A simplified approach for slope stability analysis of uncontrolled waste dumps.
Turer, Dilek; Turer, Ahmet
2011-02-01
Slope stability analysis of municipal solid waste has always been problematic because of the heterogeneous nature of the waste materials. The requirement for large testing equipment in order to obtain representative samples has identified the need for simplified approaches to obtain the unit weight and shear strength parameters of the waste. In the present study, two of the most recently published approaches for determining the unit weight and shear strength parameters of the waste have been incorporated into a slope stability analysis using the Bishop method to prepare slope stability charts. The slope stability charts were prepared for uncontrolled waste dumps having no liner and leachate collection systems with pore pressure ratios of 0, 0.1, 0.2, 0.3, 0.4 and 0.5, considering the most critical slip surface passing through the toe of the slope. As the proposed slope stability charts were prepared by considering the change in unit weight as a function of height, they reflect field conditions better than accepting a constant unit weight approach in the stability analysis. They also streamline the selection of slope or height as a function of the desired factor of safety.
Milanović, Jovica V
2017-08-13
Future power systems will be significantly different compared with their present states. They will be characterized by an unprecedented mix of a wide range of electricity generation and transmission technologies, as well as responsive and highly flexible demand and storage devices with significant temporal and spatial uncertainty. The importance of probabilistic approaches towards power system stability analysis, as a subsection of power system studies routinely carried out by power system operators, has been highlighted in previous research. However, it may not be feasible (or even possible) to accurately model all of the uncertainties that exist within a power system. This paper describes for the first time an integral approach to probabilistic stability analysis of power systems, including small and large angular stability and frequency stability. It provides guidance for handling uncertainties in power system stability studies and some illustrative examples of the most recent results of probabilistic stability analysis of uncertain power systems.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).
Yi, Sun; Nelson, Patrick W; Ulsoy, A Galip
2007-04-01
In a turning process modeled using delay differential equations (DDEs), we investigate the stability of the regenerative machine tool chatter problem. An approach using the matrix Lambert W function for the analytical solution to systems of delay differential equations is applied to this problem and compared with the result obtained using a bifurcation analysis. The Lambert W function, known to be useful for solving scalar first-order DDEs, has recently been extended to a matrix Lambert W function approach to solve systems of DDEs. The essential advantages of the matrix Lambert W approach are not only the similarity to the concept of the state transition matrix in lin ear ordinary differential equations, enabling its use for general classes of linear delay differential equations, but also the observation that we need only the principal branch among an infinite number of roots to determine the stability of a system of DDEs. The bifurcation method combined with Sturm sequences provides an algorithm for determining the stability of DDEs without restrictive geometric analysis. With this approach, one can obtain the critical values of delay, which determine the stability of a system and hence the preferred operating spindle speed without chatter. We apply both the matrix Lambert W function and the bifurcation analysis approach to the problem of chatter stability in turning, and compare the results obtained to existing methods. The two new approaches show excellent accuracy and certain other advantages, when compared to traditional graphical, computational and approximate methods.
NASA Astrophysics Data System (ADS)
Ma, Zhisai; Liu, Li; Zhou, Sida; Naets, Frank; Heylen, Ward; Desmet, Wim
2017-03-01
The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system modal analysis under the "frozen-time" assumption are not able to determine the dynamic stability of LTV systems. Time-dependent state space representations of LTV systems are first introduced, and the corresponding modal analysis theories are subsequently presented via a stability-preserving state transformation. The time-varying modes of LTV systems are extended in terms of uniqueness, and are further interpreted to determine the system's stability. An extended modal identification is proposed to estimate the time-varying modes, consisting of the estimation of the state transition matrix via a subspace-based method and the extraction of the time-varying modes by the QR decomposition. The proposed approach is numerically validated by three numerical cases, and is experimentally validated by a coupled moving-mass simply supported beam experimental case. The proposed approach is capable of accurately estimating the time-varying modes, and provides a new way to determine the dynamic stability of LTV systems by using the estimated time-varying modes.
NASA Astrophysics Data System (ADS)
Zhang, Tie-Yan; Zhao, Yan; Xie, Xiang-Peng
2012-12-01
This paper is concerned with the problem of stability analysis of nonlinear Roesser-type two-dimensional (2D) systems. Firstly, the fuzzy modeling method for the usual one-dimensional (1D) systems is extended to the 2D case so that the underlying nonlinear 2D system can be represented by the 2D Takagi—Sugeno (TS) fuzzy model, which is convenient for implementing the stability analysis. Secondly, a new kind of fuzzy Lyapunov function, which is a homogeneous polynomially parameter dependent on fuzzy membership functions, is developed to conceive less conservative stability conditions for the TS Roesser-type 2D system. In the process of stability analysis, the obtained stability conditions approach exactness in the sense of convergence by applying some novel relaxed techniques. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is also given to demonstrate the effectiveness of the proposed approach.
Stabilization and robustness of non-linear unity-feedback system - Factorization approach
NASA Technical Reports Server (NTRS)
Desoer, C. A.; Kabuli, M. G.
1988-01-01
The paper is a self-contained discussion of a right factorization approach in the stability analysis of the nonlinear continuous-time or discrete-time, time-invariant or time-varying, well-posed unity-feedback system S1(P, C). It is shown that a well-posed stable feedback system S1(P, C) implies that P and C have right factorizations. In the case where C is stable, P has a normalized right-coprime factorization. The factorization approach is used in stabilization and simultaneous stabilization results.
Lam, H K; Leung, Frank H F
2007-10-01
This correspondence presents the stability analysis and performance design of the continuous-time fuzzy-model-based control systems. The idea of the nonparallel-distributed-compensation (non-PDC) control laws is extended to the continuous-time fuzzy-model-based control systems. A nonlinear controller with non-PDC control laws is proposed to stabilize the continuous-time nonlinear systems in Takagi-Sugeno's form. To produce the stability-analysis result, a parameter-dependent Lyapunov function (PDLF) is employed. However, two difficulties are usually encountered: 1) the time-derivative terms produced by the PDLF will complicate the stability analysis and 2) the stability conditions are not in the form of linear-matrix inequalities (LMIs) that aid the design of feedback gains. To tackle the first difficulty, the time-derivative terms are represented by some weighted-sum terms in some existing approaches, which will increase the number of stability conditions significantly. In view of the second difficulty, some positive-definitive terms are added in order to cast the stability conditions into LMIs. In this correspondence, the favorable properties of the membership functions and nonlinear control laws, which allow the introduction of some free matrices, are employed to alleviate the two difficulties while retaining the favorable properties of PDLF-based approach. LMI-based stability conditions are derived to ensure the system stability. Furthermore, based on a common scalar performance index, LMI-based performance conditions are derived to guarantee the system performance. Simulation examples are given to illustrate the effectiveness of the proposed approach.
Lam, H K
2012-02-01
This paper investigates the stability of sampled-data output-feedback (SDOF) polynomial-fuzzy-model-based control systems. Representing the nonlinear plant using a polynomial fuzzy model, an SDOF fuzzy controller is proposed to perform the control process using the system output information. As only the system output is available for feedback compensation, it is more challenging for the controller design and system analysis compared to the full-state-feedback case. Furthermore, because of the sampling activity, the control signal is kept constant by the zero-order hold during the sampling period, which complicates the system dynamics and makes the stability analysis more difficult. In this paper, two cases of SDOF fuzzy controllers, which either share the same number of fuzzy rules or not, are considered. The system stability is investigated based on the Lyapunov stability theory using the sum-of-squares (SOS) approach. SOS-based stability conditions are obtained to guarantee the system stability and synthesize the SDOF fuzzy controller. Simulation examples are given to demonstrate the merits of the proposed SDOF fuzzy control approach.
ERIC Educational Resources Information Center
Bashkov, Bozhidar M.; Finney, Sara J.
2013-01-01
Traditional methods of assessing construct stability are reviewed and longitudinal mean and covariance structures (LMACS) analysis, a modern approach, is didactically illustrated using psychological entitlement data. Measurement invariance and latent variable stability results are interpreted, emphasizing substantive implications for educators and…
Application of a Modal Approach in Solving the Static Stability Problem for Electric Power Systems
NASA Astrophysics Data System (ADS)
Sharov, J. V.
2017-12-01
Application of a modal approach in solving the static stability problem for power systems is examined. It is proposed to use the matrix exponent norm as a generalized transition function of the power system disturbed motion. Based on the concept of a stability radius and the pseudospectrum of Jacobian matrix, the necessary and sufficient conditions for existence of the static margins were determined. The capabilities and advantages of the modal approach in designing centralized or distributed control and the prospects for the analysis of nonlinear oscillations and rendering the dynamic stability are demonstrated.
Optimal subinterval selection approach for power system transient stability simulation
Kim, Soobae; Overbye, Thomas J.
2015-10-21
Power system transient stability analysis requires an appropriate integration time step to avoid numerical instability as well as to reduce computational demands. For fast system dynamics, which vary more rapidly than what the time step covers, a fraction of the time step, called a subinterval, is used. However, the optimal value of this subinterval is not easily determined because the analysis of the system dynamics might be required. This selection is usually made from engineering experiences, and perhaps trial and error. This paper proposes an optimal subinterval selection approach for power system transient stability analysis, which is based on modalmore » analysis using a single machine infinite bus (SMIB) system. Fast system dynamics are identified with the modal analysis and the SMIB system is used focusing on fast local modes. An appropriate subinterval time step from the proposed approach can reduce computational burden and achieve accurate simulation responses as well. As a result, the performance of the proposed method is demonstrated with the GSO 37-bus system.« less
Valverde-Som, Lucia; Ruiz-Samblás, Cristina; Rodríguez-García, Francisco P; Cuadros-Rodríguez, Luis
2018-02-09
Virgin olive oil is the only food product for which sensory analysis is regulated to classify it in different quality categories. To harmonize the results of the sensorial method, the use of standards or reference materials is crucial. The stability of sensory reference materials is required to enable their suitable control, aiming to confirm that their specific target values are maintained on an ongoing basis. Currently, such stability is monitored by means of sensory analysis and the sensory panels are in the paradoxical situation of controlling the standards that are devoted to controlling the panels. In the present study, several approaches based on similarity analysis are exploited. For each approach, the specific methodology to build a proper multivariate control chart to monitor the stability of the sensory properties is explained and discussed. The normalized Euclidean and Mahalanobis distances, the so-called nearness and hardiness indices respectively, have been defined as new similarity indices to range the values from 0 to 1. Also, the squared mean from Hotelling's T 2 -statistic and Q 2 -statistic has been proposed as another similarity index. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Robust Flutter Margin Analysis that Incorporates Flight Data
NASA Technical Reports Server (NTRS)
Lind, Rick; Brenner, Martin J.
1998-01-01
An approach for computing worst-case flutter margins has been formulated in a robust stability framework. Uncertainty operators are included with a linear model to describe modeling errors and flight variations. The structured singular value, mu, computes a stability margin that directly accounts for these uncertainties. This approach introduces a new method of computing flutter margins and an associated new parameter for describing these margins. The mu margins are robust margins that indicate worst-case stability estimates with respect to the defined uncertainty. Worst-case flutter margins are computed for the F/A-18 Systems Research Aircraft using uncertainty sets generated by flight data analysis. The robust margins demonstrate flight conditions for flutter may lie closer to the flight envelope than previously estimated by p-k analysis.
NASA Technical Reports Server (NTRS)
Noah, S. T.; Kim, Y. B.
1991-01-01
A general approach is developed for determining the periodic solutions and their stability of nonlinear oscillators with piecewise-smooth characteristics. A modified harmonic balance/Fourier transform procedure is devised for the analysis. The procedure avoids certain numerical differentiation employed previously in determining the periodic solutions, therefore enhancing the reliability and efficiency of the method. Stability of the solutions is determined via perturbations of their state variables. The method is applied to a forced oscillator interacting with a stop of finite stiffness. Flip and fold bifurcations are found to occur. This led to the identification of parameter ranges in which chaotic response occurred.
Albatsh, Fadi M; Ahmad, Shameem; Mekhilef, Saad; Mokhlis, Hazlie; Hassan, M A
2015-01-01
This study examines a new approach to selecting the locations of unified power flow controllers (UPFCs) in power system networks based on a dynamic analysis of voltage stability. Power system voltage stability indices (VSIs) including the line stability index (LQP), the voltage collapse proximity indicator (VCPI), and the line stability index (Lmn) are employed to identify the most suitable locations in the system for UPFCs. In this study, the locations of the UPFCs are identified by dynamically varying the loads across all of the load buses to represent actual power system conditions. Simulations were conducted in a power system computer-aided design (PSCAD) software using the IEEE 14-bus and 39- bus benchmark power system models. The simulation results demonstrate the effectiveness of the proposed method. When the UPFCs are placed in the locations obtained with the new approach, the voltage stability improves. A comparison of the steady-state VSIs resulting from the UPFCs placed in the locations obtained with the new approach and with particle swarm optimization (PSO) and differential evolution (DE), which are static methods, is presented. In all cases, the UPFC locations given by the proposed approach result in better voltage stability than those obtained with the other approaches.
Albatsh, Fadi M.; Ahmad, Shameem; Mekhilef, Saad; Mokhlis, Hazlie; Hassan, M. A.
2015-01-01
This study examines a new approach to selecting the locations of unified power flow controllers (UPFCs) in power system networks based on a dynamic analysis of voltage stability. Power system voltage stability indices (VSIs) including the line stability index (LQP), the voltage collapse proximity indicator (VCPI), and the line stability index (Lmn) are employed to identify the most suitable locations in the system for UPFCs. In this study, the locations of the UPFCs are identified by dynamically varying the loads across all of the load buses to represent actual power system conditions. Simulations were conducted in a power system computer-aided design (PSCAD) software using the IEEE 14-bus and 39- bus benchmark power system models. The simulation results demonstrate the effectiveness of the proposed method. When the UPFCs are placed in the locations obtained with the new approach, the voltage stability improves. A comparison of the steady-state VSIs resulting from the UPFCs placed in the locations obtained with the new approach and with particle swarm optimization (PSO) and differential evolution (DE), which are static methods, is presented. In all cases, the UPFC locations given by the proposed approach result in better voltage stability than those obtained with the other approaches. PMID:25874560
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Li, Yan; Zhang, Yingchen
In this paper, a big data-based approach is proposed for the security improvement of an unplanned microgrid islanding (UMI). The proposed approach contains two major steps: the first step is big data analysis of wide-area monitoring to detect a UMI and locate it; the second step is particle swarm optimization (PSO)-based stability enhancement for the UMI. First, an optimal synchrophasor measurement device selection (OSMDS) and matching pursuit decomposition (MPD)-based spatial-temporal analysis approach is proposed to significantly reduce the volume of data while keeping appropriate information from the synchrophasor measurements. Second, a random forest-based ensemble learning approach is trained to detectmore » the UMI. When combined with grid topology, the UMI can be located. Then the stability problem of the UMI is formulated as an optimization problem and the PSO is used to find the optimal operational parameters of the UMI. An eigenvalue-based multiobjective function is proposed, which aims to improve the damping and dynamic characteristics of the UMI. Finally, the simulation results demonstrate the effectiveness and robustness of the proposed approach.« less
NASA Astrophysics Data System (ADS)
Siettos, C. I.; Gear, C. W.; Kevrekidis, I. G.
2012-08-01
We show how the equation-free approach can be exploited to enable agent-based simulators to perform system-level computations such as bifurcation, stability analysis and controller design. We illustrate these tasks through an event-driven agent-based model describing the dynamic behaviour of many interacting investors in the presence of mimesis. Using short bursts of appropriately initialized runs of the detailed, agent-based simulator, we construct the coarse-grained bifurcation diagram of the (expected) density of agents and investigate the stability of its multiple solution branches. When the mimetic coupling between agents becomes strong enough, the stable stationary state loses its stability at a coarse turning point bifurcation. We also demonstrate how the framework can be used to design a wash-out dynamic controller that stabilizes open-loop unstable stationary states even under model uncertainty.
Development of Modal Analysis for the Study of Global Modes in High Speed Boundary Layer Flows
NASA Astrophysics Data System (ADS)
Brock, Joseph Michael
Boundary layer transition for compressible flows remains a challenging and unsolved problem. In the context of high-speed compressible flow, transitional and turbulent boundary-layers produce significantly higher surface heating caused by an increase in skin-friction. The higher heating associated with transitional and turbulent boundary layers drives thermal protection systems (TPS) and mission trajectory bounds. Proper understanding of the mechanisms that drive transition is crucial to the successful design and operation of the next generation spacecraft. Currently, prediction of boundary-layer transition is based on experimental efforts and computational stability analysis. Computational analysis, anchored by experimental correlations, offers an avenue to assess/predict stability at a reduced cost. Classical methods of Linearized Stability Theory (LST) and Parabolized Stability Equations (PSE) have proven to be very useful for simple geometries/base flows. Under certain conditions the assumptions that are inherent to classical methods become invalid and the use of LST/PSE is inaccurate. In these situations, a global approach must be considered. A TriGlobal stability analysis code, Global Mode Analysis in US3D (GMAUS3D), has been developed and implemented into the unstructured solver US3D. A discussion of the methodology and implementation will be presented. Two flow configurations are presented in an effort to validate/verify the approach. First, stability analysis for a subsonic cylinder wake is performed and results compared to literature. Second, a supersonic blunt cone is considered to directly compare LST/PSE analysis and results generated by GMAUS3D.
Rauk, Adam P; Guo, Kevin; Hu, Yanling; Cahya, Suntara; Weiss, William F
2014-08-01
Defining a suitable product presentation with an acceptable stability profile over its intended shelf-life is one of the principal challenges in bioproduct development. Accelerated stability studies are routinely used as a tool to better understand long-term stability. Data analysis often employs an overall mass action kinetics description for the degradation and the Arrhenius relationship to capture the temperature dependence of the observed rate constant. To improve predictive accuracy and precision, the current work proposes a least-squares estimation approach with a single nonlinear covariate and uses a polynomial to describe the change in a product attribute with respect to time. The approach, which will be referred to as Arrhenius time-scaled (ATS) least squares, enables accurate, precise predictions to be achieved for degradation profiles commonly encountered during bioproduct development. A Monte Carlo study is conducted to compare the proposed approach with the common method of least-squares estimation on the logarithmic form of the Arrhenius equation and nonlinear estimation of a first-order model. The ATS least squares method accommodates a range of degradation profiles, provides a simple and intuitive approach for data presentation, and can be implemented with ease. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Texas lignite mining: Groundwater and slope stability control in the nineties and beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence J.
As lignite mining in Texas approaches and exceeds depths of 200 feet below ground level, rising costs demand that innovative mining approaches be used in order to maintain the economic viability of lignite mining. Groundwater and slope stability problems multiply at these depths, resulting in increasing focus on how to control these costs. Dewatering costs are consistently rising for the lignite industry, as deeper mining encounters more and larger saturated sand bodies. These sands require dewatering in order to improve slope stability. Planning and analysis become more important as the number of wells grows beyond what can be managed withmore » a simple {open_quotes}cookie-cutter{close_quotes} approach. Slope stability plays an increasing role in mining concerns as deeper lignite is recovered. Slope stability causes several problems, including loss of lignite, increased rehandle, and hazards to personnel and equipment. Traditional lignite mine planning involved a fairly {open_quotes}generic{close_quotes} pit design with one design highwall angle, one design spoil angle, and little geotechnical evaluation of the deposit. This {open_quotes}one mine-one design{close_quotes} approach, while cost-effective in the past, is now being replaced by a more critical analysis of the design requirements of each area. Geotechnical evaluation plays an increasing role in the planning and operational aspects of lignite mining. Laboratory core sample test results can be used for slope stability modeling, in order to obtain more accurate design and operational information.« less
Theory of buckling and post-buckling behavior of elastic structures
NASA Technical Reports Server (NTRS)
Budiansky, B.
1974-01-01
The present paper provides a unified, general presentation of the basic theory of the buckling and post-buckling behavior of elastic structures in a form suitable for application to a wide variety of special problems. The notation of functional analysis is used for this purpose. Before the general analysis, simple conceptual models are used to elucidate the basic concepts of bifurcation buckling, snap buckling, imperfection sensitivity, load-shortening relations, and stability. The energy approach, the virtual-work approach, and mode interaction are discussed. The derivations and results are applicable to continua and finite-dimensional systems. The virtual-work and energy approaches are given separate treatments, but their equivalence is made explicit. The basic concepts of stability occupy a secondary position in the present approach.
Stability analysis of magnetized neutron stars - a semi-analytic approach
NASA Astrophysics Data System (ADS)
Herbrik, Marlene; Kokkotas, Kostas D.
2017-04-01
We implement a semi-analytic approach for stability analysis, addressing the ongoing uncertainty about stability and structure of neutron star magnetic fields. Applying the energy variational principle, a model system is displaced from its equilibrium state. The related energy density variation is set up analytically, whereas its volume integration is carried out numerically. This facilitates the consideration of more realistic neutron star characteristics within the model compared to analytical treatments. At the same time, our method retains the possibility to yield general information about neutron star magnetic field and composition structures that are likely to be stable. In contrast to numerical studies, classes of parametrized systems can be studied at once, finally constraining realistic configurations for interior neutron star magnetic fields. We apply the stability analysis scheme on polytropic and non-barotropic neutron stars with toroidal, poloidal and mixed fields testing their stability in a Newtonian framework. Furthermore, we provide the analytical scheme for dropping the Cowling approximation in an axisymmetric system and investigate its impact. Our results confirm the instability of simple magnetized neutron star models as well as a stabilization tendency in the case of mixed fields and stratification. These findings agree with analytical studies whose spectrum of model systems we extend by lifting former simplifications.
Absolute Stability Analysis of a Phase Plane Controlled Spacecraft
NASA Technical Reports Server (NTRS)
Jang, Jiann-Woei; Plummer, Michael; Bedrossian, Nazareth; Hall, Charles; Jackson, Mark; Spanos, Pol
2010-01-01
Many aerospace attitude control systems utilize phase plane control schemes that include nonlinear elements such as dead zone and ideal relay. To evaluate phase plane control robustness, stability margin prediction methods must be developed. Absolute stability is extended to predict stability margins and to define an abort condition. A constrained optimization approach is also used to design flex filters for roll control. The design goal is to optimize vehicle tracking performance while maintaining adequate stability margins. Absolute stability is shown to provide satisfactory stability constraints for the optimization.
Stability analysis of ultrasound thick-shell contrast agents
Lu, Xiaozhen; Chahine, Georges L.; Hsiao, Chao-Tsung
2012-01-01
The stability of thick shell encapsulated bubbles is studied analytically. 3-D small perturbations are introduced to the spherical oscillations of a contrast agent bubble in response to a sinusoidal acoustic field with different amplitudes of excitation. The equations of the perturbation amplitudes are derived using asymptotic expansions and linear stability analysis is then applied to the resulting differential equations. The stability of the encapsulated microbubbles to nonspherical small perturbations is examined by solving an eigenvalue problem. The approach then identifies the fastest growing perturbations which could lead to the breakup of the encapsulated microbubble or contrast agent. PMID:22280568
The initial instability and finite-amplitude stability of alternate bars in straight channels
Nelson, J.M.
1990-01-01
The initial instability and fully developed stability of alternate bars in straight channels are investigated using linearized and nonlinear analyses. The fundamental instability leading to these features is identified through a linear stability analysis of the equations governing the flow and sediment transport fields. This instability is explained in terms of topographically induced steering of the flow and the associated pattern of erosion and deposition on the bed. While the linear theory is useful for examining the instability mechanism, this approach is shown to yield relatively little information about well-developed alternate bars and, specifically, the linear analysis is shown to yield poor predictions of the fully developed bar wavelength. A fully nonlinear approach is presented that permits computation of the evolution of these bed features from an initial perturbation to their fully developed morphology. This analysis indicates that there is typically substantial elongation of the bar wavelength during the evolution process, a result that is consistent with observations of bar development in flumes and natural channels. The nonlinear approach demonstrates that the eventual stability of these features is a result of the interplay between topographic steering effects, secondary flow production as a result of streamline curvature, and gravitationally induced modifications of sediment fluxes over a sloping bed. ?? 1990.
Linear stability analysis of detonations via numerical computation and dynamic mode decomposition
NASA Astrophysics Data System (ADS)
Kabanov, Dmitry I.; Kasimov, Aslan R.
2018-03-01
We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.
Slope Stability Analysis In Seismic Areas Of The Northern Apennines (Italy)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo Presti, D.; Fontana, T.; Marchetti, D.
2008-07-08
Several research works have been published on the slope stability in the northern Tuscany (central Italy) and particularly in the seismic areas of Garfagnana and Lunigiana (Lucca and Massa-Carrara districts), aimed at analysing the slope stability under static and dynamic conditions and mapping the landslide hazard. In addition, in situ and laboratory investigations are available for the study area, thanks to the activities undertaken by the Tuscany Seismic Survey. Based on such a huge information the co-seismic stability of few ideal slope profiles have been analysed by means of Limit equilibrium method LEM - (pseudo-static) and Newmark sliding block analysismore » (pseudo-dynamic). The analysis--results gave indications about the most appropriate seismic coefficient to be used in pseudo-static analysis after establishing allowable permanent displacement. Such indications are commented in the light of the Italian and European prescriptions for seismic stability analysis with pseudo-static approach. The stability conditions, obtained from the previous analyses, could be used to define microzonation criteria for the study area.« less
Worst-Case Flutter Margins from F/A-18 Aircraft Aeroelastic Data
NASA Technical Reports Server (NTRS)
Lind, Rick; Brenner, Marty
1997-01-01
An approach for computing worst-case flutter margins has been formulated in a robust stability framework. Uncertainty operators are included with a linear model to describe modeling errors and flight variations. The structured singular value, micron, computes a stability margin which directly accounts for these uncertainties. This approach introduces a new method of computing flutter margins and an associated new parameter for describing these margins. The micron margins are robust margins which indicate worst-case stability estimates with respect to the defined uncertainty. Worst-case flutter margins are computed for the F/A-18 SRA using uncertainty sets generated by flight data analysis. The robust margins demonstrate flight conditions for flutter may lie closer to the flight envelope than previously estimated by p-k analysis.
NASA Astrophysics Data System (ADS)
Ehrmann, Andrea; Blachowicz, Tomasz; Zghidi, Hafed
2015-05-01
Modelling hysteresis behaviour, as it can be found in a broad variety of dynamical systems, can be performed in different ways. An elementary approach, applied for a set of elementary cells, which uses only two possible states per cell, is the Ising model. While such Ising models allow for a simulation of many systems with sufficient accuracy, they nevertheless depict some typical features which must be taken into account with proper care, such as meta-stability or the externally applied field sweeping speed. This paper gives a general overview of recent results from Ising models from the perspective of a didactic model, based on a 2D spreadsheet analysis, which can be used also for solving general scientific problems where direct next-neighbour interactions take place.
Symbolic Computational Approach to the Marangoni Convection Problem With Soret Diffusion
NASA Technical Reports Server (NTRS)
Skarda, J. Raymond
1998-01-01
A recently reported solution for stationary stability of a thermosolutal system with Soret diffusion is re-derived and examined using a symbolic computational package. Symbolic computational languages are well suited for such an analysis and facilitate a pragmatic approach that is adaptable to similar problems. Linearization of the equations, normal mode analysis, and extraction of the final solution are performed in a Mathematica notebook format. An exact solution is obtained for stationary stability in the limit of zero gravity. A closed form expression is also obtained for the location of asymptotes in relevant parameter, (Sm(sub c), Mac(sub c)), space. The stationary stability behavior is conveniently examined within the symbolic language environment. An abbreviated version of the Mathematica notebook is given in the Appendix.
Jordan, Nika; Zakrajšek, Jure; Bohanec, Simona; Roškar, Robert; Grabnar, Iztok
2018-05-01
The aim of the present research is to show that the methodology of Design of Experiments can be applied to stability data evaluation, as they can be seen as multi-factor and multi-level experimental designs. Linear regression analysis is usually an approach for analyzing stability data, but multivariate statistical methods could also be used to assess drug stability during the development phase. Data from a stability study for a pharmaceutical product with hydrochlorothiazide (HCTZ) as an unstable drug substance was used as a case example in this paper. The design space of the stability study was modeled using Umetrics MODDE 10.1 software. We showed that a Partial Least Squares model could be used for a multi-dimensional presentation of all data generated in a stability study and for determination of the relationship among factors that influence drug stability. It might also be used for stability predictions and potentially for the optimization of the extent of stability testing needed to determine shelf life and storage conditions, which would be time and cost-effective for the pharmaceutical industry.
Long-Term High-Level Defense-Waste technology
NASA Astrophysics Data System (ADS)
1982-07-01
In the residual liquid solidification effort, the primary alternative studied is the wiped film evaporator approach to solidifying salt well pumped liquids and returning the molten material to single shell tanks for microwave final stabilization to a hard dry product. Both systems analysis and experimental work are proceeding to evaluate this approach. The primary alternative for in situ stabilization of in-tank wastes is microwave drying of wet salt cake and unpumped sludges. Experimental work was successfully conducted on a 1/12 scale tank containing wet synthetic salt cake. Related systems analysis of a full scale system was initiated.
Almalik, Osama; Nijhuis, Michiel B; van den Heuvel, Edwin R
2014-01-01
Shelf-life estimation usually requires that at least three registration batches are tested for stability at multiple storage conditions. The shelf-life estimates are often obtained by linear regression analysis per storage condition, an approach implicitly suggested by ICH guideline Q1E. A linear regression analysis combining all data from multiple storage conditions was recently proposed in the literature when variances are homogeneous across storage conditions. The combined analysis is expected to perform better than the separate analysis per storage condition, since pooling data would lead to an improved estimate of the variation and higher numbers of degrees of freedom, but this is not evident for shelf-life estimation. Indeed, the two approaches treat the observed initial batch results, the intercepts in the model, and poolability of batches differently, which may eliminate or reduce the expected advantage of the combined approach with respect to the separate approach. Therefore, a simulation study was performed to compare the distribution of simulated shelf-life estimates on several characteristics between the two approaches and to quantify the difference in shelf-life estimates. In general, the combined statistical analysis does estimate the true shelf life more consistently and precisely than the analysis per storage condition, but it did not outperform the separate analysis in all circumstances.
Air Cushion Landing System Stability Study.
1981-02-01
desirable. A useful result is that the analysis approach employed provides a systematic technique with which a given trunk/vehicle system may be designed ...models. Since for the 48. system analyzed the stability appears better if the side and end elements are truly isolated, the po~zibility of designing a...used to study the stability behavior appears to pro- vide a useful tool for design of systems of this type so that acceptable stability behavior is
Petrović, Nikola Z; Aleksić, Najdan B; Belić, Milivoj
2015-04-20
We analyze the modulation stability of spatiotemporal solitary and traveling wave solutions to the multidimensional nonlinear Schrödinger equation and the Gross-Pitaevskii equation with variable coefficients that were obtained using Jacobi elliptic functions. For all the solutions we obtain either unconditional stability, or a conditional stability that can be furnished through the use of dispersion management.
Improved result on stability analysis of discrete stochastic neural networks with time delay
NASA Astrophysics Data System (ADS)
Wu, Zhengguang; Su, Hongye; Chu, Jian; Zhou, Wuneng
2009-04-01
This Letter investigates the problem of exponential stability for discrete stochastic time-delay neural networks. By defining a novel Lyapunov functional, an improved delay-dependent exponential stability criterion is established in terms of linear matrix inequality (LMI) approach. Meanwhile, the computational complexity of the newly established stability condition is reduced because less variables are involved. Numerical example is given to illustrate the effectiveness and the benefits of the proposed method.
Stability analysis of ultrasound thick-shell contrast agents.
Lu, Xiaozhen; Chahine, Georges L; Hsiao, Chao-Tsung
2012-01-01
The stability of thick shell encapsulated bubbles is studied analytically. 3-D small perturbations are introduced to the spherical oscillations of a contrast agent bubble in response to a sinusoidal acoustic field with different amplitudes of excitation. The equations of the perturbation amplitudes are derived using asymptotic expansions and linear stability analysis is then applied to the resulting differential equations. The stability of the encapsulated microbubbles to nonspherical small perturbations is examined by solving an eigenvalue problem. The approach then identifies the fastest growing perturbations which could lead to the breakup of the encapsulated microbubble or contrast agent. © 2012 Acoustical Society of America.
Efficient sensitivity analysis and optimization of a helicopter rotor
NASA Technical Reports Server (NTRS)
Lim, Joon W.; Chopra, Inderjit
1989-01-01
Aeroelastic optimization of a system essentially consists of the determination of the optimum values of design variables which minimize the objective function and satisfy certain aeroelastic and geometric constraints. The process of aeroelastic optimization analysis is illustrated. To carry out aeroelastic optimization effectively, one needs a reliable analysis procedure to determine steady response and stability of a rotor system in forward flight. The rotor dynamic analysis used in the present study developed inhouse at the University of Maryland is based on finite elements in space and time. The analysis consists of two major phases: vehicle trim and rotor steady response (coupled trim analysis), and aeroelastic stability of the blade. For a reduction of helicopter vibration, the optimization process requires the sensitivity derivatives of the objective function and aeroelastic stability constraints. For this, the derivatives of steady response, hub loads and blade stability roots are calculated using a direct analytical approach. An automated optimization procedure is developed by coupling the rotor dynamic analysis, design sensitivity analysis and constrained optimization code CONMIN.
NASA Technical Reports Server (NTRS)
Heimbaugh, Richard M.
1987-01-01
Past history, present status, and future of discrete gusts are schematically presented. It is shown that there are two approaches to the gust analysis: discrete and spectral density. The role of these two approaches to gust analysis are discussed. The idea of using power spectral density (PSD) in the analysis of gusts is especially detailed.
Effect of acoustic radiation on the stability of spherical bubble oscillations
NASA Astrophysics Data System (ADS)
Gumerov, Nail A.
1998-07-01
A recent analysis of the stability of spherical bubble oscillations shows that the high order shape modes are parametrically unstable with respect to small but finite perturbations [Z. C. Feng and L. G. Leal, J. Fluid Mech. 266, 209 (1994)]. Using a heuristic approach it is shown here that the acoustic radiation due to the liquid compressibility plays an important role in stabilization of the high frequency modes and overall stability of the bubble spherical shape.
Schiffer, Johannes; Efimov, Denis; Ortega, Romeo; Barabanov, Nikita
2017-08-13
Conditions for almost global stability of an operating point of a realistic model of a synchronous generator with constant field current connected to an infinite bus are derived. The analysis is conducted by employing the recently proposed concept of input-to-state stability (ISS)-Leonov functions, which is an extension of the powerful cell structure principle developed by Leonov and Noldus to the ISS framework. Compared with the original ideas of Leonov and Noldus, the ISS-Leonov approach has the advantage of providing additional robustness guarantees. The efficiency of the derived sufficient conditions is illustrated via numerical experiments.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).
Risk analysis of gravity dam instability using credibility theory Monte Carlo simulation model.
Xin, Cao; Chongshi, Gu
2016-01-01
Risk analysis of gravity dam stability involves complicated uncertainty in many design parameters and measured data. Stability failure risk ratio described jointly by probability and possibility has deficiency in characterization of influence of fuzzy factors and representation of the likelihood of risk occurrence in practical engineering. In this article, credibility theory is applied into stability failure risk analysis of gravity dam. Stability of gravity dam is viewed as a hybrid event considering both fuzziness and randomness of failure criterion, design parameters and measured data. Credibility distribution function is conducted as a novel way to represent uncertainty of influence factors of gravity dam stability. And combining with Monte Carlo simulation, corresponding calculation method and procedure are proposed. Based on a dam section, a detailed application of the modeling approach on risk calculation of both dam foundation and double sliding surfaces is provided. The results show that, the present method is feasible to be applied on analysis of stability failure risk for gravity dams. The risk assessment obtained can reflect influence of both sorts of uncertainty, and is suitable as an index value.
Building a Practical Natural Laminar Flow Design Capability
NASA Technical Reports Server (NTRS)
Campbell, Richard L.; Lynde, Michelle N.
2017-01-01
A preliminary natural laminar flow (NLF) design method that has been developed and applied to supersonic and transonic wings with moderate-to-high leading-edge sweeps at flight Reynolds numbers is further extended and evaluated in this paper. The modular design approach uses a knowledge-based design module linked with different flow solvers and boundary layer stability analysis methods to provide a multifidelity capability for NLF analysis and design. An assessment of the effects of different options for stability analysis is included using pressures and geometry from an NLF wing designed for the Common Research Model (CRM). Several extensions to the design module are described, including multiple new approaches to design for controlling attachment line contamination and transition. Finally, a modification to the NLF design algorithm that allows independent control of Tollmien-Schlichting (TS) and cross flow (CF) modes is proposed. A preliminary evaluation of the TS-only option applied to the design of an NLF nacelle for the CRM is performed that includes the use of a low-fidelity stability analysis directly in the design module.
NASA Astrophysics Data System (ADS)
Sabuncu, M.; Ozturk, H.; Cimen; S.
2011-04-01
In this study, out-of-plane stability analysis of tapered cross-sectioned thin curved beams under uniformly distributed radial loading is performed by using the finite-element method. Solutions referred to as Bolotin's approach are analysed for dynamic stability, and the first unstable regions are examined. Out-of-plane vibration and out-of-plane buckling analyses are also studied. In addition, the results obtained in this study are compared with the published results of other researchers for the fundamental frequency and critical lateral buckling load. The effects of subtended angle, variations of cross-section, and dynamic load parameter on the stability regions are shown in graphics
Stability analysis and compensation of a boost regulator with two-loop control
NASA Technical Reports Server (NTRS)
Wester, G. W.
1974-01-01
A useful stability measure has been demonstrated by Wester (1973) for switching regulators with a single feedback loop by applying the Nyquist criterion to the approximate loop gain determined by a time-averaging technique. This approach is extended and applied to the characterization, stability analysis, and compensation design of a switching regulator with two-loop control. The role and relative significance of each control loop is clarified on the basis of a description of circuit operation, and the major and minor loops are identified. In view of the inapplicability of linear feedback theory, describing functions of the feedback loops and power stage are derived, using small-signal analysis. Several phenomena revealed from an analysis of the major loop gain are discussed.
Stability analysis for a multi-camera photogrammetric system.
Habib, Ayman; Detchev, Ivan; Kwak, Eunju
2014-08-18
Consumer-grade digital cameras suffer from geometrical instability that may cause problems when used in photogrammetric applications. This paper provides a comprehensive review of this issue of interior orientation parameter variation over time, it explains the common ways used for coping with the issue, and describes the existing methods for performing stability analysis for a single camera. The paper then points out the lack of coverage of stability analysis for multi-camera systems, suggests a modification of the collinearity model to be used for the calibration of an entire photogrammetric system, and proposes three methods for system stability analysis. The proposed methods explore the impact of the changes in interior orientation and relative orientation/mounting parameters on the reconstruction process. Rather than relying on ground truth in real datasets to check the system calibration stability, the proposed methods are simulation-based. Experiment results are shown, where a multi-camera photogrammetric system was calibrated three times, and stability analysis was performed on the system calibration parameters from the three sessions. The proposed simulation-based methods provided results that were compatible with a real-data based approach for evaluating the impact of changes in the system calibration parameters on the three-dimensional reconstruction.
Stability Analysis for a Multi-Camera Photogrammetric System
Habib, Ayman; Detchev, Ivan; Kwak, Eunju
2014-01-01
Consumer-grade digital cameras suffer from geometrical instability that may cause problems when used in photogrammetric applications. This paper provides a comprehensive review of this issue of interior orientation parameter variation over time, it explains the common ways used for coping with the issue, and describes the existing methods for performing stability analysis for a single camera. The paper then points out the lack of coverage of stability analysis for multi-camera systems, suggests a modification of the collinearity model to be used for the calibration of an entire photogrammetric system, and proposes three methods for system stability analysis. The proposed methods explore the impact of the changes in interior orientation and relative orientation/mounting parameters on the reconstruction process. Rather than relying on ground truth in real datasets to check the system calibration stability, the proposed methods are simulation-based. Experiment results are shown, where a multi-camera photogrammetric system was calibrated three times, and stability analysis was performed on the system calibration parameters from the three sessions. The proposed simulation-based methods provided results that were compatible with a real-data based approach for evaluating the impact of changes in the system calibration parameters on the three-dimensional reconstruction. PMID:25196012
Stability and performance tradeoffs in bi-lateral telemanipulation
NASA Technical Reports Server (NTRS)
Hannaford, Blake
1989-01-01
Kinesthetic force feedback provides measurable increase in remote manipulation system performance. Intensive computation time requirements or operation under conditions of time delay can cause serious stability problems in control-system design. Here, a simplified linear analysis of this stability problem is presented for the forward-flow generalized architecture, applying the hybrid two-port representation to express the loop gain of the traditional master-slave architecture, which can be subjected to similar analysis. The hybrid two-port representation is also used to express the effects on the fidelity of manipulation or feel of one design approach used to stabilize the forward-flow architecture. The results suggest that, when local force feedback at the slave side is used to reduce manipulator stability problems, a price is paid in terms of telemanipulation fidelity.
NASA Technical Reports Server (NTRS)
Sopher, R.; Hallock, D. W.
1985-01-01
A time history analysis for rotorcraft dynamics based on dynamical substructures, and nonstructural mathematical and aerodynamic components is described. The analysis is applied to predict helicopter ground resonance and response to rotor damage. Other applications illustrate the stability and steady vibratory response of stopped and gimballed rotors, representative of new technology. Desirable attributes expected from modern codes are realized, although the analysis does not employ a complete set of techniques identified for advanced software. The analysis is able to handle a comprehensive set of steady state and stability problems with a small library of components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moatimid, Galal M.; Obied Allah, M. H.; Hassan, Mohamed A.
2013-10-15
In this paper, the Kelvin-Helmholtz instability of viscous incompressible magnetic fluid fully saturated porous media is achieved through the viscous potential theory. The flow is considered to be through semi-permeable boundaries above and below the fluids through which the fluid may either be blown in or sucked out, in a direction normal to the main streaming direction of the fluid flow. An oblique magnetic field, mass, heat transfer, and surface tension are present across the interface. Through the linear stability analysis, a general dispersion relation is derived and the natural curves are plotted. Therefore, the linear stability condition is discussedmore » in some depth. In view of the multiple time scale technique, the Ginzburg–Landau equation, which describes the behavior of the system in the nonlinear approach, is obtained. The effects of the orientation of the magnetic fields on the stability configuration in linear, as well as nonlinear approaches, are discussed. It is found that the Darcy's coefficient for the porous layers plays a stabilizing role. The injection of the fluids at both boundaries has a stabilizing effect, in contrast with the suction at both boundaries.« less
NASA Astrophysics Data System (ADS)
Wu, Bing-Fei; Ma, Li-Shan; Perng, Jau-Woei
This study analyzes the absolute stability in P and PD type fuzzy logic control systems with both certain and uncertain linear plants. Stability analysis includes the reference input, actuator gain and interval plant parameters. For certain linear plants, the stability (i.e. the stable equilibriums of error) in P and PD types is analyzed with the Popov or linearization methods under various reference inputs and actuator gains. The steady state errors of fuzzy control systems are also addressed in the parameter plane. The parametric robust Popov criterion for parametric absolute stability based on Lur'e systems is also applied to the stability analysis of P type fuzzy control systems with uncertain plants. The PD type fuzzy logic controller in our approach is a single-input fuzzy logic controller and is transformed into the P type for analysis. In our work, the absolute stability analysis of fuzzy control systems is given with respect to a non-zero reference input and an uncertain linear plant with the parametric robust Popov criterion unlike previous works. Moreover, a fuzzy current controlled RC circuit is designed with PSPICE models. Both numerical and PSPICE simulations are provided to verify the analytical results. Furthermore, the oscillation mechanism in fuzzy control systems is specified with various equilibrium points of view in the simulation example. Finally, the comparisons are also given to show the effectiveness of the analysis method.
A multi-scale Q1/P0 approach to langrangian shock hydrodynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shashkov, Mikhail; Love, Edward; Scovazzi, Guglielmo
A new multi-scale, stabilized method for Q1/P0 finite element computations of Lagrangian shock hydrodynamics is presented. Instabilities (of hourglass type) are controlled by a stabilizing operator derived using the variational multi-scale analysis paradigm. The resulting stabilizing term takes the form of a pressure correction. With respect to currently implemented hourglass control approaches, the novelty of the method resides in its residual-based character. The stabilizing residual has a definite physical meaning, since it embeds a discrete form of the Clausius-Duhem inequality. Effectively, the proposed stabilization samples and acts to counter the production of entropy due to numerical instabilities. The proposed techniquemore » is applicable to materials with no shear strength, for which there exists a caloric equation of state. The stabilization operator is incorporated into a mid-point, predictor/multi-corrector time integration algorithm, which conserves mass, momentum and total energy. Encouraging numerical results in the context of compressible gas dynamics confirm the potential of the method.« less
The Stability of DSM Personality Disorders over Twelve to Eighteen Years
Nestadt, Gerald; Di, Chongzhi; Samuels, J F; Bienvenu, O J; Reti, I M; Costa, P; Eaton, William W; Bandeen-Roche, Karen
2009-01-01
Background Stability of personality disorders is assumed in most nomenclatures; however, the evidence for this is limited and inconsistent. The aim of this study is to investigate the stability of DSM-III personality disorders in a community sample of eastern Baltimore residents unselected for treatment. Methods Two hundred ninety four participants were examined on two occasions by psychiatrists using the same standardized examination twelve to eighteen years apart. All the DSM-III criteria for personality disorders were assessed. Item-response analysis was adapted into two approaches to assess the agreement between the personality measures on the two occasions. The first approach estimated stability in the underlying disorder, correcting for error in trait measurement, and the second approach estimated stability in the measured disorder, without correcting for item unreliability. Results Five of the ten personality disorders exhibited moderate stability in individuals: antisocial, avoidant, borderline, histrionic, and schizotypal. Associated estimated ICCs for stability of underlying disorder over time ranged between approximately 0.4 and 0.7–0.8. A sixth disorder, OCPD, exhibited appreciable stability with estimated ICC of approximately 0.2–0.3. Dependent, narcissistic, paranoid, and schizoid disorders were not demonstrably stable. Conclusions The findings suggest that six of the DSM personality disorder constructs themselves are stable, but that specific traits within the DSM categories are both of lesser importance than the constructs themselves and require additional specification. PMID:19656527
Huang, Chuangxia; Cao, Jie; Cao, Jinde
2016-10-01
This paper addresses the exponential stability of switched cellular neural networks by using the mode-dependent average dwell time (MDADT) approach. This method is quite different from the traditional average dwell time (ADT) method in permitting each subsystem to have its own average dwell time. Detailed investigations have been carried out for two cases. One is that all subsystems are stable and the other is that stable subsystems coexist with unstable subsystems. By employing Lyapunov functionals, linear matrix inequalities (LMIs), Jessen-type inequality, Wirtinger-based inequality, reciprocally convex approach, we derived some novel and less conservative conditions on exponential stability of the networks. Comparing to ADT, the proposed MDADT show that the minimal dwell time of each subsystem is smaller and the switched system stabilizes faster. The obtained results extend and improve some existing ones. Moreover, the validness and effectiveness of these results are demonstrated through numerical simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Effect of Political Stability on Public Education Quality
ERIC Educational Resources Information Center
Nir, Adam E.; Kafle, Bhojraj Sharma
2013-01-01
Purpose: The purpose of this paper is to provide a preliminary analysis to evaluate the implications of political stability for educational quality, evident in the survival rate measure. Design/methodology/approach: Secondary analyses were conducted for data drawn from the Political Risk Service Report, the World Bank Report, the United Nations…
Stability issues of black hole in non-local gravity
NASA Astrophysics Data System (ADS)
Myung, Yun Soo; Park, Young-Jai
2018-04-01
We discuss stability issues of Schwarzschild black hole in non-local gravity. It is shown that the stability analysis of black hole for the unitary and renormalizable non-local gravity with γ2 = - 2γ0 cannot be performed in the Lichnerowicz operator approach. On the other hand, for the unitary and non-renormalizable case with γ2 = 0, the black hole is stable against the metric perturbations. For non-unitary and renormalizable local gravity with γ2 = - 2γ0 = const (fourth-order gravity), the small black holes are unstable against the metric perturbations. This implies that what makes the problem difficult in stability analysis of black hole is the simultaneous requirement of unitarity and renormalizability around the Minkowski spacetime.
Design of Launch Vehicle Flight Control Systems Using Ascent Vehicle Stability Analysis Tool
NASA Technical Reports Server (NTRS)
Jang, Jiann-Woei; Alaniz, Abran; Hall, Robert; Bedossian, Nazareth; Hall, Charles; Jackson, Mark
2011-01-01
A launch vehicle represents a complicated flex-body structural environment for flight control system design. The Ascent-vehicle Stability Analysis Tool (ASAT) is developed to address the complicity in design and analysis of a launch vehicle. The design objective for the flight control system of a launch vehicle is to best follow guidance commands while robustly maintaining system stability. A constrained optimization approach takes the advantage of modern computational control techniques to simultaneously design multiple control systems in compliance with required design specs. "Tower Clearance" and "Load Relief" designs have been achieved for liftoff and max dynamic pressure flight regions, respectively, in the presence of large wind disturbances. The robustness of the flight control system designs has been verified in the frequency domain Monte Carlo analysis using ASAT.
Distributed Coordinated Control of Large-Scale Nonlinear Networks
Kundu, Soumya; Anghel, Marian
2015-11-08
We provide a distributed coordinated approach to the stability analysis and control design of largescale nonlinear dynamical systems by using a vector Lyapunov functions approach. In this formulation the large-scale system is decomposed into a network of interacting subsystems and the stability of the system is analyzed through a comparison system. However finding such comparison system is not trivial. In this work, we propose a sum-of-squares based completely decentralized approach for computing the comparison systems for networks of nonlinear systems. Moreover, based on the comparison systems, we introduce a distributed optimal control strategy in which the individual subsystems (agents) coordinatemore » with their immediate neighbors to design local control policies that can exponentially stabilize the full system under initial disturbances.We illustrate the control algorithm on a network of interacting Van der Pol systems.« less
Analysis of friction and instability by the centre manifold theory for a non-linear sprag-slip model
NASA Astrophysics Data System (ADS)
Sinou, J.-J.; Thouverez, F.; Jezequel, L.
2003-08-01
This paper presents the research devoted to the study of instability phenomena in non-linear model with a constant brake friction coefficient. Indeed, the impact of unstable oscillations can be catastrophic. It can cause vehicle control problems and component degradation. Accordingly, complex stability analysis is required. This paper outlines stability analysis and centre manifold approach for studying instability problems. To put it more precisely, one considers brake vibrations and more specifically heavy trucks judder where the dynamic characteristics of the whole front axle assembly is concerned, even if the source of judder is located in the brake system. The modelling introduces the sprag-slip mechanism based on dynamic coupling due to buttressing. The non-linearity is expressed as a polynomial with quadratic and cubic terms. This model does not require the use of brake negative coefficient, in order to predict the instability phenomena. Finally, the centre manifold approach is used to obtain equations for the limit cycle amplitudes. The centre manifold theory allows the reduction of the number of equations of the original system in order to obtain a simplified system, without loosing the dynamics of the original system as well as the contributions of non-linear terms. The goal is the study of the stability analysis and the validation of the centre manifold approach for a complex non-linear model by comparing results obtained by solving the full system and by using the centre manifold approach. The brake friction coefficient is used as an unfolding parameter of the fundamental Hopf bifurcation point.
A new sensitivity analysis for structural optimization of composite rotor blades
NASA Technical Reports Server (NTRS)
Venkatesan, C.; Friedmann, P. P.; Yuan, Kuo-An
1993-01-01
This paper presents a detailed mathematical derivation of the sensitivity derivatives for the structural dynamic, aeroelastic stability and response characteristics of a rotor blade in hover and forward flight. The formulation is denoted by the term semianalytical approach, because certain derivatives have to be evaluated by a finite difference scheme. Using the present formulation, sensitivity derivatives for the structural dynamic and aeroelastic stability characteristics, were evaluated for both isotropic and composite rotor blades. Based on the results, useful conclusions are obtained regarding the relative merits of the semi-analytical approach, for calculating sensitivity derivatives, when compared to a pure finite difference approach.
Analysis on the crime model using dynamical approach
NASA Astrophysics Data System (ADS)
Mohammad, Fazliza; Roslan, Ummu'Atiqah Mohd
2017-08-01
A research is carried out to analyze a dynamical model of the spread crime system. A Simplified 2-Dimensional Model is used in this research. The objectives of this research are to investigate the stability of the model of the spread crime, to summarize the stability by using a bifurcation analysis and to study the relationship of basic reproduction number, R0 with the parameter in the model. Our results for stability of equilibrium points shows that we have two types of stability, which are asymptotically stable and saddle node. While the result for bifurcation analysis shows that the number of criminally active and incarcerated increases as we increase the value of a parameter in the model. The result for the relationship of R0 with the parameter shows that as the parameter increases, R0 increase too, and the rate of crime increase too.
TH-AB-BRA-09: Stability Analysis of a Novel Dose Calculation Algorithm for MRI Guided Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelyak, O; Fallone, B; Cross Cancer Institute, Edmonton, AB
2016-06-15
Purpose: To determine the iterative deterministic solution stability of the Linear Boltzmann Transport Equation (LBTE) in the presence of magnetic fields. Methods: The LBTE with magnetic fields under investigation is derived using a discrete ordinates approach. The stability analysis is performed using analytical and numerical methods. Analytically, the spectral Fourier analysis is used to obtain the convergence rate of the source iteration procedures based on finding the largest eigenvalue of the iterative operator. This eigenvalue is a function of relevant physical parameters, such as magnetic field strength and material properties, and provides essential information about the domain of applicability requiredmore » for clinically optimal parameter selection and maximum speed of convergence. The analytical results are reinforced by numerical simulations performed using the same discrete ordinates method in angle, and a discontinuous finite element spatial approach. Results: The spectral radius for the source iteration technique of the time independent transport equation with isotropic and anisotropic scattering centers inside infinite 3D medium is equal to the ratio of differential and total cross sections. The result is confirmed numerically by solving LBTE and is in full agreement with previously published results. The addition of magnetic field reveals that the convergence becomes dependent on the strength of magnetic field, the energy group discretization, and the order of anisotropic expansion. Conclusion: The source iteration technique for solving the LBTE with magnetic fields with the discrete ordinates method leads to divergent solutions in the limiting cases of small energy discretizations and high magnetic field strengths. Future investigations into non-stationary Krylov subspace techniques as an iterative solver will be performed as this has been shown to produce greater stability than source iteration. Furthermore, a stability analysis of a discontinuous finite element space-angle approach (which has been shown to provide the greatest stability) will also be investigated. Dr. B Gino Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta bi-planar linac MR for commercialization)« less
Submarine pipeline on-bottom stability. Volume 2: Software and manuals
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-12-01
The state-of-the-art in pipeline stability design has been changing very rapidly recent. The physics governing on-bottom stability are much better understood now than they were eight years. This is due largely because of research and large scale model tests sponsored by PRCI. Analysis tools utilizing this new knowledge have been developed. These tools provide the design engineer with a rational approach have been developed. These tools provide the design engineer with a rational approach for weight coating design, which he can use with confidence because the tools have been developed based on full scale and near full scale model tests.more » These tools represent the state-of-the-art in stability design and model the complex behavior of pipes subjected to both wave and current loads. These include: hydrodynamic forces which account for the effect of the wake (generated by flow over the pipe) washing back and forth over the pipe in oscillatory flow; and the embedment (digging) which occurs as a pipe resting on the seabed is exposed to oscillatory loadings and small oscillatory deflections. This report has been developed as a reference handbook for use in on-bottom pipeline stability analysis It consists of two volumes. Volume one is devoted descriptions of the various aspects of the problem: the pipeline design process; ocean physics, wave mechanics, hydrodynamic forces, and meteorological data determination; geotechnical data collection and soil mechanics; and stability design procedures. Volume two describes, lists, and illustrates the analysis software. Diskettes containing the software and examples of the software are also included in Volume two.« less
Convergence analysis of directed signed networks via an M-matrix approach
NASA Astrophysics Data System (ADS)
Meng, Deyuan
2018-04-01
This paper aims at solving convergence problems on directed signed networks with multiple nodes, where interactions among nodes are described by signed digraphs. The convergence analysis is achieved by matrix-theoretic and graph-theoretic tools, in which M-matrices play a central role. The fundamental digon sign-symmetry assumption upon signed digraphs can be removed with the proposed analysis approach. Furthermore, necessary and sufficient conditions are established for semi-positive and positive stabilities of Laplacian matrices of signed digraphs, respectively. A benefit of this result is that given strong connectivity, a directed signed network can achieve bipartite consensus (or state stability) if and only if the signed digraph associated with it is structurally balanced (or unbalanced). If the interactions between nodes are described by a signed digraph only with spanning trees, a directed signed network can achieve interval bipartite consensus (or state stability) if and only if the signed digraph contains a structurally balanced (or unbalanced) rooted subgraph. Simulations are given to illustrate the developed results by considering signed networks associated with digon sign-unsymmetric signed digraphs.
Design of Rock Slope Reinforcement: An Himalayan Case Study
NASA Astrophysics Data System (ADS)
Tiwari, Gaurav; Latha, Gali Madhavi
2016-06-01
The stability analysis of the two abutment slopes of a railway bridge proposed at about 359 m above the ground level, crossing a river and connecting two hill faces in the Himalayas, India, is presented. The bridge is located in a zone of high seismic activity. The rock slopes are composed of a heavily jointed rock mass and the spacing, dip and dip direction of joint sets are varying at different locations. Geological mapping was carried out to characterize all discontinuities present along the slopes. Laboratory and field investigations were conducted to assess the geotechnical properties of the intact rock, rock mass and joint infill. Stability analyses of these rock slopes were carried out using numerical programmes. Loads from the foundations resting on the slopes and seismic accelerations estimated from site-specific ground response analysis were considered. The proposed slope profile with several berms between successive foundations was simulated in the numerical model. An equivalent continuum approach with Hoek and Brown failure criterion was initially used in a finite element model to assess the global stability of the slope abutments. In the second stage, finite element analysis of rock slopes with all joint sets with their orientations, spacing and properties explicitly incorporated into the numerical model was taken up using continuum with joints approach. It was observed that the continuum with joints approach was able to capture the local failures in some of the slope sections, which were verified using wedge failure analysis and stereographic projections. Based on the slope deformations and failure patterns observed from the numerical analyses, rock anchors were designed to achieve the target factors of safety against failure while keeping the deformations within the permissible limits. Detailed design of rock anchors and comparison of the stability of slopes with and without reinforcement are presented.
NASA Astrophysics Data System (ADS)
Ataei-Esfahani, Armin
In this dissertation, we present algorithmic procedures for sum-of-squares based stability analysis and control design for uncertain nonlinear systems. In particular, we consider the case of robust aircraft control design for a hypersonic aircraft model subject to parametric uncertainties in its aerodynamic coefficients. In recent years, Sum-of-Squares (SOS) method has attracted increasing interest as a new approach for stability analysis and controller design of nonlinear dynamic systems. Through the application of SOS method, one can describe a stability analysis or control design problem as a convex optimization problem, which can efficiently be solved using Semidefinite Programming (SDP) solvers. For nominal systems, the SOS method can provide a reliable and fast approach for stability analysis and control design for low-order systems defined over the space of relatively low-degree polynomials. However, The SOS method is not well-suited for control problems relating to uncertain systems, specially those with relatively high number of uncertainties or those with non-affine uncertainty structure. In order to avoid issues relating to the increased complexity of the SOS problems for uncertain system, we present an algorithm that can be used to transform an SOS problem with uncertainties into a LMI problem with uncertainties. A new Probabilistic Ellipsoid Algorithm (PEA) is given to solve the robust LMI problem, which can guarantee the feasibility of a given solution candidate with an a-priori fixed probability of violation and with a fixed confidence level. We also introduce two approaches to approximate the robust region of attraction (RROA) for uncertain nonlinear systems with non-affine dependence on uncertainties. The first approach is based on a combination of PEA and SOS method and searches for a common Lyapunov function, while the second approach is based on the generalized Polynomial Chaos (gPC) expansion theorem combined with the SOS method and searches for parameter-dependent Lyapunov functions. The control design problem is investigated through a case study of a hypersonic aircraft model with parametric uncertainties. Through time-scale decomposition and a series of function approximations, the complexity of the aircraft model is reduced to fall within the capability of SDP solvers. The control design problem is then formulated as a convex problem using the dual of the Lyapunov theorem. A nonlinear robust controller is searched using the combined PEA/SOS method. The response of the uncertain aircraft model is evaluated for two sets of pilot commands. As the simulation results show, the aircraft remains stable under up to 50% uncertainty in aerodynamic coefficients and can follow the pilot commands.
A Physics-Based Temperature Stabilization Criterion for Thermal Testing
NASA Technical Reports Server (NTRS)
Rickman, Steven L.; Ungar, Eugene K.
2009-01-01
Spacecraft testing specifications differ greatly in the criteria they specify for stability in thermal balance tests. Some specify a required temperature stabilization rate (the change in temperature per unit time, dT/dt), some specify that the final steady-state temperature be approached to within a specified difference, delta T , and some specify a combination of the two. The particular values for temperature stabilization rate and final temperature difference also vary greatly between specification documents. A one-size-fits-all temperature stabilization rate requirement does not yield consistent results for all test configurations because of differences in thermal mass and heat transfer to the environment. Applying a steady-state temperature difference requirement is problematic because the final test temperature is not accurately known a priori, especially for powered configurations. In the present work, a simplified, lumped-mass analysis has been used to explore the applicability of these criteria. A new, user-friendly, physics-based approach is developed that allows the thermal engineer to determine when an acceptable level of temperature stabilization has been achieved. The stabilization criterion can be predicted pre-test but must be refined during test to allow verification that the defined level of temperature stabilization has been achieved.
Patel, Ashaben; Erb, Steven M; Strange, Linda; Shukla, Ravi S; Kumru, Ozan S; Smith, Lee; Nelson, Paul; Joshi, Sangeeta B; Livengood, Jill A; Volkin, David B
2018-05-24
A combination experimental approach, utilizing semi-empirical excipient screening followed by statistical modeling using design of experiments (DOE), was undertaken to identify stabilizing candidate formulations for a lyophilized live attenuated Flavivirus vaccine candidate. Various potential pharmaceutical compounds used in either marketed or investigative live attenuated viral vaccine formulations were first identified. The ability of additives from different categories of excipients, either alone or in combination, were then evaluated for their ability to stabilize virus against freeze-thaw, freeze-drying, and accelerated storage (25°C) stresses by measuring infectious virus titer. An exploratory data analysis and predictive DOE modeling approach was subsequently undertaken to gain a better understanding of the interplay between the key excipients and stability of virus as well as to determine which combinations were interacting to improve virus stability. The lead excipient combinations were identified and tested for stabilizing effects using a tetravalent mixture of viruses in accelerated and real time (2-8°C) stability studies. This work demonstrates the utility of combining semi-empirical excipient screening and DOE experimental design strategies in the formulation development of lyophilized live attenuated viral vaccine candidates. Copyright © 2017 Elsevier Ltd. All rights reserved.
An approach to attitude determination for a spin-stabilized spacecraft (IMP 1)
NASA Technical Reports Server (NTRS)
Fang, A. C.
1972-01-01
The analysis and the FORTRAN program are presented for the determination of attitude of a spin-stabilized spacecraft. The use of telemetry data that provide information about two reference vectors and their relation to the spin is outlined. A technique for the determination of the spin-axis orientation that employs only simple calculations is described.
NASA Astrophysics Data System (ADS)
Dasgupta, Sambarta
Transient stability and sensitivity analysis of power systems are problems of enormous academic and practical interest. These classical problems have received renewed interest, because of the advancement in sensor technology in the form of phasor measurement units (PMUs). The advancement in sensor technology has provided unique opportunity for the development of real-time stability monitoring and sensitivity analysis tools. Transient stability problem in power system is inherently a problem of stability analysis of the non-equilibrium dynamics, because for a short time period following a fault or disturbance the system trajectory moves away from the equilibrium point. The real-time stability decision has to be made over this short time period. However, the existing stability definitions and hence analysis tools for transient stability are asymptotic in nature. In this thesis, we discover theoretical foundations for the short-term transient stability analysis of power systems, based on the theory of normally hyperbolic invariant manifolds and finite time Lyapunov exponents, adopted from geometric theory of dynamical systems. The theory of normally hyperbolic surfaces allows us to characterize the rate of expansion and contraction of co-dimension one material surfaces in the phase space. The expansion and contraction rates of these material surfaces can be computed in finite time. We prove that the expansion and contraction rates can be used as finite time transient stability certificates. Furthermore, material surfaces with maximum expansion and contraction rate are identified with the stability boundaries. These stability boundaries are used for computation of stability margin. We have used the theoretical framework for the development of model-based and model-free real-time stability monitoring methods. Both the model-based and model-free approaches rely on the availability of high resolution time series data from the PMUs for stability prediction. The problem of sensitivity analysis of power system, subjected to changes or uncertainty in load parameters and network topology, is also studied using the theory of normally hyperbolic manifolds. The sensitivity analysis is used for the identification and rank ordering of the critical interactions and parameters in the power network. The sensitivity analysis is carried out both in finite time and in asymptotic. One of the distinguishing features of the asymptotic sensitivity analysis is that the asymptotic dynamics of the system is assumed to be a periodic orbit. For asymptotic sensitivity analysis we employ combination of tools from ergodic theory and geometric theory of dynamical systems.
