Science.gov

Sample records for stability analysis model

  1. Stability analysis of an autocatalytic protein model

    NASA Astrophysics Data System (ADS)

    Lee, Julian

    2016-05-01

    A self-regulatory genetic circuit, where a protein acts as a positive regulator of its own production, is known to be the simplest biological network with a positive feedback loop. Although at least three components—DNA, RNA, and the protein—are required to form such a circuit, stability analysis of the fixed points of this self-regulatory circuit has been performed only after reducing the system to a two-component system, either by assuming a fast equilibration of the DNA component or by removing the RNA component. Here, stability of the fixed points of the three-component positive feedback loop is analyzed by obtaining eigenvalues of the full three-dimensional Hessian matrix. In addition to rigorously identifying the stable fixed points and saddle points, detailed information about the system can be obtained, such as the existence of complex eigenvalues near a fixed point.

  2. Math model for analysis of domain patterns stability

    NASA Astrophysics Data System (ADS)

    Áč, Vladimír; Miller, M.

    2006-02-01

    The paper deals with modelling of hysteresis properties of ferromagnetic materials. The simple mathematic model for analysis of domain patterns stability is presented. The domain system is described by using electrical equivalence of magnetic circuits. The results of model properties indicate the opportunity for studying the exchange coupling forces and the coercivity field distribution of elementary hysteresis structure fragments on the ferromagnetic behavior. The opportunity for studying the dynamic processes is shown.

  3. [Analysis of the stability and adaptability of near infrared spectra qualitative analysis model].

    PubMed

    Cao, Wu; Li, Wei-jun; Wang, Ping; Zhang, Li-ping

    2014-06-01

    The stability and adaptability of model of near infrared spectra qualitative analysis were studied. Method of separate modeling can significantly improve the stability and adaptability of model; but its ability of improving adaptability of model is limited. Method of joint modeling can not only improve the adaptability of the model, but also the stability of model, at the same time, compared to separate modeling, the method can shorten the modeling time, reduce the modeling workload; extend the term of validity of model, and improve the modeling efficiency. The experiment of model adaptability shows that, the correct recognition rate of separate modeling method is relatively low, which can not meet the requirements of application, and joint modeling method can reach the correct recognition rate of 90%, and significantly enhances the recognition effect. The experiment of model stability shows that, the identification results of model by joint modeling are better than the model by separate modeling, and has good application value.

  4. Stability Analysis of a Spinning and Precessing Viscoelastic Rotor Model

    NASA Astrophysics Data System (ADS)

    Bose, S.; Nandi, A.; Neogy, S.

    2013-10-01

    The present work deals with stability analysis of a spinning and precessing gyroscopic systems, where the spin axis and precession axis intersect at right angle. The nutation speed is zero, the spin and precession speeds are considered to be uniform and the precession axis is located at one end of the shaft. The properties of the shaft material correspond to a four element type linear viscoelastic model. The shaft disk system is assumed to be axially and torsionally stiff. For analysis, a simple rotor has been considered with the rigid disk placed on a massless viscoelastic shaft at specified locations from one end of the shaft. The governing parametric equations for such a rotor are derived in the simultaneously spinning and precessing frame. A stability analysis is performed considering both two- and four-degree of freedom models. The stability borderlines are computed considering spin and precession speeds as parameters. It is shown that though viscoelastic material may appear attractive for its large material damping, for gyroscopic systems it may lead to unstable vibrations.

  5. Stability analysis for extended models of gap solitary waves

    PubMed

    Schollmann; Mayer

    2000-05-01

    A numerical linear stability analysis has been carried out for stationary spatially localized solutions of several systems of coupled nonlinear partial differential equations (PDE's) with two and more complex variables. These coupled PDE's have recently been discussed in the literature, mostly in the context of physical systems with a frequency gap in the dispersion relation of their linear excitations, and they are extensions of the Mills-Trullinger gap soliton model. Translational and oscillatory instabilities are identified, and their associated growth rates are computed as functions of certain parameters characterizing the solitary waves.

  6. A Coupled Aeroelastic Model for Launch Vehicle Stability Analysis

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.

    2010-01-01

    A technique for incorporating distributed aerodynamic normal forces and aeroelastic coupling effects into a stability analysis model of a launch vehicle is presented. The formulation augments the linear state-space launch vehicle plant dynamics that are compactly derived as a system of coupled linear differential equations representing small angular and translational perturbations of the rigid body, nozzle, and sloshing propellant coupled with normal vibration of a set of orthogonal modes. The interaction of generalized forces due to aeroelastic coupling and thrust can be expressed as a set of augmenting non-diagonal stiffness and damping matrices in modal coordinates with no penalty on system order. While the eigenvalues of the structural response in the presence of thrust and aeroelastic forcing can be predicted at a given flight condition independent of the remaining degrees of freedom, the coupled model provides confidence in closed-loop stability in the presence of rigid-body, slosh, and actuator dynamics. Simulation results are presented that characterize the coupled dynamic response of the Ares I launch vehicle and the impact of aeroelasticity on control system stability margins.

  7. Stability analysis of a nonlinear vehicle model in plane motion using the concept of Lyapunov exponents

    NASA Astrophysics Data System (ADS)

    Sadri, Sobhan; Wu, Christine

    2013-06-01

    For the first time, this paper investigates the application of the concept of Lyapunov exponents to the stability analysis of the nonlinear vehicle model in plane motion with two degrees of freedom. The nonlinearity of the model comes from the third-order polynomial expression between the lateral forces on the tyres and the tyre slip angles. Comprehensive studies on both system and structural stability analyses of the vehicle model are presented. The system stability analysis includes the stability, lateral stability region, and effects of driving conditions on the lateral stability region of the vehicle model in the state space. In the structural stability analysis, the ranges of driving conditions in which the stability of the vehicle model is guaranteed are given. Moreover, through examples, the largest Lyapunov exponent is suggested as an indicator of the convergence rate in which the disturbed vehicle model returns to its stable fixed point.

  8. Stability analysis of the Euler discretization for SIR epidemic model

    SciTech Connect

    Suryanto, Agus

    2014-06-19

    In this paper we consider a discrete SIR epidemic model obtained by the Euler method. For that discrete model, existence of disease free equilibrium and endemic equilibrium is established. Sufficient conditions on the local asymptotical stability of both disease free equilibrium and endemic equilibrium are also derived. It is found that the local asymptotical stability of the existing equilibrium is achieved only for a small time step size h. If h is further increased and passes the critical value, then both equilibriums will lose their stability. Our numerical simulations show that a complex dynamical behavior such as bifurcation or chaos phenomenon will appear for relatively large h. Both analytical and numerical results show that the discrete SIR model has a richer dynamical behavior than its continuous counterpart.

  9. Stability analysis of Turing patterns generated by the Schnakenberg model.

    PubMed

    Iron, David; Wei, Juncheng; Winter, Matthias

    2004-10-01

    We consider the following Schnakenberg model on the interval (-1,1): [formula see text] where D1 > 0, D2 > 0, B > 0. We rigorously show that the stability of symmetric N-peaked steady-states can be reduced to computing two matrices in terms of the diffusion coefficients D1, D2 and the number N of peaks. These matrices and their spectra are calculated explicitly and sharp conditions for linear stability are derived. The results are verified by some numerical simulations.

  10. Stability analysis of traffic flow with extended CACC control models

    NASA Astrophysics Data System (ADS)

    Ya-Zhou, Zheng; Rong-Jun, Cheng; Siu-Ming, Lo; Hong-Xia, Ge

    2016-06-01

    To further investigate car-following behaviors in the cooperative adaptive cruise control (CACC) strategy, a comprehensive control system which can handle three traffic conditions to guarantee driving efficiency and safety is designed by using three CACC models. In this control system, some vital comprehensive information, such as multiple preceding cars’ speed differences and headway, variable safety distance (VSD) and time-delay effect on the traffic current and the jamming transition have been investigated via analytical or numerical methods. Local and string stability criterion for the velocity control (VC) model and gap control (GC) model are derived via linear stability theory. Numerical simulations are conducted to study the performance of the simulated traffic flow. The simulation results show that the VC model and GC model can improve driving efficiency and suppress traffic congestion. Project supported by the National Natural Science Foundation of China (Grant Nos. 71571107 and 11302110). The Scientific Research Fund of Zhejiang Province, China (Grant Nos. LY15A020007, LY15E080013, and LY16G010003). The Natural Science Foundation of Ningbo City (Grant Nos. 2014A610030 and 2015A610299), the Fund from the Government of the Hong Kong Administrative Region, China (Grant No. CityU11209614), and the K C Wong Magna Fund in Ningbo University, China.

  11. Stability Analysis of a Model for Foreign Body Fibrotic Reactions

    PubMed Central

    Ibraguimov, A.; Owens, L.; Su, J.; Tang, L.

    2012-01-01

    Implanted medical devices often trigger immunological and inflammatory reactions from surrounding tissues. The foreign body-mediated tissue responses may result in varying degrees of fibrotic tissue formation. There is an intensive research interest in the area of wound healing modeling, and quantitative methods are proposed to systematically study the behavior of this complex system of multiple cells, proteins, and enzymes. This paper introduces a kinetics-based model for analyzing reactions of various cells/proteins and biochemical processes as well as their transient behavior during the implant healing in 2-dimensional space. In particular, we provide a detailed modeling study of different roles of macrophages (MΦ) and their effects on fibrotic reactions. The main mathematical result indicates that the stability of the inflamed steady state depends primarily on the reaction dynamics of the system. However, if the said equilibrium is unstable by its reaction-only system, the spatial diffusion and chemotactic effects can help to stabilize when the model is dominated by classical and regulatory macrophages over the inflammatory macrophages. The mathematical proof and counter examples are given for these conclusions. PMID:23193430

  12. Algebraic geometrization of the Kuramoto model: Equilibria and stability analysis

    NASA Astrophysics Data System (ADS)

    Mehta, Dhagash; Daleo, Noah S.; Dörfler, Florian; Hauenstein, Jonathan D.

    2015-05-01

    Finding equilibria of the finite size Kuramoto model amounts to solving a nonlinear system of equations, which is an important yet challenging problem. We translate this into an algebraic geometry problem and use numerical methods to find all of the equilibria for various choices of coupling constants K, natural frequencies, and on different graphs. We note that for even modest sizes (N ˜ 10-20), the number of equilibria is already more than 100 000. We analyze the stability of each computed equilibrium as well as the configuration of angles. Our exploration of the equilibrium landscape leads to unexpected and possibly surprising results including non-monotonicity in the number of equilibria, a predictable pattern in the indices of equilibria, counter-examples to conjectures, multi-stable equilibrium landscapes, scenarios with only unstable equilibria, and multiple distinct extrema in the stable equilibrium distribution as a function of the number of cycles in the graph.

  13. Stability Analysis of Legged Locomotion Models by Symmetry-Factored Return Maps

    DTIC Science & Technology

    2003-01-01

    Stability Analysis of Legged Locomotion Models by Symmetry-Factored Return Maps Richard Altendorfer, Daniel E. Koditschek Dept. of Electrical...University, Princeton, NJ 08544, USA September 8, 2003 Abstract We present a new stability analysis for hybrid legged locomotion systems based on the...symmetric” fac- torization of return maps. We apply this analysis to 2 and 3 degree of freedom (DOF) models of the Spring Loaded Inverted Pendulum

  14. Analytical modeling of the input admittance of an electric drive for stability analysis purposes

    NASA Astrophysics Data System (ADS)

    Girinon, S.; Baumann, C.; Piquet, H.; Roux, N.

    2009-07-01

    Embedded electric HVDC distribution network are facing difficult issues on quality and stability concerns. In order to help to resolve those problems, this paper proposes to develop an analytical model of an electric drive. This self-contained model includes an inverter, its regulation loops and the PMSM. After comparing the model with its equivalent (abc) full model, the study focuses on frequency analysis. The association with an input filter helps in expressing stability of the whole assembly by means of Routh-Hurtwitz criterion.

  15. Stability analysis of predator-prey model on the case of aerosol-cloud-precipitation interactions

    NASA Astrophysics Data System (ADS)

    Sulistyowati, Rita; Kurniadi, Rizal; Srigutomo, Wahyu

    2015-09-01

    A preliminary study has been performed on the analysis of the stability of predator-prey models in the case of aerosol-cloud-precipitation interactions which initiated by Koren-Feingold. The model consists of two coupled non- linear differential equations describing the development of a population of cloud drop concentration and cloud depth for precipitation. Stability analysis of the models was conducted to understand the stability behavior of systems interactions. In this paper, the analysis focused on the model without delay. The first step was done by determining the equilibrium point of the model equations which yielded 1 non-trivial equilibrium point and 4 trivial equilibrium point. Nontrivial equilibrium point (0,0) associated with the steady state or the absence of precipitation while the non-trivial equilibrium point shows the oscillation behavior in the formation of precipitation. The next step is linearizing the equation around the equilibrium point and calculating of eigenvalues of Jacobian matrix. Evaluation of the eigen values of characteristic equation determined the type of stability. There are saddle node, star point, unstable node, stable node and center. The results of numerical computations was simulated in the form of phase portrait to support the theoretical calculation. Phase portraits show the characteristic of populations growth of cloud depth and drop cloud. In the next research, this analysis will compared to delay model to determine the effect of time delay on the equilibrium point of the system.

  16. Stability analysis of predator-prey model on the case of aerosol-cloud-precipitation interactions

    NASA Astrophysics Data System (ADS)

    Sulistyowati, Rita; Kurniadi, Rizal; Srigutomo, Wahyu

    2015-09-01

    A preliminary study has been performed on the analysis of the stability of predator-prey models in the case of aerosol-cloud-precipitation interactions which initiated by Koren-Feingold. The model consists of two coupled non-linear differential equations describing the development of a population of cloud drop concentration and cloud depth for precipitation. Stability analysis of the models was conducted to understand the stability behavior of systems interactions. In this paper, the analysis focused on the model without delay. The first step was done by determining the equilibrium point of the model equations which yielded 1 non-trivial equilibrium point and 4 trivial equilibrium point. Nontrivial equilibrium point (0,0) associated with the steady state or the absence of precipitation while the non-trivial equilibrium point shows the oscillation behavior in the formation of precipitation. The next step is linearizing the equation around the equilibrium point and calculating of eigenvalues of Jacobian matrix. Evaluation of the eigen values of characteristic equation determined the type of stability. There are saddle node, star point, unstable node, stable node and center. The results of numerical computations was simulated in the form of phase portrait to support the theoretical calculation. Phase portraits show the characteristic of populations growth of cloud depth and drop cloud. In the next research, this analysis will compared to delay model to determine the effect of time delay on the equilibrium point of the system.

  17. Sensitivity analysis and calibration of a coupled hydrological/slope stability model (TRIGRS)

    NASA Astrophysics Data System (ADS)

    Zieher, Thomas; Rutzinger, Martin; Perzl, Frank; Meißl, Gertraud

    2014-05-01

    Shallow landslides potentially endanger human living in mountain regions worldwide. In order to prevent impacts of such gravitational mass movements it is necessary to fully understand the processes involved. Shallow landslides are usually understood as gravitational mass movements of the translational, slope-parallel type comprising of a mixture of earth and debris with a maximum depth of 1-2 m. Depending on the degree of saturation the initial sliding can turn into a flow-like movement. Numerous approaches for modelling shallow landslide susceptibility with different degrees of complexity exist. Regardless of the modelling approach it is crucial to provide sufficient field data, mainly on regolith characteristics. As for the TRIGRS (Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability) model, numerous hydraulic and geotechnical parameters have to be known area-wide. Hence, as spatial interpolation of these input parameters is generally problematic in terms of accuracy, calibrating the model accordingly is a crucial step before conducting any simulations. This study presents a sensitivity analysis and the calibration of the coupled hydrological/slope stability model TRIGRS for a study area in Vorarlberg (Austria). The results of the sensitivity analysis show that in case of the stability model cohesion is the driving parameter while for the hydrological model it is the initial depth of the water table and the saturated hydraulic conductivity. The calibration of the stability model was carried out using a landslide inventory assuming completely saturated conditions. The use of geotechnical parameters extracted from literature for mapped soil types generally lead to unlikely stable conditions. In order to simulate mapped landslide initial areas correctly values for soil cohesion had to be adapted. However, the calibration of the stability model generally supports the assumption of saturated conditions. In absence of meteorological or hydrological

  18. Analytical model and stability analysis of the leading edge spar of a passively morphing ornithopter wing.

    PubMed

    Wissa, Aimy; Calogero, Joseph; Wereley, Norman; Hubbard, James E; Frecker, Mary

    2015-10-26

    This paper presents the stability analysis of the leading edge spar of a flapping wing unmanned air vehicle with a compliant spine inserted in it. The compliant spine is a mechanism that was designed to be flexible during the upstroke and stiff during the downstroke. Inserting a variable stiffness mechanism into the leading edge spar affects its structural stability. The model for the spar-spine system was formulated in terms of the well-known Mathieu's equation, in which the compliant spine was modeled as a torsional spring with a sinusoidal stiffness function. Experimental data was used to validate the model and results show agreement within 11%. The structural stability of the leading edge spar-spine system was determined analytically and graphically using a phase plane plot and Strutt diagrams. Lastly, a torsional viscous damper was added to the leading edge spar-spine model to investigate the effect of damping on stability. Results show that for the un-damped case, the leading edge spar-spine response was stable and bounded; however, there were areas of instability that appear for a range of spine upstroke and downstroke stiffnesses. Results also show that there exist a damping ratio between 0.2 and 0.5, for which the leading edge spar-spine system was stable for all values of spine upstroke and downstroke stiffnesses.

  19. Analysis and test evaluation of the dynamic response and stability of three advanced turboprop models

    NASA Technical Reports Server (NTRS)

    Bansal, P. N.; Arseneaux, P. J.; Smith, A. F.; Turnberg, J. E.; Brooks, B. M.

    1985-01-01

    Results of dynamic response and stability wind tunnel tests of three 62.2 cm (24.5 in) diameter models of the Prop-Fan, advanced turboprop, are presented. Measurements of dynamic response were made with the rotors mounted on an isolated nacelle, with varying tilt for nonuniform inflow. One model was also tested using a semi-span wing and fuselage configuration for response to realistic aircraft inflow. Stability tests were performed using tunnel turbulence or a nitrogen jet for excitation. Measurements are compared with predictions made using beam analysis methods for the model with straight blades, and finite element analysis methods for the models with swept blades. Correlations between measured and predicted rotating blade natural frequencies for all the models are very good. The IP dynamic response of the straight blade model is reasonably well predicted. The IP response of the swept blades is underpredicted and the wing induced response of the straight blade is overpredicted. Two models did not flutter, as predicted. One swept blade model encountered an instability at a higher RPM than predicted, showing predictions to be conservative.

  20. Aeromechanical stability analysis of a multirotor vehicle model representing a hybrid heavy lift airship (HHLA)

    NASA Technical Reports Server (NTRS)

    Venkatesan, C.; Friedmann, P. P.

    1984-01-01

    Hybrid Heavy Lift Airship (HHLA) is a proposed candidate vehicle aimed at providing heavy lift capability at low cost. This vehicle consists of a buoyant envelope attached to a supporting structure to which four rotor systems, taken from existing helicopters are attached. Nonlinear equations of motion capable of modelling the dynamics of this coupled multi-rotor/support frame/vehicle system have been developed. Using these equations of motion the aeroelastic and aeromechanical stability analysis is performed aimed at identifying potential instabilities which could occur for this type of vehicle. The coupling between various blade, supporting structure and rigid body modes is identified. Furthermore, the effects of changes in buoyancy ratio (Buoyant lift/total weight) on the dynamic characteristics of the vehicle are studied. The dynamic effects found are of considerable importance for the design of such vehicles. The analytical model developed is also useful for studying the aeromechanical stability of single rotor and tandem rotor coupled rotor/fuselage systems.

  1. Stability analysis for a delay differential equations model of a hydraulic turbine speed governor

    NASA Astrophysics Data System (ADS)

    Halanay, Andrei; Safta, Carmen A.; Dragoi, Constantin; Piraianu, Vlad F.

    2017-01-01

    The paper aims to study the dynamic behavior of a speed governor for a hydraulic turbine using a mathematical model. The nonlinear mathematical model proposed consists in a system of delay differential equations (DDE) to be compared with already established mathematical models of ordinary differential equations (ODE). A new kind of nonlinearity is introduced as a time delay. The delays can characterize different running conditions of the speed governor. For example, it is considered that spool displacement of hydraulic amplifier might be blocked due to oil impurities in the oil supply system and so the hydraulic amplifier has a time delay in comparison to the time control. Numerical simulations are presented in a comparative manner. A stability analysis of the hydraulic control system is performed, too. Conclusions of the dynamic behavior using the DDE model of a hydraulic turbine speed governor are useful in modeling and controlling hydropower plants.

  2. Stability analysis of a thermocapillary spreading film with slip-model.

    PubMed

    Tiwari, Naveen

    2014-11-01

    Thin liquid films spreading on a solid substrate due to thermocapillary stresses are susceptible to rivulet instability at the advancing solid-liquid-vapor contact line. The unstable front is related to the presence of a capillary ridge at the contact line. In this work, the dynamics and stability of thermocapillary-driven films are analyzed using a detailed slip-model to alleviate the stress singularity at the moving contact line. The slip-model is well suited to model partially wetting fluids due to the possibility of defining the contact angle explicitly. The effect of motion of the contact line on the dynamic contact angle and subsequently on the dynamics and stability of the film is explored. The apparent contact angle is a result of the static contact angle and motion of the contact line. It is shown that one can obtain exactly the same base profile with and without taking into account the effect of motion on the contact angle with suitable change of parameters but the linear stability of the two profiles is different. Further the transient growth is found to be somewhat different but small for both configurations. Analysis of the ε -pseudospectra indicates a highly non-normal system for the case of dynamic contact angle.

  3. Characterizing Feedback Control Mechanisms in Nonlinear Microbial Models of Soil Organic Matter Decomposition by Stability Analysis

    NASA Astrophysics Data System (ADS)

    Georgiou, K.; Tang, J.; Riley, W. J.; Torn, M. S.

    2014-12-01

    Soil organic matter (SOM) decomposition is regulated by biotic and abiotic processes. Feedback interactions between such processes may act to dampen oscillatory responses to perturbations from equilibrium. Indeed, although biological oscillations have been observed in small-scale laboratory incubations, the overlying behavior at the plot-scale exhibits a relatively stable response to disturbances in input rates and temperature. Recent studies have demonstrated the ability of microbial models to capture nonlinear feedbacks in SOM decomposition that linear Century-type models are unable to reproduce, such as soil priming in response to increased carbon input. However, these microbial models often exhibit strong oscillatory behavior that is deemed unrealistic. The inherently nonlinear dynamics of SOM decomposition have important implications for global climate-carbon and carbon-concentration feedbacks. It is therefore imperative to represent these dynamics in Earth System Models (ESMs) by introducing sub-models that accurately represent microbial and abiotic processes. In the present study we explore, both analytically and numerically, four microbe-enabled model structures of varying levels of complexity. The most complex model combines microbial physiology, a non-linear mineral sorption isotherm, and enzyme dynamics. Based on detailed stability analysis of the nonlinear dynamics, we calculate the system modes as functions of model parameters. This dependence provides insight into the source of state oscillations. We find that feedback mechanisms that emerge from careful representation of enzyme and mineral interactions, with parameter values in a prescribed range, are critical for both maintaining system stability and capturing realistic responses to disturbances. Corroborating and expanding upon the results of recent studies, we explain the emergence of oscillatory responses and discuss the appropriate microbe-enabled model structure for inclusion in ESMs.

  4. Evaluating network analysis and agent based modeling for investigating the stability of commercial air carrier schedules

    NASA Astrophysics Data System (ADS)

    Conway, Sheila Ruth

    For a number of years, the United States Federal Government has been formulating the Next Generation Air Transportation System plans for National Airspace System improvement. These improvements attempt to address air transportation holistically, but often address individual improvements in one arena such as ground or in-flight equipment. In fact, air transportation system designers have had only limited success using traditional Operations Research and parametric modeling approaches in their analyses of innovative operations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be deployed with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. The literature suggests that both agent-based models and network analysis techniques may be useful for complex system development and analysis. The purpose of this research is to evaluate these two techniques as applied to analysis of commercial air carrier schedule (route) stability in daily operations, an important component of air transportation. Airline-like routing strategies are used to educe essential elements of applying the method. Two main models are developed, one investigating the network properties of the route structure, the other an Agent-based approach. The two methods are used to predict system properties at a macro-level. These findings are compared to observed route network performance measured by adherence to a schedule to provide validation of the results. Those interested in complex system modeling are provided some indication as to when either or both of the techniques would be applicable. For aviation policy makers, the results point to a toolset capable of providing insight into the system behavior during the formative phases of development and transformation with relatively low investment

  5. Implementation of Bounding Surface Model into ABAQUS and Its Application to Wellbore Stability Analysis

    NASA Astrophysics Data System (ADS)

    Chen, S.; Al-Muntasheri, G.; Abousleiman, Y. N.

    2014-12-01

    The critical state concept based bounding surface model is one of the most widely used elastoplastic constitutive models for geomaterials, attributed mainly to its essential feature of allowing plastic deformation to occur for stress points within the bounding surface and thus the capability to represent the realistic non-recoverable behaviour of soils and rocks observed under the cyclic loading. This paper develops an implicit integration algorithm for the bounding surface model, using the standard return mapping approach (elastic predictor-plastic corrector), to obtain the updated stresses for the given strain increments. The formulation of the constitutive integration requires the derivation of a supplementary differential equation to describe the evolution of a key variable, i.e., the ratio between the image stress and the current stress quantities. It is essentially an extension of the integration scheme presented in an earlier work used for the simple bounding surface version of modified Cam Clay associated with a substantially simplified hardening rule. The integration algorithm for the bounding surface model is implemented into the finite element analysis commercial program, ABAQUS, through the material interface of UMAT (user defined material subroutine), and then used for the analysis of wellbore stability problem. The predictions from the ABAQUS simulations are generally in excellent agreement with the available analytical solutions, thus demonstrating the accuracy and robustness of the proposed integration scheme.

  6. Local slope stability analysis

    NASA Astrophysics Data System (ADS)

    Hattendorf, I.; Hergarten, St.; Neugebauer, H. J.

    Mass movements under the influence of gravity occur as result of diverse disturbing and destabilizing processes, for example of climatic or anthropological origin. The stability of slopes is mainly determined by the geometry of the land-surface and designated slip-horizon. Further contributions are supplied by the pore water pressure, cohesion and friction. All relevant factors have to be integrated in a slope stability model, either by measurements and estimations (like phenomenological laws) or derived from physical equations. As result of stability calculations, it's suitable to introduce an expectation value, the factor-of-safety, for the slip-risk. Here, we present a model based on coupled physical equations to simulate hardly measurable phenomenons, like lateral forces and fluid flow. For the displacements of the soil-matrix we use a modified poroelasticity-equation with a Biot-coupling (Biot 1941) for the water pressure. Latter is described by a generalized Boussinesq equation for saturated-unsaturated porous media (Blendinger 1998). One aim of the calculations is to improve the knowledge about stability-distributions and their temporal variations. This requires the introduction of a local factor-of-safety which is the main difference to common stability models with global stability estimations. The reduction of immediate danger is still the emergent task of the most slope and landslide investigations, but this model is also useful with respect to understand the governing processes of landform evolution.

  7. Stability analysis of a stochastic Gilpin-Ayala model driven by Lévy noise

    NASA Astrophysics Data System (ADS)

    Zhang, Xinhong; Wang, Ke

    2014-05-01

    A stochastic one-dimensional Gilpin-Ayala model driven by Lévy noise is presented in this paper. Firstly, we show that this model has a unique global positive solution under certain conditions. Then sufficient conditions for the almost sure exponential stability and moment exponential stability of the trivial solution are established. Results show that the jump noise can make the trivial solution stable under some conditions. Numerical example is introduced to illustrate the results.

  8. Safe distance car-following model including backward-looking and its stability analysis

    NASA Astrophysics Data System (ADS)

    Yang, Da; Jin, Peter Jing; Pu, Yun; Ran, Bin

    2013-03-01

    The focus of this paper is the car-following behavior including backward-looking, simply called the bi-directional looking car-following behavior. This study is motivated by the potential changes of the physical properties of traffic flow caused by the fast developing intelligent transportation system (ITS), especially the new connected vehicle technology. Existing studies on this topic focused on general motors (GM) models and optimal velocity (OV) models. The safe distance car-following model, Gipps' model, which is more widely used in practice have not drawn too much attention in the bi-directional looking context. This paper explores the property of the bi-directional looking extension of Gipps' safe distance model. The stability condition of the proposed model is derived using the linear stability theory and is verified using numerical simulations. The impacts of the driver and vehicle characteristics appeared in the proposed model on the traffic flow stability are also investigated. It is found that taking into account the backward-looking effect in car-following has three types of effect on traffic flow: stabilizing, destabilizing and producing non-physical phenomenon. This conclusion is more sophisticated than the study results based on the OV bi-directional looking car-following models. Moreover, the drivers who have the smaller reaction time or the larger additional delay and think the other vehicles have larger maximum decelerations can stabilize traffic flow.

  9. The improvement of OPC accuracy and stability by the model parameters' analysis and optimization

    NASA Astrophysics Data System (ADS)

    Chung, No-Young; Choi, Woon-Hyuk; Lee, Sung-Ho; Kim, Sung-Il; Lee, Sun-Yong

    2007-10-01

    The OPC model is very critical in the sub 45nm device because the Critical Dimension Uniformity (CDU) is so tight to meet the device performance and the process window latitude for the production level. The OPC model is generally composed of an optical model and a resist model. Each of them has physical terms to be calculated without any wafer data and empirical terms to be fitted with real wafer data to make the optical modeling and the resist modeling. Empirical terms are usually related to the OPC accuracy, but are likely to be overestimated with the wafer data and so those terms can deteriorate OPC stability in case of being overestimated by a small cost function. Several physical terms have been used with ideal value in the optical property and even weren't be considered because those parameters didn't give a critical impact on the OPC accuracy, but these parameters become necessary to be applied to the OPC modeling at the low k1 process. Currently, real optic parameter instead of ideal optical parameter like the laser bandwidth, source map, pupil polarization including the phase and intensity difference start to be measured and those real measured value are used for the OPC modeling. These measured values can improve the model accuracy and stability. In the other hand these parameters can make the OPC model to overcorrect the process proximity errors without careful handling. The laser bandwidth, source map, pupil polarization, and focus centering for the optical modeling are analyzed and the sample data weight scheme and resist model terms are investigated, too. The image blurring by actual laser bandwidth in the exposure system is modeled and the modeling result shows that the extraction of the 2D patterns is necessary to get a reasonable result due to the 2D patterns' measurement noise in the SEM. The source map data from the exposure machine shows lots of horizontal and vertical intensity difference and this phenomenon must come from the measurement noise

  10. Stability Analysis of Attractor Neural Network Model of Inferior Temporal Cortex —Relationship between Attractor Stability and Learning Order—

    NASA Astrophysics Data System (ADS)

    Tomoyuki Kimoto,; Tatsuya Uezu,; Masato Okada,

    2010-06-01

    Miyashita found that the long-term memory of visual stimuli is stored in the monkey’s inferior temporal cortex and that the temporal correlation in terms of the learning order of visual stimuli is converted into spatial correlation in terms of the firing rate patterns of the neuron group. To explain Miyashita’s findings, Griniasty et al. [Neural Comput. 5 (1993) 1] and Amit et al. [J. Neurosci. 14 (1994) 6435] proposed the attractor neural network model, and the Amit model has been examined only for the stable state acquired by storing memory patterns in a fixed sequence. In the real world, however, the learning order has statistical continuity but it also has randomness, and the stability of the state changes depending on the statistical properties of learning order when memory patterns are stored randomly. In addition, it is preferable for the stable state to become an appropriate attractor that reflects the relationship between memory patterns by the statistical properties of the learning order. In this study, we examined the dependence of the stable state on the statistical properties of the learning order without modifying the Amit model. The stable state was found to change from the correlated attractor to the Hopfield or Mp attractor, which is the mixed state with all memory patterns when the rate of random learning increases. Furthermore, we found that if the statistical properties of the learning order change, the stable state can change to an appropriate attractor reflecting the relationship between memory patterns.

  11. Linearized blade row compression component model. Stability and frequency response analysis of a J85-3 compressor

    NASA Technical Reports Server (NTRS)

    Tesch, W. A.; Moszee, R. H.; Steenken, W. G.

    1976-01-01

    NASA developed stability and frequency response analysis techniques were applied to a dynamic blade row compression component stability model to provide a more economic approach to surge line and frequency response determination than that provided by time-dependent methods. This blade row model was linearized and the Jacobian matrix was formed. The clean-inlet-flow stability characteristics of the compressors of two J85-13 engines were predicted by applying the alternate Routh-Hurwitz stability criterion to the Jacobian matrix. The predicted surge line agreed with the clean-inlet-flow surge line predicted by the time-dependent method to a high degree except for one engine at 94% corrected speed. No satisfactory explanation of this discrepancy was found. The frequency response of the linearized system was determined by evaluating its Laplace transfer function. The results of the linearized-frequency-response analysis agree with the time-dependent results when the time-dependent inlet total-pressure and exit-flow function amplitude boundary conditions are less than 1 percent and 3 percent, respectively. The stability analysis technique was extended to a two-sector parallel compressor model with and without interstage crossflow and predictions were carried out for total-pressure distortion extents of 180 deg, 90 deg, 60 deg, and 30 deg.

  12. Tailings dams stability analysis using numerical modelling of geotechnical and geophysical data

    NASA Astrophysics Data System (ADS)

    Mihai, S.; Zlagnean, M.; Oancea, I.; Petrescu, A.

    2009-04-01

    dam's state of safety. This study considered the SSR (Shear Strength Reduction) technique for slope stability numerical modelling. In the SSR finite element technique, elasto-plastic strength is assumed for dam's materials and shear strengths are progressively reduced until collapse occurs. Numerical modelling was performed on the most critical profile choosed through analysis of geophysical and geotechnical informational volume achieved by insitu or in laboratory tests. Finite element analysis were considered in two situations: first, before geophysical investigations and second considering the whole informational of data achieved. Both situations were analysed in static and pseudo-static conditions. The factor of safety before geophysical investigations is high enough to describe a stable state of stability even for the seismic load. The total displacement distributions were modified by the presence of internal erosional element giving a high state of instability, especially for the pseudo-static case. These analysis using the finite element method prove the importance of structural disturbance elements that may occure inside the dam body produced by internal erosional processes.

  13. Comparison of Standard Wind Turbine Models with Vendor Models for Power System Stability Analysis: Preprint

    SciTech Connect

    Honrubia-Escribano, A.; Gomez Lazaro, E.; Jimenez-Buendia, F.; Muljadi, Eduard

    2016-11-01

    The International Electrotechnical Commission Standard 61400-27-1 was published in February 2015. This standard deals with the development of generic terms and parameters to specify the electrical characteristics of wind turbines. Generic models of very complex technological systems, such as wind turbines, are thus defined based on the four common configurations available in the market. Due to its recent publication, the comparison of the response of generic models with specific vendor models plays a key role in ensuring the widespread use of this standard. This paper compares the response of a specific Gamesa dynamic wind turbine model to the corresponding generic IEC Type III wind turbine model response when the wind turbine is subjected to a three-phase voltage dip. This Type III model represents the doubly-fed induction generator wind turbine, which is not only one of the most commonly sold and installed technologies in the current market but also a complex variable-speed operation implementation. In fact, active and reactive power transients are observed due to the voltage reduction. Special attention is given to the reactive power injection provided by the wind turbine models because it is a requirement of current grid codes. Further, the boundaries of the generic models associated with transient events that cannot be represented exactly are included in the paper.

  14. Stability analysis of nanocones under external pressure and axial compression using a nonlocal shell model

    NASA Astrophysics Data System (ADS)

    Firouz-Abadi, R. D.; Fotouhi, M. M.; Haddadpour, H.

    2012-06-01

    A nonlocal continuum shell model is developed to study the stability of nanocones under combined loading: external pressure and compression force. The nonlinear governing equations of motion of nanocone are obtained using Hamilton's principle and the external loads are considered as prestress. Based on Eringen's nonlocal elasticity theory the small-scale effect is accounted in the governing equations of motion. To obtain the critical loads, the equations are solved using Galerkin technique and the effect of small-scale parameter and geometry on the stability of nanocone is studied.

  15. An improved CAMRAD model for aeroelastic stability analysis of the XV-15 with advanced technology blades

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.

    1993-01-01

    In pursuit of higher performance, the XV-15 Tiltrotor Research Aircraft was modified by the installation of new composite rotor blades. Initial flights with the Advanced Technology Blades (ATB's) revealed excessive rotor control loads that were traced to a dynamic mismatch between the blades and the aircraft control system. The analytical models of both the blades and the mechanical controls were extensively revised for use by the CAMRAD computer program to better predict aeroelastic stability and loads. This report documents the most important revisions and discusses their effects on aeroelastic stability predictions for airplane-mode flight. The ATB's may be flown in several different configurations for research, including changes in blade sweep and tip twist. The effects on stability of 1 deg and 0 deg sweep are illustrated, as are those of twisted and zero-twist tips. This report also discusses the effects of stiffening the rotor control system, which was done by locking out lateral cyclic swashplate motion with shims.

  16. Stability of binary and ternary model oil-field particle suspensions: a multivariate analysis approach.

    PubMed

    Dudásová, Dorota; Rune Flåten, Geir; Sjöblom, Johan; Øye, Gisle

    2009-09-15

    The transmission profiles of one- to three-component particle suspension mixtures were analyzed by multivariate methods such as principal component analysis (PCA) and partial least-squares regression (PLS). The particles mimic the solids present in oil-field-produced water. Kaolin and silica represent solids of reservoir origin, whereas FeS is the product of bacterial metabolic activities, and Fe(3)O(4) corrosion product (e.g., from pipelines). All particles were coated with crude oil surface active components to imitate particles in real systems. The effects of different variables (concentration, temperature, and coating) on the suspension stability were studied with Turbiscan LAb(Expert). The transmission profiles over 75 min represent the overall water quality, while the transmission during the first 15.5 min gives information for suspension behavior during a representative time period for the hold time in the separator. The behavior of the mixed particle suspensions was compared to that of the single particle suspensions and models describing the systems were built. The findings are summarized as follows: silica seems to dominate the mixture properties in the binary suspensions toward enhanced separation. For 75 min, temperature and concentration are the most significant, while for 15.5 min, concentration is the only significant variable. Models for prediction of transmission spectra from run parameters as well as particle type from transmission profiles (inverse calibration) give a reasonable description of the relationships. In ternary particle mixtures, silica is not dominant and for 75 min, the significant variables for mixture (temperature and coating) are more similar to single kaolin and FeS/Fe(3)O(4). On the other hand, for 15.5 min, the coating is the most significant and this is similar to one for silica (at 15.5 min). The model for prediction of transmission spectra from run parameters gives good estimates of the transmission profiles. Although the

  17. Linear stability analysis of first-order delayed car-following models on a ring.

    PubMed

    Lassarre, Sylvain; Roussignol, Michel; Tordeux, Antoine

    2012-09-01

    The evolution of a line of vehicles on a ring is modeled by means of first-order car-following models. Three generic models describe the speed of a vehicle as a function of the spacing ahead and the speed of the predecessor. The first model is a basic one with no delay. The second is a delayed car-following model with a strictly positive parameter for the driver and vehicle reaction time. The last model includes a reaction time parameter with an anticipation process by which the delayed position of the predecessor is estimated. Explicit conditions for the linear stability of homogeneous configurations are calculated for each model. Two methods of calculus are compared: an exact one via Hopf bifurcations and an approximation by second-order models. The conditions describe stable areas for the parameters of the models that we interpret. The results notably show that the impact of the reaction time on the stability can be palliated by the anticipation process.

  18. Stability analysis, modeling, simulation and experimental testing of an EMS Maglev system with structural flexibility

    NASA Astrophysics Data System (ADS)

    Hanasoge, Aravind M.

    Vehicle-guideway interaction studies of Magnetically Levitated (Maglev) vehicles indicate that structural flexibility can adversely affect the overall stability and performance of such systems. This is one of the reasons why guideways are generally made very rigid. This in turn leads to increased cost of the overall system since guideway construction forms a significant portion of the overall cost. In this dissertation, the influence of structural flexibility on the stability of Electromagnetic Suspension (EMS) Maglev systems is studied. It is shown how inherently unstable and flexible structure EMS Maglev systems can achieve guaranteed stability by using collocated actuators and sensors, along with de-centralized Proportional plus Derivative (PD) controllers. These results are valid even in the presence of Track/Guideway flexibility. A detailed dynamic model is developed for the EMS Maglev demonstration system (Test Bogie) currently under research and development at Old Dominion University (ODU). This model incorporates structural dynamics with flexible modes of vibration, non-linear electrodynamics, feedback controllers, discrete time implementation, noise filters and disturbance inputs. This model is validated via real time experimental testing. The model thus validated is used for simulation case studies involving levitation and lateral disturbance, lateral control, and centralized control.

  19. The beam delivery modeling and error sources analysis of beam stabilization system for lithography

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Huang, Lihua; Hou, Liying; He, Guojun; Ren, Bingqiang; Zeng, Aijun; Huang, Huijie

    2013-12-01

    Beam stabilization system is one of the most important units for lithography, which can accomplish displacement and pointing detection and control and includes beam measurement unit(BMU) and beam steering unit(BSU). Our group has set up a beam stabilization system and verified preliminarily beam stabilization algorithm of precise control beam position and angle. In the article, we establish beam delivery mathematic model and analyze the system inherent error. This shows that the reason why image rotation effect arises at the output plane of beam stabilization is the fast steering mirror (FSM) rotation of BSU in the process of beam stabilization. Two FSMs rotation around 45o axis of FSM make the most contribution to image rotation which rotates 1.414 mrad as two FSMs rotation angle difference changes 1 mrad. It is found that error sources include three key points: FSM accuracy; measurement noise and beam translation by passing through of beam splitters changing as the ambient temperature changing. FSM accuracy leads to the maximum 13.2μm displacement error and 24.49μrad angle error. Measurement inaccuracy as a result of 5μm measurement noise results in the maximum 0.126mm displacement error and 57.2μrad angle error. Beam translation errors can be negligible if temperature is unchanged. We have achieved beam stability of about 15.5μrad for angle and 28μm for displacement (both 1σ) after correcting 2mm initial displacement deviation and 5mrad initial angle deviation with regard to the system rebuilt due to practical requirements.

  20. Chemical analysis of the superatom model for sulfur-stabilized gold nanoparticles.

    PubMed

    Reimers, Jeffrey R; Wang, Yun; Cankurtaran, Burak O; Ford, Michael J

    2010-06-23

    The superatom model for nanoparticle structure is shown to be inadequate for the prediction of the thermodynamic stability of gold nanoparticles. The observed large HOMO-LUMO gaps for stable nanoparticles predicted by this model are, for sulfur-stabilized gold nanoparticles, attributed to covalent interactions of the metal with thiyl adsorbate radicals rather than ionic interactions with thiolate adsorbate ions, as is commonly presumed. In particular, gold adatoms in the stabilizing layer are shown to be of Au(0) nature, subtle but significantly different from the atoms of the gold core owing to the variations in the proportion of gold-gold and gold-sulfur links that form. These interactions explain the success of the superatom model in describing the electronic structure of both known and informatory nanoparticle compositions. Nanoparticle reaction energies are, however, found not to correlate with the completion of superatom shells. Instead, local structural effects are found to dominate the chemistry and in particular the significantly different chemical properties of gold nanoparticle and bulk surfaces. These conclusions are drawn from density-functional-theory calculations for the Au(102)(p-mercaptobenzoic acid)(44) nanoparticle based on the X-ray structure (Jadzinsky, P. D.; et al. Science 2007, 318, 430), as well calculations for the related Au(102)(S(*)-CH(3))(44) nanoparticle, for the inner gold-cluster cores, for partially and overly reacted cores, and for Au(111) surface adsorbates.

  1. Stability and Hopf Bifurcation Analysis in Hindmarsh-Rose Neuron Model with Multiple Time Delays

    NASA Astrophysics Data System (ADS)

    Hu, Dongpo; Cao, Hongjun

    In this paper, the dynamical behaviors of a single Hindmarsh-Rose neuron model with multiple time delays are investigated. By linearizing the system at equilibria and analyzing the associated characteristic equation, the conditions for local stability and the existence of local Hopf bifurcation are obtained. To discuss the properties of Hopf bifurcation, we derive explicit formulas to determine the direction of Hopf bifurcation and the stability of bifurcated periodic solutions occurring through Hopf bifurcation. The qualitative analyses have demonstrated that the values of multiple time delays can affect the stability of equilibrium and play an important role in determining the properties of Hopf bifurcation. Some numerical simulations are given for confirming the qualitative results. Numerical simulations on the effect of delays show that the delays have different scales when the two delay values are not equal. The physiological basis is most likely that Hindmarsh-Rose neuron model has two different time scales. Finally, the bifurcation diagrams of inter-spike intervals of the single Hindmarsh-Rose neuron model are presented. These bifurcation diagrams show the existence of complex bifurcation structures and further indicate that the multiple time delays are very important parameters in determining the dynamical behaviors of the single neuron. Therefore, these results in this paper could be helpful for further understanding the role of multiple time delays in the information transmission and processing of a single neuron.

  2. Variational formulation and stability analysis of a three dimensional superelastic model for shape memory alloys

    NASA Astrophysics Data System (ADS)

    Alessi, Roberto; Pham, Kim

    2016-02-01

    This paper presents a variational framework for the three-dimensional macroscopic modelling of superelastic shape memory alloys in an isothermal setting. Phase transformation is accounted through a unique second order tensorial internal variable, acting as the transformation strain. Postulating the total strain energy density as the sum of a free energy and a dissipated energy, the model depends on two material scalar functions of the norm of the transformation strain and a material scalar constant. Appropriate calibration of these material functions allows to render a wide range of constitutive behaviours including stress-softening and stress-hardening. The quasi-static evolution problem of a domain is formulated in terms of two physical principles based on the total energy of the system: a stability criterion, which selects the local minima of the total energy, and an energy balance condition, which ensures the consistency of the evolution of the total energy with respect to the external loadings. The local phase transformation laws in terms of Kuhn-Tucker relations are deduced from the first-order stability condition and the energy balance condition. The response of the model is illustrated with a numerical traction-torsion test performed on a thin-walled cylinder. Evolutions of homogeneous states are given for proportional and non-proportional loadings. Influence of the stress-hardening/softening properties on the evolution of the transformation domain is emphasized. Finally, in view of an identification process, the issue of stability of homogeneous states in a multi-dimensional setting is answered based on the study of second-order derivative of the total energy. Explicit necessary and sufficient conditions of stability are provided.

  3. Stability analysis of a model gene network links aging, stress resistance, and negligible senescence

    PubMed Central

    Kogan, Valeria; Molodtsov, Ivan; Menshikov, Leonid I.; Reis, Robert J. Shmookler; Fedichev, Peter

    2015-01-01

    Several animal species are considered to exhibit what is called negligible senescence, i.e. they do not show signs of functional decline or any increase of mortality with age. Recent studies in naked mole rat and long-lived sea urchins showed that these species do not alter their gene-expression profiles with age as much as other organisms do. This is consistent with exceptional endurance of naked mole rat tissues to various genotoxic stresses. We conjectured, therefore, that the lifelong transcriptional stability of an organism may be a key determinant of longevity. We analyzed the stability of a simple genetic-network model and found that under most common circumstances, such a gene network is inherently unstable. Over a time it undergoes an exponential accumulation of gene-regulation deviations leading to death. However, should the repair systems be sufficiently effective, the gene network can stabilize so that gene damage remains constrained along with mortality of the organism. We investigate the relationship between stress-resistance and aging and suggest that the unstable regime may provide a mathematical basis for the Gompertz “law” of aging in many species. At the same time, this model accounts for the apparently age-independent mortality observed in some exceptionally long-lived animals. PMID:26316217

  4. Stability analysis of ecomorphodynamic equations

    NASA Astrophysics Data System (ADS)

    Bärenbold, F.; Crouzy, B.; Perona, P.

    2016-02-01

    In order to shed light on the influence of riverbed vegetation on river morphodynamics, we perform a linear stability analysis on a minimal model of vegetation dynamics coupled with classical one- and two-dimensional Saint-Venant-Exner equations of morphodynamics. Vegetation is modeled as a density field of rigid, nonsubmerged cylinders and affects flow via a roughness change. Furthermore, vegetation is assumed to develop following a logistic dependence and may be uprooted by flow. First, we perform the stability analysis of the reduced one-dimensional framework. As a result of the competitive interaction between vegetation growth and removal through uprooting, we find a domain in the parameter space where originally straight rivers are unstable toward periodic longitudinal patterns. For realistic values of the sediment transport parameter, the dominant longitudinal wavelength is determined by the parameters of the vegetation model. Bed topography is found to adjust to the spatial pattern fixed by vegetation. Subsequently, the stability analysis is repeated for the two-dimensional framework, where the system may evolve toward alternate or multiple bars. On a fixed bed, we find instability toward alternate bars due to flow-vegetation interaction, but no multiple bars. Both alternate and multiple bars are present on a movable, vegetated bed. Finally, we find that the addition of vegetation to a previously unvegetated riverbed favors instability toward alternate bars and thus the development of a single course rather than braiding.

  5. Comprehensive analysis of bearingless rotors - Model development and experimental correlation of modes, response, trim and stability

    NASA Technical Reports Server (NTRS)

    Jambunathan, V.; Murthy, V. R.

    1993-01-01

    A generic mathematical model that is capable of accurately modeling the multiple load path bearingless rotor blade is developed. A comprehensive, finite element based solution for the natural vibration of the rotor blade is developed. An iterative scheme based on harmonic balance is used to evaluate the nonlinear response of the rotor to control inputs and a Newton-Raphson procedure is employed to evaluate the trim of rotorcraft. Linearized perturbation model of the nonlinear system are presented. The model is validated by comparing with existing whirl tower, wind tunnel and flight test results of BMR/BO-105 helicopter. Frequencies of two bearingless rotor blades compare well with results from experiments. Nonlinear response and trim results are presented for the bearingless BMR/BO-105 rotor. Aeroelastic stability in forward flight, evaluated using floquet theory agrees with test data in general.

  6. A Generalized Stability Analysis of the AMOC in Earth System Models: Implication for Decadal Variability and Abrupt Climate Change

    SciTech Connect

    Fedorov, Alexey V.

    2015-01-14

    The central goal of this research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) as related to climate variability and abrupt climate change within a hierarchy of climate models ranging from realistic ocean models to comprehensive Earth system models. Generalized Stability Analysis, a method that quantifies the transient and asymptotic growth of perturbations in the system, is one of the main approaches used throughout this project. The topics we have explored range from physical mechanisms that control AMOC variability to the factors that determine AMOC predictability in the Earth system models, to the stability and variability of the AMOC in past climates.

  7. A simplified spatial model for BWR stability

    SciTech Connect

    Berman, Y.; Lederer, Y.; Meron, E.

    2012-07-01

    A spatial reduced order model for the study of BWR stability, based on the phenomenological model of March-Leuba et al., is presented. As one dimensional spatial dependence of the neutron flux, fuel temperature and void fraction is introduced, it is possible to describe both global and regional oscillations of the reactor power. Both linear stability analysis and numerical analysis were applied in order to describe the parameters which govern the model stability. The results were found qualitatively similar to past results. Doppler reactivity feedback was found essential for the explanation of the different regions of the flow-power stability map. (authors)

  8. The stability of the extended model of hypothalamic-pituitary-adrenal axis examined by stoichiometric network analysis

    NASA Astrophysics Data System (ADS)

    Marković, V. M.; Čupić, Ž.; Ivanović, A.; Kolar-Anić, Lj.

    2011-12-01

    Stoichiometric network analysis (SNA) represents a powerful mathematical tool for stability analysis of complex stoichiometric networks. Recently, the important improvement of the method has been made, according to which instability relations can be entirely expressed via reaction rates, instead of thus far used, in general case undefined, current rates. Such an improved SNA methodology was applied to the determination of exact instability conditions of the extended model of the hypothalamic-pituitary-adrenal (HPA) axis, a neuroendocrinological system, whose hormone concentrations exert complex oscillatory evolution. For emergence of oscillations, the Hopf bifurcation condition was utilized. Instability relations predicted by SNA showed good correlation with numerical simulation data of the HPA axis model.

