.5 K as well as forced-flow pressurized helium at 0.4 MPa and in addition to 7 g-s-1 liquefaction capacity required for the current leads and other cold mass at 4.5 K. The entire integrated cold masses having different thermo hydraulic resistances cooled with the SST-1 HRL in optimised process parameters. In order to maintain different levels of temperatures and to facilitate smooth and reliable cooldown, warm-up, normal operations as well as to handle abnormal events such as, quench or utilities failures etc., exergy efficient process are adopted for the helium refrigerator-cum-liquefier (HRL) with an installed equivalent capacity of 1.3 kW at 4.5 K. Using the HRL, the cold mass of about 40 tons is being routinely cooled down from ambient temperature to 4.5 K with an average cooldown rate of 0.75 - 1 K-h-1. Long-term cryogenic stable conditions were obtained within 15 days in the superconducting coils and their connecting feeders. Afterwards, all of the cold mass is warmed-up in a controlled manner to ambient temperature. In this paper, we report the recent operational results of the cryogenic system during the first plasma discharge in SST-1 as well as the troubleshooting experiences of the cryogenic plant related hardware.

  14. A virtual reality application in role-plays of social skills training for schizophrenia: a randomized, controlled trial.

    PubMed

    Park, Kyung-Min; Ku, Jeonghun; Choi, Soo-Hee; Jang, Hee-Jeong; Park, Ji-Yeon; Kim, Sun I; Kim, Jae-Jin

    2011-09-30

    Although social skills training (SST) is an effective approach for improving social skills for schizophrenia, the motivational deficit attenuates its efficacy. Virtual reality (VR) applications have allowed individuals with mental disabilities to enhance their motivation for rehabilitation. We compared SST using VR role-playing (SST-VR) to SST using traditional role-playing (SST-TR). This randomized, controlled trial included 91 inpatients with schizophrenia who were assigned to either SST-VR (n=46) or SST-TR (n=45). Both groups were administered over 10 semiweekly group sessions. An experienced, blinded rater assessed vocal, nonverbal and conversational skills. We also obtained data on motivation for SST and various social abilities. Throughout the 10 sessions, the SST-VR group (n=33) showed greater interest in SST and generalization of the skills than the SST-TR group (n=31). After SST, the SST-VR group improved more in conversational skills and assertiveness than the SST-TR group, but less in nonverbal skills. The VR application in role-plays of SST for schizophrenia may be particularly beneficial in terms of improving the conversational skills and assertiveness, possibly through its advantages in enhancing motivation for SST and generalization of the skills, and thus it may be a useful supplement to traditional SST. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Seismic instantaneous frequency extraction based on the SST-MAW

    NASA Astrophysics Data System (ADS)

    Liu, Naihao; Gao, Jinghuai; Jiang, Xiudi; Zhang, Zhuosheng; Wang, Ping

    2018-06-01

    The instantaneous frequency (IF) extraction of seismic data has been widely applied to seismic exploration for decades, such as detecting seismic absorption and characterizing depositional thicknesses. Based on the complex-trace analysis, the Hilbert transform (HT) can extract the IF directly, which is a traditional method and susceptible to noise. In this paper, a robust approach based on the synchrosqueezing transform (SST) is proposed to extract the IF from seismic data. In this process, a novel analytical wavelet is developed and chosen as the basic wavelet, which is called the modified analytical wavelet (MAW) and comes from the three parameter wavelet. After transforming the seismic signal into a sparse time-frequency domain via the SST taking the MAW (SST-MAW), an adaptive threshold is introduced to improve the noise immunity and accuracy of the IF extraction in a noisy environment. Note that the SST-MAW reconstructs a complex trace to extract seismic IF. To demonstrate the effectiveness of the proposed method, we apply the SST-MAW to synthetic data and field seismic data. Numerical experiments suggest that the proposed procedure yields the higher resolution and the better anti-noise performance compared to the conventional IF extraction methods based on the HT method and continuous wavelet transform. Moreover, geological features (such as the channels) are well characterized, which is insightful for further oil/gas reservoir identification.

  16. Climate Trend Detection using Sea-Surface Temperature Data-sets from the (A)ATSR and AVHRR Space Sensors.

    NASA Astrophysics Data System (ADS)

    Llewellyn-Jones, D. T.; Corlett, G. K.; Remedios, J. J.; Noyes, E. J.; Good, S. A.

    2007-05-01

    Sea-Surface Temperature (SST) is an important indicator of global change, designated by GCOS as an essential Climate Variable (ECV). The detection of trends in Global SST requires rigorous measurements that are not only global, but also highly accurate and consistent. Space instruments can provide the means to achieve these required attributes in SST data. This paper presents an analysis of 15 years of SST data from two independent data sets, generated from the (A)ATSR and AVHRR series of sensors respectively. The analyses reveal trends of increasing global temperature between 0.13°C to 0.18 °C, per decade, closely matching that expected from some current predictions. A high level of consistency in the results from the two independent observing systems is seen, which gives increased confidence in data from both systems and also enables comparative analyses of the accuracy and stability of both data sets to be carried out. The conclusion is that these satellite SST data-sets provide important means to quantify and explore the processes of climate change. An analysis based upon singular value decomposition, allowing the removal of gross transitory disturbances, notably the El Niño, in order to examine regional areas of change other than the tropical Pacific, is also presented. Interestingly, although El Niño events clearly affect SST globally, they are found to have a non- significant (within error) effect on the calculated trends, which changed by only 0.01 K/decade when the pattern of El Niño and the associated variations was removed from the SST record. Although similar global trends were calculated for these two independent data sets, larger regional differences are noted. Evidence of decreased temperatures after the eruption of Mount Pinatubo in 1991 was also observed. The methodology demonstrated here can be applied to other data-sets, which cover long time-series observations of geophysical observations in order to characterise long-term change.

  17. Ciguatera Fish Poisoning and Climate Change: Analysis of National Poison Center Data in the United States, 2001–2011

    PubMed Central

    Strickland, Matthew J.; Hess, Jeremy J.

    2014-01-01

    Background: Warm sea surface temperatures (SSTs) are positively related to incidence of ciguatera fish poisoning (CFP). Increased severe storm frequency may create more habitat for ciguatoxic organisms. Although climate change could expand the endemic range of CFP, the relationship between CFP incidence and specific environmental conditions is unknown. Objectives: We estimated associations between monthly CFP incidence in the contiguous United States and SST and storm frequency in the Caribbean basin. Methods: We obtained information on 1,102 CFP-related calls to U.S. poison control centers during 2001–2011 from the National Poison Data System. We performed a time-series analysis using Poisson regression to relate monthly CFP call incidence to SST and tropical storms. We investigated associations across a range of plausible lag structures. Results: Results showed associations between monthly CFP calls and both warmer SSTs and increased tropical storm frequency. The SST variable with the strongest association linked current monthly CFP calls to the peak August SST of the previous year. The lag period with the strongest association for storms was 18 months. If climate change increases SST in the Caribbean 2.5–3.5°C over the coming century as projected, this model implies that CFP incidence in the United States is likely to increase 200–400%. Conclusions: Using CFP calls as a marker of CFP incidence, these results clarify associations between climate variability and CFP incidence and suggest that, all other things equal, climate change could increase the burden of CFP. These findings have implications for disease prediction, surveillance, and public health preparedness for climate change. Citation: Gingold DB, Strickland MJ, Hess JJ. 2014. Ciguatera fish poisoning and climate change: analysis of National Poison Center data in the United States, 2001–2011. Environ Health Perspect 122:580–586; http://dx.doi.org/10.1289/ehp.1307196 PMID:24618280

  18. Characteristics of Tropical Cyclones in High-Resolution Models of the Present Climate

    NASA Technical Reports Server (NTRS)

    Shaevitz, Daniel A.; Camargo, Suzana J.; Sobel, Adam H.; Jonas, Jeffery A.; Kim, Daeyhun; Kumar, Arun; LaRow, Timothy E.; Lim, Young-Kwon; Murakami, Hiroyuki; Roberts, Malcolm J.; hide

    2014-01-01

    The global characteristics of tropical cyclones (TCs) simulated by several climate models are analyzed and compared with observations. The global climate models were forced by the same sea surface temperature (SST) in two types of experiments, using a climatological SST and interannually varying SST. TC tracks and intensities are derived from each model's output fields by the group who ran that model, using their own preferred tracking scheme; the study considers the combination of model and tracking scheme as a single modeling system, and compares the properties derived from the different systems. Overall, the observed geographic distribution of global TC frequency was reasonably well reproduced. As expected, with the exception of one model, intensities of the simulated TC were lower than in observations, to a degree that varies considerably across models.

  19. Characteristics of Tropical Cyclones in High-resolution Models in the Present Climate

    NASA Technical Reports Server (NTRS)

    Shaevitz, Daniel A.; Camargo, Suzana J.; Sobel, Adam H.; Jonas, Jeffrey A.; Kim, Daehyun; Kumar, Arun; LaRow, Timothy E.; Lim, Young-Kwon; Murakami, Hiroyuki; Reed, Kevin; hide

    2014-01-01

    The global characteristics of tropical cyclones (TCs) simulated by several climate models are analyzed and compared with observations. The global climate models were forced by the same sea surface temperature (SST) fields in two types of experiments, using climatological SST and interannually varying SST. TC tracks and intensities are derived from each model's output fields by the group who ran that model, using their own preferred tracking scheme; the study considers the combination of model and tracking scheme as a single modeling system, and compares the properties derived from the different systems. Overall, the observed geographic distribution of global TC frequency was reasonably well reproduced. As expected, with the exception of one model, intensities of the simulated TC were lower than in observations, to a degree that varies considerably across models.

  20. Investigating the impact of diurnal cycle of SST on the intraseasonal and climate variability

    NASA Astrophysics Data System (ADS)

    Tseng, W. L.; Hsu, H. H.; Chang, C. W. J.; Keenlyside, N. S.; Lan, Y. Y.; Tsuang, B. J.; Tu, C. Y.

    2016-12-01

    The diurnal cycle is a prominent feature of our climate system and the most familiar example of externally forced variability. Despite this it remains poorly simulated in state-of-the-art climate models. A particular problem is the diurnal cycle in sea surface temperature (SST), which is a key variable in air-sea heat flux exchange. In most models the diurnal cycle in SST is not well resolved, due to insufficient vertical resolution in the upper ocean mixed-layer and insufficiently frequent ocean-atmosphere coupling. Here, we coupled a 1-dimensional ocean model (SIT) to two atmospheric general circulation model (ECHAM5 and CAM5). In particular, we focus on improving the representations of the diurnal cycle in SST in a climate model, and investigate the role of the diurnal cycle in climate and intraseasonal variability.

  1. The Mg - SST relationship in mollusc shells: is there a rule? Examples from three tropical species

    NASA Astrophysics Data System (ADS)

    Lazareth, C. E.; Guzmán, N.; Lecornec, F.; Cabioch, G.; Ortlieb, L.

    2009-04-01

    The geochemistry of mollusc shells is currently viewed as a powerful tool for paleoenvironmental reconstructions. Indeed, molluscs are ubiquitous animals, with a worldly geographical and environmental distribution, providing various environmental records. Moreover, mollusc shells are abundantly found in fossil and archaeological settings. In the paleoclimatic reconstructions, the sea-surface temperatures (SST) are a key parameter. If shell stable oxygen isotope signatures can provide accurate SST records, this proxy is also influenced by the water isotopic composition. To find another tracer which would depend on the SST solely, the relationship between Mg content changes in mollusc shell and SST has been investigated for a few years. Nevertheless, if the reliability of shell Mg as SST tracer has been proven in some species, this is clearly not a "universal" and definitive rule. To reconstruct the past tropical SSTs, Mg calibration studies were undertaken on Concholepas concholepas (gastropod, South America), Protothaca thaca (bivalve, South America) and Tridacna squamosa (bivalve, New Caledonia). The very high-resolution (infra-daily) analyses of the C. concholepas gastropod revealed a significant metabolism control, at the nyctemeral scale, on the Mg incorporation into the calcite shell layer. Over a two months period, the Mg fluctuations in C. concholepas shell do not match with the SST instrumental measurements. Mg content changes along the aragonitic shell growth axis of several living P. thaca from a same Peruvian site are significantly different indicating no relationship between Mg and SST. The Mg variations measured in a Chilean P. thaca shell are, surprisingly, similar to variations of the instrumental SST. Unless this quite reliable relationship between P. thaca shell and SST is confirmed, and that the inter-site difference in Mg response to environmental forcing is understood, P. thaca shell Mg cannot be used as SST proxy. Lastly, a preliminary work carried out on the external aragonitic shell layer of T. squamosa showed that, over 14 months of growth, Mg and SST are well conversely correlated but the seasonal cycle is interrupted by a Mg peak that corresponds to a shell growth anomaly. Additional studies, especially dedicated on anomalies-related Mg increases, must be performed to validate the T. squamosa shell as a reliable SST proxy. Considering previous works and the results presented here, one can definitively conclude that, at least, calibration procedures are indispensable before using Mg as a SST proxy in mollusc shells. In addition, further work specifically directed towards the role of the metabolism on the incorporation of Mg in mollusc shells could be the key to understand, and thus to use, this proxy for which, at the present time, no single rule is applicable to molluscs. Contribution of the CONCHAS (PNEDC), CENSOR (6th PCRD) and BioCalc (ESF) projects. "This study was financed and conducted in the frame of the EU-project CENSOR (Climate variability and El Nino Southern Oscillation: Impacts for natural resources and management, contract 511071) and is CENSOR publication 0375".

  2. The seasonal cycle of pCO2 and CO2 fluxes in the Southern Ocean: diagnosing anomalies in CMIP5 Earth system models

    NASA Astrophysics Data System (ADS)

    Precious Mongwe, N.; Vichi, Marcello; Monteiro, Pedro M. S.

    2018-05-01

    The Southern Ocean forms an important component of the Earth system as a major sink of CO2 and heat. Recent studies based on the Coupled Model Intercomparison Project version 5 (CMIP5) Earth system models (ESMs) show that CMIP5 models disagree on the phasing of the seasonal cycle of the CO2 flux (FCO2) and compare poorly with available observation products for the Southern Ocean. Because the seasonal cycle is the dominant mode of CO2 variability in the Southern Ocean, its simulation is a rigorous test for models and their long-term projections. Here we examine the competing roles of temperature and dissolved inorganic carbon (DIC) as drivers of the seasonal cycle of pCO2 in the Southern Ocean to explain the mechanistic basis for the seasonal biases in CMIP5 models. We find that despite significant differences in the spatial characteristics of the mean annual fluxes, the intra-model homogeneity in the seasonal cycle of FCO2 is greater than observational products. FCO2 biases in CMIP5 models can be grouped into two main categories, i.e., group-SST and group-DIC. Group-SST models show an exaggeration of the seasonal rates of change of sea surface temperature (SST) in autumn and spring during the cooling and warming peaks. These higher-than-observed rates of change of SST tip the control of the seasonal cycle of pCO2 and FCO2 towards SST and result in a divergence between the observed and modeled seasonal cycles, particularly in the Sub-Antarctic Zone. While almost all analyzed models (9 out of 10) show these SST-driven biases, 3 out of 10 (namely NorESM1-ME, HadGEM-ES and MPI-ESM, collectively the group-DIC models) compensate for the solubility bias because of their overly exaggerated primary production, such that biologically driven DIC changes mainly regulate the seasonal cycle of FCO2.

  3. A preliminary report of increased plasma levels of IL-33 in bipolar disorder: further evidence of pro-inflammatory status.

    PubMed

    Barbosa, Izabela Guimaraes; Morato, Isabela Boechat; de Miranda, Aline Silva; Bauer, Moisés Evandro; Soares, Jair C; Teixeira, Antônio Lucio

    2014-03-01

    Recent findings suggest an important role for inflammation in the neurobiology of bipolar disorder (BD). Interleukin 33 (IL-33) is a cytokine with multiple functions and may act as a nuclear factor regulating transcription and as an "alarmin". IL-33 exerts part of its function through the receptor ST2 that also exists in a soluble form (sST2). This study was performed to evaluate IL-33 and sST2 plasma levels in BD patients. We evaluated IL33 and sST2 plasma levels of 46 BD patients (23 in euthymia and 23 in mania) and 23 healthy controls using enzyme-linked immunosorbent assay (ELISA). BD patients were age and gender matched healthy controls. IL-33 levels were higher in BD patients (p=0.02) but there was no difference in sST2 (p=0.55). IL33 and sST2 plasma levels were not correlated with age, neither was influenced by clinical comorbidities nor medications in use. These findings corroborate the view of BD as a multisystem condition with a proinflammatory profile. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Evaluation of the Harmful Algal Bloom Mapping System (HABMapS) and Bulletin

    NASA Technical Reports Server (NTRS)

    Hall, Callie; Zanoni, Vicki; Estep, Leland; Terrie, Gregory; D'Sa, Eurico; Pagnutti, Mary

    2004-01-01

    The National Oceanic and Atmospheric Administration (NOAA) Harmful Algal Bloom (HAB) Mapping System and Bulletin provide a Web-based geographic information system (GIS) and an e-mail alert system that allow the detection, monitoring, and tracking of HABs in the Gulf of Mexico. NASA Earth Science data that potentially support HABMapS/Bulletin requirements include ocean color, sea surface temperature (SST), salinity, wind fields, precipitation, water surface elevation, and ocean currents. Modeling contributions include ocean circulation, wave/currents, along-shore current regimes, and chlorophyll modeling (coupled to imagery). The most immediately useful NASA contributions appear to be the 1-km Moderate Resolution Imaging Spectrometer (MODIS) chlorophyll and SST products and the (presently used) SeaWinds wind vector data. MODIS pigment concentration and SST data are sufficiently mature to replace imagery currently used in NOAA HAB applications. The large file size of MODIS data is an impediment to NOAA use and modified processing schemes would aid in NOAA adoption of these products for operational HAB forecasting.

  5. Impact of global warming on tropical cyclone genesis in coupled and forced simulations: role of SST spatial anomalies

    NASA Astrophysics Data System (ADS)

    Royer, Jean-François; Chauvin, Fabrice; Daloz, Anne-Sophie

    2010-05-01

    The response of tropical cyclones (TC) activity to global warming has not yet reached a clear consensus in the Fourth Assessment Report (AR4) published by the Intergovernmental Panel on Climate Change (IPCC, 2007) or in the recent scientific literature. Observed series are neither long nor reliable enough for a statistically significant detection and attribution of past TC trends, and coupled climate models give widely divergent results for the future evolution of TC activity in the different ocean basins. The potential importance of the spatial structure of the future SST warming has been pointed out by Chauvin et al. (2006) in simulations performed at CNRM with the ARPEGE-Climat GCM. The current presentation describes a new set of simulations that have been performed with the ARPEGE-Climat model to try to understand the possible role of SST patterns in the TC cyclogenesis response in 15 CMIP3 coupled simulations analysed by Royer et al (2009). The new simulations have been performed with the atmospheric component of the ARPEGE-Climat GCM forced in 10 year simulations by the SST patterns from each of 15 CMIP3 simulations with different climate model at the end of the 21st century according to scenario A2. The TC analysis is based on the computation of a Convective Yearly Genesis Parameter (CYGP) and the Genesis Potential Index (GPI). The computed genesis indices for each of the ARPEGE-Climat forced simulations is compared with the indices computed directly from the initial coupled simulation. The influence of SST patterns can then be more easily assessed since all the ARPEGE-Climat simulations are performed with the same atmospheric model, whereas the original simulations used models with different parameterization and resolutions. The analysis shows that CYGP or GPI anomalies obtained with ARPEGE are as variable between each other as those obtained originally by the different IPCC models. The variety of SST patterns used to force ARPEGE explains a large part of the dispersion, though for a given SST pattern, ARPEGE does not necessarily reproduce the anomaly produced originally by the IPCC model which produced the SST anomaly. Many factors can contribute to this discrepancy, but the most prominent seems to be the absence of coupling between the forced atmospheric ARPEGE simulation and the underlying ocean. When the atmospheric model is forced by prescribed SST anomalies some retroactions between cyclogenesis and ocean are missing. There are however areas over the globe were models agree about the CYGP or GPI anomalies induced by global warming, such as the Indian Ocean that shows a better coherency in the coupled and forced responses. This could be an indication that interaction between ocean and atmosphere is not as strong there as in the other basins. Details of the results for all the other ocean basins will be presented. References: Chauvin F. and J.-F. Royer and M. Déqué , 2006: Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution. Climate Dynamics 27(4), 377-399. IPCC [Intergovernmental Panel for Climate Change], Climate change 2007: The physical science basis, in: S. Solomon et al. (eds.), Cambridge University Press. Royer JF, F Chauvin, 2009: Response of tropical cyclogenesis to global warming in an IPCC AR-4 scenario assessed by a modified yearly genesis parameter. "Hurricanes and Climate Change", J. B. Elsner and T. H. Jagger (Eds.), Springer, ISBN: 978-0-387-09409-0, pp 213-234.

  6. ST2 and IL-33 in Pregnancy and Pre-Eclampsia

    PubMed Central

    Snider, James V.; Tannetta, Dionne S.; Child, Tim; Redman, Christopher W. G.; Sargent, Ian L.

    2011-01-01

    Normal pregnancy is associated with a mild systemic inflammatory response and an immune bias towards type 2 cytokine production, whereas pre-eclampsia is characterized by a more intense inflammatory response, associated with endothelial dysfunction and a type 1 cytokine dominance. Interleukin (IL)-33 is a newly described member of the IL-1 family, which binds its receptor ST2L to induce type 2 cytokines. A soluble variant of ST2 (sST2) acts as a decoy receptor to regulate the activity of IL-33. In this study circulating IL-33 and sST2 were measured in each trimester of normal pregnancy and in women with pre-eclampsia. While IL-33 did not change throughout normal pregnancy, or between non-pregnant, normal pregnant or pre-eclamptic women, sST2 was significantly altered. sST2 was increased in the third trimester of normal pregnancy (p<0.001) and was further increased in pre-eclampsia (p<0.001). This increase was seen prior to the onset of disease (p<0.01). Pre-eclampsia is a disease caused by placental derived factors, and we show that IL-33 and ST2 can be detected in lysates from both normal and pre-eclampsia placentas. ST2, but not IL-33, was identified on the syncytiotrophoblast layer, whereas IL-33 was expressed on perivascular tissue. In an in vitro placental perfusion model, sST2 was secreted by the placenta into the ‘maternal’ eluate, and placental explants treated with pro-inflammatory cytokines or subjected to hypoxia/reperfusion injury release more sST2, suggesting the origin of at least some of the increased amounts of circulating sST2 in pre-eclamptic women is the placenta. These results suggest that sST2 may play a significant role in pregnancies complicated by pre-eclampsia and increased sST2 could contribute to the type 1 bias seen in this disorder. PMID:21949719

  7. The High-Level Interface Definitions in the ASTRI/CTA Mini Array Software System (MASS)

    NASA Astrophysics Data System (ADS)

    Conforti, V.; Tosti, G.; Schwarz, J.; Bruno, P.; Cefal‘A, M.; Paola, A. D.; Gianotti, F.; Grillo, A.; Russo, F.; Tanci, C.; Testa, V.; Antonelli, L. A.; Canestrari, R.; Catalano, O.; Fiorini, M.; Gallozzi, S.; Giro, E.; Palombara, N. L.; Leto, G.; Maccarone, M. C.; Pareschi, G.; Stringhetti, L.; Trifoglio, M.; Vercellone, S.; Astri Collaboration; Cta Consortium

    2015-09-01

    ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is a Flagship Project funded by the Italian Ministry of Education, University and Research, and led by INAF, the Italian National Institute of Astrophysics. Within this framework, INAF is currently developing an end-to-end prototype, named ASTRI SST-2M, of a Small Size Dual-Mirror Telescope for the Cherenkov Telescope Array, CTA. A second goal of the project is the realization of the ASTRI/CTA mini-array, which will be composed of seven SST-2M telescopes placed at the CTA Southern Site. The ASTRI Mini Array Software System (MASS) is designed to support the ASTRI/CTA mini-array operations. MASS is being built on top of the ALMA Common Software (ACS) framework, which provides support for the implementation of distributed data acquisition and control systems, and functionality for log and alarm management, message driven communication and hardware devices management. The first version of the MASS system, which will comply with the CTA requirements and guidelines, will be tested on the ASTRI SST-2M prototype. In this contribution we present the interface definitions of the MASS high level components in charge of the ASTRI SST-2M observation scheduling, telescope control and monitoring, and data taking. Particular emphasis is given to their potential reuse for the ASTRI/CTA mini-array.

  8. Analysis of Ultra High Resolution Sea Surface Temperature Level 4 Datasets

    NASA Technical Reports Server (NTRS)

    Wagner, Grant

    2011-01-01

    Sea surface temperature (SST) studies are often focused on improving accuracy, or understanding and quantifying uncertainties in the measurement, as SST is a leading indicator of climate change and represents the longest time series of any ocean variable observed from space. Over the past several decades SST has been studied with the use of satellite data. This allows a larger area to be studied with much more frequent measurements being taken than direct measurements collected aboard ship or buoys. The Group for High Resolution Sea Surface Temperature (GHRSST) is an international project that distributes satellite derived sea surface temperatures (SST) data from multiple platforms and sensors. The goal of the project is to distribute these SSTs for operational uses such as ocean model assimilation and decision support applications, as well as support fundamental SST research and climate studies. Examples of near real time applications include hurricane and fisheries studies and numerical weather forecasting. The JPL group has produced a new 1 km daily global Level 4 SST product, the Multiscale Ultrahigh Resolution (MUR), that blends SST data from 3 distinct NASA radiometers: the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Very High Resolution Radiometer (AVHRR), and the Advanced Microwave Scanning Radiometer ? Earth Observing System(AMSRE). This new product requires further validation and accuracy assessment, especially in coastal regions.We examined the accuracy of the new MUR SST product by comparing the high resolution version and a lower resolution version that has been smoothed to 19 km (but still gridded to 1 km). Both versions were compared to the same data set of in situ buoy temperature measurements with a focus on study regions of the oceans surrounding North and Central America as well as two smaller regions around the Gulf Stream and California coast. Ocean fronts exhibit high temperature gradients (Roden, 1976), and thus satellite data of SST can be used in the detection of these fronts. In this case, accuracy is less of a concern because the primary focus is on the spatial derivative of SST. We calculated the gradients for both versions of the MUR data set and did statistical comparisons focusing on the same regions.

  9. Vertical Motion Changes Related to North-East Brazil Rainfall Variability: a GCM Simulation

    NASA Astrophysics Data System (ADS)

    Roucou, Pascal; Oribe Rocha de Aragão, José; Harzallah, Ali; Fontaine, Bernard; Janicot, Serge

    1996-08-01

    The atmospheric structure over north-east Brazil during anomalous rainfall years is studied in the 11 levels of the outputs of the Laboratoire de Météorologie Dynamique atmospheric general circulation model (LMD AGCM). Seven 19-year simulations were performed using observed sea-surface temperature (SST) corresponding to the period 1970- 1988. The ensemble mean is calculated for each month of the period, leading to an ensemble-averaged simulation. The simulated March-April rainfall is in good agreement with observations. Correlations of simulated rainfall and three SST indices relative to the equatorial Pacific and northern and southern parts of the Atlantic Ocean exhibit stronger relationships in the simulation than in the observations. This is particularly true with the SST gradient in the Atlantic (Atlantic dipole). Analyses on 200 ;hPa velocity potential, vertical velocity, and vertical integral of the zonal component of mass flux are performed for years of abnormal rainfall and positive/negative SST anomalies in the Pacific and Atlantic oceans in March-April during the rainy season over the Nordeste region. The results at 200 hPa show a convergence anomaly over Nordeste and a divergence anomaly over the Pacific concomitant with dry seasons associated with warm SST anomalies in the Pacific and warm (cold) waters in the North (South) Atlantic. During drought years convection inside the ITCZ indicated by the vertical velocity exhibits a displacement of the convection zone corresponding to a northward migration of the ITCZ. The east-west circulation depicted by the zonal divergent mass flux shows subsiding motion over Nordeste and ascending motion over the Pacific in drought years, accompanied by warm waters in the eastern Pacific and warm/cold waters in northern/southern Atlantic. Rainfall variability of the Nordeste rainfall is linked mainly to vertical motion and SST variability through the migration of the ITCZ and the east-west circulation.

  10. Potential predictability and actual skill of Boreal Summer Tropical SST and Indian summer monsoon rainfall in CFSv2-T382: Role of initial SST and teleconnections

    NASA Astrophysics Data System (ADS)

    Pillai, Prasanth A.; Rao, Suryachandra A.; Das, Renu S.; Salunke, Kiran; Dhakate, Ashish

    2017-10-01

    The present study assess the potential predictability of boreal summer (June through September, JJAS) tropical sea surface temperature (SST) and Indian summer monsoon rainfall (ISMR) using high resolution climate forecast system (CFSv2-T382) hindcasts. Potential predictability is computed using relative entropy (RE), which is the combined effect of signal strength and model spread, while the correlation between ensemble mean and observations represents the actual skill. Both actual and potential skills increase as lead time decreases for Niño3 index and equatorial East Indian Ocean (EEIO) SST anomaly and both the skills are close to each other for May IC hindcasts at zero lead. At the same time the actual skill of ISMR and El Niño Modoki index (EMI) are close to potential skill for Feb IC hindcasts (3 month lead). It is interesting to note that, both actual and potential skills are nearly equal, when RE has maximum contribution to individual year's prediction skill and its relationship with absolute error is insignificant or out of phase. The major contribution to potential predictability is from ensemble mean and the role of ensemble spread is limited for Pacific SST and ISMR hindcasts. RE values are able to capture the predictability contribution from both initial SST and simultaneous boundary forcing better than ensemble mean, resulting in higher potential skill compared to actual skill for all ICs. For Feb IC hindcasts at 3 month lead time, initial month SST (Feb SST) has important predictive component for El Niño Modoki and ISMR leading to higher value of actual skill which is close to potential skill. This study points out that even though the simultaneous relationship between ensemble mean ISMR and global SST is similar for all ICs, the predictive component from initial SST anomalies are captured well by Feb IC (3 month lead) hindcasts only. This resulted in better skill of ISMR for Feb IC (3 month lead) hindcasts compared to May IC (0 month lead) hindcasts. Lack of proper contribution from initial SST and teleconnections induces large absolute error for ISMR in May IC hindcasts resulting in very low actual skill. Thus the use of potential predictability skill and actual skill collectively help to understand the fidelity of the model for further improvement by differentiating the role of initial SST and simultaneous boundary forcing to some extent.

  11. Eye bank prepared versus surgeon cut endothelial graft tissue for Descemet membrane endothelial keratoplasty: An observational study.

    PubMed

    Regnier, Marie; Auxenfans, Céline; Maucort-Boulch, Delphine; Marty, Anne-Sophie; Damour, Odile; Burillon, Carole; Kocaba, Viridiana

    2017-05-01

    The purpose of this article is to examine outcomes of Descemet membrane endothelial keratoplasty (DMEK) performed with cornea bank (CB) prestripped tissue and surgeon stripped tissue (SST).This retrospective study examined subjects who underwent DMEK with CB or surgeon prepared tissue for Fuchs endothelial corneal dystrophy. Best-corrected visual acuity (BCVA), corneal thickness, endothelial cell count (ECC), and complications were examined before and throughout a 6-month postoperative period.Eleven CB and 22 SST subjects were included. Six months after surgery, BCVA was 20/20 or better in 36.4% of CB and 22.7% of SST subjects (P = .43). Median logMAR BCVA was 0.10 (0.00-0.20, 20/25) in group CB and 0.10 (0.10-0.30, 20/25) in group SST. Median preoperative corneal thickness was 614.0 μm (577.5-662.0 μm) and 658.0 μm (606.0-689.0 μm) in CB and SST subjects, respectively (P = .37). Six months after surgery, median corneal thickness was lower in the CB group (571.0 μm [478.0-592.0 μm]), than in the SST group (576.0 μm [531.0-607.0 μm], P = .02). At 6 months, median ECC was 1500.0 cell/mm (1321.5-2049.0 cell/mm, 41% decrease) in group CB and 1403.0 cell/mm (972.5-2010.7 cell/mm, 46% decrease) in group SST (P = .70). Rebubbling was required in 5 CB (45.5%) and 15 SST (68.2%) subjects (P = .39).Fuchs' dystrophy patients have good anatomic and functional DMEK results. Similar outcomes and complication rates occurred with eye bank and surgeon prepared donor tissue.

  12. Prognostic Value of Soluble Suppression of Tumorigenicity-2 in Chronic Heart Failure: A Meta-Analysis.

    PubMed

    Aimo, Alberto; Vergaro, Giuseppe; Passino, Claudio; Ripoli, Andrea; Ky, Bonnie; Miller, Wayne L; Bayes-Genis, Antoni; Anand, Inder; Januzzi, James L; Emdin, Michele

    2017-04-01

    The purpose of this study was to perform the first meta-analysis of currently available data. Soluble suppression of tumorigenesis 2 (sST2) plasma concentration is elevated in chronic heart failure (CHF) and helps to predict prognosis in this setting, although the evidence is limited. Three databases (Medline, Cochrane Library, and Scopus) were searched. Inclusion criteria were: follow-up studies; papers published in English; enrollment of CHF outpatients; available data on hazard ratio (HR) for the log 2 ST2 (so that the reported HRs represent the risk per doubling of sST2) and 95% confidence interval (CI) for all-cause death, and possibly also for cardiovascular (CV) death; and use of standardized sST2 assay. Exclusion criteria were: sST2 considered only as an element of a prognostic score, and studies on patients with end-stage HF. Seven studies were finally included for all-cause death, with a global population of 6,372 patients; data on CV death were available for 5 studies, totaling 5,051 patients. The HR was 1.75 (95% CI: 1.37 to 2.22) for all-cause death and 1.79 (95% CI: 1.22 to 2.63) for CV death (both p < 0.001). Significant heterogeneity among studies was detected in the quantification of sST2 predictive value, attributable to marked differences in pharmacological treatment among trials. The predictive power of sST2 was greater when patients were managed according to present guideline-recommended medical treatment. sST2 is a predictor of both all-cause and CV death in CHF outpatients. The present meta-analysis supports the use of sST2 for risk stratification in patients with stable CHF. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  13. Role of Soluble ST2 Levels and Beta-Blockers Dosage on Cardiovascular Events of Patients with Unselected ST-Segment Elevation Myocardial Infarction

    PubMed Central

    Huang, Wei-Ping; Zheng, Xuan; He, Lei; Su, Xi; Liu, Cheng-Wei; Wu, Ming-Xiang

    2018-01-01

    Background: Serum soluble ST2 (sST2) levels are elevated early after acute myocardial infarction and are related to adverse left ventricular (LV) remodeling and cardiovascular outcomes in ST-segment elevation myocardial infarction (STEMI). Beta-blockers (BB) have been shown to improve LV remodeling and survival. However, the relationship between sST2, final therapeutic BB dose, and cardiovascular outcomes in STEMI patients remains unknown. Methods: A total of 186 STEMI patients were enrolled at the Wuhan Asia Heart Hospital between January 2015 and June 2015. All patients received standard treatment and were followed up for 1 year. Serum sST2 was measured at baseline. Patients were divided into four groups according to their baseline sST2 values (high >56 ng/ml vs. low ≤56 ng/ml) and final therapeutic BB dose (high ≥47.5 mg/d vs. low <47.5 mg/d). Cox regression analyses were performed to determine whether sST2 and BB were independent risk factors for cardiovascular events in STEMI. Results: Baseline sST2 levels were positively correlated with heart rate (r = 0.327, P = 0.002), Killip class (r = 0.408, P = 0.000), lg N-terminal prohormone B-type natriuretic peptide (r = 0.467, P = 0.000), lg troponin I (r = 0.331, P = 0.000), and lg C-reactive protein (r = 0.307, P = 0.000) and negatively correlated to systolic blood pressure (r = −0.243, P = 0.009) and LV ejection fraction (r = −0.402, P = 0.000). Patients with higher baseline sST2 concentrations who were not titrated to high-dose BB therapy (P < 0.0001) had worse outcomes. Baseline high sST2 (hazard ratio [HR]: 2.653; 95% confidence interval [CI]: 1.201–8.929; P = 0.041) and final low BB dosage (HR: 1.904; 95% CI, 1.084–3.053; P = 0.035) were independent predictors of cardiovascular events in STEMI. Conclusions: High baseline sST2 levels and final low BB dosage predicted cardiovascular events in STEMI. Hence, sST2 may be a useful biomarker in cardiac pathophysiology. PMID:29786039

  14. Impact of SST on heavy rainfall events on eastern Adriatic during SOP1 of HyMeX

    NASA Astrophysics Data System (ADS)

    Ivatek-Šahdan, Stjepan; Stanešić, Antonio; Tudor, Martina; Odak Plenković, Iris; Janeković, Ivica

    2018-02-01

    The season of late summer and autumn is favourable for intensive precipitation events (IPE) in the central Mediterranean. During that period the sea surface is warm and contributes to warming and moistening of the lowest portion of the atmosphere, particularly the planetary boundary layer (PBL). Adriatic sea is surrounded by mountains and the area often receives substantial amounts of precipitation in short time (24 h). The IPEs are a consequence of convection triggered by topography acting on the southerly flow that has brought the unstable air to the coastline. Improvement in prediction of high impact weather events is one of the goals of The Hydrological cycle in the Mediterranean eXperiment (HyMeX). This study examines how precipitation patterns change in response to different SST forcing. We focus on the IPEs that occurred on the eastern Adriatic coast during the first HyMeX Special observing period (SOP1, 6 September to 5 November 2012). The operational forecast model ALADIN uses the same SST as the global meteorological model (ARPEGE from Meteo France), as well as the forecast lateral boundary conditions (LBCs). First we assess the SST used by the operational atmospheric model ALADIN and compare it to the in situ measurements, ROMS ocean model, OSTIA and MUR analyses. Results of this assessment show that SST in the eastern Adriatic was overestimated by up to 10 K during HyMeX SOP1 period. Then we examine the sensitivity of 8 km and 2 km resolution forecasts of IPEs to the changes in the SST during whole SOP1 with special attention to the intensive precipitation event in Rijeka. Forecast runs in both resolutions are performed for the whole SOP1 using different SST fields prescribed at initial time and kept constant during the model forecast. Categorical verification of 24 h accumulated precipitation did not show substantial improvement in verification scores when more realistic SST was used. Furthermore, the results show that the impact of introducing improved SST in the analysis on the precipitation forecast varies for different cases. There is generally a larger sensitivity to the SST in high resolution than in the lower one, although the forecast period of the latter is longer.

  15. The influence of sea surface temperature on the intensity and associated storm surge of tropical cyclone Yasi: a sensitivity study

    NASA Astrophysics Data System (ADS)

    Lavender, Sally L.; Hoeke, Ron K.; Abbs, Deborah J.

    2018-03-01

    Tropical cyclones (TCs) result in widespread damage associated with strong winds, heavy rainfall and storm surge. TC Yasi was one of the most powerful TCs to impact the Queensland coast since records began. Prior to Yasi, the SSTs in the Coral Sea were higher than average by 1-2 °C, primarily due to the 2010/2011 La Niña event. In this study, a conceptually simple idealised sensitivity analysis is performed using a high-resolution regional model to gain insight into the influence of SST on the track, size, intensity and associated rainfall of TC Yasi. A set of nine simulations with uniform SST anomalies of between -4 and 4 °C applied to the observed SSTs are analysed. The resulting surface winds and pressure are used to force a barotropic storm surge model to examine the influence of SST on the associated storm surge of TC Yasi. An increase in SST results in an increase in intensity, precipitation and integrated kinetic energy of the storm; however, there is little influence on track prior to landfall. In addition to an increase in precipitation, there is a change in the spatial distribution of precipitation as the SST increases. Decreases in SSTs result in an increase in the radius of maximum winds due to an increase in the asymmetry of the storm, although the radius of gale-force winds decreases. These changes in the TC characteristics also lead to changes in the associated storm surge. Generally, cooler (warmer) SSTs lead to reduced (enhanced) maximum storm surges. However, the increase in surge reaches a maximum with an increase in SST of 2 °C. Any further increase in SST does not affect the maximum surge but the total area and duration of the simulated surge increases with increasing upper ocean temperatures. A large decrease in maximum storm surge height occurs when a negative SST anomaly is applied, suggesting if TC Yasi had occurred during non-La Niña conditions the associated storm surge may have been greatly diminished, with a decrease in storm surge height of over 3 m when the SST is reduced by 2 °C. In summary, increases in SST lead to an increase in the potential destructiveness of TCs with regard to intensity, precipitation and storm surge, although this relationship is not linear.

  16. Assessing the relative influence of surface soil moisture and ENSO SST on precipitation predictability over the contiguous United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Jin-Ho; Leung, Lai-Yung R.

    This study assesses the relative influence of soil moisture memory and tropical sea surface temperature (SST) in seasonal rainfall over the contiguous United States. Using observed precipitation, the NINO3.4 index and soil moisture and evapotranspiration simulated by a land surface model for 61 years, analysis was performed using partial correlations to evaluate to what extent land surface and SST anomaly of El Niño and Southern Oscillation (ENSO) can affect seasonal precipitation over different regions and seasons. Results show that antecedent soil moisture is as important as concurrent ENSO condition in controlling rainfall anomalies over the U.S., but they generally dominatemore » in different seasons with SST providing more predictability during winter while soil moisture, through its linkages to evapotranspiration and snow water, has larger influence in spring and early summer. The proposed methodology is applicable to climate model outputs to evaluate the intensity of land-atmosphere coupling and its relative importance.« less

  17. Numerical flow simulation and efficiency prediction for axial turbines by advanced turbulence models

    NASA Astrophysics Data System (ADS)

    Jošt, D.; Škerlavaj, A.; Lipej, A.

    2012-11-01

    Numerical prediction of an efficiency of a 6-blade Kaplan turbine is presented. At first, the results of steady state analysis performed by different turbulence models for different operating regimes are compared to the measurements. For small and optimal angles of runner blades the efficiency was quite accurately predicted, but for maximal blade angle the discrepancy between calculated and measured values was quite large. By transient analysis, especially when the Scale Adaptive Simulation Shear Stress Transport (SAS SST) model with zonal Large Eddy Simulation (ZLES) in the draft tube was used, the efficiency was significantly improved. The improvement was at all operating points, but it was the largest for maximal discharge. The reason was better flow simulation in the draft tube. Details about turbulent structure in the draft tube obtained by SST, SAS SST and SAS SST with ZLES are illustrated in order to explain the reasons for differences in flow energy losses obtained by different turbulence models.

  18. Effects of the diurnal cycle in solar radiation on the tropical Indian Ocean mixed layer variability during wintertime Madden-Julian Oscillations

    NASA Astrophysics Data System (ADS)

    Li, Yuanlong; Han, Weiqing; Shinoda, Toshiaki; Wang, Chunzai; Lien, Ren-Chieh; Moum, James N.; Wang, Jih-Wang

    2013-10-01

    The effects of solar radiation diurnal cycle on intraseasonal mixed layer variability in the tropical Indian Ocean during boreal wintertime Madden-Julian Oscillation (MJO) events are examined using the HYbrid Coordinate Ocean Model. Two parallel experiments, the main run and the experimental run, are performed for the period of 2005-2011 with daily atmospheric forcing except that an idealized hourly shortwave radiation diurnal cycle is included in the main run. The results show that the diurnal cycle of solar radiation generally warms the Indian Ocean sea surface temperature (SST) north of 10°S, particularly during the calm phase of the MJO when sea surface wind is weak, mixed layer is thin, and the SST diurnal cycle amplitude (dSST) is large. The diurnal cycle enhances the MJO-forced intraseasonal SST variability by about 20% in key regions like the Seychelles-Chagos Thermocline Ridge (SCTR; 55°-70°E, 12°-4°S) and the central equatorial Indian Ocean (CEIO; 65°-95°E, 3°S-3°N) primarily through nonlinear rectification. The model also well reproduced the upper-ocean variations monitored by the CINDY/DYNAMO field campaign between September-November 2011. During this period, dSST reaches 0.7°C in the CEIO region, and intraseasonal SST variability is significantly amplified. In the SCTR region where mean easterly winds are strong during this period, diurnal SST variation and its impact on intraseasonal ocean variability are much weaker. In both regions, the diurnal cycle also has a large impact on the upward surface turbulent heat flux QT and induces diurnal variation of QT with a peak-to-peak difference of O(10 W m-2).

  19. Revisiting the Processes That Determine Wintertime Intraseasonal SST Variability in the Thermocline Ridge of the Tropical South Indian Ocean

    NASA Astrophysics Data System (ADS)

    Han, W.; Li, Y.; Shinoda, T.; Wang, C.; Ravichandran, M.; Wang, J. W.

    2014-12-01

    Intraseasonal sea surface temperature (SST) variability over the Seychelles-Chagos thermocline ridge (SCTR) induced by boreal wintertime Madden-Julian oscillations (MJOs) is investigated by performing a series of OGCM experiments with improved model configuration and the recently available high quality satellite forcing fields. The impact of the ocean interannual variation of the thermocline depth -represented by the depth of 20C isotherm (D20) - in the SCTR is also assessed. The OGCM main run solution agrees well with the observations. The results show that for the 2001-2011 period, surface shortwave radiation (SWR), turbulent heat fluxes associated with wind speed, and wind stress-driven ocean dynamical processes are all important in causing the MJO-related intraseasonal SST variability in the SCTR region. Overall, forcing by SWR contributes ~31%, and forcing by winds (via both surface turbulent heat flux and ocean dynamics) contributes ~62%. The contribution of turbulent heat flux associated with wind speed is ~39% and that of wind-stress driven ocean dynamics is ~23%. The contribution of ocean dynamics, however, is considerably larger during strong ("prime") MJO events under "strong" thermocline condition. The overall effect of interannual variability of D20 on intraseasonal SST during 2001-2011 is significant in the eastern part of the SCTR (70E-85E), where the intraseasonal SST amplitudes are strengthened by about 20%. In general, a shallower/deeper SCTR favors larger/smaller SST responses to the MJO forcing. In the eastern SCTR, both the heat flux forcing and entrainment are greatly amplified under the strong SCTR condition, but only slightly suppressed under the weak SCTR condition, leading to an overall strengthening effect on intraseasonal SST variability.

  20. Characteristics of tropical cyclones in high-resolution models in the present climate

    DOE PAGES

    Shaevitz, Daniel A.; Camargo, Suzana J.; Sobel, Adam H.; ...

    2014-12-05

    The global characteristics of tropical cyclones (TCs) simulated by several climate models are analyzed and compared with observations. The global climate models were forced by the same sea surface temperature (SST) fields in two types of experiments, using climatological SST and interannually varying SST. TC tracks and intensities are derived from each model's output fields by the group who ran that model, using their own preferred tracking scheme; the study considers the combination of model and tracking scheme as a single modeling system, and compares the properties derived from the different systems. Overall, the observed geographic distribution of global TCmore » frequency was reasonably well reproduced. As expected, with the exception of one model, intensities of the simulated TC were lower than in observations, to a degree that varies considerably across models.« less

  1. A study on bulk and skin temperature difference using observations from Atlantic and Pacific Coastal regions of United States

    NASA Astrophysics Data System (ADS)

    Alappattu, Denny P.; Wang, Qing; Yamaguchi, Ryan; Lind, Richard; Reynolds, Mike; Christman, Adam

    2017-05-01

    Analysis of bulk-skin sea surface temperature (SST) difference form the west and east coasts of United States is presented using the data collected from three field experiments. These experiments were conducted at offshore Duck, North Carolina and in the Monterey Bay of the California coastal region. Bulk SST measurements were made using conventional thermistors from a depth of one meter below the sea level. Infrared radiometers were used to measure the surface skin SST. Depending on measurement depth and prevailing conditions, the bulk SST can differ from skin SST by few tenths of a degree to O(1°C). Difference between bulk and skin SST arise from cools skin and warm layer effects. Bulk-skin SST difference (ΔSST) estimated from east coast observations varied from -0.46°C to 1.24°C. Here, the bulk SST was higher than skin SST most of the time during the observations. This indicates cool skin effect was the dominant factor determining the ΔSST in the east coast. For wind speeds less than 4 m s-1, we also noticed an increase in ΔSST. Additionally, for low winds (<4 m s-1) ΔSST also varied diurnally with the occurrence of generally higher ΔSST in the nighttime in comparison with daytime. Moreover, increase in downwelling longwave radiation reduced the bulk-skin SST difference. ΔSST calculated from the observation in the Monterey bay varied between 2.3° and -2.3°C. This was higher than the variability ΔSST observed at the east coast. Moreover, ΔSST variability observed at west coast was independent of wind speed.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, R.K.; Otte, C.A.

    Saccharomyces cerevisiae MATa cells carrying mutations in either sst1 or sst2 are supersensitive to the G1 arrest induced by ..cap alpha.. factor pheromone. When sst1 mutants were mixed with normal SST/sup +/ cells, the entire population recovered together from ..cap alpha.. factor arrest, suggesting that SST/sup +/ cells helped sst1 mutants to recover. Complementation tests and linkage analysis showed that sst1 and bar1, a mutation which eliminates the ability of MATa cells to act as a ''barrier'' to the diffusion of ..cap alpha.. factor, were lesions in the same genes. These findings suggest that sst1 mutants are defective in recoverymore » from ..cap alpha.. factor arrest because they are unable to degrade the pheromone. In contrast, recovery of sst2 mutants was not potentiated by the presence of SST/sup +/ cells in mixing experiments. When either normal MATa cells or mutant cells carrying defects in sst1 or sst2 were exposed to ..cap alpha.. factor for 1 h and then washed free of the pheromone, the sst2 cells subsequently remained arrested in the absence of ..cap alpha.. factor for a much longer time than SST/sup +/ or sst1 cells. These observations suggest that the defect in sst2 mutants is intrinsic to the cell and is involved in the mechanism of ..cap alpha.. factor action at some step after the initial interaction of the pheromone with the cell. The presence of an sst2 mutation appears to cause a growth debility, since repeated serial subculture of haploid sst2-1 strains led to the accumulation of faster-growing revertants that were pheromone resistant and were mating defective (''sterile'').« less

  3. Somatostatin: An endogenous antiepileptic

    PubMed Central

    Qiu, Cuie

    2008-01-01

    The neuropeptide somatostatin is highly expressed in brain regions associated with seizures. In hippocampus, SST expression and release is regulated by seizures, and SST-containing neurons within the hilus of the dentate gyrus are sensitive to seizure-induced death. In vivo and in vitro studies suggest that the loss of SST function in the dentate could contribute to epileptogenesis and seizure susceptibility. SST also has inhibitory actions in the CA1 and CA3 hippocampus, indicating this peptide is an important homeostatic regulator throughout the hippocampus. In vivo studies show SST has robust antiepileptic properties, with the major site of action being hippocampus. In rodents, somatostatin receptor subtype 2 (SST2) and SST4 appear to mediate the majority of the antiepileptic actions of SST, with SST2 predominate in rat and SST4 in mouse. Thus SST receptors may be appropriate targets for new antiepileptic drugs, although validation in human tissue is lacking. PMID:18221832

  4. Absolute Thermal SST Measurements over the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Good, W. S.; Warden, R.; Kaptchen, P. F.; Finch, T.; Emery, W. J.

    2010-12-01

    Climate monitoring and natural disaster rapid assessment require baseline measurements that can be tracked over time to distinguish anthropogenic versus natural changes to the Earth system. Disasters like the Deepwater Horizon Oil Spill require constant monitoring to assess the potential environmental and economic impacts. Absolute calibration and validation of Earth-observing sensors is needed to allow for comparison of temporally separated data sets and provide accurate information to policy makers. The Ball Experimental Sea Surface Temperature (BESST) radiometer was designed and built by Ball Aerospace to provide a well calibrated measure of sea surface temperature (SST) from an unmanned aerial system (UAS). Currently, emissive skin SST observed by satellite infrared radiometers is validated by shipborne instruments that are expensive to deploy and can only take a few data samples along the ship track to overlap within a single satellite pixel. Implementation on a UAS will allow BESST to map the full footprint of a satellite pixel and perform averaging to remove any local variability due to the difference in footprint size of the instruments. It also enables the capability to study this sub-pixel variability to determine if smaller scale effects need to be accounted for in models to improve forecasting of ocean events. In addition to satellite sensor validation, BESST can distinguish meter scale variations in SST which could be used to remotely monitor and assess thermal pollution in rivers and coastal areas as well as study diurnal and seasonal changes to bodies of water that impact the ocean ecosystem. BESST was recently deployed on a conventional Twin Otter airplane for measurements over the Gulf of Mexico to access the thermal properties of the ocean surface being affected by the oil spill. Results of these measurements will be presented along with ancillary sensor data used to eliminate false signals including UV and Synthetic Aperture Radar (SAR) information. Spatial variations and day-to-day changes in the visible oil concentration on the surface of the water were observed in performing these measurements. An assessment of the thermal imagery variation will be made based on the absolute calibration of the sensor to determine if the visible variation was due to properties of the reflected light or of the actual oil composition. Comparisons with satellite data (both SAR and thermal infrared images) and buoy data will also be included.

  5. Central Equatorial Pacific Sea Surface Temperatures During the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Monteagudo, M. M.; Lynch-Stieglitz, J.; Schmidt, M. W.

    2017-12-01

    The state of the tropical Pacific ocean-atmosphere system during the Last Glacial Maximum (LGM, 19,000-23,000 years BP) remains an area of uncertainty. Spatial patterns of tropical Pacific sea surface temperature (SST) offer insight into atmospheric circulation (i.e. Walker Circulation), however, few records exist for the Central Tropical Pacific (CTP). The few existing glacial CTP SST reconstructions indicate 1-2 °C of warming based on foraminiferal transfer functions (CLIMAP Project Members, 1976). In contrast, evidence from geochemical proxies (Mg/Ca, UK'37, TEX86) show 1-3.5 °C cooling in the eastern and western tropical Pacific (e.g. MARGO Project Members, 2009). In this study we present the first Mg/Ca estimates of glacial CTP SST from a meridional sediment core transect along the Line Islands Ridge (0-7°N, 156-162 °W). We use a time slice approach to establish the magnitude of glacial-interglacial SST change between the LGM (19,000-23,0000 years BP) and the Holocene (0-10,000 years BP) using Mg/Ca in the surface-dwelling foraminifera Globigerinoides ruber. Our results indicate cooling at all latitudes, ranging between 1.2-2.7 °C (Holocene-LGM SST). Northern cores (6.83-2.77 °N) exhibit a smaller glacial-interglacial SST difference than equatorial site 20BB at 1.27 °N. The data generated thus far suggest the glacial meridional SST gradient may have been steeper, possibly as a result of increased zonal winds, equatorial upwelling, or westward expansion of the Eastern Pacific Cold Tongue.

  6. West-WRF Sensitivity to Sea Surface Temperature Boundary Condition in California Precipitation Forecasts of AR Related Events

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Cornuelle, B. D.; Martin, A.; Weihs, R. R.; Ralph, M.

    2017-12-01

    We evaluated the merit in coastal precipitation forecasts by inclusion of high resolution sea surface temperature (SST) from blended satellite and in situ observations as a boundary condition (BC) to the Weather Research and Forecast (WRF) mesoscale model through simple perturbation tests. Our sensitivity analyses shows that the limited improvement of watershed scale precipitation forecast is credible. When only SST BC is changed, there is an uncertainty introduced because of artificial model state equilibrium and the nonlinear nature of the WRF model system. With the change of SST on the order of a fraction of a degree centigrade, we found that the part of random perturbation forecast response is saturated after 48 hours when it reaches to the order magnitude of the linear response. It is important to update the SST at a shorter time period, so that the independent excited nonlinear modes can cancel each other. The uncertainty in our SST configuration is quantitatively equivalent to adding to a spatially uncorrelated Guasian noise of zero mean and 0.05 degree of standard deviation to the SST. At this random noise perturbation magnitude, the ensemble average behaves well within a convergent range. It is also found that the sensitivity of forecast changes in response to SST changes. This is measured by the ratio of the spatial variability of mean of the ensemble perturbations over the spatial variability of the corresponding forecast. The ratio is about 10% for surface latent heat flux, 5 % for IWV, and less than 1% for surface pressure.

  7. Investigation of laminar to turbulent transition phenomena effects on impingement heat transfer

    NASA Astrophysics Data System (ADS)

    Isman, Mustafa Kemal; Morris, Philip J.; Can, Muhiddin

    2016-10-01

    Turbulent impinging air flow is investigated numerically by using the ANSYS-CFX® code. All computations are performed by considering three-dimensional, steady, and incompressible flow. Three different Reynolds averaged Navier-Stokes (RANS) turbulence models and two Reynolds stress models (RSM's) are employed. Furthermore three different laminar to turbulent transition (LTT) models are employed with the shear stress transport (SST) and the baseline (BSL) models. Results show that predictions of the SST and two RSM's are very close each other and these models' results are in better agreement with the experimental data when all Reynolds numbers used in this study are considered. Secondary maxima in Nusselt number can be seen only if the LTT formula is employed with SST and BSL models.

  8. Evaluation of the tropical variability from the Beijing Climate Center's real-time operational global Ocean Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Chen, Mengyan; Zhuang, Wei; Xu, Fanghua; Zheng, Fei; Wu, Tongwen; Wang, Xin

    2016-02-01

    The second-generation Global Ocean Data Assimilation System of the Beijing Climate Center (BCC GODAS2.0) has been run daily in a pre-operational mode. It spans the period 1990 to the present day. The goal of this paper is to introduce the main components and to evaluate BCC GODAS2.0 for the user community. BCC GODAS2.0 consists of an observational data preprocess, ocean data quality control system, a three-dimensional variational (3DVAR) data assimilation, and global ocean circulation model [Modular Ocean Model 4 (MOM4)]. MOM4 is driven by six-hourly fluxes from the National Centers for Environmental Prediction. Satellite altimetry data, SST, and in-situ temperature and salinity data are assimilated in real time. The monthly results from the BCC GODAS2.0 reanalysis are compared and assessed with observations for 1990-2011. The climatology of the mixed layer depth of BCC GODAS2.0 is generally in agreement with that ofWorld Ocean Atlas 2001. The modeled sea level variations in the tropical Pacific are consistent with observations from satellite altimetry on interannual to decadal time scales. Performances in predicting variations in the SST using BCC GODAS2.0 are evaluated. The standard deviation of the SST in BCC GODAS2.0 agrees well with observations in the tropical Pacific. BCC GODAS2.0 is able to capture the main features of El Ni˜no Modoki I and Modoki II, which have different impacts on rainfall in southern China. In addition, the relationships between the Indian Ocean and the two types of El Ni˜no Modoki are also reproduced.

  9. Indonesia sea surface temperature from TRMM Microwave Imaging (TMI) sensor

    NASA Astrophysics Data System (ADS)

    Marini, Y.; Setiawan, K. T.

    2018-05-01

    We analysis the Tropical Rainfall Measuring Mission's (TRMM) Microwave Imager (TMI) data to monitor the sea surface temperature (SST) of Indonesia waters for a decade of 2005-2014. The TMI SST data shows the seasonal and interannual SST in Indonesian waters. In general, the SST average was highest in March-May period with SST average was 29.4°C, and the lowest was in June – August period with the SST average was 28.5°C. The monthly SST average fluctuation of Indonesian waters for 10 years tends to increase. The lowest SST average of Indonesia occurred in August 2006 with the SST average was 27.6° C, while the maximum occurred in May 2014 with the monthly SST average temperature was 29.9 ° C.

  10. The role of SST variability in the simulation of the MJO

    NASA Astrophysics Data System (ADS)

    Stan, Cristiana

    2017-12-01

    The sensitivity of the Madden-Julian Oscillation to high-frequency variability (period 1-5 days) of sea surface temperature (SST) is investigated using numerical experiments with the super-parameterized Community Climate System Model. The findings of this study emphasize the importance of air-sea interactions in the simulation of the MJO, and stress the necessity of an accurate representation of ocean variability on short time scales. Eliminating 1-5-day variability of surface boundary forcing reduces the intraseasonal variability (ISV) of the tropics during the boreal winter. The ISV spectrum becomes close to the red noise background spectrum. The variability of atmospheric circulation shifts to longer time scales. In the absence of high-frequency variability of SST the MJO power gets confined to wavenumbers 1-2 and the magnitude of westward power associated with Rossby waves increases. The MJO convective activity propagating eastward from the Indian Ocean does not cross the Maritime Continent, and convection in the western Pacific Ocean is locally generated. In the Indian Ocean convection tends to follow the meridional propagation of SST anomalies. The response of the MJO to 1-5-day variability in the SST is through the charging and discharging mechanisms contributing to the atmospheric column moist static energy before and after peak MJO convection. Horizontal advection and surface fluxes show the largest sensitivity to SST perturbations.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, R.K.; Otte, C.A.

    Eight independently isolated mutants which are supersensitive (Sst/sup -/) to the G1 arrest induced by the tridecapeptide pheromone ..cap alpha.. factor were identified by screening mutagenized Saccharomyces cerevisiae MATa cells on solid medium for increased growth inhibition by ..cap alpha.. factor. These mutants carries lesions in two complementation groups, sst1 and sst2. Mutations at the sst1 locus were mating type specific: MATa sst1 cells were supersensitive to ..cap alpha.. factor, but MAT..cap alpha.. sst1 cells were not supersensitive to a factor. In contrast, mutations at the sst2 locus conferred supersensitivity to the pheromones of the opposite mating type on bothmore » MATa and MAT..cap alpha.. cells. Even in the absence of added ..cap alpha.. pheromone, about 10% of the cells in exponentially growing cultures of MATa strains carrying any of three different alleles of sst2 (including the ochre mutation sst2-4) had the aberrant morphology (''shmoo'' shape) that normally develops only after MATa cells are exposed to ..cap alpha.. factor. This ''self-shmooing'' phenotype was genetically linked to the sst2 mutations, although the leakiest allele isolated (sst2-3) did not display this characteristic. Normal MATa/MAT..cap alpha.. diploids do not respond to pheromones; diploids homozygous for an sst2 mutation (MATa/MAT..cap alpha.. sst2-1/sst2-1) were still insensitive to ..cap alpha.. factor. The sst1 gene was mapped to within 6.9 centimorgans of his6 on chromosome IX. The sst2 gene was unlinked to sst1, was not centromere linked, and was shown to be neither linked nor centromere distal to MAT on the right arm of chromosome III.« less

  12. Endothelin-converting enzyme-1 degrades internalized somatostatin-14.

    PubMed

    Roosterman, Dirk; Kempkes, Cordula; Cottrell, Graeme S; Padilla, Benjamin E; Bunnett, Nigel W; Turck, Christoph W; Steinhoff, Martin

    2008-05-01

    Agonist-induced internalization of somatostatin receptors (ssts) determines subsequent cellular responsiveness to peptide agonists and influences sst receptor scintigraphy. To investigate sst2A trafficking, rat sst2A tagged with epitope was expressed in human embryonic kidney cells and tracked by antibody labeling. Confocal microscopical analysis revealed that stimulation with sst and octreotide induced internalization of sst2A. Internalized sst2A remained sequestrated within early endosomes, and 60 min after stimulation, internalized sst2A still colocalized with beta-arrestin1-enhanced green fluorescence protein (EGFP), endothelin-converting enzyme-1 (ECE-1), and rab5a. Internalized (125)I-Tyr(11)-SST-14 was rapidly hydrolyzed by endosomal endopeptidases, with radioactive metabolites being released from the cell. Internalized (125)I-Tyr(1)-octreotide accumulated as an intact peptide and was released from the cell as an intact peptide ligand. We have identified ECE-1 as one of the endopeptidases responsible for inactivation of internalized SST-14. ECE-1-mediated cleavage of SST-14 was inhibited by the specific ECE-1 inhibitor, SM-19712, and by preventing acidification of endosomes using bafilomycin A(1). ECE-1 cleaved SST-14 but not octreotide in an acidic environment. The metallopeptidases angiotensin-1 converting enzyme and ECE-2 did not hydrolyze SST-14 or octreotide. Our results show for the first time that stimulation with SST-14 and octreotide induced sequestration of sst2A into early endosomes and that endocytosed SST-14 is degraded by endopeptidases located in early endosomes. Furthermore, octreotide was not degraded by endosomal peptidases and was released as an intact peptide. This mechanism may explain functional differences between octreotide and SST-14 after sst2A stimulation. Moreover, further investigation of endopeptidase-regulated trafficking of neuropeptides may result in novel concepts of neuropeptide receptor inactivation in cancer diagnosis.

  13. LRC-QueSST-14x22-video-file

    NASA Image and Video Library

    2017-09-19

    Researchers at NASA's Langley Research Center in Hampton, Virginia, installed a 15-percent scale model of the Quiet Supersonic Technology (QueSST) preliminary design of a Low-Boom Flight Demonstration (LBFD) aircraft in the 14- by- 22-Foot Subsonic Tunnel. Data from six weeks of wind tunnel tests will characterize the design's low-speed aerodynamic performance. The testing will build on work done earlier this year at NASA's Glenn Research Center in Cleveland, Ohio.

  14. Receptor-mediated radiotherapy with Y-DOTA-DPhe-Tyr-octreotide: the experience of the European Institute of Oncology Group.

    PubMed

    Chinol, Marco; Bodei, Lisa; Cremonesi, Marta; Paganelli, Giovanni

    2002-04-01

    High concentrations of subtype 2 somatostatin tumor receptors (sst(2)) are expressed in numerous tumors, enabling primary and metastatic masses to be localized by scintigraphy after injecting (111)In-labeled somatostatin analogue octreotide. In addition to neuroendocrine tumors, somatostatin receptors have been identified on cancers of the central nervous system, breast, lung, and lymphatic tissue, and the use of radionuclide-labeled somatostatin analogues appeared promising for therapy as well as for diagnosis of such malignancies. The somatostatin analogue [DOTA-(D)Phe(1)-Tyr(3)] octreotide (DOTATOC) possesses favorable characteristics for its potential therapeutic use in that it shows high affinity for sst(2), moderately high affinity for sst(5), and intermediate affinity for sst(3), high hydrophilicity, stable and facile labeling with (111)In and (90)Y. We began to investigate the potential therapeutic applications of (90)Y DOTATOC in 1997 by performing a thorough dosimetric study in 18 patients who were administered (111)In DOTATOC to estimate the absorbed doses during(90)Y-DOTATOC therapy. Then, we moved on and treated an overall number of 256 patients, mostly recruited in 2 distinct protocols with and without the administration of kidney protecting agents, with (90)Y DOTATOC. No major acute reactions were observed up to the activity of 5.55 GBq per cycle. The MTD per cycle was defined as 5.18 GBq. Objective therapeutic responses were documented in more than 20% of patients in terms of partial and complete responses. The present article reports in details our clinical experience (still ongoing) and outcomes with the use of (90)Y DOTATOC. Copyright 2002, Elsevier Science (USA). All rights reserved.