Applied Time Domain Stability Margin Assessment for Nonlinear Time-Varying Systems
NASA Technical Reports Server (NTRS)
Kiefer, J. M.; Johnson, M. D.; Wall, J. H.; Dominguez, A.
2016-01-01
The baseline stability margins for NASA's Space Launch System (SLS) launch vehicle were generated via the classical approach of linearizing the system equations of motion and determining the gain and phase margins from the resulting frequency domain model. To improve the fidelity of the classical methods, the linear frequency domain approach can be extended by replacing static, memoryless nonlinearities with describing functions. This technique, however, does not address the time varying nature of the dynamics of a launch vehicle in flight. An alternative technique for the evaluation of the stability of the nonlinear launch vehicle dynamics along its trajectory is to incrementally adjust the gain and/or time delay in the time domain simulation until the system exhibits unstable behavior. This technique has the added benefit of providing a direct comparison between the time domain and frequency domain tools in support of simulation validation. This technique was implemented by using the Stability Aerospace Vehicle Analysis Tool (SAVANT) computer simulation to evaluate the stability of the SLS system with the Adaptive Augmenting Control (AAC) active and inactive along its ascent trajectory. The gains for which the vehicle maintains apparent time-domain stability defines the gain margins, and the time delay similarly defines the phase margin. This method of extracting the control stability margins from the time-domain simulation is relatively straightforward and the resultant margins can be compared to the linearized system results. The sections herein describe the techniques employed to extract the time-domain margins, compare the results between these nonlinear and the linear methods, and provide explanations for observed discrepancies. The SLS ascent trajectory was simulated with SAVANT and the classical linear stability margins were evaluated at one second intervals. The linear analysis was performed with the AAC algorithm disabled to attain baseline stability margins. At each time point, the system was linearized about the current operating point using Simulink's built-in solver. Each linearized system in time was evaluated for its rigid-body gain margin (high frequency gain margin), rigid-body phase margin, and aero gain margin (low frequency gain margin) for each control axis. Using the stability margins derived from the baseline linearization approach, the time domain derived stability margins were determined by executing time domain simulations in which axis-specific incremental gain and phase adjustments were made to the nominal system about the expected neutral stability point at specific flight times. The baseline stability margin time histories were used to shift the system gain to various values around the zero margin point such that a precise amount of expected gain margin was maintained throughout flight. When assessing the gain margins, the gain was applied starting at the time point under consideration, thereafter following the variation in the margin found in the linear analysis. When assessing the rigid-body phase margin, a constant time delay was applied to the system starting at the time point under consideration. If the baseline stability margins were correctly determined via the linear analysis, the time domain simulation results should contain unstable behavior at certain gain and phase values. Examples will be shown from repeated simulations with variable added gain and phase lag. Faithfulness of margins calculated from the linear analysis to the nonlinear system will be demonstrated.
Optimal model of PDIG based microgrid and design of complementary stabilizer using ICA.
Amini, R Mohammad; Safari, A; Ravadanegh, S Najafi
2016-09-01
The generalized Heffron-Phillips model (GHPM) for a microgrid containing a photovoltaic (PV)-diesel machine (DM)-induction motor (IM)-governor (GV) (PDIG) has been developed at the low voltage level. A GHPM is calculated by linearization method about a loading condition. An effective Maximum Power Point Tracking (MPPT) approach for PV network has been done using sliding mode control (SMC) to maximize output power. Additionally, to improve stability of microgrid for more penetration of renewable energy resources with nonlinear load, a complementary stabilizer has been presented. Imperialist competitive algorithm (ICA) is utilized to design of gains for the complementary stabilizer with the multiobjective function. The stability analysis of the PDIG system has been completed with eigenvalues analysis and nonlinear simulations. Robustness and validity of the proposed controllers on damping of electromechanical modes examine through time domain simulation under input mechanical torque disturbances. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Acceleration of convergence of vector sequences
NASA Technical Reports Server (NTRS)
Sidi, A.; Ford, W. F.; Smith, D. A.
1983-01-01
A general approach to the construction of convergence acceleration methods for vector sequence is proposed. Using this approach, one can generate some known methods, such as the minimal polynomial extrapolation, the reduced rank extrapolation, and the topological epsilon algorithm, and also some new ones. Some of the new methods are easier to implement than the known methods and are observed to have similar numerical properties. The convergence analysis of these new methods is carried out, and it is shown that they are especially suitable for accelerating the convergence of vector sequences that are obtained when one solves linear systems of equations iteratively. A stability analysis is also given, and numerical examples are provided. The convergence and stability properties of the topological epsilon algorithm are likewise given.
NASA Technical Reports Server (NTRS)
Manners, B.; Gholdston, E. W.; Karimi, K.; Lee, F. C.; Rajagopalan, J.; Panov, Y.
1996-01-01
As space direct current (dc) power systems continue to grow in size, switching power converters are playing an ever larger role in power conditioning and control. When designing a large dc system using power converters of this type, special attention must be placed on the electrical stability of the system and of the individual loads on the system. In the design of the electric power system (EPS) of the International Space Station (ISS), the National Aeronautics and Space Administration (NASA) and its contractor team led by Boeing Defense & Space Group has placed a great deal of emphasis on designing for system and load stability. To achieve this goal, the team has expended considerable effort deriving a dear concept on defining system stability in both a general sense and specifically with respect to the space station. The ISS power system presents numerous challenges with respect to system stability, such as high power, complex sources and undefined loads. To complicate these issues, source and load components have been designed in parallel by three major subcontractors (Boeing, Rocketdyne, and McDonnell Douglas) with interfaces to both sources and loads being designed in different countries (Russia, Japan, Canada, Europe, etc.). These issues, coupled with the program goal of limiting costs, have proven a significant challenge to the program. As a result, the program has derived an impedance specification approach for system stability. This approach is based on the significant relationship between source and load impedances and the effect of this relationship on system stability. This approach is limited in its applicability by the theoretical and practical limits on component designs as presented by each system segment. As a result, the overall approach to system stability implemented by the ISS program consists of specific hardware requirements coupled with extensive system analysis and hardware testing. Following this approach, the ISS program plans to begin construction of the world's largest orbiting power system in 1997.
Kreinest, Michael; Rillig, Jan; Grützner, Paul A; Küffer, Maike; Tinelli, Marco; Matschke, Stefan
2017-05-01
The aim of the current study is to analyze perioperative data and complications of open vs. percutaneous dorsal instrumentation after dorsal stabilization in patients suffering from fractures of the thoracic or lumbar spine. In the time period from 01/2007 to 06/2009, open surgical approach was used for dorsal stabilization. The percutaneous surgical approach was used from 05/2009 to 03/2014. In every time period, all types of fractures were treated only by open or by percutaneous approach, respectively, to avoid any selection bias. Retrospectively, epidemiological data, complications and perioperative data were documented and statistically analyzed. A total of 491 patients met the inclusion criteria. Open surgery procedure was carried out on 169 patients, and percutaneous surgery procedure was carried out on 322 patients. Fracture level ranged from T1 to L5, and fractures were classified types A, B, and C. In 91.4% of all patients, no complication occured following dorsal stabilization after traumatic spine fracture during their hospital stay. However, 42 complications related to dorsal stabilization have been documented during the hospital stay. The complication rate was 14.8% if open surgical approach has been used and was significantly reduced to 5.3% using percutaneous surgical approach. Post-operative hospital stay was also reduced significantly using the percutaneous surgical approach. According to the current study, percutaneous dorsal stabilization of the spine could also be safely used in trauma cases and is not restricted to degenerative spinal surgery.
Stability analysis of an equilibrium position in the photogravitational Sitnikov problem
NASA Astrophysics Data System (ADS)
Bardin, B. S.; Avdushkin, A. N.
2018-05-01
We deal with the so-called photogravitational Sitnikov problem, that is we consider rectilinear motion of a body of infinitesimal mass in a field of two graviting and radiating primaries, which have equal masses and act on the body with equal repulsive forces of radiation pressure. The body has equilibrium position in the barycenter of the system. In this paper the stability of the equilibrium position is investigated in detail. In particular, by the study of the linearized system we have found in the plane of parameter values the regions of instability. It appears that the instability regions alternate with stability regions and become very narrower when the eccentricity of the primaries orbits approaches to 1. Outside the instability regions we have performed non-linear stability analysis and shown that the stability of the equilibrium position in the sense of Lyapunov takes place both in resonant and non-resonant cases. The results of the study are represented in a form of stability diagram.
Implications of Network Topology on Stability
Kinkhabwala, Ali
2015-01-01
In analogy to chemical reaction networks, I demonstrate the utility of expressing the governing equations of an arbitrary dynamical system (interaction network) as sums of real functions (generalized reactions) multiplied by real scalars (generalized stoichiometries) for analysis of its stability. The reaction stoichiometries and first derivatives define the network’s “influence topology”, a signed directed bipartite graph. Parameter reduction of the influence topology permits simplified expression of the principal minors (sums of products of non-overlapping bipartite cycles) and Hurwitz determinants (sums of products of the principal minors or the bipartite cycles directly) for assessing the network’s steady state stability. Visualization of the Hurwitz determinants over the reduced parameters defines the network’s stability phase space, delimiting the range of its dynamics (specifically, the possible numbers of unstable roots at each steady state solution). Any further explicit algebraic specification of the network will project onto this stability phase space. Stability analysis via this hierarchical approach is demonstrated on classical networks from multiple fields. PMID:25826219
Global exponential stability of BAM neural networks with time-varying delays: The discrete-time case
NASA Astrophysics Data System (ADS)
Raja, R.; Marshal Anthoni, S.
2011-02-01
This paper deals with the problem of stability analysis for a class of discrete-time bidirectional associative memory (BAM) neural networks with time-varying delays. By employing the Lyapunov functional and linear matrix inequality (LMI) approach, a new sufficient conditions is proposed for the global exponential stability of discrete-time BAM neural networks. The proposed LMI based results can be easily checked by LMI control toolbox. Moreover, an example is also provided to demonstrate the effectiveness of the proposed method.
Nonlinear Instability of Hypersonic Flow past a Wedge
NASA Technical Reports Server (NTRS)
Seddougui, Sharon O.; Bassom, Andrew P.
1991-01-01
The nonlinear stability of a compressible flow past a wedge is investigated in the hypersonic limit. The analysis follows the ideas of a weakly nonlinear approach. Interest is focussed on Tollmien-Schlichting waves governed by a triple deck structure and it is found that the attached shock can profoundly affect the stability characteristics of the flow. In particular, it is shown that nonlinearity tends to have a stabilizing influence. The nonlinear evolution of the Tollmien-Schlichting mode is described in a number of asymptotic limits.
Composite fuzzy sliding mode control of nonlinear singularly perturbed systems.
Nagarale, Ravindrakumar M; Patre, B M
2014-05-01
This paper deals with the robust asymptotic stabilization for a class of nonlinear singularly perturbed systems using the fuzzy sliding mode control technique. In the proposed approach the original system is decomposed into two subsystems as slow and fast models by the singularly perturbed method. The composite fuzzy sliding mode controller is designed for stabilizing the full order system by combining separately designed slow and fast fuzzy sliding mode controllers. The two-time scale design approach minimizes the effect of boundary layer system on the full order system. A stability analysis allows us to provide sufficient conditions for the asymptotic stability of the full order closed-loop system. The simulation results show improved system performance of the proposed controller as compared to existing methods. The experimentation results validate the effectiveness of the proposed controller. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
The NASA Monographs on Shell Stability Design Recommendations: A Review and Suggested Improvements
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Starnes, James H., Jr.
1998-01-01
A summary of existing NASA design criteria monographs for the design of buckling-resistant thin-shell structures is presented. Subsequent improvements in the analysis for nonlinear shell response are reviewed, and current issues in shell stability analysis are discussed. Examples of nonlinear shell responses that are not included in the existing shell design monographs are presented, and an approach for including reliability based analysis procedures in the shell design process is discussed. Suggestions for conducting future shell experiments are presented, and proposed improvements to the NASA shell design criteria monographs are discussed.
The NASA Monographs on Shell Stability Design Recommendations: A Review and Suggested Improvements
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Starnes, James H., Jr.
1998-01-01
A summary of the existing NASA design criteria monographs for the design of buckling-resistant thin-shell structures is presented. Subsequent improvements in the analysis for nonlinear shell response are reviewed, and current issues in shell stability analysis are discussed. Examples of nonlinear shell responses that are not included in the existing shell design monographs are presented, and an approach for including reliability-based analysis procedures in the shell design process is discussed. Suggestions for conducting future shell experiments are presented, and proposed improvements to the NASA shell design criteria monographs are discussed.
NASA Technical Reports Server (NTRS)
Tesch, W. A.; Moszee, R. H.; Steenken, W. G.
1976-01-01
NASA developed stability and frequency response analysis techniques were applied to a dynamic blade row compression component stability model to provide a more economic approach to surge line and frequency response determination than that provided by time-dependent methods. This blade row model was linearized and the Jacobian matrix was formed. The clean-inlet-flow stability characteristics of the compressors of two J85-13 engines were predicted by applying the alternate Routh-Hurwitz stability criterion to the Jacobian matrix. The predicted surge line agreed with the clean-inlet-flow surge line predicted by the time-dependent method to a high degree except for one engine at 94% corrected speed. No satisfactory explanation of this discrepancy was found. The frequency response of the linearized system was determined by evaluating its Laplace transfer function. The results of the linearized-frequency-response analysis agree with the time-dependent results when the time-dependent inlet total-pressure and exit-flow function amplitude boundary conditions are less than 1 percent and 3 percent, respectively. The stability analysis technique was extended to a two-sector parallel compressor model with and without interstage crossflow and predictions were carried out for total-pressure distortion extents of 180 deg, 90 deg, 60 deg, and 30 deg.
NASA Astrophysics Data System (ADS)
Deoghare, Ashish B.; Kashyap, Siddharth; Padole, Pramod M.
2013-03-01
Degenerative disc disease is a major source of lower back pain and significantly alters the biomechanics of the lumbar spine. Dynamic stabilization device is a remedial technique which uses flexible materials to stabilize the affected lumbar region while preserving the natural anatomy of the spine. The main objective of this research work is to investigate the stiffness variation of dynamic stabilization device under various loading conditions under compression, axial rotation and flexion. Three dimensional model of the two segment lumbar spine is developed using computed tomography (CT) scan images. The lumbar structure developed is analyzed in ANSYS workbench. Two types of dynamic stabilization are considered: one with stabilizing device as pedicle instrumentation and second with stabilization device inserted around the inter-vertebral disc. Analysis suggests that proper positioning of the dynamic stabilization device is of paramount significance prior to the surgery. Inserting the device in the posterior region indicates the adverse effects as it shows increase in the deformation of the inter-vertebral disc. Analysis executed by positioning stabilizing device around the inter-vertebral disc yields better result for various stiffness values under compression and other loadings. [Figure not available: see fulltext.
Modeling and Analysis of Large Amplitude Flight Maneuvers
NASA Technical Reports Server (NTRS)
Anderson, Mark R.
2004-01-01
Analytical methods for stability analysis of large amplitude aircraft motion have been slow to develop because many nonlinear system stability assessment methods are restricted to a state-space dimension of less than three. The proffered approach is to create regional cell-to-cell maps for strategically located two-dimensional subspaces within the higher-dimensional model statespace. These regional solutions capture nonlinear behavior better than linearized point solutions. They also avoid the computational difficulties that emerge when attempting to create a cell map for the entire state-space. Example stability results are presented for a general aviation aircraft and a micro-aerial vehicle configuration. The analytical results are consistent with characteristics that were discovered during previous flight-testing.
ERIC Educational Resources Information Center
Jackson, Eric S.; Tiede, Mark; Beal, Deryk; Whalen, D. H.
2016-01-01
Purpose: This study examined the impact of social-cognitive stress on sentence-level speech variability, determinism, and stability in adults who stutter (AWS) and adults who do not stutter (AWNS). We demonstrated that complementing the spatiotemporal index (STI) with recurrence quantification analysis (RQA) provides a novel approach to both…
ERIC Educational Resources Information Center
Goldweber, Asha; Bradshaw, Catherine P.; Goodman, Kimberly; Monahan, Kathryn; Cooley-Strickland, Michele
2011-01-01
There is compelling evidence for the role of social information processing (SIP) in aggressive behavior. However, less is known about factors that influence stability versus instability in patterns of SIP over time. Latent transition analysis was used to identify SIP patterns over one year and examine how community violence exposure, aggressive…
ERIC Educational Resources Information Center
Galey, Sarah; Youngs, Peter
2014-01-01
Scholars have developed a wide range of theories to explain both stability and change in policy subsystems. In recent years, a burgeoning literature has emerged that focuses on the application of network analysis in policy research, more formally known as Policy Network Analysis (PNA). This approach, while still developing, has great potential as…
Riva, F; Bisi, M C; Stagni, R
2013-01-01
Falls represent a heavy economic and clinical burden on society. The identification of individual chronic characteristics associated with falling is of fundamental importance for the clinicians; in particular, the stability of daily motor tasks is one of the main factors that the clinicians look for during assessment procedures. Various methods for the assessment of stability in human movement are present in literature, and methods coming from stability analysis of nonlinear dynamic systems applied to biomechanics recently showed promise. One of these techniques is orbital stability analysis via Floquet multipliers. This method allows to measure orbital stability of periodic nonlinear dynamic systems and it seems a promising approach for the definition of a reliable motor stability index, taking into account for the whole task cycle dynamics. Despite the premises, its use in the assessment of fall risk has been deemed controversial. The aim of this systematic review was therefore to provide a critical evaluation of the literature on the topic of applications of orbital stability analysis in biomechanics, with particular focus to methodologic aspects. Four electronic databases have been searched for articles relative to the topic; 23 articles were selected for review. Quality of the studies present in literature has been assessed with a customised quality assessment tool. Overall quality of the literature in the field was found to be high. The most critical aspect was found to be the lack of uniformity in the implementation of the analysis to biomechanical time series, particularly in the choice of state space and number of cycles to include in the analysis. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Brinkmann, R. P.
1989-01-01
This paper is a contribution to the stability analysis of current-carrying plasmas, i.e., plasma systems that are forced by external mchanisms to carry a nonrelaxing electrical current. Under restriction to translationally invariant configurations, the thermodynamic stability criterion for a multicomponent plasma is rederived within the framework of nonideal MHD. The chosen dynamics neglects scalar resistivity, but allows for other types of dissipation effects both in Ohm's law and in the equation of motion. In the second section of the paper, the thermodynamic stability criterion is compared with the ideal MHD based energy principle of Bernstein et al. With the help of Schwarz's inequality, it is shown that the former criterion is always more 'pessimistic' than the latter, i.e., that thermodynamic stability implies stability according to the MHD principle, but not vice versa. This reuslt confirms the physical plausible idea that dissipational effects tend to weaken the stability properties of current-carrying plasma equilibria by breaking the constraints of ideal MHD and allowing for possibly destabilizing effects such as magnetic field line reconfiguration.
Mode instability in one-dimensional anharmonic lattices: Variational equation approach
NASA Astrophysics Data System (ADS)
Yoshimura, K.
1999-03-01
The stability of normal mode oscillations has been studied in detail under the single-mode excitation condition for the Fermi-Pasta-Ulam-β lattice. Numerical experiments indicate that the mode stability depends strongly on k/N, where k is the wave number of the initially excited mode and N is the number of degrees of freedom in the system. It has been found that this feature does not change when N increases. We propose an average variational equation - approximate version of the variational equation - as a theoretical tool to facilitate a linear stability analysis. It is shown that this strong k/N dependence of the mode stability can be explained from the view point of the linear stability of the relevant orbits. We introduce a low-dimensional approximation of the average variational equation, which approximately describes the time evolution of variations in four normal mode amplitudes. The linear stability analysis based on this four-mode approximation demonstrates that the parametric instability mechanism plays a crucial role in the strong k/N dependence of the mode stability.
Flame analysis using image processing techniques
NASA Astrophysics Data System (ADS)
Her Jie, Albert Chang; Zamli, Ahmad Faizal Ahmad; Zulazlan Shah Zulkifli, Ahmad; Yee, Joanne Lim Mun; Lim, Mooktzeng
2018-04-01
This paper presents image processing techniques with the use of fuzzy logic and neural network approach to perform flame analysis. Flame diagnostic is important in the industry to extract relevant information from flame images. Experiment test is carried out in a model industrial burner with different flow rates. Flame features such as luminous and spectral parameters are extracted using image processing and Fast Fourier Transform (FFT). Flame images are acquired using FLIR infrared camera. Non-linearities such as thermal acoustic oscillations and background noise affect the stability of flame. Flame velocity is one of the important characteristics that determines stability of flame. In this paper, an image processing method is proposed to determine flame velocity. Power spectral density (PSD) graph is a good tool for vibration analysis where flame stability can be approximated. However, a more intelligent diagnostic system is needed to automatically determine flame stability. In this paper, flame features of different flow rates are compared and analyzed. The selected flame features are used as inputs to the proposed fuzzy inference system to determine flame stability. Neural network is used to test the performance of the fuzzy inference system.
A unified perspective on robot control - The energy Lyapunov function approach
NASA Technical Reports Server (NTRS)
Wen, John T.
1990-01-01
A unified framework for the stability analysis of robot tracking control is presented. By using an energy-motivated Lyapunov function candidate, the closed-loop stability is shown for a large family of control laws sharing a common structure of proportional and derivative feedback and a model-based feedforward. The feedforward can be zero, partial or complete linearized dynamics, partial or complete nonlinear dynamics, or linearized or nonlinear dynamics with parameter adaptation. As result, the dichotomous approaches to the robot control problem based on the open-loop linearization and nonlinear Lyapunov analysis are both included in this treatment. Furthermore, quantitative estimates of the trade-offs between different schemes in terms of the tracking performance, steady state error, domain of convergence, realtime computation load and required a prior model information are derived.
NASA Astrophysics Data System (ADS)
Gao, Zhenlan; Podvin, Berengere; Sergent, Anne; Xin, Shihe; Chergui, Jalel
2018-05-01
The transition to the chaos of the air flow between two vertical plates maintained at different temperatures is studied in the Boussinesq approximation. After the first bifurcation at critical Rayleigh number Rac, the flow consists of two-dimensional (2D) corotating rolls. The stability of the 2D rolls is examined, confronting linear predictions with nonlinear integration. In all cases the 2D rolls are destabilized in the spanwise direction. Efficient linear stability analysis based on an Arnoldi method shows competition between two eigenmodes, corresponding to different spanwise wavelengths and different types of roll distortion. Nonlinear integration shows that the lower-wave-number mode is always dominant. A partial route to chaos is established through the nonlinear simulations. The flow becomes temporally chaotic for Ra =1.05 Rac , but remains characterized by the spatial patterns identified by linear stability analysis. This highlights the complementary role of linear stability analysis and nonlinear simulation.
Reduced conservatism in stability robustness bounds by state transformation
NASA Technical Reports Server (NTRS)
Yedavalli, R. K.; Liang, Z.
1986-01-01
This note addresses the issue of 'conservatism' in the time domain stability robustness bounds obtained by the Liapunov approach. A state transformation is employed to improve the upper bounds on the linear time-varying perturbation of an asymptotically stable linear time-invariant system for robust stability. This improvement is due to the variance of the conservatism of the Liapunov approach with respect to the basis of the vector space in which the Liapunov function is constructed. Improved bounds are obtained, using a transformation, on elemental and vector norms of perturbations (i.e., structured perturbations) as well as on a matrix norm of perturbations (i.e., unstructured perturbations). For the case of a diagonal transformation, an algorithm is proposed to find the 'optimal' transformation. Several examples are presented to illustrate the proposed analysis.
A rumor transmission model with incubation in social networks
NASA Astrophysics Data System (ADS)
Jia, Jianwen; Wu, Wenjiang
2018-02-01
In this paper, we propose a rumor transmission model with incubation period and constant recruitment in social networks. By carrying out an analysis of the model, we study the stability of rumor-free equilibrium and come to the local stable condition of the rumor equilibrium. We use the geometric approach for ordinary differential equations for showing the global stability of the rumor equilibrium. And when ℜ0 = 1, the new model occurs a transcritical bifurcation. Furthermore, numerical simulations are used to support the analysis. At last, some conclusions are presented.
Defending the beauty of the Invariance Principle
NASA Astrophysics Data System (ADS)
Barkana, Itzhak
2014-01-01
Customary stability analysis methods for nonlinear nonautonomous systems seem to require a strict condition of uniform continuity. Although extensions of LaSalle's Invariance Principle to nonautonomous systems that mitigate this condition have been available for a long time, they have remained surprisingly unknown or open to misinterpretations. The large scope of the Principle might have misled the prospective users and its application to Control problems has been received with amazing yet clear uneasiness. Counterexamples have been used in order to claim that the Invariance Principle cannot be applied to nonlinear nonautonomous systems. Because the original formulation of the Invariance Principle still imposes conditions that are not necessarily needed, this paper presents a new Invariance Principle that further mitigates previous conditions and thus further expands the scope of stability analysis. A brief comparative review of various alternatives to stability analysis of nonautonomous nonlinear systems and their implications is also presented in order to illustrate that thorough analysis of same examples may actually confirm the efficiency of the Invariance Principle approach when dealing with stability of nonautonomous nonlinear systems problems that may look difficult or even unsolvable otherwise.
Wrinkle-stabilized metal-graphene hybrid fibers with zero temperature coefficient of resistance.
Fang, Bo; Xi, Jiabin; Liu, Yingjun; Guo, Fan; Xu, Zhen; Gao, Weiwei; Guo, Daoyou; Li, Peigang; Gao, Chao
2017-08-24
The interfacial adhesion between graphene and metals is poor, as metals tend to generate superlubricity on smooth graphene surface. This problem renders the free assembly of graphene and metals to be a big challenge, and therefore, some desired conducting properties (e.g., stable metal-like conductivities in air, lightweight yet flexible conductors, and ultralow temperature coefficient of resistance, TCR) likely being realized by integrating the merits of graphene and metals remains at a theoretical level. This work proposes a wrinkle-stabilized approach to address the poor adhesion between graphene surface and metals. Cyclic voltammetry (CV) tests and theoretical analysis by Scharifker-Hills models demonstrate that multiscale wrinkles effectively induce nucleation of metal particles, locking in metal nuclei and guiding the continuous growth of metal islands in an instantaneous model on rough graphene surface. The universality and practicability of the wrinkle-stabilized approach is verified by our investigation through the electrodeposition of nine kinds of metals on graphene fibers (GF). The strong interface bonding permits metal-graphene hybrid fibers to show metal-level conductivities (up to 2.2 × 10 7 S m -1 , a record high value for GF in air), reliable weatherability and favorable flexibility. Due to the negative TCR of graphene and positive TCR of metals, the TCR of Cu- and Au-coated GFs reaches zero at a wide temperature range (15 K-300 K). For this layered model, the quantitative analysis by classical theories demonstrates the suitable thickness ratio of graphene layer and metal layer to achieve zero TCR to be 0.2, agreeing well with our experimental results. This wrinkle-stabilized approach and our theoretical analysis of zero-TCR behavior of the graphene-metal system are conducive to the design of high-performance conducting materials based on graphene and metals.
Climate Change, Instability and a Full Spectrum Approach to Conflict Prevention in Africa
2009-10-23
commander to follow. 15. SUBJECT TERMS Climate Change, Global Warming , Security Cooperation, Stability, Instability, Stabilization, Security...note that global warming could also create similar impacts on resources.19 In modern times disputes over natural resources have erupted into conflict...16. Center for Naval Analysis, National Security and the Threat of Climate Change, 18. 17. Michael T. Klare, ― Global Warming Battlefields: How
Arimboor, Ranjith; Natarajan, Ramesh Babu; Menon, K Ramakrishna; Chandrasekhar, Lekshmi P; Moorkoth, Vidya
2015-03-01
Carotenoids are increasingly drawing the attention of researchers as a major natural food color due to their inherent nutritional characteristics and the implicated possible role in prevention and protection against degenerative diseases. In this report, we review the role of red pepper as a source for natural carotenoids. The composition of the carotenoids in red pepper and the application of different methodologies for their analysis were discussed in this report. The stability of red pepper carotenoids during post-harvest processing and storage is also reviewed. This review highlights the potential of red pepper carotenoids as a source of natural food colors and also discusses the need for a standardized approach for the analysis and reporting of composition of carotenoids in plant products and designing model systems for stability studies.
Generalized decompositions of dynamic systems and vector Lyapunov functions
NASA Astrophysics Data System (ADS)
Ikeda, M.; Siljak, D. D.
1981-10-01
The notion of decomposition is generalized to provide more freedom in constructing vector Lyapunov functions for stability analysis of nonlinear dynamic systems. A generalized decomposition is defined as a disjoint decomposition of a system which is obtained by expanding the state-space of a given system. An inclusion principle is formulated for the solutions of the expansion to include the solutions of the original system, so that stability of the expansion implies stability of the original system. Stability of the expansion can then be established by standard disjoint decompositions and vector Lyapunov functions. The applicability of the new approach is demonstrated using the Lotka-Volterra equations.
Harmonic Balance Computations of Fan Aeroelastic Stability
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Reddy, T. S. R.
2010-01-01
A harmonic balance (HB) aeroelastic analysis, which has been recently developed, was used to determine the aeroelastic stability (flutter) characteristics of an experimental fan. To assess the numerical accuracy of this HB aeroelastic analysis, a time-domain aeroelastic analysis was also used to determine the aeroelastic stability characteristics of the same fan. Both of these three-dimensional analysis codes model the unsteady flowfield due to blade vibrations using the Reynolds-averaged Navier-Stokes (RANS) equations. In the HB analysis, the unsteady flow equations are converted to a HB form and solved using a pseudo-time marching method. In the time-domain analysis, the unsteady flow equations are solved using an implicit time-marching approach. Steady and unsteady computations for two vibration modes were carried out at two rotational speeds: 100 percent (design) and 70 percent (part-speed). The steady and unsteady results obtained from the two analysis methods compare well, thus verifying the recently developed HB aeroelastic analysis. Based on the results, the experimental fan was found to have no aeroelastic instability (flutter) at the conditions examined in this study.
A Null Space Control of Two Wheels Driven Mobile Manipulator Using Passivity Theory
NASA Astrophysics Data System (ADS)
Shibata, Tsuyoshi; Murakami, Toshiyuki
This paper describes a control strategy of null space motion of a two wheels driven mobile manipulator. Recently, robot is utilized in various industrial fields and it is preferable for the robot manipulator to have multiple degrees of freedom motion. Several studies of kinematics for null space motion have been proposed. However stability analysis of null space motion is not enough. Furthermore, these approaches apply to stable systems, but they do not apply unstable systems. Then, in this research, base of manipulator equips with two wheels driven mobile robot. This robot is called two wheels driven mobile manipulator, which becomes unstable system. In the proposed approach, a control design of null space uses passivity based stabilizing. A proposed controller is decided so that closed-loop system of robot dynamics satisfies passivity. This is passivity based control. Then, control strategy is that stabilizing of the robot system applies to work space observer based approach and null space control while keeping end-effector position. The validity of the proposed approach is verified by simulations and experiments of two wheels driven mobile manipulator.
Stability analysis of gyroscopic systems with delay via decomposition
NASA Astrophysics Data System (ADS)
Aleksandrov, A. Yu.; Zhabko, A. P.; Chen, Y.
2018-05-01
A mechanical system describing by the second order linear differential equations with a positive parameter at the velocity forces and with time delay in the positional forces is studied. Using the decomposition method and Lyapunov-Krasovskii functionals, conditions are obtained under which from the asymptotic stability of two auxiliary first order subsystems it follows that, for sufficiently large values of the parameter, the original system is also asymptotically stable. Moreover, it is shown that the proposed approach can be applied to the stability investigation of linear gyroscopic systems with switched positional forces.
Robust stability of fractional order polynomials with complicated uncertainty structure
Şenol, Bilal; Pekař, Libor
2017-01-01
The main aim of this article is to present a graphical approach to robust stability analysis for families of fractional order (quasi-)polynomials with complicated uncertainty structure. More specifically, the work emphasizes the multilinear, polynomial and general structures of uncertainty and, moreover, the retarded quasi-polynomials with parametric uncertainty are studied. Since the families with these complex uncertainty structures suffer from the lack of analytical tools, their robust stability is investigated by numerical calculation and depiction of the value sets and subsequent application of the zero exclusion condition. PMID:28662173
Finite-time stability of neutral-type neural networks with random time-varying delays
NASA Astrophysics Data System (ADS)
Ali, M. Syed; Saravanan, S.; Zhu, Quanxin
2017-11-01
This paper is devoted to the finite-time stability analysis of neutral-type neural networks with random time-varying delays. The randomly time-varying delays are characterised by Bernoulli stochastic variable. This result can be extended to analysis and design for neutral-type neural networks with random time-varying delays. On the basis of this paper, we constructed suitable Lyapunov-Krasovskii functional together and established a set of sufficient linear matrix inequalities approach to guarantee the finite-time stability of the system concerned. By employing the Jensen's inequality, free-weighting matrix method and Wirtinger's double integral inequality, the proposed conditions are derived and two numerical examples are addressed for the effectiveness of the developed techniques.
DC servomechanism parameter identification: a Closed Loop Input Error approach.
Garrido, Ruben; Miranda, Roger
2012-01-01
This paper presents a Closed Loop Input Error (CLIE) approach for on-line parametric estimation of a continuous-time model of a DC servomechanism functioning in closed loop. A standard Proportional Derivative (PD) position controller stabilizes the loop without requiring knowledge on the servomechanism parameters. The analysis of the identification algorithm takes into account the control law employed for closing the loop. The model contains four parameters that depend on the servo inertia, viscous, and Coulomb friction as well as on a constant disturbance. Lyapunov stability theory permits assessing boundedness of the signals associated to the identification algorithm. Experiments on a laboratory prototype allows evaluating the performance of the approach. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Functional complexity and ecosystem stability: an experimental approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Voris, P.; O'Neill, R.V.; Shugart, H.H.
1978-01-01
The complexity-stability hypothesis was experimentally tested using intact terrestrial microcosms. Functional complexity was defined as the number and significance of component interactions (i.e., population interactions, physical-chemical reactions, biological turnover rates) influenced by nonlinearities, feedbacks, and time delays. It was postulated that functional complexity could be nondestructively measured through analysis of a signal generated from the system. Power spectral analysis of hourly CO/sub 2/ efflux, from eleven old-field microcosms, was analyzed for the number of low frequency peaks and used to rank the functional complexity of each system. Ranking of ecosystem stability was based on the capacity of the system tomore » retain essential nutrients and was measured by net loss of Ca after the system was stressed. Rank correlation supported the hypothesis that increasing ecosystem functional complexity leads to increasing ecosystem stability. The results indicated that complex functional dynamics can serve to stabilize the system. The results also demonstrated that microcosms are useful tools for system-level investigations.« less
Wu, Chuanliu; Wang, Shuo; Brülisauer, Lorine; Leroux, Jean-Christophe; Gauthier, Marc A
2013-07-08
Disulfide bonds stabilize the tertiary- and quaternary structure of proteins. In addition, they can be used to engineer redox-sensitive (bio)materials and drug-delivery systems. Many of these applications require control of the stability of the disulfide bond. It has recently been shown that the charged microenvironment of the disulfide can be used to alter their stability by ∼3 orders of magnitude in a predictable and finely tunable manner at acidic pH. The aim of this work is to extend these findings to physiological pH and to demonstrate the validity of this approach in complex redox milieu. Disulfide microenvironments were manipulated synergistically with steric hindrance herein to control disulfide bond stability over ∼3 orders of magnitude at neutral pH. Control of disulfide stability through microenvironmental effects could also be observed in complex redox buffers (including serum) and in the presence of cells. Such fine and predictable control of disulfide properties is not achievable using other existing approaches. These findings provide easily implementable and general tools for controlling the responsiveness of biomaterials and drug delivery systems toward various local endogenous redox environments.
NASA Astrophysics Data System (ADS)
Haritan, Idan; Moiseyev, Nimrod
2017-07-01
Resonances play a major role in a large variety of fields in physics and chemistry. Accordingly, there is a growing interest in methods designed to calculate them. Recently, Landau et al. proposed a new approach to analytically dilate a single eigenvalue from the stabilization graph into the complex plane. This approach, termed Resonances Via Padé (RVP), utilizes the Padé approximant and is based on a unique analysis of the stabilization graph. Yet, analytic continuation of eigenvalues from the stabilization graph into the complex plane is not a new idea. In 1975, Jordan suggested an analytic continuation method based on the branch point structure of the stabilization graph. The method was later modified by McCurdy and McNutt, and it is still being used today. We refer to this method as the Truncated Characteristic Polynomial (TCP) method. In this manuscript, we perform an in-depth comparison between the RVP and the TCP methods. We demonstrate that while both methods are important and complementary, the advantage of one method over the other is problem-dependent. Illustrative examples are provided in the manuscript.
On the influence of tyre and structural properties on the stability of bicycles
NASA Astrophysics Data System (ADS)
Doria, Alberto; Roa Melo, Sergio Daniel
2018-06-01
In recent years the Whipple Carvallo Bicycle Model has been extended to analyse high speed stability of bicycles. Various researchers have developed models taking into account the effects of front frame compliance and tyre properties, nonetheless, a systematic analysis has not been yet carried out. This paper aims at analysing parametrically the influence of front frame compliance and tyre properties on the open loop stability of bicycles. Some indexes based on the eigenvalues of the dynamic system are defined to evaluate quantitatively bicycle stability. The parametric analysis is carried out with a factorial design approach to determine the most influential parameters. A commuting and a racing bicycle are considered and numerical results show different effects of the various parameters on each bicycle. In the commuting bicycle, the tyre properties have greater influence than front frame compliance, and the weave mode has the main effect on stability. Conversely, in the racing bicycle, the front frame compliance parameters have greater influence than tyre properties, and the wobble mode has the main effect on stability.
Bounded Linear Stability Analysis - A Time Delay Margin Estimation Approach for Adaptive Control
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Ishihara, Abraham K.; Krishnakumar, Kalmanje Srinlvas; Bakhtiari-Nejad, Maryam
2009-01-01
This paper presents a method for estimating time delay margin for model-reference adaptive control of systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent the conventional model-reference adaptive law by a locally bounded linear approximation within a small time window using the comparison lemma. The locally bounded linear approximation of the combined adaptive system is cast in a form of an input-time-delay differential equation over a small time window. The time delay margin of this system represents a local stability measure and is computed analytically by a matrix measure method, which provides a simple analytical technique for estimating an upper bound of time delay margin. Based on simulation results for a scalar model-reference adaptive control system, both the bounded linear stability method and the matrix measure method are seen to provide a reasonably accurate and yet not too conservative time delay margin estimation.
Floquet analysis of Kuznetsov-Ma breathers: A path towards spectral stability of rogue waves.
Cuevas-Maraver, J; Kevrekidis, P G; Frantzeskakis, D J; Karachalios, N I; Haragus, M; James, G
2017-07-01
In the present work, we aim at taking a step towards the spectral stability analysis of Peregrine solitons, i.e., wave structures that are used to emulate extreme wave events. Given the space-time localized nature of Peregrine solitons, this is a priori a nontrivial task. Our main tool in this effort will be the study of the spectral stability of the periodic generalization of the Peregrine soliton in the evolution variable, namely the Kuznetsov-Ma breather. Given the periodic structure of the latter, we compute the corresponding Floquet multipliers, and examine them in the limit where the period of the orbit tends to infinity. This way, we extrapolate towards the stability of the limiting structure, namely the Peregrine soliton. We find that multiple unstable modes of the background are enhanced, yet no additional unstable eigenmodes arise as the Peregrine limit is approached. We explore the instability evolution also in direct numerical simulations.
Assessment of the DORIS network monumentation
NASA Astrophysics Data System (ADS)
Saunier, J.
2016-12-01
Stability of the monumentation is essential for precise positioning applications to minimize velocity uncertainties and noises in the position data. In charge of the DORIS global tracking network deployment since the beginning, IGN, in consultation with CNES, designed three standard monuments compliant with the DORIS system requirements and general geodetic specifications, and suitable for various site configurations: building roofs, concrete pedestals or pillars. This paper describes the monument types in use in the DORIS network according to the current required specifications and provides a comparative assessment of the stability of the monuments over the network based on three methods: a theoretical study of the mechanical behavior of the metallic structures, a misclosure analysis taken during ground surveys and a qualitative approach taking into account different factors. This overview of the network monumentation gives new key numbers following the previous network assessment performed by Fagard (2006). Significant improvements have been made following the continuous efforts to renovate the network monumentation. These results are relevant for the Global Geodetic Observing System (GGOS) goals of measurement stability for the geodetic techniques. Today, two-thirds of the DORIS network monuments are compliant with the standards aiming at stability of 0.1 mm/y. This stability result has been measured for 16 of the 58 stations more than 10 y after its installation while monuments with more than 1 mm antenna tilts are over 10 y old when specifications were less stringent. The grading and scoring grid drawn up for each monument led to the mapping of the stability of the current DORIS network. Finally, we present a number of further actions to monitor the monument stability and provide new elements for the network monumentation assessment, exploring two different approaches: analysis of the time series and direct measurements using devices placed on each monument.
Stability and Control Analysis of the F-15B Quiet SpikeTM Aircraft
NASA Technical Reports Server (NTRS)
McWherter, Shaun C.; Moua, Cheng M.; Gera, Joseph; Cox, Timothy H.
2009-01-01
The primary purpose of the Quiet Spike(TradeMark) flight research program was to analyze the aerodynamic, structural, and mechanical proof-of-concept of a large multi-stage telescoping nose spike installed on the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) F-15B airplane. This report describes the preflight stability and control analysis performed to assess the effect of the spike on the stability, controllability, and handling qualities of the airplane; and to develop an envelope expansion approach to maintain safety of flight. The overall flight test objective was to collect flight data to validate the spike structural dynamics and loads model up to Mach 1.8. Other objectives included validating the mechanical feasibility of a morphing fuselage at operational conditions and determining the near-field shock wave characterization. The two main issues relevant to the stability and control objectives were the effects of the spike-influenced aerodynamics on the F-15B airplane flight dynamics, and the air data and angle-of-attack sensors. The analysis covered the sensitivity of the stability margins, and the handling qualities due to aerodynamic variation and the maneuvering limitations of the F-15B Quiet Spike configuration. The results of the analysis and the implications for the flight test program are also presented.
Power system security enhancement through direct non-disruptive load control
NASA Astrophysics Data System (ADS)
Ramanathan, Badri Narayanan
The transition to a competitive market structure raises significant concerns regarding reliability of the power grid. A need to build tools for security assessment that produce operating limit boundaries for both static and dynamic contingencies is recognized. Besides, an increase in overall uncertainty in operating conditions makes corrective actions at times ineffective leaving the system vulnerable to instability. The tools that are in place for stability enhancement are mostly corrective and suffer from lack of robustness to operating condition changes. They often pose serious coordination challenges. With deregulation, there have also been ownership and responsibility issues associated with stability controls. However, the changing utility business model and the developments in enabling technologies such as two-way communication, metering, and control open up several new possibilities for power system security enhancement. This research proposes preventive modulation of selected loads through direct control for power system security enhancement. Two main contributions of this research are the following: development of an analysis framework and two conceptually different analysis approaches for load modulation to enhance oscillatory stability, and the development and study of algorithms for real-time modulation of thermostatic loads. The underlying analysis framework is based on the Structured Singular Value (SSV or mu) theory. Based on the above framework, two fundamentally different approaches towards analysis of the amount of load modulation for desired stability performance have been developed. Both the approaches have been tested on two different test systems: CIGRE Nordic test system and an equivalent of the Western Electric Coordinating Council test system. This research also develops algorithms for real-time modulation of thermostatic loads that use the results of the analysis. In line with some recent load management programs executed by utilities, two different algorithms based on dynamic programming are proposed for air-conditioner loads, while a decision-tree based algorithm is proposed for water-heater loads. An optimization framework has been developed employing the above algorithms. Monte Carlo simulations have been performed using this framework with the objective of studying the impact of different parameters and constraints on the effectiveness as well as the effect of control. The conclusions drawn from this research strongly advocate direct load control for stability enhancement from the perspectives of robustness and coordination, as well as economic viability and the developments towards availability of the institutional framework for load participation in providing system reliability services.
Evolving nucleotide binding surfaces
NASA Technical Reports Server (NTRS)
Kieber-Emmons, T.; Rein, R.
1981-01-01
An analysis is presented of the stability and nature of binding of a nucleotide to several known dehydrogenases. The employed approach includes calculation of hydrophobic stabilization of the binding motif and its intermolecular interaction with the ligand. The evolutionary changes of the binding motif are studied by calculating the Euclidean deviation of the respective dehydrogenases. Attention is given to the possible structural elements involved in the origin of nucleotide recognition by non-coded primordial polypeptides.
Assessing Gaussian Assumption of PMU Measurement Error Using Field Data
Wang, Shaobu; Zhao, Junbo; Huang, Zhenyu; ...
2017-10-13
Gaussian PMU measurement error has been assumed for many power system applications, such as state estimation, oscillatory modes monitoring, voltage stability analysis, to cite a few. This letter proposes a simple yet effective approach to assess this assumption by using the stability property of a probability distribution and the concept of redundant measurement. Extensive results using field PMU data from WECC system reveal that the Gaussian assumption is questionable.
Nonlinear stability of Gardner breathers
NASA Astrophysics Data System (ADS)
Alejo, Miguel A.
2018-01-01
We show that breather solutions of the Gardner equation, a natural generalization of the KdV and mKdV equations, are H2 (R) stable. Through a variational approach, we characterize Gardner breathers as minimizers of a new Lyapunov functional and we study the associated spectral problem, through (i) the analysis of the spectrum of explicit linear systems (spectral stability), and (ii) controlling degenerated directions by using low regularity conservation laws.
Robust Stability Analysis of the Space Launch System Control Design: A Singular Value Approach
NASA Technical Reports Server (NTRS)
Pei, Jing; Newsome, Jerry R.
2015-01-01
Classical stability analysis consists of breaking the feedback loops one at a time and determining separately how much gain or phase variations would destabilize the stable nominal feedback system. For typical launch vehicle control design, classical control techniques are generally employed. In addition to stability margins, frequency domain Monte Carlo methods are used to evaluate the robustness of the design. However, such techniques were developed for Single-Input-Single-Output (SISO) systems and do not take into consideration the off-diagonal terms in the transfer function matrix of Multi-Input-Multi-Output (MIMO) systems. Robust stability analysis techniques such as H(sub infinity) and mu are applicable to MIMO systems but have not been adopted as standard practices within the launch vehicle controls community. This paper took advantage of a simple singular-value-based MIMO stability margin evaluation method based on work done by Mukhopadhyay and Newsom and applied it to the SLS high-fidelity dynamics model. The method computes a simultaneous multi-loop gain and phase margin that could be related back to classical margins. The results presented in this paper suggest that for the SLS system, traditional SISO stability margins are similar to the MIMO margins. This additional level of verification provides confidence in the robustness of the control design.
Method for transition prediction in high-speed boundary layers, phase 2
NASA Astrophysics Data System (ADS)
Herbert, T.; Stuckert, G. K.; Lin, N.
1993-09-01
The parabolized stability equations (PSE) are a new and more reliable approach to analyzing the stability of streamwise varying flows such as boundary layers. This approach has been previously validated for idealized incompressible flows. Here, the PSE are formulated for highly compressible flows in general curvilinear coordinates to permit the analysis of high-speed boundary-layer flows over fairly general bodies. Vigorous numerical studies are carried out to study convergence and accuracy of the linear-stability code LSH and the linear/nonlinear PSE code PSH. Physical interfaces are set up to analyze the M = 8 boundary layer over a blunt cone calculated by using a thin-layer Navier Stokes (TNLS) code and the flow over a sharp cone at angle of attack calculated using the AFWAL parabolized Navier-Stokes (PNS) code. While stability and transition studies at high speeds are far from routine, the method developed here is the best tool available to research the physical processes in high-speed boundary layers.
Dynamics and Adaptive Control for Stability Recovery of Damaged Aircraft
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Krishnakumar, Kalmanje; Kaneshige, John; Nespeca, Pascal
2006-01-01
This paper presents a recent study of a damaged generic transport model as part of a NASA research project to investigate adaptive control methods for stability recovery of damaged aircraft operating in off-nominal flight conditions under damage and or failures. Aerodynamic modeling of damage effects is performed using an aerodynamic code to assess changes in the stability and control derivatives of a generic transport aircraft. Certain types of damage such as damage to one of the wings or horizontal stabilizers can cause the aircraft to become asymmetric, thus resulting in a coupling between the longitudinal and lateral motions. Flight dynamics for a general asymmetric aircraft is derived to account for changes in the center of gravity that can compromise the stability of the damaged aircraft. An iterative trim analysis for the translational motion is developed to refine the trim procedure by accounting for the effects of the control surface deflection. A hybrid direct-indirect neural network, adaptive flight control is proposed as an adaptive law for stabilizing the rotational motion of the damaged aircraft. The indirect adaptation is designed to estimate the plant dynamics of the damaged aircraft in conjunction with the direct adaptation that computes the control augmentation. Two approaches are presented 1) an adaptive law derived from the Lyapunov stability theory to ensure that the signals are bounded, and 2) a recursive least-square method for parameter identification. A hardware-in-the-loop simulation is conducted and demonstrates the effectiveness of the direct neural network adaptive flight control in the stability recovery of the damaged aircraft. A preliminary simulation of the hybrid adaptive flight control has been performed and initial data have shown the effectiveness of the proposed hybrid approach. Future work will include further investigations and high-fidelity simulations of the proposed hybrid adaptive Bight control approach.
Stabilization process of human population: a descriptive approach.
Kayani, A K; Krotki, K J
1981-01-01
An attempt is made to inquire into the process of stabilization of a human population. The same age distribution distorted by past variations in fertility is subjected to several fixed schedules of fertility. The schedules are different from each other monotonically over a narrow range. The primary concern is with the process, almost year by year, through which the populations become stable. There is particular interest in the differential impact in the same original age distribution of the narrowly different fixed fertility schedules. The exercise is prepared in 3 stages: general background of the process of stabilization; methodology and data used; and analysis and discussion of the stabilization process. Among the several approaches through which the analysis of stable population is possible, 2 are popular: the integral equation and the projection matrix. In this presentation the interest is in evaluating the effects of fertility on the stabilization process of a population. Therefore, only 1 initial age distribution and only 1 life table but a variety of narrowly different schedules of fertility have been used. Specifically, the U.S. 1963 female population is treated as the initial population. The process of stabilization is viewed in the light of the changes in the slopes between 2 successive age groups of an age distribution. A high fertility schedule with the given initial age distribution and mortality level overcomes the oscillations more quickly than the low fertility schedule. Simulation confirms the intuitively expected positive relationship between the mean of the slope and the level of fertility. The variance of the slope distribution is an indicator of the aging of the distribution.
Studies on the stability of preservatives under subcritical water conditions.
Kapalavavi, B; Marple, R; Gamsky, C; Yang, Y
2015-06-01
The goal of this work was to further validate the subcritical water chromatography (SBWC) methods for separation and analysis of preservatives through the evaluation of analyte stability in subcritical water. In this study, the degradation of preservatives was investigated at temperatures of 100-200°C using two different approaches. First, the peak areas obtained by SBWC at high temperatures were compared with those achieved using the traditional high-performance liquid chromatography (HPLC) at 25°C. In the second approach, several preservatives and water were loaded into a vessel and heated at high temperatures for 30 or 60 min. The heated mixtures were then analysed by GC/MS to determine the stability of preservatives. The t- and F-test on the results of the first approach reveal that the peak areas achieved by HPLC and SBWC are not significantly different at the 95% confidence level, meaning that the preservatives studied are stable during the high-temperature SBWC runs. Although the results of the second approach show approximately 10% degradation of preservatives into mainly p-hydroxybenzoic acid and phenol at 200°C, the preservatives studied are stable at 100 and 150°C. This is in good agreement with the validation results obtained by the first approach. The findings of this work confirm that SBWC methods at temperatures up to 150°C are reliable for separation and analysis of preservatives in cosmetic and other samples. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Rasul, Golam; Glover, Karl D; Krishnan, Padmanaban G; Wu, Jixiang; Berzonsky, William A; Fofana, Bourlaye
2017-06-01
Low falling number and discounting grain when it is downgraded in class are the consequences of excessive late-maturity α-amylase activity (LMAA) in bread wheat (Triticum aestivum L.). Grain expressing high LMAA produces poorer quality bread products. To effectively breed for low LMAA, it is necessary to understand what genes control it and how they are expressed, particularly when genotypes are grown in different environments. In this study, an International Collection (IC) of 18 spring wheat genotypes and another set of 15 spring wheat cultivars adapted to South Dakota (SD), USA were assessed to characterize the genetic component of LMAA over 5 and 13 environments, respectively. The data were analysed using a GGE model with a mixed linear model approach and stability analysis was presented using an AMMI bi-plot on R software. All estimated variance components and their proportions to the total phenotypic variance were highly significant for both sets of genotypes, which were validated by the AMMI model analysis. Broad-sense heritability for LMAA was higher in SD adapted cultivars (53%) compared to that in IC (49%). Significant genetic effects and stability analyses showed some genotypes, e.g. 'Lancer', 'Chester' and 'LoSprout' from IC, and 'Alsen', 'Traverse' and 'Forefront' from SD cultivars could be used as parents to develop new cultivars expressing low levels of LMAA. Stability analysis using an AMMI bi-plot revealed that 'Chester', 'Lancer' and 'Advance' were the most stable across environments, while in contrast, 'Kinsman', 'Lerma52' and 'Traverse' exhibited the lowest stability for LMAA across environments.
ERIC Educational Resources Information Center
Lozano-Parada, Jaime H.; Burnham, Helen; Martinez, Fiderman Machuca
2018-01-01
A classical nonlinear system, the "Brusselator", was used to illustrate the modeling and simulation of oscillating chemical systems using stability analysis techniques with modern software tools such as Comsol Multiphysics, Matlab, and Excel. A systematic approach is proposed in order to establish a regime of parametric conditions that…
Closed-loop, pilot/vehicle analysis of the approach and landing task
NASA Technical Reports Server (NTRS)
Schmidt, D. K.; Anderson, M. R.
1985-01-01
Optimal-control-theoretic modeling and frequency-domain analysis is the methodology proposed to evaluate analytically the handling qualities of higher-order manually controlled dynamic systems. Fundamental to the methodology is evaluating the interplay between pilot workload and closed-loop pilot/vehicle performance and stability robustness. The model-based metric for pilot workload is the required pilot phase compensation. Pilot/vehicle performance and loop stability is then evaluated using frequency-domain techniques. When these techniques were applied to the flight-test data for thirty-two highly-augmented fighter configurations, strong correlation was obtained between the analytical and experimental results.
Decentralized adaptive control of robot manipulators with robust stabilization design
NASA Technical Reports Server (NTRS)
Yuan, Bau-San; Book, Wayne J.
1988-01-01
Due to geometric nonlinearities and complex dynamics, a decentralized technique for adaptive control for multilink robot arms is attractive. Lyapunov-function theory for stability analysis provides an approach to robust stabilization. Each joint of the arm is treated as a component subsystem. The adaptive controller is made locally stable with servo signals including proportional and integral gains. This results in the bound on the dynamical interactions with other subsystems. A nonlinear controller which stabilizes the system with uniform boundedness is used to improve the robustness properties of the overall system. As a result, the robot tracks the reference trajectories with convergence. This strategy makes computation simple and therefore facilitates real-time implementation.
Kamensky, David; Evans, John A; Hsu, Ming-Chen; Bazilevs, Yuri
2017-11-01
This paper discusses a method of stabilizing Lagrange multiplier fields used to couple thin immersed shell structures and surrounding fluids. The method retains essential conservation properties by stabilizing only the portion of the constraint orthogonal to a coarse multiplier space. This stabilization can easily be applied within iterative methods or semi-implicit time integrators that avoid directly solving a saddle point problem for the Lagrange multiplier field. Heart valve simulations demonstrate applicability of the proposed method to 3D unsteady simulations. An appendix sketches the relation between the proposed method and a high-order-accurate approach for simpler model problems.
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung
1987-01-01
The validity of the modified equation stability analysis introduced by Warming and Hyett was investigated. It is shown that the procedure used in the derivation of the modified equation is flawed and generally leads to invalid results. Moreover, the interpretation of the modified equation as the exact partial differential equation solved by a finite-difference method generally cannot be justified even if spatial periodicity is assumed. For a two-level scheme, due to a series of mathematical quirks, the connection between the modified equation approach and the von Neuman method established by Warming and Hyett turns out to be correct despite its questionable original derivation. However, this connection is only partially valid for a scheme involving more than two time levels. In the von Neumann analysis, the complex error multiplication factor associated with a wave number generally has (L-1) roots for an L-level scheme. It is shown that the modified equation provides information about only one of these roots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedorov, Alexey V.
2015-01-14
The central goal of this research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) as related to climate variability and abrupt climate change within a hierarchy of climate models ranging from realistic ocean models to comprehensive Earth system models. Generalized Stability Analysis, a method that quantifies the transient and asymptotic growth of perturbations in the system, is one of the main approaches used throughout this project. The topics we have explored range from physical mechanisms that control AMOC variability to the factors that determine AMOC predictability in the Earth systemmore » models, to the stability and variability of the AMOC in past climates.« less
Stability of mixed time integration schemes for transient thermal analysis
NASA Technical Reports Server (NTRS)
Liu, W. K.; Lin, J. I.
1982-01-01
A current research topic in coupled-field problems is the development of effective transient algorithms that permit different time integration methods with different time steps to be used simultaneously in various regions of the problems. The implicit-explicit approach seems to be very successful in structural, fluid, and fluid-structure problems. This paper summarizes this research direction. A family of mixed time integration schemes, with the capabilities mentioned above, is also introduced for transient thermal analysis. A stability analysis and the computer implementation of this technique are also presented. In particular, it is shown that the mixed time implicit-explicit methods provide a natural framework for the further development of efficient, clean, modularized computer codes.
Sensitivity Analysis of Multicriteria Choice to Changes in Intervals of Value Tradeoffs
NASA Astrophysics Data System (ADS)
Podinovski, V. V.
2018-03-01
An approach to sensitivity (stability) analysis of nondominated alternatives to changes in the bounds of intervals of value tradeoffs, where the alternatives are selected based on interval data of criteria tradeoffs is proposed. Methods of computations for the analysis of sensitivity of individual nondominated alternatives and the set of such alternatives as a whole are developed.
A CAD approach to magnetic bearing design
NASA Technical Reports Server (NTRS)
Jeyaseelan, M.; Anand, D. K.; Kirk, J. A.
1988-01-01
A design methodology has been developed at the Magnetic Bearing Research Laboratory for designing magnetic bearings using a CAD approach. This is used in the algorithm of an interactive design software package. The package is a design tool developed to enable the designer to simulate the entire process of design and analysis of the system. Its capabilities include interactive input/modification of geometry, finding any possible saturation at critical sections of the system, and the design and analysis of a control system that stabilizes and maintains magnetic suspension.
NASA Astrophysics Data System (ADS)
Zhang, Hai; Ye, Renyu; Liu, Song; Cao, Jinde; Alsaedi, Ahmad; Li, Xiaodi
2018-02-01
This paper is concerned with the asymptotic stability of the Riemann-Liouville fractional-order neural networks with discrete and distributed delays. By constructing a suitable Lyapunov functional, two sufficient conditions are derived to ensure that the addressed neural network is asymptotically stable. The presented stability criteria are described in terms of the linear matrix inequalities. The advantage of the proposed method is that one may avoid calculating the fractional-order derivative of the Lyapunov functional. Finally, a numerical example is given to show the validity and feasibility of the theoretical results.
NASA Astrophysics Data System (ADS)
Durato, M. V.; Albano, A. M.; Rapp, P. E.; Nawang, S. A.
2015-06-01
The validity of ERPs as indices of stable neurophysiological traits is partially dependent on their stability over time. Previous studies on ERP stability, however, have reported diverse stability estimates despite using the same component scoring methods. This present study explores a novel approach in investigating the longitudinal stability of average ERPs—that is, by treating the ERP waveform as a time series and then applying Euclidean Distance and Kolmogorov-Smirnov analyses to evaluate the similarity or dissimilarity between the ERP time series of different sessions or run pairs. Nonlinear dynamical analysis show that in the absence of a change in medical condition, the average ERPs of healthy human adults are highly longitudinally stable—as evaluated by both the Euclidean distance and the Kolmogorov-Smirnov test.
Chatter detection in turning using persistent homology
NASA Astrophysics Data System (ADS)
Khasawneh, Firas A.; Munch, Elizabeth
2016-03-01
This paper describes a new approach for ascertaining the stability of stochastic dynamical systems in their parameter space by examining their time series using topological data analysis (TDA). We illustrate the approach using a nonlinear delayed model that describes the tool oscillations due to self-excited vibrations in turning. Each time series is generated using the Euler-Maruyama method and a corresponding point cloud is obtained using the Takens embedding. The point cloud can then be analyzed using a tool from TDA known as persistent homology. The results of this study show that the described approach can be used for analyzing datasets of delay dynamical systems generated both from numerical simulation and experimental data. The contributions of this paper include presenting for the first time a topological approach for investigating the stability of a class of nonlinear stochastic delay equations, and introducing a new application of TDA to machining processes.
Principal Components Analysis of a JWST NIRSpec Detector Subsystem
NASA Technical Reports Server (NTRS)
Arendt, Richard G.; Fixsen, D. J.; Greenhouse, Matthew A.; Lander, Matthew; Lindler, Don; Loose, Markus; Moseley, S. H.; Mott, D. Brent; Rauscher, Bernard J.; Wen, Yiting;
2013-01-01
We present principal component analysis (PCA) of a flight-representative James Webb Space Telescope NearInfrared Spectrograph (NIRSpec) Detector Subsystem. Although our results are specific to NIRSpec and its T - 40 K SIDECAR ASICs and 5 m cutoff H2RG detector arrays, the underlying technical approach is more general. We describe how we measured the systems response to small environmental perturbations by modulating a set of bias voltages and temperature. We used this information to compute the systems principal noise components. Together with information from the astronomical scene, we show how the zeroth principal component can be used to calibrate out the effects of small thermal and electrical instabilities to produce cosmetically cleaner images with significantly less correlated noise. Alternatively, if one were designing a new instrument, one could use a similar PCA approach to inform a set of environmental requirements (temperature stability, electrical stability, etc.) that enabled the planned instrument to meet performance requirements
NASA Technical Reports Server (NTRS)
Wen, John T.; Kreutz-Delgado, Kenneth; Bayard, David S.
1992-01-01
A new class of joint level control laws for all-revolute robot arms is introduced. The analysis is similar to a recently proposed energy-like Liapunov function approach, except that the closed-loop potential function is shaped in accordance with the underlying joint space topology. This approach gives way to a much simpler analysis and leads to a new class of control designs which guarantee both global asymptotic stability and local exponential stability. When Coulomb and viscous friction and parameter uncertainty are present as model perturbations, a sliding mode-like modification of the control law results in a robustness-enhancing outer loop. Adaptive control is formulated within the same framework. A linear-in-the-parameters formulation is adopted and globally asymptotically stable adaptive control laws are derived by simply replacing unknown model parameters by their estimates (i.e., certainty equivalence adaptation).
Optimal Variable-Structure Control Tracking of Spacecraft Maneuvers
NASA Technical Reports Server (NTRS)
Crassidis, John L.; Vadali, Srinivas R.; Markley, F. Landis
1999-01-01
An optimal control approach using variable-structure (sliding-mode) tracking for large angle spacecraft maneuvers is presented. The approach expands upon a previously derived regulation result using a quaternion parameterization for the kinematic equations of motion. This parameterization is used since it is free of singularities. The main contribution of this paper is the utilization of a simple term in the control law that produces a maneuver to the reference attitude trajectory in the shortest distance. Also, a multiplicative error quaternion between the desired and actual attitude is used to derive the control law. Sliding-mode switching surfaces are derived using an optimal-control analysis. Control laws are given using either external torque commands or reaction wheel commands. Global asymptotic stability is shown for both cases using a Lyapunov analysis. Simulation results are shown which use the new control strategy to stabilize the motion of the Microwave Anisotropy Probe spacecraft.
A Simple Approach to Enhance the Water Stability of a Metal-Organic Framework.