  9. CFD Analysis of the Runaway Stability of a Model Pump-Turbine

    NASA Astrophysics Data System (ADS)

    Xia, L. S.; Cheng, Y. G.; You, J. F.; Jiang, Y. Q.

    2016-11-01

    The relations between the runaway stability characteristics and the flow patterns inside the runner of pump-turbine are supposed to be close and should be studied. The runaway processes of a model pump-turbine at four guide-vane openings (GVOs) were simulated by the three-dimensional computational fluid dynamics. The results show that the runaway stability characteristics for the pump-turbine are different at different GVOs. For the small GVOs, the turbine characteristic trajectory undergoes damped oscillations; however, for large GVOs, the turbine characteristic trajectory settles into an un-damping oscillation. The evolution features of the reverse flow vortex structures (RFVS) at the runner inlet during the runaway oscillations have distinct patterns between the small and large GVOs. For small GVOs, the RFVSs only locate at the mid-span; however, for the large GVOs, the location of the RFVSs switches back and forth between the mid-span section and the hub side when the turbine passes in and out the turbine braking mode. The changes of RFVS at the runner inlet dominate the energy transfer among the hydraulic, mechanical and dissipation energies during the transient processes, and therefore affect the stability of hydraulic system.

  10. Stability Analysis of SIR Model with Distributed Delay on Complex Networks

    PubMed Central

    Huang, Chuangxia; Cao, Jie; Wen, Fenghua; Yang, Xiaoguang

    2016-01-01

    In this paper, by taking full consideration of distributed delay, demographics and contact heterogeneity of the individuals, we present a detailed analytical study of the Susceptible-Infected-Removed (SIR) epidemic model on complex population networks. The basic reproduction number R0 of the model is dominated by the topology of the underlying network, the properties of individuals which include birth rate, death rate, removed rate and infected rate, and continuously distributed time delay. By constructing suitable Lyapunov functional and employing Kirchhoff’s matrix tree theorem, we investigate the globally asymptotical stability of the disease-free and endemic equilibrium points. Specifically, the system shows threshold behaviors: if R0≤1, then the disease-free equilibrium is globally asymptotically stable, otherwise the endemic equilibrium is globally asymptotically stable. Furthermore, the obtained results show that SIR models with different types of delays have different converge time in the process of contagion: if R0>1, then the system with distributed time delay stabilizes fastest; while R0≤1, the system with distributed time delay converges most slowly. The validness and effectiveness of these results are demonstrated through numerical simulations. PMID:27490363

  11. Stability Analysis of SIR Model with Distributed Delay on Complex Networks.

    PubMed

    Huang, Chuangxia; Cao, Jie; Wen, Fenghua; Yang, Xiaoguang

    2016-01-01

    In this paper, by taking full consideration of distributed delay, demographics and contact heterogeneity of the individuals, we present a detailed analytical study of the Susceptible-Infected-Removed (SIR) epidemic model on complex population networks. The basic reproduction number [Formula: see text] of the model is dominated by the topology of the underlying network, the properties of individuals which include birth rate, death rate, removed rate and infected rate, and continuously distributed time delay. By constructing suitable Lyapunov functional and employing Kirchhoff's matrix tree theorem, we investigate the globally asymptotical stability of the disease-free and endemic equilibrium points. Specifically, the system shows threshold behaviors: if [Formula: see text], then the disease-free equilibrium is globally asymptotically stable, otherwise the endemic equilibrium is globally asymptotically stable. Furthermore, the obtained results show that SIR models with different types of delays have different converge time in the process of contagion: if [Formula: see text], then the system with distributed time delay stabilizes fastest; while [Formula: see text], the system with distributed time delay converges most slowly. The validness and effectiveness of these results are demonstrated through numerical simulations.

  12. Stability analysis of a hypothalamic-pituitary-adrenal axis model with inclusion of glucocorticoid receptor and memory

    NASA Astrophysics Data System (ADS)

    Kaslik, Eva; Navolan, Dan Bogdan; Neamţu, Mihaela

    2017-01-01

    This paper analyzes a four-dimensional model of the hypothalamic-pituitary-adrenal (HPA) axis that includes the influence of the glucocorticoid receptor in the pituitary. Due to the spatial separation between the hypothalamus, pituitary and adrenal glands, distributed time delays are introduced in the mathematical model. The existence of the positive equilibrium point is proved and a local stability and bifurcation analysis is provided, considering several types of delay kernels. The fractional-order model with discrete time delays is also taken into account. Numerical simulations are provided to illustrate the effectiveness of the theoretical findings.

  13. Dynamic modelling and stability parametric analysis of a flexible spacecraft with fuel slosh

    NASA Astrophysics Data System (ADS)

    Gasbarri, Paolo; Sabatini, Marco; Pisculli, Andrea

    2016-10-01

    Modern spacecraft often contain large quantities of liquid fuel to execute station keeping and attitude manoeuvres for space missions. In general the combined liquid-structure system is very difficult to model, and the analyses are based on some assumed simplifications. A realistic representation of the liquid dynamics inside closed containers can be approximated by an equivalent mechanical system. This technique can be considered a very useful mathematical tool for solving the complete dynamics problem of a space-system containing liquid. Thus they are particularly useful when designing a control system or to study the stability margins of the coupled dynamics. The commonly used equivalent mechanical models are the mass-spring models and the pendulum models. As far as the spacecraft modelling is concerned they are usually considered rigid; i.e. no flexible appendages such as solar arrays or antennas are considered when dealing with the interaction of the attitude dynamics with the fuel slosh. In the present work the interactions among the fuel slosh, the attitude dynamics and the flexible appendages of a spacecraft are first studied via a classical multi-body approach. In particular the equations of attitude and orbit motion are first derived for the partially liquid-filled flexible spacecraft undergoing fuel slosh; then several parametric analyses will be performed to study the stability conditions of the system during some assigned manoeuvers. The present study is propaedeutic for the synthesis of advanced attitude and/or station keeping control techniques able to minimize and/or reduce an undesired excitation of the satellite flexible appendages and of the fuel sloshing mass.

  14. A shallow landslide analysis method consisting of contour line based method and slope stability model with critical slip surface

    NASA Astrophysics Data System (ADS)

    Tsutsumi, D.

    2015-12-01

    To mitigate sediment related disaster triggered by rainfall event, it is necessary to predict a landslide occurrence and subsequent debris flow behavior. Many landslide analysis method have been developed and proposed by numerous researchers for several decades. Among them, distributed slope stability models simulating temporal and spatial instability of local slopes are more essential for early warning or evacuation in area of lower part of hill-slopes. In the present study, a distributed, physically based landslide analysis method consisting of contour line-based method that subdivide a watershed area into stream tubes, and a slope stability analysis in which critical slip surface is searched to identify location and shape of the most instable slip surface in each stream tube, is developed. A target watershed area is divided into stream tubes using GIS technique, grand water flow for each stream tubes during a rainfall event is analyzed by a kinematic wave model, and slope stability for each stream tube is calculated by a simplified Janbu method searching for a critical slip surface using a dynamic programming method. Comparing to previous methods that assume infinite slope for slope stability analysis, the proposed method has advantage simulating landslides more accurately in spatially and temporally, and estimating amount of collapsed slope mass, that can be delivered to a debris flow simulation model as a input data. We applied this method to a small watershed in the Izu Oshima, Tokyo, Japan, where shallow and wide landslides triggered by heavy rainfall and subsequent debris flows attacked Oshima Town, in 2013. Figure shows the temporal and spatial change of simulated grand water level and landslides distribution. The simulated landslides are correspond to the uppermost part of actual landslide area, and the timing of the occurrence of landslides agree well with the actual landslides.

  15. PrimeSupplier Cross-Program Impact Analysis and Supplier Stability Indicator Simulation Model

    NASA Technical Reports Server (NTRS)

    Calluzzi, Michael

    2009-01-01

    PrimeSupplier, a supplier cross-program and element-impact simulation model, with supplier solvency indicator (SSI), has been developed so that the shuttle program can see early indicators of supplier and product line stability, while identifying the various elements and/or programs that have a particular supplier or product designed into the system. The model calculates two categories of benchmarks to determine the SSI, with one category focusing on agency programmatic data and the other focusing on a supplier's financial liquidity. PrimeSupplier was developed to help NASA smoothly transition design, manufacturing, and repair operations from the Shuttle program to the Constellation program, without disruption in the industrial supply base.

  16. Stability analysis of an HIV/AIDS epidemic model with treatment

    NASA Astrophysics Data System (ADS)

    Cai, Liming; Li, Xuezhi; Ghosh, Mini; Guo, Baozhu

    2009-07-01

    An HIV/AIDS epidemic model with treatment is investigated. The model allows for some infected individuals to move from the symptomatic phase to the asymptomatic phase by all sorts of treatment methods. We first establish the ODE treatment model with two infective stages. Mathematical analyses establish that the global dynamics of the spread of the HIV infectious disease are completely determined by the basic reproduction number [real]0. If [real]0<=1, the disease-free equilibrium is globally stable, whereas the unique infected equilibrium is globally asymptotically stable if [real]0>1. Then, we introduce a discrete time delay to the model to describe the time from the start of treatment in the symptomatic stage until treatment effects become visible. The effect of the time delay on the stability of the endemically infected equilibrium is investigated. Moreover, the delay model exhibits Hopf bifurcations by using the delay as a bifurcation parameter. Finally, numerical simulations are presented to illustrate the results.

  17. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model.

    PubMed

    Iqbal, Kamran; Roy, Anindo

    2009-01-01

    We consider a simplified characterization of the postural control system that embraces two broad components: one representing the musculoskeletal dynamics in the sagittal plane and the other representing proprioceptive feedback and the central nervous system (CNS). Specifically, a planar four-segment neuromusculoskeletal model consisting of the ankle, knee, and hip degrees-of-freedom (DOFs) is described in this paper. The model includes important physiological constructs such as Hill-type muscle model, active and passive muscle stiffnesses, force feedback from the Golgi tendon organ, muscle length and rate feedback from the muscle spindle, and transmission latencies in the neural pathways. A proportional-integral-derivative (PID) controller for each individual DOF is assumed to represent the CNS analog in the modeling paradigm. Our main hypothesis states that all stabilizing PID controllers for such multisegment biomechanical models can be parametrized and analytically synthesized. Our analytical and simulation results show that the proposed representation adequately shapes a postural control that (a) possesses good disturbance rejection and trajectory tracking, (b) is robust against feedback latencies and torque perturbations, and (c) is flexible to embrace changes in the musculoskeletal parameters. We additionally present detailed sensitivity analysis to show that control under conditions of limited or no proprioceptive feedback results in (a) significant reduction in the stability margins, (b) substantial decrease in the available stabilizing parameter set, and (c) oscillatory movement trajectories. Overall, these results suggest that anatomical arrangement, active muscle stiffness, force feedback, and physiological latencies play a major role in shaping motor control processes in humans.

  18. Implementation of a Single-Stage-To-Orbit (SSTO) model for stability and control analysis

    NASA Technical Reports Server (NTRS)

    Ingalls, Stephen A.

    1995-01-01

    Three NASA centers: Marshall Space Flight Center (MSFC), Langley Research Center (LaRC), and Johnson Space Center (JSC) are currently involved in studying a family of single-stage- and two-stage-to-orbit (SSTO/TSTO) vehicles to serve as the next generation space transportation system (STS). A rocketed winged-body is the current focus. The configuration (WB001) is a vertically-launched, horizontally-landing system with circular cross-section. Preliminary aerodynamic data was generated by LaRC and is a combination of wind-tunnel data, empirical methods, and Aerodynamic Preliminary Analysis System-(APAS) generated values. JSC's efforts involve descent trajectory design, stability analysis, and flight control system synthesis. Analysis of WB001's static stability indicates instability in 'tuck' (C(sub mu) less than 0: Mach = 0.30, alpha greater than 3.25 deg; Mach = 0.60, alpha greater than 8.04), an unstable dihedral effects (C(sub l(beta)) greater than 0: Mach = 30,alpha less than 12 deg.; Mach = 0.60, alpha less than 10.00 deg.), and, most significantly, an unstable weathercock stability derivative, C(sub n(beta)), at all angles of attack and subsonic Mach numbers. Longitudinal trim solutions for Mach = 0.30 and 0.60 indicate flight path angle possibilities ranging from around 12 (M = 0.30) to slightly over 20 degrees at Mach = 0.60. Trim angles of attack increase from 6.24 at Mach 0.60 and 10,000 feet to 17.7 deg. at Mach 0.30, sea-level. Lateral trim was attempted for a design cross-wind of 25.0 knots. The current vehicle aerodynamic and geometric characteristics will only yield a lateral trim solution at impractical tip-fin deflections (approximately equal to 43 deg.) and bank angles (21 deg.). A study of the lateral control surfaces, tip-fin controllers for WB001, indicate increased surface area would help address these instabilities, particularly the deficiency in C(sub n(beta)), but obviously at the expense of increased vehicle weight. Growth factors of

  19. Stability analysis of a Komarova type model for the interactions of osteoblast and osteoclast cells during bone remodeling.

    PubMed

    Jerez, S; Chen, B

    2015-06-01

    In order to analyze theoretically the dynamics of osteoblast and osteoclast cells in the bone remodeling process we first consider a simplified Komarova model. The existence of periodic solutions, which is consistent with the biophysical phenomenon, has been observed only numerically for the general model. By a stability analysis of the simplified model we provide sufficient conditions to obtain existence and uniqueness of positive periodic solutions. Considering recent biological evidence about the participation of another cells like osteocytes in the regulation of bone remodeling, we incorporate to the simplified model a new term as a way to model the signaling of external agents in the remodeling process. Finally, we demonstrate that this new model has stable positive non-periodic solutions. All the theoretical results are accompanied by computational simulations.

  20. Stability analysis and optimal control of an epidemic model with awareness programs by media.

    PubMed

    Misra, A K; Sharma, Anupama; Shukla, J B

    2015-12-01

    The impact of awareness campaigns and behavioral responses on epidemic outbreaks has been reported at times. However, to what extent does the provision of awareness and behavioral changes affect the epidemic trajectory is unknown, but important from the public health standpoint. To address this question, we formulate a mathematical model to study the effect of awareness campaigns by media on the outbreak of an epidemic. The awareness campaigns are treated as an intervention for the emergent disease. These awareness campaigns divide the whole populations into two subpopulation; aware and unaware, by inducing behavioral changes amongst them. The awareness campaigns are included explicitly as a separate dynamic variable in the modeling process. The model is analyzed qualitatively using stability theory of differential equations. We have also identified an optimal implementation rate of awareness campaigns so that disease can be controlled with minimal possible expenditure on awareness campaigns, using optimal control theory. The control setting is investigated analytically using optimal control theory, and the numerical solutions illustrating the optimal regimens under various assumptions are also shown.

  1. MAP Stability, Design and Analysis

    NASA Technical Reports Server (NTRS)

    Ericsson -Jackson, A.J.; Andrews, S. F.; ODonnell, J. R., Jr.; Markley, F. L.

    1998-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The design and analysis of the MAP attitude control system (ACS) have been refined since work previously reported. The full spacecraft and instrument flexible model was developed in NASTRAN, and the resulting flexible modes were plotted and reduced with the Modal Significance Analysis Package (MSAP). The reduced-order model was used to perform the linear stability analysis for each control mode, the results of which are presented in this paper. Although MAP is going to a relatively disturbance-free Lissajous orbit around the Earth-Sun L2 Lagrange point, a detailed disturbance-torque analysis is required because there are only a small number of opportunities for momentum unloading each year. Environmental torques, including solar pressure at L2, and aerodynamic and gravity gradient during phasing-loop orbits, were calculated and simulated. A simple model of fuel slosh was derived to model its effect on the motion of the spacecraft. In addition, a thruster mode linear impulse controller was developed to meet the accuracy requirements of the phasing loop burns. A dynamic attitude error limiter was added to improve the performance of the ACS during large attitude slews. The result of this analysis is a stable ACS subsystem that meets all of the mission's requirements.

  2. MAP stability, design, and analysis

    NASA Technical Reports Server (NTRS)

    Ericsson-Jackson, A. J.; Andrews, S. F.; O'Donnell, J. R., Jr.; Markley, F. L.

    1998-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The design and analysis of the MAP attitude control system (ACS) have been refined since work previously reported. The full spacecraft and instrument flexible model was developed in NASTRAN, and the resulting flexible modes were plotted and reduced with the Modal Significance Analysis Package (MSAP). The reduced-order model was used to perform the linear stability analysis for each control mode, the results of which are presented in this paper. Although MAP is going to a relatively disturbance-free Lissajous orbit around the Earth-Sun L(2) Lagrange point, a detailed disturbance-torque analysis is required because there are only a small number of opportunities for momentum unloading each year. Environmental torques, including solar pressure at L(2), aerodynamic and gravity gradient during phasing-loop orbits, were calculated and simulated. Thruster plume impingement torques that could affect the performance of the thruster modes were estimated and simulated, and a simple model of fuel slosh was derived to model its effect on the motion of the spacecraft. In addition, a thruster mode linear impulse controller was developed to meet the accuracy requirements of the phasing loop burns. A dynamic attitude error limiter was added to improve the performance of the ACS during large attitude slews. The result of this analysis is a stable ACS subsystem that meets all of the mission's requirements.

  3. Time domain model sensitivity in boiling water reactor stability analysis using TRAC/BF1

    SciTech Connect

    Borkowski, J.A. ); Robinson, G.E.; Baratta, A.J.; Kattic, M. . Dept. of Nuclear Engineering)

    1993-07-01

    Boiling water nuclear reactors (BWRs) may experience density wave instabilities. These instabilities cause the density, and consequently the mass flow rate, to oscillate in the shrouded fuel bundles. This effect causes the nuclear power generation to oscillate because of the tight coupling of flow to power, especially under gravity-driven circulation. To predict the amplitude of the power oscillation, a time domain transient analysis tool may be employed. The modeling tool must have sufficient hydrodynamic detail to model natural circulation in two-phase flow as well as the coupled nuclear feedback. TRAC/BF1 is a modeling code with such capabilities. A dynamic system model is developed for a typical BWR. Using this tool, it is demonstrated that density waves may be modeled in this fashion and that their resultant hydrodynamic and nuclear behavior correspond well to simple theory. Several cases are analyzed using this model, the goal being to determine the coupling between the channel hydrodynamics and the nuclear power. As predicted by others, the two-phase friction controls the extent of the oscillation. Because of this sensitivity, existing conventional methodologies of implementing two-phase friction into analysis codes of this type can lead to significant deviation in results from one case to another. It is found that higher dimensional nuclear feedback models reduce the extent of the oscillation.

  4. Automated RSO Stability Analysis

    NASA Astrophysics Data System (ADS)

    Johnson, T.

    2016-09-01

    A methodology for assessing the attitude stability of a Resident Space Object (RSO) using visual magnitude data is presented and then scaled to run in an automated fashion across the entire satellite catalog. Results obtained by applying the methodology to the Commercial Space Operations Center (COMSpOC) catalog are presented and summarized, identifying objects that have changed stability. We also examine the timeline for detecting the transition from stable to unstable attitude

  5. Stability analysis of multi-group deterministic and stochastic epidemic models with vaccination rate

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Gang; Gao, Rui-Mei; Fan, Xiao-Ming; Han, Qi-Xing

    2014-09-01

    We discuss in this paper a deterministic multi-group MSIR epidemic model with a vaccination rate, the basic reproduction number ℛ0, a key parameter in epidemiology, is a threshold which determines the persistence or extinction of the disease. By using Lyapunov function techniques, we show if ℛ0 is greater than 1 and the deterministic model obeys some conditions, then the disease will prevail, the infective persists and the endemic state is asymptotically stable in a feasible region. If ℛ0 is less than or equal to 1, then the infective disappear so the disease dies out. In addition, stochastic noises around the endemic equilibrium will be added to the deterministic MSIR model in order that the deterministic model is extended to a system of stochastic ordinary differential equations. In the stochastic version, we carry out a detailed analysis on the asymptotic behavior of the stochastic model. In addition, regarding the value of ℛ0, when the stochastic system obeys some conditions and ℛ0 is greater than 1, we deduce the stochastic system is stochastically asymptotically stable. Finally, the deterministic and stochastic model dynamics are illustrated through computer simulations.

  6. Stability and Bionomic Analysis of Fuzzy Prey-Predator Harvesting Model in Presence of Toxicity: A Dynamic Approach.

    PubMed

    Pal, D; Mahapatra, G S; Samanta, G P

    2016-07-01

    This paper deals with a prey-predator model in which both the species are infected by some toxicants which are released by some other species or source with fuzzy biological parameters. The application of fuzzy differential equation in the modeling of prey-predator populations with the effect of toxicants is presented. The dynamical behavior and harvesting of the fuzzy exploited system are studied by using the utility function method. Sufficient conditions for the local stability of the positive equilibrium are obtained by analyzing the characteristic equation. Furthermore, the possibility of the existence of bionomic equilibrium is studied under imprecise biological parameters. The study of the presence of toxic substance and harvesting in the modeling system can have significant impact on the existence of both the species, which is in line with reality. Numerical simulation results are presented to validate the theoretical analysis.

  7. Empirical evidence and stability analysis of the linear car-following model with gamma-distributed memory effect

    NASA Astrophysics Data System (ADS)

    Pei, Xin; Pan, Yan; Wang, Haixin; Wong, S. C.; Choi, Keechoo

    2016-05-01

    Car-following models, which describe the reactions of the driver of a following car to the changes of the leading car, are essential for the development of traffic flow theory. A car-following model with a stochastic memory effect is considered to be more realistic in modeling drivers' behavior. Because a gamma-distributed memory function has been shown to outperform other forms according to empirical data, in this study, we thus focus on a car-following model with a gamma-distributed memory effect; analytical and numerical studies are then conducted for stability analysis. Accordingly, the general expression of undamped and stability points is achieved by analytical study. The numerical results show great agreement with the analytical results: introducing the effect of the driver's memory causes the stable regions to weaken slightly, but the metastable region is obviously enlarged. In addition, a numerical study is performed to further analyze the variation of the stable and unstable regions with respect to the different profiles of gamma distribution.

  8. Analysis and test evaluation of the dynamic stability of three advanced turboprop models at zero forward speed

    NASA Technical Reports Server (NTRS)

    Smith, Arthur F.

    1985-01-01

    Results of static stability wind tunnel tests of three 62.2 cm (24.5 in) diameter models of the Prop-Fan are presented. Measurements of blade stresses were made with the Prop-Fans mounted on an isolated nacelle in an open 5.5 m (18 ft) wind tunnel test section with no tunnel flow. The tests were conducted in the United Technology Research Center Large Subsonic Wind Tunnel. Stall flutter was determined by regions of high stress, which were compared with predictions of boundaries of zero total viscous damping. The structural analysis used beam methods for the model with straight blades and finite element methods for the models with swept blades. Increasing blade sweep tends to suppress stall flutter. Comparisons with similar test data acquired at NASA/Lewis are good. Correlations between measured and predicted critical speeds for all the models are good. The trend of increased stability with increased blade sweep is well predicted. Calculated flutter boundaries generaly coincide with tested boundaries. Stall flutter is predicted to occur in the third (torsion) mode. The straight blade test shows third mode response, while the swept blades respond in other modes.

  9. Analysis of aeroelastic model stability augmentation systems. [for application to supersonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.

    1971-01-01

    An analytical and mechanization study was conducted for two flutter stability augmentation systems. One concept uses only the wing trailing edge control surface. Another concept uses leading and trailing edge control surfaces operating simultaneously. The combined use of leading and trailing edge control surfaces should improve the surface coupling (controllability) with vertical bending and torsional structural modes and decrease the coupling between bending and torsional modes. The study was directed toward stability augmentation systems characteristics for the supersonic transport aircraft.

  10. Stability analysis of free piston Stirling engines

    NASA Astrophysics Data System (ADS)

    Bégot, Sylvie; Layes, Guillaume; Lanzetta, François; Nika, Philippe

    2013-03-01

    This paper presents a stability analysis of a free piston Stirling engine. The model and the detailed calculation of pressures losses are exposed. Stability of the machine is studied by the observation of the eigenvalues of the model matrix. Model validation based on the comparison with NASA experimental results is described. The influence of operational and construction parameters on performance and stability issues is exposed. The results show that most parameters that are beneficial for machine power seem to induce irregular mechanical characteristics with load, suggesting that self-sustained oscillations could be difficult to maintain and control.

  11. Stability analysis of Western flank of Cumbre Vieja volcano (La Palma) using numerical modelling

    NASA Astrophysics Data System (ADS)

    Bru, Guadalupe; Gonzalez, Pablo J.; Fernandez-Merodo, Jose A.; Fernandez, Jose

    2016-04-01

    La Palma volcanic island is one of the youngest of the Canary archipelago, being a composite volcano formed by three overlapping volcanic centers. There are clear onshore and offshore evidences of past giant landslides that have occurred during its evolution. Currently, the active Cumbre Vieja volcano is in an early development state (Carracedo et al., 2001). The study of flank instability processes aim to assess, among other hazards, catastrophic collapse and potential tsunami generation. Early studies of the potential instability of Cumbre Vieja volcano western flank have focused on the use of sparse geodetic networks (Moss et al. 1999), surface geological mapping techniques (Day et al. 1999) and offshore bathymetry (Urgeles et al. 1999). Recently, a dense GNSS network and satellite radar interferometry results indicate ground motion consistent with deep-seated creeping processes (Prieto et al. 2009, Gonzalez et al. 2010). In this work, we present a geomechanical advanced numerical model that captures the ongoing deformation processes at Cumbre Vieja. We choose the Finite Elements Method (FEM) which is based in continuum mechanics and is the most used for geotechnical applications. FEM has the ability of using arbitrary geometry, heterogeneities, irregular boundaries and different constitutive models representative of the geotechnical units involved. Our main contribution is the introduction of an inverse approach to constrain the geomechanical parameters using satellite radar interferometry displacements. This is the first application of such approach on a large volcano flank study. We suggest that the use of surface displacements and inverse methods to rigorously constrain the geomechanical model parameter space is a powerful tool to understand volcano flank instability. A particular important result of the studied case is the estimation of displaced rock volume, which is a parameter of critical importance for simulations of Cumbre Vieja tsunamigenic hazard

  12. Cosmological Models and Stability

    NASA Astrophysics Data System (ADS)

    Andersson, Lars

    Principles in the form of heuristic guidelines or generally accepted dogma play an important role in the development of physical theories. In particular, philosophical considerations and principles figure prominently in the work of Albert Einstein. As mentioned in the talk by Jiří Bičák at this conference, Einstein formulated the equivalence principle, an essential step on the road to general relativity, during his time in Prague 1911-1912. In this talk, I would like to discuss some aspects of cosmological models. As cosmology is an area of physics where "principles" such as the "cosmological principle" or the "Copernican principle" play a prominent role in motivating the class of models which form part of the current standard model, I will start by comparing the role of the equivalence principle to that of the principles used in cosmology. I will then briefly describe the standard model of cosmology to give a perspective on some mathematical problems and conjectures on cosmological models, which are discussed in the later part of this paper.

  13. An Ex Vivo Model in Human Femoral Heads for Histopathological Study and Resonance Frequency Analysis of Dental Implant Primary Stability

    PubMed Central

    Hernández-Cortés, Pedro; Galindo-Moreno, Pablo; Catena, Andrés; Ortega-Oller, Inmaculada; Salas-Pérez, José; Gómez-Sánchez, Rafael; Aguilar, Mariano; Aguilar, David

    2014-01-01

    Objective. This study was designed to explore relationships of resonance frequency analysis (RFA)—assessed implant stability (ISQ values) with bone morphometric parameters and bone quality in an ex vivo model of dental implants placed in human femoral heads and to evaluate the usefulness of this model for dental implant studies. Material and Methods. This ex vivo study included femoral heads from 17 patients undergoing surgery for femoral neck fracture due to osteoporosis (OP) (n = 7) or for total prosthesis joint replacement due to severe hip osteoarthrosis (OA) (n = 10). Sixty 4.5 × 13 mm Dentsply Astra implants were placed, followed by RFA. CD44 immunohistochemical analysis for osteocytes was also carried out. Results. As expected, the analysis yielded significant effects of femoral head type (OA versus OA) (P < 0.001), but not of the implants (P = 0.455) or of the interaction of the two factors (P = 0.848). Bonferroni post hoc comparisons showed a lower mean ISQ for implants in decalcified (50.33 ± 2.92) heads than in fresh (66.93 ± 1.10) or fixated (70.77 ± 1.32) heads (both P < 0.001). The ISQ score (fresh) was significantly higher for those in OA (73.52 ± 1.92) versus OP (67.13 ± 1.09) heads. However, mixed linear analysis showed no significant association between ISQ scores and morphologic or histomorphometric results (P > 0.5 in all cases), and no significant differences in ISQ values were found as a function of the length or area of the cortical layer (both P > 0.08). Conclusion. Although RFA-determined ISQ values are not correlated with morphometric parameters, they can discriminate bone quality (OP versus OA). This ex vivo model is useful for dental implant studies. PMID:24995307

  14. Modeling and nonlinear hunting stability analysis of high-speed railway vehicle moving on curved tracks

    NASA Astrophysics Data System (ADS)

    Cheng, Yung-Chang; Lee, Sen-Yung; Chen, Hsing-Hao

    2009-07-01

    A heuristic nonlinear creep model is used to derive the nonlinear coupled differential equations of motion of a high-speed railway vehicle traveling on a curved track. The vehicle dynamics are modeled using a 21 degree-of-freedom (21-DOF) system which takes account of the lateral displacement and yaw angle of each wheelset, the lateral displacement, vertical displacement, roll angle and yaw angle of the truck frames, and the lateral displacement, vertical displacement, roll angle, pitch angle and yaw angle of the car body. To analyze the respective effects of the major system parameters on the vehicle dynamics, the 21-DOF system is reduced to 20-DOF, 14-DOF and 6-DOF models, respectively, by excluding designated subsets of the system parameters. The validity of the analytical models and the numerical solution procedure is confirmed by comparing the result obtained using the 6-DOF model for the critical velocity of a railway vehicle traveling on a tangent track with the solution presented in the literature. In general, the results obtained in this study show that the critical hunting speed derived using the 6-DOF or 14-DOF model is generally higher than that evaluated using the 20-DOF model. In addition, the critical hunting speed evaluated via the heuristic nonlinear creep model is lower than that derived using a linear creep model.

  15. Slope Stability Analysis Using GIS

    NASA Astrophysics Data System (ADS)

    Bouajaj, Ahmed; Bahi, Lahcen; Ouadif, Latifa; Awa, Mohamed

    2016-10-01

    An analysis of slope stability using Geographic Information System (GIS) is presented in this paper. The methodology is based on the calculation of the safety factor in 2D and 3D using ArcGis. Hovland's Method in 3D and 2D were used in the stability analysis of the slope located at the 34 kilometer point (K.P.34) on the highway in the North of Morocco connecting Tangier to Ksar Sghir. Results shows that the safety factors obtained in 3D are always higher than those obtained in 2D and the slope becomes unstable when the water table level is less than 1 m.

  16. Stability analysis in a car-following model with reaction-time delay and delayed feedback control

    NASA Astrophysics Data System (ADS)

    Jin, Yanfei; Xu, Meng

    2016-10-01

    The delayed feedback control in terms of both headway and velocity differences has been proposed to guarantee the stability of a car-following model including the reaction-time delay of drivers. Using Laplace transformation and transfer function, the stable condition is derived and appropriate choices of time delay and feedback gains are designed to stabilize traffic flow. Meanwhile, an upper bound on explicit time delay is determined with respect to the response of desired acceleration. To ensure the string stability, the explicit time delay cannot over its upper bound. Numerical simulations indicate that the proposed control method can restraint traffic congestion and improve control performance.

  17. Stability analysis of 4-species Aβ aggregation model: A novel approach to obtaining physically meaningful rate constants.

    PubMed

    Ghag, G; Ghosh, P; Mauro, A; Rangachari, V; Vaidya, A

    2013-11-01

    Protein misfolding and concomitant aggregation towards amyloid formation is the underlying biochemical commonality among a wide range of human pathologies. Amyloid formation involves the conversion of proteins from their native monomeric states (intrinsically disordered or globular) to well-organized, fibrillar aggregates in a nucleation-dependent manner. Understanding the mechanism of aggregation is important not only to gain better insight into amyloid pathology but also to simulate and predict molecular pathways. One of the main impediments in doing so is the stochastic nature of interactions that impedes thorough experimental characterization and the development of meaningful insights. In this study, we have utilized a well-known intermediate state along the amyloid-β peptide aggregation pathway called protofibrils as a model system to investigate the molecular mechanisms by which they form fibrils using stability and perturbation analysis. Investigation of protofibril aggregation mechanism limits both the number of species to be modeled (monomers, and protofibrils), as well as the reactions to two (elongation by monomer addition, and protofibril-protofibril lateral association). Our new model is a reduced order four species model grounded in mass action kinetics. Our prior study required 3200 reactions, which makes determining the reaction parameters prohibitively difficult. Using this model, along with a linear perturbation argument, we rigorously determine stable ranges of rate constants for the reactions and ensure they are physically meaningful. This was accomplished by finding the ranges in which the perturbations dieout in a five-parameter sweep, which includes the monomer and protofibril equilibrium concentrations and three of the rate constants. The results presented are a proof-of-concept method in determining meaningful rate constants that can be used as a bonafide way for determining accurate rate constants for other models involving complex

  18. The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model

    NASA Astrophysics Data System (ADS)

    Anggriani, N.; Supriatna, A. K.; Soewono, E.

    2015-06-01

    In this paper we formulate an SIR (Susceptible - Infective - Recovered) model of Dengue fever transmission with constant recruitment. We found a threshold parameter K0, known as the Basic Reproduction Number (BRN). This model has two equilibria, disease-free equilibrium and endemic equilibrium. By constructing suitable Lyapunov function, we show that the disease- free equilibrium is globally asymptotic stable whenever BRN is less than one and when it is greater than one, the endemic equilibrium is globally asymptotic stable. Numerical result shows the dynamic of each compartment together with effect of multiple bio-agent intervention as a control to the dengue transmission.

  19. Stability analysis of a simplified model of a fluidized bed combustor

    SciTech Connect

    Trevino, C. ); Herrera, C. ); Garcia-Ybarra, P. )

    1990-06-01

    The transient behavior of a simplified two-phase model of a fluidized bed combustor is analyzed in this article. The chemical reaction assumed was only the heterogeneous reaction C + 1/2 O{sub 2} {r arrow} CO, which is also assumed to be controlled by diffusion. A set of nonlinear perturbation equations, around the steady-state solution, have been obtained. The corresponding set of linearized equations are then solved, obtaining the stable and unstable regions in the parametric space. The system proves to be always stable for the possible parametric set of the present model.

  20. Stability analysis of pine wilt disease model by periodic use of insecticides.

    PubMed

    Awan, Aziz Ullah; Ozair, Muhammad; Din, Qamar; Hussain, Takasar

    2016-12-01

    This work is related to qualitative behaviour of an epidemic model of pine wilt disease. More precisely, we proved that the reproductive number has sharp threshold properties. It has been shown that how vector population can be reduced by the periodic use of insecticides. Numerical simulations show that epidemic level of infected vectors becomes independent of saturation level by including the transmission through mating.

  1. GE SBWR stability analysis using TRAC-BF1 1-D kinetics model

    SciTech Connect

    Lu, S.; Baratta, A.J.; Robinson, G.E.

    1996-07-01

    GE`s simplified boiling water reactor, with its unique feature of using natural circulation to remove the heat from the reactor core, is a complicated dynamic system. Previous work by authors using the TRAC-BF1 code and a point kinetics model predicted that an SBWR may experience large amplitude power oscillation under certain low pressure and high power operating conditions. To further confirm the existence of this power oscillation and explore the dynamic spatial reactor power distribution, the TRAC-BF1 1-D kinetics model was used. The results show that an instability exists and the power oscillation starting time and maximum peak power are different from the point kinetics results.

  2. Stability, Bifurcation and Chaos Analysis of Vector-Borne Disease Model with Application to Rift Valley Fever

    PubMed Central

    Pedro, Sansao A.; Abelman, Shirley; Ndjomatchoua, Frank T.; Sang, Rosemary; Tonnang, Henri E. Z.

    2014-01-01

    This paper investigates a RVF epidemic model by qualitative analysis and numerical simulations. Qualitative analysis have been used to explore the stability dynamics of the equilibrium points while visualization techniques such as bifurcation diagrams, Poincaré maps, maxima return maps and largest Lyapunov exponents are numerically computed to confirm further complexity of these dynamics induced by the seasonal forcing on the mosquitoes oviposition rates. The obtained results show that ordinary differential equation models with external forcing can have rich dynamic behaviour, ranging from bifurcation to strange attractors which may explain the observed fluctuations found in RVF empiric outbreak data, as well as the non deterministic nature of RVF inter-epidemic activities. Furthermore, the coexistence of the endemic equilibrium is subjected to existence of certain number of infected Aedes mosquitoes, suggesting that Aedes have potential to initiate RVF epidemics through transovarial transmission and to sustain low levels of the disease during post epidemic periods. Therefore we argue that locations that may serve as RVF virus reservoirs should be eliminated or kept under control to prevent multi-periodic outbreaks and consequent chains of infections. The epidemiological significance of this study is: (1) low levels of birth rate (in both Aedes and Culex) can trigger unpredictable outbreaks; (2) Aedes mosquitoes are more likely capable of inducing unpredictable behaviour compared to the Culex; (3) higher oviposition rates on mosquitoes do not in general imply manifestation of irregular behaviour on the dynamics of the disease. Finally, our model with external seasonal forcing on vector oviposition rates is able to mimic the linear increase in livestock seroprevalence during inter-epidemic period showing a constant exposure and presence of active transmission foci. This suggests that RVF outbreaks partly build upon RVF inter-epidemic activities. Therefore, active

  3. A Combined Remote Sensing-Numerical Modelling Approach to the Stability Analysis of Delabole Slate Quarry, Cornwall, UK

    NASA Astrophysics Data System (ADS)

    Havaej, Mohsen; Coggan, John; Stead, Doug; Elmo, Davide

    2016-04-01

    Rock slope geometry and discontinuity properties are among the most important factors in realistic rock slope analysis yet they are often oversimplified in numerical simulations. This is primarily due to the difficulties in obtaining accurate structural and geometrical data as well as the stochastic representation of discontinuities. Recent improvements in both digital data acquisition and incorporation of discrete fracture network data into numerical modelling software have provided better tools to capture rock mass characteristics, slope geometries and digital terrain models allowing more effective modelling of rock slopes. Advantages of using improved data acquisition technology include safer and faster data collection, greater areal coverage, and accurate data geo-referencing far exceed limitations due to orientation bias and occlusion. A key benefit of a detailed point cloud dataset is the ability to measure and evaluate discontinuity characteristics such as orientation, spacing/intensity and persistence. This data can be used to develop a discrete fracture network which can be imported into the numerical simulations to study the influence of the stochastic nature of the discontinuities on the failure mechanism. We demonstrate the application of digital terrestrial photogrammetry in discontinuity characterization and distinct element simulations within a slate quarry. An accurately geo-referenced photogrammetry model is used to derive the slope geometry and to characterize geological structures. We first show how a discontinuity dataset, obtained from a photogrammetry model can be used to characterize discontinuities and to develop discrete fracture networks. A deterministic three-dimensional distinct element model is then used to investigate the effect of some key input parameters (friction angle, spacing and persistence) on the stability of the quarry slope model. Finally, adopting a stochastic approach, discrete fracture networks are used as input for 3D

  4. Unified power flow controller: Modeling, stability analysis, control strategy and control system design

    NASA Astrophysics Data System (ADS)

    Sreenivasachar, Kannan

    2001-07-01

    Unified power flow controller (UPFC) has been the most versatile Flexible AC Transmission System (FACTS) device due to its ability to control real and reactive power flow on transmission lines while controlling the voltage of the bus to which it is connected. UPFC being a multi-variable power system controller it is necessary to analyze its effect on power system operation. To study the performance of the UPFC in damping power oscillations using PSCAD-EMTDC software, a de-coupled control system has been designed for the shunt inverter to control the UPFC bus voltage and the DC link capacitor voltage. The series inverter of a UPFC controls the real power flow in the transmission line. One problem associated with using a high gain PI controller (used to achieve fast control of transmission line real power flow) for the series inverter of a UPFC to control the real power flow in a transmission line is the presence of low damping. This problem is solved in this research by using a fuzzy controller. A method to model a fuzzy controller in PSCAD-EMTDC software has also been described. Further, in order to facilitate proper operation between the series and the shunt inverter control system, a new real power coordination controller has been developed and its performance was evaluated. The other problem concerning the operation of a UPFC is with respect to transmission line reactive power flow control. Step changes to transmission line reactive power references have significant impact on the UPFC bus voltage. To reduce the adverse effect of step changes in transmission line reactive power references on the UPFC bus voltage, a new reactive power coordination controller has been designed. Transient response studies have been conducted using PSCAD-EMTDC software to show the improvement in power oscillation damping with UPFC. These simulations include the real and reactive power coordination controllers. Finally, a new control strategy has been proposed for UPFC. In this

  5. Liapunov stability analysis of spinning flexible spacecraft.

    NASA Technical Reports Server (NTRS)

    Barbera, F. J.; Likins, P.

    1973-01-01

    The attitude stability of a class of spinning flexible spacecraft in a force-free environment is analyzed. The spacecraft is modeled as a rigid core having attached to it a flexible appendage idealized as a collection of elastically interconnected particles. Liapunov stability theorems are employed with the Hamiltonian of the system, constrained through the angular momentum integral so as to admit complete damping, used as a testing function. The Hamiltonian is written in terms of modal coordinates as interpreted by the hybrid coordinate formulation, thus allowing truncation to a level amenable to literal stability analysis. Testing functions are constructed for a spacecraft with an arbitrary (discretized) appendage, and closed form stability criteria are generated for the first mode of a restricted appendage model lying in a plane which contains the center of mass and is orthogonal to the spin axis. The criteria are (except for idealized cases on the stability boundary line in the parameter space) both necessary and sufficient for stability for any spacecraft characterized by the planar appendage model, such as a spacecraft containing solar panels and/or radial booms.

  6. Analysis of the Stability of Teacher-Level Growth Scores from the Student Growth Percentile Model. REL 2016-104

    ERIC Educational Resources Information Center

    Lash, Andrea; Makkonen, Reino; Tran, Loan; Huang, Min

    2016-01-01

    This study, undertaken at the request of the Nevada Department of Education, examined the stability over years of teacher-level growth scores from the Student Growth Percentile (SGP) model, which many states and districts have selected as a measure of effectiveness in their teacher evaluation systems. The authors conducted a generalizability study…

  7. Euler Technology Assessment - SPLITFLOW Code Applications for Stability and Control Analysis on an Advanced Fighter Model Employing Innovative Control Concepts

    NASA Technical Reports Server (NTRS)

    Jordan, Keith J.

    1998-01-01

    This report documents results from the NASA-Langley sponsored Euler Technology Assessment Study conducted by Lockheed-Martin Tactical Aircraft Systems (LMTAS). The purpose of the study was to evaluate the ability of the SPLITFLOW code using viscous and inviscid flow models to predict aerodynamic stability and control of an advanced fighter model. The inviscid flow model was found to perform well at incidence angles below approximately 15 deg, but not as well at higher angles of attack. The results using a turbulent, viscous flow model matched the trends of the wind tunnel data, but did not show significant improvement over the Euler solutions. Overall, the predictions were found to be useful for stability and control design purposes.

  8. A study of a steering system algorithm for pleasure boats based on stability analysis of a human-machine system model

    NASA Astrophysics Data System (ADS)

    Ikeda, Fujio; Toyama, Shigehiro; Ishiduki, Souta; Seta, Hiroaki

    2016-09-01

    Maritime accidents of small ships continue to increase in number. One of the major factors is poor manoeuvrability of the Manual Hydraulic Steering Mechanism (MHSM) in common use. The manoeuvrability can be improved by using the Electronic Control Steering Mechanism (ECSM). This paper conducts stability analyses of a pleasure boat controlled by human models in view of path following on a target course, in order to establish design guidelines for the ECSM. First, to analyse the stability region, the research derives the linear approximated model in a planar global coordinate system. Then, several human models are assumed to develop closed-loop human-machine controlled systems. These human models include basic proportional, derivative, integral and time-delay actions. The stability analysis simulations for those human-machine systems are carried out. The results show that the stability region tends to spread as a ship's velocity increases in the case of the basic proportional human model. The derivative action and time-delay action of human models are effective in spreading the stability region in their respective ranges of frontal gazing points.

  9. Stability and bifurcation analysis for the Kaldor-Kalecki model with a discrete delay and a distributed delay

    NASA Astrophysics Data System (ADS)

    Yu, Jinchen; Peng, Mingshu

    2016-10-01

    In this paper, a Kaldor-Kalecki model of business cycle with both discrete and distributed delays is considered. With the corresponding characteristic equation analyzed, the local stability of the positive equilibrium is investigated. It is found that there exist Hopf bifurcations when the discrete time delay passes a sequence of critical values. By applying the method of multiple scales, the explicit formulae which determine the direction of Hopf bifurcation and the stability of bifurcating periodic solutions are derived. Finally, numerical simulations are carried out to illustrate our main results.

  10. Simple model for ablative stabilization

    NASA Astrophysics Data System (ADS)

    Mikaelian, Karnig O.

    1992-11-01

    We present a simple analytic model for ablative stablization of the Rayleigh-Taylor instability. In this model the effect of ablation is to move the peak of the perturbations to the location of peak pressure. This mechanism enhances the density-gradient stabilization, which is effective at short wavelengths, and it also enhances the stabilization of long-wavelength perturbations due to finite shell thickness. We consider the following density profile: exponential blowoff plasma with a density gradient β, followed by a constant-density shell of thickness δt. For perturbations of arbitrary wave number k, we present an explicit expression for the growth rate γ as a function of k, β, and δt. We find that ``thick'' shells defined by β δt>=1 have γ2>=0 for any k, while ``thin'' shells defined by β δt<1 can have γ2<0 for small k, reflecting stability by proximity to the back side of the shell. We also present lasnex simulations that are in good agreement with our analytic formulas.

  11. Analysis and testing of aeroelastic model stability augmentation systems. [for supersonic transport aircraft wing and B-52 aircraft control system

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.; Patel, S. M.

    1973-01-01

    Testing and evaluation of a stability augmentation system for aircraft flight control were performed. The flutter suppression system and synthesis conducted on a scale model of a supersonic wing for a transport aircraft are discussed. Mechanization and testing of the leading and trailing edge surface actuation systems are described. The ride control system analyses for a 375,000 pound gross weight B-52E aircraft are presented. Analyses of the B-52E aircraft maneuver load control system are included.

  12. Numerical Stability and Control Analysis Towards Falling-Leaf Prediction Capabilities of Splitflow for Two Generic High-Performance Aircraft Models

    NASA Technical Reports Server (NTRS)

    Charlton, Eric F.

    1998-01-01

    Aerodynamic analysis are performed using the Lockheed-Martin Tactical Aircraft Systems (LMTAS) Splitflow computational fluid dynamics code to investigate the computational prediction capabilities for vortex-dominated flow fields of two different tailless aircraft models at large angles of attack and sideslip. These computations are performed with the goal of providing useful stability and control data to designers of high performance aircraft. Appropriate metrics for accuracy, time, and ease of use are determined in consultations with both the LMTAS Advanced Design and Stability and Control groups. Results are obtained and compared to wind-tunnel data for all six components of forces and moments. Moment data is combined to form a "falling leaf" stability analysis. Finally, a handful of viscous simulations were also performed to further investigate nonlinearities and possible viscous effects in the differences between the accumulated inviscid computational and experimental data.

  13. 3-D MHD modeling and stability analysis of jet and spheromak plasmas launched into a magnetized plasma

    NASA Astrophysics Data System (ADS)

    Fisher, Dustin; Zhang, Yue; Wallace, Ben; Gilmore, Mark; Manchester, Ward; Arge, C. Nick

    2016-10-01

    The Plasma Bubble Expansion Experiment (PBEX) at the University of New Mexico uses a coaxial plasma gun to launch jet and spheromak magnetic plasma configurations into the Helicon-Cathode (HelCat) plasma device. Plasma structures launched from the gun drag frozen-in magnetic flux into the background magnetic field of the chamber providing a rich set of dynamics to study magnetic turbulence, force-free magnetic spheromaks, and shocks. Preliminary modeling is presented using the highly-developed 3-D, MHD, BATS-R-US code developed at the University of Michigan. BATS-R-US employs an adaptive mesh refinement grid that enables the capture and resolution of shock structures and current sheets, and is particularly suited to model the parameter regime under investigation. CCD images and magnetic field data from the experiment suggest the stabilization of an m =1 kink mode trailing a plasma jet launched into a background magnetic field. Results from a linear stability code investigating the effect of shear-flow as a cause of this stabilization from magnetic tension forces on the jet will be presented. Initial analyses of a possible magnetic Rayleigh Taylor instability seen at the interface between launched spheromaks and their entraining background magnetic field will also be presented. Work supported by the Army Research Office Award No. W911NF1510480.

  14. Analysis of polytype stability in PVT grown silicon carbide single crystal using competitive lattice model Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Guo, Hui-Jun; Huang, Wei; Liu, Xi; Gao, Pan; Zhuo, Shi-Yi; Xin, Jun; Yan, Cheng-Feng; Zheng, Yan-Qing; Yang, Jian-Hua; Shi, Er-Wei

    2014-09-01

    Polytype stability is very important for high quality SiC single crystal growth. However, the growth conditions for the 4H, 6H and 15R polytypes are similar, and the mechanism of polytype stability is not clear. The kinetics aspects, such as surface-step nucleation, are important. The kinetic Monte Carlo method is a common tool to study surface kinetics in crystal growth. However, the present lattice models for kinetic Monte Carlo simulations cannot solve the problem of the competitive growth of two or more lattice structures. In this study, a competitive lattice model was developed for kinetic Monte Carlo simulation of the competition growth of the 4H and 6H polytypes of SiC. The site positions are fixed at the perfect crystal lattice positions without any adjustment of the site positions. Surface steps on seeds and large ratios of diffusion/deposition have positive effects on the 4H polytype stability. The 3D polytype distribution in a physical vapor transport method grown SiC ingot showed that the facet preserved the 4H polytype even if the 6H polytype dominated the growth surface. The theoretical and experimental results of polytype growth in SiC suggest that retaining the step growth mode is an important factor to maintain a stable single 4H polytype during SiC growth.

  15. Stability analysis and future singularity of the m2 R square-2 R model of non-local gravity

    NASA Astrophysics Data System (ADS)

    Dirian, Yves; Mitsou, Ermis

    2014-10-01

    We analyse the classical stability of the model proposed by Maggiore and Mancarella, where gravity is modified by a term ~ m2 R square-2 R to produce the late-time acceleration of the expansion of the universe. Our study takes into account all excitations of the metric that can potentially drive an instability. There are some subtleties in identifying these modes, as a non-local field theory contains dynamical fields which yet do not correspond to degrees of freedom. Since some of them are ghost-like, we clarify the impact of such modes on the stability of the solutions of interest that are the flat space-time and cosmological solutions. We then find that flat space-time is unstable under scalar perturbations, but the instability manifests itself only at cosmological scales, i.e. out of the region of validity of this solution. It is therefore the stability of the FLRW solution which is relevant there, in which case the scalar perturbations are known to be well-behaved by numerical studies. By finding the analytic solution for the late-time behaviour of the scale factor, which leads to a big rip singularity, we argue that the linear perturbations are bounded in the future because of the domination of Hubble friction. In particular, this effect damps the scalar ghost perturbations which were responsible for destabilizing Minkowski space-time. Thus, the model remains phenomenologically viable.