  15. Simulating the optical performance of a small-sized telescope with secondary optics for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Rulten, Cameron; Zech, Andreas; Okumura, Akira; Laporte, Philippe; Schmoll, Jürgen

    2016-09-01

    The Gamma-ray Cherenkov Telescope (GCT) is a small-sized telescope (SST) that represents one of three novel designs that are based on Schwarzschild-Couder optics and are proposed for use within the Cherenkov Telescope Array (CTA). The GAmma-ray Telescope Elements (GATE) program has led an effort to build a prototype of the GCT at the Paris Observatory in Meudon, France. The mechanical structure of the prototype, known as the SST-GATE prototype telescope, is now complete along with the successful installation of the camera. We present the results of extensive simulation work to determine the optical performance of the SST-GATE prototype telescope. Using the ROBAST software and assuming an ideal optical system, we find the radius of the encircled point spread function (θ80) of the SST-GATE to be ∼1.3 arcmin (∼0.02°) for an on-axis (θfield =0∘) observation and ∼3.6 arcmin (∼0.06°) for an observation at the edge of the field of view (θfield = 4 .4∘). In addition, this research highlights the shadowing that results from the stopping of light rays by various telescope components such as the support masts and trusses. It is shown that for on-axis observations the effective collection area decreases by approximately 1 m2 as a result of shadowing components other than the secondary mirror. This is a similar loss (∼11%) to that seen with the current generation of conventional Davies-Cotton (DC) Cherenkov telescopes. An extensive random tolerance analysis was also performed and it was found that certain parameters, especially the secondary mirror z-position and the tip and tilt rotations of the mirrors, are critical in order to contain θ80 within the pixel limit radius for all field angles. In addition, we have studied the impact upon the optical performance of introducing a hole in the center of the secondary mirror for use with pointing and alignment instruments. We find that a small circular area (radius < 150 mm) at the center of the secondary mirror can be used for instrumentation without any significant impact upon optical performance. Finally, we studied the impact of reducing the size of the primary mirror for the prototype telescope and found that this comes at the cost of poorer image quality and light collection efficiency for all field angles, but at a significant cost saving for a one-off prototype.

  16. Sensitive study of the climatological SST by using ATSR global SST data sets

    NASA Astrophysics Data System (ADS)

    Xue, Yong; Lawrence, Sean P.; Llewellyn-Jones, David T.

    1995-12-01

    Climatological sea surface temperature (SST) is an initial step for global climate processing monitoring. A comparison has been made by using Oberhuber's SST data set and two years monthly averaged SST from ATSR thermal band data to force the OGCM. In the eastern Pacific Ocean, these make only a small difference to model SST. In the western Pacific Ocean, the use of Oberhuber's data set gives higher climatological SST than that using ATSR data. The SSTs were also simulated for 1992 using climatological SSTs from two years monthly averaged ATSR data and Oberhuber data. The forcing with SST from ATSR data was found to give better SST simulation than that from Oberhuber's data. Our study has confirmed that ATSR can provide accurate monthly averaged global SST for global climate processing monitoring.

  17. Last Millennium ENSO-Mean State Interactions in the Tropical Pacific

    NASA Astrophysics Data System (ADS)

    Wyman, D. A.; Conroy, J. L.; Karamperidou, C.

    2017-12-01

    The nature and degree of interaction between the mean state of the tropical Pacific and ENSO remains an open question. Here we use high temporal resolution, tropical Pacific sea surface temperature (SST) records from the last millennium to investigate the relationship between ENSO and the tropical Pacific zonal sea surface temperature gradient (hereafter dSST). A dSST time series was created by standardizing, interpolating, and compositing 7 SST records from the western and 3 SST records from the eastern tropical Pacific. Propagating the age uncertainty of each of these records was accomplished through a Monte Carlo Empirical Orthogonal Function analysis. We find last millennium dSST is strong from 700 to 1300 CE, begins to weaken at approximately 1300 CE, and decreases more rapidly at 1700 CE. dSST was compared to 14 different ENSO reconstructions, independent of the records used to create dSST, to assess the nature of the ENSO-mean state relationship. dSST correlations with 50-year standard deviations of ENSO reconstructions are consistently negative, suggesting that more frequent, strong El Niño events on this timescale reduces dSST. To further assess the strength and direction of the ENSO-dSST relationship, moving 100-year standard deviations of ENSO reconstructions were compared to moving 100-year averages of dSST using Cohen's Kappa statistic, which measures categorical agreement. The Li et al. (2011) and Li et al. (2013) Nino 3.4 ENSO reconstructions had the highest agreement with dSST (k=0.80 and 0.70, respectively), with greater ENSO standard deviation coincident with periods of weak dSST. Other ENSO reconstructions showed weaker agreement with dSST, which may be partly due to low sample size. The consistent directional agreement of dSST with ENSO, coupled with the inability of strong ENSO events to develop under a weak SST gradient, suggests periods of more frequent strong El Niño events reduced tropical Pacific dSST on centennial timescales over the last millennium.

  18. Operational experience with the supercritical helium during the TF coils tests campaign of SST-1

    NASA Astrophysics Data System (ADS)

    Panchal, Rohitkumar Natvarlal; Patel, Rakesh; Tank, Jignesh; Mahesuria, Gaurang; Sonara, Dashrath; Tanna, Vipul; Patel, Jayant; Srikanth, G. L. N.; Singh, Manoj; Patel, Ketan; Christian, Dikens; Garg, Atul; Bairagi, Nitn; Gupta, Manoj Kumar; Nimavat, Hiren; Shah, Pankil; Sharma, Rajiv; Pradhan, Subrata

    2012-06-01

    Under the 'SST-1 mission mandate' recently, all the sixteen Steady State Superconducting Tokamak (SST-1) Toroidal Field (TF) magnets have been successfully tested at their nominal currents of 10000 A in cold under supercritical helium (SHe) flow conditions. The TF magnets test campaign have begun in an experimental cryostat since June 2010 with the SST-1 Helium cryogenics facility, which is a 1.3 kW at 4.5 K helium refrigerator-cum-liquefier (HRL) system. The HRL provides ~300 g-s-1supercritical helium (SHe) with cold circulator (CC) as well as ~ 60 g-s-1 without cold circulator to fulfill the forced flow cooling requirements of SST- 1 magnets. In case of single TF coil tests, we can adjust HRL process parameters such that an adequate amount of required supercritical helium is available without the cold circulator. In this paper, the complete process is describing the Process Flow Diagram (PFD) of 1.3 kW at 4.5 K HRL, techniques to generate supercritical helium without using the cold-circulator and the results of the cooldown, steady state characteristics and experience of supercritical helium operations during the TF coils test campaign have been discussed.

  19. The Relationships between Tropical Pacific and Atlantic SST and Northeast Brazil Monthly Precipitation.

    NASA Astrophysics Data System (ADS)

    Bertacchi Uvo, Cintia; Repelli, Carlos A.; Zebiak, Stephen E.; Kushnir, Yochanan

    1998-04-01

    The monthly patterns of northeast Brazil (NEB) precipitation are analyzed in relation to sea surface temperature (SST) in the tropical Pacific and Atlantic Oceans, using singular value decomposition. It is found that the relationships between precipitation and SST in both basins vary considerably throughout the rainy season (February-May). In January, equatorial Pacific SST is weakly correlated with precipitation in small areas of southern NEB, but Atlantic SST shows no significant correlation with regional precipitation. In February, Pacific SST is not well related to precipitation, but south equatorial Atlantic SST is positively correlated with precipitation over the northern Nordeste, the latter most likely reflecting an anomalously early (or late) southward migration of the ITCZ precipitation zone. During March, equatorial Pacific SST is negatively correlated with Nordeste precipitation, but no consistent relationship between precipitation and Atlantic SST is found. Atlantic SST-precipitation correlations for April and May are the strongest found among all months or either ocean. Precipitation in the Nordeste is positively correlated with SST in the south tropical Atlantic and negatively correlated with SST in the north tropical Atlantic. These relationships are strong enough to determine the structure of the seasonal mean SST-precipitation correlations, even though the corresponding patterns for the earlier months of the season are quite different. Pacific SST-precipitation correlations for April and May are similar to those for March. Extreme wet (dry) years for the Nordeste occur when both Pacific and Atlantic SST patterns for April and May occur simultaneously. A separate analysis reinforces previous findings in showing that SST in the tropical Pacific and the northern tropical Atlantic are positively correlated and that tropical Pacific-south Atlantic correlations are negligible.Time-lagged analyses show the potential for forecasting either seasonal mean or monthly precipitation patterns with some degree of skill. In some instances, individual monthly mean SST versus seasonal mean (February-May) precipitation relationships differ considerably from the corresponding monthly SST versus monthly precipitation relationships. It is argued that the seasonal mean relationships result from the relatively strong monthly relationships toward the end of the season, combined with the considerable persistence of SST in both oceans.

  20. Protective role of somatostatin receptor 2 against retinal degeneration in response to hypoxia.

    PubMed

    Dal Monte, Massimo; Latina, Valentina; Cupisti, Elena; Bagnoli, Paola

    2012-05-01

    In mouse retinal explants, octreotide, a somatostatin [somatotropin release-inhibiting factor (SRIF)] receptor 2 (sst(2)) agonist, prevents the hypoxia-induced vascular endothelial growth factor upregulation. In mice with oxygen-induced retinopathy (OIR), a model of retinopathy of prematurity, either sst(2) overexpression or octreotide have been found to limit hypoxia-induced angiogenic processes. Here, we investigated whether sst(2) influences retinal degeneration in response to hypoxia in wild-type (WT), sst(1)- and sst(2)-knockout (KO) mice. In retinal explants, we determined the role of sst(2) on apoptotic signals. In control condition, caspase-3 activity and the Bax/Bcl-2 ratio were lower in sst(1)-KO than in WT, but higher in sst(2)-KO than in WT retinas. In all strains, a comparable increase in caspase-3 activity and the Bax/Bcl-2 ratio was observed after hypoxia. The hypoxia-induced increase in apoptotic signals was recovered by octreotide in both WT and sst(1)-KO retinas. To investigate the role of sst(2) on retinal function, we recorded electroretinogram (ERG) in response to light flashes in OIR mice. ERG responses did not differ between WT and KO mice with the exception of oscillatory potentials (OPs) which, in sst(1)-KO mice, displayed much larger amplitude. In all strains, hypoxia drastically reduced a-, b-waves and OPs. In both WT and sst(1)-KO mice, octreotide recovered a- and b-waves, but did not recover OPs in sst(1)-KO mice. Neither apoptotic signals nor ERG was affected by octreotide in sst(2)-KO mice. These results show that sst(2) may protect retinal cells from hypoxia, thus implementing the background to establish potential pharmacological targets based on sst(2) pharmacology.

  1. Enhancing Ground Based Telescope Performance with Image Processing

    DTIC Science & Technology

    2013-11-13

    driven by the need to detect small faint objects with relatively short integration times to avoid streaking of the satellite image across multiple...the time right before the eclipse. The orbital elements of the satellite were entered into the SST’s tracking system, so that the SST could be...short integration times , thereby avoiding streaking of the satellite image across multiple CCD pixels so that the objects are suitably modeled as point

  2. Impact of the Gulf of California SST on simulating precipitation and crop productivity in the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Kim, S.; Kim, J.; Prasad, A. K.; Stack, D. H.; El-Askary, H. M.; Kafatos, M.

    2012-12-01

    Like other ecosystems, agricultural productivity is substantially affected by climate factors. Therefore, accurate climatic data (i.e. precipitation, temperature, and radiation) is crucial to simulating crop yields. In order to understand and anticipate climate change and its impacts on agricultural productivity in the Southwestern United States, the WRF regional climate model (RCM) and the Agricultural Production Systems sIMulator (APSIM) were employed for simulating crop production. 19 years of WRF RCM output show that there is a strong dry bias during the warm season, especially in Arizona. Consequently, the APSIM crop model indicates very low crop yields in this region. We suspect that the coarse resolution of reanalysis data could not resolve the relatively warm Sea Surface Temperature (SST) in the Gulf of California (GC), causing the SST to be up to 10 degrees lower than the climatology. In the Southwestern United States, a significant amount of precipitation is associated with North American Monsoon (NAM). During the monsoon season, the low-level moisture is advected to the Southwestern United States via the GC, which is known to be the dominant moisture source. Thus, high-resolution SST data in the GC is required for RCM simulations to accurately represent a reasonable amount of precipitation in the region, allowing reliable evaluation of the impacts on regional ecosystems.and evaluate impacts on regional ecosystems. To evaluate the influence of SST on agriculture in the Southwestern U.S., two sets of numerical simulations were constructed: a control, using unresolved SST of GC, and daily updated SST data from the MODIS satellite sensor. The meteorological drivers from each of the 6 year RCM runs were provided as input to the APSIM model to determine the crop yield. Analyses of the simulated crop production, and the interannual variation of the meteorological drivers, demonstrate the influence of SST on crop yields in the Southwestern United States.

  3. Ionospheric Refraction Corrections in the GTDS for Satellite-To-Satellite Tracking Data

    NASA Technical Reports Server (NTRS)

    Nesterczuk, G.; Kozelsky, J. K.

    1976-01-01

    In satellite-to-satellite tracking (SST) geographic as well as diurnal ionospheric effects must be contended with, for the line of sight between satellites can cross a day-night interface or lie within the equatorial ionosphere. These various effects were examined and a method of computing ionospheric refraction corrections to range and range rate measurements with sufficient accuracy were devised to be used in orbit determinations. The Bent Ionospheric Model is used for SST refraction corrections. Making use of this model a method of computing corrections through large ionospheric gradients was devised and implemented into the Goddard Trajectory Determination System. The various considerations taken in designing and implementing this SST refraction correction algorithm are reported.

  4. The effect of SST emissions on the earth's ozone layer

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Turco, R. P.

    1974-01-01

    The work presented here is directed toward assessment of environmental effects of the supersonic transport (SST). The model used for the purpose includes vertical eddy transport and the photochemistry of the O-H-N system. It is found that the flight altitude has a pronounced effect on ozone depletion. The largest ozone reduction occurs for NO deposition above an altitude of 20 km.

  5. A new synoptic scale resolving global climate simulation using the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Small, R. Justin; Bacmeister, Julio; Bailey, David; Baker, Allison; Bishop, Stuart; Bryan, Frank; Caron, Julie; Dennis, John; Gent, Peter; Hsu, Hsiao-ming; Jochum, Markus; Lawrence, David; Muñoz, Ernesto; diNezio, Pedro; Scheitlin, Tim; Tomas, Robert; Tribbia, Joseph; Tseng, Yu-heng; Vertenstein, Mariana

    2014-12-01

    High-resolution global climate modeling holds the promise of capturing planetary-scale climate modes and small-scale (regional and sometimes extreme) features simultaneously, including their mutual interaction. This paper discusses a new state-of-the-art high-resolution Community Earth System Model (CESM) simulation that was performed with these goals in mind. The atmospheric component was at 0.25° grid spacing, and ocean component at 0.1°. One hundred years of "present-day" simulation were completed. Major results were that annual mean sea surface temperature (SST) in the equatorial Pacific and El-Niño Southern Oscillation variability were well simulated compared to standard resolution models. Tropical and southern Atlantic SST also had much reduced bias compared to previous versions of the model. In addition, the high resolution of the model enabled small-scale features of the climate system to be represented, such as air-sea interaction over ocean frontal zones, mesoscale systems generated by the Rockies, and Tropical Cyclones. Associated single component runs and standard resolution coupled runs are used to help attribute the strengths and weaknesses of the fully coupled run. The high-resolution run employed 23,404 cores, costing 250 thousand processor-hours per simulated year and made about two simulated years per day on the NCAR-Wyoming supercomputer "Yellowstone."

  6. Suitability of satellite derived and gridded sea surface temperature data sets for calibrating high-resolution marine proxy records

    NASA Astrophysics Data System (ADS)

    Ouellette, G., Jr.; DeLong, K. L.

    2016-02-01

    High-resolution proxy records of sea surface temperature (SST) are increasingly being produced using trace element and isotope variability within the skeletal materials of marine organisms such as corals, mollusks, sclerosponges, and coralline algae. Translating the geochemical variations within these organisms into records of SST requires calibration with SST observations using linear regression methods, preferably with in situ SST records that span several years. However, locations with such records are sparse; therefore, calibration is often accomplished using gridded SST data products such as the Hadley Center's HADSST (5º) and interpolated HADISST (1º) data sets, NOAA's extended reconstructed SST data set (ERSST; 2º), optimum interpolation SST (OISST; 1º), and Kaplan SST data sets (5º). From these data products, the SST used for proxy calibration is obtained for a single grid cell that includes the proxy's study site. The gridded data sets are based on the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) and each uses different methods of interpolation to produce the globally and temporally complete data products except for HadSST, which is not interpolated but quality controlled. This study compares SST for a single site from these gridded data products with a high-resolution satellite-based SST data set from NOAA (Pathfinder; 4 km) with in situ SST data and coral Sr/Ca variability for our study site in Haiti to assess differences between these SST records with a focus on seasonal variability. Our results indicate substantial differences in the seasonal variability captured for the same site among these data sets on the order of 1-3°C. This analysis suggests that of the data products, high-resolution satellite SST best captured seasonal variability at the study site. Unfortunately, satellite SST records are limited to the past few decades. If satellite SST are to be used to calibrate proxy records, collecting modern, living samples is desirable.

  7. Endothelin-Converting Enzyme-1 Degrades Internalized Somatostatin-14

    PubMed Central

    Roosterman, Dirk; Kempkes, Cordula; Cottrell, Graeme S.; Padilla, Benjamin E.; Bunnett, Nigel W.; Turck, Christoph W.; Steinhoff, Martin

    2008-01-01

    Agonist-induced internalization of somatostatin receptors (ssts) determines subsequent cellular responsiveness to peptide agonists and influences sst receptor scintigraphy. To investigate sst2A trafficking, rat sst2A tagged with epitope was expressed in human embryonic kidney cells and tracked by antibody labeling. Confocal microscopical analysis revealed that stimulation with sst and octreotide induced internalization of sst2A. Internalized sst2A remained sequestrated within early endosomes, and 60 min after stimulation, internalized sst2A still colocalized with β-arrestin1-enhanced green fluorescence protein (EGFP), endothelin-converting enzyme-1 (ECE-1), and rab5a. Internalized 125I-Tyr11-SST-14 was rapidly hydrolyzed by endosomal endopeptidases, with radioactive metabolites being released from the cell. Internalized 125I-Tyr1-octreotide accumulated as an intact peptide and was released from the cell as an intact peptide ligand. We have identified ECE-1 as one of the endopeptidases responsible for inactivation of internalized SST-14. ECE-1-mediated cleavage of SST-14 was inhibited by the specific ECE-1 inhibitor, SM-19712, and by preventing acidification of endosomes using bafilomycin A1. ECE-1 cleaved SST-14 but not octreotide in an acidic environment. The metallopeptidases angiotensin-1 converting enzyme and ECE-2 did not hydrolyze SST-14 or octreotide. Our results show for the first time that stimulation with SST-14 and octreotide induced sequestration of sst2A into early endosomes and that endocytosed SST-14 is degraded by endopeptidases located in early endosomes. Furthermore, octreotide was not degraded by endosomal peptidases and was released as an intact peptide. This mechanism may explain functional differences between octreotide and SST-14 after sst2A stimulation. Moreover, further investigation of endopeptidase-regulated trafficking of neuropeptides may result in novel concepts of neuropeptide receptor inactivation in cancer diagnosis. PMID:18276747

  8. Effects of theory of mind performance training on reducing bullying involvement in children and adolescents with high-functioning autism spectrum disorder.

    PubMed

    Liu, Meng-Jung; Ma, Le-Yin; Chou, Wen-Jiun; Chen, Yu-Min; Liu, Tai-Ling; Hsiao, Ray C; Hu, Huei-Fan; Yen, Cheng-Fang

    2018-01-01

    Bullying involvement is prevalent among children and adolescents with autism spectrum disorder (ASD). This study examined the effects of theory of mind performance training (ToMPT) on reducing bullying involvement in children and adolescents with high-functioning ASD. Children and adolescents with high-functioning ASD completed ToMPT (n = 26) and social skills training (SST; n = 23) programs. Participants in both groups and their mothers rated the pretraining and posttraining bullying involvement of participants on the Chinese version of the School Bullying Experience Questionnaire. The paired t test was used to evaluate changes in bullying victimization and perpetration between the pretraining and posttraining assessments. Furthermore, the linear mixed-effect model was used to examine the difference in the training effect between the ToMPT and SST groups. The paired t test indicated that in the ToMPT group, the severities of both self-reported (p = .039) and mother-reported (p = .003) bullying victimization significantly decreased from the pretraining to posttraining assessments, whereas in the SST group, only self-reported bullying victimization significantly decreased (p = .027). The linear mixed-effect model indicated that compared with the SST program, the ToMPT program significantly reduced the severity of mother-reported bullying victimization (p = .041). The present study supports the effects of ToMPT on reducing mother-reported bullying victimization in children and adolescents with high-functioning ASD.

  9. Evaluation of Enhanced High Resolution MODIS/AMSR-E SSTs and the Impact on Regional Weather Forecast

    NASA Technical Reports Server (NTRS)

    Schiferl, Luke D.; Fuell, Kevin K.; Case, Jonathan L.; Jedlovec, Gary J.

    2010-01-01

    Over the last few years, the NASA Short-term Prediction Research and Transition (SPoRT) Center has been generating a 1-km sea surface temperature (SST) composite derived from retrievals of the Moderate Resolution Imaging Spectroradiometer (MODIS) for use in operational diagnostics and regional model initialization. With the assumption that the day-to-day variation in the SST is nominal, individual MODIS passes aboard the Earth Observing System (EOS) Aqua and Terra satellites are used to create and update four composite SST products each day at 0400, 0700, 1600, and 1900 UTC, valid over the western Atlantic and Caribbean waters. A six month study from February to August 2007 over the marine areas surrounding southern Florida was conducted to compare the use of the MODIS SST composite versus the Real-Time Global SST analysis to initialize the Weather Research and Forecasting (WRF) model. Substantial changes in the forecast heat fluxes were seen at times in the marine boundary layer, but relatively little overall improvement was measured in the sensible weather elements. The limited improvement in the WRF model forecasts could be attributed to the diurnal changes in SST seen in the MODIS SST composites but not accounted for by the model. Furthermore, cloud contamination caused extended periods when individual passes of MODIS were unable to update the SSTs, leading to substantial SST latency and a cool bias during the early summer months. In order to alleviate the latency problems, the SPoRT Center recently enhanced its MODIS SST composite by incorporating information from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) instruments as well as the Operational Sea Surface Temperature and Sea Ice Analysis. These enhancements substantially decreased the latency due to cloud cover and improved the bias and correlation of the composites at available marine point observations. While these enhancements improved upon the modeled cold bias using the original MODIS SSTs, the discernable impacts on the WRF model were still somewhat limited. This paper explores several factors that may have contributed to this result. First, the original methodology to initialize the model used the most recent SST composite available in a hypothetical real ]time configuration, often matching the forecast initial time with an SST field that was 5-8 hours offset. To minimize the differences that result from the diurnal variations in SST, the previous day fs SST composite is incorporated at a time closest to the model initialization hour (e.g. 1600 UTC composite at 1500 UTC model initialization). Second, the diurnal change seen in the MODIS SST composites was not represented by the WRF model in previous simulations, since the SSTs were held constant throughout the model integration. To address this issue, we explore the use of a water skin-temperature diurnal cycle prediction capability within v3.1 of the WRF model to better represent fluctuations in marine surface forcing. Finally, the verification of the WRF model is limited to very few over-water sites, many of which are located near the coastlines. In order to measure the open ocean improvements from the AMSR-E, we could use an independent 2-dimensional, satellite-derived data set to validate the forecast model by applying an object-based verification method. Such a validation technique could aid in better understanding the benefits of the mesoscale SST spatial structure to regional models applications.

  10. Roles of Hippocampal Somatostatin Receptor Subtypes in Stress Response and Emotionality.

    PubMed

    Prévôt, Thomas D; Gastambide, François; Viollet, Cécile; Henkous, Nadia; Martel, Guillaume; Epelbaum, Jacques; Béracochéa, Daniel; Guillou, Jean-Louis

    2017-07-01

    Altered brain somatostatin functions recently appeared as key elements for the pathogenesis of stress-related neuropsychiatric disorders. The hippocampus exerts an inhibitory feedback on stress but the mechanisms involved remain unclear. We investigated herein the role of hippocampal somatostatin receptor subtypes in both stress response and behavioral emotionality using C57BL/6, wild type and sst 2 or sst 4 knockout mice. Inhibitory effects of hippocampal infusions of somatostatin agonists on stress-induced hypothalamo-pituitary-adrenal axis (HPA) activity were tested by monitoring peripheral blood and local hippocampus corticosterone levels, the latter by using microdialysis. Anxiolytic and antidepressant-like effects were determined in the elevated-plus maze, open field, forced swimming, and stress-sensitive beam walking tests. Hippocampal injections of somatostatin analogs and sst 2 or sst 4, but not sst 1 or sst 3 receptor agonists produced rapid and sustained inhibition of HPA axis. sst 2 agonists selectively produced anxiolytic-like behaviors whereas both sst 2 and sst 4 agonists had antidepressant-like effects. Consistent with these findings, high corticosterone levels and anxiety were found in sst 2 KO mice and depressive-like behaviors observed in both sst 2 KO and sst 4 KO strains. Both hippocampal sst 2 and sst 4 receptors selectively inhibit stress-induced HPA axis activation but mediate anxiolytic and antidepressive effects through distinct mechanisms. Such results are to be accounted for in development of pathway-specific somatostatin receptor agents in the treatment of hypercortisolism (Cushing's disease) and stress-related neuropsychiatric disorders.

  11. Investigating the sensitivity of hurricane intensity and trajectory to sea surface temperatures using the regional model WRF

    NASA Astrophysics Data System (ADS)

    Kilic, Cevahir; Raible, Christoph C.

    2015-04-01

    It is well known that the sea surface temperature (SST) has an influence on the development and intensification of tropical cyclones (TCs). This influence has become even more important during the past decades, as TCs show an intensification, which goes along with an increase in SSTs. The influence of sea surface temperature (SST) anomalies on the hurricane characteristics are investigated in a set of sensitivity experiments employing the Weather Research and Forecasting (WRF) model. The idealised experiments are performed for the case of Hurricane Katrina in 2005. (Kilic and Raible, 2013) The first set of sensitivity experiments with basin-wide changes of the SST magnitude shows that the intensity goes along with changes in the SST, i.e., an increase in SST leads to an intensification of Katrina. Additionally, the trajectory is shifted to the west (east), with increasing (decreasing) SSTs. The main reason is a strengthening of the background flow. To gain further insights in the dynamics, the potential vorticity (PV) and its tendency (PVT) are analysed. A positive PVT is located to the moving direction relative to the TC centre. Splitting the PVT in the horizontal advection, vertical advection, and diabatic heating terms, we find that mainly the horizontal advection term contributes to this PVT maximum, due to a steering by strong environmental flow. The impact of the diabatic heating is of minor importance and, hence, the TC motion is dominated by horizontal advection. The amount of the horizontal advection as well as the amount of the diabatic heating rise with increasing SST due to the enhanced Carnot cycle. The second set of experiments investigates the influence of Loop Current eddies idealised by localised SST anomalies. The intensity of Hurricane Katrina is enhanced with increasing SSTs close to the core of a TC. Negative nearby SST anomalies reduce the intensity. The trajectory only changes if positive SST anomalies are located west or north of the hurricane centre. In this case the hurricane is attracted by the SST anomaly which causes an additional moisture source and increased vertical winds. This study confirm the linear relation between SST and TC intensity. However, in case of localised SST anomalies, the relative location to the TC core determes the gradient of the linear relation. The gradient decreases with increasing distance between SST anomaly and initialisation point. The anomalies located west and north of the initialisation point have a stronger impact than the ones located south and east, as they lie in the moving direction of the TC. Further, in terms of magnitude and pattern, the horizontal advection term of PVT does not strongly differ from the reference simulation. However, the pattern of diabatic heating term differs: A maximum of diabatic heating is still located in moving direction, but additionally the diabatic heating is found in the spiral rain bands. Thus, the vortex is drifted to the SST anomaly due to the asymmetry in the TC circulation induced by the diabatic heating term of the PVT. References Kilic, C., and C. C. Raible, Investigating the sensitivity of hurricane intensity and trajectory to sea surface temperatures using the regional model WRF, METEOROLOGISCHE ZEITSCHRIFT, 22(6), 685-698, 2013.

  12. The role of the meridional sea surface temperature gradient in controlling the Caribbean low-level jet

    NASA Astrophysics Data System (ADS)

    Maldonado, Tito; Rutgersson, Anna; Caballero, Rodrigo; Pausata, Francesco S. R.; Alfaro, Eric; Amador, Jorge

    2017-06-01

    The Caribbean low-level jet (CLLJ) is an important modulator of regional climate, especially precipitation, in the Caribbean and Central America. Previous work has inferred, due to their semiannual cycle, an association between CLLJ strength and meridional sea surface temperature (SST) gradients in the Caribbean Sea, suggesting that the SST gradients may control the intensity and vertical shear of the CLLJ. In addition, both the horizontal and vertical structure of the jet have been related to topographic effects via interaction with the mountains in Northern South America (NSA), including funneling effects and changes in the meridional geopotential gradient. Here we test these hypotheses, using an atmospheric general circulation model to perform a set of sensitivity experiments to examine the impact of both SST gradients and topography on the CLLJ. In one sensitivity experiment, we remove the meridional SST gradient over the Caribbean Sea and in the other, we flatten the mountains over NSA. Our results show that the SST gradient and topography have little or no impact on the jet intensity, vertical, and horizontal wind shears, contrary to previous works. However, our findings do not discount a possible one-way coupling between the SST and the wind over the Caribbean Sea through friction force. We also examined an alternative approach based on barotropic instability to understand the CLLJ intensity, vertical, and horizontal wind shears. Our results show that the current hypothesis about the CLLJ must be reviewed in order to fully understand the atmospheric dynamics governing the Caribbean region.

  13. Operational correction and validation of the VIIRS TEB longwave infrared band calibration bias during blackbody temperature changes

    NASA Astrophysics Data System (ADS)

    Wang, Wenhui; Cao, Changyong; Ignatov, Alex; Li, Zhenglong; Wang, Likun; Zhang, Bin; Blonski, Slawomir; Li, Jun

    2017-09-01

    The Suomi NPP VIIRS thermal emissive bands (TEB) have been performing very well since data became available on January 20, 2012. The longwave infrared bands at 11 and 12 um (M15 and M16) are primarily used for sea surface temperature (SST) retrievals. A long standing anomaly has been observed during the quarterly warm-up-cool-down (WUCD) events. During such event daytime SST product becomes anomalous with a warm bias shown as a spike in the SST time series on the order of 0.2 K. A previous study (CAO et al. 2017) suggested that the VIIRS TEB calibration anomaly during WUCD is due to a flawed theoretical assumption in the calibration equation and proposed an Ltrace method to address the issue. This paper complements that study and presents operational implementation and validation of the Ltrace method for M15 and M16. The Ltrace method applies bias correction during WUCD only. It requires a simple code change and one-time calibration parameter look-up-table update. The method was evaluated using colocated CrIS observations and the SST algorithm. Our results indicate that the method can effectively reduce WUCD calibration anomaly in M15, with residual bias of 0.02 K after the correction. It works less effectively for M16, with residual bias of 0.04 K. The Ltrace method may over-correct WUCD calibration biases, especially for M16. However, the residual WUCD biases are small in both bands. Evaluation results using the SST algorithm show that the method can effectively remove SST anomaly during WUCD events.

  14. Accurate diblock copolymer phase boundaries at strong segregations

    NASA Astrophysics Data System (ADS)

    Matsen, M. W.; Whitmore, M. D.

    1996-12-01

    We examine the lamellar/cylinder and cylinder/sphere phase boundaries for strongly segregated diblock copolymer melts using self-consistent-field theory (SCFT) and the standard Gaussian chain model. Calculations are performed with and without the conventional unit-cell approximation (UCA). We find that for strongly segregated melts, the UCA simply produces a small constant shift in each of the phase boundaries. Furthermore, the boundaries are found to be linear at strong segregations when plotted versus (χN)-1, which allows for accurate extrapolations to χN=∞. Our calculations using the UCA allow direct comparisons to strong-segregation theory (SST), which is accepted as the χN=∞ limit of SCFT. A significant discrepancy between the SST and SCFT results indicate otherwise, suggesting that the present formulation of SST is incomplete.

  15. Assimilating Ferry Box data into the Aegean Sea model

    NASA Astrophysics Data System (ADS)

    Korres, G.; Ntoumas, M.; Potiris, M.; Petihakis, G.

    2014-12-01

    Operational monitoring and forecasting of marine environmental conditions is a necessary tool for the effective management and protection of the marine ecosystem. It requires the use of multi-variable real-time measurements combined with advanced physical and ecological numerical models. Towards this, a FerryBox system was originally installed and operated in the route Piraeus-Heraklion in 2003 for one year. Early 2012 the system was upgraded and moved to a new high-speed ferry traveling daily in the same route as before. This route is by large traversing the Cretan Sea being the largest and deepest basin (2500 m) in the south Aegean Sea. The HCMR Ferry Box is today the only one in the Mediterranean and thus it can be considered as a pilot case. The analysis of FerryBox SST and SSS in situ data revealed the presence of important regional and sub-basin scale physical phenomena, such as wind-driven coastal upwelling and the presence of a mesoscale cyclone to the north of Crete. In order to assess the impact of the FerryBox SST data in constraining the Aegean Sea hydrodynamic model which is part of the POSEIDON forecasting system, the in situ data were assimilated using an advanced multivariate assimilation scheme based on the Singular Evolutive Extended Kalman (SEEK) filter, a simplified square-root extended Kalman filter that operates with low-rank error covariance matrices as a way to reduce the computational burden. Thus during the period mid-August 2012-mid January 2013 in addition to the standard assimilating parameters, daily SST data along the ferryboat route from Piraeus to Heraklion were assimilated into the model. Inter-comparisons between the control run of the system (model run that uses only the standard data set of observations) and the experiment where the observational data set is augmented with the FerryBox SST data produce interesting results. Apart from the improvement of the SST error, the additional assimilation of daily of FerryBox SST observations is found to have a significant impact on the correct representation of the dynamical dipole in the central Cretan Sea and other dynamic features of the South Aegean Sea, which is then depicted in the decrease of the basin wide SSH RMS error.

  16. Finding optimum airfoil shape to get maximum aerodynamic efficiency for a wind turbine

    NASA Astrophysics Data System (ADS)

    Sogukpinar, Haci; Bozkurt, Ismail

    2017-02-01

    In this study, aerodynamic performances of S-series wind turbine airfoil of S 825 are investigated to find optimum angle of attack. Aerodynamic performances calculations are carried out by utilization of a Computational Fluid Dynamics (CFD) method withstand finite capacity approximation by using Reynolds-Averaged-Navier Stokes (RANS) theorem. The lift and pressure coefficients, lift to drag ratio of airfoil S 825 are analyzed with SST turbulence model then obtained results crosscheck with wind tunnel data to verify the precision of computational Fluid Dynamics (CFD) approximation. The comparison indicates that SST turbulence model used in this study can predict aerodynamics properties of wind blade.

  17. Takeoff certification considerations for large subsonic and supersonic transport airplanes using the Ames flight simulator for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Snyder, C. T.; Drinkwater, F. J., III; Fry, E. B.; Forrest, R. D.

    1973-01-01

    Data for use in development of takeoff airworthiness standards for new aircraft designs such as the supersonic transport (SST) and the large wide-body subsonic jet transport are provided. An advanced motion simulator was used to compare the performance and handling characteristics of three representative large jet transports during specific flight certification tasks. Existing regulatory constraints and methods for determining rotation speed were reviewed, and the effects on takeoff performance of variations in rotation speed, pitch attitude, and pitch attitude rate during the rotation maneuver were analyzed. A limited quantity of refused takeoff information was obtained. The aerodynamics, wing loading, and thrust-to-weight ratio of the subject SST resulted in takeoff speeds limited by climb (rather than lift-off) considerations. Take-off speeds based on U.S. subsonic transport requirements were found unacceptable because of the criticality of rotation-abuse effects on one-engine-inoperative climb performance. Adequate safety margin was provided by takeoff speeds based on proposed Anglo-French supersonic transport (TSS) criteria, with the limiting criterion being that takeoff safety speed be at least 1.15 times the one-engine-inoperative zero-rate-of-climb speed. Various observations related to SST certification are presented.

  18. Development of an eddy-resolving reanalysis using the 1/12° global HYbrid Coordinate Ocean Model and the Navy Coupled Ocean Data Assimilation Scheme

    NASA Astrophysics Data System (ADS)

    Allard, Richard; Metzger, E. Joseph; Broome, Robert; Franklin, Deborah; Smedstad, Ole Martin; Wallcraft, Alan

    2013-04-01

    Multiple international agencies have performed atmospheric reanalyses using static dynamical models and assimilation schemes while ingesting all available quality controlled observational data. Some are clearly aimed at climate time scales while others focus on the more recent time period in which assimilated satellite data are used to constrain the system. Typically these are performed at horizontal and vertical resolutions that are coarser than the existing operational atmospheric prediction system. Multiple agencies have also performed ocean reanalyses using some of the atmospheric forcing products described above. However, only a few are eddy-permitting and none are capable of resolving oceanic mesoscale features (eddies and current meanders) across the entire globe. To fill this void, the Naval Research Laboratory is performing an eddy-resolving 1993-2010 ocean reanalysis using the 1/12° global HYbrid Coordinate Ocean Model (HYCOM) that employs the Navy Coupled Ocean Data Assimilation (NCODA) scheme. A 1/12° global HYCOM/NCODA prediction system has been running in real-time at the Naval Oceanographic Office (NAVOCEANO) since 22 December 2006. It has undergone operational testing and will become an operational product by early 2013. It is capable of nowcasting and forecasting the oceanic "weather" which includes the 3D ocean temperature, salinity and current structure, the surface mixed layer, and the location of mesoscale features such as eddies, meandering currents and fronts. The system has a mid-latitude resolution of ~7 km and employs 32 hybrid vertical coordinate surfaces. Compared to traditional isopycnal coordinate models, the hybrid vertical coordinate extends the geographic range of applicability toward shallow coastal seas and the unstratified parts of the world ocean. HYCOM contains a built-in thermodynamic ice model, where ice grows and melts due to heat flux and sea surface temperature (SST) changes, but it does not contain advanced rheological physics. The ice edge is constrained by satellite ice concentration. Once per day, NCODA performs a 3D ocean analysis using all available observational data and the 1-day HYCOM forecast as the first guess in a sequential incremental update cycle. Observational data include surface observations from satellites, including sea surface height (SSH) anomalies, SST, and sea ice concentrations, plus in-situ SST observations from ships and buoys as well as temperature and salinity profiles from XBTs, CTDs and Argo profiling floats. Surface information is projected downward using synthetic profiles from the Modular Ocean Data Assimilation System (MODAS) at those locations with a predefined SSH anomaly. Unlike previous reanalyses, this ocean reanalysis will be integrated at the same horizontal and vertical resolution as the operational system running at NAVOCEANO. The system is forced with atmospheric output from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) and the observations listed above. The reanalysis began in 1993 because of the advent of satellite altimeter data that will constrain the oceanic mesoscale. Significant effort has been put into obtaining and quality controlling all input observational data, with special emphasis on the profile data. The computational resources are obtained through the High Performance Computing Modernization Office.

  19. Assessment of the Coral Temperature Proxies for Orbicella faveolata in the Southwestern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Vara, M. A.; DeLong, K. L.; Herrmann, A. D.; Ouellette, G., Jr.; Richey, J. N.

    2017-12-01

    Coral Sr/Ca is a robust proxy of sea surface temperature (SST); however, discrepancies in the Sr/Ca-SST relationship among colonies of the same species may reduce confidence in absolute temperature reconstructions. Furthermore, terrestrial carbonate weathering can provide local sources of Sr and/or Ca to coastal waters that may disrupt the temperature-based coral Sr/Ca signal. Thus other trace metal SST proxies have been suggested to circumvent these issues (Li/Ca, Li/Mg, and Sr-U). Coral Ba/Ca has been used as a proxy for runoff and coastal upwelling, and therefore may be used to identify intervals when these processes overprint the Sr/Ca-SST signal. This study tests multiple coral SST proxies using reproducibility assessments to determine the best performing SST proxy. We conduct these assessments with cores recovered in 1991 by the U.S. Geological Survey from five Orbicella faveolata colonies from three reefs offshore of Veracruz, Mexico (19.06°N, 96.93°W) in water depths varying from 3 to 12 m. Previous studies found micromilling the complex skeletal structure of O. faveolata challenging and that monthly resolution may not recover full seasonal cycles. We use a laser ablation inductively coupled plasma mass spectrometer to simultaneously sample this coral's structure at weekly intervals spanning 8 years for Li/Ca, Li/Mg, Sr-U, Sr/Ca, and Ba/Ca. Here we found coral Li/Ca means and seasonal variations are similar among colonies thus this proxy may capture absolute temperature and SST variability. Similar to previous research with Porites corals, Li/Ca in these O. faveolata corals decreases with increases in SST with similar slopes and intercepts. During the last 10 years of these corals' lives, coral Sr/Ca analysis reveals a mean shift among colonies suggesting an external source could have disrupted the Sr/Ca signal, possibly seasonal runoff and/or winter upwelling common to Veracruz waters. Coral Ba/Ca analyses reveals elevated values in winters that coincide with increases in coral Sr/Ca in the deeper colony suggesting upwelling is occurring at that location. However, the coral Ba/Ca does not coincide with increase coral Sr/Ca in the shallower coral indicating no direct influence from runoff. Coral Li/Mg and Sr-U do not show substantial seasonal variations as expected with a coral-SST proxy.

  20. Assessing the applicability of the 1D flux theory to full-scale secondary settling tank design with a 2D hydrodynamic model.

    PubMed

    Ekama, G A; Marais, P

    2004-02-01

    The applicability of the one-dimensional idealized flux theory (1DFT) for the design of secondary settling tanks (SSTs) is evaluated by comparing its predicted maximum surface overflow (SOR) and solids loading (SLR) rates with that calculated with the two-dimensional computational fluid dynamics model SettlerCAD using as a basis 35 full-scale SST stress tests conducted on different SSTs with diameters from 30 to 45m and 2.25-4.1m side water depth (SWD), with and without Stamford baffles. From the simulations, a relatively consistent pattern appeared, i.e. that the 1DFT can be used for design but its predicted maximum SLR needs to be reduced by an appropriate flux rating, the magnitude of which depends mainly on SST depth and hydraulic loading rate (HLR). Simulations of the Watts et al. (Water Res. 30(9)(1996)2112) SST, with doubled SWDs and the Darvill new (4.1m) and old (2.5m) SSTs with interchanged depths, were run to confirm the sensitivity of the flux rating to depth and HLR. Simulations with and without a Stamford baffle were also performed. While the design of the internal features of the SST, such as baffling, has a marked influence on the effluent SS concentration while the SST is underloaded, these features appeared to have only a small influence on the flux rating, i.e. capacity, of the SST. Until more information is obtained, it would appear from the simulations that the flux rating of 0.80 of the 1DFT maximum SLR recommended by Ekama and Marais (Water Pollut. Control 85(1)(1986)101) remains a reasonable value to apply in the design of full-scale SSTs-for deep SSTs (4m SWD) the flux rating could be increased to 0.85 and for shallow SSTs (2.5m SWD) decreased to 0.75. It is recommended that (i) while the apparent interrelationship between SST flux rating and depth suggests some optimization of the volume of the SST, this be avoided and (ii) the depth of the SST be designed independently of the surface area as is usually the practice and once selected, the appropriate flux rating applied to the 1DFT estimate of the surface area.

  1. A Regulation of Tropical Climate by Radiative Cooling as Simulated in a Cumulus Ensemble Model

    NASA Technical Reports Server (NTRS)

    Sui, Chung-Hsiung; Lau, K.-M.; Li, X.; Chou, M.-D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Responses of tropical atmosphere to low-boundary forcing are investigated in a 2-D cumulus ensemble model (CEM) with an imposed warm-pool and cold-pool SST contrast (deltaSST). The domain-mean vertical motion is constrained to produce heat sink and moisture source as in the observed tropical climate. In a series of experiments, the warm pool SST is specified at different values while the cold pool SST is specified at 26 C. The strength of the circulation increases with increasing deltaSST until deltaSST reaches 3.5 C, and remains unchanged as deltaSST exceeds 3.5 C. The regulation of tropical convection by zonal SST gradient is constrained by the radiative cooling over the cold pool. For deltaSST less than 3.5 C, an enhanced subsidence warming is balanced by a reduced condensation heating over the cold pool. For deltaSST greater than 3.5 C, the subsidence regime expands over the entire cold pool where no condensation heating exist so that a further enhanced subsidence warming can no longer be sustained. The above regulation mechanism is also evident in the change of energy at the top of the atmosphere (TOA) that is dominated by cloud and water vapor greenhouse effect (c (sub LW)) and G (sub clear). The change in shortwave radiation at TOA is largely cancelled between the warm pool and cold pool, likely due to the same imposed vertical motion in our experiments. For deltaSST less than 3.5 C, an increase of deltaSST is associated with a large increase in c (sub Lw) due to increased total clouds in response to enhanced SST-induced circulation. For deltaSST greater than 3.5 C, clouds over the warm pool decrease with increasing SST, and the change in c (sub LW) is much smaller. In both dSST regimes, the change in CLW is larger than the change in G(sub clear) which is slightly negative. However, in the case of uniform warming (deltaSST=0), DeltaG(sub clear), is positive, approximately 5 W per square meters per degree change of SST.

  2. CFS Forecast Verification

    Science.gov Websites

    history of Nino3.4 SST anomalies of individual forecasts Forecast anomalies Target season Nino SST Global SST Global Prec Global T2m US Prec US T2m US SM z200 NDJ 2004/2005 Nino SST Global SST Global Prec Global T2m US Prec US T2m US SM z200 DJF 2005 Nino SST Global SST Global Prec Global T2m US Prec US T2m

  3. Somatostatin type-2 receptor activation inhibits glutamate release and prevents status epilepticus

    PubMed Central

    Kozhemyakin, Maxim; Rajasekaran, Karthik; Todorovic, Marko S.; Kowalski, Samuel L.; Balint, Corinne; Kapur, Jaideep

    2013-01-01

    Summary Newer therapies are needed for the treatment of status epilepticus (SE) refractory to benzodiazepines. Enhanced glutamatergic neurotransmission leads to SE, and AMPA receptors are modified during SE. Reducing glutamate release during SE is a potential approach to terminate SE. The neuropeptide somatostatin (SST) is proposed to diminish presynaptic glutamate release by activating SST type-2 receptors (SST2R). SST exerts an anticonvulsant action in some experimental models of seizures. Here, we investigated the mechanism of action of SST on excitatory synaptic transmission at the Schaffer collateral-CA1 synapses and the ability of SST to treat SE in rats using patch-clamp electrophysiology and video-EEG monitoring of seizures. SST reduced action potential-dependent EPSCs (sEPSCs) at Schaffer collateral-CA1 synapses at concentrations up to 1 μM; higher concentrations had no effect or increased the sEPSC frequency. SST also prevented paired-pulse facilitation of evoked EPSCs and did not alter action-potential-independent miniature EPSCs (mEPSCs). The effect of SST on EPSCs was inhibited by the SST2R antagonist cyanamid-154806 and was mimicked by the SST2R agonists, octreotide and lanreotide. Both SST and octreotide reduced the firing rate of CA1 pyramidal neurons. Intraventricular administration of SST, within a range of doses, either prevented or attenuated pilocarpine-induced SE or delayed the median time to the first grade 5 seizure by 11 min. Similarly, octreotide or lanreotide prevented or attenuated SE in more than 65% of animals. Compared to the pilocarpine model, octreotide was highly potent in preventing or attenuating continuous hippocampal stimulation-induced SE in all animals within 60 min of SE onset. Our results demonstrate that SST, through the activation of SST2Rs, diminishes presynaptic glutamate release and attenuates SE. PMID:23473742

  4. The Onset of the Madden-Julian Oscillation Within an Aquaplanet Model

    NASA Technical Reports Server (NTRS)

    Colon, Edward; Lindesay, James; Suarez, Max

    1997-01-01

    A series of numerical experiments using a two-level atmospheric general circulation model (AGCM) were performed for the purpose of investigating the coupling between sea surface temperature (SST) profile and the onset of the Madden-Julian Oscillation (MJO). The AGCM was modified to run as an aquaplane with all seasonal forcing removed. SST distributions based on the New Global Sea-Ice and Sea Surface Temperature (GISST) Data Set for 1903-1994 were generated then modified to vary the north-south gradient and tropical temperatures. It was found that the MJO signal did not depend on the SST temperature gradients but rather on the absolute temperature of the equatorial region, EOF analysis revealed that the SST distribution which generated the strongest MJO signal produced a periodic fluctuation in velocity potential at the 250 millibar level with a phase speed of 15 m/s, and a periodicity of 30 days which falls within the shortest limit of observed oscillations. This distribution also possessed the coolest equatorial SSTs which suggests that increased stability in the atmosphere favors the occurrence of organized MJO propagation.

  5. Does mesoscale matters in decadal changes observed in the northern Canary upwelling system?

    NASA Astrophysics Data System (ADS)

    Relvas, P.; Luís, J.; Santos, A. M. P.

    2009-04-01

    The Western Iberia constitutes the northern limb of the Canary Current Upwelling System, one of the four Eastern Boundary Upwelling Systems of the world ocean. The strong dynamic link between the atmosphere and the ocean makes these systems highly sensitive to global change, ideal to monitor and investigate its effects. In order to investigate decadal changes of the mesoscale patterns in the Northern Canary upwelling system (off Western Iberia), the field of the satellite-derived sea surface temperature (SST) trends was built at the pixel scale (4x4 km) for the period 1985-2007, based on the monthly mean data from the Advanced Very High Resolution Radiometer (AVHRR) on board NOAA series satellites, provided by the NASA Physical Oceanography Distributed Active Archive Center (PO.DAAC) at the Jet Propulsion Laboratory. The time series were limited to the nighttime passes to avoid the solar heating effect and a suite of procedures were followed to guarantee that the temperature trends were not biased towards the seasonally more abundant summer data, when the sky is considerably clear. A robust linear fit was applied to each individual pixel, crossing along the time the same pixel in all the processed monthly mean AVHRR SST images from 1985 until 2007. The field of the SST trends was created upon the slopes of the linear fits applied to each pixel. Monthly mean SST time series from the one degree enhanced International Comprehensive Ocean-Atmosphere Data Set (ICOADS) and from near-shore measurements collected on a daily basis by the Portuguese Meteorological Office (IM) are also used to compare the results and extend the analysis back until 1960. A generalized warming trend is detected in the coastal waters off Western Iberia during the last decades, no matter which data set we analyse. However, significant spatial differences in the warming rates are observed in the satellite-derived SST trends. Remarkably, off the southern part of the Western Iberia the known upwelling pattern is clearly reflected in the warming field. There, the coastal upwelled waters show a weak warming trend when compared with the offshore waters. If we assume that the SST contrast between coastal and offshore waters is a proxy for the upwelling intensity, then this fact suggests the enhancement of the upwelling regime off SW Iberia since 1985. Although the seasonal nature of the upwelling in the region, the strengthening must be significant since it leaves a coherent imprint in the annual warming field. An analysis done on a monthly basis reveals that the central months of the classical upwelling season (July to September) are the responsible for this coherent mesoscale structure observed in the warming field off SW Iberia. The same conclusions are not clear for the mesoscale structure further north, where no significant differences are observed between the coastal and offshore warming rates. To investigate if our results, obtained for the period with satellite coverage (1985-2007), could be extended or not until 1960, we computed an upwelling index as the SST difference between coastal and offshore ICOADS SST. The analysis revealed that the trends are different whether we consider the whole time series or only the period investigated with the satellite imagery. We can suppose a relatively unchanged upwelling regime if we consider the period 1960-2005, but a rapid increase of intensity if we consider the period from 1985 onwards, particularly in the most southern regions, in agreement with the satellite imagery analysis. Our present results point out that mesoscale activity can account for larger changes in local SST than global average trends. In Eastern Boundary Upwelling Systems, where mesoscale structures play a major role in the description of the upwelling regime, to rely on sparse spatial observations to hypothesize about the decadal behaviour of the upwelling intensity at the basin scale may be questionable.

  6. ST2 blockade reduces sST2-producing T cells while maintaining protective mST2-expressing T cells during graft-versus-host disease

    PubMed Central

    Zhang, Jilu; Ramadan, Abdulraouf M.; Griesenauer, Brad; Li, Wei; Turner, Matthew J.; Liu, Chen; Kapur, Reuben; Hanenberg, Helmut; Blazar, Bruce R.; Tawara, Isao; Paczesny, Sophie

    2015-01-01

    Graft-versus-host disease (GVHD) remains a devastating complication after allogeneic hematopoietic cell transplantation (HCT). We previously identified high plasma soluble suppression of tumorigenicity 2 (sST2) as a biomarker of the development of GVHD and death. sST2 sequesters interleukin (IL)-33, limiting its availability to T cells expressing membrane-bound ST2 (mST2) [Th2 cells and ST2+FoxP3+regulatory T cells]. Here, we report that blockade of sST2 in the peri-transplant period with a neutralizing monoclonal antibody (anti-ST2 mAb) reduced GVHD severity and mortality. We identified intestinal stromal cells and T cells as major sources of sST2 during GVHD. ST2 blockade decreased systemic interferon-γ, IL-17, and IL-23 but increased IL-10 and IL-33 plasma levels. ST2 blockade also reduced sST2 production by IL-17–producing T cells while maintaining protective mST2-expressing T cells, increasing the frequency of intestinal myeloid-derived suppressor cells, and decreasing frequency of intestinal CD103 dendritic cells. Finally, ST2 blockade preserved graft-versus-leukemia activity in a model of GFP+MLL-AF9 acute myeloid leukemia. Our findings suggest that ST2 is a therapeutic target for severe GVHD, and that the ST2/IL-33 pathway could be investigated in other T-cell mediated immune disorders with loss of tolerance. PMID:26446957

  7. Motivational deficits differentially predict improvement in a randomized trial of self-system therapy for depression.

    PubMed

    Eddington, Kari M; Silvia, Paul J; Foxworth, Tamara E; Hoet, Ariana; Kwapil, Thomas R

    2015-06-01

    A randomized trial compared the time course and differential predictors of symptom improvement in 2 treatments for depression. Forty-nine adults (84% female) who were not taking antidepressant medications and met diagnostic criteria for major depressive disorder or dysthymia were randomly assigned either to cognitive-behavioral therapy (CBT) or self-system therapy (SST), a treatment that targets problems in self-regulation, the ongoing process of evaluating progress toward personal goals. Self-regulatory variables (promotion and prevention focus and goal disengagement and reengagement) were assessed as potential moderators of efficacy. At intake, most participants reported depression in the moderate to severe range and had histories of recurrent episodes and previous treatment attempts. Self-reported symptoms of depression and anxiety were assessed at each therapy session. Multilevel modeling was used to examine (a) differences in change associated with the treatment conditions and (b) moderation of treatment efficacy by pretreatment measures of self-regulatory deficits. Both treatments were effective and did not show differences in the magnitude or rate of symptom change or in dropout rates, suggesting that CBT and SST were equally effective in improving depression and anxiety. Patients with self-regulatory deficits, however, showed greater improvement in depressive symptoms with SST. Specifically, patients with low promotion focus and low goal reengagement responded better to SST, whereas patients with high prevention focus responded better to CBT. Overall, the results corroborate previous research suggesting that SST is a viable short-term treatment for depression that is particularly effective in helping patients compensate for self-regulatory deficits. (c) 2015 APA, all rights reserved).

  8. Correlation of Patient-Reported Outcomes Measurement Information System (PROMIS) scores with legacy patient-reported outcome scores in patients undergoing rotator cuff repair.

    PubMed

    Patterson, Brendan M; Orvets, Nathan D; Aleem, Alexander W; Keener, Jay D; Calfee, Ryan P; Nixon, Devon C; Chamberlain, Aaron M

    2018-06-01

    The Patient-Reported Outcomes Measurement Information System (PROMIS) is being used to assess outcomes in many patient populations despite limited validation. The purpose of this study was to investigate the relationship between American Shoulder and Elbow Surgeons (ASES) and Simple Shoulder Test (SST) scores and PROMIS Physical Function (PF) and Upper Extremity (UE) function scores collected preoperatively in patients undergoing rotator cuff repair. This cross-sectional study analyzed 164 consecutive patients undergoing arthroscopic rotator cuff repair. Study inclusion required preoperative completion of the ASES and SST evaluations, as well as the PROMIS PF, UE, and Pain Interference computerized adaptive tests. Descriptive statistics were produced, and Pearson correlation coefficients were calculated between each of the outcome measures. Average PROMIS UE scores indicated greater impairment than PROMIS PF scores (34 vs 44). Three percent of patients reached the PROMIS UE ceiling score of 56. PROMIS PF scores demonstrated a weak correlation with ASES scores (r = 0.43, P < .001) and a moderate correlation with SST scores (r = 0.51, P < .001). PROMIS UE scores demonstrated a moderate correlation with both ASES scores (r = 0.59, P < .001) and SST scores (r = 0.62, P < .001). PROMIS Pain Interference scores demonstrated weak negative correlations with both ASES scores (r = -0.43, P < .001) and SST scores (r = -0.41, P < .001). Patients answered fewer questions on average using the PROMIS PF and UE instruments as compared with the ASES and SST instruments. PROMIS UE scores indicate greater impairment and demonstrate a stronger correlation with the legacy shoulder scores than PROMIS PF scores in patients with symptomatic rotator cuff tears. PROMIS computerized adaptive tests allow for more efficient patient-reported outcome data collection compared with traditional outcome scores. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  9. Interbasin Differences in the Relationship between SST and Tropical Cyclone Intensification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, Gregory R.; Balaguru, Karthik; Hagos, Samson

    Sea surface temperature (SST) is one of the most important parameters for tropical cyclone (TC) intensification. Here it is shown that the impact of SST on TC intensification varies considerably from basin to basin, with SST explaining less than 3% of the variance in TC intensification rates in the Atlantic, 10% in the western North Pacific, and 17% in the eastern Pacific. Two main factors are shown to be responsible for these inter-basin differences. First, variability of SST along TCs’ tracks is considerably lower in the Atlantic. This is due to smaller horizontal SST gradients in the Atlantic compared tomore » the eastern Pacific and stronger damping of pre-storm SST’s contribution to TC intensification by the storm-induced cold SST wake in the Atlantic. The damping occurs because SST tends to vary in phase with TC- induced SST cooling: in the Gulf of Mexico and northwestern basin where SSTs are highest, TCs’ translation speeds are lowest and therefore their cold wakes are strongest. In addition to this SST effect, a second factor is that SST tends to vary out of phase with vertical wind shear and outflow temperature in the western Pacific, with high SST associated with weak wind shear and a cold upper troposphere. This strengthens the relationship between SST and TC intensification more in the western Pacific than in the eastern Pacific or Atlantic. Combined, these factors explain why pre-storm SST is such a poor predictor of TC intensification in the Atlantic compared to the eastern and western North Pacific.« less

  10. Central administration of pansomatostatin agonist ODT8-SST prevents abdominal surgery-induced inhibition of circulating ghrelin, food intake and gastric emptying in rats

    PubMed Central

    STENGEL, A.; GOEBEL-STENGEL, M.; WANG, L.; LUCKEY, A.; HU, E.; RIVIER, J.; TACHÉ, Y.

    2011-01-01

    Background Activation of brain somatostatin receptors (sst1-5) with the stable pan-sst1-5 somatostatin agonist, ODT8-SST blocks acute stress and central corticotropin-releasing factor (CRF)-mediated activation of endocrine adrenal sympathetic responses. Brain CRF signaling is involved in delaying gastric emptying (GE) immediately post surgery. We investigated whether activation of brain sst signaling pathways modulates surgical stress-induced inhibition of gastric emptying and food intake. Methods Fasted rats were injected intracisternally (i.c.) with somatostatin agonists and underwent laparotomy and 1-min cecal palpation. GE of a non-nutrient solution and circulating acyl and desacyl ghrelin levels were assessed 50 min post surgery. Food intake was monitored for 24h. Key results The abdominal surgery-induced inhibition of GE (65%), food intake (73% at 2h) and plasma acyl ghrelin levels (67%) was completely prevented by ODT8-SST (1μg/rat, i.c.). The selective sst5 agonist, BIM-23052 prevented surgery-induced delayed GE, whereas selective sst1, sst2 or sst4 agonists had no effect. However, the selective sst2 agonist, S-346-011 (1μg/rat, i.c.) counteracted the abdominal surgery-induced inhibition of acyl ghrelin and food intake but not the delayed GE. The ghrelin receptor antagonist, [D-Lys3]-GHRP-6 (0.93 mg/kg, intraperitoneal, i.p.) blocked i.p. ghrelin-induced increased GE, while not influencing i.c. ODT8-SST-induced prevention of delayed GE and reduced food intake after surgery. Conclusions & Inferences ODT8-SST acts in the brain to prevent surgery-induced delayed GE likely via activating sst5. ODT8-SST and the sst2 agonist prevent the abdominal surgery-induced decrease in food intake and plasma acyl ghrelin indicating dissociation between brain somatostatin signaling involved in preventing surgery-induced suppression of GE and feeding response. PMID:21569179

  11. Agonist-biased trafficking of somatostatin receptor 2A in enteric neurons.

    PubMed

    Zhao, Peishen; Canals, Meritxell; Murphy, Jane E; Klingler, Diana; Eriksson, Emily M; Pelayo, Juan-Carlos; Hardt, Markus; Bunnett, Nigel W; Poole, Daniel P

    2013-09-06

    Somatostatin (SST) 14 and SST 28 activate somatostatin 2A receptors (SSTR2A) on enteric neurons to control gut functions. SST analogs are treatments of neuroendocrine and bleeding disorders, cancer, and diarrhea, with gastrointestinal side effects of constipation, abdominal pain, and nausea. How endogenous agonists and drugs differentially regulate neuronal SSTR2A is unexplored. We evaluated SSTR2A trafficking in murine myenteric neurons and neuroendocrine AtT-20 cells by microscopy and determined whether agonist degradation by endosomal endothelin-converting enzyme 1 (ECE-1) controls SSTR2A trafficking and association with β-arrestins, key regulators of receptors. SST-14, SST-28, and peptide analogs (octreotide, lanreotide, and vapreotide) stimulated clathrin- and dynamin-mediated internalization of SSTR2A, which colocalized with ECE-1 in endosomes and the Golgi. After incubation with SST-14, SSTR2A recycled to the plasma membrane, which required active ECE-1 and an intact Golgi. SSTR2A activated by SST-28, octreotide, lanreotide, or vapreotide was retained within the Golgi and did not recycle. Although ECE-1 rapidly degraded SST-14, SST-28 was resistant to degradation, and ECE-1 did not degrade SST analogs. SST-14 and SST-28 induced transient interactions between SSTR2A and β-arrestins that were stabilized by an ECE-1 inhibitor. Octreotide induced sustained SSTR2A/β-arrestin interactions that were not regulated by ECE-1. Thus, when activated by SST-14, SSTR2A internalizes and recycles via the Golgi, which requires ECE-1 degradation of SST-14 and receptor dissociation from β-arrestins. After activation by ECE-1-resistant SST-28 and analogs, SSTR2A remains in endosomes because of sustained β-arrestin interactions. Therapeutic SST analogs are ECE-1-resistant and retain SSTR2A in endosomes, which may explain their long-lasting actions.

  12. Agonist-biased Trafficking of Somatostatin Receptor 2A in Enteric Neurons*

    PubMed Central

    Zhao, Peishen; Canals, Meritxell; Murphy, Jane E.; Klingler, Diana; Eriksson, Emily M.; Pelayo, Juan-Carlos; Hardt, Markus; Bunnett, Nigel W.; Poole, Daniel P.

    2013-01-01

    Somatostatin (SST) 14 and SST 28 activate somatostatin 2A receptors (SSTR2A) on enteric neurons to control gut functions. SST analogs are treatments of neuroendocrine and bleeding disorders, cancer, and diarrhea, with gastrointestinal side effects of constipation, abdominal pain, and nausea. How endogenous agonists and drugs differentially regulate neuronal SSTR2A is unexplored. We evaluated SSTR2A trafficking in murine myenteric neurons and neuroendocrine AtT-20 cells by microscopy and determined whether agonist degradation by endosomal endothelin-converting enzyme 1 (ECE-1) controls SSTR2A trafficking and association with β-arrestins, key regulators of receptors. SST-14, SST-28, and peptide analogs (octreotide, lanreotide, and vapreotide) stimulated clathrin- and dynamin-mediated internalization of SSTR2A, which colocalized with ECE-1 in endosomes and the Golgi. After incubation with SST-14, SSTR2A recycled to the plasma membrane, which required active ECE-1 and an intact Golgi. SSTR2A activated by SST-28, octreotide, lanreotide, or vapreotide was retained within the Golgi and did not recycle. Although ECE-1 rapidly degraded SST-14, SST-28 was resistant to degradation, and ECE-1 did not degrade SST analogs. SST-14 and SST-28 induced transient interactions between SSTR2A and β-arrestins that were stabilized by an ECE-1 inhibitor. Octreotide induced sustained SSTR2A/β-arrestin interactions that were not regulated by ECE-1. Thus, when activated by SST-14, SSTR2A internalizes and recycles via the Golgi, which requires ECE-1 degradation of SST-14 and receptor dissociation from β-arrestins. After activation by ECE-1-resistant SST-28 and analogs, SSTR2A remains in endosomes because of sustained β-arrestin interactions. Therapeutic SST analogs are ECE-1-resistant and retain SSTR2A in endosomes, which may explain their long-lasting actions. PMID:23913690

  13. The software architecture of the camera for the ASTRI SST-2M prototype for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Sangiorgi, Pierluca; Capalbi, Milvia; Gimenes, Renato; La Rosa, Giovanni; Russo, Francesco; Segreto, Alberto; Sottile, Giuseppe; Catalano, Osvaldo

    2016-07-01

    The purpose of this contribution is to present the current status of the software architecture of the ASTRI SST-2M Cherenkov Camera. The ASTRI SST-2M telescope is an end-to-end prototype for the Small Size Telescope of the Cherenkov Telescope Array. The ASTRI camera is an innovative instrument based on SiPM detectors and has several internal hardware components. In this contribution we will give a brief description of the hardware components of the camera of the ASTRI SST-2M prototype and of their interconnections. Then we will present the outcome of the software architectural design process that we carried out in order to identify the main structural components of the camera software system and the relationships among them. We will analyze the architectural model that describes how the camera software is organized as a set of communicating blocks. Finally, we will show where these blocks are deployed in the hardware components and how they interact. We will describe in some detail, the physical communication ports and external ancillary devices management, the high precision time-tag management, the fast data collection and the fast data exchange between different camera subsystems, and the interfacing with the external systems.