Shih, Yung-Han; Kuo, Yu-Ching; Lirio, Stephen; Wang, Kun-Yun; Lin, Chia-Her; Huang, Hsi-Ya
2017-01-01
A facile method to improve the feasibility of water-unstable metal-organic frameworks in an aqueous environment has been developed that involves imbedding in a polymer monolith. The effect of compartment type during polymerization plays a significant role in maintaining the crystalline structure and thermal stability of the MOFs, which was confirmed by powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA), respectively. The MOF-polymer composite prepared in a narrow compartment (column, ID 0.8 mm) has better thermal and chemical stability than that prepared in a broad compartment (vial, ID 7 mm). The developed MOF-polymer composite was applied as an adsorbent in solid-phase microextraction of nine non-steroidal anti-inflammatory drugs (NSAIDs) and could be used for extraction more than 30 times, demonstrating that the proposed approach has potential for industrial applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Singer, Bart A.; Choudhari, Meelan; Li, Fei
1995-01-01
A multiple-scales approach is used to approximate the effects of nonparallelism and streamwise surface curvature on the growth of stationary crossflow vortices in incompressible, three-dimesional boundary layers. The results agree with results predicted by solving the parabolized stability equations in regions where the nonparallelism is sufficiently weak. As the nonparallelism increases, the agreement between the two approaches worsens. An attempt has been made to quantify the nonparallelism on flow stability in terms of a nondimensional number that describes the rate of change of the mean flow relative to the disturbance wavelength. We find that the above nondimensional number provides useful information about the adequacy of the multiple-scales approximation for different disturbances for a given flow geometry, but the number does not collapse data for different flow geometries onto a single curve.
Song, Kaida; Wang, Rui; Liu, Yi; Qian, Depei; Zhang, Han; Cai, Jihong
2015-01-01
Community networks, the distinguishing feature of which is membership admittance, appear on P2P networks, social networks, and conventional Web networks. Joining the network costs money, time or network bandwidth, but the individuals get access to special resources owned by the community in return. The prosperity and stability of the community are determined by both the policy of admittance and the attraction of the privileges gained by joining. However, some misbehaving users can get the dedicated resources with some illicit and low-cost approaches, which introduce instability into the community, a phenomenon that will destroy the membership policy. In this paper, we analyze on the stability using game theory on such a phenomenon. We propose a game-theoretical model of stability analysis in community networks and provide conditions for a stable community. We then extend the model to analyze the effectiveness of different incentive policies, which could be used when the community cannot maintain its members in certain situations. Then we verify those models through a simulation. Finally, we discuss several ways to promote community network's stability by adjusting the network's properties and give some proposal on the designs of these types of networks from the points of game theory and stability.
Periodic waves of the Lugiato-Lefever equation at the onset of Turing instability.
Delcey, Lucie; Haraguss, Mariana
2018-04-13
We study the existence and the stability of periodic steady waves for a nonlinear model, the Lugiato-Lefever equation, arising in optics. Starting from a detailed description of the stability properties of constant solutions, we then focus on the periodic steady waves which bifurcate at the onset of Turing instability. Using a centre manifold reduction, we analyse these Turing bifurcations, and prove the existence of periodic steady waves. This approach also allows us to conclude on the nonlinear orbital stability of these waves for co-periodic perturbations, i.e. for periodic perturbations which have the same period as the wave. This stability result is completed by a spectral stability result for general bounded perturbations. In particular, this spectral analysis shows that instabilities are always due to co-periodic perturbations.This article is part of the theme issue 'Stability of nonlinear waves and patterns and related topics'. © 2018 The Author(s).
NASA Technical Reports Server (NTRS)
Siljak, D. D.; Weissenberger, S.; Cuk, S. M.
1973-01-01
This report presents the development and description of the decomposition aggregation approach to stability investigations of high dimension mathematical models of dynamic systems. The high dimension vector differential equation describing a large dynamic system is decomposed into a number of lower dimension vector differential equations which represent interconnected subsystems. Then a method is described by which the stability properties of each subsystem are aggregated into a single vector Liapunov function, representing the aggregate system model, consisting of subsystem Liapunov functions as components. A linear vector differential inequality is then formed in terms of the vector Liapunov function. The matrix of the model, which reflects the stability properties of the subsystems and the nature of their interconnections, is analyzed to conclude over-all system stability characteristics. The technique is applied in detail to investigate the stability characteristics of a dynamic model of a hypothetical spinning Skylab.
NASA Technical Reports Server (NTRS)
Gayda, John
2003-01-01
As part of NASA s Advanced Subsonic Technology Program, a study of stabilization heat treatment options for an advanced nickel-base disk alloy, ME 209, was performed. Using a simple, physically based approach, the effect of stabilization heat treatments on tensile and creep properties was analyzed in this paper. Solutions temperature, solution cooling rate, and stabilization temperature/time were found to have a significant impact on tensile and creep properties. These effects were readily quantified using the following methodology. First, the effect of solution cooling rate was assessed to determine its impact on a given property. The as-cooled property was then modified by using two multiplicative factors which assess the impact of solution temperature and stabilization parameters. Comparison of experimental data with predicted values showed this physically based analysis produced good results that rivaled the statistical analysis employed, which required numerous changes in the form of the regression equation depending on the property and temperature in question. As this physically based analysis uses the data for input, it should be noted that predictions which attempt to extrapolate beyond the bounds of the data must be viewed with skepticism. Future work aimed at expanding the range of the stabilization/aging parameters explored in this study would be highly desirable, especially at the higher solution cooling rates.
A stepladder approach to a tokamak fusion power plant
NASA Astrophysics Data System (ADS)
Zohm, H.; Träuble, F.; Biel, W.; Fable, E.; Kemp, R.; Lux, H.; Siccinio, M.; Wenninger, R.
2017-08-01
We present an approach to design in a consistent way a stepladder connecting ITER, DEMO and an FPP, starting from an attractive FPP and then locating DEMO such that main similarity parameters for the core scenario are constant. The approach presented suggests how to use ITER such that DEMO can be extrapolated with maximum confidence and a development path for plasma scenarios in ITER follows from our approach, moving from low β N and q typical for the present Q = 10 scenario to higher values needed for steady state. A numerical example is given, indicative of the feasibility of the approach, and it is backed up by more detailed 1.5-D calculation using the ASTRA code. We note that ideal MHD stability analysis of the DEMO operating point indicates that it is located between the no-wall and the ideal wall β-limit, which may require active stabilization. The DEMO design could also be a pulsed fallback solution should a stationary operation turn out to be impossible.
Conditional random matrix ensembles and the stability of dynamical systems
NASA Astrophysics Data System (ADS)
Kirk, Paul; Rolando, Delphine M. Y.; MacLean, Adam L.; Stumpf, Michael P. H.
2015-08-01
Random matrix theory (RMT) has found applications throughout physics and applied mathematics, in subject areas as diverse as communications networks, population dynamics, neuroscience, and models of the banking system. Many of these analyses exploit elegant analytical results, particularly the circular law and its extensions. In order to apply these results, assumptions must be made about the distribution of matrix elements. Here we demonstrate that the choice of matrix distribution is crucial. In particular, adopting an unrealistic matrix distribution for the sake of analytical tractability is liable to lead to misleading conclusions. We focus on the application of RMT to the long-standing, and at times fractious, ‘diversity-stability debate’, which is concerned with establishing whether large complex systems are likely to be stable. Early work (and subsequent elaborations) brought RMT to bear on the debate by modelling the entries of a system’s Jacobian matrix as independent and identically distributed (i.i.d.) random variables. These analyses were successful in yielding general results that were not tied to any specific system, but relied upon a restrictive i.i.d. assumption. Other studies took an opposing approach, seeking to elucidate general principles of stability through the analysis of specific systems. Here we develop a statistical framework that reconciles these two contrasting approaches. We use a range of illustrative dynamical systems examples to demonstrate that: (i) stability probability cannot be summarily deduced from any single property of the system (e.g. its diversity); and (ii) our assessment of stability depends on adequately capturing the details of the systems analysed. Failing to condition on the structure of dynamical systems will skew our analysis and can, even for very small systems, result in an unnecessarily pessimistic diagnosis of their stability.
Jung, Goo-Eun; Noh, Hanaul; Shin, Yong Kyun; Kahng, Se-Jong; Baik, Ku Youn; Kim, Hong-Bae; Cho, Nam-Joon; Cho, Sang-Joon
2015-07-07
Scanning ion conductance microscopy (SICM) is an increasingly useful nanotechnology tool for non-contact, high resolution imaging of live biological specimens such as cellular membranes. In particular, approach-retract-scanning (ARS) mode enables fast probing of delicate biological structures by rapid and repeated approach/retraction of a nano-pipette tip. For optimal performance, accurate control of the tip position is a critical issue. Herein, we present a novel closed-loop control strategy for the ARS mode that achieves higher operating speeds with increased stability. The algorithm differs from that of most conventional (i.e., constant velocity) approach schemes as it includes a deceleration phase near the sample surface, which is intended to minimize the possibility of contact with the surface. Analysis of the ion current and tip position demonstrates that the new mode is able to operate at approach speeds of up to 250 μm s(-1). As a result of the improved stability, SICM imaging with the new approach scheme enables significantly improved, high resolution imaging of subtle features of fixed and live cells (e.g., filamentous structures & membrane edges). Taken together, the results suggest that optimization of the tip approach speed can substantially improve SICM imaging performance, further enabling SICM to become widely adopted as a general and versatile research tool for biological studies at the nanoscale level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anheier, Norman C.; Cannon, Bret D.; Martinez, Alonzo
The International Atomic Energy Agency’s (IAEA’s) long-term research and development plan calls for more cost-effective and efficient safeguard methods to detect and deter misuse of gaseous centrifuge enrichment plants (GCEPs). The IAEA’s current safeguards approaches at GCEPs are based on a combination of routine and random inspections that include environmental sampling and destructive assay (DA) sample collection from UF6 in-process material and selected cylinders. Samples are then shipped offsite for subsequent laboratory analysis. In this paper, a new DA sample collection and onsite analysis approach that could help to meet challenges in transportation and chain of custody for UF6 DAmore » samples is introduced. This approach uses a handheld sampler concept and a Laser Ablation, Laser Absorbance Spectrometry (LAARS) analysis instrument, both currently under development at the Pacific Northwest National Laboratory. A LAARS analysis instrument could be temporarily or permanently deployed in the IAEA control room of the facility, in the IAEA data acquisition cabinet, for example. The handheld PNNL DA sampler design collects and stabilizes a much smaller DA sample mass compared to current sampling methods. The significantly lower uranium mass reduces the sample radioactivity and the stabilization approach diminishes the risk of uranium and hydrogen fluoride release. These attributes enable safe sample handling needed during onsite LAARS assay and may help ease shipping challenges for samples to be processed at the IAEA’s offsite laboratory. The LAARS and DA sampler implementation concepts will be described and preliminary technical viability results presented.« less
Synthesis of Mesoporous Nanocrystalline Zirconia by Surfactant-Assisted Hydrothermal Approach.
Nath, Soumav; Biswas, Ashik; Kour, Prachi P; Sarma, Loka S; Sur, Ujjal Kumar; Ankamwar, Balaprasad G
2018-08-01
In this paper, we have reported the chemical synthesis of thermally stable mesoporous nanocrystalline zirconia with high surface area using a surfactant-assisted hydrothermal approach. We have employed different type of surfactants such as CTAB, SDS and Triton X-100 in our synthesis. The synthesized nanocrystalline zirconia multistructures exhibit various morphologies such as rod, mortar-pestle with different particle sizes. We have characterized the zirconia multistructures by X-ray diffraction study, Field emission scanning electron microscopy, Attenuated total refection infrared spectroscopy, UV-Vis spectroscopy and photoluminescence spectroscopy. The thermal stability of as synthesized zirconia multistructures was studied by thermo gravimetric analysis, which shows the high thermal stability of nanocrystalline zirconia around 900 °C temperature.
Alsenaidy, Mohammad A.; Kim, Jae Hyun; Majumdar, Ranajoy; Weis, David D.; Joshi, Sangeeta B.; Tolbert, Thomas J.; Middaugh, C. Russell; Volkin, David B.
2013-01-01
The structural integrity and conformational stability of an IgG1 monoclonal antibody (mAb), after partial and complete enzymatic removal of the N-linked Fc glycan, was compared to the untreated mAb over a wide range of temperature (10° to 90°C) and solution pH (3 to 8) using circular dichroism, fluorescence spectroscopy, and static light scattering combined with data visualization employing empirical phase diagrams (EPDs). Subtle to larger stability differences between the different glycoforms were observed. Improved detection of physical stability differences was then demonstrated over narrower pH range (4.0-6.0) using smaller temperature increments, especially when combined with an alternative data visualization method (radar plots). Differential scanning calorimetry and differential scanning fluorimetry were then utilized and also showed an improved ability to detect differences in mAb glycoform physical stability. Based on these results, a two-step methodology was used in which mAb glycoform conformational stability is first screened with a wide variety of instruments and environmental stresses, followed by a second evaluation with optimally sensitive experimental conditions, analytical techniques and data visualization methods. With this approach, high-throughput biophysical analysis to assess relatively subtle conformational stability differences in protein glycoforms is demonstrated. PMID:24114789
Torres, Susana; Brown, Roland; Zelesky, Todd; Scrivens, Garry; Szucs, Roman; Hawkins, Joel M; Taylor, Mark R
2016-11-30
Stability studies of pharmaceutical drug products and pharmaceutical active substances are important to research and development in order to fully understand and maintain product quality and safety throughout its shelf-life. Oxidative forced degradation studies are among the different types of stability studies performed by the pharmaceutical industry in order to understand the intrinsic stability of drug molecules. We have been comparing the use of electrochemistry as an alternative oxidative forced degradation method to traditional forced degradation and accelerated stability studies. Using the electrochemical degradation approach the substrate oxidation takes place in a commercially available electrochemical cell and the effluent of the cell can be either a) directly infused into the mass spectrometer or b) injected in a chromatographic column for separation of the different products formed prior to the mass spectrometry analysis. To enable the study of large numbers of different experimental conditions and molecules we developed a new dual pump automated electrochemical screening platform. This system used a HPLC pump and autosampler to load and wash the electrochemical cell and deliver the oxidized sample plug to a second injection loop. This system enabled the automatic sequential analyses of large numbers of different solutions under varied experimental conditions without need for operator intervention during the run sequence. Here we describe the system and evaluate its performance using a test molecule with well characterized stability and compare results to those obtained using an off-line electrochemistry approach. Copyright © 2016 Elsevier B.V. All rights reserved.
Estimating Perturbation and Meta-Stability in the Daily Attendance Rates of Six Small High Schools
NASA Astrophysics Data System (ADS)
Koopmans, Matthijs
This paper discusses the daily attendance rates in six small high schools over a ten-year period and evaluates how stable those rates are. “Stability” is approached from two vantage points: pulse models are fitted to estimate the impact of sudden perturbations and their reverberation through the series, and Autoregressive Fractionally Integrated Moving Average (ARFIMA) techniques are used to detect dependencies over the long range of the series. The analyses are meant to (1) exemplify the utility of time series approaches in educational research, which lacks a time series tradition, (2) discuss some time series features that seem to be particular to daily attendance rate trajectories such as the distinct downward pull coming from extreme observations, and (3) present an analytical approach to handle the important yet distinct patterns of variability that can be found in these data. The analysis also illustrates why the assumption of stability that underlies the habitual reporting of weekly, monthly and yearly averages in the educational literature is questionable, as it reveals dynamical processes (perturbation, meta-stability) that remain hidden in such summaries.
Influence of impeller shroud forces on turbopump rotor dynamics
NASA Technical Reports Server (NTRS)
Williams, J. P.; Childs, Dara W.
1993-01-01
The shrouded-impeller leakage path forces calculated by Childs have been analyzed to answer two questions. First, because of certain characteristics or the results of Childs, the forces could not be modeled with traditional approaches. Therefore, an approach has been devised to include the forces in conventional rotordynamic analyses. The forces were found to be well-modeled with this approach. Finally, the effect these forces had on a simple rotor-bearing system was analyzed, and, therefore, they, in addition to seal forces, were applied to a Jeffcott rotor. The traditional methods of dynamic system analysis were modified to incorporate the impeller forces and yielded results for the eigenproblem, frequency response, critical speed, transient response, and an iterative technique for finding the frequency of free vibration as well as system stability. All results lead to the conclusion that the forces have little influence on natural frequency but can have appreciable effects on system stability. Specifically, at higher values of fluid swirl at the leakage path entrance, relative stability is reduced. The only unexpected response characteristics that occurred are attributed to the nonlinearity of the model.
Finite-difference solution of the compressible stability eigenvalue problem
NASA Technical Reports Server (NTRS)
Malik, M. R.
1982-01-01
A compressible stability analysis computer code is developed. The code uses a matrix finite difference method for local eigenvalue solution when a good guess for the eigenvalue is available and is significantly more computationally efficient than the commonly used initial value approach. The local eigenvalue search procedure also results in eigenfunctions and, at little extra work, group velocities. A globally convergent eigenvalue procedure is also developed which may be used when no guess for the eigenvalue is available. The global problem is formulated in such a way that no unstable spurious modes appear so that the method is suitable for use in a black box stability code. Sample stability calculations are presented for the boundary layer profiles of a Laminar Flow Control (LFC) swept wing.
Light scattering methods to test inorganic PCMs for application in buildings
NASA Astrophysics Data System (ADS)
De Paola, M. G.; Calabrò, V.; De Simone, M.
2017-10-01
Thermal performance and stability over time are key parameters for the characterization and application of PCMs in the building sector. Generally, inorganic PCMs are dispersions of hydrated salts and additives in water that counteract phase segregation phenomena and subcooling. Traditional methods or in “house” methods can be used for evaluating thermal properties, while stability can be estimated over time by using optical techniques. By considering this double approach, in this work thermal and structural analyses of Glauber salt based composite PCMs are conducted by means of non-conventional equipment: T-history method (thermal analysis) and Turbiscan (stability analysis). Three samples with the same composition (Glauber salt with additives) were prepared by using different sonication times and their thermal performances were compared by testing both the thermal cycling and the thermal properties. The stability of the mixtures was verified by the identification of destabilization phenomena, the evaluation of the migration velocities of particles and the estimation of variation of particle size.
Resistive MHD Stability Analysis in Near Real-time
NASA Astrophysics Data System (ADS)
Glasser, Alexander; Kolemen, Egemen
2017-10-01
We discuss the feasibility of a near real-time calculation of the tokamak Δ' matrix, which summarizes MHD stability to resistive modes, such as tearing and interchange modes. As the operational phase of ITER approaches, solutions for active feedback tokamak stability control are needed. It has been previously demonstrated that an ideal MHD stability analysis is achievable on a sub- O (1 s) timescale, as is required to control phenomena comparable with the MHD-evolution timescale of ITER. In the present work, we broaden this result to incorporate the effects of resistive MHD modes. Such modes satisfy ideal MHD equations in regions outside narrow resistive layers that form at singular surfaces. We demonstrate that the use of asymptotic expansions at the singular surfaces, as well as the application of state transition matrices, enable a fast, parallelized solution to the singular outer layer boundary value problem, and thereby rapidly compute Δ'. Sponsored by US DOE under DE-SC0015878 and DE-FC02-04ER54698.
Extremum seeking with bounded update rates
Scheinker, Alexander; Krstić, Miroslav
2013-11-16
In this work, we present a form of extremum seeking (ES) in which the unknown function being minimized enters the system’s dynamics as the argument of a cosine or sine term, thereby guaranteeing known bounds on update rates and control efforts. We present general n-dimensional optimization and stabilization results as well as 2D vehicle control, with bounded velocity and control efforts. For application to autonomous vehicles, tracking a source in a GPS denied environment with unknown orientation, this ES approach allows for smooth heading angle actuation, with constant velocity, and in application to a unicycle-type vehicle results in control abilitymore » as if the vehicle is fully actuated. Our stability analysis is made possible by the classic results of Kurzweil, Jarnik, Sussmann, and Liu, regarding systems with highly oscillatory terms. In our stability analysis, we combine the averaging results with a semi-global practical stability result under small parametric perturbations developed by Moreau and Aeyels.« less
A DESIGN METHOD FOR RETAINING WALL BASED ON RETURN PERIOD OF RAINFALL AND SNOWMELT
NASA Astrophysics Data System (ADS)
Ebana, Ryo; Uehira, Kenichiro; Yamada, Tadashi
The main purpose of this study is to develop a new design method for the retaining wall in a cold district. In the cold district, snowfall and snowmelt is one of the main factors in sediment related disaster. However, the effect of the snowmelt is not being taken account of sediment disasters precaution and evacuation system. In this study, we target at past slope failure disaster and quantitatively evaluate that the effect of rainfall and snowmelt on groundwater level and then verify the stability of slope. Water supplied on the slope was determined from the probabilistic approach of the snowmelt using DegreeDay method in this study. Furthermore, a slope stability analysis was carried out based on the ground water level that was obtained from the unsaturated infiltration flow with the saturated seepage flow simulations. From the result of the slope stability analysis, it was found that the effect of ground water level on the stability of slope is much bigger than that of other factors.
Nanobiocatalysis for protein digestion in proteomic analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jungbae; Kim, Byoung Chan; Lopez-Ferrer, Daniel
2010-02-01
The process of protein digestion is a critical step for successful protein identification in the bottom-up proteomic analysis. To substitute the present practice of in-solution protein digestion, which is long, tedious, and difficult to automate, a lot of efforts have been dedicated for the development of a rapid, recyclable and automated digestion system. Recent advances of nanobiocatalytic approaches have improved the performance of protein digestion by using various nanomaterials such as nanoporous materials, magnetic nanoparticles, and polymer nanofibers. Especially, the unprecedented success of trypsin stabilization in the form of trypsin-coated nanofibers, showing no activity decrease under repeated uses for onemore » year and retaining good resistance to proteolysis, has demonstrated its great potential to be employed in the development of automated, high-throughput, and on-line digestion systems. This review discusses recent developments of nanobiocatalytic approaches for the improved performance of protein digestion in speed, detection sensitivity, recyclability, and trypsin stability. In addition, we also introduce the protein digestions under unconventional energy inputs for protein denaturation and the development of microfluidic enzyme reactors that can benefit from recent successes of these nanobiocatalytic approaches.« less
Lannocca, Maurizio; Varini, Elena; Cappello, Angelo; Cristofolini, Luca; Bialoblocka, Ewa
2007-10-01
Cementless implants are mechanically stabilized during surgery by a press-fitting procedure. Good initial stability is crucial to avoid stem loosening and bone cracking, therefore, the surgeon must achieve optimal press-fitting. A possible approach to solve this problem and assist the surgeon in achieving the optimal compromise, involves the use of vibration analysis. The present study aimed to design and test a prototype device able to evaluate the primary mechanical stability of a cementless prosthesis, based on vibration analysis. In particular, the goal was to discriminate between stable and quasi-stable implants; thus the stem-bone system was assumed to be linear in both cases. For that reason, it was decided to study the frequency responses of the system, instead of the harmonic distortion. The prototype developed consists of a piezoelectric exciter connected to the stem and an accelerometer attached to the femur. Preliminary tests were performed on four composite femurs implanted with a conventional stem. The results showed that the input signal was repeatable and the output could be recorded accurately. The most sensitive parameter to stability was the shift in resonance frequency of the stem-bone system, which was highly correlated with residual micromotion on all four specimens.
Valverde-Som, Lucia; Ruiz-Samblás, Cristina; Rodríguez-García, Francisco P; Cuadros-Rodríguez, Luis
2018-02-09
The organoleptic quality of virgin olive oil depends on positive and negative sensory attributes. These attributes are related to volatile organic compounds and phenolic compounds that represent the aroma and taste (flavour) of the virgin olive oil. The flavour is the characteristic that can be measured by a taster panel. However, as for any analytical measuring device, the tasters, individually, and the panel, as a whole, should be harmonized and validated and proper olive oil standards are needed. In the present study, multivariate approaches are put into practice in addition to the rules to build a multivariate control chart from chromatographic volatile fingerprinting and chemometrics. Fingerprinting techniques provide analytical information without identify and quantify the analytes. This methodology is used to monitor the stability of sensory reference materials. The similarity indices have been calculated to build multivariate control chart with two olive oils certified reference materials that have been used as examples to monitor their stabilities. This methodology with chromatographic data could be applied in parallel with the 'panel test' sensory method to reduce the work of sensory analysis. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Reply to discussion: ground water response to forest harvest: implications or hillslope stability
Amod Dhakal; Roy C. Sidle; A.C. Johnson; R.T. Edwards
2008-01-01
Dhakal and Sidle (this volume) have requested clarification of some of the rationales and approaches used in analyses described by Johnson et al. (2007). Here we further describe hydrologic conditions typical of southeast Alaska and elaborate on an accepted methodology used for conducting analysis of covariance statistical analysis (ANCOVA). We discuss Dhakal and Sidle...
NASA Technical Reports Server (NTRS)
Moua, Cheng M.; Cox, Timothy H.; McWherter, Shaun C.
2008-01-01
The Quiet Spike(TradeMark) F-15B flight research program investigated supersonic shock reduction using a 24-ft telescoping nose boom on an F-15B airplane. The program goal was to collect flight data for model validation up to 1.8 Mach. In the area of stability and controls, the primary concerns were to assess the potential destabilizing effect of the oversized nose boom on the stability, controllability, and handling qualities of the airplane and to ensure adequate stability margins across the entire research flight envelope. This paper reports on the stability and control analytical methods, flight envelope clearance approach, and flight test results of the F-15B telescoping nose boom configuration. Also discussed are brief pilot commentary on typical piloting tasks and refueling tasks.
Huang, Jun; Goolcharran, Chimanlall; Ghosh, Krishnendu
2011-05-01
This paper presents the use of experimental design, optimization and multivariate techniques to investigate root-cause of tablet dissolution shift (slow-down) upon stability and develop control strategies for a drug product during formulation and process development. The effectiveness and usefulness of these methodologies were demonstrated through two application examples. In both applications, dissolution slow-down was observed during a 4-week accelerated stability test under 51°C/75%RH storage condition. In Application I, an experimental design was carried out to evaluate the interactions and effects of the design factors on critical quality attribute (CQA) of dissolution upon stability. The design space was studied by design of experiment (DOE) and multivariate analysis to ensure desired dissolution profile and minimal dissolution shift upon stability. Multivariate techniques, such as multi-way principal component analysis (MPCA) of the entire dissolution profiles upon stability, were performed to reveal batch relationships and to evaluate the impact of design factors on dissolution. In Application II, an experiment was conducted to study the impact of varying tablet breaking force on dissolution upon stability utilizing MPCA. It was demonstrated that the use of multivariate methods, defined as Quality by Design (QbD) principles and tools in ICH-Q8 guidance, provides an effective means to achieve a greater understanding of tablet dissolution upon stability. Copyright © 2010 Elsevier B.V. All rights reserved.
Fuzzy Logic Controller Stability Analysis Using a Satisfiability Modulo Theories Approach
NASA Technical Reports Server (NTRS)
Arnett, Timothy; Cook, Brandon; Clark, Matthew A.; Rattan, Kuldip
2017-01-01
While many widely accepted methods and techniques exist for validation and verification of traditional controllers, at this time no solutions have been accepted for Fuzzy Logic Controllers (FLCs). Due to the highly nonlinear nature of such systems, and the fact that developing a valid FLC does not require a mathematical model of the system, it is quite difficult to use conventional techniques to prove controller stability. Since safety-critical systems must be tested and verified to work as expected for all possible circumstances, the fact that FLC controllers cannot be tested to achieve such requirements poses limitations on the applications for such technology. Therefore, alternative methods for verification and validation of FLCs needs to be explored. In this study, a novel approach using formal verification methods to ensure the stability of a FLC is proposed. Main research challenges include specification of requirements for a complex system, conversion of a traditional FLC to a piecewise polynomial representation, and using a formal verification tool in a nonlinear solution space. Using the proposed architecture, the Fuzzy Logic Controller was found to always generate negative feedback, but inconclusive for Lyapunov stability.
A computer-aided approach to nonlinear control systhesis
NASA Technical Reports Server (NTRS)
Wie, Bong; Anthony, Tobin
1988-01-01
The major objective of this project is to develop a computer-aided approach to nonlinear stability analysis and nonlinear control system design. This goal is to be obtained by refining the describing function method as a synthesis tool for nonlinear control design. The interim report outlines the approach by this study to meet these goals including an introduction to the INteractive Controls Analysis (INCA) program which was instrumental in meeting these study objectives. A single-input describing function (SIDF) design methodology was developed in this study; coupled with the software constructed in this study, the results of this project provide a comprehensive tool for design and integration of nonlinear control systems.
NASA Astrophysics Data System (ADS)
Calderon-Ramos, Ismael; Morales, R. D.
2016-06-01
The design of the ports of a casting nozzle has profound effects on the fluid flow patterns in slab molds. The influence of these outlets have also considerable effects on the turbulent flow and turbulence variables inside the nozzle itself. To understand the effects of nozzle design, three approaches were employed: a theoretical analysis based on the turbulent viscosity hypothesis, dimensional analysis (both analyses aided by computer fluid dynamics), and experiments using particle image velocimetry. The first approach yields a linear relation between calculated magnitudes of scalar fields of ɛ (dissipation rate of kinetic energy) and k 2 (square of the turbulent kinetic energy), which is derived from the wall and the logarithmic-wall laws in the boundary layers. The smaller the slope of this linear relation is, the better the performance of a given nozzle is for maintaining the stability of the melt-flux interface. The second approach yields also a linear relation between flow rate of liquid metal and the cubic root of the dissipation rate of kinetic energy. In this case, the larger the slope of the linear relation is, the better the performance of a given nozzle is for maintaining the stability of the melt-flux interface. Finally, PIV measurements in a mold water model, together with equations for estimation of critical melt velocities for slag entrainment, were used to quantify the effects of nozzle design on the dynamics of the metal-slag interface. The three approaches agree in the characterization of turbulent flows in continuous casting molds using different nozzles.
Systemic Analysis Approaches for Air Transportation
NASA Technical Reports Server (NTRS)
Conway, Sheila
2005-01-01
Air transportation system designers have had only limited success using traditional operations research and parametric modeling approaches in their analyses of innovations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be used with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. However, air transportation has proven itself an extensive, complex system whose behavior is difficult to describe, no less predict. There is a wide range of system analysis techniques available, but some are more appropriate for certain applications than others. Specifically in the area of complex system analysis, the literature suggests that both agent-based models and network analysis techniques may be useful. This paper discusses the theoretical basis for each approach in these applications, and explores their historic and potential further use for air transportation analysis.
NASA Astrophysics Data System (ADS)
Pereira, Robson A.; Anconi, Cleber P. A.; Nascimento, Clebio S.; De Almeida, Wagner B.; Dos Santos, Hélio F.
2015-07-01
The present letter reports results from a comprehensive theoretical analysis of the inclusion process involving 2,4-dichlorophenoxyacetic acid (2,4-D) and β-cyclodextrin (β-CD) for which the experimental data of formation is available. Spatial arrangement and stabilization energies were evaluated in gas phase and aqueous solution through density functional theory (DFT) and through the use of SMD implicit solvation approach. The discussed methodology was applied to predict the stability and identify the most favorable form (deprotonated or neutral) as well as the most probable spatial arrangement of the studied inclusion compound.
Robust controller designs for second-order dynamic system: A virtual passive approach
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Phan, Minh
1990-01-01
A robust controller design is presented for second-order dynamic systems. The controller is model-independent and itself is a virtual second-order dynamic system. Conditions on actuator and sensor placements are identified for controller designs that guarantee overall closed-loop stability. The dynamic controller can be viewed as a virtual passive damping system that serves to stabilize the actual dynamic system. The control gains are interpreted as virtual mass, spring, and dashpot elements that play the same roles as actual physical elements in stability analysis. Position, velocity, and acceleration feedback are considered. Simple examples are provided to illustrate the physical meaning of this controller design.
Whitney, Anna; Shakhnovich, Eugene I.
2015-01-01
Design of proteins with desired thermal properties is important for scientific and biotechnological applications. Here we developed a theoretical approach to predict the effect of mutations on protein stability from non-equilibrium unfolding simulations. We establish a relative measure based on apparent simulated melting temperatures that is independent of simulation length and, under certain assumptions, proportional to equilibrium stability, and we justify this theoretical development with extensive simulations and experimental data. Using our new method based on all-atom Monte-Carlo unfolding simulations, we carried out a saturating mutagenesis of Dihydrofolate Reductase (DHFR), a key target of antibiotics and chemotherapeutic drugs. The method predicted more than 500 stabilizing mutations, several of which were selected for detailed computational and experimental analysis. We find a highly significant correlation of r = 0.65–0.68 between predicted and experimentally determined melting temperatures and unfolding denaturant concentrations for WT DHFR and 42 mutants. The correlation between energy of the native state and experimental denaturation temperature was much weaker, indicating the important role of entropy in protein stability. The most stabilizing point mutation was D27F, which is located in the active site of the protein, rendering it inactive. However for the rest of mutations outside of the active site we observed a weak yet statistically significant positive correlation between thermal stability and catalytic activity indicating the lack of a stability-activity tradeoff for DHFR. By combining stabilizing mutations predicted by our method, we created a highly stable catalytically active E. coli DHFR mutant with measured denaturation temperature 7.2°C higher than WT. Prediction results for DHFR and several other proteins indicate that computational approaches based on unfolding simulations are useful as a general technique to discover stabilizing mutations. PMID:25905910
Feng, Yan Wen; Ooishi, Ayako; Honda, Shinya
2012-01-05
A simple systematic approach using Fourier transform infrared (FTIR) spectroscopy, size exclusion chromatography (SEC) and design of experiments (DOE) techniques was applied to the analysis of aggregation factors for protein formulations in stress and accelerated testings. FTIR and SEC were used to evaluate protein conformational and storage stabilities, respectively. DOE was used to determine the suitable formulation and to analyze both the main effect of single factors and the interaction effect of combined factors on aggregation. Our results indicated that (i) analysis at a low protein concentration is not always applicable to high concentration formulations; (ii) an investigation of interaction effects of combined factors as well as main effects of single factors is effective for improving conformational stability of proteins; (iii) with the exception of pH, the results of stress testing with regard to aggregation factors would be available for suitable formulation instead of performing time-consuming accelerated testing; (iv) a suitable pH condition should not be determined in stress testing but in accelerated testing, because of inconsistent effects of pH on conformational and storage stabilities. In summary, we propose a three-step strategy, using FTIR, SEC and DOE techniques, to effectively analyze the aggregation factors and perform a rapid screening for suitable conditions of protein formulation. Copyright © 2011 Elsevier B.V. All rights reserved.
Thermostability of In Vitro Evolved Bacillus subtilis Lipase A: A Network and Dynamics Perspective
Srivastava, Ashutosh; Sinha, Somdatta
2014-01-01
Proteins in thermophilic organisms remain stable and function optimally at high temperatures. Owing to their important applicability in many industrial processes, such thermostable proteins have been studied extensively, and several structural factors attributed to their enhanced stability. How these factors render the emergent property of thermostability to proteins, even in situations where no significant changes occur in their three-dimensional structures in comparison to their mesophilic counter-parts, has remained an intriguing question. In this study we treat Lipase A from Bacillus subtilis and its six thermostable mutants in a unified manner and address the problem with a combined complex network-based analysis and molecular dynamic studies to find commonality in their properties. The Protein Contact Networks (PCN) of the wild-type and six mutant Lipase A structures developed at a mesoscopic scale were analyzed at global network and local node (residue) level using network parameters and community structure analysis. The comparative PCN analysis of all proteins pointed towards important role of specific residues in the enhanced thermostability. Network analysis results were corroborated with finer-scale molecular dynamics simulations at both room and high temperatures. Our results show that this combined approach at two scales can uncover small but important changes in the local conformations that add up to stabilize the protein structure in thermostable mutants, even when overall conformation differences among them are negligible. Our analysis not only supports the experimentally determined stabilizing factors, but also unveils the important role of contacts, distributed throughout the protein, that lead to thermostability. We propose that this combined mesoscopic-network and fine-grained molecular dynamics approach is a convenient and useful scheme not only to study allosteric changes leading to protein stability in the face of negligible over-all conformational changes due to mutations, but also in other molecular networks where change in function does not accompany significant change in the network structure. PMID:25122499
NASA Technical Reports Server (NTRS)
Schierman, John D.; Lovell, T. A.; Schmidt, David K.
1993-01-01
Three multivariable robustness analysis methods are compared and contrasted. The focus of the analysis is on system stability and performance robustness to uncertainty in the coupling dynamics between two interacting subsystems. Of particular interest is interacting airframe and engine subsystems, and an example airframe/engine vehicle configuration is utilized in the demonstration of these approaches. The singular value (SV) and structured singular value (SSV) analysis methods are compared to a method especially well suited for analysis of robustness to uncertainties in subsystem interactions. This approach is referred to here as the interacting subsystem (IS) analysis method. This method has been used previously to analyze airframe/engine systems, emphasizing the study of stability robustness. However, performance robustness is also investigated here, and a new measure of allowable uncertainty for acceptable performance robustness is introduced. The IS methodology does not require plant uncertainty models to measure the robustness of the system, and is shown to yield valuable information regarding the effects of subsystem interactions. In contrast, the SV and SSV methods allow for the evaluation of the robustness of the system to particular models of uncertainty, and do not directly indicate how the airframe (engine) subsystem interacts with the engine (airframe) subsystem.
Critical Nucleation Length for Accelerating Frictional Slip
NASA Astrophysics Data System (ADS)
Aldam, Michael; Weikamp, Marc; Spatschek, Robert; Brener, Efim A.; Bouchbinder, Eran
2017-11-01
The spontaneous nucleation of accelerating slip along slowly driven frictional interfaces is central to a broad range of geophysical, physical, and engineering systems, with particularly far-reaching implications for earthquake physics. A common approach to this problem associates nucleation with an instability of an expanding creep patch upon surpassing a critical length Lc. The critical nucleation length Lc is conventionally obtained from a spring-block linear stability analysis extended to interfaces separating elastically deformable bodies using model-dependent fracture mechanics estimates. We propose an alternative approach in which the critical nucleation length is obtained from a related linear stability analysis of homogeneous sliding along interfaces separating elastically deformable bodies. For elastically identical half-spaces and rate-and-state friction, the two approaches are shown to yield Lc that features the same scaling structure, but with substantially different numerical prefactors, resulting in a significantly larger Lc in our approach. The proposed approach is also shown to be naturally applicable to finite-size systems and bimaterial interfaces, for which various analytic results are derived. To quantitatively test the proposed approach, we performed inertial Finite-Element-Method calculations for a finite-size two-dimensional elastically deformable body in rate-and-state frictional contact with a rigid body under sideway loading. We show that the theoretically predicted Lc and its finite-size dependence are in reasonably good quantitative agreement with the full numerical solutions, lending support to the proposed approach. These results offer a theoretical framework for predicting rapid slip nucleation along frictional interfaces.
Compressor stability management
NASA Astrophysics Data System (ADS)
Dhingra, Manuj
Dynamic compressors are susceptible to aerodynamic instabilities while operating at low mass flow rates. These instabilities, rotating stall and surge, are detrimental to engine life and operational safety, and are thus undesirable. In order to prevent stability problems, a passive technique, involving fuel flow scheduling, is currently employed on gas turbines. The passive nature of this technique necessitates conservative stability margins, compromising performance and/or efficiency. In the past, model based active control has been proposed to enable reduction of margin requirements. However, available compressor stability models do not predict the different stall inception patterns, making model based control techniques practically infeasible. This research presents active stability management as a viable alternative. In particular, a limit detection and avoidance approach has been used to maintain the system free of instabilities. Simulations show significant improvements in the dynamic response of a gas turbine engine with this approach. A novel technique has been developed to enable real-time detection of stability limits in axial compressors. It employs a correlation measure to quantify the chaos in the rotor tip region. Analysis of data from four axial compressors shows that the value of the correlation measure decreases as compressor loading is increased. Moreover, sharp drops in this measure have been found to be relevant for stability limit detection. The significance of these drops can be captured by tracking events generated by the downward crossing of a selected threshold level. It has been observed that the average number of events increases as the stability limit is approached in all the compressors studied. These events appear to be randomly distributed in time. A stochastic model for the time between consecutive events has been developed and incorporated in an engine simulation. The simulation has been used to highlight the importance of the threshold level to successful stability management. The compressor stability management concepts have also been experimentally demonstrated on a laboratory axial compressor rig. The fundamental nature of correlation measure has opened avenues for its application besides limit detection. The applications presented include stage load matching in a multi-stage compressor and monitoring the aerodynamic health of rotor blades.
Local coexistence of VO 2 phases revealed by deep data analysis
Strelcov, Evgheni; Ievlev, Anton; Tselev, Alexander; ...
2016-07-07
We report a synergistic approach of micro-Raman spectroscopic mapping and deep data analysis to study the distribution of crystallographic phases and ferroelastic domains in a defected Al-doped VO 2 microcrystal. Bayesian linear unmixing revealed an uneven distribution of the T phase, which is stabilized by the surface defects and uneven local doping that went undetectable by other classical analysis techniques such as PCA and SIMPLISMA. This work demonstrates the impact of information recovery via statistical analysis and full mapping in spectroscopic studies of vanadium dioxide systems, which is commonly substituted by averaging or single point-probing approaches, both of which suffermore » from information misinterpretation due to low resolving power.« less
Nang, Roberto N; Monahan, Felicia; Diehl, Glendon B; French, Daniel
2015-04-01
Many institutions collect reports in databases to make important lessons-learned available to their members. The Uniformed Services University of the Health Sciences collaborated with the Peacekeeping and Stability Operations Institute to conduct a descriptive and qualitative analysis of global health engagements (GHEs) contained in the Stability Operations Lessons Learned and Information Management System (SOLLIMS). This study used a summative qualitative content analysis approach involving six steps: (1) a comprehensive search; (2) two-stage reading and screening process to identify first-hand, health-related records; (3) qualitative and quantitative data analysis using MAXQDA, a software program; (4) a word cloud to illustrate word frequencies and interrelationships; (5) coding of individual themes and validation of the coding scheme; and (6) identification of relationships in the data and overarching lessons-learned. The individual codes with the most number of text segments coded included: planning, personnel, interorganizational coordination, communication/information sharing, and resources/supplies. When compared to the Department of Defense's (DoD's) evolving GHE principles and capabilities, the SOLLIMS coding scheme appeared to align well with the list of GHE capabilities developed by the Department of Defense Global Health Working Group. The results of this study will inform practitioners of global health and encourage additional qualitative analysis of other lessons-learned databases. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.
Clénet, Didier
2018-04-01
Due to their thermosensitivity, most vaccines must be kept refrigerated from production to use. To successfully carry out global immunization programs, ensuring the stability of vaccines is crucial. In this context, two important issues are critical, namely: (i) predicting vaccine stability and (ii) preventing product damage due to excessive temperature excursions outside of the recommended storage conditions (cold chain break). We applied a combination of advanced kinetics and statistical analyses on vaccine forced degradation data to accurately describe the loss of antigenicity for a multivalent freeze-dried inactivated virus vaccine containing three variants. The screening of large amounts of kinetic models combined with a statistical model selection approach resulted in the identification of two-step kinetic models. Predictions based on kinetic analysis and experimental stability data were in agreement, with approximately five percentage points difference from real values for long-term stability storage conditions, after excursions of temperature and during experimental shipments of freeze-dried products. Results showed that modeling a few months of forced degradation can be used to predict various time and temperature profiles endured by vaccines, i.e. long-term stability, short time excursions outside the labeled storage conditions or shipments at ambient temperature, with high accuracy. Pharmaceutical applications of the presented kinetics-based approach are discussed. Copyright © 2018 The Author. Published by Elsevier B.V. All rights reserved.
Hillslope hydrology and stability
Lu, Ning; Godt, Jonathan
2012-01-01
Landslides are caused by a failure of the mechanical balance within hillslopes. This balance is governed by two coupled physical processes: hydrological or subsurface flow and stress. The stabilizing strength of hillslope materials depends on effective stress, which is diminished by rainfall. This book presents a cutting-edge quantitative approach to understanding hydro-mechanical processes across variably saturated hillslope environments and to the study and prediction of rainfall-induced landslides. Topics covered include historic synthesis of hillslope geomorphology and hydrology, total and effective stress distributions, critical reviews of shear strength of hillslope materials and different bases for stability analysis. Exercises and homework problems are provided for students to engage with the theory in practice. This is an invaluable resource for graduate students and researchers in hydrology, geomorphology, engineering geology, geotechnical engineering and geomechanics and for professionals in the fields of civil and environmental engineering and natural hazard analysis.
Developing a stability assessment method for power electronics-based microgrids
NASA Astrophysics Data System (ADS)
Austin, Peter M.
Modern microgrids with microsources and energy storage are dependent on power electronics for control and regulation. Under certain circumstances power electronics can be destabilizing to the system due to an effect called negative incremental impedance. A careful review of the theory and literature on the subject is presented. This includes stability criteria for both AC and DC systems, as well as a discussion on the limitations posed by the analysis. A method to integrate stability assessment with higher-level microgrid architectural design is proposed. Crucial to this is impedance characterization of individual components, which was accomplished through simulation. DC and AC impedance measurement blocks were created in Matlab simulink to automate the process. A detailed switching-level model of a DC microgrid was implemented in simulink, including wind turbine microsource, battery storage, and three phase inverter. Maximum power point tracking (MPPT) was included to maximize the efficiency of the turbine and was implemented through three rectifier alternatives and control schemes. The stability characteristics of each was compared in the final analysis. Impedance data was collected individually from the components and used to assess stability in the system as a whole. The results included the assessment of stability, margin, and unstable operating points to demonstrate the feasibility of the proposed approach.
NASA Technical Reports Server (NTRS)
Hodel, A. S.; Whorton, Mark; Zhu, J. Jim
2008-01-01
Due to a need for improved reliability and performance in aerospace systems, there is increased interest in the use of adaptive control or other nonlinear, time-varying control designs in aerospace vehicles. While such techniques are built on Lyapunov stability theory, they lack an accompanying set of metrics for the assessment of stability margins such as the classical gain and phase margins used in linear time-invariant systems. Such metrics must both be physically meaningful and permit the user to draw conclusions in a straightforward fashion. We present in this paper a roadmap to the development of metrics appropriate to nonlinear, time-varying systems. We also present two case studies in which frozen-time gain and phase margins incorrectly predict stability or instability. We then present a multi-resolution analysis approach that permits on-line real-time stability assessment of nonlinear systems.
Narimani, Mohammand; Lam, H K; Dilmaghani, R; Wolfe, Charles
2011-06-01
Relaxed linear-matrix-inequality-based stability conditions for fuzzy-model-based control systems with imperfect premise matching are proposed. First, the derivative of the Lyapunov function, containing the product terms of the fuzzy model and fuzzy controller membership functions, is derived. Then, in the partitioned operating domain of the membership functions, the relations between the state variables and the mentioned product terms are represented by approximated polynomials in each subregion. Next, the stability conditions containing the information of all subsystems and the approximated polynomials are derived. In addition, the concept of the S-procedure is utilized to release the conservativeness caused by considering the whole operating region for approximated polynomials. It is shown that the well-known stability conditions can be special cases of the proposed stability conditions. Simulation examples are given to illustrate the validity of the proposed approach.
Temporal Stability of the Human Skin Microbiome.
Oh, Julia; Byrd, Allyson L; Park, Morgan; Kong, Heidi H; Segre, Julia A
2016-05-05
Biogeography and individuality shape the structural and functional composition of the human skin microbiome. To explore these factors' contribution to skin microbial community stability, we generated metagenomic sequence data from longitudinal samples collected over months and years. Analyzing these samples using a multi-kingdom, reference-based approach, we found that despite the skin's exposure to the external environment, its bacterial, fungal, and viral communities were largely stable over time. Site, individuality, and phylogeny were all determinants of stability. Foot sites exhibited the most variability; individuals differed in stability; and transience was a particular characteristic of eukaryotic viruses, which showed little site-specificity in colonization. Strain and single-nucleotide variant-level analysis showed that individuals maintain, rather than reacquire, prevalent microbes from the environment. Longitudinal stability of skin microbial communities generates hypotheses about colonization resistance and empowers clinical studies exploring alterations observed in disease states. Copyright © 2016 Elsevier Inc. All rights reserved.
Analysis of protein stability and ligand interactions by thermal shift assay.
Huynh, Kathy; Partch, Carrie L
2015-02-02
Purification of recombinant proteins for biochemical assays and structural studies is time-consuming and presents inherent difficulties that depend on the optimization of protein stability. The use of dyes to monitor thermal denaturation of proteins with sensitive fluorescence detection enables rapid and inexpensive determination of protein stability using real-time PCR instruments. By screening a wide range of solution conditions and additives in a 96-well format, the thermal shift assay easily identifies conditions that significantly enhance the stability of recombinant proteins. The same approach can be used as an initial low-cost screen to discover new protein-ligand interactions by capitalizing on increases in protein stability that typically occur upon ligand binding. This unit presents a methodological workflow for small-scale, high-throughput thermal denaturation of recombinant proteins in the presence of SYPRO Orange dye. Copyright © 2015 John Wiley & Sons, Inc.
Predictive optimized adaptive PSS in a single machine infinite bus.
Milla, Freddy; Duarte-Mermoud, Manuel A
2016-07-01
Power System Stabilizer (PSS) devices are responsible for providing a damping torque component to generators for reducing fluctuations in the system caused by small perturbations. A Predictive Optimized Adaptive PSS (POA-PSS) to improve the oscillations in a Single Machine Infinite Bus (SMIB) power system is discussed in this paper. POA-PSS provides the optimal design parameters for the classic PSS using an optimization predictive algorithm, which adapts to changes in the inputs of the system. This approach is part of small signal stability analysis, which uses equations in an incremental form around an operating point. Simulation studies on the SMIB power system illustrate that the proposed POA-PSS approach has better performance than the classical PSS. In addition, the effort in the control action of the POA-PSS is much less than that of other approaches considered for comparison. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Moving mode shape function approach for spinning disk and asymmetric disc brake squeal
NASA Astrophysics Data System (ADS)
Kang, Jaeyoung
2018-06-01
The solution approach of an asymmetric spinning disk under stationary friction loads requires the mode shape function fixed in the disk in the assumed mode method when the equations of motion is described in the space-fixed frame. This model description will be termed the 'moving mode shape function approach' and it allows us to formulate the stationary contact load problem in both the axisymmetric and asymmetric disk cases. Numerical results show that the eigenvalues of the time-periodic axisymmetric disk system are time-invariant. When the axisymmetry of the disk is broken, the positive real parts of the eigenvalues highly vary with the rotation of the disk in the slow speeds in such application as disc brake squeal. By using the Floquet stability analysis, it is also shown that breaking the axisymmetry of the disc alters the stability boundaries of the system.
Decomposition of heterogeneous organic matterand its long-term stabilization in soils
Sierra, Carlos A.; Harmon, Mark E.; Perakis, Steven S.
2011-01-01
Soil organic matter is a complex mixture of material with heterogeneous biological, physical, and chemical properties. Decomposition models represent this heterogeneity either as a set of discrete pools with different residence times or as a continuum of qualities. It is unclear though, whether these two different approaches yield comparable predictions of organic matter dynamics. Here, we compare predictions from these two different approaches and propose an intermediate approach to study organic matter decomposition based on concepts from continuous models implemented numerically. We found that the disagreement between discrete and continuous approaches can be considerable depending on the degree of nonlinearity of the model and simulation time. The two approaches can diverge substantially for predicting long-term processes in soils. Based on our alternative approach, which is a modification of the continuous quality theory, we explored the temporal patterns that emerge by treating substrate heterogeneity explicitly. The analysis suggests that the pattern of carbon mineralization over time is highly dependent on the degree and form of nonlinearity in the model, mostly expressed as differences in microbial growth and efficiency for different substrates. Moreover, short-term stabilization and destabilization mechanisms operating simultaneously result in long-term accumulation of carbon characterized by low decomposition rates, independent of the characteristics of the incoming litter. We show that representation of heterogeneity in the decomposition process can lead to substantial improvements in our understanding of carbon mineralization and its long-term stability in soils.
Thermal stability increase in metallic nanoparticles-loaded cellulose nanocrystal nanocomposites.
Goikuria, U; Larrañaga, A; Vilas, J L; Lizundia, E
2017-09-01
Due to the potential of CNC-based flexible materials for novel industrial applications, the aim of this work is to improve the thermal stability of cellulose nanocrystals (CNC) films through a straightforward and scalable method. Based of nanocomposite approach, five different metallic nanoparticles (ZnO, SiO 2 , TiO 2 , Al 2 O 3 and Fe 2 O 3 ) have been co-assembled in water with CNCs to obtain free-standing nanocomposite films. Thermogravimetric analysis (TGA) reveals an increased thermal stability upon nanoparticle. This increase in the thermal stability reaches a maximum of 75°C for the nanocomposites having 10wt% of Fe 2 O 3 and ZnO. The activation energies of thermodegradation process (E a ) determined according to Kissinger and Ozawa-Flynn-Wall methods further confirm the delayed degradation of CNC nanocomposites upon heating. Finally, the changes induced in the crystalline structure during thermodegradation were followed by wide angle X-ray diffraction (WAXD). It is also observed that thermal degradation proceeds at higher temperatures for nanocomposites having metallic nanoparticles. Overall, experimental findings here showed make nanocomposite approach a simple low-cost environmentally-friendly strategy to overcome the relatively poor thermal stability of CNCs when extracted via sulfuric acid assisted hydrolysis of cellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vaccine instability in the cold chain: mechanisms, analysis and formulation strategies.
Kumru, Ozan S; Joshi, Sangeeta B; Smith, Dawn E; Middaugh, C Russell; Prusik, Ted; Volkin, David B
2014-09-01
Instability of vaccines often emerges as a key challenge during clinical development (lab to clinic) as well as commercial distribution (factory to patient). To yield stable, efficacious vaccine dosage forms for human use, successful formulation strategies must address a combination of interrelated topics including stabilization of antigens, selection of appropriate adjuvants, and development of stability-indicating analytical methods. This review covers key concepts in understanding the causes and mechanisms of vaccine instability including (1) the complex and delicate nature of antigen structures (e.g., viruses, proteins, carbohydrates, protein-carbohydrate conjugates, etc.), (2) use of adjuvants to further enhance immune responses, (3) development of physicochemical and biological assays to assess vaccine integrity and potency, and (4) stabilization strategies to protect vaccine antigens and adjuvants (and their interactions) during storage. Despite these challenges, vaccines can usually be sufficiently stabilized for use as medicines through a combination of formulation approaches combined with maintenance of an efficient cold chain (manufacturing, distribution, storage and administration). Several illustrative case studies are described regarding mechanisms of vaccine instability along with formulation approaches for stabilization within the vaccine cold chain. These include live, attenuated (measles, polio) and inactivated (influenza, polio) viral vaccines as well as recombinant protein (hepatitis B) vaccines. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Humidity-corrected Arrhenius equation: The reference condition approach.
Naveršnik, Klemen; Jurečič, Rok
2016-03-16
Accelerated and stress stability data is often used to predict shelf life of pharmaceuticals. Temperature, combined with humidity accelerates chemical decomposition and the Arrhenius equation is used to extrapolate accelerated stability results to long-term stability. Statistical estimation of the humidity-corrected Arrhenius equation is not straightforward due to its non-linearity. A two stage nonlinear fitting approach is used in practice, followed by a prediction stage. We developed a single-stage statistical procedure, called the reference condition approach, which has better statistical properties (less collinearity, direct estimation of uncertainty, narrower prediction interval) and is significantly easier to use, compared to the existing approaches. Our statistical model was populated with data from a 35-day stress stability study on a laboratory batch of vitamin tablets and required mere 30 laboratory assay determinations. The stability prediction agreed well with the actual 24-month long term stability of the product. The approach has high potential to assist product formulation, specification setting and stability statements. Copyright © 2016 Elsevier B.V. All rights reserved.
Ground effects on the stability of separated flow around an airfoil at low Reynolds numbers
NASA Astrophysics Data System (ADS)
He, Wei; Yu, Peng; Li, Larry K. B.
2017-11-01
We perform a BiGlobal stability analysis on the separated flow around a NACA 4415 airfoil at low Reynolds numbers (Re = 300 - 1000) and a high angle of attack α =20° with a focus on the effect of the airfoil's proximity to a moving ground. The results show that the most dominant perturbation is the Kelvin-Helmholtz mode and that this traveling mode becomes less unstable as the airfoil approaches the ground, although this stabilizing effect diminishes with increasing Reynolds number. By performing a Floquet analysis, we find that this ground effect can also stabilize secondary instabilities. This numerical-theoretical study shows that the ground can have a significant influence on the stability of separated flow around an airfoil at low Reynolds numbers, which could have implications for the design of micro aerial vehicles and for the understanding of natural flyers such as insects and birds. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815) and the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase) under Grant No.U1501501.
Analyzing Aeroelastic Stability of a Tilt-Rotor Aircraft
NASA Technical Reports Server (NTRS)
Kvaternil, Raymond G.
2006-01-01
Proprotor Aeroelastic Stability Analysis, now at version 4.5 (PASTA 4.5), is a FORTRAN computer program for analyzing the aeroelastic stability of a tiltrotor aircraft in the airplane mode of flight. The program employs a 10-degree- of-freedom (DOF), discrete-coordinate, linear mathematical model of a rotor with three or more blades and its drive system coupled to a 10-DOF modal model of an airframe. The user can select which DOFs are included in the analysis. Quasi-steady strip-theory aerodynamics is employed for the aerodynamic loads on the blades, a quasi-steady representation is employed for the aerodynamic loads acting on the vibrational modes of the airframe, and a stability-derivative approach is used for the aerodynamics associated with the rigid-body DOFs of the airframe. Blade parameters that vary with the blade collective pitch can be obtained by interpolation from a user-defined table. Stability is determined by examining the eigenvalues that are obtained by solving the coupled equations of motions as a matrix eigenvalue problem. Notwithstanding the relative simplicity of its mathematical foundation, PASTA 4.5 and its predecessors have played key roles in a number of engineering investigations over the years.
Extension of Space Food Shelf Life Through Hurdle Approach
NASA Technical Reports Server (NTRS)
Cooper, M. R.; Sirmons, T. A.; Froio-Blumsack, D.; Mohr, L.; Young, M.; Douglas, G. L.
2018-01-01
The processed and prepackaged space food system is the main source of crew nutrition, and hence central to astronaut health and performance. Unfortunately, space food quality and nutrition degrade to unacceptable levels in two to three years with current food stabilization technologies. Future exploration missions will require a food system that remains safe, acceptable and nutritious through five years of storage within vehicle resource constraints. The potential of stabilization technologies (alternative storage temperatures, processing, formulation, ingredient source, packaging, and preparation procedures), when combined in hurdle approach, to mitigate quality and nutritional degradation is being assessed. Sixteen representative foods from the International Space Station food system were chosen for production and analysis and will be evaluated initially and at one, three, and five years with potential for analysis at seven years if necessary. Analysis includes changes in color, texture, nutrition, sensory quality, and rehydration ratio when applicable. The food samples will be stored at -20 C, 4 C, and 21 C. Select food samples will also be evaluated at -80 C to determine the impacts of ultra-cold storage after one and five years. Packaging film barrier properties and mechanical integrity will be assessed before and after processing and storage. At the study conclusion, if tested hurdles are adequate, formulation, processing, and storage combinations will be uniquely identified for processed food matrices to achieve a five-year shelf life. This study will provide one of the most comprehensive investigations of long duration food stability ever completed, and the achievement of extended food system stability will have profound impacts to health and performance for spaceflight crews and for relief efforts and military applications on Earth.
The numerical dynamic for highly nonlinear partial differential equations
NASA Technical Reports Server (NTRS)
Lafon, A.; Yee, H. C.
1992-01-01
Problems associated with the numerical computation of highly nonlinear equations in computational fluid dynamics are set forth and analyzed in terms of the potential ranges of spurious behaviors. A reaction-convection equation with a nonlinear source term is employed to evaluate the effects related to spatial and temporal discretizations. The discretization of the source term is described according to several methods, and the various techniques are shown to have a significant effect on the stability of the spurious solutions. Traditional linearized stability analyses cannot provide the level of confidence required for accurate fluid dynamics computations, and the incorporation of nonlinear analysis is proposed. Nonlinear analysis based on nonlinear dynamical systems complements the conventional linear approach and is valuable in the analysis of hypersonic aerodynamics and combustion phenomena.
Pulsational stabilities of a star in thermal imbalance - Comparison between the methods
NASA Technical Reports Server (NTRS)
Vemury, S. K.
1978-01-01
The stability coefficients for quasi-adiabatic pulsations for a model in thermal imbalance are evaluated using the dynamical energy (DE) approach, the total (kinetic plus potential) energy (TE) approach, and the small amplitude (SA) approaches. From a comparison among the methods, it is found that there can exist two distinct stability coefficients under conditions of thermal imbalance as pointed out by Demaret. It is shown that both the TE approaches lead to one stability coefficient, while both the SA approaches lead to another coefficient. The coefficient obtained through the energy approaches is identified as the one which determines the stability of the velocity amplitudes. For a prenova model with a thin hydrogen-burning shell in thermal imbalance, several radial modes are found to be unstable both for radial displacements and for velocity amplitudes. However, a new kind of pulsational instability also appears, viz., while the radial displacements are unstable, the velocity amplitudes may be stabilized through the thermal imbalance terms.
Single-cell analysis of radiotracers' uptake by fluorescence microscopy: direct and droplet approach
NASA Astrophysics Data System (ADS)
Gallina, M. E.; Kim, T. J.; Vasquez, J.; Tuerkcan, S.; Abbyad, P.; Pratx, G.
2017-02-01
Radionuclides are used for sensitive and specific detection of small molecules in vivo and in vitro. Recently, radioluminescence microscopy extended their use to single-cell studies. Here we propose a new single-cell radioisotopic assay that improves throughput while adding sorting capabilities. The new method uses fluorescence-based sensor for revealing single-cell interactions with radioactive molecular markers. This study focuses on comparing two different experimental approaches. Several probes were tested and Dihydrorhodamine 123 was selected as the best compromise between sensitivity, brightness and stability. The sensor was incorporated either directly within the cell cytoplasm (direct approach), or it was coencapsulated with radiolabeled single-cells in oil-dispersed water droplets (droplet approach). Both approaches successfully activated the fluorescence signal following cellular uptake of 18F-fluorodeoxyglucose (FDG) and external Xrays exposure. The direct approach offered single-cell resolution and longtime stability ( > 20 hours), moreover it could discriminate FDG uptake at labelling concentration as low as 300 μCi/ml. In cells incubated with Dihydrorhodamine 123 after exposure to high radiation doses (8-16 Gy), the fluorescence signal was found to increase with the depletion of ROS quenchers. On the other side, the droplet approach required higher labelling concentrations (1.00 mCi/ml), and, at the current state of art, three cells per droplet are necessary to produce a fluorescent signal. This approach, however, is independent on cellular oxidative stress and, with further improvements, will be more suitable for studying heterogeneous populations. We anticipate this technology to pave the way for the analysis of single-cell interactions with radiomarkers by radiofluorogenic-activated single-cell sorting.
A conformal approach for the analysis of the non-linear stability of radiation cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luebbe, Christian, E-mail: c.luebbe@ucl.ac.uk; Department of Mathematics, University of Leicester, University Road, LE1 8RH; Valiente Kroon, Juan Antonio, E-mail: j.a.valiente-kroon@qmul.ac.uk
2013-01-15
The conformal Einstein equations for a trace-free (radiation) perfect fluid are derived in terms of the Levi-Civita connection of a conformally rescaled metric. These equations are used to provide a non-linear stability result for de Sitter-like trace-free (radiation) perfect fluid Friedman-Lemaitre-Robertson-Walker cosmological models. The solutions thus obtained exist globally towards the future and are future geodesically complete. - Highlights: Black-Right-Pointing-Pointer We study the Einstein-Euler system in General Relativity using conformal methods. Black-Right-Pointing-Pointer We analyze the structural properties of the associated evolution equations. Black-Right-Pointing-Pointer We establish the non-linear stability of pure radiation cosmological models.
Salivary biomarker development using genomic, proteomic and metabolomic approaches
2012-01-01
The use of saliva as a diagnostic sample provides a non-invasive, cost-efficient method of sample collection for disease screening without the need for highly trained professionals. Saliva collection is far more practical and safe compared with invasive methods of sample collection, because of the infection risk from contaminated needles during, for example, blood sampling. Furthermore, the use of saliva could increase the availability of accurate diagnostics for remote and impoverished regions. However, the development of salivary diagnostics has required technical innovation to allow stabilization and detection of analytes in the complex molecular mixture that is saliva. The recent development of cost-effective room temperature analyte stabilization methods, nucleic acid pre-amplification techniques and direct saliva transcriptomic analysis have allowed accurate detection and quantification of transcripts found in saliva. Novel protein stabilization methods have also facilitated improved proteomic analyses. Although candidate biomarkers have been discovered using epigenetic, transcriptomic, proteomic and metabolomic approaches, transcriptomic analyses have so far achieved the most progress in terms of sensitivity and specificity, and progress towards clinical implementation. Here, we review recent developments in salivary diagnostics that have been accomplished using genomic, transcriptomic, proteomic and metabolomic approaches. PMID:23114182
Research in computational fluid dynamics and analysis of algorithms
NASA Technical Reports Server (NTRS)
Gottlieb, David
1992-01-01
Recently, higher-order compact schemes have seen increasing use in the DNS (Direct Numerical Simulations) of the Navier-Stokes equations. Although they do not have the spatial resolution of spectral methods, they offer significant increases in accuracy over conventional second order methods. They can be used on any smooth grid, and do not have an overly restrictive CFL dependence as compared with the O(N(exp -2)) CFL dependence observed in Chebyshev spectral methods on finite domains. In addition, they are generally more robust and less costly than spectral methods. The issue of the relative cost of higher-order schemes (accuracy weighted against physical and numerical cost) is a far more complex issue, depending ultimately on what features of the solution are sought and how accurately they must be resolved. In any event, the further development of the underlying stability theory of these schemes is important. The approach of devising suitable boundary clusters and then testing them with various stability techniques (such as finding the norm) is entirely the wrong approach when dealing with high-order methods. Very seldom are high-order boundary closures stable, making them difficult to isolate. An alternative approach is to begin with a norm which satisfies all the stability criteria for the hyperbolic system, and look for the boundary closure forms which will match the norm exactly. This method was used recently by Strand to isolate stable boundary closure schemes for the explicit central fourth- and sixth-order schemes. The norm used was an energy norm mimicking the norm for the differential equations. Further research should be devoted to BC for high order schemes in order to make sure that the results obtained are reliable. The compact fourth order and sixth order finite difference scheme had been incorporated into a code to simulate flow past circular cylinders. This code will serve as a verification of the full spectral codes. A detailed stability analysis by Carpenter (from the fluid Mechanics Division) and Gottlieb gave analytic conditions for stability as well as asymptotic stability. This had been incorporated in the code in form of stable boundary conditions. Effects of the cylinder rotations had been studied. The results differ from the known theoretical results. We are in the middle of analyzing the results. A detailed analysis of the effects of the heating of the cylinder on the shedding frequency had been studied using the above schemes. It has been found that the shedding frequency decreases when the wire was heated. Experimental work is being carried out to affirm this result.