  16. Computational stability analysis of dynamical systems

    NASA Astrophysics Data System (ADS)

    Nikishkov, Yuri Gennadievich

    2000-10-01

    Due to increased available computer power, the analysis of nonlinear flexible multi-body systems, fixed-wing aircraft and rotary-wing vehicles is relying on increasingly complex, large scale models. An important aspect of the dynamic response of flexible multi-body systems is the potential presence of instabilities. Stability analysis is typically performed on simplified models with the smallest number of degrees of freedom required to capture the physical phenomena that cause the instability. The system stability boundaries are then evaluated using the characteristic exponent method or Floquet theory for systems with constant or periodic coefficients, respectively. As the number of degrees of freedom used to represent the system increases, these methods become increasingly cumbersome, and quickly unmanageable. In this work, a novel approach is proposed, the Implicit Floquet Analysis, which evaluates the largest eigenvalues of the transition matrix using the Arnoldi algorithm, without the explicit computation of this matrix. This method is far more computationally efficient than the classical approach and is ideally suited for systems involving a large number of degrees of freedom. The proposed approach is conveniently implemented as a postprocessing step to any existing simulation tool. The application of the method to a geometrically nonlinear multi-body dynamics code is presented. This work also focuses on the implementation of trimming algorithms and the development of tools for the graphical representation of numerical simulations and stability information for multi-body systems.

  17. Mathematical model of the primary CD8 T cell immune response: stability analysis of a nonlinear age-structured system.

    PubMed

    Terry, Emmanuelle; Marvel, Jacqueline; Arpin, Christophe; Gandrillon, Olivier; Crauste, Fabien

    2012-08-01

    The primary CD8 T cell immune response, due to a first encounter with a pathogen, happens in two phases: an expansion phase, with a fast increase of T cell count, followed by a contraction phase. This contraction phase is followed by the generation of memory cells. These latter are specific of the antigen and will allow a faster and stronger response when encountering the antigen for the second time. We propose a nonlinear mathematical model describing the T CD8 immune response to a primary infection, based on three nonlinear ordinary differential equations and one nonlinear age-structured partial differential equation, describing the evolution of CD8 T cell count and pathogen amount. We discuss in particular the roles and relevance of feedback controls that regulate the response. First we reduce our system to a system with a nonlinear differential equation with a distributed delay. We study the existence of two steady states, and we analyze the asymptotic stability of these steady states. Second we study the system with a discrete delay, and analyze global asymptotic stability of steady states. Finally, we show some simulations that we can obtain from the model and confront them to experimental data.

  18. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Relaxation Property and Stability Analysis of the Quasispecies Models

    NASA Astrophysics Data System (ADS)

    Feng, Xiao-Li; Li, Yu-Xiao; Gu, Jian-Zhong; Zhuo, Yi-Zhong

    2009-10-01

    The relaxation property of both Eigen model and Crow-Kimura model with a single peak fitness landscape is studied from phase transition point of view. We first analyze the eigenvalue spectra of the replication mutation matrices. For sufficiently long sequences, the almost crossing point between the largest and second-largest eigenvalues locates the error threshold at which critical slowing down behavior appears. We calculate the critical exponent in the limit of infinite sequence lengths and compare it with the result from numerical curve fittings at sufficiently long sequences. We find that for both models the relaxation time diverges with exponent 1 at the error (mutation) threshold point. Results obtained from both methods agree quite well. From the unlimited correlation length feature, the first order phase transition is further confirmed. Finally with linear stability theory, we show that the two model systems are stable for all ranges of mutation rate. The Eigen model is asymptotically stable in terms of mutant classes, and the Crow-Kimura model is completely stable.

  19. The stability analysis of a general viral infection model with distributed delays and multi-staged infected progression

    NASA Astrophysics Data System (ADS)

    Wang, Jinliang; Liu, Shengqiang

    2015-01-01

    We investigate an in-host model with general incidence and removal rate, as well as distributed delays in virus infections and in productions. By employing Lyapunov functionals and LaSalle's invariance principle, we define and prove the basic reproductive number R0 as a threshold quantity for stability of equilibria. It is shown that if R0 > 1 , then the infected equilibrium is globally asymptotically stable, while if R0 ⩽ 1 , then the infection free equilibrium is globally asymptotically stable under some reasonable assumptions. Moreover, n + 1 distributed delays describe (i) the time between viral entry and the transcription of viral RNA, (ii) the n - 1 -stage time needed for activated infected cells between viral RNA transcription and viral release, and (iii) the time necessary for the newly produced viruses to be infectious (maturation), respectively. The model can describe the viral infection dynamics of many viruses such as HIV-1, HCV and HBV.

  20. Stability Analysis of Flow Past a Wingtip

    NASA Astrophysics Data System (ADS)

    Edstrand, Adam; Schmid, Peter; Taira, Kunihiko; Cattafesta, Louis

    2015-11-01

    Trailing vortices are commonly associated with diminished aircraft performance by increasing induced drag and producing a wake hazard on following aircraft. Previously, stability analyses have been performed on the Batchelor vortex (Heaton et al., 2009), which models a far field axisymmetric vortex, and airfoil wakes (Woodley & Peake, 1997). Both analyses have shown various instabilities present in these far field vortex-wake flows. This complicates the design of control devices by excluding consideration of near field interactions between the wake and vortex shed from the wing. In this study, we perform temporal and spatial bi-global stability analyses on the near field wake of the flow field behind a NACA0012 wing computed from direct numerical simulation at a chord Reynolds number of 1000. The results identify multiple instabilities including a vortex instability, wake instability, and mixed instability that includes interaction between the wake and vortex. As these modes exhibit wave packets, we perform a wave packet analysis (Obrist & Schmid, 2010), which enables the prediction of spatial mode structures at low computational cost. Furthermore, a bi-global parabolized stability analysis is performed, highlighting disparities between the parallel and parabolized analysis. ONR Grant N00014010824 and NSF PIRE Grant OISE-0968313.

  1. Stability analysis for the flow of granular materials down an inclined plane using kinetic model. Quarterly report, October 1, 1992--December 31, 1992

    SciTech Connect

    Rajagopal, K.R.

    1992-12-31

    The flow of granular materials down an inclined plane is modeled by the Richman & Marciniec (1990) in which, they consider a kinetic constitutive theory that includes the effects of particle transport and collisions. Richman & Marciniec (1990) obtained closed form solution for the granular temperature profile, by replacing the volume fraction by its depth-averaged value in the balance equation`s, and thereby from constitutive relations for the normal and shear stresses they obtained the volume fraction and velocity profiles. Here, we use the model proposed by Richman & marciniec (1990) to study the linearized stability for the flow of granular materials down an inclined plane. The governing equations are obtained from the conservation of mass, balance of linear momentum and balance of energy. The basic flow equations and the order of {epsilon} equations are derived, but we intend to use the approximate solution of Richman & Marciniec (1990) as the base solution for the linearized stability analysis.

  2. IMFIT Integrated Modeling Applications Supporting Experimental Analysis: Multiple Time-Slice Kinetic EFIT Reconstructions, MHD Stability Limits, and Energy and Momentum Flux Analyses

    NASA Astrophysics Data System (ADS)

    Collier, A.; Lao, L. L.; Abla, G.; Chu, M. S.; Prater, R.; Smith, S. P.; St. John, H. E.; Guo, W.; Li, G.; Pan, C.; Ren, Q.; Park, J. M.; Bisai, N.; Srinivasan, R.; Sun, A. P.; Liu, Y.; Worrall, M.

    2010-11-01

    This presentation summarizes several useful applications provided by the IMFIT integrated modeling framework to support DIII-D and EAST research. IMFIT is based on Python and utilizes modular task-flow architecture with a central manager and extensive GUI support to coordinate tasks among component modules. The kinetic-EFIT application allows multiple time-slice reconstructions by fetching pressure profile data directly from MDS+ or from ONETWO or PTRANSP. The stability application analyzes a given reference equilibrium for stability limits by performing parameter perturbation studies with MHD codes such as DCON, GATO, ELITE, or PEST3. The transport task includes construction of experimental energy and momentum fluxes from profile analysis and comparison against theoretical models such as MMM95, GLF23, or TGLF.

  3. Analysis and test evaluation of the dynamic response and stability of three advanced turboprop models at low forward speed

    NASA Technical Reports Server (NTRS)

    Smith, Arthur F.

    1985-01-01

    Results of wind tunnel tests at low forward speed for blade dynamic response and stability of three 62.2 cm (24.5 in) diameter models of the Prop-Fan, advanced turboprop, are presented. Measurements of dynamic response were made with the rotors mounted on an isolated nacelle, with varying tilt for nonuniform inflow. Low speed stall flutter tests were conducted at Mach numbers from 0.0 to 0.35. Measurements are compared to Eigen-solution flutter boundaries. Calculated 1P stress response agrees favorably with experiment. Predicted stall flutter boundaries correlate well with measured high stress regions. Stall flutter is significantly reduced by increased blade sweep. Susceptibility to stall flutter decreases rapidly with forward speed.

  4. Stability Analysis of ISS Medications

    NASA Technical Reports Server (NTRS)

    Wotring, V. E.

    2014-01-01

    the United States Pharmacopeia (USP) to measure the amount of intact active ingredient, identify degradation products and measure their amounts. Some analyses were conducted by an independent analytical laboratory, but certain (Schedule) medications could not be shipped to their facility and were analyzed at JSC. RESULTS Nine medications were analyzed with respect to active pharmaceutical ingredient (API) and degradant amounts. Results were compared to the USP requirements for API and degradants/impurities content for every FDA-approved medication. One medication met USP requirements at 5 months after its expiration date. Four of the nine (44% of those tested) medications tested met USP requirements up to 8 months post-expiration. Another 3 medications (33% of those tested) met USP guidelines 2-3 months before expiration. One medication, a compound classed by the FDA as a dietary supplement and sometimes used as a sleep aid, failed to meet USP requirements at 11 months post-expiration. CONCLUSION Analysis of each medication at a single time point provides limited information on the stability of a medication stored in particular conditions; it is not possible to predict how long a medication may be safe and effective from these data. Notwithstanding, five of the nine medications tested (56%) met USP requirements for API and degradants/impurities at least 5 months past expiration dates. The single compound that failed to meet USP requirements is not regulated as strictly as prescription medications are during manufacture; it is unknown if this medication would have met the requirements prior to flight. Notably, it was the furthest beyond its expiration date. Only more comprehensive analysis of flight-aged samples compared to appropriate ground controls will permit determination of spaceflight effects on medication stability.

  5. Nonlinear relative-proportion-based route adjustment process for day-to-day traffic dynamics: modeling, equilibrium and stability analysis

    NASA Astrophysics Data System (ADS)

    Zhu, Wenlong; Ma, Shoufeng; Tian, Junfang; Li, Geng

    2016-11-01

    Travelers' route adjustment behaviors in a congested road traffic network are acknowledged as a dynamic game process between them. Existing Proportional-Switch Adjustment Process (PSAP) models have been extensively investigated to characterize travelers' route choice behaviors; PSAP has concise structure and intuitive behavior rule. Unfortunately most of which have some limitations, i.e., the flow over adjustment problem for the discrete PSAP model, the absolute cost differences route adjustment problem, etc. This paper proposes a relative-Proportion-based Route Adjustment Process (rePRAP) maintains the advantages of PSAP and overcomes these limitations. The rePRAP describes the situation that travelers on higher cost route switch to those with lower cost at the rate that is unilaterally depended on the relative cost differences between higher cost route and its alternatives. It is verified to be consistent with the principle of the rational behavior adjustment process. The equivalence among user equilibrium, stationary path flow pattern and stationary link flow pattern is established, which can be applied to judge whether a given network traffic flow has reached UE or not by detecting the stationary or non-stationary state of link flow pattern. The stability theorem is proved by the Lyapunov function approach. A simple example is tested to demonstrate the effectiveness of the rePRAP model.

  6. Stability analysis of micropipette aspiration of neutrophils.

    PubMed Central

    Derganc, J; Bozic, B; Svetina, S; Zeks, B

    2000-01-01

    During micropipette aspiration, neutrophil leukocytes exhibit a liquid-drop behavior, i.e., if a neutrophil is aspirated by a pressure larger than a certain threshold pressure, it flows continuously into the pipette. The point of the largest aspiration pressure at which the neutrophil can still be held in a stable equilibrium is called the critical point of aspiration. Here, we present a theoretical analysis of the equilibrium behavior and stability of a neutrophil during micropipette aspiration with the aim to rigorously characterize the critical point. We take the energy minimization approach, in which the critical point is well defined as the point of the stability breakdown. We use the basic liquid-drop model of neutrophil rheology extended by considering also the neutrophil elastic area expansivity. Our analysis predicts that the behavior at large pipette radii or small elastic area expansivity is close to the one predicted by the basic liquid-drop model, where the critical point is attained slightly before the projection length reaches the pipette radius. The effect of elastic area expansivity is qualitatively different at smaller pipette radii, where our analysis predicts that the critical point is attained at the projection lengths that may significantly exceed the pipette radius. PMID:10866944

  7. Analysis of cavern and well stability at the West Hackberry SPR site using a full-dome model.

    SciTech Connect

    Sobolik, Steven R.

    2015-08-01

    This report presents computational analyses that simulate the structural response of caverns at the Strategic Petroleum Reserve (SPR) West Hackberry site. The cavern field comprises 22 caverns. Five caverns (6, 7, 8, 9, 11) were acquired from industry and have unusual shapes and a history dating back to 1946. The other 17 caverns (101-117) were leached according to SPR standards in the mid-1980s and have tall cylindrical shapes. The history of the caverns and their shapes are simulated in a three-dimensional geomechanics model of the site that predicts deformations, strains, and stresses. Future leaching scenarios corresponding to oil drawdowns using fresh water are also simulated by increasing the volume of the caverns. Cavern pressures are varied in the model to capture operational practices in the field. The results of the finite element model are interpreted to provide information on the current and future status of subsidence, well integrity, and cavern stability. The most significant results in this report are relevant to Cavern 6. The cavern is shaped like a bowl with a large ceiling span and is in close proximity to Cavern 9. The analyses predict tensile stresses at the edge of the ceiling during repressurization of Cavern 6 following workover conditions. During a workover the cavern is at low pressure to service a well. The wellhead pressures are atmospheric. When the workover is complete, the cavern is repressurized. The resulting elastic stresses are sufficient to cause tension around the edge of the large ceiling span. With time, these stresses relax to a compressive state because of salt creep. However, the potential for salt fracture and propagation exists, particularly towards Cavern 9. With only 200 feet of salt between the caverns, the operational consequences must be examined if the two caverns become connected. A critical time may be during a workover of Cavern 9 in part because of the operational vulnerabilities, but also because dilatant damage

  8. The stability of input structures in a supply-driven input-output model: A regional analysis

    SciTech Connect

    Allison, T.

    1994-06-01

    Disruptions in the supply of strategic resources or other crucial factor inputs often present significant problems for planners and policymakers. The problem may be particularly significant at the regional level where higher levels of product specialization mean supply restrictions are more likely to affect leading regional industries. To maintain economic stability in the event of a supply restriction, regional planners may therefore need to evaluate the importance of market versus non-market systems for allocating the remaining supply of the disrupted resource to the region`s leading consuming industries. This paper reports on research that has attempted to show that large short term changes on the supply side do not lead to substantial changes in input coefficients and do not therefore mean the abandonment of the concept of the production function as has been suggested (Oosterhaven, 1988). The supply-driven model was tested for six sectors of the economy of Washington State and found to yield new input coefficients whose values were in most cases close approximations of their original values, even with substantial changes in supply. Average coefficient changes from a 50% output reduction in these six sectors were in the vast majority of cases (297 from a total of 315) less than +2.0% of their original values, excluding coefficient changes for the restricted input. Given these small changes, the most important issue for the validity of the supply-driven input-output model may therefore be the empirical question of the extent to which these coefficient changes are acceptable as being within the limits of approximation.

  9. Power System Transient Stability Analysis through a Homotopy Analysis Method

    SciTech Connect

    Wang, Shaobu; Du, Pengwei; Zhou, Ning

    2014-04-01

    As an important function of energy management systems (EMSs), online contingency analysis plays an important role in providing power system security warnings of instability. At present, N-1 contingency analysis still relies on time-consuming numerical integration. To save computational cost, the paper proposes a quasi-analytical method to evaluate transient stability through time domain periodic solutions’ frequency sensitivities against initial values. First, dynamic systems described in classical models are modified into damping free systems whose solutions are either periodic or expanded (non-convergent). Second, because the sensitivities experience sharp changes when periodic solutions vanish and turn into expanded solutions, transient stability is assessed using the sensitivity. Third, homotopy analysis is introduced to extract frequency information and evaluate the sensitivities only from initial values so that time consuming numerical integration is avoided. Finally, a simple case is presented to demonstrate application of the proposed method, and simulation results show that the proposed method is promising.

  10. Least-Squares Regression and Spectral Residual Augmented Classical Least-Squares Chemometric Models for Stability-Indicating Analysis of Agomelatine and Its Degradation Products: A Comparative Study.

    PubMed

    Naguib, Ibrahim A; Abdelrahman, Maha M; El Ghobashy, Mohamed R; Ali, Nesma A

    2016-01-01

    Two accurate, sensitive, and selective stability-indicating methods are developed and validated for simultaneous quantitative determination of agomelatine (AGM) and its forced degradation products (Deg I and Deg II), whether in pure forms or in pharmaceutical formulations. Partial least-squares regression (PLSR) and spectral residual augmented classical least-squares (SRACLS) are two chemometric models that are being subjected to a comparative study through handling UV spectral data in range (215-350 nm). For proper analysis, a three-factor, four-level experimental design was established, resulting in a training set consisting of 16 mixtures containing different ratios of interfering species. An independent test set consisting of eight mixtures was used to validate the prediction ability of the suggested models. The results presented indicate the ability of mentioned multivariate calibration models to analyze AGM, Deg I, and Deg II with high selectivity and accuracy. The analysis results of the pharmaceutical formulations were statistically compared to the reference HPLC method, with no significant differences observed regarding accuracy and precision. The SRACLS model gives comparable results to the PLSR model; however, it keeps the qualitative spectral information of the classical least-squares algorithm for analyzed components.

  11. Biomechanical analysis of the effect of congruence, depth and radius on the stability ratio of a simplistic ‘ball-and-socket’ joint model

    PubMed Central

    Werthel, J-D.; Hatta, T.; Thoreson, A. R.; Resch, H.; An, K-N.; Moroder, P.

    2016-01-01

    Objectives The bony shoulder stability ratio (BSSR) allows for quantification of the bony stabilisers in vivo. We aimed to biomechanically validate the BSSR, determine whether joint incongruence affects the stability ratio (SR) of a shoulder model, and determine the correct parameters (glenoid concavity versus humeral head radius) for calculation of the BSSR in vivo. Methods Four polyethylene balls (radii: 19.1 mm to 38.1 mm) were used to mould four fitting sockets in four different depths (3.2 mm to 19.1mm). The SR was measured in biomechanical congruent and incongruent experimental series. The experimental SR of a congruent system was compared with the calculated SR based on the BSSR approach. Differences in SR between congruent and incongruent experimental conditions were quantified. Finally, the experimental SR was compared with either calculated SR based on the socket concavity or plastic ball radius. Results The experimental SR is comparable with the calculated SR (mean difference 10%, sd 8%; relative values). The experimental incongruence study observed almost no differences (2%, sd 2%). The calculated SR on the basis of the socket concavity radius is superior in predicting the experimental SR (mean difference 10%, sd 9%) compared with the calculated SR based on the plastic ball radius (mean difference 42%, sd 55%). Conclusion The present biomechanical investigation confirmed the validity of the BSSR. Incongruence has no significant effect on the SR of a shoulder model. In the event of an incongruent system, the calculation of the BSSR on the basis of the glenoid concavity radius is recommended. Cite this article: L. Ernstbrunner, J-D. Werthel, T. Hatta, A. R. Thoreson, H. Resch, K-N. An, P. Moroder. Biomechanical analysis of the effect of congruence, depth and radius on the stability ratio of a simplistic ‘ball-and-socket’ joint model. Bone Joint Res 2016;5:453–460. DOI: 10.1302/2046-3758.510.BJR-2016-0078.R1. PMID:27729312

  12. Moduli stabilization in stringy ISS models

    SciTech Connect

    Nakayama, Yu; Nakayama, Yu; Yamazaki, Masahito; Yanagida, T.T.

    2007-09-28

    We present a stringy realization of the ISS metastable SUSY breaking model with moduli stabilization. The mass moduli of the ISS model is stabilized by gauging of a U(1) symmetry and its D-term potential. The SUSY is broken both by F-terms and D-terms. It is possible to obtain de Sitter vacua with a vanishingly small cosmological constant by an appropriate fine-tuning of flux parameters.

  13. Support vector regression and artificial neural network models for stability indicating analysis of mebeverine hydrochloride and sulpiride mixtures in pharmaceutical preparation: A comparative study

    NASA Astrophysics Data System (ADS)

    Naguib, Ibrahim A.; Darwish, Hany W.

    2012-02-01

    A comparison between support vector regression (SVR) and Artificial Neural Networks (ANNs) multivariate regression methods is established showing the underlying algorithm for each and making a comparison between them to indicate the inherent advantages and limitations. In this paper we compare SVR to ANN with and without variable selection procedure (genetic algorithm (GA)). To project the comparison in a sensible way, the methods are used for the stability indicating quantitative analysis of mixtures of mebeverine hydrochloride and sulpiride in binary mixtures as a case study in presence of their reported impurities and degradation products (summing up to 6 components) in raw materials and pharmaceutical dosage form via handling the UV spectral data. For proper analysis, a 6 factor 5 level experimental design was established resulting in a training set of 25 mixtures containing different ratios of the interfering species. An independent test set consisting of 5 mixtures was used to validate the prediction ability of the suggested models. The proposed methods (linear SVR (without GA) and linear GA-ANN) were successfully applied to the analysis of pharmaceutical tablets containing mebeverine hydrochloride and sulpiride mixtures. The results manifest the problem of nonlinearity and how models like the SVR and ANN can handle it. The methods indicate the ability of the mentioned multivariate calibration models to deconvolute the highly overlapped UV spectra of the 6 components' mixtures, yet using cheap and easy to handle instruments like the UV spectrophotometer.

  14. Analysis and modelling of the temporal stability of throughfall and near-surface soil moisture at the plot scale in the Italian pre-Alps

    NASA Astrophysics Data System (ADS)

    Zuecco, Giulia; van Meerveld, Ilja; Penna, Daniele; Hopp, Luisa; Borga, Marco

    2016-04-01

    event and the start of the soil moisture measurements. The temporal stability of soil moisture was larger than the temporal stability of throughfall and they were also not significantly correlated. The patterns of temporal stability were also not related to canopy openness or LAI, suggesting that the spatial variability in throughfall is probably linked to small scale characteristics of the canopy. A soil moisture model was used to test which combination of soil properties and vegetation characteristics leads to uncorrelated patterns of temporal stability of throughfall and soil moisture. The application of the model revealed that a large spatial variability in saturated hydraulic conductivity that is correlated with the spatial variability in LAI and root fraction tends to strongly weaken the correlation between throughfall and soil moisture patterns. The analysis of field data combined with the model application suggests that in this specific forested hillslope the spatial organization of soil moisture is dominated by a combination of soil properties and vegetation characteristics, rather than by the throughfall spatial patterns. Keywords: throughfall; near-surface soil moisture; temporal stability; plot scale; spatial variability; forested hillslope.

  15. Solar Dynamic Power System Stability Analysis and Control

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Wang, Yanchun

    1996-01-01

    The objective of this research is to conduct dynamic analysis, control design, and control performance test of solar power system. Solar power system consists of generation system and distribution network system. A bench mark system is used in this research, which includes a generator with excitation system and governor, an ac/dc converter, six DDCU's and forty-eight loads. A detailed model is used for modeling generator. Excitation system is represented by a third order model. DDCU is represented by a seventh order system. The load is modeled by the combination of constant power and constant impedance. Eigen-analysis and eigen-sensitivity analysis are used for system dynamic analysis. The effects of excitation system, governor, ac/dc converter control, and the type of load on system stability are discussed. In order to improve system transient stability, nonlinear ac/dc converter control is introduced. The direct linearization method is used for control design. The dynamic analysis results show that these controls affect system stability in different ways. The parameter coordination of controllers are recommended based on the dynamic analysis. It is concluded from the present studies that system stability is improved by the coordination of control parameters and the nonlinear ac/dc converter control stabilize system oscillation caused by the load change and system fault efficiently.

  16. A model for bluff body flame stabilization

    SciTech Connect

    DeChamplain, J.A.; Bardon, M.F.

    1986-01-01

    Previous work on bluff body stabilization mechanisms is reviewed, and existing models are categorized in tabular form, showing the underlying assumptions and resulting equations. Lacunae in existing models are discussed, particularly their reliance on characteristics such as laminar flame speed which is difficult to predict for the conditions encountered in turbojet afterburners. A model for bluff body flame stabilization is proposed based on the stirred reactor approach. In addition to the effect of temperature, pressure and geometry, it includes chemical effects such as vitiation and fuel-air equivalence ratio. Blow off velocities predicted by the model are compared to experimental data for various conditions.

  17. HVDC models used in stability studies

    SciTech Connect

    Johnson, B.K.

    1989-04-01

    A new generation of detailed models for HVDC systems has recently been applied in power system stability programs. These models represent the high speed dynamics of the converter controllers as well as the L/R dynamics of the dc transmission. Older dc models such as those described in reference which are based upon pseudo-steady state relationships are however still in general use. The latter models remain popular since they require a minimum of data and significantly less computer resources than the detailed models. The following questions therefore need to be answered concerning the two types of models: (1) To what extent is simulation accuracy impacted by using the older HVDC model. (2) Is the difference in precision significant compared to other uncertainties which are inherent in stability calculations. This paper addresses these questions and also considers a third type of HVDC model described in Appendix I which relieves some of the assumptions associated with the pseudo steady state models.

  18. Stability analysis of zigzag boron nitride nanoribbons

    SciTech Connect

    Rai, Hari Mohan Late, Ravikiran; Saxena, Shailendra K.; Kumar, Rajesh; Sagdeo, Pankaj R.; Jaiswal, Neeraj K.; Srivastava, Pankaj

    2015-05-15

    We have explored the structural stability of bare and hydrogenated zigzag boron nitride nanoribbons (ZBNNRs). In order to investigate the structural stability, we calculate the cohesive energy for bare, one-edge and both edges H-terminated ZBNNRs with different widths. It is found that the ZBNNRs with width Nz=8 are energetically more favorable than the lower-width counterparts (Nz<8). Bare ZBNNRs have been found energetically most stable as compared to the edge terminated ribbons. Our analysis reveals that the structural stability is a function of ribbon-width and it is not affected significantly by the type of edge-passivation (one-edge or both-edges)

  19. Sensitivity of system stability to model structure

    USGS Publications Warehouse

    Hosack, G.R.; Li, H.W.; Rossignol, P.A.

    2009-01-01

    A community is stable, and resilient, if the levels of all community variables can return to the original steady state following a perturbation. The stability properties of a community depend on its structure, which is the network of direct effects (interactions) among the variables within the community. These direct effects form feedback cycles (loops) that determine community stability. Although feedback cycles have an intuitive interpretation, identifying how they form the feedback properties of a particular community can be intractable. Furthermore, determining the role that any specific direct effect plays in the stability of a system is even more daunting. Such information, however, would identify important direct effects for targeted experimental and management manipulation even in complex communities for which quantitative information is lacking. We therefore provide a method that determines the sensitivity of community stability to model structure, and identifies the relative role of particular direct effects, indirect effects, and feedback cycles in determining stability. Structural sensitivities summarize the degree to which each direct effect contributes to stabilizing feedback or destabilizing feedback or both. Structural sensitivities prove useful in identifying ecologically important feedback cycles within the community structure and for detecting direct effects that have strong, or weak, influences on community stability. The approach may guide the development of management intervention and research design. We demonstrate its value with two theoretical models and two empirical examples of different levels of complexity. ?? 2009 Elsevier B.V. All rights reserved.

  20. Stability analysis of unsteady ablation fronts

    NASA Astrophysics Data System (ADS)

    Betti, R.; McCrory, R. L.; Verdon, C. P.

    1993-08-01

    The linear stability analysis of unsteady ablation fronts is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code ORCHID.

  1. Stability analysis of unsteady ablation fronts

    SciTech Connect

    Betti, R.; McCrory, R.L.; Verdon, C.P. )

    1993-11-08

    The linear stability analysis of unsteady ablation fronts is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code ORCHID.

  2. Stability analysis of unsteady ablation fronts

    NASA Astrophysics Data System (ADS)

    Betti, R.; McCrory, R. L.; Verdon, C. P.

    1993-11-01

    The linear stability analysis of unsteady ablation fronts is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code orchid.

  3. Stability analysis of unsteady ablation fronts

    SciTech Connect

    Betti, R.; McCrory, R.L.; Verdon, C.P.

    1993-08-01

    The linear stability analysis of unsteady ablation fronts, is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code ORCHID.

  4. Developments in Cylindrical Shell Stability Analysis

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Starnes, James H., Jr.

    1998-01-01

    Today high-performance computing systems and new analytical and numerical techniques enable engineers to explore the use of advanced materials for shell design. This paper reviews some of the historical developments of shell buckling analysis and design. The paper concludes by identifying key research directions for reliable and robust methods development in shell stability analysis and design.

  5. Magnetization stability analysis of the Stoner-Wohlfarth model under a spin-polarized current with a tilted polarization

    SciTech Connect

    Wang, Zhiyuan; Sun, Z. Z.

    2014-02-14

    The stationary-state solutions of magnetization dynamics under a spin-polarized current that was polarized in an arbitrary direction were investigated by solving the Landau-Lifshitz-Gilbert-Slonczewski equation for a single-domain magnet. Taking into consideration the uniaxial magnetic anisotropy, the equilibrium directions of the magnetization vectors were analytically obtained by solving an algebraic cubic equation. It was found that one to three pairs of magnetization equilibrium states existed, depending on the current intensity and the direction of the spin polarization. By numerically analyzing the stabilities of these equilibrium states, the threshold switching current for the reversing the magnetic vector was obtained under different current polarization configurations, which may be useful for use in future spintronics devices.

  6. Deep-water seamounts in the NE Atlantic, sources of landslides-induced tsunamis: Slope stability analysis and tsunami numerical modelling

    NASA Astrophysics Data System (ADS)

    Baptista, M. A.; Omira, R.; Ramalho, I.; Vales, D.; Matias, L. M.; Terrinha, P.

    2015-12-01

    Submarine mass failures (SMFs) present one of the significant marine Geo-hazards. Their importance as contributors to tsunami hazard has been recognized over the last 20-30 years, but they are seldom considered in the evaluation of quantitative tsunami impact or in the design of warning strategies. This study aims to investigate the slope stability of the SMFs in the NE Atlantic, their companion tsunami and the associated hazard at the target coasts. It focuses on two major deep-water seamounts of the NE Atlantic, the Gorringe Bank and the Hirondelle, where evidences of large SMFs have been found. Slope stability analysis is often based on relationships between landslides and earthquakes. Here, within each considered seamount, slope failure potential is investigated through the pseudo-static method. This analysis allows establishing a relationship between the size of the SMF and the critical earthquake peak ground acceleration necessary to initiate it and therefore define the possible SMF scenarios. Numerical modelling of SMF-induced tsunami generation is then employed to test the tsunamigenic potential of each defined scenario. It is performed using a multi-layers viscous shallow-water model, where the lower layer represents the deformable slide that is assumed to be a viscous-incompressible fluid, and bounded by the upper layer of seawater assumed to be inviscid and incompressible. The propagation of tsunami waves is simulated employing non-linear shallow water equations. Results are presented in terms of: 1) slope stability curves that establish the relationship between the probable earthquake magnitudes and the possible sizes of SMFs, 2) possible SMF scenarios within each seamount, 3) potential of tsunami generation for each SMF, 4) tsunami coastal impact at target coasts. Results show that SMFs in the NE Atlantic have the potential of generating large tsunamis with significant impact along the surrounding coasts. Therefore, more attention must be accorded to

  7. Advanced stability analysis for laminar flow control

    NASA Technical Reports Server (NTRS)

    Orszag, S. A.

    1981-01-01

    Five classes of problems are addressed: (1) the extension of the SALLY stability analysis code to the full eighth order compressible stability equations for three dimensional boundary layer; (2) a comparison of methods for prediction of transition using SALLY for incompressible flows; (3) a study of instability and transition in rotating disk flows in which the effects of Coriolis forces and streamline curvature are included; (4) a new linear three dimensional instability mechanism that predicts Reynolds numbers for transition to turbulence in planar shear flows in good agreement with experiment; and (5) a study of the stability of finite amplitude disturbances in axisymmetric pipe flow showing the stability of this flow to all nonlinear axisymmetric disturbances.

  8. Global stability analysis of electrified jets

    NASA Astrophysics Data System (ADS)

    Rivero-Rodriguez, Javier; Pérez-Saborid, Miguel

    2014-11-01

    Electrospinning is a common process used to produce micro and nano polymeric fibers. In this technique, the whipping mode of a very thin electrified jet generated in an electrospray device is nhanced in order to increase its elongation. In this work, we use a theoretical Eulerian model that describes the kinematics and dynamics of the midline of the jet, its radius and convective velocity. The model equations result from balances of mass, linear and angular momentum applied to any differential slice of the jet together with constitutive laws for viscous forces and moments, as well as appropriate expressions for capillary and electrical forces. As a first step towards computing the complete nonlinear, transient dynamics of the electrified jet, we have performed a global stability analysis of the forementioned equations and compared the results with experimental data obtained by Guillaume et al. [2011] and Guerrero-Millán et al. [2014]. The support of the Ministry of Science and Innovation of Spain (Project DPI 2010-20450-C03-02) is acknowledged.

  9. Stability analysis in tachyonic potential chameleon cosmology

    SciTech Connect

    Farajollahi, H.; Salehi, A.; Tayebi, F.; Ravanpak, A. E-mail: a.salehi@guilan.ac.ir E-mail: aravanpak@guilan.ac.ir

    2011-05-01

    We study general properties of attractors for tachyonic potential chameleon scalar-field model which possess cosmological scaling solutions. An analytic formulation is given to obtain fixed points with a discussion on their stability. The model predicts a dynamical equation of state parameter with phantom crossing behavior for an accelerating universe. We constrain the parameters of the model by best fitting with the recent data-sets from supernovae and simulated data points for redshift drift experiment generated by Monte Carlo simulations.

  10. A Low Speed Model Analysis and Demonstration of Active Control Systems for Rigid-Body and Flexible Mode Stability

    DTIC Science & Technology

    1974-06-01

    might be to sum the signals directly using complex algebra . This approach may better be handled in a digital system. Servovalve Magnetic Coupling The...France, 1969. *’ 18. L- Coven and C. F. Durbin , A Cmprehensive Eigensolution Program for Structural Vibration Analysis TEV 142. Boeing Document D6

  11. Modeling, Dynamics, Bifurcation Behavior and Stability Analysis of a DC-DC Boost Converter in Photovoltaic Systems

    NASA Astrophysics Data System (ADS)

    Zhioua, M.; El Aroudi, A.; Belghith, S.; Bosque-Moncusí, J. M.; Giral, R.; Al Hosani, K.; Al-Numay, M.

    A study of a DC-DC boost converter fed by a photovoltaic (PV) generator and supplying a constant voltage load is presented. The input port of the converter is controlled using fixed frequency pulse width modulation (PWM) based on the loss-free resistor (LFR) concept whose parameter is selected with the aim to force the PV generator to work at its maximum power point. Under this control strategy, it is shown that the system can exhibit complex nonlinear behaviors for certain ranges of parameter values. First, using the nonlinear models of the converter and the PV source, the dynamics of the system are explored in terms of some of its parameters such as the proportional gain of the controller and the output DC bus voltage. To present a comprehensive approach to the overall system behavior under parameter changes, a series of bifurcation diagrams are computed from the circuit-level switched model and from a simplified model both implemented in PSIM© software showing a remarkable agreement. These diagrams show that the first instability that takes place in the system period-1 orbit when a primary parameter is varied is a smooth period-doubling bifurcation and that the nonlinearity of the PV generator is irrelevant for predicting this phenomenon. Different bifurcation scenarios can take place for the resulting period-2 subharmonic regime depending on a secondary bifurcation parameter. The boundary between the desired period-1 orbit and subharmonic oscillation resulting from period-doubling in the parameter space is obtained by calculating the eigenvalues of the monodromy matrix of the simplified model. The results from this model have been validated with time-domain numerical simulation using the circuit-level switched model and also experimentally from a laboratory prototype. This study can help in selecting the parameter values of the circuit in order to delimit the region of period-1 operation of the converter which is of practical interest in PV systems.

  12. Stability analysis of cylinders with circular cutouts

    NASA Technical Reports Server (NTRS)

    Almroth, B. O.; Brogan, F. A.; Marlowe, M. B.

    1973-01-01

    The stability of axially compressed cylinders with circular cutouts is analyzed numerically. An extension of the finite-difference method is used which removes the requirement that displacement components be defined in the directions of the grid lines. The results of this nonlinear analysis are found to be in good agreement with earlier experimental results.

  13. Stock market stability: Diffusion entropy analysis

    NASA Astrophysics Data System (ADS)

    Li, Shouwei; Zhuang, Yangyang; He, Jianmin

    2016-05-01

    In this article, we propose a method to analyze the stock market stability based on diffusion entropy, and conduct an empirical analysis of Dow Jones Industrial Average. Empirical results show that this method can reflect the volatility and extreme cases of the stock market.

  14. Thermodynamic modeling of natural zeolite stability

    SciTech Connect

    Chipera, S.J.; Bish, D.L.

    1997-06-01

    Zeolites occur in a variety of geologic environments and are used in numerous agricultural, commercial, and environmental applications. It is desirable to understand their stability both to predict future stability and to evaluate the geochemical conditions resulting in their formation. The use of estimated thermodynamic data for measured zeolite compositions allows thermodynamic modeling of stability relationships among zeolites in different geologic environments (diagenetic, saline and alkaline lakes, acid rock hydrothermal, basic rock, deep sea sediments). This modeling shows that the relative cation abundances in both the aqueous and solid phases, the aqueous silica activity, and temperature are important factors in determining the stable zeolite species. Siliceous zeolites (e.g., clinoptilolite, mordenite, erionite) present in saline and alkaline lakes or diagenetic deposits formed at elevated silica activities. Aluminous zeolites (e.g., natrolite, mesolite/scolecite, thomsonite) formed in basic rocks in association with reduced silica activities. Likewise, phillipsite formation is favored by reduced aqueous silica activities. The presence of erionite, chabazite, and phillipsite are indicative of environments with elevated potassium concentrations. Elevated temperature, calcic water conditions, and reduced silica activity help to enhance the laumontite and wairakite stability fields. Analcime stability increases with increased temperature and aqueous Na concentration, and/or with decreased silica activity.

  15. DYNAMIC LANDSCAPES, STABILITY AND ECOLOGICAL MODELING

    EPA Science Inventory

    The image of a ball rolling along a series of hills and valleys is an effective heuristic by which to communicate stability concepts in ecology. However, the dynamics of this landscape model have little to do with ecological systems. Other landscape representations, however, are ...

  16. Aeroelastic stability analysis of flexible overexpanded rocket nozzle

    NASA Astrophysics Data System (ADS)

    Bekka, N.; Sellam, M.; Chpoun, A.

    2016-07-01

    The aim of this paper is to present a new aeroelastic stability model taking into account the viscous effects for a supersonic nozzle flow in overexpanded regimes. This model is inspired by the Pekkari model which was developed initially for perfect fluid flow. The new model called the "Modified Pekkari Model" (MPM) considers a more realistic wall pressure profile for the case of a free shock separation inside the supersonic nozzle using the free interaction theory of Chapman. To reach this objective, a code for structure computation coupled with aerodynamic excitation effects is developed that allows the analysis of aeroelastic stability for the overexpanded nozzles. The main results are presented in a comparative manner using existing models (Pekkari model and its extended version) and the modified Pekkari model developed in this work.

  17. Stability of Ensemble Models Predicts Productivity of Enzymatic Systems

    DOE PAGES

    Theisen, Matthew K.; Lafontaine Rivera, Jimmy G.; Liao, James C.

    2016-03-10

    Stability in a metabolic system may not be obtained if incorrect amounts of enzymes are used. Without stability, some metabolites may accumulate or deplete leading to the irreversible loss of the desired operating point. Even if initial enzyme amounts achieve a stable steady state, changes in enzyme amount due to stochastic variations or environmental changes may move the system to the unstable region and lose the steady-state or quasi-steady-state flux. This situation is distinct from the phenomenon characterized by typical sensitivity analysis, which focuses on the smooth change before loss of stability. Here we show that metabolic networks differ significantlymore » in their intrinsic ability to attain stability due to the network structure and kinetic forms, and that after achieving stability, some enzymes are prone to cause instability upon changes in enzyme amounts. We use Ensemble Modelling for Robustness Analysis (EMRA) to analyze stability in four cell-free enzymatic systems when enzyme amounts are changed. Loss of stability in continuous systems can lead to lower production even when the system is tested experimentally in batch experiments. The predictions of instability by EMRA are supported by the lower productivity in batch experimental tests. Finally, the EMRA method incorporates properties of network structure, including stoichiometry and kinetic form, but does not require specific parameter values of the enzymes.« less

  18. Stability of Ensemble Models Predicts Productivity of Enzymatic Systems

    SciTech Connect

    Theisen, Matthew K.; Lafontaine Rivera, Jimmy G.; Liao, James C.

    2016-03-10

    Stability in a metabolic system may not be obtained if incorrect amounts of enzymes are used. Without stability, some metabolites may accumulate or deplete leading to the irreversible loss of the desired operating point. Even if initial enzyme amounts achieve a stable steady state, changes in enzyme amount due to stochastic variations or environmental changes may move the system to the unstable region and lose the steady-state or quasi-steady-state flux. This situation is distinct from the phenomenon characterized by typical sensitivity analysis, which focuses on the smooth change before loss of stability. Here we show that metabolic networks differ significantly in their intrinsic ability to attain stability due to the network structure and kinetic forms, and that after achieving stability, some enzymes are prone to cause instability upon changes in enzyme amounts. We use Ensemble Modelling for Robustness Analysis (EMRA) to analyze stability in four cell-free enzymatic systems when enzyme amounts are changed. Loss of stability in continuous systems can lead to lower production even when the system is tested experimentally in batch experiments. The predictions of instability by EMRA are supported by the lower productivity in batch experimental tests. Finally, the EMRA method incorporates properties of network structure, including stoichiometry and kinetic form, but does not require specific parameter values of the enzymes.

  19. Stability Analysis in a Model of 1,2-dichloroethane Biodegradation by Klebsiella Oxytoca va 8391Immobilized on Granulated Activated Carbon

    NASA Astrophysics Data System (ADS)

    Borisov, M.; Dimitrova, N.

    2011-11-01

    We consider an ecological model for biodegradation of toxic substances in aquatic and atmospheric biotic systems. The model, which is described by a nonlinear system of four ordinary differential equations, is known to be experimentally validated. We compute the equilibrium points of the model and study their asymptotic stability. The Maple package BifTools is used to calculate one- and two-parameter bifurcations of the equilibrium points.

  20. ASTROP2 users manual: A program for aeroelastic stability analysis of propfans

    NASA Technical Reports Server (NTRS)

    Narayanan, G. V.; Kaza, K. R. V.

    1991-01-01

    A user's manual is presented for the aeroelastic stability and response of propulsion systems computer program called ASTROP2. The ASTROP2 code preforms aeroelastic stability analysis of rotating propfan blades. This analysis uses a two-dimensional, unsteady cascade aerodynamics model and a three-dimensional, normal-mode structural model. Analytical stability results from this code are compared with published experimental results of a rotating composite advanced turboprop model and of nonrotating metallic wing model.

  1. Structural modeling and patch-clamp analysis of pain-related mutation TRPA1-N855S reveal inter-subunit salt bridges stabilizing the channel open state.

    PubMed

    Zíma, Vlastimil; Witschas, Katja; Hynkova, Anna; Zímová, Lucie; Barvík, Ivan; Vlachova, Viktorie

    2015-06-01

    The ankyrin transient receptor potential channel TRPA1 is a polymodal sensor for noxious stimuli, and hence a promising target for treating chronic pain. This tetrameric six-transmembrane segment (S1-S6) channel can be activated by various pungent chemicals, such as allyl isothiocyanate or cinnamaldehyde, but also by intracellular Ca(2+) or depolarizing voltages. Within the S4-S5 linker of human TRPA1, a gain-of-function mutation, N855S, was recently found to underlie familial episodic pain syndrome, manifested by bouts of severe upper body pain, triggered by physical stress, fasting, or cold. To clarify the structural basis for this channelopathy, we derive a structural model of TRPA1 by combining homology modeling, molecular dynamics simulations, point mutagenesis and electrophysiology. In the vicinity of N855, the model reveals inter-subunit salt bridges between E854 and K868. Using the heterologous expression of recombinant wild-type and mutant TRPA1 channels in HEK293T cells, we indeed found that the charge-reversal mutants E854R and K868E exhibited dramatically reduced responses to chemical and voltage stimuli, whereas the charge-swapping mutation E854R/K868E substantially rescued their functionalities. Moreover, mutation analysis of highly conserved charged residues within the S4-S5 region revealed a gain-of-function phenotype for R852E with an increased basal channel activity, a loss of Ca(2+)-induced potentiation and an accelerated Ca(2+)-dependent inactivation. Based on the model and on a comparison with the recently revealed atomic-level structure of the related channel TRPV1, we propose that inter-subunit salt bridges between adjacent S4-S5 regions are crucial for stabilizing the conformations associated with chemically and voltage-induced gating of the TRPA1 ion channel.

  2. Stability analysis of an encapsulated microbubble against gas diffusion.

    PubMed

    Katiyar, Amit; Sarkar, Kausik

    2010-03-01

    Linear stability analysis is performed for a mathematical model of diffusion of gases from an encapsulated microbubble. It is an Epstein-Plesset model modified to account for encapsulation elasticity and finite gas permeability. Although bubbles, containing gases other than air, are considered, the final stable bubble, if any, contains only air, and stability is achieved only when the surrounding medium is saturated or oversaturated with air. In absence of encapsulation elasticity, only a neutral stability is achieved for zero surface tension, the other solution being unstable. For an elastic encapsulation, different equilibrium solutions are obtained depending on the saturation level and whether the surface tension is smaller or higher than the elasticity. For an elastic encapsulation, elasticity can stabilize the bubble. However, imposing a non-negativity condition on the effective surface tension (consisting of reference surface tension and the elastic stress) leads to an equilibrium radius which is only neutrally stable. If the encapsulation can support a net compressive stress, it achieves actual stability. The linear stability results are consistent with our recent numerical findings. Physical mechanisms for the stability or instability of various equilibriums are provided.

  3. Stability Analysis of a Uniformly Heated Channel with Supercritical Water

    SciTech Connect

    Ortega Gomez, T.; Class, A.; Schulenberg, T.; Lahey, R.T. Jr.

    2006-07-01

    The thermal-hydraulic stability of a uniformly heated channel at supercritical water pressure has been investigated to help understand the system instability phenomena which may occur in Supercritical Water Nuclear Reactors (SCWR). We have extended the modeling approach often used for Boiling Water Nuclear Reactor (BWR) stability analysis to supercritical pressure operation conditions. We have shown that Ledinegg excursive instabilities and pressure-drop oscillations (PDO) will not occur in supercritical water systems. The linear stability characteristics of a typical uniformly heated channel were computed by evaluating the eigenvalues of the model. An analysis of non-linear instability phenomena was also performed in the time domain and the dynamic bifurcations were evaluated. (authors)

  4. Aggregation in ecosystem models and model stability

    NASA Astrophysics Data System (ADS)

    Giricheva, Evgeniya

    2015-05-01

    Using a multimodal approach to research ecosystems improves usage of available information on an object. This study presents several models of the Bering Sea ecosystem. The ecosystem is considered as a closed object, that is, the influence of the environment is not provided. We then add the links with the external medium in the models. The models differ in terms of the degree and method of grouping components. Our method is based on the differences in habitat and food source of groups, which allows us to determine the grouping of species with a greater effect on system dynamics. In particular, we determine whether benthic fish aggregation or pelagic fish aggregation can change the consumption structure of some groups of species, and consequently, the behavior of the entire model system.

  5. Plasma Stabilization Based on Model Predictive Control

    NASA Astrophysics Data System (ADS)

    Sotnikova, Margarita

    The nonlinear model predictive control algorithms for plasma current and shape stabilization are proposed. Such algorithms are quite suitable for the situations when the plant to be controlled has essentially nonlinear dynamics. Besides that, predictive model based control algorithms allow to take into account a lot of requirements and constraints involved both on the controlled and manipulated variables. The significant drawback of the algorithms is that they require a lot of time to compute control input at each sampling instant. In this paper the model predictive control algorithms are demonstrated by the example of plasma vertical stabilization for ITER-FEAT tokamak. The tuning of parameters of algorithms is performed in order to decrease computational load.

  6. Stability analysis of automobile driver steering control

    NASA Technical Reports Server (NTRS)

    Allen, R. W.

    1981-01-01

    In steering an automobile, the driver must basically control the direction of the car's trajectory (heading angle) and the lateral deviation of the car relative to a delineated pathway. A previously published linear control model of driver steering behavior which is analyzed from a stability point of view is considered. A simple approximate expression for a stability parameter, phase margin, is derived in terms of various driver and vehicle control parameters, and boundaries for stability are discussed. A field test study is reviewed that includes the measurement of driver steering control parameters. Phase margins derived for a range of vehicle characteristics are found to be generally consistent with known adaptive properties of the human operator. The implications of these results are discussed in terms of driver adaptive behavior.

  7. Stability Analysis of the Slowed-Rotor Compound Helicopter Configuration

    NASA Technical Reports Server (NTRS)

    Floros, Matthew W.; Johnson, Wayne

    2007-01-01

    The stability and control of rotors at high advance ratio are considered. Teetering, articulated, gimbaled, and rigid hub types are considered for a compound helicopter (rotor and fixed wing). Stability predictions obtained using an analytical rigid flapping blade analysis, a rigid blade CAMRAD II model, and an elastic blade CAMRAD II model are compared. For the flapping blade analysis, the teetering rotor is the most stable, showing no instabilities up to an advance ratio of 3 and a Lock number of 18. A notional elastic blade model of a teetering rotor is unstable at an advance ratio of 1.5, independent of pitch frequency. Analysis of the trim controls and blade flapping shows that for small positive collective pitch, trim can be maintained without excessive control input or flapping angles.

  8. Stability Analysis of the Slowed-Rotor Compound Helicopter Configuration

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Floros, Matthew W.

    2004-01-01

    The stability and control of rotors at high advance ratio are considered. Teetering, articulated, gimbaled, and rigid hub types are considered for a compound helicopter (rotor and fixed wing). Stability predictions obtained using an analytical rigid flapping blade analysis, a rigid blade CAMRAD II model, and an elastic blade CAMRAD II model are compared. For the flapping blade analysis, the teetering rotor is the most stable, 5howing no instabilities up to an advance ratio of 3 and a Lock number of 18. With an elastic blade model, the teetering rotor is unstable at an advance ratio of 1.5. Analysis of the trim controls and blade flapping shows that for small positive collective pitch, trim can be maintained without excessive control input or flapping angles.

  9. Elementary Applications of a Rotorcraft Dynamic Stability Analysis

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1976-01-01

    A number of applications of a rotorcraft aeroelastic analysis are presented to verify that the analysis encompasses the classical solutions of rotor dynamics, and to examine the influence of certain features of the model. Results are given for the following topics: flapping frequency response to pitch control; forward flight flapping stability; pitch/flap flutter and divergence; ground resonance instability; and the flight dynamics of several representative helicopters.

  10. Aeroelastic stability analysis of a Darrieus wind turbine

    SciTech Connect

    Popelka, D.

    1982-02-01

    An aeroelastic stability analysis has been developed for predicting flutter instabilities on vertical axis wind turbines. The analytical model and mathematical formulation of the problem are described as well as the physical mechanism that creates flutter in Darrieus turbines. Theoretical results are compared with measured experimental data from flutter tests of the Sandia 2 Meter turbine. Based on this comparison, the analysis appears to be an adequate design evaluation tool.