  14. Validation and optimization of SST k-ω turbulence model for pollutant dispersion within a building array

    NASA Astrophysics Data System (ADS)

    Yu, Hesheng; Thé, Jesse

    2016-11-01

    The prediction of the dispersion of air pollutants in urban areas is of great importance to public health, homeland security, and environmental protection. Computational Fluid Dynamics (CFD) emerges as an effective tool for pollutant dispersion modelling. This paper reports and quantitatively validates the shear stress transport (SST) k-ω turbulence closure model and its transitional variant for pollutant dispersion under complex urban environment for the first time. Sensitivity analysis is performed to establish recommendation for the proper use of turbulence models in urban settings. The current SST k-ω simulation is validated rigorously by extensive experimental data using hit rate for velocity components, and the "factor of two" of observations (FAC2) and fractional bias (FB) for concentration field. The simulation results show that current SST k-ω model can predict flow field nicely with an overall hit rate of 0.870, and concentration dispersion with FAC2 = 0.721 and FB = 0.045. The flow simulation of the current SST k-ω model is slightly inferior to that of a detached eddy simulation (DES), but better than that of standard k-ε model. However, the current study is the best among these three model approaches, when validated against measurements of pollutant dispersion in the atmosphere. This work aims to provide recommendation for proper use of CFD to predict pollutant dispersion in urban environment.

  15. Patterns of climate variability in the western Equatorial Pacific during the Common Era

    NASA Astrophysics Data System (ADS)

    Esswein, K. L.; Rosenthal, Y.; Linsley, B. K.; Oppo, D.

    2011-12-01

    The distribution of sea surface temperature (SST) and salinity in the western Pacific warm pool (WPWP) has major implications for climate variability in the tropical Pacific and beyond. The spatial and temporal patterns of SST and salinity affect the complex relationships among the prevailing tropical climate systems primarily, the Australian-Asian Monsoon and El nino Southern Oscillation (ENSO) as well as inter-ocean surface circulation associated with the Indonesian throughflow (ITF). Reconstructing the variability of the WPWP surface hydrography during the most recent climate anomalies of the Common Era will provide insights into modern climate change in this region. Previous studies suggest SST cooling of ~1 °C during the Little Ice Age (LIA) 1550-1850 CE and close to modern SST during the Medieval Warm Period (MWP) 950-1100 CE. Further, these studies suggest enhanced (decreased) precipitation over Indonesia during the LIA (MWP) consistent with reconstructions of migration patterns of the intertropical convergence zone (ITCZ) as recorded in speleothem records in China. The available ocean records are, however, limited to the Makassar Strait. Here we present three new Mg/Ca-SST records from multi- and gravity cores in the northern Makassar, Bali Basin and Flores in the Indonesian Seas. These records allow us to validate previous results from the Makassar Strait and to constrain the geographic extent of past temperature and salinity changes within the WPWP. By using reconstructions of the stable oxygen isotopic composition (δ18O) of seawater derived from planktonic foraminiferal Mg/Ca and δ18O we further assess the complex interactions between the influence of the meridional systems (ITCZ) and the zonal effects of ENSO on the regional hydrology. Chronological control for both records is derived from the presence of ash layers of known historical eruptions. Exceptionally high sedimentation rates of 100 cm per 1000 years further allow a comparison between our new SST records with the instrumental record and provide a decadal scale resolution over the past two millennia. Our results from both the Bali Basin and Flores sea validate previous observations from the Makassar Strait indicating that modern SST in the WPWP are about 1 °C higher than during the LIA but do not exceed SSTs recorded during the MWP. These recent temperature trends in the WPWP are thus unlike the modern 'hockey-stick-like' warming trend observed mostly in Northern Hemisphere temperature reconstructions. Further our results support that the mode of SST change found in the Makassar Straits is indeed representative of the whole WPWP.

  16. West African Monsoon Decadal Variability and Surface-Related Forcings: Second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II)

    NASA Technical Reports Server (NTRS)

    Xue, Yongkang; De Sales, Fernando; Lau, William K-M; Boone, Aaron; Kim, Kyu-Myong; Mechoso, Carlos R.; Wang, Guiling; Kucharski, Fred; Schiro, Kathleen; Hosaka, Masahiro; hide

    2016-01-01

    The second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II) is designed to improve understanding of the possible roles and feedbacks of sea surface temperature (SST), land use land cover change (LULCC), and aerosols forcings in the Sahel climate system at seasonal to decadal scales. The WAMME II strategy is to apply prescribed observationally based anomaly forcing, i.e., idealized but realistic forcing, in simulations by climate models to test the relative impacts of such forcings in producingamplifying the Sahelian seasonal and decadal climate variability, including the great 20th century drought. This is the first multi-model experiment specifically designed to simultaneously evaluate relative contributions of multiple external forcings to the Sahel decadal precipitation anomalies between the 1980s and the 1950s that is used to characterize the Sahel 1980s drought in this study. The WAMME II models have consistently demonstrated that SST is the major contributor to the 20th century Sahel drought. Under the influence of the maximum possible SST forcing, WAMME II model ensemble mean can produce up to 60 of the precipitation difference between the 1980s and the 1950s. The present paper also delineated the role of SSTs in triggering and maintaining the Sahel drought. The impact of SSTs in individual oceans is also examined and consensus and discrepancies are reported. Among the different ocean basins, the WAMME II models show the consensus that the Indian Ocean SST has the largest impact on the precipitation temporal evolution associated with the ITCZ movement before the WAM onset while the Pacific Ocean SST greatly contributes to the summer WAM drought. This paper also compares the SST effect with the LULCC effect. Results show that with prescribed land forcing the WAMME II model ensemble mean produces about 40 of the precipitation difference between the 1980s and the 1950s, which is less than the SST contribution but still of first order in the Sahel climate system. The role of land surface processes 61 in responding to and amplifying the drought is also identified. The results suggest that catastrophic consequences are likely to occur in the regional Sahel climate when SST anomalies in individual ocean basins and in land conditions combine synergistically to favor drought. These preliminary WAMME results need to be further evaluated with different experimental designs and different models.

  17. Augmenting an operational forecasting system for the North and Baltic Seas by in situ T and S data assimilation

    NASA Astrophysics Data System (ADS)

    Losa, Svetlana; Danilov, Sergey; Schröter, Jens; Nerger, Lars; Maßmann, Silvia; Janssen, Frank

    2014-05-01

    In order to improve the hydrography forecast of the North and Baltic Seas, the operational circulation model of the German Federal Maritime and Hydrographic Agency (BSH) has been augmented by a data assimilation (DA) system. The DA system has been developed based on the Singular Evolution Interpolated Kalman (SEIK) filter algorithm (Pham, 1998) coded within the Parallel Data Assimilation Framework (Nerger et al., 2004, Nerger and Hiller, 2012). Previously the only data assimilated were sea surface temperature (SST) measurements obtained with the Advanced Very High Resolution Radiometer (AVHRR) aboard NOAA's polar orbiting satellites. While the quality of the forecast has been significantly improved by assimilating the satellite data (Losa et al., 2012, Losa et al., 2014), assimilation of in situ observational temperature (T) and salinity (S) profiles has allowed for further improvement. Assimilating MARNET time series and CTD and Scanfish measurements, however, required a careful calibration of the DA system with respect to local analysis. The study addresses the problem of the local SEIK analysis accounting for the data within a certain radius. The localisation radius is considered spatially variable and dependent on the system local dynamics. As such, we define the radius of the data influence based on the energy ratio of the baroclinic and barotropic flows. D. T. Pham, J. Verron, L. Gourdeau, 1998. Singular evolutive Kalman filters for data assimilation in oceanography, C. R. Acad. Sci. Paris, Earth and Planetary Sciences, 326, 255-260. L. Nerger, W. Hiller, J. Schröter, 2004. PDAF - The Parallel Data Assimilation Framework: Experiences with Kalman Filtering, In: Zwieflhofer, W., Mozdzynski, G. (Eds.), Use of high performance computing in meteorology: proceedings of the Eleventh ECMWF Workshop on the Use of High Performance Computing in Meteorology. Singapore: World Scientific, Reading, UK, 63-83. L. Nerger, W. Hiller, 2012. Software for Ensemble-based Data Assimilation Systems —Implementation Strategies and Scalability, Computers and Geosciences, 55, 110-118. S. N. Losa, S. Danilov, J. Schröter, L. Nerger, S. Maßmann, F. Janssen, 2012. Assimilating NOAA SST data into the BSH operational circulation model for the North and Baltic Seas: Inference about the data. Journal of Marine Systems, 105-108, 152-162. S. N. Losa, S. Danilov, J. Schröter, L. Nerger, S. Maßmann, F. Janssen, 2014. Assimilating NOAA SST data into the BSH operational circulation model for the North and Baltic Seas: Part.2 Sensitivity of the forecast's skill to the prior model error statistics. Journal of Marine Systems, 129, 259-270.

  18. Improved management of small pelagic fisheries through seasonal climate prediction.

    PubMed

    Tommasi, Désirée; Stock, Charles A; Pegion, Kathleen; Vecchi, Gabriel A; Methot, Richard D; Alexander, Michael A; Checkley, David M

    2017-03-01

    Populations of small pelagic fish are strongly influenced by climate. The inability of managers to anticipate environment-driven fluctuations in stock productivity or distribution can lead to overfishing and stock collapses, inflexible management regulations inducing shifts in the functional response to human predators, lost opportunities to harvest populations, bankruptcies in the fishing industry, and loss of resilience in the human food supply. Recent advances in dynamical global climate prediction systems allow for sea surface temperature (SST) anomaly predictions at a seasonal scale over many shelf ecosystems. Here we assess the utility of SST predictions at this "fishery relevant" scale to inform management, using Pacific sardine as a case study. The value of SST anomaly predictions to management was quantified under four harvest guidelines (HGs) differing in their level of integration of SST data and predictions. The HG that incorporated stock biomass forecasts informed by skillful SST predictions led to increases in stock biomass and yield, and reductions in the probability of yield and biomass falling below socioeconomic or ecologically acceptable levels. However, to mitigate the risk of collapse in the event of an erroneous forecast, it was important to combine such forecast-informed harvest controls with additional harvest restrictions at low biomass. © 2016 by the Ecological Society of America.

  19. Marine ARM GPCI Investigation of Clouds Infrared Sea Surface Temperature Autonomous Radiometer (ISAR) Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, R. Michael; Long, Charles N.

    Sea surface temperature (SST) is one of the most appropriate and important climate parameters: a widespread increase is an indicator of global warming and modifications of the geographical distribution of SST are an extremely sensitive indicator of climate change. There is high demand for accurate, reliable, high-spatial-and-temporal-resolution SST measurements for the parameterization of ocean-atmosphere heat, momentum, and gas (SST is therefore critical to understanding the processes controlling the global carbon dioxide budget) fluxes, for detailed diagnostic and process-orientated studies to better understand the behavior of the climate system, as model boundary conditions, for assimilation into climate models, and for themore » rigorous validation of climate model output. In order to achieve an overall net flux uncertainty < 10 W/m 2 (Bradley and Fairall, 2006), the sea surface (skin) temperature (SSST) must be measured to an error < 0.1 C and a precision of 0.05 C. Anyone experienced in shipboard meteorological measurements will recognize this is a tough specification. These demands require complete confidence in the content, interpretation, accuracy, reliability, and continuity of observational SST data—criteria that can only be fulfilled by the successful implementation of an ongoing data product validation strategy.« less

  20. The Active Role of the Ocean in the Temporal Evolution of Climate Sensitivity

    DOE PAGES

    Garuba, Oluwayemi A.; Lu, Jian; Liu, Fukai; ...

    2017-11-30

    Here, the temporal evolution of the effective climate sensitivity is shown to be influenced by the changing pattern of sea surface temperature (SST) and ocean heat uptake (OHU), which in turn have been attributed to ocean circulation changes. A set of novel experiments are performed to isolate the active role of the ocean by comparing a fully coupled CO 2 quadrupling community Earth System Model (CESM) simulation against a partially coupled one, where the effect of the ocean circulation change and its impact on surface fluxes are disabled. The active OHU is responsible for the reduced effective climate sensitivity andmore » weaker surface warming response in the fully coupled simulation. The passive OHU excites qualitatively similar feedbacks to CO 2 quadrupling in a slab ocean model configuration due to the similar SST spatial pattern response in both experiments. Additionally, the nonunitary forcing efficacy of the active OHU (1.7) explains the very different net feedback parameters in the fully and partially coupled responses.« less

  1. The Active Role of the Ocean in the Temporal Evolution of Climate Sensitivity

    NASA Astrophysics Data System (ADS)

    Garuba, Oluwayemi A.; Lu, Jian; Liu, Fukai; Singh, Hansi A.

    2018-01-01

    The temporal evolution of the effective climate sensitivity is shown to be influenced by the changing pattern of sea surface temperature (SST) and ocean heat uptake (OHU), which in turn have been attributed to ocean circulation changes. A set of novel experiments are performed to isolate the active role of the ocean by comparing a fully coupled CO2 quadrupling community Earth System Model (CESM) simulation against a partially coupled one, where the effect of the ocean circulation change and its impact on surface fluxes are disabled. The active OHU is responsible for the reduced effective climate sensitivity and weaker surface warming response in the fully coupled simulation. The passive OHU excites qualitatively similar feedbacks to CO2 quadrupling in a slab ocean model configuration due to the similar SST spatial pattern response in both experiments. Additionally, the nonunitary forcing efficacy of the active OHU (1.7) explains the very different net feedback parameters in the fully and partially coupled responses.

  2. The Active Role of the Ocean in the Temporal Evolution of Climate Sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garuba, Oluwayemi A.; Lu, Jian; Liu, Fukai

    Here, the temporal evolution of the effective climate sensitivity is shown to be influenced by the changing pattern of sea surface temperature (SST) and ocean heat uptake (OHU), which in turn have been attributed to ocean circulation changes. A set of novel experiments are performed to isolate the active role of the ocean by comparing a fully coupled CO 2 quadrupling community Earth System Model (CESM) simulation against a partially coupled one, where the effect of the ocean circulation change and its impact on surface fluxes are disabled. The active OHU is responsible for the reduced effective climate sensitivity andmore » weaker surface warming response in the fully coupled simulation. The passive OHU excites qualitatively similar feedbacks to CO 2 quadrupling in a slab ocean model configuration due to the similar SST spatial pattern response in both experiments. Additionally, the nonunitary forcing efficacy of the active OHU (1.7) explains the very different net feedback parameters in the fully and partially coupled responses.« less

  3. The Role of SST and Large-Scale Dynamical Motions on the Onset and Shutdown of the Super Greenhouse Effect

    NASA Astrophysics Data System (ADS)

    O'Brien, T. A.; Kashinath, K.; Collins, W.

    2015-12-01

    Over warm tropical oceans the increase in greenhouse trapping with increasing SST is faster than that of the surface emission, resulting in a decrease in outgoing longwave radiation at the top of the atmosphere (OLR) when SST increases, also known as the super greenhouse effect (SGE). If SGE is directly linked to SST changes, there are profound implications for positive climate feedbacks in the tropics. However, a number of studies in the last 20 years have provided compelling evidence that the OLR-SST relationship is coincidental rather than causal. These studies suggested that the onset of SGE is dominated by the large-scale dynamics, and that the apparent OLR-SST relationships disappear when individual large-scale regimes are considered. We show that these conclusions are contingent on the quality of the datasets used in the analysis, and that modern satellite observations and reanalyses support a strong relationship between SGE and SST. We find that the SGE occurs across all dynamical regimes, suggesting that this may be related primarily to SST rather than large-scale dynamics. We also find that the discontinuity in the relationship between OLR and SST at high SST (29.5 C), i.e. the shutdown of SGE, also occurs across almost all dynamical regimes, suggesting that this behavior may also be strongly linked to SST. Collectively, these results suggest that the SGE may actually be controlled by SST. Work is ongoing to understand the robustness of this new result to other datasets, to understand whether SST is truly the controlling variable, and to understand the mechanism by which OLR could decrease with increasing SST even under strongly subsiding conditions.

  4. Truncated somatostatin receptor 5 may modulate therapy response to somatostatin analogues--Observations in two patients with acromegaly and severe headache.

    PubMed

    Marina, Djordje; Burman, Pia; Klose, Marianne; Casar-Borota, Olivera; Luque, Raúl M; Castaño, Justo P; Feldt-Rasmussen, Ulla

    2015-10-01

    Somatotropinomas have unique "fingerprints" of somatostatin receptor (sst) expression, which are targets in treatment of acromegaly with somatostatin analogues (SSAs). However, a significant expression of sst is not always related to the biochemical response to SSAs. Headache is a common complaint in acromegaly and considered a clinical marker of disease activity. SSAs are reported to have an own analgesic effect, but the sst involved are unknown. We investigated sst expression in two acromegalic patients with severe headache and no biochemical effects of octreotide, but a good response to pasireotide. We searched the literature for determinants of biochemical and analgesic effects of SSAs in somatotropinomas. Case 1 had no biochemical or analgesic effects of octreotide, a semi-selective SSA, but a rapid and significant effect of pasireotide, a pan-SSA. Case 2 demonstrated discordance between analgesic and biochemical effects of octreotide, in that headache disappeared, but without biochemical improvement. In contrast, pasireotide normalized insulin-like growth factor 1. Both adenomas were sparsely granulated and had strong membranous expressions of sst2a in 50-75% and sst5 in 75-100% of tumor cells. The truncated sst5 variant TMD4 (sst5TMD4) showed expression in 20-57% of tumor cells. A poor biochemical response to octreotide may be associated with tumor expression of a truncated sst5 variant, despite abundant sst2a expression, suggesting an influence from variant sst5 on common sst signaling pathways. Furthermore, unrelated analgesic and biochemical effects of SSAs supported a complex pathogenesis of acromegaly-associated headache. Finally, assessment of truncated sst5 in addition to full length sst could be important for a choice of postoperative SSA treatment in somatotropinomas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. North American Tropical Cyclone Landfall and SST: A Statistical Model Study

    NASA Technical Reports Server (NTRS)

    Hall, Timothy; Yonekura, Emmi

    2013-01-01

    A statistical-stochastic model of the complete life cycle of North Atlantic (NA) tropical cyclones (TCs) is used to examine the relationship between climate and landfall rates along the North American Atlantic and Gulf Coasts. The model draws on archived data of TCs throughout the North Atlantic to estimate landfall rates at high geographic resolution as a function of the ENSO state and one of two different measures of sea surface temperature (SST): 1) SST averaged over the NA subtropics and the hurricane season and 2) this SST relative to the seasonal global subtropical mean SST (termed relSST). Here, the authors focus on SST by holding ENSO to a neutral state. Jackknife uncertainty tests are employed to test the significance of SST and relSST landfall relationships. There are more TC and major hurricane landfalls overall in warm years than cold, using either SST or relSST, primarily due to a basinwide increase in the number of storms. The signal along the coast, however, is complex. Some regions have large and significant sensitivity (e.g., an approximate doubling of annual major hurricane landfall probability on Texas from -2 to +2 standard deviations in relSST), while other regions have no significant sensitivity (e.g., the U.S. mid-Atlantic and Northeast coasts). This geographic structure is due to both shifts in the regions of primary TC genesis and shifts in TC propagation.

  6. Sea surface temperature predictions using a multi-ocean analysis ensemble scheme

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Zhu, Jieshun; Li, Zhongxian; Chen, Haishan; Zeng, Gang

    2017-08-01

    This study examined the global sea surface temperature (SST) predictions by a so-called multiple-ocean analysis ensemble (MAE) initialization method which was applied in the National Centers for Environmental Prediction (NCEP) Climate Forecast System Version 2 (CFSv2). Different from most operational climate prediction practices which are initialized by a specific ocean analysis system, the MAE method is based on multiple ocean analyses. In the paper, the MAE method was first justified by analyzing the ocean temperature variability in four ocean analyses which all are/were applied for operational climate predictions either at the European Centre for Medium-range Weather Forecasts or at NCEP. It was found that these systems exhibit substantial uncertainties in estimating the ocean states, especially at the deep layers. Further, a set of MAE hindcasts was conducted based on the four ocean analyses with CFSv2, starting from each April during 1982-2007. The MAE hindcasts were verified against a subset of hindcasts from the NCEP CFS Reanalysis and Reforecast (CFSRR) Project. Comparisons suggested that MAE shows better SST predictions than CFSRR over most regions where ocean dynamics plays a vital role in SST evolutions, such as the El Niño and Atlantic Niño regions. Furthermore, significant improvements were also found in summer precipitation predictions over the equatorial eastern Pacific and Atlantic oceans, for which the local SST prediction improvements should be responsible. The prediction improvements by MAE imply a problem for most current climate predictions which are based on a specific ocean analysis system. That is, their predictions would drift towards states biased by errors inherent in their ocean initialization system, and thus have large prediction errors. In contrast, MAE arguably has an advantage by sampling such structural uncertainties, and could efficiently cancel these errors out in their predictions.

  7. OceanXtremes: Scalable Anomaly Detection in Oceanographic Time-Series

    NASA Astrophysics Data System (ADS)

    Wilson, B. D.; Armstrong, E. M.; Chin, T. M.; Gill, K. M.; Greguska, F. R., III; Huang, T.; Jacob, J. C.; Quach, N.

    2016-12-01

    The oceanographic community must meet the challenge to rapidly identify features and anomalies in complex and voluminous observations to further science and improve decision support. Given this data-intensive reality, we are developing an anomaly detection system, called OceanXtremes, powered by an intelligent, elastic Cloud-based analytic service backend that enables execution of domain-specific, multi-scale anomaly and feature detection algorithms across the entire archive of 15 to 30-year ocean science datasets.Our parallel analytics engine is extending the NEXUS system and exploits multiple open-source technologies: Apache Cassandra as a distributed spatial "tile" cache, Apache Spark for in-memory parallel computation, and Apache Solr for spatial search and storing pre-computed tile statistics and other metadata. OceanXtremes provides these key capabilities: Parallel generation (Spark on a compute cluster) of 15 to 30-year Ocean Climatologies (e.g. sea surface temperature or SST) in hours or overnight, using simple pixel averages or customizable Gaussian-weighted "smoothing" over latitude, longitude, and time; Parallel pre-computation, tiling, and caching of anomaly fields (daily variables minus a chosen climatology) with pre-computed tile statistics; Parallel detection (over the time-series of tiles) of anomalies or phenomena by regional area-averages exceeding a specified threshold (e.g. high SST in El Nino or SST "blob" regions), or more complex, custom data mining algorithms; Shared discovery and exploration of ocean phenomena and anomalies (facet search using Solr), along with unexpected correlations between key measured variables; Scalable execution for all capabilities on a hybrid Cloud, using our on-premise OpenStack Cloud cluster or at Amazon. The key idea is that the parallel data-mining operations will be run "near" the ocean data archives (a local "network" hop) so that we can efficiently access the thousands of files making up a three decade time-series. The presentation will cover the architecture of OceanXtremes, parallelization of the climatology computation and anomaly detection algorithms using Spark, example results for SST and other time-series, and parallel performance metrics.

  8. Selective agonists of somatostatin receptor subtype 1 or 2 injected peripherally induce antihyperalgesic effect in two models of visceral hypersensitivity in mice

    PubMed Central

    Mulak, Agata; Larauche, Muriel; Biraud, Mandy; Million, Mulugeta; Rivier, Jean; Taché, Yvette

    2014-01-01

    Somatostatin interacts with 5 G-protein-coupled receptor (sst1–5). Octreotide, a stable sst2≫3≥5 agonist, octreotide, exerts a visceral anti-hyperalgesic effect in experimental and clinical studies. Little is known on the receptor subtypes involved. We investigated the influence of the stable sst1–5 agonist, ODT8-SST and selective receptor subtype peptide agonists (3 or 10 μg/mouse) injected intraperitoneally (ip) on visceral hypersensitivity in mice induced by repeated noxious colorectal distensions (4 sets of 3 CRD, each at 55 mmHg) or corticotropin-releasing factor receptor 1 agonist, cortagine given between 2 sets of graded CRD (15, 30, 45, and 60 mmHg, 3 times each pressure). The mean visceromotor response (VMR) was assessed using a non-invasive manometry method and values were expressed as percentage of the VMR to the 1st set of CRD baseline or to the 60 mmHg CRD, respectively. ODT8-SST (10 μg) and the sst2 agonist, S-346-011 (3 and 10 μg) prevented mechanically-induced visceral hypersensitivity in the 3 sets of CRD, the sst1 agonist (10 μg) blocked only the 2nd set and showed a trend at 3 μg while the sst4 agonist had no effect. The selective sst2 antagonist, S-406-028 blocked the sst2 agonist but not the sst1 agonist effect. The sst1 agonist (3 and 10 μg) prevented cortagine-induced hypersensitivity to CRD at each pressure while the sst2 agonist at 10 μg reduced it. These data indicate that in addition to sst2, the sst1 agonist may provide a novel promising target to alleviate visceral hypersensitivity induced by mechanoreceptor sensitization and more prominently, stress-related visceral nociceptive sensitization. PMID:25451334

  9. Selective agonists of somatostatin receptor subtype 1 or 2 injected peripherally induce antihyperalgesic effect in two models of visceral hypersensitivity in mice.

    PubMed

    Mulak, Agata; Larauche, Muriel; Biraud, Mandy; Million, Mulugeta; Rivier, Jean; Taché, Yvette

    2015-01-01

    Somatostatin interacts with five G-protein-coupled receptor (sst1-5). Octreotide, a stable sst2≫3≥5 agonist, exerts a visceral anti-hyperalgesic effect in experimental and clinical studies. Little is known on the receptor subtypes involved. We investigated the influence of the stable sst1-5 agonist, ODT8-SST and selective receptor subtype peptide agonists (3 or 10μg/mouse) injected intraperitoneally (ip) on visceral hypersensitivity in mice induced by repeated noxious colorectal distensions (four sets of three CRD, each at 55mmHg) or corticotropin-releasing factor receptor 1 agonist, cortagine given between two sets of graded CRD (15, 30, 45, and 60mmHg, three times each pressure). The mean visceromotor response (VMR) was assessed using a non-invasive manometry method and values were expressed as percentage of the VMR to the 1st set of CRD baseline or to the 60mmHg CRD, respectively. ODT8-SST (10μg) and the sst2 agonist, S-346-011 (3 and 10μg) prevented mechanically induced visceral hypersensitivity in the three sets of CRD, the sst1 agonist (10μg) blocked only the 2nd set and showed a trend at 3μg while the sst4 agonist had no effect. The selective sst2 antagonist, S-406-028 blocked the sst2 agonist but not the sst1 agonist effect. The sst1 agonist (3 and 10μg) prevented cortagine-induced hypersensitivity to CRD at each pressure while the sst2 agonist at 10μg reduced it. These data indicate that in addition to sst2, the sst1 agonist may provide a novel promising target to alleviate visceral hypersensitivity induced by mechanoreceptor sensitization and more prominently, stress-related visceral nociceptive sensitization. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. On the influence of simulated SST warming on rainfall projections in the Indo-Pacific domain: an AGCM study

    NASA Astrophysics Data System (ADS)

    Zhang, Huqiang; Zhao, Y.; Moise, A.; Ye, H.; Colman, R.; Roff, G.; Zhao, M.

    2018-02-01

    Significant uncertainty exists in regional climate change projections, particularly for rainfall and other hydro-climate variables. In this study, we conduct a series of Atmospheric General Circulation Model (AGCM) experiments with different future sea surface temperature (SST) warming simulated by a range of coupled climate models. They allow us to assess the extent to which uncertainty from current coupled climate model rainfall projections can be attributed to their simulated SST warming. Nine CMIP5 model-simulated global SST warming anomalies have been super-imposed onto the current SSTs simulated by the Australian climate model ACCESS1.3. The ACCESS1.3 SST-forced experiments closely reproduce rainfall means and interannual variations as in its own fully coupled experiments. Although different global SST warming intensities explain well the inter-model difference in global mean precipitation changes, at regional scales the SST influence vary significantly. SST warming explains about 20-25% of the patterns of precipitation changes in each of the four/five models in its rainfall projections over the oceans in the Indo-Pacific domain, but there are also a couple of models in which different SST warming explains little of their precipitation pattern changes. The influence is weaker again for rainfall changes over land. Roughly similar levels of contribution can be attributed to different atmospheric responses to SST warming in these models. The weak SST influence in our study could be due to the experimental setup applied: superimposing different SST warming anomalies onto the same SSTs simulated for current climate by ACCESS1.3 rather than directly using model-simulated past and future SSTs. Similar modelling and analysis from other modelling groups with more carefully designed experiments are needed to tease out uncertainties caused by different SST warming patterns, different SST mean biases and different model physical/dynamical responses to the same underlying SST forcing.

  11. Seasonal trends of ACSPO VIIRS SST product characterized by the differences in orbital overlaps for various water types

    NASA Astrophysics Data System (ADS)

    Arnone, Robert; Vandermeulen, Ryan; Ignatov, Alexander; Cayula, Jean François

    2015-05-01

    The uncertainty of the Advanced Clear-Sky Processor for Oceans (ACSPO) Sea Surface Temperature (SST) products from the Visible Infrared Imaging Radiometer Suite (VIIRS) satellite is examined using consecutive orbital overlaps in coastal waters of the Gulf of Mexico. The overlapping region on the left and right side of the VIIRS swath at 23-35 degree latitude covers approximately 500 pixels, which occur within 100 minutes and can provide a total of 4 SST products (2 day and 2 night) per day. By assuming the ocean SST should be similar on each side of the swath in this short time period, diel changes are examined and the uncertainty of SST retrieval is determined by comparing with buoy-derived SST. The VIIRS ACSPO product from NOAA STAR was used to determine the difference in SST within the overlapping regions. These SST changes are evaluated between consecutive orbits to validate the accuracy of SST algorithms on each side of the swath at high sensor angles. The SST product differences across the swath can result from surface glint, sensor angular impacts and sensor characteristics such as half angle mirror side (HAM) and calibration. The absolute diurnal SST changes that can occur within 100 minutes are evaluated with the buoy and VIIRS-derived SST. Sensitivity of the SST to water types is evaluated by measuring diurnal differences for open ocean, shelf and coastal waters. The 100 minute VIIRS SST overlap shows the capability to monitor the diurnal ocean heating and cooling which are associated with water mass optical absorption. The seasonal trends of the difference in SST at the overlaps for these water masses were tracked on a monthly basis. The unique capability of using the same VIIRS sensor for self-characterization can provide a method to define the uncertainty of ocean products and characterize the diurnal changes for different water types.

  12. AATSR - Precise Sea-Surface Temperature for Climate Monitoring and for Operational Applications

    NASA Astrophysics Data System (ADS)

    Llewellyn-Jones, David; Corlett, Gary; Donlon, Craig; Stark, John

    The Advanced Along-Track Scanning Radiometer (AATSR) is an imaging radiometer specifi- cally designed to measure Sea-Surface Temperature (SST) to the demanding levels of accuracy and stability required for climate research. AATSR, which has been operating continuously on ESA's Envisat Satellite since its launch in 2002, achieves the required levels of accuracy on account of its unique dual view, whereby each terrestrial scene is viewed twice, once at nadir and then through an inclined path which uses a different atmospheric path-length, thereby providing a direct observation of atmospheric effects, leading to an exceptionally accurate atmospheric correction. This feature is accompanied by an advanced calibration system combined with excellent optical and thermal designs. Recent rigorous and extensive comparisons with in situ data have shown that, for most of the global oceans, AATSR can achieve and accuracy of around 0.2o C with high stability, which has qualified them for use in climate analysis schemes. Because AATSR is the third sensor in a near-continuous series which started with the launch of ATSR-1 on ERS-1 satellite in 1991, there is a time-series of 16+ years of climate standard SSTs which have recently been re-processed and are now becoming available to the World-wide user community from data centres in Europe. SST data from AATSR have been included in the suite of operational SST products generated by the GODAE/GHRSST Pilot Project, on a timescale needed by operational users and in a format which allows easy ingestion and error estimates for data from AATSR and most of the other sensors currently providing SST measurements from space. Within the GODAE/GHRSST data-products, AATSR SST data are generally regarded as the benchmark for accuracy and are used to provide bias corrections for data from the other sensors, which often have superior coverage, thus exploiting synergistically the complementary qualities if the different data-sets. The UK Met Office use GODAE/GHRSST data to generate a daily Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA). This analysis has been evaluated by the Met Office for use in their Numerical Weather Prediction (NWP) Scheme. The AATSR sensor, recent validation results and the OSTIA system will be briefly described. Also, the initial results of an on-going evaluation of AATSR error statistics, as presented in GHRSST data, as well as the impact of AATSR accuracy on the OSTIA performance, will be briefly discussed.

  13. F/FB-111 Avionics Test Station and Component Specialist/Technician. Automatic Test Stations Manual and Electronic Warfare Test Stations. Training Requirements Analysis (451X6). Volume 2

    DTIC Science & Technology

    1991-11-01

    F-111D RADAR SST TASK NOTES: SST IS LOCATED ONLY AT CANNON AFB, NM. IT CONSISTS OF AN MRU , EPU, LVPS, MFG, DDPU, ARS RACK, AND TRANSMITTER. THE SST...VOTES: SST IS LOCATED ONLY AT CANNON AFB, NM. IT CONSISTS OF AN MRU , EPU, LVPS, MFG, DDPU, ARS RACK, AND TRANSMITTER. THE SST WILL BE REPLACED BY DTS...NOTES: SST IS LOCATED ONLY AT CANNON AFB, NM. IT CONSISTS OF AN MRU , EPU, LVPS, MFG, DDPU, ARS RACK, AND TRANSMITTER. THE SST WILL BE REPLACED BY DTS

  14. Progress Report of the new Solar Sub-Millimeter Telescope Installation

    NASA Astrophysics Data System (ADS)

    Kaufmann, P.; Magun, A.; Levato, H.; Rovira, M.; Arzner, K.; Correia, E.; Costa, J. E. R.; Gimenez de Castro, C. G.; Kaempfer, N.; Raulin, J. P.; Rolli, E.; Silva, A. V. R.

    1998-11-01

    The Sub-Millimeter Solar Telescope (SST) project is now in his final phase of construction and a definitive schedule has been established. The 1.5 m diameter reflector has been completed by Steward Observatory, University of Arizona, presenting an excellent surface with a deviation of 18 microns (r.m.s.). The delay of the reflector construction was the result of the new technology employed, and mainly due to the slumping of the reflector which needed additional technological research (Kingsley et al. 1998). The SST building, including one 3.4 m ESSCO gore-tex radom and a room for two complementary optical imaging spectrographs (from IAP, Bern and OV, UFRJ, Brazil), has been completed now by CASLEO at El Leoncito, San Juan, Argentina. Numerous electrical, electronical, mechanical tests, as well as softwares tests, have been performed at the IAP, Bern, Switzerland, and at Itapetinga, Brazil. The 1.5 m reflector is in Bern, already assembled to the other SST parts: four 210 and two 405 GHZ radiometers built by RPG, the ORBIT positionner, the interface box between the reflector and the radiometers, the counter-weights. Test and integration of the SST are being done at Bern, with a co-participation of researchers and technicians of CRAAE and CASLEO. The shipment of the SST to El Leoncito will be mid-October, and the final installation is scheduled for the period January-April of 1999. The first tests and solar observations are planned for May of 1999. The SST project received main financial support from FAPESP (Proc. 93/3321-7), complemented by funds from the IAP, Switzerland, and, IAFE and CASLEO/CONICET, Argentina.

  15. Testing the fidelity of the Sr/Ca proxy in recording ocean temperature in a western Atlantic coral

    NASA Astrophysics Data System (ADS)

    Kuffner, I. B.; Roberts, K.; Flannery, J. A.; Richey, J. N.; Morrison, J. M.

    2017-12-01

    Massive corals provide a useful archive of environmental variability, but careful testing of geochemical proxies in corals is necessary to validate the relationship between each proxy and environmental parameter throughout the full range of conditions experienced by the recording organisms. Here we use samples from a field-based coral-growth study to test the hypothesis that Sr/Ca in the coral Siderastrea siderea accurately records sea-surface temperature (SST) in the subtropics (Florida, USA) along 350 km of reef tract. We test calcification rate, measured via buoyant weight, and linear extension (LE) rate, estimated with Alizarin Red-S staining, as predictors of variance in the Sr/Ca records of 39 individual S. siderea corals grown at four outer-reef locations next to in-situ temperature loggers during two, year-long periods. We found that corals with calcification rates less than 1.7 mg cm-2 d-1 or LE rates less than 1.7 mm yr-1 returned spuriously high Sr/Ca values, leading to a cold bias in Sr/Ca-based SST estimates. The threshold-type response curves suggest that LE rate can be used as a quality-control indicator during sample and microdrill-path selection when using long cores for SST paleoreconstruction. For our corals that passed this quality control step, the Sr/Ca-SST proxy performed well in estimating mean annual SST across three sites spanning 350 km of the Florida reef tract. However, there was some evidence that extreme temperature stress in 2010 (cold snap) and 2011 (SST above coral-bleaching threshold) may have caused the corals not to record the temperature extremes. Known stress events could be avoided during modern calibrations of paleoproxies.

  16. Upper Limb Neural Tension and Seated Slump Tests: The False Positive Rate among Healthy Young Adults without Cervical or Lumbar Symptoms

    PubMed Central

    Davis, D. Scott; Anderson, Ila Beth; Carson, Mary Grace; Elkins, Caroline L.; Stuckey, Lindsey B.

    2008-01-01

    This study examined the false positive rate of the upper limb neural tension test (ULNTT) and seated slump test (SST) among healthy young adults with no history of cervical, lumbar, or peripheral symptoms. Eighty-four subjects (27 men and 57 women) with a mean age of 22.9 years participated in the investigation. All participants completed a screening questionnaire designed to exclude subjects with a history of cervical or lumbar spine pain or injury, or upper or lower extremity neurological symptoms. The ULNTT and the SST were performed on the left upper and lower extremity of each participant. Of the 84 participants tested, 73 (86.9%) were found to have a positive ULNTT at some point in the available range of elbow extension. Twenty-eight (33.3%) of the 84 subjects had a positive SST at some point in the available range of knee extension. The mean knee extension angle for those subjects with a positive SST was 15.1° with a 95% confidence interval (CI) of 12.3 and 19.7°. The mean elbow extension angle for those with a positive ULNTT was 49.4° with a 95% CI of 44.8 and 54.0°. The number of positive tests for both the ULNTT and the SST was found to be high in this sample of asymptomatic healthy young adults. Based on the results of this investigation, the authors suggest that the current criteria for determining a positive test for both the ULNTT and the SST should be examined using the proposed range of motion cut-off scores. PMID:19119402

  17. Upper Limb Neural Tension and Seated Slump Tests: The False Positive Rate among Healthy Young Adults without Cervical or Lumbar Symptoms.

    PubMed

    Davis, D Scott; Anderson, Ila Beth; Carson, Mary Grace; Elkins, Caroline L; Stuckey, Lindsey B

    2008-01-01

    This study examined the false positive rate of the upper limb neural tension test (ULNTT) and seated slump test (SST) among healthy young adults with no history of cervical, lumbar, or peripheral symptoms. Eighty-four subjects (27 men and 57 women) with a mean age of 22.9 years participated in the investigation. All participants completed a screening questionnaire designed to exclude subjects with a history of cervical or lumbar spine pain or injury, or upper or lower extremity neurological symptoms. The ULNTT and the SST were performed on the left upper and lower extremity of each participant. Of the 84 participants tested, 73 (86.9%) were found to have a positive ULNTT at some point in the available range of elbow extension. Twenty-eight (33.3%) of the 84 subjects had a positive SST at some point in the available range of knee extension. The mean knee extension angle for those subjects with a positive SST was 15.1 degrees with a 95% confidence interval (CI) of 12.3 and 19.7 degrees . The mean elbow extension angle for those with a positive ULNTT was 49.4 degrees with a 95% CI of 44.8 and 54.0 degrees . The number of positive tests for both the ULNTT and the SST was found to be high in this sample of asymptomatic healthy young adults. Based on the results of this investigation, the authors suggest that the current criteria for determining a positive test for both the ULNTT and the SST should be examined using the proposed range of motion cut-off scores.

  18. Somatostatin, neuronal vulnerability and behavioral emotionality.

    PubMed

    Lin, L C; Sibille, E

    2015-03-01

    Somatostatin (SST) deficits are common pathological features in depression and other neurological disorders with mood disturbances, but little is known about the contribution of SST deficits to mood symptoms or causes of these deficits. Here we show that mice lacking SST (Sst(KO)) exhibit elevated behavioral emotionality, high basal plasma corticosterone and reduced gene expression of Bdnf, Cortistatin and Gad67, together recapitulating behavioral, neuroendocrine and molecular features of human depression. Studies in Sst(KO) and heterozygous (Sst(HZ)) mice show that elevated corticosterone is not sufficient to reproduce the behavioral phenotype, suggesting a putative role for Sst cell-specific molecular changes. Using laser capture microdissection, we show that cortical SST-positive interneurons display significantly greater transcriptome deregulations after chronic stress compared with pyramidal neurons. Protein translation through eukaryotic initiation factor 2 (EIF2) signaling, a pathway previously implicated in neurodegenerative diseases, was most affected and suppressed in stress-exposed SST neurons. We then show that activating EIF2 signaling through EIF2 kinase inhibition mitigated stress-induced behavioral emotionality in mice. Taken together, our data suggest that (1) low SST has a causal role in mood-related phenotypes, (2) deregulated EIF2-mediated protein translation may represent a mechanism for vulnerability of SST neurons and (3) that global EIF2 signaling has antidepressant/anxiolytic potential.

  19. Somatostatin, neuronal vulnerability and behavioral emotionality

    PubMed Central

    Lin, LC; Sibille, E

    2014-01-01

    Somatostatin (SST) deficits are common pathological features in depression and other neurological disorders with mood disturbances, but little is known about the contribution of SST deficits to mood symptoms or causes of these deficits. Here we show that mice lacking Sst (SstKO) exhibit elevated behavioral emotionality, high basal plasma corticosterone and reduced gene expression of Bdnf, Cortistatin, and Gad67, together recapitulating behavioral, neuroendocrine and molecular features of human depression. Studies in SstKO and heterozygous (SstHZ) mice show that elevated corticosterone is not sufficient to reproduce the behavioral phenotype, suggesting a putative role for Sst cell-specific molecular changes. Using laser-capture microdissection, we show that cortical SST-positive interneurons display significantly greater transcriptome deregulations after chronic stress compared to pyramidal neurons. Protein translation through eukaryotic initiation factor 2 (EIF2) signaling, a pathway previously implicated in neurodegenerative diseases, was most affected and suppressed in stress-exposed SST neurons. We then show that activating EIF2 signaling through EIF2 kinase inhibition mitigated stress-induced behavioral emotionality in mice. Together, our data suggest that (1) low SST plays a causal role in mood-related phenotypes, (2) deregulated EIF2-mediated protein translation may represent a mechanism for vulnerability of SST neurons, and (3) that global EIF2 signaling has antidepressant/anxiolytic potential. PMID:25600109

  20. On-board Attitude Determination System (OADS). [for advanced spacecraft missions

    NASA Technical Reports Server (NTRS)

    Carney, P.; Milillo, M.; Tate, V.; Wilson, J.; Yong, K.

    1978-01-01

    The requirements, capabilities and system design for an on-board attitude determination system (OADS) to be flown on advanced spacecraft missions were determined. Based upon the OADS requirements and system performance evaluation, a preliminary on-board attitude determination system is proposed. The proposed OADS system consists of one NASA Standard IRU (DRIRU-2) as the primary attitude determination sensor, two improved NASA Standard star tracker (SST) for periodic update of attitude information, a GPS receiver to provide on-board space vehicle position and velocity vector information, and a multiple microcomputer system for data processing and attitude determination functions. The functional block diagram of the proposed OADS system is shown. The computational requirements are evaluated based upon this proposed OADS system.

  1. The global warming in the North Atlantic Sector and the role of the ocean

    NASA Astrophysics Data System (ADS)

    Hand, R.; Keenlyside, N. S.; Greatbatch, R. J.; Omrani, N. E.

    2014-12-01

    This work presents an analysis of North Atlantic ocean-atmosphere interaction in a warming climate, based on a long-term earth system model experiment forced by the RCP 8.5 scenario, the strongest greenhouse gas forcing used in the climate projections for the 5th Assessement report of the Intergovernmental Panel on Climate Change). In addition to a global increase in SSTs as a direct response to the radiative forcing, the model shows a distinct change of the local sea surface temperature (SST hereafter) patterns in the Gulf Stream region: The SST front moves northward by several hundred kilometers, likely as a response of the wind-driven part of the oceanic surface circulation, and becomes more zonal. As a consequence of a massive slowdown of the Atlantic Meridional Overturning Circulation, the northeast North Atlantic only shows a moderate warming compared to the rest of the ocean. The feedback of these changes on the atmosphere was studied in a set of sensitivity experiments based on the SST climatology of the coupled runs. The set consists of a control run based on the historical run, a run using the full SST from the coupled RCP 8.5 run and two runs, where the SST signal was deconstructed into a homogenous mean warming part and a local pattern change. In the region of the precipitation maximum in the historical run the future scenario shows an increase of absolute SSTs, but a significant decrease in local precipitation, low-level convergence and upward motion. Since warmer SSTs usually cause the opposite, this indicates that the local response in that region is connected to the (with respect to the historical run) weakened SST gradients rather than to the absolute SST. Consistently, the model shows enhanced precipitation north of this region, where the SST gradients are enhanced. However, the signal restricts to the low and mid-troposphere and does not reach the higher model levels. There is little evidence for a large-scale response to the changes in the Gulf Stream region; instead, the large scale signal is mainly controlled by the warmer background state and the AMOC slowdown and influenced by tropical SSTs. In a warmer climate the same change in SST gradient has a stronger effect on precipitation and the model produces a slightly enhanced North Atlantic storm track.

  2. Impact of a warm core eddy on near-surface wind at Brazil-Malvinas Confluence region in high resolution simulations

    NASA Astrophysics Data System (ADS)

    Hackerott, J. A.; Mesquita, M. D. S.; Camargo, R. D.; Pezzi, L. P.

    2014-12-01

    Several studies show that near surface winds acquire anticyclonic (cyclonic) vorticity and accelerate (decelerate) when flow in the same direction as positive (negative) orientation of the Sea Surface Temperature (SST) gradient. Many of them were made over different oceanic thermal fronts in the world analyzing contrasts in SST gradients. However, still remains much uncertainty about how strong is this wind modulation, particularly on areas in need of studies and in-situ data, such as the Brazil-Malvinas Confluence Region (BMC) where intense SST gradients are found. This study brings results of the Weather Research and Forecasting (WRF) model simulations, configured with nested grids, where it is compared the influence of distinct synoptic patterns observed at BMC where three different SST patterns are imposed to WRF. These patterns are: (1) with a typical smoothed SST field, named as Control; (2) Small Eddy, which is the same as Control but adding an eddy of 1° radius and a +2°C amplitude; and (3) Intense Eddy, which is also the same as Control, but where an eddy of 1° radius and +4°C amplitude is added. The artificial imposed eddy is analogous to the SST patterns observed at BMC, with different intensities. The simulations were integrated for 76 hours using initial and lateral boundary conditions from the Global Forecast System (GFS) model with 0.5° resolution. The results showed that the wind at 10m height is influenced by the diurnal cycle of turbulence in the Marine Atmospheric Boundary Layer (MABL) modified by variations in SST. The wind magnitude changes up to 1m.s-1 over a 4/50°C.km-1 SST gradient and 0.6m.s-1 over a 2/50°C.km-1 SST gradient. This effect generates meso-scale disturbances that propagate to larger scales leading to disturbances in remote areas. Thus, the preliminary analyses are suggesting that there is an interaction between the meso and synoptic scale playing a role. Mechanisms such this one might not be captured by atmospheric global models used in low spatial resolution. Often, that is the case seen on operational models.

  3. Effects of theory of mind performance training on reducing bullying involvement in children and adolescents with high-functioning autism spectrum disorder

    PubMed Central

    Chen, Yu-Min; Liu, Tai-Ling; Hsiao, Ray C.; Hu, Huei-Fan

    2018-01-01

    Bullying involvement is prevalent among children and adolescents with autism spectrum disorder (ASD). This study examined the effects of theory of mind performance training (ToMPT) on reducing bullying involvement in children and adolescents with high-functioning ASD. Children and adolescents with high-functioning ASD completed ToMPT (n = 26) and social skills training (SST; n = 23) programs. Participants in both groups and their mothers rated the pretraining and posttraining bullying involvement of participants on the Chinese version of the School Bullying Experience Questionnaire. The paired t test was used to evaluate changes in bullying victimization and perpetration between the pretraining and posttraining assessments. Furthermore, the linear mixed-effect model was used to examine the difference in the training effect between the ToMPT and SST groups. The paired t test indicated that in the ToMPT group, the severities of both self-reported (p = .039) and mother-reported (p = .003) bullying victimization significantly decreased from the pretraining to posttraining assessments, whereas in the SST group, only self-reported bullying victimization significantly decreased (p = .027). The linear mixed-effect model indicated that compared with the SST program, the ToMPT program significantly reduced the severity of mother-reported bullying victimization (p = .041). The present study supports the effects of ToMPT on reducing mother-reported bullying victimization in children and adolescents with high-functioning ASD. PMID:29342210

  4. Variability in Bias of Gridded Sea Surface Temperature Data Products: Implications for Seasonally Resolved Marine Proxy Reconstructions

    NASA Astrophysics Data System (ADS)

    Ouellette, G., Jr.; DeLong, K. L.

    2016-12-01

    Seasonally resolved reconstructions of sea surface temperature (SST) are commonly produced using isotopic ratios and trace elemental ratios within the skeletal material of marine organisms such as corals, coralline algae, and mollusks. Using these geochemical proxies to produce paleoclimate reconstructions requires using regression methods to calibrate the proxy to observed SST, ideally with in situ SST records that span many years. Unfortunately, the few locations with in situ SST records rarely coincide with the time span of the marine proxy archive. Therefore, SST data products are often used for calibration and they are based on MOHSST or ICOADS SST observations as their main SST source but use different algorithms to produce globally gridded data products. These products include the Hadley Center's HADSST (5º) and interpolated HADISST (1º), NOAA's extended reconstructed SST (ERSST; 2º), optimum interpolation SST (OISST; 1º), and the Kaplan SST (5º). This study assessed the potential bias in these data products at marine archive sites throughout the tropical Atlantic using in situ SST where it was available, and a high-resolution (4 km) satellite-based SST data product from NOAA Pathfinder that has been shown to closely reflect in situ SST for our locations. Bias was assessed at each site, and then within each data product across the region for spatial homogeneity. Our results reveal seasonal biases in all data products, but not for all locations and not of a uniform magnitude or season among products. We found the largest differences in mean SST on the order of 1-3°C for single sites in the Gulf of Mexico, and differences for regional mean SST bias were 0.5-1°C when sites in the Gulf of Mexico were compared to sites in the Caribbean Sea within the same data product. No one SST data product outperformed the others and no systematic bias was found. This analysis illustrates regional strengths and weaknesses of these data products, and serves as a cautionary note against the wholesale use of a particular gridded data product for marine proxy calibration, whether for a single site or larger regional reconstruction, without considering the inherent heterogeneous bias present in each data product that we show varies among locations. Furthermore, this study has implications for comparing climate models and these SST data products.

  5. A New Approach to Suppress the Effect of Machining Error for Waveguide Septum Circular Polarizer at 230 GHz Band in Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yutaka; Harada, Ryohei; Tokuda, Kazuki; Kimura, Kimihiro; Ogawa, Hideo; Onishi, Toshikazu; Nishimura, Atsushi; Han, Johnson; Inoue, Makoto

    2017-05-01

    A new stepped septum-type waveguide circular polarizer (SST-CP) was developed to operate in the 230 GHz band for radio astronomy, especially submillimeter-band VLBI observations. For previously reported SST-CP models, the 230 GHz band is too high to achieve the design characteristics in manufactured devices because of unexpected machining errors. To realize a functional SST-CP that can operate in the submillimeter band, a new method was developed, in which the division surface is shifted from the top step of the septum to the second step from the top, and we simulated the expected machining error. The SST-CP using this method can compensate for specified machining errors and suppress serious deterioration. To verify the proposed method, several test pieces were manufactured, and their characteristics were measured using a VNA. These results indicated that the insertion losses were approximately 0.75 dB, and the input return losses and the crosstalk of the left- and right-hand circular polarization were greater than 20 dB at 220-245 GHz on 300 K. Moreover, a 230 GHz SST-CP was developed by the proposed method and installed in a 1.85-m radio telescope receiver systems, and then had used for scientific observations during one observation season without any problems. These achievements demonstrate the successful development of a 230 GHz SST-CP for radio astronomical observations. Furthermore, the proposed method can be applicable for observations in higher frequency bands, such as 345 GHz.

  6. The effect of changes in sea surface temperature on linear growth of Porites coral in Ambon Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corvianawatie, Corry, E-mail: corvianawatie@students.itb.ac.id; Putri, Mutiara R., E-mail: mutiara.putri@fitb.itb.ac.id; Cahyarini, Sri Y., E-mail: yuda@geotek.lipi.go.id

    Coral is one of the most important organisms in the coral reef ecosystem. There are several factors affecting coral growth, one of them is changes in sea surface temperature (SST). The purpose of this research is to understand the influence of SST variability on the annual linear growth of Porites coral taken from Ambon Bay. The annual coral linear growth was calculated and compared to the annual SST from the Extended Reconstructed Sea Surface Temperature version 3b (ERSST v3b) model. Coral growth was calculated by using Coral X-radiograph Density System (CoralXDS) software. Coral sample X-radiographs were used as input data.more » Chronology was developed by calculating the coral’s annual growth bands. A pair of high and low density banding patterns observed in the coral’s X-radiograph represent one year of coral growth. The results of this study shows that Porites coral extents from 2001-2009 and had an average growth rate of 1.46 cm/year. Statistical analysis shows that the annual coral linear growth declined by 0.015 cm/year while the annual SST declined by 0.013°C/year. SST and the annual linear growth of Porites coral in the Ambon Bay is insignificantly correlated with r=0.304 (n=9, p>0.05). This indicates that annual SST variability does not significantly influence the linear growth of Porites coral from Ambon Bay. It is suggested that sedimentation load, salinity, pH or other environmental factors may affect annual linear coral growth.« less

  7. The role of the neuropeptide somatostatin on methamphetamine and glutamate-induced neurotoxicity in the striatum of mice.

    PubMed

    Afanador, Lauriaselle; Mexhitaj, Ina; Diaz, Carolyn; Ordonez, Dalila; Baker, Lisa; Angulo, Jesus A

    2013-05-13

    A large body of evidence shows that methamphetamine (METH) causes sustained damage to the brain in animal models and human METH users. In chronic users there are indications of cognitive and motor deficits. Striatal neuropeptides are in a position to modulate the neurochemical effects of METH and consequently striatal neural damage. Somatostatin (SST) is an intrinsic striatal neuropeptide that has been shown to inhibit glutamate transmission; glutamate is integral to METH toxicity and contributes to nitric oxide (NO) synthesis. We hypothesize that SST will protect from METH by inhibition of NO synthesis and thus reducing oxidative stress. To this end, the SST analogue octreotide (OCT) was microinjected into the striatum prior to a systemic injection of METH (30mg/kg). We then assessed 3-nitrotyrosine (3-NT), an indirect index of NO production, tyrosine hydroxylase (TH) protein levels (dopamine terminal marker) and Fluoro-Jade C positive cells (degenerating cells). The SST agonist OCT dose dependently attenuated the METH-induced accumulation of striatal 3-NT. Moreover, pretreatment with OCT effectively mitigated cell death but failed to protect dopamine terminals. Next we co-infused OCT and NMDA and measured 3-NT and Fluoro-Jade C staining. Treatment with OCT had no effect on these parameters. The data demonstrate that SST attenuates the METH-induced production of NO protecting the striatum from the METH-induced cell loss. However, SST failed to prevent the toxicity of the dopamine terminals suggesting that pre- and post-synaptic striatal damage occur via independent mechanisms. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. The Role of the Neuropeptide Somatostatin on Methamphetamine and Glutamate-Induced Neurotoxicity in the Striatum of Mice

    PubMed Central

    Afanador, Lauriaselle; Mexhitaj, Ina; Diaz, Carolyn; Ordonez, Dalila; Baker, Lisa; Angulo, Jesus A.

    2014-01-01

    A large body of evidence shows that methamphetamine (METH) causes sustained damage to the brain in animal models and human METH users. In chronic users there are indications of cognitive and motor deficits. Striatal neuropeptides are in a position to modulate the neurochemical effects of METH and consequently striatal neural damage. Somatostatin (SST) is an intrinsic striatal neuropeptide that has been shown to inhibit glutamate transmission; glutamate is integral to METH toxicity and contributes to nitric oxide (NO) synthesis. We hypothesize that SST will protect from METH by inhibition of NO synthesis and thus reducing oxidative stress. To this end, the SST analogue octreotide (OCT) was microinjected into the striatum prior to a systemic injection of METH (30 mg/kg). We then assessed 3-nitrotyrosine (3-NT), an indirect index of NO production, tyrosine hydroxylase (TH) protein levels (dopamine terminal marker) and Fluoro-Jade C positive cells (degenerating cells). The SST agonist OCT dose dependently attenuated the METH-induced accumulation of striatal 3-NT. Moreover, pretreatment with OCT effectively mitigated cell death but failed to protect dopamine terminals. Next we co-infused OCT and NMDA and measured 3-NT and Fluoro-Jade C staining. Treatment with OCT had no effect on these parameters. The data demonstrate that SST attenuates the METH-induced production of NO protecting the striatum from the METH-induced cell loss. However, SST failed to prevent the toxicity of the dopamine terminals suggesting that pre- and post-synaptic striatal damage occur via independent mechanisms. PMID:23524190

  9. A Realization of Bias Correction Method in the GMAO Coupled System

    NASA Technical Reports Server (NTRS)

    Chang, Yehui; Koster, Randal; Wang, Hailan; Schubert, Siegfried; Suarez, Max

    2018-01-01

    Over the past several decades, a tremendous effort has been made to improve model performance in the simulation of the climate system. The cold or warm sea surface temperature (SST) bias in the tropics is still a problem common to most coupled ocean atmosphere general circulation models (CGCMs). The precipitation biases in CGCMs are also accompanied by SST and surface wind biases. The deficiencies and biases over the equatorial oceans through their influence on the Walker circulation likely contribute the precipitation biases over land surfaces. In this study, we introduce an approach in the CGCM modeling to correct model biases. This approach utilizes the history of the model's short-term forecasting errors and their seasonal dependence to modify model's tendency term and to minimize its climate drift. The study shows that such an approach removes most of model climate biases. A number of other aspects of the model simulation (e.g. extratropical transient activities) are also improved considerably due to the imposed pre-processed initial 3-hour model drift corrections. Because many regional biases in the GEOS-5 CGCM are common amongst other current models, our approaches and findings are applicable to these other models as well.

  10. Ocean Chlorophyll as a Precursor of ENSO: An Earth System Modeling Study

    NASA Astrophysics Data System (ADS)

    Park, Jong-Yeon; Dunne, John P.; Stock, Charles A.

    2018-02-01

    Ocean chlorophyll concentration, a proxy for phytoplankton, is strongly influenced by internal ocean dynamics such as those associated with El Niño-Southern Oscillation (ENSO). Observations show that ocean chlorophyll responses to ENSO generally lead sea surface temperature (SST) responses in the equatorial Pacific. A long-term global Earth system model simulation incorporating marine biogeochemical processes also exhibits a preceding chlorophyll response. In contrast to simulated SST anomalies, which significantly lag the wind-driven subsurface heat response to ENSO, chlorophyll anomalies respond rapidly. Iron was found to be the key factor connecting the simulated surface chlorophyll anomalies to the subsurface ocean response. Westerly wind bursts decrease central Pacific chlorophyll by reducing iron supply through wind-driven thermocline deepening but increase western Pacific chlorophyll by enhancing the influx of coastal iron from the maritime continent. Our results mechanistically support the potential for chlorophyll-based indices to inform seasonal ENSO forecasts beyond previously identified SST-based indices.

  11. Seasonal-to-decadal predictability in the Nordic Seas and Arctic with the Norwegian Climate Prediction Model

    NASA Astrophysics Data System (ADS)

    Counillon, Francois; Kimmritz, Madlen; Keenlyside, Noel; Wang, Yiguo; Bethke, Ingo

    2017-04-01

    The Norwegian Climate Prediction Model combines the Norwegian Earth System Model and the Ensemble Kalman Filter data assimilation method. The prediction skills of different versions of the system (with 30 members) are tested in the Nordic Seas and the Arctic region. Comparing the hindcasts branched from a SST-only assimilation run with a free ensemble run of 30 members, we are able to dissociate the predictability rooted in the external forcing from the predictability harvest from SST derived initial conditions. The latter adds predictability in the North Atlantic subpolar gyre and the Nordic Seas regions and overall there is very little degradation or forecast drift. Combined assimilation of SST and T-S profiles further improves the prediction skill in the Nordic Seas and into the Arctic. These lead to multi-year predictability in the high-latitudes. Ongoing developments of strongly coupled assimilation (ocean and sea ice) of ice concentration in idealized twin experiment will be shown, as way to further enhance prediction skill in the Arctic.

  12. Software design and code generation for the engineering graphical user interface of the ASTRI SST-2M prototype for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Tanci, Claudio; Tosti, Gino; Antolini, Elisa; Gambini, Giorgio F.; Bruno, Pietro; Canestrari, Rodolfo; Conforti, Vito; Lombardi, Saverio; Russo, Federico; Sangiorgi, Pierluca; Scuderi, Salvatore

    2016-08-01

    ASTRI is an on-going project developed in the framework of the Cherenkov Telescope Array (CTA). An end- to-end prototype of a dual-mirror small-size telescope (SST-2M) has been installed at the INAF observing station on Mt. Etna, Italy. The next step is the development of the ASTRI mini-array composed of nine ASTRI SST-2M telescopes proposed to be installed at the CTA southern site. The ASTRI mini-array is a collaborative and international effort carried on by Italy, Brazil and South-Africa and led by the Italian National Institute of Astrophysics, INAF. To control the ASTRI telescopes, a specific ASTRI Mini-Array Software System (MASS) was designed using a scalable and distributed architecture to monitor all the hardware devices for the telescopes. Using code generation we built automatically from the ASTRI Interface Control Documents a set of communication libraries and extensive Graphical User Interfaces that provide full access to the capabilities offered by the telescope hardware subsystems for testing and maintenance. Leveraging these generated libraries and components we then implemented a human designed, integrated, Engineering GUI for MASS to perform the verification of the whole prototype and test shared services such as the alarms, configurations, control systems, and scientific on-line outcomes. In our experience the use of code generation dramatically reduced the amount of effort in development, integration and testing of the more basic software components and resulted in a fast software release life cycle. This approach could be valuable for the whole CTA project, characterized by a large diversity of hardware components.

  13. High Altitude Radiations Relevant to the High Speed Civil Transport (HSCT)

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Goldhagan, P.; Maiden, D. L.; Tai, H.

    2004-01-01

    The Langley Research Center (LaRC) performed atmospheric radiation studies under the SST development program in which important ionizing radiation components were measured and extended by calculations to develop the existing atmospheric ionizing radiation (AIR) model. In that program the measured neutron spectrum was limited to less than 10 MeV by the available 1960-1970 instrumentation. Extension of the neutron spectrum to high energies was made using the LaRC PROPER-3C monte carlo code. It was found that the atmospheric neutrons contributed about half of the dose equivalent and approximately half of the neutron contribution was from high energy neutrons above 10 MeV. Furthermore, monte carlo calculations of solar particle events showed that potential exposures as large as 10-100 mSv/hr may occur on important high latitude routes but acceptable levels of exposure could be obtained if timely descent to subsonic altitudes could be made. The principal concern was for pregnant occupants onboard the aircraft. As a result of these studies the FAA Advisory Committee on the Radiobiological Aspects of the SST recommended: 1. Crew members will have to be informed of their exposure levels 2. Maximum exposures on any flight to be limited to 5 mSv 3. Airborne radiation detection devices for total exposure and exposure rates 4. Satellite monitoring system to provide SST aircraft real-time information on atmospheric radiation levels for exposure mitigation 5. A solar forecasting system to warn flight operations of an impending solar event for flight scheduling and alert status. These recommendations are a reasonable starting point to requirements for the HSCT with some modification reflecting new standards of protection as a result of changing risk coefficients.

  14. Environmental Suitability of Vibrio Infections in a Warming Climate: An Early Warning System.

    PubMed

    Semenza, Jan C; Trinanes, Joaquin; Lohr, Wolfgang; Sudre, Bertrand; Löfdahl, Margareta; Martinez-Urtaza, Jaime; Nichols, Gordon L; Rocklöv, Joacim

    2017-10-10

    Some Vibrio spp. are pathogenic and ubiquitous in marine waters with low to moderate salinity and thrive with elevated sea surface temperature (SST). Our objective was to monitor and project the suitability of marine conditions for Vibrio infections under climate change scenarios. The European Centre for Disease Prevention and Control (ECDC) developed a platform (the ECDC Vibrio Map Viewer) to monitor the environmental suitability of coastal waters for Vibrio spp. using remotely sensed SST and salinity. A case-crossover study of Swedish cases was conducted to ascertain the relationship between SST and Vibrio infection through a conditional logistic regression. Climate change projections for Vibrio infections were developed for Representative Concentration Pathway (RCP) 4.5 and RCP 8.5. The ECDC Vibrio Map Viewer detected environmentally suitable areas for Vibrio spp. in the Baltic Sea in July 2014 that were accompanied by a spike in cases and one death in Sweden. The estimated exposure-response relationship for Vibrio infections at a threshold of 16°C revealed a relative risk (RR)=1.14 (95% CI: 1.02, 1.27; p=0.024) for a lag of 2 wk; the estimated risk increased successively beyond this SST threshold. Climate change projections for SST under the RCP 4.5 and RCP 8.5 scenarios indicate a marked upward trend during the summer months and an increase in the relative risk of these infections in the coming decades. This platform can serve as an early warning system as the risk of further Vibrio infections increases in the 21st century due to climate change. https://doi.org/10.1289/EHP2198.