Time shift in slope failure prediction between unimodal and bimodal modeling approaches
NASA Astrophysics Data System (ADS)
Ciervo, Fabio; Casini, Francesca; Nicolina Papa, Maria; Medina, Vicente
2016-04-01
Together with the need to use more appropriate mathematical expressions for describing hydro-mechanical soil processes, a challenge issue relates to the need of considering the effects induced by terrain heterogeneities on the physical mechanisms, taking into account the implications of the heterogeneities in affecting time-dependent hydro-mechanical variables, would improve the prediction capacities of models, such as the ones used in early warning systems. The presence of the heterogeneities in partially-saturated slopes results in irregular propagation of the moisture and suction front. To mathematically represent the "dual-implication" generally induced by the heterogeneities in describing the hydraulic terrain behavior, several bimodal hydraulic models have been presented in literature and replaced the conventional sigmoidal/unimodal functions; this presupposes that the scale of the macrostructure is comparable with the local scale (Darcy scale), thus the Richards' model can be assumed adequate to mathematically reproduce the processes. The purpose of this work is to focus on the differences in simulating flow infiltration processes and slope stability conditions originated from preliminary choices of hydraulic models and contextually between different approaches to evaluate the factor of safety (FoS). In particular, the results of two approaches are compared. The first one includes the conventional expression of the FoS under saturated conditions and the widespread used hydraulic model of van Genuchten-Mualem. The second approach includes a generalized FoS equation for infinite-slope model under variably saturated soil conditions (Lu and Godt, 2008) and the bimodal Romano et al.'s (2011) functions to describe the hydraulic response. The extension of the above mentioned approach to the bimodal context is based on an analytical method to assess the effects of the hydraulic properties on soil shear developed integrating a bimodal lognormal hydraulic function within the Bishop stress theory framework (Ciervo et al., 2015). The proposed work tends to emphasize how a more accurate slope stability analysis that accounts dual-structure could be useful to reach a more accurate definition of the stability conditions. The effects in practical analysis may be significant. The highlighted discrepancies between the different approaches in describing the timing processes and strength contribution due to capillary forces may entail no negligible differences in slope stability predictions, especially in those cases where the possibility of a failure in unsaturated terrains is contemplated.
NASA Astrophysics Data System (ADS)
Moore, T. S.; Sanderman, J.; Baldock, J.; Plante, A. F.
2016-12-01
National-scale inventories typically include soil organic carbon (SOC) content, but not chemical composition or biogeochemical stability. Australia's Soil Carbon Research Programme (SCaRP) represents a national inventory of SOC content and composition in agricultural systems. The program used physical fractionation followed by 13C nuclear magnetic resonance (NMR) spectroscopy. While these techniques are highly effective, they are typically too expensive and time consuming for use in large-scale SOC monitoring. We seek to understand if analytical thermal analysis is a viable alternative. Coupled differential scanning calorimetry (DSC) and evolved gas analysis (CO2- and H2O-EGA) yields valuable data on SOC composition and stability via ramped combustion. The technique requires little training to use, and does not require fractionation or other sample pre-treatment. We analyzed 300 agricultural samples collected by SCaRP, divided into four fractions: whole soil, coarse particulates (POM), untreated mineral associated (HUM), and hydrofluoric acid (HF)-treated HUM. All samples were analyzed by DSC-EGA, but only the POM and HF-HUM fractions were analyzed by NMR. Multivariate statistical analyses were used to explore natural clustering in SOC composition and stability based on DSC-EGA data. A partial least-squares regression (PLSR) model was used to explore correlations among the NMR and DSC-EGA data. Correlations demonstrated regions of combustion attributable to specific functional groups, which may relate to SOC stability. We are increasingly challenged with developing an efficient technique to assess SOC composition and stability at large spatial and temporal scales. Correlations between NMR and DSC-EGA may demonstrate the viability of using thermal analysis in lieu of more demanding methods in future large-scale surveys, and may provide data that goes beyond chemical composition to better approach quantification of biogeochemical stability.
NASA Astrophysics Data System (ADS)
Khode, Urmi B.
High Altitude Long Endurance (HALE) airships are platform of interest due to their persistent observation and persistent communication capabilities. A novel HALE airship design configuration incorporates a composite sandwich propulsive hull duct between the front and the back of the hull for significant drag reduction via blown wake effects. The sandwich composite shell duct is subjected to hull pressure on its outer walls and flow suction on its inner walls which result in in-plane wall compressive stress, which may cause duct buckling. An approach based upon finite element stability analysis combined with a ply layup and foam thickness determination weight minimization search algorithm is utilized. Its goal is to achieve an optimized solution for the configuration of the sandwich composite as a solution to a constrained minimum weight design problem, for which the shell duct remains stable with a prescribed margin of safety under prescribed loading. The stability analysis methodology is first verified by comparing published analytical results for a number of simple cylindrical shell configurations with FEM counterpart solutions obtained using the commercially available code ABAQUS. Results show that the approach is effective in identifying minimum weight composite duct configurations for a number of representative combinations of duct geometry, composite material and foam properties, and propulsive duct applied pressure loading.
Jiang, Qiliang; Yu, Shashuang; Li, Xingwang; Ma, Chuangen; Li, Aixiang
2018-01-01
A simple approach for the synthesis of Lidocaine-Ibuprofen ionic liquid stabilized silver nanoparticles (IL-AgNPs) was reported in this work. The shape, size and surface morphology of the Lidocaine-Ibuprofen ionic liquid stabilized AgNPs were characterized by using spectroscopic and microscopic techniques such as Ultraviolet-visible spectroscopy (UV-Visible), X-ray diffraction (XRD) analysis, Selected area electron diffraction (SAED), Transmission electron microscopy (TEM). TEM analysis showed the formation of 20-30nm size of IL-AgNPs with very clear lattice fringes. SAED pattern confirmed the highly crystalline nature of fabricated IL stabilized AgNPs. EDS results confirmed the formation of nanosilver. The fabricated IL-AgNPs were studied for their local anesthetic effect in rats. The results of local anesthetic effect showed that the time for onset of action by IL-AgNPs is 10min, which is significantly higher than that for EMLA. Further, tactile test results confirmed the stronger and faster local anesthetic effect of IL-AgNPs when compared to that of EMLA. Copyright © 2017. Published by Elsevier B.V.
Debey-Pascher, Svenja; Hofmann, Andrea; Kreusch, Fatima; Schuler, Gerold; Schuler-Thurner, Beatrice; Schultze, Joachim L.; Staratschek-Jox, Andrea
2011-01-01
Microarray-based transcriptome analysis of peripheral blood as surrogate tissue has become an important approach in clinical implementations. However, application of gene expression profiling in routine clinical settings requires careful consideration of the influence of sample handling and RNA isolation methods on gene expression profile outcome. We evaluated the effect of different sample preservation strategies (eg, cryopreservation of peripheral blood mononuclear cells or freezing of PAXgene-stabilized whole blood samples) on gene expression profiles. Expression profiles obtained from cryopreserved peripheral blood mononuclear cells differed substantially from those of their nonfrozen counterpart samples. Furthermore, expression profiles in cryopreserved peripheral blood mononuclear cell samples were found to undergo significant alterations with increasing storage period, whereas long-term freezing of PAXgene RNA stabilized whole blood samples did not significantly affect stability of gene expression profiles. This report describes important technical aspects contributing toward the establishment of robust and reliable guidance for gene expression studies using peripheral blood and provides a promising strategy for reliable implementation in routine handling for diagnostic purposes. PMID:21704280
NASA Technical Reports Server (NTRS)
Greathouse, James S.; Schwing, Alan M.
2015-01-01
This paper explores use of computational fluid dynamics to study the e?ect of geometric porosity on static stability and drag for NASA's Multi-Purpose Crew Vehicle main parachute. Both of these aerodynamic characteristics are of interest to in parachute design, and computational methods promise designers the ability to perform detailed parametric studies and other design iterations with a level of control previously unobtainable using ground or flight testing. The approach presented here uses a canopy structural analysis code to define the inflated parachute shapes on which structured computational grids are generated. These grids are used by the computational fluid dynamics code OVERFLOW and are modeled as rigid, impermeable bodies for this analysis. Comparisons to Apollo drop test data is shown as preliminary validation of the technique. Results include several parametric sweeps through design variables in order to better understand the trade between static stability and drag. Finally, designs that maximize static stability with a minimal loss in drag are suggested for further study in subscale ground and flight testing.
Dynamic modeling and ascent flight control of Ares-I Crew Launch Vehicle
NASA Astrophysics Data System (ADS)
Du, Wei
This research focuses on dynamic modeling and ascent flight control of large flexible launch vehicles such as the Ares-I Crew Launch Vehicle (CLV). A complete set of six-degrees-of-freedom dynamic models of the Ares-I, incorporating its propulsion, aerodynamics, guidance and control, and structural flexibility, is developed. NASA's Ares-I reference model and the SAVANT Simulink-based program are utilized to develop a Matlab-based simulation and linearization tool for an independent validation of the performance and stability of the ascent flight control system of large flexible launch vehicles. A linearized state-space model as well as a non-minimum-phase transfer function model (which is typical for flexible vehicles with non-collocated actuators and sensors) are validated for ascent flight control design and analysis. This research also investigates fundamental principles of flight control analysis and design for launch vehicles, in particular the classical "drift-minimum" and "load-minimum" control principles. It is shown that an additional feedback of angle-of-attack can significantly improve overall performance and stability, especially in the presence of unexpected large wind disturbances. For a typical "non-collocated actuator and sensor" control problem for large flexible launch vehicles, non-minimum-phase filtering of "unstably interacting" bending modes is also shown to be effective. The uncertainty model of a flexible launch vehicle is derived. The robust stability of an ascent flight control system design, which directly controls the inertial attitude-error quaternion and also employs the non-minimum-phase filters, is verified by the framework of structured singular value (mu) analysis. Furthermore, nonlinear coupled dynamic simulation results are presented for a reference model of the Ares-I CLV as another validation of the feasibility of the ascent flight control system design. Another important issue for a single main engine launch vehicle is stability under mal-function of the roll control system. The roll motion of the Ares-I Crew Launch Vehicle under nominal flight conditions is actively stabilized by its roll control system employing thrusters. This dissertation describes the ascent flight control design problem of Ares-I in the event of disabled or failed roll control. A simple pitch/yaw control logic is developed for such a technically challenging problem by exploiting the inherent versatility of a quaternion-based attitude control system. The proposed scheme requires only the desired inertial attitude quaternion to be re-computed using the actual uncontrolled roll angle information to achieve an ascent flight trajectory identical to the nominal flight case with active roll control. Another approach that utilizes a simple adjustment of the proportional-derivative gains of the quaternion-based flight control system without active roll control is also presented. This approach doesn't require the re-computation of desired inertial attitude quaternion. A linear stability criterion is developed for proper adjustments of attitude and rate gains. The linear stability analysis results are validated by nonlinear simulations of the ascent flight phase. However, the first approach, requiring a simple modification of the desired attitude quaternion, is recommended for the Ares-I as well as other launch vehicles in the event of no active roll control. Finally, the method derived to stabilize a large flexible launch vehicle in the event of uncontrolled roll drift is generalized as a modified attitude quaternion feedback law. It is used to stabilize an axisymmetric rigid body by two independent control torques.
NASA Astrophysics Data System (ADS)
Hamed, Haikel Ben; Bennacer, Rachid
2008-08-01
This work consists in evaluating algebraically and numerically the influence of a disturbance on the spectral values of a diagonalizable matrix. Thus, two approaches will be possible; to use the theorem of disturbances of a matrix depending on a parameter, due to Lidskii and primarily based on the structure of Jordan of the no disturbed matrix. The second approach consists in factorizing the matrix system, and then carrying out a numerical calculation of the roots of the disturbances matrix characteristic polynomial. This problem can be a standard model in the equations of the continuous media mechanics. During this work, we chose to use the second approach and in order to illustrate the application, we choose the Rayleigh-Bénard problem in Darcy media, disturbed by a filtering through flow. The matrix form of the problem is calculated starting from a linear stability analysis by a finite elements method. We show that it is possible to break up the general phenomenon into other elementary ones described respectively by a disturbed matrix and a disturbance. A good agreement between the two methods was seen. To cite this article: H.B. Hamed, R. Bennacer, C. R. Mecanique 336 (2008).
Combined analytical and numerical approaches in Dynamic Stability analyses of engineering systems
NASA Astrophysics Data System (ADS)
Náprstek, Jiří
2015-03-01
Dynamic Stability is a widely studied area that has attracted many researchers from various disciplines. Although Dynamic Stability is usually associated with mechanics, theoretical physics or other natural and technical disciplines, it is also relevant to social, economic, and philosophical areas of our lives. Therefore, it is useful to occasionally highlight the general aspects of this amazing area, to present some relevant examples and to evaluate its position among the various branches of Rational Mechanics. From this perspective, the aim of this study is to present a brief review concerning the Dynamic Stability problem, its basic definitions and principles, important phenomena, research motivations and applications in engineering. The relationships with relevant systems that are prone to stability loss (encountered in other areas such as physics, other natural sciences and engineering) are also noted. The theoretical background, which is applicable to many disciplines, is presented. In this paper, the most frequently used Dynamic Stability analysis methods are presented in relation to individual dynamic systems that are widely discussed in various engineering branches. In particular, the Lyapunov function and exponent procedures, Routh-Hurwitz, Liénard, and other theorems are outlined together with demonstrations. The possibilities for analytical and numerical procedures are mentioned together with possible feedback from experimental research and testing. The strengths and shortcomings of these approaches are evaluated together with examples of their effective complementing of each other. The systems that are widely encountered in engineering are presented in the form of mathematical models. The analyses of their Dynamic Stability and post-critical behaviour are also presented. The stability limits, bifurcation points, quasi-periodic response processes and chaotic regimes are discussed. The limit cycle existence and stability are examined together with their separating roles as attractors and repulsers. Two levels of stability loss (recovery of the system is possible or final collapse is inevitable) as can be observed in softening systems are noted. Time-limited excitation and relevant transition effects (e.g., seismic excitation) are also discussed, together with the evaluation of possible system reliability improvement. The Dynamic Stability investigation of two degrees-of-freedom aero-elastic systems in a linear formulation using several approaches is briefly highlighted. Further systems modelling problems that arise in transport engineering are also outlined. A few hints for applications are given. Some open problems and possible future research strategies are outlined.
ERIC Educational Resources Information Center
Bergman, Lars R.; Nurmi, Jari-Erik; von Eye, Alexander A.
2012-01-01
I-states-as-objects-analysis (ISOA) is a person-oriented methodology for studying short-term developmental stability and change in patterns of variable values. ISOA is based on longitudinal data with the same set of variables measured at all measurement occasions. A key concept is the "i-state," defined as a person's pattern of variable…
Study of Graphite/Epoxy Composites for Material Flaw Criticality.
1980-11-01
criticality of disbonds with two-dimensional planforms located in laminated graphite/epoxy composites has been examined. Linear elastic fracture...mechanics approach, semi-empirical growth laws and methods of stress analysis based on a modified laminated plate theory have been studied for assessing...growth rates of disbonds in a transverse shear environ- ment. Elastic stability analysis has been utilized for laminates with disbonds subjected to in
ERIC Educational Resources Information Center
Rantanen, Pekka
2013-01-01
A multilevel analysis approach was used to analyse students' evaluation of teaching (SET). The low value of inter-rater reliability stresses that any solid conclusions on teaching cannot be made on the basis of single feedbacks. To assess a teacher's general teaching effectiveness, one needs to evaluate four randomly chosen course implementations.…
NASA Astrophysics Data System (ADS)
Song, Jie; Dong, Mei; Koltuk, Serdar; Hu, Hui; Zhang, Luqing; Azzam, Rafig
2018-05-01
Construction works associated with the building of reservoirs in mountain areas can damage the stability of adjacent valley slopes. Seepage processes caused by the filling and drawdown operations of reservoirs also affect the stability of the reservoir banks over time. The presented study investigates the stability of a fractured-rock slope subjected to seepage forces in the lower basin of a planned pumped-storage hydropower (PSH) plant in Blaubeuren, Germany. The investigation uses a hydro-mechanically coupled finite-element analyses. For this purpose, an equivalent continuum model is developed by using a representative elementary volume (REV) approach. To determine the minimum required REV size, a large number of discrete fracture networks are generated using Monte Carlo simulations. These analyses give a REV size of 28 × 28 m, which is sufficient to represent the equivalent hydraulic and mechanical properties of the investigated fractured-rock mass. The hydro-mechanically coupled analyses performed using this REV size show that the reservoir operations in the examined PSH plant have negligible effect on the adjacent valley slope.
A New Approach to Attitude Stability and Control for Low Airspeed Vehicles
NASA Technical Reports Server (NTRS)
Lim, K. B.; Shin, Y-Y.; Moerder, D. D.; Cooper, E. G.
2004-01-01
This paper describes an approach for controlling the attitude of statically unstable thrust-levitated vehicles in hover or slow translation. The large thrust vector that characterizes such vehicles can be modulated to provide control forces and moments to the airframe, but such modulation is accompanied by significant unsteady flow effects. These effects are difficult to model, and can compromise the practical value of thrust vectoring in closed-loop attitude stability, even if the thrust vectoring machinery has sufficient bandwidth for stabilization. The stabilization approach described in this paper is based on using internal angular momentum transfer devices for stability, augmented by thrust vectoring for trim and other "outer loop" control functions. The three main components of this approach are: (1) a z-body axis angular momentum bias enhances static attitude stability, reducing the amount of control activity needed for stabilization, (2) optionally, gimbaled reaction wheels provide high-bandwidth control torques for additional stabilization, or agility, and (3) the resulting strongly coupled system dynamics are controlled by a multivariable controller. A flight test vehicle is described, and nonlinear simulation results are provided that demonstrate the efficiency of the approach.
Effect of extreme data loss on heart rate signals quantified by entropy analysis
NASA Astrophysics Data System (ADS)
Li, Yu; Wang, Jun; Li, Jin; Liu, Dazhao
2015-02-01
The phenomenon of data loss always occurs in the analysis of large databases. Maintaining the stability of analysis results in the event of data loss is very important. In this paper, we used a segmentation approach to generate a synthetic signal that is randomly wiped from data according to the Gaussian distribution and the exponential distribution of the original signal. Then, the logistic map is used as verification. Finally, two methods of measuring entropy-base-scale entropy and approximate entropy-are comparatively analyzed. Our results show the following: (1) Two key parameters-the percentage and the average length of removed data segments-can change the sequence complexity according to logistic map testing. (2) The calculation results have preferable stability for base-scale entropy analysis, which is not sensitive to data loss. (3) The loss percentage of HRV signals should be controlled below the range (p = 30 %), which can provide useful information in clinical applications.
Perspective On Income Security and Social Services and An Agenda for Analysis.
1981-08-13
economic stability of America and the continued viability of the U.S. social system. This report provides a prespective on many of the major issues, identifies present concerns, forecasts future developments, and briefly discusses GAO’s approach to addressing these issues.
An Accurate and Generic Testing Approach to Vehicle Stability Parameters Based on GPS and INS.
Miao, Zhibin; Zhang, Hongtian; Zhang, Jinzhu
2015-12-04
With the development of the vehicle industry, controlling stability has become more and more important. Techniques of evaluating vehicle stability are in high demand. As a common method, usually GPS sensors and INS sensors are applied to measure vehicle stability parameters by fusing data from the two system sensors. Although prior model parameters should be recognized in a Kalman filter, it is usually used to fuse data from multi-sensors. In this paper, a robust, intelligent and precise method to the measurement of vehicle stability is proposed. First, a fuzzy interpolation method is proposed, along with a four-wheel vehicle dynamic model. Second, a two-stage Kalman filter, which fuses the data from GPS and INS, is established. Next, this approach is applied to a case study vehicle to measure yaw rate and sideslip angle. The results show the advantages of the approach. Finally, a simulation and real experiment is made to verify the advantages of this approach. The experimental results showed the merits of this method for measuring vehicle stability, and the approach can meet the design requirements of a vehicle stability controller.
Evaluation of variable selection methods for random forests and omics data sets.
Degenhardt, Frauke; Seifert, Stephan; Szymczak, Silke
2017-10-16
Machine learning methods and in particular random forests are promising approaches for prediction based on high dimensional omics data sets. They provide variable importance measures to rank predictors according to their predictive power. If building a prediction model is the main goal of a study, often a minimal set of variables with good prediction performance is selected. However, if the objective is the identification of involved variables to find active networks and pathways, approaches that aim to select all relevant variables should be preferred. We evaluated several variable selection procedures based on simulated data as well as publicly available experimental methylation and gene expression data. Our comparison included the Boruta algorithm, the Vita method, recurrent relative variable importance, a permutation approach and its parametric variant (Altmann) as well as recursive feature elimination (RFE). In our simulation studies, Boruta was the most powerful approach, followed closely by the Vita method. Both approaches demonstrated similar stability in variable selection, while Vita was the most robust approach under a pure null model without any predictor variables related to the outcome. In the analysis of the different experimental data sets, Vita demonstrated slightly better stability in variable selection and was less computationally intensive than Boruta.In conclusion, we recommend the Boruta and Vita approaches for the analysis of high-dimensional data sets. Vita is considerably faster than Boruta and thus more suitable for large data sets, but only Boruta can also be applied in low-dimensional settings. © The Author 2017. Published by Oxford University Press.
Shpielberg, O; Akkermans, E
2016-06-17
A stability analysis is presented for boundary-driven and out-of-equilibrium systems in the framework of the hydrodynamic macroscopic fluctuation theory. A Hamiltonian description is proposed which allows us to thermodynamically interpret the additivity principle. A necessary and sufficient condition for the validity of the additivity principle is obtained as an extension of the Le Chatelier principle. These stability conditions result from a diagonal quadratic form obtained using the cumulant generating function. This approach allows us to provide a proof for the stability of the weakly asymmetric exclusion process and to reduce the search for stability to the solution of two coupled linear ordinary differential equations instead of nonlinear partial differential equations. Additional potential applications of these results are discussed in the realm of classical and quantum systems.
NASA Astrophysics Data System (ADS)
Shpielberg, O.; Akkermans, E.
2016-06-01
A stability analysis is presented for boundary-driven and out-of-equilibrium systems in the framework of the hydrodynamic macroscopic fluctuation theory. A Hamiltonian description is proposed which allows us to thermodynamically interpret the additivity principle. A necessary and sufficient condition for the validity of the additivity principle is obtained as an extension of the Le Chatelier principle. These stability conditions result from a diagonal quadratic form obtained using the cumulant generating function. This approach allows us to provide a proof for the stability of the weakly asymmetric exclusion process and to reduce the search for stability to the solution of two coupled linear ordinary differential equations instead of nonlinear partial differential equations. Additional potential applications of these results are discussed in the realm of classical and quantum systems.
Stability properties of solitary waves for fractional KdV and BBM equations
NASA Astrophysics Data System (ADS)
Angulo Pava, Jaime
2018-03-01
This paper sheds new light on the stability properties of solitary wave solutions associated with Korteweg-de Vries-type models when the dispersion is very low. Using a compact, analytic approach and asymptotic perturbation theory, we establish sufficient conditions for the existence of exponentially growing solutions to the linearized problem and so a criterium of spectral instability of solitary waves is obtained for both models. Moreover, the nonlinear stability and spectral instability of the ground state solutions for both models is obtained for some specific regimen of parameters. Via a Lyapunov strategy and a variational analysis, we obtain the stability of the blow-up of solitary waves for the critical fractional KdV equation. The arguments presented in this investigation show promise for use in the study of the instability of traveling wave solutions of other nonlinear evolution equations.
NASA Astrophysics Data System (ADS)
Bud, I.; Duma, S.; Gusat, D.; Pasca, I.; Bud, A.
2017-05-01
In northern Romania, there are numerous tailing ponds, resulting from mining activities that present significant environmental risks. Some of them, including Vrănicioara tailing pond, were the subject of technical projects for ecological rehabilitation. Vrănicioara pond is located on the right side of Cavnic Valley, downstream Cavnic town, about 4 kilometers far. It has about 500 m length and is located parallel to the road linking Baia Sprie and Cavnic localities. Chemical and physical stability of the tailing pond before rehabilitation interest the research, analysis and conclusions were published in several scientific meetings. In addition, close to the pond at less than 100 m, an open pit has developed, exploiting andesite by mining blast, increasing the risk of physical stability by continuous exposure to vibration. This activity currently continues, advancing towards the tailing pond body. The critical study addresses the current state of Vrănicioara Tailing Pond, analysis of some rehabilitation works done incorrectly, analysis of chemical stability that was not a priority during rehabilitation. Research intention is heading to water analysis confirming the existence of acid drainage that was not stopped or at least reduced. The scientific approach is based on the Technical Standards for Waste Deposits, in force in Romania, providing the rules to ensure physical and chemical stability.
Free, Paul; Conger, Gao; Siji, Wu; Zhang, Jing Bo; Fernig, David G
2016-10-01
The stability of gold nanorods was assessed following coating with various charged or uncharged ligands, mostly peptides. Highly stable monodispersed gold nanorods were obtained by coating CTAB-stabilized gold nanorods with a pentapeptide with C-terminal ethylene glycol units (peptide-EG). UV-vis spectroscopy of these nanorods suspended in saline solutions indicated no signs of aggregation, and they were easily purified using size-exclusion chromatography. A more stringent measure of nanorod stability involved observing changes in the UV-vis absorbance of gold nanorods subjected to etching with cyanide. The λmax absorbance of peptide-EG coated nanorods red-shifted in etchant solution. The hypothesis that changes in the nanorod aspect ratio led to this red-shift was confirmed by TEM analysis, which showed pit formation along the transverse axis. The etching process was followed in solution using nanoparticle tracking analysis. The red-shift was shown to occur while the particles remained mono-dispersed, and so was not due to aggregation. Adding both etchant solution and peptide-EG to the nanorods was further shown to allow modulation of the Δλmax red-shift and increase the etchant resistance of peptide-EG nanorods. Thus, very stable gold nanorods can be produced using the peptide-EG coating approach and their optical properties modulated with etchant. Copyright © 2016 Elsevier B.V. All rights reserved.
High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains
NASA Technical Reports Server (NTRS)
Fisher, Travis C.; Carpenter, Mark H.
2013-01-01
Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.
Fuzzy Current-Mode Control and Stability Analysis
NASA Technical Reports Server (NTRS)
Kopasakis, George
2000-01-01
In this paper a current-mode control (CMC) methodology is developed for a buck converter by using a fuzzy logic controller. Conventional CMC methodologies are based on lead-lag compensation with voltage and inductor current feedback. In this paper the converter lead-lag compensation will be substituted with a fuzzy controller. A small-signal model of the fuzzy controller will also be developed in order to examine the stability properties of this buck converter control system. The paper develops an analytical approach, introducing fuzzy control into the area of CMC.
Geometric approach to nuclear pasta phases
NASA Astrophysics Data System (ADS)
Kubis, Sebastian; Wójcik, Włodzimierz
2016-12-01
By use of the variational methods and differential geometry in the framework of the liquid drop model we formulate appropriate equilibrium equations for pasta phases with imposed periodicity. The extension of the Young-Laplace equation in the case of charged fluid is obtained. The β equilibrium and virial theorem are also generalized. All equations are shown in gauge invariant form. For the first time, the pasta shape stability analysis is carried out. The proper stability condition in the form of the generalized Jacobi equation is derived. The presented formalism is tested on some particular cases.
Dynamic stability and bifurcation analysis in fractional thermodynamics
NASA Astrophysics Data System (ADS)
Béda, Péter B.
2018-02-01
In mechanics, viscoelasticity was the first field of applications in studying geomaterials. Further possibilities arise in spatial non-locality. Non-local materials were already studied in the 1960s by several authors as a part of continuum mechanics and are still in focus of interest because of the rising importance of materials with internal micro- and nano-structure. When material instability gained more interest, non-local behavior appeared in a different aspect. The problem was concerned to numerical analysis, because then instability zones exhibited singular properties for local constitutive equations. In dynamic stability analysis, mathematical aspects of non-locality were studied by using the theory of dynamic systems. There the basic set of equations describing the behavior of continua was transformed to an abstract dynamic system consisting of differential operators acting on the perturbation field variables. Such functions should satisfy homogeneous boundary conditions and act as indicators of stability of a selected state of the body under consideration. Dynamic systems approach results in conditions for cases, when the differential operators have critical eigenvalues of zero real parts (dynamic stability or instability conditions). When the critical eigenvalues have non-trivial eigenspace, the way of loss of stability is classified as a typical (or generic) bifurcation. Our experiences show that material non-locality and the generic nature of bifurcation at instability are connected, and the basic functions of the non-trivial eigenspace can be used to determine internal length quantities of non-local mechanics. Fractional calculus is already successfully used in thermo-elasticity. In the paper, non-locality is introduced via fractional strain into the constitutive relations of various conventional types. Then, by defining dynamic systems, stability and bifurcation are studied for states of thermo-mechanical solids. Stability conditions and genericity conditions are presented for constitutive relations under consideration.
Lin, Chia-Ying; Hsiao, Chun-Ching; Chen, Po-Quan; Hollister, Scott J
2004-08-15
An approach combining global layout and local microstructure topology optimization was used to create a new interbody fusion cage design that concurrently enhanced stability, biofactor delivery, and mechanical tissue stimulation for improved arthrodesis. To develop a new interbody fusion cage design by topology optimization with porous internal architecture. To compare the performance of this new design to conventional threaded cage designs regarding early stability and long-term stress shielding effects on ingrown bone. Conventional interbody cage designs mainly fall into categories of cylindrical or rectangular shell shapes. The designs contribute to rigid stability and maintain disc height for successful arthrodesis but may also suffer mechanically mediated failures of dislocation or subsidence, as well as the possibility of bone resorption. The new optimization approach created a cage having designed microstructure that achieved desired mechanical performance while providing interconnected channels for biofactor delivery. The topology optimization algorithm determines the material layout under desirable volume fraction (50%) and displacement constraints favorable to bone formation. A local microstructural topology optimization method was used to generate periodic microstructures for porous isotropic materials. Final topology was generated by the integration of the two-scaled structures according to segmented regions and the corresponding material density. Image-base finite element analysis was used to compare the mechanical performance of the topology-optimized cage and conventional threaded cage. The final design can be fabricated by a variety of Solid Free-Form systems directly from the image output. The new design exhibited a narrower, more uniform displacement range than the threaded cage design and lower stress at the cage-vertebra interface, suggesting a reduced risk of subsidence. Strain energy density analysis also indicated that a higher portion of total strain energy density was transferred into the new bone region inside the new designed cage, indicating a reduced risk of stress shielding. The new design approach using integrated topology optimization demonstrated comparable or better stability by limited displacement and reduced localized deformation related to the risk of subsidence. Less shielding of newly formed bone was predicted inside the new designed cage. Using the present approach, it is also possible to tailor cage design for specific materials, either titanium or polymer, that can attain the desired balance between stability, reduced stress shielding, and porosity for biofactor delivery.
NASA Technical Reports Server (NTRS)
Bacon, Barton J.; Ostroff, Aaron J.
2000-01-01
This paper presents an approach to on-line control design for aircraft that have suffered either actuator failure, missing effector surfaces, surface damage, or any combination. The approach is based on a modified version of nonlinear dynamic inversion. The approach does not require a model of the baseline vehicle (effectors at zero deflection), but does require feedback of accelerations and effector positions. Implementation issues are addressed and the method is demonstrated on an advanced tailless aircraft. An experimental simulation analysis tool is used to directly evaluate the nonlinear system's stability robustness.
Deployable antenna kinematics using tensegrity structure design
NASA Astrophysics Data System (ADS)
Knight, Byron Franklin
With vast changes in spacecraft development over the last decade, a new, cheaper approach was needed for deployable kinematic systems such as parabolic antenna reflectors. Historically, these mesh-surface reflectors have resembled folded umbrellas, with incremental redesigns utilized to save packaging size. These systems are typically over-constrained designs, the assumption being that high reliability necessary for space operations requires this level of conservatism. But with the rapid commercialization of space, smaller launch platforms and satellite buses have demanded much higher efficiency from all space equipment than can be achieved through this incremental approach. This work applies an approach called tensegrity to deployable antenna development. Kenneth Snelson, a student of R. Buckminster Fuller, invented Tensegrity structures in 1948. Such structures use a minimum number of compression members (struts); stability is maintain using tension members (ties). The novelty introduced in this work is that the ties are elastic, allowing the struts to extend or contract, and in this way changing the surface of the antenna. Previously, the University of Florida developed an approach to quantify the stability and motion of parallel manipulators. This approach was applied to deployable, tensegrity, antenna structures. Based on the kinematic analyses for the 3-3 (octahedron) and 4-4 (square anti-prism) structures, the 6-6 (hexagonal anti-prism) analysis was completed which establishes usable structural parameters. The primary objective for this work was to prove the stability of this class of deployable structures, and their potential application to space structures. The secondary objective is to define special motions for tensegrity antennas, to meet the subsystem design requirements, such as addressing multiple antenna-feed locations. This work combines the historical experiences of the artist (Snelson), the mathematician (Ball), and the space systems engineer (Wertz) to develop a new, practical design approach. This kinematic analysis of tensegrity structures blends these differences to provide the design community with a new approach to lightweight, robust, adaptive structures with the high reliability that space demands. Additionally, by applying Screw Theory, a tensegrity structure antenna can be commanded to move along a screw axis, and therefore meeting the requirement to address multiple feed locations.
Response surface method in geotechnical/structural analysis, phase 1
NASA Astrophysics Data System (ADS)
Wong, F. S.
1981-02-01
In the response surface approach, an approximating function is fit to a long running computer code based on a limited number of code calculations. The approximating function, called the response surface, is then used to replace the code in subsequent repetitive computations required in a statistical analysis. The procedure of the response surface development and feasibility of the method are shown using a sample problem in slop stability which is based on data from centrifuge experiments of model soil slopes and involves five random soil parameters. It is shown that a response surface can be constructed based on as few as four code calculations and that the response surface is computationally extremely efficient compared to the code calculation. Potential applications of this research include probabilistic analysis of dynamic, complex, nonlinear soil/structure systems such as slope stability, liquefaction, and nuclear reactor safety.
Antiwindup analysis and design approaches for MIMO systems
NASA Technical Reports Server (NTRS)
Marcopoli, Vincent R.; Phillips, Stephen M.
1994-01-01
Performance degradation of multiple-input multiple-output (MIMO) control systems having limited actuators is often handled by augmenting the controller with an antiwindup mechanism, which attempts to maintain system performance when limits are encountered. The goals of this paper are: (1) To develop a method to analyze antiwindup systems to determine precisely what stability and performance degradation is incurred under limited conditions. It is shown that by reformulating limited actuator commands as resulting from multiplicative perturbations to the corresponding controller requests, mu-analysis tools can be utilized to obtain quantitative measures of stability and performance degradation. (2) To propose a linear, time invariant (LTI) criterion on which to base the antiwindup design. These analysis and design methods are illustrated through the evaluation of two competing antiwindup schemes augmenting the controller of a Short Take-Off and Vertical Landing (STOVL) aircraft in transition flight.
Antiwindup analysis and design approaches for MIMO systems
NASA Technical Reports Server (NTRS)
Marcopoli, Vincent R.; Phillips, Stephen M.
1993-01-01
Performance degradation of multiple-input multiple-output (MIMO) control systems having limited actuators is often handled by augmenting the controller with an antiwindup mechanism, which attempts to maintain system performance when limits are encountered. The goals of this paper are: 1) to develop a method to analyze antiwindup systems to determine precisely what stability and performance degradation is incurred under limited conditions. It is shown that by reformulating limited actuator commands as resulting from multiplicative perturbations to the corresponding controller requests, mu-analysis tools can be utilized to obtain quantitative measures of stability and performance degradation. 2) To propose a linear, time invariant (LTI) criterion on which to base the antiwindup design. These analysis and design methods are illustrated through the evaluation of two competing antiwindup schemes augmenting the controller of a Short Take-Off and Vertical Landing (STOVL) aircraft in transition flight.
Behavioral Dimensions in One-Year-Olds and Dimensional Stability in Infancy.
ERIC Educational Resources Information Center
Hagekull, Berit; And Others
1980-01-01
The dimensional structure of infants' behavioral repertoire was shown to be highly stable over 3 to 15 months of age. Factor analysis of parent questionnaire data produced seven factors named Intensity/Activity, Regularity, Approach-Withdrawal, Sensory Sensitivity, Attentiveness, Manageability and Sensitivity to New Food. An eighth factor,…
Security region-based small signal stability analysis of power systems with FSIG based wind farm
NASA Astrophysics Data System (ADS)
Qin, Chao; Zeng, Yuan; Yang, Yang; Cui, Xiaodan; Xu, Xialing; Li, Yong
2018-02-01
Based on the Security Region approach, the impact of fixed-speed induction generator based wind farm on the small signal stability of power systems is analyzed. Firstly, the key factors of wind farm on the small signal stability of power systems are analyzed and the parameter space for small signal stability region is formed. Secondly, the small signal stability region of power systems with wind power is established. Thirdly, the corresponding relation between the boundary of SSSR and the dominant oscillation mode is further studied. Results show that the integration of fixed-speed induction generator based wind farm will cause the low frequency oscillation stability of the power system deteriorate. When the output of wind power is high, the oscillation stability of the power system is mainly concerned with the inter-area oscillation mode caused by the integration of the wind farm. Both the active power output and the capacity of reactive power compensation of the wind farm have a significant influence on the SSSR. To improve the oscillation stability of power systems with wind power, it is suggested to reasonably set the reactive power compensation capacity for the wind farm through SSSR.
Integrating Flight Dynamics & Control Analysis and Simulation in Rotorcraft Conceptual Design
NASA Technical Reports Server (NTRS)
Lawrence, Ben; Berger, Tom; Tischler, Mark B.; Theodore, Colin R; Elmore, Josh; Gallaher, Andrew; Tobias, Eric L.
2016-01-01
The development of a toolset, SIMPLI-FLYD ('SIMPLIfied FLight dynamics for conceptual Design') is described. SIMPLI-FLYD is a collection of tools that perform flight dynamics and control modeling and analysis of rotorcraft conceptual designs including a capability to evaluate the designs in an X-Plane-based real-time simulation. The establishment of this framework is now facilitating the exploration of this new capability, in terms of modeling fidelity and data requirements, and the investigation of which stability and control and handling qualities requirements are appropriate for conceptual design. Illustrative design variation studies for single main rotor and tiltrotor vehicle configurations show sensitivity of the stability and control characteristics and an approach to highlight potential weight savings by identifying over-design.
Structural domains and main-chain flexibility in prion proteins.
Blinov, N; Berjanskii, M; Wishart, D S; Stepanova, M
2009-02-24
In this study we describe a novel approach to define structural domains and to characterize the local flexibility in both human and chicken prion proteins. The approach we use is based on a comprehensive theory of collective dynamics in proteins that was recently developed. This method determines the essential collective coordinates, which can be found from molecular dynamics trajectories via principal component analysis. Under this particular framework, we are able to identify the domains where atoms move coherently while at the same time to determine the local main-chain flexibility for each residue. We have verified this approach by comparing our results for the predicted dynamic domain systems with the computed main-chain flexibility profiles and the NMR-derived random coil indexes for human and chicken prion proteins. The three sets of data show excellent agreement. Additionally, we demonstrate that the dynamic domains calculated in this fashion provide a highly sensitive measure of protein collective structure and dynamics. Furthermore, such an analysis is capable of revealing structural and dynamic properties of proteins that are inaccessible to the conventional assessment of secondary structure. Using the collective dynamic simulation approach described here along with a high-temperature simulations of unfolding of human prion protein, we have explored whether locations of relatively low stability could be identified where the unfolding process could potentially be facilitated. According to our analysis, the locations of relatively low stability may be associated with the beta-sheet formed by strands S1 and S2 and the adjacent loops, whereas helix HC appears to be a relatively stable part of the protein. We suggest that this kind of structural analysis may provide a useful background for a more quantitative assessment of potential routes of spontaneous misfolding in prion proteins.
Intelligent neural network and fuzzy logic control of industrial and power systems
NASA Astrophysics Data System (ADS)
Kuljaca, Ognjen
The main role played by neural network and fuzzy logic intelligent control algorithms today is to identify and compensate unknown nonlinear system dynamics. There are a number of methods developed, but often the stability analysis of neural network and fuzzy control systems was not provided. This work will meet those problems for the several algorithms. Some more complicated control algorithms included backstepping and adaptive critics will be designed. Nonlinear fuzzy control with nonadaptive fuzzy controllers is also analyzed. An experimental method for determining describing function of SISO fuzzy controller is given. The adaptive neural network tracking controller for an autonomous underwater vehicle is analyzed. A novel stability proof is provided. The implementation of the backstepping neural network controller for the coupled motor drives is described. Analysis and synthesis of adaptive critic neural network control is also provided in the work. Novel tuning laws for the system with action generating neural network and adaptive fuzzy critic are given. Stability proofs are derived for all those control methods. It is shown how these control algorithms and approaches can be used in practical engineering control. Stability proofs are given. Adaptive fuzzy logic control is analyzed. Simulation study is conducted to analyze the behavior of the adaptive fuzzy system on the different environment changes. A novel stability proof for adaptive fuzzy logic systems is given. Also, adaptive elastic fuzzy logic control architecture is described and analyzed. A novel membership function is used for elastic fuzzy logic system. The stability proof is proffered. Adaptive elastic fuzzy logic control is compared with the adaptive nonelastic fuzzy logic control. The work described in this dissertation serves as foundation on which analysis of particular representative industrial systems will be conducted. Also, it gives a good starting point for analysis of learning abilities of adaptive and neural network control systems, as well as for the analysis of the different algorithms such as elastic fuzzy systems.
Mukhtar, Hussnain; Lin, Yu-Pin; Shipin, Oleg V; Petway, Joy R
2017-07-12
This study presents an approach for obtaining realization sets of parameters for nitrogen removal in a pilot-scale waste stabilization pond (WSP) system. The proposed approach was designed for optimal parameterization, local sensitivity analysis, and global uncertainty analysis of a dynamic simulation model for the WSP by using the R software package Flexible Modeling Environment (R-FME) with the Markov chain Monte Carlo (MCMC) method. Additionally, generalized likelihood uncertainty estimation (GLUE) was integrated into the FME to evaluate the major parameters that affect the simulation outputs in the study WSP. Comprehensive modeling analysis was used to simulate and assess nine parameters and concentrations of ON-N, NH₃-N and NO₃-N. Results indicate that the integrated FME-GLUE-based model, with good Nash-Sutcliffe coefficients (0.53-0.69) and correlation coefficients (0.76-0.83), successfully simulates the concentrations of ON-N, NH₃-N and NO₃-N. Moreover, the Arrhenius constant was the only parameter sensitive to model performances of ON-N and NH₃-N simulations. However, Nitrosomonas growth rate, the denitrification constant, and the maximum growth rate at 20 °C were sensitive to ON-N and NO₃-N simulation, which was measured using global sensitivity.
Stability analysis of nonlinear autonomous systems - General theory and application to flutter
NASA Technical Reports Server (NTRS)
Smith, L. L.; Morino, L.
1975-01-01
The analysis makes use of a singular perturbation method, the multiple time scaling. Concepts of stable and unstable limit cycles are introduced. The solution is obtained in the form of an asymptotic expansion. Numerical results are presented for the nonlinear flutter of panels and airfoils in supersonic flow. The approach used is an extension of a method for analyzing nonlinear panel flutter reported by Morino (1969).
Important factors in the maximum likelihood analysis of flight test maneuvers
NASA Technical Reports Server (NTRS)
Iliff, K. W.; Maine, R. E.; Montgomery, T. D.
1979-01-01
The information presented is based on the experience in the past 12 years at the NASA Dryden Flight Research Center of estimating stability and control derivatives from over 3500 maneuvers from 32 aircraft. The overall approach to the analysis of dynamic flight test data is outlined. General requirements for data and instrumentation are discussed and several examples of the types of problems that may be encountered are presented.
Robust stability for stochastic bidirectional associative memory neural networks with time delays
NASA Astrophysics Data System (ADS)
Shu, H. S.; Lv, Z. W.; Wei, G. L.
2008-02-01
In this paper, the asymptotic stability is considered for a class of uncertain stochastic bidirectional associative memory neural networks with time delays and parameter uncertainties. The delays are time-invariant and the uncertainties are norm-bounded that enter into all network parameters. The aim of this paper is to establish easily verifiable conditions under which the delayed neural network is robustly asymptotically stable in the mean square for all admissible parameter uncertainties. By employing a Lyapunov-Krasovskii functional and conducting the stochastic analysis, a linear matrix inequality matrix inequality (LMI) approach is developed to derive the stability criteria. The proposed criteria can be easily checked by the Matlab LMI toolbox. A numerical example is given to demonstrate the usefulness of the proposed criteria.
One-step, low-temperature fabrication of CdS quantum dots by watermelon rind: a green approach
Lakshmipathy, Rajasekhar; Sarada, Nallani Chakravarthula; Chidambaram, K; Pasha, Sk Khadeer
2015-01-01
We investigated the one-step synthesis of CdS nanoparticles via green synthesis that used aqueous extract of watermelon rind as a capping and stabilizing agent. Preliminary phytochemical analysis depicted the presence of carbohydrates which can act as capping and stabilizing agents. Synthesized CdS nanoparticles were characterized using UV-visible, Fourier transform infrared spectroscopy, X-ray diffraction, EDX, dynamic light scattering, transmission electron microscopy, and atomic force microscopy techniques. The CdS nanoparticles were found to be size- and shape-controlled and were stable even after 3 months of synthesis. The results suggest that watermelon rind, an agro-waste, can be used for synthesis of CdS nanoparticles without any addition of stabilizing and capping agents. PMID:26491319
Stability analysis for uncertain switched neural networks with time-varying delay.
Shen, Wenwen; Zeng, Zhigang; Wang, Leimin
2016-11-01
In this paper, stability for a class of uncertain switched neural networks with time-varying delay is investigated. By exploring the mode-dependent properties of each subsystem, all the subsystems are categorized into stable and unstable ones. Based on Lyapunov-like function method and average dwell time technique, some delay-dependent sufficient conditions are derived to guarantee the exponential stability of considered uncertain switched neural networks. Compared with general results, our proposed approach distinguishes the stable and unstable subsystems rather than viewing all subsystems as being stable, thus getting less conservative criteria. Finally, two numerical examples are provided to show the validity and the advantages of the obtained results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wilhelmsen, Øivind; Bedeaux, Dick; Kjelstrup, Signe; Reguera, David
2014-01-14
Formation of nanosized droplets/bubbles from a metastable bulk phase is connected to many unresolved scientific questions. We analyze the properties and stability of multicomponent droplets and bubbles in the canonical ensemble, and compare with single-component systems. The bubbles/droplets are described on the mesoscopic level by square gradient theory. Furthermore, we compare the results to a capillary model which gives a macroscopic description. Remarkably, the solutions of the square gradient model, representing bubbles and droplets, are accurately reproduced by the capillary model except in the vicinity of the spinodals. The solutions of the square gradient model form closed loops, which shows the inherent symmetry and connected nature of bubbles and droplets. A thermodynamic stability analysis is carried out, where the second variation of the square gradient description is compared to the eigenvalues of the Hessian matrix in the capillary description. The analysis shows that it is impossible to stabilize arbitrarily small bubbles or droplets in closed systems and gives insight into metastable regions close to the minimum bubble/droplet radii. Despite the large difference in complexity, the square gradient and the capillary model predict the same finite threshold sizes and very similar stability limits for bubbles and droplets, both for single-component and two-component systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilhelmsen, Øivind, E-mail: oivind.wilhelmsen@ntnu.no; Bedeaux, Dick; Kjelstrup, Signe
Formation of nanosized droplets/bubbles from a metastable bulk phase is connected to many unresolved scientific questions. We analyze the properties and stability of multicomponent droplets and bubbles in the canonical ensemble, and compare with single-component systems. The bubbles/droplets are described on the mesoscopic level by square gradient theory. Furthermore, we compare the results to a capillary model which gives a macroscopic description. Remarkably, the solutions of the square gradient model, representing bubbles and droplets, are accurately reproduced by the capillary model except in the vicinity of the spinodals. The solutions of the square gradient model form closed loops, which showsmore » the inherent symmetry and connected nature of bubbles and droplets. A thermodynamic stability analysis is carried out, where the second variation of the square gradient description is compared to the eigenvalues of the Hessian matrix in the capillary description. The analysis shows that it is impossible to stabilize arbitrarily small bubbles or droplets in closed systems and gives insight into metastable regions close to the minimum bubble/droplet radii. Despite the large difference in complexity, the square gradient and the capillary model predict the same finite threshold sizes and very similar stability limits for bubbles and droplets, both for single-component and two-component systems.« less
Linear modal stability analysis of bowed-strings.
Debut, V; Antunes, J; Inácio, O
2017-03-01
Linearised models are often invoked as a starting point to study complex dynamical systems. Besides their attractive mathematical simplicity, they have a central role for determining the stability properties of static or dynamical states, and can often shed light on the influence of the control parameters on the system dynamical behaviour. While the bowed string dynamics has been thoroughly studied from a number of points of view, mainly by time-domain computer simulations, this paper proposes to explore its dynamical behaviour adopting a linear framework, linearising the friction force near an equilibrium state in steady sliding conditions, and using a modal representation of the string dynamics. Starting from the simplest idealisation of the friction force given by Coulomb's law with a velocity-dependent friction coefficient, the linearised modal equations of the bowed string are presented, and the dynamical changes of the system as a function of the bowing parameters are studied using linear stability analysis. From the computed complex eigenvalues and eigenvectors, several plots of the evolution of the modal frequencies, damping values, and modeshapes with the bowing parameters are produced, as well as stability charts for each system mode. By systematically exploring the influence of the parameters, this approach appears as a preliminary numerical characterisation of the bifurcations of the bowed string dynamics, with the advantage of being very simple compared to sophisticated numerical approaches which demand the regularisation of the nonlinear interaction force. To fix the idea about the potential of the proposed approach, the classic one-degree-of-freedom friction-excited oscillator is first considered, and then the case of the bowed string. Even if the actual stick-slip behaviour is rather far from the linear description adopted here, the results show that essential musical features of bowed string vibrations can be interpreted from this simple approach, at least qualitatively. Notably, the technique provides an instructive and original picture of bowed motions, in terms of groups of well-defined unstable modes, which is physically intuitive to discuss tonal changes observed in real bowed string.
Probabilistic Parameter Uncertainty Analysis of Single Input Single Output Control Systems
NASA Technical Reports Server (NTRS)
Smith, Brett A.; Kenny, Sean P.; Crespo, Luis G.
2005-01-01
The current standards for handling uncertainty in control systems use interval bounds for definition of the uncertain parameters. This approach gives no information about the likelihood of system performance, but simply gives the response bounds. When used in design, current methods of m-analysis and can lead to overly conservative controller design. With these methods, worst case conditions are weighted equally with the most likely conditions. This research explores a unique approach for probabilistic analysis of control systems. Current reliability methods are examined showing the strong areas of each in handling probability. A hybrid method is developed using these reliability tools for efficiently propagating probabilistic uncertainty through classical control analysis problems. The method developed is applied to classical response analysis as well as analysis methods that explore the effects of the uncertain parameters on stability and performance metrics. The benefits of using this hybrid approach for calculating the mean and variance of responses cumulative distribution functions are shown. Results of the probabilistic analysis of a missile pitch control system, and a non-collocated mass spring system, show the added information provided by this hybrid analysis.
An Accurate and Generic Testing Approach to Vehicle Stability Parameters Based on GPS and INS
Miao, Zhibin; Zhang, Hongtian; Zhang, Jinzhu
2015-01-01
With the development of the vehicle industry, controlling stability has become more and more important. Techniques of evaluating vehicle stability are in high demand. As a common method, usually GPS sensors and INS sensors are applied to measure vehicle stability parameters by fusing data from the two system sensors. Although prior model parameters should be recognized in a Kalman filter, it is usually used to fuse data from multi-sensors. In this paper, a robust, intelligent and precise method to the measurement of vehicle stability is proposed. First, a fuzzy interpolation method is proposed, along with a four-wheel vehicle dynamic model. Second, a two-stage Kalman filter, which fuses the data from GPS and INS, is established. Next, this approach is applied to a case study vehicle to measure yaw rate and sideslip angle. The results show the advantages of the approach. Finally, a simulation and real experiment is made to verify the advantages of this approach. The experimental results showed the merits of this method for measuring vehicle stability, and the approach can meet the design requirements of a vehicle stability controller. PMID:26690154
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plessow, Philipp N.; Bajdich, Michal; Greene, Joshua
The formation of thin oxide films on metal supports is an important phenomenon, especially in the context of strong metal support interaction (SMSI). Computational predictions of the stability of these films are hampered by their structural complexity and a varying lattice mismatch with different supports. In this study, we report a large combination of supports and ultrathin oxide films studied with density functional theory (DFT). Trends in stability are investigated through a descriptor-based analysis. Since the studied films are bound to the support exclusively through metal–metal interaction, the adsorption energy of the oxide-constituting metal atom can be expected to bemore » a reasonable descriptor for the stability of the overlayers. If the same supercell is used for all supports, the overlayers experience different amounts of stress. Using supercells with small lattice mismatch for each system leads to significantly improved scaling relations for the stability of the overlayers. Finally, this approach works well for the studied systems and therefore allows the descriptor-based exploration of the thermodynamic stability of supported thin oxide layers.« less
Exploiting structure: Introduction and motivation
NASA Technical Reports Server (NTRS)
Xu, Zhong Ling
1993-01-01
Research activities performed during the period of 29 June 1993 through 31 Aug. 1993 are summarized. The Robust Stability of Systems where transfer function or characteristic polynomial are multilinear affine functions of parameters of interest in two directions, Algorithmic and Theoretical, was developed. In the algorithmic direction, a new approach that reduces the computational burden of checking the robust stability of the system with multilinear uncertainty is found. This technique is called 'Stability by linear process.' In fact, the 'Stability by linear process' described gives an algorithm. In analysis, we obtained a robustness criterion for the family of polynomials with coefficients of multilinear affine function in the coefficient space and obtained the result for the robust stability of diamond families of polynomials with complex coefficients also. We obtained the limited results for SPR design and we provide a framework for solving ACS. Finally, copies of the outline of our results are provided in the appendix. Also, there is an administration issue in the appendix.
A System Analysis Approach to Robot Gripper Control Using Phase Lag Compensator Bode Designs
NASA Astrophysics Data System (ADS)
Aye, Khin Muyar; Lin, Htin; Tun, Hla Myo
2008-10-01
In this paper, we introduce the result comparisons that were developed for the phase lag compensator design using Bode Plots. The implementation of classical experiments as MATLAB m-files is described. Robot gripper control system can be designed to gain insight into a variety of concepts, including stabilization of unstable systems, compensation properties, Bode analysis and design. The analysis has resulted in a number of important conclusions for the design of a new generation of control support systems.
Title: Chimeras in small, globally coupled networks: Experiments and stability analysis
NASA Astrophysics Data System (ADS)
Hart, Joseph D.; Bansal, Kanika; Murphy, Thomas E.; Roy, Rajarshi
Since the initial observation of chimera states, there has been much discussion of the conditions under which these states emerge. The emphasis thus far has mainly been to analyze large networks of coupled oscillators; however, recent studies have begun to focus on the opposite limit: what is the smallest system of coupled oscillators in which chimeras can exist? We experimentally observe chimeras and other partially synchronous patterns in a network of four globally-coupled chaotic opto-electronic oscillators. By examining the equations of motion, we demonstrate that symmetries in the network topology allow a variety of synchronous states to exist, including cluster synchronous states and a chimera state. Using the group theoretical approach recently developed for analyzing cluster synchronization, we show how to derive the variational equations for these synchronous patterns and calculate their linear stability. The stability analysis gives good agreement with our experimental results. Both experiments and simulations suggest that these chimera states often appear in regions of multistability between global, cluster, and desynchronized states.
NASA Astrophysics Data System (ADS)
Zamani, P.; Borzouei, M.
2016-12-01
This paper addresses issue of sensitivity of efficiency classification of variable returns to scale (VRS) technology for enhancing the credibility of data envelopment analysis (DEA) results in practical applications when an additional decision making unit (DMU) needs to be added to the set being considered. It also develops a structured approach to assisting practitioners in making an appropriate selection of variation range for inputs and outputs of additional DMU so that this DMU be efficient and the efficiency classification of VRS technology remains unchanged. This stability region is simply specified by the concept of defining hyperplanes of production possibility set of VRS technology and the corresponding halfspaces. Furthermore, this study determines a stability region for the additional DMU within which, in addition to efficiency classification, the efficiency score of a specific inefficient DMU is preserved and also using a simulation method, a region in which some specific efficient DMUs become inefficient is provided.
Application of parameter estimation to aircraft stability and control: The output-error approach
NASA Technical Reports Server (NTRS)
Maine, Richard E.; Iliff, Kenneth W.
1986-01-01
The practical application of parameter estimation methodology to the problem of estimating aircraft stability and control derivatives from flight test data is examined. The primary purpose of the document is to present a comprehensive and unified picture of the entire parameter estimation process and its integration into a flight test program. The document concentrates on the output-error method to provide a focus for detailed examination and to allow us to give specific examples of situations that have arisen. The document first derives the aircraft equations of motion in a form suitable for application to estimation of stability and control derivatives. It then discusses the issues that arise in adapting the equations to the limitations of analysis programs, using a specific program for an example. The roles and issues relating to mass distribution data, preflight predictions, maneuver design, flight scheduling, instrumentation sensors, data acquisition systems, and data processing are then addressed. Finally, the document discusses evaluation and the use of the analysis results.
A Lyapunov method for stability analysis of piecewise-affine systems over non-invariant domains
NASA Astrophysics Data System (ADS)
Rubagotti, Matteo; Zaccarian, Luca; Bemporad, Alberto
2016-05-01
This paper analyses stability of discrete-time piecewise-affine systems, defined on possibly non-invariant domains, taking into account the possible presence of multiple dynamics in each of the polytopic regions of the system. An algorithm based on linear programming is proposed, in order to prove exponential stability of the origin and to find a positively invariant estimate of its region of attraction. The results are based on the definition of a piecewise-affine Lyapunov function, which is in general discontinuous on the boundaries of the regions. The proposed method is proven to lead to feasible solutions in a broader range of cases as compared to a previously proposed approach. Two numerical examples are shown, among which a case where the proposed method is applied to a closed-loop system, to which model predictive control was applied without a-priori guarantee of stability.
Development and Testing of a High Stability Engine Control (HISTEC) System
NASA Technical Reports Server (NTRS)
Orme, John S.; DeLaat, John C.; Southwick, Robert D.; Gallops, George W.; Doane, Paul M.
1998-01-01
Flight tests were recently completed to demonstrate an inlet-distortion-tolerant engine control system. These flight tests were part of NASA's High Stability Engine Control (HISTEC) program. The objective of the HISTEC program was to design, develop, and flight demonstrate an advanced integrated engine control system that uses measurement-based, real-time estimates of inlet airflow distortion to enhance engine stability. With improved stability and tolerance of inlet airflow distortion, future engine designs may benefit from a reduction in design stall-margin requirements and enhanced reliability, with a corresponding increase in performance and decrease in fuel consumption. This paper describes the HISTEC methodology, presents an aircraft test bed description (including HISTEC-specific modifications) and verification and validation ground tests. Additionally, flight test safety considerations, test plan and technique design and approach, and flight operations are addressed. Some illustrative results are presented to demonstrate the type of analysis and results produced from the flight test program.
Constructing Hopf bifurcation lines for the stability of nonlinear systems with two time delays
NASA Astrophysics Data System (ADS)
Nguimdo, Romain Modeste
2018-03-01
Although the plethora real-life systems modeled by nonlinear systems with two independent time delays, the algebraic expressions for determining the stability of their fixed points remain the Achilles' heel. Typically, the approach for studying the stability of delay systems consists in finding the bifurcation lines separating the stable and unstable parameter regions. This work deals with the parametric construction of algebraic expressions and their use for the determination of the stability boundaries of fixed points in nonlinear systems with two independent time delays. In particular, we concentrate on the cases for which the stability of the fixed points can be ascertained from a characteristic equation corresponding to that of scalar two-delay differential equations, one-component dual-delay feedback, or nonscalar differential equations with two delays for which the characteristic equation for the stability analysis can be reduced to that of a scalar case. Then, we apply our obtained algebraic expressions to identify either the parameter regions of stable microwaves generated by dual-delay optoelectronic oscillators or the regions of amplitude death in identical coupled oscillators.
Trends in the thermodynamic stability of ultrathin supported oxide films
Plessow, Philipp N.; Bajdich, Michal; Greene, Joshua; ...
2016-05-05
The formation of thin oxide films on metal supports is an important phenomenon, especially in the context of strong metal support interaction (SMSI). Computational predictions of the stability of these films are hampered by their structural complexity and a varying lattice mismatch with different supports. In this study, we report a large combination of supports and ultrathin oxide films studied with density functional theory (DFT). Trends in stability are investigated through a descriptor-based analysis. Since the studied films are bound to the support exclusively through metal–metal interaction, the adsorption energy of the oxide-constituting metal atom can be expected to bemore » a reasonable descriptor for the stability of the overlayers. If the same supercell is used for all supports, the overlayers experience different amounts of stress. Using supercells with small lattice mismatch for each system leads to significantly improved scaling relations for the stability of the overlayers. Finally, this approach works well for the studied systems and therefore allows the descriptor-based exploration of the thermodynamic stability of supported thin oxide layers.« less
Neighborhood archetypes for population health research: is there no place like home?
Weden, Margaret M; Bird, Chloe E; Escarce, José J; Lurie, Nicole
2011-01-01
This study presents a new, latent archetype approach for studying place in population health. Latent class analysis is used to show how the number, defining attributes, and change/stability of neighborhood archetypes can be characterized and tested for statistical significance. The approach is demonstrated using data on contextual determinants of health for US neighborhoods defined by census tracts in 1990 and 2000. Six archetypes (prevalence 13-20%) characterize the statistically significant combinations of contextual determinants of health from the social environment, built environment, commuting and migration patterns, and demographics and household composition of US neighborhoods. Longitudinal analyses based on the findings demonstrate notable stability (76.4% of neighborhoods categorized as the same archetype ten years later), with exceptions reflecting trends in (ex)urbanization, gentrification/downgrading, and racial/ethnic reconfiguration. The findings and approach is applicable to both research and practice (e.g. surveillance) and can be scaled up or down to study health and place in other geographical contexts or historical periods. Copyright © 2010 Elsevier Ltd. All rights reserved.
Biostability analysis for drinking water distribution systems.
Srinivasan, Soumya; Harrington, Gregory W
2007-05-01
The ability to limit regrowth in drinking water is referred to as biological stability and depends on the concentration of disinfectant residual and on the concentration of substrate required for the growth of microorganisms. The biostability curve, based on this fundamental concept of biological stability, is a graphical approach to study the two competing effects that determine bacterial regrowth in a distribution system: inactivation due to the presence of a disinfectant, and growth due to the presence of a substrate. Biostability curves are a practical, system specific approach for addressing the problem of bacterial regrowth in distribution systems. This paper presents a standardized algorithm for generating biostability curves and this will enable water utilities to incorporate this approach for their site-specific needs. Using data from pilot scale studies, it was found that this algorithm was applicable to control regrowth of HPC in chlorinated systems where AOC is the growth limiting substrate, and growth of AOB in chloraminated systems, where ammonia is the growth limiting substrate.
Robustness and cognition in stabilization problem of dynamical systems based on asymptotic methods
NASA Astrophysics Data System (ADS)
Dubovik, S. A.; Kabanov, A. A.