  11. Stability Analysis for a Multi-Camera Photogrammetric System

    PubMed Central

    Habib, Ayman; Detchev, Ivan; Kwak, Eunju

    2014-01-01

    Consumer-grade digital cameras suffer from geometrical instability that may cause problems when used in photogrammetric applications. This paper provides a comprehensive review of this issue of interior orientation parameter variation over time, it explains the common ways used for coping with the issue, and describes the existing methods for performing stability analysis for a single camera. The paper then points out the lack of coverage of stability analysis for multi-camera systems, suggests a modification of the collinearity model to be used for the calibration of an entire photogrammetric system, and proposes three methods for system stability analysis. The proposed methods explore the impact of the changes in interior orientation and relative orientation/mounting parameters on the reconstruction process. Rather than relying on ground truth in real datasets to check the system calibration stability, the proposed methods are simulation-based. Experiment results are shown, where a multi-camera photogrammetric system was calibrated three times, and stability analysis was performed on the system calibration parameters from the three sessions. The proposed simulation-based methods provided results that were compatible with a real-data based approach for evaluating the impact of changes in the system calibration parameters on the three-dimensional reconstruction. PMID:25196012

  12. Stability Analysis for HIFiRE Experiments

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan; White, Jeffery A.; Kimmel, Roger; Adamczak, David; Borg, Matthew; Stanfield, Scott; Smith, Mark S.

    2012-01-01

    The HIFiRE-1 flight experiment provided a valuable database pertaining to boundary layer transition over a 7-degree half-angle, circular cone model from supersonic to hypersonic Mach numbers, and a range of Reynolds numbers and angles of attack. This paper reports selected findings from the ongoing computational analysis of the measured in-flight transition behavior. Transition during the ascent phase at nearly zero degree angle of attack is dominated by second mode instabilities except in the vicinity of the cone meridian where a roughness element was placed midway along the length of the cone. The growth of first mode instabilities is found to be weak at all trajectory points analyzed from the ascent phase. For times less than approximately 18.5 seconds into the flight, the peak amplification ratio for second mode disturbances is sufficiently small because of the lower Mach numbers at earlier times, so that the transition behavior inferred from the measurements is attributed to an unknown physical mechanism, potentially related to step discontinuities in surface height near the locations of a change in the surface material. Based on the time histories of temperature and/or heat flux at transducer locations within the aft portion of the cone, the onset of transition correlated with a linear N-factor, based on parabolized stability equations, of approximately 13.5. Due to the large angles of attack during the re-entry phase, crossflow instability may play a significant role in transition. Computations also indicate the presence of pronounced crossflow separation over a significant portion of the trajectory segment that is relevant to transition analysis. The transition behavior during this re-entry segment of HIFiRE-1 flight shares some common features with the predicted transition front along the elliptic cone shaped HIFiRE-5 flight article, which was designed to provide hypersonic transition data for a fully 3D geometric configuration. To compare and contrast the

  13. Stability analysis of White Oak Dam

    SciTech Connect

    1995-04-11

    White Oak Dam is located in the White Oak Creek watershed which provides the primary surface drainage for Oak Ridge National Laboratory. A stability analysis was made on the dam by Syed Ahmed in January 1994 which included an evaluation of the liquefaction potential of the embankment and foundation. This report evaluates the stability of the dam and includes comments on the report prepared by Ahmed. Slope stability analyses were performed on the dam and included cases for sudden drawdown, steady seepage, partial pool and earthquake. Results of the stability analyses indicate that the dam is stable and failure of the structure would not occur for the cases considered. The report prepared by Ahmed leads to the same conclusions as stated above. Review of the report finds that it is complete, well documented and conservative in its selection of soil parameters. The evaluation of the liquefaction potential is also complete and this report is in agreement with the findings that the dam and foundation are not susceptible to liquefaction.

  14. High beta and second stability region transport and stability analysis. Final report

    SciTech Connect

    Hughes, M.H.; Phillips, M.W.

    1996-01-01

    This report describes MHD equilibrium and stability studies carried out at Northrop Grumman`s Advanced Technology and Development Center during the period March 1 to December 31, 1995. Significant progress is reported in both ideal and resistive MHD modeling of TFTR plasmas. Specifically, attention is concentrated on analysis of Advanced Tokamak experiments at TFTR involving plasmas in which the q-profiles were non-monotonic.

  15. Development of in silico models for human liver microsomal stability

    NASA Astrophysics Data System (ADS)

    Lee, Pil H.; Cucurull-Sanchez, Lourdes; Lu, Jing; Du, Yuhua J.

    2007-12-01

    We developed highly predictive classification models for human liver microsomal (HLM) stability using the apparent intrinsic clearance (CLint, app) as the end point. HLM stability has been shown to be an important factor related to the metabolic clearance of a compound. Robust in silico models that predict metabolic clearance are very useful in early drug discovery stages to optimize the compound structure and to select promising leads to avoid costly drug development failures in later stages. Using Random Forest and Bayesian classification methods with MOE, E-state descriptors, ADME Keys, and ECFP_6 fingerprints, various highly predictive models were developed. The best performance of the models shows 80 and 75% prediction accuracy for the test and validation sets, respectively. A detailed analysis of results will be shown, including an assessment of the prediction confidence, the significant descriptors, and the application of these models to drug discovery projects.

  16. Qualitative and quantitative stability analysis of penta-rhythmic circuits

    NASA Astrophysics Data System (ADS)

    Schwabedal, Justus T. C.; Knapper, Drake E.; Shilnikov, Andrey L.

    2016-12-01

    Inhibitory circuits of relaxation oscillators are often-used models for dynamics of biological networks. We present a qualitative and quantitative stability analysis of such a circuit constituted by three generic oscillators (of a Fitzhugh-Nagumo type) as its nodes coupled reciprocally. Depending on inhibitory strengths, and parameters of individual oscillators, the circuit exhibits polyrhythmicity of up to five simultaneously stable rhythms. With methods of bifurcation analysis and phase reduction, we investigate qualitative changes in stability of these circuit rhythms for a wide range of parameters. Furthermore, we quantify robustness of the rhythms maintained under random perturbations by monitoring phase diffusion in the circuit. Our findings allow us to describe how circuit dynamics relate to dynamics of individual nodes. We also find that quantitative and qualitative stability properties of polyrhythmicity do not always align.

  17. Analysis of the stabilized supralinear network‡

    PubMed Central

    Ahmadian, Yashar; Rubin, Daniel B.; Miller, Kenneth D.

    2014-01-01

    We study a rate-model neural network composed of excitatory and inhibitory neurons in which neuronal input-output functions are power laws with a power greater than 1, as observed in primary visual cortex. This supralinear input-output function leads to supralinear summation of network responses to multiple inputs for weak inputs. We show that for stronger inputs, which would drive the excitatory subnetwork to instability, the network will dynamically stabilize provided feedback inhibition is sufficiently strong. For a wide range of network and stimulus parameters, this dynamic stabilization yields a transition from supralinear to sublinear summation of network responses to multiple inputs. We compare this to the dynamic stabilization in the “balanced network”, which yields only linear behavior. We more exhaustively analyze the 2-dimensional case of 1 excitatory and 1 inhibitory population. We show that in this case dynamic stabilization will occur whenever the determinant of the weight matrix is positive and the inhibitory time constant is sufficiently small, and analyze the conditions for “supersaturation”, or decrease of firing rates with increasing stimulus contrast (which represents increasing input firing rates). In work to be presented elsewhere, we have found that this transition from supralinear to sublinear summation can explain a wide variety of nonlinearities in cerebral cortical processing. PMID:23663149

  18. Shapes and stability of algebraic nuclear models

    NASA Technical Reports Server (NTRS)

    Lopez-Moreno, Enrique; Castanos, Octavio

    1995-01-01

    A generalization of the procedure to study shapes and stability of algebraic nuclear models introduced by Gilmore is presented. One calculates the expectation value of the Hamiltonian with respect to the coherent states of the algebraic structure of the system. Then equilibrium configurations of the resulting energy surface, which depends in general on state variables and a set of parameters, are classified through the Catastrophe theory. For one- and two-body interactions in the Hamiltonian of the interacting Boson model-1, the critical points are organized through the Cusp catastrophe. As an example, we apply this Separatrix to describe the energy surfaces associated to the Rutenium and Samarium isotopes.

  19. Mathematical Modeling and Simulation of Seated Stability

    PubMed Central

    Tanaka, Martin L.; Ross, Shane D.; Nussbaum, Maury A.

    2009-01-01

    Various methods have been used to quantify the kinematic variability or stability of the human spine. However, each of these methods evaluates dynamic behavior within the stable region of state space. In contrast, our goal was to determine the extent of the stable region. A 2D mathematical model was developed for a human sitting on an unstable seat apparatus (i.e., the “wobble chair”). Forward dynamic simulations were used to compute trajectories based on the initial state. From these trajectories, a scalar field of trajectory divergence was calculated, specifically a finite time Lyapunov exponent (FTLE) field. Theoretically, ridges of local maxima within this field are expected to partition the state space into regions of qualitatively different behavior. We found that ridges formed at the boundary between regions of stability and failure (i.e., falling). The location of the basin of stability found using the FTLE field matched well with the basin of stability determined by an alternative method. In addition, an equilibrium manifold was found, which describes a set of equilibrium configurations that act as a low dimensional attractor in the controlled system. These simulations are a first step in developing a method to locate state space boundaries for torso stability. Identifying these boundaries may provide a framework for assessing factors that contribute to health risks associated with spinal injury and poor balance recovery (e.g., age, fatigue, load/weight and distribution). Furthermore, an approach is presented that can be adapted to find state space boundaries in other biomechanical applications. PMID:20018288

  20. Theory and modelling of nanocarbon phase stability.

    SciTech Connect

    Barnard, A. S.

    2006-01-01

    The transformation of nanodiamonds into carbon-onions (and vice versa) has been observed experimentally and has been modeled computationally at various levels of sophistication. Also, several analytical theories have been derived to describe the size, temperature and pressure dependence of this phase transition. However, in most cases a pure carbon-onion or nanodiamond is not the final product. More often than not an intermediary is formed, known as a bucky-diamond, with a diamond-like core encased in an onion-like shell. This has prompted a number of studies investigating the relative stability of nanodiamonds, bucky-diamonds, carbon-onions and fullerenes, in various size regimes. Presented here is a review outlining results of numerous theoretical studies examining the phase diagrams and phase stability of carbon nanoparticles, to clarify the complicated relationship between fullerenic and diamond structures at the nanoscale.

  1. Flight stabilization control of a hovering model insect.

    PubMed

    Sun, Mao; Wang, Ji Kang

    2007-08-01

    The longitudinal stabilization control of a hovering model insect was studied using the method of computational fluid dynamics to compute the stability and control derivatives, and the techniques of eigenvalue and eigenvector analysis and modal decomposition, for solving the equations of motion (morphological and certain kinematical data of hoverflies were used for the model insect). The model insect has the same three natural modes of motion as those reported recently for a hovering bumblebee: one unstable oscillatory mode, one stable fast subsidence mode and one stable slow subsidence mode. Controllability analysis shows that although unstable, the flight is controllable. For stable hovering, the unstable oscillatory mode needs to be stabilized and the slow subsidence mode needs stability augmentation. The former can be accomplished by feeding back pitch attitude, pitch rate and horizontal velocity to produce delta[symbol: see text] or deltaalpha(2); the latter by feeding back vertical velocity to produce deltaPhi or deltaalpha(1) (deltaPhi, delta[symbol: see text], deltaalpha(1) and deltaalpha(2) denote control inputs: deltaPhi and delta[symbol: see text] represent changes in stroke amplitude and mean stroke angle, respectively; deltaalpha(1) represents an equal change whilst deltaalpha(2) a differential change in the geometrical angles of attack of the downstroke and upstroke).

  2. A Consistent Orbital Stability Analysis for the GJ 581 System

    NASA Astrophysics Data System (ADS)

    Joiner, David A.; Sul, Cesar; Dragomir, Diana; Kane, Stephen R.; Kress, Monika E.

    2014-06-01

    We apply a combination of N-body modeling techniques and automated data fitting with Monte Carlo Markov Chain uncertainty analysis of Keplerian orbital models to RV data to determine long-term stability of the planetary system GJ 581. We find that while there are stability concerns with the four-planet model as published by Forveille et al., when uncertainties in the system are accounted for, particularly stellar jitter, the hypothesis that the four-planet model is gravitationally unstable is not statistically significant. Additionally, the system including proposed planet g by Vogt et al. also shows some stability concerns when eccentricities are allowed to float in the orbital fit, yet when uncertainties are included in the analysis, the system including planet g also cannot be proven to be unstable. We present revised reduced χ2 values for Keplerian astrocentric orbital fits assuming four-planet and five-planet models for GJ 581 under the condition that best fits must be stable, and we find no distinguishable difference by including planet g in the model. Additionally, we present revised orbital element estimates for each, assuming uncertainties due to stellar jitter under the constraint of the system being gravitationally stable.

  3. Kahler stabilized, modular invariant heterotic string models

    SciTech Connect

    Gaillard, Mary K.; Gaillard, Mary K.; Nelson, Brent D.

    2007-03-19

    We review the theory and phenomenology of effective supergravity theories based on orbifold compactifications of the weakly-coupled heterotic string. In particular, we consider theories in which the four-dimensional theory displays target space modular invariance and where the dilatonic mode undergoes Kahler stabilization. A self-contained exposition of effective Lagrangian approaches to gaugino condensation and heterotic string theory is presented, leading to the development of the models of Binétruy, Gaillard and Wu. Various aspects of the phenomenology of this class of models are considered. These include issues of supersymmetry breaking and superpartner spectra, the role of anomalous U(1) factors, issues of flavor and R-parity conservation, collider signatures, axion physics, and early universe cosmology. For the vast majority of phenomenological considerations the theories reviewed here compare quite favorably to other string-derived models in the literature. Theoretical objections to the framework and directions for further research are identified and discussed.

  4. Numerical modeling of a vortex stabilized arcjet

    NASA Astrophysics Data System (ADS)

    Pawlas, Gary Edward

    Arcjet thrusters are being actively considered for use in Earth orbit maneuvering applications. Satellite station-keeping is an example of a maneuvering application requiring the low thrust, high specific impulse of an arcjet. Experimental studies are currently the chief means of determining an optimal thruster configuration. Earlier numerical studies have failed to include all of the effects found in typical arcjets including complex geometries, viscosity and swirling flow. Arcjet geometries are large area ratio converging-diverging nozzles with centerbodies in the subsonic portion of the nozzle. The nozzle walls serve as the anode while the centerbody functions as the cathode. Viscous effects are important because the Reynolds number, based on the throat radius, is typically less than 1,000. Experimental studies have shown a swirl or circumferential velocity component stabilizes a constricted arc. The equations are described which governs the flow through a constricted arcjet thruster. An assumption that the flowfield is in local thermodynamic equilibrium leads to a single fluid plasma temperature model. An order of magnitude analysis reveals the governing fluid mechanics equations are uncoupled from the electromagnetic field equations. A numerical method is developed to solve the governing fluid mechanics equations, the Thin Layer Navier-Stokes equations. A coordinate transformation is used in deriving the governing equations to simplify the application of boundary conditions in complex geometries. An axisymmetric formulation is employed to include the swirl velocity component as well as the axial and redial velocity components. The numerical method is an implicit finite-volume technique and allows for large time steps to reach a converged steady-state solution. The inviscid fluxes are flux-split and Gauss-Seidel line relaxation is used to accelerate convergence. 'Converging diverging' nozzles with exit-to-throat area ratios up to 100:1 and annual nozzles were

  5. Numerical modeling of a vortex stabilized arcjet

    NASA Astrophysics Data System (ADS)

    Pawlas, Gary E.

    1992-11-01

    Arcjet thrusters are being actively considered for use in Earth orbit maneuvering applications. Experimental studies are currently the chief means of determining an optimal thruster configuration. Earlier numerical studies have failed to include all of the effects found in typical arcjets including complex geometries, viscosity, and swirling flow. Arcjet geometries are large area ratio converging nozzles with centerbodies in the subsonic portion of the nozzle. The nozzle walls serve as the anode while the centerbody functions as the cathode. Viscous effects are important because the Reynolds number, based on the throat radius, is typically less than 1,000. Experimental studies have shown that a swirl or circumferential velocity component stabilizes a constricted arc. This dissertation describes the equations governing flow through a constricted arcjet thruster. An assumption that the flowfield is in local thermodynamic equilibrium leads to a single fluid plasma temperature model. An order of magnitude analysis reveals the governing fluid mechanics equations are uncoupled from the electromagnetic field equations. A numerical method is developed to solve the governing fluid mechanics equations, the Thin Layer Navier-Stokes equations. A coordinate transformation is employed in deriving the governing equations to simplify the application of boundary conditions in complex geometries. An axisymmetric formulation is employed to include the swirl velocity component as well as the axial and radial velocity components. The numerical method is an implicit finite-volume technique and allows for large time steps to reach a converged steady-state solution. The inviscid fluxes are flux-split, and Gauss-Seidel line relaxation is used to accelerate convergence. Converging-diverging nozzles with exit-to-throat area ratios up to 100:1 and annular nozzles were examined. Quantities examined included Mach number and static wall pressure distributions, and oblique shock structures. As

  6. Stability analysis and future singularity of the m{sup 2} R □{sup -2} R model of non-local gravity

    SciTech Connect

    Dirian, Yves; Mitsou, Ermis E-mail: ermis.mitsou@unige.ch

    2014-10-01

    We analyse the classical stability of the model proposed by Maggiore and Mancarella, where gravity is modified by a term ∼ m{sup 2} R □{sup -2} R to produce the late-time acceleration of the expansion of the universe. Our study takes into account all excitations of the metric that can potentially drive an instability. There are some subtleties in identifying these modes, as a non-local field theory contains dynamical fields which yet do not correspond to degrees of freedom. Since some of them are ghost-like, we clarify the impact of such modes on the stability of the solutions of interest that are the flat space-time and cosmological solutions. We then find that flat space-time is unstable under scalar perturbations, but the instability manifests itself only at cosmological scales, i.e. out of the region of validity of this solution. It is therefore the stability of the FLRW solution which is relevant there, in which case the scalar perturbations are known to be well-behaved by numerical studies. By finding the analytic solution for the late-time behaviour of the scale factor, which leads to a big rip singularity, we argue that the linear perturbations are bounded in the future because of the domination of Hubble friction. In particular, this effect damps the scalar ghost perturbations which were responsible for destabilizing Minkowski space-time. Thus, the model remains phenomenologically viable.

  7. Stability of earthquake clustering models: criticality and branching ratios.

    PubMed

    Zhuang, Jiancang; Werner, Maximilian J; Harte, David S

    2013-12-01

    We study the stability conditions of a class of branching processes prominent in the analysis and modeling of seismicity. This class includes the epidemic-type aftershock sequence (ETAS) model as a special case, but more generally comprises models in which the magnitude distribution of direct offspring depends on the magnitude of the progenitor, such as the branching aftershock sequence (BASS) model and another recently proposed branching model based on a dynamic scaling hypothesis. These stability conditions are closely related to the concepts of the criticality parameter and the branching ratio. The criticality parameter summarizes the asymptotic behavior of the population after sufficiently many generations, determined by the maximum eigenvalue of the transition equations. The branching ratio is defined by the proportion of triggered events in all the events. Based on the results for the generalized case, we show that the branching ratio of the ETAS model is identical to its criticality parameter because its magnitude density is separable from the full intensity. More generally, however, these two values differ and thus place separate conditions on model stability. As an illustration of the difference and of the importance of the stability conditions, we employ a version of the BASS model, reformulated to ensure the possibility of stationarity. In addition, we analyze the magnitude distributions of successive generations of the BASS model via analytical and numerical methods, and find that the compound density differs substantially from a Gutenberg-Richter distribution, unless the process is essentially subcritical (branching ratio less than 1) or the magnitude dependence between the parent event and the direct offspring is weak.

  8. Stability of earthquake clustering models: Criticality and branching ratios

    NASA Astrophysics Data System (ADS)

    Zhuang, Jiancang; Werner, Maximilian J.; Harte, David S.

    2013-12-01

    We study the stability conditions of a class of branching processes prominent in the analysis and modeling of seismicity. This class includes the epidemic-type aftershock sequence (ETAS) model as a special case, but more generally comprises models in which the magnitude distribution of direct offspring depends on the magnitude of the progenitor, such as the branching aftershock sequence (BASS) model and another recently proposed branching model based on a dynamic scaling hypothesis. These stability conditions are closely related to the concepts of the criticality parameter and the branching ratio. The criticality parameter summarizes the asymptotic behavior of the population after sufficiently many generations, determined by the maximum eigenvalue of the transition equations. The branching ratio is defined by the proportion of triggered events in all the events. Based on the results for the generalized case, we show that the branching ratio of the ETAS model is identical to its criticality parameter because its magnitude density is separable from the full intensity. More generally, however, these two values differ and thus place separate conditions on model stability. As an illustration of the difference and of the importance of the stability conditions, we employ a version of the BASS model, reformulated to ensure the possibility of stationarity. In addition, we analyze the magnitude distributions of successive generations of the BASS model via analytical and numerical methods, and find that the compound density differs substantially from a Gutenberg-Richter distribution, unless the process is essentially subcritical (branching ratio less than 1) or the magnitude dependence between the parent event and the direct offspring is weak.

  9. Robustness for slope stability modelling under deep uncertainty

    NASA Astrophysics Data System (ADS)

    Almeida, Susana; Holcombe, Liz; Pianosi, Francesca; Wagener, Thorsten

    2015-04-01

    Landslides can have large negative societal and economic impacts, such as loss of life and damage to infrastructure. However, the ability of slope stability assessment to guide management is limited by high levels of uncertainty in model predictions. Many of these uncertainties cannot be easily quantified, such as those linked to climate change and other future socio-economic conditions, restricting the usefulness of traditional decision analysis tools. Deep uncertainty can be managed more effectively by developing robust, but not necessarily optimal, policies that are expected to perform adequately under a wide range of future conditions. Robust strategies are particularly valuable when the consequences of taking a wrong decision are high as is often the case of when managing natural hazard risks such as landslides. In our work a physically based numerical model of hydrologically induced slope instability (the Combined Hydrology and Stability Model - CHASM) is applied together with robust decision making to evaluate the most important uncertainties (storm events, groundwater conditions, surface cover, slope geometry, material strata and geotechnical properties) affecting slope stability. Specifically, impacts of climate change on long-term slope stability are incorporated, accounting for the deep uncertainty in future climate projections. Our findings highlight the potential of robust decision making to aid decision support for landslide hazard reduction and risk management under conditions of deep uncertainty.

  10. Stability analysis for laminar flow control, part 1

    NASA Technical Reports Server (NTRS)

    Benney, D. J.; Orszag, S. A.

    1977-01-01

    The basic equations for the stability analysis of flow over three dimensional swept wings are developed and numerical methods for their solution are surveyed. The equations for nonlinear stability analysis of three dimensional disturbances in compressible, three dimensional, nonparallel flows are given. Efficient and accurate numerical methods for the solution of the equations of stability theory were surveyed and analyzed.

  11. Dynamic flight stability of a hovering model dragonfly.

    PubMed

    Liang, Bin; Sun, Mao

    2014-05-07

    The longitudinal dynamic flight stability of a model dragonfly at hovering flight is studied, using the method of computational fluid dynamics to compute the stability derivatives and the techniques of eigenvalue and eigenvector analysis for solving the equations of motion. Three natural modes of motion are identified for the hovering flight: one unstable oscillatory mode, one stable fast subsidence mode and one stable slow subsidence mode. The flight is dynamically unstable owing to the unstable oscillatory mode. The instability is caused by a pitch-moment derivative with respect to horizontal velocity. The damping force and moment derivatives (with respect to horizontal and vertical velocities and pitch-rotational velocity, respectively) weaken the instability considerably. The aerodynamic interaction between the forewing and the hindwing does not have significant effect on the stability properties. The dragonfly has similar stability derivatives, hence stability properties, to that of a one-wing-pair insect at normal hovering, but there are differences in how the derivatives are produced because of the highly inclined stroke plane of the dragonfly.

  12. Truck Roll Stability Data Collection and Analysis

    SciTech Connect

    Stevens, SS

    2001-07-02

    The principal objective of this project was to collect and analyze vehicle and highway data that are relevant to the problem of truck rollover crashes, and in particular to the subset of rollover crashes that are caused by the driver error of entering a curve at a speed too great to allow safe completion of the turn. The data are of two sorts--vehicle dynamic performance data, and highway geometry data as revealed by vehicle behavior in normal driving. Vehicle dynamic performance data are relevant because the roll stability of a tractor trailer depends both on inherent physical characteristics of the vehicle and on the weight and distribution of the particular cargo that is being carried. Highway geometric data are relevant because the set of crashes of primary interest to this study are caused by lateral acceleration demand in a curve that exceeds the instantaneous roll stability of the vehicle. An analysis of data quality requires an evaluation of the equipment used to collect the data because the reliability and accuracy of both the equipment and the data could profoundly affect the safety of the driver and other highway users. Therefore, a concomitant objective was an evaluation of the performance of the set of data-collection equipment on the truck and trailer. The objective concerning evaluation of the equipment was accomplished, but the results were not entirely positive. Significant engineering apparently remains to be done before a reliable system can be fielded. Problems were identified with the trailer to tractor fiber optic connector used for this test. In an over-the-road environment, the communication between the trailer instrumentation and the tractor must be dependable. In addition, the computer in the truck must be able to withstand the rigors of the road. The major objective--data collection and analysis--was also accomplished. Using data collected by instruments on the truck, a ''bad-curve'' database can be generated. Using this database

  13. Mechanical stabilization of the Levitron's realistic model

    NASA Astrophysics Data System (ADS)

    Olvera, Arturo; De la Rosa, Abraham; Giordano, Claudia M.

    2016-11-01

    The stability of the magnetic levitation showed by the Levitron was studied by M.V. Berry as a six degrees of freedom Hamiltonian system using an adiabatic approximation. Further, H.R. Dullin found critical spin rate bounds where the levitation persists and R.F. Gans et al. offered numerical results regarding the initial conditions' manifold where this occurs. In the line of this series of works, first, we extend the equations of motion to include dissipation for a more realistic model, and then introduce a mechanical forcing to inject energy into the system in order to prevent the Levitron from falling. A systematic study of the flying time as a function of the forcing parameters is carried out which yields detailed bifurcation diagrams showing an Arnold's tongues structure. The stability of these solutions were studied with the help of a novel method to compute the maximum Lyapunov exponent called MEGNO. The bifurcation diagrams for MEGNO reproduce the same Arnold's tongue structure.

  14. Bounded Linear Stability Margin Analysis of Nonlinear Hybrid Adaptive Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Boskovic, Jovan D.

    2008-01-01

    This paper presents a bounded linear stability analysis for a hybrid adaptive control that blends both direct and indirect adaptive control. Stability and convergence of nonlinear adaptive control are analyzed using an approximate linear equivalent system. A stability margin analysis shows that a large adaptive gain can lead to a reduced phase margin. This method can enable metrics-driven adaptive control whereby the adaptive gain is adjusted to meet stability margin requirements.

  15. Vacuum stability in an extended standard model with a leptoquark

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Priyotosh; Mandal, Rusa

    2017-02-01

    We investigate the standard model with the extension of a charged scalar having fractional electromagnetic charge of -1 /3 unit and with lepton and baryon number-violating couplings at tree level. Without directly taking part in the electroweak (EW) symmetry breaking, this scalar can affect stability of the EW vacuum via loop effects. The impact of such a scalar, i.e., a leptoquark, on the perturbativity of standard model dimensionless couplings as well as on new physics couplings has been studied at two-loop order. The vacuum stability of the Higgs potential is checked using the one-loop renormalization group-improved effective potential approach with a two-loop beta function for all the couplings. From the stability analysis, various bounds are drawn on parameter space by identifying the region corresponding to the metastability and stability of the EW vacuum. Later, we also address the Higgs mass fine-tuning issue via the Veltman condition, and the presence of such a scalar increases the scale up to which the theory can be considered as reasonably fine-tuned. All these constraints give a very predictive parameter space for leptoquark couplings which can be tested at present and future colliders. Especially, a leptoquark with mass O (TeV ) can give rise to lepton-quark flavor-violating signatures via decaying into the t τ channel at tree level, which can be tested at the LHC or future colliders.

  16. Analysis of the stability of looped-out and stacked-in conformations of an adenine bulge in DNA using a continuum model for solvent and ions.

    PubMed Central

    Zacharias, M; Sklenar, H

    1997-01-01

    A combination of conformational search, energy minimization, and energetic evaluation using a continuum solvent treatment has been employed to study the stability of various conformations of the DNA fragment d(CGCAGAA)/d(TTCGCG) containing a single adenine bulge. The extra-helical (looped-out) bulge conformation derived from a published x-ray structure and intra-helical (stacked bulge base) model structures partially based on nuclear magnetic resonance (NMR) data were used as start structures for the conformational search. Solvent-dependent contributions to the stability of the conformations were calculated from the solvent exposed molecular surface area and by using the finite difference Poisson-Boltzmann approach. Three classes (I-III) of bulge conformations with calculated low energies can be distinguished. The lowest-energy conformations were found in class I, corresponding to structures with the bulge base stacked between flanking helices, and class II, composed of structures forming a triplet of the bulge base and a flanking base pair. All extra-helical bulge structures, forming class III, were found to be less stable compared with the lowest energy structures of class I and II. The results are consistent with NMR data on an adenine bulge in the same sequence context indicating an intra-helical or triplet bulge conformation in solution. Although the total energies and total electrostatic energies of the low-energy conformations show only relatively modest variations, the energetic contributions to the stability were found to vary significantly among the classes of bulge structures. All intra-helical bulge structures are stabilized by a more favorable Coulomb charge-charge interaction but destabilized by a larger electrostatic reaction field contribution compared with all extra-helical and most triplet bulge structures. Van der Waals packing interactions and nonpolar surface-area-dependent contributions appear to favor triplet class II structures and to a

  17. Analytical calculation of critical perturbation amplitudes and critical densities by non-linear stability analysis of a simple traffic flow model

    NASA Astrophysics Data System (ADS)

    Helbing, D.; Moussaid, M.

    2009-06-01

    Driven many-particle systems with nonlinear interactions are known to often display multi-stability, i.e. depending on the respective initial condition, there may be different outcomes. Here, we study this phenomenon for traffic models, some of which show stable and linearly unstable density regimes, but areas of metastability in between. In these areas, perturbations larger than a certain critical amplitude will cause a lasting breakdown of traffic, while smaller ones will fade away. While there are common methods to study linear instability, non-linear instability had to be studied numerically in the past. Here, we present an analytical study for the optimal velocity model with a stepwise specification of the optimal velocity function and a simple kind of perturbation. Despite various approximations, the analytical results are shown to reproduce numerical results very well.

  18. Stability and modal analysis of shock/boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Nichols, Joseph W.; Larsson, Johan; Bernardini, Matteo; Pirozzoli, Sergio

    2017-02-01

    The dynamics of oblique shock wave/turbulent boundary layer interactions is analyzed by mining a large-eddy simulation (LES) database for various strengths of the incoming shock. The flow dynamics is first analyzed by means of dynamic mode decomposition (DMD), which highlights the simultaneous occurrence of two types of flow modes, namely a low-frequency type associated with breathing motion of the separation bubble, accompanied by flapping motion of the reflected shock, and a high-frequency type associated with the propagation of instability waves past the interaction zone. Global linear stability analysis performed on the mean LES flow fields yields a single unstable zero-frequency mode, plus a variety of marginally stable low-frequency modes whose stability margin decreases with the strength of the interaction. The least stable linear modes are grouped into two classes, one of which bears striking resemblance to the breathing mode recovered from DMD and another class associated with revolving motion within the separation bubble. The results of the modal and linear stability analysis support the notion that low-frequency dynamics is intrinsic to the interaction zone, but some continuous forcing from the upstream boundary layer may be required to keep the system near a limit cycle. This can be modeled as a weakly damped oscillator with forcing, as in the early empirical model by Plotkin (AIAA J 13:1036-1040, 1975).

  19. Pressure potential and stability analysis in an acoustical noncontact transportation

    NASA Astrophysics Data System (ADS)

    Li, J.; Liu, C. J.; Zhang, W. J.

    2017-01-01

    Near field acoustic traveling wave is one of the most popular principles in noncontact manipulations and transportations. The stability behavior is a key factor in the industrial applications of acoustical noncontact transportation. We present here an in-depth analysis of the transportation stability of a planar object levitated in near field acoustic traveling waves. To more accurately describe the pressure distributions on the radiation surface, a 3D nonlinear traveling wave model is presented. A closed form solution is derived based on the pressure potential to quantitatively calculate the restoring forces and moments under small disturbances. The physical explanations of the effects of fluid inertia and the effects of non-uniform pressure distributions are provided in detail. It is found that a vibration rail with tapered cross section provides more stable transportation than a rail with rectangular cross section. The present study sheds light on the issue of quantitative evaluation of stability in acoustic traveling waves and proposes three main factors that influence the stability: (a) vibration shape, (b) pressure distribution and (c) restoring force/moment. It helps to provide a better understanding of the physics behind the near field acoustic transportation and provide useful design and optimization tools for industrial applications.

  20. Influence of various unsteady aerodynamic models on the aeromechanical stability of a helicopter in ground resonance

    NASA Technical Reports Server (NTRS)

    Friedmann, P. P.; Venkatesan, C.

    1985-01-01

    The aeromechanical stability of a helicopter in ground resonance was analyzed, by incorporating five different aerodynamic models in the coupled rotor/fuselage analysis. The sensitivity of the results to changes in aerodynamic modelling was carefully examined. The theoretical results were compared with experimental data and useful conclusions are drawn regarding the role of aerodynamic modeling on this aeromechanical stability problem. The aerodynamic model which provided the best all around correlation with the experimental data was identified.

  1. Flight stability analysis under changes in insect morphology

    NASA Astrophysics Data System (ADS)

    Noest, Robert; Wang, Z. Jane

    2015-11-01

    Insect have an amazing ability to control their flight, being able to perform both fast aerial maneuvers and stable hovering. The insect's neural system has developed various mechanism by which it can control these flying feats, but we expect that insect morphology is equally important in facilitating the aerial control. We perform a computational study using a quasi-steady instantaneous flapping flight model which allows us to freely adapt the insect's morphological parameters. We picked a fruit fly as the basis for the body shape and wing motion, and study the effect of changes to the morphology for a range of wing stroke amplitudes. In each case we determine the periodic flight mode, with the period equal to a single wing beat, and do a Floquet stability analysis of the flight. To interpret our results we will compare the changed morphology to related insects. We discuss the implications of the insects location on the stability diagram.

  2. Huygens' inspired multi-pendulum setups: Experiments and stability analysis

    NASA Astrophysics Data System (ADS)

    Hoogeboom, F. N.; Pogromsky, A. Y.; Nijmeijer, H.

    2016-11-01

    This paper examines synchronization of a set of metronomes placed on a lightweight foam platform. Two configurations of the set of metronomes are considered: a row setup containing one-dimensional coupling and a cross setup containing two-dimensional coupling. Depending on the configuration and coupling between the metronomes, i.e., the platform parameters, in- and/or anti-phase synchronized behavior is observed in the experiments. To explain this behavior, mathematical models of a metronome and experimental setups have been derived and used in a local stability analysis. It is numerically and experimentally demonstrated that varying the coupling parameters for both configurations has a significant influence on the stability of the synchronized solutions.

  3. Complexity and demographic stability in population models.

    PubMed

    Demetrius, Lloyd; Gundlach, Volker Matthias; Ochs, Gunter

    2004-05-01

    This article is concerned with relating the stability of a population, as defined by the rate of decay of fluctuations induced by demographic stochasticity, with its heterogeneity in age-specific birth and death rates. We invoke the theory of large deviations to establish a fluctuation theorem: The demographic stability of a population is positively correlated with evolutionary entropy, a measure of the variability in the age of reproducing individuals in the population. This theorem is exploited to predict certain correlations between ecological constraints and evolutionary trends in demographic stability, namely, (i) bounded growth constraints--a uni-directional increase in stability, (ii) unbounded growth constraints (large population size)--a uni-directional decrease in stability, (iii) unbounded growth constraints (small population size)--random, non-directional change in stability. These principles relating ecological constraints with trends in demographic stability are shown to be far reaching generalizations of the tenets derived from classical studies of stability in an evolutionary context. These results thus provide a new conceptual framework for explaining patterns of variation in population numbers observed in natural populations.

  4. Stability of fundamental couplings: A global analysis

    NASA Astrophysics Data System (ADS)

    Martins, C. J. A. P.; Pinho, A. M. M.

    2017-01-01

    Astrophysical tests of the stability of fundamental couplings are becoming an increasingly important probe of new physics. Motivated by the recent availability of new and stronger constraints we update previous works testing the consistency of measurements of the fine-structure constant α and the proton-to-electron mass ratio μ =mp/me (mostly obtained in the optical/ultraviolet) with combined measurements of α , μ and the proton gyromagnetic ratio gp (mostly in the radio band). We carry out a global analysis of all available data, including the 293 archival measurements of Webb et al. and 66 more recent dedicated measurements, and constraining both time and spatial variations. While nominally the full data sets show a slight statistical preference for variations of α and μ (at up to two standard deviations), we also find several inconsistencies between different subsets, likely due to hidden systematics and implying that these statistical preferences need to be taken with caution. The statistical evidence for a spatial dipole in the values of α is found at the 2.3 sigma level. Forthcoming studies with facilities such as ALMA and ESPRESSO should clarify these issues.

  5. On The Stability Of Model Flows For Chemical Vapour Deposition

    NASA Astrophysics Data System (ADS)

    Miller, Robert

    2016-11-01

    The flow in a chemical vapour deposition (CVD) reactor is assessed. The reactor is modelled as a flow over an infinite-radius rotating disk, where the mean flow and convective instability of the disk boundary layer are measured. Temperature-dependent viscosity and enforced axial flow are used to model the steep temperature gradients present in CVD reactors and the pumping of the gas towards the disk, respectively. Increasing the temperature-dependence parameter of the fluid viscosity (ɛ) results in an overall narrowing of the fluid boundary layer. Increasing the axial flow strength parameter (Ts) accelerates the fluid both radially and axially, while also narrowing the thermal boundary layer. It is seen that when both effects are imposed, the effects of axial flow generally dominate those of the viscosity temperature dependence. A local stability analysis is performed and the linearized stability equations are solved using a Galerkin projection in terms of Chebyshev polynomials. The neutral stability curves are then plotted for a range of ɛ and Ts values. Preliminary results suggest that increasing Ts has a stabilising effect on both type I and type II stationary instabilities, while small increases in ɛ results in a significant reduction to the critical Reynolds number.

  6. Arms Transfers: A System Dynamics Analysis Focusing on Regional Stability.

    DTIC Science & Technology

    1983-12-01

    73 IS OSOLET E . .. JILASSIIE]L.. SECURITY C14 A :PIrATInN (.S TWIM 04rc.- .- l° AFIT/GOR/OS/83D-8 ARMS TRANSFERS: A SYSTEM DYNA’ICS ALYSIS FOCUSING...regional stability. 5. Provide guidance and instructions on how to use and alter the model for specific policy analysis. Scot e This research is...a system, and that not all societal groups are the same. Durkheim insisted that his theory of anowia must be interpreted frorr a contingency point of

  7. Linear stability analysis for hydrothermal alteration of kimberlitic rocks

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey; Belyaeva, Ekaterina

    2016-06-01

    The influx of groundwater into hot kimberlite deposits results in the reaction of water with olivine-rich rocks. The products of the reaction are serpentine and release of latent heat. The rise of temperature due to the heat release increases the rate of the reaction. Under certain conditions, this self-speeding up of the reaction can result in instabilities associated with a significantly higher final serpentinization in slightly warmer regions of the kimberlite deposit. We conduct linear stability analysis of serpentinization in an isolated volume of porous kimberlitic rocks saturated with water and an inert gas. There is a counteracting interplay between the heat release tending to destabilize the uniform distribution of parameters and the heat conduction tending to stabilize it by smoothing out temperature perturbations. We determine the critical spatial scale separating the parameters where one phenomenon dominates over another. The perturbations of longer-than-critical length grow, whereas the perturbations of shorter-than-critical length fade. The analytical results of the linear stability analysis are supported by direct numerical simulations using a full nonlinear model.

  8. Linear stability analysis of the Noh expanding-shock solution

    NASA Astrophysics Data System (ADS)

    Murakami, M.; Velikovich, A. L.; Giuliani, J. L.; Taylor, B. D.; Zalesak, S. T.; Iwamoto, Y.

    2015-11-01

    The self-similar one-dimensional (1D) solution of the Noh problem has been used for verification of every code designed to model implosions, explosions and shock waves. The long experience of successful verification of two- and three-dimensional (2D and 3D) hydrocodes against the 1D Noh solution is an implicit confirmation of its hydrodynamic stability. Still, as far as we know, stability analysis of the Noh solution has never been done. Here, such analysis is reported for spherical and cylindrical geometry assuming small-amplitude perturbations. In either case stability of the Noh solution has been demonstrated, all initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time. The dispersion equation determining the complex eigenvalues of the problem, i. e. the power indices characteristic of this decay, has been derived. Its numerical solution is presented, and the particular and limiting cases when the eigenvalues can be calculated analytically are outlined. Explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented. The opportunities of using these new exact solutions for verification of hydrocodes in 2D and 3D are discussed. Work supported by the Japan Society for the Promotion of Science and by the US DOE/NNSA.

  9. Perturbative stability of SFT-based cosmological models

    SciTech Connect

    Galli, Federico; Koshelev, Alexey S. E-mail: alexey.koshelev@vub.ac.be

    2011-05-01

    We review the appearance of multiple scalar fields in linearized SFT based cosmological models with a single non-local scalar field. Some of these local fields are canonical real scalar fields and some are complex fields with unusual coupling. These systems only admit numerical or approximate analysis. We introduce a modified potential for multiple scalar fields that makes the system exactly solvable in the cosmological context of Friedmann equations and at the same time preserves the asymptotic behavior expected from SFT. The main part of the paper consists of the analysis of inhomogeneous cosmological perturbations in this system. We show numerically that perturbations corresponding to the new type of complex fields always vanish. As an example of application of this model we consider an explicit construction of the phantom divide crossing and prove the perturbative stability of this process at the linear order. The issue of ghosts and ways to resolve it are briefly discussed.

  10. Study report on guidelines and test procedures for investigating stability of nonlinear cardiovascular control system models

    NASA Technical Reports Server (NTRS)

    Fitzjerrell, D. G.

    1974-01-01

    A general study of the stability of nonlinear as compared to linear control systems is presented. The analysis is general and, therefore, applies to other types of nonlinear biological control systems as well as the cardiovascular control system models. Both inherent and numerical stability are discussed for corresponding analytical and graphic methods and numerical methods.

  11. Landslide stability analysis on basis of LIDAR data extraction

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Fernandez-Steeger, Tomas M.; Dong, Mei; Azzam, Rafig

    2010-05-01

    Currently, existing contradictory between remediation and acquisition from natural resource induces a series of divergences. With regard to open pit mining, legal regulation requires human to fill back the open pit area with water or recreate new landscape by other materials; on the other hand, human can not help excavating the mining area due to the shortage of power resource. However, to engineering geologists, one coincident problem which takes place not only in filling but also in mining operation should be paid more attention to, i.e. the slope stability analysis within these areas. There are a number of construction activities during remediation or mining process which can directly or indirectly cause slope failure. Lives can be endangered since local failure either while or after remediation; for mining process, slope failure in a bench, which carries a main haul road or is adjacent to human activity area, would be significant catastrophe to the whole mining program. The stability of an individual bench or slope is controlled by several factors, which are geological condition, morphology, climate, excavation techniques and transportation approach. The task which takes the longest time is to collect the morphological data. Consequently, it is one of the most dangerous tasks due to the time consuming in mining field. LIDAR scanning for morphological data collecting can help to skip this obstacle since advantages of LIDAR techniques as follows: • Dynamic range available on the market: from 3 m to beyond 1 km, • Ruggedly designed for demanding field applications, • Compact, easily hand-carried and deployed by a single operator. In 2009, scanning campaigns for 2 open pit quarry have been carried out. The aim for these LIDAR detections is to construct a detailed 3D quarry model and analyze the bench stability to support the filling planning. The 3D quarry surface was built up by using PolyWorks 10.1 on basis of LIDAR data. LIDAR data refining takes an

  12. Rigid Body Stability Augmentation Studies for a Wind Tunnel Flutter Model.

    DTIC Science & Technology

    1985-11-01

    evident in the root locus diagrams, Figs 3 and 4. Therefore, the stability augmentation system (SAS) was required to - provide basic stability and if... augmentation system (SAS) control law for it. The RAE designed control system simulation and analysis computer package ’TSIM’ (Refs. 3, 4) was used to program...One of my activities in preparation for the Phase 2 trials was to investigate the rigid-body response of the model and to develop a stability

  13. Analysis of temporal stability of autostereoscopic 3D displays

    NASA Astrophysics Data System (ADS)

    Rubiño, Manuel; Salas, Carlos; Pozo, Antonio M.; Castro, J. J.; Pérez-Ocón, Francisco

    2013-11-01

    An analysis has been made of the stability of the images generated by electronic autostereoscopic 3D displays, studying the time course of the photometric and colorimetric parameters. The measurements were made on the basis of the procedure recommended in the European guideline EN 61747-6 for the characterization of electronic liquid-crystal displays (LCD). The study uses 3 different models of autostereoscopic 3D displays of different sizes and numbers of pixels, taking the measurements with a spectroradiometer (model PR-670 SpectraScan of PhotoResearch). For each of the displays, the time course is shown for the tristimulus values and the chromaticity coordinates in the XYZ CIE 1931 system and values from the time periods required to reach stable values of these parameters are presented. For the analysis of how the procedure recommended in the guideline EN 61747-6 for 2D displays influenced the results, and for the adaption of the procedure to the characterization of 3D displays, the experimental conditions of the standard procedure were varied, making the stability analysis in the two ocular channels (RE and LE) of the 3D mode and comparing the results with those corresponding to the 2D. The results of our study show that the stabilization time of a autostereoscopic 3D display with parallax barrier technology depends on the tristimulus value analysed (X, Y, Z) as well as on the presentation mode (2D, 3D); furthermore, it was found that whether the 3D mode is used depends on the ocular channel evaluated (RE, LE).

  14. Milling Stability Analysis Based on Chebyshev Segmentation

    NASA Astrophysics Data System (ADS)

    HUANG, Jianwei; LI, He; HAN, Ping; Wen, Bangchun

    2016-09-01

    Chebyshev segmentation method was used to discretize the time period contained in delay differential equation, then the Newton second-order difference quotient method was used to calculate the cutter motion vector at each time endpoint, and the Floquet theory was used to determine the stability of the milling system after getting the transfer matrix of milling system. Using the above methods, a two degree of freedom milling system stability issues were investigated, and system stability lobe diagrams were got. The results showed that the proposed methods have the following advantages. Firstly, with the same calculation accuracy, the points needed to represent the time period are less by the Chebyshev Segmentation than those of the average segmentation, and the computational efficiency of the Chebyshev Segmentation is higher. Secondly, if the time period is divided into the same parts, the stability lobe diagrams got by Chebyshev segmentation method are more accurate than those of the average segmentation.

  15. Stability analysis of large electric power systems

    SciTech Connect

    Elwood, D.M.

    1993-01-01

    Modern electric power systems are large and complicated, and, in many regions of the world, the generation and transmission systems are operating near their limits. Ensuring the reliable operation of the power system requires engineers to study the response of the system to various disturbances. The responses to large disturbances are examined by numerically solving the nonlinear differential-algebraic equations describing the power system. The response to small disturbances is typically studied via eigenanalysis. The Electric Power Research Institute (EPRI) recently developed the Extended Transient/Mid-term Stability Program (ETMSP) to study large disturbance stability and the Small Signal Stability Program Package (SSSP) to study small signal stability. The primary objectives of the work described in this report were to (1) explore ways of speeding up ETMSP, especially on mid-term voltage stability problems, (2) explore ways of speeding up the Multi-Area Small-Signal Stability program (MASS), one of the codes in SSSP, and (3) explore ways of increasing the size of problem that can be solved by the Cray version of MASS.

  16. Stability and oscillations in a CML model

    NASA Astrophysics Data System (ADS)

    Badralexi, Irina; Halanay, Andrei

    2017-01-01

    We capture the evolution in competition of healthy and leukemic cells in Chronic Myelogenous Leukemia (CML) taking into consideration the response of the immune system. Delay-differential equations in a Mackey-Glass approach are used. We start with the study of stability of the equilibrium points of the system. Conditions on parameters for the local stability are given. Oscillatory behaviors occur naturally in biological phenomena. Thus, we investigate the periodic behavior of solutions and we obtain conditions for periodic solutions to appear through a Hopf bifurcation.

  17. Stability properties of elementary dynamic models of membrane transport.

    PubMed

    Hernández, Julio A

    2003-01-01

    Living cells are characterized by their capacity to maintain a stable steady state. For instance, cells are able to conserve their volume, internal ionic composition and electrical potential difference across the plasma membrane within values compatible with the overall cell functions. The dynamics of these cellular variables is described by complex integrated models of membrane transport. Some clues for the understanding of the processes involved in global cellular homeostasis may be obtained by the study of the local stability properties of some partial cellular processes. As an example of this approach, I perform, in this study, the neighborhood stability analysis of some elementary integrated models of membrane transport. In essence, the models describe the rate of change of the intracellular concentration of a ligand subject to active and passive transport across the plasma membrane of an ideal cell. The ligand can be ionic or nonionic, and it can affect the cell volume or the plasma membrane potential. The fundamental finding of this study is that, within the physiological range, the steady states are asymptotically stable. This basic property is a necessary consequence of the general forms of the expressions employed to describe the active and passive fluxes of the transported ligand.

  18. Neuromechanical models for insect locomotion: Stability, maneuverability, and proprioceptive feedback

    NASA Astrophysics Data System (ADS)

    Kukillaya, R.; Proctor, J.; Holmes, P.

    2009-06-01

    We describe a hierarchy of models for legged locomotion, emphasizing relationships among feedforward (preflexive) stability, maneuverability, and reflexive feedback. We focus on a hexapedal geometry representative of insect locomotion in the ground plane that includes a neural central pattern generator circuit, nonlinear muscles, and a representative proprioceptive sensory pathway. Although these components of the model are rather complex, neglect of leg mass yields a neuromechanical system with only three degrees of freedom, and numerical simulations coupled with a Poincaré map analysis shows that the feedforward dynamics is strongly stable, apart from one relatively slow mode and a neutral mode in body yaw angle. These modes moderate high frequency perturbations, producing slow heading changes that can be corrected by a stride-to-stride steering strategy. We show that the model's response to a lateral impulsive perturbation closely matches that of a cockroach subject to a similar impulse. We also describe preliminary studies of proprioceptive leg force feedback, showing how a reflexive pathway can reinforce the preflexive stability inherent in the system.

  19. Assessment of Stability of Craniofacial Implants by Resonant Frequency Analysis.

    PubMed

    Ivanjac, Filip; Konstantinović, Vitomir S; Lazić, Vojkan; Dordević, Igor; Ihde, Stefan

    2016-03-01

    Implant stability is a principal precondition for the success of implant therapy. Extraoral implants (EO) are mainly used for anchoring of maxillofacial epithesis. However, assessment of implant stability is mostly based on principles derived from oral implants. The aim of this study was to investigate clinical stability of EO craniofacial disk implants (single, double, and triple) by resonance frequency analysis at different stages of the bone's healing. Twenty patients with orbital (11), nasal (5), and auricular (4) defects with 50 EO implants placed for epithesis anchorage were included. Implant stability was measured 3 times; after implant placement, at 3 months and at least after 6 months. A significant increase in implant stability values was noted between all of the measurements, except for triple-disk implants between third and sixth months, and screw implants between 0 and third months. Disk implants showed lower implant stability quotient (ISQ) values compared with screw implants. Triple-disk implants showed better stability compared with single and double-disk implants. Based on resonance frequency analysis values, disk implants could be safely loaded when their ISQ values are 38 (single disks), 47 (double disks), and 48 (triple disks). According to resonance frequency analysis, disk implant stability increased over time, which showed good osseointegration and increasing mineralization. Although EO screw implants showed higher ISQ values than disk implants, disk-type implants can be safely loaded even if lower values of stability are measured.

  20. White Oak Dam stability analysis. Volume I

    SciTech Connect

    Ahmed, S.B.