  15. Environmental Suitability of Vibrio Infections in a Warming Climate: An Early Warning System

    PubMed Central

    Trinanes, Joaquin; Lohr, Wolfgang; Sudre, Bertrand; Löfdahl, Margareta; Martinez-Urtaza, Jaime; Nichols, Gordon L.; Rocklöv, Joacim

    2017-01-01

    Background: Some Vibrio spp. are pathogenic and ubiquitous in marine waters with low to moderate salinity and thrive with elevated sea surface temperature (SST). Objectives: Our objective was to monitor and project the suitability of marine conditions for Vibrio infections under climate change scenarios. Methods: The European Centre for Disease Prevention and Control (ECDC) developed a platform (the ECDC Vibrio Map Viewer) to monitor the environmental suitability of coastal waters for Vibrio spp. using remotely sensed SST and salinity. A case-crossover study of Swedish cases was conducted to ascertain the relationship between SST and Vibrio infection through a conditional logistic regression. Climate change projections for Vibrio infections were developed for Representative Concentration Pathway (RCP) 4.5 and RCP 8.5. Results: The ECDC Vibrio Map Viewer detected environmentally suitable areas for Vibrio spp. in the Baltic Sea in July 2014 that were accompanied by a spike in cases and one death in Sweden. The estimated exposure–response relationship for Vibrio infections at a threshold of 16°C revealed a relative risk (RR)=1.14 (95% CI: 1.02, 1.27; p=0.024) for a lag of 2 wk; the estimated risk increased successively beyond this SST threshold. Climate change projections for SST under the RCP 4.5 and RCP 8.5 scenarios indicate a marked upward trend during the summer months and an increase in the relative risk of these infections in the coming decades. Conclusions: This platform can serve as an early warning system as the risk of further Vibrio infections increases in the 21st century due to climate change. https://doi.org/10.1289/EHP2198 PMID:29017986

  16. Large-scale effects on the regulation of tropical sea surface temperature

    NASA Technical Reports Server (NTRS)

    Hartmann, Dennis L.; Michelsen, Marc L.

    1993-01-01

    The dominant terms in the surface energy budget of the tropical oceans are absorption of solar radiation and evaporative cooling. If it is assumed that relative humidity in the boundary layer remains constant, evaporative cooling will increase rapidly with sea surface temperature (SST) because of the strong temperature dependence of saturation water vapor pressure. The resulting stabilization of SST provided by evaporative cooling is sufficient to overcome positive feedback contributed by the decrease of surface net longwave cooling with increasing SST. Evaporative cooling is sensitive to small changes in boundary-layer relative humidity. Large and negative shortwave cloud forcing in the regions of highest SST are supported by the moisture convergence associated with largescale circulations. In the descending portions of these circulations the shortwave cloud forcing is suppressed. When the effect of these circulations is taken into account by spatial averaging, the area-averaged cloud forcing shows no sensitivity to area-averaged SST changes associated with the 1987 warming event in the tropical Pacific. While the shortwave cloud forcing is large and important in the convective regions, the importance of its role in regulating the average temperature of the tropics and in modulating temperature gradients within the tropics is less clear. A heuristic model of SST is used to illustrate the possible role of large-scale atmospheric circulations on SST in the tropics and the coupling between SST gradients and mean tropical SST. The intensity of large-scale circulations responds sensitivity to SST gradients and affects the mean tropical SST by supplying dry air to the planetary boundary layer. Large SST gradients generate vigorous circulations that increase evaporation and reduce the mean SST.

  17. Changes in neuronal response to ischemia in retinas with genetic alterations of somatostatin receptor expression.

    PubMed

    Catalani, Elisabetta; Cervia, Davide; Martini, Davide; Bagnoli, Paola; Simonetti, Elisa; Timperio, Anna Maria; Casini, Giovanni

    2007-03-01

    Ischemia is a primary cause of neuronal death in retinal diseases. The repertoire of expressed transmitter receptors would determine the neurons' responses to ischemic damage, and peptidergic receptors may be involved. With a new in vitro model of the ischemic mouse retina, we investigated whether an altered expression of somatostatin receptors could modulate retinal responses to ischemia. We used retinas of somatostatin receptor 1 (sst(1)) knock out (KO) mice, where sst(2) are over-expressed and over-functional, and of sst(2) KO mice. TUNEL analysis of ischemic retinas showed a marked reduction of cell death in sst(1) KO retinas, while there were no differences between wild-type (WT) and sst(2) KO retinas. In addition, caspase-3 mRNA expression was also reduced in sst(1) KO as compared to WT retinas. An immunohistochemical analysis demonstrated that different cell populations responded differently to the ischemic insult, and that the persistence of some immunohistochemical markers was greater in sst(1) KO than in WT or in sst(2) KO retinas. In particular, rod bipolar cell survival was markedly improved in sst(1) KO retinas, while it was dramatically decreased in sst(2) KO retinas. Furthermore, consistent with a role of glutamate excitotoxicity in ischemia-induced neuronal death, retinal glutamate release was observed to increase under ischemic conditions, but this increase was significantly reduced in sst(1) KO retinas. These observations demonstrate that an increased presence of functional sst(2) protects against retinal ischemia, thus implementing the background for the use of sst(2) analogs in therapies of retinal diseases such as glaucoma or diabetic retinopathy.

  18. Observations of Local Positive Low Cloud Feedback Patterns and Their Role in Internal Variability and Climate Sensitivity

    NASA Astrophysics Data System (ADS)

    Yuan, Tianle; Oreopoulos, Lazaros; Platnick, Steven E.; Meyer, Kerry

    2018-05-01

    Modeling studies have shown that cloud feedbacks are sensitive to the spatial pattern of sea surface temperature (SST) anomalies, while cloud feedbacks themselves strongly influence the magnitude of SST anomalies. Observational counterparts to such patterned interactions are still needed. Here we show that distinct large-scale patterns of SST and low-cloud cover (LCC) emerge naturally from objective analyses of observations and demonstrate their close coupling in a positive local SST-LCC feedback loop that may be important for both internal variability and climate change. The two patterns that explain the maximum amount of covariance between SST and LCC correspond to the Interdecadal Pacific Oscillation and the Atlantic Multidecadal Oscillation, leading modes of multidecadal internal variability. Spatial patterns and time series of SST and LCC anomalies associated with both modes point to a strong positive local SST-LCC feedback. In many current climate models, our analyses suggest that SST-LCC feedback strength is too weak compared to observations. Modeled local SST-LCC feedback strength affects simulated internal variability so that stronger feedback produces more intense and more realistic patterns of internal variability. To the extent that the physics of the local positive SST-LCC feedback inferred from observed climate variability applies to future greenhouse warming, we anticipate significant amount of delayed warming because of SST-LCC feedback when anthropogenic SST warming eventually overwhelm the effects of internal variability that may mute anthropogenic warming over parts of the ocean. We postulate that many climate models may be underestimating both future warming and the magnitude of modeled internal variability because of their weak SST-LCC feedback.

  19. Comparison of single-stapling and hemi-double-stapling methods for intracorporeal esophagojejunostomy using a circular stapler after totally laparoscopic total gastrectomy.

    PubMed

    Amisaki, Masataka; Kihara, Kyoichi; Endo, Kanenori; Suzuki, Kazunori; Nakamura, Seiichi; Sawata, Takashi; Shimizu, Tetsu

    2016-07-01

    Laparoscopic total gastrectomy is not widely performed because of the difficulty of esophagojejunal reconstruction. This study analyzed complication rates of two different methods for reconstruction by a circular stapler after totally laparoscopic total gastrectomy (TLTG). Between 2010 and 2014, clinical data of 19 patients who underwent TLTG for gastric adenocarcinoma were collected retrospectively. There were two methods to fix the anvil of a circular stapler into the distal esophagus: In the single-stapling technique (SST) group, Endo-PSI(II) was used for purse-suturing on the distal esophagus for reconstruction, and in the hemi-double-stapling technique (hemi-DST) group, the esophagus was cut by linear stapler with the entry hole of the anvil shaft opened after inserting the anvil tail. In both groups, surgical procedures were the same, except for the reconstruction. All TLTGs were performed securely without mortality. Intracorporeal laparoscopic esophagojejunal anastomosis was performed successfully for all the patients. In the hemi-DST group, four patients experienced anastomotic stenosis, three of whom required endoscopic balloon dilation. In contrast, no stenosis was seen in the SST group (p = 0.033). Anastomosis with SST is preferred to that with hemi-DST to minimize postoperative complications.

  20. Molecular evidence and clinical importance of β-arrestins expression in patients with acromegaly.

    PubMed

    Coelho, Maria Caroline Alves; Vasquez, Marina Lipkin; Wildemberg, Luiz Eduardo; Vázquez-Borrego, Mari C; Bitana, Luciana; Camacho, Aline Helen da Silva; Silva, Débora; Ogino, Liana Lumi; Ventura, Nina; Chimelli, Leila; Luque, Raul M; Kasuki, Leandro; Gadelha, Mônica R

    2018-04-01

    β-arrestins seem to have a role in endocytosis and desensitization of somatostatin receptor subtype 2 (sst2) and could be associated with the responsiveness to somatostatin receptor ligands (SRL) in patients with acromegaly. To investigate the in vivo correlation between β-arrestins 1 and 2 with sst2, sst5 and dopamine receptor subtype 2 (D2) expressions, and the association of β-arrestins with response to first-generation SRL and invasiveness in somatotropinomas. β-arrestins 1 and 2, sst2, sst5 and D2 mRNA expressions were evaluated by quantitative real-time RT-PCR on tumoral tissue of 96 patients. Moreover, sst2 and sst5 protein expressions were also evaluated in 40 somatotropinomas by immunohistochemistry. Response to SRL, defined as GH <1 μg/l and normal IGF-I levels, was assessed in 40 patients. The Knosp-Steiner criteria were used to define invasiveness. Median β-arrestin 1, β-arrestin 2, sst2, sst5 and D2 mRNA copy numbers were 478; 9375; 731; 156; and 3989, respectively. There was a positive correlation between β-arrestins 1 and 2 (R = 0.444, P < 0.001). However, no correlation between β-arrestins and sst2, sst5 (mRNA and protein levels) or D2 was found. No association was found between β-arrestins expression and SRL responsiveness or tumour invasiveness. Although previous data suggest a putative correlation between β-arrestins and sst2, our data clearly indicated that no association existed between β-arrestins and sst2, sst5 or D2 expression, nor with response to SRL or tumour invasiveness. Therefore, further studies are required to clarify whether β-arrestins have a role in the response to treatment with SRL in acromegaly. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  1. Aerodynamic investigations of a disc-wing

    NASA Astrophysics Data System (ADS)

    Dumitrache, Alexandru; Frunzulica, Florin; Grigorescu, Sorin

    2017-01-01

    The purpose of this paper is to evaluate the aerodynamic characteristics of a wing-disc, for a civil application in the fire-fighting system. The aerodynamic analysis is performed using a CFD code, named ANSYS Fluent, in the flow speed range up to 25 m/s, at lower and higher angle of attack. The simulation is three-dimensional, using URANS completed by a SST turbulence model. The results are used to examine the flow around the disc with increasing angle of attack and the structure of the wake.

  2. Impact of Lake Okeechobee Sea Surface Temperatures on Numerical Predictions of Summertime Convective Systems over South Florida

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Splitt, Michael E.; Fuell, Kevin K.; Santos, Pablo; Lazarus, Steven M.; Jedlovec, Gary J.

    2009-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center, the Florida Institute of Technology, and the NOAA/NWS Weather Forecast Office at Miami, FL (MFL) are collaborating on a project to investigate the impact of using high-resolution, 2-km Moderate Resolution Imaging Spectroradiometer (MODIS) sea surface temperature (SST) composites within the Weather Research and Forecasting (WRF) prediction system. The NWS MFL is currently running WRF in real-time to support daily forecast operations, using the National Centers for Environmental Prediction Nonhydrostatic Mesoscale Model dynamical core within the NWS Science and Training Resource Center's Environmental Modeling System (EMS) software. Twenty-seven hour forecasts are run daily initialized at 0300, 0900, 1500, and 2100 UTC on a domain with 4-km grid spacing covering the southern half of Florida and adjacent waters of the Gulf of Mexico and Atlantic Ocean. The SSTs are initialized with the NCEP Real-Time Global (RTG) analyses at 1/12deg resolution. The project objective is to determine whether more accurate specification of the lower-boundary forcing over water using the MODIS SST composites within the 4-km WRF runs will result in improved sea fluxes and hence, more accurate e\\olutiono f coastal mesoscale circulations and the associated sensible weather elements. SPoRT conducted parallel WRF EMS runs from February to August 2007 identical to the operational runs at NWS MFL except for the use of MODIS SST composites in place of the RTG product as the initial and boundary conditions over water. During the course of this evaluation, an intriguing case was examined from 6 May 2007, in which lake breezes and convection around Lake Okeechobee evolved quite differently when using the high-resolution SPoRT MODIS SST composites versus the lower-resolution RTG SSTs. This paper will analyze the differences in the 6 May simulations, as well as examine other cases from the summer 2007 in which the WRF-simulated Lake Okeechobee breezes evolved differently due to the SST initialization. The effects on wind fields and precipitation systems will be emphasized, including validation against surface mesonet observations and Stage IV precipitation grids.

  3. The role of local sea surface temperature pattern changes in shaping climate change in the North Atlantic sector

    NASA Astrophysics Data System (ADS)

    Hand, Ralf; Keenlyside, Noel S.; Omrani, Nour-Eddine; Bader, Jürgen; Greatbatch, Richard J.

    2018-03-01

    Beside its global effects, climate change is manifested in many regionally pronounced features mainly resulting from changes in the oceanic and atmospheric circulation. Here we investigate the influence of the North Atlantic SST on shaping the winter-time response to global warming. Our results are based on a long-term climate projection with the Max Planck Institute Earth System Model (MPI-ESM) to investigate the influence of North Atlantic sea surface temperature pattern changes on shaping the atmospheric climate change signal. In sensitivity experiments with the model's atmospheric component we decompose the response into components controlled by the local SST structure and components controlled by global/remote changes. MPI-ESM simulates a global warming response in SST similar to other climate models: there is a warming minimum—or "warming hole"—in the subpolar North Atlantic, and the sharp SST gradients associated with the Gulf Stream and the North Atlantic Current shift northward by a few a degrees. Over the warming hole, global warming causes a relatively weak increase in rainfall. Beyond this, our experiments show more localized effects, likely resulting from future SST gradient changes in the North Atlantic. This includes a significant precipitation decrease to the south of the Gulf Stream despite increased underlying SSTs. Since this region is characterised by a strong band of precipitation in the current climate, this is contrary to the usual case that wet regions become wetter and dry regions become drier in a warmer climate. A moisture budget analysis identifies a complex interplay of various processes in the region of modified SST gradients: reduced surface winds cause a decrease in evaporation; and thermodynamic, modified atmospheric eddy transports, and coastal processes cause a change in the moisture convergence. The changes in the the North Atlantic storm track are mainly controlled by the non-regional changes in the forcing. The impact of the local SST pattern changes on regions outside the North Atlantic is small in our setup.

  4. SST and OLR relationship during Indian summer monsoon: a coupled climate modelling perspective

    NASA Astrophysics Data System (ADS)

    Chaudhari, Hemantkumar S.; Hazra, Anupam; Pokhrel, Samir; Chakrabarty, Chandrima; Saha, Subodh Kumar; Sreenivas, P.

    2018-04-01

    The study mainly investigates sea surface temperature (SST) and outgoing longwave radiation (OLR) relationships in coupled climate model. To support the analysis, high-level cloud and OLR relationship is also investigated. High-level cloud and OLR relationship depicts significant negative correlation over the entire monsoon regime. Coupled climate model is able to produce the same. SST and OLR relationship in observation also depicts significant negative relationship, in particular, over the Equatorial Eastern Indian Ocean (EIO) region. Climate Forecast System version 2 (CFSv2) is able to portray the negative relationship over EIO region; however, it is underestimated as compared to observation. Significant negative correlations elucidate that local SSTs regulate the convection and further it initiates Bjerknes feedback in the central Indian Ocean. It connotes that SST anomalies during monsoon period tend to be determined by oceanic forcing. The heat content of the coastal Bay of Bengal shows highest response to EIO SST by a lag of 1 month. It suggests that the coastal region of the Bay of Bengal is marked by coastally trapped Kelvin waves, which might have come from EIO at a time lag of 1 month. Sea surface height anomalies, depth at 20 °C isotherms and depth at 26 isotherms also supports the above hypothesis. Composite analysis based on EIO index and coupled climate model sensitivity experiments also suggest that the coastal Bay of Bengal region is marked by coastally trapped Kelvin waves, which are propagated from EIO at a time lag of 1 month. Thus, SST and OLR relationship pinpoints that the Bay of Bengal OLR (convection) is governed by local ocean-atmospheric coupling, which is influenced by the delayed response from EIO brought forward through oceanic planetary waves at a lag of 1 month. These results have utmost predictive value for seasonal and extended range forecasting. Thus, OLR and SST relationship can constitute a pivotal role in investigating the atmosphere-ocean interaction.

  5. The group-based social skills training SOSTA-FRA in children and adolescents with high functioning autism spectrum disorder - study protocol of the randomised, multi-centre controlled SOSTA - net trial

    PubMed Central

    2013-01-01

    Background Group-based social skills training (SST) has repeatedly been recommended as treatment of choice in high-functioning autism spectrum disorder (HFASD). To date, no sufficiently powered randomised controlled trial has been performed to establish efficacy and safety of SST in children and adolescents with HFASD. In this randomised, multi-centre, controlled trial with 220 children and adolescents with HFASD it is hypothesized, that add-on group-based SST using the 12 weeks manualised SOSTA–FRA program will result in improved social responsiveness (measured by the parent rated social responsiveness scale, SRS) compared to treatment as usual (TAU). It is further expected, that parent and self reported anxiety and depressive symptoms will decline and pro-social behaviour will increase in the treatment group. A neurophysiological study in the Frankfurt HFASD subgroup will be performed pre- and post treatment to assess changes in neural function induced by SST versus TAU. Methods/design The SOSTA – net trial is designed as a prospective, randomised, multi-centre, controlled trial with two parallel groups. The primary outcome is change in SRS score directly after the intervention and at 3 months follow-up. Several secondary outcome measures are also obtained. The target sample consists of 220 individuals with ASD, included at the six study centres. Discussion This study is currently one of the largest trials on SST in children and adolescents with HFASD worldwide. Compared to recent randomised controlled studies, our study shows several advantages with regard to in- and exclusion criteria, study methods, and the therapeutic approach chosen, which can be easily implemented in non-university-based clinical settings. Trial registration ISRCTN94863788 – SOSTA – net: Group-based social skills training in children and adolescents with high functioning autism spectrum disorder. PMID:23289935

  6. Demonstration of SST value as EBVs descriptor in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Valentini, E.; Filipponi, F.; Nguyen Xuan, A.; Taramelli, A.

    2017-12-01

    Sea Surface Temperature is an Essential Climate and Ocean Variable (ECV - EOV) able to capture critical scales in the seascape warming patterns and to highlight the exceeding of thresholds. This presentation addresses the changes of the SST in the last three decades over the Mediterranean Sea, a "Large Marine Ecosystem (LME)", in order to speculate the value of such powerful variable, as proxy for the assessment of ecosystem state in terms of ecosystem structures, functions and composition key descriptor. Time series of daily SST for the period 1982-2016, estimated from multi-sensor satellite data and provided by Copernicus Marine Environment Monitoring Service (CMEMS-EU) are used to perform different statistical analysis on common fish species. Results highlight the critical conditions, the general trends as well as the spatial and temporal patterns, in terms of thermal growth, vitality and stress influence on selected fish species. Results confirm a constant increasing trend in SST with an average rise of 1.4° C in the past thirty years. The variance associated to the average trend is not constant across the entire Mediterranean Sea opening the way to multiple scenarios for fish growth and vitality in the diverse sub-basins. A major effort is oriented in addressing the cross-scale ecological interactions to assess the feasibility of using SST as descriptor for Essential Biodiversity Variables, able to prioritize areas and to feed operational tools for planning and management in the Mediterranean LME.

  7. Prediction of daily sea surface temperature using efficient neural networks

    NASA Astrophysics Data System (ADS)

    Patil, Kalpesh; Deo, Makaranad Chintamani

    2017-04-01

    Short-term prediction of sea surface temperature (SST) is commonly achieved through numerical models. Numerical approaches are more suitable for use over a large spatial domain than in a specific site because of the difficulties involved in resolving various physical sub-processes at local levels. Therefore, for a given location, a data-driven approach such as neural networks may provide a better alternative. The application of neural networks, however, needs a large experimentation in their architecture, training methods, and formation of appropriate input-output pairs. A network trained in this manner can provide more attractive results if the advances in network architecture are additionally considered. With this in mind, we propose the use of wavelet neural networks (WNNs) for prediction of daily SST values. The prediction of daily SST values was carried out using WNN over 5 days into the future at six different locations in the Indian Ocean. First, the accuracy of site-specific SST values predicted by a numerical model, ROMS, was assessed against the in situ records. The result pointed out the necessity for alternative approaches. First, traditional networks were tried and after noticing their poor performance, WNN was used. This approach produced attractive forecasts when judged through various error statistics. When all locations were viewed together, the mean absolute error was within 0.18 to 0.32 °C for a 5-day-ahead forecast. The WNN approach was thus found to add value to the numerical method of SST prediction when location-specific information is desired.

  8. Novel sst2-selective somatostatin agonists. Three-dimensional consensus structure by NMR

    PubMed Central

    Grace, Christy Rani R.; Erchegyi, Judit; Koerber, Steven C.; Reubi, Jean Claude; Rivier, Jean; Riek, Roland

    2008-01-01

    The three-dimensional NMR structures of six octapeptide agonist analogues of somatostatin (SRIF) in the free form are described. These analogues, with the basic sequence H-DPhe/Phe2-c[Cys3-Xxx7-DTrp8-Lys9-Thr10-Cys14]-Thr-NH2 (the numbering refers to the position in native SRIF), with Xxx7 being Ala/Aph, exhibit potent and highly selective binding to human SRIF type 2 (sst2) receptors. The backbone of these sst2-selective analogues have the usual type-II’ β-turn reported in the literature for sst2/3/5-subtype-selective analogues. Correlating biological results and NMR studies led to the identification of the side chains of DPhe2, DTrp8 and Lys9 as the necessary components of the sst2 pharmacophore. This is the first study to show that the aromatic ring at position 7 (Phe7) is not critical for sst2 binding and that it plays an important role in sst3 and sst5 binding. This pharmacophore is therefore different from that proposed by others for sst2/3/5 analogues. PMID:16854054

  9. Simulation Based Training Improves Airway Management for Helicopter EMS Teams

    NASA Technical Reports Server (NTRS)

    Dhindsa, Harinder S.; Reid, Renee; Murray, David; Lovelady, James; Powell, Katie; Sayles, Jeff; Stevenson, Christopher; Baker, Kathy; Solada, Brian; Carroll, Scott; hide

    2011-01-01

    The use of paralytic medications in the performance of RSI intubation is a high risk intervention used by many HEMS crews. There is no margin for error in RSI intubation as the results can be fatal. Operating room access for airway management training has become more difficult, and is not representative of the environment in which HEMS crews typically function. LifeEvac of Virginia designed and implemented an SST airway management program to provide a realistic, consistent training platform. The dynamic program incorporates standardized scenarios, and real life challenging cases that this and other programs have encountered. SST is done in a variety of settings including the helicopter, back of ambulances, staged car crashes and simulation centers. The result has been the indoctrination of a well defined, consistent approach to every airway management intervention. The SST program facillitates enhancement of technical skills. as well as team dynamics and communication.

  10. NOAA Coral Reef Watch: Decision Support Tools for Coral Reef Managers

    NASA Astrophysics Data System (ADS)

    Rauenzahn, J.; Eakin, C.; Skirving, W. J.; Burgess, T.; Christensen, T.; Heron, S. F.; Li, J.; Liu, G.; Morgan, J.; Nim, C.; Parker, B. A.; Strong, A. E.

    2010-12-01

    A multitude of natural and anthropogenic stressors exert substantial influence on coral reef ecosystems and contribute to bleaching events, slower coral growth, infectious disease outbreaks, and mortality. Satellite-based observations can monitor, at a global scale, environmental conditions that influence both short-term and long-term coral reef ecosystem health. From research to operations, NOAA Coral Reef Watch (CRW) incorporates paleoclimatic, in situ, and satellite-based biogeophysical data to provide near-real-time and forecast information and tools to help managers, researchers, and other stakeholders interpret coral health and stress. CRW has developed an operational, near-real-time product suite that includes sea surface temperature (SST), SST time series data, SST anomaly charts, coral bleaching HotSpots, and Degree Heating Weeks (DHW). Bi-weekly global SST analyses are based on operational nighttime-only SST at 50-km resolution. CRW is working to develop high-resolution products to better address thermal stress on finer scales and is applying climate models to develop seasonal outlooks of coral bleaching. Automated Satellite Bleaching Alerts (SBAs), available at Virtual Stations worldwide, provide the only global early-warning system to notify managers of changing reef environmental conditions. Currently, CRW is collaborating with numerous domestic and international partners to develop new tools to address ocean acidification, infectious diseases of corals, combining light and temperature to detect coral photosystem stress, and other parameters.

  11. A reduction in the asymmetry of ENSO amplitude due to global warming: The role of atmospheric feedback

    NASA Astrophysics Data System (ADS)

    Ham, Yoo-Geun

    2017-08-01

    This study analyzes a reduction in the asymmetry of El Niño Southern-Oscillation (ENSO) amplitude due to global warming in Coupled Model Intercomparison Project Phase 5 models. The multimodel-averaged Niño3 skewness during December-February season decreased approximately 40% in the RCP4.5 scenario compared to that in the historical simulation. The change in the nonlinear relationship between sea surface temperature (SST) and precipitation is a key factor for understanding the reduction in ENSO asymmetry due to global warming. In the historical simulations, the background SST leading to the greatest precipitation sensitivity (SST for Maximum Precipitation Sensitivity, SST_MPS) occurs when the positive SST anomaly is located over the equatorial central Pacific. Therefore, an increase in climatological SST due to global warming weakens the atmospheric response during El Niño over the central Pacific. However, the climatological SST over this region in the historical simulation is still lower than the SST_MPS for the negative SST anomaly; therefore, a background SST increase due to global warming can further increase precipitation sensitivity. The atmospheric feedbacks during La Niña are enhanced and increase the La Niña amplitude due to global warming.

  12. Cloning, Developmental, and Tissue-Specific Expression of Sucrose:Sucrose 1-Fructosyl Transferase from Taraxacum officinale. Fructan Localization in Roots1

    PubMed Central

    Van den Ende, Wim; Michiels, An; Van Wonterghem, Dominik; Vergauwen, Rudy; Van Laere, André

    2000-01-01

    Sucrose:sucrose 1-fructosyl transferase (1-SST) is the key enzyme initiating fructan synthesis in Asteraceae. Using reverse transcriptase-PCR, we isolated the cDNA for 1-SST from Taraxacum officinale. The cDNA-derived amino acid sequence showed very high homology to other Asteracean 1-SSTs (Cichorium intybus 86%, Cynara scolymus 82%, Helianthus tuberosus 80%), but homology to 1-SST from Allium cepa (46%) and Aspergillus foetidus (18%) was much lower. Fructan concentrations, 1-SST activities, 1-SST protein, and mRNA concentrations were compared in different organs during vegetative and generative development of T. officinale plants. Expression of 1-SST was abundant in young roots but very low in leaves. 1-SST was also expressed at the flowering stages in roots, stalks, and receptacles. A good correlation was found between northern and western blots showing transcriptional regulation of 1-SST. At the pre-flowering stage, 1-SST mRNA concentrations and 1-SST activities were higher in the root phloem than in the xylem, resulting in the higher fructan concentrations in the phloem. Fructan localization studies indicated that fructan is preferentially stored in phloem parenchyma cells in the vicinity of the secondary sieve tube elements. However, inulin-like crystals occasionally appeared in xylem vessels. PMID:10806226

  13. Assessing recent warming using instrumentally homogeneous sea surface temperature records.

    PubMed

    Hausfather, Zeke; Cowtan, Kevin; Clarke, David C; Jacobs, Peter; Richardson, Mark; Rohde, Robert

    2017-01-01

    Sea surface temperature (SST) records are subject to potential biases due to changing instrumentation and measurement practices. Significant differences exist between commonly used composite SST reconstructions from the National Oceanic and Atmospheric Administration's Extended Reconstruction Sea Surface Temperature (ERSST), the Hadley Centre SST data set (HadSST3), and the Japanese Meteorological Agency's Centennial Observation-Based Estimates of SSTs (COBE-SST) from 2003 to the present. The update from ERSST version 3b to version 4 resulted in an increase in the operational SST trend estimate during the last 19 years from 0.07° to 0.12°C per decade, indicating a higher rate of warming in recent years. We show that ERSST version 4 trends generally agree with largely independent, near-global, and instrumentally homogeneous SST measurements from floating buoys, Argo floats, and radiometer-based satellite measurements that have been developed and deployed during the past two decades. We find a large cooling bias in ERSST version 3b and smaller but significant cooling biases in HadSST3 and COBE-SST from 2003 to the present, with respect to most series examined. These results suggest that reported rates of SST warming in recent years have been underestimated in these three data sets.

  14. Simulation of different types of ENSO impacts on South Asian Monsoon in CCSM4

    NASA Astrophysics Data System (ADS)

    Islam, Siraj ul; Tang, Youmin

    2017-02-01

    It has been found in observation that there are different types of influences of El Nino Southern Oscillation (ENSO) on the South Asian Monsoon (SAM). A correct description and representation of these teleconnections is critical for climate models to simulate and predict SAM. In this study, we examine these teleconnections in NCAR CAM4 and CCSM4 models, including the strength and weakness of these models in preserving different types of ENSO-SAM relationships. By using observational and simulation dataset, the composite analysis, based on specific selection criteria, is performed for both SAM rainfall and the eastern equatorial Pacific sea surface temperature (SST) anomalies. Anomalous SAM rainfall is characterized in three different types i.e. the indirect influence of the SST anomalies of preceding winter (DJF-only), direct influence of the SST anomalies of concurrent summer (JJAS-only) and the combined influence of both preceding winter and concurrent summer (DJF&JJAS). The analysis reveals that CAM4 uncoupled simulation can reasonably well reproduce the anomalous SAM rainfall in DJF-only and DJF&JJAS types whereas the model fails to simulate the anomalous rainfall in the JJAS-only type. The better performance of CAM4, particularly in DJF&JJAS type, comes from its realistic simulation of moisture content and thermal contrast. Its failure to preserve the ENSO-SAM relationship of JJAS-only type is due to the absence of ENSO induced warming in Northern Indian Ocean via atmospheric circulation which is indirectly linked to the lack of air-sea coupling. The role of Indian Ocean in controlling the ENSO-SAM teleconnections of the DJF&JJAS type is further investigated using CAM4 sensitivity experiments. It is found that in absence of Indian Ocean SST, the anomalous SAM summer rainfall suppresses in the DJF&JJAS type, suggesting the important modulation by Indian Ocean SST probably through the preceding winter equatorial Pacific SST forcing and the atmospheric circulations. On the other hand, CCSM4 shows large systematical errors in DJF-only and DJF&JJAS types and reproduce weak anomalous SAM rainfall. The failure of CCSM4 in simulating DJF-only and DJF&JJAS types is found mainly due to the errors in its SST simulation. The JJAS-only type is better reproduced in the CCSM4 simulation as compared to CAM4 and observation composites. Strong convergence over the SAM region which intensifies the anomalous SAM is seen to be responsible for its better simulation in this type. It is found that the atmospheric circulations in CCSM4 contribute more than the thermal contrast in modulating the intensity of anomalous rainfall in JJAS-only type. This study suggests that, although air-sea coupling is important for better SAM simulation and its relationship with ENSO, the SST bias in coupled model can significantly degrade ENSO-SAM relationship.

  15. The role of the sea-surface temperature distribution on numerically simulated cyclogenesis during ERICA

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Perkey, Donald J.; Kreitzberg, Carl W.; Robertson, Franklin R.

    1991-01-01

    The goal was to quantify the extent to which a sea surface temperature (SST) front can influence cyclogenesis. The approach was to use the Drexel Limited-Area Mesoscale Prediction System (LAMPS) dynamical model to simulate cyclogenesis over various SST fields. Research during the past year focused on the development and testing of a four dimensional data assimilation (FDDA) technique within LAMPS. The technique is a continuous dynamical assimilation where forcing terms are added to the governing model equations to gradually nudge the model solution toward a gridded analysis. Here, the nudging is used as a dynamic initialization tool during a 12 hour preforecast to generate model balanced initial conditions for a subsequent 24 hour numerical prediction. Tests were performed to determine which variables to nudge and how to specify the four dimensional weighting function used to scale the nudging terms. To date, optimal results were obtained by nudging the u and v components of the wind along with the potential temperature. The weighting function ranged from 0 to 1 and varies in time as a quadratic polynomial. It was initialized at 0, reached its maximum at 9 hours into the preforecast, and fell back at 0 to 12 hours. The nudging terms are included in the model equations for all grid points except those within the model predicted oceanic boundary layer. This design attempts to confine changes imposed by the specified SST field to the oceanic boundary layer during the preforecast period.

  16. Regulation of Endogenous (Male) Rodent GLP-1 Secretion and Human Islet Insulin Secretion by Antagonism of Somatostatin Receptor 5.

    PubMed

    Farb, Thomas B; Adeva, Marta; Beauchamp, Thomas J; Cabrera, Over; Coates, David A; Meredith, Tamika DeShea; Droz, Brian A; Efanov, Alexander; Ficorilli, James V; Gackenheimer, Susan L; Martinez-Grau, Maria A; Molero, Victoriano; Ruano, Gema; Statnick, Michael A; Suter, Todd M; Syed, Samreen K; Toledo, Miguel A; Willard, Francis S; Zhou, Xin; Bokvist, Krister B; Barrett, David G

    2017-11-01

    Incretin and insulin responses to nutrient loads are suppressed in persons with diabetes, resulting in decreased glycemic control. Agents including sulfonylureas and dipeptidyl peptidase-4 inhibitors (DPP4i) partially reverse these effects and provide therapeutic benefit; however, their modes of action limit efficacy. Because somatostatin (SST) has been shown to suppress insulin and glucagonlike peptide-1 (GLP-1) secretion through the Gi-coupled SST receptor 5 (SSTR5) isoform in vitro, antagonism of SSTR5 may improve glycemic control via intervention in both pathways. Here, we show that a potent and selective SSTR5 antagonist reverses the blunting effects of SST on insulin secretion from isolated human islets, and demonstrate that SSTR5 antagonism affords increased levels of systemic GLP-1 in vivo. Knocking out Sstr5 in mice provided a similar increase in systemic GLP-1 levels, which were not increased further by treatment with the antagonist. Treatment of mice with the SSTR5 antagonist in combination with a DPP4i resulted in increases in systemic GLP-1 levels that were more than additive and resulted in greater glycemic control compared with either agent alone. In isolated human islets, the SSTR5 antagonist completely reversed the inhibitory effect of exogenous SST-14 on insulin secretion. Taken together, these data suggest that SSTR5 antagonism should increase circulating GLP-1 levels and stimulate insulin secretion (directly and via GLP-1) in humans, improving glycemic control in patients with diabetes. Copyright © 2017 Endocrine Society.

  17. Planetary-scale circulations in the presence of climatological and wave-induced heating

    NASA Technical Reports Server (NTRS)

    Salby, Murry L; Garcia, Rolando R.; Hendon, Harry H.

    1994-01-01

    Interaction between the large-scale circulation and the convective pattern is investigated in a coupled system governed by the linearized primitive equations. Convection is represented in terms of two components of heating: A 'climatological component' is prescribed stochastically to represent convection that is maintained by fixed distributions of land and sea and sea surface temperature (SST). An 'induced component' is defined in terms of the column-integrated moisture flux convergence to represent convection that is produced through feedback with the circulation. Each component describes the envelope organizing mesoscale convective activity. As SST on the equator is increased, induced heating amplifies in the gravest zonal wavenumbers at eastward frequencies, where positive feedback offsets dissipation. Under barotropic stratification, a critical SST of 29.5 C results in positive feedback exactly cancelling dissipation in wavenumber 1 for an eastward phase speed of 6 m/s. Sympathetic interaction between the circulation and the induced heating is the basis for 'frictional wave-Conditional Instability of the Second Kind (CISK)', which is distinguished from classical wave-CISK by rendering the gravest zonal dimensions most unstable. Under baroclinic stratification, the coupled system exhibits similar behavior. The critical SST is only 26.5 C for conditions representative of equinox, but in excess of 30 C for conditions representative of solstice. Having the form of an unsteady Walker circulation, the disturbance produced by frictional wave-CISK compares favorably with the observed life cycle of the Madden-Julian oscillation (MJO). SST above the critical value produces an amplifying disturbance in which enhanced convection coincides with upper-tropospheric westerlies and is positively correlated with temperature and surface convergence. Conversely, SST below the critical value produces a decaying disturbance in which enhanced convection coincides with upper-tropospheric easterlies and is nearly in quadrature with temperature and surface convergence. While sharing essential features with the MJO in the Eastern Hemisphere, frictional wave-CISK does not explain observed behavior in the Western Hemisphere, where the convective signal is largely absent. Comprised of Kelvin structure with the same frequency, observed behavior in the Western Hemisphere can be understood as a propagating response that is excited in and radiates away from the fluctuation of convection in the Eastern Hemisphere.

  18. BIM-23A760 influences key functional endpoints in pituitary adenomas and normal pituitaries: molecular mechanisms underlying the differential response in adenomas

    PubMed Central

    Ibáñez-Costa, Alejandro; López-Sánchez, Laura M.; Gahete, Manuel D.; Rivero-Cortés, Esther; Vázquez-Borrego, Mari C.; Gálvez, María A.; de la Riva, Andrés; Venegas-Moreno, Eva; Jiménez-Reina, Luis; Moreno-Carazo, Alberto; Tinahones, Francisco J.; Maraver-Selfa, Silvia; Japón, Miguel A.; García-Arnés, Juan A.; Soto-Moreno, Alfonso; Webb, Susan M.; Kineman, Rhonda D.; Culler, Michael D.; Castaño, Justo P.; Luque, Raúl M.

    2017-01-01

    Chimeric somatostatin/dopamine compounds such as BIM-23A760, an sst2/sst5/D2 receptors-agonist, have emerged as promising new approaches to treat pituitary adenomas. However, information on direct in vitro effects of BIM-23A760 in normal and tumoral pituitaries remains incomplete. The objective of this study was to analyze BIM-23A760 effects on functional parameters (Ca2+ signaling, hormone expression/secretion, cell viability and apoptosis) in pituitary adenomas (n = 74), and to compare with the responses of normal primate and human pituitaries (n = 3–5). Primate and human normal pituitaries exhibited similar sst2/sst5/D2 expression patterns, wherein BIM-23A760 inhibited the expression/secretion of several pituitary hormones (specially GH/PRL), which was accompanied by increased sst2/sst5/D2 expression in primates and decreased Ca2+ concentration in human cells. In tumoral pituitaries, BIM-23A760 also inhibited Ca2+ concentration, hormone secretion/expression and proliferation. However, BIM-23A760 elicited stimulatory effects in a subset of GHomas, ACTHomas and NFPAs in terms of Ca2+ signaling and/or hormone secretion, which was associated with the relative somatostatin/dopamine-receptors levels, especially sst5 and sst5TMD4. The chimeric sst2/sst5/D2 compound BIM-23A760 affects multiple, clinically relevant parameters on pituitary adenomas and may represent a valuable therapeutic tool. The relative ssts/D2 expression profile, particularly sst5 and/or sst5TMD4 levels, might represent useful molecular markers to predict the ultimate response of pituitary adenomas to BIM-23A760. PMID:28181484

  19. BIM-23A760 influences key functional endpoints in pituitary adenomas and normal pituitaries: molecular mechanisms underlying the differential response in adenomas.

    PubMed

    Ibáñez-Costa, Alejandro; López-Sánchez, Laura M; Gahete, Manuel D; Rivero-Cortés, Esther; Vázquez-Borrego, Mari C; Gálvez, María A; de la Riva, Andrés; Venegas-Moreno, Eva; Jiménez-Reina, Luis; Moreno-Carazo, Alberto; Tinahones, Francisco J; Maraver-Selfa, Silvia; Japón, Miguel A; García-Arnés, Juan A; Soto-Moreno, Alfonso; Webb, Susan M; Kineman, Rhonda D; Culler, Michael D; Castaño, Justo P; Luque, Raúl M

    2017-02-09

    Chimeric somatostatin/dopamine compounds such as BIM-23A760, an sst2/sst5/D 2 receptors-agonist, have emerged as promising new approaches to treat pituitary adenomas. However, information on direct in vitro effects of BIM-23A760 in normal and tumoral pituitaries remains incomplete. The objective of this study was to analyze BIM-23A760 effects on functional parameters (Ca 2+ signaling, hormone expression/secretion, cell viability and apoptosis) in pituitary adenomas (n = 74), and to compare with the responses of normal primate and human pituitaries (n = 3-5). Primate and human normal pituitaries exhibited similar sst2/sst5/D2 expression patterns, wherein BIM-23A760 inhibited the expression/secretion of several pituitary hormones (specially GH/PRL), which was accompanied by increased sst2/sst5/D2 expression in primates and decreased Ca 2+ concentration in human cells. In tumoral pituitaries, BIM-23A760 also inhibited Ca 2+ concentration, hormone secretion/expression and proliferation. However, BIM-23A760 elicited stimulatory effects in a subset of GHomas, ACTHomas and NFPAs in terms of Ca 2+ signaling and/or hormone secretion, which was associated with the relative somatostatin/dopamine-receptors levels, especially sst5 and sst5TMD4. The chimeric sst2/sst5/D 2 compound BIM-23A760 affects multiple, clinically relevant parameters on pituitary adenomas and may represent a valuable therapeutic tool. The relative ssts/D 2 expression profile, particularly sst5 and/or sst5TMD4 levels, might represent useful molecular markers to predict the ultimate response of pituitary adenomas to BIM-23A760.

  20. Correcting infrared satellite estimates of sea surface temperature for atmospheric water vapor attenuation

    NASA Technical Reports Server (NTRS)

    Emery, William J.; Yu, Yunyue; Wick, Gary A.; Schluessel, Peter; Reynolds, Richard W.

    1994-01-01

    A new satellite sea surface temperature (SST) algorithm is developed that uses nearly coincident measurements from the microwave special sensor microwave imager (SSM/I) to correct for atmospheric moisture attenuation of the infrared signal from the advanced very high resolution radiometer (AVHRR). This new SST algorithm is applied to AVHRR imagery from the South Pacific and Norwegian seas, which are then compared with simultaneous in situ (ship based) measurements of both skin and bulk SST. In addition, an SST algorithm using a quadratic product of the difference between the two AVHRR thermal infrared channels is compared with the in situ measurements. While the quadratic formulation provides a considerable improvement over the older cross product (CPSST) and multichannel (MCSST) algorithms, the SSM/I corrected SST (called the water vapor or WVSST) shows overall smaller errors when compared to both the skin and bulk in situ SST observations. Applied to individual AVHRR images, the WVSST reveals an SST difference pattern (CPSST-WVSST) similar in shape to the water vapor structure while the CPSST-quadratic SST difference appears unrelated in pattern to the nearly coincident water vapor pattern. An application of the WVSST to week-long composites of global area coverage (GAC) AVHRR data demonstrates again the manner in which the WVSST corrects the AVHRR for atmospheric moisture attenuation. By comparison the quadratic SST method underestimates the SST corrections in the lower latitudes and overestimates the SST in th e higher latitudes. Correlations between the AVHRR thermal channel differences and the SSM/I water vapor demonstrate the inability of the channel difference to represent water vapor in the midlatitude and high latitudes during summer. Compared against drifting buoy data the WVSST and the quadratic SST both exhibit the same general behavior with the relatively small differences with the buoy temperatures.

  1. Stratigraphic framework for Pliocene paleoclimate reconstruction: The correlation conundrum

    USGS Publications Warehouse

    Dowsett, H.J.; Robinson, M.M.

    2006-01-01

    Pre-Holocene paleoclimate reconstructions face a correlation conundrum because complications inherent in the stratigraphic record impede the development of synchronous reconstruction. The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) paleoenvironmental reconstructions have carefully balanced temporal resolution and paleoclimate proxy data to achieve a useful and reliable product and are the most comprehensive pre-Pleistocene data sets available for analysis of warmer-than-present climate and for climate modeling experiments. This paper documents the stratigraphic framework for the mid-Pliocene sea surface temperature (SST) reconstruction of the North Atlantic and explores the relationship between stratigraphic/temporal resolution and various paleoceanographic estimates of SST. The magnetobiostratigraphic framework for the PRISM North Atlantic region is constructed from planktic foraminifer, calcareous nannofossil and paleomagnetic reversal events recorded in deep-sea cores and calibrated to age. Planktic foraminifer census data from multiple samples within the mid-Pliocene yield multiple SST estimates for each site. Extracting a single SST value at each site from multiple estimates, given the limitations of the material and stratigraphic resolution, is problematic but necessary for climate model experiments. The PRISM reconstruction, unprecedented in its integration of many different types of data at a focused stratigraphic interval, utilizes a time slab approach and is based on warm peak average temperatures. A greater understanding of the dynamics of the climate system and significant advances in models now mandate more precise, globally distributed yet temporally synchronous SST estimates than are available through averaging techniques. Regardless of the precision used to correlate between sequences within the midd-Pliocene, a truly synoptic reconstruction in the temporal sense is unlikely. SST estimates from multiple proxies promise to further refine paleoclimate reconstructions but must consider the complications associated with each method, what each proxy actually records, and how these different proxies compare in time-averaged samples.

  2. The role of atmospheric internal variability on the prediction skill of interannual North Pacific sea-surface temperatures

    NASA Astrophysics Data System (ADS)

    Narapusetty, Balachandrudu

    2017-06-01

    The sensitivity of the sea-surface temperature (SST) prediction skill to the atmospheric internal variability (weather noise) in the North Pacific (20∘-60∘N;120∘E-80∘W) on decadal timescales is examined using state-of-the-art Climate Forecasting System model version 2 (CFS) and a variation of CFS in an Interactive Ensemble approach (CFSIE), wherein six copies of atmospheric components with different perturbed initial states of CFS are coupled with the same ocean model by exchanging heat, momentum and fresh water fluxes dynamically at the air-sea interface throughout the model integrations. The CFSIE experiments are designed to reduce weather noise and using a few ten-year long forecasts this study shows that reduction in weather noise leads to lower SST forecast skill. To understand the pathways that cause the reduced SST prediction skill, two twenty-year long forecasts produced with CFS and CFSIE for 1980-2000 are analyzed for the ocean subsurface characteristics that influence SST due to the reduction in weather noise in the North Pacific. The heat budget analysis in the oceanic mixed layer across the North Pacific reveals that weather noise significantly impacts the heat transport in the oceanic mixed layer. In the CFSIE forecasts, the reduced weather noise leads to increased variations in heat content due to shallower mixed layer, diminished heat storage and enhanced horizontal heat advection. The enhancement of the heat advection spans from the active Kuroshio regions of the east coast of Japan to the west coast of continental United States and significantly diffuses the basin-wide SST anomaly (SSTA) contrasts and leads to reduction in the SST prediction skill in decadal forecasts.

  3. Global Meteorological Drought: A Synthesis of Current Understanding with a Focus on SST Drivers of Precipitation Deficits

    NASA Technical Reports Server (NTRS)

    Schubert, S.; Stewart, R.; Wang, H.; Barlow, M.; Berbery, H.; Cai, W.; Hoerling, M.; Kanikicharla, K.; Koster, R.; Lyon, B.; hide

    2016-01-01

    Drought affects virtually every region of the world, and potential shifts in its character in a changing climate are a major concern. This article presents a synthesis of current understanding of meteorological drought, with a focus on the large-scale controls on precipitation afforded by sea surface temperature (SST anomalies), land surface feedbacks, and radiative forcings. The synthesis is primarily based on regionally-focused articles submitted to the Global Drought Information System (GDIS) collection together with new results from a suite of atmospheric general circulation model experiments intended to integrate those studies into a coherent view of drought worldwide. On interannual time scales, the preeminence of ENSO as a driver of meteorological drought throughout much of the Americas, eastern Asia, Australia, and the Maritime Continent is now well established, whereas in other regions (e.g., Europe, Africa, and India), the response to ENSO is more ephemeral or nonexistent. Northern Eurasia, central Europe, as well as central and eastern Canada stand out as regions with little SST-forced impacts on precipitation interannual time scales. Decadal changes in SST appear to be a major factor in the occurrence of long-term drought, as highlighted by apparent impacts on precipitation of the late 1990s 'climate shifts' in the Pacific and Atlantic SST. Key remaining research challenges include (i) better quantification of unforced and forced atmospheric variability as well as land/atmosphere feedbacks, (ii) better understanding of the physical basis for the leading modes of climate variability and their predictability, and (iii) quantification of the relative contributions of internal decadal SST variability and forced climate change to long-term drought.

  4. Inter-decadal variation of the Tropical Atlantic-Korea (TA-K) teleconnection pattern during boreal summer season

    NASA Astrophysics Data System (ADS)

    Ham, Yoo-Geun; Hwang, YeonJi; Lim, Young-Kwon; Kwon, Minho

    2017-12-01

    The inter-decadal variation of the positive relationship between the tropical Atlantic sea surface temperature (SST) and Korean precipitation during boreal summer season during 1900-2010 is examined. The 15-year moving correlation between the Tropical Atlantic SST (TAtlSST) index (SST anomalies from 30°S to 30°N and 60°W to 20°E) and Korean precipitation (precipitation anomalies from 35°-40°N to 120°-130°E) during June-July-August exhibits strong inter-decadal variation, which becomes positive at the 95% confidence level after the 1980s. Intensification of the linkage between the TAtlSST index and Korean precipitation after the 1980s is attributed to global warming via the increased background SST. The increase in the background SST over the Atlantic provides background conditions that enhance anomalous convective activity by anomalous Atlantic SST warming. Therefore, the overall atmospheric responses associated with the tropical Atlantic SST warming could intensify. The correlation between the TAtlSST index and Korean precipitation also exhibits strong inter-decadal variation within 1980-2010, which is over 0.8 during early 2000s, while it is relative low (i.e., around 0.6) during the early 1980s. The enhanced co-variability between the tropical and the mid-latitude Atlantic SST during the early 2000s indicates the intensification of TAtlSST-related Rossby wave source over the mid-latitude Atlantic, which excites stationary waves propagated from the Atlantic to the Korean peninsula across northern Europe and northeast Asia. This Rossby-wave train induces a cyclonic flow over the northern edge of the Korea, which intensifies southwesterly and results in precipitation over Korea. This observed decadal difference is well simulated by the stationary wave model experiments with a prescribed TAtlSST-related Rossby wave source over the mid-latitude Atlantic.

  5. A Modeling Study of Oceanic Response to Daily and Monthly Surface Forcing

    NASA Technical Reports Server (NTRS)

    Sui, Chung-Hsiung; Li, Xiao-Fan; Rienecker, Michele M.; Lau, William K.-M.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The goal of this study is to investigate the effect of high-frequency surface forcing (wind stresses and heat fluxes) on upper-ocean response. We use the reduced-gravity quasi-isopycnal ocean model by Schopf and Loughe (1995) for this study. Two experiments are performed: one with daily and the other with monthly surface forcing. The two experiments are referred to as DD and MM, respectively. The daily surface wind stress is produced from the SSM/I wind data (Atlas et al. 1991) using the drag coefficient of Large and Pond (1982). The surface latent and sensible heat fluxes are estimated using the atmospheric mixed layer model by Seager et al. (1995) with the time-varying air temperature and specific humidity from the NCEP-NCAR reanalysis (Kalnay et al. 1996). The radiation is based on climatological shortwave radiation from the Earth Radiation Budget Experiment (ERBE) [Harrison et al. 1993] and the daily GEWEX SRB data. The ocean model domain is restricted to the Pacific Ocean with realistic land boundaries. At the southern boundary the model temperature and salinity are relaxed to the Levitus (1994) climatology. The time-mean SST distribution from MM is close to the observed SST climatology while the mean SST field from DD is about 1.5 C cooler. To identify the responsible processes, we examined the mean heat budgets and the heat balance during the first year (when the difference developed) in the two experiments. The analysis reveals that this is contributed by two factors. One is the difference in latent heat flux. The other is the difference in mixing processes. To further evaluate the responsible processes, we repeated the DD experiment by reducing the based vertical diffusion from 1e-4 to 0.5e-5. The resultant SST field becomes quite closer to the observed SST field. SST variability from the two experiments is generally similar, but the equatorial SST differences between the two experiments show interannual variations. We are investigating the possible mechanisms responsible for the different responses.

  6. Plio-Pleistocene Sea Surface Temperature Variability As Measured by Different Proxies - A Cautionary Tale

    NASA Astrophysics Data System (ADS)

    Lawrence, K. T.; Woodard, S. C.; Castañeda, I. S.; deMenocal, P. B.; Peterson, L.; Rosenthal, Y.; Bochner, L.; Gorbey, D. B.; Mauriello, H.

    2016-12-01

    Conflicting interpretations from the application of different sea surface temperature (SST) proxies seeking to characterize past climate conditions of the same region have given rise to a number of controversies about key elements of Pliocene climate. Thus, a detailed look at whether or not different temperature proxies yield consistent results is warranted. Here, we examine Pliocene climate variability at the orbital scale reporting new alkenone-derived SST estimates from ODP Site 1088 (South Atlantic) and ODP Site 846 (Eastern Equatorial Pacific). Using these novel datasets and previously published records from a variety of different sites in a variety of localities, we further examine the consistency of Plio-Pleistocene SST variability and orbital signatures from faunal, Mg/Ca, and TEX86 SST records relative to Uk'37 SST records. We find that many companion SST records produce very similar mean trends and standard deviations as well as absolute temperature estimates that are generally within error of each other. Our analysis also suggests that many companion records, with a few notable exceptions, capture the same dominant Milankovitch periodicities and produce phase estimates relative to benthic oxygen isotope estimates that are within error of each other. However, marked structural differences occur between different proxy records on glacial-interglacial timescales in Uk'37 versus Mg/Ca comparisons and some Uk'37 versus TEX86 comparisons. Therefore, the temperature estimates of individual glacial-interglacial cycles may vary significantly when a specific time slice is explored. Our preliminary investigation suggests that whether or not climate records derived from different paleothermometers yield consistent results depends on the timescale being explored and the study site, which reflects key factors such as seasonality, ecology, and diagenetic regime. Additional work that explores the underlying causes of the differences observed among proxies and uses a more systematic approach to directly compare the results from different paleothermometers is required. Until we have a better and broader sense of where/when proxies perform consistently, we recommend caution in treating SST records from different proxies as interchangeable.

  7. A role for ocean biota in tropical intraseasonal atmospheric variability

    NASA Astrophysics Data System (ADS)

    Gildor, Hezi; Sobel, Adam H.; Cane, Mark A.; Sambrotto, Raymond N.

    2003-05-01

    We propose that temporal variations within the marine plankton system can induce intraseasonal variations in sea surface temperature (SST) through the effect on solar penetration due to chlorophyll and other optically active organic components. Sensitivity studies with a simple model suggest that these small oscillations in SST may stimulate radiative-convective oscillations in the atmosphere which amplify them and thus induce or modulate significant variability in the coupled system. Long term bio-optical measurements in the Western Pacific, where satellite time series are degraded by clouds, would provide a test of our theory and would improve our understanding of the heat balance in this climatically important region.

  8. Comparison of the Northeast Arctic cod year class strength (at the age of 3+) with the SST anomalies in main spawning ground (the Norwegian Shelf Waters) by results of analysis satellite monitoring data during last years.

    NASA Astrophysics Data System (ADS)

    Vanyushin, George

    2015-04-01

    Continuous long-term database (1998-2014) on the sea surface temperature (SST) comprising results of regional satellite monitoring (the Norwegian and the Barents seas) is used to resolve several applied problems. Authors have analyzed indirect influence the SST (the NOAA satellite data) on modern cod total stock biomass (abundance of the Northeast Arctic cod at age 3+). In this study, we went on the consideration of the relationship between the SST anomalies for March-April in the main spawning ground of the cod off the Lofoten islands in the Norwegian Shelf Waters and forecasting assessment of future cod generation success and its future abundance of 3 year old. Mean monthly SST and SST anomalies are computed for the selected area on the basis of the weekly SST maps which made by using the NOAA satellites data for the period 1998-2014. Comparison of the SST anomalies in the main spawning ground with abundance of the cod year class at age 3+ shows that survival of the cod generations was inhibited on the whole as negative (below -0,1C) well as positive SST anomalies (above +1,3C) during March and April. Finally, the results indicate that poor and low middle generations of cod at age 3+ (2002, 2004, 2010) occurred in years with negative or extremely high positive the SST anomalies in the spawning area. The SST anomalies in years which were close to normal significances provide conditions for appearance middle or strong generations of cod (2001-2003, 2005-2009, 2011-2013). So, the SST and SST anomalies (by the NOAA satellite data) characterize of increase in input of warm Atlantic waters which form numerous eddies along the main stream thus creating favorable conditions for spawning and development of the cod larvae and fry and provide them with food stock, finally direct influence on forming total stock biomass of cod and helping its population forecast. Key words: satellite monitoring of SST, the Northeast Arctic cod, spawning ground, forecast of the cod year class strength at age 3+.

  9. Search for Trends and Periodicities in Inter-hemispheric Sea Surface Temperature Difference

    NASA Astrophysics Data System (ADS)

    Rajesh, R.; Tiwari, R. K.

    2018-02-01

    Understanding the role of coupled solar and internal ocean dynamics on hemispheric climate variability is critical to climate modelling. We have analysed here 165 year long annual northern hemispheric (NH) and southern hemispheric (SH) sea surface temperature (SST) data employing spectral and statistical techniques to identify the imprints of solar and ocean-atmospheric processes, if any. We reconstructed the eigen modes of NH-SST and SH-SST to reveal non-linear oscillations superimposed on the monotonic trend. Our analysis reveals that the first eigen mode of NH-SST and SH-SST representing long-term trend of SST variability accounts for 15-23% variance. Interestingly, these components are matching with first eigen mode (99% variance) of the total solar irradiance (TSI) suggesting possible impact of solar activity on long-term SST variation. Furthermore, spectral analysis of SSA reconstructed signal revealed statistically significant periodicities of 63 ± 5, 22 ± 2, 10 ± 1, 7.6, 6.3, 5.2, 4.7, and 4.2 years in both NH-SST and SH-SST data. The major harmonics centred at 63 ± 5, 22 ± 2, and 10 ± 1 years are similar to solar periodicities and hence may represent solar forcing, while the components peaking at around 7.6, 6.3, 5.2, 4.7, and 4.2 years apparently falls in the frequency bands of El-Nino-Southern Oscillations linked to the oceanic internal processes. Our analyses also suggest evidence for the amplitude modulation of 9-11 and 21-22 year solar cycles, respectively, by 104 and 163 years in northern and southern hemispheric SST data. The absence of the above periodic oscillations in CO2 fails to suggest its role on observed inter-hemispheric SST difference. The cross-plot analysis also revealed strong influence of solar activity on linear trend of NH- and SH-SST in addition to small contribution from CO2. Our study concludes that (1) the long-term trends in northern and southern hemispheric SST variability show considerable synchronicity with cyclic warming and cooling phases and (2) the difference in cyclic forcing and non-linear modulations stemming from solar variability as a possible source of hemispheric SST differences.

  10. Performance of Regional Climate Model in Simulating Monsoon Onset Over Indian Subcontinent

    NASA Astrophysics Data System (ADS)

    Bhatla, R.; Mandal, B.; Verma, Shruti; Ghosh, Soumik; Mall, R. K.

    2018-06-01

    The performance of various Convective Parameterization Schemes (CPSs) of Regional Climate Model version 4.3 (RegCM-4.3) for simulation of onset phase of Indian summer monsoon (ISM) over Kerala was studied for the period of 2001-2010. The onset date and its associated spatial variation were simulated using RegCM-4.3 four core CPS, namely Kuo, Tiedtke, Emanuel and Grell; and with two mixed convection schemes Mix98 (Emanuel over land and Grell over ocean) and Mix99 (Grell over land and Emanuel over ocean) on the basis of criteria given by the India Meteorological Department (IMD) (Pai and Rajeevan in Indian summer monsoon onset: variability and prediction. National Climate Centre, India Meteorological Department, 2007). It has been found that out of six CPS, two schemes, namely Tiedtke and Mix99 simulated the onset date properly. The onset phase is characterized with several transition phases of atmosphere. Therefore, to study the thermal response or the effect of different sea surface temperature (SST), namely ERA interim (ERSST) and weekly optimal interpolation (OI_WK SST) on Indian summer monsoon, the role of two different types of SST has been used to investigate the simulated onset date. In addition, spatial atmospheric circulation pattern during onset phase were analyzed using reanalyze dataset of ERA Interim (EIN15) and National Oceanic and Atmospheric Administration (NOAA), respectively, for wind and outgoing long-wave radiation (OLR) pattern. Among the six convective schemes of RegCM-4.3 model, Tiedtke is in good agreement with actual onset dates and OI_WK SST forcing is better for simulating onset of ISM over Kerala.

  11. Remotely-sensed sea surface temperatuares (SST) of Northeaster Pacific Coastal Zones

    EPA Science Inventory

    Sea surface temperature (SST) is an important indicator of long-term trends and geographical temperature patterns; however there have been relatively few long-term records of SST in near-coastal habitats. In situ SST measurements are irregular in both space and time. Therefore, w...

  12. A comparison between general circulation model simulations using two sea surface temperature datasets for January 1979

    NASA Technical Reports Server (NTRS)

    Ose, Tomoaki; Mechoso, Carlos; Halpern, David

    1994-01-01

    Simulations with the UCLA atmospheric general circulation model (AGCM) using two different global sea surface temperature (SST) datasets for January 1979 are compared. One of these datasets is based on Comprehensive Ocean-Atmosphere Data Set (COADS) (SSTs) at locations where there are ship reports, and climatology elsewhere; the other is derived from measurements by instruments onboard NOAA satellites. In the former dataset (COADS SST), data are concentrated along shipping routes in the Northern Hemisphere; in the latter dataset High Resolution Infrared Sounder (HIRS SST), data cover the global domain. Ensembles of five 30-day mean fields are obtained from integrations performed in the perpetual-January mode. The results are presented as anomalies, that is, departures of each ensemble mean from that produced in a control simulation with climatological SSTs. Large differences are found between the anomalies obtained using COADS and HIRS SSTs, even in the Northern Hemisphere where the datasets are most similar to each other. The internal variability of the circulation in the control simulation and the simulated atmospheric response to anomalous forcings appear to be linked in that the pattern of geopotential height anomalies obtained using COADS SSTs resembles the first empirical orthogonal function (EOF 1) in the control simulation. The corresponding pattern obtained using HIRS SSTs is substantially different and somewhat resembles EOF 2 in the sector from central North America to central Asia. To gain insight into the reasons for these results, three additional simulations are carried out with SST anomalies confined to regions where COADS SSTs are substantially warmer than HIRS SSTs. The regions correspond to warm pools in the northwest and northeast Pacific, and the northwest Atlantic. These warm pools tend to produce positive geopotential height anomalies in the northeastern part of the corresponding oceans. Both warm pools in the Pacific produce large-scale circulation anomalies with a pattern that resembles that obtained using COADS SSTs as well as EOF 1 of the control simulation; the warm pool in the Atlantic does not. These results suggest that the differences obtained with COADS SSTs and HIRS SSTs are mostly due to the differences in the datasets over the northern Pacific. There was a blocking episode near Greenland in late January 1979. Both simulations with warm SST anomalies over the northwest and northeast Pacific show a tendency toward increased incidence of North Atlantic blocking; the simulation with warm SST anomalies over the northwest Atlantic shows a tendency toward decreased incidence. These results suggest that features in both SST datasets that do not have a counterpart in the other dataset contribute signficantly to the differences between the simulated and observed fields. The results of this study imply that uncertainties in current SST distributions for the world oceans can be as important as the SST anomalies themselves in terms of their impact on the atmospheric circulation. Caution should be exercised, therefore, when linking anomalous circulation and SST patterns, especially in long-range prediction.

  13. Development of High vacuum facility for baking and cool down experiments for SST-1 Tokamak components

    NASA Astrophysics Data System (ADS)

    Khan, Ziauddin; Pathan, Firozkhan S.; Yuvakiran, Paravastu; George, Siju; Manthena, Himabindu; Raval, Dilip C.; Thankey, Prashant L.; Dhanani, Kalpesh R.; Gupta, Manoj Kumar; Pradhan, Subrata

    2012-11-01

    SST-1 Tokamak, a steady state super-conducting device, is under refurbishment to demonstrate the plasma discharge for the duration of 1000 second. The major fabricated components of SST-1 like vacuum vessel, thermal shields, superconducting magnets etc have to be tested for their functional parameters. During machine operation, vacuum vessel will be baked at 150 °C, thermal shields will be operated at 85 K and magnet system will be operated at 4.5 K. All these components must have helium leak tightness under these conditions so far as the machine operation is concerned. In order to validate the helium leak tightness of these components, in-house high vacuum chamber is fabricated. This paper describes the analysis, design and fabrication of high vacuum chamber to demonstrate these functionalities. Also some results will be presented.

  14. An Evaluation of Recently Developed RANS-Based Turbulence Models for Flow Over a Two-Dimensional Block Subjected to Different Mesh Structures and Grid Resolutions

    NASA Astrophysics Data System (ADS)

    Kardan, Farshid; Cheng, Wai-Chi; Baverel, Olivier; Porté-Agel, Fernando

    2016-04-01

    Understanding, analyzing and predicting meteorological phenomena related to urban planning and built environment are becoming more essential than ever to architectural and urban projects. Recently, various version of RANS models have been established but more validation cases are required to confirm their capability for wind flows. In the present study, the performance of recently developed RANS models, including the RNG k-ɛ , SST BSL k-ω and SST ⪆mma-Reθ , have been evaluated for the flow past a single block (which represent the idealized architecture scale). For validation purposes, the velocity streamlines and the vertical profiles of the mean velocities and variances were compared with published LES and wind tunnel experiment results. Furthermore, other additional CFD simulations were performed to analyze the impact of regular/irregular mesh structures and grid resolutions based on selected turbulence model in order to analyze the grid independency. Three different grid resolutions (coarse, medium and fine) of Nx × Ny × Nz = 320 × 80 × 320, 160 × 40 × 160 and 80 × 20 × 80 for the computational domain and nx × nz = 26 × 32, 13 × 16 and 6 × 8, which correspond to number of grid points on the block edges, were chosen and tested. It can be concluded that among all simulated RANS models, the SST ⪆mma-Reθ model performed best and agreed fairly well to the LES simulation and experimental results. It can also be concluded that the SST ⪆mma-Reθ model provides a very satisfactory results in terms of grid dependency in the fine and medium grid resolutions in both regular and irregular structure meshes. On the other hand, despite a very good performance of the RNG k-ɛ model in the fine resolution and in the regular structure grids, a disappointing performance of this model in the coarse and medium grid resolutions indicates that the RNG k-ɛ model is highly dependent on grid structure and grid resolution. These quantitative validations are essential to access the accuracy of RANS models for the simulation of flow in urban environment.

  15. Variability of the Tropical Ocean Surface Temperatures at Decadal-Multidecadal Timescales. Part I: The Atlantic Ocean.

    NASA Astrophysics Data System (ADS)

    Mehta, Vikram M.