2017-01-01
The problem of synthesis of stabilizing systems based on principles of cognitive (logical-dynamic) control for mobile objects used under uncertain conditions is considered. This direction in control theory is based on the principles of guaranteeing robust synthesis focused on worst-case scenarios of the controlled process. The guaranteeing approach is able to provide functioning of the system with the required quality and reliability only at sufficiently low disturbances and in the absence of large deviations from some regular features of the controlled process. The main tool for the analysis of large deviations and prediction of critical states here is the action functional. After the forecast is built, the choice of anti-crisis control is the supervisory control problem that optimizes the control system in a normal mode and prevents escape of the controlled process in critical states. An essential aspect of the approach presented here is the presence of a two-level (logical-dynamic) control: the input data are used not only for generating of synthesized feedback (local robust synthesis) in advance (off-line), but also to make decisions about the current (on-line) quality of stabilization in the global sense. An example of using the presented approach for the problem of development of the ship tilting prediction system is considered.
NASA Technical Reports Server (NTRS)
Baker, John; Thorpe, Ira
2012-01-01
Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.
Landslide Hazard from Coupled Inherent and Dynamic Probabilities
NASA Astrophysics Data System (ADS)
Strauch, R. L.; Istanbulluoglu, E.; Nudurupati, S. S.
2015-12-01
Landslide hazard research has typically been conducted independently from hydroclimate research. We sought to unify these two lines of research to provide regional scale landslide hazard information for risk assessments and resource management decision-making. Our approach couples an empirical inherent landslide probability, based on a frequency ratio analysis, with a numerical dynamic probability, generated by combining subsurface water recharge and surface runoff from the Variable Infiltration Capacity (VIC) macro-scale land surface hydrologic model with a finer resolution probabilistic slope stability model. Landslide hazard mapping is advanced by combining static and dynamic models of stability into a probabilistic measure of geohazard prediction in both space and time. This work will aid resource management decision-making in current and future landscape and climatic conditions. The approach is applied as a case study in North Cascade National Park Complex in northern Washington State.
Modeling and stability of segmented reflector telescopes - A decentralized approach
NASA Technical Reports Server (NTRS)
Ryaciotaki-Boussalis, Helen A.; Ih, Che-Hang Charles
1990-01-01
The decentralization of a segmented reflector telescope based on a finite-element model of its structure is considered. The decentralization of the system at the panel level is considered. Each panel is originally treated as an isolated subsystem so that the controller design is performed independently at the local level, and then applied to the composite system for stability analysis. The panel-level control laws were designed by means of pole placement using local output feedback. Simulation results show a better 1000:1 vibration attenuation in panel position when compared to the open-loop system. It is shown that the overall closed-loop system is exponentially stable provided that certain conditions are met. The advantage to the decentralized approach is that the design is performed in terms of the low-dimensionality subsystems, thus drastically reducing the design computational complexities.
Analysis of galactosemia-linked mutations of GALT enzyme using a computational biology approach.
Facchiano, A; Marabotti, A
2010-02-01
We describe the prediction of the structural and functional effects of mutations on the enzyme galactose-1-phosphate uridyltransferase related to the genetic disease galactosemia, using a fully computational approach. One hundred and seven single-point mutants were simulated starting from the structural model of the enzyme obtained by homology modeling methods. Several bioinformatics programs were then applied to each resulting mutant protein to analyze the effect of the mutations. The mutations have a direct effect on the active site, or on the dimer assembly and stability, or on the monomer stability. We describe how mutations may exert their effect at a molecular level by altering H-bonds, salt bridges, secondary structure or surface features. The alteration of protein stability, at level of monomer and/or dimer, is the main effect observed. We found an agreement between our results and the functional experimental data available in literature for some mutants. The data and analyses for all the mutants are fully available in the web-accessible database hosted at http://bioinformatica.isa.cnr.it/GALT.
Order parameter analysis of synchronization transitions on star networks
NASA Astrophysics Data System (ADS)
Chen, Hong-Bin; Sun, Yu-Ting; Gao, Jian; Xu, Can; Zheng, Zhi-Gang
2017-12-01
The collective behaviors of populations of coupled oscillators have attracted significant attention in recent years. In this paper, an order parameter approach is proposed to study the low-dimensional dynamical mechanism of collective synchronizations, by adopting the star-topology of coupled oscillators as a prototype system. The order parameter equation of star-linked phase oscillators can be obtained in terms of the Watanabe-Strogatz transformation, Ott-Antonsen ansatz, and the ensemble order parameter approach. Different solutions of the order parameter equation correspond to the diverse collective states, and different bifurcations reveal various transitions among these collective states. The properties of various transitions in the star-network model are revealed by using tools of nonlinear dynamics such as time reversibility analysis and linear stability analysis.
Dynamics of Orbits near 3:1 Resonance in the Earth-Moon System
NASA Technical Reports Server (NTRS)
Dichmann, Donald J.; Lebois, Ryan; Carrico, John P., Jr.
2013-01-01
The Interstellar Boundary Explorer (IBEX) spacecraft is currently in a highly elliptical orbit around Earth with a period near 3:1 resonance with the Moon. Its orbit is oriented so that apogee does not approach the Moon. Simulations show this orbit to be remarkably stable over the next twenty years. This article examines the dynamics of such orbits in the Circular Restricted 3-Body Problem (CR3BP). We look at three types of periodic orbits, each exhibiting a type of symmetry of the CR3BP. For each of the orbit types, we assess the local stability using Floquet analysis. Although not all of the periodic solutions are stable in the mathematical sense, any divergence is so slow as to produce practical stability over several decades. We use Poincare maps with twenty-year propagations to assess the nonlinear stability of the orbits, where the perturbation magnitudes are related to the orbit uncertainty for the IBEX mission. Finally we show that these orbits belong to a family of orbits connected in a bifurcation diagram that exhibits exchange of stability. The analysis of these families of period orbits provides a valuable starting point for a mission orbit trade study.
Greco, Todd M.; Guise, Amanda J.; Cristea, Ileana M.
2016-01-01
In biological systems, proteins catalyze the fundamental reactions that underlie all cellular functions, including metabolic processes and cell survival and death pathways. These biochemical reactions are rarely accomplished alone. Rather, they involve a concerted effect from many proteins that may operate in a directed signaling pathway and/or may physically associate in a complex to achieve a specific enzymatic activity. Therefore, defining the composition and regulation of protein complexes is critical for understanding cellular functions. In this chapter, we describe an approach that uses quantitative mass spectrometry (MS) to assess the specificity and the relative stability of protein interactions. Isolation of protein complexes from mammalian cells is performed by rapid immunoaffinity purification, and followed by in-solution digestion and high-resolution mass spectrometry analysis. We employ complementary quantitative MS workflows to assess the specificity of protein interactions using label-free MS and statistical analysis, and the relative stability of the interactions using a metabolic labeling technique. For each candidate protein interaction, scores from the two workflows can be correlated to minimize nonspecific background and profile protein complex composition and relative stability. PMID:26867737
Aeroelastic Stability of Rotor Blades Using Finite Element Analysis
NASA Technical Reports Server (NTRS)
Chopra, I.; Sivaneri, N.
1982-01-01
The flutter stability of flap bending, lead-lag bending, and torsion of helicopter rotor blades in hover is investigated using a finite element formulation based on Hamilton's principle. The blade is divided into a number of finite elements. Quasi-steady strip theory is used to evaluate the aerodynamic loads. The nonlinear equations of motion are solved for steady-state blade deflections through an iterative procedure. The equations of motion are linearized assuming blade motion to be a small perturbation about the steady deflected shape. The normal mode method based on the coupled rotating natural modes is used to reduce the number of equations in the flutter analysis. First the formulation is applied to single-load-path blades (articulated and hingeless blades). Numerical results show very good agreement with existing results obtained using the modal approach. The second part of the application concerns multiple-load-path blades, i.e. bearingless blades. Numerical results are presented for several analytical models of the bearingless blade. Results are also obtained using an equivalent beam approach wherein a bearingless blade is modelled as a single beam with equivalent properties. Results show the equivalent beam model.
A parameter-free variational coupling approach for trimmed isogeometric thin shells
NASA Astrophysics Data System (ADS)
Guo, Yujie; Ruess, Martin; Schillinger, Dominik
2017-04-01
The non-symmetric variant of Nitsche's method was recently applied successfully for variationally enforcing boundary and interface conditions in non-boundary-fitted discretizations. In contrast to its symmetric variant, it does not require stabilization terms and therefore does not depend on the appropriate estimation of stabilization parameters. In this paper, we further consolidate the non-symmetric Nitsche approach by establishing its application in isogeometric thin shell analysis, where variational coupling techniques are of particular interest for enforcing interface conditions along trimming curves. To this end, we extend its variational formulation within Kirchhoff-Love shell theory, combine it with the finite cell method, and apply the resulting framework to a range of representative shell problems based on trimmed NURBS surfaces. We demonstrate that the non-symmetric variant applied in this context is stable and can lead to the same accuracy in terms of displacements and stresses as its symmetric counterpart. Based on our numerical evidence, the non-symmetric Nitsche method is a viable parameter-free alternative to the symmetric variant in elastostatic shell analysis.
Detecting malicious chaotic signals in wireless sensor network
NASA Astrophysics Data System (ADS)
Upadhyay, Ranjit Kumar; Kumari, Sangeeta
2018-02-01
In this paper, an e-epidemic Susceptible-Infected-Vaccinated (SIV) model has been proposed to analyze the effect of node immunization and worms attacking dynamics in wireless sensor network. A modified nonlinear incidence rate with cyrtoid type functional response has been considered using sleep and active mode approach. Detailed stability analysis and the sufficient criteria for the persistence of the model system have been established. We also established different types of bifurcation analysis for different equilibria at different critical points of the control parameters. We performed a detailed Hopf bifurcation analysis and determine the direction and stability of the bifurcating periodic solutions using center manifold theorem. Numerical simulations are carried out to confirm the theoretical results. The impact of the control parameters on the dynamics of the model system has been investigated and malicious chaotic signals are detected. Finally, we have analyzed the effect of time delay on the dynamics of the model system.
Signal Processing Methods for Liquid Rocket Engine Combustion Stability Assessments
NASA Technical Reports Server (NTRS)
Kenny, R. Jeremy; Lee, Erik; Hulka, James R.; Casiano, Matthew
2011-01-01
The J2X Gas Generator engine design specifications include dynamic, spontaneous, and broadband combustion stability requirements. These requirements are verified empirically based high frequency chamber pressure measurements and analyses. Dynamic stability is determined with the dynamic pressure response due to an artificial perturbation of the combustion chamber pressure (bomb testing), and spontaneous and broadband stability are determined from the dynamic pressure responses during steady operation starting at specified power levels. J2X Workhorse Gas Generator testing included bomb tests with multiple hardware configurations and operating conditions, including a configuration used explicitly for engine verification test series. This work covers signal processing techniques developed at Marshall Space Flight Center (MSFC) to help assess engine design stability requirements. Dynamic stability assessments were performed following both the CPIA 655 guidelines and a MSFC in-house developed statistical-based approach. The statistical approach was developed to better verify when the dynamic pressure amplitudes corresponding to a particular frequency returned back to pre-bomb characteristics. This was accomplished by first determining the statistical characteristics of the pre-bomb dynamic levels. The pre-bomb statistical characterization provided 95% coverage bounds; these bounds were used as a quantitative measure to determine when the post-bomb signal returned to pre-bomb conditions. The time for post-bomb levels to acceptably return to pre-bomb levels was compared to the dominant frequency-dependent time recommended by CPIA 655. Results for multiple test configurations, including stable and unstable configurations, were reviewed. Spontaneous stability was assessed using two processes: 1) characterization of the ratio of the peak response amplitudes to the excited chamber acoustic mode amplitudes and 2) characterization of the variability of the peak response's frequency over the test duration. This characterization process assists in evaluating the discreteness of a signal as well as the stability of the chamber response. Broadband stability was assessed using a running root-mean-square evaluation. These techniques were also employed, in a comparative analysis, on available Fastrac data, and these results are presented here.
Fast detection of tobacco mosaic virus infected tobacco using laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Peng, Jiyu; Song, Kunlin; Zhu, Hongyan; Kong, Wenwen; Liu, Fei; Shen, Tingting; He, Yong
2017-03-01
Tobacco mosaic virus (TMV) is one of the most devastating viruses to crops, which can cause severe production loss and affect the quality of products. In this study, we have proposed a novel approach to discriminate TMV-infected tobacco based on laser-induced breakdown spectroscopy (LIBS). Two different kinds of tobacco samples (fresh leaves and dried leaf pellets) were collected for spectral acquisition, and partial least squared discrimination analysis (PLS-DA) was used to establish classification models based on full spectrum and observed emission lines. The influences of moisture content on spectral profile, signal stability and plasma parameters (temperature and electron density) were also analysed. The results revealed that moisture content in fresh tobacco leaves would worsen the stability of analysis, and have a detrimental effect on the classification results. Good classification results were achieved based on the data from both full spectrum and observed emission lines of dried leaves, approaching 97.2% and 88.9% in the prediction set, respectively. In addition, support vector machine (SVM) could improve the classification results and eliminate influences of moisture content. The preliminary results indicate that LIBS coupled with chemometrics could provide a fast, efficient and low-cost approach for TMV-infected disease detection in tobacco leaves.
Fast detection of tobacco mosaic virus infected tobacco using laser-induced breakdown spectroscopy
Peng, Jiyu; Song, Kunlin; Zhu, Hongyan; Kong, Wenwen; Liu, Fei; Shen, Tingting; He, Yong
2017-01-01
Tobacco mosaic virus (TMV) is one of the most devastating viruses to crops, which can cause severe production loss and affect the quality of products. In this study, we have proposed a novel approach to discriminate TMV-infected tobacco based on laser-induced breakdown spectroscopy (LIBS). Two different kinds of tobacco samples (fresh leaves and dried leaf pellets) were collected for spectral acquisition, and partial least squared discrimination analysis (PLS-DA) was used to establish classification models based on full spectrum and observed emission lines. The influences of moisture content on spectral profile, signal stability and plasma parameters (temperature and electron density) were also analysed. The results revealed that moisture content in fresh tobacco leaves would worsen the stability of analysis, and have a detrimental effect on the classification results. Good classification results were achieved based on the data from both full spectrum and observed emission lines of dried leaves, approaching 97.2% and 88.9% in the prediction set, respectively. In addition, support vector machine (SVM) could improve the classification results and eliminate influences of moisture content. The preliminary results indicate that LIBS coupled with chemometrics could provide a fast, efficient and low-cost approach for TMV-infected disease detection in tobacco leaves. PMID:28300144
Clegg, Paul S; Tavacoli, Joe W; Wilde, Pete J
2016-01-28
Multiple emulsions have great potential for application in food science as a means to reduce fat content or for controlled encapsulation and release of actives. However, neither production nor stability is straightforward. Typically, multiple emulsions are prepared via two emulsification steps and a variety of approaches have been deployed to give long-term stability. It is well known that multiple emulsions can be prepared in a single step by harnessing emulsion inversion, although the resulting emulsions are usually short lived. Recently, several contrasting methods have been demonstrated which give rise to stable multiple emulsions via one-step production processes. Here we review the current state of microfluidic, polymer-stabilized and particle-stabilized approaches; these rely on phase separation, the role of electrolyte and the trapping of solvent with particles respectively.
Modeling, Analysis, and Control of Swarming Agents in a Probabilistic Framework
2012-11-01
configurations, which can ultimately lead the swarm towards configurations close to the global minimum of the total potential of interactions. The drawback ...165–171, 1992. [6] H. Ye, H. Wang, and H. Wang, “Stabilization of a PVTOL aircraft and an inertia wheel pendulum using saturation technique,” IEEE...estimate its parameters. The drawback of this approach is that the assumed form of the field can be unrealistic. In the approach that we are presenting here
Zuccarello, Daniel J; Murphy, Michael P; Meyer, Richard F; Winslow, Paul A
2009-01-01
A comprehensive digestive approach for determining the extractable and leachable metals in pharmaceutical products by inductively-coupled plasma is investigated. This study examines several acid digestion strategies for packaging materials, containers, and formulated products for complete trace metals analysis. Packaging materials, a food product, and a simulated drug product are evaluated for leachable metals by stressing the materials under accelerated stability conditions. Trace metal profiles of 64 elements for these materials are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Pamela J.
The long-term goal of this research was to better understand the influence of mRNA stability on gene regulation, particularly in response to hormones and the circadian clock. The primary aim of this project was to examine this using DNA microarrays, small RNA analysis and other approaches. We accomplished these objectives, although we were only able to detect small changes in mRNA stability in response to these stimuli. However, the work also contributed to a major breakthrough allowing the identification of small RNAs on a genomic scale in eukaryotes. Moreover, the project prompted us to develop a new way to analyzemore » mRNA decay genome wide. Thus, the research was hugely successful beyond our objectives.« less
A new technique for the characterization of chaff elements
NASA Astrophysics Data System (ADS)
Scholfield, David; Myat, Maung; Dauby, Jason; Fesler, Jonathon; Bright, Jonathan
2011-07-01
A new technique for the experimental characterization of electromagnetic chaff based on Inverse Synthetic Aperture Radar is presented. This technique allows for the characterization of as few as one filament of chaff in a controlled anechoic environment allowing for stability and repeatability of experimental results. This approach allows for a deeper understanding of the fundamental phenomena of electromagnetic scattering from chaff through an incremental analysis approach. Chaff analysis can now begin with a single element and progress through the build-up of particles into pseudo-cloud structures. This controlled incremental approach is supported by an identical incremental modeling and validation process. Additionally, this technique has the potential to produce considerable savings in financial and schedule cost and provides a stable and repeatable experiment to aid model valuation.
Limit Cycle Analysis Applied to the Oscillations of Decelerating Blunt-Body Entry Vehicles
NASA Technical Reports Server (NTRS)
Schoenenberger, Mark; Queen, Eric M.
2008-01-01
Many blunt-body entry vehicles have nonlinear dynamic stability characteristics that produce self-limiting oscillations in flight. Several different test techniques can be used to extract dynamic aerodynamic coefficients to predict this oscillatory behavior for planetary entry mission design and analysis. Most of these test techniques impose boundary conditions that alter the oscillatory behavior from that seen in flight. Three sets of test conditions, representing three commonly used test techniques, are presented to highlight these effects. Analytical solutions to the constant-coefficient planar equations-of-motion for each case are developed to show how the same blunt body behaves differently depending on the imposed test conditions. The energy equation is applied to further illustrate the governing dynamics. Then, the mean value theorem is applied to the energy rate equation to find the effective damping for an example blunt body with nonlinear, self-limiting dynamic characteristics. This approach is used to predict constant-energy oscillatory behavior and the equilibrium oscillation amplitudes for the various test conditions. These predictions are verified with planar simulations. The analysis presented provides an overview of dynamic stability test techniques and illustrates the effects of dynamic stability, static aerodynamics and test conditions on observed dynamic motions. It is proposed that these effects may be leveraged to develop new test techniques and refine test matrices in future tests to better define the nonlinear functional forms of blunt body dynamic stability curves.
The effect of epoch length on estimated EEG functional connectivity and brain network organisation
NASA Astrophysics Data System (ADS)
Fraschini, Matteo; Demuru, Matteo; Crobe, Alessandra; Marrosu, Francesco; Stam, Cornelis J.; Hillebrand, Arjan
2016-06-01
Objective. Graph theory and network science tools have revealed fundamental mechanisms of functional brain organization in resting-state M/EEG analysis. Nevertheless, it is still not clearly understood how several methodological aspects may bias the topology of the reconstructed functional networks. In this context, the literature shows inconsistency in the chosen length of the selected epochs, impeding a meaningful comparison between results from different studies. Approach. The aim of this study was to provide a network approach insensitive to the effects that epoch length has on functional connectivity and network reconstruction. Two different measures, the phase lag index (PLI) and the amplitude envelope correlation (AEC) were applied to EEG resting-state recordings for a group of 18 healthy volunteers using non-overlapping epochs with variable length (1, 2, 4, 6, 8, 10, 12, 14 and 16 s). Weighted clustering coefficient (CCw), weighted characteristic path length (L w) and minimum spanning tree (MST) parameters were computed to evaluate the network topology. The analysis was performed on both scalp and source-space data. Main results. Results from scalp analysis show a decrease in both mean PLI and AEC values with an increase in epoch length, with a tendency to stabilize at a length of 12 s for PLI and 6 s for AEC. Moreover, CCw and L w show very similar behaviour, with metrics based on AEC more reliable in terms of stability. In general, MST parameters stabilize at short epoch lengths, particularly for MSTs based on PLI (1-6 s versus 4-8 s for AEC). At the source-level the results were even more reliable, with stability already at 1 s duration for PLI-based MSTs. Significance. The present work suggests that both PLI and AEC depend on epoch length and that this has an impact on the reconstructed network topology, particularly at the scalp-level. Source-level MST topology is less sensitive to differences in epoch length, therefore enabling the comparison of brain network topology between different studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Hye-Kyung; Kim, Byoung Chan; Jun, Seung-Hyun
2010-12-15
An efficient protein digestion in proteomic analysis requires the stabilization of proteases such as trypsin. In the present work, trypsin was stabilized in the form of enzyme coating on electrospun polymer nanofibers (EC-TR), which crosslinks additional trypsin molecules onto covalently-attached trypsin (CA-TR). EC-TR showed better stability than CA-TR in rigorous conditions, such as at high temperatures of 40 °C and 50 °C, in the presence of organic co-solvents, and at various pH's. For example, the half-lives of CA-TR and EC-TR were 0.24 and 163.20 hours at 40 ºC, respectively. The improved stability of EC-TR can be explained by covalent-linkages onmore » the surface of trypsin molecules, which effectively inhibits the denaturation, autolysis, and leaching of trypsin. The protein digestion was performed at 40 °C by using both CA-TR and EC-TR in digesting a model protein, enolase. EC-TR showed better performance and stability than CA-TR by maintaining good performance of enolase digestion under recycled uses for a period of one week. In the same condition, CA-TR showed poor performance from the beginning, and could not be used for digestion at all after a few usages. The enzyme coating approach is anticipated to be successfully employed not only for protein digestion in proteomic analysis, but also for various other fields where the poor enzyme stability presently hampers the practical applications of enzymes.« less
Ares I-X Flight Test Validation of Control Design Tools in the Frequency-Domain
NASA Technical Reports Server (NTRS)
Johnson, Matthew; Hannan, Mike; Brandon, Jay; Derry, Stephen
2011-01-01
A major motivation of the Ares I-X flight test program was to Design for Data, in order to maximize the usefulness of the data recorded in support of Ares I modeling and validation of design and analysis tools. The Design for Data effort was intended to enable good post-flight characterizations of the flight control system, the vehicle structural dynamics, and also the aerodynamic characteristics of the vehicle. To extract the necessary data from the system during flight, a set of small predetermined Programmed Test Inputs (PTIs) was injected directly into the TVC signal. These PTIs were designed to excite the necessary vehicle dynamics while exhibiting a minimal impact on loads. The method is similar to common approaches in aircraft flight test programs, but with unique launch vehicle challenges due to rapidly changing states, short duration of flight, a tight flight envelope, and an inability to repeat any test. This paper documents the validation effort of the stability analysis tools to the flight data which was performed by comparing the post-flight calculated frequency response of the vehicle to the frequency response calculated by the stability analysis tools used to design and analyze the preflight models during the control design effort. The comparison between flight day frequency response and stability tool analysis for flight of the simulated vehicle shows good agreement and provides a high level of confidence in the stability analysis tools for use in any future program. This is true for both a nominal model as well as for dispersed analysis, which shows that the flight day frequency response is enveloped by the vehicle s preflight uncertainty models.
Guo, Jianxin; Kumar, Sandeep; Prashad, Amarnauth; Starkey, Jason; Singh, Satish K
2014-07-01
To provide a systematic biophysical approach towards a better understanding of impact of conjugation chemistry on higher order structure and physical stability of an antibody drug conjugate (ADC). ADC was prepared using thiol-maleimide chemistry. Physical stabilities of ADC and its parent IgG1 mAb were compared using calorimetric, spectroscopic and molecular modeling techniques. ADC and mAb respond differently to thermal stress. Both the melting temperatures and heat capacities are substantially lower for the ADC. Spectroscopic experiments show that ADC and mAb have similar secondary and tertiary structures, but these are more easily destabilized by thermal stress on the ADC indicating reduced conformational stability. Molecular modeling calculations suggest a substantial decrease in the conformational energy of the mAb upon conjugation. The local surface around the conjugation sites also becomes more hydrophobic in the ADC, explaining the lower colloidal stability and greater tendency of the ADC to aggregate. Computational and biophysical analyses of an ADC and its parent mAb have provided insights into impact of conjugation on physical stability and pinpointed reasons behind lower structural stability and increased aggregation propensity of the ADC. This knowledge can be used to design appropriate formulations to stabilize the ADC.
Microgravity isolation system design: A modern control analysis framework
NASA Technical Reports Server (NTRS)
Hampton, R. D.; Knospe, C. R.; Allaire, P. E.; Grodsinsky, C. M.
1994-01-01
Many acceleration-sensitive, microgravity science experiments will require active vibration isolation from the manned orbiters on which they will be mounted. The isolation problem, especially in the case of a tethered payload, is a complex three-dimensional one that is best suited to modern-control design methods. These methods, although more powerful than their classical counterparts, can nonetheless go only so far in meeting the design requirements for practical systems. Once a tentative controller design is available, it must still be evaluated to determine whether or not it is fully acceptable, and to compare it with other possible design candidates. Realistically, such evaluation will be an inherent part of a necessary iterative design process. In this paper, an approach is presented for applying complex mu-analysis methods to a closed-loop vibration isolation system (experiment plus controller). An analysis framework is presented for evaluating nominal stability, nominal performance, robust stability, and robust performance of active microgravity isolation systems, with emphasis on the effective use of mu-analysis methods.
NASA Astrophysics Data System (ADS)
Wakefield, David
Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures. Founded upon their inTENS finite element analysis suite, these activities have broadened to encompass ‘lighter than air' structures such as aerostats, hybrid air-vehicles and stratospheric balloons. Since 2004 Tensys have acted as consultants to the NASA Ultra Long Duration Balloon (ULDB) Program. Early implementations of the super-pressure balloon design chosen for ULDB have shown problems of geometric instability, characterised by improper deployment and the potential for overall geometric instability once deployed. The latter has been reproduced numerically using inTENS, and the former are better understood following a series of large-scale hangar tests simulating launch and ascent. In both cases the solution lies in minimising the film lobing between the tendons. These tendons, which span between base and apex end fittings, cause the characteristic pumpkin shape of the balloons and also provide valuable constraint against excessive film deformation. There is also the requirement to generate a biaxial stress field in order to mobilise in-plane shear stiffness. A consequence of reduced lobing between tendons is the development of higher stresses in the balloon film under pressure. The different thermal characteristics between tendons and film lead to further significant meridional stress under low temperature flight conditions. The non-linear viscoelastic response of the envelope film acts positively to help dissipate excessive stress and local concentrations. However, creep over time may produce lobe geometry variations sufficient to compromise the geometric stability of the balloon. The design of a balloon requires an analysis approach that addresses the questions of stress and stability over the duration of a flight by time stepping analyses using an appropriate material model. This paper summarises the Dynamic Relaxation approach to stress and stability analysis inherent in inTENS, and focuses in particular on: Implementation of an alternative application of the Incremental Schapery Rand (ISR) representation of the non-linear visco-elastic response of the polyethylene balloon film. This is based upon the relaxation modulus, rather than the creep compliance, and as such fits more efficiently into the Dynamic Relaxation analysis procedure used within inTENS. Comparisons of results between the two approaches are given. Verification of the material model by comparison with material tests. Verification of the application to pumpkin balloon structures by comparison with scale model tests. Application of inTENS with ISR to time-stepping analyses of a balloon flight including diurnal variations of temperature and pressure. This includes the demonstration of a method for checking the likely hood of overall instability developing at any particular time in the flight as both balloon geometry and film properties change due to visco-elastic effects.
Assessing the extent, stability, purity and properties of silanised detonation nanodiamond
NASA Astrophysics Data System (ADS)
Duffy, Emer; Mitev, Dimitar P.; Thickett, Stuart C.; Townsend, Ashley T.; Paull, Brett; Nesterenko, Pavel N.
2015-12-01
The functionalisation of nanodiamond is a key step in furthering its application in areas such as surface coatings, drug delivery, bio imaging and other biomedical avenues. Accordingly, analytical methods for the detailed characterisation of functionalised nano-material are of great importance. This work presents an alternative approach for the elemental analysis of zero-dimensional nanocarbons, specifically detonation nanodiamond (DND) following purification and functionalisation procedures. There is a particular emphasis on the presence of silicon, both for the purified DND and after its functionalisation with silanes. Five different silylation procedures for purified DND were explored and assessed quantitatively using inductively coupled plasma-mass spectrometry (ICP-MS) for analysis of dilute suspensions. A maximum Si loading of 29,300 μg g-1 on the DND was achieved through a combination of silylating reagents. The presence of 28 other elements in the DND materials was also quantified by ICP-MS. The characterisation of Si-bond formation was supported by FTIR and XPS evaluation of relevant functional groups. The thermal stability of the silylated DND was examined by thermogravimetric analysis. Improved particle size distribution and dispersion stability resulted from the silylation procedure, as confirmed by dynamic light scattering and capillary zone electrophoresis.
Hydrological effect of vegetation against rainfall-induced landslides
NASA Astrophysics Data System (ADS)
Gonzalez-Ollauri, Alejandro; Mickovski, Slobodan B.
2017-06-01
The hydrological effect of vegetation on rainfall-induced landslides has rarely been quantified and its integration into slope stability analysis methods remains a challenge. Our goal was to establish a reproducible, novel framework to evaluate the hydrological effect of vegetation on shallow landslides. This was achieved by accomplishing three objectives: (i) quantification in situ of the hydrological mechanisms by which woody vegetation (i.e. Salix sp.) might impact slope stability under wetting and drying conditions; (ii) to propose a new approach to predict plant-derived matric suctions under drying conditions; and (iii) to evaluate the suitability of the unified effective stress principle and framework (UES) to quantify the hydrological effect of vegetation against landslides. The results revealed that plant water uptake was the main hydrological mechanism contributing to slope stability, as the vegetated slope was, on average, 12.84% drier and had matric suctions three times higher than the fallow slope. The plant-related mechanisms under wetting conditions had a minimal effect on slope stability. The plant aerial parts intercepted up to 26.73% of the rainfall and concentrated a further 10.78% of it around the stem. Our approach successfully predicted the plant-derived matric suctions and UES proved to be adequate for evaluating the hydrological effect of vegetation on landslides. Although the UES framework presented here sets the basis for effectively evaluating the hydrological effect of vegetation on slope stability, it requires knowledge of the specific hydro-mechanical properties of plant-soil composites and this in itself needs further investigation.
NASA Astrophysics Data System (ADS)
Moreno de las Heras, Mariano; Diaz Sierra, Ruben; Nicolau, Jose M.; Zavala, Miguel A.
2013-04-01
Slope reclamation from surface mining and road construction usually shows important constraints in water-limited environments. Soil erosion is perceived as a critical process, especially when rill formation occurs, as rills can condition the spatial distribution and availability of soil moisture for plant growth, hence affecting vegetation development. On the other hand, encouraging early vegetation establishment is essential to reduce the risk of degradation in these man-made systems. This work describes a modeling approach focused on stability analysis of water-limited reclaimed slopes, where interactive relationships between rill erosion and vegetation regulate ecosystem stability. Our framework reproduces two main groups of trends along the temporal evolution of reclaimed slopes: successful trends, characterized by widespread vegetation development and the effective control of rill erosion processes; and gullying trends, characterized by the progressive loss of vegetation and a sharp logistic increase in erosion rates. Furthermore, this analytical approach allows the determination of threshold values for both vegetation cover and rill erosion that drive the system's stability, facilitating the identification of critical situations that require specific human intervention (e.g. revegetation or, in very problematic cases, revegetation combined with rill network destruction) to ensure the long-term sustainability of the restored ecosystem. We apply our threshold analysis framework in Mediterranean-dry reclaimed slopes derived form surface coal mining (the Teruel coalfield in central-east Spain), obtaining a good field-based performance. Therefore, we believe that this model is a valuable contribution for the management of water-limited reclaimed systems, as it can play an important role in decision-making during ecosystem restoration and provides a tool for the assessment of restoration success in severely disturbed landscapes.
Brown, Lynette; Green, Cherie L; Jones, Nicholas; Stewart, Jennifer J; Fraser, Stephanie; Howell, Kathy; Xu, Yuanxin; Hill, Carla G; Wiwi, Christopher A; White, Wendy I; O'Brien, Peter J; Litwin, Virginia
2015-03-01
The objective of this manuscript is to present an approach for evaluating specimen stability for flow cytometric methods used during drug development. While this approach specifically addresses stability assessment for assays to be used in clinical trials with centralized testing facilities, the concepts can be applied to any stability assessment for flow cytometric methods. The proposed approach is implemented during assay development and optimization, and includes suggestions for designing a stability assessment plan, data evaluation and acceptance criteria. Given that no single solution will be applicable in all scenarios, this manuscript offers the reader a roadmap for stability assessment and is intended to guide the investigator during both the method development phase and in the experimental design of the validation plan. Copyright © 2015 Elsevier B.V. All rights reserved.
Differential geometry based solvation model I: Eulerian formulation
NASA Astrophysics Data System (ADS)
Chen, Zhan; Baker, Nathan A.; Wei, G. W.
2010-11-01
This paper presents a differential geometry based model for the analysis and computation of the equilibrium property of solvation. Differential geometry theory of surfaces is utilized to define and construct smooth interfaces with good stability and differentiability for use in characterizing the solvent-solute boundaries and in generating continuous dielectric functions across the computational domain. A total free energy functional is constructed to couple polar and nonpolar contributions to the solvation process. Geometric measure theory is employed to rigorously convert a Lagrangian formulation of the surface energy into an Eulerian formulation so as to bring all energy terms into an equal footing. By optimizing the total free energy functional, we derive coupled generalized Poisson-Boltzmann equation (GPBE) and generalized geometric flow equation (GGFE) for the electrostatic potential and the construction of realistic solvent-solute boundaries, respectively. By solving the coupled GPBE and GGFE, we obtain the electrostatic potential, the solvent-solute boundary profile, and the smooth dielectric function, and thereby improve the accuracy and stability of implicit solvation calculations. We also design efficient second-order numerical schemes for the solution of the GPBE and GGFE. Matrix resulted from the discretization of the GPBE is accelerated with appropriate preconditioners. An alternative direct implicit (ADI) scheme is designed to improve the stability of solving the GGFE. Two iterative approaches are designed to solve the coupled system of nonlinear partial differential equations. Extensive numerical experiments are designed to validate the present theoretical model, test computational methods, and optimize numerical algorithms. Example solvation analysis of both small compounds and proteins are carried out to further demonstrate the accuracy, stability, efficiency and robustness of the present new model and numerical approaches. Comparison is given to both experimental and theoretical results in the literature.
Differential geometry based solvation model I: Eulerian formulation
Chen, Zhan; Baker, Nathan A.; Wei, G. W.
2010-01-01
This paper presents a differential geometry based model for the analysis and computation of the equilibrium property of solvation. Differential geometry theory of surfaces is utilized to define and construct smooth interfaces with good stability and differentiability for use in characterizing the solvent-solute boundaries and in generating continuous dielectric functions across the computational domain. A total free energy functional is constructed to couple polar and nonpolar contributions to the salvation process. Geometric measure theory is employed to rigorously convert a Lagrangian formulation of the surface energy into an Eulerian formulation so as to bring all energy terms into an equal footing. By minimizing the total free energy functional, we derive coupled generalized Poisson-Boltzmann equation (GPBE) and generalized geometric flow equation (GGFE) for the electrostatic potential and the construction of realistic solvent-solute boundaries, respectively. By solving the coupled GPBE and GGFE, we obtain the electrostatic potential, the solvent-solute boundary profile, and the smooth dielectric function, and thereby improve the accuracy and stability of implicit solvation calculations. We also design efficient second order numerical schemes for the solution of the GPBE and GGFE. Matrix resulted from the discretization of the GPBE is accelerated with appropriate preconditioners. An alternative direct implicit (ADI) scheme is designed to improve the stability of solving the GGFE. Two iterative approaches are designed to solve the coupled system of nonlinear partial differential equations. Extensive numerical experiments are designed to validate the present theoretical model, test computational methods, and optimize numerical algorithms. Example solvation analysis of both small compounds and proteins are carried out to further demonstrate the accuracy, stability, efficiency and robustness of the present new model and numerical approaches. Comparison is given to both experimental and theoretical results in the literature. PMID:20938489
Geospatial Data Integration for Assessing Landslide Hazard on Engineered Slopes
NASA Astrophysics Data System (ADS)
Miller, P. E.; Mills, J. P.; Barr, S. L.; Birkinshaw, S. J.
2012-07-01
Road and rail networks are essential components of national infrastructures, underpinning the economy, and facilitating the mobility of goods and the human workforce. Earthwork slopes such as cuttings and embankments are primary components, and their reliability is of fundamental importance. However, instability and failure can occur, through processes such as landslides. Monitoring the condition of earthworks is a costly and continuous process for network operators, and currently, geospatial data is largely underutilised. The research presented here addresses this by combining airborne laser scanning and multispectral aerial imagery to develop a methodology for assessing landslide hazard. This is based on the extraction of key slope stability variables from the remotely sensed data. The methodology is implemented through numerical modelling, which is parameterised with the slope stability information, simulated climate conditions, and geotechnical properties. This allows determination of slope stability (expressed through the factor of safety) for a range of simulated scenarios. Regression analysis is then performed in order to develop a functional model relating slope stability to the input variables. The remotely sensed raster datasets are robustly re-sampled to two-dimensional cross-sections to facilitate meaningful interpretation of slope behaviour and mapping of landslide hazard. Results are stored in a geodatabase for spatial analysis within a GIS environment. For a test site located in England, UK, results have shown the utility of the approach in deriving practical hazard assessment information. Outcomes were compared to the network operator's hazard grading data, and show general agreement. The utility of the slope information was also assessed with respect to auto-population of slope geometry, and found to deliver significant improvements over the network operator's existing field-based approaches.
Lu, Mengxiao; Gantz, Donald L.; Herscovitz, Haya; Gursky, Olga
2012-01-01
Fusion of modified LDL in the arterial wall promotes atherogenesis. Earlier we showed that thermal denaturation mimics LDL remodeling and fusion, and revealed kinetic origin of LDL stability. Here we report the first quantitative analysis of LDL thermal stability. Turbidity data show sigmoidal kinetics of LDL heat denaturation, which is unique among lipoproteins, suggesting that fusion is preceded by other structural changes. High activation energy of denaturation, Ea = 100 ± 8 kcal/mol, indicates disruption of extensive packing interactions in LDL. Size-exclusion chromatography, nondenaturing gel electrophoresis, and negative-stain electron microscopy suggest that LDL dimerization is an early step in thermally induced fusion. Monoclonal antibody binding suggests possible involvement of apoB N-terminal domain in early stages of LDL fusion. LDL fusion accelerates at pH < 7, which may contribute to LDL retention in acidic atherosclerotic lesions. Fusion also accelerates upon increasing LDL concentration in near-physiologic range, which likely contributes to atherogenesis. Thermal stability of LDL decreases with increasing particle size, indicating that the pro-atherogenic properties of small dense LDL do not result from their enhanced fusion. Our work provides the first kinetic approach to measuring LDL stability and suggests that lipid-lowering therapies that reduce LDL concentration but increase the particle size may have opposite effects on LDL fusion. PMID:22855737
Lu, Mengxiao; Gantz, Donald L; Herscovitz, Haya; Gursky, Olga
2012-10-01
Fusion of modified LDL in the arterial wall promotes atherogenesis. Earlier we showed that thermal denaturation mimics LDL remodeling and fusion, and revealed kinetic origin of LDL stability. Here we report the first quantitative analysis of LDL thermal stability. Turbidity data show sigmoidal kinetics of LDL heat denaturation, which is unique among lipoproteins, suggesting that fusion is preceded by other structural changes. High activation energy of denaturation, E(a) = 100 ± 8 kcal/mol, indicates disruption of extensive packing interactions in LDL. Size-exclusion chromatography, nondenaturing gel electrophoresis, and negative-stain electron microscopy suggest that LDL dimerization is an early step in thermally induced fusion. Monoclonal antibody binding suggests possible involvement of apoB N-terminal domain in early stages of LDL fusion. LDL fusion accelerates at pH < 7, which may contribute to LDL retention in acidic atherosclerotic lesions. Fusion also accelerates upon increasing LDL concentration in near-physiologic range, which likely contributes to atherogenesis. Thermal stability of LDL decreases with increasing particle size, indicating that the pro-atherogenic properties of small dense LDL do not result from their enhanced fusion. Our work provides the first kinetic approach to measuring LDL stability and suggests that lipid-lowering therapies that reduce LDL concentration but increase the particle size may have opposite effects on LDL fusion.
System and method for determining stability of a neural system
NASA Technical Reports Server (NTRS)
Curtis, Steven A. (Inventor)
2011-01-01
Disclosed are methods, systems, and computer-readable media for determining stability of a neural system. The method includes tracking a function world line of an N element neural system within at least one behavioral space, determining whether the tracking function world line is approaching a psychological stability surface, and implementing a quantitative solution that corrects instability if the tracked function world line is approaching the psychological stability surface.
Graves, Stephen; Sedrakyan, Art; Baste, Valborg; Gioe, Terence J; Namba, Robert; Martínez Cruz, Olga; Stea, Susanna; Paxton, Elizabeth; Banerjee, Samprit; Isaacs, Abby J; Robertsson, Otto
2014-12-17
Posterior-stabilized total knee prostheses were introduced to address instability secondary to loss of posterior cruciate ligament function, and they have either fixed or mobile bearings. Mobile bearings were developed to improve the function and longevity of total knee prostheses. In this study, the International Consortium of Orthopaedic Registries used a distributed health data network to study a large cohort of posterior-stabilized prostheses to determine if the outcome of a posterior-stabilized total knee prosthesis differs depending on whether it has a fixed or mobile-bearing design. Aggregated registry data were collected with a distributed health data network that was developed by the International Consortium of Orthopaedic Registries to reduce barriers to participation (e.g., security, proprietary, legal, and privacy issues) that have the potential to occur with the alternate centralized data warehouse approach. A distributed health data network is a decentralized model that allows secure storage and analysis of data from different registries. Each registry provided data on mobile and fixed-bearing posterior-stabilized prostheses implanted between 2001 and 2010. Only prostheses associated with primary total knee arthroplasties performed for the treatment of osteoarthritis were included. Prostheses with all types of fixation were included except for those with the rarely used reverse hybrid (cementless tibial and cemented femoral components) fixation. The use of patellar resurfacing was reported. The outcome of interest was time to first revision (for any reason). Multivariate meta-analysis was performed with linear mixed models with survival probability as the unit of analysis. This study includes 137,616 posterior-stabilized knee prostheses; 62% were in female patients, and 17.6% had a mobile bearing. The results of the fixed-effects model indicate that in the first year the mobile-bearing posterior-stabilized prostheses had a significantly higher hazard ratio (1.86) than did the fixed-bearing posterior-stabilized prostheses (95% confidence interval, 1.28 to 2.7; p = 0.001). For all other time intervals, the mobile-bearing posterior-stabilized prostheses had higher hazard ratios; however, these differences were not significant. Mobile-bearing posterior-stabilized prostheses had an increased rate of revision compared with fixed-bearing posterior-stabilized prostheses. This difference was evident in the first year. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.
A comparative analysis of hazard models for predicting debris flows in Madison County, VA
Morrissey, Meghan M.; Wieczorek, Gerald F.; Morgan, Benjamin A.
2001-01-01
During the rainstorm of June 27, 1995, roughly 330-750 mm of rain fell within a sixteen-hour period, initiating floods and over 600 debris flows in a small area (130 km2) of Madison County, Virginia. Field studies showed that the majority (70%) of these debris flows initiated with a thickness of 0.5 to 3.0 m in colluvium on slopes from 17 o to 41 o (Wieczorek et al., 2000). This paper evaluated and compared the approaches of SINMAP, LISA, and Iverson's (2000) transient response model for slope stability analysis by applying each model to the landslide data from Madison County. Of these three stability models, only Iverson's transient response model evaluated stability conditions as a function of time and depth. Iverson?s model would be the preferred method of the three models to evaluate landslide hazards on a regional scale in areas prone to rain-induced landslides as it considers both the transient and spatial response of pore pressure in its calculation of slope stability. The stability calculation used in SINMAP and LISA is similar and utilizes probability distribution functions for certain parameters. Unlike SINMAP that only considers soil cohesion, internal friction angle and rainfall-rate distributions, LISA allows the use of distributed data for all parameters, so it is the preferred model to evaluate slope stability over SINMAP. Results from all three models suggested similar soil and hydrologic properties for triggering the landslides that occurred during the 1995 storm in Madison County, Virginia. The colluvium probably had cohesion of less than 2KPa. The root-soil system is above the failure plane and consequently root strength and tree surcharge had negligible effect on slope stability. The result that the final location of the water table was near the ground surface is supported by the water budget analysis of the rainstorm conducted by Smith et al. (1996).
Mukhtar, Hussnain; Lin, Yu-Pin; Shipin, Oleg V.; Petway, Joy R.
2017-01-01
This study presents an approach for obtaining realization sets of parameters for nitrogen removal in a pilot-scale waste stabilization pond (WSP) system. The proposed approach was designed for optimal parameterization, local sensitivity analysis, and global uncertainty analysis of a dynamic simulation model for the WSP by using the R software package Flexible Modeling Environment (R-FME) with the Markov chain Monte Carlo (MCMC) method. Additionally, generalized likelihood uncertainty estimation (GLUE) was integrated into the FME to evaluate the major parameters that affect the simulation outputs in the study WSP. Comprehensive modeling analysis was used to simulate and assess nine parameters and concentrations of ON-N, NH3-N and NO3-N. Results indicate that the integrated FME-GLUE-based model, with good Nash–Sutcliffe coefficients (0.53–0.69) and correlation coefficients (0.76–0.83), successfully simulates the concentrations of ON-N, NH3-N and NO3-N. Moreover, the Arrhenius constant was the only parameter sensitive to model performances of ON-N and NH3-N simulations. However, Nitrosomonas growth rate, the denitrification constant, and the maximum growth rate at 20 °C were sensitive to ON-N and NO3-N simulation, which was measured using global sensitivity. PMID:28704958
ERIC Educational Resources Information Center
Klem, Marianne; Hagtvet, Bente; Hulme, Charles; Gustafsson, Jan-Eric
2016-01-01
Purpose: This study investigated the stability and growth of preschool language skills and explores latent class analysis as an approach for identifying children at risk of language impairment. Method: The authors present data from a large-scale 2-year longitudinal study, in which 600 children were assessed with a language-screening tool…
NASA Astrophysics Data System (ADS)
Blinov, N. A.; Zolotkov, V. N.; Lezin, A. Yu; Cheburkin, N. V.
1990-04-01
An analysis is made of transient stimulated scattering in a vibrationally nonequilibrium gas excited by a non-self-sustained discharge. A stability theory approach is used to describe the behavior of perturbation wave packets, yielding asymptotic expressions for the maximal increments of an instability of stimulated small-angle scattering by entropic and acoustic modes.
A Latent Transition Analysis of Academic Intrinsic Motivation from Childhood through Adolescence
ERIC Educational Resources Information Center
Marcoulides, George A.; Gottfried, Adele Eskeles; Gottfried, Allen W.; Oliver, Pamella H.
2008-01-01
A longitudinal modeling approach was utilized to determine the existence of latent classes with regard to academic intrinsic motivation and the points of stability and transition of individuals between and within classes. A special type of latent Markov Chain model using "Mplus" was fit to data from the Fullerton Longitudinal Study, with…
Deterrence and Engagement: A Blended Strategic Approach to a Resurgent Russia
2016-04-15
Expansionism “If you know the enemy and know yourself, you need not fear the result of a hundred battles.” – Sun Tzu , The Art of War. An analysis...55 Bibliography ...the U.S. and its European allies, could achieve greater stability and security for Europe. 57 Bibliography Adamsky, Dmitry. “If War Comes
On-target diagnosing of few-cycle pulses by high-order-harmonic generation
NASA Astrophysics Data System (ADS)
Brambila, Danilo S.; Husakou, Anton; Ivanov, Misha; Zhavoronkov, Nickolai
2017-12-01
We propose an approach to determine the residual phase distortion directly in the interaction region of few-cycle laser radiation with a gaseous target. We describe how the spectra of the generated high harmonics measured as a function of externally introduced dispersion into the driving few-cycle laser pulse can be used to decode small amounts of second- and third-order spectral phase, including the sign. The diagnosis is based on the analysis of several key features in the high-harmonic spectrum: the depth of spectral modulation, the position of the cutoff, and the symmetry of the spectrum with respect to the introduced dispersion. The approach is applicable to pulses without carrier-envelope phase (CEP) stabilization. Surprisingly, we find that for nearly-single-cycle pulses with nonstabilized CEP, deep spectral modulations in the harmonic spectra emerge for positively rather than negatively chirped pulses, in contrast to the case of CEP-stabilized pulses.
Choudhari, Shyamal P.; Pendleton, Kirk P.; Ramsey, Joshua D.; Blanchard, Thomas G.; Picking, William D.
2013-01-01
An important consideration in the development of subunit vaccines is loss of activity caused by physical instability of the protein. Such instability often results from suboptimal solution conditions related to pH and temperature. Excipients can help to stabilize vaccines, but it is important to screen and identify excipients that adequately contribute to stabilization of a given formulation. CagL is a protein present in strains of Helicobacter pylori that possess type IV secretion systems. It contributes to bacterial adherence via α5β1 integrin, thereby making it an attractive subunit vaccine candidate. We characterized the stability of CagL in different pH and temperature conditions using a variety of spectroscopic techniques. Stability was assessed in terms of transition temperature (Tm) with the accumulated data then incorporated into an empirical phase diagram (EPD) that provided an overview of CagL physical stability. These analyses indicated maximum CagL stability at pH 4–6 up to 40 °C in the absence of excipient. Using this EPD analysis, aggregation assays were developed to screen a panel of excipients with some found to inhibit CagL aggregation. Candidate stabilizers were selected to confirm their enhanced stabilizing effect. These analyses will help in the formulation of a stable vaccine against H. pylori. PMID:23794457
Accelerating Vaccine Formulation Development Using Design of Experiment Stability Studies.
Ahl, Patrick L; Mensch, Christopher; Hu, Binghua; Pixley, Heidi; Zhang, Lan; Dieter, Lance; Russell, Ryann; Smith, William J; Przysiecki, Craig; Kosinski, Mike; Blue, Jeffrey T
2016-10-01
Vaccine drug product thermal stability often depends on formulation input factors and how they interact. Scientific understanding and professional experience typically allows vaccine formulators to accurately predict the thermal stability output based on formulation input factors such as pH, ionic strength, and excipients. Thermal stability predictions, however, are not enough for regulators. Stability claims must be supported by experimental data. The Quality by Design approach of Design of Experiment (DoE) is well suited to describe formulation outputs such as thermal stability in terms of formulation input factors. A DoE approach particularly at elevated temperatures that induce accelerated degradation can provide empirical understanding of how vaccine formulation input factors and interactions affect vaccine stability output performance. This is possible even when clear scientific understanding of particular formulation stability mechanisms are lacking. A DoE approach was used in an accelerated 37(°)C stability study of an aluminum adjuvant Neisseria meningitidis serogroup B vaccine. Formulation stability differences were identified after only 15 days into the study. We believe this study demonstrates the power of combining DoE methodology with accelerated stress stability studies to accelerate and improve vaccine formulation development programs particularly during the preformulation stage. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Analysis of nursing home capital reimbursement systems
Boerstler, Heidi; Carlough, Tom; Schlenker, Robert E.
1991-01-01
An increasing number of States are using a fair-rental approach for reimbursement of nursing home capital costs. In this study, two variants of the fair-rental capital-reimbursement approach are compared with the traditional cost-based approach in terms of after-tax cash flow to the investor, cost to the State, and rate of return to investor. Simulation models were developed to examine the effects of each capital-reimbursement approach both at specific points in time and over various periods of time. Results indicate that although long-term costs were similar for the three systems, both fair-rental approaches may be superior to the traditional cost-based approach in promoting and controlling industry stability and, at the same time, in providing an adequate return to investors. PMID:10110878
Boosting antibody developability through rational sequence optimization.
Seeliger, Daniel; Schulz, Patrick; Litzenburger, Tobias; Spitz, Julia; Hoerer, Stefan; Blech, Michaela; Enenkel, Barbara; Studts, Joey M; Garidel, Patrick; Karow, Anne R
2015-01-01
The application of monoclonal antibodies as commercial therapeutics poses substantial demands on stability and properties of an antibody. Therapeutic molecules that exhibit favorable properties increase the success rate in development. However, it is not yet fully understood how the protein sequences of an antibody translates into favorable in vitro molecule properties. In this work, computational design strategies based on heuristic sequence analysis were used to systematically modify an antibody that exhibited a tendency to precipitation in vitro. The resulting series of closely related antibodies showed improved stability as assessed by biophysical methods and long-term stability experiments. As a notable observation, expression levels also improved in comparison with the wild-type candidate. The methods employed to optimize the protein sequences, as well as the biophysical data used to determine the effect on stability under conditions commonly used in the formulation of therapeutic proteins, are described. Together, the experimental and computational data led to consistent conclusions regarding the effect of the introduced mutations. Our approach exemplifies how computational methods can be used to guide antibody optimization for increased stability.
Stability analysis of spacecraft power systems
NASA Technical Reports Server (NTRS)
Halpin, S. M.; Grigsby, L. L.; Sheble, G. B.; Nelms, R. M.
1990-01-01
The problems in applying standard electric utility models, analyses, and algorithms to the study of the stability of spacecraft power conditioning and distribution systems are discussed. Both single-phase and three-phase systems are considered. Of particular concern are the load and generator models that are used in terrestrial power system studies, as well as the standard assumptions of load and topological balance that lead to the use of the positive sequence network. The standard assumptions regarding relative speeds of subsystem dynamic responses that are made in the classical transient stability algorithm, which forms the backbone of utility-based studies, are examined. The applicability of these assumptions to a spacecraft power system stability study is discussed in detail. In addition to the classical indirect method, the applicability of Liapunov's direct methods to the stability determination of spacecraft power systems is discussed. It is pointed out that while the proposed method uses a solution process similar to the classical algorithm, the models used for the sources, loads, and networks are, in general, more accurate. Some preliminary results are given for a linear-graph, state-variable-based modeling approach to the study of the stability of space-based power distribution networks.
Flight Test Results on the Stability and Control of the F-15 Quiet Spike(TradeMark) Aircraft
NASA Technical Reports Server (NTRS)
Moua, Cheng M.; McWherter, Shaun C.; Cox, Timothy H.; Gera, Joe
2012-01-01
The Quiet Spike F-15B flight research program investigated supersonic shock reduction using a 24-ft sub-scale telescoping nose boom on an F-15B airplane. The program primary flight test objective was to collect flight data for aerodynamic and structural models validation up to 1.8 Mach. Other objectives were to validate the mechanical feasibility of a morphing fuselage at the operational conditions and determine the near-field shock wave characterization. The stability and controls objectives were to assess the effect of the spike on the stability, controllability, and handling qualities of the aircraft and to ensure adequate stability margins across the entire research flight envelop. The two main stability and controls issues were the effects of the telescoping nose boom influenced aerodynamics on the F-15B aircraft flight dynamics and air data and angle of attack sensors. This paper reports on the stability and controls flight envelope clearance methods and flight test analysis of the F-15B Quiet Spike. Brief pilot commentary on typical piloting tasks, approach and landing, refueling task, and air data sensitivity to the flight control system are also discussed in this report.
NASA Technical Reports Server (NTRS)
Campbell, John P; Mckinney, Marion O , Jr
1954-01-01
Considerable interest has recently been shown in means of obtaining satisfactory stability of the dutch roll oscillation for modern high-performance airplanes without resort to complicated artificial stabilizing devices. One approach to this problem is to lay out the airplane in the earliest stages of design so that it will have the greatest practicable inherent stability of the lateral oscillation. The present report presents some preliminary results of a theoretical analysis to determine the design features that appear most promising in providing adequate inherent stability. These preliminary results cover the case of fighter airplanes at subsonic speeds. The investigation indicated that it is possible to design fighter airplanes to have substantially better inherent stability than most current designs. Since the use of low-aspect-ratio swept-back wings is largely responsible for poor dutch roll stability, it is important to design the airplane with the maximum aspect ratio and minimum sweep that will permit attainment of the desired performance. The radius of gyration in roll should be kept as low as possible and the nose-up inclination of the principal longitudinal axis of inertia should be made as great as practicable. (author)
A new approach to the stability analysis of transient natural convection in porous media
NASA Astrophysics Data System (ADS)
Tilton, Nils
2016-11-01
Onset of natural convection due to transient diffusion in porous media has attracted considerable attention for its applications to CO2 sequestration. Stability analyses typically investigate onset of convection using an initial value problem approach in which a perturbation is introduced to the concentration field at an initial time t =tp . This leads to debate concerning physically appropriate perturbations, the critical time tc for linear instability, and to the counter-intuitive notion of an optimal initial time tp that maximizes perturbation growth. We propose a new approach in which transient diffusion is continuously perturbed by small variations in the porosity. With this approach, instability occurs immediately (tc = 0) without violating any physical constraints, such that the concepts of initial time tp and critical time tc have less relevance. We argue that the onset time for nonlinear convection is a more physically relevant parameter, and show that it can be predicted using a simple asymptotic expansion. Using the expansion, we consider porosity perturbations that vary sinusoidally in the horizontal and vertical directions, and show there are optimal combinations of wavelengths that minimize the onset time of nonlinear convection.
Robust decentralized power system controller design: Integrated approach
NASA Astrophysics Data System (ADS)
Veselý, Vojtech
2017-09-01
A unique approach to the design of gain scheduled controller (GSC) is presented. The proposed design procedure is based on the Bellman-Lyapunov equation, guaranteed cost and robust stability conditions using the parameter dependent quadratic stability approach. The obtained feasible design procedures for robust GSC design are in the form of BMI with guaranteed convex stability conditions. The obtained design results and their properties are illustrated in the simultaneously design of controllers for simple model (6-order) turbogenerator. The results of the obtained design procedure are a PI automatic voltage regulator (AVR) for synchronous generator, a PI governor controller and a power system stabilizer for excitation system.
A green approach for preparing anion exchange membrane based on cardo polyetherketone powders
NASA Astrophysics Data System (ADS)
Hu, Jue; Zhang, Chengxu; Zhang, Xiaodong; Chen, Longwei; Jiang, Lin; Meng, Yuedong; Wang, Xiangke
2014-12-01
Anion exchange membranes (AEMs) have attracted great attention due to their irreplaceable role in platinum-free fuel cell applications. The majority of AEM preparations have been performed in two steps: the grafting of functional groups and quaternization. Here, we adopted a simpler, more eco-friendly approach for the first time to prepare AEMs by atmospheric-pressure plasma-grafting. This approach enables the direct introduction of anion exchange groups (benzyltrimethylammonium groups) into the polymer matrix, overcoming the need for toxic chloromethyl ether and quaternization reagents. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and 1H NMR spectroscopy results demonstrate that benzyltrimethylammonium groups have been successfully grafted into the cardo polyetherketone (PEK-C) matrix. Thermogravimetric analysis reveals that the plasma-grafting technique is a facile and non-destructive method able to improve the thermal stability of the polymer matrix due to the strong preservation of the PEK-C backbone structure and the cross-linking of the grafted side chains. The plasma-grafted PG-NOH membrane, which shows satisfactory alcohol resistance (ethanol permeability of 6.3 × 10-7 cm2 s-1), selectivity (1.2 × 104 S s cm-3), thermal stability (safely used below 130 °C), chemical stability, anion conductivity (7.7 mS cm-1 at 20 °C in deionized water) and mechanical properties is promising for the construction of high-performance fuel cells.
NASA Technical Reports Server (NTRS)
Giles, M. B.; Thompkins, W. T., Jr.
1985-01-01
The propagation and dissipation of wavelike solutions to finite difference equations is analyzed on the basis of an asymptotic approach in which a wave solution is expressed as a product of a complex amplitude and an oscillatory phase function whose frequency and wavenumber may also be complex. An asymptotic expansion leads to a local dispersion relation for wavenumber and frequency; the first-order terms produce an equation for the amplitude in which the local group velocity appears as the convection velocity of the amplitude. Equations for the motion of wavepackets and their interaction at boundaries are derived, and a global stability analysis is carried out.
Chemical networks with inflows and outflows: a positive linear differential inclusions approach.
Angeli, David; De Leenheer, Patrick; Sontag, Eduardo D
2009-01-01
Certain mass-action kinetics models of biochemical reaction networks, although described by nonlinear differential equations, may be partially viewed as state-dependent linear time-varying systems, which in turn may be modeled by convex compact valued positive linear differential inclusions. A result is provided on asymptotic stability of such inclusions, and applied to a ubiquitous biochemical reaction network with inflows and outflows, known as the futile cycle. We also provide a characterization of exponential stability of general homogeneous switched systems which is not only of interest in itself, but also plays a role in the analysis of the futile cycle. 2009 American Institute of Chemical Engineers
NASA Astrophysics Data System (ADS)
Williams, Caitlin R. S.; Sorrentino, Francesco; Murphy, Thomas E.; Roy, Rajarshi
2013-12-01
We experimentally study the complex dynamics of a unidirectionally coupled ring of four identical optoelectronic oscillators. The coupling between these systems is time-delayed in the experiment and can be varied over a wide range of delays. We observe that as the coupling delay is varied, the system may show different synchronization states, including complete isochronal synchrony, cluster synchrony, and two splay-phase states. We analyze the stability of these solutions through a master stability function approach, which we show can be effectively applied to all the different states observed in the experiment. Our analysis supports the experimentally observed multistability in the system.
Stability of the Effect of a Standardized Meal on QTc.
Täubel, Jörg; Fernandes, Sara; Ferber, Georg
2017-01-01
The assessment of QTc changes after the intake of a standardized meal has been proposed as an alternative approach to prove assay sensitivity when the proarrhythimic potential of a drug is to be excluded in either TQT or intensive Phase I QT studies. In this article, an analysis of the food effect at baseline across periods in two different studies is presented to support the robustness of the method. The results show that the time-effect attributed to food is stable over different study periods demonstrating consistency of the physiological response triggered by food. Stability and reproducibility of the effect is comparable with moxifloxacin. © 2016 Wiley Periodicals, Inc.
Adaptive correlation filter-based video stabilization without accumulative global motion estimation
NASA Astrophysics Data System (ADS)
Koh, Eunjin; Lee, Chanyong; Jeong, Dong Gil
2014-12-01
We present a digital video stabilization approach that provides both robustness and efficiency for practical applications. In this approach, we adopt a stabilization model that maintains spatio-temporal information of past input frames efficiently and can track original stabilization position. Because of the stabilization model, the proposed method does not need accumulative global motion estimation and can recover the original position even if there is a failure in interframe motion estimation. It can also intelligently overcome the situation of damaged or interrupted video sequences. Moreover, because it is simple and suitable to parallel scheme, we implement it on a commercial field programmable gate array and a graphics processing unit board with compute unified device architecture in a breeze. Experimental results show that the proposed approach is both fast and robust.
NASA Technical Reports Server (NTRS)
Ramsey, John K.
1989-01-01
An engineering approach was used to include the nonlinear effects of thickness and camber in an analytical aeroelastic analysis of cascades in supersonic acial flow (supersonic leading-edge locus). A hybrid code using Lighthill's nonlinear piston theory and Lanes's linear potential theory was developed to include these nonlinear effects. Lighthill's theory was used to calculate the unsteady pressures on the noninterference surface regions of the airfoils in cascade. Lane's theory was used to calculate the unsteady pressures on the remaining interference surface regions. Two airfoil profiles was investigated (a supersonic throughflow fan design and a NACA 66-206 airfoil with a sharp leading edge). Results show that compared with predictions of Lane's potential theory for flat plates, the inclusion of thickness (with or without camber) may increase or decrease the aeroelastic stability, depending on the airfoil geometry and operating conditions. When thickness effects are included in the aeroelastic analysis, inclusion of camber will influence the predicted stability in proportion to the magnitude of the added camber. The critical interblade phase angle, depending on the airfoil profile and operating conditions, may also be influenced by thickness and camber. Compared with predictions of Lane's linear potential theory, the inclusion of thickness and camber decreased the aerodynamic stifness and increased the aerodynamic damping at Mach 2 and 2.95 for a cascade of supersonic throughflow fan airfoils oscillating 180 degrees out of phase at a reduced frequency of 0.1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dokhane, A.; Canepa, S.; Ferroukhi, H.