    1994-01-01

    A parametric study was conducted to evaluate the stability of the White Oak Dam (WOD) embankment and foundation. Slope stability analyses were performed for the upper and lower bound soil properties at three sections of the dam using the PCSTABL4 computer program. Minimum safety factors were calculated for the applicable seismic and static loading conditions. Liquefaction potential of the dam embankment and foundation solid during the seismic event was assessed by using simplified procedures. The WOD is classified as a low hazard facility and the Evaluation Basis Earthquake (EBE) is defined as an earthquake with a magnitude of m{sub b} = 5.6 and a Peak Ground Accelerator (PGA) of 0.13 g. This event is approximately equivalent to a Modified Mercalli Intensity of VI-VIII. The EBE is used to perform the seismic evaluation for slope stability and liquefaction potential. Results of the stability analyses and the liquefaction assessment lead to the conclusion that the White Oak Dam is safe and stable for the static and the seismic events defined in this study. Ogden Environmental, at the request of MMES, has checked and verified the calculations for the critical loading conditions and performed a peer review of this report. Ogden has determined that the WOD is stable under the defined static and seismic loading conditions and the embankment materials are in general not susceptible to liquefaction.

  1. CFD Based Computations of Flexible Helicopter Blades for Stability Analysis

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    2011-01-01

    As a collaborative effort among government aerospace research laboratories an advanced version of a widely used computational fluid dynamics code, OVERFLOW, was recently released. This latest version includes additions to model flexible rotating multiple blades. In this paper, the OVERFLOW code is applied to improve the accuracy of airload computations from the linear lifting line theory that uses displacements from beam model. Data transfers required at every revolution are managed through a Unix based script that runs jobs on large super-cluster computers. Results are demonstrated for the 4-bladed UH-60A helicopter. Deviations of computed data from flight data are evaluated. Fourier analysis post-processing that is suitable for aeroelastic stability computations are performed.

  2. Wellbore stability analysis in carbonate reservoir considering anisotropic behaviour

    NASA Astrophysics Data System (ADS)

    Alves, José; Guevara, Nestor; Coelho, Lucia; Baud, Patrick

    2010-05-01

    Carbonate reservoirs represent a major part of the world oil and gas reserves. In particular, recent discoveries in the pre-salt offshore Brazil place big challenges to exploration and production under high temperatures and pressures (HTHP). During production, the extraction of hydrocarbons reduces pore pressure and thus causes an increase in the effective stress and mechanical compaction in the reservoir. The compactive deformation and failure may be spatially extensive or localized to the vicinity of the wellbore, but in either case the consequences can be economically severe involving surface subsidence, well failure and various production problems. The analysis of wellbore stability and more generally of deformation and failure in carbonate environments hinges upon a relevant constitutive modeling of carbonate rocks over a wide range of porosities, in particular, observed microstructure of samples suggests anisotropic behaviour. In this study, we performed a wellbore stability analysis for a lateral wellbore junction in three dimensions. The complex geometry for the wellbore junction was modeled with tetrahedral finite elements considering a rate independent elastic-plastic isotropic material that presented linear behavior during elastic strain and associated flow rule. A finite element model simulating drilling and production phases were done for field conditions from a deep water reservoir in Campos basin, offshore Brazil. In this context, several scenarios were studied considering true 3D orientation for both in situ stresses and geometry of the wellbore junction itself. We discussed the impact of constitutive modeling, considering anisotropic ductile damage and pressure sensitiveness on the wellbore stability. Parameter values for the analysis were based based on experimental data on two micritic porous carbonates. Series of conventional triaxial experiments were performed at room temperature in dry and wet conditions on samples of Comiso and Tavel

  3. Space Shuttle Main Engine real time stability analysis

    NASA Technical Reports Server (NTRS)

    Kuo, F. Y.

    1993-01-01

    The Space Shuttle Main Engine (SSME) is a reusable, high performance, liquid rocket engine with variable thrust. The engine control system continuously monitors the engine parameters and issues propellant valve control signals in accordance with the thrust and mixture ratio commands. A real time engine simulation lab was installed at MSFC to verify flight software and to perform engine dynamic analysis. A real time engine model was developed on the AD100 computer system. This model provides sufficient fidelity on the dynamics of major engine components and yet simplified enough to be executed in real time. The hardware-in-the-loop type simulation and analysis becomes necessary as NASA is continuously improving the SSME technology, some with significant changes in the dynamics of the engine. The many issues of interfaces between new components and the engine can be better understood and be resolved prior to the firing of the engine. In this paper, the SSME real time simulation Lab at the MSFC, the SSME real time model, SSME engine and control system stability analysis, both in real time and non-real time is presented.

  4. Model format for a vaccine stability report and software solutions.

    PubMed

    Shin, Jinho; Southern, James; Schofield, Timothy

    2009-11-01

    A session of the International Association for Biologicals Workshop on Stability Evaluation of Vaccine, a Life Cycle Approach was devoted to a model format for a vaccine stability report, and software solutions. Presentations highlighted the utility of a model format that will conform to regulatory requirements and the ICH common technical document. However, there need be flexibility to accommodate individual company practices. Adoption of a model format is premised upon agreement regarding content between industry and regulators, and ease of use. Software requirements will include ease of use and protections against inadvertent misspecification of stability design or misinterpretation of program output.

  5. The effects of drivers’ aggressive characteristics on traffic stability from a new car-following model

    NASA Astrophysics Data System (ADS)

    Peng, Guanghan; Qing, Li

    2016-06-01

    In this paper, a new car-following model is proposed by considering the drivers’ aggressive characteristics. The stable condition and the modified Korteweg-de Vries (mKdV) equation are obtained by the linear stability analysis and nonlinear analysis, which show that the drivers’ aggressive characteristics can improve the stability of traffic flow. Furthermore, the numerical results show that the drivers’ aggressive characteristics increase the stable region of traffic flow and can reproduce the evolution and propagation of small perturbation.

  6. Structural Stability of Mathematical Models of National Economy

    NASA Astrophysics Data System (ADS)

    Ashimov, Abdykappar A.; Sultanov, Bahyt T.; Borovskiy, Yuriy V.; Adilov, Zheksenbek M.; Ashimov, Askar A.

    2011-12-01

    In the paper we test robustness of particular dynamic systems in a compact regions of a plane and a weak structural stability of one dynamic system of high order in a compact region of its phase space. The test was carried out based on the fundamental theory of dynamical systems on a plane and based on the conditions for weak structural stability of high order dynamic systems. A numerical algorithm for testing the weak structural stability of high order dynamic systems has been proposed. Based on this algorithm we assess the weak structural stability of one computable general equilibrium model.

  7. The stability of the three transmembrane and the four transmembrane human vitamin K epoxide reductase models

    NASA Astrophysics Data System (ADS)

    Wu, Sangwook

    2016-04-01

    The three transmembrane and the four transmembrane helix models are suggested for human vitamin K epoxide reductase (VKOR). In this study, we investigate the stability of the human three transmembrane/four transmembrane VKOR models by employing a coarse-grained normal mode analysis and molecular dynamics simulation. Based on the analysis of the mobility of each transmembrane domain, we suggest that the three transmembrane human VKOR model is more stable than the four transmembrane human VKOR model.

  8. General stability analysis of composite sandwich plates under thermal load

    NASA Astrophysics Data System (ADS)

    Abdallah, Shaher A.

    In structures subjected to high temperature change such as high-speed aircraft the panels are stressed more significantly under thermal loading than mechanical loading. This can produce instability within the structure; therefore, the thermal loading may become the primary factor in the design of the structure. For example, buckling and facesheet wrinkling are two major failure modes of the composite sandwich plates subjected to various loadings. The goal of this dissertation is to study the stability analysis of composite sandwich plates due to buckling and wrinkling subjected to thermal loading. The primary objective is to find out the critical failure mode and the associated critical temperature change causing it. For thermal buckling and wrinkling analysis, the critical temperature change Delta Tcr, is of more interest than the critical thermal load. In this study, two different approaches of the stability problem of the composite sandwich plate subjected to thermally induced load are developed. In the first approach, the wrinkling analysis and buckling analysis are performed separately to evaluate their associated critical wrinkling and buckling temperature changes. For the face-wrinkling problem, two different models, the linear decaying Hoff model and exponential decaying Chen model are employed. The global buckling analysis is based on the energy method. The second approach is based on the unified theory of Benson and Mayers. In such an approach, the critical temperature change for both the global buckling and face wrinkling can be evaluated simultaneously. A potential energy based variation principle has been applied to formulate the problem. The Lagrange multipliers are used to satisfy the face-core continuity conditions. The buckling and wrinkling can be analyzed and calculated simultaneously. Therefore, the critical wrinkling temperature and the critical buckling temperature are found in a single analysis. The critical buckling and wrinkling stresses

  9. Sensitivity analysis of hydrodynamic stability operators

    NASA Technical Reports Server (NTRS)

    Schmid, Peter J.; Henningson, Dan S.; Khorrami, Mehdi R.; Malik, Mujeeb R.

    1992-01-01

    The eigenvalue sensitivity for hydrodynamic stability operators is investigated. Classical matrix perturbation techniques as well as the concept of epsilon-pseudoeigenvalues are applied to show that parts of the spectrum are highly sensitive to small perturbations. Applications are drawn from incompressible plane Couette, trailing line vortex flow and compressible Blasius boundary layer flow. Parametric studies indicate a monotonically increasing effect of the Reynolds number on the sensitivity. The phenomenon of eigenvalue sensitivity is due to the non-normality of the operators and their discrete matrix analogs and may be associated with large transient growth of the corresponding initial value problem.

  10. Stability of weighted spectral distribution in a pseudo tree-like network model

    NASA Astrophysics Data System (ADS)

    Bo, Jiao; Yuan-ping, Nie; Cheng-dong, Huang; Jing, Du; Rong-hua, Guo; Fei, Huang; Jian-mai, Shi

    2016-05-01

    The comparison of networks with different orders strongly depends on the stability analysis of graph features in evolving systems. In this paper, we rigorously investigate the stability of the weighted spectral distribution (i.e., a spectral graph feature) as the network order increases. First, we use deterministic scale-free networks generated by a pseudo tree-like model to derive the precise formula of the spectral feature, and then analyze the stability of the spectral feature based on the precise formula. Except for the scale-free feature, the pseudo tree-like model exhibits the hierarchical and small-world structures of complex networks. The stability analysis is useful for the classification of networks with different orders and the similarity analysis of networks that may belong to the same evolving system. Project supported by the National Natural Science Foundation of China (Grant Nos. 61402485, 61303061, and 71201169).

  11. Dilaton stabilization in three-generation heterotic string model

    NASA Astrophysics Data System (ADS)

    Beye, Florian; Kobayashi, Tatsuo; Kuwakino, Shogo

    2016-09-01

    We study dilaton stabilization in heterotic string models. By utilizing the asymmetric orbifold construction, we construct an explicit three-generation model whose matter content in the visible sector is the supersymmetric standard model with additional vectorlike matter. This model does not contain any geometric moduli fields except the dilaton field. Model building at a symmetry enhancement point in moduli space enlarges the rank of the hidden gauge group. By analyzing multiple hidden gauge sectors, the dilaton field is stabilized by the racetrack mechanism. We also discuss a supersymmetry breaking scenario and F-term uplifting.

  12. Stabilization of model-based networked control systems

    NASA Astrophysics Data System (ADS)

    Miranda, Francisco; Abreu, Carlos; Mendes, Paulo M.

    2016-06-01

    A class of networked control systems called Model-Based Networked Control Systems (MB-NCSs) is considered. Stabilization of MB-NCSs is studied using feedback controls and simulation of stabilization for different feedbacks is made with the purpose to reduce the network trafic. The feedback control input is applied in a compensated model of the plant that approximates the plant dynamics and stabilizes the plant even under slow network conditions. Conditions for global exponential stabilizability and for the choosing of a feedback control input for a given constant time between the information moments of the network are derived. An optimal control problem to obtain an optimal feedback control is also presented.

  13. Stability of Dark Energy Models on the Brane Universes

    NASA Astrophysics Data System (ADS)

    Saadat, Hassan

    2013-08-01

    In this paper the equation of state formalism for the dark energy models on the brane considered and stability of theory investigated. We consider four different cases of the Little Rip, Asymptotic de Sitter, Asymptotic breakdown, and Big Freeze singularity models and find that the only stable model is Asymptotic de Sitter case. In other cases we get negative value of squared sound speed.

  14. Collagen model peptides: Sequence dependence of triple-helix stability.

    PubMed

    Persikov, A V; Ramshaw, J A; Brodsky, B

    2000-01-01

    The triple helix is a specialized protein motif, found in all collagens as well as in noncollagenous proteins involved in host defense. Peptides will adopt a triple-helical conformation if the sequence contains its characteristic features of Gly as every third residue and a high content of Pro and Hyp residues. Such model peptides have proved amenable to structural studies by x-ray crystallography and NMR spectroscopy, suitable for thermodynamic and kinetic analysis, and a valuable tool in characterizing the binding activities of the collagen triple helix. A systematic approach to understanding the amino acid sequence dependence of the collagen triple helix has been initiated, based on a set of host-guest peptides of the form, (Gly-Pro-Hyp)(3)-Gly-X-Y-(Gly-Pro-Hyp)(4). Comparison of their thermal stabilities has led to a propensity scale for the X and Y positions, and the additivity of contributions of individual residues is now under investigation. The local and global stability of the collagen triple helix is normally modulated by the residues in the X and Y positions, with every third position occupied by Gly in fibril-forming collagens. However, in collagen diseases, such as osteogenesis imperfecta, a single Gly may be substituted by another residue. Host-guest studies where the Gly is replaced by various amino acids suggest that the identity of the residue in the Gly position affects the degree of destabilization and the clinical severity of the disease.

  15. Soap Bubble Elasticity: Analysis and Correlation with Foam Stability

    NASA Astrophysics Data System (ADS)

    Karakashev, S. I.; Tsekov, R.; Manev, E. D.; Nguyen, A. V.

    2010-05-01

    A correlation between the elastic modulus of soap bubble and the foam stability was found. A model system was chosen: a soap bubble stabilized by simple nonionic surfactant tetraethylene glycol octyl ether (C8E4) and 10^-5 M NaCl. The Elastic moduli were determined by periodical expansion and shrinking of foam bubbles with frequency of 0.1 Hz and volumetric amplitude of 2 mm 3. The film tension was monitored via commercial profile analysis tensiometer (Sinterface Technologies, GmbH). The elastic moduli of foam bubbles versus surfactant concentration in the range of 2x10^-3 - 10^-2 M were obtained. In addition, the theory of Lucassen and van den Tempel for the elastic modulus of single liquid/air interface at given frequency was exploited as well. The bulk diffusion coefficient of the surfactant molecules is unknown parameter through the adsorption frequency in this theory. Hence, a fitting procedure (with one free parameter) was conducted matching experimental and theoretical data. The value of the bulk diffusion coefficient of C8E4 obtained was 5.1x10^-11 m^2/s, which is an order of magnitude lower value than what is expected for. The foam was generated by shaking method and left to decay. A correlation between the elastic modulus and foam life time upon surfactant concentration was found.

  16. An Alternative Interpretation of Three Stability Models.

    ERIC Educational Resources Information Center

    Wilcox, Rand R.

    1979-01-01

    Wilcox has described three probability models which characterize a single test item in terms of a population of examinees (ED 156 718). This note indicates indicates that similar models can be derived which characterize a single examinee in terms of an item domain. A numerical illustration is given. (Author/JKS)

  17. Climate stability for a Sellers-type model. [atmospheric diffusive energy balance model

    NASA Technical Reports Server (NTRS)

    Ghil, M.

    1976-01-01

    We study a diffusive energy-balance climate model governed by a nonlinear parabolic partial differential equation. Three positive steady-state solutions of this equation are found; they correspond to three possible climates of our planet: an interglacial (nearly identical to the present climate), a glacial, and a completely ice-covered earth. We consider also models similar to the main one studied, and determine the number of their steady states. All the models have albedo continuously varying with latitude and temperature, and entirely diffusive horizontal heat transfer. The diffusion is taken to be nonlinear as well as linear. We investigate the stability under small perturbations of the main model's climates. A stability criterion is derived, and its application shows that the 'present climate' and the 'deep freeze' are stable, whereas the model's glacial is unstable. A variational principle is introduced to confirm the results of this stability analysis. For a sufficient decrease in solar radiation (about 2%) the glacial and interglacial solutions disappear, leaving the ice-covered earth as the only possible climate.

  18. Linear Stability Analysis of an Acoustically Vaporized Droplet

    NASA Astrophysics Data System (ADS)

    Siddiqui, Junaid; Qamar, Adnan; Samtaney, Ravi

    2015-11-01

    Acoustic droplet vaporization (ADV) is a phase transition phenomena of a superheat liquid (Dodecafluoropentane, C5F12) droplet to a gaseous bubble, instigated by a high-intensity acoustic pulse. This approach was first studied in imaging applications, and applicable in several therapeutic areas such as gas embolotherapy, thrombus dissolution, and drug delivery. High-speed imaging and theoretical modeling of ADV has elucidated several physical aspects, ranging from bubble nucleation to its subsequent growth. Surface instabilities are known to exist and considered responsible for evolving bubble shapes (non-spherical growth, bubble splitting and bubble droplet encapsulation). We present a linear stability analysis of the dynamically evolving interfaces of an acoustically vaporized micro-droplet (liquid A) in an infinite pool of a second liquid (liquid B). We propose a thermal ADV model for the base state. The linear analysis utilizes spherical harmonics (Ynm, of degree m and order n) and under various physical assumptions results in a time-dependent ODE of the perturbed interface amplitudes (one at the vapor/liquid A interface and the other at the liquid A/liquid B interface). The perturbation amplitudes are found to grow exponentially and do not depend on m. Supported by KAUST Baseline Research Funds.

  19. Stability analysis of ultrasound thick-shell contrast agents

    PubMed Central

    Lu, Xiaozhen; Chahine, Georges L.; Hsiao, Chao-Tsung

    2012-01-01

    The stability of thick shell encapsulated bubbles is studied analytically. 3-D small perturbations are introduced to the spherical oscillations of a contrast agent bubble in response to a sinusoidal acoustic field with different amplitudes of excitation. The equations of the perturbation amplitudes are derived using asymptotic expansions and linear stability analysis is then applied to the resulting differential equations. The stability of the encapsulated microbubbles to nonspherical small perturbations is examined by solving an eigenvalue problem. The approach then identifies the fastest growing perturbations which could lead to the breakup of the encapsulated microbubble or contrast agent. PMID:22280568

  20. Analysis of emulsion stability in acrylic dispersions

    NASA Astrophysics Data System (ADS)

    Ahuja, Suresh

    2012-02-01

    Emulsions either micro or nano permit transport or solubilization of hydrophobic substances within a water-based phase. Different methods have been introduced at laboratory and industrial scales: mechanical stirring, high-pressure homogenization, or ultrasonics. In digital imaging, toners may be formed by aggregating a colorant with a latex polymer formed by batch or semi-continuous emulsion polymerization. Latex emulsions are prepared by making a monomer emulsion with monomer like Beta-carboxy ethyl acrylate (β-CEA) and stirring at high speed with an anionic surfactant like branched sodium dodecyl benzene sulfonates , aqueous solution until an emulsion is formed. Initiator for emulsion polymerization is 2-2'- azobis isobutyramide dehydrate with chain transfer agent are used to make the latex. If the latex emulsion is unstable, the resulting latexes produce a toner with larger particle size, broader particle size distribution with relatively higher latex sedimentation, and broader molecular weight distribution. Oswald ripening and coalescence cause droplet size to increase and can result in destabilization of emulsions. Shear thinning and elasticity of emulsions are applied to determine emulsion stability.

  1. Kinematic analysis of rope skipper's stability

    NASA Astrophysics Data System (ADS)

    Ab Ghani, Nor Atikah; Rambely, Azmin Sham

    2014-06-01

    There are various kinds of jumping that can be done while performing rope skipping activity. This activity was always associated with injury. But, if the rope skipper can perform the activity in a right way, it is believed that the injury might be reduced. The main purpose of this paper is to observe the stability of rope skipper from a biomechanics perspective, which are the centre of mass, angle at the ankle, knee and hip joints and also the trajectory for the ipsilateral leg between the two types of skip which is one leg and two legs. Six healthy, physically active subject, two males and four females (age: 8.00±1.25 years, weight: 17.90±6.85 kg and height: 1.22±0.08 m) participated in this study. Kinematic data of repeated five cycles of rope skipping activity was captured by using Vicon Nexus system. Based on the data collected, skipping with two legs shows more stable behavior during preparation, flight and landing phases. It is concluded that landing on the balls of the feet, lowering the trajectory positions of the feet from the ground as well as flexion of each joint which would reduce the injury while landing.

  2. Stability analysis of offshore wind farm and marine current farm

    NASA Astrophysics Data System (ADS)

    Shawon, Mohammad Hasanuzzaman

    -trend for large electric energy production using offshore wind generators and marine current generators, respectively. Thus DFIG based offshore wind farm can be an economic solution to stabilize squirrel cage induction generator based marine current farm without installing any addition FACTS devices. This thesis first focuses on the stabilization of fixed speed IG based marine current farm using SDBR. Also stabilization of DFIG based variable speed wind farm utilizing SDBR is studied in this work. Finally a co-operative control strategy is proposed where DFIG is controlled in such a way that it can even provide necessary reactive power demand of induction generator, so that additional cost of FACTS devices can be avoided. In that way, the DFIGs of the offshore wind farm (OWF) will actively compensate the reactive power demand of adjacent IGs of the marine current farm (MCF) during grid fault. Detailed modeling and control scheme for the proposed system are demonstrated considering some realistic scenarios. The power system small signal stability analysis is also carried out by eigenvalue analysis for marine current generator topology, wind turbine generator topology and integrated topology. The relation between the modes and state variables are discussed in light of modal and sensitivity analyses. The results of theoretical analyses are verified by MATLAB/SIMULINK and laboratory standard power system simulator PSCAD/EMTDC.

  3. Stability of finite difference models containing two boundaries or interfaces

    NASA Technical Reports Server (NTRS)

    Trefethen, L. N.

    1984-01-01

    The stability of finite difference models of hyperbolic initial boundary value problems is connected with the propagation and reflection of parasitic waves. Wave propagation ideas are applied to models containing two boundaires or interfaces, where repeated reflection of trapped wave packets is a potential new source of instability. Various known instability phenomena are accounted for in a unified way. Results show: (1) dissipativity does not ensure stability when three or more formulas are concatenated at a boundary or internal interface; (2) algebraic GKS instabilities can be converted by a second boundary to exponential instabilities only when an infinite numerical reflection coefficient is present; and (3) GKS-stability and P-stability can be established in certain problems by showing that all numerical reflection coefficients have modulus less than 1.

  4. Nekhoroshev stability estimates for different models of the Trojan asteroids

    NASA Astrophysics Data System (ADS)

    Efthymiopoulos, Christos

    2005-02-01

    Estimates of the region of Nekhoroshev stability of Jupiter's Trojan asteroids are obtained by a direct (i.e. without use of the normal form) construction of formal integrals near the Lagrangian elliptic equilibrium points. Formal integrals are constructed in the Hamiltonian model of the planar circular restricted three body problem (PCRTBP), and in a mapping model (Sándor et al. 2002) of the same problem for small orbital eccentricities of the asteroids. The analytical estimates are based on the calculation of the size of the remainder of the formal series by a computer program. An analysis is made of the accumulation of small divisors in the series. The most important divisors introduce competing Fourier terms with sizes growing at similar rates as the order of truncation increases. This makes impossible to improve the estimates by considering nearly resonant forms of the formal integrals for particular near-resonances. Improved estimates were obtained in a mapping model of the PCRTBP. The main source of improvement is the use of better variables (Delaunay). Our best estimate represents a maximum libration amplitude D_p=10.6(0) . This is a quite realistic value which demonstrates the usefulness of Nekhoroshev theory.

  5. Nonlinear stability analysis of Darcy's flow with viscous heating.

    PubMed

    Celli, Michele; Alves, Leonardo S de B; Barletta, Antonio

    2016-05-01

    The nonlinear stability of a rectangular porous channel saturated by a fluid is here investigated. The aspect ratio of the channel is assumed to be variable. The channel walls are considered impermeable and adiabatic except for the horizontal top which is assumed to be isothermal. The viscous dissipation is acting inside the channel as internal heat generator. A basic throughflow is imposed, and the nonlinear convective stability is investigated by means of the generalized integral transform technique. The neutral stability curve is compared with the one obtained by the linear stability analysis already present in the literature. The growth rate analysis of different unstable modes is performed. The Nusselt number is investigated for several supercritical configurations in order to better understand how the system behaves when conditions far away from neutral stability are considered. The patterns of the neutrally stable convective cells are also reported. Nonlinear simulations support the results obtained by means of the linear stability analysis, confirming that viscous dissipation alone is indeed capable of inducing mixed convection. Low Gebhart or high Péclet numbers lead to a transient overheating of the originally motionless fluid before it settles in its convective steady state.

  6. Stability analysis of a bilayer contained within a cylindrical tube

    NASA Astrophysics Data System (ADS)

    Song, Yuanyuan

    Airways in the lung are coated with a liquid bilayer consisting of a serous layer adjacent to a more viscous mucus layer which is contiguous with the air core. An instability due to surface tension at the interfaces may lead to the formation of a liquid plug that blocks the passage of air. This is known as airway closure. A stability analysis is carried out for the case when a Newtonian and immiscible liquid bilayer coats a compliant tube in the presence of an insoluble surfactant monolayer at the mucus-gas interface. A surface active material such as surfactant lowers the surface tension and also generates a surface stress at the interface, both of which are stabilizing, while the wall compliance may accelerate the formation of the liquid bridge. A system of nonlinear coupled equations for the deflections of the interfaces and the surfactant concentration is derived by using an extended lubrication theory analysis. A linear stability study using normal modes is conducted by linearizing the nonlinear evolution equations. A linear eigenvalue problem for the perturbation amplitudes is obtained. Non-trivial solutions are obtained provided the determinant of a linear system is singular. A fourth order polynomial for the growth rate of the disturbances is derived, whose coefficients depend on the wavenumber of the perturbation, the wall characteristics, the Marangoni number, the thickness of the bilayer, the aspect thickness ratio, the viscosity ratio of two liquid layers, and the surface tension ratio. Both stabilizing and destabilizing effects of various system parameters are investigated. A classical lubrication theory model is also derived for cases where a bilayer coats a rigid tube with insoluble surfactant along the liquid-gas interface, and a bilayer coating in a compliant tube with a clean liquid-gas interface. Results serve as a validation of the extended lubrication theory model. The accuracy of the extended lubrication theory model as the bilayer thickness

  7. Aeroelastic Stability of Rotor Blades Using Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Chopra, I.; Sivaneri, N.

    1982-01-01

    The flutter stability of flap bending, lead-lag bending, and torsion of helicopter rotor blades in hover is investigated using a finite element formulation based on Hamilton's principle. The blade is divided into a number of finite elements. Quasi-steady strip theory is used to evaluate the aerodynamic loads. The nonlinear equations of motion are solved for steady-state blade deflections through an iterative procedure. The equations of motion are linearized assuming blade motion to be a small perturbation about the steady deflected shape. The normal mode method based on the coupled rotating natural modes is used to reduce the number of equations in the flutter analysis. First the formulation is applied to single-load-path blades (articulated and hingeless blades). Numerical results show very good agreement with existing results obtained using the modal approach. The second part of the application concerns multiple-load-path blades, i.e. bearingless blades. Numerical results are presented for several analytical models of the bearingless blade. Results are also obtained using an equivalent beam approach wherein a bearingless blade is modelled as a single beam with equivalent properties. Results show the equivalent beam model.

  8. Stability of differential susceptibility and infectivity epidemic models

    PubMed Central

    Bonzi, B.; Fall, A. A.; Iggidr, Abderrahman; Sallet, Gauthier

    2011-01-01

    We introduce classes of differential susceptibility and infectivity epidemic models. These models address the problem of flows between the different susceptible, infectious and infected compartments and differential death rates as well. We prove the global stability of the disease free equilibrium when the basic reproduction ratio ≤ 1 and the existence and uniqueness of an endemic equilibrium when > 1. We also prove the global asymptotic stability of the endemic equilibrium for a differential susceptibility and staged progression infectivity model, when > 1. Our results encompass and generalize those of [18, 22]. AMS Subject Classification : 34A34,34D23,34D40,92D30 PMID:20148330

  9. Nuclear Matter Stability in a Soliton Model for Finite Nuclei

    NASA Astrophysics Data System (ADS)

    Derreth, Ch.; Elze, H.-Th.; Greiner, W.

    A relativistic band structure method for the computation of the electronic structure of atomic clusters is adapter to the Friedberg-Lee nontopological soliton model. Thus, finite nuclei can be studied in the soliton model. As a verification of our method, we calculated the equation of state of nuclear matter. In order to achieve nuclear matter stability, we added the colour magnetic interaction for an inhomogeneous dielectric medium as well as a phenomenological residual interaction to the soliton model. Both modifications are examined in detail. Nuclear matter stability near the empirical ground state density and binding energy has been achieved.

  10. Stability and optimization in structured population models on graphs.

    PubMed

    Colombo, Rinaldo M; Garavello, Mauro

    2015-04-01

    We prove existence and uniqueness of solutions, continuous dependence from the initial datum and stability with respect to the boundary condition in a class of initial--boundary value problems for systems of balance laws. The particular choice of the boundary condition allows to comprehend models with very different structures. In particular, we consider a juvenile-adult model, the problem of the optimal mating ratio and a model for the optimal management of biological resources. The stability result obtained allows to tackle various optimal management/control problems, providing sufficient conditions for the existence of optimal choices/controls.

  11. Stabilizing a Bicycle: A Modeling Project

    ERIC Educational Resources Information Center

    Pennings, Timothy J.; Williams, Blair R.

    2010-01-01

    This article is a project that takes students through the process of forming a mathematical model of bicycle dynamics. Beginning with basic ideas from Newtonian mechanics (forces and torques), students use techniques from calculus and differential equations to develop the equations of rotational motion for a bicycle-rider system as it tips from…

  12. A Robustly Stabilizing Model Predictive Control Algorithm

    NASA Technical Reports Server (NTRS)

    Ackmece, A. Behcet; Carson, John M., III

    2007-01-01

    A model predictive control (MPC) algorithm that differs from prior MPC algorithms has been developed for controlling an uncertain nonlinear system. This algorithm guarantees the resolvability of an associated finite-horizon optimal-control problem in a receding-horizon implementation.

  13. Kinematic Analysis of a Posterior-stabilized Knee Prosthesis

    PubMed Central

    Zhao, Zhi-Xin; Wen, Liang; Qu, Tie-Bing; Hou, Li-Li; Xiang, Dong; Bin, Jia

    2015-01-01

    Background: The goal of total knee arthroplasty (TKA) is to restore knee kinematics. Knee prosthesis design plays a very important role in successful restoration. Here, kinematics models of normal and prosthetic knees were created and validated using previously published data. Methods: Computed tomography and magnetic resonance imaging scans of a healthy, anticorrosive female cadaver were used to establish a model of the entire lower limbs, including the femur, tibia, patella, fibula, distal femur cartilage, and medial and lateral menisci, as well as the anterior cruciate, posterior cruciate, medial collateral, and lateral collateral ligaments. The data from the three-dimensional models of the normal knee joint and a posterior-stabilized (PS) knee prosthesis were imported into finite element analysis software to create the final kinematic model of the TKA prosthesis, which was then validated by comparison with a previous study. The displacement of the medial/lateral femur and the internal rotation angle of the tibia were analyzed during 0–135° flexion. Results: Both the output data trends and the measured values derived from the normal knee's kinematics model were very close to the results reported in a previous in vivo study, suggesting that this model can be used for further analyses. The PS knee prosthesis underwent an abnormal forward displacement compared with the normal knee and has insufficient, or insufficiently aggressive, “rollback” compared with the lateral femur of the normal knee. In addition, a certain degree of reverse rotation occurs during flexion of the PS knee prosthesis. Conclusions: There were still several differences between the kinematics of the PS knee prosthesis and a normal knee, suggesting room for improving the design of the PS knee prosthesis. The abnormal kinematics during early flexion shows that the design of the articular surface played a vital role in improving the kinematics of the PS knee prosthesis. PMID:25591565

  14. Stability Analysis and Stabilization of Nonlinear Systems via Locally Defined Density Functions

    NASA Astrophysics Data System (ADS)

    Masubuchi, Izumi

    This paper considers local stability analysis of nonlinear systems with deriving a positively invariant set based on the Rantzer's stability theory by using density functions. We define a notion of locally defined density functions around an equilibrium that give monotonously increasing positive measures near the equilibrium of a nonlinear system. Under certain assumptions, it is shown that some level set of a locally defined density function is a positively invariant set where almost all of the system trajectories converge to the equilibrium. We also mention an SOS (sum-of-squares) formulation for synthesis of a nonlinear gain via locally defined density functions.

  15. Pyrosequencing Based Microbial Community Analysis of Stabilized Mine Soils

    NASA Astrophysics Data System (ADS)

    Park, J. E.; Lee, B. T.; Son, A.

    2015-12-01

    Heavy metals leached from exhausted mines have been causing severe environmental problems in nearby soils and groundwater. Environmental mitigation was performed based on the heavy metal stabilization using Calcite and steel slag in Korea. Since the soil stabilization only temporarily immobilizes the contaminants to soil matrix, the potential risk of re-leaching heavy metal still exists. Therefore the follow-up management of stabilized soils and the corresponding evaluation methods are required to avoid the consequent contamination from the stabilized soils. In this study, microbial community analysis using pyrosequencing was performed for assessing the potential leaching of the stabilized soils. As a result of rarefaction curve and Chao1 and Shannon indices, the stabilized soil has shown lower richness and diversity as compared to non-contaminated negative control. At the phyla level, as the degree of contamination increases, most of phyla decreased with only exception of increased proteobacteria. Among proteobacteria, gamma-proteobacteria increased against the heavy metal contamination. At the species level, Methylobacter tundripaludum of gamma-proteobacteria showed the highest relative portion of microbial community, indicating that methanotrophs may play an important role in either solubilization or immobilization of heavy metals in stabilized soils.

  16. Clarifications of the BCU method for transient stability analysis

    SciTech Connect

    Llamas, A.; De La Ree Lopez, J.; Mili, L.; Phadke, A.G.; Thorp, J.S.

    1995-02-01

    Energy function methods have been studied for many years, and have been applied to practical power system stability analysis problems of multi-machine power systems. Recent developments in real-time power system monitoring suggest that dynamic events can be monitored at the power system control centers, and naturally the energy function methods were tried as real-time stability prediction tools. However, a number of instances were uncovered, where the energy function methods which use the Potential Energy Boundary Surface as an approximation of the stability boundary produced unreliable results. In particular, during several transient stability studies, the Boundary Controlling Unstable (BCU) Equilibrium Point method seemed to predict stable swings, whereas in reality the swings turned out to be unstable. This paper presents these counter-examples, and suggests an explanation as to why these methods produce a wrong result. It is hoped that this paper will lead to further researches and improvements in the theory of energy function based methods of stability analysis. In the mean time, alternative methods for the real-time stability prediction problems are under investigation.

  17. Stability Analysis of Absorption Chiller-Heaters by Applying Transfer Function

    NASA Astrophysics Data System (ADS)

    Fujii, Tatsuo; Miyake, Satoshi; Oka, Masahiro; Mori, Kiyoyuki

    A transfer function approach is found to be a practical method for ensuring stable operation of absorption chiller-heaters. The transfer function model is based on a solution-circuit of the machine, which dominates the stability of the operation. This model includes a solution pump, a generator with an overflow weir, and a float valve. We found that the solution-circuit system is designed with the cascade control, which makes the system stable. In this construction, the float valve actuates a primary control loop, and the overflow weir actuates a secondary loop. The effects of the characteristic of the solution pump and the overflow weir are estimated by the degree of the stabilities, which are the gain margin and the phase margin. We found that the characteristic of the solution pump strongly effects the stability by enhancing the effect of the cascade control and improving the stability. So it is essential for a better stability analysis model. According to these results, the established model is useful for quantitatively predicting the stabilities of a chiller-heater in operation, and simultaneously reducing its size and improving the stability of operation. We conclude that the methodology based on transfer function can provide compact and reliable absorption chiller-heaters.

  18. Advances in Computational Stability Analysis of Composite Aerospace Structures

    SciTech Connect

    Degenhardt, R.; Araujo, F. C. de

    2010-09-30

    European aircraft industry demands for reduced development and operating costs. Structural weight reduction by exploitation of structural reserves in composite aerospace structures contributes to this aim, however, it requires accurate and experimentally validated stability analysis of real structures under realistic loading conditions. This paper presents different advances from the area of computational stability analysis of composite aerospace structures which contribute to that field. For stringer stiffened panels main results of the finished EU project COCOMAT are given. It investigated the exploitation of reserves in primary fibre composite fuselage structures through an accurate and reliable simulation of postbuckling and collapse. For unstiffened cylindrical composite shells a proposal for a new design method is presented.

  19. Analysis of Human Body Bipedal Stability for Neuromotor Disabilities

    NASA Astrophysics Data System (ADS)

    Baritz, Mihaela; Cristea, Luciana; Rogozea, Liliana; Cotoros, Diana; Repanovici, Angela

    2009-04-01

    The analysis of different biomechanical aspects of balance and equilibrium is presented in the first part of the paper. We analyzed the posture, balance and stability of human body for a normal person and for a person with loco-motor or neuro-motor disabilities (in the second part). In the third part of the paper we presented the methodology and the experimental setup used to record the human body behavior in postural stability for persons with neuro-motors disabilities. The results and the conclusions are presented in the final part of the paper and also in the future work meant to establish the computer analysis for rehabilitation neuromotor disabilities.

  20. Global stability of the ballooning mode in a cylindrical model

    NASA Astrophysics Data System (ADS)

    Mazur, N. G.; Fedorov, E. N.; Pilipenko, V. A.

    2013-07-01

    Ballooning disturbances in a finite-pressure plasma in a curvilinear magnetic field are described by the system of coupled equations for the Alfvén and slow magnetosonic modes. In contrast to most previous works that locally analyzed the stability of small-scale disturbances using the dispersion relationship, a global analysis outside a WKB approximation but within a simple cylindrical geometry, when magnetic field lines are circles with constant curvature, is performed in the present work. This model is relatively simple; nevertheless, it has the singularities necessary for the formation of the ballooning mode: field curvature and non-uniform thermal plasma pressure. If the disturbance finite radial extent is taken into account, the instability threshold increases as compared to a WKB approximation. The simplified model used in this work made it possible to consider the pattern of unstable disturbances at arbitrary values of the azimuthal wavenumber ( k y ). Azimuthally large-scale disturbances can also be unstable, although the increment increases with decreasing azimuthal scale and reaches saturation when the scales are of the order of the pressure nonuniformity dimension.

  1. Mechanical models for insect locomotion: stability and parameter studies

    NASA Astrophysics Data System (ADS)

    Schmitt, John; Holmes, Philip

    2001-08-01

    We extend the analysis of simple models for the dynamics of insect locomotion in the horizontal plane, developed in [Biol. Cybern. 83 (6) (2000) 501] and applied to cockroach running in [Biol. Cybern. 83 (6) (2000) 517]. The models consist of a rigid body with a pair of effective legs (each representing the insect’s support tripod) placed intermittently in ground contact. The forces generated may be prescribed as functions of time, or developed by compression of a passive leg spring. We find periodic gaits in both cases, and show that prescribed (sinusoidal) forces always produce unstable gaits, unless they are allowed to rotate with the body during stride, in which case a (small) range of physically unrealistic stable gaits does exist. Stability is much more robust in the passive spring case, in which angular momentum transfer at touchdown/liftoff can result in convergence to asymptotically straight motions with bounded yaw, fore-aft and lateral velocity oscillations. Using a non-dimensional formulation of the equations of motion, we also develop exact and approximate scaling relations that permit derivation of gait characteristics for a range of leg stiffnesses, lengths, touchdown angles, body masses and inertias, from a single gait family computed at ‘standard’ parameter values.

  2. Nonlinear analysis for image stabilization in IR imaging system

    NASA Astrophysics Data System (ADS)

    Xie, Zhan-lei; Lu, Jin; Luo, Yong-hong; Zhang, Mei-sheng

    2009-07-01

    In order to acquire stabilization image for IR imaging system, an image stabilization system is required. Linear method is often used in current research on the system and a simple PID controller can meet the demands of common users. In fact, image stabilization system is a structure with nonlinear characters such as structural errors, friction and disturbances. In up-grade IR imaging system, although conventional PID controller is optimally designed, it cannot meet the demands of higher accuracy and fast responding speed when disturbances are present. To get high-quality stabilization image, nonlinear characters should be rejected. The friction and gear clearance are key factors and play an important role in the image stabilization system. The friction induces static error of system. When the system runs at low speed, stick-slip and creeping induced by friction not only decrease resolution and repeating accuracy, but also increase the tracking error and the steady state error. The accuracy of the system is also limited by gear clearance, and selfexcited vibration is brought on by serious clearance. In this paper, effects of different nonlinear on image stabilization precision are analyzed, including friction and gear clearance. After analyzing the characters and influence principle of the friction and gear clearance, a friction model is established with MATLAB Simulink toolbox, which is composed of static friction, Coulomb friction and viscous friction, and the gear clearance non-linearity model is built, providing theoretical basis for the future engineering practice.

  3. A Complete 2D Stability Analysis of Fast MHD Shocks in an Ideal Gas

    NASA Astrophysics Data System (ADS)

    Trakhinin, Yuri

    An algorithm of numerical testing of the uniform Lopatinski condition for linearized stability problems for 1-shocks is suggested. The algorithm is used for finding the domains of uniform stability, neutral stability, and instability of planar fast MHD shocks. A complete stability analysis of fast MHD shock waves is first carried out in two space dimensions for the case of an ideal gas. Main results are given for the adiabatic constant γ=5/3 (mono-atomic gas), that is most natural for the MHD model. The cases γ=7/5 (two-atomic gas) and γ>5/3 are briefly discussed. Not only the domains of instability and linear (in the usual sense) stability, but also the domains of uniform stability, for which a corresponding linearized stability problem satisfies the uniform Lopatinski condition, are numerically found for different given angles of inclination of the magnetic field behind the shock to the planar shock front. As is known, uniform linearized stability implies the nonlinear stability, that is local existence of discontinuous shock front solutions of a quasilinear system of hyperbolic conservation laws.

  4. Limit cycle stability analysis and adaptive control of a multi-compartment model for a pressure-limited respirator and lung mechanics system

    NASA Astrophysics Data System (ADS)

    Chellaboina, VijaySekhar; Haddad, Wassim M.; Li, Hancao; Bailey, James M.

    2010-05-01

    Acute respiratory failure due to infection, trauma or major surgery is one of the most common problems encountered in intensive care units, and mechanical ventilation is the mainstay of supportive therapy for such patients. In this article, we develop a general mathematical model for the dynamic behaviour of a multi-compartment respiratory system in response to an arbitrary applied inspiratory pressure. Specifically, we use compartmental dynamical system theory and Poincaré maps to model and analyse the dynamics of a pressure-limited respirator and lung mechanics system, and show that the periodic orbit generated by this system is globally asymptotically stable. Furthermore, we show that the individual compartmental volumes, and hence the total lung volume, converge to steady-state end-inspiratory and end-expiratory values. Finally, we develop a model reference direct adaptive controller framework for the multi-compartmental model of a pressure-limited respirator and lung mechanics system where the plant and reference model involve switching and time-varying dynamics. We then apply the proposed adaptive feedback controller framework to stabilise a given limit cycle corresponding to a clinically plausible respiratory pattern.

  5. Effect of model selection on combustor performance and stability using ROCCID. [Rocket Combustor Interactive Design

    NASA Technical Reports Server (NTRS)

    Giuliani, James E.; Klem, Mark D.

    1992-01-01

    The ROCket Combustor Interactive Design (ROCCID) methodology is an interactive computer program that combines previously developed combustion analysis models to calculate the combustion performance and stability of liquid rocket engines. Test data from a 213 kN (48,000 lbf) Liquid Oxygen (LOX)/RP-1 combustor with a O-F-O (oxidizer-fuel-oxidizer) triplet injector were used to characterize the predictive capabilities of the ROCCID analysis models for this injector/propellant configuration. Thirteen combustion performance and stability models have been incorporated into ROCCID, and ten of them, which have options for triplet injectors, were examined in this study. Calculations using different combinations of analysis models, with little or no anchoring, were carried out on a test matrix of operating conditions matching those of the test program. Results of the computer analyses were compared to test data, and the ability of the model combinations to correctly predict combustion stability or instability was determined. For the best model combination(s), sensitivity of the calculations to fuel drop size and mixing efficiency was examined. Error in the stability calculations due to uncertainty in the pressure interaction index (N) was examined. The recommended model combinations for this O-F-O triplet LOX/RP-1 configuration are proposed.

  6. Effect of model selection on combustor performance and stability predictions using ROCCID

    NASA Technical Reports Server (NTRS)

    Giuliani, James E.; Klem, Mark D.

    1992-01-01

    The ROCket Combustor Interactive Design (ROCCID) methodology is an interactive computer program that combines previously developed combustion analysis models to calculate the combustion performance and stability of liquid rocket engines. Test data from 213 kN (48,000 lbf) Liquid Oxygen (LOX)/RP-1 combustor with an O-F-O (oxidizer-fuel-oxidizer) triplet injector were used to characterize the predictive capabilities of the ROCCID analysis models for this injector/propellant configuration. Thirteen combustion performance and stability models were incorporated into ROCCID, and ten of them, which have options for triplet injectors, were examined. Calculations using different combinations of analysis models, with little or no anchoring, were carried out on a test matrix of operating combinations matching those of the test program. Results of the computer analyses were compared to test data, and the ability of the model combinations to correctly predict combustion stability or instability was determined. For the best model combination(s), sensitivity of the calculations to fuel drop size and mixing efficiency was examined. Error in the stability calculations due to uncertainty in the pressure interaction index (N) was examined. The recommended model combinations for this O-F-O triplet LOX/RP-1 configuration are proposed.

  7. Stability and failure analysis of steering tie-rod

    NASA Astrophysics Data System (ADS)

    Jiang, GongFeng; Zhang, YiLiang; Xu, XueDong; Ding, DaWei

    2008-11-01

    A new car in operation of only 8,000 km, because of malfunction, resulting in lost control and rammed into the edge of the road, and then the basic vehicle scrapped. According to the investigation of the site, it was found that the tie-rod of the car had been broken. For the subjective analysis of the accident and identifying the true causes of rupture of the tierod, a series of studies, from the angle of theory to experiment on the bended broken tie-rod, were conducted. The mechanical model was established; the stability of the defective tie-rod was simulated based on ANSYS software. Meanwhile, the process of the accident was simulated considering the effect of destabilization of different vehicle speed and direction of the impact. Simultaneously, macro graphic test, chemical composition analysis, microstructure analysis and SEM analysis of the fracture were implemented. The results showed that: 1) the toughness of the tie-rod is at a normal level, but there is some previous flaws. One quarter of the fracture surface has been cracked before the accident. However, there is no relationship between the flaw and this incident. The direct cause is the dynamic instability leading to the large deformation of impact loading. 2) The declining safety factor of the tie-rod greatly due to the previous flaws; the result of numerical simulation shows that previous flaw is the vital factor of structure instability, on the basis of the comparison of critical loads of the accident tie-rod and normal. The critical load can decrease by 51.3% when the initial defect increases 19.54% on the cross-sectional area, which meets the Theory of Koiter.

  8. Stability analysis of the pulmonary liquid bilayer.

    NASA Astrophysics Data System (ADS)

    Halpern, David; Grotberg, James

    2010-11-01

    The lung consists of liquid-lined compliant airways that convey air to and from the alveoli where gas exchange takes place. Because the airways are coated with a bilayer consisting of a mucus layer on top of a periciliary fluid layer, a surface tension instability can generate flows within the bilayer and induce the formation of liquid plugs that block the passage of air. This is a problem for example with premature neonates whose lungs do not produce sufficient quantities of surfactant and suffer from respiratory distress syndrome. To study this instability a system of coupled nonlinear evolution equations are derived using lubrication theory for the thicknesses of the two liquid layers which are assumed to be Newtonian. A normal mode analysis is used to investigate the initial growth of the disturbances, and reveals how the grow rate is affected by the ratio of viscosities λ, film thicknesses η and surface tensions δ of the two layers which can change by disease. Numerical solutions of the evolution equations show that there is a critical bilayer thickness ɛc above which closure occurs, and that a more viscous and thicker layer compared to the periciliary layer closes more slowly. However, ɛcis weakly dependent on λ, η and δ. We also examine the potential impact of wall shear stress and normal stress on cell damage. This work is funded by NIH HL85156.

  9. Non-parallel linear stability analysis of unconfined vortices

    NASA Astrophysics Data System (ADS)

    Herrada, Miguel A.; Pérez-Saborid, Miguel; Barrero, Antonio

    2002-11-01

    A non-parallel, linear, stability analysis of a family of unconfined swirling jets is carried out by using parabolized stability equations (PSE). The basic solution of this vortex-jet core, which is obtained using the quasi-cylindrical approximation of the Navier-Stokes equations (Pérez-saborid et al. JFM 2002), shows the conditions under which the vortex evolution proceeds smoothly, reaching eventually an asymptotic self-similar behaviour as described in the literature (Fernández-Feria et al. JFM 1995), or breaks in a non-slender solution (vortex breakdown). Results of the stability analysis show that, for non-symmetric perturbations, all basic solutions are convectively unstable. On the other hand, we have found that vortices which break downstream become also convectively unstable for axi-symmetric perturbation just before the breakdown. The absence of absolute instabilities suggests the catastrophic nature of the vortex breakdown process.

  10. Optimal model of PDIG based microgrid and design of complementary stabilizer using ICA.

    PubMed

    Amini, R Mohammad; Safari, A; Ravadanegh, S Najafi

    2016-09-01

    The generalized Heffron-Phillips model (GHPM) for a microgrid containing a photovoltaic (PV)-diesel machine (DM)-induction motor (IM)-governor (GV) (PDIG) has been developed at the low voltage level. A GHPM is calculated by linearization method about a loading condition. An effective Maximum Power Point Tracking (MPPT) approach for PV network has been done using sliding mode control (SMC) to maximize output power. Additionally, to improve stability of microgrid for more penetration of renewable energy resources with nonlinear load, a complementary stabilizer has been presented. Imperialist competitive algorithm (ICA) is utilized to design of gains for the complementary stabilizer with the multiobjective function. The stability analysis of the PDIG system has been completed with eigenvalues analysis and nonlinear simulations. Robustness and validity of the proposed controllers on damping of electromechanical modes examine through time domain simulation under input mechanical torque disturbances.

  11. Stability of a Beddington-DeAngelis type predator-prey model with trichotomous noises

    NASA Astrophysics Data System (ADS)

    Jin, Yanfei; Niu, Siyong

    2016-06-01

    The stability analysis of a Beddington-DeAngelis (B-D) type predator-prey model driven by symmetric trichotomous noises is presented in this paper. Using the Shapiro-Loginov formula, the first-order and second-order solution moments of the system are obtained. The moment stability conditions of the B-D predator-prey model are given by using Routh-Hurwitz criterion. It is found that the stabilities of the first-order and second-order solution moments depend on the noise intensities and correlation time of noise. The first-order and second-order moments are stable when the correlation time of noise is increased. That is, the trichotomous noise plays a constructive role in stabilizing the solution moment with regard to Gaussian white noise. Finally, some numerical results are performed to support the theoretical analyses.

  12. Stability investigations of airfoil flow by global analysis

    NASA Technical Reports Server (NTRS)

    Morzynski, Marek; Thiele, Frank

    1992-01-01

    As the result of global, non-parallel flow stability analysis the single value of the disturbance growth-rate and respective frequency is obtained. This complex value characterizes the stability of the whole flow configuration and is not referred to any particular flow pattern. The global analysis assures that all the flow elements (wake, boundary and shear layer) are taken into account. The physical phenomena connected with the wake instability are properly reproduced by the global analysis. This enhances the investigations of instability of any 2-D flows, including ones in which the boundary layer instability effects are known to be of dominating importance. Assuming fully 2-D disturbance form, the global linear stability problem is formulated. The system of partial differential equations is solved for the eigenvalues and eigenvectors. The equations, written in the pure stream function formulation, are discretized via FDM using a curvilinear coordinate system. The complex eigenvalues and corresponding eigenvectors are evaluated by an iterative method. The investigations performed for various Reynolds numbers emphasize that the wake instability develops into the Karman vortex street. This phenomenon is shown to be connected with the first mode obtained from the non-parallel flow stability analysis. The higher modes are reflecting different physical phenomena as for example Tollmien-Schlichting waves, originating in the boundary layer and having the tendency to emerge as instabilities for the growing Reynolds number. The investigations are carried out for a circular cylinder, oblong ellipsis and airfoil. It is shown that the onset of the wake instability, the waves in the boundary layer, the shear layer instability are different solutions of the same eigenvalue problem, formulated using the non-parallel theory. The analysis offers large potential possibilities as the generalization of methods used till now for the stability analysis.