    1998-09-01

    Gridded time series from the Global Ocean Surface Temperature Atlas were analyzed with a variety of techniques to identify spatial structures and oscillation periods of the tropical Atlantic sea surface temperature (SST) variations at decadal timescales, and to develop physical interpretations of statistical patterns of decadal SST variations. Each time series was 110 yr (1882-1991) long. The tropical Atlantic SST variations were compared with decadal variations in a 74-yr-long (1912-85) north Nordeste Brazil rainfall time series and a 106-yr-long (1886-1991) tropical Atlantic cyclone activity index time series. The tropical Atlantic SST variations were also compared with decadal variations in the extratropical Atlantic SST.Multiyear to multidecadal variations in the cross-equatorial dipole pattern identified as a dominant empirical pattern of the tropical Atlantic SST variations in earlier and present studies are shown to be variations in the approximately north-south gradient of SST anomalies. It is also shown that there was no dynamical-thermodynamical, dipole mode of SST variations during the analysis period. There was a distinct decadal timescale (12-13 yr) of SST variations in the tropical South Atlantic, whereas no distinct decadal timescale was found in the tropical North Atlantic SST variations. Approximately 80% of the coherent decadal variance in the cross-equatorial SST gradient was `explained' by coherent decadal oscillations in the tropical South Atlantic SSTs. There were three, possibly physical, modes of decadal variations in the tropical Atlantic SSTs during the analysis period. In the more energetic mode of the North Atlantic decadal SST variations, anomalies traveled into the tropical North Atlantic from the extratropical North Atlantic along the eastern boundary of the basin. The anomalies strengthened and resided in the tropical North Atlantic for several years, then frequently traveled northward into the mid-high-latitude North Atlantic along the western boundary of the basin, and completed a clockwise rotation around the North Atlantic basin. In the less energetic North Atlantic decadal mode, SST anomalies originated in the tropical-subtropical North Atlantic near the African coast, and traveled northwestward and southward. In the South Atlantic decadal SST mode, anomalies either developed in situ or traveled into the tropical South Atlantic from the subtropical South Atlantic along the eastern boundary of the basin. The anomalies strengthened and resided in the tropical South Atlantic for several years, then frequently traveled southward into the subtropical South Atlantic along the western boundary of the basin, and completed a counterclockwise rotation around the South Atlantic basin. These decadal modes were not a permanent feature of the tropical Atlantic SST variations. The tropical North and South Atlantic SST anomalies frequently extended across the equator. Uncorrelated alignments of decadal SST anomalies having opposite signs on two sides of the equator occasionally created the apperance of a dipole.Independent analyses of the north Nordeste Brazil rainfall showed physical consistency and high coherence with the cross-equatorial SST gradient oscillations at 12-13-yr period. The tropical Atlantic cyclone index showed physical consistency but moderate coherence with the tropical North Atlantic decadal SST variations. The quasi-regularity of the 12-13-yr oscillations in the cross-equatorial SST gradient may provide an opportunity for long lead-time, skillful predictions of climate anomalies in the tropical Atlantic sector.

  16. Bifurcation analysis of delay-induced resonances of the El-Niño Southern Oscillation

    PubMed Central

    Krauskopf, Bernd; Sieber, Jan

    2014-01-01

    Models of global climate phenomena of low to intermediate complexity are very useful for providing an understanding at a conceptual level. An important aspect of such models is the presence of a number of feedback loops that feature considerable delay times, usually due to the time it takes to transport energy (for example, in the form of hot/cold air or water) around the globe. In this paper, we demonstrate how one can perform a bifurcation analysis of the behaviour of a periodically forced system with delay in dependence on key parameters. As an example, we consider the El-Niño Southern Oscillation (ENSO), which is a sea-surface temperature (SST) oscillation on a multi-year scale in the basin of the Pacific Ocean. One can think of ENSO as being generated by an interplay between two feedback effects, one positive and one negative, which act only after some delay that is determined by the speed of transport of SST anomalies across the Pacific. We perform here a case study of a simple delayed-feedback oscillator model for ENSO, which is parametrically forced by annual variation. More specifically, we use numerical bifurcation analysis tools to explore directly regions of delay-induced resonances and other stability boundaries in this delay-differential equation model for ENSO. PMID:25197254

  17. Treatment of Depression From a Self-Regulation Perspective: Basic Concepts and Applied Strategies in Self-System Therapy.

    PubMed

    Strauman, Timothy J; Eddington, Kari M

    2017-02-01

    Self-regulation models of psychopathology provide a theory-based, empirically supported framework for developing psychotherapeutic interventions that complement and extend current cognitive-behavioral models. However, many clinicians are only minimally familiar with the psychology of self-regulation. The aim of the present manuscript is twofold. First, we provide an overview of self-regulation as a motivational process essential to well-being and introduce two related theories of self-regulation which have been applied to depression. Second, we describe how self-regulatory concepts and processes from those two theories have been translated into psychosocial interventions, focusing specifically on self-system therapy (SST), a brief structured treatment for depression that targets personal goal pursuit. Two randomized controlled trials have shown that SST is superior to cognitive therapy for depressed clients with specific self-regulatory deficits, and both studies found evidence that SST works in part by restoring adaptive self-regulation. Self-regulation-based psychotherapeutic approaches to depression hold significant promise for enhancing treatment efficacy and ultimately may provide an individualizable framework for treatment planning.

  18. Fluorescence Resonance Energy Transfer-Based Photonic Circuits Using Single-Stranded Tile Self-Assembly and DNA Strand Displacement.

    PubMed

    Zhang, Xuncai; Ying, Niu; Shen, Chaonan; Cui, Guangzhao

    2017-02-01

    Structural DNA nanotechnology has great potential in the fabrication of complicated nanostructures and devices capable of bio-sensing and logic function. A variety of nanostructures with desired shapes have been created in the past few decades. But the application of nanostructures remains to be fully studied. Here, we present a novel biological information processing system constructed on a self-assembled, spatially addressable single-stranded tile (SST) nanostructure as DNA nano-manipulation platform that created by SST self-assembly technology. Utilizing DNA strand displacement technology, the fluorescent dye that is pre-assembled in the nano-manipulation platform is transferred from the original position to the destination, which can achieve photonic logic circuits by FRET signal cascades, including logic AND, OR, and NOT gates. And this transfer process is successfully validated by visual DSD software. The transfer process proposed in this study may provide a novel method to design complicated biological information processing system constructed on a SST nanostructure, and can be further used to develop intelligent delivery of drug molecules in vivo.

  19. Remote and Local Influences in Forecasting Pacific SST: a Linear Inverse Model and a Multimodel Ensemble Study

    NASA Astrophysics Data System (ADS)

    Faggiani Dias, D.; Subramanian, A. C.; Zanna, L.; Miller, A. J.

    2017-12-01

    Sea surface temperature (SST) in the Pacific sector is well known to vary on time scales from seasonal to decadal, and the ability to predict these SST fluctuations has many societal and economical benefits. Therefore, we use a suite of statistical linear inverse models (LIMs) to understand the remote and local SST variability that influences SST predictions over the North Pacific region and further improve our understanding on how the long-observed SST record can help better guide multi-model ensemble forecasts. Observed monthly SST anomalies in the Pacific sector (between 15oS and 60oN) are used to construct different regional LIMs for seasonal to decadal prediction. The forecast skills of the LIMs are compared to that from two operational forecast systems in the North American Multi-Model Ensemble (NMME) revealing that the LIM has better skill in the Northeastern Pacific than NMME models. The LIM is also found to have comparable forecast skill for SST in the Tropical Pacific with NMME models. This skill, however, is highly dependent on the initialization month, with forecasts initialized during the summer having better skill than those initialized during the winter. The forecast skill with LIM is also influenced by the verification period utilized to make the predictions, likely due to the changing character of El Niño in the 20th century. The North Pacific seems to be a source of predictability for the Tropics on seasonal to interannual time scales, while the Tropics act to worsen the skill for the forecast in the North Pacific. The data were also bandpassed into seasonal, interannual and decadal time scales to identify the relationships between time scales using the structure of the propagator matrix. For the decadal component, this coupling occurs the other way around: Tropics seem to be a source of predictability for the Extratropics, but the Extratropics don't improve the predictability for the Tropics. These results indicate the importance of temporal scale interactions in improving predictability on decadal timescales. Hence, we show that LIMs are not only useful as benchmarks for estimates of statistical skill, but also to isolate contributions to the forecast skills from different timescales, spatial scales or even model components.

  20. Impact of Gulf Stream SST biases on the global atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Lee, Robert W.; Woollings, Tim J.; Hoskins, Brian J.; Williams, Keith D.; O'Reilly, Christopher H.; Masato, Giacomo

    2018-02-01

    The UK Met Office Unified Model in the Global Coupled 2 (GC2) configuration has a warm bias of up to almost 7 K in the Gulf Stream SSTs in the winter season, which is associated with surface heat flux biases and potentially related to biases in the atmospheric circulation. The role of this SST bias is examined with a focus on the tropospheric response by performing three sensitivity experiments. The SST biases are imposed on the atmosphere-only configuration of the model over a small and medium section of the Gulf Stream, and also the wider North Atlantic. Here we show that the dynamical response to this anomalous Gulf Stream heating (and associated shifting and changing SST gradients) is to enhance vertical motion in the transient eddies over the Gulf Stream, rather than balance the heating with a linear dynamical meridional wind or meridional eddy heat transport. Together with the imposed Gulf Stream heating bias, the response affects the troposphere not only locally but also in remote regions of the Northern Hemisphere via a planetary Rossby wave response. The sensitivity experiments partially reproduce some of the differences in the coupled configuration of the model relative to the atmosphere-only configuration and to the ERA-Interim reanalysis. These biases may have implications for the ability of the model to respond correctly to variability or changes in the Gulf Stream. Better global prediction therefore requires particular focus on reducing any large western boundary current SST biases in these regions of high ocean-atmosphere interaction.

  1. Breakdown of NAO reproducibility into internal versus externally-forced components: a two-tier pilot study

    NASA Astrophysics Data System (ADS)

    Douville, Hervé; Ribes, A.; Tyteca, S.

    2018-03-01

    Assessing the ability of atmospheric models to capture observed climate variations when driven by observed sea surface temperature (SST), sea ice concentration (SIC) and radiative forcings is a prerequisite for the feasibility of near term climate predictions. Here we achieve ensembles of global atmospheric simulations to assess and attribute the reproducibility of the boreal winter atmospheric circulation against the European Centre for Medium Range Forecasts (ECMWF) twentieth century reanalysis (ERA20C). Our control experiment is driven by the observed SST/SIC from the Atmospheric Model Intercomparison Project. It is compared to a similar ensemble performed with the ECMWF model as a first step toward ERA20C. Moreover, a two-tier methodology is used to disentangle externally-forced versus internal variations in the observed SST/SIC boundary conditions and run additional ensembles allowing us to attribute the observed atmospheric variability. The focus is mainly on the North Atlantic Oscillation (NAO) variability which is more reproducible in our model than in the ECMWF model. This result is partly due to the simulation of a positive NAO trend across the full 1920-2014 integration period. In line with former studies, this trend might be mediated by a circumglobal teleconnection mechanism triggered by increasing precipitation over the tropical Indian Ocean (TIO). Surprisingly, this response is mainly related to the internal SST variability and is not found in the ECMWF model driven by an alternative SST dataset showing a weaker TIO warming in the first half of the twentieth century. Our results may reconcile the twentieth century observations with the twenty-first century projections of the NAO. They should be however considered with caution given the limited size of our ensembles, the possible influence of other sources of NAO variability, and the uncertainties in the tropical SST trend and breakdown between internal versus externally-forced variability.

  2. On a more rigorous gravity field processing for future LL-SST type gravity satellite missions

    NASA Astrophysics Data System (ADS)

    Daras, I.; Pail, R.; Murböck, M.

    2013-12-01

    In order to meet the augmenting demands of the user community concerning accuracies of temporal gravity field models, future gravity missions of low-low satellite-to-satellite tracking (LL-SST) type are planned to carry more precise sensors than their precedents. A breakthrough is planned with the improved LL-SST measurement link, where the traditional K-band microwave instrument of 1μm accuracy will be complemented by an inter-satellite ranging instrument of several nm accuracy. This study focuses on investigations concerning the potential performance of the new sensors and their impact in gravity field solutions. The processing methods for gravity field recovery have to meet the new sensor standards and be able to take full advantage of the new accuracies that they provide. We use full-scale simulations in a realistic environment to investigate whether the standard processing techniques suffice to fully exploit the new sensors standards. We achieve that by performing full numerical closed-loop simulations based on the Integral Equation approach. In our simulation scheme, we simulate dynamic orbits in a conventional tracking analysis to compute pseudo inter-satellite ranges or range-rates that serve as observables. Each part of the processing is validated separately with special emphasis on numerical errors and their impact in gravity field solutions. We demonstrate that processing with standard precision may be a limiting factor for taking full advantage of new generation sensors that future satellite missions will carry. Therefore we have created versions of our simulator with enhanced processing precision with primarily aim to minimize round-off system errors. Results using the enhanced precision show a big reduction of system errors that were present at the standard precision processing even for the error-free scenario, and reveal the improvements the new sensors will bring into the gravity field solutions. As a next step, we analyze the contribution of individual error sources to the system's error budget. More specifically we analyze sensor noise from the laser interferometer and the accelerometers, errors in the kinematic orbits and the background fields as well as temporal and spatial aliasing errors. We give special care on the assessment of error sources with stochastic behavior, such as the laser interferometer and the accelerometers, and their consistent stochastic modeling in frame of the adjustment process.

  3. Shall we upgrade one-dimensional secondary settler models used in WWTP simulators? - An assessment of model structure uncertainty and its propagation.

    PubMed

    Plósz, Benedek Gy; De Clercq, Jeriffa; Nopens, Ingmar; Benedetti, Lorenzo; Vanrolleghem, Peter A

    2011-01-01

    In WWTP models, the accurate assessment of solids inventory in bioreactors equipped with solid-liquid separators, mostly described using one-dimensional (1-D) secondary settling tank (SST) models, is the most fundamental requirement of any calibration procedure. Scientific knowledge on characterising particulate organics in wastewater and on bacteria growth is well-established, whereas 1-D SST models and their impact on biomass concentration predictions are still poorly understood. A rigorous assessment of two 1-DSST models is thus presented: one based on hyperbolic (the widely used Takács-model) and one based on parabolic (the more recently presented Plósz-model) partial differential equations. The former model, using numerical approximation to yield realistic behaviour, is currently the most widely used by wastewater treatment process modellers. The latter is a convection-dispersion model that is solved in a numerically sound way. First, the explicit dispersion in the convection-dispersion model and the numerical dispersion for both SST models are calculated. Second, simulation results of effluent suspended solids concentration (XTSS,Eff), sludge recirculation stream (XTSS,RAS) and sludge blanket height (SBH) are used to demonstrate the distinct behaviour of the models. A thorough scenario analysis is carried out using SST feed flow rate, solids concentration, and overflow rate as degrees of freedom, spanning a broad loading spectrum. A comparison between the measurements and the simulation results demonstrates a considerably improved 1-D model realism using the convection-dispersion model in terms of SBH, XTSS,RAS and XTSS,Eff. Third, to assess the propagation of uncertainty derived from settler model structure to the biokinetic model, the impact of the SST model as sub-model in a plant-wide model on the general model performance is evaluated. A long-term simulation of a bulking event is conducted that spans temperature evolution throughout a summer/winter sequence. The model prediction in terms of nitrogen removal, solids inventory in the bioreactors and solids retention time as a function of the solids settling behaviour is investigated. It is found that the settler behaviour, simulated by the hyperbolic model, can introduce significant errors into the approximation of the solids retention time and thus solids inventory of the system. We demonstrate that these impacts can potentially cause deterioration of the predictive power of the biokinetic model, evidenced by an evaluation of the system's nitrogen removal efficiency. The convection-dispersion model exhibits superior behaviour, and the use of this type of model thus is highly recommended, especially bearing in mind future challenges, e.g., the explicit representation of uncertainty in WWTP models.

  4. Indian Ocean corals reveal crucial role of World War II bias for twentieth century warming estimates.

    PubMed

    Pfeiffer, M; Zinke, J; Dullo, W-C; Garbe-Schönberg, D; Latif, M; Weber, M E

    2017-10-31

    The western Indian Ocean has been warming faster than any other tropical ocean during the 20 th century, and is the largest contributor to the global mean sea surface temperature (SST) rise. However, the temporal pattern of Indian Ocean warming is poorly constrained and depends on the historical SST product. As all SST products are derived from the International Comprehensive Ocean-Atmosphere dataset (ICOADS), it is challenging to evaluate which product is superior. Here, we present a new, independent SST reconstruction from a set of Porites coral geochemical records from the western Indian Ocean. Our coral reconstruction shows that the World War II bias in the historical sea surface temperature record is the main reason for the differences between the SST products, and affects western Indian Ocean and global mean temperature trends. The 20 th century Indian Ocean warming pattern portrayed by the corals is consistent with the SST product from the Hadley Centre (HadSST3), and suggests that the latter should be used in climate studies that include Indian Ocean SSTs. Our data shows that multi-core coral temperature reconstructions help to evaluate the SST products. Proxy records can provide estimates of 20 th century SST that are truly independent from the ICOADS data base.

  5. Evaluation of Physiological and Psychological Impairment of Human Performance in Cold Stressed Subjects

    DTIC Science & Technology

    1993-06-05

    t 1 Cold-. 5- a) E 10- - SST 1- 5- 0 I I I " I I ŕ I 0 30 60 90 120 150 180 Time (minutes) Figure 12 Face Temperatures 35- 30- 25- -o- Warm...34• I I I I I t Or)3 0 30 60 90 120 150 :> Time (minutes) Figure 3Z-b. EMG Activity of Pectoralis Major Muscle During Rifle Shooting •" 400- w -.-- Warm...34• 350- (1)o) 300- _m_ Cold (0 o 250-> .- t -. SST S200- S150- 50- -5 0 I =

  6. The ASTRI mini-array software system (MASS) implementation: a proposal for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Tanci, Claudio; Tosti, Gino; Conforti, Vito; Schwarz, Joseph; Antolini, Elisa; Antonelli, L. A.; Bulgarelli, Andrea; Bigongiari, Ciro; Bruno, Pietro; Canestrari, Rodolfo; Capalbi, Milvia; Cascone, Enrico; Catalano, Osvaldo; Di Paola, Andrea; Di Pierro, Federico; Fioretti, Valentina; Gallozzi, Stefano; Gardiol, Daniele; Gianotti, Fulvio; Giro, Enrico; Grillo, Alessandro; La Palombara, Nicola; Leto, Giuseppe; Lombardi, Saverio; Maccarone, Maria C.; Pareschi, Giovanni; Russo, Federico; Sangiorgi, Pierluca; Scuderi, Salvo; Stringhetti, Luca; Testa, Vincenzo; Trifoglio, Massimo; Vercellone, Stefano; Zoli, Andrea

    2016-08-01

    The ASTRI mini-array, composed of nine small-size dual mirror (SST-2M) telescopes, has been proposed to be installed at the southern site of the Cherenkov Telescope Array (CTA), as a set of preproduction units of the CTA observatory. The ASTRI mini-array is a collaborative and international effort carried out by Italy, Brazil and South Africa and led by the Italian National Institute of Astrophysics, INAF. We present the main features of the current implementation of the Mini-Array Software System (MASS) now in use for the activities of the ASTRI SST-2M telescope prototype located at the INAF observing station on Mt. Etna, Italy and the characteristics that make it a prototype for the CTA control software system. CTA Data Management (CTADATA) and CTA Array Control and Data Acquisition (CTA-ACTL) requirements and guidelines as well as the ASTRI use cases were considered in the MASS design, most of its features are derived from the Atacama Large Millimeter/sub-millimeter Array Control software. The MASS will provide a set of tools to manage all onsite operations of the ASTRI mini-array in order to perform the observations specified in the short term schedule (including monitoring and controlling all the hardware components of each telescope and calibration device), to analyze the acquired data online and to store/retrieve all the data products to/from the onsite repository.

  7. Assessing millennial-scale variability during the Holocene: A perspective from the western tropical Pacific

    NASA Astrophysics Data System (ADS)

    Khider, D.; Jackson, C. S.; Stott, L. D.

    2014-03-01

    We investigate the relationship between tropical Pacific and Southern Ocean variability during the Holocene using the stable oxygen isotope and magnesium/calcium records of cooccurring planktonic and benthic foraminifera from a marine sediment core collected in the western equatorial Pacific. The planktonic record exhibits millennial-scale sea surface temperature (SST) oscillations over the Holocene of 0.5°C while the benthic δ18Oc document 0.10‰ millennial-scale changes of Upper Circumpolar Deep Water (UCDW), a water mass which outcrops in the Southern Ocean. Solar forcing as an explanation for millennial-scale SST variability requires (1) a large climate sensitivity and (2) a long 400 year delayed response, suggesting that if solar forcing is the cause of the variability, it would need to be considerably amplified by processes within the climate system at least at the core location. We also explore the possibility that SST variability arose from volcanic forcing using a simple red noise model. Our best estimates of volcanic forcing falls short of reproducing the amplitude of observed SST variations although it produces power at low-frequency similar to that observed in the MD81 record. Although we cannot totally discount the volcanic and solar forcing hypotheses, we are left to consider that the most plausible source for Holocene millennial-scale variability lies within the climate system itself. In particular, UCDW variability coincided with deep North Atlantic changes, indicating a role for the deep ocean in Holocene millennial-scale variability.

  8. S-NPP VIIRS thermal emissive band gain correction during the blackbody warm-up-cool-down cycle

    NASA Astrophysics Data System (ADS)

    Choi, Taeyoung J.; Cao, Changyong; Weng, Fuzhong

    2016-09-01

    The Suomi National Polar orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) has onboard calibrators called blackbody (BB) and Space View (SV) for Thermal Emissive Band (TEB) radiometric calibration. In normal operation, the BB temperature is set to 292.5 K providing one radiance level. From the NOAA's Integrated Calibration and Validation System (ICVS) monitoring system, the TEB calibration factors (F-factors) have been trended and show very stable responses, however the BB Warm-Up-Cool-Down (WUCD) cycles provide detectors' gain and temperature dependent sensitivity measurements. Since the launch of S-NPP, the NOAA Sea Surface Temperature (SST) group noticed unexpected global SST anomalies during the WUCD cycles. In this study, the TEB Ffactors are calculated during the WUCD cycle on June 17th 2015. The TEB F-factors are analyzed by identifying the VIIRS On-Board Calibrator Intermediate Product (OBCIP) files to be Warm-Up or Cool-Down granules. To correct the SST anomaly, an F-factor correction parameter is calculated by the modified C1 (or b1) values which are derived from the linear portion of C1 coefficient during the WUCD. The F-factor correction factors are applied back to the original VIIRS SST bands showing significantly reducing the F-factor changes. Obvious improvements are observed in M12, M14 and M16, but corrections effects are hardly seen in M16. Further investigation is needed to find out the source of the F-factor oscillations during the WUCD.

  9. The 30-60-day Intraseasonal Variability of Sea Surface Temperature in the South China Sea dur1ing May-September

    NASA Astrophysics Data System (ADS)

    Mao, Jiangyu; Wang, Ming

    2018-05-01

    This study investigates the structure and propagation of intraseasonal sea surface temperature (SST) variability in the South China Sea (SCS) on the 30-60-day timescale during boreal summer (May-September). TRMM-based SST, GODAS oceanic reanalysis and ERA-Interim atmospheric reanalysis datasets from 1998 to 2013 are used to examine quantitatively the atmospheric thermodynamic and oceanic dynamic mechanisms responsible for its formation. Power spectra show that the 30-60-day SST variability is predominant, accounting for 60% of the variance of the 10-90-day variability over most of the SCS. Composite analyses demonstrate that the 30-60-day SST variability is characterized by the alternate occurrence of basin-wide positive and negative SST anomalies in the SCS, with positive (negative) SST anomalies accompanied by anomalous northeasterlies (southwesterlies). The transition and expansion of SST anomalies are driven by the monsoonal trough-ridge seesaw pattern that migrates northward from the equator to the northern SCS. Quantitative diagnosis of the composite mixed-layer heat budgets shows that, within a strong 30-60-day cycle, the atmospheric thermal forcing is indeed a dominant factor, with the mixed-layer net heat flux (MNHF) contributing around 60% of the total SST tendency, while vertical entrainment contributes more than 30%. However, the entrainment-induced SST tendency is sometimes as large as the MNHF-induced component, implying that ocean processes are sometimes as important as surface fluxes in generating the 30-60-day SST variability in the SCS.

  10. The Use of Principal Components in Long-Range Forecasting

    NASA Astrophysics Data System (ADS)

    Chern, Jonq-Gong

    Large-scale modes of the global sea surface temperatures and the Northern Hemisphere tropospheric circulation are described by principal component analysis. The first and the second SST components well describe the El Nino episodes, and the El Nino index (ENI), suggested in this study, is consistent with the winter Southern Oscillation index (SOI), where this ENI is a composite component of the weighted first and second SST components. The large-scale interactive modes of the coupling ocean-atmosphere system are identified by cross-correlation analysis The result shows that the first SST component is strongly correlated with the first component of geopotential height in lead time of 6 months. In the El Nino-Southern Oscillation (ENSO) evolution, the El Nino mode strongly influences the winter tropospheric circulation in the mid -latitudes for up to three leading seasons. The regional long-range variation of climate is investigated with these major components of the SST and the tropospheric circulation. In the mid-latitude, the climate of the central United States shows a weak linkage with these large-scale circulations, and the climate of the western United States appears to be consistently associated with the ENSO modes. These El Nino modes also show a dominant influence on Eastern Asia as evidenced in Taiwan Mei-Yu patterns. Possible regional long-range forecasting schemes, utilizing the complementary characteristics of the winter El Nino mode and SST anomalies, are examined with the Taiwan Mei-Yu.

  11. Combined Effects of the North Atlantic Oscillation and the Arctic Oscillation on Sea Surface Temperature in the Alborán Sea

    PubMed Central

    Báez, José C.; Gimeno, Luis; Gómez-Gesteira, Moncho; Ferri-Yáñez, Francisco; Real, Raimundo

    2013-01-01

    We explored the possible effects of the North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) on interannual sea surface temperature (SST) variations in the Alborán Sea, both separately and combined. The probability of observing mean annual SST values higher than average was related to NAO and AO values of the previous year. The effect of NAO on SST was negative, while that of AO was positive. The pure effects of NAO and AO on SST are obscuring each other, due to the positive correlation between them. When decomposing SST, NAO and AO in seasonal values, we found that variation in mean annual SST and mean winter SST was significantly related to the mean autumn NAO of the previous year, while mean summer SST was related to mean autumn AO of the previous year. The one year delay in the effect of the NAO and AO on the SST could be partially related to the amount of accumulated snow, as we found a significant correlation between the total snow in the North Alborán watershed for a year with the annual average SST of the subsequent year. A positive AO implies a colder atmosphere in the Polar Regions, which could favour occasional cold waves over the Iberian Peninsula which, when coupled with precipitations favoured by a negative NAO, may result in snow precipitation. This snow may be accumulated in the high peaks and melt down in spring-summer of the following year, which consequently increases the runoff of freshwater to the sea, which in turn causes a diminution of sea surface salinity and density, and blocks the local upwelling of colder water, resulting in a higher SST. PMID:23638005

  12. Selective central activation of somatostatin receptor 2 increases food intake, grooming behavior and rectal temperature in rats.

    PubMed

    Stengel, A; Goebel, M; Wang, L; Rivier, J; Kobelt, P; Monnikes, H; Tache, Y

    2010-08-01

    The consequences of selective activation of brain somatostatin receptor-2 (sst2) were assessed using the sst2 agonist, des-AA(1,4-6,11-13)-[DPhe(2),Aph7(Cbm),DTrp(8)]-Cbm-SST-Thr-NH2. Food intake (FI) was monitored in ad libitum fed rats chronically implanted with an intracerebroventricular (i.c.v.) cannula. The sst(2) agonist injected i.c.v. at 0.1 and 1 microg/rat dose-dependently increased light phase FI from 2 to 6 hours post injection (2.3+/-0.5 and 7.5+/-1.2 respectively vs. vehicle: 0.2+/-0.2 g/300 g bw, P<0.001). Peptide action was reversed by i.c.v. injection of the sst2 antagonist, des-AA(1,4-6,11-13)-[pNO(2)-Phe(2),DCys(3),Tyr(7),DAph(Cbm)8]-SST-2Nal-NH(2) and not reproduced by intraperitoneal injection (30 microg/rat). The sst(2) antagonist alone i.c.v. significantly decreased the cumulative 14-hours dark phase FI by 29.5%. Other behaviors, namely grooming, drinking and locomotor activity were also increased by the sst(2) agonist (1 microg/rat, i.c.v.) as monitored during the 2(nd) hour post injection while gastric emptying of solid food was unaltered. Rectal temperature rose 1 hour after the sst(2) agonist (1 microg/rat, i.c.v.) with a maximal response maintained from 1 to 4 hours post injection. These data show that selective activation of the brain sst(2) receptor induces a feeding response in the light phase not associated with changes in gastric emptying. The food intake reduction following sst(2) receptor blockade suggests a role of this receptor in the orexigenic drive during the dark phase.

  13. SST algorithms in ACSPO reanalysis of AVHRR GAC data from 2002-2013

    NASA Astrophysics Data System (ADS)

    Petrenko, B.; Ignatov, A.; Kihai, Y.; Zhou, X.; Stroup, J.

    2014-05-01

    In response to a request from the NOAA Coral Reef Watch Program, NOAA SST Team initiated reprocessing of 4 km resolution GAC data from AVHRRs flown onboard NOAA and MetOp satellites. The objective is to create a longterm Level 2 Advanced Clear-Sky Processor for Oceans (ACSPO) SST product, consistent with NOAA operations. ACSPO-Reanalysis (RAN) is used as input in the NOAA geo-polar blended Level 4 SST and potentially other Level 4 SST products. In the first stage of reprocessing (reanalysis 1, or RAN1), data from NOAA-15, -16, -17, -18, -19, and Metop-A and -B, from 2002-present have been processed with ACSPO v2.20, and matched up with quality controlled in situ data from in situ Quality Monitor (iQuam) version 1. The ~12 years time series of matchups were used to develop and explore the SST retrieval algorithms, with emphasis on minimizing spatial biases in retrieved SSTs, close reproduction of the magnitudes of true SST variations, and maximizing temporal, spatial and inter-platform stability of retrieval metrics. Two types of SST algorithms were considered: conventional SST regressions, and recently developed incremental regressions. The conventional equations were adopted in the EUMETSAT OSI-SAF formulation, which, according to our previous analyses, provide relatively small regional biases and well-balanced combination of precision and sensitivity, in its class. Incremental regression equations were specifically elaborated to automatically correct for model minus observation biases, always present when RTM simulations are employed. Improved temporal stability was achieved by recalculation of SST coefficients from matchups on a daily basis, with a +/-45 day window around the current date. This presentation describes the candidate SST algorithms considered for the next round of ACSPO reanalysis, RAN2.

  14. Evaluation of somatostatin, CXCR4 chemokine and endothelin A receptor expression in a large set of paragangliomas.

    PubMed

    Kaemmerer, Daniel; Sänger, Jörg; Arsenic, Ruza; D'Haese, Jan G; Neumann, Jens; Schmitt-Graeff, Annette; Wirtz, Ralph Markus; Schulz, Stefan; Lupp, Amelie

    2017-10-27

    Paragangliomas are predominantly benign tumors, but in some cases invasive growth and also metastasis are observed. Given the limited number of nonsurgical treatment options, novel target structures for diagnostics and therapy of this tumor entity are urgently needed. In the present study, expression of all five somatostatin receptor (SST) subtypes, chemokine receptor CXCR4 and endothelin receptor type A (ETA) was assessed by means of immunohistochemistry in a total of 66 paraffin-embedded paraganglioma samples from 55 patients. The stainings were rated by means of the Immunoreactive Score and correlated to clinical data and to succinate dehydrogenase subunit B (SDHB) expression. SST2A was by far the most prominent receptor in the paragangliomas investigated. It was present in 89% of the tumors at a high intensity, followed by SST5, SST3, SST1 and SST4, which were detected in 47%, 35%, 35% and 13% of the samples, respectively. SDHB positive tumors exhibited significantly higher SST2A and SST3 expression as compared to SDHB negative cases. There was no correlation between SST and Ki-67 expression or grading of the tumors and no difference in SST expression between primary tumors and metastases. Cell surface expression of CXCR4 and ETA was detected only in few samples. On tumor capillaries, however, exceptionally strong staining for these two receptors was noticed in the vast majority of the tumors. In conclusion, paragangliomas are well suited for SST2A-based diagnostics and treatment modalities. An indirect targeting of these highly vascularized tumors via CXCR4 or ETA may also represent a promising future strategy.

  15. Evaluation of somatostatin, CXCR4 chemokine and endothelin A receptor expression in a large set of paragangliomas

    PubMed Central

    Kaemmerer, Daniel; Sänger, Jörg; Arsenic, Ruza; D’Haese, Jan G.; Neumann, Jens; Schmitt-Graeff, Annette; Wirtz, Ralph Markus; Schulz, Stefan; Lupp, Amelie

    2017-01-01

    Paragangliomas are predominantly benign tumors, but in some cases invasive growth and also metastasis are observed. Given the limited number of nonsurgical treatment options, novel target structures for diagnostics and therapy of this tumor entity are urgently needed. In the present study, expression of all five somatostatin receptor (SST) subtypes, chemokine receptor CXCR4 and endothelin receptor type A (ETA) was assessed by means of immunohistochemistry in a total of 66 paraffin-embedded paraganglioma samples from 55 patients. The stainings were rated by means of the Immunoreactive Score and correlated to clinical data and to succinate dehydrogenase subunit B (SDHB) expression. SST2A was by far the most prominent receptor in the paragangliomas investigated. It was present in 89% of the tumors at a high intensity, followed by SST5, SST3, SST1 and SST4, which were detected in 47%, 35%, 35% and 13% of the samples, respectively. SDHB positive tumors exhibited significantly higher SST2A and SST3 expression as compared to SDHB negative cases. There was no correlation between SST and Ki-67 expression or grading of the tumors and no difference in SST expression between primary tumors and metastases. Cell surface expression of CXCR4 and ETA was detected only in few samples. On tumor capillaries, however, exceptionally strong staining for these two receptors was noticed in the vast majority of the tumors. In conclusion, paragangliomas are well suited for SST2A-based diagnostics and treatment modalities. An indirect targeting of these highly vascularized tumors via CXCR4 or ETA may also represent a promising future strategy. PMID:29163802

  16. Understanding the effect of an excessive cold tongue bias on projecting the tropical Pacific SST warming pattern in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Ying, Jun; Huang, Ping; Lian, Tao; Tan, Hongjian

    2018-05-01

    An excessive cold tongue is a common bias among current climate models, and considered an important source of bias in projections of tropical Pacific climate change under global warming. Specifically, the excessive cold tongue bias is closely related to the tropical Pacific SST warming (TPSW) pattern. In this study, we reveal that two processes are the critical mechanisms by which the excessive cold tongue bias influences the projection of the TPSW pattern, based on 32 models from phase 5 of Coupled Model Intercomparison Projection (CMIP5). On the one hand, by assuming that the shortwave (SW) radiation to SST feedback is linearly correlated to the cold tongue SST, the excessive cold tongue bias can induce an overly weak negative SW-SST feedback in the central Pacific, which can lead to a positive SST warming bias in the central to western Pacific (around 150°E-140°W). Moreover, the overly weak local atmospheric dynamics response to SST is a key process of the overly weak SW-SST feedback, compared with the cloud response to atmospheric dynamics and the SW radiation response to cloud. On the other hand, the overly strong ocean zonal overturning circulation associated with the excessive cold tongue bias results in an overestimation of the ocean dynamical thermostat effect, with enhanced ocean stratification under global warming, leading to a negative SST warming bias in the central and eastern Pacific (around 170°W-120°W). These two processes jointly form a positive SST warming bias in the western Pacific, contributing to a La Niña-like warming bias. Therefore, we suggest a more realistic climatological cold tongue SST is needed for a more reliable projection of the TPSW pattern.

  17. Mechanisms underlying modulation of monocarboxylate transporter 1 (MCT1) by somatostatin in human intestinal epithelial cells.

    PubMed

    Saksena, Seema; Theegala, Saritha; Bansal, Nikhil; Gill, Ravinder K; Tyagi, Sangeeta; Alrefai, Waddah A; Ramaswamy, Krishnamurthy; Dudeja, Pradeep K

    2009-11-01

    Somatostatin (SST), an important neuropeptide of the gastrointestinal tract has been shown to stimulate sodium chloride absorption and inhibit chloride secretion in the intestine. However, the effects of SST on luminal butyrate absorption in the human intestine have not been investigated. Earlier studies from our group and others have shown that monocarboxylate transporter (MCT1) plays an important role in the transport of butyrate in the human intestine. The present studies were undertaken to examine the effects of SST on butyrate uptake utilizing postconfluent human intestinal epithelial Caco2 cells. Apical SST treatment of Caco-2 cells for 30-60 min significantly increased butyrate uptake in a dose-dependent manner with maximal increase at 50 nM ( approximately 60%, P < 0.05). SST receptor 2 agonist, seglitide, mimicked the effects of SST on butyrate uptake. SST-mediated stimulation of butyrate uptake involved the p38 MAP kinase-dependent pathway. Kinetic studies demonstrated that SST increased the maximal velocity (V(max)) of the transporter by approximately twofold without any change in apparent Michaelis-Menten constant (K(m)). The higher butyrate uptake in response to SST was associated with an increase in the apical membrane levels of MCT1 protein parallel to a decrease in the intracellular MCT1 pool. MCT1 has been shown to interact specifically with CD147 glycoprotein/chaperone to facilitate proper expression and function of MCT1 at the cell surface. SST significantly enhanced the membrane levels of CD147 as well as its association with MCT1. This association was completely abolished by the specific p38 MAP kinase inhibitor, SB203580. Our findings demonstrate that increased MCT1 association with CD147 at the apical membrane in response to SST is p38 MAP kinase dependent and underlies the stimulatory effects of SST on butyrate uptake.

  18. Cross-sectional associations between maternal parenting styles, physical activity and screen sedentary time in children.

    PubMed

    Van der Geest, K E; Mérelle, S Y M; Rodenburg, G; Van de Mheen, D; Renders, C M

    2017-09-29

    Children's activity level, including physical activity (PA) and screen sedentary time (SST), is influenced by environmental factors in which parents play a critical role. Different types of parenting styles may influence children's activity level. Inconsistent results were found on the association between parenting styles and PA, and few studies tested the association between parenting styles and SST. This study examined the association between parenting styles, PA and SST and the modifying effect of children's gender and maternal educational level on these associations. Cross-sectional data were collected from parents of children aged 8-11 years old who completed a web-based non-standardized questionnaire (N = 4047). Since 85% of the questionnaires were filled in by mothers, parenting styles are mainly reported by mothers. Multiple linear regression techniques were used to assess the associations between parenting styles (authoritative, permissive, authoritarian and neglectful), and PA and SST (mean min/day). The modifying effect of children's gender and maternal educational level on these associations was explored. P values ≤.0125 were considered as statistically significant based on the Bonferroni correction for four primary analyses. The neglectful parenting style was most widely used (35.3%), while the authoritarian style was least common (14.8%). No significant association was found between parenting styles and PA level. As regards SST, an authoritative parenting style was significantly associated with lower SST in boys while a neglectful parenting style was significantly associated with higher SST in both boys and girls. When the mother had a medium educational level, an authoritative parenting style was significantly associated with lower SST while neglectful parenting was significantly associated with higher SST. No association was found between parenting styles and PA. However, an authoritative parenting style was associated with a reduction in SST and a neglectful parenting style with an increase in SST, especially in boys and in children whose mother had a medium education level. Future studies of parenting practices are needed to gain more insight into the role of parents in children's PA and SST levels, as a basis for the development of interventions tailored to support parents in stimulating PA and reducing SST in children.

  19. Remote sensing of SST in the coastal ocean and inland seas

    NASA Astrophysics Data System (ADS)

    Kostianoy, Andrey

    Sea Surface Temperature (SST) is the main oceanographic parameter widely used in oceanogra-phy that can be easily obtained from satellite measurements. Oceanic infrared remote sensing, based on the measurement of the thermal radiance emitted by the ocean, allows retrieving the SST corresponding to the temperature of the uppermost thin layer of the ocean. Theoretically the infrared signal only comes from the upper few microns "skin layer", therefore the thermal signatures cannot represent the dynamics of the mixed layer. But wind mixing during the daytime and nighttime convection mix the upper layer, so that SST usually is representative of that of the mixed layer. This is why nighttime passes of satellites are preferred for SST analysis. Since 1978 the Advanced Very High Resolution Radiometer (AVHRR), onboard the meteorolog-ical satellites of the NOAA series are widely used to derive SST maps. The temporal coverage is ensured by two-three NOAA satellites which provide 4-6 images/day over the globe with a swath of about 2800 km, the spatial resolution by a pixel of about 1.1 km, and thermal resolu-tion of about 0.1 deg. C. The typical data processing includes the retrieval of the SST from the combination of NN 3, 4, and 5 infrared channels of AVHRR, the geographical correction and localisation, with a generation of cloud and land masks. SST data can be then composed into daily to monthly (as well as season to yearly) maps/products. Moderate Resolution Imaging Spectroradiometer (MODIS)-Terra (since 2000) and -Aqua (since 2002), among the others, are the most known satellite instruments which increase the flow of the remote sensing SST data. In the regions with almost permanent cloudy conditions passive microwave radiometers are of vital importance for SST measurements, but they have significantly low spatial (25 km) and thermal (0.8 deg. C) resolution. Today, SST images/data are routinely acquired by satellite receiving stations worldwide including research vessels, as well as generated and made available via Internet by numerous world data centers for free. Examples of SST application for analy-sis/study/research/monitoring of SST fields, SST fronts, large-and meso-scale water dynamics and structure (currents, eddies, dipoles, jets, etc.), upwellings, SST seasonal and interannual variability, etc. will be shown. Combined analysis of SST data with optical (ocean color), SAR, altimetry, in-situ oceanographic, drifter and meteorological data was shown to be very successful for many purposes in physical oceanography, environment research and operational monitoring, regional and global climate change study, marine chemistry, marine biology and fishery. The presentation will include examples for different case studies in the Arctic Ocean (the Barents and Kara seas), the Atlantic Ocean (the Canary and Benguela upwellings), the Southern Indian Ocean, the Mediterranean, Black, Caspian, Aral, and Baltic seas.

  20. An innovative telescope control system architecture for SST-GATE telescopes at the CTA Observatory

    NASA Astrophysics Data System (ADS)

    Fasola, Gilles; Mignot, Shan; Laporte, Philippe; Abchiche, Abdel; Buchholtz, Gilles; Jégouzo, Isabelle

    2014-07-01

    SST-GATE (Small Size Telescope - GAmma-ray Telescope Elements) is a 4-metre telescope designed as a prototype for the Small Size Telescopes (SST) of the Cherenkov Telescope Array (CTA), a major facility for the very high energy gamma-ray astronomy of the next three decades. In this 100-telescope array there will be 70 SSTs, involving a design with an industrial view aiming at long-term service, low maintenance effort and reduced costs. More than a prototype, SST-GATE is also a fully functional telescope that shall be usable by scientists and students at the Observatoire de Meudon for 30 years. The Telescope Control System (TCS) is designed to work either as an element of a large array driven by an array controller or in a stand-alone mode with a remote workstation. Hence it is built to be autonomous with versatile interfacing; as an example, pointing and tracking —the main functions of the telescope— are managed onboard, including astronomical transformations, geometrical transformations (e.g. telescope bending model) and drive control. The core hardware is a CompactRIO (cRIO) featuring a real-time operating system and an FPGA. In this paper, we present an overview of the current status of the TCS. We especially focus on three items: the pointing computation implemented in the FPGA of the cRIO —using CORDIC algorithms— since it enables an optimisation of the hardware resources; data flow management based on OPCUA with its specific implementation on the cRIO; and the use of an EtherCAT field-bus for its ability to provide real-time data exchanges with the sensors and actuators distributed throughout the telescope.

  1. Structure and Dynamics of Decadal Anomalies in the Wintertime Midlatitude North Pacific Ocean-Atmosphere System

    NASA Astrophysics Data System (ADS)

    Fang, J.

    2017-12-01

    The structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean- atmosphere system are examined in this study, using the NCEP/NCAR atmospheric reanalysis, HadISST SST and Simple Ocean Data Assimilation data for 1960-2010. The midlatitude decadal anomalies associated with the Pacific Decadal Oscillation are identified, being characterized by an equivalent barotropic atmospheric low (high) pressure over a cold (warm) oceanic surface. Such a unique configuration of decadal anomalies can be maintained by an unstable ocean-atmosphere interaction mechanism in the midlatitudes, which is hypothesized as follows. Associated with a warm PDO phase, an initial midlatitude surface westerly anomaly accompanied with intensified Aleutian low tends to force a negative SST anomaly by increasing upward surface heat fluxes and driving southward Ekman current anomaly. The SST cooling tends to increase the meridional SST gradient, thus enhancing the subtropical oceanic front. As an adjustment of the atmospheric boundary layer to the enhanced oceanic front, the low-level atmospheric meridional temperature gradient and thus the low-level atmospheric baroclinicity tend to be strengthened, inducing more active transient eddy activities that increase transient eddy vorticity forcing. The vorticity forcing that dominates the total atmospheric forcing tends to produce an equivalent barotropic atmospheric low pressure north of the initial westerly anomaly, intensifying the initial anomalies of the midlatitude surface westerly and Aleutian low. Therefore, it is suggested that the midlatitude ocean-atmosphere interaction can provide a positive feedback mechanism for the development of initial anomaly, in which the oceanic front and the atmospheric transient eddy are the indispensable ingredients. Such a positive ocean-atmosphere feedback mechanism is fundamentally responsible for the observed decadal anomalies in the midlatitude North Pacific ocean-atmosphere system.

  2. iCFD: Interpreted Computational Fluid Dynamics - Degeneration of CFD to one-dimensional advection-dispersion models using statistical experimental design - The secondary clarifier.

    PubMed

    Guyonvarch, Estelle; Ramin, Elham; Kulahci, Murat; Plósz, Benedek Gy

    2015-10-15

    The present study aims at using statistically designed computational fluid dynamics (CFD) simulations as numerical experiments for the identification of one-dimensional (1-D) advection-dispersion models - computationally light tools, used e.g., as sub-models in systems analysis. The objective is to develop a new 1-D framework, referred to as interpreted CFD (iCFD) models, in which statistical meta-models are used to calculate the pseudo-dispersion coefficient (D) as a function of design and flow boundary conditions. The method - presented in a straightforward and transparent way - is illustrated using the example of a circular secondary settling tank (SST). First, the significant design and flow factors are screened out by applying the statistical method of two-level fractional factorial design of experiments. Second, based on the number of significant factors identified through the factor screening study and system understanding, 50 different sets of design and flow conditions are selected using Latin Hypercube Sampling (LHS). The boundary condition sets are imposed on a 2-D axi-symmetrical CFD simulation model of the SST. In the framework, to degenerate the 2-D model structure, CFD model outputs are approximated by the 1-D model through the calibration of three different model structures for D. Correlation equations for the D parameter then are identified as a function of the selected design and flow boundary conditions (meta-models), and their accuracy is evaluated against D values estimated in each numerical experiment. The evaluation and validation of the iCFD model structure is carried out using scenario simulation results obtained with parameters sampled from the corners of the LHS experimental region. For the studied SST, additional iCFD model development was carried out in terms of (i) assessing different density current sub-models; (ii) implementation of a combined flocculation, hindered, transient and compression settling velocity function; and (iii) assessment of modelling the onset of transient and compression settling. Furthermore, the optimal level of model discretization both in 2-D and 1-D was undertaken. Results suggest that the iCFD model developed for the SST through the proposed methodology is able to predict solid distribution with high accuracy - taking a reasonable computational effort - when compared to multi-dimensional numerical experiments, under a wide range of flow and design conditions. iCFD tools could play a crucial role in reliably predicting systems' performance under normal and shock events. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Implementation of different turbulence model to find proper model to estimate aerodynamic properties of airfoils

    NASA Astrophysics Data System (ADS)

    Sogukpinar, Haci; Bozkurt, Ismail

    2018-02-01

    In this paper, aerodynamic calculations of NACA 4 series airfoil of 0012 are performed by using Finite-Volume Method and obtained results are compared with experimental data to correlate the numerical accuracy of CFD approximation. Then other airfoils are simulated with k-ɛ, k-w Spalart-Allmaras and SST model. The governing equations are the Reynolds-Averaged-Navier-Stokes (RANS) equations. The performance of different airfoils (NACA 0008, 0009, 0010, 0012, 0015, 0018, 0021, 0024) at different angle of attack are investigated and compared with most used turbulence models for industrial applications. According to the results of the comparison of numerical calculations and experimental data, k-w and SST models are considered to be closest to experimental results for the calculation of the lift coefficient.

  4. The impact of thermal pollution on benthic foraminiferal assemblages in the SE Mediterranean shore (Israel) as an analog to global warming

    NASA Astrophysics Data System (ADS)

    Arieli, Ruthie Nina; Almogi-Labin, Ahuva; Abramovich, Sigal; Herut, Barak

    2010-05-01

    Scientific and public awareness to global warming increased significantly lately. In the Mediterranean Sea the current rate of warming stands at 0.028 °C/year in accordance with the forecast of global warming of 0.2 °C per decade. The aim of this study is to examine the effects of locally elevated vs. natural SST on benthic foraminifera, which are known to be sensitive bioindicators of environmental change. The thermal patch originating from the "Orot Rabin" power plant off the coast of Israel was chosen as a sampling area for this research since it presents a unique small-scale analog for expected future rise in SST. Ten monthly sampling campaigns were performed during a period of one year in 4 stations located along a temperature gradient of approximately 10 °C, from the discharge site of the heated seawater to a few kilometers south. Benthic foraminifera were collected from a shoreface complex of macroalgae and sediments trapped within. The SST varied between winter, 25/18 °C and summer, 36/31 °C along the transect. During the summer, the addition of the temperature anomaly to the already extreme summer temperatures becomes a biologically threat. The natural seasonal variability, depicted best by station 4 located beyond the thermal patch, shows that foraminifera reach maximal abundance in winter and spring. A significant negative correlation was found between SST in all stations and benthic foraminiferal assemblage characteristics. The abundance, species richness and species diversity show negative correlation with the SST anomaly throughout most of the sampling period, though the species diversity was not as significant as the abundance. The total foraminiferal abundance was significantly lower at the thermally polluted stations, especially during the summer, but also throughout the entire year, indicating that the thermal pollution has a detrimental effect on benthic foraminifera, irrelevant to the natural cyclic changes in SST. The foraminiferal abundances decrease drastically as the SST rises, reaching minimal abundances when the SST rises above 30 °C, indicating that this temperature may be a critical threshold above which foraminiferal growth and reproduction are severely retarded. Species richness reached extremely low values at the thermally polluted stations during the summer, with a minimum of 3 species compared to a maximum of 24 in the natural, unaffected station 4. This indicates that some species have adapted to the elevated temperatures better than others. The foraminiferal assemblage, composed mostly of epiphytic species, contains a total of 42 species with six species dominating the assemblage. Out of the six dominant species Rosalina globularis, Tretomphalus bulloides and Textularia agglutinans show a clear preference to the winter months, while species belonging Lachlanella reach maximum abundances in spring and Pararotalia spinigera in summer. The miliolids, Lachlanella sp. 1 and sp. 2 seem to have high tolerance to the elevated SST and even survived the most extreme summer temperatures at the thermally polluted stations. In this research we show that even a rise, as small as 2 °C, in SST can have serious ramifications on the benthic community characteristics living in the near shore environment. If foraminifera are affected to such an extent it is not unlikely that other more developed marine creatures will be negatively affected as well, either directly by the rise in SST or via the decrease in organisms lower down the marine food chain, such as foraminifera.

  5. Seasonal and interannual variability of atmospheric heat sources and moisture sinks as determined from NCEP/NCAR reanalysis: Part II variability associated with ENSO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomita, Tomohiko; Yanai, Michio

    The link between the Asian monsoon and the El Nino/Southern Oscillation (ENSO) has been demonstrated by a number of studies. This study examines two ENSO withdrawal periods and discusses if the Asian monsoon played a role in the differences between them. The 1986 event occurred in the later half of 1986 and retreated in 1988. The 1951 and 1991 events were similar to each other and seemed to continue to the second year after onset and not to have the clear La Nina phase after the events. In the central and eastern Pacific, three variables progress in phase as themore » ENSO cycle: sea surface temperature (SST), heat source (Q1), and divergence. Correlation coefficients were calculated and examined with the mean SST on the equator and with the standard deviation of the interannual components of SST. In the central and eastern Pacific, the standard deviation is large and three correlation coefficients are large (over 0.6). Strong air-sea interaction associated with ENSO cycle is deduced. In the Indian Ocean and the western Pacific, the correlation coefficients with SST become small rapidly, while the correlation coefficient between Q1 and the divergence is still large. The interannual variability of SSt may not be crucial for those of Q1 and of the divergence in this region because of the potential to generate well organized convection through the high mean SST. This suggests that various factors, such as effects from mid-latitudes, may modify the interannual variability in the region. To examine the effects of the Asian winter monsoon, the anomalous wind field at 850 hPa was investigated. The conditions of the Asian winter monsoon were quite different between the withdrawal periods in the 1986 and 1991 ENSO events. The Asian winter monsoon seems to be a factor to modify the ENSO cycle, especially in the retreat periods. In addition, the SST from the tropical Indian Ocean to western Pacific may be important for the modulation of the ENSO/monsoon system. 9 refs., 10 figs.« less

  6. Last interglacial temperature seasonality reconstructed from tropical Atlantic corals

    NASA Astrophysics Data System (ADS)

    Felis, T.; Brocas, W.; Obert, J. C.; Gierz, P.; Lohmann, G.; Scholz, D.; Kölling, M.; Pfeiffer, M.; Scheffers, S. R.

    2016-12-01

    Reconstructions of last interglacial ( 127-117 ka) climate offer insights into the natural response and variability of the climate system during a period partially analogous to future climate change scenarios. However, the seasonal temperature changes of the tropical ocean are not well known for the last interglacial period. Here we present well preserved fossil corals (Diploria strigosa) recovered from the southern Caribbean island of Bonaire. These corals have been precisely dated by the 230Th/U-method to between 130 and 118 ka ago. Annual banding of the coral skeleton enabled construction of time windows of monthly resolved Sr/Ca temperature proxy records. Our eight coral records of up to 37 years in length cover a total of 105 years within the last interglacial period. From these coral records, sea surface temperature (SST) seasonality in the tropical North Atlantic Ocean is reconstructed. We detect similar to modern SST seasonality of 2.9 °C during the early (130 ka) and the late last interglacial (120 - 118 ka). However, within the mid-last interglacial, a significantly higher than modern SST seasonality of 4.9 °C (at 126 ka) and 4.1 °C (at 124 ka) is observed. These findings are supported by climate model simulations (COSMOS) and are consistent with the evolving amplitude of orbitally induced changes in seasonality of insolation throughout the last interglacial, irrespective of wider climatic instabilities that characterised this period, e.g. at 118 ka ago. The climate model simulations suggest that the SST seasonality changes documented in our last interglacial coral Sr/Ca records are representative of larger regions within the tropical North Atlantic. These simulations also suggest that the reconstructed SST seasonality increase during the mid-last interglacial is caused primarily by summer warming. Furthermore, a 124 ka old coral documents evidence of decadal SST variability in the tropical North Atlantic during the last interglacial, akin to that observed in modern instrumental records. Our results indicate that the dense theca walls of brain coral skeletons (e.g., Diploria strigosa) can provide robust seasonally resolved proxy records of tropical SST and reliable 230Th/U-ages for the last interglacial period.

  7. Seasonality in the Western Mediterranean During the Last Glacial From Paired Oxygen Isotopes and Mg/Ca in Limpet Shells

    NASA Astrophysics Data System (ADS)

    Ferguson, J. E.; Henderson, G. M.; Fa, D.; Finlayson, C.

    2008-12-01

    Molluscs have shown great potential to act as seasonal-resolution archives of sea-surface temperatures (SST) at mid to high latitudes, outside the range of tropical surface corals. Seasonal resolution climate records from higher latitudes are important to allow investigation of the role of seasonality in controlling mean climate on diverse timescales, and of the evolution of climate systems such as the North Atlantic Oscillation. Long sequences of intertidal mollusc shells are difficult to find due to sea level fluctuations over glacial- interglacial periods. This study makes use of Patella shells collected by Neanderthals and humans and transported inland to caves on Gibraltar over at least the last 120 kyrs. Some 30 fossil Patella shells were selected from several hundred excavated from Gorham's and Vanguard Caves at Gibraltar. Oxygen isotope analysis of micromilled samples of modern Patella shells from the Gibraltar coastline demonstrate that the shells accurately record absolute SSTs and capture more than 80% of the full seasonal range. Analysis of fossil Patella shells, dated using 14C, provides records of the change in absolute SST and seasonality during the last glacial. Paired Mg/Ca ratios of micromilled samples in modern Patella shells follow a consistent positive relationship with SST providing an independent paleothermometer, analogous with coral Sr/Ca. Applying this Mg/Ca-SST relationship to fossil Patella shells allows the independent reconstruction of the absolute values and range of SSTs and the reconstruction of seawater δ18O for the western Mediterranean. Results show a cooling of glacial summer SSTs from 36 kyr BP to the LGM with maximum cooling of glacial summer SSTs of 7.5 °C relative to modern. In contrast, winter SSTs show greater variability on millennial timescales with a maximum cooling of up to 10 °C. SST seasonality is therefore extended due to greater winter cooling but SST seasonality is highly variable as a result of large fluctuation in the extent of winter cooling. These results contrast with GCM model estimates of SST values and seasonality during the glacial.

  8. Systems integration studies for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Mascitti, V. R.

    1975-01-01

    Technical progress in each of the disciplinary research areas affecting the design of supersonic cruise aircraft is discussed. The NASA AST/SCAR Program supported the integration of these technical advances into supersonic cruise aircraft configuration concepts. While the baseline concepts reflect differing design philosophy, all reflect a level of economic performance considerably above the current foreign aircraft as well as the former U.S. SST. Range-payload characteristics of the study configurating show significant improvement, while meeting environmental goals such as takeoff and landing noise and upper atmospheric pollution.

  9. Contact Metallization and Packaging Technology Development for SiC Bipolar Junction Transistors, PiN Diodes, and Schottky Diodes Designed for Long-Term Operations at 350degreeC

    DTIC Science & Technology

    2006-05-01

    switches that are used in power conditioning systems. Silicon carbide diodes are now available commercially, and transistors (JEFETs, MOSFETs, IGBTs ...in UHP Ar for 60s in a rapid thermal annealing (RTA) furnace to achieve a low contact resistance. Following the RTA step, photolithography was...with 20μm Au is shown in Figure 3-4. The brazing process was performed with an SST 3150 high vacuum furnace . The 3150 utilizes an oil-free roughing

  10. SST Variation Due to Interactive Convective-Radiative Processes

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Shie, C.-L.; Johnson, D.; Simpson, J.; Li, X.; Sui, C.-H.

    2000-01-01

    The recent linking of Cloud-Resolving Models (CRMs) to Ocean-Mixed Layer (OML) models has provided a powerful new means of quantifying the role of cloud systems in ocean-atmosphere coupling. This is due to the fact that the CRM can better resolve clouds and cloud systems and allow for explicit cloud-radiation interaction. For example, Anderson (1997) applied an atmospheric forcing associated with a CRM simulated squall line to a 3-D OML model (one way or passive interaction). His results suggested that the spatial variability resulting from the squall forcing can last at least 24 hours when forced with otherwise spatially uniform fluxes. In addition, the sea surface salinity (SSS) variability continuously decreased following the forcing, while some of the SST variability remained when a diurnal mixed layer capped off the surface structure. The forcing used in the OML model, however, focused on shorter time (8 h) and smaller spatial scales (100-120 km). In this study, the 3-D Goddard Cumulus Ensemble Model (GCE; 512 x 512 x 23 cu km, 2-km horizontal resolution) is used to simulate convective active episodes occurring in the Western Pacific warm pool and Eastern Atlantic regions. The model is integrated for seven days, and the simulated results are coupled to an OML model to better understand the impact of precipitation and changes in the planetary boundary layer upon SST variation. We will specifically examine and compare the results of linking the OML model with various spatially-averaged outputs from GCE simulations (i.e., 2 km vs. 10-50 km horizontal resolutions), in order to help understand the SST sensitivity to multi-scale influences. This will allow us to assess the importance of explicitly simulated deep and shallow clouds, as well as the subgrid-scale effects (in coarse-model runs) upon SST variation. Results using both 1-D and 2-D OML models will be evaluated to assess the effects of horizontal advection.

  11. Understanding the El Niño-like Oceanic Response in the Tropical Pacific to Global Warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yiyong; Lu, Jian; Liu, Fukai

    The enhanced central and eastern Pacific SST warming and the associated ocean processes under global warming are investigated using the ocean component of the Community Earth System Model (CESM), Parallel Ocean Program version 2 (POP2). The tropical SST warming pattern in the coupled CESM can be faithfully reproduced by the POP2 forced with surface fluxes computed using the aerodynamic bulk formula. By prescribing the wind stress and/or wind speed through the bulk formula, the effects of wind stress change and/or the wind-evaporation-SST (WES) feedback are isolated and their linearity is evaluated in this ocean-alone setting. Result shows that, although themore » weakening of the equatorial easterlies contributes positively to the El Niño-like SST warming, 80% of which can be simulated by the POP2 without considering the effects of wind change in both mechanical and thermodynamic fluxes. This result points to the importance of the air-sea thermal interaction and the relative feebleness of the ocean dynamical process in the El Niño-like equatorial Pacific SST response to global warming. On the other hand, the wind stress change is found to play a dominant role in the oceanic response in the tropical Pacific, accounting for most of the changes in the equatorial ocean current system and thermal structures, including the weakening of the surface westward currents, the enhancement of the near-surface stratification and the shoaling of the equatorial thermocline. Interestingly, greenhouse gas warming in the absence of wind stress change and WES feedback also contributes substantially to the changes at the subsurface equatorial Pacific. Further, this warming impact can be largely replicated by an idealized ocean experiment forced by a uniform surface heat flux, whereby, arguably, a purest form of oceanic dynamical thermostat is revealed.« less

  12. RF assisted Glow Discharge Condition experiment for SST-1 Tokamak

    NASA Astrophysics Data System (ADS)

    Raval, Dilip; Khan, Ziauddin; George, Siju; Dhanani, Kalpeshkumar R.; Paravastu, Yuvakiran; Semwal, Pratibha; Thankey, Prashant; Shoaib Khan, Mohammad; Kakati, Bharat; Pradhan, Subrata

    2017-04-01

    Impurity control reduces the radiation loss from plasma and hence enhances the plasma operation. Oxygen and water vapors are the most common impurities in tokamak devices. Water vapour can be reduced with extensive baking while in order to have a significant reduction in oxygen it is necessary to use glow discharge condition (GDC). RF assisted glow discharge cleaning system will be implemented to remove low z impurities at PFC installed SST-1 vacuum vessel. A RF assisted Glow discharge conditioning is studied at laboratory to find the optimum operating parameters in a view to implement at SST-1 tokamak. Helium is used as a fuel gas in the present experiment. It is observed that the ultimate impurity level is reduced significantly below to the accepted level for plasma operation after RF assisted GDC. The experimental findings of RF assisted Glow discharge conditioning is discussed in details in this paper.

  13. Dynamics of Monsoon-Induced Biennial Variability in ENSO

    NASA Technical Reports Server (NTRS)

    Kim, Kyu-Myong; Lau, K.-M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The mechanism of the quasi-biennial tendency in El Nino Southern Oscillation (ENSO)-monsoon coupled system is investigated using an intermediate coupled model. The monsoon wind forcing is prescribed as a function of Sea Surface Temperature (SST) anomalies based on the relationship between zonal wind anomalies over the western Pacific to sea level change in the equatorial eastern Pacific. The key mechanism of quasi-biennial tendency in El Nino evolution is found to be in the strong coupling of ENSO to monsoon wind forcing over the western Pacific. Strong boreal summer monsoon wind forcing, which lags the maximum SST anomaly in the equatorial eastern Pacific approximately 6 months, tends to generate Kelvin waves of the opposite sign to anomalies in the eastern Pacific and initiates the turnabout in the eastern Pacific. Boreal winter monsoon forcing, which has zero lag with maximum SST in the equatorial eastern Pacific, tends to damp the ENSO oscillations.

  14. Software use cases to elicit the software requirements analysis within the ASTRI project

    NASA Astrophysics Data System (ADS)

    Conforti, Vito; Antolini, Elisa; Bonnoli, Giacomo; Bruno, Pietro; Bulgarelli, Andrea; Capalbi, Milvia; Fioretti, Valentina; Fugazza, Dino; Gardiol, Daniele; Grillo, Alessandro; Leto, Giuseppe; Lombardi, Saverio; Lucarelli, Fabrizio; Maccarone, Maria Concetta; Malaguti, Giuseppe; Pareschi, Giovanni; Russo, Federico; Sangiorgi, Pierluca; Schwarz, Joseph; Scuderi, Salvatore; Tanci, Claudio; Tosti, Gino; Trifoglio, Massimo; Vercellone, Stefano; Zanmar Sanchez, Ricardo

    2016-07-01

    The Italian National Institute for Astrophysics (INAF) is leading the Astrofisica con Specchi a Tecnologia Replicante Italiana (ASTRI) project whose main purpose is the realization of small size telescopes (SST) for the Cherenkov Telescope Array (CTA). The first goal of the ASTRI project has been the development and operation of an innovative end-to-end telescope prototype using a dual-mirror optical configuration (SST-2M) equipped with a camera based on silicon photo-multipliers and very fast read-out electronics. The ASTRI SST-2M prototype has been installed in Italy at the INAF "M.G. Fracastoro" Astronomical Station located at Serra La Nave, on Mount Etna, Sicily. This prototype will be used to test several mechanical, optical, control hardware and software solutions which will be used in the ASTRI mini-array, comprising nine telescopes proposed to be placed at the CTA southern site. The ASTRI mini-array is a collaborative and international effort led by INAF and carried out by Italy, Brazil and South-Africa. We present here the use cases, through UML (Unified Modeling Language) diagrams and text details, that describe the functional requirements of the software that will manage the ASTRI SST-2M prototype, and the lessons learned thanks to these activities. We intend to adopt the same approach for the Mini Array Software System that will manage the ASTRI miniarray operations. Use cases are of importance for the whole software life cycle; in particular they provide valuable support to the validation and verification activities. Following the iterative development approach, which breaks down the software development into smaller chunks, we have analysed the requirements, developed, and then tested the code in repeated cycles. The use case technique allowed us to formalize the problem through user stories that describe how the user procedurally interacts with the software system. Through the use cases we improved the communication among team members, fostered common agreement about system requirements, defined the normal and alternative course of events, understood better the business process, and defined the system test to ensure that the delivered software works properly. We present a summary of the ASTRI SST-2M prototype use cases, and how the lessons learned can be exploited for the ASTRI mini-array proposed for the CTA Observatory.