For stability analyses of the Swiss operating Boiling-Water-Reactors (BWRs), the methodology employed and validated so far at the Paul Scherrer Inst. (PSI) was based on the RAMONA-3 code with a hybrid upstream static lattice/core analysis approach using CASMO-4 and PRESTO-2. More recently, steps were undertaken towards a new methodology based on the SIMULATE-3K (S3K) code for the dynamical analyses combined with the CMSYS system relying on the CASMO/SIMULATE-3 suite of codes and which was established at PSI to serve as framework for the development and validation of reference core models of all the Swiss reactors and operated cycles. This papermore » presents a first validation of the new methodology on the basis of a benchmark recently organised by a Swiss utility and including the participation of several international organisations with various codes/methods. Now in parallel, a transition from CASMO-4E (C4E) to CASMO-5M (C5M) as basis for the CMSYS core models was also recently initiated at PSI. Consequently, it was considered adequate to address the impact of this transition both for the steady-state core analyses as well as for the stability calculations and to achieve thereby, an integral approach for the validation of the new S3K methodology. Therefore, a comparative assessment of C4 versus C5M is also presented in this paper with particular emphasis on the void coefficients and their impact on the downstream stability analysis results. (authors)« less
ERIC Educational Resources Information Center
Varunki, Maaret; Katajavuori, Nina; Postareff, Liisa
2017-01-01
Research shows that a surface approach to learning is more common among students in the natural sciences, while students representing the "soft" sciences are more likely to apply a deep approach. However, findings conflict concerning the stability of approaches to learning in general. This study explores the variation in students'…
A pseudospectra-based approach to non-normal stability of embedded boundary methods
NASA Astrophysics Data System (ADS)
Rapaka, Narsimha; Samtaney, Ravi
2017-11-01
We present non-normal linear stability of embedded boundary (EB) methods employing pseudospectra and resolvent norms. Stability of the discrete linear wave equation is characterized in terms of the normalized distance of the EB to the nearest ghost node (α) in one and two dimensions. An important objective is that the CFL condition based on the Cartesian grid spacing remains unaffected by the EB. We consider various discretization methods including both central and upwind-biased schemes. Stability is guaranteed when α <=αmax ranges between 0.5 and 0.77 depending on the discretization scheme. Also, the stability characteristics remain the same in both one and two dimensions. Sharper limits on the sufficient conditions for stability are obtained based on the pseudospectral radius (the Kreiss constant) than the restrictive limits based on the usual singular value decomposition analysis. We present a simple and robust reclassification scheme for the ghost cells (``hybrid ghost cells'') to ensure Lax stability of the discrete systems. This has been tested successfully for both low and high order discretization schemes with transient growth of at most O (1). Moreover, we present a stable, fourth order EB reconstruction scheme. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1394-01.
PMU-Aided Voltage Security Assessment for a Wind Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Zhang, Yingchen; Zhang, Jun Jason
2015-10-05
Because wind power penetration levels in electric power systems are continuously increasing, voltage stability is a critical issue for maintaining power system security and operation. The traditional methods to analyze voltage stability can be classified into two categories: dynamic and steady-state. Dynamic analysis relies on time-domain simulations of faults at different locations; however, this method needs to exhaust faults at all locations to find the security region for voltage at a single bus. With the widely located phasor measurement units (PMUs), the Thevenin equivalent matrix can be calculated by the voltage and current information collected by the PMUs. This papermore » proposes a method based on a Thevenin equivalent matrix to identify system locations that will have the greatest impact on the voltage at the wind power plant's point of interconnection. The number of dynamic voltage stability analysis runs is greatly reduced by using the proposed method. The numerical results demonstrate the feasibility, effectiveness, and robustness of the proposed approach for voltage security assessment for a wind power plant.« less
Vecchione, Michele; Alessandri, Guido; Barbaranelli, Claudio; Gerbino, Maria
2010-05-01
In this research, we examined the psychometric properties of the Revised Ego Resiliency 89 Scale (ER89-R; Alessandri, Vecchio, Steca, Caprara, & Caprara, 2008), a brief self-report measure of ego resiliency. The scale has been used to assess the development of ego resiliency from late adolescence to emerging adulthood, focusing on different ways to define continuity and change. We analyzed longitudinal self-report data from 267 late adolescents (44% male) using 4 different approaches: factor analysis for testing construct continuity, correlational analysis for examining differential stability, latent growth modeling for analyzing mean level change, and the reliable change index for studying the occurrence of change at the individual level. Converging evidence points to the marked stability of ego resiliency from 16 to 20 years, both for males and females. The scale predicts externalizing and internalizing problems, both concurrently and at 2 and 4 years of distance. Findings suggest that the ER89-R scale represents a valid and reliable instrument that can be fruitfully suited for studying ego resiliency through various developmental stages.
Hasanvand, Hamed; Mozafari, Babak; Arvan, Mohammad R; Amraee, Turaj
2015-11-01
This paper addresses the application of a static Var compensator (SVC) to improve the damping of interarea oscillations. Optimal location and size of SVC are defined using bifurcation and modal analysis to satisfy its primary application. Furthermore, the best-input signal for damping controller is selected using Hankel singular values and right half plane-zeros. The proposed approach is aimed to design a robust PI controller based on interval plants and Kharitonov's theorem. The objective here is to determine the stability region to attain robust stability, the desired phase margin, gain margin, and bandwidth. The intersection of the resulting stability regions yields the set of kp-ki parameters. In addition, optimal multiobjective design of PI controller using particle swarm optimization (PSO) algorithm is presented. The effectiveness of the suggested controllers in damping of local and interarea oscillation modes of a multimachine power system, over a wide range of loading conditions and system configurations, is confirmed through eigenvalue analysis and nonlinear time domain simulation. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Sava, M Gabriela; Dolan, James G; May, Jerrold H; Vargas, Luis G
2018-07-01
Current colorectal cancer screening guidelines by the US Preventive Services Task Force endorse multiple options for average-risk patients and recommend that screening choices should be guided by individual patient preferences. Implementing these recommendations in practice is challenging because they depend on accurate and efficient elicitation and assessment of preferences from patients who are facing a novel task. To present a methodology for analyzing the sensitivity and stability of a patient's preferences regarding colorectal cancer screening options and to provide a starting point for a personalized discussion between the patient and the health care provider about the selection of the appropriate screening option. This research is a secondary analysis of patient preference data collected as part of a previous study. We propose new measures of preference sensitivity and stability that can be used to determine if additional information provided would result in a change to the initially most preferred colorectal cancer screening option. Illustrative results of applying the methodology to the preferences of 2 patients, of different ages, are provided. The results show that different combinations of screening options are viable for each patient and that the health care provider should emphasize different information during the medical decision-making process. Sensitivity and stability analysis can supply health care providers with key topics to focus on when communicating with a patient and the degree of emphasis to place on each of them to accomplish specific goals. The insights provided by the analysis can be used by health care providers to approach communication with patients in a more personalized way, by taking into consideration patients' preferences before adding their own expertise to the discussion.
Santarelli, G; Audoin, C; Makdissi, A; Laurent, P; Dick, G J; Clairon, A
1998-01-01
Atomic frequency standards using trapped ions or cold atoms work intrinsically in a pulsed mode. Theoretically and experimentally, this mode of operation has been shown to lead to a degradation of the frequency stability due to the frequency noise of the interrogation oscillator. In this paper a physical analysis of this effect has been made by evaluating the response of a two-level atom to the interrogation oscillator phase noise in Ramsey and multi-Rabi interrogation schemes using a standard quantum mechanical approach. This response is then used to calculate the degradation of the frequency stability of a pulsed atomic frequency standard such as an atomic fountain or an ion trap standard. Comparison is made to an experimental evaluation of this effect in the LPTF Cs fountain frequency standard, showing excellent agreement.
Hsu, Hui-Chin; Fogel, Alan
2003-11-01
In this study the authors attempted to unravel the relational, dynamical, and historical nature of mother-infant communication during the first 6 months. Thirteen mothers and their infants were videotaped weekly from 4 to 24 weeks during face-to-face interactions. Three distinct patterns of mother-infant communication were identified: symmetrical, asymmetrical, and unilateral. Guided by a dynamic systems perspective, the authors explored the stability of and transitions between these communication patterns. Findings from event history analysis showed that (a) there are regularly recurring dyadic communication patterns in early infancy, (b) these recurring patterns show differential stabilities and likelihoods of transitions, (c) dynamic stability in dyadic communication is shaped not only by individual characteristics (e.g., infant sex and maternal parity) but also by the dyad's communication history, and (d) depending on their recency, communication histories varying in temporal proximity exert differential effects on the self-organization processes of a dyadic system. ((c) 2003 APA, all rights reserved)
Passivity/Lyapunov based controller design for trajectory tracking of flexible joint manipulators
NASA Technical Reports Server (NTRS)
Sicard, Pierre; Wen, John T.; Lanari, Leonardo
1992-01-01
A passivity and Lyapunov based approach for the control design for the trajectory tracking problem of flexible joint robots is presented. The basic structure of the proposed controller is the sum of a model-based feedforward and a model-independent feedback. Feedforward selection and solution is analyzed for a general model for flexible joints, and for more specific and practical model structures. Passivity theory is used to design a motor state-based controller in order to input-output stabilize the error system formed by the feedforward. Observability conditions for asymptotic stability are stated and verified. In order to accommodate for modeling uncertainties and to allow for the implementation of a simplified feedforward compensation, the stability of the system is analyzed in presence of approximations in the feedforward by using a Lyapunov based robustness analysis. It is shown that under certain conditions, e.g., the desired trajectory is varying slowly enough, stability is maintained for various approximations of a canonical feedforward.
Theoretical prediction of the energy stability of graphene nanoblisters
NASA Astrophysics Data System (ADS)
Glukhova, O. E.; Slepchenkov, M. M.; Barkov, P. V.
2018-04-01
The paper presents the results of a theoretical prediction of the energy stability of graphene nanoblisters with various geometrical parameters. As a criterion for the evaluation of the stability of investigated carbon objects we propose to consider the value of local stress of the nanoblister atomic grid. Numerical evaluation of stresses experienced by atoms of the graphene blister framework was carried out by means of an original method for calculation of local stresses that is based on energy approach. Atomistic models of graphene nanoblisters corresponding to the natural experiment data were built for the first time in this work. New physical regularities of the influence of topology on the thermodynamic stability of nanoblisters were established as a result of the analysis of the numerical experiment data. We built the distribution of local stresses for graphene blister structures, whose atomic grid contains a variety of structural defects. We have shown how the concentration and location of defects affect the picture of the distribution of the maximum stresses experienced by the atoms of the nanoblisters.
A Kinetic Approach to Propagation and Stability of Detonation Waves
NASA Astrophysics Data System (ADS)
Monaco, R.; Bianchi, M. Pandolfi; Soares, A. J.
2008-12-01
The problem of the steady propagation and linear stability of a detonation wave is formulated in the kinetic frame for a quaternary gas mixture in which a reversible bimolecular reaction takes place. The reactive Euler equations and related Rankine-Hugoniot conditions are deduced from the mesoscopic description of the process. The steady propagation problem is solved for a Zeldovich, von Neuman and Doering (ZND) wave, providing the detonation profiles and the wave thickness for different overdrive degrees. The one-dimensional stability of such detonation wave is then studied in terms of an initial value problem coupled with an acoustic radiation condition at the equilibrium final state. The stability equations and their initial data are deduced from the linearized reactive Euler equations and related Rankine-Hugoniot conditions through a normal mode analysis referred to the complex disturbances of the steady state variables. Some numerical simulations for an elementary reaction of the hydrogen-oxygen chain are proposed in order to describe the time and space evolution of the instabilities induced by the shock front perturbation.
Robust hopping based on virtual pendulum posture control.
Sharbafi, Maziar A; Maufroy, Christophe; Ahmadabadi, Majid Nili; Yazdanpanah, Mohammad J; Seyfarth, Andre
2013-09-01
A new control approach to achieve robust hopping against perturbations in the sagittal plane is presented in this paper. In perturbed hopping, vertical body alignment has a significant role for stability. Our approach is based on the virtual pendulum concept, recently proposed, based on experimental findings in human and animal locomotion. In this concept, the ground reaction forces are pointed to a virtual support point, named virtual pivot point (VPP), during motion. This concept is employed in designing the controller to balance the trunk during the stance phase. New strategies for leg angle and length adjustment besides the virtual pendulum posture control are proposed as a unified controller. This method is investigated by applying it on an extension of the spring loaded inverted pendulum (SLIP) model. Trunk, leg mass and damping are added to the SLIP model in order to make the model more realistic. The stability is analyzed by Poincaré map analysis. With fixed VPP position, stability, disturbance rejection and moderate robustness are achieved, but with a low convergence speed. To improve the performance and attain higher robustness, an event-based control of the VPP position is introduced, using feedback of the system states at apexes. Discrete linear quartic regulator is used to design the feedback controller. Considerable enhancements with respect to stability, convergence speed and robustness against perturbations and parameter changes are achieved.
Tuned dynamics stabilizes an idealized regenerative axial-torsional model of rotary drilling
NASA Astrophysics Data System (ADS)
Gupta, Sunit K.; Wahi, Pankaj
2018-01-01
We present an exact stability analysis of a dynamical system idealizing rotary drilling. This system comprises lumped parameter axial-torsional modes of the drill-string coupled via the cutting forces and torques. The kinematics of cutting is modeled through a functional description of the cut surface which evolves as per a partial differential equation (PDE). Linearization of this model is straightforward as opposed to the traditional state-dependent delay (SDDE) model and both the approaches result in the same characteristic equation. A systematic study on the key system parameters influencing the stability characteristics reveals that torsional damping is very critical and stable drilling is, in general, not possible in its absence. The stable regime increases as the natural frequency of the axial mode approaches that of the torsional mode and a 1:1 internal resonance leads to a significant improvement in the system stability. Hence, from a practical point of view, a drill-string with 1:1 internal resonance is desirable to avoid vibrations during rotary drilling. For the non-resonant case, axial damping reduces the stable range of operating parameters while for the resonant case, an optimum value of axial damping (equal to the torsional damping) results in the largest stable regime. Interestingly, the resonant (tuned) system has a significant parameter regime corresponding to stable operation even in the absence of damping.
Recursive regularization step for high-order lattice Boltzmann methods
NASA Astrophysics Data System (ADS)
Coreixas, Christophe; Wissocq, Gauthier; Puigt, Guillaume; Boussuge, Jean-François; Sagaut, Pierre
2017-09-01
A lattice Boltzmann method (LBM) with enhanced stability and accuracy is presented for various Hermite tensor-based lattice structures. The collision operator relies on a regularization step, which is here improved through a recursive computation of nonequilibrium Hermite polynomial coefficients. In addition to the reduced computational cost of this procedure with respect to the standard one, the recursive step allows to considerably enhance the stability and accuracy of the numerical scheme by properly filtering out second- (and higher-) order nonhydrodynamic contributions in under-resolved conditions. This is first shown in the isothermal case where the simulation of the doubly periodic shear layer is performed with a Reynolds number ranging from 104 to 106, and where a thorough analysis of the case at Re=3 ×104 is conducted. In the latter, results obtained using both regularization steps are compared against the Bhatnagar-Gross-Krook LBM for standard (D2Q9) and high-order (D2V17 and D2V37) lattice structures, confirming the tremendous increase of stability range of the proposed approach. Further comparisons on thermal and fully compressible flows, using the general extension of this procedure, are then conducted through the numerical simulation of Sod shock tubes with the D2V37 lattice. They confirm the stability increase induced by the recursive approach as compared with the standard one.
Jackson, Eric S; Tiede, Mark; Beal, Deryk; Whalen, D H
2016-12-01
This study examined the impact of social-cognitive stress on sentence-level speech variability, determinism, and stability in adults who stutter (AWS) and adults who do not stutter (AWNS). We demonstrated that complementing the spatiotemporal index (STI) with recurrence quantification analysis (RQA) provides a novel approach to both assessing and interpreting speech variability in stuttering. Twenty AWS and 21 AWNS repeated sentences in audience and nonaudience conditions while their lip movements were tracked. Across-sentence variability was assessed via the STI; within-sentence determinism and stability were assessed via RQA. Compared with the AWNS, the AWS produced speech that was more variable across sentences and more deterministic and stable within sentences. Audience presence contributed to greater within-sentence determinism and stability in the AWS. A subset of AWS who were more susceptible to experiencing anxiety exhibited reduced across-sentence variability in the audience condition compared with the nonaudience condition. This study extends the assessment of speech variability in AWS and AWNS into the social-cognitive domain and demonstrates that the characterization of speech within sentences using RQA is complementary to the across-sentence STI measure. AWS seem to adopt a more restrictive, less flexible speaking approach in response to social-cognitive stress, which is presumably a strategy for maintaining observably fluent speech.
Tiede, Mark; Beal, Deryk; Whalen, D. H.
2016-01-01
Purpose This study examined the impact of social–cognitive stress on sentence-level speech variability, determinism, and stability in adults who stutter (AWS) and adults who do not stutter (AWNS). We demonstrated that complementing the spatiotemporal index (STI) with recurrence quantification analysis (RQA) provides a novel approach to both assessing and interpreting speech variability in stuttering. Method Twenty AWS and 21 AWNS repeated sentences in audience and nonaudience conditions while their lip movements were tracked. Across-sentence variability was assessed via the STI; within-sentence determinism and stability were assessed via RQA. Results Compared with the AWNS, the AWS produced speech that was more variable across sentences and more deterministic and stable within sentences. Audience presence contributed to greater within-sentence determinism and stability in the AWS. A subset of AWS who were more susceptible to experiencing anxiety exhibited reduced across-sentence variability in the audience condition compared with the nonaudience condition. Conclusions This study extends the assessment of speech variability in AWS and AWNS into the social–cognitive domain and demonstrates that the characterization of speech within sentences using RQA is complementary to the across-sentence STI measure. AWS seem to adopt a more restrictive, less flexible speaking approach in response to social–cognitive stress, which is presumably a strategy for maintaining observably fluent speech. PMID:27936276
A dynamical system approach to Bianchi III cosmology for Hu-Sawicki type f( R) gravity
NASA Astrophysics Data System (ADS)
Banik, Sebika Kangsha; Banik, Debika Kangsha; Bhuyan, Kalyan
2018-02-01
The cosmological dynamics of spatially homogeneous but anisotropic Bianchi type-III space-time is investigated in presence of a perfect fluid within the framework of Hu-Sawicki model. We use the dynamical system approach to perform a detailed analysis of the cosmological behaviour of this model for the model parameters n=1, c_1=1, determining all the fixed points, their stability and corresponding cosmological evolution. We have found stable fixed points with de Sitter solution along with unstable radiation like fixed points. We have identified a matter like point which act like an unstable spiral and when the initial conditions of a trajectory are very close to this point, it stabilizes at a stable accelerating point. Thus, in this model, the universe can naturally approach to a phase of accelerated expansion following a radiation or a matter dominated phase. It is also found that the isotropisation of this model is affected by the spatial curvature and that all the isotropic fixed points are found to be spatially flat.
A Fracture Mechanics Approach to Thermal Shock Investigation in Alumina-Based Refractory
NASA Astrophysics Data System (ADS)
Volkov-Husović, T.; Heinemann, R. Jančić; Mitraković, D.
2008-02-01
The thermal shock behavior of large grain size, alumina-based refractories was investigated experimentally using a standard water quench test. A mathematical model was employed to simulate the thermal stability behavior. Behavior of the samples under repeated thermal shock was monitored using ultrasonic measurements of dynamic Young's modulus. Image analysis was used to observe the extent of surface degradation. Analysis of the obtained results for the behavior of large grain size samples under conditions of rapid temperature changes is given.
Dynamical density functional theory analysis of the laning instability in sheared soft matter.
Scacchi, A; Archer, A J; Brader, J M
2017-12-01
Using dynamical density functional theory (DDFT) methods we investigate the laning instability of a sheared colloidal suspension. The nonequilibrium ordering at the laning transition is driven by nonaffine particle motion arising from interparticle interactions. Starting from a DDFT which incorporates the nonaffine motion, we perform a linear stability analysis that enables identification of the regions of parameter space where lanes form. We illustrate our general approach by applying it to a simple one-component fluid of soft penetrable particles.
1981-05-01
represented as a Winkler foundation. The program can treat any number of slabs connected by steel bars or other load trans- fer devices at the joints...dimensional finite element method. The inherent flexibility of such an approach permits the analysis of a rigid pavement with steel bars and stabilized...layers and provides an efficient tool for analyzing stress conditions at the joint. Unfor- tunately, such a procedure would require a tremendously
Maternal and infant activity: Analytic approaches for the study of circadian rhythm.
Thomas, Karen A; Burr, Robert L; Spieker, Susan
2015-11-01
The study of infant and mother circadian rhythm entails choice of instruments appropriate for use in the home environment as well as selection of analytic approach that characterizes circadian rhythm. While actigraphy monitoring suits the needs of home study, limited studies have examined mother and infant rhythm derived from actigraphy. Among this existing research a variety of analyses have been employed to characterize 24-h rhythm, reducing ability to evaluate and synthesize findings. Few studies have examined the correspondence of mother and infant circadian parameters for the most frequently cited approaches: cosinor, non-parametric circadian rhythm analysis (NPCRA), and autocorrelation function (ACF). The purpose of this research was to examine analytic approaches in the study of mother and infant circadian activity rhythm. Forty-three healthy mother and infant pairs were studied in the home environment over a 72h period at infant age 4, 8, and 12 weeks. Activity was recorded continuously using actigraphy monitors and mothers completed a diary. Parameters of circadian rhythm were generated from cosinor analysis, NPCRA, and ACF. The correlation among measures of rhythm center (cosinor mesor, NPCRA mid level), strength or fit of 24-h period (cosinor magnitude and R(2), NPCRA amplitude and relative amplitude (RA)), phase (cosinor acrophase, NPCRA M10 and L5 midpoint), and rhythm stability and variability (NPCRA interdaily stability (IS) and intradaily variability (IV), ACF) was assessed, and additionally the effect size (eta(2)) for change over time evaluated. Results suggest that cosinor analysis, NPCRA, and autocorrelation provide several comparable parameters of infant and maternal circadian rhythm center, fit, and phase. IS and IV were strongly correlated with the 24-h cycle fit. The circadian parameters analyzed offer separate insight into rhythm and differing effect size for the detection of change over time. Findings inform selection of analysis and circadian parameters in the study of maternal and infant activity rhythm. Copyright © 2015 Elsevier Inc. All rights reserved.
Maternal and infant activity: Analytic approaches for the study of circadian rhythm
Thomas, Karen A.; Burr, Robert L.; Spieker, Susan
2015-01-01
The study of infant and mother circadian rhythm entails choice of instruments appropriate for use in the home environment as well as selection of analytic approach that characterizes circadian rhythm. While actigraphy monitoring suits the needs of home study, limited studies have examined mother and infant rhythm derived from actigraphy. Among this existing research a variety of analyses have been employed to characterize 24-h rhythm, reducing ability to evaluate and synthesize findings. Few studies have examined the correspondence of mother and infant circadian parameters for the most frequently cited approaches: cosinor, non-parametric circadian rhythm analysis (NPCRA), and autocorrelation function (ACF). The purpose of this research was to examine analytic approaches in the study of mother and infant circadian activity rhythm. Forty-three healthy mother and infant pairs were studied in the home environment over a 72 h period at infant age 4, 8, and 12 weeks. Activity was recorded continuously using actigraphy monitors and mothers completed a diary. Parameters of circadian rhythm were generated from cosinor analysis, NPCRA, and ACF. The correlation among measures of rhythm center (cosinor mesor, NPCRA mid level), strength or fit of 24-h period (cosinor magnitude and R2, NPCRA amplitude and relative amplitude (RA)), phase (cosinor acrophase, NPCRA M10 and L5 midpoint), and rhythm stability and variability (NPCRA interdaily stability (IS) and intradaily variability (IV), ACF) was assessed, and additionally the effect size (eta2) for change over time evaluated. Results suggest that cosinor analysis, NPCRA, and autocorrelation provide several comparable parameters of infant and maternal circadian rhythm center, fit, and phase. IS and IV were strongly correlated with the 24-h cycle fit. The circadian parameters analyzed offer separate insight into rhythm and differing effect size for the detection of change over time. Findings inform selection of analysis and circadian parameters in the study of maternal and infant activity rhythm. PMID:26360916
Insulin aggregation tracked by its intrinsic TRES
NASA Astrophysics Data System (ADS)
Chung, Li Hung C.; Birch, David J. S.; Vyshemirsky, Vladislav; Ryadnov, Maxim G.; Rolinski, Olaf J.
2017-12-01
Time-resolved emission spectra (TRES) have been used to detect conformational changes of intrinsic tyrosines within bovine insulin at a physiological pH. The approach offers the ability to detect the initial stages of insulin aggregation at the molecular level. The data analysis has revealed the existence of at least three fluorescent species undergoing dielectric relaxation and significant spectral changes due to insulin aggregation. The results indicate the suitability of the intrinsic TRES approach for insulin studies and for monitoring its stability during storage and aggregation in insulin delivery devices.
NASA Astrophysics Data System (ADS)
Khusainov, R.; Klimchik, A.; Magid, E.
2017-01-01
The paper presents comparison analysis of two approaches in defining leg trajectories for biped locomotion. The first one operates only with kinematic limitations of leg joints and finds the maximum possible locomotion speed for given limits. The second approach defines leg trajectories from the dynamic stability point of view and utilizes ZMP criteria. We show that two methods give different trajectories and demonstrate that trajectories based on pure dynamic optimization cannot be realized due to joint limits. Kinematic optimization provides unstable solution which can be balanced by upper body movement.
NASA Astrophysics Data System (ADS)
Bell, Andrew; McKinley, Jennifer; Hughes, David
2013-04-01
Landslides in the form of debris flows, large scale rotational features and composite mudflows impact transport corridors cutting off local communities and in some instances result in loss of life. This study presents landslide monitoring methods used for predicting and characterising landslide activity along transport corridors. A variety of approaches are discussed: desk based risk assessment of slopes using Geographical Information Systems (GIS); Aerial LiDAR surveys and Terrestrial LiDAR monitoring and field instrumentation of selected sites. A GIS based case study is discussed which provides risk assessment for the potential of slope stability issues. Layers incorporated within the system include Digital Elevation Model (DEM), slope, aspect, solid and drift geology and groundwater conditions. Additional datasets include consequence of failure. These are combined within a risk model, presented as likelihoods of failure. This integrated spatial approach for slope risk assessment provides the user with a preliminary risk assessment of sites. An innovative "Flexviewer" web-based server interface allows users to view data without needing advanced GIS techniques to gather information about selected areas. On a macro landscape scale, Aerial LiDAR (ALS) surveys are used for the characterisation of landslides from the surrounding terrain. DEMs are generated along with terrain derivatives: slope, curvature and various measures of terrain roughness. Spatial analysis of terrain morphological parameters allow characterisation of slope stability issues and are used to predict areas of potential failure or recently failure terrain. On a local scale ground monitoring approaches are employed for the monitoring of changes in selected slopes using ALS and risk assessment approaches. Results are shown from on-going bimonthly Terrestrial LiDAR (TLS) monitoring of the slope within a site specific geodectically referenced network. This has allowed a classification of changes in the slopes with DEMs of difference showing areas of recent movement, erosion and deposition. In addition, changes in the structure of the slope characterised by DEM of difference and morphological parameters in the form of roughness, slope and curvature measures are progressively linked to failures indicated from temporal DEM monitoring. Preliminary results are presented for a case site at Straidkilly Point, Glenarm, Co. Antrim, Northern Ireland, illustrating multiple approaches to the spatial and temporal monitoring of landslides. These indicate how spatial morphological approaches and risk assessment frameworks coupled with TLS monitoring and field instrumentation enable characterisation and prediction of potential areas of slope stability issues. On site weather instrumentation and piezometers document changes in pore water pressures resulting in site-specific information with geotechnical observations parameterised within the temporal LiDAR monitoring. This provides a multifaceted approach to the characterisation and analysis of slope stability issues. The presented methodology of multiscale datasets and surveying approaches utilising spatial parameters and risk index mapping enables a more comprehensive and effective prediction of landslides resulting in effective characterisation and remediation strategies.
Screening new psychoactive substances in urban wastewater using high resolution mass spectrometry.
González-Mariño, Iria; Gracia-Lor, Emma; Bagnati, Renzo; Martins, Claudia P B; Zuccato, Ettore; Castiglioni, Sara
2016-06-01
Analysis of drug residues in urban wastewater could complement epidemiological studies in detecting the use of new psychoactive substances (NPS), a continuously changing group of drugs hard to monitor by classical methods. We initially selected 52 NPS potentially used in Italy based on seizure data and consumption alerts provided by the Antidrug Police Department and the National Early Warning System. Using a linear ion trap-Orbitrap high resolution mass spectrometer, we designed a suspect screening and a target method approach and compared them for the analysis of 24 h wastewater samples collected at the treatment plant influents of four Italian cities. This highlighted the main limitations of these two approaches, so we could propose requirements for future research. A library of MS/MS spectra of 16 synthetic cathinones and 19 synthetic cannabinoids, for which analytical standards were acquired, was built at different collision energies and is available on request. The stability of synthetic cannabinoids was studied in analytical standards and wastewater, identifying the best analytical conditions for future studies. To the best of our knowledge, these are the first stability data on NPS. Few suspects were identified in Italian wastewater samples, in accordance with recent epidemiological data reporting a very low prevalence of use of NPS in Italy. This study outlines an analytical approach for NPS identification and measurement in urban wastewater and for estimating their use in the population.
Synchronization of cyclic power grids: Equilibria and stability of the synchronous state
NASA Astrophysics Data System (ADS)
Xi, Kaihua; Dubbeldam, Johan L. A.; Lin, Hai Xiang
2017-01-01
Synchronization is essential for the proper functioning of power grids; we investigate the synchronous states and their stability for cyclic power grids. We calculate the number of stable equilibria and investigate both the linear and nonlinear stabilities of the synchronous state. The linear stability analysis shows that the stability of the state, determined by the smallest nonzero eigenvalue, is inversely proportional to the size of the network. We use the energy barrier to measure the nonlinear stability and calculate it by comparing the potential energy of the type-1 saddles with that of the stable synchronous state. We find that the energy barrier depends on the network size (N) in a more complicated fashion compared to the linear stability. In particular, when the generators and consumers are evenly distributed in an alternating way, the energy barrier decreases to a constant when N approaches infinity. For a heterogeneous distribution of generators and consumers, the energy barrier decreases with N. The more heterogeneous the distribution is, the stronger the energy barrier depends on N. Finally, we find that by comparing situations with equal line loads in cyclic and tree networks, tree networks exhibit reduced stability. This difference disappears in the limit of N →∞ . This finding corroborates previous results reported in the literature and suggests that cyclic (sub)networks may be applied to enhance power transfer while maintaining stable synchronous operation.
Gika, Helen G; Theodoridis, Georgios A; Wilson, Ian D
2008-05-02
Typically following collection biological samples are kept in a freezer for periods ranging from a few days to several months before analysis. Experience has shown that in LC-MS-based metabonomics research the best analytical practice is to store samples as these are collected, complete the sample set and analyse it in a single run. However, this approach is prudent only if the samples stored in the refrigerator or in the freezer are stable. Another important issue is the stability of the samples following the freeze-thaw process. To investigate these matters urine samples were collected from 6 male volunteers and analysed by LC-MS and ultra-performance liquid chromatography (UPLC)-MS [in both positive and negative electrospray ionization (ESI)] on the day of collection or at intervals of up to 6 months storage at -20 degrees C and -80 degrees C. Other sets of these samples underwent a series of up to nine freeze-thaw cycles. The stability of samples kept at 4 degrees C in an autosampler for up to 6 days was also assessed, with clear differences appearing after 48h. Data was analysed using multivariate statistical analysis (principal component analysis). The results show that sample storage at both -20 and -80 degrees C appeared to ensure sample stability. Similarly up to nine freeze thaw cycles were without any apparent effect on the profile.
ERIC Educational Resources Information Center
Stieha, Vicki
2010-01-01
This single case study takes a phenomenological approach using the voice centered analysis to analyze qualitative interview data so that the voice of this first-generation college student is brought forward. It is a poignant voice filled with conflicting emotional responses to the desire for college success, for family stability, for meaningful…
ERIC Educational Resources Information Center
Steacy, Laura M.; Kirby, John R.; Parrila, Rauno; Compton, Donald L.
2014-01-01
The Double Deficit Hypothesis of dyslexia is one approach to classifying students with reading disabilities. The theory offers four distinct groups of readers: (a) average readers, (b) students with phonological deficits, (c) students with naming speed deficits, and (d) students with double deficits: those having both (b) and (c). This study…
Was Hercules Happy? Some Answers from a Functional Model of Human Well-Being
ERIC Educational Resources Information Center
Vitterso, Joar; Soholt, Yngvil; Hetland, Audun; Thoresen, Irina Alekseeva; Roysamb, Espen
2010-01-01
The article proposes a functional approach as a framework for the analysis of human well-being. The model posits that the adaptive role of hedonic feelings is to regulate stability and homeostasis in human systems, and that these feelings basically are created in states of equilibrium or assimilation. To regulate change and growth, a distinct set…
Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis
2010-01-01
The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries, Journal of Computational Physics 225 (2007) 1782–1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions unconditionally unstable iteration schemes result even when strong coupling FSI is employed. For such cases, however, combining the strong-coupling iteration with under-relaxation in conjunction with the Aitken’s acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the FSI algorithm. The stabilizing role of under-relaxation is also clarified and an upper bound of the required for stability under-relaxation coefficient is derived. PMID:20981246
NASA Astrophysics Data System (ADS)
Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis
2008-08-01
The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A numerical method for solving the 3D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries, Journal of Computational Physics 225 (2007) 1782-1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions the FSI algorithm is unconditionally unstable even when strong coupling FSI is employed. For such cases, however, combining the strong coupling iteration with under-relaxation in conjunction with the Aitken's acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the FSI algorithm. The stabilizing role of under-relaxation is also clarified and the upper bound of the under-relaxation coefficient, required for stability, is derived.
Population-based 3D genome structure analysis reveals driving forces in spatial genome organization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tjong, Harianto; Li, Wenyuan; Kalhor, Reza
Conformation capture technologies (e.g., Hi-C) chart physical interactions between chromatin regions on a genome-wide scale. However, the structural variability of the genome between cells poses a great challenge to interpreting ensemble-averaged Hi-C data, particularly for long-range and interchromosomal interactions. Here, we present a probabilistic approach for deconvoluting Hi-C data into a model population of distinct diploid 3D genome structures, which facilitates the detection of chromatin interactions likely to co-occur in individual cells. Here, our approach incorporates the stochastic nature of chromosome conformations and allows a detailed analysis of alternative chromatin structure states. For example, we predict and experimentally confirm themore » presence of large centromere clusters with distinct chromosome compositions varying between individual cells. The stability of these clusters varies greatly with their chromosome identities. We show that these chromosome-specific clusters can play a key role in the overall chromosome positioning in the nucleus and stabilizing specific chromatin interactions. By explicitly considering genome structural variability, our population-based method provides an important tool for revealing novel insights into the key factors shaping the spatial genome organization.« less
Population-based 3D genome structure analysis reveals driving forces in spatial genome organization
Tjong, Harianto; Li, Wenyuan; Kalhor, Reza; ...
2016-03-07
Conformation capture technologies (e.g., Hi-C) chart physical interactions between chromatin regions on a genome-wide scale. However, the structural variability of the genome between cells poses a great challenge to interpreting ensemble-averaged Hi-C data, particularly for long-range and interchromosomal interactions. Here, we present a probabilistic approach for deconvoluting Hi-C data into a model population of distinct diploid 3D genome structures, which facilitates the detection of chromatin interactions likely to co-occur in individual cells. Here, our approach incorporates the stochastic nature of chromosome conformations and allows a detailed analysis of alternative chromatin structure states. For example, we predict and experimentally confirm themore » presence of large centromere clusters with distinct chromosome compositions varying between individual cells. The stability of these clusters varies greatly with their chromosome identities. We show that these chromosome-specific clusters can play a key role in the overall chromosome positioning in the nucleus and stabilizing specific chromatin interactions. By explicitly considering genome structural variability, our population-based method provides an important tool for revealing novel insights into the key factors shaping the spatial genome organization.« less
Ingvarsson, Pall Thor; Yang, Mingshi; Mulvad, Helle; Nielsen, Hanne Mørck; Rantanen, Jukka; Foged, Camilla
2013-11-01
The purpose of this study was to identify and optimize spray drying parameters of importance for the design of an inhalable powder formulation of a cationic liposomal adjuvant composed of dimethyldioctadecylammonium (DDA) bromide and trehalose-6,6'-dibehenate (TDB). A quality by design (QbD) approach was applied to identify and link critical process parameters (CPPs) of the spray drying process to critical quality attributes (CQAs) using risk assessment and design of experiments (DoE), followed by identification of an optimal operating space (OOS). A central composite face-centered design was carried out followed by multiple linear regression analysis. Four CQAs were identified; the mass median aerodynamic diameter (MMAD), the liposome stability (size) during processing, the moisture content and the yield. Five CPPs (drying airflow, feed flow rate, feedstock concentration, atomizing airflow and outlet temperature) were identified and tested in a systematic way. The MMAD and the yield were successfully modeled. For the liposome size stability, the ratio between the size after and before spray drying was modeled successfully. The model for the residual moisture content was poor, although, the moisture content was below 3% in the entire design space. Finally, the OOS was drafted from the constructed models for the spray drying of trehalose stabilized DDA/TDB liposomes. The QbD approach for the spray drying process should include a careful consideration of the quality target product profile. This approach implementing risk assessment and DoE was successfully applied to optimize the spray drying of an inhalable DDA/TDB liposomal adjuvant designed for pulmonary vaccination.
Cooperative control theory and integrated flight and propulsion control
NASA Technical Reports Server (NTRS)
Schmidt, David K.; Schierman, John D.
1995-01-01
The major contribution of this research was the exposition of the fact that airframe and engine interactions could be present, and their effects could include loss of stability and performance of the control systems. Also, the significance of two directional, as opposed to one-directional, coupling was identified and explained. A multivariable stability and performance analysis methodology was developed, and applied to several candidate aircraft configurations. In these example evaluations, the significance of these interactions was underscored. Also exposed was the fact that with interactions present along with some integrated control approaches, the engine command/limiting logic (which represents an important nonlinear component of the engine control system) can impact closed-loop airframe/engine system stability. Finally, a brief investigation of control-law synthesis techniques appropriate for the class of systems was pursued, and it was determined that multivariable techniques, including model-following formulations of LQG and/or H infinity methods, showed promise. However, for practical reasons, decentralized control architectures are preferred, which is an architecture incompatible with these synthesis methods. The major contributions of the second phase of the grant was the development of conditions under which no decentralized controller could achieve closed loop system requirements on stability and/or performance. Sought were conditions that depended only on properties of the plant and the requirement, and independent of any particular control law or synthesis approach. Therefore, they could be applied a priori, before synthesis of a candidate control law. Under this grant, such conditions were found regarding stability, and encouraging initial results were obtained regarding performance.
Approaches to the simulation of unconfined flow and perched groundwater flow in MODFLOW
Bedekar, Vivek; Niswonger, Richard G.; Kipp, Kenneth; Panday, Sorab; Tonkin, Matthew
2012-01-01
Various approaches have been proposed to manage the nonlinearities associated with the unconfined flow equation and to simulate perched groundwater conditions using the MODFLOW family of codes. The approaches comprise a variety of numerical techniques to prevent dry cells from becoming inactive and to achieve a stable solution focused on formulations of the unconfined, partially-saturated, groundwater flow equation. Keeping dry cells active avoids a discontinuous head solution which in turn improves the effectiveness of parameter estimation software that relies on continuous derivatives. Most approaches implement an upstream weighting of intercell conductance and Newton-Raphson linearization to obtain robust convergence. In this study, several published approaches were implemented in a stepwise manner into MODFLOW for comparative analysis. First, a comparative analysis of the methods is presented using synthetic examples that create convergence issues or difficulty in handling perched conditions with the more common dry-cell simulation capabilities of MODFLOW. Next, a field-scale three-dimensional simulation is presented to examine the stability and performance of the discussed approaches in larger, practical, simulation settings.
Some Approaches to the Study of Change and Stability of College Students.
ERIC Educational Resources Information Center
Feldman, Kenneth A.
The purpose of this paper is to describe and analyze some of the major approaches that are taken in the study of student change and stability. The approaches discussed are (1) the atheoretical approach, where the outcome is explored without a theoretical orientation; (2) presumed goals of higher education, where the outcome is cast in terms of the…
A microfluidic device for dry sample preservation in remote settings.
Begolo, Stefano; Shen, Feng; Ismagilov, Rustem F
2013-11-21
This paper describes a microfluidic device for dry preservation of biological specimens at room temperature that incorporates chemical stabilization matrices. Long-term stabilization of samples is crucial for remote medical analysis, biosurveillance, and archiving, but the current paradigm for transporting remotely obtained samples relies on the costly "cold chain" to preserve analytes within biospecimens. We propose an alternative approach that involves the use of microfluidics to preserve samples in the dry state with stabilization matrices, developed by others, that are based on self-preservation chemistries found in nature. We describe a SlipChip-based device that allows minimally trained users to preserve samples with the three simple steps of placing a sample at an inlet, closing a lid, and slipping one layer of the device. The device fills automatically, and a pre-loaded desiccant dries the samples. Later, specimens can be rehydrated and recovered for analysis in a laboratory. This device is portable, compact, and self-contained, so it can be transported and operated by untrained users even in limited-resource settings. Features such as dead-end and sequential filling, combined with a "pumping lid" mechanism, enable precise quantification of the original sample's volume while avoiding overfilling. In addition, we demonstrated that the device can be integrated with a plasma filtration module, and we validated device operations and capabilities by testing the stability of purified RNA solutions. These features and the modularity of this platform (which facilitates integration and simplifies operation) would be applicable to other microfluidic devices beyond this application. We envision that as the field of stabilization matrices develops, microfluidic devices will be useful for cost-effectively facilitating remote analysis and biosurveillance while also opening new opportunities for diagnostics, drug development, and other medical fields.
Multi-flexible-body analysis for application to wind turbine control design
NASA Astrophysics Data System (ADS)
Lee, Donghoon
The objective of the present research is to build a theoretical and computational framework for the aeroelastic analysis of flexible rotating systems, more specifically with special application to a wind turbine control design. The methodology is based on the integration of Kane's approach for the analysis of the multi-rigid-body subsystem and a mixed finite element method for the analysis of the flexible-body subsystem. The combined analysis is then strongly coupled with an aerodynamic model based on Blade Element Momentum theory for inflow model. The unified framework from the analysis of subsystems is represented as, in a symbolic manner, a set of nonlinear ordinary differential equations with time-variant, periodic coefficients, which describe the aeroelastic behavior of whole system. The framework can be directly applied to control design due to its symbolic characteristics. The solution procedures for the equations are presented for the study of nonlinear simulation, periodic steady-state solution, and Floquet stability of the linearized system about the steady-state solution. Finally the linear periodic system equation can be obtained with both system and control matrices as explicit functions of time, which can be directly applicable to control design. The structural model is validated by comparison of its results with those from software, some of which is commercial. The stability of the linearized system about periodic steady-state solution is different from that obtained about a constant steady-state solution, which have been conventional in the field of wind turbine dynamics. Parametric studies are performed on a wind turbine model with various pitch angles, precone angles, and rotor speeds. Combined with composite material, their effects on wind turbine aeroelastic stability are investigated. Finally it is suggested that the aeroelastic stability analysis and control design for the whole system is crucial for the design of wind turbines, and the present research breaks new ground in the ability to treat the issue.
NASA Astrophysics Data System (ADS)
Munirwansyah; Irsyam, Masyhur; Munirwan, Reza P.; Yunita, Halida; Zulfan Usrina, M.
2018-05-01
Occupational safety and health (OSH) is a planned effort to prevent accidents and diseases caused by work. In conducting mining activities often occur work accidents caused by unsafe field conditions. In open mine area, there is often a slump due to unstable slopes, which can disrupt the activities and productivity of mining companies. Based on research on stability of open pit slopes conducted by Febrianti [8], the Meureubo coal mine located in Aceh Barat district, on the slope of mine was indicated unsafe slope conditions, it will be continued research on OSH for landslide which is to understand the stability of the excavation slope and the shape of the slope collapse. Plaxis software was used for this research. After analyzing the slope stability and the effect of landslide on OSH with Job Safety Analysis (JSA) method, to identify the hazard to work safety, risk management analysis will be conducted to classified hazard level and its handling technique. This research aim is to know the level of risk of work accident at the company and its prevention effort. The result of risk analysis research is very high-risk value that is > 350 then the activity must be stopped until the risk can be reduced to reach the risk value limit < 20 which is allowed or accepted.
Aircraft directional stability and vertical tail design: A review of semi-empirical methods
NASA Astrophysics Data System (ADS)
Ciliberti, Danilo; Della Vecchia, Pierluigi; Nicolosi, Fabrizio; De Marco, Agostino
2017-11-01
Aircraft directional stability and control are related to vertical tail design. The safety, performance, and flight qualities of an aircraft also depend on a correct empennage sizing. Specifically, the vertical tail is responsible for the aircraft yaw stability and control. If these characteristics are not well balanced, the entire aircraft design may fail. Stability and control are often evaluated, especially in the preliminary design phase, with semi-empirical methods, which are based on the results of experimental investigations performed in the past decades, and occasionally are merged with data provided by theoretical assumptions. This paper reviews the standard semi-empirical methods usually applied in the estimation of airplane directional stability derivatives in preliminary design, highlighting the advantages and drawbacks of these approaches that were developed from wind tunnel tests performed mainly on fighter airplane configurations of the first decades of the past century, and discussing their applicability on current transport aircraft configurations. Recent investigations made by the authors have shown the limit of these methods, proving the existence of aerodynamic interference effects in sideslip conditions which are not adequately considered in classical formulations. The article continues with a concise review of the numerical methods for aerodynamics and their applicability in aircraft design, highlighting how Reynolds-Averaged Navier-Stokes (RANS) solvers are well-suited to attain reliable results in attached flow conditions, with reasonable computational times. From the results of RANS simulations on a modular model of a representative regional turboprop airplane layout, the authors have developed a modern method to evaluate the vertical tail and fuselage contributions to aircraft directional stability. The investigation on the modular model has permitted an effective analysis of the aerodynamic interference effects by moving, changing, and expanding the available airplane components. Wind tunnel tests over a wide range of airplane configurations have been used to validate the numerical approach. The comparison between the proposed method and the standard semi-empirical methods available in literature proves the reliability of the innovative approach, according to the available experimental data collected in the wind tunnel test campaign.
Stability analysis for acoustic wave propagation in tilted TI media by finite differences
NASA Astrophysics Data System (ADS)
Bakker, Peter M.; Duveneck, Eric
2011-05-01
Several papers in recent years have reported instabilities in P-wave modelling, based on an acoustic approximation, for inhomogeneous transversely isotropic media with tilted symmetry axis (TTI media). In particular, instabilities tend to occur if the axis of symmetry varies rapidly in combination with strong contrasts of medium parameters, which is typically the case at the foot of a steeply dipping salt flank. In a recent paper, we have proposed and demonstrated a P-wave modelling approach for TTI media, based on rotated stress and strain tensors, in which the wave equations reduce to a coupled set of two second-order partial differential equations for two scalar stress components: a normal component along the variable axis of symmetry and a lateral component of stress in the plane perpendicular to that axis. Spatially constant density is assumed in this approach. A numerical discretization scheme was proposed which uses discrete second-derivative operators for the non-mixed second-order derivatives in the wave equations, and combined first-derivative operators for the mixed second-order derivatives. This paper provides a complete and rigorous stability analysis, assuming a uniformly sampled grid. Although the spatial discretization operator for the TTI acoustic wave equation is not self-adjoint, this operator still defines a complete basis of eigenfunctions of the solution space, provided that the solution space is somewhat restricted at locations where the medium is elliptically anisotropic. First, a stability analysis is given for a discretization scheme, which is purely based on first-derivative operators. It is shown that the coefficients of the central difference operators should satisfy certain conditions. In view of numerical artefacts, such a discretization scheme is not attractive, and the non-mixed second-order derivatives of the wave equation are discretized directly by second-derivative operators. It is shown that this modification preserves stability, provided that the central difference operators of the second-order derivatives dominate over the twice applied operators of the first-order derivatives. In practice, it turns out that this is almost the case. Stability of the desired discretization scheme is enforced by slightly weighting down the mixed second-order derivatives in the wave equation. This has a minor, practically negligible, effect on the kinematics of wave propagation. Finally, it is shown that non-reflecting boundary conditions, enforced by applying a taper at the boundaries of the grid, do not harm the stability of the discretization scheme.
Schulz-Drost, S; Grupp, S; Pachowsky, M; Oppel, P; Krinner, S; Mauerer, A; Hennig, F F; Langenbach, A
2017-04-01
Stabilizing techniques of flail chest injuries usually need wide approaches to the chest wall. Three main regions need to be considered when stabilizing the rib cage: median-anterior with dissection of pectoral muscle; lateral-axillary with dissection of musculi (mm) serratus, externus abdominis; posterior inter spinoscapular with division of mm rhomboidei, trapezius and latissimus dorsi. Severe morbidity due to these invasive approaches needs to be considered. This study discusses possibilities for minimized approaches to the shown regions. Fifteen patients were stabilized by locked plate osteosynthesis (MatrixRib ® ) between May 2012 and April 2014 and prospectively followed up. Flail chest injuries were managed through limited incisions to the anterior, the lateral, and the posterior parts of the chest wall or their combinations. Each approach was 4-10 cm using Alexis ® retractor. One minimized approach offered sufficient access at least to four ribs posterior and laterally, four pairs of ribs anterior in all cases. There was no need to divide latissimus dorsi muscle. Trapezius und rhomboid muscles were only limited divided, whereas a subcutaneous dissection of serratus and abdominis muscles was necessary. A follow-up showed sufficient consolidation. pneumothorax (2) and seroma (2). Minimized approaches allow sufficient stabilization of severe dislocated rib fractures without extensive dissection or division of the important muscles. Keeping the arm and, thus, the scapula mobile is very important for providing the largest reachable surface of the rib cage through each approach.
Marrero-Ponce, Yovani; Medina-Marrero, Ricardo; Castillo-Garit, Juan A; Romero-Zaldivar, Vicente; Torrens, Francisco; Castro, Eduardo A
2005-04-15
A novel approach to bio-macromolecular design from a linear algebra point of view is introduced. A protein's total (whole protein) and local (one or more amino acid) linear indices are a new set of bio-macromolecular descriptors of relevance to protein QSAR/QSPR studies. These amino-acid level biochemical descriptors are based on the calculation of linear maps on Rn[f k(xmi):Rn-->Rn] in canonical basis. These bio-macromolecular indices are calculated from the kth power of the macromolecular pseudograph alpha-carbon atom adjacency matrix. Total linear indices are linear functional on Rn. That is, the kth total linear indices are linear maps from Rn to the scalar R[f k(xm):Rn-->R]. Thus, the kth total linear indices are calculated by summing the amino-acid linear indices of all amino acids in the protein molecule. A study of the protein stability effects for a complete set of alanine substitutions in the Arc repressor illustrates this approach. A quantitative model that discriminates near wild-type stability alanine mutants from the reduced-stability ones in a training series was obtained. This model permitted the correct classification of 97.56% (40/41) and 91.67% (11/12) of proteins in the training and test set, respectively. It shows a high Matthews correlation coefficient (MCC=0.952) for the training set and an MCC=0.837 for the external prediction set. Additionally, canonical regression analysis corroborated the statistical quality of the classification model (Rcanc=0.824). This analysis was also used to compute biological stability canonical scores for each Arc alanine mutant. On the other hand, the linear piecewise regression model compared favorably with respect to the linear regression one on predicting the melting temperature (tm) of the Arc alanine mutants. The linear model explains almost 81% of the variance of the experimental tm (R=0.90 and s=4.29) and the LOO press statistics evidenced its predictive ability (q2=0.72 and scv=4.79). Moreover, the TOMOCOMD-CAMPS method produced a linear piecewise regression (R=0.97) between protein backbone descriptors and tm values for alanine mutants of the Arc repressor. A break-point value of 51.87 degrees C characterized two mutant clusters and coincided perfectly with the experimental scale. For this reason, we can use the linear discriminant analysis and piecewise models in combination to classify and predict the stability of the mutant Arc homodimers. These models also permitted the interpretation of the driving forces of such folding process, indicating that topologic/topographic protein backbone interactions control the stability profile of wild-type Arc and its alanine mutants.
Kremen, Arie; Tsompanakis, Yiannis
2010-04-01
The slope-stability of a proposed vertical extension of a balefill was investigated in the present study, in an attempt to determine a geotechnically conservative design, compliant with New Jersey Department of Environmental Protection regulations, to maximize the utilization of unclaimed disposal capacity. Conventional geotechnical analytical methods are generally limited to well-defined failure modes, which may not occur in landfills or balefills due to the presence of preferential slip surfaces. In addition, these models assume an a priori stress distribution to solve essentially indeterminate problems. In this work, a different approach has been applied, which avoids several of the drawbacks of conventional methods. Specifically, the analysis was performed in a two-stage process: (a) calculation of stress distribution, and (b) application of an optimization technique to identify the most probable failure surface. The stress analysis was performed using a finite element formulation and the location of the failure surface was located by dynamic programming optimization method. A sensitivity analysis was performed to evaluate the effect of the various waste strength parameters of the underlying mathematical model on the results, namely the factor of safety of the landfill. Although this study focuses on the stability investigation of an expanded balefill, the methodology presented can easily be applied to general geotechnical investigations.
NASA Astrophysics Data System (ADS)
Jafari, Hossein; Habibi, Morteza
2018-04-01
Regarding the importance of stability in small-scale plasma focus devices for producing the repeatable and strength pinching, a sensitivity analysis approach has been used for applicability in design parameters optimization of an actually very low energy device (84 nF, 48 nH, 8-9.5 kV, ∼2.7-3.7 J). To optimize the devices functional specification, four different coaxial electrode configurations have been studied, scanning an argon gas pressure range from 0.6 to 1.5 mbar via the charging voltage variation study from 8.3 to 9.3 kV. The strength and efficient pinching was observed for the tapered anode configuration, over an expanded operating pressure range of 0.6 to 1.5 mbar. The analysis results showed that the most sensitive of the pinch voltage was associated with 0.88 ± 0.8mbar argon gas pressure and 8.3-8.5 kV charging voltage, respectively, as the optimum operating parameters. From the viewpoint of stability assessment of the device, it was observed that the least variation in stable operation of the device was for a charging voltage range of 8.3 to 8.7 kV in an operating pressure range from 0.6 to 1.1 mbar.
Nonlinear dynamic analysis of flexible multibody systems
NASA Technical Reports Server (NTRS)
Bauchau, Olivier A.; Kang, Nam Kook
1991-01-01
Two approaches are developed to analyze the dynamic behavior of flexible multibody systems. In the first approach each body is modeled with a modal methodology in a local non-inertial frame of reference, whereas in the second approach, each body is modeled with a finite element methodology in the inertial frame. In both cases, the interaction among the various elastic bodies is represented by constraint equations. The two approaches were compared for accuracy and efficiency: the first approach is preferable when the nonlinearities are not too strong but it becomes cumbersome and expensive to use when many modes must be used. The second approach is more general and easier to implement but could result in high computation costs for a large system. The constraints should be enforced in a time derivative fashion for better accuracy and stability.
Nikkilä, Janne; Immonen, Outi; Kekkonen, Riina; Lahti, Leo; Palva, Airi; de Vos, Willem M.
2011-01-01
Background While our knowledge of the intestinal microbiota during disease is accumulating, basic information of the microbiota in healthy subjects is still scarce. The aim of this study was to characterize the intestinal microbiota of healthy adults and specifically address its temporal stability, core microbiota and relation with intestinal symptoms. We carried out a longitudinal study by following a set of 15 healthy Finnish subjects for seven weeks and regularly assessed their intestinal bacteria and archaea with the Human Intestinal Tract (HIT)Chip, a phylogenetic microarray, in conjunction with qPCR analyses. The health perception and occurrence of intestinal symptoms was recorded by questionnaire at each sampling point. Principal Findings A high overall temporal stability of the microbiota was observed. Five subjects showed transient microbiota destabilization, which correlated not only with the intake of antibiotics but also with overseas travelling and temporary illness, expanding the hitherto known factors affecting the intestinal microbiota. We identified significant correlations between the microbiota and common intestinal symptoms, including abdominal pain and bloating. The most striking finding was the inverse correlation between Bifidobacteria and abdominal pain: subjects who experienced pain had over five-fold less Bifidobacteria compared to those without pain. Finally, a novel computational approach was used to define the common core microbiota, highlighting the role of the analysis depth in finding the phylogenetic core and estimating its size. The in-depth analysis suggested that we share a substantial number of our intestinal phylotypes but as they represent highly variable proportions of the total community, many of them often remain undetected. Conclusions/Significance A global and high-resolution microbiota analysis was carried out to determine the temporal stability, the associations with intestinal symptoms, and the individual and common core microbiota in healthy adults. The findings provide new approaches to define intestinal health and to further characterize the microbial communities inhabiting the human gut. PMID:21829582
Stabilization Approaches for Linear and Nonlinear Reduced Order Models
NASA Astrophysics Data System (ADS)
Rezaian, Elnaz; Wei, Mingjun
2017-11-01
It has been a major concern to establish reduced order models (ROMs) as reliable representatives of the dynamics inherent in high fidelity simulations, while fast computation is achieved. In practice it comes to stability and accuracy of ROMs. Given the inviscid nature of Euler equations it becomes more challenging to achieve stability, especially where moving discontinuities exist. Originally unstable linear and nonlinear ROMs are stabilized here by two approaches. First, a hybrid method is developed by integrating two different stabilization algorithms. At the same time, symmetry inner product is introduced in the generation of ROMs for its known robust behavior for compressible flows. Results have shown a notable improvement in computational efficiency and robustness compared to similar approaches. Second, a new stabilization algorithm is developed specifically for nonlinear ROMs. This method adopts Particle Swarm Optimization to enforce a bounded ROM response for minimum discrepancy between the high fidelity simulation and the ROM outputs. Promising results are obtained in its application on the nonlinear ROM of an inviscid fluid flow with discontinuities. Supported by ARL.
Conceptualization of preferential flow for hillslope stability assessment
NASA Astrophysics Data System (ADS)
Kukemilks, Karlis; Wagner, Jean-Frank; Saks, Tomas; Brunner, Philip
2018-03-01
This study uses two approaches to conceptualize preferential flow with the goal to investigate their influence on hillslope stability. Synthetic three-dimensional hydrogeological models using dual-permeability and discrete-fracture conceptualization were subsequently integrated into slope stability simulations. The slope stability simulations reveal significant differences in slope stability depending on the preferential flow conceptualization applied, despite similar small-scale hydrogeological responses of the system. This can be explained by a local-scale increase of pore-water pressures observed in the scenario with discrete fractures. The study illustrates the critical importance of correctly conceptualizing preferential flow for slope stability simulations. It further demonstrates that the combination of the latest generation of physically based hydrogeological models with slope stability simulations allows for improvement to current modeling approaches through more complex consideration of preferential flow paths.
Quasi-Static Analysis of Round LaRC THUNDER Actuators
NASA Technical Reports Server (NTRS)
Campbell, Joel F.
2007-01-01
An analytic approach is developed to predict the shape and displacement with voltage in the quasi-static limit of round LaRC Thunder Actuators. The problem is treated with classical lamination theory and Von Karman non-linear analysis. In the case of classical lamination theory exact analytic solutions are found. It is shown that classical lamination theory is insufficient to describe the physical situation for large actuators but is sufficient for very small actuators. Numerical results are presented for the non-linear analysis and compared with experimental measurements. Snap-through behavior, bifurcation, and stability are presented and discussed.
Quasi-Static Analysis of LaRC THUNDER Actuators
NASA Technical Reports Server (NTRS)
Campbell, Joel F.
2007-01-01
An analytic approach is developed to predict the shape and displacement with voltage in the quasi-static limit of LaRC Thunder Actuators. The problem is treated with classical lamination theory and Von Karman non-linear analysis. In the case of classical lamination theory exact analytic solutions are found. It is shown that classical lamination theory is insufficient to describe the physical situation for large actuators but is sufficient for very small actuators. Numerical results are presented for the non-linear analysis and compared with experimental measurements. Snap-through behavior, bifurcation, and stability are presented and discussed.
The asymptotic spectra of banded Toeplitz and quasi-Toeplitz matrices
NASA Technical Reports Server (NTRS)
Beam, Richard M.; Warming, Robert F.
1991-01-01
Toeplitz matrices occur in many mathematical, as well as, scientific and engineering investigations. This paper considers the spectra of banded Toeplitz and quasi-Toeplitz matrices with emphasis on non-normal matrices of arbitrarily large order and relatively small bandwidth. These are the type of matrices that appear in the investigation of stability and convergence of difference approximations to partial differential equations. Quasi-Toeplitz matrices are the result of non-Dirichlet boundary conditions for the difference approximations. The eigenvalue problem for a banded Toeplitz or quasi-Toeplitz matrix of large order is, in general, analytically intractable and (for non-normal matrices) numerically unreliable. An asymptotic (matrix order approaches infinity) approach partitions the eigenvalue analysis of a quasi-Toeplitz matrix into two parts, namely the analysis for the boundary condition independent spectrum and the analysis for the boundary condition dependent spectrum. The boundary condition independent spectrum is the same as the pure Toeplitz matrix spectrum. Algorithms for computing both parts of the spectrum are presented. Examples are used to demonstrate the utility of the algorithms, to present some interesting spectra, and to point out some of the numerical difficulties encountered when conventional matrix eigenvalue routines are employed for non-normal matrices of large order. The analysis for the Toeplitz spectrum also leads to a diagonal similarity transformation that improves conventional numerical eigenvalue computations. Finally, the algorithm for the asymptotic spectrum is extended to the Toeplitz generalized eigenvalue problem which occurs, for example, in the stability of Pade type difference approximations to differential equations.
O'Donnell, Sean T; Caldwell, Michael D; Barlaz, Morton A; Morris, Jeremy W F
2018-05-01
Municipal solid waste (MSW) landfills in the USA are regulated under Subtitle D of the Resource Conservation and Recovery Act (RCRA), which includes the requirement to protect human health and the environment (HHE) during the post-closure care (PCC) period. Several approaches have been published for assessment of potential threats to HHE. These approaches can be broadly divided into organic stabilization, which establishes an inert waste mass as the ultimate objective, and functional stability, which considers long-term emissions in the context of minimizing threats to HHE in the absence of active controls. The objective of this research was to conduct a case study evaluation of a closed MSW landfill using long-term data on landfill gas (LFG) production, leachate quality, site geology, and solids decomposition. Evaluations based on both functional and organic stability criteria were compared. The results showed that longer periods of LFG and leachate management would be required using organic stability criteria relative to an approach based on functional stability. These findings highlight the somewhat arbitrary and overly stringent nature of assigning universal stability criteria without due consideration of the landfill's hydrogeologic setting and potential environmental receptors. This supports previous studies that advocated for transition to a passive or inactive control stage based on a performance-based functional stability framework as a defensible mechanism for optimizing and ending regulatory PCC. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan
2003-01-01
During the past two decades, our understanding of laminar-turbulent transition flow physics has advanced significantly owing to, in a large part, the NASA program support such as the National Aerospace Plane (NASP), High-speed Civil Transport (HSCT), and Advanced Subsonic Technology (AST). Experimental, theoretical, as well as computational efforts on various issues such as receptivity and linear and nonlinear evolution of instability waves take part in broadening our knowledge base for this intricate flow phenomenon. Despite all these advances, transition prediction remains a nontrivial task for engineers due to the lack of a widely available, robust, and efficient prediction tool. The design and development of the LASTRAC code is aimed at providing one such engineering tool that is easy to use and yet capable of dealing with a broad range of transition related issues. LASTRAC was written from scratch based on the state-of-the-art numerical methods for stability analysis and modem software technologies. At low fidelity, it allows users to perform linear stability analysis and N-factor transition correlation for a broad range of flow regimes and configurations by using either the linear stability theory (LST) or linear parabolized stability equations (LPSE) method. At high fidelity, users may use nonlinear PSE to track finite-amplitude disturbances until the skin friction rise. Coupled with the built-in receptivity model that is currently under development, the nonlinear PSE method offers a synergistic approach to predict transition onset for a given disturbance environment based on first principles. This paper describes the governing equations, numerical methods, code development, and case studies for the current release of LASTRAC. Practical applications of LASTRAC are demonstrated for linear stability calculations, N-factor transition correlation, non-linear breakdown simulations, and controls of stationary crossflow instability in supersonic swept wing boundary layers.
Kinetic stability analysis on electromagnetic filamentary structure
NASA Astrophysics Data System (ADS)
Lee, Wonjae; Krasheninnikov, Sergei
2014-10-01
A coherent radial transport of filamentary structures in SOL region is important for its characteristics that can increase unwanted high fluxes to plasma facing components. In the course of propagation in radial direction, the coherency of the filaments is significantly limited by electrostatic resistive drift instability (Angus et al., 2012). Considering higher plasma pressure, which would have more large impact in heat fluxes, electromagnetic effects will reduce the growth rate of the drift wave instability and increase the instabilities from electron inertial effects. According to a linear stability analysis on equations with fluid approximation, the maximum growth rate of the instability from the electron inertia is higher than that of drift-Alfvén wave instability in high beta filaments such as ELMs. However, the analysis on the high beta filaments requires kinetic approach, since the decreased collisionality will make the fluid approximation broken. Therefore, the kinetic analysis will be presented for the electromagnetic effects on the dynamics of filamentary structures. This work was supported by the USDOE Grants DE-FG02-04ER54739 and DE-SC0010413 at UCSD and also by the Kwanjeong Educational Foundation.