  13. The Challenge of Stability in High-Throughput Gene Expression Analysis: Comprehensive Selection and Evaluation of Reference Genes for BALB/c Mice Spleen Samples in the Leishmania infantum Infection Model

    PubMed Central

    Gonzalez-García, Ana C.; Quispe-Ricalde, M. Antonieta; Larraga, Vicente; Valladares, Basilio; Carmelo, Emma

    2016-01-01

    The interaction of Leishmania with BALB/c mice induces dramatic changes in transcriptome patterns in the parasite, but also in the target organs (spleen, liver…) due to its response against infection. Real-time quantitative PCR (qPCR) is an interesting approach to analyze these changes and understand the immunological pathways that lead to protection or progression of disease. However, qPCR results need to be normalized against one or more reference genes (RG) to correct for non-specific experimental variation. The development of technical platforms for high-throughput qPCR analysis, and powerful software for analysis of qPCR data, have acknowledged the problem that some reference genes widely used due to their known or suspected “housekeeping” roles, should be avoided due to high expression variability across different tissues or experimental conditions. In this paper we evaluated the stability of 112 genes using three different algorithms: geNorm, NormFinder and RefFinder in spleen samples from BALB/c mice under different experimental conditions (control and Leishmania infantum-infected mice). Despite minor discrepancies in the stability ranking shown by the three methods, most genes show very similar performance as RG (either good or poor) across this massive data set. Our results show that some of the genes traditionally used as RG in this model (i.e. B2m, Polr2a and Tbp) are clearly outperformed by others. In particular, the combination of Il2rg + Itgb2 was identified among the best scoring candidate RG for every group of mice and every algorithm used in this experimental model. Finally, we have demonstrated that using “traditional” vs rationally-selected RG for normalization of gene expression data may lead to loss of statistical significance of gene expression changes when using large-scale platforms, and therefore misinterpretation of results. Taken together, our results highlight the need for a comprehensive, high-throughput search for the most

  14. The Challenge of Stability in High-Throughput Gene Expression Analysis: Comprehensive Selection and Evaluation of Reference Genes for BALB/c Mice Spleen Samples in the Leishmania infantum Infection Model.

    PubMed

    Hernandez-Santana, Yasmina E; Ontoria, Eduardo; Gonzalez-García, Ana C; Quispe-Ricalde, M Antonieta; Larraga, Vicente; Valladares, Basilio; Carmelo, Emma

    The interaction of Leishmania with BALB/c mice induces dramatic changes in transcriptome patterns in the parasite, but also in the target organs (spleen, liver…) due to its response against infection. Real-time quantitative PCR (qPCR) is an interesting approach to analyze these changes and understand the immunological pathways that lead to protection or progression of disease. However, qPCR results need to be normalized against one or more reference genes (RG) to correct for non-specific experimental variation. The development of technical platforms for high-throughput qPCR analysis, and powerful software for analysis of qPCR data, have acknowledged the problem that some reference genes widely used due to their known or suspected "housekeeping" roles, should be avoided due to high expression variability across different tissues or experimental conditions. In this paper we evaluated the stability of 112 genes using three different algorithms: geNorm, NormFinder and RefFinder in spleen samples from BALB/c mice under different experimental conditions (control and Leishmania infantum-infected mice). Despite minor discrepancies in the stability ranking shown by the three methods, most genes show very similar performance as RG (either good or poor) across this massive data set. Our results show that some of the genes traditionally used as RG in this model (i.e. B2m, Polr2a and Tbp) are clearly outperformed by others. In particular, the combination of Il2rg + Itgb2 was identified among the best scoring candidate RG for every group of mice and every algorithm used in this experimental model. Finally, we have demonstrated that using "traditional" vs rationally-selected RG for normalization of gene expression data may lead to loss of statistical significance of gene expression changes when using large-scale platforms, and therefore misinterpretation of results. Taken together, our results highlight the need for a comprehensive, high-throughput search for the most stable

  15. Linear modal stability analysis of bowed-strings.

    PubMed

    Debut, V; Antunes, J; Inácio, O

    2017-03-01

    Linearised models are often invoked as a starting point to study complex dynamical systems. Besides their attractive mathematical simplicity, they have a central role for determining the stability properties of static or dynamical states, and can often shed light on the influence of the control parameters on the system dynamical behaviour. While the bowed string dynamics has been thoroughly studied from a number of points of view, mainly by time-domain computer simulations, this paper proposes to explore its dynamical behaviour adopting a linear framework, linearising the friction force near an equilibrium state in steady sliding conditions, and using a modal representation of the string dynamics. Starting from the simplest idealisation of the friction force given by Coulomb's law with a velocity-dependent friction coefficient, the linearised modal equations of the bowed string are presented, and the dynamical changes of the system as a function of the bowing parameters are studied using linear stability analysis. From the computed complex eigenvalues and eigenvectors, several plots of the evolution of the modal frequencies, damping values, and modeshapes with the bowing parameters are produced, as well as stability charts for each system mode. By systematically exploring the influence of the parameters, this approach appears as a preliminary numerical characterisation of the bifurcations of the bowed string dynamics, with the advantage of being very simple compared to sophisticated numerical approaches which demand the regularisation of the nonlinear interaction force. To fix the idea about the potential of the proposed approach, the classic one-degree-of-freedom friction-excited oscillator is first considered, and then the case of the bowed string. Even if the actual stick-slip behaviour is rather far from the linear description adopted here, the results show that essential musical features of bowed string vibrations can be interpreted from this simple approach

  16. Bank stability analysis for fluvial erosion and mass failure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The central objective of this study was to highlight the differences in magnitude between mechanical and fluvial streambank erosional strength with the purpose of developing a more comprehensive bank stability analysis. Mechanical erosion and ultimately failure signifies the general movement or coll...

  17. Stability analysis of dissolution-driven convection in porous media

    NASA Astrophysics Data System (ADS)

    Emami-Meybodi, Hamid

    2017-01-01

    We study the stability of dissolution-driven convection in the presence of a capillary transition zone and hydrodynamic dispersion in a saturated anisotropic porous medium, where the solute concentration is assumed to decay via a first-order chemical reaction. While the reaction enhances stability by consuming the solute, porous media anisotropy, hydrodynamic dispersion, and capillary transition zone destabilize the diffusive boundary layer that is unstably formed in a gravitational field. We perform linear stability analysis, based on the quasi-steady-state approximation, to assess critical times, critical wavenumbers, and neutral stability curves as a function of anisotropy ratio, dispersivity ratio, dispersion strength, material parameter, Bond number, Damköhler number, and Rayleigh number. The results show that the diffusive boundary layer becomes unstable in anisotropic porous media where both the capillary transition zone and dispersion are considered, even if the geochemical reaction is significantly large. Using direct numerical simulations, based on the finite difference method, we study the nonlinear dynamics of the system by examining dissolution flux, interaction of convective fingers, and flow topology. The results of nonlinear simulations confirm the predictions from the linear stability analysis and reveal that the fingering pattern is significantly influenced by combined effects of reaction, anisotropy, dispersion, and capillarity. Finally, we draw conclusions on implications of our results on carbon dioxide sequestration in deep saline aquifers.

  18. Stability Modeling of DIII-D Discharges with Transport Barriers

    NASA Astrophysics Data System (ADS)

    Lao, L. L.; Ferron, J. R.; Lin-Liu, Y. R.; Strait, E. J.; Turnbull, A. D.; Taylor, T. S.; Murakami, M.

    1999-11-01

    The stability of DIII--D discharges with transport barriers is systematically studied by modeling the pressure profiles using a hyperbolic tangent representation with various radii, widths, and amplitudes. The q profiles are modeled using a spline representation with varying q(0), q_min, and ρ_q_min. The equilibria are computed using the EFIT and the TOQ codes based on the parameters from a strongly shaped high triangurality DIII--D long pulse high performance discharge. Stability against the ideal low n=1 and 2 modes is evaluated using the GATO code with a conducting wall at 1.5 a. The results show that the stability improves with increasing transport barrier width and radius but varies weakly with q(0). When the transport barriers are L--mode like and have narrow widths in the plasma core, the stability is limited by the n=1 mode. When they are H--mode like and have large widths extending toward the edge, the stability is limited by the n=2 mode.

  19. On the stability of steady states in a granuloma model

    NASA Astrophysics Data System (ADS)

    Friedman, Avner; Lam, King-Yeung

    We consider a free boundary problem for a system of two semilinear parabolic equations. The system represents a simple model of granuloma, a collection of immune cells and bacteria filling a 3-dimensional domain Ω(t) which varies in time. We prove the existence of stationary spherical solutions and study their linear asymptotic stability as time increases to infinity.

  20. Structure and Stability of Steady Protostellar Accretion Flows - Part Two - Linear Stability Analysis

    NASA Astrophysics Data System (ADS)

    Balluch, M.

    1991-03-01

    Recent developments concerning spherically symmetric (1D-) numerical models of protostellar evolution show that steady protostellar accretion flows (resp. their shockfronts) may be unstable at least in the very early (Tscharnuter 1987a) and late stages (Balluch 1988) of accretion. A global, linear stability analysis of the structure of steady protostellar accretion flows with a shock discontinuity (Balluch 1990) is therefore presented to investigate such flows by different methods. Thereby three characteristic wave types, the radiation-, radiation diffusion- and acoustic modes were found. In the `ideal case' of a perfect gas law and constant opacity, the shockfront appears to be oscillatory unstable due to critical cooling as long as the mass flux rate is larger than a critical one of Mṡcrit = 10-6 Msun yr-1. In the `real case' with more realistic constitutive relations, an additional vibrational instability occurs due to the κ-mechanism in the outer layers of the core. This is shown to be the case in the whole range of core masses between 0.01 and 1 Msun, mass flow rates between 10-3 and 10-7 Msun yr-1 and different outer boundary conditions (corresponding to different states of the surrounding interstellar cloud). Analysing the first, outer protostellar cores before they get dynamically unstable due to H2-dissociation in their interiors, similar instabilities as mentioned above were found. Now the unstable κ-behaviour is due to dust instead of the deep ionisation zone as in the case of second, inner cores. According to the linear analysis, the instabilities should first appear in the velocity and the radiation flux in the settling zone. In the case of first, outer cores, these variations should be accompanied by an oscillation of the radiation flux in the region upstream from the shock up to r = 1014 cm. Sooner or later, the shockfront should oscillate in both cases too. These results are finally compared with the characteristics of the accretion shock

  1. ABDOMINAL MUSCLE ACTIVATION INCREASES LUMBAR SPINAL STABILITY: ANALYSIS OF CONTRIBUTIONS OF DIFFERENT MUSCLE GROUPS

    PubMed Central

    Stokes, Ian A.F.; Gardner-Morse, Mack G.; Henry, Sharon M.

    2011-01-01

    Background Antagonistic activation of abdominal muscles and raised intra-abdominal pressure are associated with both spinal unloading and spinal stabilization. Rehabilitation regimens have been proposed to improve spinal stability via selective recruitment of certain trunk muscle groups. This biomechanical study used an analytical model to address whether lumbar spinal stability is increased by selective activation of abdominal muscles. Methods The biomechanical model included anatomically realistic three-layers of curved abdominal musculature connected by fascia, rectus abdominis and 77 symmetrical pairs of dorsal muscles. The muscle activations were calculated with the model loaded with either flexion, extension, lateral bending or axial rotation moments up to 60 Nm, along with intra-abdominal pressure up to 5 or 10 kPa (37.5 or 75 mm Hg) and partial bodyweight. After solving for muscle forces, a buckling analysis quantified spinal stability. Subsequently, different patterns of muscle activation were studied by forcing activation of selected abdominal muscles to at least 10% or 20% of maximum. Findings The spinal stability increased by an average factor of 1.8 with doubling of intra-abdominal pressure. Forced activation of obliques or transversus abdominis muscles to at least 10% of maximum increased stability slightly for efforts other than flexion, but forcing at least 20% activation generally did not produce further increase in stability. Forced activation of rectus abdominis did not increase stability. Interpretation Based on predictions from an analytical spinal buckling model, the degree of stability was not substantially influenced by selective forcing of muscle activation. This casts doubt on the supposed mechanism of action of specific abdominal muscle exercise regimens that have been proposed for low back pain rehabilitation. PMID:21571410

  2. Sparsity Is Better with Stability: Combining Accuracy and Stability for Model Selection in Brain Decoding

    PubMed Central

    Baldassarre, Luca; Pontil, Massimiliano; Mourão-Miranda, Janaina

    2017-01-01

    Structured sparse methods have received significant attention in neuroimaging. These methods allow the incorporation of domain knowledge through additional spatial and temporal constraints in the predictive model and carry the promise of being more interpretable than non-structured sparse methods, such as LASSO or Elastic Net methods. However, although sparsity has often been advocated as leading to more interpretable models it can also lead to unstable models under subsampling or slight changes of the experimental conditions. In the present work we investigate the impact of using stability/reproducibility as an additional model selection criterion1 on several different sparse (and structured sparse) methods that have been recently applied for fMRI brain decoding. We compare three different model selection criteria: (i) classification accuracy alone; (ii) classification accuracy and overlap between the solutions; (iii) classification accuracy and correlation between the solutions. The methods we consider include LASSO, Elastic Net, Total Variation, sparse Total Variation, Laplacian and Graph Laplacian Elastic Net (GraphNET). Our results show that explicitly accounting for stability/reproducibility during the model optimization can mitigate some of the instability inherent in sparse methods. In particular, using accuracy and overlap between the solutions as a joint optimization criterion can lead to solutions that are more similar in terms of accuracy, sparsity levels and coefficient maps even when different sparsity methods are considered. PMID:28261042

  3. A Three-Dimensional Unsteady CFD Model of Compressor Stability

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    2006-01-01

    A three-dimensional unsteady CFD code called CSTALL has been developed and used to investigate compressor stability. The code solved the Euler equations through the entire annulus and all blade rows. Blade row turning, losses, and deviation were modeled using body force terms which required input data at stations between blade rows. The input data was calculated using a separate Navier-Stokes turbomachinery analysis code run at one operating point near stall, and was scaled to other operating points using overall characteristic maps. No information about the stalled characteristic was used. CSTALL was run in a 2-D throughflow mode for very fast calculations of operating maps and estimation of stall points. Calculated pressure ratio characteristics for NASA stage 35 agreed well with experimental data, and results with inlet radial distortion showed the expected loss of range. CSTALL was also run in a 3-D mode to investigate inlet circumferential distortion. Calculated operating maps for stage 35 with 120 degree distortion screens showed a loss in range and pressure rise. Unsteady calculations showed rotating stall with two part-span stall cells. The paper describes the body force formulation in detail, examines the computed results, and concludes with observations about the code.

  4. Fluid Dynamic and Stability Analysis of a Thin Liquid Sheet

    NASA Technical Reports Server (NTRS)

    McMaster, Matthew S.

    1992-01-01

    Interest in thin sheet flows has recently been renewed due to their potential application in space radiators. Theoretical and experimental studies of the fluid dynamics and stability of thin liquid sheet flows have been carried out in this thesis. A computer program was developed to determine the cross-sectional shape of the edge cylinder given the cross-sectional area of the edge cylinder. A stability analysis was performed on a non-planer liquid sheet. A study was conducted to determine the effects of air resistance on the sheet.

  5. Enhancing OPC model stability and predictability using SEM image contours

    NASA Astrophysics Data System (ADS)

    Habib, Mohamed Serag El-Din

    2008-10-01

    The process model is a major factor affecting the quality of the Model Based Optical Proximity Correction (OPC). Better process model directly leads to better OPC, hence better yield and more profit. While the traditional way in calibrating these process models is using CD measurements at sample locations in the test chip, however, the use of Scanning Electron Microscope (SEM) image contours for process model calibration and optimization has been recently introduced in trial to build more predictable models. In this study, we characterize the traditional flow models versus the contour calibrated models and study the effect of using different combinations and weighting schemes on the quality of the resulting process models, its stability and its ability to correctly predict the process.

  6. Stabilization of telomeres in nonlinear models of proliferating cell lines.

    PubMed

    Dyson, Janet; Sánchez, Eva; Villella-Bressan, Rosanna; Webb, Glenn F

    2007-02-07

    We analyse an age-structured model of telomere loss in a proliferating cell population. The cell population is divided into telomere classes, which shorten each round of division. The model consists of a nonlinear system of partial differential equations for the telomere classes. We prove that if the highest telomere class is exempted from mortality, then all the classes stabilize to a nontrivial equilibrium dependent on the initial state of cells in the highest telomere class.

  7. Constraint on Seesaw Model Parameters with Electroweak Vacuum Stability

    NASA Astrophysics Data System (ADS)

    Okane, H.; Morozumi, T.

    2017-03-01

    Within the standard model, the electroweak vacuum is metastable. We study how heavy right-handed neutrinos in seesaw model have impact on the stability through their loop effect for the Higgs potential. Requiring the lifetime of the electroweak vacuum is longer than the age of the Universe, the constraint on parameters such as their masses and the strength of the Yukawa couplings is obtained.

  8. Estimation of dynamic stability parameters from drop model flight tests

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Iliff, K. W.

    1981-01-01

    The overall remotely piloted drop model operation, descriptions, instrumentation, launch and recovery operations, piloting concept, and parameter identification methods are discussed. Static and dynamic stability derivatives were obtained for an angle attack range from -20 deg to 53 deg. It is indicated that the variations of the estimates with angle of attack are consistent for most of the static derivatives, and the effects of configuration modifications to the model were apparent in the static derivative estimates.

  9. The beauty of simple adaptive control and new developments in nonlinear systems stability analysis

    SciTech Connect

    Barkana, Itzhak

    2014-12-10

    Although various adaptive control techniques have been around for a long time and in spite of successful proofs of stability and even successful demonstrations of performance, the eventual use of adaptive control methodologies in practical real world systems has met a rather strong resistance from practitioners and has remained limited. Apparently, it is difficult to guarantee or even understand the conditions that can guarantee stable operations of adaptive control systems under realistic operational environments. Besides, it is difficult to measure the robustness of adaptive control system stability and allow it to be compared with the common and widely used measure of phase margin and gain margin that is utilized by present, mainly LTI, controllers. Furthermore, customary stability analysis methods seem to imply that the mere stability of adaptive systems may be adversely affected by any tiny deviation from the pretty idealistic and assumably required stability conditions. This paper first revisits the fundamental qualities of customary direct adaptive control methodologies, in particular the classical Model Reference Adaptive Control, and shows that some of their basic drawbacks have been addressed and eliminated within the so-called Simple Adaptive Control methodology. Moreover, recent developments in the stability analysis methods of nonlinear systems show that prior conditions that were customarily assumed to be needed for stability are only apparent and can be eliminated. As a result, sufficient conditions that guarantee stability are clearly stated and lead to similarly clear proofs of stability. As many real-world applications show, once robust stability of the adaptive systems can be guaranteed, the added value of using Add-On Adaptive Control along with classical Control design techniques is pushing the desired performance beyond any previous limits.

  10. The beauty of simple adaptive control and new developments in nonlinear systems stability analysis

    NASA Astrophysics Data System (ADS)

    Barkana, Itzhak

    2014-12-01

    Although various adaptive control techniques have been around for a long time and in spite of successful proofs of stability and even successful demonstrations of performance, the eventual use of adaptive control methodologies in practical real world systems has met a rather strong resistance from practitioners and has remained limited. Apparently, it is difficult to guarantee or even understand the conditions that can guarantee stable operations of adaptive control systems under realistic operational environments. Besides, it is difficult to measure the robustness of adaptive control system stability and allow it to be compared with the common and widely used measure of phase margin and gain margin that is utilized by present, mainly LTI, controllers. Furthermore, customary stability analysis methods seem to imply that the mere stability of adaptive systems may be adversely affected by any tiny deviation from the pretty idealistic and assumably required stability conditions. This paper first revisits the fundamental qualities of customary direct adaptive control methodologies, in particular the classical Model Reference Adaptive Control, and shows that some of their basic drawbacks have been addressed and eliminated within the so-called Simple Adaptive Control methodology. Moreover, recent developments in the stability analysis methods of nonlinear systems show that prior conditions that were customarily assumed to be needed for stability are only apparent and can be eliminated. As a result, sufficient conditions that guarantee stability are clearly stated and lead to similarly clear proofs of stability. As many real-world applications show, once robust stability of the adaptive systems can be guaranteed, the added value of using Add-On Adaptive Control along with classical Control design techniques is pushing the desired performance beyond any previous limits.

  11. Stability analysis of magnetized neutron stars - a semi-analytic approach

    NASA Astrophysics Data System (ADS)

    Herbrik, Marlene; Kokkotas, Kostas D.

    2017-04-01

    We implement a semi-analytic approach for stability analysis, addressing the ongoing uncertainty about stability and structure of neutron star magnetic fields. Applying the energy variational principle, a model system is displaced from its equilibrium state. The related energy density variation is set up analytically, whereas its volume integration is carried out numerically. This facilitates the consideration of more realistic neutron star characteristics within the model compared to analytical treatments. At the same time, our method retains the possibility to yield general information about neutron star magnetic field and composition structures that are likely to be stable. In contrast to numerical studies, classes of parametrized systems can be studied at once, finally constraining realistic configurations for interior neutron star magnetic fields. We apply the stability analysis scheme on polytropic and non-barotropic neutron stars with toroidal, poloidal and mixed fields testing their stability in a Newtonian framework. Furthermore, we provide the analytical scheme for dropping the Cowling approximation in an axisymmetric system and investigate its impact. Our results confirm the instability of simple magnetized neutron star models as well as a stabilization tendency in the case of mixed fields and stratification. These findings agree with analytical studies whose spectrum of model systems we extend by lifting former simplifications.

  12. A MIMO periodic ARX identification algorithm for the Floquet stability analysis of wind turbines

    NASA Astrophysics Data System (ADS)

    Riva, R.; Cacciola, S.; Bottasso, C. L.

    2016-09-01

    The paper presents a new stability analysis approach applicable to wind turbines. At first, a reduced order periodic model is identified from response time histories, and then stability is assessed using Floquet theory. The innovation of the proposed approach is in the ability of the algorithm to simultaneously consider multiple response time histories, for example in the form of measurements recorded both on the rotor and in the stand still system. As each different measurement carries a different informational content on the system, the simultaneous use of all available signals improves the quality and robustness of the analysis.

  13. Theoretical modelling of the feedback stabilization of external MHD modes in toroidal geometry

    NASA Astrophysics Data System (ADS)

    Chance, M. S.; Chu, M. S.; Okabayashi, M.; Turnbull, A. D.

    2002-03-01

    A theoretical framework for understanding the feedback mechanism for stabilization of external MHD modes has been formulated. Efficient computational tools - the GATO stability code coupled with a substantially modified VACUUM code - have been developed to effectively design viable feedback systems against these modes. The analysis assumed a thin resistive shell and a feedback coil structure accurately modelled in θ and phi, albeit with only a single harmonic variation in phi. Time constants and induced currents in the enclosing resistive shell are calculated. An optimized configuration based on an idealized model has been computed for the DIII-D device. Up to 90% of the effectiveness of an ideal wall can be achieved.

  14. Analysis of a stability valve system for extending the dynamic range of a supersonic inlet

    NASA Technical Reports Server (NTRS)

    Webb, J. A., Jr.; Dustin, M. O.

    1975-01-01

    A stability valve system designed for a full-scale, flight, supersonic, mixed-compression inlet was modeled dynamically by using analog computer techniques. The system uses poppet valves mounted in the inlet cowl to bypass airflow and augments the inlet shock position control system by preventing unstarts caused by high-frequency perturbations. The model was used as a design aid to investigate the effects of varying both the physical configurations of the valve and the flight and wind tunnel conditions. Results of the analysis indicate that the stability valve will provide a bandpass operation of 1 hertz to 17 hertz.

  15. Dynamic remedial action scheme using online transient stability analysis

    NASA Astrophysics Data System (ADS)

    Shrestha, Arun

    Economic pressure and environmental factors have forced the modern power systems to operate closer to their stability limits. However, maintaining transient stability is a fundamental requirement for the operation of interconnected power systems. In North America, power systems are planned and operated to withstand the loss of any single or multiple elements without violating North American Electric Reliability Corporation (NERC) system performance criteria. For a contingency resulting in the loss of multiple elements (Category C), emergency transient stability controls may be necessary to stabilize the power system. Emergency control is designed to sense abnormal conditions and subsequently take pre-determined remedial actions to prevent instability. Commonly known as either Remedial Action Schemes (RAS) or as Special/System Protection Schemes (SPS), these emergency control approaches have been extensively adopted by utilities. RAS are designed to address specific problems, e.g. to increase power transfer, to provide reactive support, to address generator instability, to limit thermal overloads, etc. Possible remedial actions include generator tripping, load shedding, capacitor and reactor switching, static VAR control, etc. Among various RAS types, generation shedding is the most effective and widely used emergency control means for maintaining system stability. In this dissertation, an optimal power flow (OPF)-based generation-shedding RAS is proposed. This scheme uses online transient stability calculation and generator cost function to determine appropriate remedial actions. For transient stability calculation, SIngle Machine Equivalent (SIME) technique is used, which reduces the multimachine power system model to a One-Machine Infinite Bus (OMIB) equivalent and identifies critical machines. Unlike conventional RAS, which are designed using offline simulations, online stability calculations make the proposed RAS dynamic and adapting to any power system

  16. Higgs-radion phenomenology in stabilized RS models

    NASA Astrophysics Data System (ADS)

    Boos, Eduard; Bunichev, Viacheslav; Keizerov, Sergey; Perfilov, Maxim; Rakhmetov, Eduard; Smolyakov, Mikhail; Svirina, Kseniia; Volobuev, Igor

    2016-10-01

    An important general prediction of stabilized brane world models is the existence of a bulk scalar radion field, whose lowest Kaluza-Klein (KK) mode is the scalar particle called the radion. This field comes from the fluctuations of the metric in the extra dimension and the radion mass can be smaller than that of all the massive KK modes of the other particles propagating in the multidimensional bulk. Due to its origin, the radion and its KK tower couple to the trace of the energy-momentum tensor of the Standard Model. These fields have the same quantum numbers as the neutral Higgs field and can mix with the latter, if they are coupled. We present a short review of some aspects of Higgs-radion phenomenology in stabilized brane-world models. In particular, we discuss the possibility of explaining the 750 GeV excess by the production of a radion-dominated state.

  17. The Stability of Radiatively Cooling Jets I. Linear Analysis

    NASA Technical Reports Server (NTRS)

    Hardee, Philip E.; Stone, James M.

    1997-01-01

    The results of a spatial stability analysis of a two-dimensional slab jet, in which optically thin radiative cooling is dynamically important, are presented. We study both magnetized and unmagnetized jets at external Mach numbers of 5 and 20. We model the cooling rate by using two different cooling curves: one appropriate to interstellar gas, and the other to photoionized gas of reduced metallicity. Thus, our results will be applicable to both protostellar (Herbig-Haro) jets and optical jets from active galactic nuclei. We present analytical solutions to the dispersion relations in useful limits and solve the dispersion relations numerically over a broad range of perturbation frequencies. We find that the growth rates and wavelengths of the unstable Kelvin-Helmholtz (K-H) modes are significantly different from the adiabatic limit, and that the form of the cooling function strongly affects the results. In particular, if the cooling curve is a steep function of temperature in the neighborhood of the equilibrium state, then the growth of K-H modes is reduced relative to the adiabatic jet. On the other hand, if the cooling curve is a shallow function of temperature, then the growth of K-H modes can be enhanced relative to the adiabatic jet by the increase in cooling relative to heating in overdense regions. Inclusion of a dynamically important magnetic field does not strongly modify the important differences between an adiabatic jet and a cooling jet, provided the jet is highly supermagnetosonic and not magnetic pressure-dominated. In the latter case, the unstable modes behave more like the transmagnetosonic magnetic pressure-dominated adiabatic limit. We also plot fluid displacement surfaces associated with the various waves in a cooling jet in order to predict the structures that might arise in the nonlinear regime. This analysis predicts that low-frequency surface waves and the lowest order body modes will be the most effective at producing observable features in

  18. Spatio-temporal Linear Stability Analysis of Multiple Reacting Wakes

    NASA Astrophysics Data System (ADS)

    Kunnumpuram Sebastian, Jacob; Emerson, Benjamin; Lieuwen, Tim

    2016-11-01

    Hydrodynamic stability of reacting shear flows plays a key role in controlling a variety of combustor behaviors, such as combustion instability, mixing and entrainment, and blowoff. A significant literature exists on the hydrodynamics of single bluff body flows, but not the multi-bluff body flows that are found in applications. The objective of this work was to compare the spatio-temporal stability of multiple reacting wakes and single reacting wakes, within the framework of linear stability theory. Spatio-temporal stability analyses are conducted on model velocity and density profiles, with key parameters being the density ratio across the flame, bluff body spacing, dimensionless shear, and asymmetry parameters (if the two wakes are dissimilar). The introduction of the additional bluff body can exert both a stabilizing and destabilizing effect on the combined two-wake system, depending on the spatial separation between the bluff bodies. Furthermore, while the most rapidly amplified mode of the single wake mode is the sinuous (asymmetric) one, in the two wake system, the most rapidly amplified mode can be either sinuous or varicose (symmetric), also depending on spatial separation.

  19. The Stability of Social Desirability: A Latent Change Analysis.

    PubMed

    Haberecht, Katja; Schnuerer, Inga; Gaertner, Beate; John, Ulrich; Freyer-Adam, Jennis

    2015-08-01

    Social desirability has been shown to be stable in samples with higher school education. However, little is known about the stability of social desirability in more heterogeneous samples differing in school education. This study aimed to investigate the stability of social desirability and which factors predict interindividual differences in intraindividual change. As part of a randomized controlled trial, 1,243 job seekers with unhealthy alcohol use were systematically recruited at three job agencies. A total of 1,094 individuals (87.8%) participated in at least one of two follow-ups (6 and 15 months after baseline) and constitute this study's sample. The Social Desirability Scale-17 was applied. Two latent change models were conducted: Model 1 tested for interindividual differences in intraindividual change of social desirability between both follow-ups; Model 2 included possible predictors (age, sex, education, current employment status) of interindividual differences in intraindividual change. Model 1 revealed a significant decrease of social desirability over time. Model 2 revealed school education to be the only significant predictor of change. These findings indicate that stability of social desirability may depend on school education. It may not be as stable in individuals with higher school education as in individuals with lower education.

  20. Slope Stability Analysis of Mountain Pine Beetle Impacted Areas

    NASA Astrophysics Data System (ADS)

    Bogenschuetz, N. M.; Bearup, L. A.; Maxwell, R. M.; Santi, P. M.

    2015-12-01

    The mountain pine beetle (MPB), Dendroctonus ponderosae, has caused significant tree mortality within North America. Specifically, the MPB affects ponderosa pine and lodgepole pine forests within the Rocky Mountains with approximately 3.4 million acres of forest impacted over the past 20 years. The full impacts of such unprecedented tree mortality on hydrology and slope stability is not well understood. This work studies the affects of MPB infestation on slope instability. A large-scale statistical analysis of MPB and slope stability is combined with a more in-depth analysis of the factors that contribute to slope stability. These factors include: slope aspect, slope angle, root decay, regrowth and hydrologic properties, such as water table depth and soil moisture. Preliminary results show that MPB may affect a greater number of north- and east-facing slopes. This is in accordance with more water availability and a higher MPB impacted tree density on north-facing slopes which, in turn, could potentially increase the probability of slope failure. Root strength is predicted to decrease as the roots stop transpiring 3-4 years proceeding infestation. However, this effect on the hillslope is likely being counterbalanced by the regrowth of grasses, forbs, shrubs, and trees. In addition, the increase in water table height from the lack of transpiring trees is adding a driving force to the slopes. The combination of all these factors will be used in order to assess the effects of MPB tree mortality on slope stability.

  1. Bounded Linear Stability Analysis - A Time Delay Margin Estimation Approach for Adaptive Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ishihara, Abraham K.; Krishnakumar, Kalmanje Srinlvas; Bakhtiari-Nejad, Maryam

    2009-01-01

    This paper presents a method for estimating time delay margin for model-reference adaptive control of systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent the conventional model-reference adaptive law by a locally bounded linear approximation within a small time window using the comparison lemma. The locally bounded linear approximation of the combined adaptive system is cast in a form of an input-time-delay differential equation over a small time window. The time delay margin of this system represents a local stability measure and is computed analytically by a matrix measure method, which provides a simple analytical technique for estimating an upper bound of time delay margin. Based on simulation results for a scalar model-reference adaptive control system, both the bounded linear stability method and the matrix measure method are seen to provide a reasonably accurate and yet not too conservative time delay margin estimation.

  2. Anisotropic stress and stability in modified gravity models

    SciTech Connect

    Saltas, Ippocratis D.; Kunz, Martin

    2011-03-15

    The existence of anisotropic stress of a purely geometrical origin seems to be a characteristic of higher order gravity models, and has been suggested as a probe to test these models observationally, for example, in weak lensing experiments. In this paper, we seek to find a class of higher order gravity models of f(R,G) type that would give us a zero anisotropic stress and study the consequences for the viability of the actual model. For the special case of a de Sitter background, we identify a subclass of models with the desired property. We also find a direct link between anisotropic stress and the stability of the model as well as the presence of extra degrees of freedom, which seems to be a general feature of higher order gravity models. Particularly, setting the anisotropic stress equal to zero for a de Sitter background leads to a singularity that makes it impossible to reach the de Sitter evolution.

  3. Energy Stability of Thermocapillary Convection in Models of the Float Zone Process

    NASA Technical Reports Server (NTRS)

    Neitzel, G. P.; Jankowski, D. F.

    1985-01-01

    The energy-stability of thermocapillary convection in models of the float-zone, crystal-growing process was studied. Stability limits, as functions of pertinent parameters, that will identify conditions which will not allow the existence of an undesirable oscillatory flow instability were determined. Such instabilities may occur in the space processing of semiconductor materials. The determination of the stability limits will involve two sets of numerical computations: (1) solution of the nonlinear governing equations together with the appropriate boundary conditions to determine the basic state (in general, velocity, pressure and temperature fields and the displacement of free surfaces and interfaces); and (2) solution of a nonlinear Euler-Lagrange systems for the energy-stability limit. Both computations, while difficult, should be within the scope of available computer capability and available concepts in numerical analysis. Finite-element methods are attractive candidates for the numerical work.

  4. Preliminary hazards analysis of thermal scrap stabilization system. Revision 1

    SciTech Connect

    Lewis, W.S.

    1994-08-23

    This preliminary analysis examined the HA-21I glovebox and its supporting systems for potential process hazards. Upon further analysis, the thermal stabilization system has been installed in gloveboxes HC-21A and HC-21C. The use of HC-21C and HC-21A simplified the initial safety analysis. In addition, these gloveboxes were cleaner and required less modification for operation than glovebox HA-21I. While this document refers to glovebox HA-21I for the hazards analysis performed, glovebox HC-21C is sufficiently similar that the following analysis is also valid for HC-21C. This hazards analysis document is being re-released as revision 1 to include the updated flowsheet document (Appendix C) and the updated design basis (Appendix D). The revised Process Flow Schematic has also been included (Appendix E). This Current revision incorporates the recommendations provided from the original hazards analysis as well. The System Design Description (SDD) has also been appended (Appendix H) to document the bases for Safety Classification of thermal stabilization equipment.

  5. Dynamical behavior and Jacobi stability analysis of wound strings

    NASA Astrophysics Data System (ADS)

    Lake, Matthew J.; Harko, Tiberiu

    2016-06-01

    We numerically solve the equations of motion (EOM) for two models of circular cosmic string loops with windings in a simply connected internal space. Since the windings cannot be topologically stabilized, stability must be achieved (if at all) dynamically. As toy models for realistic compactifications, we consider windings on a small section of mathbb {R}^2, which is valid as an approximation to any simply connected internal manifold if the winding radius is sufficiently small, and windings on an S^2 of constant radius mathcal {R}. We then use Kosambi-Cartan-Chern (KCC) theory to analyze the Jacobi stability of the string equations and determine bounds on the physical parameters that ensure dynamical stability of the windings. We find that, for the same initial conditions, the curvature and topology of the internal space have nontrivial effects on the microscopic behavior of the string in the higher dimensions, but that the macroscopic behavior is remarkably insensitive to the details of the motion in the compact space. This suggests that higher-dimensional signatures may be extremely difficult to detect in the effective (3+1)-dimensional dynamics of strings compactified on an internal space, even if configurations with nontrivial windings persist over long time periods.

  6. Stability analysis of agegraphic dark energy in Brans-Dicke cosmology

    NASA Astrophysics Data System (ADS)

    Farajollahi, H.; Sadeghi, J.; Pourali, M.; Salehi, A.

    2012-05-01

    Stability analysis of agegraphic dark energy in Brans-Dicke theory is presented in this paper. We constrain the model parameters with the observational data and thus the results become broadly consistent with those expected from experiment. Stability analysis of the model without best fitting shows that universe may begin from an unstable state passing a saddle point and finally become stable in future. However, with the best fitted model, There is no saddle intermediate state. The agegraphic dark energy in the model by itself exhibits a phantom behavior. However, contribution of cold dark matter on the effective energy density modifies the state of the universe from phantom phase to quintessence one. The statefinder diagnosis also indicates that the universe leaves an unstable state in the past, passes the LCDM state and finally approaches the sable state in future.

  7. Global stability of Gompertz model of three competing populations

    NASA Astrophysics Data System (ADS)

    Yu, Yumei; Wang, Wendi; Lu, Zhengyi

    2007-10-01

    The model of three competitive populations with Gompertz growth is studied. The periodic solutions are ruled out by generalized Dulac criteria. On the basis of the analysis, we obtain conditions that ensure the asymptotic behavior of the model is simple.

  8. Stability analysis of fixed points via chaos control.

    PubMed

    Locher, M.; Johnson, G. A.; Hunt, E. R.

    1997-12-01

    This paper reviews recent advances in the application of chaos control techniques to the stability analysis of two-dimensional dynamical systems. We demonstrate how the system's response to one or multiple feedback controllers can be utilized to calculate the characteristic multipliers associated with an unstable periodic orbit. The experimental results, obtained for a single and two coupled diode resonators, agree well with the presented theory. (c) 1997 American Institute of Physics.

  9. Theoretical Innovations in Combustion Stability Research: Integrated Analysis and Computation

    DTIC Science & Technology

    2011-04-14

    presentation [2] has been made at a national conference of this subject. b.2-Thermomechanics of reactive gases Transient, spatially...Integrated Analysis and Computation 5a. CONTRACT NUMBER FA9550-10-C-0088 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) David Kassoy...KISS and JPL personnel. 15. SUBJECT TERMS Combustion, Thermomechanics, Turbulent Reacting Flow, Supercritical Gases , Rocket Engine Stability 16

  10. A stability theorem for energy-balance climate models

    NASA Technical Reports Server (NTRS)

    Cahalan, R. F.; North, G. R.

    1979-01-01

    The paper treats the stability of steady-state solutions of some simple, latitude-dependent, energy-balance climate models. For north-south symmetric solutions of models with an ice-cap-type albedo feedback, and for the sum of horizontal transport and infrared radiation given by a linear operator, it is possible to prove a 'slope stability' theorem, i.e., if the local slope of the steady-state iceline latitude versus solar constant curve is positive (negative) the steady-state solution is stable (unstable). Certain rather weak restrictions on the albedo function and on the heat transport are required for the proof, and their physical basis is discussed.

  11. Modeling and Simulation of a Helicopter Slung Load Stabilization Device

    NASA Technical Reports Server (NTRS)

    Cicolani, Luigi S.; Ehlers, George E.

    2002-01-01

    This paper addresses the problem of simulation and stabilization of the yaw motions of a cargo container slung load. The study configuration is a UH-60 helicopter carrying a 6ft x 6 ft x 8 ft CONEX container. This load is limited to 60 KIAS in operations and flight testing indicates that it starts spinning in hover and that spin rate increases with airspeed. The simulation reproduced the load yaw motions seen in the flight data after augmenting the load model with terms representing unsteady load yaw moment effects acting to reinforce load oscillations, and augmenting the hook model to include yaw resistance at the hook. The use of a vertical fin to stabilize the load is considered. Results indicate that the CONEX airspeed can be extended to 110 kts using a 3x5 ft fin.

  12. A continuum model for flocking: Obstacle avoidance, equilibrium, and stability

    NASA Astrophysics Data System (ADS)

    Mecholsky, Nicholas Alexander

    The modeling and investigation of the dynamics and configurations of animal groups is a subject of growing attention. In this dissertation, we present a partial-differential-equation based continuum model of flocking and use it to investigate several properties of group dynamics and equilibrium. We analyze the reaction of a flock to an obstacle or an attacking predator. We show that the flock response is in the form of density disturbances that resemble Mach cones whose configuration is determined by the anisotropic propagation of waves through the flock. We investigate the effect of a flock 'pressure' and pairwise repulsion on an equilibrium density distribution. We investigate both linear and nonlinear pressures, look at the convergence to a 'cold' (T → 0) equilibrium solution, and find regions of parameter space where different models produce the same equilibrium. Finally, we analyze the stability of an equilibrium density distribution to long-wavelength perturbations. Analytic results for the stability of a constant density solution as well as stability regimes for constant density solutions to the equilibrium equations are presented.

  13. Stability analysis of underground mining openings with complex geometry

    NASA Astrophysics Data System (ADS)

    Cała, Marek; Stopkowicz, Agnieszka; Kowalski, Michał; Blajer, Mateusz; Cyran, Katarzyna; D'obyrn, Kajetan

    2016-03-01

    Stability of mining openings requires consideration of a number of factors, such as: geological structure, the geometry of the underground mining workings, mechanical properties of the rock mass, changes in stress caused by the influence of neighbouring workings. Long-term prediction and estimation of workings state can be analysed with the use of numerical methods. Application of 3D numerical modelling in stability estimation of workings with complex geometry was described with the example of Crystal Caves in Wieliczka Salt Mine. Preservation of the Crystal Caves reserve is particularly important in view of their unique character and the protection of adjacent galleries which are a part of tourist attraction included in UNESCO list. A detailed 3D model of Crystal Caves and neighbouring workings was built. Application of FLAC3D modelling techniques enabled indication of the areas which are in danger of stability loss. Moreover, the area in which protective actions should be taken as well as recommendations concerning the convergence monitoring were proposed.

  14. Predicting waste stabilization pond performance using an ecological simulation model

    SciTech Connect

    New, G.R.

    1987-01-01

    Waste stabilization ponds (lagoons) are often favored in small communities because of their low cost and ease of operation. Most models currently used to predict performance are empirical or fail to address the primary lagoon cell. Empirical methods for predicting lagoon performance have been found to be off as much as 248 percent when used on a system other than the one they were developed for. Also, the present models developed for the primary cell lack the ability to predict parameters other than biochemical oxygen demand (BOD) and nitrogen. Oxygen consumption is usually estimated from BOD utilization. LAGOON is a fortran program which models the biogeochemical processes characteristic of the primary cell of facultative lagoons. Model parameters can be measured from lagoons in the vicinity of a proposed lagoon or estimated from laboratory studies. The model was calibrated utilizing a subset of the Corinne Utah lagoon data then validated utilizing a subset of the Corinne Utah data.

  15. Estimation of dynamic stability parameters from drop model flight tests

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Iliff, K. W.

    1981-01-01

    A recent NASA application of a remotely-piloted drop model to studies of the high angle-of-attack and spinning characteristics of a fighter configuration has provided an opportunity to evaluate and develop parameter estimation methods for the complex aerodynamic environment associated with high angles of attack. The paper discusses the overall drop model operation including descriptions of the model, instrumentation, launch and recovery operations, piloting concept, and parameter identification methods used. Static and dynamic stability derivatives were obtained for an angle-of-attack range from -20 deg to 53 deg. The results of the study indicated that the variations of the estimates with angle of attack were consistent for most of the static derivatives, and the effects of configuration modifications to the model (such as nose strakes) were apparent in the static derivative estimates. The dynamic derivatives exhibited greater uncertainty levels than the static derivatives, possibly due to nonlinear aerodynamics, model response characteristics, or additional derivatives.

  16. Assessing and improving the stability of chemometric models in small sample size situations.

    PubMed

    Beleites, Claudia; Salzer, Reiner

    2008-03-01

    Small sample sizes are very common in multivariate analysis. Sample sizes of 10-100 statistically independent objects (rejects from processes or loading dock analysis, or patients with a rare disease), each with hundreds of data points, cause unstable models with poor predictive quality. Model stability is assessed by comparing models that were built using slightly varying training data. Iterated k-fold cross-validation is used for this purpose. Aggregation stabilizes models. It is possible to assess the quality of the aggregated model without calculating further models. The validation and aggregation methods investigated in this study apply to regression as well as to classification. These techniques are useful for analyzing data with large numbers of variates, e.g., any spectral data like FT-IR, Raman, UV/VIS, fluorescence, AAS, and MS. FT-IR images of tumor tissue were used in this study. Some tissue types occur frequently, while some are very rare. They are classified using LDA. Initial models were severely unstable. Aggregation stabilizes the predictions. The hit rate increased from 67% to 82%.

  17. A generalized model for stability of trees under impact conditions

    NASA Astrophysics Data System (ADS)

    Dattola, Giuseppe; Crosta, Giovanni; Castellanza, Riccardo; di Prisco, Claudio; Canepa, Davide

    2016-04-01

    Stability of trees to external actions involve the combined effects of stem and tree root systems. A block impacting on the stem or an applied force pulling the stem can cause a tree instability involving stem bending or failure and tree root rotation. So different contributions are involved in the stability of the system. The rockfalls are common natural phenomena that can be unpredictable in terms of frequency and magnitude characteristics, and this makes difficult the estimate of potential hazard and risk for human lives and activities. In mountain areas a natural form of protection from rockfalls is provided by forest growing. The difficulties in the assessment of the real capability of this natural barrier by means of models is an open problem. Nevertheless, a large amount of experimental data are now available which provides support for the development of advanced theoretical framework and corresponding models. The aim of this contribution consists in presenting a model developed to predict the behavior of trees during a block impact. This model describes the tree stem by means of a linear elastic beam system consisting of two beams connected in series and with an equivalent geometry. The tree root system is described via an equivalent foundation, whose behavior is modelled through an elasto-plastic macro-element model. In order to calibrate the model parameters, simulations reproducing a series of winching tests, are performed. These numerical simulations confirm the capability of the model to predict the mechanical behavior of the stem-root system in terms of displacement vs force curves. Finally, numerical simulations of the impact of a boulder with a tree stem are carried out. These simulations, done under dynamic regime and with the model parameters obtained from the previous set of simulations, confirm the capability of the model to reproduce the effects on the stem-roots system generated by impulsive loads.

  18. Analysis of Biobanked Serum from a Mycobacterium avium subsp paratuberculosis Bovine Infection Model Confirms the Remarkable Stability of Circulating miRNA Profiles and Defines a Bovine Serum miRNA Repertoire.

    PubMed

    Shaughnessy, Ronan G; Farrell, Damien; Riepema, Karel; Bakker, Douwe; Gordon, Stephen V

    2015-01-01

    Johne's Disease (JD) is a chronic enteritis of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Current disease control strategies are hampered by the lack of sensitive and specific diagnostic modalities. Therefore, novel diagnostic and prognostic tools are needed, and circulating microRNAs (miRNAs) may hold potential in this area. The aims of this study were twofold: (i) to address the stability of miRNA in bovine sera from biobanked samples, and (ii) to assess the potential of miRNAs as biomarkers for JD disease progression. To address these aims we used bovine sera from an experimental MAP infection model that had been stored at -20°C for over a decade, allowing us to also assess the stability of miRNA profiles in biobanked serum samples through comparison with fresh sera. Approximately 100-200 intact miRNAs were identified in each sample with 83 of these being consistently detected across all 57 samples. The miRNA profile of the biobanked sera stored at -20°C for over 10 years was highly similar to the profile of <1 year-old sera stored at -80°C, with an overlap of 73 shared miRNAs. IsomiR analysis also indicated a distinct bovine serum-specific isomiR profile as compared to previously reported bovine macrophage miRNA profiles. To explore the prognostic potential of miRNA profiles cattle defined as seropositive for anti-MAP antibodies (n = 5) were compared against seronegative cattle (n = 7). No significant differential expressed miRNAs were detected at either the early (6 months) or late (43, 46 and 49 months) intervals (FDR≤0.05, fold-change≥1.5) across seropositive or seronegative animals. However, comparing pre-infection sera to the early and late time-points identified increased miR-29a and miR-92b abundance (2-fold) that may be due to blood-cell population changes over time (P<0.001). In conclusion our study has demonstrated that bovine circulating miRNAs retain their integrity under long-term sub-optimal storage

  19. Analysis of Biobanked Serum from a Mycobacterium avium subsp paratuberculosis Bovine Infection Model Confirms the Remarkable Stability of Circulating miRNA Profiles and Defines a Bovine Serum miRNA Repertoire

    PubMed Central

    Riepema, Karel; Bakker, Douwe; Gordon, Stephen V.

    2015-01-01

    Johne’s Disease (JD) is a chronic enteritis of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Current disease control strategies are hampered by the lack of sensitive and specific diagnostic modalities. Therefore, novel diagnostic and prognostic tools are needed, and circulating microRNAs (miRNAs) may hold potential in this area. The aims of this study were twofold: (i) to address the stability of miRNA in bovine sera from biobanked samples, and (ii) to assess the potential of miRNAs as biomarkers for JD disease progression. To address these aims we used bovine sera from an experimental MAP infection model that had been stored at -20°C for over a decade, allowing us to also assess the stability of miRNA profiles in biobanked serum samples through comparison with fresh sera. Approximately 100–200 intact miRNAs were identified in each sample with 83 of these being consistently detected across all 57 samples. The miRNA profile of the biobanked sera stored at -20°C for over 10 years was highly similar to the profile of <1 year-old sera stored at -80°C, with an overlap of 73 shared miRNAs. IsomiR analysis also indicated a distinct bovine serum-specific isomiR profile as compared to previously reported bovine macrophage miRNA profiles. To explore the prognostic potential of miRNA profiles cattle defined as seropositive for anti-MAP antibodies (n = 5) were compared against seronegative cattle (n = 7). No significant differential expressed miRNAs were detected at either the early (6 months) or late (43, 46 and 49 months) intervals (FDR≤0.05, fold-change≥1.5) across seropositive or seronegative animals. However, comparing pre-infection sera to the early and late time-points identified increased miR-29a and miR-92b abundance (2-fold) that may be due to blood-cell population changes over time (P<0.001). In conclusion our study has demonstrated that bovine circulating miRNAs retain their integrity under long-term sub-optimal storage

  20. Real-time Stability Analysis for Disruption Avoidance in ITER

    NASA Astrophysics Data System (ADS)

    Glasser, Alexander; Kolemen, Egemen; Glasser, Alan

    2015-11-01

    ITER is intended to operate at plasma parameters approaching the frontier of achievable stability limits. And yet, plasma disruptions at ITER must be kept to a bare minimum to avoid damage to its plasma-facing structures. These competing goals necessitate real-time plasma stability analysis and feedback control at ITER. This work aims to develop a mechanism for real-time analysis of a large and virulent class of disruptions driven by the rapid growth of ideal MHD unstable modes in tokamak equilibria. Such modes will be identified by a parallelized, low-latency implementation of A.H. Glasser's well-tested DCON (Direct Criterion of Newcomb) code, which measures the energetics of modes in the bulk plasma fluid, as well as M.S. Chance's VACUUM code, which measures the same in the vacuum between the plasma and tokamak chamber wall. Parallelization of these codes is intended to achieve a time-savings of 40x, thereby reducing latency to a timescale of order 100ms and making the codes viable for ideal MHD stability control at ITER. The hardware used to achieve this parallelization will be an Intel Xeon Phi server with 77 cores (308 threads). Supported by the US DOE under DE-AC02-09CH11466.