  15. Impact of MODIS High-Resolution Sea-Surface Temperatures on WRF Forecasts at NWS Miami, FL

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; LaCasse, Katherine M.; Dembek, Scott R.; Santos, Pablo; Lapenta, William M.

    2007-01-01

    Over the past few years,studies at the Short-term Prediction Research and Transition (SPoRT) Center have suggested that the use of Moderate Resolution Imaging Spectroradiometer (MODIS) composite sea-surface temperature (SST) products in regional weather forecast models can have a significant positive impact on short-term numerical weather prediction in coastal regions. The recent paper by LaCasse et al. (2007, Monthly Weather Review) highlights lower atmospheric differences in regional numerical simulations over the Florida offshore waters using 2-km SST composites derived from the MODIS instrument aboard the polar-orbiting Aqua and Terra Earth Observing System satellites. To help quantify the value of this impact on NWS Weather Forecast Offices (WFOs), the SPoRT Center and the NWS WFO at Miami, FL (MIA) are collaborating on a project to investigate the impact of using the high-resolution MODIS SST fields within the Weather Research and Forecasting (WRF) prediction system. The scientific hypothesis being tested is: More accurate specification of the lower-boundary forcing within WRF will result in improved land/sea fluxes and hence, more accurate evolution of coastal mesoscale circulations and the associated sensible weather elements. The NWS MIA is currently running the WRF system in real-time to support daily forecast operations, using the National Centers for Environmental Prediction Nonhydrostatic Mesoscale Model dynamical core within the NWS Science and Training Resource Center's Environmental Modeling System (EMS) software; The EMS is a standalone modeling system capable of downloading the necessary daily datasets, and initializing, running and displaying WRF forecasts in the NWS Advanced Weather Interactive Processing System (AWIPS) with little intervention required by forecasters. Twenty-seven hour forecasts are run daily with start times of 0300,0900, 1500, and 2100 UTC on a domain with 4-km grid spacing covering the southern half of Florida and the far western portions of the Bahamas, the Florida Keys, the Straights of Florida, and adjacent waters of the Gulf of Mexico and Atlantic Ocean. Each model run is initialized using the Local Analysis and Prediction System (LAPS) analyses available in AWIPS, invoking the diabatic. "hot-start" capability. In this WRF model "hot-start", the LAPS-analyzed cloud and precipitation features are converted into model microphysics fields with enhanced vertical velocity profiles, effectively reducing the model spin-up time required to predict precipitation systems. The SSTs are initialized with the NCEP Real-Time Global (RTG) analyses at l/12 degree resolution (approx. 9 km); however, the RTG product does not exhibit fine-scale details consistent with its grid resolution. SPoRT is conducting parallel WRF EMS runs identical to the operational runs at NWS MIA in every respect except for the use of MODIS SST composites in place of the RTG product as the initial and boundary conditions over water. The MODIS SST composites for initializing the SPoRT WRF runs are generated on a 2-km grid four times daily at 0400, 0700, 1600, and 1900 UTC, based on the times of the overhead passes of the Aqua and Terra satellites. The incorporation of the MODIS SST composites into the SPoRTWRF runs is staggered such that the 0400UTC composite initializes the 0900 UTC WRF, the 0700 UTC composite initializes the 1500 UTC WRF, the 1600 UTC composite initializes the 2100 UTC WRF, and the 1900 UTC composite initializes the 0300 UTC WRF. A comparison of the SPoRT and Miami forecasts is underway in 2007, and includes quantitative verification of near-surface temperature, dewpoint, and wind forecasts at surface observation locations. In addition, particular days of interest are being analyzed to determine the impact of the MODIS SST data on the development and evolution of predicted sea/land-breeze circulations, clouds, and precipitation. This paper will present verification results comparing the NWS MIA forecasts the SPoRT experimental WRF forecasts, and highlight any substantial differences noted in the predicted mesoscale phenomena.

  16. Spacecraft thermal balance testing using infrared sources

    NASA Technical Reports Server (NTRS)

    Tan, G. B. T.; Walker, J. B.

    1982-01-01

    A thermal balance test (controlled flux intensity) on a simple black dummy spacecraft using IR lamps was performed and evaluated, the latter being aimed specifically at thermal mathematical model (TMM) verification. For reference purposes the model was also subjected to a solar simulation test (SST). The results show that the temperature distributions measured during IR testing for two different model attitudes under steady state conditions are reproducible with a TMM. The TMM test data correlation is not as accurate for IRT as for SST. Using the standard deviation of the temperature difference distribution (analysis minus test) the SST data correlation is better by a factor of 1.8 to 2.5. The lower figure applies to the measured and the higher to the computer-generated IR flux intensity distribution. Techniques of lamp power control are presented. A continuing work program is described which is aimed at quantifying the differences between solar simulation and infrared techniques for a model representing the thermal radiating surfaces of a large communications spacecraft.

  17. Long-Term Trends, Variability and Extremes of In Situ Sea Surface Temperature Measured Along the Eastern Adriatic Coast and its Relationship to Hemispheric Processes

    NASA Astrophysics Data System (ADS)

    Grbec, Branka; Matić, Frano; Beg Paklar, Gordana; Morović, Mira; Popović, Ružica; Vilibić, Ivica

    2018-02-01

    This paper examines long-term series of in situ sea surface temperature (SST) data measured at nine coastal and one open sea stations along the eastern Adriatic Sea for the period 1959-2015. Monthly and yearly averages were used to document SST trends and variability, while clustering and connections to hemispheric indices were achieved by applying the Principal Component Analysis (PCA) and Self-Organizing Maps (SOM) method. Both PCA and SOM revealed the dominance of temporal changes with respect to the effects of spatial differences in SST anomalies, indicating the prevalence of hemispheric processes over local dynamics, such as bora wind spatial inhomogeneity. SST extremes were connected with blocking atmospheric patterns. A substantial warming between 1979 and 2015, in total exceeding 1 °C, was preceded by a period with a negative SST trend, implying strong multidecadal variability in the Adriatic. The strongest connection was found between yearly SST and the East Atlantic (EA) pattern, while North Atlantic Oscillation (NAO) and East Atlantic/West Russia (EAWR) patterns were found to also affect February SST values. Quantification of the Adriatic SST and their connection to hemispheric indices allow for more precise projections of future SST, considered to be rather important for Adriatic thermohaline circulation, biogeochemistry and fisheries, and sensitive to ongoing climate change.

  18. Possible relationship between East Indian Ocean SST and tropical cyclone affecting Korea

    NASA Astrophysics Data System (ADS)

    Kim, J. Y.; Choi, K. S.; Kim, B. J.

    2014-12-01

    In this study, a strong negative correlation was found between East Indian Ocean (EIO) SST and frequency of summertime tropical cyclone (TC) affecting Korea.For the Warm EIO SST years, the TCs mostly occurred in the southwestern region of tropical and subtropical western Pacific, and migrated west toward the southern coast of China and Indochinese peninsula through the South China Sea. This is because the anomalous easterlies, induced by the development of anomalous anticyclone (weakening of monsoon trough) from the tropical central Pacific to the southern coast of China, served as the steering flows for the westward migration of TCs. In contrast, for the cold EIO SST years, the TCs mostly occurred in the northeastern region of tropical and subtropical western Pacific, and migrated toward Korea and Japan located in the mid-latitudes of East Asia through the East China Sea. This is because the northeastward retreat of subtropical western North Pacific high (SWNPH) was more distinct for the cold EIO SST years compared to the warm EIO SST years. Therefore, the TCs of warm EIO SST years weakened or dissipated shortly due to the effect of geographical features as they land on the southern coast of China and Indochinese peninsula, whereas the TCs of cold EIO SST years had stronger intensity than the TCs of warm EIO SST years as sufficient energy is supplied from the ocean while moving toward Korea and Japan.

  19. The short Synacthen (corticotropin) test can be used to predict recovery of hypothalamo-pituitary-adrenal axis function.

    PubMed

    Pofi, Riccardo; Feliciano, Chona; Sbardella, Emilia; Argese, Nicola; Woods, Conor P; Grossman, Ashley B; Jafar-Mohammadi, Bahram; Gleeson, Helena; Lenzi, Andrea; Isidori, Andrea M; Tomlinson, Jeremy W

    2018-05-25

    The 250μg Short Synacthen (corticotropin) Test (SST) is the most commonly used tool to assess hypothalamo-pituitary-adrenal (HPA) axis function. There are many potentially reversible causes of adrenal insufficiency (AI), but currently no data to guide clinicians as to the frequency of repeat testing or likelihood of HPA axis recovery. To use the SST results to predict recovery of adrenal function. A retrospective analysis of data from 1912 SSTs. 776 patients with reversible causes of AI were identified who had at least two SSTs performed. A subgroup analysis was performed on individuals previously treated with suppressive doses of glucocorticoids (n=110). Recovery of HPA axis function. SST 30-minute cortisol levels above or below 350nmol/L (12.7μg/dL) best predicted HPA axis recovery (AUC ROC=0.85; median recovery time 334 vs. 1368 days, p=8.5x10-13): 99% of patients with a 30-minute cortisol >350nmol/L recovered adrenal function within 4-years, compared with 49% in those with cortisol levels <350nmol/L. In patients exposed to suppressive doses of glucocorticoids, delta cortisol (30-minute - basal) was the best predictor of recovery (AUC ROC = 0.77; median recovery time 262 vs. 974 days, p=7.0x10-6). No patient with a delta cortisol <100nmol (3.6μg/dL) and a subsequent random cortisol <200nmol/L (7.3μg/dL) measured approximately 1-year later recovered HPA axis function. Cortisol levels across an SST can be used to predict recovery of AI and may guide the frequency of repeat testing and inform both clinicians and patients as to the likelihood of restoration of HPA axis function.

  20. A Transcriptome-Led Exploration of Molecular Mechanisms Regulating Somatostatin-Producing D-Cells in the Gastric Epithelium

    PubMed Central

    Adriaenssens, Alice; Lam, Brian Yee Hong; Billing, Lawrence; Skeffington, Katie; Sewing, Sabine

    2015-01-01

    The stomach epithelium contains a myriad of enteroendocrine cells that modulate a range of physiological functions, including postprandial secretion of regulatory peptides, gastric motility, and nutrient absorption. Somatostatin (SST)-producing D-cells are present in the oxyntic and pyloric regions of the stomach, and provide a tonic inhibitory tone that regulates activity of neighboring enteroendocrine cells and gastric acid secretion. Cellular mechanisms underlying the effects of regulatory factors on gastric D-cells are poorly defined due to problems in identifying primary D-cells, and uncertainty remains about which stimuli influence D-cells directly. In this study, we introduce a transgenic mouse line, SST-Cre, which upon crossing with Cre reporter strains, facilitates the identification and purification of gastric D-cells, or cell-specific expression of genetically encoded calcium indicators. Populations of D-cells from the gastric antrum and corpus were isolated and analyzed by RNA sequencing and quantitative RT-PCR. The expression of hormones, hormone receptors, neurotransmitter receptors, and nutrient receptors was quantified. Pyy, Gipr, Chrm4, Calcrl, Taar1, and Casr were identified as genes that are highly enriched in D-cells compared with SST-negative cells. Hormone secretion assays performed in mixed gastric epithelial cultures confirmed that SST secretion is regulated by incretin hormones, cholecystokinin, acetylcholine, vasoactive intestinal polypeptide, calcitonin gene-related polypeptide, oligopetides, and trace amines. Cholecystokinin and oligopeptides elicited increases in intracellular calcium in single-cell imaging experiments performed using cultured D-cells. Our data provide the first transcriptomic analysis and functional characterization of gastric D-cells, and identify regulatory pathways that underlie the direct detection of stimuli by this cell type. PMID:26241122

  1. Sea surface temperature: Observations from geostationary satellites

    NASA Astrophysics Data System (ADS)

    Bates, John J.; Smith, William L.

    1985-11-01

    A procedure is developed for estimating sea surface temperatures (SST) from multispectral image data acquired from the VISSR atmospheric sounder (VAS) on the geostationary GOES satellites. Theoretical regression equations for two and three infrared window channels are empirically tuned by using clear field of view satellite radiances matched with reports of SST from NOAA fixed environmental buoys from 1982. The empirical regression equations are then used to produce daily regional analyses of SST. The daily analyses are used to study the response of SST's to the passage of Hurricane Alicia (1983) and Hurricane Debbie (1982) and are also used as a first guess surface temperature in the retrieval of atmospheric temperature and moisture profiles over the oceanic regions. Monthly mean SST's for the western North Atlantic and the eastern equatorial Pacific during March and July 1982 were produced for use in the NASA/JPL SST intercomparison workshop series. Workshop results showed VAS SST's have a scatter of 0.8°-1.0°C and a slight warm bias with respect to the other measurements of SST. Subsequently, a second set of VAS/ buoy matches collected during 1983 and 1984 was used to produce a set of bias corrected regression relations for VAS.

  2. Skills training for pregnancy and AIDS prevention in Anglo and Latino youth.

    PubMed

    Hovell, M; Blumberg, E; Sipan, C; Hofstetter, C R; Burkham, S; Atkins, C; Felice, M

    1998-09-01

    This study tested social skills training (SST), didactic training (DT), and no training (NT) on adolescents' social skills for resisting peer pressure to engage in acquired immunodeficiency syndrome (AIDS) and pregnancy risk behavior. A total of 307 Latino and Anglo youth ages 13-18 years were assigned at random to receive 18 h of SST, 18 h of DT, or NT. Significantly (p < 0.05) greater increases in assertiveness followed SST compared to DT or NT for three trained skills: condom negotiation, asking a friend about their sex/drug history, and discussing a friend's risk of AIDS. Untrained negotiation skills (e.g., purchasing a condom) did not increase significantly. SST did not result in increased assertiveness for refusal skills. DT increased knowledge of AIDS significantly more than SST; both DT and SST increased knowledge significantly more than NT. Social skills training can increase assertiveness for certain negotiation skills that may decrease risk of AIDS for Latino, Anglo, and male and female adolescents. Both DT and SST can increase knowledge of AIDS prevention. Differences between experimental groups were supported by differences between trained and untrained skills within the SST condition, adding to discriminant validity.

  3. Sea surface temperature 1871-2099 in 14 cells around the United Kingdom.

    PubMed

    Sheppard, Charles

    2004-07-01

    Monthly sea surface temperature is provided for 14 locations around the UK for a 230 year period. These series are derived from the HadISST1 data set for historical time (1871-1999) and from the HadCM3 climate model for predicted SST (1950-2099). Two adjustments of the forecast data sets are needed to produce confluent SST series: the 50 year overlap is used for a gross adjustment, and a statistical scaling on the forecast data ensures that annual variations in forecast data match those of historical data. These monthly SST series are available on request. The overall rise in SST over time is clear for all sites, commencing in the last quarter of the 20th century. Apart from expected trends of overall warmer mean SST with more southerly latitudes and overall cooler mean SST towards the East, more interesting statistically significant general trends include a greater decadal rate of rise from warmer starting conditions. Annual temperature variation is not affected by absolute temperature, but is markedly greater towards the East. There is no correlation of annual range of SST with latitude, or with present SST values.

  4. The numerical modeling the sensitivity of coastal wind and ozone concentration to different SST forcing

    NASA Astrophysics Data System (ADS)

    Choi, Hyun-Jung; Lee, Hwa Woon; Jeon, Won-Bae; Lee, Soon-Hwan

    2012-01-01

    This study evaluated an atmospheric and air quality model of the spatial variability in low-level coastal winds and ozone concentration, which are affected by sea surface temperature (SST) forcing with different thermal gradients. Several numerical experiments examined the effect of sea surface SST forcing on the coastal atmosphere and air quality. In this study, the RAMS-CAMx model was used to estimate the sensitivity to two different resolutions of SST forcing during the episode day as well as to simulate the low-level coastal winds and ozone concentration over a complex coastal area. The regional model reproduced the qualitative effect of SST forcing and thermal gradients on the coastal flow. The high-resolution SST derived from NGSST-O (New Generation Sea Surface Temperature Open Ocean) forcing to resolve the warm SST appeared to enhance the mean response of low-level winds to coastal regions. These wind variations have important implications for coastal air quality. A higher ozone concentration was forecasted when SST data with a high resolution was used with the appropriate limitation of temperature, regional wind circulation, vertical mixing height and nocturnal boundary layer (NBL) near coastal areas.

  5. North-western Mediterranean sea-breeze circulation in a regional climate system model

    NASA Astrophysics Data System (ADS)

    Drobinski, Philippe; Bastin, Sophie; Arsouze, Thomas; Béranger, Karine; Flaounas, Emmanouil; Stéfanon, Marc

    2017-04-01

    In the Mediterranean basin, moisture transport can occur over large distance from remote regions by the synoptic circulation or more locally by sea breezes, driven by land-sea thermal contrast. Sea breezes play an important role in inland transport of moisture especially between late spring and early fall. In order to explicitly represent the two-way interactions at the atmosphere-ocean interface in the Mediterranean region and quantify the role of air-sea feedbacks on regional meteorology and climate, simulations at 20 km resolution performed with WRF regional climate model (RCM) and MORCE atmosphere-ocean regional climate model (AORCM) coupling WRF and NEMO-MED12 in the frame of HyMeX/MED-CORDEX are compared. One result of this study is that these simulations reproduce remarkably well the intensity, direction and inland penetration of the sea breeze and even the existence of the shallow sea breeze despite the overestimate of temperature over land in both simulations. The coupled simulation provides a more realistic representation of the evolution of the SST field at fine scale than the atmosphere-only one. Temperature and moisture anomalies are created in direct response to the SST anomaly and are advected by the sea breeze over land. However, the SST anomalies are not of sufficient magnitude to affect the large-scale sea-breeze circulation. The temperature anomalies are quickly damped by strong surface heating over land, whereas the water vapor mixing ratio anomalies are transported further inland. The inland limit of significance is imposed by the vertical dilution in a deeper continental boundary-layer.

  6. Dynamical significance of tides over the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Bhagawati, Chirantan; Pandey, Suchita; Dandapat, Sumit; Chakraborty, Arun

    2018-06-01

    Tides play a significant role in the ocean surface circulations and vertical mixing thereby influencing the Sea Surface Temperatures (SST) as well. This, in turn, plays an important role in the global circulation when used as a lower boundary condition in a global atmospheric general circulation model. Therefore in the present study, the dynamics of tides over the Bay of Bengal (BoB) is investigated through numerical simulations using a high resolution (1/12°) Regional Ocean Modeling System (ROMS). Based on statistical analysis it is observed that incorporation of explicit tidal forcing improves the model performance in simulating the basin averaged monthly surface circulation features by 64% compared to the simulation without tides. The model simulates also Mixed Layer Depth (MLD) and SST realistically. The energy exchange between tidal oscillations and eddies leads to redistribution of surface kinetic energy density with a net decrease of 0.012 J m-3 in the western Bay and a net increase of 0.007 J m-3 in the eastern Bay. The tidal forcing also affects the potential energy anomaly and vertical mixing thereby leading to a fall in monthly MLD over the BoB. The mixing due to tides leads to a subsequent reduction in monthly SST and a corresponding reduction in surface heat exchange. These results from the numerical simulation using ROMS reveal that tides have a significant influence over the air-sea heat exchange which is the most important parameter for prediction of Tropical Cyclone frequency and its future variability over the BoB.

  7. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation

    NASA Astrophysics Data System (ADS)

    Kucharski, F.; Sun, C.; Li, J.; Jin, F. F.; Kang, I. S.; Ding, R.

    2017-12-01

    Observational analysis suggests that the western tropical Pacific (WTP) sea surface temperature (SST) shows predominant variability over multidecadal time scales, which is unlikely to be explained by the Interdecadal Pacific Oscillation. Here we show that this variability is largely explained by the remote Atlantic multidecadal oscillation (AMO). A suite of Atlantic Pacemaker experiments successfully reproduces the WTP multidecadal variability and the AMO-WTP SST connection. The AMO warm SST anomaly generates an atmospheric teleconnection to the North Pacific, which weakens the Aleutian low and subtropical North Pacific westerlies. The wind changes induce a subtropical North Pacific SST warming through wind-evaporation-SST effect, and in response to this warming, the surface winds converge towards the subtropical North Pacific from the tropics, leading to anomalous cyclonic circulation and low pressure over the WTP region. The warm SST anomaly further develops due to the SST-sea level pressure-cloud-longwave radiation positive feedback. Our findings suggest that the Atlantic Ocean acts as a key pacemaker for the western Pacific decadal climate variability.

  8. Modulation of the adaptive response to stress by brain activation of selective somatostatin receptor subtypes.

    PubMed

    Stengel, Andreas; Rivier, Jean; Taché, Yvette

    2013-04-01

    Somatostatin-14 was discovered in 1973 in the hypothalamus as a peptide inhibiting growth hormone release. Somatostatin interacts with five receptor subtypes (sst(1-5)) which are widely distributed in the brain with a distinct, but overlapping, expression pattern. During the last few years, the development of highly selective peptide agonists and antagonists provided new insight to characterize the role of somatostatin receptor subtypes in the pleiotropic actions of somatostatin. Recent evidence in rodents indicates that the activation of selective somatostatin receptor subtypes in the brain blunts stress-corticotropin-releasing factor (CRF) related ACTH release (sst2/5), sympathetic-adrenal activaton (sst5), stimulation of colonic motility (sst1), delayed gastric emptying (sst5), suppression of food intake (sst2) and the anxiogenic-like (sst2) response. These findings suggest that brain somatostatin signaling pathways may play an important role in dampening CRF-mediated endocrine, sympathetic, behavioral and visceral responses to stress. Published by Elsevier Inc.

  9. Relationship between Trends in Land Precipitation and Tropical SST Gradient

    NASA Technical Reports Server (NTRS)

    Chung, Chul Eddy; Ramanathan, V.

    2007-01-01

    In this study, we examined global zonal/annual mean precipitation trends. Land precipitation trend from 1951 to 2002 shows widespread drying between 10 S to 20 N but the trend from 1977 to 2002 shows partial recovery. Based on general circulation model sensitivity studies, we suggested that these features are driven largely by the meridional SST gradient trend in the tropics. Our idealized CCM3 experiments substantiated that land precipitation is more sensitive to meridional SST gradient than to an overall tropical warming. Various simulations produced for the IPCC 4th assessment report demonstrate that increasing CO2 increases SST in the entire tropics non-uniformly and increases land precipitation only in certain latitude belts, again pointing to the importance of SST gradient change. Temporally varying aerosols in the IPCC simulations alter meridional SST gradient and land precipitation substantially. Anthropogenic aerosol direct solar forcing without its effects on SST is shown by the CCM3 to have weak but non-negligible influence on land precipitation.

  10. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation

    NASA Astrophysics Data System (ADS)

    Sun, Cheng; Kucharski, Fred; Li, Jianping; Jin, Fei-Fei; Kang, In-Sik; Ding, Ruiqiang

    2017-07-01

    Observational analysis suggests that the western tropical Pacific (WTP) sea surface temperature (SST) shows predominant variability over multidecadal time scales, which is unlikely to be explained by the Interdecadal Pacific Oscillation. Here we show that this variability is largely explained by the remote Atlantic multidecadal oscillation (AMO). A suite of Atlantic Pacemaker experiments successfully reproduces the WTP multidecadal variability and the AMO-WTP SST connection. The AMO warm SST anomaly generates an atmospheric teleconnection to the North Pacific, which weakens the Aleutian low and subtropical North Pacific westerlies. The wind changes induce a subtropical North Pacific SST warming through wind-evaporation-SST effect, and in response to this warming, the surface winds converge towards the subtropical North Pacific from the tropics, leading to anomalous cyclonic circulation and low pressure over the WTP region. The warm SST anomaly further develops due to the SST-sea level pressure-cloud-longwave radiation positive feedback. Our findings suggest that the Atlantic Ocean acts as a key pacemaker for the western Pacific decadal climate variability.

  11. On the Potential of Surfers to Monitor Environmental Indicators in the Coastal Zone.

    PubMed

    Brewin, Robert J W; de Mora, Lee; Jackson, Thomas; Brewin, Thomas G; Shutler, Jamie

    2015-01-01

    The social and economic benefits of the coastal zone make it one of the most treasured environments on our planet. Yet it is vulnerable to increasing anthropogenic pressure and climate change. Coastal management aims to mitigate these pressures while augmenting the socio-economic benefits the coastal region has to offer. However, coastal management is challenged by inadequate sampling of key environmental indicators, partly due to issues relating to cost of data collection. Here, we investigate the use of recreational surfers as platforms to improve sampling coverage of environmental indicators in the coastal zone. We equipped a recreational surfer, based in the south west United Kingdom (UK), with a temperature sensor and Global Positioning System (GPS) device that they used when surfing for a period of one year (85 surfing sessions). The temperature sensor was used to derive estimates of sea-surface temperature (SST), an important environmental indicator, and the GPS device used to provide sample location and to extract information on surfer performance. SST data acquired by the surfer were compared with data from an oceanographic station in the south west UK and with satellite observations. Our results demonstrate: (i) high-quality SST data can be acquired by surfers using low cost sensors; and (ii) GPS data can provide information on surfing performance that may help motivate data collection by surfers. Using recent estimates of the UK surfing population, and frequency of surfer participation, we speculate around 40 million measurements on environmental indicators per year could be acquired at the UK coastline by surfers. This quantity of data is likely to enhance coastal monitoring and aid UK coastal management. Considering surfing is a world-wide sport, our results have global implications and the approach could be expanded to other popular marine recreational activities for coastal monitoring of environmental indicators.

  12. On the Potential of Surfers to Monitor Environmental Indicators in the Coastal Zone

    PubMed Central

    Brewin, Robert J. W.; de Mora, Lee; Jackson, Thomas; Brewin, Thomas G.; Shutler, Jamie

    2015-01-01

    The social and economic benefits of the coastal zone make it one of the most treasured environments on our planet. Yet it is vulnerable to increasing anthropogenic pressure and climate change. Coastal management aims to mitigate these pressures while augmenting the socio-economic benefits the coastal region has to offer. However, coastal management is challenged by inadequate sampling of key environmental indicators, partly due to issues relating to cost of data collection. Here, we investigate the use of recreational surfers as platforms to improve sampling coverage of environmental indicators in the coastal zone. We equipped a recreational surfer, based in the south west United Kingdom (UK), with a temperature sensor and Global Positioning System (GPS) device that they used when surfing for a period of one year (85 surfing sessions). The temperature sensor was used to derive estimates of sea-surface temperature (SST), an important environmental indicator, and the GPS device used to provide sample location and to extract information on surfer performance. SST data acquired by the surfer were compared with data from an oceanographic station in the south west UK and with satellite observations. Our results demonstrate: (i) high-quality SST data can be acquired by surfers using low cost sensors; and (ii) GPS data can provide information on surfing performance that may help motivate data collection by surfers. Using recent estimates of the UK surfing population, and frequency of surfer participation, we speculate around 40 million measurements on environmental indicators per year could be acquired at the UK coastline by surfers. This quantity of data is likely to enhance coastal monitoring and aid UK coastal management. Considering surfing is a world-wide sport, our results have global implications and the approach could be expanded to other popular marine recreational activities for coastal monitoring of environmental indicators. PMID:26154173

  13. Sea surface temperatures of the mid-Piacenzian Warm Period: A comparison of PRISM3 and HadCM3

    USGS Publications Warehouse

    Dowsett, H.J.; Haywood, A.M.; Valdes, P.J.; Robinson, M.M.; Lunt, D.J.; Hill, D.J.; Stoll, D.K.; Foley, K.M.

    2011-01-01

    It is essential to document how well the current generation of climate models performs in simulating past climates to have confidence in their ability to project future conditions. We present the first global, in-depth comparison of Pliocene sea surface temperature (SST) estimates from a coupled ocean–atmosphere climate model experiment and a SST reconstruction based on proxy data. This enables the identification of areas in which both the climate model and the proxy dataset require improvement.In general, the fit between model-produced SST anomalies and those formed from the available data is very good. We focus our discussion on three regions where the data–model anomaly exceeds 2 °C. 1) In the high latitude North Pacific, a systematic model error may result in anomalies that are too cold. Also, the deeper Pliocene thermocline may cause disagreement along the California margin; either the upwelling in the model is too strong or the modeled thermocline is not deep enough. 2) In the North Atlantic, the model predicts cooling in the center of a data-based warming trend that steadily increases with latitude from + 1.5 °C to >+ 6 °C. The discrepancy may arise because the modeled North Atlantic Current is too zonal compared to reality, which is reinforced by the lowering of the altitude of the Pliocene Western Cordillera Mountains. In addition, the model's use of modern bathymetry in the higher latitudes may have led the model to underestimate the northward penetration of warmer surface water into the Arctic. 3) Finally, though the data and model show good general agreement across most of the Southern Ocean, a few locations show offsets due to the modern land–sea mask used in the model.Additional considerations could account for many of the modest data–model anomalies, such as differences between calibration climatologies, the oversimplification of the seasonal cycle, and differences between SST proxies (i.e. seasonality and water depth). New SST estimates from data-sparse and regionally important areas will greatly enhance our ability to judge model performance.

  14. Ocean heat budget analysis on sea surface temperature anomaly in western Indian Ocean during strong-weak Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Fathrio, Ibnu; Manda, Atsuyoshi; Iizuka, Satoshi; Kodama, Yasu-Masa; Ishida, Sachinobu

    2018-05-01

    This study presents ocean heat budget analysis on seas surface temperature (SST) anomalies during strong-weak Asian summer monsoon (southwest monsoon). As discussed by previous studies, there was close relationship between variations of Asian summer monsoon and SST anomaly in western Indian Ocean. In this study we utilized ocean heat budget analysis to elucidate the dominant mechanism that is responsible for generating SST anomaly during weak-strong boreal summer monsoon. Our results showed ocean advection plays more important role to initate SST anomaly than the atmospheric prcess (surface heat flux). Scatterplot analysis showed that vertical advection initiated SST anomaly in western Arabian Sea and southwestern Indian Ocean, while zonal advection initiated SST anomaly in western equatorial Indian Ocean.

  15. A study of the Alboran sea mesoscale system by means of empirical orthogonal function decomposition of satellite data

    NASA Astrophysics Data System (ADS)

    Baldacci, A.; Corsini, G.; Grasso, R.; Manzella, G.; Allen, J. T.; Cipollini, P.; Guymer, T. H.; Snaith, H. M.

    2001-05-01

    This paper presents the results of a combined empirical orthogonal function (EOF) analysis of Advanced Very High Resolution Radiometer (AVHRR) sea surface temperature (SST) data and sea-viewing wide field-of-view sensor (SeaWiFS) chlorophyll concentration data over the Alboran Sea (Western Mediterranean), covering a period of 1 year (November 1997-October 1998). The aim of this study is to go beyond the limited temporal extent of available in situ measurements by inferring the temporal and spatial variability of the Alboran Gyre system from long temporal series of satellite observations, in order to gain insight on the interactions between the circulation and the biological activity in the system. In this context, EOF decomposition permits concise and synoptic representation of the effects of physical and biological phenomena traced by SST and chlorophyll concentration. Thus, it is possible to focus the analysis on the most significant phenomena and to understand better the complex interactions between physics and biology at the mesoscale. The results of the EOF analysis of AVHRR-SST and SeaWiFS-chlorophyll concentration data are presented and discussed in detail. These improve and complement the knowledge acquired during the in situ observational campaigns of the MAST-III Observations and Modelling of Eddy scale Geostrophic and Ageostrophic motion (OMEGA) Project.

  16. Satellite monitoring temperature conditions spawning area of the Northeast Arctic cod in the Norwegian Sea and assessment its abundance

    NASA Astrophysics Data System (ADS)

    Vanyushin, George; Bulatova, Tatiana; Klochkov, Dmitriy; Troshkov, Anatoliy; Kruzhalov, Michail

    2013-04-01

    In this study, the attempt to consider the relationship between sea surface anomalies of temperature (SST anomalies °C) in spawning area of the Norwegian Arctic cod off the Lofoten islands in coastal zone of the Norwegian Sea and modern cod total stock biomass including forecasting assessment of future cod generation success. Continuous long-term database of the sea surface temperature (SST) was created on the NOAA satellites data. Mean monthly SST and SST anomalies are computed for the selected area on the basis of the weekly SST maps for the period of 1998-2012. These maps were plotted with the satellite SST data, as well as information of vessels, byoies and coastal stations. All data were classified by spawning seasons (March-April) and years. The results indicate that poor and low middle generations of cod (2001, 2006, 2007) occurred in years with negative or extremely high positive anomalies in the spawning area. The SST anomalies in years which were close to normal or some more normal significances provide conditions for appearance strong or very strong generations of cod (1998, 2000, 2002, 2004, 2005, 2006, 2008, 2009). Temperature conditions in concrete years influence on different indexes of cod directly. So, the mean temperature in spawning seasons in years 1999-2005 was ≈5,0°C and SST anomaly - +0,35°C, by the way average year significances indexes of cod were: total stock biomass - 1425,0 th.t., total spawning biomass - 460,0 th.t., recruitment (age 3+) - 535,0 mln. units and landings - 530,0 th.t. In spawning seasons 2006-2012 years the average data were following: mean SST ≈6,0°C, SST anomaly - +1,29°C, total stock biomass - 2185,0 th.t., total spawning biomass - 1211,0 th.t., recruitment (age 3+) - 821,0 mln. units and landings - 600,0 th.t. The SST and SST anomalies (the NOAA satellite data) characterize increase of decrease in input of warm Atlantic waters which form numerous eddies along the flows of the main warm currents thus creating favorable conditions for development of the cod larvae and fry and provide them with food stock, finally, direct influence on forming total stock biomass of cod and helping its population forecast. Key words: satellite monitoring of SST, Northeast Arctic cod, spawning area, maps of SST, prognosis.

  17. On the spread of changes in marine low cloud cover in climate model simulations of the 21st century

    NASA Astrophysics Data System (ADS)

    Qu, Xin; Hall, Alex; Klein, Stephen A.; Caldwell, Peter M.

    2014-05-01

    In 36 climate change simulations associated with phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5), changes in marine low cloud cover (LCC) exhibit a large spread, and may be either positive or negative. Here we develop a heuristic model to understand the source of the spread. The model's premise is that simulated LCC changes can be interpreted as a linear combination of contributions from factors shaping the clouds' large-scale environment. We focus primarily on two factors—the strength of the inversion capping the atmospheric boundary layer (measured by the estimated inversion strength, EIS) and sea surface temperature (SST). For a given global model, the respective contributions of EIS and SST are computed. This is done by multiplying (1) the current-climate's sensitivity of LCC to EIS or SST variations, by (2) the climate-change signal in EIS or SST. The remaining LCC changes are then attributed to changes in greenhouse gas and aerosol concentrations, and other environmental factors. The heuristic model is remarkably skillful. Its SST term dominates, accounting for nearly two-thirds of the intermodel variance of LCC changes in CMIP3 models, and about half in CMIP5 models. Of the two factors governing the SST term (the SST increase and the sensitivity of LCC to SST perturbations), the SST sensitivity drives the spread in the SST term and hence the spread in the overall LCC changes. This sensitivity varies a great deal from model to model and is strongly linked to the types of cloud and boundary layer parameterizations used in the models. EIS and SST sensitivities are also estimated using observational cloud and meteorological data. The observed sensitivities are generally consistent with the majority of models as well as expectations from prior research. Based on the observed sensitivities and the relative magnitudes of simulated EIS and SST changes (which we argue are also physically reasonable), the heuristic model predicts LCC will decrease over the 21st-century. However, to place a strong constraint, for example on the magnitude of the LCC decrease, will require longer observational records and a careful assessment of other environmental factors producing LCC changes. Meanwhile, addressing biases in simulated EIS and SST sensitivities will clearly be an important step towards reducing intermodel spread in simulated LCC changes.

  18. SST-Forced Seasonal Simulation and Prediction Skill for Versions of the NCEP/MRF Model.

    NASA Astrophysics Data System (ADS)

    Livezey, Robert E.; Masutani, Michiko; Jil, Ming

    1996-03-01

    The feasibility of using a two-tier approach to provide guidance to operational long-lead seasonal prediction is explored. The approach includes first a forecast of global sea surface temperatures (SSTs) using a coupled general circulation model, followed by an atmospheric forecast using an atmospheric general circulation model (AGCM). For this exploration, ensembles of decade-long integrations of the AGCM driven by observed SSTs and ensembles of integrations of select cases driven by forecast SSTs have been conducted. The ability of the model in these sets of runs to reproduce observed atmospheric conditions has been evaluated with a multiparameter performance analysis.Results have identified performance and skill levels in the specified SST runs, for winters and springs over the Pacific/North America region, that are sufficient to impact operational seasonal predictions in years with major El Niño-Southern Oscillation (ENSO) episodes. Further, these levels were substantially reproduced in the forecast SST runs for 1-month leads and in many instances for up to one-season leads. In fact, overall the 0- and 1-month-lead forecasts of seasonal temperature over the United States for three falls and winters with major ENSO episodes were substantially better than corresponding official forecasts. Thus, there is considerable reason to develop a dynamical component for the official seasonal forecast process.

  19. The effect of atmospheric variability at intra-seasonal time scale on the SST of the Southwestern Atlantic Continental Shelf

    NASA Astrophysics Data System (ADS)

    Simionato, Claudia; Clara, Moira Luz; Jaureguizar, Andrés

    2017-04-01

    The Southwestern Atlantic Continental Shelf is characterized by large SST variability which origin remains unknown. In this work, we use blended SST data provided by NOAA CoastWatch Program, which combine the information coming from infrared and microwave sensors to provide daily images of an intermediate spatial resolution (11 km) with a noise floor of less than 0.2 °C. The data base starts at the middle of 2002, when an increase in signal variance is observed due to the fact that the Advanced Microwave Scanning Radiometer became available and as a consequence to its near all-weather coverage. Several years of observations are thus available, and even though the temporal and spatial resolution of these data is intermediate, they are reasonable for observing and characterizing the most significant patterns of SST variability in the (atmospheric) synoptic to intra-seasonal time scales, so as to help on understanding the physical processes which occur in the area and their forcing mechanisms. As we hypothesize that most of the variability in those time scales is wind forced, the study is complemented with the use of atmospheric observations -coming from remote sensing and reanalysis-. To perform the analysis, the long-term trend, inter-annual and seasonal variability are subtracted to the SST data to obtain the signal on intra-seasonal time scales. Then, Principal Components (EOF) analysis is applied to the data and composites of SST and several meteorological variables (wind, sea level pressure, air temperature, OLR, etc.) are computed for the days when the leading modes are active. It is found that the first three modes account for more than 70% of the variance. Modes 1 and 2 seem to be related to atmospheric waves generated in the tropical Pacific. Those waves, through atmospheric teleconnections, affect the SST on the southwestern South Atlantic Continental Shelf very rapidly. The oceanic anomalies exceed 0.7°C and are quite persistent. Mode 2 seems to be forced by an atmospheric 3-4 mode and might be related to SAM. Besides showing the impact of intra-seasonal atmospheric variability on the ocean at mid latitudes, the knowledge of the connections between the ocean and the atmosphere could aid on improving the ocean predictability on those time scales.

  20. Exhaust Nozzles for Propulsion Systems with Emphasis on Supersonic Cruise Aircraft

    NASA Technical Reports Server (NTRS)

    Stitt, Leonard E.

    1990-01-01

    This compendium summarizes the contributions of the NASA-Lewis and its contractors to supersonic exhaust nozzle research from 1963 to 1985. Two major research and technology efforts sponsored this nozzle research work; the U.S. Supersonic Transport (SST) Program and the follow-on Supersonic Cruise Research (SCR) Program. They account for two generations of nozzle technology: the first from 1963 to 1971, and the second from 1971 to 1985. First, the equations used to calculate nozzle thrust are introduced. Then the general types of nozzles are presented, followed by a discussion of those types proposed for supersonic aircraft. Next, the first-generation nozzles designed specifically for the Boeing SST and the second-generation nozzles designed under the SCR program are separately reviewed and then compared. A chapter on throttle-dependent afterbody drag is included, since drag has a major effect on the off-design performance of supersonic nozzles. A chapter on the performance of supersonic dash nozzles follows, since these nozzles have similar design problems, Finally, the nozzle test facilities used at NASA-Lewis during this nozzle research effort are identified and discussed. These facilities include static test stands, a transonic wind tunnel, and a flying testbed aircraft. A concluding section points to the future: a third generation of nozzles designed for a new era of high speed civil transports to produce even greater advances in performance, to meet new noise rules, and to ensure the continuity of over two decades of NASA research.

  1. An evaluation of the effect of recent temperature variability on the prediction of coral bleaching events.

    PubMed

    Donner, Simon D

    2011-07-01

    Over the past 30 years, warm thermal disturbances have become commonplace on coral reefs worldwide. These periods of anomalous sea surface temperature (SST) can lead to coral bleaching, a breakdown of the symbiosis between the host coral and symbiotic dinoflagellates which reside in coral tissue. The onset of bleaching is typically predicted to occur when the SST exceeds a local climatological maximum by 1 degrees C for a month or more. However, recent evidence suggests that the threshold at which bleaching occurs may depend on thermal history. This study uses global SST data sets (HadISST and NOAA AVHRR) and mass coral bleaching reports (from Reefbase) to examine the effect of historical SST variability on the accuracy of bleaching prediction. Two variability-based bleaching prediction methods are developed from global analysis of seasonal and interannual SST variability. The first method employs a local bleaching threshold derived from the historical variability in maximum annual SST to account for spatial variability in past thermal disturbance frequency. The second method uses a different formula to estimate the local climatological maximum to account for the low seasonality of SST in the tropics. The new prediction methods are tested against the common globally fixed threshold method using the observed bleaching reports. The results find that estimating the bleaching threshold from local historical SST variability delivers the highest predictive power, but also a higher rate of Type I errors. The second method has the lowest predictive power globally, though regional analysis suggests that it may be applicable in equatorial regions. The historical data analysis suggests that the bleaching threshold may have appeared to be constant globally because the magnitude of interannual variability in maximum SST is similar for many of the world's coral reef ecosystems. For example, the results show that a SST anomaly of 1 degrees C is equivalent to 1.73-2.94 standard deviations of the maximum monthly SST for two-thirds of the world's coral reefs. Coral reefs in the few regions that experience anomalously high interannual SST variability like the equatorial Pacific could prove critical to understanding how coral communities acclimate or adapt to frequent and/or severe thermal disturbances.

  2. Influences of Local Sea-Surface Temperatures and Large-scale Dynamics on Monthly Precipitation Inferred from Two 10-year GCM-Simulations

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Walker, G. K.; Zhou, Y.; Lau, W. K.-M.

    2007-01-01

    Two parallel sets of 10-year long: January 1, 1982 to December 31, 1991, simulations were made with the finite volume General Circulation Model (fvGCM) in which the model integrations were forced with prescribed sea-surface temperature fields (SSTs) available as two separate SST-datasets. One dataset contained naturally varying monthly SSTs for the chosen period, and the oth& had the 12-monthly mean SSTs for the same period. Plots of evaporation, precipitation, and atmosphere-column moisture convergence, binned by l C SST intervals show that except for the tropics, the precipitation is more strongly constrained by large-scale dynamics as opposed to local SST. Binning data by SST naturally provided an ensemble average of data contributed from disparate locations with same SST; such averages could be expected to mitigate all location related influences. However, the plots revealed: i) evaporation, vertical velocity, and precipitation are very robust and remarkably similar for each of the two simulations and even for the data from 1987-ENSO-year simulation; ii) while the evaporation increased monotonically with SST up to about 27 C, the precipitation did not; iii) precipitation correlated much better with the column vertical velocity as opposed to SST suggesting that the influence of dynamical circulation including non-local SSTs is stronger than local-SSTs. The precipitation fields were doubly binned with respect to SST and boundary-layer mass and/or moisture convergence. The analysis discerned the rate of change of precipitation with local SST as a sum of partial derivative of precipitation with local SST plus partial derivative of precipitation with boundary layer moisture convergence multiplied by the rate of change of boundary-layer moisture convergence with SST (see Eqn. 3 of Section 4.5). This analysis is mathematically rigorous as well as provides a quantitative measure of the influence of local SST on the local precipitation. The results were recast to examine the dependence of local rainfall on local SSTs; it was discernible only in the tropics. Our methodology can be used for computing relationship between any forcing function and its effect(s) on a chosen field.

  3. Italian cross-cultural adaptation and validation of three different scales for the evaluation of shoulder pain and dysfunction after neck dissection: University of California - Los Angeles (UCLA) Shoulder Scale, Shoulder Pain and Disability Index (SPADI) and Simple Shoulder Test (SST).

    PubMed

    Marchese, C; Cristalli, G; Pichi, B; Manciocco, V; Mercante, G; Pellini, R; Marchesi, P; Sperduti, I; Ruscito, P; Spriano, G

    2012-02-01

    Shoulder syndrome after neck dissection is a well known entity, but its incidence and prognostic factors influencing recovery have not been clearly assessed due to the heterogeneity of possible evaluations. The University of California - Los Angeles (UCLA) Shoulder Scale, the Shoulder Pain and Disability Index (SPADI) and the Simple Shoulder Test (SST) are three English-language questionnaires commonly used to test shoulder impairment. An Italian version of these scales is not available. The aim of the present study was to translate, culturally adapt and validate an Italian version of UCLA Shoulder Scale, SPADI and SST. Translation and cross-cultural adaptation of the SPADI, the UCLA shoulder scale and the SST was performed according to the international guidelines. Sixty-six patients treated with neck dissection for head and neck cancer were called to draw up these scales. Forty patients completed the same questionnaires a second time one week after the first to test the reproducibility of the Italian versions. All the English-speaking Italian patients (n = 11) were asked to complete both the English and the Italian versions of the three questionnaires to validate the scales. No major problems regarding the content or the language were found during the translation of the 3 questionnaires. For all three scales, Cronbach's α was > 0.89. The Pearson correlation coefficient was r > 0.91. With respect to validity, there was a significant correlation between the Italian and the English versions of all three scales. This study shows that the Italian versions of UCLA Shoulder Scale, SPADI and SST are valid instruments for the evaluation of shoulder dysfunction after neck dissection in Italian patients.

  4. Fidelity of the Sr/Ca proxy in recording ocean temperature in the western Atlantic coral Siderastrea siderea

    USGS Publications Warehouse

    Kuffner, Ilsa B.; Roberts, Kelsey E.; Flannery, Jennifer A.; Morrison, Jennifer M.; Richey, Julie

    2017-01-01

    Massive corals provide a useful archive of environmental variability, but careful testing of geochemical proxies in corals is necessary to validate the relationship between each proxy and environmental parameter throughout the full range of conditions experienced by the recording organisms. Here we use samples from a coral-growth study to test the hypothesis that Sr/Ca in the coral Siderastrea siderea accurately records sea-surface temperature (SST) in the subtropics (Florida, USA) along 350 km of reef tract. We test calcification rate, measured via buoyant weight, and linear extension (LE) rate, estimated with Alizarin Red-S staining, as predictors of variance in the Sr/Ca records of 39 individual S. siderea corals grown at four outer-reef locations next to in-situ temperature loggers during two, year-long periods. We found that corals with calcification rates < 1.7 mg cm−2 d−1 or < 1.7 mm yr−1 LE returned spuriously high Sr/Ca values, leading to a cold-bias in Sr/Ca-based SST estimates. The threshold-type response curves suggest that extension rate can be used as a quality-control indicator during sample and drill-path selection when using long cores for SST paleoreconstruction. For our corals that passed this quality control step, the Sr/Ca-SST proxy performed well in estimating mean annual temperature across three sites spanning 350 km of the Florida reef tract. However, there was some evidence that extreme temperature stress in 2010 (cold snap) and 2011 (SST above coral-bleaching threshold) may have caused the corals not to record the temperature extremes. Known stress events could be avoided during modern calibrations of paleoproxies.

  5. SST algorithm based on radiative transfer model

    NASA Astrophysics Data System (ADS)

    Mat Jafri, Mohd Z.; Abdullah, Khiruddin; Bahari, Alui

    2001-03-01

    An algorithm for measuring sea surface temperature (SST) without recourse to the in-situ data for calibration has been proposed. The algorithm which is based on the recorded infrared signal by the satellite sensor is composed of three terms, namely, the surface emission, the up-welling radiance emitted by the atmosphere, and the down-welling atmospheric radiance reflected at the sea surface. This algorithm requires the transmittance values of thermal bands. The angular dependence of the transmittance function was modeled using the MODTRAN code. Radiosonde data were used with the MODTRAN code. The expression of transmittance as a function of zenith view angle was obtained for each channel through regression of the MODTRAN output. The Ocean Color Temperature Scanner (OCTS) data from the Advanced Earth Observation Satellite (ADEOS) were used in this study. The study area covers the seas of the North West of Peninsular Malaysia region. The in-situ data (ship collected SST values) were used for verification of the results. Cloud contaminated pixels were masked out using the standard procedures which have been applied to the Advanced Very High Resolution Radiometer (AVHRR) data. The cloud free pixels at the in-situ sites were extracted for analysis. The OCTS data were then substituted in the proposed algorithm. The appropriate transmittance value for each channel was then assigned in the calculation. Assessment for the accuracy was made by observing the correlation and the rms deviations between the computed and the ship collected values. The results were also compared with the results from OCTS multi- channel sea surface temperature algorithm. The comparison produced high correlation values. The performance of this algorithm is comparable with the established OCTS algorithm. The effect of emissivity on the retrieved SST values was also investigated. SST map was generated and contoured manually.

  6. Understanding Southern Ocean SST Trends in Historical Simulations and Observations

    NASA Astrophysics Data System (ADS)

    Kostov, Yavor; Ferreira, David; Marshall, John; Armour, Kyle

    2017-04-01

    Historical simulations with CMIP5 global climate models do not reproduce the observed 1979-2014 Southern Ocean (SO) cooling, and most ensemble members predict gradual warming around Antarctica. In order to understand this discrepancy and the mechanisms behind the SO cooling, we analyze output from 19 CMIP5 models. For each ensemble member we estimate the characteristic responses of SO SST to step changes in greenhouse gas (GHG) forcing and in the seasonal indices of the Southern Annular Mode (SAM). Using these step-response functions and linear convolution theory, we reconstruct the original CMIP5 simulations of 1979-2014 SO SST trends. We recover the CMIP5 ensemble mean trend, capture the intermodel spread, and reproduce very well the behavior of individual models. We thus suggest that GHG forcing and the SAM are major drivers of the simulated 1979-2014 SO SST trends. In consistence with the seasonal signature of the Antarctic ozone hole, our results imply that the summer (DJF) and fall (MAM) SAM exert a particularly important effect on the SO SST. In some CMIP5 models the SO SST response to SAM partially counteracts the warming due to GHG forcing, while in other ensemble members the SAM-induced SO SST trends complement the warming effect of GHG forcing. The compensation between GHG and SAM-induced SO SST anomalies is model-dependent and is determined by multiple factors. Firstly, CMIP5 models have different characteristic SST step response functions to SAM. Kostov et al. (2016) relate these differences to biases in the models' climatological SO temperature gradients. Secondly, many CMIP5 historical simulations underestimate the observed positive trends in the DJF and MAM seasonal SAM indices. We show that this affects the models' ability to reproduce the observed SO cooling. Last but not least, CMIP5 models differ in their SO SST step response functions to GHG forcing. Understanding the diverse behavior of CMIP5 models helps shed light on the physical processes that drive SST trends in the real SO.

  7. sST2 translation is regulated by FGF2 via an hnRNP A1-mediated IRES-dependent mechanism.

    PubMed

    Kunze, Michael M; Benz, Fabienne; Brauß, Thilo F; Lampe, Sebastian; Weigand, Julia E; Braun, Johannes; Richter, Florian M; Wittig, Ilka; Brüne, Bernhard; Schmid, Tobias

    2016-07-01

    Translation is an energy-intensive process and tightly regulated. Generally, translation is initiated in a cap-dependent manner. Under stress conditions, typically found within the tumor microenvironment in association with e.g. nutrient deprivation or hypoxia, cap-dependent translation decreases, and alternative modes of translation initiation become more important. Specifically, internal ribosome entry sites (IRES) facilitate translation of specific mRNAs under otherwise translation-inhibitory conditions. This mechanism is controlled by IRES trans-acting factors (ITAF), i.e. by RNA-binding proteins, which interact with and determine the activity of selected IRESs. We aimed at characterizing the translational regulation of the IL-33 decoy receptor sST2, which was enhanced by fibroblast growth factor 2 (FGF2). We identified and verified an IRES within the 5'UTR of sST2. Furthermore, we found that MEK/ERK signaling contributes to FGF2-induced, sST2-IRES activation and translation. Determination of the sST2-5'UTR structure by in-line probing followed by deletion analyses identified 23 nucleotides within the sST2-5'UTR to be required for optimal IRES activity. Finally, we show that the RNA-binding protein heterogeneous ribonucleoprotein A1 (hnRNP A1) binds to the sST2-5'UTR, acts as an ITAF, and thus controls the activity of the sST2-IRES and consequently sST2 translation. Specifically, FGF2 enhances nuclear-cytoplasmic translocation of hnRNP A1, which requires intact MEK/ERK activity. In summary, we provide evidence that the sST2-5'UTR contains an IRES element, which is activated by a MEK/ERK-dependent increase in cytoplasmic localization of hnRNP A1 in response to FGF2, enhancing the translation of sST2. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Low frequency North Atlantic SST variability: Weather noise forcing and coupled response

    NASA Astrophysics Data System (ADS)

    Fan, Meizhu

    A method to diagnose the causes of low frequency SST variability is developed, tested and applied in an ideal case and real climate. In the ideal case, a free simulation of the COLA CGCM is taken as synthetic observations. For real climate, we take NCEP reanalysis atmospheric data and Reynolds SST as observations. Both the synthetic and actual observation data show that weather noise is the main component of atmospheric variability at subtropics and high-latitude. Diagnoses of results from the ideal case suggest that most of the synthetic observed SST variability can be reproduced by the weather noise surface fluxes forcing. This includes the "observed" low frequency SST patterns in the North Atlantic and their corresponding time evolution. Among all the noise surface fluxes, heat flux plays a major role. The results from simulations using actual observations also suggest that the observed SST variability is mostly atmospheric weather noise forced. The regional atmospheric noise forcing, especially the heat flux noise forcing, is the major source of the low frequency SST variability in the North Atlantic. The observed SST tripole mode has about a 12 year period and it can be reasonably reproduced by the weather noise forcing in terms of its period, spatial pattern and variance. Based on our diagnosis, it is argued that the SST tripole is mainly forced by local atmospheric heat flux noise. The gyre circulation plays a secondary role: the anomalous gyre circulation advects mean thermal features across the inter-gyre boundary, and the mean gyre advection carries SST anomalies along the inter-gyre boundary. The diagnosis is compared with a delayed oscillator theory. We find that the delayed oscillator theory is not supported and that the SST tripole mode is forced by weather noise heat flux noise. However, the result may be model dependent.

  9. The plasma levels of soluble ST2 as a marker of gut mucosal damage in early HIV infection

    PubMed Central

    Mehraj, Vikram; Jenabian, Mohammad-Ali; Ponte, Rosalie; Lebouché, Bertrand; Costiniuk, Cecilia; Thomas, Réjean; Baril, Jean-Guy; LeBlanc, Roger; Cox, Joseph; Tremblay, Cécile; Routy, Jean-Pierre

    2016-01-01

    Objective: Following tissue barrier breaches, interleukin-33 (IL-33) is released as an ‘alarmin’ to induce inflammation. Soluble suppression of tumorigenicity 2 (sST2), as an IL-33 decoy receptor, contributes to limit inflammation. We assessed the relationship between the IL-33/ST2 axis and markers of gut mucosal damage in patients with early (EHI) and chronic HIV infection (CHI) and elite controllers. Design: Analyses on patients with EHI and CHI were conducted to determine IL-33/sST2 changes over time. Methods: IL-33 and sST2 levels were measured in plasma. Correlations between sST2 levels and plasma viral load, CD4+ and CD8+ T-cell counts, expression of T-cell activation/exhaustion markers, gut mucosal damage, microbial translocation and inflammation markers, as well as kynurenine/tryptophan ratio were assessed. Results: Plasma sST2 levels were elevated in EHI compared with untreated CHI and uninfected controls, whereas IL-33 levels were comparable in all groups. In EHI, sST2 levels were positively correlated with the CD8+ T-cell count and the percentage of T cells expressing activation and exhaustion markers, but not with viral load or CD4+ T-cell count. Plasma sST2 levels also correlated with plasma levels of gut mucosal damage, microbial translocation and kynurenine/tryptophan ratio and for some markers of inflammation. Prospective analyses showed that early antiretroviral therapy had no impact on sST2 levels, whereas longer treatment duration initiated during CHI normalized sST2. Conclusion: As sST2 levels were elevated in EHI and were correlated with CD8+ T-cell count, immune activation, and microbial translocation, sST2 may serve as a marker of disease progression, gut damage and may directly contribute to HIV pathogenesis. PMID:27045377

  10. Improving the space surveillance telescope's performance using multi-hypothesis testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chris Zingarelli, J.; Cain, Stephen; Pearce, Eric

    2014-05-01

    The Space Surveillance Telescope (SST) is a Defense Advanced Research Projects Agency program designed to detect objects in space like near Earth asteroids and space debris in the geosynchronous Earth orbit (GEO) belt. Binary hypothesis test (BHT) methods have historically been used to facilitate the detection of new objects in space. In this paper a multi-hypothesis detection strategy is introduced to improve the detection performance of SST. In this context, the multi-hypothesis testing (MHT) determines if an unresolvable point source is in either the center, a corner, or a side of a pixel in contrast to BHT, which only testsmore » whether an object is in the pixel or not. The images recorded by SST are undersampled such as to cause aliasing, which degrades the performance of traditional detection schemes. The equations for the MHT are derived in terms of signal-to-noise ratio (S/N), which is computed by subtracting the background light level around the pixel being tested and dividing by the standard deviation of the noise. A new method for determining the local noise statistics that rejects outliers is introduced in combination with the MHT. An experiment using observations of a known GEO satellite are used to demonstrate the improved detection performance of the new algorithm over algorithms previously reported in the literature. The results show a significant improvement in the probability of detection by as much as 50% over existing algorithms. In addition to detection, the S/N results prove to be linearly related to the least-squares estimates of point source irradiance, thus improving photometric accuracy.« less

  11. Impact of High Resolution SST Data on Regional Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Case, Jonathon; LaFontaine, Frank; Vazquez, Jorge; Mattocks, Craig

    2010-01-01

    Past studies have shown that the use of coarse resolution SST products such as from the real-time global (RTG) SST analysis[1] or other coarse resolution once-a-day products do not properly portray the diurnal variability of fluxes of heat and moisture from the ocean that drive the formation of low level clouds and precipitation over the ocean. For example, the use of high resolution MODIS SST composite [2] to initialize the Advanced Research Weather Research and Forecast (WRF) (ARW) [3] has been shown to improve the prediction of sensible weather parameters in coastal regions [4][5}. In an extend study, [6] compared the MODIS SST composite product to the RTG SST analysis and evaluated forecast differences for a 6 month period from March through August 2007 over the Florida coastal regions. In a comparison to buoy data, they found that that the MODIS SST composites reduced the bias and standard deviation over that of the RTG data. These improvements led to significant changes in the initial and forecasted heat fluxes and the resulting surface temperature fields, wind patterns, and cloud distributions. They also showed that the MODIS composite SST product, produced for the Terra and Aqua satellite overpass times, captured a component of the diurnal cycle in SSTs not represented in the RTG or other one-a-day SST analyses. Failure to properly incorporate these effects in the WRF initialization cycle led to temperature biases in the resulting short term forecasts. The forecast impact was limited in some situations however, due to composite product inaccuracies brought about by data latency during periods of long-term cloud cover. This paper focuses on the forecast impact of an enhanced MODIS/AMSR-E composite SST product designed to reduce inaccuracies due data latency in the MODIS only composite product.

  12. Last interglacial temperature seasonality reconstructed from tropical Atlantic corals

    NASA Astrophysics Data System (ADS)

    Brocas, William M.; Felis, Thomas; Obert, J. Christina; Gierz, Paul; Lohmann, Gerrit; Scholz, Denis; Kölling, Martin; Scheffers, Sander R.

    2016-09-01

    Reconstructions of last interglacial (LIG, MIS 5e, ∼127-117 ka) climate offer insights into the natural response and variability of the climate system during a period partially analogous to future climate change scenarios. We present well preserved fossil corals (Diploria strigosa) recovered from the southern Caribbean island of Bonaire (Caribbean Netherlands). These have been precisely dated by the 230Th/U-method to between 130 and 120 ka ago. Annual banding of the coral skeleton enabled construction of time windows of monthly resolved strontium/calcium (Sr/Ca) temperature proxy records. In conjunction with a previously published 118 ka coral record, our eight records of up to 37 years in length, cover a total of 105 years within the LIG period. From these, sea surface temperature (SST) seasonality and variability in the tropical North Atlantic Ocean is reconstructed. We detect similar to modern SST seasonality of ∼2.9 °C during the early (130 ka) and the late LIG (120-118 ka). However, within the mid-LIG, a significantly higher than modern SST seasonality of 4.9 °C (at 126 ka) and 4.1 °C (at 124 ka) is observed. These findings are supported by climate model simulations and are consistent with the evolving amplitude of orbitally induced changes in seasonality of insolation throughout the LIG, irrespective of wider climatic instabilities that characterised this period. The climate model simulations suggest that the SST seasonality changes documented in our LIG coral Sr/Ca records are representative of larger regions within the tropical North Atlantic. These simulations also suggest that the reconstructed SST seasonality increase during the mid-LIG is caused primarily by summer warming. A 124 ka old coral documents, for the first time, evidence of decadal SST variability in the tropical North Atlantic during the LIG, akin to that observed in modern instrumental records.

  13. The Spatial and Temporal Distribution of SST in the Yellow Sea and the Evolution of the Yellow Sea Warm Current During the Holocene

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Xiao, X.; Yu, M.; Yuan, Z. N.; Zhang, H.; Zhao, M.

    2017-12-01

    The Yellow Sea (YS) environment is influenced by both continental and oceanic forcing. The Yellow Sea Warm Current (YSWC) is the most significantly hydrological characteristics of the YS in winter, which is a conduit by which the deep Pacific Ocean influences the YS. Paleo-environmental records are essential for understanding the evolution of the YS environment, especially the spatial distribution of the sea surface temperature (SST) records which can be used to interpret the controlling factors of the YSWC. Previous studies mostly focused on the temporal variation but studies on both temporal and spatial environmental evolution are rather sparse. We used Uk37 temperature records in 9 cores located the north of 35°N in YS to reconstruct the spatial/temporal variations of the SST during the Holocene and further to understand the main natural factors that influenced the evolution of the YS environment and current system. All the SST records in 9 sediment cores displayed the similar trend during the Holocene, showing a regional response to marine environmental variability in the east China Seas influenced by the YSWC. To reconstruct the historical westward shift of the YSWC relative to the bathymetric trough of the YS, we compared SST records of the cores located in the west and east side of the axis of the modern YSWC. The obvious westward shift of the YSWC was observed during the periods of 4500-5000aBP, 2800-3400aBP and 1600-0aBP, especially 1000-0aBP, indicating by the distinctly gradual temperature gradients. The comparison of the East Asian Winter Monsoon(EAWM) and the Kuroshio current intensity records with the SST records revealed that the westward shift of the YSWC might be controlled by the Kuroshio intensity. Our findings have important implications for understanding the mechanisms of the variability of the YSWC.

  14. Interaction between Tropical Atlantic Variability and El Niño-Southern Oscillation.

    NASA Astrophysics Data System (ADS)

    Saravanan, R.; Chang, Ping

    2000-07-01

    The interaction between tropical Atlantic variability and El Niño-Southern Oscillation (ENSO) is investigated using three ensembles of atmospheric general circulation model integrations. The integrations are forced by specifying observed sea surface temperature (SST) variability over a forcing domain. The forcing domain is the global ocean for the first ensemble, limited to the tropical ocean for the second ensemble, and further limited to the tropical Atlantic region for the third ensemble. The ensemble integrations show that extratropical SST anomalies have little impact on tropical variability, but the effect of ENSO is pervasive in the Tropics. Consistent with previous studies, the most significant influence of ENSO is found during the boreal spring season and is associated with an anomalous Walker circulation. Two important aspects of ENSO's influence on tropical Atlantic variability are noted. First, the ENSO signal contributes significantly to the `dipole' correlation structure between tropical Atlantic SST and rainfall in the Nordeste Brazil region. In the absence of the ENSO signal, the correlations are dominated by SST variability in the southern tropical Atlantic, resulting in less of a dipole structure. Second, the remote influence of ENSO also contributes to positive correlations between SST anomalies and downward surface heat flux in the tropical Atlantic during the boreal spring season. However, even when ENSO forcing is absent, the model integrations provide evidence for a positive surface heat flux feedback in the deep Tropics, which is analyzed in a companion study by Chang et al. The analysis of model simulations shows that interannual atmospheric variability in the tropical Pacific-Atlantic system is dominated by the interaction between two distinct sources of tropical heating: (i) an equatorial heat source in the eastern Pacific associated with ENSO and (ii) an off-equatorial heat source associated with SST anomalies near the Caribbean. Modeling this Caribbean heat source accurately could be very important for seasonal forecasting in the Central American-Caribbean region.

  15. Reconstructing the history of the Atlantic Multidecadal Oscillation using high-resolution Mg/Ca paleothermometry from a Cariaco Basin core

    NASA Astrophysics Data System (ADS)

    Wurtzel, J. B.; Black, D. E.; Rahman, S.; Thunell, R.; Peterson, L. C.; Tappa, E.

    2010-12-01

    Instrumental and proxy-reconstructions show the existence of an approximately 70-year periodicity in Atlantic sea surface temperature (SST), known as the Atlantic Multidecadal Oscillation (AMO). The AMO is correlated with circum-tropical Atlantic climate phenomena such as Sahel and Nordeste rainfall, and Atlantic hurricane patterns. Though it has been suggested that the AMO is controlled by thermohaline circulation, much debate exists as to whether the SST fluctuations are a result of anthropogenic forcing or a natural climate mode, or even if the AMO is a true oscillation at all. Our ability to address this issue has been limited by instrumental SST records that rarely extend back more than 50-100 years and proxy reconstructions that are mostly terrestrial-based. Additionally, the modern instrumental variability likely contains an anthropogenic component that is not easily distinguished from the natural background of the system. From a marine sediment core taken in the Cariaco Basin, we have developed a high-resolution SST reconstruction for the past ca. 1500 years using Mg/Ca paleothermometry on seasonally-representative foraminifera, with the most recent data calibrated to the instrumental record. Previous studies have shown Cariaco Basin Mg/Ca-SSTs to be well-correlated to the Caribbean Sea and much of the western tropical Atlantic, which allows us to create a record that can be used to determine pre-anthropogenic rates and ranges of SST variability and observe how they change over time. Averaging the seasonal temperatures derived from the two foraminiferal species over the instrumental period yields a strong correlation to the AMO index from A. D. 1880 through 1970 (r = 0.44, p<0.0001). Wavelet analysis of the proxy average annual SST data indicates that modern AMO variability is not a consistent feature through time, and may be a function of warm-period climate.