NASA Astrophysics Data System (ADS)
Mettot, Clément; Sipp, Denis; Bézard, Hervé
2014-04-01
This article presents a quasi-laminar stability approach to identify in high-Reynolds number flows the dominant low-frequencies and to design passive control means to shift these frequencies. The approach is based on a global linear stability analysis of mean-flows, which correspond to the time-average of the unsteady flows. Contrary to the previous work by Meliga et al. ["Sensitivity of 2-D turbulent flow past a D-shaped cylinder using global stability," Phys. Fluids 24, 061701 (2012)], we use the linearized Navier-Stokes equations based solely on the molecular viscosity (leaving aside any turbulence model and any eddy viscosity) to extract the least stable direct and adjoint global modes of the flow. Then, we compute the frequency sensitivity maps of these modes, so as to predict before hand where a small control cylinder optimally shifts the frequency of the flow. In the case of the D-shaped cylinder studied by Parezanović and Cadot [J. Fluid Mech. 693, 115 (2012)], we show that the present approach well captures the frequency of the flow and recovers accurately the frequency control maps obtained experimentally. The results are close to those already obtained by Meliga et al., who used a more complex approach in which turbulence models played a central role. The present approach is simpler and may be applied to a broader range of flows since it is tractable as soon as mean-flows — which can be obtained either numerically from simulations (Direct Numerical Simulation (DNS), Large Eddy Simulation (LES), unsteady Reynolds-Averaged-Navier-Stokes (RANS), steady RANS) or from experimental measurements (Particle Image Velocimetry - PIV) — are available. We also discuss how the influence of the control cylinder on the mean-flow may be more accurately predicted by determining an eddy-viscosity from numerical simulations or experimental measurements. From a technical point of view, we finally show how an existing compressible numerical simulation code may be used in a black-box manner to extract the global modes and sensitivity maps.
Aichele, Stephen S.
2005-01-01
This apparent contradiction may be caused by the differences in the changes measured in each analysis. The change-through-time approach describes change from a fixed starting point of approximately 1970; the gradient approach describes the cumulative effect of all change up to approximately 2000. These findings indicate that although urbanization in Oakland County results in most of the effects observed in the literature, as evidenced in the gradient approach, relatively few of the anticipated effects have been observed during the past three decades. This relative stability despite rapid land-cover change may be related to efforts to mitigate the effects of development and a general decrease in the density of new residential development. It may also be related to external factors such as climate variability and reduced atmospheric deposition of specific chemicals.
Iterative Stable Alignment and Clustering of 2D Transmission Electron Microscope Images
Yang, Zhengfan; Fang, Jia; Chittuluru, Johnathan; Asturias, Francisco J.; Penczek, Pawel A.
2012-01-01
SUMMARY Identification of homogeneous subsets of images in a macromolecular electron microscopy (EM) image data set is a critical step in single-particle analysis. The task is handled by iterative algorithms, whose performance is compromised by the compounded limitations of image alignment and K-means clustering. Here we describe an approach, iterative stable alignment and clustering (ISAC) that, relying on a new clustering method and on the concepts of stability and reproducibility, can extract validated, homogeneous subsets of images. ISAC requires only a small number of simple parameters and, with minimal human intervention, can eliminate bias from two-dimensional image clustering and maximize the quality of group averages that can be used for ab initio three-dimensional structural determination and analysis of macromolecular conformational variability. Repeated testing of the stability and reproducibility of a solution within ISAC eliminates heterogeneous or incorrect classes and introduces critical validation to the process of EM image clustering. PMID:22325773
NASA Technical Reports Server (NTRS)
Hidalgo, Homero, Jr.
2000-01-01
An innovative methodology for determining structural target mode selection and mode selection based on a specific criterion is presented. An effective approach to single out modes which interact with specific locations on a structure has been developed for the X-33 Launch Vehicle Finite Element Model (FEM). We presented Root-Sum-Square (RSS) displacement method computes resultant modal displacement for each mode at selected degrees of freedom (DOF) and sorts to locate modes with highest values. This method was used to determine modes, which most influenced specific locations/points on the X-33 flight vehicle such as avionics control components, aero-surface control actuators, propellant valve and engine points for use in flight control stability analysis and for flight POGO stability analysis. Additionally, the modal RSS method allows for primary or global target vehicle modes to also be identified in an accurate and efficient manner.
Localized states and their stability in an anharmonic medium with a nonlinear defect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerasimchuk, I. V., E-mail: igor.gera@gmail.com
2015-10-15
A comprehensive analysis of soliton states localized near a plane defect (a defect layer) possessing nonlinear properties is carried out within a quasiclassical approach for different signs of nonlinearity of the medium and different characters of interaction of elementary excitations of the medium with the defect. A quantum interpretation is given to these nonlinear localized modes as a bound state of a large number of elementary excitations. The domains of existence of such states are determined, and their properties are analyzed as a function of the character of interaction of elementary excitations between each other and with the defect. Amore » full analysis of the stability of all the localized states with respect to small perturbations of amplitude and phase is carried out analytically, and the frequency of small oscillations of the state localized on the defect is determined.« less
Estimating life expectancies for US small areas: a regression framework
NASA Astrophysics Data System (ADS)
Congdon, Peter
2014-01-01
Analysis of area mortality variations and estimation of area life tables raise methodological questions relevant to assessing spatial clustering, and socioeconomic inequalities in mortality. Existing small area analyses of US life expectancy variation generally adopt ad hoc amalgamations of counties to alleviate potential instability of mortality rates involved in deriving life tables, and use conventional life table analysis which takes no account of correlated mortality for adjacent areas or ages. The alternative strategy here uses structured random effects methods that recognize correlations between adjacent ages and areas, and allows retention of the original county boundaries. This strategy generalizes to include effects of area category (e.g. poverty status, ethnic mix), allowing estimation of life tables according to area category, and providing additional stabilization of estimated life table functions. This approach is used here to estimate stabilized mortality rates, derive life expectancies in US counties, and assess trends in clustering and in inequality according to county poverty category.
NASA Technical Reports Server (NTRS)
Wen, John T.; Kreutz, Kenneth; Bayard, David S.
1988-01-01
A class of joint-level control laws for all-revolute robot arms is introduced. The analysis is similar to the recently proposed energy Liapunov function approach except that the closed-loop potential function is shaped in accordance with the underlying joint space topology. By using energy Liapunov functions with the modified potential energy, a much simpler analysis can be used to show closed-loop global asymptotic stability and local exponential stability. When Coulomb and viscous friction and model parameter errors are present, a sliding-mode-like modification of the control law is proposed to add a robustness-enhancing outer loop. Adaptive control is also addressed within the same framework. A linear-in-the-parameters formulation is adopted, and globally asymptotically stable adaptive control laws are derived by replacing the model parameters in the nonadaptive control laws by their estimates.
Stochastic modeling of mode interactions via linear parabolized stability equations
NASA Astrophysics Data System (ADS)
Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo
2017-11-01
Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.
Nakahashi, Wataru
2007-08-01
Conformity is often observed in human social learning. Social learners preferentially imitate the majority or most common behavior in many situations, though the strength of conformity varies with the situation. Why has such a psychological tendency evolved? I investigate this problem by extending a standard model of social learning evolution with infinite environmental states (Feldman, M.W., Aoki, K., Kumm, J., 1996. Individual versus social learning: evolutionary analysis in a fluctuating environment. Anthropol. Sci. 104, 209-231) to include conformity bias. I mainly focus on the relationship between the strength of conformity bias that evolves and environmental stability, which is one of the most important factors in the evolution of social learning. Using the evolutionarily stable strategy (ESS) approach, I show that conformity always evolves when environmental stability and the cost of adopting a wrong behavior are small, though environmental stability and the cost of individual learning both negatively affect the strength of conformity.
Relativistic stellar stability: An empirical approach
NASA Technical Reports Server (NTRS)
Ni, W.
1972-01-01
The PPN formalism which encompasses the post-Newtonian limit of nearly every metric theory of gravity is used to analyze stellar stability. This analysis enables one to infer, for any given gravitation theory, the extent to which post-Newtonian effects induce instabilities in white dwarfs, in neutron stars, and in supermassive stars. It also reveals the extent to which our current empirical knowledge of post-Newtonian gravity (based on solar-system experiments) actually guarantees that relativistic instabilities exist. In particular, it shows that: (1) for conservative theories of gravity, current solar-system experiments guarantee that the critical adiabatic index, for the stability of stars against radial pulsations exceeds the Newtonian value of 4/3 and (2) for nonconservative theories, current experiments do not permit any firm conclusion about the sign of the critical adiabatic index, and (3) in the PPN approximation to every metric theory, the standard Schwarzschild criterion for convection is valid.
Color stabilization of red wines. A chemical and colloidal approach.
Alcalde-Eon, Cristina; García-Estévez, Ignacio; Puente, Victor; Rivas-Gonzalo, Julián C; Escribano-Bailón, M Teresa
2014-07-23
The effects of cold treatment and time on CIELAB color parameters and on anthocyanin and anthocyanin-derived pigments composition have been evaluated as has been the effectiveness of either an enological tannin or a mannoprotein (M) on their stabilization. With respect to color, hue (hab) was increased in the wines treated with both enological products. Furthermore, the color changes induced by cold treatment were lessened by the addition of these two enological products, although the protective effect was higher for the wines treated with M. The pigment analysis revealed higher percentages of anthocyanin-derived pigments in tannin and M-treated samples (in both cold treated and not) in relation to control ones. The addition of the enological tannin may favor the synthesis of anthocyanin-derived pigments, which are chemically more stable than native anthocyanins, whereas M seems to stabilize anthocyanin-derived pigments from a colloidal point of view, avoiding their aggregation and further precipitation.
Test-retest reliability of the underlying latent factor structure of alcohol subjective response.
Lutz, Joseph A; Childs, Emma
2017-04-01
Alcohol subjective experiences are multi-dimensional and demonstrate wide inter-individual variability. Recent efforts have sought to establish a clearer understanding of subjective alcohol responses by identifying core constructs derived from multiple measurement instruments. The aim of this study was to evaluate the temporal stability of this approach to conceptualizing alcohol subjective experiences across successive alcohol administrations in the same individuals. Healthy moderate alcohol drinkers (n = 104) completed six experimental sessions each, three with alcohol (0.8 g/kg), and three with a non-alcoholic control beverage. Participants reported subjective mood and drug effects using standardized questionnaires before and at repeated times after beverage consumption. We explored the underlying latent structure of subjective responses for all alcohol administrations using exploratory factor analysis and then tested measurement invariance over the three successive administrations using multi-group confirmatory factor analyses. Exploratory factor analyses on responses to alcohol across all administrations yielded four factors representing "Positive mood," "Sedation," "Stimulation/Euphoria," and "Drug effects and Urges." A confirmatory factor analysis on the separate administrations indicated acceptable configural and metric invariance and moderate scalar invariance. In this study, we demonstrate temporal stability of the underlying constructs of subjective alcohol responses derived from factor analysis. These findings strengthen the utility of this approach to conceptualizing subjective alcohol responses especially for use in prospective and longitudinal alcohol challenge studies relating subjective response to alcohol use disorder risk.
An Approach to Stable Gradient-Descent Adaptation of Higher Order Neural Units.
Bukovsky, Ivo; Homma, Noriyasu
2017-09-01
Stability evaluation of a weight-update system of higher order neural units (HONUs) with polynomial aggregation of neural inputs (also known as classes of polynomial neural networks) for adaptation of both feedforward and recurrent HONUs by a gradient descent method is introduced. An essential core of the approach is based on the spectral radius of a weight-update system, and it allows stability monitoring and its maintenance at every adaptation step individually. Assuring the stability of the weight-update system (at every single adaptation step) naturally results in the adaptation stability of the whole neural architecture that adapts to the target data. As an aside, the used approach highlights the fact that the weight optimization of HONU is a linear problem, so the proposed approach can be generally extended to any neural architecture that is linear in its adaptable parameters.
A linear quadratic regulator approach to the stabilization of uncertain linear systems
NASA Technical Reports Server (NTRS)
Shieh, L. S.; Sunkel, J. W.; Wang, Y. J.
1990-01-01
This paper presents a linear quadratic regulator approach to the stabilization of uncertain linear systems. The uncertain systems under consideration are described by state equations with the presence of time-varying unknown-but-bounded uncertainty matrices. The method is based on linear quadratic regulator (LQR) theory and Liapunov stability theory. The robust stabilizing control law for a given uncertain system can be easily constructed from the symmetric positive-definite solution of the associated augmented Riccati equation. The proposed approach can be applied to matched and/or mismatched systems with uncertainty matrices in which only their matrix norms are bounded by some prescribed values and/or their entries are bounded by some prescribed constraint sets. Several numerical examples are presented to illustrate the results.
Bifurcation analysis of a photoreceptor interaction model for Retinitis Pigmentosa
NASA Astrophysics Data System (ADS)
Camacho, Erika T.; Radulescu, Anca; Wirkus, Stephen
2016-09-01
Retinitis Pigmentosa (RP) is the term used to describe a diverse set of degenerative eye diseases affecting the photoreceptors (rods and cones) in the retina. This work builds on an existing mathematical model of RP that focused on the interaction of the rods and cones. We non-dimensionalize the model and examine the stability of the equilibria. We then numerically investigate other stable modes that are present in the system for various parameter values and relate these modes to the original problem. Our results show that stable modes exist for a wider range of parameter values than the stability of the equilibrium solutions alone, suggesting that additional approaches to preventing cone death may exist.
Multiple μ-stability of neural networks with unbounded time-varying delays.
Wang, Lili; Chen, Tianping
2014-05-01
In this paper, we are concerned with a class of recurrent neural networks with unbounded time-varying delays. Based on the geometrical configuration of activation functions, the phase space R(n) can be divided into several Φη-type subsets. Accordingly, a new set of regions Ωη are proposed, and rigorous mathematical analysis is provided to derive the existence of equilibrium point and its local μ-stability in each Ωη. It concludes that the n-dimensional neural networks can exhibit at least 3(n) equilibrium points and 2(n) of them are μ-stable. Furthermore, due to the compatible property, a set of new conditions are presented to address the dynamics in the remaining 3(n)-2(n) subset regions. As direct applications of these results, we can get some criteria on the multiple exponential stability, multiple power stability, multiple log-stability, multiple log-log-stability and so on. In addition, the approach and results can also be extended to the neural networks with K-level nonlinear activation functions and unbounded time-varying delays, in which there can store (2K+1)(n) equilibrium points, (K+1)(n) of them are locally μ-stable. Numerical examples are given to illustrate the effectiveness of our results. Copyright © 2014 Elsevier Ltd. All rights reserved.
Williams, Alwyn; Hunter, Mitchell C.; Kammerer, Melanie; Kane, Daniel A.; Jordan, Nicholas R.; Mortensen, David A.; Smith, Richard G.; Snapp, Sieglinde
2016-01-01
Yield stability is fundamental to global food security in the face of climate change, and better strategies are needed for buffering crop yields against increased weather variability. Regional- scale analyses of yield stability can support robust inferences about buffering strategies for widely-grown staple crops, but have not been accomplished. We present a novel analytical approach, synthesizing 2000–2014 data on weather and soil factors to quantify their impact on county-level maize yield stability in four US states that vary widely in these factors (Illinois, Michigan, Minnesota and Pennsylvania). Yield stability is quantified as both ‘downside risk’ (minimum yield potential, MYP) and ‘volatility’ (temporal yield variability). We show that excessive heat and drought decreased mean yields and yield stability, while higher precipitation increased stability. Soil water holding capacity strongly affected yield volatility in all four states, either directly (Minnesota and Pennsylvania) or indirectly, via its effects on MYP (Illinois and Michigan). We infer that factors contributing to soil water holding capacity can help buffer maize yields against variable weather. Given that soil water holding capacity responds (within limits) to agronomic management, our analysis highlights broadly relevant management strategies for buffering crop yields against climate variability, and informs region-specific strategies. PMID:27560666
Raymond M. Rice; Norman H. Pillsbury; Kurt W. Schmidt
1985-01-01
Abstract - A linear discriminant function, developed to predict debris avalanches after clearcut logging on a granitic batholith in northwestern California, was tested on data from two batholiths. The equation was inaccurate in predicting slope stability on one of them. A new equation based on slope, crown cover, and distance from a stream (retained from the original...
Persistence of discrimination: Revisiting Axtell, Epstein and Young
NASA Astrophysics Data System (ADS)
Weisbuch, Gérard
2018-02-01
We reformulate an earlier model of the "Emergence of classes..." proposed by Axtell et al. (2001) using more elaborate cognitive processes allowing a statistical physics approach. The thorough analysis of the phase space and of the basins of attraction leads to a reconsideration of the previous social interpretations: our model predicts the reinforcement of discrimination biases and their long term stability rather than the emergence of classes.
Robust dynamic inversion controller design and analysis (using the X-38 vehicle as a case study)
NASA Astrophysics Data System (ADS)
Ito, Daigoro
A new way to approach robust Dynamic Inversion controller synthesis is addressed in this paper. A Linear Quadratic Gaussian outer-loop controller improves the robustness of a Dynamic Inversion inner-loop controller in the presence of uncertainties. Desired dynamics are given by the dynamic compensator, which shapes the loop. The selected dynamics are based on both performance and stability robustness requirements. These requirements are straightforwardly formulated as frequency-dependent singular value bounds during synthesis of the controller. Performance and robustness of the designed controller is tested using a worst case time domain quadratic index, which is a simple but effective way to measure robustness due to parameter variation. Using this approach, a lateral-directional controller for the X-38 vehicle is designed and its robustness to parameter variations and disturbances is analyzed. It is found that if full state measurements are available, the performance of the designed lateral-directional control system, measured by the chosen cost function, improves by approximately a factor of four. Also, it is found that the designed system is stable up to a parametric variation of 1.65 standard deviation with the set of uncertainty considered. The system robustness is determined to be highly sensitive to the dihedral derivative and the roll damping coefficients. The controller analysis is extended to the nonlinear system where both control input displacements and rates are bounded. In this case, the considered nonlinear system is stable up to 48.1° in bank angle and 1.59° in sideslip angle variations, indicating it is more sensitive to variations in sideslip angle than in bank angle. This nonlinear approach is further extended for the actuator failure mode analysis. The results suggest that the designed system maintains a high level of stability in the event of aileron failure. However, only 35% or less of the original stability range is maintained for the rudder failure case. Overall, this combination of controller synthesis and robustness criteria compares well with the mu-synthesis technique. It also is readily accessible to the practicing engineer, in terms of understanding and use.
Sensorless Load Torque Estimation and Passivity Based Control of Buck Converter Fed DC Motor
Kumar, S. Ganesh; Thilagar, S. Hosimin
2015-01-01
Passivity based control of DC motor in sensorless configuration is proposed in this paper. Exact tracking error dynamics passive output feedback control is used for stabilizing the speed of Buck converter fed DC motor under various load torques such as constant type, fan type, propeller type, and unknown load torques. Under load conditions, sensorless online algebraic approach is proposed, and it is compared with sensorless reduced order observer approach. The former produces better response in estimating the load torque. Sensitivity analysis is also performed to select the appropriate control variables. Simulation and experimental results fully confirm the superiority of the proposed approach suggested in this paper. PMID:25893208
Ares-I Bending Filter Design using a Constrained Optimization Approach
NASA Technical Reports Server (NTRS)
Hall, Charles; Jang, Jiann-Woei; Hall, Robert; Bedrossian, Nazareth
2008-01-01
The Ares-I launch vehicle represents a challenging flex-body structural environment for control system design. Software filtering of the inertial sensor output is required to ensure adequate stable response to guidance commands while minimizing trajectory deviations. This paper presents a design methodology employing numerical optimization to develop the Ares-I bending filters. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics, propellant slosh, and flex. Under the assumption that the Ares-I time-varying dynamics and control system can be frozen over a short period of time, the bending filters are designed to stabilize all the selected frozen-time launch control systems in the presence of parameter uncertainty. To ensure adequate response to guidance command, step response specifications are introduced as constraints in the optimization problem. Imposing these constrains minimizes performance degradation caused by the addition of the bending filters. The first stage bending filter design achieves stability by adding lag to the first structural frequency to phase stabilize the first flex mode while gain stabilizing the higher modes. The upper stage bending filter design gain stabilizes all the flex bending modes. The bending filter designs provided here have been demonstrated to provide stable first and second stage control systems in both Draper Ares Stability Analysis Tool (ASAT) and the MSFC MAVERIC 6DOF nonlinear time domain simulation.
Optimization of a pressure control valve for high power automatic transmission considering stability
NASA Astrophysics Data System (ADS)
Jian, Hongchao; Wei, Wei; Li, Hongcai; Yan, Qingdong
2018-02-01
The pilot-operated electrohydraulic clutch-actuator system is widely utilized by high power automatic transmission because of the demand of large flowrate and the excellent pressure regulating capability. However, a self-excited vibration induced by the inherent non-linear characteristics of valve spool motion coupled with the fluid dynamics can be generated during the working state of hydraulic systems due to inappropriate system parameters, which causes sustaining instability in the system and leads to unexpected performance deterioration and hardware damage. To ensure a stable and fast response performance of the clutch actuator system, an optimal design method for the pressure control valve considering stability is proposed in this paper. A non-linear dynamic model of the clutch actuator system is established based on the motion of the valve spool and coupling fluid dynamics in the system. The stability boundary in the parameter space is obtained by numerical stability analysis. Sensitivity of the stability boundary and output pressure response time corresponding to the valve parameters are identified using design of experiment (DOE) approach. The pressure control valve is optimized using particle swarm optimization (PSO) algorithm with the stability boundary as constraint. The simulation and experimental results reveal that the optimization method proposed in this paper helps in improving the response characteristics while ensuring the stability of the clutch actuator system during the entire gear shift process.
Ablinger, Elisabeth; Hellweger, Monika; Leitgeb, Stefan; Zimmer, Andreas
2012-10-15
In this study, we combined a high-throughput screening method, differential scanning fluorimetry (DSF), with design of experiments (DoE) methodology to evaluate the effects of several formulation components on the thermostability of granulocyte colony stimulating factor (G-CSF). First we performed a primary buffer screening where we tested thermal stability of G-CSF in different buffers, pH values and buffer concentrations. The significance of each factor and the two-way interactions between them were studied by multivariable regression analysis. pH was identified as most critical factor regarding thermal stability. The most stabilizing buffer, sodium glutamate, and sodium acetate were determined for further investigations. Second we tested the effect of 6 naturally occurring extremolytes (trehalose, sucrose, ectoine, hydroxyectoine, sorbitol, mannitol) on the thermal stability of G-CSF, using a central composite circumscribed design. At low pH (3.8) and low buffer concentration (5 mM) all extremolytes led to a significant increase in thermal stability except the addition of ectoine which resulted in a strong destabilization of G-CSF. Increasing pH and buffer concentration led to an increase in thermal stability with all investigated extremolytes. The described systematic approach allowed to create a ranking of stabilizing extremolytes at different buffer conditions. Copyright © 2012. Published by Elsevier B.V.
Schlinkmann, Karola M; Hillenbrand, Matthias; Rittner, Alexander; Künz, Madeleine; Strohner, Ralf; Plückthun, Andreas
2012-09-21
To identify structural features in a G-protein-coupled receptor (GPCR) crucial for biosynthesis, stability in the membrane and stability in detergent micelles, we developed an evolutionary approach using expression in the inner membrane of Escherichia coli. From the analysis of 800,000 sequences of the rat neurotensin receptor 1, in which every amino acid had been varied to all 64 codons, we uncovered several "shift" positions, where the selected population focuses on a residue different from wild type. Here, we employed in vitro DNA recombination and a comprehensive synthetic binary library made by the Slonomics® technology, allowing us to uncover additive and synergistic effects in the structure that maximize both detergent stability and functional expression. We identified variants with >25,000 functional molecules per E. coli cell, a 50-fold increase over wild type, and observed strong coevolution of detergent stability. We arrived at receptor variants highly stable in short-chain detergents, much more so than those found by alanine scanning on the same receptor. These evolved GPCRs continue to be able to signal through the G-protein. We discuss the structural reasons for these improvements achieved through directed evolution. Copyright © 2012 Elsevier Ltd. All rights reserved.
A Wearable Body Controlling Device for Application of Functional Electrical Stimulation
Jeffery, Nicholas D.
2018-01-01
In this research, we describe a new balancing device used to stabilize the rear quarters of a patient dog with spinal cord injuries. Our approach uses inertial measurement sensing and direct leg actuation to lay a foundation for eventual muscle control by means of direct functional electrical stimulation (FES). During this phase of development, we designed and built a mechanical test-bed to develop the control and stimulation algorithms before we use the device on our animal subjects. We designed the bionic test-bed to mimic the typical walking gait of a dog and use it to develop and test the functionality of the balancing device for stabilization of patient dogs with hindquarter paralysis. We present analysis for various muscle stimulation and balancing strategies, and our device can be used by veterinarians to tailor the stimulation strength and temporal distribution for any individual patient dog. We develop stabilizing muscle stimulation strategies using the robotic test-bed to enhance walking stability. We present experimental results using the bionic test-bed to demonstrate that the balancing device can provide an effective sensing strategy and deliver the required motion control commands for stabilizing an actual dog with a spinal cord injury. PMID:29670039
The structure of non-hierarchical triple system stability regions
NASA Astrophysics Data System (ADS)
Martynova, A. I.; Orlov, V. V.; Rubinov, A. V.
2009-08-01
A detailed study of the two-dimensional initial conditions region section in the planar three-body problem is performed. The initial conditions for the three well-known stable periodic orbits (the Schubart’s orbit, the Broucke’s orbit and the eight-like orbit) belong to this section. Continuous stability regions (for the fixed integration interval) generated by these periodic orbits are found. Zones of the quick stability violation are outlined. The analysis of some concrete trajectories coming from various stability regions is performed. In particular, trajectories possessing varying number of “eights” formed by moving triple system components are discovered. Orbits with librations are also found. The new periodic orbit originated from the zone siding with the Schubart’s orbit region is discovered. This orbit has reversibility points (each of the outer bodies possess a reversibility point) and two points of close double approach of the central body to each of the outer bodies. The influence of the numerical integration accuracy on the results is studied. The stability regions structure is preserved during calculations with different values of the precision parameter, numerical integration methods and regularization algorithms of the equations of motion.
NASA Astrophysics Data System (ADS)
Alterman, B. L.; Klein, K. G.; Verscharen, D.; Stevens, M. L.; Kasper, J. C.
2017-12-01
Long duration, in situ data sets enable large-scale statistical analysis of free-energy-driven instabilities in the solar wind. The plasma beta and temperature anisotropy plane provides a well-defined parameter space in which a single-fluid plasma's stability can be represented. Because this reduced parameter space can only represent instability thresholds due to the free energy of one ion species - typically the bulk protons - the true impact of instabilities on the solar wind is under estimated. Nyquist's instability criterion allows us to systematically account for other sources of free energy including beams, drifts, and additional temperature anisotropies. Utilizing over 20 years of Wind Faraday cup and magnetic field observations, we have resolved the bulk parameters for three ion populations: the bulk protons, beam protons, and alpha particles. Applying Nyquist's criterion, we calculate the number of linearly growing modes supported by each spectrum and provide a more nuanced consideration of solar wind stability. Using collisional age measurements, we predict the stability of the solar wind close to the sun. Accounting for the free-energy from the three most common ion populations in the solar wind, our approach provides a more complete characterization of solar wind stability.
A Wearable Body Controlling Device for Application of Functional Electrical Stimulation.
Taghavi, Nazita; Luecke, Greg R; Jeffery, Nicholas D
2018-04-18
In this research, we describe a new balancing device used to stabilize the rear quarters of a patient dog with spinal cord injuries. Our approach uses inertial measurement sensing and direct leg actuation to lay a foundation for eventual muscle control by means of direct functional electrical stimulation (FES). During this phase of development, we designed and built a mechanical test-bed to develop the control and stimulation algorithms before we use the device on our animal subjects. We designed the bionic test-bed to mimic the typical walking gait of a dog and use it to develop and test the functionality of the balancing device for stabilization of patient dogs with hindquarter paralysis. We present analysis for various muscle stimulation and balancing strategies, and our device can be used by veterinarians to tailor the stimulation strength and temporal distribution for any individual patient dog. We develop stabilizing muscle stimulation strategies using the robotic test-bed to enhance walking stability. We present experimental results using the bionic test-bed to demonstrate that the balancing device can provide an effective sensing strategy and deliver the required motion control commands for stabilizing an actual dog with a spinal cord injury.
NASA Astrophysics Data System (ADS)
Ben-Nissan, Gili; Chotiner, Almog; Tarnavsky, Mark; Sharon, Michal
2016-06-01
Missense mutations that lead to the expression of mutant proteins carrying single amino acid substitutions are the cause of numerous diseases. Unlike gene lesions, insertions, deletions, nonsense mutations, or modified RNA splicing, which affect the length of a polypeptide, or determine whether a polypeptide is translated at all, missense mutations exert more subtle effects on protein structure, which are often difficult to evaluate. Here, we took advantage of the spectral resolution afforded by the EMR Orbitrap platform, to generate a mass spectrometry-based approach relying on simultaneous measurements of the wild-type protein and the missense variants. This approach not only considerably shortens the analysis time due to the concurrent acquisition but, more importantly, enables direct comparisons between the wild-type protein and the variants, allowing identification of even subtle structural changes. We demonstrate our approach using the Parkinson's-associated protein, DJ-1. Together with the wild-type protein, we examined two missense mutants, DJ-1A104T and DJ-1D149A, which lead to early-onset familial Parkinson's disease. Gas-phase, thermal, and chemical stability assays indicate clear alterations in the conformational stability of the two mutants: the structural stability of DJ-1D149A is reduced, whereas that of DJ-1A104T is enhanced. Overall, we anticipate that the methodology presented here will be applicable to numerous other missense mutants, promoting the structural investigations of multiple variants of the same protein.
Attitude stability of a spinning spacecraft during appendage deployment/retraction
NASA Technical Reports Server (NTRS)
Fitz-Coy, Norman; Fullerton, Wayne
1994-01-01
The work presented is motivated by the need for a national satellite rescue policy, not the ad hoc policy now in place. In studying different approaches for a national policy, the issue of capture and stabilization of a tumbling spacecraft must be addressed. For a rescue mission involving a tumbling spacecraft, it may be advantageous to have a rescue vehicle which is compact and 'rigid' during the rendezvous/capture phase. After capture, passive stabilization techniques could be utilized as an efficient means of detumbling the resulting system (i.e., both the rescue vehicle and captures spacecraft). Since the rescue vehicle is initially compact and 'rigid,' significant passive stabilization through energy dissipation can only be achieved through the deployment of flexible appendages. Once stabilization is accomplished, retraction of the appendages before maneuvering the system to its final destination may also prove advantageous. It is therefore of paramount interest that we study the effect of appendage deployment/retraction on the attitude stability of a spacecraft. Particular interest should be paid to appendage retraction, since if this process is destabilizing, passive stabilization as proposed may not be useful. Over the past three decades, it has been an 'on-again-off-again affair' with the problem of spacecraft appendage deployment. In most instances, these studies have been numerical simulations of specific spacecraft configurations for which there were specific concerns. The primary focus of these studies was the behavior of the appendage during deployment; the effects of appendage retraction was considered only in one of these studies. What is missing in the literature is a thorough study of the effects of appendage deployment/retraction on the attitude stability of a spacecraft. This paper presents a rigorous analysis of the stability of a spinning spacecraft during the deployment or the retraction of an appendage. The analysis is simplified such that meaningful insights into the problem can be inferred; it is not overly simplified such that critical dynamical behavior is neglected. The system is analyzed assuming that the spacecraft hub is rigid. The appendage deployment mechanism is modeled as a point mass on a massless rod whose length undergoes prescribed changes. Simplified flexibility effects of the appendage are included. The system is examined for stability by linearizing the equations in terms of small deviations from steady, noninterfering coning motion. Routh's procedure for analyzing small deviations from steady motion in dynamical systems is utilized in the analysis. The system of equations are nondimensionalized to facilitate parametric studies. The results are presented in terms of a reduced number of nondimensional parameters so that some general conclusions may be drawn. Verification of the linear analysis is presented through numerical simulations of the complete nonlinear, nonautonomous, coupled equations.
NASA Astrophysics Data System (ADS)
Rohmer, Jeremy; Verdel, Thierry
2017-04-01
Uncertainty analysis is an unavoidable task of stability analysis of any geotechnical systems. Such analysis usually relies on the safety factor SF (if SF is below some specified threshold), the failure is possible). The objective of the stability analysis is then to estimate the failure probability P for SF to be below the specified threshold. When dealing with uncertainties, two facets should be considered as outlined by several authors in the domain of geotechnics, namely "aleatoric uncertainty" (also named "randomness" or "intrinsic variability") and "epistemic uncertainty" (i.e. when facing "vague, incomplete or imprecise information" such as limited databases and observations or "imperfect" modelling). The benefits of separating both facets of uncertainty can be seen from a risk management perspective because: - Aleatoric uncertainty, being a property of the system under study, cannot be reduced. However, practical actions can be taken to circumvent the potentially dangerous effects of such variability; - Epistemic uncertainty, being due to the incomplete/imprecise nature of available information, can be reduced by e.g., increasing the number of tests (lab or in site survey), improving the measurement methods or evaluating calculation procedure with model tests, confronting more information sources (expert opinions, data from literature, etc.). Uncertainty treatment in stability analysis usually restricts to the probabilistic framework to represent both facets of uncertainty. Yet, in the domain of geo-hazard assessments (like landslides, mine pillar collapse, rockfalls, etc.), the validity of this approach can be debatable. In the present communication, we propose to review the major criticisms available in the literature against the systematic use of probability in situations of high degree of uncertainty. On this basis, the feasibility of using a more flexible uncertainty representation tool is then investigated, namely Possibility distributions (e.g., Baudrit et al., 2007) for geo-hazard assessments. A graphical tool is then developed to explore: 1. the contribution of both types of uncertainty, aleatoric and epistemic; 2. the regions of the imprecise or random parameters which contribute the most to the imprecision on the failure probability P. The method is applied on two case studies (a mine pillar and a steep slope stability analysis, Rohmer and Verdel, 2014) to investigate the necessity for extra data acquisition on parameters whose imprecision can hardly be modelled by probabilities due to the scarcity of the available information (respectively the extraction ratio and the cliff geometry). References Baudrit, C., Couso, I., & Dubois, D. (2007). Joint propagation of probability and possibility in risk analysis: Towards a formal framework. International Journal of Approximate Reasoning, 45(1), 82-105. Rohmer, J., & Verdel, T. (2014). Joint exploration of regional importance of possibilistic and probabilistic uncertainty in stability analysis. Computers and Geotechnics, 61, 308-315.
Nagasundaram, N; Priya Doss, C George
2011-01-01
Distinguishing the deleterious from the massive number of non-functional nsSNPs that occur within a single genome is a considerable challenge in mutation research. In this approach, we have used the existing in silico methods to explore the mutation-structure-function relationship in the XPAgene. We used the Sorting Intolerant From Tolerant (SIFT), Polymorphism Phenotyping (PolyPhen), I-Mutant 2.0, and the Protein Analysis THrough Evolutionary Relationships methods to predict the effects of deleterious nsSNPs on protein function and evaluated the impact of mutation on protein stability by Molecular Dynamics simulations. By comparing the scores of all the four in silico methods, nsSNP with an ID rs104894131 at position C108F was predicted to be highly deleterious. We extended our Molecular dynamics approach to gain insight into the impact of this non-synonymous polymorphism on structural changes that may affect the activity of the XPAgene. Based on the in silico methods score, potential energy, root-mean-square deviation, and root-mean-square fluctuation, we predict that deleterious nsSNP at position C108F would play a significant role in causing disease by the XPA gene. Our approach would present the application of in silicotools in understanding the functional variation from the perspective of structure, evolution, and phenotype.
NASA Astrophysics Data System (ADS)
Zhang, Wei-Ya; Li, Yong-Li; Chang, Xiao-Yong; Wang, Nan
2013-09-01
In this paper, the dynamic behavior analysis of the electromechanical coupling characteristics of a flywheel energy storage system (FESS) with a permanent magnet (PM) brushless direct-current (DC) motor (BLDCM) is studied. The Hopf bifurcation theory and nonlinear methods are used to investigate the generation process and mechanism of the coupled dynamic behavior for the average current controlled FESS in the charging mode. First, the universal nonlinear dynamic model of the FESS based on the BLDCM is derived. Then, for a 0.01 kWh/1.6 kW FESS platform in the Key Laboratory of the Smart Grid at Tianjin University, the phase trajectory of the FESS from a stable state towards chaos is presented using numerical and stroboscopic methods, and all dynamic behaviors of the system in this process are captured. The characteristics of the low-frequency oscillation and the mechanism of the Hopf bifurcation are investigated based on the Routh stability criterion and nonlinear dynamic theory. It is shown that the Hopf bifurcation is directly due to the loss of control over the inductor current, which is caused by the system control parameters exceeding certain ranges. This coupling nonlinear process of the FESS affects the stability of the motor running and the efficiency of energy transfer. In this paper, we investigate into the effects of control parameter change on the stability and the stability regions of these parameters based on the averaged-model approach. Furthermore, the effect of the quantization error in the digital control system is considered to modify the stability regions of the control parameters. Finally, these theoretical results are verified through platform experiments.
The role of atmospheric stability/turbulence on wakes at the Egmond aan Zee offshore wind farm
NASA Astrophysics Data System (ADS)
Barthelmie, R. J.; Churchfield, M. J.; Moriarty, P. J.; Lundquist, J. K.; Oxley, G. S.; Hahn, S.; Pryor, S. C.
2015-06-01
The aim of the paper is to present results from the NREL SOWFA project that compares simulations from models of different fidelity to meteorological and turbine data from the Egmond aan Zee wind farm. Initial results illustrate that wake behavior and impacts are strongly impacted by turbulence intensity [1]. This includes both power losses from wakes and loading illustrated by the out of plane bending moment. Here we focus on understanding the relationship between turbulence and atmospheric stability and whether power losses due to wakes can effectively be characterized by measures of turbulence alone or whether atmospheric stability as a whole plays a fundamental role in wake behavior. The study defines atmospheric stability using the Monin-Obukhov length estimated based on the temperature difference between 116 and 70 m. The data subset selected using this method for the calculation of the Monin-Obukhov length indicate little diurnal or directional dependence of the stability classes but a dominance of stable classes in the spring/unstable classes in fall and of near-neutral classes at high wind speeds (Figure 2). The analysis is complicated by the need to define turbulence intensity. We can select the ratio of the standard deviation of wind speed to mean wind speed in each observation period using data from the meteorological mast, in which case a substantial amount of data must be excluded due to the presence of the wind farm. An alternative is to use data from the wind turbines which could provide a larger data set for analysis. These approaches are examined and compared to illustrate their robustness. Finally, power losses from wakes are categorized according to stability and/or turbulence in order to understand their relative importance in determining the behavior of wind turbine wakes.
The role of atmospheric stability/turbulence on wakes at the Egmond aan Zee offshore wind farm
Barthelmie, R. J.; Churchfield, Matthew J.; Moriarty, Patrick J.; ...
2015-06-18
Here, the aim of the paper is to present results from the NREL SOWFA project that compares simulations from models of different fidelity to meteorological and turbine data from the Egmond aan Zee wind farm. Initial results illustrate that wake behavior and impacts are strongly impacted by turbulence intensity. This includes both power losses from wakes and loading illustrated by the out of plane bending moment. Here we focus on understanding the relationship between turbulence and atmospheric stability and whether power losses due to wakes can effectively be characterized by measures of turbulence alone or whether atmospheric stability as amore » whole plays a fundamental role in wake behavior. The study defines atmospheric stability using the Monin-Obukhov length estimated based on the temperature difference between 116 and 70 m. The data subset selected using this method for the calculation of the Monin-Obukhov length indicate little diurnal or directional dependence of the stability classes but a dominance of stable classes in the spring/unstable classes in fall and of near-neutral classes at high wind speeds. The analysis is complicated by the need to define turbulence intensity. We can select the ratio of the standard deviation of wind speed to mean wind speed in each observation period using data from the meteorological mast, in which case a substantial amount of data must be excluded due to the presence of the wind farm. An alternative is to use data from the wind turbines which could provide a larger data set for analysis. These approaches are examined and compared to illustrate their robustness. Finally, power losses from wakes are categorized according to stability and/or turbulence in order to understand their relative importance in determining the behavior of wind turbine wakes.« less
NASA Astrophysics Data System (ADS)
Hedman, Mojdeh Khorsand
After a major disturbance, the power system response is highly dependent on protection schemes and system dynamics. Improving power systems situational awareness requires proper and simultaneous modeling of both protection schemes and dynamic characteristics in power systems analysis tools. Historical information and ex-post analysis of blackouts reaffirm the critical role of protective devices in cascading events, thereby confirming the necessity to represent protective functions in transient stability studies. This dissertation is aimed at studying the importance of representing protective relays in power system dynamic studies. Although modeling all of the protective relays within transient stability studies may result in a better estimation of system behavior, representing, updating, and maintaining the protection system data becomes an insurmountable task. Inappropriate or outdated representation of the relays may result in incorrect assessment of the system behavior. This dissertation presents a systematic method to determine essential relays to be modeled in transient stability studies. The desired approach should identify protective relays that are critical for various operating conditions and contingencies. The results of the transient stability studies confirm that modeling only the identified critical protective relays is sufficient to capture system behavior for various operating conditions and precludes the need to model all of the protective relays. Moreover, this dissertation proposes a method that can be implemented to determine the appropriate location of out-of-step blocking relays. During unstable power swings, a generator or group of generators may accelerate or decelerate leading to voltage depression at the electrical center along with generator tripping. This voltage depression may cause protective relay mis-operation and unintentional separation of the system. In order to avoid unintentional islanding, the potentially mis-operating relays should be blocked from tripping with the use of out-of-step blocking schemes. Blocking these mis-operating relays, combined with an appropriate islanding scheme, help avoid a system wide collapse. The proposed method is tested on data from the Western Electricity Coordinating Council. A triple line outage of the California-Oregon Intertie is studied. The results show that the proposed method is able to successfully identify proper locations of out-of-step blocking scheme.
Expanding Panjabi's stability model to express movement: a theoretical model.
Hoffman, J; Gabel, P
2013-06-01
Novel theoretical models of movement have historically inspired the creation of new methods for the application of human movement. The landmark theoretical model of spinal stability by Panjabi in 1992 led to the creation of an exercise approach to spinal stability. This approach however was later challenged, most significantly due to a lack of favourable clinical effect. The concepts explored in this paper address and consider the deficiencies of Panjabi's model then propose an evolution and expansion from a special model of stability to a general one of movement. It is proposed that two body-wide symbiotic elements are present within all movement systems, stability and mobility. The justification for this is derived from the observable clinical environment. It is clinically recognised that these two elements are present and identifiable throughout the body in different joints and muscles, and the neural conduction system. In order to generalise the Panjabi model of stability to include and illustrate movement, a matching parallel mobility system with the same subsystems was conceptually created. In this expanded theoretical model, the new mobility system is placed beside the existing stability system and subsystems. The ability of both stability and mobility systems to work in harmony will subsequently determine the quality of movement. Conversely, malfunction of either system, or their subsystems, will deleteriously affect all other subsystems and consequently overall movement quality. For this reason, in the rehabilitation exercise environment, focus should be placed on the simultaneous involvement of both the stability and mobility systems. It is suggested that the individual's relevant functional harmonious movements should be challenged at the highest possible level without pain or discomfort. It is anticipated that this conceptual expansion of the theoretical model of stability to one with the symbiotic inclusion of mobility, will provide new understandings on human movement. The use of this model may provide a universal system for body movement analysis and understanding musculoskeletal disorders. In turn, this may lead to a simple categorisation system alluding to the functional face-value of a wide range of commonly used passive, active or combined musculoskeletal interventions. Further research is required to investigate the mechanisms that enable or interfere with harmonious body movements. Such work may then potentially lead to new and evolved evidence based interventions. Copyright © 2013 Elsevier Ltd. All rights reserved.
The application of encapsulation material stability data to photovoltaic module life assessment
NASA Technical Reports Server (NTRS)
Coulbert, C. D.
1983-01-01
For any piece of hardware that degrades when subject to environmental and application stresses, the route or sequence that describes the degradation process may be summarized in terms of six key words: LOADS, RESPONSE, CHANGE, DAMAGE, FAILURE, and PENALTY. Applied to photovoltaic modules, these six factors form the core outline of an expanded failure analysis matrix for unifying and integrating relevant material degradation data and analyses. An important feature of this approach is the deliberate differentiation between factors such as CHANGE, DAMAGE, and FAILURE. The application of this outline to materials degradation research facilitates the distinction between quantifying material property changes and quantifying module damage or power loss with their economic consequences. The approach recommended for relating material stability data to photovoltaic module life is to use the degree of DAMAGE to (1) optical coupling, (2) encapsulant package integrity, (3) PV circuit integrity or (4) electrical isolation as the quantitative criterion for assessing module potential service life rather than simply using module power loss.
Frequency Response Studies using Receptance Coupling Approach in High Speed Spindles
NASA Astrophysics Data System (ADS)
Shaik, Jakeer Hussain; Ramakotaiah, K.; Srinivas, J.
2018-01-01
In order to assess the stability of high speed machining, estimate the frequency response at the end of tool tip is of great importance. Evaluating dynamic response of several combinations of integrated spindle-tool holder-tool will consume a lot of time. This paper presents coupled field dynamic response at tool tip for the entire integrated spindle tool unit. The spindle unit is assumed to be relying over the front and rear bearings and investigated using the Timoshenko beam theory to arrive the receptances at different locations of the spindle-tool unit. The responses are further validated with conventional finite element model as well as with the experiments. This approach permits quick outputs without losing accuracy of solution and further these methods are utilized to analyze the various design variables on system dynamics. The results obtained through this analysis are needed to design the better spindle unit in an attempt to reduce the frequency amplitudes at the tool tip to improvise the milling stability during cutting process.
Administrative and policy issues in reimbursement for nursing home capital investment.
Boerstler, H; Carlough, T; Schlenker, R E
1991-01-01
The way in which states reimburse for nursing home capital costs can create incentives for nursing home owners to use the home primarily as a vehicle for real estate speculation, with potentially adverse consequences for patient care. In order to help promote and control the stability, adequacy, and quality of capital investment in long-term care, an increasing number of states are using a fair-rental approach for calculating capital reimbursement. In this article we compare the fair-rental approach with traditional cost-based capital reimbursement in terms of administration and policy. We discuss issues of concern to the state (cost and reimbursement design options) and the investor (after-tax cash flows, rate of return, etc.). Our analysis suggests that fair-rental systems may be superior to traditional cost-based reimbursement in promoting and controlling industry stability, while at the same time providing an adequate return to investors, without incurring long-term increases in the costs of administering programs.
Collision of large dust particles with Suisei spacecraft
NASA Astrophysics Data System (ADS)
Uesugi, K.
1986-12-01
The spacecraft Suisei encountered Halley's comet at 13:05:49 UT on March 8, 1986. The closest approach distance to the comet was 151,000 km and during the time of closest approach, Suisei was hit twice by dust particles which were believed to come from the comet nucleus. Although Suisei has no dust counter or detector, the mass of these particles can be estimated by the analysis of attitude change of the spin-stabilized spacecraft perturbed by the collisions. The result shows that the minimum weight of the first particle should be several milligram and second one was several ten micrograms.
NASA Astrophysics Data System (ADS)
Datsyuk, Vitaliy; Trotsenko, Svitlana; Reich, Stephanie
2018-01-01
A sustainable approach to graphite exfoliation via in situ thermal polymerization of fish oil results in the production of nanographite particles. The material was characterized by elemental analysis, transmission electron microscopy, and Raman spectroscopy. The thermal polymerization of fish oil was controlled by monitoring the viscosity and measuring the iodine number. The number of structural defects on the graphitic surface remained constant during the synthesis. The protocol leads to a hydrophobization of the nanographite surface. Immobilized polyoil islands create sterical hindrance and stabilize the nanographite particles in engineering polymers.
Covariate-free and Covariate-dependent Reliability.
Bentler, Peter M
2016-12-01
Classical test theory reliability coefficients are said to be population specific. Reliability generalization, a meta-analysis method, is the main procedure for evaluating the stability of reliability coefficients across populations. A new approach is developed to evaluate the degree of invariance of reliability coefficients to population characteristics. Factor or common variance of a reliability measure is partitioned into parts that are, and are not, influenced by control variables, resulting in a partition of reliability into a covariate-dependent and a covariate-free part. The approach can be implemented in a single sample and can be applied to a variety of reliability coefficients.
Lu, Haigang; Dai, Dadi; Yang, Pin; Li, Lemin
2006-01-21
An approach of atomic orbitals in molecules (AOIM) has been developed to study the atomic properties in molecules, in which the molecular orbitals are expressed in terms of the optimized minimal atomic orbitals. The atomic electronegativities are calculated using Pauling's electronegativity of free atom and are employed to find the electronegativity equilibrium in molecules and to describe the amphoteric properties of the transition metals from the groups 4 to 10. AOIM can also improve the numerical stability and accuracy of the original Mulliken population analysis.
NASA Astrophysics Data System (ADS)
Yoo, Yeon-Jong
The purpose of this study is to investigate the performance and stability of the gas-injection enhanced natural circulation in heavy-liquid-metal-cooled systems. The target system is STAR-LM, which is a 400-MWt-class advanced lead-cooled fast reactor under development by Argonne National Laboratory and Oregon State University. The primary loop of STAR-LM relies on natural circulation to eliminate main circulation pumps for enhancement of passive safety. To significantly increase the natural circulation flow rate for the incorporation of potential future power uprates, the injection of noncondensable gas into the coolant above the core is envisioned ("gas lift pump"). Reliance upon gas-injection enhanced natural circulation raises the concern of flow instability due to the relatively high temperature change in the reactor core and the two-phase flow condition in the riser. For this study, the one-dimensional flow field equations were applied to each flow section and the mixture models of two-phase flow, i.e., both the homogeneous and drift-flux equilibrium models were used in the two-phase region of the riser. For the stability analysis, the linear perturbation technique based on the frequency-domain approach was used by employing the Nyquist stability criterion and a numerical root search method. It has been shown that the thermal power of the STAR-LM natural circulation system could be increased from 400 up to 1152 MW with gas injection under the limiting void fraction of 0.30 and limiting coolant velocity of 2.0 m/s from the steady-state performance analysis. As the result of the linear stability analysis, it has turned out that the STAR-LM natural circulation system would be stable even with gas injection. In addition, through the parametric study, it has been found that the thermal inertia effects of solid structures such as fuel rod and heat exchanger tube should be considered in the stability analysis model. The results of this study will be a part of the optimized stable design of the gas-injection enhanced natural circulation of STAR-LM with substantially improved power level and economical competitiveness. Furthermore, combined with the parametric study, this research could contribute a guideline for the design of other similar heavy-liquid-metal-cooled natural circulation systems with gas injection.
Establishment of subgrade undercut criteria and performance of alternative stabilization measures.
DOT National Transportation Integrated Search
2010-08-25
The main objectives of the research work were to develop a systematic approach for determining whether or not undercut is : necessary, and to investigate the adequacy of stabilization measures as implemented in conjunction with the undercut approach....
Aneurysmal bone cyst of C2 treated with novel anterior reconstruction and stabilization.
Rajasekaran, S; Aiyer, Siddharth N; Shetty, Ajoy Prasad; Kanna, Rishi; Maheswaran, Anupama
2016-03-23
Aneurysmal bone cysts (ABC) form 1 % of primary bone tumors. Reported incidence rates are no more than 1.4 to 1,00,000. ABC of spine frequently involves posterior elements and commonly affects the lumbar spine (45 %). We present a case of C2 ABC for the challenges it poses due to the rarity of the lesion, tedious to access location, dilemmas relating to the suitable approach for tumor resection and technically demanding stabilization and reconstruction strategy post resection. Clinical data analysis was performed to discuss a method of novel anterior column reconstruction following resection of a C2 aneurysmal bone cyst in a 8 year old child with anterior and posterior elements being involved. An 8-year-old girl with an aneurysmal bone cyst of the C2 vertebra underwent staged surgery following pre-operative embolisation. First a posterior approach tumor excision with posterior instrumented fusion was performed. Following which, using a modified anterior retropharyngeal approach anterior tumor excision and fibular graft reconstruction between the C1 lateral mass and C2 body was performed. Complete tumor clearance and stable reconstruction was successfully achieved in our patient. Patient showed excellent clinical outcome with radiological fusion. Preoperative embolisation in the treatment of ABC has supplemental advantage by reducing blood loss. Modified anterior retropharyngeal approach allows satisfactory clearance for C1-2 lesion and fibular strut graft between the C1 lateral mass and C2 body can provide a stable graft placement with good chance of fusion. Instability and spinal deformity, whether preexisting or post-excision, should be corrected with reconstruction and stabilization to offer best chance of cure in such cases.
Holmes, E A; Bonsall, M B; Hales, S A; Mitchell, H; Renner, F; Blackwell, S E; Watson, P; Goodwin, G M; Di Simplicio, M
2016-01-26
Treatment innovation for bipolar disorder has been hampered by a lack of techniques to capture a hallmark symptom: ongoing mood instability. Mood swings persist during remission from acute mood episodes and impair daily functioning. The last significant treatment advance remains Lithium (in the 1970s), which aids only the minority of patients. There is no accepted way to establish proof of concept for a new mood-stabilizing treatment. We suggest that combining insights from mood measurement with applied mathematics may provide a step change: repeated daily mood measurement (depression) over a short time frame (1 month) can create individual bipolar mood instability profiles. A time-series approach allows comparison of mood instability pre- and post-treatment. We test a new imagery-focused cognitive therapy treatment approach (MAPP; Mood Action Psychology Programme) targeting a driver of mood instability, and apply these measurement methods in a non-concurrent multiple baseline design case series of 14 patients with bipolar disorder. Weekly mood monitoring and treatment target data improved for the whole sample combined. Time-series analyses of daily mood data, sampled remotely (mobile phone/Internet) for 28 days pre- and post-treatment, demonstrated improvements in individuals' mood stability for 11 of 14 patients. Thus the findings offer preliminary support for a new imagery-focused treatment approach. They also indicate a step in treatment innovation without the requirement for trials in illness episodes or relapse prevention. Importantly, daily measurement offers a description of mood instability at the individual patient level in a clinically meaningful time frame. This costly, chronic and disabling mental illness demands innovation in both treatment approaches (whether pharmacological or psychological) and measurement tool: this work indicates that daily measurements can be used to detect improvement in individual mood stability for treatment innovation (MAPP).
Zhang, Zhe; Martiny, Virginie; Lagorce, David; Ikeguchi, Yoshihiko; Alexov, Emil; Miteva, Maria A
2014-01-01
Snyder-Robinson Syndrome (SRS) is a rare mental retardation disorder which is caused by the malfunctioning of an enzyme, the spermine synthase (SMS), which functions as a homo-dimer. The malfunctioning of SMS in SRS patients is associated with several identified missense mutations that occur away from the active site. This investigation deals with a particular SRS-causing mutation, the G56S mutation, which was shown computationally and experimentally to destabilize the SMS homo-dimer and thus to abolish SMS enzymatic activity. As a proof-of-concept, we explore the possibility to restore the enzymatic activity of the malfunctioning SMS mutant G56S by stabilizing the dimer through small molecule binding at the mutant homo-dimer interface. For this purpose, we designed an in silico protocol that couples virtual screening and a free binding energy-based approach to identify potential small-molecule binders on the destabilized G56S dimer, with the goal to stabilize it and thus to increase SMS G56S mutant activity. The protocol resulted in extensive list of plausible stabilizers, among which we selected and tested 51 compounds experimentally for their capability to increase SMS G56S mutant enzymatic activity. In silico analysis of the experimentally identified stabilizers suggested five distinctive chemical scaffolds. This investigation suggests that druggable pockets exist in the vicinity of the mutation sites at protein-protein interfaces which can be used to alter the disease-causing effects by small molecule binding. The identified chemical scaffolds are drug-like and can serve as original starting points for development of lead molecules to further rescue the disease-causing effects of the Snyder-Robinson syndrome for which no efficient treatment exists up to now.
The effect of a shear boundary layer on the stability of a capillary jet
NASA Astrophysics Data System (ADS)
Ganan-Calvo, Alfonso; Montanero, Jose M.; Herrada, Miguel A.
2014-11-01
The generic stabilization effect of a shear boundary layer over the free surface of a capillary jet is here studied from analytical (asymptotic), numerical and experimental approaches. In first place, we show the consistency of the proposed asymptotic analysis by a linear stability (numerical) analysis of the Navier-Stokes equations for a finite boundary layer thickness. We show how the convective-to-absolute instability transition departs drastically from the flat velocity profile case as the axial coordinate becomes closer to the origin of the boundary layer development. For large enough axial distances from that origin, Rayleigh's dispersion relation is recovered. A collection of experimental observations is analyzed from the perspective provided by these results. We propose a systematic framework to the dynamics of capillary jets issued from a nozzle, either by direct injection into a quiescent atmosphere or in a co-flow (e.g. gas flow-focused jets), which exhibit peculiarities now definitely attributable in first order to the formation of shear boundary layers. Partial support from the Ministry of Economy and Competitiveness, Junta de Extremadura, and Junta de Andalucia (Spain) through Grant Nos. DPI2010-21103, GR10047, P08-TEP-04128, and TEP-7465, respectively, is gratefully acknowledged.
Yang, Baohui; Lu, Teng
2017-01-01
For patients with AS and lower cervical spine fractures, surgical methods have mainly included the single anterior approach, single posterior approach, and combined anterior-posterior approach. However, various surgical procedures were utilized because the fractures have not been clearly classified according to presence of displacement in these previous studies. Consequently, controversies have been raised regarding the selection of the surgical procedure. This study retrospective analysis was conducted in 12 patients with AS and lower cervical spine fractures and dislocations and explored single-session combined anterior-posterior approach for the treatment of AS with obvious displaced lower cervical spine fractures and dislocations which has demonstrated advantages such as good stabilization, satisfied fracture healing, and easy postoperative cares. However, to some extent, the difficulty and risk of this approach should be considered. Attention should be paid to the prevention of perioperative complications. PMID:28133616
Optimization of wastewater treatment alternative selection by hierarchy grey relational analysis.
Zeng, Guangming; Jiang, Ru; Huang, Guohe; Xu, Min; Li, Jianbing
2007-01-01
This paper describes an innovative systematic approach, namely hierarchy grey relational analysis for optimal selection of wastewater treatment alternatives, based on the application of analytic hierarchy process (AHP) and grey relational analysis (GRA). It can be applied for complicated multicriteria decision-making to obtain scientific and reasonable results. The effectiveness of this approach was verified through a real case study. Four wastewater treatment alternatives (A(2)/O, triple oxidation ditch, anaerobic single oxidation ditch and SBR) were evaluated and compared against multiple economic, technical and administrative performance criteria, including capital cost, operation and maintenance (O and M) cost, land area, removal of nitrogenous and phosphorous pollutants, sludge disposal effect, stability of plant operation, maturity of technology and professional skills required for O and M. The result illustrated that the anaerobic single oxidation ditch was the optimal scheme and would obtain the maximum general benefits for the wastewater treatment plant to be constructed.
Krishnamoorthy, Ganesan; Ramamurthy, Govindaswamy; Sadulla, Sayeed; Sastry, Thotapalli Parvathaleswara; Mandal, Asit Baran
2014-09-01
Click chemistry approaches are tailored to generate molecular building blocks quickly and reliably by joining small units together selectively and covalently, stably and irreversibly. The vegetable tannins such as hydrolyzable and condensed tannins are capable to produce rather stable radicals or inhibit the progress of radicals and are prone to oxidations such as photo and auto-oxidation, and their anti-oxidant nature is well known. A lot remains to be done to understand the extent of the variation of leather stability, color variation (lightening and darkening reaction of leather), and poor resistance to water uptake for prolonged periods. In the present study, we have reported click chemistry approaches to accelerated vegetable tanning processes based on periodates catalyzed formation of oxidized hydrolysable and condensed tannins for high exhaustion with improved properties. The distribution of oxidized vegetable tannin, the thermal stability such as shrinkage temperature (T s) and denaturation temperature (T d), resistance to collagenolytic activities, and organoleptic properties of tanned leather as well as the evaluations of eco-friendly characteristics were investigated. Scanning electron microscopic analysis indicates the cross section of tightness of the leather. Differential scanning calorimetric analysis shows that the T d of leather is more than that of vegetable tanned or equal to aldehyde tanned one. The leathers exhibited fullness, softness, good color, and general appearance when compared to non-oxidized vegetable tannin. The developed process benefits from significant reduction in total solids and better biodegradability in the effluent, compared to non-oxidized vegetable tannins.
Qi, Sheng; McAuley, William J; Yang, Ziyi; Tipduangta, Pratchaya
2014-07-01
Use of the amorphous state is considered to be one of the most effective approaches for improving the dissolution and subsequent oral bioavailability of poorly water-soluble drugs. However as the amorphous state has much higher physical instability in comparison with its crystalline counterpart, stabilization of amorphous drugs in a solid-dosage form presents a major challenge to formulators. The currently used approaches for stabilizing amorphous drug are discussed in this article with respect to their preparation, mechanism of stabilization and limitations. In order to realize the potential of amorphous formulations, significant efforts are required to enable the prediction of formulation performance. This will facilitate the development of computational tools that can inform a rapid and rational formulation development process for amorphous drugs.
Liu, Ya; Wang, Zhenhong
2014-05-01
In most prior research, positive affect has been consistently found to promote cognitive flexibility. However, the motivational dimensional model of affect assumes that the influence of positive affect on cognitive processes is modulated by approach-motivation intensity. In the present study, we extended the motivational dimensional model to the domain of cognitive control by examining the effect of low- versus high-approach-motivated positive affect on the balance between cognitive flexibility and stability in an attentional-set-shifting paradigm. Results showed that low-approach-motivated positive affect promoted cognitive flexibility but also caused higher distractibility, whereas high-approach-motivated positive affect enhanced perseverance but simultaneously reduced distractibility. These results suggest that the balance between cognitive flexibility and stability is modulated by the approach-motivation intensity of positive affective states. Therefore, it is essential to incorporate motivational intensity into studies on the influence of affect on cognitive control.
NASA Astrophysics Data System (ADS)
Dondin, F. J.-Y.; Heap, M. J.; Robertson, R. E. A.; Dorville, J.-F. M.; Carey, S.
2017-01-01
Kick-'em-Jenny (KeJ)—located ca. 8 km north of the island of Grenada—is the only active submarine volcano of the Lesser Antilles Volcanic Arc. Previous investigations of KeJ revealed that it lies within a collapse scar inherited from a past flank instability episode. To assess the likelihood of future collapse, we employ here a combined laboratory and modeling approach. Lavas collected using a remotely operated vehicle (ROV) provided samples to perform the first rock physical property measurements for the materials comprising the KeJ edifice. Uniaxial and triaxial deformation experiments showed that the dominant failure mode within the edifice host rock is brittle. Edifice fractures (such as those at Champagne Vent) will therefore assist the outgassing of the nearby magma-filled conduit, favoring effusive behavior. These laboratory data were then used as input parameters in models of slope stability. First, relative slope stability analysis revealed that the SW to N sector of the volcano displays a deficit of mass/volume with respect to a volcanoid (ideal 3D surface). Slope stability analysis using a limit equilibrium method (LEM) showed that KeJ is currently stable, since all values of stability factor or factor of safety (Fs) are greater than unity. The lowest values of Fs were found for the SW-NW sector of the volcano (the sector displaying a mass/volume deficit). Although currently stable, KeJ may become unstable in the future. Instability (severe reductions in Fs) could result, for example, from overpressurization due to the growth of a cryptodome. Our modeling has shown that instability-induced flank collapse will most likely initiate from the SW-NW sector of KeJ, therefore mobilizing a volume of at least ca. 0.7 km3. The mobilization of ca. 0.7 km3 of material is certainly capable of generating a tsunami that poses a significant hazard to the southern islands of the West Indies.
Thermal stability and degradation kinetics of kenaf/sol-gel silica hybrid
NASA Astrophysics Data System (ADS)
Yusof, F. A. M.; Hashim, A. S.; Tajudin, Z.