  1. Stability of ecological industry chain: an entropy model approach.

    PubMed

    Wang, Qingsong; Qiu, Shishou; Yuan, Xueliang; Zuo, Jian; Cao, Dayong; Hong, Jinglan; Zhang, Jian; Dong, Yong; Zheng, Ying

    2016-07-01

    A novel methodology is proposed in this study to examine the stability of ecological industry chain network based on entropy theory. This methodology is developed according to the associated dissipative structure characteristics, i.e., complexity, openness, and nonlinear. As defined in the methodology, network organization is the object while the main focus is the identification of core enterprises and core industry chains. It is proposed that the chain network should be established around the core enterprise while supplementation to the core industry chain helps to improve system stability, which is verified quantitatively. Relational entropy model can be used to identify core enterprise and core eco-industry chain. It could determine the core of the network organization and core eco-industry chain through the link form and direction of node enterprises. Similarly, the conductive mechanism of different node enterprises can be examined quantitatively despite the absence of key data. Structural entropy model can be employed to solve the problem of order degree for network organization. Results showed that the stability of the entire system could be enhanced by the supplemented chain around the core enterprise in eco-industry chain network organization. As a result, the sustainability of the entire system could be further improved.

  2. Theoretical study of vapor-liquid homogeneous nucleation using stability analysis of a macroscopic phase.

    PubMed

    Carreón-Calderón, Bernardo

    2012-10-14

    Stability analysis is generally used to verify that the solution to phase equilibrium calculations corresponds to a stable state (minimum of the free energy). In this work, tangent plane distance analysis for stability of macroscopic mixtures is also used for analyzing the nucleation process, reconciling thus this analysis with classical nucleation theories. In the context of the revised nucleation theory, the driving force and the nucleation work are expressed as a function of the Lagrange multiplier corresponding to the mole fraction constraint from the minimization problem of stability analysis. Using a van der Waals fluid applied to a ternary mixture, Lagrange multiplier properties are illustrated. In particular, it is shown how the Lagrange multiplier value is equal to one on the binodal and spinodal curves at the same time as the driving force of nucleation vanishes on these curves. Finally, it is shown that, on the spinodal curve, the nucleation work from the revised and generalized nucleation theories are characterized by two different local minima from stability analysis, irrespective of any interfacial tension models.

  3. Enumeration and stability analysis of simple periodic orbits in β-Fermi Pasta Ulam lattice

    SciTech Connect

    Sonone, Rupali L. Jain, Sudhir R.

    2014-04-24

    We study the well-known one-dimensional problem of N particles with a nonlinear interaction. The special case of quadratic and quartic interaction potential among nearest neighbours is the β-Fermi-Pasta-Ulam model. We enumerate and classify the simple periodic orbits for this system and find the stability zones, employing Floquet theory. Such stability analysis is crucial to understand the transition of FPU lattice from recurrences to globally chaotic behavior, energy transport in lower dimensional system, dynamics of optical lattices and also its impact on shape parameter of bio-polymers such as DNA and RNA.

  4. Stability analysis of position and force control problems for robot arms

    NASA Technical Reports Server (NTRS)

    Wen, John T.; Murphy, Steve

    1990-01-01

    A stability analysis for robot manipulators under the influence of external forces is presented. Several control objectives are considered: rejecting the external force as a source of disturbance, complying to the external force as a generalized mass-spring-damper system, and actively controlling the external force when a dynamic model for the environment is available. An explanation of instability is given for the case in which the environment has flexibility and the gains are inappropriately chosen. When the environment is stiff in the force control subspace, robust stability can be achieved via the integral force feedback.

  5. Stability of model flocks in a vortical flow

    NASA Astrophysics Data System (ADS)

    Baggaley, A. W.

    2016-06-01

    We investigate the stability of self-propelled particle flocks in the Taylor-Green vortex, a steady vortical flow. We consider a model in which particles align themselves to a combination of the orientation and the acceleration of particles within a critical radius. We identify two distinct regimes: If alignment with orientation is dominant, the particles tend to be expelled from regions of high vorticity. In contrast, if anticipation is dominant, the particles accumulate in areas of large vorticity. In both regimes, the relative order of the flock is reduced. However, we show that there can be a critical balance of the two effects that stabilizes the flock in the presence of external fluid forcing. This strategy could provide a mechanism for animal flocks to remain globally ordered in the presence of fluid forcing, and it may also have applications in the design of flocking autonomous drones and artificial microswimmers.

  6. Game Theoretical Analysis on Cooperation Stability and Incentive Effectiveness in Community Networks.

    PubMed

    Song, Kaida; Wang, Rui; Liu, Yi; Qian, Depei; Zhang, Han; Cai, Jihong

    2015-01-01

    Community networks, the distinguishing feature of which is membership admittance, appear on P2P networks, social networks, and conventional Web networks. Joining the network costs money, time or network bandwidth, but the individuals get access to special resources owned by the community in return. The prosperity and stability of the community are determined by both the policy of admittance and the attraction of the privileges gained by joining. However, some misbehaving users can get the dedicated resources with some illicit and low-cost approaches, which introduce instability into the community, a phenomenon that will destroy the membership policy. In this paper, we analyze on the stability using game theory on such a phenomenon. We propose a game-theoretical model of stability analysis in community networks and provide conditions for a stable community. We then extend the model to analyze the effectiveness of different incentive policies, which could be used when the community cannot maintain its members in certain situations. Then we verify those models through a simulation. Finally, we discuss several ways to promote community network's stability by adjusting the network's properties and give some proposal on the designs of these types of networks from the points of game theory and stability.

  7. Game Theoretical Analysis on Cooperation Stability and Incentive Effectiveness in Community Networks

    PubMed Central

    Liu, Yi; Qian, Depei; Zhang, Han; Cai, Jihong

    2015-01-01

    Community networks, the distinguishing feature of which is membership admittance, appear on P2P networks, social networks, and conventional Web networks. Joining the network costs money, time or network bandwidth, but the individuals get access to special resources owned by the community in return. The prosperity and stability of the community are determined by both the policy of admittance and the attraction of the privileges gained by joining. However, some misbehaving users can get the dedicated resources with some illicit and low-cost approaches, which introduce instability into the community, a phenomenon that will destroy the membership policy. In this paper, we analyze on the stability using game theory on such a phenomenon. We propose a game-theoretical model of stability analysis in community networks and provide conditions for a stable community. We then extend the model to analyze the effectiveness of different incentive policies, which could be used when the community cannot maintain its members in certain situations. Then we verify those models through a simulation. Finally, we discuss several ways to promote community network’s stability by adjusting the network’s properties and give some proposal on the designs of these types of networks from the points of game theory and stability. PMID:26551649

  8. Model to Estimate Threshold Mechanical Stability of Lower Lateral Cartilage

    PubMed Central

    Kim, James Hakjune; Hamamoto, Ashley; Kiyohara, Nicole; Wong, Brian J. F.

    2015-01-01

    IMPORTANCE In rhinoplasty, techniques used to alter the shape of the nasal tip often compromise the structural stability of the cartilage framework in the nose. Determining the minimum threshold level of cartilage stiffness required to maintain long-term structural stability is a critical aspect in performing these surgical maneuvers. OBJECTIVE To quantify the minimum threshold mechanical stability (elastic modulus) of lower lateral cartilage (LLC) according to expert opinion. METHODS Five anatomically correct LLC phantoms were made from urethane via a 3-dimensional computer modeling and injection molding process. All 5 had identical geometry but varied in stiffness along the intermediate crural region (0.63–30.6 MPa). DESIGN, SETTING, AND PARTICIPANTS A focus group of experienced rhinoplasty surgeons (n = 33) was surveyed at a regional professional meeting on October 25, 2013. Each survey participant was presented the 5 phantoms in a random order and asked to arrange the phantoms in order of increasing stiffness based on their sense of touch. Then, they were asked to select a single phantom out of the set that they believed to have the minimum acceptable mechanical stability for LLC to maintain proper form and function. MAIN OUTCOMES AND MEASURES A binary logistic regression was performed to calculate the probability of mechanical acceptability as a function of the elastic modulus of the LLC based on survey data. A Hosmer-Lemeshow test was performed to measure the goodness of fit between the logistic regression and survey data. The minimum threshold mechanical stability for LLC was taken at a 50% acceptability rating. RESULTS Phantom 4 was selected most frequently by the participants as having the minimum acceptable stiffness for LLC intermediate care. The minimum threshold mechanical stability for LLC was determined to be 3.65 MPa. The Hosmer-Lemeshow test revealed good fit between the logistic regression and survey data ( χ32=0.92 , P = .82). CONCLUSIONS AND

  9. Nonlinear flight dynamics and stability of hovering model insects

    PubMed Central

    Liang, Bin; Sun, Mao

    2013-01-01

    Current analyses on insect dynamic flight stability are based on linear theory and limited to small disturbance motions. However, insects' aerial environment is filled with swirling eddies and wind gusts, and large disturbances are common. Here, we numerically solve the equations of motion coupled with the Navier–Stokes equations to simulate the large disturbance motions and analyse the nonlinear flight dynamics of hovering model insects. We consider two representative model insects, a model hawkmoth (large size, low wingbeat frequency) and a model dronefly (small size, high wingbeat frequency). For small and large initial disturbances, the disturbance motion grows with time, and the insects tumble and never return to the equilibrium state; the hovering flight is inherently (passively) unstable. The instability is caused by a pitch moment produced by forward/backward motion and/or a roll moment produced by side motion of the insect. PMID:23697714

  10. Stability of a binge drinking model with delay.

    PubMed

    Huo, Hai-Feng; Chen, Yong-Lan; Xiang, Hong

    2017-12-01

    A more realistic binge drinking model with time delay is introduced. Time delay is used to represent the time lag of the immunity against drinking in our model. For the model without the time delay, using Routh-Hurwitz criterion, we obtain that the alcohol-free equilibrium is locally asymptotically stable if [Formula: see text]. We also obtain that the unique alcohol-present equilibrium is locally asymptotically stable if [Formula: see text]. For the model with time delay, the local stability of all the equilibria is derived. Furthermore, regardless of the time delay length, using comparison theorem and iteration technique, we obtain that the alcohol-free equilibrium is globally asymptotically stable under certain conditions. Numerical simulations are also conducted to illustrate and extend our analytic results.

  11. Human sperm chromatin stabilization: a proposed model including zinc bridges.

    PubMed

    Björndahl, Lars; Kvist, Ulrik

    2010-01-01

    The primary focus of this review is to challenge the current concepts on sperm chromatin stability. The observations (i) that zinc depletion at ejaculation allows a rapid and total sperm chromatin decondensation without the addition of exogenous disulfide cleaving agents and (ii) that the human sperm chromatin contains one zinc for every protamine for every turn of the DNA helix suggest an alternative model for sperm chromatin structure may be plausible. An alternative model is therefore proposed, that the human spermatozoon could at ejaculation have a rapidly reversible zinc dependent chromatin stability: Zn(2+) stabilizes the structure and prevents the formation of excess disulfide bridges by a single mechanism, the formation of zinc bridges with protamine thiols of cysteine and potentially imidazole groups of histidine. Extraction of zinc enables two biologically totally different outcomes: immediate decondensation if chromatin fibers are concomitantly induced to repel (e.g. by phosphorylation in the ooplasm); otherwise freed thiols become committed into disulfide bridges creating a superstabilized chromatin. Spermatozoa in the zinc rich prostatic fluid (normally the first expelled ejaculate fraction) represent the physiological situation. Extraction of chromatin zinc can be accomplished by the seminal vesicular fluid. Collection of the ejaculate in one single container causes abnormal contact between spermatozoa and seminal vesicular fluid affecting the sperm chromatin stability. There are men in infertile couples with low content of sperm chromatin zinc due to loss of zinc during ejaculation and liquefaction. Tests for sperm DNA integrity may give false negative results due to decreased access for the assay to the DNA in superstabilized chromatin.

  12. Fundamental analysis of dynamic stability in superconductive power systems

    SciTech Connect

    Mitani, Y.; Tsuji, K.; Murakami, Y. . Faculty of Engineering)

    1991-03-01

    This paper reports on applications of superconductivity to power systems which have possible advantages in economy, reliability and stability. On the other side, superconductive power systems have risks of including insufficient damping due to the effect of inductance-capacitance (LC) resonance. This may cause subsynchronous resonance oscillations (SSR) represented by self-excited oscillation and torsional oscillation of rotor-turbine shafts. The main subject of this paper is to analyze numerically SSR and electro-mechanical power swing in a model power system with superconductive power apparatus. A stabilizing control scheme which uses the stored energy in the field winding circuit of superconductive generator, is applied to some instabilities and its effectiveness is confirmed in a digital simulation study.

  13. Wavelet modeling and prediction of the stability of states: the Roman Empire and the European Union

    NASA Astrophysics Data System (ADS)

    Yaroshenko, Tatyana Y.; Krysko, Dmitri V.; Dobriyan, Vitalii; Zhigalov, Maksim V.; Vos, Hendrik; Vandenabeele, Peter; Krysko, Vadim A.

    2015-09-01

    How can the stability of a state be quantitatively determined and its future stability predicted? The rise and collapse of empires and states is very complex, and it is exceedingly difficult to understand and predict it. Existing theories are usually formulated as verbal models and, consequently, do not yield sharply defined, quantitative prediction that can be unambiguously validated with data. Here we describe a model that determines whether the state is in a stable or chaotic condition and predicts its future condition. The central model, which we test, is that growth and collapse of states is reflected by the changes of their territories, populations and budgets. The model was simulated within the historical societies of the Roman Empire (400 BC to 400 AD) and the European Union (1957-2007) by using wavelets and analysis of the sign change of the spectrum of Lyapunov exponents. The model matches well with the historical events. During wars and crises, the state becomes unstable; this is reflected in the wavelet analysis by a significant increase in the frequency ω (t) and wavelet coefficients W (ω, t) and the sign of the largest Lyapunov exponent becomes positive, indicating chaos. We successfully reconstructed and forecasted time series in the Roman Empire and the European Union by applying artificial neural network. The proposed model helps to quantitatively determine and forecast the stability of a state.

  14. Analysis and testing of stability augmentation systems. [for supersonic transport aircraft wing and B-52 aircraft control system

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.; Patel, S. M.; Wattman, W. J.

    1972-01-01

    Testing and evaluation of stability augmentation systems for aircraft flight control were conducted. The flutter suppression system analysis of a scale supersonic transport wing model is described. Mechanization of the flutter suppression system is reported. The ride control synthesis for the B-52 aeroelastic model is discussed. Model analyses were conducted using equations of motion generated from generalized mass and stiffness data.

  15. Using tightly-coupled CFD/CSD simulation for rotorcraft stability analysis

    NASA Astrophysics Data System (ADS)

    Zaki, Afifa Adel

    Dynamic stall deeply affects the response of helicopter rotor blades, making its modeling accuracy very important. Two commonly used dynamic stall models were implemented in a comprehensive code, validated, and contrasted to provide improved analysis accuracy and versatility. Next, computational fluid dynamics and computational structural dynamics loose coupling methodologies are reviewed, and a general tight coupling approach was implemented and tested. The tightly coupled computational fluid dynamics and computational structural dynamics methodology is then used to assess the stability characteristics of complex rotorcraft problems. An aeroelastic analysis of rotors must include an assessment of potential instabilities and the determination of damping ratios for all modes of interest. If the governing equations of motion of a system can be formulated as linear, ordinary differential equations with constant coefficients, classical stability evaluation methodologies based on the characteristic exponents of the system can rapidly and accurately provide the system's stability characteristics. For systems described by linear, ordinary differential equations with periodic coefficients, Floquet's theory is the preferred approach. While these methods provide excellent results for simplified linear models with a moderate number of degrees of freedom, they become quickly unwieldy as the number of degrees of freedom increases. Therefore, to accurately analyze rotorcraft aeroelastic periodic systems, a fully nonlinear, coupled simulation tool is used to determine the response of the system to perturbations about an equilibrium configuration and determine the presence of instabilities and damping ratios. The stability analysis is undertaken using an algorithm based on a Partial Floquet approach that has been successfully applied with computational structural dynamics tools on rotors and wind turbines. The stability analysis approach is computationally inexpensive and consists

  16. Image Analysis and Modeling

    DTIC Science & Technology

    1976-03-01

    This report summarizes the results of the research program on Image Analysis and Modeling supported by the Defense Advanced Research Projects Agency...The objective is to achieve a better understanding of image structure and to use this knowledge to develop improved image models for use in image ... analysis and processing tasks such as information extraction, image enhancement and restoration, and coding. The ultimate objective of this research is

  17. Aeroelastic stability analyses of two counter rotating propfan designs for a cruise missile model

    NASA Technical Reports Server (NTRS)

    Mahajan, Aparajit J.; Lucero, John M.; Mehmed, Oral; Stefko, George L.

    1992-01-01

    Aeroelastic stability analyses were performed to insure structural integrity of two counterrotating propfan blade designs for a NAVY/Air Force/NASA cruise missile model wind tunnel test. This analysis predicted if the propfan designs would be flutter free at the operating conditions of the wind tunnel test. Calculated stability results are presented for the two blade designs with rotational speed and Mach number as the parameters. A aeroelastic analysis code ASTROP2 (Aeroelastic Stability and Response of Propulsion Systems - 2 Dimensional Analysis), developed at LeRC, was used in this project. The aeroelastic analysis is a modal method and uses the combination of a finite element structural model and two dimensional steady and unsteady cascade aerodynamic models. This code was developed to analyze single rotation propfans but was modified and applied to counterrotating propfans for the present work. Modifications were made to transform the geometry and rotation of the aft rotor to the same reference frame as the forward rotor, to input a non-uniform inflow into the rotor being analyzed, and to automatically converge to the least stable aeroelastic mode.

  18. A Six Degree of Freedom Trajectory Analysis of Spin-Stabilized Projectiles

    NASA Astrophysics Data System (ADS)

    Gkritzapis, Dimitrios N.; Panagiotopoulos, Elias E.; Margaris, Dionissios P.; Papanikas, Dimitrios G.

    2007-12-01

    A full six degrees of freedom (6-DOF) flight dynamics model is proposed for the accurate prediction of short and long-range trajectories of high and low spin-stabilized projectiles via atmospheric flight to final impact point. The projectile is assumed to be both rigid (non-flexible), and rotationally symmetric about its spin axis launched at low and high pitch angles. The projectile maneuvering motion depends on the most significant force and moment variations in addition to gravity and Magnus Effect. The computational flight analysis takes into consideration the Mach number and total angle of attack effects by means of the variable aerodynamic coefficients. For the purposes of the present work, linear interpolation has been applied from the tabulated database of McCoy's book. The aforementioned variable flight model is compared with a trajectory atmospheric motion based on appropriate constant mean values of the aerodynamic projectile coefficients. Static stability, also called gyroscopic stability, is examined as a necessary condition for stable flight motion in order to locate the initial spinning projectile rotation. Static stability examination takes into account the overturning moment variations with Mach number flight motion. The developed method gives satisfactory results compared with published data of verified experiments and computational codes on atmospheric dynamics model analysis.

  19. Stability of a Prey-Predator Model with Behavior Changes

    NASA Astrophysics Data System (ADS)

    Wang, Wendi

    2010-04-01

    A prey-predator system with hawk and dove behavior changes is studied, which allows the same time scale for population growth and individual behavior changes. Through stability analysis, we find that the four patterns in dynamical behaviors persist when the restriction is removed that the time scale of the behavior changes is much faster than that of population growth. The patterns include the bistability of an eqUilibrium of predator survival and an equilibrium of predator extinction, the coexistence of two stable equilibria of predator survival, a monostable equilibrium that describes the coexistence of prey and predators, and the extinction of predators for all positive initial values.

  20. Control sensitivity indices for stability analysis of HVdc systems

    SciTech Connect

    Nayak, O.B.; Gole, A.M.; Chapman, D.G.; Davies, J.B.

    1995-10-01

    This paper presents a new concept called the ``Control Sensitivity Index`` of CSI, for the stability analysis of HVdc converters connected to weak ac systems. The CSI for a particular control mode can be defined as the ratio of incremental changes in the two system variables that are most relevant to that control mode. The index provides valuable information on the stability of the system and, unlike other approaches, aids in the design of the controller. It also plays an important role in defining non-linear gains for the controller. This paper offers a generalized formulation of CSI and demonstrates its application through an analysis of the CSI for three modes of HVdc control. The conclusions drawn from the analysis are confirmed by a detailed electromagnetic transients simulation of the ac/dc system. The paper concludes that the CSI can be used to improve the controller design and, for an inverter in a weak ac system, the conventional voltage control mode is more stable than the conventional {gamma} control mode.

  1. Thermal Stability Analysis for Superconducting Coupling Coil in MICE

    SciTech Connect

    Wu, Hong; Wang, Li; Pan, Heng; Guo, XingLong; Green, M.A.

    2010-06-28

    The superconducting coupling coil to be used in the Muon Ionization Cooling Experiment (MICE) with inner radius of 750 mm, length of 285 mm and thickness of 110.4 mm will be cooled by a pair of 1.5 W at 4.2 K cryo-coolers. When the coupling coil is powered to 210 A, it will produce about 7.3 T peak magnetic field at the conductor and it will have a stored energy of 13 MJ. A key issue for safe operation of the coupling coil is the thermal stability of the coil during a charge and discharge. The magnet and its cooling system are designed for a rapid discharge where the magnet is to be discharged in 5400 seconds. The numerical simulation for the thermal stability of the MICE coupling coil has been done using ANSYS. The analysis results show that the superconducting coupling coil has a good stability and can be charged and discharged safely.

  2. Stability analysis of direct-detection cooperative optical beam tracking

    NASA Astrophysics Data System (ADS)

    Marola, Giovanni; Santerini, Daniele; Prati, Giancarlo

    1989-05-01

    The system under consideration is a cooperative spatial tracking system between two stations for laser beam communications, using a quadrant photodetector at each station. After determining the equilibrium points of the cooperative system for the case of periodical relative motion, the authors concentrate on the stability of the transient behavior around the equilibrium points for the case of uniform angular relative motion. This case corresponds to an assumption that the steady-state motion is slow with respect to transient phenomena, and is applicable to currently foreseen intersatellite and deep-space optical communications. The analysis is aimed at determining the combined effect of the basic system parameters, such as propagation delay time, tracking loop gains, DC servomotors time constant, and point-ahead velocity error, on the stability and the transient behavior of the overall tracking system. The stability conditions and the transient response around the steady-state trajectory provide a tool for evaluating the consistency of the design parameters for a given propagation delay.

  3. Stability analysis of restricted non-static axial symmetry

    SciTech Connect

    Sharif, M.; Bhatti, M. Zaeem Ul Haq E-mail: mzaeem.math@gmail.com

    2013-11-01

    This paper aims to investigate the instability of very restricted class of non-static axially symmetric spacetime with anisotropic matter configuration. The perturbation scheme is established for the Einstein field equations and conservation laws. The instability range in the Newtonian and post-Newtonian regions are explored by constructing the collapse equation in this scenario. It is found that the adiabatic index plays an important role in the stability analysis which depends upon the physical parameters i.e., energy density and anisotropic pressure of the fluid distribution.

  4. Stabilizing effect of cannibalism in a two stages population model.

    PubMed

    Rault, Jonathan; Benoît, Eric; Gouzé, Jean-Luc

    2013-03-01

    In this paper we build a prey-predator model with discrete weight structure for the predator. This model will conserve the number of individuals and the biomass and both growth and reproduction of the predator will depend on the food ingested. Moreover the model allows cannibalism which means that the predator can eat the prey but also other predators. We will focus on a simple version with two weight classes or stage (larvae and adults) and present some general mathematical results. In the last part, we will assume that the dynamics of the prey is fast compared to the predator's one to go further in the results and eventually conclude that under some conditions, cannibalism can stabilize the system: more precisely, an unstable equilibrium without cannibalism will become almost globally stable with some cannibalism. Some numerical simulations are done to illustrate this result.

  5. Robust Stability Analysis of the Space Launch System Control Design: A Singular Value Approach

    NASA Technical Reports Server (NTRS)

    Pei, Jing; Newsome, Jerry R.

    2015-01-01

    Classical stability analysis consists of breaking the feedback loops one at a time and determining separately how much gain or phase variations would destabilize the stable nominal feedback system. For typical launch vehicle control design, classical control techniques are generally employed. In addition to stability margins, frequency domain Monte Carlo methods are used to evaluate the robustness of the design. However, such techniques were developed for Single-Input-Single-Output (SISO) systems and do not take into consideration the off-diagonal terms in the transfer function matrix of Multi-Input-Multi-Output (MIMO) systems. Robust stability analysis techniques such as H(sub infinity) and mu are applicable to MIMO systems but have not been adopted as standard practices within the launch vehicle controls community. This paper took advantage of a simple singular-value-based MIMO stability margin evaluation method based on work done by Mukhopadhyay and Newsom and applied it to the SLS high-fidelity dynamics model. The method computes a simultaneous multi-loop gain and phase margin that could be related back to classical margins. The results presented in this paper suggest that for the SLS system, traditional SISO stability margins are similar to the MIMO margins. This additional level of verification provides confidence in the robustness of the control design.

  6. Stability Analysis of the Buck-Boost Type Solar Array Regulator

    NASA Astrophysics Data System (ADS)

    Yang, Jeong-Hwan; Yoon, Seok-Teak; Park, Hee-Sung; Park, Sung-Woo; Koo, Ja-Chun; Jang, Jin-Baek; Lee, Sang-Kon

    2014-08-01

    The SAR (Solar Array Regulator) is different from a general DC-DC Converter. The input of the SAR is connected to the solar array and the output is connected to the battery. So, the output voltage of the SAR is constant and the input voltage of the SAR is variable. And the solar array current which is the SAR input current is variable according to the solar array voltage. Therefore, the SAR is influenced by the electrical characteristic of the solar array. For these reasons, a small signal model for a general DC-DC converter cannot be applied to the SAR for the stability analysis. In this paper, the small signal model of the BUCK-BOOST type SAR (BBSAR) is introduced and its transfer functions are induced. Using small signal transfer functions, the stability analysis is performed and its results are compared to the simulation result.

  7. Fuzzy Current-Mode Control and Stability Analysis

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2000-01-01

    In this paper a current-mode control (CMC) methodology is developed for a buck converter by using a fuzzy logic controller. Conventional CMC methodologies are based on lead-lag compensation with voltage and inductor current feedback. In this paper the converter lead-lag compensation will be substituted with a fuzzy controller. A small-signal model of the fuzzy controller will also be developed in order to examine the stability properties of this buck converter control system. The paper develops an analytical approach, introducing fuzzy control into the area of CMC.

  8. Qualitative analysis of the stability of a continuous vermicomposting system.

    PubMed

    Hu, Enzhu; Liu, Hong

    2012-12-01

    A mathematical model was established to describe ecological relationships in a continuous vermicomposting system. The distributions of organic matter, microbes and earthworms on non-dimensional specific growth rates were simulated. The range of specific growth rates were visualized utilizing three-dimensional reconstruction technology. The stability of a vermicomposting system was not influenced by the initial concentrations of microbes and earthworms, only their species. The coordinates of the stable point depended on the dilution rate and initial amount of organic matter. The method described could be help for establishing a stable continuous vermicomposting system.

  9. Partial implicitization. [numerical stability of Burger equation model for Navier-Stokes equation

    NASA Technical Reports Server (NTRS)

    Graves, R. A., Jr.

    1973-01-01

    The steady-state solution to the full Navier-Stokes equations for complicated flows is generally difficult to obtain. The Burgers (1948) equation is used as a model of the Navier-Stokes equations. The steady-state solution is obtained by a one-step explicit technique resulting from a partial implicitization of the difference equation. Stability analysis shows that the technique is unconditionally stable, and numerical tests show the technique to be accurate.

  10. Influence of the traffic interruption probability on traffic stability in lattice model for two-lane freeway

    NASA Astrophysics Data System (ADS)

    Peng, Guanghan; Liu, Changqing; Tuo, Manxian

    2015-10-01

    In this paper, a new lattice model is proposed with the traffic interruption probability term in two-lane traffic system. The linear stability condition and the mKdV equation are derived from linear stability analysis and nonlinear analysis by introducing the traffic interruption probability of optimal current for two-lane traffic freeway, respectively. Numerical simulation shows that the traffic interruption probability corresponding to high reaction coefficient can efficiently improve the stability of two-lane traffic flow as traffic interruption occurs with lane changing.

  11. Computational analysis of a stability robustness margin for structured real-parameter perturbations

    NASA Technical Reports Server (NTRS)

    Wedell, Evan; Chuang, C.-H.; Wie, Bong

    1989-01-01

    An efficient computational method is presented for stability robustness analysis with structured real-parameter perturbations. A generic model of a class of uncertain dynamical systems is used as an example. The parameter uncertainty is characterized by a real scalar, epsilon. Multilinearity of the closed-loop characteristic polynomial is exploited to permit application of the mapping theorem to calculate the stability robustness margin. It is found that sensitive geometry of the stability boundary in the epsilon, omega-plane renders problematic the calculation of the minimum epsilon as a function of omega. This difficulty is avoided by calculating the minimum distance to the image of the uncertainty domain over omega as a function of epsilon. It is also shown that a certain class of uncertain dynamical systems has the required multilinearity property and are thus amenable to the proposed technique.

  12. Stability analysis of position and force control problems for robot arms

    NASA Technical Reports Server (NTRS)

    Wen, John T.; Murphy, Steve

    1990-01-01

    Stability issues involving the control of a robot arm under the influence of external forces are discussed. Several different scenarios are considered: position control with the external force as an unmodeled disturbance, compliant control for a bounded external force in some subspace, and compliant control for a force due to the interaction with an environment whose dynamical behavior can be modeled. In each of these cases, a stability analysis using the Lyapunov method is presented. An explanation of instability is put forth for the case in which the environment has flexibility and the gains are inappropriately chosen. When the environment is stiff in the force control subspace, robust stability can be achieved with the integral force feedback.

  13. Local stability analysis of an endoreversible Carnot refrigerator

    NASA Astrophysics Data System (ADS)

    He, Jizhou; Miao, Guiling; Nie, Wenjie

    2010-08-01

    A local stability analysis of an endoreversible Carnot refrigerator, working at the maximum objective function of the product of the cooling rate R and the coefficient of performance ɛ, is presented. The endoreversible Carnot refrigerator consists of a reversible Carnot refrigerator that exchanges heat with the heat reservoirs TH through the thermal conductance α and with the cold reservoirs TL through the thermal conductance β. In addition, the working fluid has the same heat capacity C in the two isothermal branches of the cycle. By linearization and stability analysis, we find that the relaxation times are a function of α, β, the heat capacity C and τ=TL /TH; that the endoreversible Carnot refrigerator is stable for every value of α, β, C and τ that after a perturbation, the system state exponentially decays to the steady state with either of two different relaxation times; that both relaxation times are proportional to α/2C and that one of them is a monotonically increasing function τ and the other is almost independent of τ. Finally, the phase portraits for the trajectories after a small perturbation over the steady-state values of internal temperatures are presented.

  14. Optimal Stabilization of Social Welfare under Small Variation of Operating Condition with Bifurcation Analysis

    NASA Astrophysics Data System (ADS)

    Chanda, Sandip; De, Abhinandan

    2016-12-01

    A social welfare optimization technique has been proposed in this paper with a developed state space based model and bifurcation analysis to offer substantial stability margin even in most inadvertent states of power system networks. The restoration of the power market dynamic price equilibrium has been negotiated in this paper, by forming Jacobian of the sensitivity matrix to regulate the state variables for the standardization of the quality of solution in worst possible contingencies of the network and even with co-option of intermittent renewable energy sources. The model has been tested in IEEE 30 bus system and illustrious particle swarm optimization has assisted the fusion of the proposed model and methodology.

  15. Ant Colony Optimization Analysis on Overall Stability of High Arch Dam Basis of Field Monitoring

    PubMed Central

    Liu, Xiaoli; Chen, Hong-Xin; Kim, Jinxie

    2014-01-01

    A dam ant colony optimization (D-ACO) analysis of the overall stability of high arch dams on complicated foundations is presented in this paper. A modified ant colony optimization (ACO) model is proposed for obtaining dam concrete and rock mechanical parameters. A typical dam parameter feedback problem is proposed for nonlinear back-analysis numerical model based on field monitoring deformation and ACO. The basic principle of the proposed model is the establishment of the objective function of optimizing real concrete and rock mechanical parameter. The feedback analysis is then implemented with a modified ant colony algorithm. The algorithm performance is satisfactory, and the accuracy is verified. The m groups of feedback parameters, used to run a nonlinear FEM code, and the displacement and stress distribution are discussed. A feedback analysis of the deformation of the Lijiaxia arch dam and based on the modified ant colony optimization method is also conducted. By considering various material parameters obtained using different analysis methods, comparative analyses were conducted on dam displacements, stress distribution characteristics, and overall dam stability. The comparison results show that the proposal model can effectively solve for feedback multiple parameters of dam concrete and rock material and basically satisfy assessment requirements for geotechnical structural engineering discipline. PMID:25025089

  16. Ant colony optimization analysis on overall stability of high arch dam basis of field monitoring.

    PubMed

    Lin, Peng; Liu, Xiaoli; Chen, Hong-Xin; Kim, Jinxie

    2014-01-01

    A dam ant colony optimization (D-ACO) analysis of the overall stability of high arch dams on complicated foundations is presented in this paper. A modified ant colony optimization (ACO) model is proposed for obtaining dam concrete and rock mechanical parameters. A typical dam parameter feedback problem is proposed for nonlinear back-analysis numerical model based on field monitoring deformation and ACO. The basic principle of the proposed model is the establishment of the objective function of optimizing real concrete and rock mechanical parameter. The feedback analysis is then implemented with a modified ant colony algorithm. The algorithm performance is satisfactory, and the accuracy is verified. The m groups of feedback parameters, used to run a nonlinear FEM code, and the displacement and stress distribution are discussed. A feedback analysis of the deformation of the Lijiaxia arch dam and based on the modified ant colony optimization method is also conducted. By considering various material parameters obtained using different analysis methods, comparative analyses were conducted on dam displacements, stress distribution characteristics, and overall dam stability. The comparison results show that the proposal model can effectively solve for feedback multiple parameters of dam concrete and rock material and basically satisfy assessment requirements for geotechnical structural engineering discipline.

  17. Stability Analysis of Flow Induced by the Traveling Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2003-01-01

    Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.

  18. Stability Analysis of Flow Induced by the Traveling Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2003-01-01

    Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or.crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.

  19. Stabilizing l1-norm prediction models by supervised feature grouping.

    PubMed

    Kamkar, Iman; Gupta, Sunil Kumar; Phung, Dinh; Venkatesh, Svetha

    2016-02-01

    Emerging Electronic Medical Records (EMRs) have reformed the modern healthcare. These records have great potential to be used for building clinical prediction models. However, a problem in using them is their high dimensionality. Since a lot of information may not be relevant for prediction, the underlying complexity of the prediction models may not be high. A popular way to deal with this problem is to employ feature selection. Lasso and l1-norm based feature selection methods have shown promising results. But, in presence of correlated features, these methods select features that change considerably with small changes in data. This prevents clinicians to obtain a stable feature set, which is crucial for clinical decision making. Grouping correlated variables together can improve the stability of feature selection, however, such grouping is usually not known and needs to be estimated for optimal performance. Addressing this problem, we propose a new model that can simultaneously learn the grouping of correlated features and perform stable feature selection. We formulate the model as a constrained optimization problem and provide an efficient solution with guaranteed convergence. Our experiments with both synthetic and real-world datasets show that the proposed model is significantly more stable than Lasso and many existing state-of-the-art shrinkage and classification methods. We further show that in terms of prediction performance, the proposed method consistently outperforms Lasso and other baselines. Our model can be used for selecting stable risk factors for a variety of healthcare problems, so it can assist clinicians toward accurate decision making.

  20. Stability and Control Analysis of the F-15B Quiet SpikeTM Aircraft

    NASA Technical Reports Server (NTRS)

    McWherter, Shaun C.; Moua, Cheng M.; Gera, Joseph; Cox, Timothy H.

    2009-01-01

    The primary purpose of the Quiet Spike(TradeMark) flight research program was to analyze the aerodynamic, structural, and mechanical proof-of-concept of a large multi-stage telescoping nose spike installed on the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) F-15B airplane. This report describes the preflight stability and control analysis performed to assess the effect of the spike on the stability, controllability, and handling qualities of the airplane; and to develop an envelope expansion approach to maintain safety of flight. The overall flight test objective was to collect flight data to validate the spike structural dynamics and loads model up to Mach 1.8. Other objectives included validating the mechanical feasibility of a morphing fuselage at operational conditions and determining the near-field shock wave characterization. The two main issues relevant to the stability and control objectives were the effects of the spike-influenced aerodynamics on the F-15B airplane flight dynamics, and the air data and angle-of-attack sensors. The analysis covered the sensitivity of the stability margins, and the handling qualities due to aerodynamic variation and the maneuvering limitations of the F-15B Quiet Spike configuration. The results of the analysis and the implications for the flight test program are also presented.

  1. Goldilocks models of higher-dimensional inflation (including modulus stabilization)

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; Enns, Jared J. H.; Hayman, Peter; Patil, Subodh P.

    2016-08-01

    We explore the mechanics of inflation within simplified extra-dimensional models involving an inflaton interacting with the Einstein-Maxwell system in two extra dimensions. The models are Goldilocks-like inasmuch as they are just complicated enough to include a mechanism to stabilize the extra-dimensional size (or modulus), yet simple enough to solve explicitly the full extra-dimensional field equations using only simple tools. The solutions are not restricted to the effective 4D regime with H ll mKK (the latter referring to the characteristic mass splitting of the Kaluza-Klein excitations) because the full extra-dimensional Einstein equations are solved. This allows an exploration of inflationary physics in a controlled calculational regime away from the usual four-dimensional lamp-post. The inclusion of modulus stabilization is important because experience with string models teaches that this is usually what makes models fail: stabilization energies easily dominate the shallow potentials required by slow roll and so open up directions to evolve that are steeper than those of the putative inflationary direction. We explore (numerically and analytically) three representative kinds of inflationary scenarios within this simple setup. In one the radion is trapped in an inflaton-dependent local minimum whose non-zero energy drives inflation. Inflation ends as this energy relaxes to zero when the inflaton finds its own minimum. The other two involve power-law scaling solutions during inflation. One of these is a dynamical attractor whose features are relatively insensitive to initial conditions but whose slow-roll parameters cannot be arbitrarily small; the other is not an attractor but can roll much more slowly, until eventually transitioning to the attractor. The scaling solutions can satisfy H > mKK, but when they do standard 4D fluctuation calculations need not apply. When in a 4D regime the solutions predict η simeq 0 and so r simeq 0.11 when ns simeq 0.96 and so

  2. Stabilizing control for a pulsatile cardiovascular mathematical model.

    PubMed

    de los Reyes, Aurelio A; Jung, Eunok; Kappel, Franz

    2014-06-01

    In this paper, we develop a pulsatile model for the cardiovascular system which describes the reaction of this system to a submaximal constant workload imposed on a person at a bicycle ergometer test after a period of rest. Furthermore, the model should allow to use measurements for the pulsatile pressure in fingertips which provide information on the diastolic and the systolic pressure for parameter estimation. Based on the assumption that the baroreceptor loop is the essential control loop in this case, we design a stabilizing feedback control for the pulsatile model which is obtained by solving a linear-quadratic regulator problem for the linearization of a non-pulsatile counterpart of the pulsatile model. We also investigate the behavior of the model with respect to changes in the weight of the term in the cost functional for the linear-quadratic regulator problem which penalizes the deviation of the momentary pressure in the aorta from the pressure at the stationary situation which should be obtained.

  3. Extensions to the time lag models for practical application to rocket engine stability design

    NASA Astrophysics Data System (ADS)

    Casiano, Matthew J.

    models. This new feature shows that the injector boundary can play a significant role for combustion stability, especially for gaseous injection systems or a system with an injector orifice on the order of the size of the chamber. The second new model additionally accounts for resistive effects. Advanced signal analysis techniques are used to extract frequency-dependent damping from a gas generator component data set. The damping values are then used in the new stability model to more accurately represent the chamber response of the component. The results show a more realistic representation of stability margin by incorporating the appropriate damping effects into the chamber response from data. The original Crocco model, a contemporary model, and the two new models are all compared and contrasted to a marginally stable test case showing their applicability. The model that incorporates resistive aspects shows the best comparison to the test data. Parametrics are also examined to show the influence of the new features and their applicability. The new features allow a more accurate representation of stability margin to be obtained. The third new model is an extension to the Wenzel and Szuch double-time lag chug model. The feed system chug model is extended to account for generic propellant flow rates. This model is also extended to incorporate aspects due to oxygen boiling and helium injection in the feed system. The solutions to the classic models, for the single-time lag and the double-time lag models, are often plotted on a practical engine operating map, however the models have presented some difficulties for numerical algorithms for several reasons. Closed-form solutions for use on these practical operating maps are formulated and developed. These models are incorporated in a graphical user interface tool and the new model is compared to an extensive data set. It correctly predicts the stability behavior at various operating conditions incorporating the influence of

  4. The role of Soil Water Retention Curve in slope stability analysis in unsaturated and heterogeneous soils.

    NASA Astrophysics Data System (ADS)

    Antinoro, Chiara; Arnone, Elisa; Noto, Leonardo V.

    2015-04-01

    The mechanisms of rainwater infiltration causing slope instability had been analyzed and reviewed in many scientific works. Rainwater infiltration into unsaturated soil increases the degree of saturation, hence affecting the shear strength properties and thus the probability of slope failure. It has been widely proved that the shear strength properties change with the soil water suction in unsaturated soils; therefore, the accuracy to predict the relationship between soil water content and soil water suction, parameterized by the soil-water characteristic curve, has significant effects on the slope stability analysis. The aim of this study is to investigate how the characterization of SWRC of differently structured unsaturated soils affects the slope stability on a simple infinite slope. In particular, the unimodal and bimodal distributions of the soil pore size were compared. Samples of 40 soils, highly different in terms of structure and texture, were collected and used to calibrate two bimodal SWRCs, i.e. Ross and Smettem (1993) and Dexter et al., (2008). The traditional unimodal van Genuchten (1980) model was also applied for comparison. Slope stability analysis was conducted in terms of Factor of Safety (FS) by applying the infinite slope model for unsaturated soils. In the used formulation, the contribution of the suction effect is tuned by a parameter 'chi' in a rate proportional to the saturation conditions. Different parameterizations of this term were also compared and analyzed. Results indicated that all three SWRC models showed good overall performance in fitting the sperimental SWRCs. Both the RS and DE models described adequately the water retention data for soils with a bimodal behavior confirmed from the analysis of pore size distribution, but the best performance was obtained by DE model confirmed. In terms of FS, the tree models showed very similar results as soil moisture approached to the saturated condition; however, within the residual zone

  5. Movement stability under uncertain internal models of dynamics.

    PubMed

    Crevecoeur, F; McIntyre, J; Thonnard, J-L; Lefèvre, P

    2010-09-01

    Sensory noise and feedback delay are potential sources of instability and variability for the on-line control of movement. It is commonly assumed that predictions based on internal models allow the CNS to anticipate the consequences of motor actions and protect the movements from uncertainty and instability. However, during motor learning and exposure to unknown dynamics, these predictions can be inaccurate. Therefore a distinct strategy is necessary to preserve movement stability. This study tests the hypothesis that in such situations, subjects adapt the speed and accuracy constraints on the movement, yielding a control policy that is less prone to undesirable variability in the outcome. This hypothesis was tested by asking subjects to hold a manipulandum in precision grip and to perform single-joint, discrete arm rotations during short-term exposure to weightlessness (0 g), where the internal models of the limb dynamics must be updated. Measurements of grip force adjustments indicated that the internal predictions were altered during early exposure to the 0 g condition. Indeed, the grip force/load force coupling reflected that the grip force was less finely tuned to the load-force variations at the beginning of the exposure to the novel gravitational condition. During this learning period, movements were slower with asymmetric velocity profiles and target undershooting. This effect was compared with theoretical results obtained in the context of optimal feedback control, where changing the movement objective can be directly tested by adjusting the cost parameters. The effect on the simulated movements quantitatively supported the hypothesis of a change in cost function during early exposure to a novel environment. The modified optimization criterion reduces the trial-to-trial variability in spite of the fact that noise affects the internal prediction. These observations support the idea that the CNS adjusts the movement objective to stabilize the movement when

  6. Stability of equilibria of a predator-prey model of phenotype evolution.

    PubMed

    Cuadrado, Silvia

    2009-10-01

    We consider a selection mutation predator-prey model for the distribution of individuals with respect to an evolutionary trait. Local stability of the equilibria of this model is studied using the linearized stability principle and taking advantage of the (assumed) asymptotic stability of the equilibria of the resident population adopting an evolutionarily stable strategy.

  7. Analysis of Faint Glints from Stabilized GEO Satellites

    NASA Astrophysics Data System (ADS)

    Hall, D.; Kervin, P.

    2013-09-01

    Ground-based telescopes routinely acquire temporal brightness measurements of satellites in geo-stationary and geo-synchronous orbit that provide valuable characterization information. For instance, GEO satellites that are not stabilized tend to rotate, and produce brightnesses that vary in time with frequencies corresponding to rotation rates. Temporal brightness patterns can also be exploited to characterize stabilized GEO satellites. For example, many operational GEO satellites have solar panels that glint when they reflect sunlight towards an observer in a mirror-like fashion. These well-known solar panel glints can be remarkably bright, often exceeding several stellar magnitudes in amplitude. Measured brightnesses and times of these glints can be exploited to estimate the size, segmentation, and alignment of the solar array, valuable information about the satellite's power generation and consumption capabilities. However, satellites can produce other glints in addition to those originating from solar panels. These glints can be much fainter, with amplitudes as small as 0.2 magnitudes. Several observations of GEO satellites show several such glints occurring during the span of a single night. Furthermore, many of these recur from night to night when observed from a single ground-based site, but with subtle, incremental changes in both peak times and brightnesses. These fainter glints must originate from reflective elements mounted on the satellite's main bus, solar panel structure, or other peripheral structures that might be stationary or moving with respect to the main bus. Our analysis indicates that such glints can be exploited for GEO satellite characterization.

  8. Core Stability in Athletes: A Critical Analysis of Current Guidelines.

    PubMed

    Wirth, Klaus; Hartmann, Hagen; Mickel, Christoph; Szilvas, Elena; Keiner, Michael; Sander, Andre

    2017-03-01

    Over the last two decades, exercise of the core muscles has gained major interest in professional sports. Research has focused on injury prevention and increasing athletic performance. We analyzed the guidelines for so-called functional strength training for back pain prevention and found that programs were similar to those for back pain rehabilitation; even the arguments were identical. Surprisingly, most exercise specifications have neither been tested for their effectiveness nor compared with the load specifications normally used for strength training. Analysis of the scientific literature on core stability exercises shows that adaptations in the central nervous system (voluntary activation of trunk muscles) have been used to justify exercise guidelines. Adaptations of morphological structures, important for the stability of the trunk and therefore the athlete's health, have not been adequately addressed in experimental studies or in reviews. In this article, we explain why the guidelines created for back pain rehabilitation are insufficient for strength training in professional athletes. We critically analyze common concepts such as 'selective activation' and training on unstable surfaces.

  9. Bifurcation analysis of aircraft pitching motions near the stability boundary

    NASA Technical Reports Server (NTRS)

    Hui, W. H.; Tobak, M.

    1984-01-01

    Bifuraction theory is used to analyze the nonlinear dynamic stability characteristics of an aircraft subject to single degree of freedom pitching-motion perturbations about a large mean angle of attack. The requisite aerodynamic information in the equations of motion is represented in a form equivalent to the response to finite-amplitude pitching oscillations about the mean angle of attack. This information is deduced from the case of infinitesimal-amplitude oscillations. The bifurcation theory analysis reveals that when the mean angle of attack is increased beyond a critical value at which the aerodynamic damping vanishes, new solutions representing finite-amplitude periodic motions bifurcate from the previously stable steady motion. The sign of a simple criterion, cast in terms of aerodynamic properties, determines whether the bifurcating solutions are stable (supercritical) or unstable (subcritical). For flat-plate airfoils flying at supersonic/hypersonic speed, the bifurcation is subcritical, implying either that exchanges of stability between steady and periodic motion are accompanied by hysteresis phenomena, or that potentially large aperiodic departures from steady motion may develop.

  10. Influence of atmospheric stability on model wind turbine wake interface

    NASA Astrophysics Data System (ADS)

    Taylor, Amelia; Gomez, Virgilio; Novoa, Santiago; Pol, Suhas; Westergaard, Carsten; Castillo, Luciano

    2014-11-01

    Differences in wind turbine wake deficit recovery for various atmospheric stability conditions (stratification) have been attributed to turbulence intensity levels at different conditions. It is shown that buoyancy differences at the wind turbine wake interface should be considered in addition to varying turbulence intensity to describe the net momentum transport across the wake interface. Mixing, induced by tip and hub vortices or wake swirl, induces these buoyancy differences. The above hypothesis was tested using field measurements of the wake interface for a 1.17 m model turbine installed at 6.25 m hub height. Atmospheric conditions were characterized using a 10 m meteorological tower upstream of the turbine, while a vertical rake of sonic anemometers clustered around the hub height on a downstream tower measured the wake. Data was collected over the course of seven months, during varying stability conditions, and with five different turbine configurations - including a single turbine at three different positions, two turbines in a column, and three turbines in a column. Presented are results showing the behavior of the wake (particularly the wake interface), for unstable, stable, and neutral conditions. We observed that the swirl in the wake causes mixing of the inflow, leading to a constant density profile in the far wake that causes density jumps at the wake interfaces for stratified inflow.

  11. Absolute Stability Analysis of a Phase Plane Controlled Spacecraft

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Plummer, Michael; Bedrossian, Nazareth; Hall, Charles; Jackson, Mark; Spanos, Pol

    2010-01-01

    Many aerospace attitude control systems utilize phase plane control schemes that include nonlinear elements such as dead zone and ideal relay. To evaluate phase plane control robustness, stability margin prediction methods must be developed. Absolute stability is extended to predict stability margins and to define an abort condition. A constrained optimization approach is also used to design flex filters for roll control. The design goal is to optimize vehicle tracking performance while maintaining adequate stability margins. Absolute stability is shown to provide satisfactory stability constraints for the optimization.

  12. Analysis of cavern stability at the Bryan Mound SPR site.

    SciTech Connect

    Ehgartner, Brian L.; Sobolik, Steven Ronald

    2009-04-01

    This report presents computational analyses that simulate the structural response of caverns at the Strategic Petroleum Reserve Bryan Mound site. The cavern field comprises 20 caverns. Five caverns (1, 2, 4, and 5; 3 was later plugged and abandoned) were acquired from industry and have unusual shapes and a history dating back to 1946. The other 16 caverns (101-116) were leached according to SPR standards in the mid-1980s and have tall cylindrical shapes. The history of the caverns and their shapes are simulated in a 3-D geomechanics model of the site that predicts deformations, strains, and stresses. Future leaching scenarios due to oil drawdowns using fresh water are also simulated by increasing the volume of the caverns. Cavern pressures are varied in the model to capture operational practices in the field. The results of the finite element model are interpreted to provide information on the current and future status of subsidence, well integrity, and cavern stability. The most significant result in this report is relevant to caverns 1, 2, and 5. The caverns have non-cylindrical shapes and have potential regions where the surrounding salt may be damaged during workover procedures. During a workover the normal cavern operating pressure is lowered to service a well. At this point the wellhead pressures are atmospheric. When the workover is complete, the cavern is repressurized. The resulting elastic stresses are sufficient to cause tension and large deviatoric stresses at several locations. With time, these stresses relax to a compressive state due to salt creep. However, the potential for salt damage and fracturing exists. The analyses predict tensile stresses at locations with sharp-edges in the wall geometry, or in the case of cavern 5, in the neck region between the upper and lower lobes of the cavern. The effects do not appear to be large-scale, however, so the only major impact is the potential for stress-induced salt falls in cavern 5, potentially leading to

  13. The Least Squares Stochastic Finite Element Method in Structural Stability Analysis of Steel Skeletal Structures

    NASA Astrophysics Data System (ADS)

    Kamiński, M.; Szafran, J.