  16. A 1200 Year Alkenone-based Reconstruction of Sea Surface Temperature and Marine Productivity in the Southern California Current System from the Medieval Climate Anomaly to Present

    NASA Astrophysics Data System (ADS)

    O'Mara, N. A.; Kelly, C. S.; Herbert, T.

    2017-12-01

    Laminated sediment cores taken from the San Lazaro Basin (SLB) (25.18N, 112.66W) located off the coast of Baja California in the subtropical eastern Pacific were geochemically analyzed for alkenone and sterol biomarkers to reconstruct sea surface temperature (SST) and marine productivity from 850-1980 CE. High sedimentation rates, low bottom water dissolved oxygen, and high marine productivity in combination with the San Lazaro Basin's location within the dynamic transition zone between the tropical and subtropical eastern Pacific, make it a prime location to study variability of tropical and subtropical modes of climate variability. This study focuses on the impacts and variability of the El Niño Southern Oscillation and the Pacific Decadal Oscillation on the subtropical eastern Pacific. SST and coccolithophore productivity (n=730) for 2 mm sections of sediment corresponding to 1 measurement every 1.8 years were reconstructed using the Uk'37 unsaturation index and C37 alkenone concentration. The high resolution of this record allowed for the analysis of variability of SST and productivity on decadal timescales. Brassicasterol concentrations were calculated for a limited number of samples (n=44) to assess diatom productivity. High spectral power was found at periods of 20-30 years in SST and productivity records indicating a strong influence of the PDO on the SLB, making this the first marine based record directly relevant to PDO reconstructions that continuously spans the last millennium. Cool and productive (warm and less productive) waters were observed in the southern California Current in the Medieval Climate Anomaly 900-1200 CE (Little Ice Age 1400-1800 CE) supporting previous reconstructions that warmer (cooler) SST are linked to both reduced (enhanced) phytoplankton productivity. Additionally, cool (warm) SST were also associated with dry (wet) conditions in the American Southwest indicating that changes in the PDO has had a significant impact on drought in this region over the past millennium.

  17. Sensitivity of Last Glacial Maximum climate to uncertainties in tropical and subtropical ocean temperatures

    USGS Publications Warehouse

    Hostetler, S.; Pisias, N.; Mix, A.

    2006-01-01

    The faunal and floral gradients that underlie the CLIMAP (1981) sea-surface temperature (SST) reconstructions for the Last Glacial Maximum (LGM) reflect ocean temperature gradients and frontal positions. The transfer functions used to reconstruct SSTs from biologic gradients are biased, however, because at the warmest sites they display inherently low sensitivity in translating fauna to SST and they underestimate SST within the euphotic zones where the pycnocline is strong. Here we assemble available data and apply a statistical approach to adjust for hypothetical biases in the faunal-based SST estimates of LGM temperature. The largest bias adjustments are distributed in the tropics (to address low sensitivity) and subtropics (to address underestimation in the euphotic zones). The resulting SSTs are generally in better agreement than CLIMAP with recent geochemical estimates of glacial-interglacial temperature changes. We conducted a series of model experiments using the GENESIS general atmospheric circulation model to assess the sensitivity of the climate system to our bias-adjusted SSTs. Globally, the new SST field results in a modeled LGM surface-air cooling relative to present of 6.4 ??C (1.9 ??C cooler than that of CLIMAP). Relative to the simulation with CLIMAP SSTs, modeled precipitation over the oceans is reduced by 0.4 mm d-1 (an anomaly -0.4 versus 0.0 mm d-1 for CLIMAP) and increased over land (an anomaly -0.2 versus -0.5 mm d-1 for CLIMAP). Regionally strong responses are induced by changes in SST gradients. Data-model comparisons indicate improvement in agreement relative to CLIMAP, but differences among terrestrial data inferences and simulated moisture and temperature remain. Our SSTs result in positive mass balance over the northern hemisphere ice sheets (primarily through reduced summer ablation), supporting the hypothesis that tropical and subtropical ocean temperatures may have played a role in triggering glacial changes at higher latitudes.

  18. Effect of the Initial Vortex Size on Intensity Change in the WRF-ROMS Coupled Model

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaohui; Chan, Johnny C. L.

    2017-12-01

    Numerous studies have demonstrated that the tropical cyclone (TC) induced sea surface temperature (SST) cooling strongly depends on the preexisting oceanic condition and TC characteristics. However, very few focused on the correlation of SST cooling and the subsequent intensity with TC size. Therefore, a series of idealized numerical experiments are conducted using the Weather Research Forecasting (WRF) model coupled with the Regional Ocean Model System (ROMS) model to understand how the vortex size is related to SST cooling and subsequent intensity changes of a stationary TC-like vortex. In the uncoupled experiments, the radius of maximum wind (RMW) and size (radius of gale-force wind (R17)) both depend on the initial size within the 72 h simulation. The initially small vortex is smaller than the medium and large vortices throughout its life cycle and is the weakest. In other words, thermodynamic processes do not contribute as much to the R17 change as the dynamic processes proposed (e.g., angular momentum transport) in previous studies. In the coupled experiments, the area-averaged SST cooling induced by medium and large TCs within the inner-core region is comparable due to the similar surface winds and thus mixing in the ocean. Although a stronger SST cooling averaged within a larger region outside the inner-core is induced by the larger TC, the intensity of the larger TC is more intense. This is because that the enthalpy flux in the inner-core region is higher in the larger TC than that in the medium and small TCs.

  19. Relation between climatic factors, diet and reproductive parameters of Little Terns over a decade

    NASA Astrophysics Data System (ADS)

    Ramos, Jaime A.; Pedro, Patrícia; Matos, Antonio; Paiva, Vitor H.

    2013-11-01

    We used 10 years of data on clutch size, egg size and diet, and 8 years of data on timing of laying on Little Terns (Sternula albifrons) breeding in Ria Formosa lagoon system, Algarve, Portugal to assess whether diet acts as an important intermediary between climatic conditions and breeding parameters. We used Generalized Linear Models to relate (1) the relative occurrence and size of the main prey species, sand smelts (Atherina spp.), with environmental variables, a large-scale climate variable, the North Atlantic Oscillation (NAO) index, and a local scale variable, the sea-surface temperature (SST), and (2) the respective effects of sand smelts relative occurrence, NAO index and SST on Little Tern breeding parameters. The diet of Little Terns was dominated by sand smelts, with a frequency occurrence of over 60% in all years. The winter SST (February) was negatively associated with the relative occurrence of sand smelts in the diet of Little Terns during the breeding season which, in turn, was positively associated with Little Tern clutch size. Our results suggest that negative NAO conditions in the Atlantic Ocean, often associated with rougher sea conditions (greater vertical mixing, stronger winds and lower SST) were related with earlier breeding, and lower SST in the surroundings of the colony during winter-spring favour the abundance of prey fish for Little Terns as well as their reproductive parameters. Climate patterns at both large and local scales are likely to change in the future, which may have important implications for estuarine seabirds in Southern Europe.

  20. The importance of the terrestrial weathering feedback for multimillennial coral reef habitat recovery

    NASA Astrophysics Data System (ADS)

    Meissner, Katrin J.; McNeil, Ben I.; Eby, Michael; Wiebe, Edward C.

    2012-09-01

    Modern-day coral reefs have well defined environmental envelopes for light, sea surface temperature (SST) and seawater aragonite saturation state (Ωarag). We examine the changes in global coral reef habitat on multimillennial timescales with regard to SST and Ωaragusing a climate model including a three-dimensional ocean general circulation model, a fully coupled carbon cycle, and six different parameterizations for continental weathering (the UVic Earth System Climate Model). The model is forced with emission scenarios ranging from 1,000 Pg C to 5,000 Pg C total emissions. We find that the long-term climate change response is independent of the rate at which CO2 is emitted over the next few centuries. On millennial timescales, the weathering feedback introduces a significant uncertainty even for low emission scenarios. Weathering parameterizations based on atmospheric CO2 only display a different transient response than weathering parameterizations that are dependent on temperature. Although environmental conditions for SST and Ωaragstay globally hostile for coral reefs for millennia for our high emission scenarios, some weathering parameterizations induce a near-complete recovery of coral reef habitat to current conditions after 10,000 years, while others result in a collapse of coral reef habitat throughout our simulations. We find that the multimillennial response in sea surface temperature (SST) substantially lags the aragonite saturation recovery in all configurations. This implies that if corals can naturally adapt over millennia by selecting thermally tolerant species to match warmer ocean temperatures, prospects for long-term recovery of coral reefs are better since Ωarag recovers more quickly than SST.

  1. The Role of the Indian Ocean Sector for Prediction of the Coupled Indo-Pacific System: Impact of Atmospheric Coupling

    NASA Technical Reports Server (NTRS)

    Hackert, E. C.; Busalacchi, A. J.; Carton, J.; Murtugudde, R.; Arkin, P.; Evans, M. N.

    2017-01-01

    Indian Ocean (IO) dynamics impact ENSO predictability by influencing wind and precipitation anomalies in the Pacific. To test if the upstream influence of the IO improves ENSO validation statistics, a combination of forced ocean, atmosphere, and coupled models are utilized. In one experiment, the full tropical Indo-Pacific region atmosphere is forced by observed interannual SST anomalies. In the other, the IO is forced by climatological SST. Differences between these two forced atmospheric model experiments spotlight a much richer wind response pattern in the Pacific than previous studies that used idealized forcing and simple linear atmospheric models. Weak westerlies are found near the equator similar to earlier literature. However, at initialization strong easterlies between 30 deg. S to 10 deg. S and 0 deg. N to 25 deg. N and equatorial convergence of the meridional winds across the entire Pacific are unique findings from this paper. The large-scale equatorial divergence west of the dateline and northeasterly-to-northwesterly cross-equatorial flow converging on the equator east of the dateline in the Pacific are generated from interannual IO SST coupling. In addition, off-equatorial downwelling curl impacts large-scale oceanic waves (i.e., Rossby waves reflect as western boundary Kelvin waves). After 3 months, these downwelling equatorial Kelvin waves propagate across the Pacific and strengthen the NINO3 SST. Eventually Bjerknes feedbacks take hold in the eastern Pacific which allows this warm anomaly to grow. Coupled forecasts for NINO3 SST anomalies for 1993-2014 demonstrate that including interannual IO forcing significantly improves predictions for 3-9 month lead times.

  2. Multi-decadal to centennial scale variations in sea surface temperature off southeast Korea over the last 2000 yr

    NASA Astrophysics Data System (ADS)

    Lee, K. E.; Park, W.; Bae, S. W.; Nam, S. I.

    2016-12-01

    We have reconstructed variations in sea surface temperature (SST) for the last 2000 yr by using the alkenone unsaturation index of marine sediments of cores TY2010 PC4 and ARA/ES 03-01 GC01 recovered from the southwestern part of the East Sea. The core site is chracterized by very high sedimentation rate so that a new high-resolution continuous SST record can be reconstructed with an average temporal resolution of 2-7 years. The core top alkenone temperature (20.5°C) is higher than the annual averaged in situ SST (18 °C) and it corresponds to those of summer to autumn. During the last 2000 yr, the alkenone temperatures exhibited fluctuations on multi-decadal to centennial time scales. The temperatures were relatively warm fluctuating between 19.6°C and 21°C on centennial time scale during the period of AD 0- 1200. There were two evident cold periods: AD 1200-1400 and AD 1600-1800. The lowest temperature (approximately 18°C) occurred at AD 1290 and AD 1650. The temperatures increased toward 20 centry, which is consistent with anthropogenic global warming. Results of singular spectrum analysis of the last 2000 yr SST record suggest that there is characteristic periodicity of 100 yr and 160 yr and 50-60 yr, which can be natural variability of climate system. In addition, a comparison of the SST record with global volcanic forcing data shows that volcanic events also can be correlated to the distinct cooling events.

  3. Causes of Upper-Ocean Temperature Anomalies in the Tropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Rugg, A.; Foltz, G. R.; Perez, R. C.

    2016-02-01

    Hurricane activity and regional rainfall are strongly impacted by upper ocean conditions in the tropical North Atlantic, defined as the region between the equator and 20°N. A previous study analyzed a strong cold sea surface temperature (SST) anomaly that developed in this region during early 2009 and was recorded by the Pilot Research Array in the Tropical Atlantic (PIRATA) moored buoy at 4°N, 23°W (Foltz et al. 2012). The same mooring shows a similar cold anomaly in the spring of 2015 as well as a strong warm anomaly in 2010, offering the opportunity for a more comprehensive analysis of the causes of these events. In this study we examine the main causes of the observed temperature anomalies between 1998 and 2015. Basin-scale conditions during these events are analyzed using satellite SST, wind, and rain data, as well as temperature and salinity profiles from the NCEP Global Ocean Data Assimilation System. A more detailed analysis is conducted using ten years of direct measurements from the PIRATA mooring at 4°N, 23°W. Results show that the cooling and warming anomalies were caused primarily by wind-driven changes in surface evaporative cooling, mixed layer depth, and upper-ocean vertical velocity. Anomalies in surface solar radiation acted to damp the wind-driven SST anomalies in the latitude bands of the ITCZ (3°-8°N). Basin-scale analyses also suggest a strong connection between the observed SST anomalies and the Atlantic Meridional Mode, a well-known pattern of SST and surface wind anomalies spanning the tropical Atlantic.

  4. The role of the Indian Ocean sector for prediction of the coupled Indo-Pacific system: Impact of atmospheric coupling

    NASA Astrophysics Data System (ADS)

    Hackert, E. C.; Busalacchi, A. J.; Carton, J.; Murtugudde, R.; Arkin, P.; Evans, M. N.

    2017-04-01

    Indian Ocean (IO) dynamics impact ENSO predictability by influencing wind and precipitation anomalies in the Pacific. To test if the upstream influence of the IO improves ENSO validation statistics, a combination of forced ocean, atmosphere, and coupled models are utilized. In one experiment, the full tropical Indo-Pacific region atmosphere is forced by observed interannual SST anomalies. In the other, the IO is forced by climatological SST. Differences between these two forced atmospheric model experiments spotlight a much richer wind response pattern in the Pacific than previous studies that used idealized forcing and simple linear atmospheric models. Weak westerlies are found near the equator similar to earlier literature. However, at initialization strong easterlies between 30°S-10°S and 0°N-25°N and equatorial convergence of the meridional winds across the entire Pacific are unique findings from this paper. The large-scale equatorial divergence west of the dateline and northeasterly-to-northwesterly cross-equatorial flow converging on the equator east of the dateline in the Pacific are generated from interannual IO SST coupling. In addition, off-equatorial downwelling curl impacts large-scale oceanic waves (i.e., Rossby waves reflect as western boundary Kelvin waves). After 3 months, these downwelling equatorial Kelvin waves propagate across the Pacific and strengthen the NINO3 SST. Eventually Bjerknes feedbacks take hold in the eastern Pacific which allows this warm anomaly to grow. Coupled forecasts for NINO3 SST anomalies for 1993-2014 demonstrate that including interannual IO forcing significantly improves predictions for 3-9 month lead times.

  5. The Use of Neural Networks in Identifying Error Sources in Satellite-Derived Tropical SST Estimates

    PubMed Central

    Lee, Yung-Hsiang; Ho, Chung-Ru; Su, Feng-Chun; Kuo, Nan-Jung; Cheng, Yu-Hsin

    2011-01-01

    An neural network model of data mining is used to identify error sources in satellite-derived tropical sea surface temperature (SST) estimates from thermal infrared sensors onboard the Geostationary Operational Environmental Satellite (GOES). By using the Back Propagation Network (BPN) algorithm, it is found that air temperature, relative humidity, and wind speed variation are the major factors causing the errors of GOES SST products in the tropical Pacific. The accuracy of SST estimates is also improved by the model. The root mean square error (RMSE) for the daily SST estimate is reduced from 0.58 K to 0.38 K and mean absolute percentage error (MAPE) is 1.03%. For the hourly mean SST estimate, its RMSE is also reduced from 0.66 K to 0.44 K and the MAPE is 1.3%. PMID:22164030

  6. Psychometric Properties of the Persian Version of the Simple Shoulder Test (SST) Questionnaire.

    PubMed

    Ebrahimzadeh, Mohammad H; Vahedi, Ehsan; Baradaran, Aslan; Birjandinejad, Ali; Seyyed-Hoseinian, Seyyed-Hadi; Bagheri, Farshid; Kachooei, Amir Reza

    2016-10-01

    To validate the Persian version of the simple shoulder test in patients with shoulder joint problems. Following Beaton`s guideline, translation and back translation was conducted. We reached to a consensus on the Persian version of SST. To test the face validity in a pilot study, the Persian SST was administered to 20 individuals with shoulder joint conditions. We enrolled 148 consecutive patients with shoulder problem to fill the Persian SST, shoulder specific measure including Oxford shoulder score (OSS) and two general measures including DASH and SF-36. To measure the test-retest reliability, 42 patients were randomly asked to fill the Persian-SST for the second time after one week. Cronbach's alpha coefficient was used to demonstrate internal consistency over the 12 items of Persian-SST. ICC for the total questionnaire was 0.61 showing good and acceptable test-retest reliability. ICC for individual items ranged from 0.32 to 0.79. The total Cronbach's alpha was 0.84 showing good internal consistency over the 12 items of the Persian-SST. Validity testing showed strong correlation between SST and OSS and DASH. The correlation with OSS was positive while with DASH scores was negative. The correlation was also good to strong with all physical and most mental subscales of the SF-36. Correlation coefficient was higher with DASH and OSS in compare to SF-36. Persian version of SST found to be valid and reliable instrument for shoulder joint pain and function assessment in Iranian population.

  7. The Sulfate Transporter SST1 Is Crucial for Symbiotic Nitrogen Fixation in Lotus japonicus Root Nodules

    PubMed Central

    Krusell, Lene; Krause, Katja; Ott, Thomas; Desbrosses, Guilhem; Krämer, Ute; Sato, Shusei; Nakamura, Yasukazu; Tabata, Satoshi; James, Euan K.; Sandal, Niels; Stougaard, Jens; Kawaguchi, Masayoshi; Miyamoto, Ai; Suganuma, Norio; Udvardi, Michael K.

    2005-01-01

    Symbiotic nitrogen fixation (SNF) by intracellular rhizobia within legume root nodules requires the exchange of nutrients between host plant cells and their resident bacteria. Little is known at the molecular level about plant transporters that mediate such exchanges. Several mutants of the model legume Lotus japonicus have been identified that develop nodules with metabolic defects that cannot fix nitrogen efficiently and exhibit retarded growth under symbiotic conditions. Map-based cloning of defective genes in two such mutants, sst1-1 and sst1-2 (for symbiotic sulfate transporter), revealed two alleles of the same gene. The gene is expressed in a nodule-specific manner and encodes a protein homologous with eukaryotic sulfate transporters. Full-length cDNA of the gene complemented a yeast mutant defective in sulfate transport. Hence, the gene was named Sst1. The sst1-1 and sst1-2 mutants exhibited normal growth and development under nonsymbiotic growth conditions, a result consistent with the nodule-specific expression of Sst1. Data from a previous proteomic study indicate that SST1 is located on the symbiosome membrane in Lotus nodules. Together, these results suggest that SST1 transports sulfate from the plant cell cytoplasm to the intracellular rhizobia, where the nutrient is essential for protein and cofactor synthesis, including nitrogenase biosynthesis. This work shows the importance of plant sulfate transport in SNF and the specialization of a eukaryotic transporter gene for this purpose. PMID:15805486

  8. Soluble ST2, a Modulator of the Inflammatory Response, in Preterm and Term Labor

    PubMed Central

    Stampalija, Tamara; Chaiworapongsa, Tinnakorn; Romero, Roberto; Tarca, Adi L.; Bhatti, Gaurav; Chiang, Po Jen; Than, Nandor Gabor; Ferrazzi, Enrico; Hassan, Sonia S.; Yeo, Lami

    2014-01-01

    Objective Intra-amniotic infection/inflammation (IAI) is causally linked with spontaneous preterm labor and delivery. The ST2L receptor and its soluble form (sST2) are capable of binding to interleukin (IL)-33, a member of the IL-1 superfamily. Members of this cytokine family have been implicated in the onset of spontaneous preterm labor in the context of infection. Soluble ST2 has anti-inflammatory properties, and plasma concentrations are elevated in systemic inflammation, such as sepsis, acute pyelonephritis in pregnancy and the fetal inflammatory response syndrome. The aims of this study were to examine: 1) whether amniotic fluid concentrations of sST2 change with IAI, preterm, and term parturition; and 2) if mRNA expression of ST2 in the chorioamniotic membranes changes with acute histologic chorioamnionitis in women who deliver preterm. Methods A cross-sectional study was conducted to determine amniotic fluid concentrations of sST2 in: 1) women with preterm labor (PTL) who delivered at term (n=49); 2) women with PTL who delivered preterm without IAI (n=21); 3) women with PTL who delivered preterm with IAI (n=31); 4) term pregnancies not in labor (n=13); and 5) term pregnancies in labor (n=43). The amniotic fluid concentration of sST2 was determined by ELISA. The mRNA expression of ST2 in the chorioamniotic membranes of women who delivered preterm with (n=24), and without acute histologic chorioamnionitis (n=19) was determined by qRT-PCR. Results 1) Patients with PTL who delivered preterm with IAI had a lower median amniotic fluid concentration of sST2 compared to those with PTL who delivered preterm without IAI [median 410 ng/mL, inter-quartile range (IQR) 152-699 ng/mL vs. median 825 ng/mL, IQR 493-1216 ng/mL; p=0.0003] and those with PTL who delivered at term [median 410 ng/mL, IQR 152-699 ng/mL vs. median 673 ng/mL, IQR 468-1045ng/mL; p=0.0003]; 2) no significant differences in the median amniotic fluid concentration of sST2 were observed between patients with PTL who delivered at term and those who delivered preterm without IAI (p=0.4), and between women at term in labor and those at term not in labor (p=0.9); 3) the mean mRNA expression of ST2 was 4-fold lower in women who delivered preterm with acute histologic chorioamnionitis than in those without this lesion (p=0.008). Conclusions The median sST2 amniotic fluid concentration and mRNA expression of ST2 by chorioamniotic membranes is lower in PTL associated with IAI and acute histologic chorioamnionitis than in PTL without these conditions. Changes in the median amniotic fluid sST2 concentration are not observed in preterm and term parturition without IAI. Thus, amniotic fluid sST2 in the presence of IAI behaves differently when compared to sST2 in the plasma of individuals affected by fetal inflammatory response syndrome, acute pyelonephritis in pregnancy, and adult sepsis. Decreased concentrations of sST2 in IAI are likely to promote a pro-inflammatory response, which is important for parturition in the context of infection. PMID:23688338

  9. EnOI-IAU Initialization Scheme Designed for Decadal Climate Prediction System IAP-DecPreS

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Zhou, Tianjun; Zheng, Fei

    2018-02-01

    A decadal climate prediction system named as IAP-DecPreS was constructed in the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, based on a fully coupled model FGOALS-s2 and a newly developed initialization scheme, referred to as EnOI-IAU. In this paper, we introduce the design of the EnOI-IAU scheme, assess the accuracies of initialization integrations using the EnOI-IAU and preliminarily evaluate hindcast skill of the IAP-DecPreS. The EnOI-IAU scheme integrates two conventional assimilation approaches, ensemble optimal interpolation (EnOI) and incremental analysis update (IAU). The EnOI and IAU were applied to calculate analysis increments and incorporate them into the model, respectively. Three continuous initialization (INIT) runs were conducted for the period of 1950-2015, in which observational sea surface temperature (SST) from the HadISST1.1 and subsurface ocean temperature profiles from the EN4.1.1 data set were assimilated. Then nine-member 10 year long hindcast runs initiated from the INIT runs were conducted for each year in the period of 1960-2005. The accuracies of the INIT runs are evaluated from the following three aspects: upper 700 m ocean temperature, temporal evolution of SST anomalies, and dominant interdecadal variability modes, Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO). Finally, preliminary evaluation of the ensemble mean of the hindcast runs suggests that the IAP-DecPreS has skill in the prediction of the PDO-related SST anomalies in the midlatitude North Pacific and AMO-related SST anomalies in the tropical North Atlantic.

  10. Information and Communications Technology (ICT) Infrastructure for the ASTRI SST-2M telescope prototype for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Gianotti, F.; Tacchini, A.; Leto, G.; Martinetti, E.; Bruno, P.; Bellassai, G.; Conforti, V.; Gallozzi, S.; Mastropietro, M.; Tanci, C.; Malaguti, G.; Trifoglio, M.

    2016-08-01

    The Cherenkov Telescope Array (CTA) represents the next generation of ground-based observatories for very high energy gamma-ray astronomy. The CTA will consist of two arrays at two different sites, one in the northern and one in the southern hemisphere. The current CTA design foresees, in the southern site, the installation of many tens of imaging atmospheric Cherenkov telescopes of three different classes, namely large, medium and small, so defined in relation to their mirror area; the northern hemisphere array would consist of few tens of the two larger telescope types. The Italian National Institute for Astrophysics (INAF) is developing the Cherenkov Small Size Telescope ASTRI SST- 2M end-to-end prototype telescope within the framework of the International Cherenkov Telescope Array (CTA) project. The ASTRI prototype has been installed at the INAF observing station located in Serra La Nave on Mt. Etna, Italy. Furthermore a mini-array, composed of nine of ASTRI telescopes, has been proposed to be installed at the Southern CTA site. Among the several different infrastructures belonging the ASTRI project, the Information and Communication Technology (ICT) equipment is dedicated to operations of computing and data storage, as well as the control of the entire telescope, and it is designed to achieve the maximum efficiency for all performance requirements. Thus a complete and stand-alone computer centre has been designed and implemented. The goal is to obtain optimal ICT equipment, with an adequate level of redundancy, that might be scaled up for the ASTRI mini-array, taking into account the necessary control, monitor and alarm system requirements. In this contribution we present the ICT equipment currently installed at the Serra La Nave observing station where the ASTRI SST-2M prototype will be operated. The computer centre and the control room are described with particular emphasis on the Local Area Network scheme, the computing and data storage system, and the telescope control and monitoring.

  11. A modulating effect of Tropical Instability Wave (TIW)-induced surface wind feedback in a hybrid coupled model of the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Zhang, Rong-Hua

    2016-10-01

    Tropical Instability Waves (TIWs) and the El Niño-Southern Oscillation (ENSO) are two air-sea coupling phenomena that are prominent in the tropical Pacific, occurring at vastly different space-time scales. It has been challenging to adequately represent both of these processes within a large-scale coupled climate model, which has led to a poor understanding of the interactions between TIW-induced feedback and ENSO. In this study, a novel modeling system was developed that allows representation of TIW-scale air-sea coupling and its interaction with ENSO. Satellite data were first used to derive an empirical model for TIW-induced sea surface wind stress perturbations (τTIW). The model was then embedded in a basin-wide hybrid-coupled model (HCM) of the tropical Pacific. Because τTIW were internally determined from TIW-scale sea surface temperatures (SSTTIW) simulated in the ocean model, the wind-SST coupling at TIW scales was interactively represented within the large-scale coupled model. Because the τTIW-SSTTIW coupling part of the model can be turned on or off in the HCM simulations, the related TIW wind feedback effects can be isolated and examined in a straightforward way. Then, the TIW-scale wind feedback effects on the large-scale mean ocean state and interannual variability in the tropical Pacific were investigated based on this embedded system. The interactively represented TIW-scale wind forcing exerted an asymmetric influence on SSTs in the HCM, characterized by a mean-state cooling and by a positive feedback on interannual variability, acting to enhance ENSO amplitude. Roughly speaking, the feedback tends to increase interannual SST variability by approximately 9%. Additionally, there is a tendency for TIW wind to have an effect on the phase transition during ENSO evolution, with slightly shortened interannual oscillation periods. Additional sensitivity experiments were performed to elucidate the details of TIW wind effects on SST evolution during ENSO cycles.

  12. Sense or Sensibility?: How Commitment Mediates the Role of Self-Service Technology on Loyalty

    NASA Astrophysics Data System (ADS)

    Singh, Sangeeta; Olsen, Line Lervik

    It has been well documented that employing self-service technology (SST) results in considerable cost savings but few studies have examined its impact on consumers’ behavior. We apply a well-recognized model from the field of services marketing in an SST context. We examine how the established relationships between satisfaction, affective and calculative commitments, and loyalty are affected when the service is provided through a technology interface as opposed to service personnel. We then present two alternative perspectives on the role of SST. The first is based on the predominant assumption that SST is a moderator of the relationship between customer loyalty and its drivers, while the other rests on the assumption that SST is just another context and that its role in affecting customer loyalty is mediated by drivers of loyalty. A cross-sectional study conducted in the banking industry shows that SST does not change everything. The classical model of how customers evaluate services and the predictors of loyalty are replicated in the SST setting. Interestingly, SST does not have a direct influence on loyalty by itself but its effects are mediated by commitment. However, it is the affective commitment that is more important in forming loyalty toward the service provider.

  13. Multiscale mechanical integrity of human supraspinatus tendon in shear after elastin depletion.

    PubMed

    Fang, Fei; Lake, Spencer P

    2016-10-01

    Human supraspinatus tendon (SST) exhibits region-specific nonlinear mechanical properties under tension, which have been attributed to its complex multiaxial physiological loading environment. However, the mechanical response and underlying multiscale mechanism regulating SST behavior under other loading scenarios are poorly understood. Furthermore, little is known about the contribution of elastin to tendon mechanics. We hypothesized that (1) SST exhibits region-specific shear mechanical properties, (2) fiber sliding is the predominant mode of local matrix deformation in SST in shear, and (3) elastin helps maintain SST mechanical integrity by facilitating force transfer among collagen fibers. Through the use of biomechanical testing and multiphoton microscopy, we measured the multiscale mechanical behavior of human SST in shear before and after elastase treatment. Three distinct SST regions showed similar stresses and microscale deformation. Collagen fiber reorganization and sliding were physical mechanisms observed as the SST response to shear loading. Measures of microscale deformation were highly variable, likely due to a high degree of extracellular matrix heterogeneity. After elastase treatment, tendon exhibited significantly decreased stresses under shear loading, particularly at low strains. These results show that elastin contributes to tendon mechanics in shear, further complementing our understanding of multiscale tendon structure-function relationships. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Sea Temperature Fiducial Reference Measurements for the Validation and Data Gap Bridging of Satellite SST Data Products

    NASA Astrophysics Data System (ADS)

    Wimmer, Werenfrid

    2016-08-01

    The Infrared Sea surface temperature Autonomous Radiometer (ISAR) was developed to provide reference data for the validation of satellite Sea Surface Temperature at the Skin interface (SSTskin) temperature data products, particularly the Advanced Along Track Scanning Radiometer (AATSR). Since March 2004 ISAR instruments have been deployed nearly continuously on ferries crossing the English Channel and the Bay of Biscay, between Portsmouth (UK) and Bilbao/Santander (Spain). The resulting twelve years of ISAR data, including an individual uncertainty estimate for each SST record, are calibrated with traceability to national standards (National Institute of Standards and Technology, USA (NIST) and National Physical Laboratory, Teddigton, UK (NPL), Fiducial Reference Measurements for satellite derived surface temperature product validation (FRM4STS)). They provide a unique independent in situ reference dataset against which to validate satellite derived products. We present results of the AATSR validation, and show the use of ISAR fiducial reference measurements as a common traceable validation data source for both AATSR and Sea and Land Surface Temperature Radiometer (SLSTR). ISAR data were also used to review performance of the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) Sea Surface Temperature (SST) analysis before and after the demise of ESA Environmental Satellite (Envisat) when AATSR inputs ceased This demonstrates use of the ISAR reference data set for validating the SST climatologies that will bridge the data gap between AATSR and SLSTR.

  15. Detector-level spectral characterization of the Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite long-wave infrared bands M15 and M16.

    PubMed

    Padula, Francis; Cao, Changyong

    2015-06-01

    The Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor data record (SDR) product achieved validated maturity status in March 2014 after roughly two years of on-orbit characterization (S-NPP spacecraft launched on 28 October 2011). During post-launch analysis the VIIRS Sea Surface Temperature (SST) Environmental Data Record (EDR) team observed an anomalous striping pattern in the daytime SST data. Daytime SST retrievals use the two VIIRS long-wave infrared bands: M15 (10.7 μm) and M16 (11.8 μm). To assess possible root causes due to detector-level spectral response function (SRF) effects, a study was conducted to compare the radiometric response of the detector-level and operational-band averaged SRFs of VIIRS bands M15 and M16. The study used simulated hyperspectral blackbody radiance data and clear-sky ocean hyperspectral radiances under different atmospheric conditions. It was concluded that the SST product is likely impacted by small differences in detector-level SRFs and that if users require optimal radiometric performance, detector-level processing is recommended for both SDR and EDR products. Future work should investigate potential SDR product improvements through detector-level processing in support of the generation of Suomi NPP VIIRS climate quality SDRs.

  16. Caspase-8-mediated intracellular acidification precedes mitochondrial dysfunction in somatostatin-induced apoptosis.

    PubMed

    Liu, D; Martino, G; Thangaraju, M; Sharma, M; Halwani, F; Shen, S H; Patel, Y C; Srikant, C B

    2000-03-31

    Activation of initiator and effector caspases, mitochondrial changes involving a reduction in its membrane potential and release of cytochrome c (cyt c) into the cytosol, are characteristic features of apoptosis. These changes are associated with cell acidification in some models of apoptosis. The hierarchical relationship between these events has, however, not been deciphered. We have shown that somatostatin (SST), acting via the Src homology 2 bearing tyrosine phosphatase SHP-1, exerts cytotoxic action in MCF-7 cells, and triggers cell acidification and apoptosis. We investigated the temporal sequence of apoptotic events linking caspase activation, acidification, and mitochondrial dysfunction in this system and report here that (i) SHP-1-mediated caspase-8 activation is required for SST-induced decrease in pH(i). (ii) Effector caspases are induced only when there is concomitant acidification. (iii) Decrease in pH(i) is necessary to induce reduction in mitochondrial membrane potential, cyt c release and caspase-9 activation and (iv) depletion of ATP ablates SST-induced cyt c release and caspase-9 activation, but not its ability to induce effector caspases and apoptosis. These data reveal that SHP-1-/caspase-8-mediated acidification occurs at a site other than the mitochondrion and that SST-induced apoptosis is not dependent on disruption of mitochondrial function and caspase-9 activation.

  17. Global Ocean Evaporation Increases Since 1960 in Climate Reanalyses: How Accurate Are They?

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Roberts, Jason B.; Bosilovich, Michael G.

    2016-01-01

    AGCMs w/ Specified SSTs (AMIPs) GEOS-5, ERA-20CM Ensembles Incorporate best historical estimates of SST, sea ice, radiative forcing Atmospheric "weather noise" is inconsistent with specified SST. Instantaneous Sfc fluxes can be wrong sign (e.g. Indian Ocean Monsoon, high latitude oceans). Averaging over ensemble members helps isolate SST-forced signal. Reduced Observational Reanalyses: NOAA 20CR V2C, ERA-20C, JRA-55C Incorporate observed Sfc Press (20CR), Marine Winds (ERA-20C) and rawinsondes (JRA-55C) to recover much of true synoptic or weather w/o shock of new sat obs. Comprehensive Reanalyses (MERRA-2) Full suite of observational constraints- both conventional and remote sensing. But... substantial uncertainties owing to evolving satellite observing system. Multi-source Statistically Blended OAFlux, LargeYeager Blend reanalysis, satellite, and ocean buoy information. While climatological biases are removed, non-physical trends or variations in components remain. Satellite Retrievals GSSTF3, SeaFlux, HOAPS3... Global coverage. Retrieved near sfc wind speed, & humidity used with SST to drive accurate bulk aerodynamic flux estimates. Satellite inter-calibration, spacecraft pointing variations crucial. Short record ( late 1987-present). In situ Measurements ICOADS, IVAD, Res Cruises VOS and buoys offer direct measurements. Sparse data coverage (esp south of 30S. Changes in measurement techniques (e.g. shipboard anemometer height).

  18. Testing for Soluble ST2 in Heart Failure Patients: Reliability of a Point of Care Method.

    PubMed

    Gruson, Damien; Ferracin, Benjamin; Ahn, Sylvie A; Rousseau, Michel F

    2017-01-01

    Our objective was to determine soluble ST2 (sST2) concentrations in heart failure (HF) patients with a point-of-care (POCT) assay. sST2 levels were measured in 71 HF patients with both POCT and ELISA methods. The concentrations of sST2 were correlated to HF severity and to some established biomarkers of cardiovascular risk. sST2 levels measured with the ASPECT-PLUS POCT method were significantly correlated with the comparison ELISA assay (r = 0.94, p < 0.01) and were related to HF severity. Levels of sST2 measured with the POCT assay were significantly correlated to NT-proBNP (r = 0.57, p < 0.001), BNP (r = 0.75, p < 0.001), Galectin-3 (r = 0.40, p < 0.01) and PTH (1-84) (r = 0.39, p < 0.01). POCT and ELISA methods for sST2 testing were significantly correlated, and our results confirmed also the clinical reliability of the sST2 POCT assay. Furthermore, the POCT method allows a faster delivery of results to physicians.

  19. Mechanistic prediction of fission-gas behavior during in-cell transient heating tests on LWR fuel using the GRASS-SST and FASTGRASS computer codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rest, J; Gehl, S M

    1979-01-01

    GRASS-SST and FASTGRASS are mechanistic computer codes for predicting fission-gas behavior in UO/sub 2/-base fuels during steady-state and transient conditions. FASTGRASS was developed in order to satisfy the need for a fast-running alternative to GRASS-SST. Althrough based on GRASS-SST, FASTGRASS is approximately an order of magnitude quicker in execution. The GRASS-SST transient analysis has evolved through comparisons of code predictions with the fission-gas release and physical phenomena that occur during reactor operation and transient direct-electrical-heating (DEH) testing of irradiated light-water reactor fuel. The FASTGRASS calculational procedure is described in this paper, along with models of key physical processes included inmore » both FASTGRASS and GRASS-SST. Predictions of fission-gas release obtained from GRASS-SST and FASTGRASS analyses are compared with experimental observations from a series of DEH tests. The major conclusions is that the computer codes should include an improved model for the evolution of the grain-edge porosity.« less

  20. The influence of tide on sea surface temperature in the marginal sea of northwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Jen; Tsai, Yun-Chan; Ho, Chung-Ru; Lo, Yao-Tsai; Kuo, Nan-Jung

    2017-10-01

    Tide gauge data provided by the University of Hawaii Sea Level Center and daily sea surface temperature (SST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) product are used in this study to analyze the influence of tide on the SST in the seas of Northwestern Pacific. In the marginal region, the climatology SST is lower in the northwestern area than that in the southeastern area. In the coastal region, the SST at spring tide is higher than that at neap tide in winter, but it is lower in other seasons. In the adjacent waters of East China Sea and Yellow Sea, the SST at spring tide is higher than that at neap tide in winter and summer but it is lower in spring and autumn. In the open ocean region, the SST at spring tide is higher than that at neap tide in winter, but it is lower in other seasons. In conclusion, not only the river discharge and topography, but also tides could influence the SST variations, especially in the open ocean region.

  1. Impact of resolving the diurnal cycle in an ocean-atmosphere GCM. Part 2: A diurnally coupled CGCM

    NASA Astrophysics Data System (ADS)

    Bernie, D. J.; Guilyardi, E.; Madec, G.; Slingo, J. M.; Woolnough, S. J.; Cole, J.

    2008-12-01

    Coupled ocean atmosphere general circulation models (GCM) are typically coupled once every 24 h, excluding the diurnal cycle from the upper ocean. Previous studies attempting to examine the role of the diurnal cycle of the upper ocean and particularly of diurnal SST variability have used models unable to resolve the processes of interest. In part 1 of this study a high vertical resolution ocean GCM configuration with modified physics was developed that could resolve the diurnal cycle in the upper ocean. In this study it is coupled every 3 h to atmospheric GCM to examine the sensitivity of the mean climate simulation and aspects of its variability to the inclusion of diurnal ocean-atmosphere coupling. The inclusion of the diurnal cycle leads to a tropics wide increase in mean sea surface temperature (SST), with the strongest signal being across the equatorial Pacific where the warming increases from 0.2°C in the central and western Pacific to over 0.3°C in the eastern equatorial Pacific. Much of this warming is shown to be a direct consequence of the rectification of daily mean SST by the diurnal variability of SST. The warming of the equatorial Pacific leads to a redistribution of precipitation from the Inter tropical convergence zone (ITCZ) toward the equator. In the western Pacific there is an increase in precipitation between Papa new guinea and 170°E of up to 1.2 mm/day, improving the simulation compared to climatology. Pacific sub tropical cells are increased in strength by about 10%, in line with results of part 1 of this study, due to the modification of the exchange of momentum between the equatorially divergent Ekman currents and the geostropic convergence at depth, effectively increasing the dynamical response of the tropical Pacific to zonal wind stresses. During the spring relaxation of the Pacific trade winds, a large diurnal cycle of SST increases the seasonal warming of the equatorial Pacific. When the trade winds then re-intensify, the increase in the dynamical response of the ocean leads to a stronger equatorial upwelling. These two processes both lead to stronger seasonal basin scale feedbacks in the coupled system, increasing the strength of the seasonal cycle of the tropical Pacific sector by around 10%. This means that the diurnal cycle in the upper ocean plays a part in the coupled feedbacks between ocean and atmosphere that maintain the basic state and the timing of the seasonal cycle of SST and trade winds in the tropical Pacific. The Madden-Julian Oscillation (MJO) is examined by use of a large scale MJO index, lag correlations and composites of events. The inclusion of the diurnal cycle leads to a reduction in overall MJO activity. Precipitation composites show that the MJO is stronger and more coherent when the diurnal cycle of coupling is resolved, with the propagation and different phases being far more distinct both locally and to larger lead times across the tropical Indo-Pacific. Part one of this study showed that that diurnal variability of SST is modulated by the MJO and therefore increases the intraseasonal SST response to the different phases of the MJO. Precipitation-based composites of SST variability confirm this increase in the coupled simulations. It is argued that including this has increased the thermodynamical coupling of the ocean and atmosphere on the timescale of the MJO (20-100 days), accounting for the improvement in the MJO strength and coherency seen in composites of precipitation and SST. These results show that the diurnal cycle of ocean-atmosphere interaction has profound impact on a range of up-scale variability in the tropical climate and as such, it is an important feature of the modelled climate system which is currently either neglected or poorly resolved in state of the art coupled models.

  2. No inter-gyre pathway for sea-surface temperature anomalies in the North Atlantic.

    PubMed

    Foukal, Nicholas P; Lozier, M Susan

    2016-04-22

    Recent Lagrangian analyses of surface drifters have questioned the existence of a surface current connecting the Gulf Stream (GS) to the subpolar gyre (SPG) and have cast doubt on the mechanism underlying an apparent pathway for sea-surface temperature (SST) anomalies between the two regions. Here we use modelled Lagrangian trajectories to determine the fate of surface GS water and satellite SST data to analyse pathways of GS SST anomalies. Our results show that only a small fraction of the surface GS water reaches the SPG, the water that does so mainly travels below the surface mixed layer, and GS SST anomalies do not propagate into the SPG on interannual timescales. Instead, the inter-gyre heat transport as part of the Atlantic Meridional Overturning Circulation must be accomplished via subsurface pathways. We conclude that the SST in the SPG cannot be predicted by tracking SST anomalies along the GS.

  3. Comparison of children with autism spectrum disorder with and without schizophrenia spectrum traits: gender, season of birth, and mental health risk factors.

    PubMed

    Gadow, Kenneth D; DeVincent, Carla J

    2012-11-01

    Children with autism spectrum disorder (ASD) with and without co-occurring schizophrenia spectrum traits (SST) were examined for differences in co-occurring psychiatric symptoms, background characteristics, and mental health risk factors. Participating mothers and teachers completed a DSM-IV-referenced rating scale and a background questionnaire (mothers only) describing 147 children (6-12 years) with ASD. There was a clear pattern of group differences in co-occurring psychiatric symptom severity (+SST > SST-) and background characteristics. Children with impairing SST had more mental health risk factors. Girls were more likely to be classified SST according to mothers' ratings. Children born in spring-summer were more likely to be classified non-SST by teachers' ratings. Findings provide tentative evidence that SST may be a useful marker of behavioral heterogeneity within the ASD clinical phenotype.

  4. Effect of Radiative Cooling on Cloud-SST Relationship within the Tropical Pacific Region

    NASA Technical Reports Server (NTRS)

    Sui, Chung-Hsiung; Ho, Chang-Hoi; Chou, Ming-Dah; Lau, Ka-Ming; Li, Xiao-Fan; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A recent analysis found a negative correlation between the area-mean cloud amount and the corresponding mean Sea Surface Temperature (SST) within the cloudy areas. The SST-cloud relation becomes more evident when the SST contrast between warm pool and surrounding cold pool (DSST) in the tropical Pacific is stronger than normal. The above feature is related to the finding that the strength of subsidence over the cold pool is limited by radiative cooling because of its small variability. As a result, the area of radiatively-driven subsidence must expand in response to enhanced low-boundary forcing due to SST warming or enhanced basin-scale DSST. This leads to more cloud free regions and less cloudy regions. The increased ratio of cloud-free areas to cloudy areas leads to more high SST areas (>29.50C) due to enhanced solar radiation.

  5. No inter-gyre pathway for sea-surface temperature anomalies in the North Atlantic

    PubMed Central

    Foukal, Nicholas P.; Lozier, M. Susan

    2016-01-01

    Recent Lagrangian analyses of surface drifters have questioned the existence of a surface current connecting the Gulf Stream (GS) to the subpolar gyre (SPG) and have cast doubt on the mechanism underlying an apparent pathway for sea-surface temperature (SST) anomalies between the two regions. Here we use modelled Lagrangian trajectories to determine the fate of surface GS water and satellite SST data to analyse pathways of GS SST anomalies. Our results show that only a small fraction of the surface GS water reaches the SPG, the water that does so mainly travels below the surface mixed layer, and GS SST anomalies do not propagate into the SPG on interannual timescales. Instead, the inter-gyre heat transport as part of the Atlantic Meridional Overturning Circulation must be accomplished via subsurface pathways. We conclude that the SST in the SPG cannot be predicted by tracking SST anomalies along the GS. PMID:27103496

  6. I-deas TMG to NX Space Systems Thermal Model Conversion and Computational Performance Comparison

    NASA Technical Reports Server (NTRS)

    Somawardhana, Ruwan

    2011-01-01

    CAD/CAE packages change on a continuous basis as the power of the tools increase to meet demands. End -users must adapt to new products as they come to market and replace legacy packages. CAE modeling has continued to evolve and is constantly becoming more detailed and complex. Though this comes at the cost of increased computing requirements Parallel processing coupled with appropriate hardware can minimize computation time. Users of Maya Thermal Model Generator (TMG) are faced with transitioning from NX I -deas to NX Space Systems Thermal (SST). It is important to understand what differences there are when changing software packages We are looking for consistency in results.

  7. Effects of the neuroprotective drugs somatostatin and brimonidine on retinal cell models of diabetic retinopathy.

    PubMed

    Beltramo, Elena; Lopatina, Tatiana; Mazzeo, Aurora; Arroba, Ana I; Valverde, Angela M; Hernández, Cristina; Simó, Rafael; Porta, Massimo

    2016-12-01

    Diabetic retinopathy is considered a microvascular disease, but recent evidence has underlined early involvement of the neuroretina with interactions between microvascular and neural alterations. Topical administration of somatostatin (SST), a neuroprotective molecule with antiangiogenic properties, prevents diabetes-induced retinal neurodegeneration in animals. The α 2 -adrenergic receptor agonist brimonidine (BRM) decreases vitreoretinal vascular endothelial growth factor and inhibits blood-retinal barrier breakdown in diabetic rats. However, SST and BRM effects on microvascular cells have not yet been studied. We investigated the behaviour of these drugs on the crosstalk between microvasculature and neuroretina. Expression of SST receptors 1-5 in human retinal pericytes (HRP) was checked. We subsequently evaluated the effects of diabetic-like conditions (high glucose and/or hypoxia) with/without SST/BRM on HRP survival. Endothelial cells (EC) and photoreceptors were maintained in the above conditions and their conditioned media (CM) used to culture HRP. Vice versa, HRP-CM was used on EC and photoreceptors. Survival parameters were assessed. HRP express the SST receptor 1 (SSTR1). Glucose fluctuations mimicking those occurring in diabetic subjects are more damaging for pericytes and photoreceptors than stable high glucose and hypoxic conditions. SST/BRM added to HRP in diabetic-like conditions decrease EC apoptosis. However, neither SST nor BRM changed the response of pericytes and neuroretina-vascular crosstalk under diabetic-like conditions. Retinal pericytes express SSTR1, indicating that they can be a target for SST. Exposure to SST/BRM had no adverse effects, direct or mediated by the neuroretina, suggesting that these molecules could be safely evaluated for the treatment of ocular diseases.

  8. Modulating Effects of Mesoscale Oceanic Eddies on Sea Surface Temperature Response to Tropical Cyclones Over the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Ma, Zhanhong; Fei, Jianfang; Huang, Xiaogang; Cheng, Xiaoping

    2018-01-01

    The impact of mesoscale oceanic eddies on the temporal and spatial characteristics of sea surface temperature (SST) response to tropical cyclones is investigated in this study based on composite analysis of cyclone-eddy interactions over the western North Pacific. The occurrence times of maximum cooling, recovery time, and spatial patterns of SST response are specially evaluated. The influence of cold-core eddies (CCEs) renders the mean occurrence time of maximum SST cooling to become about half a day longer than that in eddy-free condition, while warm-core eddies (WCEs) have little effect on this facet. The recovery time of SST cooling also takes longer in presence of CCEs, being overall more pronounced for stronger or slower tropical cyclones. The effect of WCEs on the recovery time is again not significant. The modulation of maximum SST decrease by WCEs for category 2-5 storms is found to be remarkable in the subtropical region but not evident in the tropical region, while the role of CCEs is remarkable in both regions. The CCEs are observed to change the spatial characteristics of SST response, with enhanced SST decrease initially at the right side of storm track. During the recovery period the strengthened SST cooling by CCEs propagates leftward gradually, with a feature similar as both the westward-propagating eddies and the recovery of cold wake. These results underscore the importance of resolving mesoscale oceanic eddies in coupled numerical models to improve the prediction of storm-induced SST response.

  9. Biweekly Sea Surface Temperature over the South China Sea and its association with the Western North Pacific Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Vaid, B. H.

    2017-02-01

    The association of the biweekly intraseasonal (BWI) oscillation in the Sea Surface Temperature (SST) over the South China Sea (SCS) and the Western North Pacific Summer Monsoon is authenticated using version 4 the Tropical Rainfall Measuring Mission Microwave Imager data (SST and rain) and heat fluxes from Ocean Atmosphere Flux project data during 1998-2012. The results suggest that the SCS involves ocean-atmosphere coupling on biweekly timescales. The positive biweekly SST anomalies lead the rain anomalies over the SCS by 3 days, with a significant correlation coefficient ( r = 0.6, at 99 % significance levels) between the SST-rain anomalies. It is evident from lead/lag correlation between biweekly SST and zonal wind shear that warm ocean surface induced by wind shear may contribute to a favorable condition of the convective activity over the SCS. The present study suggests that ocean-to-atmospheric processes induced by the BWI oscillation in the SCS SST results in enhanced sea level pressure and surface shortwave radiation flux during the summer monsoon. Besides, it is observed that the SCS BWI oscillation in the changes of SST causes a feedback in the atmosphere by modifying the atmospheric instability. This suggests that the active/break biweekly cycle of the SST over the SCS is related by sea level pressure, surface heat fluxes and atmospheric instability. The potential findings here indicate that the biweekly SST over the SCS play an important role in the eastward and the southward propagation of the biweekly anomalies in the Western North Pacific.

  10. Improvements to the swath-level near-surface atmospheric state parameter retrievals within the NRL Ocean Surface Flux System (NFLUX)

    NASA Astrophysics Data System (ADS)

    May, J. C.; Rowley, C. D.; Meyer, H.

    2017-12-01

    The Naval Research Laboratory (NRL) Ocean Surface Flux System (NFLUX) is an end-to-end data processing and assimilation system used to provide near-real-time satellite-based surface heat flux fields over the global ocean. The first component of NFLUX produces near-real-time swath-level estimates of surface state parameters and downwelling radiative fluxes. The focus here will be on the satellite swath-level state parameter retrievals, namely surface air temperature, surface specific humidity, and surface scalar wind speed over the ocean. Swath-level state parameter retrievals are produced from satellite sensor data records (SDRs) from four passive microwave sensors onboard 10 platforms: the Special Sensor Microwave Imager/Sounder (SSMIS) sensor onboard the DMSP F16, F17, and F18 platforms; the Advanced Microwave Sounding Unit-A (AMSU-A) sensor onboard the NOAA-15, NOAA-18, NOAA-19, Metop-A, and Metop-B platforms; the Advanced Technology Microwave Sounder (ATMS) sensor onboard the S-NPP platform; and the Advanced Microwave Scannin Radiometer 2 (AMSR2) sensor onboard the GCOM-W1 platform. The satellite SDRs are translated into state parameter estimates using multiple polynomial regression algorithms. The coefficients to the algorithms are obtained using a bootstrapping technique with all available brightness temperature channels for a given sensor, in addition to a SST field. For each retrieved parameter for each sensor-platform combination, unique algorithms are developed for ascending and descending orbits, as well as clear vs cloudy conditions. Each of the sensors produces surface air temperature and surface specific humidity retrievals. The SSMIS and AMSR2 sensors also produce surface scalar wind speed retrievals. Improvement is seen in the SSMIS retrievals when separate algorithms are used for the even and odd scans, with the odd scans performing better than the even scans. Currently, NFLUX treats all SSMIS scans as even scans. Additional improvement in all of the surface retrievals comes from using a 3-hourly SST field, as opposed to a daily SST field.

  11. Construction integrity assessment report (ETN-98-0005) S-Farm overground transfer (OGT) system valve pit 241-S-B to valve pit 241-S-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HICKS, D.F.

    1999-08-12

    The S-Farm overground transfer (OGT) line will bypass the existing line(s), between valve pits 241-S-B and 241-S-D that no longer meet system requirements. The new OGT line will provide a waste transfer pipeline between these valve pits in support of saltwell pumping activities. The length of the OGT line is approximately 180 ft from pit to pit. The primary pipe is nominal 1-in. diameter stainless steel (SST) braided Ethylene-propylene Diene Monomer (EPDM) hose. The encasement pipe is a nominal 3-in., flanged, SST pipe made up of several different length pipe spool pieces (drawing H-2-829564, sh. 1 and sh. 2). Themore » OGT line slopes from valve pit 241-S-B toward valve pit 241-S-D. At each end, the primary and encasement pipe connect to a pit entry spool piece. The pit entry spool pieces are constructed of prefabricated SST materials. These spool pieces allow for the separation of the primary and encasement pipelines after the pipes have entered the valve pits (drawing H-2-818280, sh. 2). The pit entry spool pieces also allow for leak detection of the encasement pipe at each end (drawing H-2-829564, sh. 2). The OGT encasement pipeline is supported above ground by adjustable height unistrut brackets and precast concrete bases (drawing H-2-829654, sh. 1). The pipeline is heat-traced and insulated. The heat tracing and insulation supply and retain latent heat that prevents waste solidification during transfers and provides freeze protection. The total length of the pipeline is above ground, thereby negating the need for cathodic corrosion protection. This Construction Integrity Assessment Report (CIAR) is prepared by Fluor Daniel Northwest for Numatec Hanford Corporation/Lockheed Martin Hanford Corporation, the operations contractor, and the U. S. Department of Energy, the system owner. The CIAR is intended to verify that construction was performed in accordance with the provisions of Washington Administrative Code, WAC-173-303-640 (3) (c), (e), (f) and (h).« less

  12. A Multi-Season Study of the Effects of MODIS Sea-Surface Temperatures on Operational WRF Forecasts at NWS Miami, FL

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Santos, Pablo; Lazarus, Steven M.; Splitt, Michael E.; Haines, Stephanie L.; Dembek, Scott R.; Lapenta, William M.

    2008-01-01

    Studies at the Short-term Prediction Research and Transition (SPORT) Center have suggested that the use of Moderate Resolution Imaging Spectroradiometer (MODIS) sea-surface temperature (SST) composites in regional weather forecast models can have a significant positive impact on short-term numerical weather prediction in coastal regions. Recent work by LaCasse et al (2007, Monthly Weather Review) highlights lower atmospheric differences in regional numerical simulations over the Florida offshore waters using 2-km SST composites derived from the MODIS instrument aboard the polar-orbiting Aqua and Terra Earth Observing System satellites. To help quantify the value of this impact on NWS Weather Forecast Offices (WFOs), the SPORT Center and the NWS WFO at Miami, FL (MIA) are collaborating on a project to investigate the impact of using the high-resolution MODIS SST fields within the Weather Research and Forecasting (WRF) prediction system. The project's goal is to determine whether more accurate specification of the lower-boundary forcing within WRF will result in improved land/sea fluxes and hence, more accurate evolution of coastal mesoscale circulations and the associated sensible weather elements. The NWS MIA is currently running WRF in real-time to support daily forecast operations, using the National Centers for Environmental Prediction Nonhydrostatic Mesoscale Model dynamical core within the NWS Science and Training Resource Center's Environmental Modeling System (EMS) software. Twenty-seven hour forecasts are run dally initialized at 0300, 0900, 1500, and 2100 UTC on a domain with 4-km grid spacing covering the southern half of Florida and adjacent waters of the Gulf of Mexico and Atlantic Ocean. Each model run is initialized using the Local Analysis and Prediction System (LAPS) analyses available in AWIPS. The SSTs are initialized with the NCEP Real-Time Global (RTG) analyses at 1/12deg resolution (approx.9 km); however, the RTG product does not exhibit fine-scale details consistent with its grid resolution. SPORT is conducting parallel WRF EMS runs identical to the operational runs at NWS MIA except for the use of MODIS SST composites in place of the RTG product as the initial and boundary conditions over water, The MODIS SST composites for initializing the SPORT WRF runs are generated on a 2-km grid four times daily at 0400, 0700, 1600, and 1900 UTC, based on the times of the overhead passes of the Aqua and Terra satellites. The incorporation of the MODIS SST data into the SPORT WRF runs is staggered such that SSTs are updated with a new composite every six hours in each of the WRF runs. From mid-February to July 2007, over 500 parallel WRF simulations have been collected for analysis and verification. This paper will present verification results comparing the NWS MIA operational WRF runs to the SPORT experimental runs, and highlight any substantial differences noted in the predicted mesoscale phenomena for specific cases.

  13. Atlantic Induced Pan-tropical Climate Variability in the Upper-ocean and Atmosphere

    NASA Astrophysics Data System (ADS)

    Li, X.; Xie, S. P.; Gille, S. T.; Yoo, C.

    2016-02-01

    During the last three decades, tropical sea surface temperature (SST) exhibited dipole-like trends, with warming over the tropical Atlantic and Indo-Western Pacific but cooling over the Eastern Pacific. The Eastern Pacific cooling has recently been identified as a driver of the global warming hiatus. Previous studies revealed atmospheric bridges between the tropical Pacific, Atlantic, and Indian Ocean, which could potentially contribute to this zonally asymmetric SST pattern. However, the mechanisms and the interactions between these teleconnections remain unclear. To investigate these questions, we performed a `pacemaker' simulation by restoring the tropical Atlantic SST changes in a state-of-the-art climate model - the CESM1. Results show that the Atlantic plays a key role in initiating the tropical-wide teleconnections, and the Atlantic-induced anomalies contribute 55%-75% of the total tropical SST and circulation changes during the satellite era. A hierarchy of oceanic and atmospheric models are then used to investigate the physical mechanisms of these teleconnections: the Atlantic warming enhances atmospheric deep convection, drives easterly wind anomalies over the Indo-Western Pacific through the Kelvin wave, and westerly anomalies over the eastern Pacific as Rossby waves, in line with Gill's solution (Fig1a). These wind changes induce an Indo-Western Pacific warming via the wind-evaporation-SST effect, and this warming intensifies the La Niña-type response in the upper Pacific Ocean by enhancing the easterly trade winds and through the Bjerknes ocean-dynamical processes (Fig1b). The teleconnection finally develops into a tropical-wide SST dipole pattern with an enhanced trade wind and Walker circulation, similar as the observed changes during the satellite era. This mechanism reveals that the tropical ocean basins are more tightly connected than previously thought, and the Atlantic plays a key role in the tropical climate pattern formation and further the global warming hiatus. The tropical Atlantic warming is likely due to radiative forcing and Atlantic meridional overturning circulation (AMOC). Our study suggests that the AMOC may force the decadal variability of the tropical ocean and atmosphere, and thus contributes to the decadal predictability of the global climate.

  14. Associations of Circulating Growth Differentiation Factor-15 and ST2 Concentrations With Subclinical Vascular Brain Injury and Incident Stroke.

    PubMed

    Andersson, Charlotte; Preis, Sarah R; Beiser, Alexa; DeCarli, Charles; Wollert, Kai C; Wang, Thomas J; Januzzi, James L; Vasan, Ramachandran S; Seshadri, Sudha

    2015-09-01

    Growth differentiation factor-15 (GDF-15) and soluble (s)ST2 are markers of cardiac and vascular stress. We investigated the associations between circulating concentrations of these biomarkers and incident stroke and subclinical vascular brain injury in a sample from the Framingham Offspring cohort. We followed 3374 stroke- and dementia-free individuals (mean age, 59.0±9.7 years; 53% women) attending the Framingham Offspring sixth examination cycle 11.8±3.0 years for incident stroke. A subsample of 2463 individuals underwent brain magnetic resonance imaging and neuropsychological testing ≈4.0±1.7 years after the sixth examination. After adjustment for traditional cardiovascular risk factors, B-type natriuretic peptide, high-sensitivity C-reactive protein, and urine albumin levels, higher stress biomarker levels were associated cross-sectionally with lower brain volumes (β coefficients for intracranial volume comparing fourth [Q4] versus first biomarker [Q1] quartiles: -0.71% for GDF-15; P=0.002 and 0.47% for sST2; P=0.02) and worse performance on the visual reproduction test (β coefficients for Q4 versus Q1: -0.62 for GDF-15; P=0.009 and -0.40 for sST2; P=0.04). Higher GDF-15 concentrations were also associated with greater log-transformed white-matter hyperintensity volumes (β for Q4 versus Q1=0.19; P=0.01). Prospectively, a total of 203 (6%) individuals developed incident stroke/transient ischemic attack during follow-up. After multivariable adjustment, sST2 remained significantly associated with stroke/transient ischemic attack, hazard ratio for Q4 versus Q1 of 1.76, 95% confidence interval of 1.06 to 2.92, and P=0.03. Circulating GDF-15 and sST2 are associated with subclinical brain injury and cognitive impairment. Higher sST2 concentrations are also associated with incident stroke, suggesting potential links between cardiac stress biomarkers and brain injury. © 2015 American Heart Association, Inc.

  15. DOTA-Derivatives of Octreotide Dicarba-Analogs with High Affinity for Somatostatin sst2,5 Receptors.

    PubMed

    Pratesi, Alessandro; Ginanneschi, Mauro; Lumini, Marco; Papini, Anna M; Novellino, Ettore; Brancaccio, Diego; Carotenuto, Alfonso

    2017-01-01

    In vivo somatostatin receptor scintigraphy is a valuable method for the visualization of human endocrine tumors and their metastases. In fact, peptide ligands of somatostatin receptors (sst's) conjugated with chelating agents are in clinical use. We have recently developed octreotide dicarba-analogs, which show interesting binding profiles at sst's. In this context, it was mandatory to explore the possibility that our analogs could maintain their activity also upon conjugation with DOTA. In this paper, we report and discuss the synthesis, binding affinity and conformational preferences of three DOTA-conjugated dicarba-analogs of octreotide. Interestingly, two conjugated analogs exhibited nanomolar affinities on sst 2 and sst 5 somatostatin receptor subtypes.

  16. A radiative transfer model for sea surface temperature retrieval for the along-track scanning radiometer

    NASA Astrophysics Data System (ADS)

    ZáVody, A. M.; Mutlow, C. T.; Llewellyn-Jones, D. T.

    1995-01-01

    The measurements made by the along-track scanning radiometer are now converted routinely into sea surface temperature (SST). The details of the atmospheric model which had been used for deriving the SST algorithms are given, together with tables of the coefficients in the algorithms for the different SST products. The accuracy of the retrieval under normal conditions and the effect of errors in the model on the retrieved SST are briefly discussed.

  17. Interannual variability in stratiform cloudiness and sea surface temperature

    NASA Technical Reports Server (NTRS)

    Norris, Joel R.; Leovy, Conway B.

    1994-01-01

    Marine stratiform cloudiness (MSC)(stratus, stratocumulus, and fog) is widespread over subtropical oceans west of the continents and over midlatitude oceans during summer, the season when MSC has maximum influence on surface downward radiation and is most influenced by boundary-layer processes. Long-term datasets of cloudiness and sea surface teperature (SST) from surface observations from 1952 to 1981 are used to examine interannual variations in MSC and SST. Linear correlations of anomalies in seasonal MSC amount with seasonal SST anomalies are negative and significant in midlatitude and eastern subtropical oceans, especially during summer. Significant negative correlations between SST and nimbostratus and nonprecipitating midlevel cloudiness are also observed at midlatitudes during summer, suggesting that summer storm tracks shift from year to year following year-to-year meridional shifts in the SST gradient. Over the 30-yr period, there are significant upward trends in MSC amount over the northern midlatitude oceans and a significant downward trend off the coast of California. The highest correlations and trends occur where gradients in MSC and SST are strongest. During summer, correlations between SST and MSC anomalies peak at zero lag in midlatitudes where warm advection prevails, but SST lags MSC in subtropical regions where cold advection predominates. This difference is attributed to a tendency for anomalies in latent heat flux to compensate anomalies in surface downward radiation in warm advection regions but not in cold advection regions.