2017-12-01
Thermal stability and degradation kinetics of kenaf/sol-gel silica hybrid materials was investigated by thermogravimetric analysis (TGA). Model-free iso-conversion Flynn-Wall-Ozawa (FWO) and Coats-Redfern-modified (CRm) were chosen to evaluate the activation energy of the kenaf (KF) and kenaf/sol-gel silica (KFS) at heating rates (β) of 10, 20, 30 and 40 °C/min. The results shows that an apparent activation energy was increased for the kenaf/sol-gel silica hybrid (211.59 kJ/mol for FWO and 191.55 kJ/mol for CRm) as compared to kenaf fiber (202.84 kJ/mol for FWO and 186.20 kJ/mol for CRm). Other parameters such as integral procedure decomposition temperature (IPDT), final residual weight (Rf), temperature of maximum degradation rate (Tmax) and residual at maximum temperature (RTmax) were obtained from TGA curves, additionally confirmed the thermal stability of the kenaf/sol-gel silica hybrid. These activation energy values and other findings developed the simplified approach in order to understand the thermal stability and degradation kinetics behavior of kenaf/sol-gel silica hybrid materials.
Instability of cooperative adaptive cruise control traffic flow: A macroscopic approach
NASA Astrophysics Data System (ADS)
Ngoduy, D.
2013-10-01
This paper proposes a macroscopic model to describe the operations of cooperative adaptive cruise control (CACC) traffic flow, which is an extension of adaptive cruise control (ACC) traffic flow. In CACC traffic flow a vehicle can exchange information with many preceding vehicles through wireless communication. Due to such communication the CACC vehicle can follow its leader at a closer distance than the ACC vehicle. The stability diagrams are constructed from the developed model based on the linear and nonlinear stability method for a certain model parameter set. It is found analytically that CACC vehicles enhance the stabilization of traffic flow with respect to both small and large perturbations compared to ACC vehicles. Numerical simulation is carried out to support our analytical findings. Based on the nonlinear stability analysis, we will show analytically and numerically that the CACC system better improves the dynamic equilibrium capacity over the ACC system. We have argued that in parallel to microscopic models for CACC traffic flow, the newly developed macroscopic will provide a complete insight into the dynamics of intelligent traffic flow.
A generalized energy principle for a magnetorotational instability model
NASA Astrophysics Data System (ADS)
Tassi, Emanuele; Morrison, Phil; Tronko, Natalia
2012-03-01
We study the equilibria of the Magnetorotational Instability system by using the noncanonical Hamiltonian approach [1], since it provides variational principles for equilibria that can be used to assess stability. We show that a reduced system of equations derived in [2] is an infinite-dimensional noncanonical Hamiltonian system. The noncanonical Poisson bracket is identified and shown to obey the Jacobi identity, and families of Casimir invariants are obtained. Explicit sufficient conditions for the energy stability of two classes of equilibria are identified by means of the Energy-Casimir method. Comparison between the stability conditions obtained in the two cases indicates that the presence of an equilibirum magnetic field along the direction of the ignorable coordinate does not introduce destabilizing effects. An analogy is found and physically interpreted between terms of the MRI perturbation energy and terms appearing in the energy principle stability analysis of CRMHD for tokamaks [3].[4pt] [1] P. J. Morrison, Rev. Mod. Phys., 70, 467 (1998).[0pt] [2] K. Julien and E. Knobloch, Phil. Trans. Roy. Soc., 386A,1607 (2010).[0pt] [3] R.D. Hazeltine, et. al, Phys. Fluids 28, 2466 (1985).
Origin of Shear Stability and Compressive Ductility Enhancement of Metallic Glasses by Metal Coating
Sun, B. A.; Chen, S. H.; Lu, Y. M.; Zhu, Z. G.; Zhao, Y. L.; Yang, Y.; Chan, K. C.; Liu, C. T.
2016-01-01
Metallic glasses (MGs) are notorious for the poor macroscopic ductility and to overcome the weakness various intrinsic and extrinsic strategies have been proposed in past decades. Among them, the metal coating is regarded as a flexible and facile approach, yet the physical origin is poorly understood due to the complex nature of shear banding process. Here, we studied the origin of ductile enhancement in the Cu-coating both experimentally and theoretically. By examining serrated shear events and their stability of MGs, we revealed that the thin coating layer plays a key role in stopping the final catastrophic failure of MGs by slowing down shear band dynamics and thus retarding its attainment to a critical instable state. The mechanical analysis on interplay between the coating layer and shear banding process showed the enhanced shear stability mainly comes from the lateral tension of coating layer induced by the surface shear step and the bonding between the coating layer and MGs rather than the layer thickness is found to play a key role in contributing to the shear stability. PMID:27271435
Long-Term Stability of Radio Sources in VLBI Analysis
NASA Technical Reports Server (NTRS)
Engelhardt, Gerald; Thorandt, Volkmar
2010-01-01
Positional stability of radio sources is an important requirement for modeling of only one source position for the complete length of VLBI data of presently more than 20 years. The stability of radio sources can be verified by analyzing time series of radio source coordinates. One approach is a statistical test for normal distribution of residuals to the weighted mean for each radio source component of the time series. Systematic phenomena in the time series can thus be detected. Nevertheless, an inspection of rate estimation and weighted root-mean-square (WRMS) variations about the mean is also necessary. On the basis of the time series computed by the BKG group in the frame of the ICRF2 working group, 226 stable radio sources with an axis stability of 10 as could be identified. They include 100 ICRF2 axes-defining sources which are determined independently of the method applied in the ICRF2 working group. 29 stable radio sources with a source structure index of less than 3.0 can also be used to increase the number of 295 ICRF2 defining sources.
Gaines, T L; Rudolph, A E; Brouwer, K C; Strathdee, S A; Lozada, R; Martinez, G; Goldenberg, S M; Rusch, M L A
2014-01-01
Summary We examined the relationship between venue stability and consistent condom use (CCU) among female sex workers who inject drugs (FSW-IDUs; n = 584) and were enrolled in a behavioural intervention in two Mexico–USA border cities. Using a generalized estimating equation approach stratified by client type and city, we found venue stability affected CCU. In Tijuana, operating primarily indoors was significantly associated with a four-fold increase in the odds of CCU among regular clients (odds ratio [OR]: 3.77, 95% confidence interval [CI]: 1.44, 9.89), and a seven-fold increase among casual clients (OR: 7.18, 95% CI: 2.32, 22.21), relative to FSW-IDUs spending equal time between indoor and outdoor sex work venues. In Ciudad Juarez, the trajectory of CCU increased over time and was highest among those operating primarily indoors. Results from this analysis highlight the importance of considering local mobility, including venue type and venue stability, as these characteristics jointly influence HIV risk behaviours. PMID:23970766
Application of Bounded Linear Stability Analysis Method for Metrics-Driven Adaptive Control
NASA Technical Reports Server (NTRS)
Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje
2009-01-01
This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics-driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a second order system that represents a pitch attitude control of a generic transport aircraft. The analysis shows that the system with the metrics-conforming variable adaptive gain becomes more robust to unmodeled dynamics or time delay. The effect of analysis time-window for BLSA is also evaluated in order to meet the stability margin criteria.
NASA Astrophysics Data System (ADS)
Wang, Li; Yang, Xiaonan; Wang, Quandai; Yang, Zhiqiang; Duan, Hui; Lu, Bingheng
2017-07-01
The construction of stable hydrophobic surfaces has increasingly gained attention owing to its wide range of potential applications. However, these surfaces may become wet and lose their slip effect owing to insufficient hydrophobic stability. Pillars with a mushroom-shaped tip are believed to enhance hydrophobicity stability. This work presents a facile method of manufacturing mushroom-shaped structures, where, compared with the previously used method, the modulation of the cap thickness, cap diameter, and stem height of the structures is more convenient. The effects of the development time on the cap diameter and overhanging angle are investigated and well-defined mushroom-shaped structures are demonstrated. The effect of the microstructure geometry on the contact state of a droplet is predicted by taking an energy minimization approach and is experimentally validated with nonvolatile ultraviolet-curable polymer with a low surface tension by inspecting the profiles of liquid-vapor interface deformation and tracking the trace of the receding contact line after exposure to ultraviolet light. Theoretical and experimental results show that, compared with regular pillar arrays having a vertical sidewall, the mushroom-like structures can effectively enhance hydrophobic stability. The proposed manufacturing method will be useful for fabricating robust hydrophobic surfaces in a cost-effective and convenient manner.
A nonlinear optimal control approach for chaotic finance dynamics
NASA Astrophysics Data System (ADS)
Rigatos, G.; Siano, P.; Loia, V.; Tommasetti, A.; Troisi, O.
2017-11-01
A new nonlinear optimal control approach is proposed for stabilization of the dynamics of a chaotic finance model. The dynamic model of the financial system, which expresses interaction between the interest rate, the investment demand, the price exponent and the profit margin, undergoes approximate linearization round local operating points. These local equilibria are defined at each iteration of the control algorithm and consist of the present value of the systems state vector and the last value of the control inputs vector that was exerted on it. The approximate linearization makes use of Taylor series expansion and of the computation of the associated Jacobian matrices. The truncation of higher order terms in the Taylor series expansion is considered to be a modelling error that is compensated by the robustness of the control loop. As the control algorithm runs, the temporary equilibrium is shifted towards the reference trajectory and finally converges to it. The control method needs to compute an H-infinity feedback control law at each iteration, and requires the repetitive solution of an algebraic Riccati equation. Through Lyapunov stability analysis it is shown that an H-infinity tracking performance criterion holds for the control loop. This implies elevated robustness against model approximations and external perturbations. Moreover, under moderate conditions the global asymptotic stability of the control loop is proven.
The Importance of Nonlinear Transformations Use in Medical Data Analysis.
Shachar, Netta; Mitelpunkt, Alexis; Kozlovski, Tal; Galili, Tal; Frostig, Tzviel; Brill, Barak; Marcus-Kalish, Mira; Benjamini, Yoav
2018-05-11
The accumulation of data and its accessibility through easier-to-use platforms will allow data scientists and practitioners who are less sophisticated data analysts to get answers by using big data for many purposes in multiple ways. Data scientists working with medical data are aware of the importance of preprocessing, yet in many cases, the potential benefits of using nonlinear transformations is overlooked. Our aim is to present a semi-automated approach of symmetry-aiming transformations tailored for medical data analysis and its advantages. We describe 10 commonly encountered data types used in the medical field and the relevant transformations for each data type. Data from the Alzheimer's Disease Neuroimaging Initiative study, Parkinson's disease hospital cohort, and disease-simulating data were used to demonstrate the approach and its benefits. Symmetry-targeted monotone transformations were applied, and the advantages gained in variance, stability, linearity, and clustering are demonstrated. An open source application implementing the described methods was developed. Both linearity of relationships and increase of stability of variability improved after applying proper nonlinear transformation. Clustering simulated nonsymmetric data gave low agreement to the generating clusters (Rand value=0.681), while capturing the original structure after applying nonlinear transformation to symmetry (Rand value=0.986). This work presents the use of nonlinear transformations for medical data and the importance of their semi-automated choice. Using the described approach, the data analyst increases the ability to create simpler, more robust and translational models, thereby facilitating the interpretation and implementation of the analysis by medical practitioners. Applying nonlinear transformations as part of the preprocessing is essential to the quality and interpretability of results. ©Netta Shachar, Alexis Mitelpunkt, Tal Kozlovski, Tal Galili, Tzviel Frostig, Barak Brill, Mira Marcus-Kalish, Yoav Benjamini. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 11.05.2018.
An Implicit Characteristic Based Method for Electromagnetics
NASA Technical Reports Server (NTRS)
Beggs, John H.; Briley, W. Roger
2001-01-01
An implicit characteristic-based approach for numerical solution of Maxwell's time-dependent curl equations in flux conservative form is introduced. This method combines a characteristic based finite difference spatial approximation with an implicit lower-upper approximate factorization (LU/AF) time integration scheme. This approach is advantageous for three-dimensional applications because the characteristic differencing enables a two-factor approximate factorization that retains its unconditional stability in three space dimensions, and it does not require solution of tridiagonal systems. Results are given both for a Fourier analysis of stability, damping and dispersion properties, and for one-dimensional model problems involving propagation and scattering for free space and dielectric materials using both uniform and nonuniform grids. The explicit Finite Difference Time Domain Method (FDTD) algorithm is used as a convenient reference algorithm for comparison. The one-dimensional results indicate that for low frequency problems on a highly resolved uniform or nonuniform grid, this LU/AF algorithm can produce accurate solutions at Courant numbers significantly greater than one, with a corresponding improvement in efficiency for simulating a given period of time. This approach appears promising for development of dispersion optimized LU/AF schemes for three dimensional applications.
Slope Stability Analysis of Waste Dump in Sandstone Open Pit Osielec
NASA Astrophysics Data System (ADS)
Adamczyk, Justyna; Cała, Marek; Flisiak, Jerzy; Kolano, Malwina; Kowalski, Michał
2013-03-01
This paper presents the slope stability analysis for the current as well as projected (final) geometry of waste dump Sandstone Open Pit "Osielec". For the stability analysis six sections were selected. Then, the final geometry of the waste dump was designed and the stability analysis was conducted. On the basis of the analysis results the opportunities to improve the stability of the object were identified. The next issue addressed in the paper was to determine the proportion of the mixture containing mining and processing wastes, for which the waste dump remains stable. Stability calculations were carried out using Janbu method, which belongs to the limit equilibrium methods.
A Review of Cost Performance Index Stability
1991-09-01
heuristics using both a cumulative and a non-cumulative CPI approach. Research Problem The problem is to determine if the CPI stabilizes for defense...stability include heuristics and an empirical study. There are problems with each of these approaches however, which cause confusion for users of CPR...data trying to determine when to declare the CPI stable. The problem with heuristics is that there is a large number of them, each lacking statistical
Jaworska, Małgorzata; Cygan, Paulina; Wilk, Małgorzata; Anuszewska, Elzbieta
2009-08-15
Sodium caprylate and N-acetyltryptophan are the most frequently used stabilizers that protect the albumin from aggregation or heat induced denaturation. In turn citrates - excipients remaining after fractionation process - can be treated as by-product favoring leaching aluminum out of glass containers whilst albumin solution is stored. With ionic nature these substances have all the markings of a subject for capillary electrophoresis analysis. Thus CE methods were proposed as new approach for quality control of human albumin solution in terms of determination of stabilizers and citrates residue. Human albumin solutions both 5% and 20% from various manufacturers were tested. Indirect detection mode was set to provide sufficient detectability of analytes lacking of chromophores. As being anions analytes were separated with reversed electroosmotic flow. As a result of method optimization two background electrolytes based on p-hydroxybenzoic acid and 2,6-pyridinedicarboxylic acid were selected for stabilizers and citrates separation, respectively. The optimized methods were successfully validated. For citrates that require quantification below 100microM the method demonstrated the precision less than 4% and the limit of detection at 4microM. In order to check the new methods accuracy and applicability the samples were additionally tested with selected reference methods. The proposed methods allow reliable quantification of stabilizers and citrates in human albumin solution that was confirmed by method validation as well as result comparison with reference methods. The CE methods are considered to be suitable for quality control yet simplifying and reducing cost of analysis.
Random matrix theory filters in portfolio optimisation: A stability and risk assessment
NASA Astrophysics Data System (ADS)
Daly, J.; Crane, M.; Ruskin, H. J.
2008-07-01
Random matrix theory (RMT) filters, applied to covariance matrices of financial returns, have recently been shown to offer improvements to the optimisation of stock portfolios. This paper studies the effect of three RMT filters on the realised portfolio risk, and on the stability of the filtered covariance matrix, using bootstrap analysis and out-of-sample testing. We propose an extension to an existing RMT filter, (based on Krzanowski stability), which is observed to reduce risk and increase stability, when compared to other RMT filters tested. We also study a scheme for filtering the covariance matrix directly, as opposed to the standard method of filtering correlation, where the latter is found to lower the realised risk, on average, by up to 6.7%. We consider both equally and exponentially weighted covariance matrices in our analysis, and observe that the overall best method out-of-sample was that of the exponentially weighted covariance, with our Krzanowski stability-based filter applied to the correlation matrix. We also find that the optimal out-of-sample decay factors, for both filtered and unfiltered forecasts, were higher than those suggested by Riskmetrics [J.P. Morgan, Reuters, Riskmetrics technical document, Technical Report, 1996. http://www.riskmetrics.com/techdoc.html], with those for the latter approaching a value of α=1. In conclusion, RMT filtering reduced the realised risk, on average, and in the majority of cases when tested out-of-sample, but increased the realised risk on a marked number of individual days-in some cases more than doubling it.
An Analysis of a Developing and Non-Developing Disturbance During the Predict Experiment
2015-09-25
convection. As the wave propagates primarily westwards, the flow establishes dynamic flow boundaries (a Kelvin cat’s eye) that effectively trap moist...stability, the navy will need to be effective at anticipating the vast destruction caused by tropical cyclones. A thorough understanding of 6 genesis...the most current and innovative approaches for effective tasking, collection, process- ing, exploitation, and dissemination of tropical cyclone decision
Pina, M Fátima; Pinto, João F; Sousa, João J; Craig, Duncan Q M; Zhao, Min
2015-03-15
In this study, we evaluate the use of theoretical thermodynamic analysis of amorphous paroxetine hydrochloride (HCl) as well as experimental assessment in order to identify the most promising approach to stability and dissolution behaviour prediction, particularly in relation to stoichiometric and nonstoichiometric hydrate formation. Differential scanning calorimetry, thermogravimetric analysis, Fourier transform infrared and X-ray diffraction techniques were used. Parameters including heat capacity, configurational thermodynamic quantities, fragility and relaxation time classified amorphous paroxetine HCl as a moderate fragile glass with a considerable degree of molecular mobility. Solubility studies indicated little advantage of the amorphous form over the crystalline due to conversion to the hydrate Form I during equilibration, while the dissolution rate was higher for the amorphous form under sink conditions. A marked difference in the physical stability of amorphous paroxetine HCl was observed between dry and low humidity storage, with the system recrystallizing to the hydrate form. We conclude that, in this particular case (amorphous conversion to the hydrate), water may be playing a dual role in both plasticizing the amorphous form and driving the equilibrium towards the hydrate form, hence prediction of recrystallization behaviour from amorphous characteristics may be confounded by the additional process of hydrate generation. Copyright © 2015 Elsevier B.V. All rights reserved.
A robust nonlinear stabilizer as a controller for improving transient stability in micro-grids.
Azimi, Seyed Mohammad; Afsharnia, Saeed
2017-01-01
This paper proposes a parametric-Lyapunov approach to the design of a stabilizer aimed at improving the transient stability of micro-grids (MGs). This strategy is applied to electronically-interfaced distributed resources (EI-DRs) operating with a unified control configuration applicable to all operational modes (i.e. grid-connected mode, islanded mode, and mode transitions). The proposed approach employs a simple structure compared with other nonlinear controllers, allowing ready implementation of the stabilizer. A new parametric-Lyapunov function is proposed rendering the proposed stabilizer more effective in damping system transition transients. The robustness of the proposed stabilizer is also verified based on both time-domain simulations and mathematical proofs, and an ultimate bound has been derived for the frequency transition transients. The proposed stabilizer operates by deploying solely local information and there are no needs for communication links. The deteriorating effects of the primary resource delays on the transient stability are also treated analytically. Finally, the effectiveness of the proposed stabilizer is evaluated through time-domain simulations and compared with the recently-developed stabilizers performed on a multi-resource MG. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, S.; Park, J.; Park, J. K.; Park, S.; Jeon, H.; Kwon, H.
2017-12-01
Foot and mouth disease outbreaks globally occur. Although livestock suspected to be infected or actually infected by animal infectious diseases is typically treated with various methods including burial, burning, incineration, rendering, and composting, burial into soil is currently the major treatment method in Korea. However, buried carcasses are often found to remain undecomposed or incompletely decomposed even after the legal burial period (3 years). To reuse the land used for the burial purposes, Korea government is considering a novel approach to conduct in-situ burial treatment and then to move remaining carcasses from the burial sites to other sites designated for further ex-situ stabilization treatment (burial-composting sequential treatment). In this work, the feasibility of the novel approach was evaluated at a pilot scale facility. For the ex-situ stabilization, we tested the validity of use of a bio-augmented aerobic composting with carcass-degrading microorganisms, with emphasis on examining if the novel aerobic composting has reducing effects on potential pathogenic bacteria. As results, the decreased chemical oxygen demand (COD, 160,000 mg/kg to 40,000 mg/kg) and inorganic nitrogen species (total nitrogen, 5,000 mg/kg to 2,000 mg/kg) indicated effective bio-stabilization of carcasses. During the stabilization, bacterial community structure and dynamics determined by bacterial 16S rRNA sequencing were significantly changed. The prediction of potential pathogenic bacteria showed that bacterial pathogenic risk was significantly reduced up to a normal soil level during the ex-situ stabilization. The conclusion was confirmed by the following functional analysis of dominant bacteria using PICRUST. The findings support the microbiological safety of the ex-site use of the novel burial-composting sequential treatment. Acknowledgement : This study is supported by Korea Ministry of Environmental as "The GAIA Project"
NASA Astrophysics Data System (ADS)
Argyropoulou, Evangelia
2015-04-01
The current study was focused on the seafloor morphology of the North Aegean Basin in Greece, through Object Based Image Analysis (OBIA) using a Digital Elevation Model. The goal was the automatic extraction of morphologic and morphotectonic features, resulting into fault surface extraction. An Object Based Image Analysis approach was developed based on the bathymetric data and the extracted features, based on morphological criteria, were compared with the corresponding landforms derived through tectonic analysis. A digital elevation model of 150 meters spatial resolution was used. At first, slope, profile curvature, and percentile were extracted from this bathymetry grid. The OBIA approach was developed within the eCognition environment. Four segmentation levels were created having as a target "level 4". At level 4, the final classes of geomorphological features were classified: discontinuities, fault-like features and fault surfaces. On previous levels, additional landforms were also classified, such as continental platform and continental slope. The results of the developed approach were evaluated by two methods. At first, classification stability measures were computed within eCognition. Then, qualitative and quantitative comparison of the results took place with a reference tectonic map which has been created manually based on the analysis of seismic profiles. The results of this comparison were satisfactory, a fact which determines the correctness of the developed OBIA approach.
Cellular and dendritic growth in a binary melt - A marginal stability approach
NASA Technical Reports Server (NTRS)
Laxmanan, V.
1986-01-01
A simple model for the constrained growth of an array of cells or dendrites in a binary alloy in the presence of an imposed positive temperature gradient in the liquid is proposed, with the dendritic or cell tip radius calculated using the marginal stability criterion of Langer and Muller-Krumbhaar (1977). This approach, an approach adopting the ad hoc assumption of minimum undercooling at the cell or dendrite tip, and an approach based on the stability criterion of Trivedi (1980) all predict tip radii to within 30 percent of each other, and yield a simple relationship between the tip radius and the growth conditions. Good agreement is found between predictions and data obtained in a succinonitrile-acetone system, and under the present experimental conditions, the dendritic tip stability parameter value is found to be twice that obtained previously, possibly due to a transition in morphology from a cellular structure with just a few side branches, to a more fully developed dendritic structure.
A framework for sensitivity analysis of decision trees.
Kamiński, Bogumił; Jakubczyk, Michał; Szufel, Przemysław
2018-01-01
In the paper, we consider sequential decision problems with uncertainty, represented as decision trees. Sensitivity analysis is always a crucial element of decision making and in decision trees it often focuses on probabilities. In the stochastic model considered, the user often has only limited information about the true values of probabilities. We develop a framework for performing sensitivity analysis of optimal strategies accounting for this distributional uncertainty. We design this robust optimization approach in an intuitive and not overly technical way, to make it simple to apply in daily managerial practice. The proposed framework allows for (1) analysis of the stability of the expected-value-maximizing strategy and (2) identification of strategies which are robust with respect to pessimistic/optimistic/mode-favoring perturbations of probabilities. We verify the properties of our approach in two cases: (a) probabilities in a tree are the primitives of the model and can be modified independently; (b) probabilities in a tree reflect some underlying, structural probabilities, and are interrelated. We provide a free software tool implementing the methods described.
Low-dimensional Representation of Error Covariance
NASA Technical Reports Server (NTRS)
Tippett, Michael K.; Cohn, Stephen E.; Todling, Ricardo; Marchesin, Dan
2000-01-01
Ensemble and reduced-rank approaches to prediction and assimilation rely on low-dimensional approximations of the estimation error covariances. Here stability properties of the forecast/analysis cycle for linear, time-independent systems are used to identify factors that cause the steady-state analysis error covariance to admit a low-dimensional representation. A useful measure of forecast/analysis cycle stability is the bound matrix, a function of the dynamics, observation operator and assimilation method. Upper and lower estimates for the steady-state analysis error covariance matrix eigenvalues are derived from the bound matrix. The estimates generalize to time-dependent systems. If much of the steady-state analysis error variance is due to a few dominant modes, the leading eigenvectors of the bound matrix approximate those of the steady-state analysis error covariance matrix. The analytical results are illustrated in two numerical examples where the Kalman filter is carried to steady state. The first example uses the dynamics of a generalized advection equation exhibiting nonmodal transient growth. Failure to observe growing modes leads to increased steady-state analysis error variances. Leading eigenvectors of the steady-state analysis error covariance matrix are well approximated by leading eigenvectors of the bound matrix. The second example uses the dynamics of a damped baroclinic wave model. The leading eigenvectors of a lowest-order approximation of the bound matrix are shown to approximate well the leading eigenvectors of the steady-state analysis error covariance matrix.
NASA Astrophysics Data System (ADS)
Sheikholeslami, R.; Hosseini, N.; Razavi, S.
2016-12-01
Modern earth and environmental models are usually characterized by a large parameter space and high computational cost. These two features prevent effective implementation of sampling-based analysis such as sensitivity and uncertainty analysis, which require running these computationally expensive models several times to adequately explore the parameter/problem space. Therefore, developing efficient sampling techniques that scale with the size of the problem, computational budget, and users' needs is essential. In this presentation, we propose an efficient sequential sampling strategy, called Progressive Latin Hypercube Sampling (PLHS), which provides an increasingly improved coverage of the parameter space, while satisfying pre-defined requirements. The original Latin hypercube sampling (LHS) approach generates the entire sample set in one stage; on the contrary, PLHS generates a series of smaller sub-sets (also called `slices') while: (1) each sub-set is Latin hypercube and achieves maximum stratification in any one dimensional projection; (2) the progressive addition of sub-sets remains Latin hypercube; and thus (3) the entire sample set is Latin hypercube. Therefore, it has the capability to preserve the intended sampling properties throughout the sampling procedure. PLHS is deemed advantageous over the existing methods, particularly because it nearly avoids over- or under-sampling. Through different case studies, we show that PHLS has multiple advantages over the one-stage sampling approaches, including improved convergence and stability of the analysis results with fewer model runs. In addition, PLHS can help to minimize the total simulation time by only running the simulations necessary to achieve the desired level of quality (e.g., accuracy, and convergence rate).
Unfolding dimension and the search for functional markers in the human electroencephalogram
NASA Astrophysics Data System (ADS)
Dünki, Rudolf M.; Schmid, Gary Bruno
1998-02-01
A biparametric approach to dimensional analysis in terms of a so-called ``unfolding dimension'' is introduced to explore the extent to which the human EEG can be described by stable features characteristic of an individual despite the well-known problems of intraindividual variability. Our analysis comprises an EEG data set recorded from healthy individuals over a time span of 5 years. The outcome is shown to be comparable to advanced linear methods of spectral analysis with regard to intraindividual specificity and stability over time. Such linear methods have not yet proven to be specific to the EEG of different brain states. Thus we have also investigated the specificity of our biparametric approach by comparing the mental states schizophrenic psychosis and remission, i.e., illness versus full recovery. A difference between EEG in psychosis and remission became apparent within recordings taken at rest with eyes closed and no stimulated or requested mental activity. Hence our approach distinguishes these functional brain states even in the absence of an active or intentional stimulus. This sheds a different light upon theories of schizophrenia as an information-processing disturbance of the brain.
Tutty, O.
2015-01-01
With the goal of providing the first example of application of a recently proposed method, thus demonstrating its ability to give results in principle, global stability of a version of the rotating Couette flow is examined. The flow depends on the Reynolds number and a parameter characterizing the magnitude of the Coriolis force. By converting the original Navier–Stokes equations to a finite-dimensional uncertain dynamical system using a partial Galerkin expansion, high-degree polynomial Lyapunov functionals were found by sum-of-squares of polynomials optimization. It is demonstrated that the proposed method allows obtaining the exact global stability limit for this flow in a range of values of the parameter characterizing the Coriolis force. Outside this range a lower bound for the global stability limit was obtained, which is still better than the energy stability limit. In the course of the study, several results meaningful in the context of the method used were also obtained. Overall, the results obtained demonstrate the applicability of the recently proposed approach to global stability of the fluid flows. To the best of our knowledge, it is the first case in which global stability of a fluid flow has been proved by a generic method for the value of a Reynolds number greater than that which could be achieved with the energy stability approach. PMID:26730219
PARTIAL RESTRAINING FORCE INTRODUCTION METHOD FOR DESIGNING CONSTRUCTION COUNTERMESURE ON ΔB METHOD
NASA Astrophysics Data System (ADS)
Nishiyama, Taku; Imanishi, Hajime; Chiba, Noriyuki; Ito, Takao
Landslide or slope failure is a three-dimensional movement phenomenon, thus a three-dimensional treatment makes it easier to understand stability. The ΔB method (simplified three-dimensional slope stability analysis method) is based on the limit equilibrium method and equals to an approximate three-dimensional slope stability analysis that extends two-dimensional cross-section stability analysis results to assess stability. This analysis can be conducted using conventional spreadsheets or two-dimensional slope stability computational software. This paper describes the concept of the partial restraining force in-troduction method for designing construction countermeasures using the distribution of the restraining force found along survey lines, which is based on the distribution of survey line safety factors derived from the above-stated analysis. This paper also presents the transverse distributive method of restraining force used for planning ground stabilizing on the basis of the example analysis.
Error analysis of satellite attitude determination using a vision-based approach
NASA Astrophysics Data System (ADS)
Carozza, Ludovico; Bevilacqua, Alessandro
2013-09-01
Improvements in communication and processing technologies have opened the doors to exploit on-board cameras to compute objects' spatial attitude using only the visual information from sequences of remote sensed images. The strategies and the algorithmic approach used to extract such information affect the estimation accuracy of the three-axis orientation of the object. This work presents a method for analyzing the most relevant error sources, including numerical ones, possible drift effects and their influence on the overall accuracy, referring to vision-based approaches. The method in particular focuses on the analysis of the image registration algorithm, carried out through on-purpose simulations. The overall accuracy has been assessed on a challenging case study, for which accuracy represents the fundamental requirement. In particular, attitude determination has been analyzed for small satellites, by comparing theoretical findings to metric results from simulations on realistic ground-truth data. Significant laboratory experiments, using a numerical control unit, have further confirmed the outcome. We believe that our analysis approach, as well as our findings in terms of error characterization, can be useful at proof-of-concept design and planning levels, since they emphasize the main sources of error for visual based approaches employed for satellite attitude estimation. Nevertheless, the approach we present is also of general interest for all the affine applicative domains which require an accurate estimation of three-dimensional orientation parameters (i.e., robotics, airborne stabilization).
NASA Technical Reports Server (NTRS)
Wall, Conrad., III
1999-01-01
In addition to adapting to microgravity, major neurovestibular problems of space flight include postflight difficulties with standing, walking, turning corners, and other activities that require stable upright posture and gaze stability. These difficulties inhibit astronauts' ability to stand or escape from their vehicle during emergencies. The long-ter7n goal of the NSBRI is the development of countermeasures to ameliorate the effects of long duration space flight. These countermeasures must be tested with valid and reliable tools. This project aims to develop quantitative, parametric approaches for assessing gaze stability and spatial orientation during normal gait and when gait is perturbed. Two of this year's most important findings concern head fixation distance and ideal trajectory analysis. During a normal cycle of walking the head moves up and down linearly. A simultaneous angular pitching motion of the head keeps it aligned toward an imaginary point in space at a distance of about one meter in front of a subject and along the line of march. This distance is called the head fixation distance. Head fixation distance provides the fundamental framework necessary for understanding the functional significance of the vestibular reflexes that couple head motion to eye motion. This framework facilitates the intelligent design of counter-measures for the effects of exposure to microgravity upon the vestibular ocular reflexes. Ideal trajectory analysis is a simple candidate countermeasure based upon quantifying body sway during repeated up and down stair stepping. It provides one number that estimates the body sway deviation from an ideal sinusoidal body sway trajectory normalized on the subject's height. This concept has been developed with NSBRI funding in less than one year. These findings are explained in more detail below. Compared to assessments of the vestibuo-ocular reflex, analysis of vestibular effects on locomotor function is relatively less well developed and quantified. We are improving this situation by applying methodologies such as nonlinear orbital stability to quantify responses and by using multivariate statistical approaches to link together the responses across separate tests. In this way we can exploit the information available and increase the ability to discriminate between normal and pathological responses. Measures of stability and orientation are compared to measures such as dynamic visual acuity and with balance function tests. The responses of normal human subjects and of patients having well documented pathophysiologies are being characterized. When these studies are completed, we should have a clearer idea about normal and abnormal patterns of eye, head, and body movements during locomotion and their stability in a wide range of environments. We plan eventually to use this information to validate the efficacy of candidate neurovestibular and neuromuscular rehabilitative techniques. Some representative studies made during this year are summarized.
Hypersonic vehicle control law development using H infinity and mu-synthesis
NASA Technical Reports Server (NTRS)
Gregory, Irene M.; Chowdhry, Rajiv S.; Mcminn, John D.; Shaughnessy, John D.
1992-01-01
Applicability and effectiveness of robust control techniques to a single-stage-to-orbit (SSTO) airbreathing hypersonic vehicle on an ascent accelerating path and their effectiveness are explored in this paper. An SSTO control system design problem, requiring high accuracy tracking of velocity and altitude commands while limiting angle of attack oscillations, minimizing control power usage and stabilizing the vehicle all in the presence of atmospheric turbulence and uncertainty in the system, was formulated to compare results of the control designs using H infinity and mu-synthesis procedures. The math model, an integrated flight/propulsion dynamic model of a conical accelerator class vehicle, was linearized as the vehicle accelerated through Mach 8. Controller analysis was conducted using the singular value technique and the mu-analysis approach. Analysis results were obtained in both the frequency and the time domains. The results clearly demonstrate the inherent advantages of the structured singular value framework for this class of problems. Since payload performance margins are so critical for the SSTO mission, it is crucial that adequate stability margins be provided without sacrificing any payload mass.
Valenzuela, Aníbal; Lespes, Gaëtane; Quiroz, Waldo; Aguilar, Luis F; Bravo, Manuel A
2014-07-01
A new headspace solid-phase micro-extraction (HS-SPME) method followed by gas chromatography with pulsed flame photometric detection (GC-PFPD) analysis has been developed for the simultaneous determination of 11 organotin compounds, including methyl-, butyl-, phenyl- and octyltin derivates, in human urine. The methodology has been validated by the analysis of urine samples fortified with all analytes at different concentration levels, and recovery rates above 87% and relative precisions between 2% and 7% were obtained. Additionally, an experimental-design approach has been used to model the storage stability of organotin compounds in human urine, demonstrating that organotins are highly degraded in this medium, although their stability is satisfactory during the first 4 days of storage at 4 °C and pH=4. Finally, this methodology was applied to urine samples collected from harbor workers exposed to antifouling paints; methyl- and butyltins were detected, confirming human exposure in this type of work environment. Copyright © 2014 Elsevier B.V. All rights reserved.
Wacker, Jan
2018-01-01
The influence of positive emotions on the balance between cognitive stability and flexibility has been suggested to (a) differ among various positive emotional/motivational states (e.g., of varying approach motivation intensity), and (b) be mediated by brain dopamine (DA). Frontal EEG alpha asymmetry (ASY) is considered an indicator of approach motivational states and may be modulated by DA. The personality trait of extraversion is strongly linked to positive emotions and is now thought to reflect DA-based individual differences in incentive/approach motivation. The present study independently manipulated positive emotion (high approach wanting-expectancy [WE] vs. low approach warmth-liking [WL]) and dopamine (placebo vs. DA D2 blocker sulpiride) to examine their effects on both cognitive stability-flexibility and emotion-related ASY changes. The results showed numerically lower stability-flexibility in WE versus WL under placebo and a complete reversal of this effect under the D2 blocker, no differentiation between WE and WL groups in terms of emotion-related ASY change, but an association between self-reported WE and WL and ASY changes toward left and right frontal cortical activity, respectively. Finally, extraversion was positively associated with both stability-flexibility and ASY changes toward left frontal cortical activity under placebo, and these associations were completely reversed under the D2 blocker. The results (a) support a dopaminergic basis for frontal EEG asymmetry, extraversion, and the modulating effect of positive emotions on stability-flexibility, and (b) extend previous reports of cognitive differences between introverts and extraverts. © 2017 Society for Psychophysiological Research.
Metcalfe, Stephen; Gbejuade, Herbert; Patel, Nitin R
2012-07-15
A retrospective case series. To demonstrate the feasibility, safety, and results of the posterior transpedicular approach for circumferential decompression and instrumented reconstruction of thoracolumbar spinal tumors. Patients presenting with spinal tumor disease requiring 3-column instrumented stabilization are typically treated with a combined anterior and posterior surgical approach. However, circumferential decompression and instrumented stabilization may also be achieved through a single-stage, midline posterior transpedicular approach. Fifty consecutive patients (27 women and 23 men) underwent surgery between 2003 and 2010 at a single institution by the senior author. Mean age was 55.9 years (range, 25-79 yr).Single or multilevel, contiguous subtotal vertebrectomy was performed ranging from T1 to L4 (38 thoracic and 12 lumbar). Three-column spinal stabilization was achieved using posterior pedicle screw fixation and vertebral body reconstruction, with a titanium cage introduced through the posterior transpedicular route. The mean follow-up period was 17 months (range, 1-54 mo). The mean operating time was 4.2 hours. The mean estimated blood loss for a subgroup of 9 patients with hypervascular tumor pathology was 3933 mL (range, 2700-5800 mL). The mean blood loss in the remaining 41 patients was 1262 mL (range, 250-2500 mL).Postoperative neurological status was maintained or improved in all patients. Mean postoperative stay was 7.7 days (range, 3-12 d). At last review, 14 patients were alive, with a mean survival of 36 months (range, 13-71 mo). The mean survival for the 36 patients who died was 19 months (range, 2 weeks to 54 mo). This is the largest reported series of patients with spinal tumor disease undergoing circumferential decompression and 3-column instrumented stabilization through the posterior transpedicular approach.This surgical approach provides sufficient access for safe and effective circumferential decompression and stabilization, with reduced complications compared with costotransversectomy or combined anterior transcavitary and posterior approaches.
NASA Technical Reports Server (NTRS)
Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje Srinvas
2009-01-01
This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a linear damaged twin-engine generic transport model of aircraft. The analysis shows that the system with the adjusted adaptive gain becomes more robust to unmodeled dynamics or time delay.
DC Microgrids–Part I: A Review of Control Strategies and Stabilization Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dragicevic, Tomislav; Lu, Xiaonan; Vasquez, Juan
2015-01-01
This paper presents a review of control strategies, stability analysis, and stabilization techniques for dc microgrids (MGs). Overall control is systematically classified into local and coordinated control levels according to respective functionalities in each level. As opposed to local control, which relies only on local measurements, some line of communication between units needs to be made available in order to achieve the coordinated control. Depending on the communication method, three basic coordinated control strategies can be distinguished, i.e., decentralized, centralized, and distributed control. Decentralized control can be regarded as an extension of the local control since it is also basedmore » exclusively on local measurements. In contrast, centralized and distributed control strategies rely on digital communication technologies. A number of approaches using these three coordinated control strategies to achieve various control objectives are reviewed in this paper. Moreover, properties of dc MG dynamics and stability are discussed. This paper illustrates that tightly regulated point-of-load converters tend to reduce the stability margins of the system since they introduce negative impedances, which can potentially oscillate with lightly damped power supply input filters. It is also demonstrated that how the stability of the whole system is defined by the relationship of the source and load impedances, referred to as the minor loop gain. Several prominent specifications for the minor loop gain are reviewed. Finally, a number of active stabilization techniques are presented.« less
The stability of monomeric intermediates controls amyloid formation: Abeta25-35 and its N27Q mutant.
Ma, Buyong; Nussinov, Ruth
2006-05-15
The structure and stabilities of the intermediates affect protein folding as well as misfolding and amyloid formation. By applying Kramer's theory of barrier crossing and a Morse-function-like energy landscape, we show that intermediates with medium stability dramatically increase the rate of amyloid formation; on the other hand, very stable and very unstable intermediates sharply decrease amyloid formation. Remarkably, extensive molecular dynamics simulations and conformational energy landscape analysis of Abeta25-35 and its N27Q mutant corroborate the mathematical description. Both experimental and current simulation results indicate that the core of the amyloid structure of Abeta25-35 formed from residues 28-35. A single mutation of N27Q of Abeta25-35 makes the Abeta25-35 N27Q amyloid-free. Energy landscape calculations show that Abeta25-35 has extended intermediates with medium stability that are prone to form amyloids, whereas the extended intermediates for Abeta25-35 N27Q split into stable and very unstable species that are not disposed to form amyloids. The results explain the contribution of both alpha-helical and beta-strand intermediates to amyloid formation. The results also indicate that the structure and stability of the intermediates, as well as of the native folded and the amyloid states can be targeted in drug design. One conceivable approach is to stabilize the intermediates to deter amyloid formation.
NASA Technical Reports Server (NTRS)
Crane, D. F.
1984-01-01
When human operators are performing precision tracking tasks, their dynamic response can often be modeled by quasilinear describing functions. That fact permits analysis of the effects of delay in certain man machine control systems using linear control system analysis techniques. The analysis indicates that a reduction in system stability is the immediate effect of additional control system delay, and that system characteristics moderate or exaggerate the importance of the delay. A selection of data (simulator and flight test) consistent with the analysis is reviewed. Flight simulator visual-display delay compensation, designed to restore pilot aircraft system stability, was evaluated in several studies which are reviewed here. The studies range from single-axis, tracking-task experiments (with sufficient subjects and trials to establish the statistical significance of the results) to a brief evaluation of compensation of a computer generated imagery (CGI) visual display system in a full six degree of freedom simulation. The compensation was effective, improvements in pilot performance and workload or aircraft handling qualities rating (HQR) were observed. Results from recent aircraft handling qualities research literature, which support the compensation design approach, are also reviewed.
NASA Astrophysics Data System (ADS)
Lerotic, Mirna
Soft x-ray spectromicroscopy provides spectral data on the chemical speciation of light elements at sub-100 nanometer spatial resolution. The high resolution imaging places a strong demand on the microscope stability and on the reproducibility of the scanned image field, and the volume of data necessitates the need for improved data analysis methods. This dissertation concerns two developments in extending the capability of soft x-ray transmission microscopes to carry out studies of chemical speciation at high spatial resolution. One development involves an improvement in x-ray microscope instrumentation: a new Stony Brook scanning transmission x-ray microscope which incorporates laser interferometer feedback in scanning stage positions. The interferometer is used to control the position between the sample and focusing optics, and thus improve the stability of the system. A second development concerns new analysis methods for the study of chemical speciation of complex specimens, such as those in biological and environmental science studies. When all chemical species in a specimen are known and separately characterized, existing approaches can be used to measure the concentration of each component at each pixel. In other cases (such as often occur in biology or environmental science), where the specimen may be too complicated or provide at least some unknown spectral signatures, other approaches must be used. We describe here an approach that uses principal component analysis (similar to factor analysis) to orthogonalize and noise-filter spectromicroscopy data. We then use cluster analysis (a form of unsupervised pattern matching) to classify pixels according to spectral similarity, to extract representative, cluster-averaged spectra with good signal-to-noise ratio, and to obtain gradations of concentration of these representative spectra at each pixel. The method is illustrated with a simulated data set of organic compounds, and a mixture of lutetium in hematite used to understand colloidal transport properties of radionuclides. Also, we describe here an extension of that work employing an angle distance measure; this measure provides better classification based on spectral signatures alone in specimens with significant thickness variations. The method is illustrated using simulated data, and also to examine sporulation in the bacterium Clostridium sp.
A nonlinear optimal control approach to stabilization of a macroeconomic development model
NASA Astrophysics Data System (ADS)
Rigatos, G.; Siano, P.; Ghosh, T.; Sarno, D.
2017-11-01
A nonlinear optimal (H-infinity) control approach is proposed for the problem of stabilization of the dynamics of a macroeconomic development model that is known as the Grossman-Helpman model of endogenous product cycles. The dynamics of the macroeconomic development model is divided in two parts. The first one describes economic activities in a developed country and the second part describes variation of economic activities in a country under development which tries to modify its production so as to serve the needs of the developed country. The article shows that through control of the macroeconomic model of the developed country, one can finally control the dynamics of the economy in the country under development. The control method through which this is achieved is the nonlinear H-infinity control. The macroeconomic model for the country under development undergoes approximate linearization round a temporary operating point. This is defined at each time instant by the present value of the system's state vector and the last value of the control input vector that was exerted on it. The linearization is based on Taylor series expansion and the computation of the associated Jacobian matrices. For the linearized model an H-infinity feedback controller is computed. The controller's gain is calculated by solving an algebraic Riccati equation at each iteration of the control method. The asymptotic stability of the control approach is proven through Lyapunov analysis. This assures that the state variables of the macroeconomic model of the country under development will finally converge to the designated reference values.
Nikolaev, Evgeni V.
2016-01-01
Synthetic constructs in biotechnology, biocomputing, and modern gene therapy interventions are often based on plasmids or transfected circuits which implement some form of “on-off” switch. For example, the expression of a protein used for therapeutic purposes might be triggered by the recognition of a specific combination of inducers (e.g., antigens), and memory of this event should be maintained across a cell population until a specific stimulus commands a coordinated shut-off. The robustness of such a design is hampered by molecular (“intrinsic”) or environmental (“extrinsic”) noise, which may lead to spontaneous changes of state in a subset of the population and is reflected in the bimodality of protein expression, as measured for example using flow cytometry. In this context, a “majority-vote” correction circuit, which brings deviant cells back into the required state, is highly desirable, and quorum-sensing has been suggested as a way for cells to broadcast their states to the population as a whole so as to facilitate consensus. In this paper, we propose what we believe is the first such a design that has mathematically guaranteed properties of stability and auto-correction under certain conditions. Our approach is guided by concepts and theory from the field of “monotone” dynamical systems developed by M. Hirsch, H. Smith, and others. We benchmark our design by comparing it to an existing design which has been the subject of experimental and theoretical studies, illustrating its superiority in stability and self-correction of synchronization errors. Our stability analysis, based on dynamical systems theory, guarantees global convergence to steady states, ruling out unpredictable (“chaotic”) behaviors and even sustained oscillations in the limit of convergence. These results are valid no matter what are the values of parameters, and are based only on the wiring diagram. The theory is complemented by extensive computational bifurcation analysis, performed for a biochemically-detailed and biologically-relevant model that we developed. Another novel feature of our approach is that our theorems on exponential stability of steady states for homogeneous or mixed populations are valid independently of the number N of cells in the population, which is usually very large (N ≫ 1) and unknown. We prove that the exponential stability depends on relative proportions of each type of state only. While monotone systems theory has been used previously for systems biology analysis, the current work illustrates its power for synthetic biology design, and thus has wider significance well beyond the application to the important problem of coordination of toggle switches. PMID:27128344
Variable Speed CMG Control of a Dual-Spin Stabilized Unconventional VTOL Air Vehicle
NASA Technical Reports Server (NTRS)
Lim, Kyong B.; Moerder, Daniel D.; Shin, J-Y.
2004-01-01
This paper describes an approach based on using both bias momentum and multiple control moment gyros for controlling the attitude of statically unstable thrust-levitated vehicles in hover or slow translation. The stabilization approach described in this paper uses these internal angular momentum transfer devices for stability, augmented by thrust vectoring for trim and other outer loop control functions, including CMG stabilization/ desaturation under persistent external disturbances. Simulation results show the feasibility of (1) improved vehicle performance beyond bias momentum assisted vector thrusting control, and (2) using control moment gyros to significantly reduce the external torque required from the vector thrusting machinery.
Cognition as a Dynamic System: Principles from Embodiment
ERIC Educational Resources Information Center
Smith, Linda B.
2005-01-01
Traditional approaches to cognitive development concentrate on the stability of cognition and explain that stability via concepts segregated from perceiving acting. A dynamic systems approach in contrast focuses on the self-organization of behavior in tasks. This article uses recent results concerning the embodiment of cognition to argue for a…
A Critique of the Controversy about the Stability of Consumers' Tastes.
ERIC Educational Resources Information Center
Daniel, Coldwell, III
1988-01-01
Examines the role of the stability of consumer tastes in descriptive theory. Summarizes the traditional approach to the derivation of the consumer's preference structure, considers ways in which the conventional theory has been extended, presents the Stigler-Becker theory of consumer choice, and evaluates both approaches. (GEA)
Unstalled flutter stability predictions and comparisons to test data for a composite prop-fan model
NASA Technical Reports Server (NTRS)
Turnberg, J. E.
1986-01-01
The aeroelastic stability analyses for three graphite/epoxy composite Prop-Fan designs and post-test stability analysis for one of the designs, the SR-3C-X2 are presented. It was shown that Prop-Fan stability can be effectively analyzed using the F203 modal aeroelastic stability analysis developed at Hamilton Standard and that first mode torsion-bending coupling has a direct effect on blade stability. Positive first mode torsion-bending coupling is a destabilizing factor and the minimization of this parameter will increase Prop-Fan stability. It was also shown that Prop-Fan stability analysis using F203 is sensitive to the blade modal data used as input. Calculated blade modal properties varied significantly with the structural analysis used, and these variations are reflected in the F203 calculations.
Setting cumulative emissions targets to reduce the risk of dangerous climate change
Zickfeld, Kirsten; Eby, Michael; Matthews, H. Damon; Weaver, Andrew J.
2009-01-01
Avoiding “dangerous anthropogenic interference with the climate system” requires stabilization of atmospheric greenhouse gas concentrations and substantial reductions in anthropogenic emissions. Here, we present an inverse approach to coupled climate-carbon cycle modeling, which allows us to estimate the probability that any given level of carbon dioxide (CO2) emissions will exceed specified long-term global mean temperature targets for “dangerous anthropogenic interference,” taking into consideration uncertainties in climate sensitivity and the carbon cycle response to climate change. We show that to stabilize global mean temperature increase at 2 °C above preindustrial levels with a probability of at least 0.66, cumulative CO2 emissions from 2000 to 2500 must not exceed a median estimate of 590 petagrams of carbon (PgC) (range, 200 to 950 PgC). If the 2 °C temperature stabilization target is to be met with a probability of at least 0.9, median total allowable CO2 emissions are 170 PgC (range, −220 to 700 PgC). Furthermore, these estimates of cumulative CO2 emissions, compatible with a specified temperature stabilization target, are independent of the path taken to stabilization. Our analysis therefore supports an international policy framework aimed at avoiding dangerous anthropogenic interference formulated on the basis of total allowable greenhouse gas emissions. PMID:19706489
Barroso, L M A; Teodoro, P E; Nascimento, M; Torres, F E; Nascimento, A C C; Azevedo, C F; Teixeira, F R F
2016-11-03
Cowpea (Vigna unguiculata) is grown in three Brazilian regions: the Midwest, North, and Northeast, and is consumed by people on low incomes. It is important to investigate the genotype x environment (GE) interaction to provide accurate recommendations for farmers. The aim of this study was to identify cowpea genotypes with high adaptability and phenotypic stability for growing in the Brazilian Cerrado, and to compare the use of artificial neural networks with the Eberhart and Russell (1966) method. Six trials with upright cowpea genotypes were conducted in 2005 and 2006 in the States of Mato Grosso do Sul and Mato Grosso. The data were subjected to adaptability and stability analysis by the Eberhart and Russell (1966) method and artificial neural networks. The genotypes MNC99-537F-4 and EVX91-2E-2 provided grain yields above the overall environment means, and exhibited high stability according to both methods. Genotype IT93K-93-10 was the most suitable for unfavorable environments. There was a high correlation between the results of both methods in terms of classifying the genotypes by their adaptability and stability. Therefore, this new approach would be effective in quantifying the GE interaction in upright cowpea breeding programs.
Global analysis of protein folding using massively parallel design, synthesis and testing
Rocklin, Gabriel J.; Chidyausiku, Tamuka M.; Goreshnik, Inna; Ford, Alex; Houliston, Scott; Lemak, Alexander; Carter, Lauren; Ravichandran, Rashmi; Mulligan, Vikram K.; Chevalier, Aaron; Arrowsmith, Cheryl H.; Baker, David
2017-01-01
Proteins fold into unique native structures stabilized by thousands of weak interactions that collectively overcome the entropic cost of folding. Though these forces are “encoded” in the thousands of known protein structures, “decoding” them is challenging due to the complexity of natural proteins that have evolved for function, not stability. Here we combine computational protein design, next-generation gene synthesis, and a high-throughput protease susceptibility assay to measure folding and stability for over 15,000 de novo designed miniproteins, 1,000 natural proteins, 10,000 point-mutants, and 30,000 negative control sequences, identifying over 2,500 new stable designed proteins in four basic folds. This scale—three orders of magnitude greater than that of previous studies of design or folding—enabled us to systematically examine how sequence determines folding and stability in uncharted protein space. Iteration between design and experiment increased the design success rate from 6% to 47%, produced stable proteins unlike those found in nature for topologies where design was initially unsuccessful, and revealed subtle contributions to stability as designs became increasingly optimized. Our approach achieves the long-standing goal of a tight feedback cycle between computation and experiment, and promises to transform computational protein design into a data-driven science. PMID:28706065
Setting cumulative emissions targets to reduce the risk of dangerous climate change.
Zickfeld, Kirsten; Eby, Michael; Matthews, H Damon; Weaver, Andrew J
2009-09-22
Avoiding "dangerous anthropogenic interference with the climate system" requires stabilization of atmospheric greenhouse gas concentrations and substantial reductions in anthropogenic emissions. Here, we present an inverse approach to coupled climate-carbon cycle modeling, which allows us to estimate the probability that any given level of carbon dioxide (CO2) emissions will exceed specified long-term global mean temperature targets for "dangerous anthropogenic interference," taking into consideration uncertainties in climate sensitivity and the carbon cycle response to climate change. We show that to stabilize global mean temperature increase at 2 degrees C above preindustrial levels with a probability of at least 0.66, cumulative CO2 emissions from 2000 to 2500 must not exceed a median estimate of 590 petagrams of carbon (PgC) (range, 200 to 950 PgC). If the 2 degrees C temperature stabilization target is to be met with a probability of at least 0.9, median total allowable CO2 emissions are 170 PgC (range, -220 to 700 PgC). Furthermore, these estimates of cumulative CO2 emissions, compatible with a specified temperature stabilization target, are independent of the path taken to stabilization. Our analysis therefore supports an international policy framework aimed at avoiding dangerous anthropogenic interference formulated on the basis of total allowable greenhouse gas emissions.
Structural stability of nonlinear population dynamics.
Cenci, Simone; Saavedra, Serguei
2018-01-01
In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.
Structural stability of nonlinear population dynamics
NASA Astrophysics Data System (ADS)
Cenci, Simone; Saavedra, Serguei
2018-01-01
In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.
Terrestrial Planet Finder Coronagraph and Enabling Technologies
NASA Technical Reports Server (NTRS)
Ford, Virginia G.
2005-01-01
Starlight suppression research is Stowed in Delta IV-H advancing rapidly to approach the required contrast ratio. The current analysis of the TPF Coronagraph system indicates that it is feasible to achieve the stability required by using developing technologies: a) Wave Front Sensing and Control (DMs, control algorithms, and sensing); b) Laser metrology. Yet needed: a) Property data measured with great precision in the required environments; b) Modeling tools that are verified with testbeds.
2013-03-22
discrete Wigner function is periodic in momentum space. The periodicity follows from the Fourier transform of the density matrix. The inverse...resonant-tunneling diode . The Green function method has been one of alternatives. Another alternative was to utilize the Wigner function . The Wigner ... function approach to the simulation of a resonant-tunneling diode offers many advantages. In the limit of the classical physics the Wigner equation
Application of Chimera Grid Scheme to Combustor Flowfields at all Speeds
NASA Technical Reports Server (NTRS)
Yungster, Shaye; Chen, Kuo-Huey
1997-01-01
A CFD method for solving combustor flowfields at all speeds on complex configurations is presented. The approach is based on the ALLSPD-3D code which uses the compressible formulation of the flow equations including real gas effects, nonequilibrium chemistry and spray combustion. To facilitate the analysis of complex geometries, the chimera grid method is utilized. To the best of our knowledge, this is the first application of the chimera scheme to reacting flows. In order to evaluate the effectiveness of this numerical approach, several benchmark calculations of subsonic flows are presented. These include steady and unsteady flows, and bluff-body stabilized spray and premixed combustion flames.
Tang, Fen; Xie, Yixi; Cao, Hui; Yang, Hua; Chen, Xiaoqing; Xiao, Jianbo
2017-03-15
Fetal bovine serum (FBS) is a universal growth supplement of cell and tissue culture media. Herein, the influences of FBS on the stability and antioxidant activity of 21 resveratrol analogues were investigated using a polyphenol-protein interaction approach. The structure-stability relationships of resveratrol analogues in FBS showed a clear decrease in the stability of hydroxylated resveratrol analogues in the order: resorcinol-type>pyrogallol-type>catechol-type. The glycosylation and methoxylation of resveratrol analogues enhanced their stability. A linear relationship between the stability of resveratrol analogues in FBS and the affinity of resveratrol analogues-FBS interaction was found. The oxidation process is not the only factor governing the stability of resveratrol analogues in FBS. These results facilitated the insightful investigation of the role of polyphenol-protein interactions in serum, thereby providing some fundamental clues for future clinical research and pharmacological studies on natural small molecules. Copyright © 2016 Elsevier Ltd. All rights reserved.
NagaSundaram, N; Priya Doss, C George
2011-01-01
Background: Distinguishing the deleterious from the massive number of non-functional nsSNPs that occur within a single genome is a considerable challenge in mutation research. In this approach, we have used the existing in silico methods to explore the mutation-structure-function relationship in the XPAgene. Materials and Methods: We used the Sorting Intolerant From Tolerant (SIFT), Polymorphism Phenotyping (PolyPhen), I-Mutant 2.0, and the Protein Analysis THrough Evolutionary Relationships methods to predict the effects of deleterious nsSNPs on protein function and evaluated the impact of mutation on protein stability by Molecular Dynamics simulations. Results: By comparing the scores of all the four in silico methods, nsSNP with an ID rs104894131 at position C108F was predicted to be highly deleterious. We extended our Molecular dynamics approach to gain insight into the impact of this non-synonymous polymorphism on structural changes that may affect the activity of the XPAgene. Conclusion: Based on the in silico methods score, potential energy, root-mean-square deviation, and root-mean-square fluctuation, we predict that deleterious nsSNP at position C108F would play a significant role in causing disease by the XPA gene. Our approach would present the application of in silicotools in understanding the functional variation from the perspective of structure, evolution, and phenotype. PMID:22190868
Batista, A R; Gianni, D; Ventosa, M; Coelho, A V; Almeida, M R; Sena-Esteves, M; Saraiva, M J
2014-12-01
Familial amyloidotic polyneuropathy (FAP) is a neurodegenerative disorder characterized by extracellular deposition of amyloid fibrils composed by mutated transthyretin (TTR) mainly in the peripheral nervous system. At present, liver transplantation is still the standard treatment to halt the progression of clinical symptoms in FAP, but new therapeutic strategies are emerging, including the use of TTR stabilizers. Here we propose to establish a new gene therapy approach using adeno-associated virus (AAV) vectors to deliver the trans-suppressor TTR T119M variant to the liver of transgenic TTR V30M mice at different ages. This TTR variant is known for its ability to stabilize the tetrameric protein. Analysis of the gastrointestinal tract of AAV-treated animals revealed a significant reduction in deposition of TTR non-fibrillar aggregates in as much as 34% in stomach and 30% in colon, as well as decreased levels of biomarkers associated with TTR deposition, namely the endoplasmic reticulum stress marker BiP and the extracellular matrix protein MMP-9. Moreover, we showed with different studies that our approach leads to an increase in tetrameric and more stable forms of TTR, in favor of destabilized monomers. Altogether our data suggest the possibility to use this gene therapy approach in a prophylactic manner to prevent FAP pathology.
A new concept in seismic landslide hazard analysis for practical application
NASA Astrophysics Data System (ADS)
Lee, Chyi-Tyi
2017-04-01
A seismic landslide hazard model could be constructed using deterministic approach (Jibson et al., 2000) or statistical approach (Lee, 2014). Both approaches got landslide spatial probability under a certain return-period earthquake. In the statistical approach, our recent study found that there are common patterns among different landslide susceptibility models of the same region. The common susceptibility could reflect relative stability of slopes at a region; higher susceptibility indicates lower stability. Using the common susceptibility together with an earthquake event landslide inventory and a map of topographically corrected Arias intensity, we can build the relationship among probability of failure, Arias intensity and the susceptibility. This relationship can immediately be used to construct a seismic landslide hazard map for the region that the empirical relationship built. If the common susceptibility model is further normalized and the empirical relationship built with normalized susceptibility, then the empirical relationship may be practically applied to different region with similar tectonic environments and climate conditions. This could be feasible, when a region has no existing earthquake-induce landslide data to train the susceptibility model and to build the relationship. It is worth mentioning that a rain-induced landslide susceptibility model has common pattern similar to earthquake-induced landslide susceptibility in the same region, and is usable to build the relationship with an earthquake event landslide inventory and a map of Arias intensity. These will be introduced with examples in the meeting.
Lautenschlager, Karin; Hwang, Chiachi; Liu, Wen-Tso; Boon, Nico; Köster, Oliver; Vrouwenvelder, Hans; Egli, Thomas; Hammes, Frederik
2013-06-01
Biological stability of drinking water implies that the concentration of bacterial cells and composition of the microbial community should not change during distribution. In this study, we used a multi-parametric approach that encompasses different aspects of microbial water quality including microbial growth potential, microbial abundance, and microbial community composition, to monitor biological stability in drinking water of the non-chlorinated distribution system of Zürich. Drinking water was collected directly after treatment from the reservoir and in the network at several locations with varied average hydraulic retention times (6-52 h) over a period of four months, with a single repetition two years later. Total cell concentrations (TCC) measured with flow cytometry remained remarkably stable at 9.5 (± 0.6) × 10(4) cells/ml from water in the reservoir throughout most of the distribution network, and during the whole time period. Conventional microbial methods like heterotrophic plate counts, the concentration of adenosine tri-phosphate, total organic carbon and assimilable organic carbon remained also constant. Samples taken two years apart showed more than 80% similarity for the microbial communities analysed with denaturing gradient gel electrophoresis and 454 pyrosequencing. Only the two sampling locations with the longest water retention times were the exceptions and, so far for unknown reasons, recorded a slight but significantly higher TCC (1.3 (± 0.1) × 10(5) cells/ml) compared to the other locations. This small change in microbial abundance detected by flow cytometry was also clearly observed in a shift in the microbial community profiles to a higher abundance of members from the Comamonadaceae (60% vs. 2% at other locations). Conventional microbial detection methods were not able to detect changes as observed with flow cytometric cell counts and microbial community analysis. Our findings demonstrate that the multi-parametric approach used provides a powerful and sensitive tool to assess and evaluate biological stability and microbial processes in drinking water distribution systems. Copyright © 2013 Elsevier Ltd. All rights reserved.
Social network approaches to recruitment, HIV prevention, medical care, and medication adherence.
Latkin, Carl A; Davey-Rothwell, Melissa A; Knowlton, Amy R; Alexander, Kamila A; Williams, Chyvette T; Boodram, Basmattee
2013-06-01
This article reviews the current issues and advancements in social network approaches to HIV prevention and care. Social network analysis can provide a method to understand health disparities in HIV rates, treatment access, and outcomes. Social network analysis is a valuable tool to link social structural factors to individual behaviors. Social networks provide an avenue for low-cost and sustainable HIV prevention interventions that can be adapted and translated into diverse populations. Social networks can be utilized as a viable approach to recruitment for HIV testing and counseling, HIV prevention interventions, optimizing HIV medical care, and medication adherence. Social network interventions may be face-to-face or through social media. Key issues in designing social network interventions are contamination due to social diffusion, network stability, density, and the choice and training of network members. There are also ethical issues involved in the development and implementation of social network interventions. Social network analyses can also be used to understand HIV transmission dynamics.
NASA Technical Reports Server (NTRS)
Ball, Danny (Technical Monitor); Pagitz, M.; Pellegrino, Xu S.
2004-01-01
This paper presents a computational study of the stability of simple lobed balloon structures. Two approaches are presented, one based on a wrinkled material model and one based on a variable Poisson s ratio model that eliminates compressive stresses iteratively. The first approach is used to investigate the stability of both a single isotensoid and a stack of four isotensoids, for perturbations of in.nitesimally small amplitude. It is found that both structures are stable for global deformation modes, but unstable for local modes at su.ciently large pressure. Both structures are stable if an isotropic model is assumed. The second approach is used to investigate the stability of the isotensoid stack for large shape perturbations, taking into account contact between di.erent surfaces. For this structure a distorted, stable configuration is found. It is also found that the volume enclosed by this con.guration is smaller than that enclosed by the undistorted structure.