  18. Hurricane destructive power predictions based on historical storm and sea surface temperature data.

    PubMed

    Bogen, Kenneth T; Jones, Edwin D; Fischer, Larry E

    2007-12-01

    Forecasting destructive hurricane potential is complicated by substantial, unexplained intraannual variation in storm-specific power dissipation index (PDI, or integrated third power of wind speed), and interannual variation in annual accumulated PDI (APDI). A growing controversy concerns the recent hypothesis that the clearly positive trend in North Atlantic Ocean (NAO) sea surface temperature (SST) since 1970 explains increased hurricane intensities over this period, and so implies ominous PDI and APDI growth as global warming continues. To test this "SST hypothesis" and examine its quantitative implications, a combination of statistical and probabilistic methods were applied to National Hurricane Center HURDAT best-track data on NAO hurricanes during 1880-2002, and corresponding National Oceanographic and Atmospheric Administration Extended Reconstruction SST estimates. Notably, hurricane behavior was compared to corresponding hurricane-specific (i.e., spatiotemporally linked) SST; previous similar comparisons considered only SST averaged over large NAO regions. Contrary to the SST hypothesis, SST was found to vary in a monthly pattern inconsistent with that of corresponding PDI, and to be at best weakly associated with PDI or APDI despite strong correlation with corresponding mean latitude (R(2)= 0.55) or with combined mean location and a approximately 90-year periodic trend (R(2)= 0.70). Over the last century, the lower 75% of APDIs appear randomly sampled from a nearly uniform distribution, and the upper 25% of APDIs from a nearly lognormal distribution. From the latter distribution, a baseline (SST-independent) stochastic model was derived predicting that over the next half century, APDI will not likely exceed its maximum value over the last half century by more than a factor of 1.5. This factor increased to 2 using a baseline model modified to assume SST-dependence conditioned on an upper bound of the increasing NAO SST trend observed since 1970. An additional model was developed that predicts PDI statistics conditional on APDI. These PDI and APDI models can be used to estimate upper bounds on indices of hurricane power likely to be realized over the next century, under divergent assumptions regarding SST influence.

  19. Assessing the Contribution of Sea Surface Temperature and Salinity to Coral δ18O using a Weighted Forward Model

    NASA Astrophysics Data System (ADS)

    Horlick, K. A.; Thompson, D. M.; Anderson, D. M.

    2015-12-01

    The isotopic ratio of 16O/18O (δ18O) in coral carbonate skeletons is a robust, high-resolution proxy for sea surface temperature (SST) and sea surface salinity (SSS) variability predating the instrumental record. Although SST and δ18O-water (correlated to SSS) variability both contribute to the δ18O signal in the coral carbonate archive, the paucity and limited temporal span of SST and SSS instrumental observations limit the ability to differentiate respective SST and SSS contribution to each δ18O record. From instrumental datasets such as HadISST v.3, ERSST, SODA, and Delcroix (2011), we forward model the δ18O ("pseudoproxy") signal using the linear bivariate forward model from Thompson 2011 ("pseudoproxy"= a1(SST)+a2(SSS)). By iteratively weighting (between 0 and 1 by 0.005) the relative contribution of SST and SSS terms to the δ18O "pseudoproxy" following Gorman et al. 2012 method, we derive the percent contributions of SST and SSS to δ18O at each site based on the weights that produce the optimal correlation to the observed coral δ18O signal. A Monte Carlo analysis of error propagation in the weighted and unweighted pseudoproxy time series was used to determine how well the weighted and unweighted forward models captured observed δ18O variance. Across the south-western Pacific (40 sites) we found that SST contributes from less than 8 to more than 78% of the variance. This work builds upon this simple forward model of coral δ18O and improves our understanding of potential sources of differences in the observed and forward modeled δ18O variability. These results may also improve SST and SSS reconstructions from corals by highlighting the reef areas whose coral δ18O signal is most heavily influenced by SST and SSS respectively. Using an inverse approach, creating a transfer function, local SST and SSS could also be reconstructed based on the site-specific weights and observed coral δ18O time series.

  20. The Influence of Midlatitude Ocean-Atmosphere Coupling on the Low-Frequency Variability of a GCM. Part I: No Tropical SST Forcing*.

    NASA Astrophysics Data System (ADS)

    Bladé, Ileana

    1997-08-01

    This study examines the extent to which the thermodynamic interactions between the midlatitude atmosphere and the underlying oceanic mixed layer contribute to the low-frequency atmospheric variability. A general circulation model, run under perpetual northern winter conditions, is coupled to a motionless constant-depth mixed layer in midlatitudes, while elsewhere the sea surface temperature (SST) is kept fixed; interannual tropical SST forcing is not included. It is found that coupling does not modify the spatial organization of the variability. The influence of coupling is manifested as a slight reddening of the spectrum of 500-mb geopotential height and a significant enhancement of the lower-tropospheric thermal variance over the oceans at very low frequencies by virtue of the mixed-layer adjustment to surface air temperature variations that occurs on those timescales. This adjustment effectively reduces the thermal damping of the atmosphere associated with surface heat fluxes (or negative oceanic feedback), thus increasing the thermal variance and the persistence of circulation anomalies.In studying the covariability between ocean and atmosphere it is found that the dominant mode of natural atmospheric variability is coupled to the leading mode of SST in each ocean, with the atmosphere leading the ocean by about one month. The cross-correlation function between oceanic and atmospheric anomalies is strongly asymmetric about zero lag. The SST structures are consistent with direct forcing by the anomalous heat fluxes implied by the concurrent surface air temperature and wind fluctuations. Additionally, composites based on large amplitude SST anomaly events contain no evidence of direct driving of atmospheric perturbations by these SST anomalies. Thus, in terms of the spatial organization of the covariability and the evolution of the coupled system from one regime to another, large-scale air-sea interaction in the model is characterized by one-way atmospheric forcing of the mixed layer.These results are qualitatively consistent with those from an earlier idealized study. They imply a subtle but fundamental role for the midlatitude oceans as stabilizing rather than directly generating atmospheric anomalies. It is argued that this scenario is relevant to the dynamics of extratropical atmosphere-ocean coupling on intraseasonal timescales at least: the model is able to qualitatively reproduce the temporal and spatial characteristics of the observed dominant patterns of interaction on these timescales, particularly over the Atlantic.

  1. Impact of two-way ocean atmosphere coupling on precipitation forecast for the coastal Adriatic region

    NASA Astrophysics Data System (ADS)

    Smerkol, Peter; Cedilnik, Jure; Fettich, Anja; Licer, Matjaz; Strajnar, Benedikt; Jerman, Jure

    2017-04-01

    A two-way coupled ocean and atmosphere modeling system has been developed at Slovenian Environment Agency and the National Institute of Biology (Ličer at al., 2016). The system comprises 4.4 km ALADIN/ALARO limited-area numerical weather prediction model and Princeton Ocean Model (POM) for Adriatic sea and uses Mediterranean Forecasting System (MFS) as ocean component outside the POM model domain. The heat and momentum fluxes between sea surface and atmosphere as estimated by ALADIN model are transferred into POM every model time stamp, and sea surface temperature (SST) is returned from POM to ALADIN. A positive impact of such a coupling system with respect to one-way coupling was demonstrated mainly for sea surface variables. In this contribution we study the impact on atmospheric variables, mainly precipitation. Unlike in the previous work where the atmospheric part of the system was reinitialized every day from external (non-coupled) data assimilation cycle, we implement the two-way coupling in the data assimilation cycle for ALADIN. Rather than running long-term simulations which would presumably lack observational information given no data assimilation for the ocean component, we focus on several precipitation events and assess performance of the atmospheric model by running the coupled system for a short warm-up periods beforehand the events. We evaluate several approaches to applying the one- or two-way coupling (in the warm-up period, during the main forecast, or both) and several approaches to using SST information in ALADIN in the one-way coupled mode (POM, MFS, global atmospheric model). Preliminary results suggest that it is important that two-way coupling is applied not only during the long term (e.g. 72 h) forecast but also already in the data assimilation cycle prior to event.

  2. Exploring Western and Eastern Pacific contributions to the 21st century Walker circulation intensification and teleconnected precipitation declines (Invited)

    NASA Astrophysics Data System (ADS)

    Funk, C. C.; Hoerling, M. P.; Hoell, A.; Verdin, J. P.; Robertson, F. R.; Alured, D.; Liebmann, B.

    2013-12-01

    As the earth's population, industry, and agricultural systems continue to expand and increase demand for limited hydrologic resources, developing better tools for monitoring, analyzing and perhaps even predicting decadal variations in precipitation will enable the climate community to better inform important policy and management decisions. To this end, in support of the development and humanitarian relief efforts of the US Agency for International Development, USGS, NOAA, UC Santa Barbara, and NASA scientists have been exploring global precipitation trends using observations and new ensembles of atmospheric general circulation model (AGCM) simulations from the ECHAM5, GFSv2, CAM4 and GMAO models. This talk summarizes this work, and discusses how combined analyses of AGCM simulations and observations might lead to credible decadal projections, for some regions and seasons, based on the strength of the Indo-Pacific warming signal. Focusing on the late boreal spring, a critical period for food insecure Africa, we begin by linearly decomposing 1900-2012 sea surface temperatures (SST) into components loading strongly in the Indo-Western Pacific and Eastern Pacific. Eastern Pacific (EP) SST variations are based on regressions with three time series: the first and second principal components of equatorial Pacific SST and the Pacific Decadal Oscillation. These influences are removed from Indo-Pacific SSTs, and the Indo-Western Pacific (IWP) SST variations are defined by the 1st principal component of the residuals, which we refer to as the Indo-West Pacific Warming Signal (IWPWS). The pattern of IWPWS SST changes resembles recent assessments of centennial warming, and identifies rapid warming in the equatorial western Pacific and north and south Pacific convergence zones. The circulation impacts of IWP and EP SST forcing are explored in two ways. First, assuming linear SST forcing relationships, IWP and EP decompositions of ECHAM5, GFS, CAM4 and GMAO AGCM simulations are presented. These results suggest that a substantial component of the recent Walker circulation intensification has been related to the IWPWS. The IWPWS warming extends from just north of Papua New Guinea to just west of Hawaii, and appears associated with SLP, wind and rainfall responses consistent with enhanced Indo-Pacific convection. These decomposition results are compared with a set of numerical simulation experiments based on the ECHAM5 and GFS models forced with characteristic IWP and EP SST for 1983-1996 and 1999-2012. The talk concludes with a tentative discussion of the decadal predictability associated with the IWPWS. Using both observed and model-simulated precipitation, we briefly explore potential IWPWS drought teleconnection regions in the Americas, Asia, Middle East, and Eastern Africa. Figure 1. Western Pacific and Eastern Pacific SST changes between 1999-2012 and 1983-1996. Figure 2. Western Pacific and Eastern Pacific GPCP precipitation changes between 1999-2012 and 1983-1996.

  3. Seasonal Predictions with the GEOS GCM

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Chang, Yehui; Suarez, Max

    1999-01-01

    A number of ensembles of seasonal forecasts have recently been completed as part of NASA's Seasonal to Interannual Prediction Project (NSIPP). The focus is on the extratropical response of the atmosphere to observed Surface Sea Temperature (SST) anomalies during boreal winter. The prediction experiments consist of nine forecasts starting from slightly different initial conditions for each year of the 15 year period 1981-95, employing version 2 of the Goddard Earth Observing System (GEOS) atmospheric Global Circulation Models (GCM). The initial conditions are obtained from the NASA GEOS-1 reanalysis data. Comparisons with a companion set of six long-term simulations with observed SST (starting in 1978, so they have no memory of the initial conditions for the periods of interest) are used to assess the relative contributions of the initial conditions and SST anomalies to forecast skill ranging from daily to seasonal time scales. The ensembles are used to isolate the signal, and to assess the nature of the inherent variability (noise) of the forecasts.

  4. A cool Southwest Indian Ocean connection to El Niño events

    NASA Astrophysics Data System (ADS)

    Wieners, Claudia; Manola, Iris; Ridderinkhof, Wim; Dijkstra, Henk; von der Heydt, Anna; Kirtman, Benjamin; Selten, Frank; de Ruijter, Wilhelmus

    2014-05-01

    Recent studies have shown that anomalously high sea surface temperatures (SST) in the southeastern equatorial Indian Ocean (IO) can influence early El Niño development by modulating the winds over the western Pacific. We have collected observational evidence for a dynamic connection between relatively cool SST developments in the southwestern Indian Ocean and the following years' El Niño. These cool anomalies appear over the so-called Seychelles thermocline Dome. Depending on strength and timing they generate a fast atmospheric response by stimulating an Indo-Pacific atmospheric bridge that leads to enhanced convection over the western Pacific. The slow oceanic response involves a pathway of upwelling Rossby and Kelvin waves that propagate towards and across the equator. We will present the first results of a series of dedicated climate model experiments. They were designed to stimulate the response of the coupled system to the SST cooling using a global climate model. First results seem to support the observational analysis.

  5. Cloning of TaSST genes associated with water soluble carbohydrate content in bread wheat stems and development of a functional marker.

    PubMed

    Dong, Yan; Zhang, Yan; Xiao, Yonggui; Yan, Jun; Liu, Jindong; Wen, Weie; Zhang, Yong; Jing, Ruilian; Xia, Xianchun; He, Zhonghu

    2016-05-01

    We cloned TaSST genes, developed a gene-specific marker for TaSST-D1, and identified three QTL in the Doumai/Shi 4185 RIL population. TaSST-D1 is within one of the three QTL. Sucrose:sucrose-1-fructosyltransferase (1-SST), a critical enzyme in the fructan biosynthetic pathway, is significantly and positively associated with water soluble carbohydrate (WSC) content in bread wheat stems. In the present study, wheat 1-SST genes (TaSST) were isolated and located on chromosomes 4A, 7A and 7D. Sequence analysis of TaSST-D1 revealed 15 single nucleotide polymorphisms (SNP) in the third exon between cultivars with higher and lower WSC content. A cleaved amplified polymorphism sequence (CAPS) marker, WSC7D, based on the polymorphism at position 1216 (C-G) was developed to discriminate the two alleles. WSC7D was located on chromosome 7DS using a recombinant inbred line (RIL) population from a Doumai/Shi 4185 cross, and a set of Chinese Spring nullisomic-tetrasomic lines. TaSST-D1 co-segregated with the CAPS marker WSC7D and was linked to SNP marker BS00108793_51 on chromosome 7DS at a genetic distance of 6.1 cM. It explained 8.8, 10.9, and 11.3% of the phenotypic variances in trials at Beijing and Shijiazhuang as well as the averaged data from those environments, respectively. Two additional QTL (QWSC.caas-4BS and QWSC.caas-7AS) besides TaSST-D1 were mapped in the RIL population. One hundred and forty-nine Chinese wheat cultivars and advanced lines tested in four environments were used to validate a highly significant (P < 0.01) association between WSC7D and WSC content in wheat stems. WSC7D can be used as a gene-specific marker for improvement of stem WSC content in wheat breeding programs.

  6. Somatostatin protects photoreceptor cells against high glucose-induced apoptosis.

    PubMed

    Arroba, Ana I; Mazzeo, Aurora; Cazzoni, Daniele; Beltramo, Elena; Hernández, Cristina; Porta, Massimo; Simó, Rafael; Valverde, Ángela M

    2016-01-01

    Many cellular and molecular studies in experimental animals and early retinal function tests in patients with diabetic retinopathy (DR) have shown that retinal neurodegeneration is an early event in the pathogenesis of the disease. Somatostatin (SST) is one of the most important neuroprotective factors synthesized by the retina: SST levels are decreased in parallel to retinal neurodegeneration in early stages of DR. In this study, we characterized the induction of apoptosis (programmed cell death) in a 661W photoreceptor-like cell line cultured under high glucose (HG) conditions and the effect of SST. A 661W photoreceptor-like cell line and retinal explants from 10-week-old male C57BL/6 mice were cultured under HG conditions and treated with SST. Hyperglycemia significantly reduced the cellular viability by increasing the percentage of apoptotic cells, and this effect was ameliorated by SST (p˂0.05). Activation of caspase-8 by hyperglycemia was found in the 661W cells and retinal explants and decreased in the presence of SST (p˂0.05). Moreover, we detected activation of calpain-2 associated with hyperglycemia-induced cell death, as well as increased protein tyrosine phosphatase 1B (PTP1B) protein levels; both had a pattern of cleavage that was absent in the presence of SST (p˂0.05). Treatment of the 661W cells and retinal explants with SST for 24 h increased the phosphorylation of type 1 insulin-like growth factor receptor (IGF-IR; tyrosine 1165/1166) and protein kinase B (Akt; serine 473), suggesting this survival signaling is activated in the neuroretina by SST (p˂0.05). This study has provided new mechanistic insights first into the involvement of calpain-2 and PTP1B in the loss of cell survival and increased caspase-8-dependent apoptosis induced by hyperglycemia in photoreceptor cells and second, on the protective effect of SST against apoptosis by the enhancement of IGF-IR-mediated Akt phosphorylation.

  7. Somatostatin protects photoreceptor cells against high glucose–induced apoptosis

    PubMed Central

    Mazzeo, Aurora; Cazzoni, Daniele; Beltramo, Elena; Hernández, Cristina; Porta, Massimo; Simó, Rafael; Valverde, Ángela M.

    2016-01-01

    Purpose Many cellular and molecular studies in experimental animals and early retinal function tests in patients with diabetic retinopathy (DR) have shown that retinal neurodegeneration is an early event in the pathogenesis of the disease. Somatostatin (SST) is one of the most important neuroprotective factors synthesized by the retina: SST levels are decreased in parallel to retinal neurodegeneration in early stages of DR. In this study, we characterized the induction of apoptosis (programmed cell death) in a 661W photoreceptor-like cell line cultured under high glucose (HG) conditions and the effect of SST. Methods A 661W photoreceptor-like cell line and retinal explants from 10-week-old male C57BL/6 mice were cultured under HG conditions and treated with SST. Results Hyperglycemia significantly reduced the cellular viability by increasing the percentage of apoptotic cells, and this effect was ameliorated by SST (p˂0.05). Activation of caspase-8 by hyperglycemia was found in the 661W cells and retinal explants and decreased in the presence of SST (p˂0.05). Moreover, we detected activation of calpain-2 associated with hyperglycemia-induced cell death, as well as increased protein tyrosine phosphatase 1B (PTP1B) protein levels; both had a pattern of cleavage that was absent in the presence of SST (p˂0.05). Treatment of the 661W cells and retinal explants with SST for 24 h increased the phosphorylation of type 1 insulin-like growth factor receptor (IGF-IR; tyrosine 1165/1166) and protein kinase B (Akt; serine 473), suggesting this survival signaling is activated in the neuroretina by SST (p˂0.05). Conclusions This study has provided new mechanistic insights first into the involvement of calpain-2 and PTP1B in the loss of cell survival and increased caspase-8-dependent apoptosis induced by hyperglycemia in photoreceptor cells and second, on the protective effect of SST against apoptosis by the enhancement of IGF-IR-mediated Akt phosphorylation. PMID:28050125

  8. Foraminifera Models to Interrogate Ostensible Proxy-Model Discrepancies During Late Pliocene

    NASA Astrophysics Data System (ADS)

    Jacobs, P.; Dowsett, H. J.; de Mutsert, K.

    2017-12-01

    Planktic foraminifera faunal assemblages have been used in the reconstruction of past oceanic states (e.g. the Last Glacial Maximum, the mid-Piacenzian Warm Period). However these reconstruction efforts have typically relied on inverse modeling using transfer functions or the modern analog technique, which by design seek to translate foraminifera into one or two target oceanic variables, primarily sea surface temperature (SST). These reconstructed SST data have then been used to test the performance of climate models, and discrepancies have been attributed to shortcomings in climate model processes and/or boundary conditions. More recently forward proxy models or proxy system models have been used to leverage the multivariate nature of proxy relationships to their environment, and to "bring models into proxy space". Here we construct ecological models of key planktic foraminifera taxa, calibrated and validated with World Ocean Atlas (WO13) oceanographic data. Multiple modeling methods (e.g. multilayer perceptron neural networks, Mahalanobis distance, logistic regression, and maximum entropy) are investigated to ensure robust results. The resulting models are then driven by a Late Pliocene climate model simulation with biogeochemical as well as temperature variables. Similarities and differences with previous model-proxy comparisons (e.g. PlioMIP) are discussed.

  9. Interdecadal Change in SST Anomalies Associated with Winter Rainfall over South China

    NASA Astrophysics Data System (ADS)

    Liantong, Z.

    2012-04-01

    The present study investigates the interdecadal change in winter (January-February-March, or "JFM") rainfall over South China and in South China JFM rainfall-sea surface temperature (SST) relationship by using station observations for the period of 1958-2002, the Met Office Hadley Center's SST data for the period of 1900-2008, and the ERA-40 re-analysis for the period of 1958-2002. It is found that the relationship between South China JFM rainfall and SST experienced an obvious interdecadal change around the year 1978. The analyses show that the JFM rainfall anomalies during 1960-1977 and 1978-2002 were closely associated with the South China Sea (SCS) SST and El Niño-Southern Oscillation (ENSO), respectively. Moreover, southwesterly anomalies at 700 hPa dominate over the South China Sea for positive SCS SST anomaly years during 1960-1977, and for El Niño years during 1978-2002, respectively. These wind anomalies, which are associated with the enhancement of the western Pacific subtropical high, transport more moisture into South China, favoring increases in rainfall. KEY WORDS: ENSO; SCS SST; South China winter rainfall, western Pacific subtropical high.

  10. Identifying and Investigating the Late-1960s Interhemispheric SST Shift

    NASA Astrophysics Data System (ADS)

    Friedman, A. R.; Lee, S. Y.; Liu, Y.; Chiang, J. C. H.

    2014-12-01

    The global north-south interhemispheric sea surface temperature (SST) difference experienced a pronounced and rapid decrease in the late 1960s, which has been linked to drying in the Sahel, South Asia, and East Asia. However, some basic questions about the interhemispheric SST shift remain unresolved, including its scale and whether the constituent changes in different basins were coordinated. In this study, we systematically investigate the spatial and temporal behavior of the late-1960s interhemispheric SST shift using ocean surface and subsurface observations. We also evaluate potential mechanisms using control and specific-forcing CMIP5 simulations. Using a regime shift detection technique, we identify the late-1960s shift as the most prominent in the historical observational SST record. We additionally examine the corresponding changes in upper-ocean heat content and salinity associated with the shift. We find that there were coordinated upper-ocean cooling and freshening in the subpolar North Atlantic, the region of the largest-magnitude SST decrease during the interhemispheric shift. These upper-ocean changes correspond to a weakened North Atlantic thermohaline circulation (THC). However, the THC decrease does not fully account for the rapid global interhemispheric SST shift, particularly the warming in the extratropical Southern Hemisphere.

  11. A prospective cohort study of digital cushion and corium thickness. Part 1: Associations with body condition, lesion incidence, and proximity to calving.

    PubMed

    Newsome, R F; Green, M J; Bell, N J; Bollard, N J; Mason, C S; Whay, H R; Huxley, J N

    2017-06-01

    Claw horn disruption lesions (CHDL) are a major cause of lameness in dairy cattle and are likely a result of excessive forces being applied to the germinal epithelium that produces the claw horn. The digital cushion is a connective tissue structure, containing depots of adipose tissue, that sits beneath the distal phalanx and has been shown to be thicker in fatter cows. Body condition score (BCS) loss is a risk factor for CHDL, and one possible explanation is that fat is mobilized from the digital cushion during negative energy balance, causing the digital cushion to thin and lose force-dissipating capacity, leading to disruption of claw horn growth. This prospective cohort study investigated the association between measures of body fat and sole soft tissue (SST) thickness (a combined measure of the corium and digital cushion beneath the distal phalanx) in a longitudinal manner. The SST of 179 cows in 2 high-yielding dairy herds were measured at 5 assessment points between 8 wk before and 35 wk postcalving. The BCS, back fat thickness (BFT), and lesion incidence were recorded. Data were analyzed in a 4-level mixed effects regression model, with the outcome being SST thickness beneath the flexor tuberosity of the distal phalanx. Data from 827 assessment points were available for analysis. The overall mean of SST was 4.99 mm (standard deviation: 0.95). The SST was thickest 8 wk before calving (5.22 mm, standard deviation: 0.91) and thinnest 1 wk postcalving (4.68 mm, standard deviation: 0.87), suggesting an effect of calving on SST. The BFT was positively correlated with SST in the model with a small effect size (a 10 mm decrease in BFT corresponded with a 0.13 mm decrease in SST), yet the nadir of BFT was 11.0 mm at 9 to 17 wk postcalving (when SST was ∼4.95 mm), rather than occurring with the nadir of SST immediately after calving. The SST also varied with other variables [e.g., cows that developed a sole ulcer or severe sole hemorrhage during the study had thinner SST (-0.24 mm)], except when a sole ulcer was present, when it was thicker (+0.53 mm). Cows that developed lesions had a thinner digital cushion before the lesion occurrence, which became thickened with sole ulcer presence, perhaps representing inflammation. Furthermore, although BFT was correlated with SST over time, SST may also have been influenced by other factors such as integrity of the suspensory apparatus, which could have a major effect on CHDL. Measures of body fat likely contributed to having thin SST, but other factors including calving, herd, and lesion presence also had an effect. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  12. Recent surface cooling in the Yellow and East China Seas and the associated North Pacific climate regime shift

    NASA Astrophysics Data System (ADS)

    Kim, Yong Sun; Jang, Chan Joo; Yeh, Sang-Wook

    2018-03-01

    The Yellow and East China Seas (YECS) are widely believed to have experienced robust, basin-scale warming over the last few decades. However, the warming reached a peak in the late 1990s, followed by a significant cooling trend. In this study, we investigated the characteristics of this low-frequency sea surface temperature (SST) variance and its dynamic relationship with large-scale climate variability through cyclostationary orthogonal function analysis for the 1982-2014 period. Both regressed surface winds on the primary mode of the YECS SST and trends in air-sea heat fluxes demonstrate that the intensification of the northerly winds in winter contribute largely to the recent cooling trend by increasing heat loss to the atmosphere. As a localized oceanic response to these winds, the upwind flow seems to bring warm waters and partially counteracts the basin-scale cooling, thus contributing to a weakening of the cooling trend along the central trough of the Yellow Sea. In the context of the large-scale climate variabilities, a strong relationship between the YECS SST variability and Pacific Decadal Oscillation (PDO) became weak considerably during the recent cooling period after the late 1990s as the PDO signals appeared to be confined within the eastern basin of the North Pacific in association with the regime shift. In addition to this decoupling of the YECS SST from the PDO, the intensifying Siberian High pressure system likely caused the enhanced northerly winds, leading to the recent cooling trend. These findings highlight relative roles of the PDO and the Siberian High in shaping the YECS SST variance through the changes in the large-scale atmospheric circulation and attendant oceanic advection.

  13. The Pacific SST response to volcanic eruptions over the past millennium based on the CESM-LME

    NASA Astrophysics Data System (ADS)

    Man, W.; Zuo, M.

    2017-12-01

    The impact of the northern hemispheric, tropical and southern hemispheric volcanic eruptions on the Pacific sea surface temperature (SST) and its mechanism are investigated using the Community Earth System Model Last Millennium Ensemble. Analysis of the simulations indicates that the Pacific SST features a significant El Niño-like pattern a few months after the northern hemispheric and tropical eruptions, and with a weaker such tendency after the southern hemispheric eruptions. Furthermore, the Niño3 index peaks lagging one and a half years after the northern hemispheric and tropical eruptions. Two years after all three types of volcanic eruptions, a La Niña-like pattern over the equatorial Pacific is observed, which seems to form an El Niño-Southern Oscillation (ENSO) cycle. In addition, the westerly anomalies at 850 hPa over the western-to-central Pacific appear ahead of the warm SST; hence, the El Niño-like warming over the eastern Pacific can be attributed to the weakening of the trade winds. We further examined the causes of westerly anomalies and find that a shift of the intertropical convergence zone (ITCZ) can explain the El Niño-like response to the northern hemispheric eruptions, which is not applicable for tropical or southern hemispheric eruptions. Instead, the reduction in the zonal equatorial SST gradient through the ocean dynamical thermostat mechanism, combined with the land-sea thermal contrast between the Maritime Continent (MC) and the surrounding ocean and the divergent wind induced by the decreased precipitation over the MC, can trigger the westerly anomalies over the equatorial Pacific, which is applicable for all three types of eruptions.

  14. GCM Hindcasts for SST Forced Climate Variability over Agriculturally Intensive Regions

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.; Shah, Kathryn P.; Chandler, Mark A.; Rind, David

    1998-01-01

    The ability to forecast seasonal climate is of great practical interest. One of the most obvious benefits would be agriculture, for which various preparations (planting, machinery, irrigation, manpower) would be enabled. The expectation of being able to make such forecasts far enough in advance (on the order of 9 months) hinges on components of the system with the longest persistence or predictability. The mixed results of El Nino forecasts has raised the hope that tropical Pacific sea surface temperatures (SST) fall into this category. For agriculturally-relevant forecasts to be made, and utilized, requires several conditions. The SST in the regions that affect agricultural areas must be forecast successfully, many months in advance. The climate response to such sea surface temperatures must then be ascertained, either through the use of historical empirical studies or models (e.g., GCMS). For practical applications, the agricultural production must be strongly influenced by climate, and farmers on either the local level or through commercial concerns must be able to adjust to using such forecasts. In a continuing series of papers, we will explore each of these components. This article concerns the question of utilizing SST to forecast the climate in several regions of agricultural production. We optimize the possibility of doing so successfully by using observed SST in a hindcast mode (i.e., a perfect forecast), and we also use the globally observed values (rather than just those from the tropical Pacific, for which predictability has been shown). This then is the ideal situation; in subsequent papers we will explore degrading the results by using only tropical Pacific SSTs, and then using only

  15. The ocean-atmosphere response to wind-induced thermocline changes in the tropical South Western Indian Ocean

    NASA Astrophysics Data System (ADS)

    Manola, Iris; Selten, F. M.; de Ruijter, W. P. M.; Hazeleger, W.

    2015-08-01

    In the Indian Ocean basin the sea surface temperatures (SSTs) are most sensitive to changes in the oceanic depth of the thermocline in the region of the Seychelles Dome. Observational studies have suggested that the strong SST variations in this region influence the atmospheric evolution around the basin, while its impact could extend far into the Pacific and the extra-tropics. Here we study the adjustments of the coupled atmosphere-ocean system to a winter shallow doming event using dedicated ensemble simulations with the state-of-the-art EC-Earth climate model. The doming creates an equatorial Kelvin wave and a pair of westward moving Rossby waves, leading to higher SST 1-2 months later in the Western equatorial Indian Ocean. Atmospheric convection is strengthened and the Walker circulation responds with reduced convection over Indonesia and cooling of the SST in that region. The Pacific warm pool convection shifts eastward and an oceanic Kelvin wave is triggered at thermocline depth. The wave leads to an SST warming in the East Equatorial Pacific 5-6 months after the initiation of the Seychelles Dome event. The atmosphere responds to this warming with weak anomalous atmospheric convection. The changes in the upper tropospheric divergence in this sequence of events create large-scale Rossby waves that propagate away from the tropics along the atmospheric waveguides. We suggest to repeat these types of experiments with other models to test the robustness of the results. We also suggest to create the doming event in June so that the East-Pacific warming occurs in November when the atmosphere is most sensitive to SST anomalies and El Niño could possibly be triggered by the doming event under suitable conditions.

  16. The Impact of Sea Surface Temperature on Organized Convective Storms Crossing over Coastlines

    NASA Astrophysics Data System (ADS)

    Lombardo, K.

    2016-02-01

    As organized coastal convective storms develop over land and move over the coastal ocean, their storm-scale structures, intensity, and associated weather threats evolve. This study aims to quantify the impact of sea surface temperature on the fundamental mechanisms controlling the evolution of coastal quasi-linear convective systems (QLCSs) as they move offshore. Results from this work will contribute to the improved predictability of these coastal, potentially severe warm season storms. The current work systematically studies the interaction between QLCSs and marine atmospheric boundary layers (MABLs) associated with the coastal ocean in an idealized numerical framework. The initial simulations are run in 2-dimensions, with a 250 m horizontal resolution and a vertical resolution ranging from 100 m in the lowest 3000 m stretched to 250 m at the top of the 20 km domain. To create a numerical environment representative of a coastal region, the western half of the 800 km domain is configured to represent a land surface, while the eastern half represents a water surface. A series of sensitivity experiments are conducted to explore the influence of sea surface temperature and the overlying MABL on coastal QLCSs. Sea surface temperature values are selected to represent values observed within the Mid-Atlantic Bight coastal waters, including 5oC (min SST - January), 14oC (early summer), and 23oC (late summer). The numerical MABL is allowed to develop through surface heat fluxes. Preliminary simulations indicate that SST influences storm structure, with the stratiform precipitation shield becoming progressively wider as SST increases. SST also impacts propagation speed; once the storms are over the water, the early and late summer QLCSs move more quickly than the min SST storm. The physical mechanisms contributing to these and other differences will be discussed.

  17. Intrahippocampal injection of Cortistatin-14 impairs recognition memory consolidation in mice through activation of sst2, ghrelin and GABAA/B receptors.

    PubMed

    Jiang, Jinhong; Peng, Yali; He, Zhen; Wei, Lijuan; Jin, Weidong; Wang, Xiaoli; Chang, Min

    2017-07-01

    Cortistatin-14 (CST-14), a neuropeptide related to somatostatin, is primarily localized within the cortex and hippocampus. In the hippocampus, CST-14 inhibits CA1 neuronal pyramidal cell firing and co-exists with GABA. However, its role in cognitive is still not clarified. The first aim of our study was to elucidate the role of CST-14 signaling in consolidation and reconsolidation of recognition memory in mice, using novel object recognition task. The results showed that central CST-14 induced in impairment of long-term and short-term recognition memory, indicating memory consolidation impairment effect. Similarly, we found that CST-14 did not impaired long-term and short-term reconsolidation recognition memory. To further investigate the underlying mechanisms of CST-14 in memory process, we used cyclosomatostatin (c-SOM, a selective sst 1-5 receptor antagonist), cyanamid154806 (a selective sst 2 receptor antagonist), ODN-8 (a high affinity and selectivity compound for sst 3 receptor), [d-Lys 3 ]GHRP-6 (a selective ghrelin receptor antagonist), picrotoxin (PTX, a GABA A receptor antagonist), and sacolfen (a GABA B receptor antagonist) to research its effects in recognition. Our results firstly indicated that the memory-impairing effects of CST-14 were significantly reversed by c-SOM, cyanamid154806, [d-Lys 3 ]GHRP-6, PTX and sacolfen, but not ODN-8, suggesting that the blockage of recognition memory consolidation induced by CST-14 involves sst 2 , ghrelin and GABA system. The present study provides a potential strategy to regulate memory processes, providing new evidence that reconsolidation is not a simple reiteration of consolidation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. GREEN REACTION CHEMISTRIES PERFORMED IN THE SST REACTOR

    EPA Science Inventory


    The U. S. Environmental Protection Agency (USEPA) and Kreido Laboratories have established a Cooperative Research and Development Agreement (CRADA) collaboration, to develop and commercialize green and sustainable chemistries in the area of industrial chemical synthesis. Uti...

  19. A pilot of a video game (DDR) to promote physical activity and decrease sedentary screen time.

    PubMed

    Maloney, Ann E; Bethea, T Carter; Kelsey, Kristine S; Marks, Julie T; Paez, Sadye; Rosenberg, Angela M; Catellier, Diane J; Hamer, Robert M; Sikich, Linmarie

    2008-09-01

    We examined the feasibility of Dance Dance Revolution (DDR), a dance video game, in participants' homes, to increase physical activity (PA) and to decrease sedentary screen time (SST). Sixty children (7.5 +/- 0.5 years) were randomized in a 2:1 ratio to DDR or to wait-list control (10-week delay). DDR use was logged, PA was measured objectively by accelerometry. SST was self-reported at weeks 0 and 10. At week 28, after both groups had access to DDR, accelerometry and SST were repeated. Mean use of DDR was 89 +/- 82 (range 0-660 min) min per week (mpw). The DDR group showed increased vigorous PA and a reduction in light PA; the control group showed no increase in moderate and/or vigorous PA (MVPA) although they also had a reduction in light PA. Differences between the groups were not observed. The DDR group also reported a decrease in SST of -1.2 +/- 3.7 h per week (hpw) (P < 0.05), whereas the controls reported an increase of +3.0 +/- 7.7 hpw (nonsignificant). The difference in SST between the groups was significant, with less SST in the DDR group. Between weeks 10 and 28, numeric reductions in SST were reported in both groups. In the DDR group, SST at week 28 (8.8 +/- 6.0 hpw) was lower than baseline (10.5 +/- 5.5 hpw; P < 0.03). This pilot study suggests that DDR reduces SST and may facilitate slight increases in vigorous PA. Further study is needed to better characterize children and contexts in which DDR may promote a healthy lifestyle.

  20. El Niño–Southern Oscillation diversity and Southern Africa teleconnections during Austral Summer

    USGS Publications Warehouse

    Hoell, Andrew; Funk, Christopher C.; Magadzire, Tamuka; Zinke, Jens; Husak, Gregory J.

    2014-01-01

    A wide range of sea surface temperature (SST) expressions have been observed during the El Niño–Southern Oscillation events of 1950–2010, which have occurred simultaneously with different global atmospheric circulations. This study examines the atmospheric circulation and precipitation during December–March 1950–2010 over the African Continent south of 15∘S, a region hereafter known as Southern Africa, associated with eight tropical Pacific SST expressions characteristic of El Niño and La Niña events. The self-organizing map method along with a statistical distinguishability test was used to isolate the SST expressions of El Niño and La Niña. The seasonal precipitation forcing over Southern Africa associated with the eight SST expressions was investigated in terms of the horizontal winds, moisture budget and vertical motion. El Niño events, with warm SST across the east and central Pacific Ocean and warmer than average SST over the Indian Ocean, are associated with precipitation reductions over Southern Africa. The regional precipitation reductions are forced primarily by large-scale mid-tropospheric subsidence associated with anticyclonic circulation in the upper troposphere. El Niño events with cooler than average SST over the Indian Ocean are associated with precipitation increases over Southern Africa associated with lower tropospheric cyclonic circulation and mid-tropospheric ascent. La Niña events, with cool SST anomalies over the central Pacific and warm SST over the west Pacific and Indian Ocean, are associated with precipitation increases over Southern Africa. The regional precipitation increases are forced primarily by lower tropospheric cyclonic circulation, resulting in mid-tropospheric ascent and an increased flux of moisture into the region.

  1. Effect of extreme sea surface temperature events on the demography of an age-structured albatross population.

    PubMed

    Pardo, Deborah; Jenouvrier, Stéphanie; Weimerskirch, Henri; Barbraud, Christophe

    2017-06-19

    Climate changes include concurrent changes in environmental mean, variance and extremes, and it is challenging to understand their respective impact on wild populations, especially when contrasted age-dependent responses to climate occur. We assessed how changes in mean and standard deviation of sea surface temperature (SST), frequency and magnitude of warm SST extreme climatic events (ECE) influenced the stochastic population growth rate log( λ s ) and age structure of a black-browed albatross population. For changes in SST around historical levels observed since 1982, changes in standard deviation had a larger (threefold) and negative impact on log( λ s ) compared to changes in mean. By contrast, the mean had a positive impact on log( λ s ). The historical SST mean was lower than the optimal SST value for which log( λ s ) was maximized. Thus, a larger environmental mean increased the occurrence of SST close to this optimum that buffered the negative effect of ECE. This 'climate safety margin' (i.e. difference between optimal and historical climatic conditions) and the specific shape of the population growth rate response to climate for a species determine how ECE affect the population. For a wider range in SST, both the mean and standard deviation had negative impact on log( λ s ), with changes in the mean having a greater effect than the standard deviation. Furthermore, around SST historical levels increases in either mean or standard deviation of the SST distribution led to a younger population, with potentially important conservation implications for black-browed albatrosses.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  2. Sr/Ca proxy sea-surface temperature reconstructions from modern and holocene Montastraea faveolata specimens from the Dry Tortugas National Park

    USGS Publications Warehouse

    Flannery, Jennifer A.; Poore, Richard Z.

    2013-01-01

    Sr/Ca ratios from skeletal samples from two Montastraea faveolata corals (one modern, one Holocene, ~6 Ka) from the Dry Tortugas National Park were measured as a proxy for sea-surface temperature (SST). We sampled coral specimens with a computer-driven triaxial micromilling machine, which yielded an average of 15 homogenous samples per annual growth increment. We regressed Sr/Ca values from resulting powdered samples against a local SST record to obtain a calibration equation of Sr/Ca = -0.0392 SST + 10.205, R = -0.97. The resulting calibration was used to generate a 47-year modern (1961-2008) and a 7-year Holocene (~6 Ka) Sr/Ca subannually resolved proxy record of SST. The modern M. faveolata yields well-defined annual Sr/Ca cycles ranging in amplitude from ~0.3 and 0.5 mmol/mol. The amplitude of ~0.3 to 0.5 mmol/mol equates to a 10-15°C seasonal SST amplitude, which is consistent with available local instrumental records. Summer maxima proxy SSTs calculated from the modern coral Sr/ Ca tend to be fairly stable: most SST maxima from 1961–2008 are 29°C ± 1°C. In contrast, winter minimum SST calculated in the 47-year modern time-series are highly variable, with a cool interval in the early to mid-1970s. The Holocene (~6 Ka) Montastraea faveolata coral also yields distinct annual Sr/Ca cycles with amplitudes ranging from ~0.3 to 0.6 mmol/mol. Absolute Sr/Ca values and thus resulting SST estimates over the ~7-year long record are similar to those from the modern coral. We conclude that Sr/Ca from Montastraea faveolata has high potential for developing subannually resolved Holocene SST records.

  3. Improving Satellite Retrieved Infrared Sea Surface Temperatures in Aerosol-Contaminated Regions

    NASA Astrophysics Data System (ADS)

    Luo, B.; Minnett, P. J.; Szczodrak, G.; Kilpatrick, K. A.

    2017-12-01

    Infrared satellite observations of sea surface temperature (SST) have become essential for many applications in meteorology, climatology, and oceanography. Applications often require high accuracy SST data: for climate research and monitoring an absolute uncertainty of 0.1K and stability of better than 0.04K per decade are required. Tropospheric aerosol concentrations increase infrared signal attenuation and prevent the retrieval of accurate satellite SST. We compare satellite-derived skin SST with measurements from the Marine-Atmospheric Emitted Radiance Interferometer (M-AERI) deployed on ships during the Aerosols and Ocean Science Expeditions (AEROSE) and with quality-controlled drifter temperatures. After match-up with in-situ SST and filtering of cloud contaminated data, the results indicate that SST retrieved from MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Terra and Aqua satellites have negative (cool) biases compared to shipboard radiometric measurements. There is also a pronounced negative bias in the Saharan outflow area that can introduce SST errors >1 K at aerosol optical depths > 0.5. In this study, we present a new method to derive night-time Saharan Dust Index (SDI) algorithms based on simulated brightness temperatures at infrared wavelengths of 3.9, 10.8 and 12.0 μm, derived using RTTOV. We derived correction coefficients for Aqua MODIS measurements by regression of the SST errors against the SDI. The biases and standard deviations are reduced by 0.25K and 0.19K after the SDI correction. The goal of this study is to understand better the characteristics and physical mechanisms of aerosol effects on satellite retrieved infrared SST, as well as to derive empirical formulae for improved accuracies in aerosol-contaminated regions.

  4. Octreotide promotes apoptosis in human somatotroph tumor cells by activating somatostatin receptor type 2.

    PubMed

    Ferrante, E; Pellegrini, C; Bondioni, S; Peverelli, E; Locatelli, M; Gelmini, P; Luciani, P; Peri, A; Mantovani, G; Bosari, S; Beck-Peccoz, P; Spada, A; Lania, A

    2006-09-01

    Somatostatin analogs currently used in the treatment of acromegaly and other neuroendocrine tumors inhibit hormone secretion and cell proliferation by binding to somatostatin receptor type (SST) 2 and 5. The antiproliferative pathways coupled to these receptors have been only partially characterized. The aim of this study was to evaluate the effect of octreotide and super selective SST2 (BIM23120) and SST5 (BIM23206) analogs on apoptotic activity and apoptotic gene expression in human somatotroph tumor cells. Eight somatotroph tumors expressing similar levels of SST2 and SST5 evaluated by real-time PCR and western blot analyses were included in the study. In cultured cells obtained from these tumors, octreotide induced a dose-dependent increase of caspase-3 activity (160+/-20% vs basal at 10 nM) and cleaved cytokeratin 18 levels (172+/-25% vs basal) at concentrations higher than 0.1 nM. This effect was due to SST2 activation since BIM23120 elicited comparable responses, while BIM23206 was ineffective. BIM23120-stimulated apoptosis was dependent on phosphatases, since it was abrogated by the inhibitor orthovanadate, and independent from the induction of apoptosis-related genes, such as p53, p63, p73, Bcl-2, Bax, BID, BIK, TNFSF8, and FADD. In somatotroph tumors, both BIM23120 and BIM2306 caused growth arrest as indicated by the increase in p27 and decrease in cyclin D1 expression. In conclusion, the present study showed that octreotide-induced apoptosis in human somatotroph tumor cells by activating SST2. This effect, together with the cytostatic action exerted by both SST2 and SST5 analogs, might account for the tumor shrinkage observed in acromegalic patients treated with long-acting somatostatin analogs.

  5. Enhanced influence of early-spring tropical Indian Ocean SST on the following early-summer precipitation over Northeast China

    NASA Astrophysics Data System (ADS)

    Han, Tingting; He, Shengping; Wang, Huijun; Hao, Xin

    2017-04-01

    The relationship between the tropical Indian Ocean (TIO) and East Asian summer monsoon/precipitation has been documented in many studies. However, the precursor signals of summer precipitation in the TIO sea surface temperature (SST), which is important for climate prediction, have drawn little attention. This study identified a strong relationship between early-spring TIO SST and subsequent early-summer precipitation in Northeast China (NEC) since the late 1980s. For 1961-1986, the correlations between early-spring TIO SST and early-summer NEC precipitation were statistically insignificant; for 1989-2014, they were positively significant. Since the late 1980s, the early-spring positive TIO SST anomaly was generally followed by a significant anomalous anticyclone over Japan; that facilitated anomalous southerly winds over NEC, conveying more moisture from the North Pacific. Further analysis indicated that an early TIO SST anomaly showed robust persistence into early summer. However, the early-summer TIO SST anomaly displayed a more significant influence on simultaneous atmospheric circulation and further affected NEC precipitation since the late 1980s. In 1989-2014, the early-summer Hadley and Ferrell cell anomalies associated with simultaneous TIO SST anomaly were much more significant and extended further north to mid-latitudes, which provided a dynamic foundation for the TIO-mid-latitude connection. Correspondingly, the TIO SST anomaly could lead to significant divergence anomalies over the Mediterranean. The advections of vorticity by the divergent component of the flow effectively acted as a Rossby wave source. Thus, an apparent Rossby wave originated from the Mediterranean and propagated east to East Asia; that further influenced the NEC precipitation through modulation to the atmospheric circulation (e.g., surface wind, moisture, vertical motion).

  6. SST cooling along coastal Java and Sumatra during positive Indian Ocean Dipole events

    NASA Astrophysics Data System (ADS)

    Delman, A. S.; McClean, J.; Sprintall, J.; Talley, L. D.; Bryan, F.; Johnson, B. K.; Carton, J.

    2016-02-01

    The evolution of positive Indian Ocean Dipole (pIOD) events is driven in part by anomalous SST cooling near the coasts of Java and Sumatra. However, the mechanisms and timeline of surface temperature changes near these two islands are distinct. Satellite data and mixed layer budgets in a forced ocean model simulation with 0.1° spatial resolution were used to characterize the dominant influences on SST in each region during pIOD events. Along the south coast of Java, where upwelling from southeasterly trade winds happens seasonally in June-September, strengthening/weakening of the trade winds has little effect on the interannual variability of SST. Instead, remotely-forced upwelling Kelvin waves are the primary mechanism for producing anomalous Java SST cooling in the early stages of a pIOD event. Other mechanisms that affect Java SST anomalies include inflows from the interior Indonesian Seas, mesoscale eddies, and air-sea heat fluxes; these influences can hasten the decay of cool Java SST anomalies and therefore may impact the strength and duration of pIOD events. Along the west coast of Sumatra, surface cooling is initially delayed by a deeper thermocline and a salinity-stratified barrier layer. Hence upwelling Kelvin waves do not substantially affect SST near Sumatra during the first 2-3 months of Java SST cooling; however, they do help drive surface cooling near Sumatra once the barrier layer has been sufficiently eroded by waters of decreasing temperature and increasing salinity. Upwelling Kelvin wave activity in the equatorial Indian Ocean starting in April is also shown to be a robust predictor of pIOD events later in the calendar year.

  7. Improving the Space Surveillance Telescope's Performance Using Multi-Hypothesis Testing

    NASA Astrophysics Data System (ADS)

    Zingarelli, J. Chris; Pearce, Eric; Lambour, Richard; Blake, Travis; Peterson, Curtis J. R.; Cain, Stephen

    2014-05-01

    The Space Surveillance Telescope (SST) is a Defense Advanced Research Projects Agency program designed to detect objects in space like near Earth asteroids and space debris in the geosynchronous Earth orbit (GEO) belt. Binary hypothesis test (BHT) methods have historically been used to facilitate the detection of new objects in space. In this paper a multi-hypothesis detection strategy is introduced to improve the detection performance of SST. In this context, the multi-hypothesis testing (MHT) determines if an unresolvable point source is in either the center, a corner, or a side of a pixel in contrast to BHT, which only tests whether an object is in the pixel or not. The images recorded by SST are undersampled such as to cause aliasing, which degrades the performance of traditional detection schemes. The equations for the MHT are derived in terms of signal-to-noise ratio (S/N), which is computed by subtracting the background light level around the pixel being tested and dividing by the standard deviation of the noise. A new method for determining the local noise statistics that rejects outliers is introduced in combination with the MHT. An experiment using observations of a known GEO satellite are used to demonstrate the improved detection performance of the new algorithm over algorithms previously reported in the literature. The results show a significant improvement in the probability of detection by as much as 50% over existing algorithms. In addition to detection, the S/N results prove to be linearly related to the least-squares estimates of point source irradiance, thus improving photometric accuracy. The views expressed are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

  8. Systems scenarios: a tool for facilitating the socio-technical design of work systems.

    PubMed

    Hughes, Helen P N; Clegg, Chris W; Bolton, Lucy E; Machon, Lauren C

    2017-10-01

    The socio-technical systems approach to design is well documented. Recognising the benefits of this approach, organisations are increasingly trying to work with systems, rather than their component parts. However, few tools attempt to analyse the complexity inherent in such systems, in ways that generate useful, practical outputs. In this paper, we outline the 'System Scenarios Tool' (SST), which is a novel, applied methodology that can be used by designers, end-users, consultants or researchers to help design or re-design work systems. The paper introduces the SST using examples of its application, and describes the potential benefits of its use, before reflecting on its limitations. Finally, we discuss potential opportunities for the tool, and describe sets of circumstances in which it might be used. Practitioner Summary: The paper presents a novel, applied methodological tool, named the 'Systems Scenarios Tool'. We believe this tool can be used as a point of reference by designers, end-users, consultants or researchers, to help design or re-design work systems. Included in the paper are two worked examples, demonstrating the tool's application.

  9. ENSO modulation of tropical Indian Ocean subseasonal variability

    NASA Astrophysics Data System (ADS)

    Jung, Eunsil; Kirtman, Ben P.

    2016-12-01

    In this study, we use 30 years of retrospective climate model forecasts and observational estimates to show that El Niño/Southern Oscillation (ENSO) affects the amplitude of subseasonal variability of sea surface temperature (SST) in the southwest Indian Ocean, an important Tropical Intraseasonal Oscillation (TISO) onset region. The analysis shows that deeper background mixed-layer depths and warmer upper ocean conditions during El Niño reduce the amplitude of the subseasonal SST variability over Seychelles-Chagos Thermocline Ridge (SCTR), which may reduce SST-wind coupling and the amplitude of TISO variability. The opposite holds for La Niña where the shallower mixed-layer depth enhances SST variability over SCTR, which may increase SST-wind coupling and the amplitude of TISO variability.

  10. Quantification of improvements in an operational global-scale ocean thermal analysis system. (Reannouncement with new availability information)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clancy, R.M.; Harding, J.M.; Pollak, K.D.

    1992-02-01

    Global-scale analyses of ocean thermal structure produced operationally at the U.S. Navy`s Fleet Numerical Oceanography Center are verified, along with an ocean thermal climatology, against unassimilated bathythermograph (bathy), satellite multichannel sea surface temperature (MCSST), and ship sea surface temperature (SST) data. Verification statistics are calculated from the three types of data for February-April of 1988 and February-April of 1990 in nine verification areas covering most of the open ocean in the Northern Hemisphere. The analyzed thermal fields were produced by version 1.0 of the Optimum Thermal Interpolation System (OTIS 1.0) in 1988, but by an upgraded version of this model,more » referred to as OTIS 1.1, in 1990. OTIS 1.1 employs exactly the same analysis methodology as OTIS 1.0. The principal difference is that OTIS 1.1 has twice the spatial resolution of OTIS 1.0 and consequently uses smaller spatial decorrelation scales and noise-to-signal ratios. As a result, OTIS 1.1 is able to represent more horizontal detail in the ocean thermal fields than its predecessor. Verification statistics for the SST fields derived from bathy and MCSST data are consistent with each other, showing similar trends and error levels. These data indicate that the analyzed SST fields are more accurate in 1990 than in 1988, and generally more accurate than climatology for both years. Verification statistics for the SST fields derived from ship data are inconsistent with those derived from the bathy and MCSST data, and show much higher error levels indicative of observational noise.« less

  11. Neuropeptides in the posterodorsal medial amygdala modulate central cardiovascular reflex responses in awake male rats

    PubMed Central

    Quagliotto, E.; Casali, K.R.; Dal Lago, P.; Rasia-Filho, A.A.

    2014-01-01

    The rat posterodorsal medial amygdala (MePD) links emotionally charged sensory stimuli to social behavior, and is part of the supramedullary control of the cardiovascular system. We studied the effects of microinjections of neuroactive peptides markedly found in the MePD, namely oxytocin (OT, 10 ng and 25 pg; n=6/group), somatostatin (SST, 1 and 0.05 μM; n=8 and 5, respectively), and angiotensin II (Ang II, 50 pmol and 50 fmol; n=7/group), on basal cardiovascular activity and on baroreflex- and chemoreflex-mediated responses in awake adult male rats. Power spectral and symbolic analyses were applied to pulse interval and systolic arterial pressure series to identify centrally mediated sympathetic/parasympathetic components in the heart rate variability (HRV) and arterial pressure variability (APV). No microinjected substance affected basal parameters. On the other hand, compared with the control data (saline, 0.3 µL; n=7), OT (10 ng) decreased mean AP (MAP50) after baroreflex stimulation and increased both the mean AP response after chemoreflex activation and the high-frequency component of the HRV. OT (25 pg) increased overall HRV but did not affect any parameter of the symbolic analysis. SST (1 μM) decreased MAP50, and SST (0.05 μM) enhanced the sympathovagal cardiac index. Both doses of SST increased HRV and its low-frequency component. Ang II (50 pmol) increased HRV and reduced the two unlike variations pattern of the symbolic analysis (P<0.05 in all cases). These results demonstrate neuropeptidergic actions in the MePD for both the increase in the range of the cardiovascular reflex responses and the involvement of the central sympathetic and parasympathetic systems on HRV and APV. PMID:25424367

  12. A balanced Kalman filter ocean data assimilation system with application to the South Australian Sea

    NASA Astrophysics Data System (ADS)

    Li, Yi; Toumi, Ralf

    2017-08-01

    In this paper, an Ensemble Kalman Filter (EnKF) based regional ocean data assimilation system has been developed and applied to the South Australian Sea. This system consists of the data assimilation algorithm provided by the NCAR Data Assimilation Research Testbed (DART) and the Regional Ocean Modelling System (ROMS). We describe the first implementation of the physical balance operator (temperature-salinity, hydrostatic and geostrophic balance) to DART, to reduce the spurious waves which may be introduced during the data assimilation process. The effect of the balance operator is validated in both an idealised shallow water model and the ROMS model real case study. In the shallow water model, the geostrophic balance operator eliminates spurious ageostrophic waves and produces a better sea surface height (SSH) and velocity analysis and forecast. Its impact increases as the sea surface height and wind stress increase. In the real case, satellite-observed sea surface temperature (SST) and SSH are assimilated in the South Australian Sea with 50 ensembles using the Ensemble Adjustment Kalman Filter (EAKF). Assimilating SSH and SST enhances the estimation of SSH and SST in the entire domain, respectively. Assimilation with the balance operator produces a more realistic simulation of surface currents and subsurface temperature profile. The best improvement is obtained when only SSH is assimilated with the balance operator. A case study with a storm suggests that the benefit of the balance operator is of particular importance under high wind stress conditions. Implementing the balance operator could be a general benefit to ocean data assimilation systems.

  13. NASA SPoRT Initialization Datasets for Local Model Runs in the Environmental Modeling System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; LaFontaine, Frank J.; Molthan, Andrew L.; Carcione, Brian; Wood, Lance; Maloney, Joseph; Estupinan, Jeral; Medlin, Jeffrey M.; Blottman, Peter; Rozumalski, Robert A.

    2011-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed several products for its National Weather Service (NWS) partners that can be used to initialize local model runs within the Weather Research and Forecasting (WRF) Environmental Modeling System (EMS). These real-time datasets consist of surface-based information updated at least once per day, and produced in a composite or gridded product that is easily incorporated into the WRF EMS. The primary goal for making these NASA datasets available to the WRF EMS community is to provide timely and high-quality information at a spatial resolution comparable to that used in the local model configurations (i.e., convection-allowing scales). The current suite of SPoRT products supported in the WRF EMS include a Sea Surface Temperature (SST) composite, a Great Lakes sea-ice extent, a Greenness Vegetation Fraction (GVF) composite, and Land Information System (LIS) gridded output. The SPoRT SST composite is a blend of primarily the Moderate Resolution Imaging Spectroradiometer (MODIS) infrared and Advanced Microwave Scanning Radiometer for Earth Observing System data for non-precipitation coverage over the oceans at 2-km resolution. The composite includes a special lake surface temperature analysis over the Great Lakes using contributions from the Remote Sensing Systems temperature data. The Great Lakes Environmental Research Laboratory Ice Percentage product is used to create a sea-ice mask in the SPoRT SST composite. The sea-ice mask is produced daily (in-season) at 1.8-km resolution and identifies ice percentage from 0 100% in 10% increments, with values above 90% flagged as ice.

  14. Reevaluation of mid-Pliocene North Atlantic sea surface temperatures

    USGS Publications Warehouse

    Robinson, Marci M.; Dowsett, Harry J.; Dwyer, Gary S.; Lawrence, Kira T.

    2008-01-01

    Multiproxy temperature estimation requires careful attention to biological, chemical, physical, temporal, and calibration differences of each proxy and paleothermometry method. We evaluated mid-Pliocene sea surface temperature (SST) estimates from multiple proxies at Deep Sea Drilling Project Holes 552A, 609B, 607, and 606, transecting the North Atlantic Drift. SST estimates derived from faunal assemblages, foraminifer Mg/Ca, and alkenone unsaturation indices showed strong agreement at Holes 552A, 607, and 606 once differences in calibration, depth, and seasonality were addressed. Abundant extinct species and/or an unrecognized productivity signal in the faunal assemblage at Hole 609B resulted in exaggerated faunal-based SST estimates but did not affect alkenone-derived or Mg/Ca–derived estimates. Multiproxy mid-Pliocene North Atlantic SST estimates corroborate previous studies documenting high-latitude mid-Pliocene warmth and refine previous faunal-based estimates affected by environmental factors other than temperature. Multiproxy investigations will aid SST estimation in high-latitude areas sensitive to climate change and currently underrepresented in SST reconstructions.

  15. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation

    PubMed Central

    Sun, Cheng; Kucharski, Fred; Li, Jianping; Jin, Fei-Fei; Kang, In-Sik; Ding, Ruiqiang

    2017-01-01

    Observational analysis suggests that the western tropical Pacific (WTP) sea surface temperature (SST) shows predominant variability over multidecadal time scales, which is unlikely to be explained by the Interdecadal Pacific Oscillation. Here we show that this variability is largely explained by the remote Atlantic multidecadal oscillation (AMO). A suite of Atlantic Pacemaker experiments successfully reproduces the WTP multidecadal variability and the AMO–WTP SST connection. The AMO warm SST anomaly generates an atmospheric teleconnection to the North Pacific, which weakens the Aleutian low and subtropical North Pacific westerlies. The wind changes induce a subtropical North Pacific SST warming through wind–evaporation–SST effect, and in response to this warming, the surface winds converge towards the subtropical North Pacific from the tropics, leading to anomalous cyclonic circulation and low pressure over the WTP region. The warm SST anomaly further develops due to the SST–sea level pressure–cloud–longwave radiation positive feedback. Our findings suggest that the Atlantic Ocean acts as a key pacemaker for the western Pacific decadal climate variability. PMID:28685765

  16. Decadal changes in South Pacific sea surface temperatures and the relationship to the Pacific decadal oscillation and upper ocean heat content

    NASA Astrophysics Data System (ADS)

    Linsley, Braddock K.; Wu, Henry C.; Dassié, Emilie P.; Schrag, Daniel P.

    2015-04-01

    Decadal changes in Pacific sea surface temperatures (SSTs) and upper ocean heat content (OHC) remain poorly understood. We present an annual average composite coral Sr/Ca-derived SST time series extending back to 1791 from Fiji, Tonga, and Rarotonga (FTR) in the Pacific Decadal Oscillation (PDO) sensitive region of the southwest Pacific. Decadal SST maxima between 1805 and 1830 Common Era (C.E.) indicate unexplained elevated SSTs near the end of the Little Ice Age. The mean period of decadal SST variability in this region has a period near 25 years. Decades of warmer (cooler) FTR SST co-occur with PDO negative (positive) phases since at least ~1930 C.E. and positively correlate with South Pacific OHC (0-700 m). FTR SST is also inversely correlated with decadal changes in equatorial Pacific SST as measured by coral Sr/Ca. Collectively, these results support the fluctuating trade wind-shallow meridional overturning cell mechanism for decadal modulation of Pacific SSTs and OHC.

  17. Relationships of Upper Tropospheric Water Vapor, Clouds and SST: MLS Observations, ECMWF Analyses and GCM Simulations

    NASA Technical Reports Server (NTRS)

    Su, Hui; Waliser, Duane E.; Jiang, Jonathan H.; Li, Jui-lin; Read, William G.; Waters, Joe W.; Tompkins, Adrian M.

    2006-01-01

    The relationships of upper tropospheric water vapor (UTWV), cloud ice and sea surface temperature (SST) are examined in the annual cycles of ECMWF analyses and simulations from 15 atmosphere-ocean coupled models which were contributed to the IPCC AR4. The results are compared with the observed relationships based on UTWV and cloud ice measurements from MLS on Aura. It is shown that the ECMWF analyses produce positive correlations between UTWV, cloud ice and SST, similar to the MLS data. The rate of the increase of cloud ice and UTWV with SST is about 30% larger than that for MLS. For the IPCC simulations, the relationships between UTWV, cloud ice and SST are qualitatively captured. However, the magnitudes of the simulated cloud ice show a considerable disagreement between models, by nearly a factor of 10. The amplitudes of the approximate linear relations between UTWV, cloud ice and SST vary by a factor up to 4.

  18. Combined effects of recent Pacific cooling and Indian Ocean warming on the Asian monsoon.

    PubMed

    Ueda, Hiroaki; Kamae, Youichi; Hayasaki, Masamitsu; Kitoh, Akio; Watanabe, Shigeru; Miki, Yurisa; Kumai, Atsuki

    2015-11-13

    Recent research indicates that the cooling trend in the tropical Pacific Ocean over the past 15 years underlies the contemporaneous hiatus in global mean temperature increase. During the hiatus, the tropical Pacific Ocean displays a La Niña-like cooling pattern while sea surface temperature (SST) in the Indian Ocean has continued to increase. This SST pattern differs from the well-known La Niña-induced basin-wide cooling across the Indian Ocean on the interannual timescale. Here, based on model experiments, we show that the SST pattern during the hiatus explains pronounced regional anomalies of rainfall in the Asian monsoon region and thermodynamic effects due to specific humidity change are secondary. Specifically, Indo-Pacific SST anomalies cause convection to intensify over the tropical western Pacific, which in turn suppresses rainfall in mid-latitude East Asia through atmospheric teleconnection. Overall, the tropical Pacific SST effect opposes and is greater than the Indian Ocean SST effect.

  19. Assimilating NOAA SST data into BSH operational circulation model for North and Baltic Seas

    NASA Astrophysics Data System (ADS)

    Losa, Svetlana; Schroeter, Jens; Nerger, Lars; Janjic, Tijana; Danilov, Sergey; Janssen, Frank

    A data assimilation (DA) system is developed for BSH operational circulation model in order to improve forecast of current velocities, sea surface height, temperature and salinity in the North and Baltic Seas. Assimilated data are NOAA sea surface temperature (SST) data for the following period: 01.10.07 -30.09.08. All data assimilation experiments are based on im-plementation of one of the so-called statistical DA methods -Singular Evolutive Interpolated Kalman (SEIK) filter, -with different ways of prescribing assumed model and data errors statis-tics. Results of the experiments will be shown and compared against each other. Hydrographic data from MARNET stations and sea level at series of tide gauges are used as independent information to validate the data assimilation system. Keywords: Operational Oceanography and forecasting

  20. Summer monsoon circulation and precipitation over the tropical Indian Ocean during ENSO in the NCEP climate forecast system

    NASA Astrophysics Data System (ADS)

    Chowdary, J. S.; Chaudhari, H. S.; Gnanaseelan, C.; Parekh, Anant; Suryachandra Rao, A.; Sreenivas, P.; Pokhrel, S.; Singh, P.

    2014-04-01

    This study investigates the El Niño Southern Oscillation (ENSO) teleconnections to tropical Indian Ocean (TIO) and their relationship with the Indian summer monsoon in the coupled general circulation model climate forecast system (CFS). The model shows good skill in simulating the impact of El Niño over the Indian Oceanic rim during its decay phase (the summer following peak phase of El Niño). Summer surface circulation patterns during the developing phase of El Niño are more influenced by local Sea Surface Temperature (SST) anomalies in the model unlike in observations. Eastern TIO cooling similar to that of Indian Ocean Dipole (IOD) is a dominant model feature in summer. This anomalous SST pattern therefore is attributed to the tendency of the model to simulate more frequent IOD events. On the other hand, in the model baroclinic response to the diabatic heating anomalies induced by the El Niño related warm SSTs is weak, resulting in reduced zonal extension of the Rossby wave response. This is mostly due to weak eastern Pacific summer time SST anomalies in the model during the developing phase of El Niño as compared to observations. Both eastern TIO cooling and weak SST warming in El Niño region combined together undermine the ENSO teleconnections to the TIO and south Asia regions. The model is able to capture the spatial patterns of SST, circulation and precipitation well during the decay phase of El Niño over the Indo-western Pacific including the typical spring asymmetric mode and summer basin-wide warming in TIO. The model simulated El Niño decay one or two seasons later, resulting long persistent warm SST and circulation anomalies mainly over the southwest TIO. In response to the late decay of El Niño, Ekman pumping shows two maxima over the southern TIO. In conjunction with this unrealistic Ekman pumping, westward propagating Rossby waves display two peaks, which play key role in the long-persistence of the TIO warming in the model (for more than a season after summer). This study strongly supports the need of simulating the correct onset and decay phases of El Niño/La Niña for capturing the realistic ENSO teleconnections. These results have strong implications for the forecasting of Indian summer monsoon as this model is currently being adopted as an operational model in India.

Top