    2015-05-01

    The main purpose of this work is to verify the influence of the weighting procedure in the Least Squares Method on the probabilistic moments resulting from the stability analysis of steel skeletal structures. We discuss this issue also in the context of the geometrical nonlinearity appearing in the Stochastic Finite Element Method equations for the stability analysis and preservation of the Gaussian probability density function employed to model the Young modulus of a structural steel in this problem. The weighting procedure itself (with both triangular and Dirac-type) shows rather marginal influence on all probabilistic coefficients under consideration. This hybrid stochastic computational technique consisting of the FEM and computer algebra systems (ROBOT and MAPLE packages) may be used for analogous nonlinear analyses in structural reliability assessment.

  14. A Note on Local Stability Conditions for Two Types of Monetary Models with Recursive Utility

    NASA Astrophysics Data System (ADS)

    Miyazaki, Kenji; Utsunomiya, Hitoshi

    2009-09-01

    This note explores local stability conditions for money-in-utility-function (MIUF) and transaction-costs (TC) models with recursive utility. Although Chen et al. [Chen, B.-L., M. Hsu, and C.-H. Lin, 2008, Inflation and growth: impatience and a qualitative equivalent, Journal of Money, Credit, and Banking, Vol. 40, No. 6, 1310-1323] investigated the relationship between inflation and growth in MIUF and TC models with recursive utility, they conducted only a comparative static analysis in a steady state. By establishing sufficient conditions for local stability, this note proves that impatience should be increasing in consumption and real balances. Increasing impatience, although less plausible from an empirical point of view, receives more support from a theoretical viewpoint.

  15. Does mutual interference always stabilize predator-prey dynamics? A comparison of models.

    PubMed

    Arditi, Roger; Callois, Jean-Marc; Tyutyunov, Yuri; Jost, Christian

    2004-11-01

    Based on a qualitative analysis of ODE systems, the dynamic properties of alternative predator-prey models with predator-dependent functional response have been compared in order to study the role that predator interference plays in the stabilisation of trophic systems. The models considered for interference have different mathematical expressions and different conceptual foundations. Despite these differences, they give essentially the same qualitative results: when interference is low, increasing it has a positive effect on asymptotic stability and thus on the resilience of the biological system. When it is high, it is the contrary (with logistic prey growth, increasing the interference parameter ensures stability but leads to very small predator densities). Possible consequences on the evolution of the interference level in real ecosystems are discussed.

  16. Exploring stability of entropy analysis for signal with different trends

    NASA Astrophysics Data System (ADS)

    Zhang, Yin; Li, Jin; Wang, Jun

    2017-03-01

    Considering the effects of environment disturbances and instrument systems, the actual detecting signals always are carrying different trends, which result in that it is difficult to accurately catch signals complexity. So choosing steady and effective analysis methods is very important. In this paper, we applied entropy measures-the base-scale entropy and approximate entropy to analyze signal complexity, and studied the effect of trends on the ideal signal and the heart rate variability (HRV) signals, that is, linear, periodic, and power-law trends which are likely to occur in actual signals. The results show that approximate entropy is unsteady when we embed different trends into the signals, so it is not suitable to analyze signal with trends. However, the base-scale entropy has preferable stability and accuracy for signal with different trends. So the base-scale entropy is an effective method to analyze the actual signals.

  17. Stability analysis of three species food chain with competition

    NASA Astrophysics Data System (ADS)

    Abadi, Savitri, D.

    2015-03-01

    We study a food chain system that consists of 1 prey and 2 predators populations. The prey population grows logistically while the predators apply different Holling functional responses. The first predator preys on the prey following Holling type II functional response and the second predator preys on both the prey and the first predator following Holling type II and III functional responses, respectively. The study starts with the stability analysis of critical points of the systems. Then, by using normal form and centre manifold method the information about other nontrivial solutions due to bifurcation including possible limit cycles appearance is obtained. The results are confirmed by numerical simulation using MatCont and biological interpretation of the results are also presented.

  18. Symplectic maps for the n-body problem - Stability analysis

    NASA Technical Reports Server (NTRS)

    Wisdom, Jack; Holman, Matthew

    1992-01-01

    The stability of new symplectic n-body maps is examined from the point of view of nonlinear dynamics. The resonances responsible for the principal artifacts are identified. These are resonances between the stepsize and the difference of mean motions between pairs of planets. For larger stepsizes resonant perturbations are evident in the variation of the energy of the system corresponding to these stepsize resonances. It is shown that the principal instability of the method can be predicted and corresponds to the overlap of the stepsize resonances. It is noted that the analysis suggests that other artifacts will occur. For example, the overlap of a stepsize resonance with a resonance of the actual system may also give a region of chaotic behavior that is an artifact. It is pointed out that the fact that the principal artifacts corresponds to a particular set of stepsize resonances suggests that it may be possible to perturbatively remove the effect when the stepsize resonances are nonoverlapping.

  19. Stability Analysis of the Planetary System Orbiting Upsilon Andromedae

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Rivera, Eugenio J.; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    We present results of long-term numerical orbital integrations designed to test the stability of the three-planet system orbiting Upsilon Andromedae and short-term integrations to test whether mutual perturbations among the planets can be used to determine planetary masses. Our initial conditions are based on the latest fits to the radial velocity data obtained by the planet-search group at Lick Observatory. The new fits result in significantly more stable systems than did the initially announced planetary parameters. An analytic analysis of the star and the two outer planets shows that this subsystem is Hill stable up to five. Our integrations involving all three planets show that the system is stable for at least 100 Myr for up to four. In our simulations, we still see a secular resonance between the outer two planets and in some cases large oscillations in the eccentricity of the inner planet.

  20. Vacuum Stability in Kaluza-Klein Geometric Sigma Models

    NASA Astrophysics Data System (ADS)

    Vasilić, M.

    2002-09-01

    In Kaluza-Klein geometric sigma models, the scalar fields coupled to higher-dimensional gravity are pure gauge. The gauge fixed theory contains no matter fields, and can consistently be reduced to 4 dimensions, provided the internal space is chosen in the form of a group manifold. The effective 4-dimensional theory includes standard Einstein and Yang-Mills sectors, and is free of the classical cosmological constant problem. In this paper, the stability of the internal excitations is analyzed. It is shown that the initial Lagrangian can be modified to lead to a classically stable effective 4-dimensional theory, independently of the particular group used, and retaining all the basic features of the unmodified theory.

  1. Stability of Li-carbon materials: a molecular modeling study

    NASA Astrophysics Data System (ADS)

    Nicolau, Dan V.

    2004-03-01

    Materials with exceptionally high content of carbon are used in technologies with various degrees of added value, from quasi-amorphous materials for carbon electrodes used in e.g. lithium batteries to highly-organized materials comprising e.g. nanotubes and fullerenes. The present study aims to test the feasibility of predicting the properties of carbon based materials using (i) molecular modeling and simulation techniques for prediction of compositional stability; and (ii) experimental data regarding materials used for lithium batteries as validation data. It has been found that a higher H/C atomic ratio has a complex influence on lithium uptake. The decrease of the number of the aromatic rings will limit the number of lithium ions allowed in the pore and the increase in pore flexibility will induce a more energetically favorable mechanism for lithium ions uptake (folding/house-of-cards formation against pore expansion).

  2. Biomechanical Stability of Juvidur and Bone Models on Osteosyntesic Materials

    PubMed Central

    Grubor, Predrag; Mitković, Milorad; Grubor, Milan; Mitković, Milan; Meccariello, Luigi; Falzarano, Gabriele

    2016-01-01

    Introduction: Artificial models can be useful at approximate and qualitative research, which should give the preliminary results. Artificial models are usually made of photo-elastic plastic e.g.. juvidur, araldite in the three-dimensional contour shape of the bone. Anatomical preparations consist of the same heterogeneous, structural materials with extremely anisotropic and unequal highly elastic characteristics, which are embedded in a complex organic structure. The aim of the study: Examine the budget voltage and deformation of: dynamic compression plate (DCP), locking compression plate (LCP), Mitkovic internal fixator (MIF), Locked intramedullary nailing (LIN) on the compressive and bending forces on juvidur and veal bone models and compared the results of these two methods (juvidur, veal bone). Material and Methods: For the experimental study were used geometrically identical, anatomically shaped models of Juvidur and veal bones diameter of 30 mm and a length of 100 mm. Static tests were performed with SHIMADZU AGS-X testing machine, where the force of pressure (compression) increased from 0 N to 500 N, and then conducted relief. Bending forces grew from 0 N to 250 N, after which came into sharp relief. Results: On models of juvidur and veal bones studies have confirmed that uniform stability at the site of the fracture MIF with a coefficient ranking KMIF=0,1971, KLIN=0,2704, KDCP=0,2727 i KLCP=0,5821. Conclusion: On models of juvidur and veal bones working with Shimadzu AGS-X testing machine is best demonstrated MIF with a coefficient of 0.1971. PMID:27708489

  3. Linear stability analysis of Clarke-Riley diffusion flames

    NASA Astrophysics Data System (ADS)

    Gomez-Lendinez, Daniel; Coenen, Wilfried; Sanchez, Antonio L.

    2016-11-01

    The buoyancy-driven laminar flow associated with the Burke-Schumann diffusion flame developing from the edge of a semi-infinite horizontal fuel surface burning in a quiescent oxidizing atmosphere displays a self-similar structure, first described by Clarke and Riley (Journal of Fluid Mechanics, 74:415-431). Their analysis was performed for unity reactant Lewis numbers, with the viscosity and thermal conductivity taken to be linearly proportional to the temperature. Our work extends this seminal work by considering fuels with non-unity Lewis numbers and gas mixtures with a realistic power-law dependence of the different transport properties. The problem is formulated in terms of chemistry-free, Shvab-Zel'dovich, linear combinations of the temperature and reactant mass fractions, not changed directly by the reactions, as conserved scalars. The resulting self-similar base-flow solution is used in a linear stability analysis to determine the critical value of the boundary-layer thickness-measured by the local Grashof number-at which the flow becomes unstable, leading to the development of Görtler-like streamwise vortices. The analysis provides the dependence of the critical Grashof number on the relevant flame parameters.

  4. Stability analysis of implicit time discretizations for the Compton-scattering Fokker-Planck equation

    SciTech Connect

    Densmore, Jeffery D; Warsa, James S; Lowrie, Robert B; Morel, Jim E

    2008-01-01

    The Fokker-Planck equation is a widely used approximation for modeling the Compton scattering of photons in high energy density applications. In this paper, we perform a stability analysis of three implicit time discretizations for the Compton-Scattering Fokker-Planck equation. Specifically, we examine (i) a Semi-Implicit (SI) scheme that employs backward-Euler differencing but evaluates temperature-dependent coefficients at their beginning-of-time-step values, (ii) a Fully Implicit (FI) discretization that instead evaluates temperature-dependent coefficients at their end-of-time-step values, and (iii) a Linearized Implicit (LI) scheme, which is developed by linearizing the temperature dependence of the FI discretization within each time step. Our stability analysis shows that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solutions regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for sufficiently large time steps. With the results of this analysis, we present time-step limits for the SI scheme that prevent undesirable behavior. We test the validity of our stability analysis and time-step limits with a set of numerical examples.

  5. A new free-surface stabilization algorithm for geodynamical modelling: Theory and numerical tests

    NASA Astrophysics Data System (ADS)

    Andrés-Martínez, Miguel; Morgan, Jason P.; Pérez-Gussinyé, Marta; Rüpke, Lars

    2015-09-01

    The surface of the solid Earth is effectively stress free in its subaerial portions, and hydrostatic beneath the oceans. Unfortunately, this type of boundary condition is difficult to treat computationally, and for computational convenience, numerical models have often used simpler approximations that do not involve a normal stress-loaded, shear-stress free top surface that is free to move. Viscous flow models with a computational free surface typically confront stability problems when the time step is bigger than the viscous relaxation time. The small time step required for stability (< 2 Kyr) makes this type of model computationally intensive, so there remains a need to develop strategies that mitigate the stability problem by making larger (at least ∼10 Kyr) time steps stable and accurate. Here we present a new free-surface stabilization algorithm for finite element codes which solves the stability problem by adding to the Stokes formulation an intrinsic penalization term equivalent to a portion of the future load at the surface nodes. Our algorithm is straightforward to implement and can be used with both Eulerian or Lagrangian grids. It includes α and β parameters to respectively control both the vertical and the horizontal slope-dependent penalization terms, and uses Uzawa-like iterations to solve the resulting system at a cost comparable to a non-stress free surface formulation. Four tests were carried out in order to study the accuracy and the stability of the algorithm: (1) a decaying first-order sinusoidal topography test, (2) a decaying high-order sinusoidal topography test, (3) a Rayleigh-Taylor instability test, and (4) a steep-slope test. For these tests, we investigate which α and β parameters give the best results in terms of both accuracy and stability. We also compare the accuracy and the stability of our algorithm with a similar implicit approach recently developed by Kaus et al. (2010). We find that our algorithm is slightly more accurate

  6. Dynamics of microresonator frequency comb generation: models and stability

    NASA Astrophysics Data System (ADS)

    Hansson, Tobias; Wabnitz, Stefan

    2016-06-01

    Microresonator frequency combs hold promise for enabling a new class of light sources that are simultaneously both broadband and coherent, and that could allow for a profusion of potential applications. In this article, we review various theoretical models for describing the temporal dynamics and formation of optical frequency combs. These models form the basis for performing numerical simulations that can be used in order to better understand the comb generation process, for example helping to identify the universal combcharacteristics and their different associated physical phenomena. Moreover, models allow for the study, design and optimization of comb properties prior to the fabrication of actual devices. We consider and derive theoretical formalisms based on the Ikeda map, the modal expansion approach, and the Lugiato-Lefever equation. We further discuss the generation of frequency combs in silicon resonators featuring multiphoton absorption and free-carrier effects. Additionally, we review comb stability properties and consider the role of modulational instability as well as of parametric instabilities due to the boundary conditions of the cavity. These instability mechanisms are the basis for comprehending the process of frequency comb formation, for identifying the different dynamical regimes and the associated dependence on the comb parameters. Finally, we also discuss the phenomena of continuous wave bi- and multistability and its relation to the observation of mode-locked cavity solitons.

  7. Insights into enzyme catalysis from QM/MM modelling: transition state stabilization in chorismate mutase

    NASA Astrophysics Data System (ADS)

    Ranaghan, Kara E.; Ridder, Lars; Szefczyk, Borys; Sokalski, W. Andrzej; Hermann, Johannes C.; Mulholland, Adrian J.

    Chorismate mutase provides an important test of theories of enzyme catalysis, and of modelling methods. The Claisen rearrangement of chorismate to prephenate in the enzyme has been modelled here by a combined quantum mechanics/molecular mechanics (QM/MM) method. Several pathways have been calculated. The sensitivity of the results to details of model preparation and pathway calculation is tested, and the results are compared in detail to previous similar studies and experiments. The potential energy barrier for the enzyme reaction is estimated at 24.5-31.6 kcal mol-1 (AM1/CHARMM), and 2.7-11.9 kcal mol-1 with corrections (e.g. B3LYP/6-31+G(d)). In agreement with previous studies, the present analysis of the calculated paths provides unequivocal evidence of significant transition state stabilization by the enzyme, indicating that this is central to catalysis by the enzyme. The active site is exquisitely complementary to the transition state, stabilizing it more than the substrate, so reducing the barrier to reaction. A number of similar pathways for reaction exist in the protein, as expected. Small structural differences give rise to differences in energetic contributions. Major electrostatic contributions to transition state stabilization come in all cases from Arg90, Arg7, one or two water molecules, and Glu78 (Glu78 destabilizes the transition state less than the substrate), while Arg63 contributes significantly in one model.

  8. LHD Plasma Modeling and Theoretical Analysis

    NASA Astrophysics Data System (ADS)

    Yamazaki, Kozo; Nakajima, Noriyoshi; Murakami, Sadayoshi; Yokoyama, Masayuki

    The transport/heating modeling and equilibrium/stability analysis have been carried out for LHD (Large Helical Device) plasmas. A new simulation code TOTAL (TOroidal Transport Analysis Linkage) is developed, which consists of the 3-dimensional equilibrium code VMEC including bootstrap current and 1-dimensional transport code HTRANS including helical-ripple transport determined as well as anomalous transport. This code clarified the favorable effect of bootstrap current on the neoclassical confinement in LHD. The 3-dimensional stability analysis using CAS3D code has been done and clarified the ballooning mode structure peculiar to the LHD high-beta plasmas. The 5-dimensional simulation code has been developed to analyze the NBI or ECH heating power depositions in LHD plasmas, and the particle orbit effects of high-energy particles are clarified. The plasma rotation analysis is also carried out related to the possibility of the electric-field transition and the plasma confinement improvement in LHD.

  9. Stability analysis of a natural circulation lead-cooled fast reactor

    NASA Astrophysics Data System (ADS)

    Lu, Qiyue

    This dissertation is aimed at nuclear-coupled thermal hydraulics stability analysis of a natural circulation lead cooled fast reactor design. The stability concerns arise from the fact that natural circulation operation makes the system susceptible to flow instabilities similar to those observed in boiling water reactors. In order to capture the regional effects, modal expansion method which incorporates higher azimuthal modes is used to model the neutronics part of the system. A reduced order model is used in this work for the thermal-hydraulics. Consistent with the number of heat exchangers (HXs), the reactor core is divided into four equal quadrants. Each quadrant has its corresponding external segments such as riser, plenum, pipes and HX forming an equivalent 1-D closed loop. The local pressure loss along the loop is represented by a lumped friction factor. The heat transfer process in the HX is represented by a model for the coolant temperature at the core inlet that depends on the coolant temperature at the core outlet and the coolant velocity. Additionally, time lag effects are incorporated into this HX model due to the finite coolant speed. A conventional model is used for the fuel pin heat conduction to couple the neutronics and thermal-hydraulics. The feedback mechanisms include Doppler, axial/radial thermal expansion and coolant density effects. These effects are represented by a linear variation of the macroscopic cross sections with the fuel temperature. The weighted residual method is used to convert the governing PDEs to ODEs. Retaining the first and second modes, leads to six ODEs for neutronics, and five ODEs for the thermal-hydraulics in each quadrant. Three models are developed. These are: 1) natural circulation model with a closed coolant flow path but without coupled neutronics, 2) forced circulation model with constant external pressure drop across the heated channels but without coupled neutronics, 3) coupled system including neutronics with

  10. Quantitation of protein–protein interactions by thermal stability shift analysis

    PubMed Central

    Layton, Curtis J; Hellinga, Homme W

    2011-01-01

    Thermal stability shift analysis is a powerful method for examining binding interactions in proteins. We demonstrate that under certain circumstances, protein–protein interactions can be quantitated by monitoring shifts in thermal stability using thermodynamic models and data analysis methods presented in this work. This method relies on the determination of protein stabilities from thermal unfolding experiments using fluorescent dyes such as SYPRO Orange that report on protein denaturation. Data collection is rapid and straightforward using readily available real-time polymerase chain reaction instrumentation. We present an approach for the analysis of the unfolding transitions corresponding to each partner to extract the affinity of the interaction between the proteins. This method does not require the construction of a titration series that brackets the dissociation constant. In thermal shift experiments, protein stability data are obtained at different temperatures according to the affinity- and concentration-dependent shifts in unfolding transition midpoints. Treatment of the temperature dependence of affinity is, therefore, intrinsic to this method and is developed in this study. We used the interaction between maltose-binding protein (MBP) and a thermostable synthetic ankyrin repeat protein (Off7) as an experimental test case because their unfolding transitions overlap minimally. We found that MBP is significantly stabilized by Off7. High experimental throughput is enabled by sample parallelization, and the ability to extract quantitative binding information at a single partner concentration. In a single experiment, we were able to quantify the affinities of a series of alanine mutants, covering a wide range of affinities (∼ 100 nM to ∼ 100 μM). PMID:21674662

  11. Quantitative analysis of the ion-dependent folding stability of DNA triplexes

    NASA Astrophysics Data System (ADS)

    Chen, Gengsheng; Chen, Shi-Jie

    2011-12-01

    A DNA triplex is formed through binding of a third strand to the major groove of a duplex. Due to the high charge density of a DNA triplex, metal ions are critical for its stability. We recently developed the tightly bound ion (TBI) model for ion-nucleic acids interactions. The model accounts for the potential correlation and fluctuations of the ion distribution. We now apply the TBI model to analyze the ion dependence of the thermodynamic stability for DNA triplexes. We focus on two experimentally studied systems: a 24-base DNA triplex and a pair of interacting 14-base triplexes. Our theoretical calculations for the number of bound ions indicate that the TBI model provides improved predictions for the number of bound ions than the classical Poisson-Boltzmann (PB) equation. The improvement is more significant for a triplex, which has a higher charge density than a duplex. This is possibly due to the higher ion concentration around the triplex and hence a stronger ion correlation effect for a triplex. In addition, our analysis for the free energy landscape for a pair of 14-mer triplexes immersed in an ionic solution shows that divalent ions could induce an attractive force between the triplexes. Furthermore, we investigate how the protonated cytosines in the triplexes affect the stability of the triplex helices.

  12. Quantitative analysis of the ion-dependent folding stability of DNA triplexes.

    PubMed

    Chen, Gengsheng; Chen, Shi-Jie

    2011-12-01

    A DNA triplex is formed through binding of a third strand to the major groove of a duplex. Due to the high charge density of a DNA triplex, metal ions are critical for its stability. We recently developed the tightly bound ion (TBI) model for ion-nucleic acids interactions. The model accounts for the potential correlation and fluctuations of the ion distribution. We now apply the TBI model to analyze the ion dependence of the thermodynamic stability for DNA triplexes. We focus on two experimentally studied systems: a 24-base DNA triplex and a pair of interacting 14-base triplexes. Our theoretical calculations for the number of bound ions indicate that the TBI model provides improved predictions for the number of bound ions than the classical Poisson-Boltzmann (PB) equation. The improvement is more significant for a triplex, which has a higher charge density than a duplex. This is possibly due to the higher ion concentration around the triplex and hence a stronger ion correlation effect for a triplex. In addition, our analysis for the free energy landscape for a pair of 14-mer triplexes immersed in an ionic solution shows that divalent ions could induce an attractive force between the triplexes. Furthermore, we investigate how the protonated cytosines in the triplexes affect the stability of the triplex helices.

  13. Stability analysis of multiple-robot control systems

    NASA Technical Reports Server (NTRS)

    Wen, John T.; Kreutz, Kenneth

    1989-01-01

    In a space telerobotic service scenario, cooperative motion and force control of multiple robot arms are of fundamental importance. Three paradigms to study this problem are proposed. They are distinguished by the set of variables used for control design. They are joint torques, arm tip force vectors, and an accelerated generalized coordinate set. Control issues related to each case are discussed. The latter two choices require complete model information, which presents practical modeling, computational, and robustness problems. Therefore, focus is on the joint torque control case to develop relatively model independent motion and internal force control laws. The rigid body assumption allows the motion and force control problems to be independently addressed. By using an energy motivated Lyapunov function, a simple proportional derivative plus gravity compensation type of motion control law is always shown to be stabilizing. The asymptotic convergence of the tracing error to zero requires the use of a generalized coordinate with the contact constraints taken into account. If a non-generalized coordinate is used, only convergence to a steady state manifold can be concluded. For the force control, both feedforward and feedback schemes are analyzed. The feedback control, if proper care has been taken, exhibits better robustness and transient performance.

  14. Stability properties of surfactant-free thin films at different ionic strengths: measurements and modeling.

    PubMed

    Lech, Frederik J; Wierenga, Peter A; Gruppen, Harry; Meinders, Marcel B J

    2015-03-10

    Foam lamellae are the smallest structural elements in foam. Such lamellae can experimentally be studied by analysis of thin liquid films in glass cells. These thin liquid films usually have to be stabilized against rupture by surface active substances, such as proteins or low molecular weight surfactants. However, horizontal thin liquid films of pure water with a radius of 100 μm also show remarkable stability when created in closed Sheludko cells. To understand thin film stability of surfactant-free films, the drainage behavior and rupture times of films of water and NaCl solutions were determined. The drainage was modeled with an extended Derjaguin-Landau-Verwey-Overbeek (DLVO) model, which combines DLVO and hydrophobic contributions. Good correspondence between experiment and theory is observed, when hydrophobic interactions are included, with fitted values for surface potential (ψ(0,water)) of -60 ± 5 mV, hydrophobic strength (B(hb,water)) of 0.22 ± 0.02 mJ/m(2), and a range of the hydrophobic interaction (λ(hb, water)) of 15 ± 1 nm in thin liquid films. In addition, Vrij's rupture criterion was successfully applied to model the stability regions and rupture times of the films. The films of pure water are stable over long time scales (hours) and drain to a final thickness >40 nm if the concentration of electrolytes is low (resistivity 18.2 MQ). With increasing amounts of ions (NaCl) the thin films drain to <40 nm thickness and the rupture stability of the films is reduced from hours to seconds.

  15. Unstalled flutter stability predictions and comparisons to test data for a composite prop-fan model

    NASA Technical Reports Server (NTRS)

    Turnberg, J. E.

    1986-01-01

    The aeroelastic stability analyses for three graphite/epoxy composite Prop-Fan designs and post-test stability analysis for one of the designs, the SR-3C-X2 are presented. It was shown that Prop-Fan stability can be effectively analyzed using the F203 modal aeroelastic stability analysis developed at Hamilton Standard and that first mode torsion-bending coupling has a direct effect on blade stability. Positive first mode torsion-bending coupling is a destabilizing factor and the minimization of this parameter will increase Prop-Fan stability. It was also shown that Prop-Fan stability analysis using F203 is sensitive to the blade modal data used as input. Calculated blade modal properties varied significantly with the structural analysis used, and these variations are reflected in the F203 calculations.

  16. AIR Model Preflight Analysis

    NASA Technical Reports Server (NTRS)

    Tai, H.; Wilson, J. W.; Maiden, D. L.

    2003-01-01

    The atmospheric ionizing radiation (AIR) ER-2 preflight analysis, one of the first attempts to obtain a relatively complete measurement set of the high-altitude radiation level environment, is described in this paper. The primary thrust is to characterize the atmospheric radiation and to define dose levels at high-altitude flight. A secondary thrust is to develop and validate dosimetric techniques and monitoring devices for protecting aircrews. With a few chosen routes, we can measure the experimental results and validate the AIR model predictions. Eventually, as more measurements are made, we gain more understanding about the hazardous radiation environment and acquire more confidence in the prediction models.

  17. A multiloop generalization of the circle criterion for stability margin analysis

    NASA Technical Reports Server (NTRS)

    Safonov, M. G.; Athans, M.

    1979-01-01

    In order to provide a theoretical tool suited for characterizing the stability margins of multiloop feedback systems, multiloop input-output stability results generalizing the circle stability criterion are considered. Generalized conic sectors with 'centers' and 'radii' determined by linear dynamical operators are employed to specify the stability margins as a frequency dependent convex set of modeling errors (including nonlinearities, gain variations and phase variations) which the system must be able to tolerate in each feedback loop without instability. The resulting stability criterion gives sufficient conditions for closed loop stability in the presence of frequency dependent modeling errors, even when the modeling errors occur simultaneously in all loops. The stability conditions yield an easily interpreted scalar measure of the amount by which a multiloop system exceeds, or falls short of, its stability margin specifications.

  18. Implementation of a capsular bag model to enable sufficient lens stabilization within a mechanical eye model

    NASA Astrophysics Data System (ADS)

    Bayer, Natascha; Rank, Elisabet; Traxler, Lukas; Beckert, Erik; Drauschke, Andreas

    2015-03-01

    Cataract still remains the leading cause of blindness affecting 20 million people worldwide. To restore the patients vision the natural lens is removed and replaced by an intraocular lens (IOL). In modern cataract surgery the posterior capsular bag is maintained to prevent inflammation and to enable stabilization of the implant. Refractive changes following cataract surgery are attributable to lens misalignments occurring due to postoperative shifts and tilts of the artificial lens. Mechanical eye models allow a preoperative investigation of the impact of such misalignments and are crucial to improve the quality of the patients' sense of sight. Furthermore, the success of sophisticated IOLs that correct high order aberrations is depending on a critical evaluation of the lens position. A new type of an IOL holder is designed and implemented into a preexisting mechanical eye model. A physiological representation of the capsular bag is realized with an integrated film element to guarantee lens stabilization and centering. The positioning sensitivity of the IOL is evaluated by performing shifts and tilts in reference to the optical axis. The modulation transfer function is used to measure the optical quality at each position. Lens stability tests within the holder itself are performed by determining the modulation transfer function before and after measurement sequence. Mechanical stability and reproducible measurement results are guaranteed with the novel capsular bag model that allows a precise interpretation of postoperative lens misalignments. The integrated film element offers additional stabilization during measurement routine without damaging the haptics or deteriorating the optical performance.

  19. Analysis of a Major Electric Grid -- Stability and Adaptive Protection

    NASA Astrophysics Data System (ADS)

    Alanzi, Sultan

    system conditions. This dissertation introduces a combination of quadrilateral and mho characteristics to create a distance relay with a mushroom shape in R-X diagrams. This new relay offers larger protective reach with a lower limitation on loadability. When major disturbances occur, the power balance between load and generation might be disturbed causing the generators to lose synchronism (to be out-of-step) with each other. Out-of-step protection against power swings is essential to provide supervising signals for distance relays to mitigate the effects of the disturbance. A new R-X criterion is proposed to identify out-of-step conditions for large and complex power systems, such as KEG. A proposed Adaptive Out-of-Step Relay (AOSR) will monitor power system conditions and adjust the relay reach accordingly for better power swing classification. When unstable swings are detected, controllable tripping signals are initiated and system separation will create small subsystems or islands of the power system. These smaller systems will be created to achieve a balance of load and available generation. The electric power system chosen to study and to illustrate the criteria for the proposed adaptive relays was that of the country of Kuwait. The small oil-rich country of Kuwait has been dealing with an electric energy crisis that started summer 2006. With a dry dessert climate and intensely hot summers, the 3.6 million residents of Kuwait depend on continuously operated A/C units for living. This is the major reason why the peak load in a summer month reaches almost 11,000 MW while the peak load in a winter month does not exceed 5,000 MW. The Kuwait Electric Grid (KEG) is modelled and analyzed using Power Analytics' software known as PaladinRTM DesignBase(TM). Performance studies produce data to examine distance and out-of-step protection. Power Flow (PF), Short Circuit Analysis (SCA), and Transient Stability Analysis (TSA) are used to verify the model of KEG. These studies

  20. A parabolized stability analysis of a trailing vortex wake

    NASA Astrophysics Data System (ADS)

    Edstrand, Adam; Schmid, Peter; Taira, Kunihiko; Cattafesta, Louis

    2016-11-01

    To aid in understanding how best to control a trailing vortex, we perform a parabolized stability analysis on a flow past a wing at a chord-based Reynolds number of 1000. At the upstream position, the wake instability branch dominates, with only a single vortex instability present in the spectrum. With downstream progression, the growth rate of the wake instability decays, but remains unstable 10 chords downstream. With the wake mode being unstable so far downstream, these results imply that the excitation of the wake instability, despite the varying base flow, will continue to see growth and potentially disrupt the trailing vortex. Conversely, the vortex instability in its formative region rapidly decays to the stable half-plane, then at 11 chords downstream becomes unstable again. We hypothesized the renewed instability growth far downstream is developing as a result of vortex instabilities, however the excitation of these instabilities proves to be challenging in the vortex far field. From these results, control near the two-dimensional wake behind the airfoil may better interfere with the trailing vortex formation; however, to determine the optimal disturbances, an adjoint analysis is required and is included in the future work of the project. ONR Grants N00014-10-1-0832 and N00014-15-1-2403.

  1. Efficient randomized methods for stability analysis of fluids systems

    NASA Astrophysics Data System (ADS)

    Dawson, Scott; Rowley, Clarence

    2016-11-01

    We show that probabilistic algorithms that have recently been developed for the approximation of large matrices can be utilized to numerically evaluate the properties of linear operators in fluids systems. In particular, we present an algorithm that is well suited for optimal transient growth (i.e., nonmodal stability) analysis. For non-normal systems, such analysis can be important for analyzing local regions of convective instability, and in identifying high-amplitude transients that can trigger nonlinear instabilities. Our proposed algorithms are easy to wrap around pre-existing timesteppers for linearized forward and adjoint equations, are highly parallelizable, and come with known error bounds. Furthermore, they allow for efficient computation of optimal growth modes for numerous time horizons simultaneously. We compare the proposed algorithm to both direct matrix-forming and Krylov subspace approaches on a number of test problems. We will additionally discuss the potential for randomized methods to assist more broadly in the speed-up of algorithms for analyzing both fluids data and operators. Supported by AFOSR Grant FA9550-14-1-0289.

  2. Prediction of landslide run-out distance based on slope stability analysis and center of mass approach

    NASA Astrophysics Data System (ADS)

    Firmansyah; Feranie, S.; Tohari, Adrin; Latief, F. D. E.

    2016-01-01

    Mitigation of landslide hazard requires the knowledge of landslide run-out distance. This paper presents the application of slope stability analysis and center of mass approach to predict the run-out distance of a rotational landslide model with different soil types. The Morgenstern-Price method was used to estimate the potential sliding zone and volume of landslide material. The center of mass approach used a simple Coulomb friction model to determine the run-out distance. Results of the slope stability analysis showed that the soil unit weight can influence the depth of sliding zone, and the volume of unstable material. The slope model of silty sand and gravel would have the largest volume of unstable mass. From the Coulomb friction analysis, this slope model has higher run-out distance and velocity than other slope models. Thus, the run-out distance will be influenced by soil type and the dimension of unstable soil mass.

  3. Adaptability and stability analysis of the juice yield of yellow passion fruit varieties.

    PubMed

    Oliveira, E J; Freitas, J P X; Jesus, O N

    2014-08-26

    This study analyzed the genotype x environment interaction (GE) for the juice productivity (JuProd) of 12 yellow passion fruit varieties (Passiflora edulis Sims. f. flavicarpa Deg.) using additive main effects and multiplicative interaction (AMMI) model and auxiliary parameters. The experiments were conducted in eight environments of Bahia State, Brazil, using a randomized block design with three replications. Analysis of variance showed significant effects (P ≤ 0.01) for environments, genotypes, and GE interaction. The first two interaction principal component axes (IPCAs) explained 81.00% of the sum of squares of the GE interaction. The AMMI1 and AMMI2 models showed that varieties 09 and 11 were the most stable. Other parameters, namely, the AMMI stability value (ASV), yield stability (YSI), sustainability, and stability index (StI), indicated that other varieties were more stable. These varying results were certainly a consequence of methodological differences. In contrast, the ranking of varieties for each of the stability parameters showed significant positive correlations (P ≤ 0.05) between IPCA1 x (ASV, YSI), JuProd x (StI, YSI), YSI x ASV, and StI x YSI. Cluster analysis based on the genotypic profile of the effects of the GE interaction identified three groups that correlated with the distribution of varieties in the AMMI1 biplot. However, the classification of stable genotypes was limited because the association with the productivity was not included in the analysis. Variety 08 showed the most stable and productive behavior, ranking above average in half of the environments, and it should be recommended for use.

  4. Kinetic Analysis of Haloacetonitrile Stability in Drinking Waters.

    PubMed

    Yu, Yun; Reckhow, David A

    2015-09-15

    Haloacetonitriles (HANs) are an important class of drinking water disinfection byproducts (DBPs) that are reactive and can undergo considerable transformation on time scales relevant to system distribution (i.e., from a few hours to a week or more). The stability of seven mono-, di-, and trihaloacetonitriles was examined under a variety of conditions including different pH levels and disinfectant doses that are typical of drinking water distribution systems. Results indicated that hydroxide, hypochlorite, and their protonated forms could react with HANs via nucleophilic attack on the nitrile carbon, forming the corresponding haloacetamides (HAMs) and haloacetic acids (HAAs) as major reaction intermediates and end products. Other stable intermediate products, such as the N-chloro-haloacetamides (N-chloro-HAMs), may form during the course of HAN chlorination. A scheme of pathways for the HAN reactions was proposed, and the rate constants for individual reactions were estimated. Under slightly basic conditions, hydroxide and hypochlorite are primary reactants and their associated second-order reaction rate constants were estimated to be 6 to 9 orders of magnitude higher than those of their protonated conjugates (i.e., neutral water and hypochlorous acid), which are much weaker but more predominant nucleophiles at neutral and acidic pHs. Developed using the estimated reaction rate constants, the linear free energy relationships (LFERs) summarized the nucleophilic nature of HAN reactions and demonstrated an activating effect of the electron withdrawing halogens on nitrile reactivity, leading to decreasing HAN stability with increasing degree of halogenation of the substituents, while subsequent shift from chlorine to bromine atoms has a contrary stabilizing effect on HANs. The chemical kinetic model together with the reaction rate constants that were determined in this work can be used for quantitative predictions of HAN concentrations depending on pH and free chlorine

  5. Analysis of cavern stability at the West Hackberry SPR site.

    SciTech Connect

    Ehgartner, Brian L.; Sobolik, Steven Ronald

    2009-05-01

    This report presents computational analyses that simulate the structural response of caverns at the Strategic Petroleum Reserve (SPR) West Hackberry site. The cavern field comprises 22 caverns. Five caverns (6, 7, 8, 9, 11) were acquired from industry and have unusual shapes and a history dating back to 1946. The other 17 caverns (101-117) were leached according to SPR standards in the mid-1980s and have tall cylindrical shapes. The history of the caverns and their shapes are simulated in a three-dimensional geomechanics model of the site that predicts deformations, strains, and stresses. Future leaching scenarios corresponding to oil drawdowns using fresh water are also simulated by increasing the volume of the caverns. Cavern pressures are varied in the model to capture operational practices in the field. The results of the finite element model are interpreted to provide information on the current and future status of subsidence, well integrity, and cavern stability. The most significant results in this report are relevant to Cavern 6. The cavern is shaped like a bowl with a large ceiling span and is in close proximity to Cavern 9. The analyses predict tensile stresses at the edge of the ceiling during repressuization of Cavern 6 following workover conditions. During a workover the cavern is at low pressure to service a well. The wellhead pressures are atmospheric. When the workover is complete, the cavern is repressurized. The resulting elastic stresses are sufficient to cause tension around the edge of the large ceiling span. With time, these stresses relax to a compressive state because of salt creep. However, the potential for salt fracture and propagation exists, particularly towards Cavern 9. With only 200 ft of salt between the caverns, the operational consequences must be examined if the two caverns become connected. A critical time may be during a workover of Cavern 9 in part because of the operational vulnerabilities, but also because dilatant damage is

  6. Modal Voltage Stability Analysis of Multi-infeed HVDC System Considering its Control Systems

    NASA Astrophysics Data System (ADS)

    Wu, Guohong; Minakawa, Tamotsu; Hayashi, Toshiyuki

    This work presents a method for investigating the voltage stability of multi-infeed HVDC systems, which is based on the eigenvalue decomposition technique known as modal analysis. In this method, the eigenvalue of linearized steady-state system power-voltage equations are computed to evaluate the long-term voltage stability. The contributions of this work to modal analysis method are control systems of HVDC system, such as an Automatic Power Regulator (APR) and an Automatic (DC) Current Regulator (ACR) on its rectifier side and a changeover between an Automatic (DC) Voltage Regulator (AVR) and an Automatic extinction advance angle Regulator (AγR) modes on its inverter side, were taken into account, and the formularization for modal analysis considering not only these control systems of HVDC system but also generator and load characteristics was fulfilled and presented in this paper. The application results from an AC/DC model power system with dual HVDC systems verified the efficiency of the proposed method and quantitatively illustrated the influence of control systems of HVDC system on AC/DC system long-term voltage stability.

  7. Towards understanding the stabilization process in vermicomposting using PARAFAC analysis of fluorescence spectra.

    PubMed

    Lv, Baoyi; Xing, Meiyan; Zhao, Chunhui; Yang, Jian; Xiang, Liang

    2014-12-01

    In this study, fluorescence excitation-emission matrix (EEM) combined with parallel factor analysis (PARAFAC) was employed to trace the behavior of water extractable organic matter and assess the stabilization process during vermicomposting of sewage sludge and cattle dung. Experiments using different mixing ratios of sewage sludge and cattle dung were conducted using Eisenia fetida. The results showed that vermicomposting reduced the DOC, DOC/DON ratio and ammonia, while increased the nitrate content. A three-component model containing two humic-like materials (components 1 and 2) and a protein-like material (component 3) was successfully developed using PARAFAC analysis. Moreover, the initial waste composition had a significant effect on the distribution of each component and the addition of cattle dung improved the stability of sewage sludge in vermicomposting. The PARAFAC results also indicated that protein-like materials were degraded and humic acid-like compounds were evolved during vermicomposting. Pearson correlation analysis showed that components 2 and 3 are more suitable to assess vermicompost maturity than component 1. In all, EEM-PARAFAC can be used to track organic transformation and assess biological stability during the vermicomposting process.

  8. Adjustment of Adaptive Gain with Bounded Linear Stability Analysis to Improve Time-Delay Margin for Metrics-Driven Adaptive Control

    NASA Technical Reports Server (NTRS)

    Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje Srinvas

    2009-01-01

    This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a linear damaged twin-engine generic transport model of aircraft. The analysis shows that the system with the adjusted adaptive gain becomes more robust to unmodeled dynamics or time delay.

  9. Stability analysis of a backfilled room-and-pillar mine

    SciTech Connect

    Tesarik, D.R.; Seymour, J.B.; Yanske, T.R.; McKibbin, R.W.

    1995-12-31

    Displacement and stress changes in cemented backfill and ore pillars at the Buick Mine, near Boss, MO, were monitored by engineers from the US Bureau of Mines and The Doe Run Co., St. Louis, MO. A test area in this room-and-pillar mine was backfilled to provide support when remnant ore pillars were mined. Objectives of this research were to evaluate the effect of backfill on mine stability, observe backfill conditions during pillar removal, and calibrate a numerical model to be used to design other areas of the mine. Relative vertical displacements in the backfill were measured with embedment strain gauges and vertical extensometers. Other types of instruments used were earth pressure cells (to identify loading trends in the backfill), borehole extensometers (to measure relative displacement changes in the mine roof and support pillars), and biaxial stressmeters (to measure stress changes in several support pillars and abutments). Two- and three-dimensional numeric codes were used to model the study area. With information from these codes and the installed instruments, two failed pillars were identified and rock mass properties were estimated.

  10. Stability and complexity in model meta-ecosystems.

    PubMed

    Gravel, Dominique; Massol, François; Leibold, Mathew A

    2016-08-24

    The diversity of life and its organization in networks of interacting species has been a long-standing theoretical puzzle for ecologists. Ever since May's provocative paper challenging whether 'large complex systems [are] stable' various hypotheses have been proposed to explain when stability should be the rule, not the exception. Spatial dynamics may be stabilizing and thus explain high community diversity, yet existing theory on spatial stabilization is limited, preventing comparisons of the role of dispersal relative to species interactions. Here we incorporate dispersal of organisms and material into stability-complexity theory. We find that stability criteria from classic theory are relaxed in direct proportion to the number of ecologically distinct patches in the meta-ecosystem. Further, we find the stabilizing effect of dispersal is maximal at intermediate intensity. Our results highlight how biodiversity can be vulnerable to factors, such as landscape fragmentation and habitat loss, that isolate local communities.

  11. Control-oriented modelling for neoclassical tearing mode stabilization via minimum-seeking techniques

    NASA Astrophysics Data System (ADS)

    Wehner, W.; Schuster, E.

    2012-07-01

    Suppression of magnetic islands driven by the neoclassical tearing mode (NTM) is necessary for efficient and sustained operation of tokamak fusion reactors. Compensating for the lack of bootstrap current, due to the pressure profile flattening in the magnetic island, by a localized electron cyclotron current drive (ECCD) has been proved experimentally as an effective method to stabilize NTMs. The effectiveness of this method is limited in practice by the uncertainties in the width of the island, the relative position between the island and the beam, and the ECCD power threshold for NTM stabilization. Heuristic search and suppress algorithms have been proposed and shown effective in improving the alignment of the ECCD beam with the island, using only an estimate of the island width. Making use of this estimate, real-time, non-model-based, extremum-seeking optimization algorithms have also been proposed not only for beam steering but also for power modulation in order to minimize the island-beam misalignment and the time required for NTM stabilization. A control-oriented dynamic model for the effect of ECCD on the magnetic island is proposed in this work to enable both control design and performance analysis of these minimum-seeking type of controllers. The model expands previous work by including the impact of beam modulation parameters such as the island-beam phase mismatch and the beam duty-cycle on the island width dynamics.

  12. In situ vitrification: application analysis for stabilization of transuranic waste

    SciTech Connect

    Oma, K.H.; Farnsworth, R.K.; Rusin, J.M.

    1982-09-01

    The in situ vitrification process builds upon the electric melter technology previously developed for high-level waste immobilization. In situ vitrification converts buried wastes and contaminated soil to an extremely durable glass and crystalline waste form by melting the materials, in place, using joule heating. Once the waste materials have been solidified, the high integrity waste form should not cause future ground subsidence. Environmental transport of the waste due to water or wind erosion, and plant or animal intrusion, is minimized. Environmental studies are currently being conducted to determine whether additional stabilization is required for certain in-ground transuranic waste sites. An applications analysis has been performed to identify several in situ vitrification process limitations which may exist at transuranic waste sites. Based on the process limit analysis, in situ vitrification is well suited for solidification of most in-ground transuranic wastes. The process is best suited for liquid disposal sites. A site-specific performance analysis, based on safety, health, environmental, and economic assessments, will be required to determine for which sites in situ vitrification is an acceptable disposal technique. Process economics of in situ vitrification compare favorably with other in-situ solidification processes and are an order of magnitude less than the costs for exhumation and disposal in a repository. Leachability of the vitrified product compares closely with that of Pyrex glass and is significantly better than granite, marble, or bottle glass. Total release to the environment from a vitrified waste site is estimated to be less than 10/sup -5/ parts per year. 32 figures, 30 tables.

  13. Evaluation of an Autonetics Stabilization System Installed in a Bell Model 47J Helicopter

    DTIC Science & Technology

    1962-07-09

    in an H-19 Helicopter as Task 17-0001, " Stability Augmentation System for Rotary Wing Aircraft. " d. The equipment was received for evaluation...Stabilization System Installed in a Bell Model 47J Helicopter" b. Plan of Test, USAEPG-SIG 950-48, " Stability Augmentation System for Rotary Wing Aircraft

  14. Order-2 Stability Analysis of Particle Swarm Optimization.

    PubMed

    Liu, Qunfeng

    2015-01-01

    Several stability analyses and stable regions of particle swarm optimization (PSO) have been proposed before. The assumption of stagnation and different definitions of stability are adopted in these analyses. In this paper, the order-2 stability of PSO is analyzed based on a weak stagnation assumption. A new definition of stability is proposed and an order-2 stable region is obtained. Several existing stable analyses for canonical PSO are compared, especially their definitions of stability and the corresponding stable regions. It is shown that the classical stagnation assumption is too strict and not necessary. Moreover, among all these definitions of stability, it is shown that our definition requires the weakest conditions, and additional conditions bring no benefit. Finally, numerical experiments are reported to show that the obtained stable region is meaningful. A new parameter combination of PSO is also shown to be good, even better than some known best parameter combinations.

  15. Experimentation and Modeling of Jet A Thermal Stability in a Heated Tube

    NASA Technical Reports Server (NTRS)

    Khodabandeh, Julia W.

    2005-01-01

    High performance aircraft typically use hydrocarbon fuel to regeneratively cool the airframe and engine components. As the coolant temperatures increase, the fuel may react with dissolved oxygen forming deposits that limit the regenerative cooling system performance. This study investigates the deposition of Jet A using a thermal stability experiment and computational fluid dynamics (CFD) modeling. The experimental portion of this study is performed with a high Reynolds number thermal stability (HiRets) tester in which fuel passes though an electrically heated tube and the fuel outlet temperature is held constant. If the thermal stability temperature of the fuel is exceeded, deposits form and adhere to the inside of the tube creating an insulating layer between the tube and the fuel. The HiRets tester measures the tube outer wall temperatures near the fuel outlet to report the effect of deposition occurring inside the tube. Final deposits are also estimated with a carbon burn off analysis. The CFD model was developed and used to simulate the fluid dynamics, heat transfer, chemistry, and transport of the deposit precursors. The model is calibrated to the experiment temperature results and carbon burn-off deposition results. The model results show that the dominant factor in deposition is the heated wall temperature and that most of the deposits are formed in the laminar sublayer. The models predicted a 7.0E-6 kilograms per square meter-sec deposition rate, which compared well to the carbon burn-off analysis deposition rate of 1.0E-6 kilograms per square meter-sec.

  16. ASTROP2 Users Manual: A Program for Aeroelastic Stability Analysis of Propfans

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Lucero, John M.

    1996-01-01

    This manual describes the input data required for using the second version of the ASTROP2 (Aeroelastic STability and Response Of Propulsion systems - 2 dimensional analysis) computer code. In ASTROP2, version 2.0, the program is divided into two modules: 2DSTRIP, which calculates the structural dynamic information; and 2DASTROP, which calculates the unsteady aerodynamic force coefficients from which the aeroelastic stability can be determined. In the original version of ASTROP2, these two aspects were performed in a single program. The improvements to version 2.0 include an option to account for counter rotation, improved numerical integration, accommodation for non-uniform inflow distribution, and an iterative scheme to flutter frequency convergence. ASTROP2 can be used for flutter analysis of multi-bladed structures such as those found in compressors, turbines, counter rotating propellers or propfans. The analysis combines a two-dimensional, unsteady cascade aerodynamics model and a three dimensional, normal mode structural model using strip theory. The flutter analysis is formulated in the frequency domain resulting in an eigenvalue determinant. The flutter frequency and damping can be inferred from the eigenvalues.

  17. Assessing the Benefits of Global Climate Stabilization Within an Integrated Modeling Framework

    NASA Astrophysics Data System (ADS)

    Beach, R. H.

    2015-12-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been a number of studies of climate change impacts on agriculture or forestry. However, relatively few studies explore climate change impacts on both agriculture and forests simultaneously, including the interactions between alternative land uses and implications for market outcomes. Additionally, there is a lack of detailed analyses of the effects of stabilization scenarios relative to unabated emissions scenarios. Such analyses are important for developing estimates of the benefits of those stabilization scenarios, which can play a vital role in assessing tradeoffs associated with allocating resources across alternative mitigation and adaptation activities. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from 32.7 billion to 54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative

  18. Low frequency azimuthal stability of the ionization region of the Hall thruster discharge. II. Global analysis

    SciTech Connect

    Escobar, D.; Ahedo, E.

    2015-10-15

    The linear stability of the Hall thruster discharge is analysed against axial-azimuthal perturbations in the low frequency range using a time-dependent 2D code of the discharge. This azimuthal stability analysis is spatially global, as opposed to the more common local stability analyses, already afforded previously (D. Escobar and E. Ahedo, Phys. Plasmas 21(4), 043505 (2014)). The study covers both axial and axial-azimuthal oscillations, known as breathing mode and spoke, respectively. The influence on the spoke instability of different operation parameters such as discharge voltage, mass flow, and thruster size is assessed by means of different parametric variations and compared against experimental results. Additionally, simplified models are used to unveil and characterize the mechanisms driving the spoke. The results indicate that the spoke is linked to azimuthal oscillations of the ionization process and to the Bohm condition in the transition to the anode sheath. Finally, results obtained from local and global stability analyses are compared in order to explain the discrepancies between both methods.

  19. Conjugation of α-amylase with dextran for enhanced stability: process details, kinetics and structural analysis.

    PubMed

    Jadhav, Swati B; Singhal, Rekha S

    2012-11-06

    The influence of enzyme polysaccharide interaction on enzyme stability and activity was elucidated by covalently binding dextran to a model enzyme, α-amylase. The conjugation process was optimized with respect to concentration of oxidizing agent, pH of enzyme solution, ratio of dextran to enzyme concentration, temperature and time of conjugate formation, and was found to affect the stability of α-amylase. α-Amylase conjugated under optimized conditions showed 5% loss of activity but with enhanced thermal and pH stability. Lower inactivation rate constant of conjugated α-amylase within the temperature range of 60-80 °C implied its better stability. Activation energy for denaturation of α-amylase increased by 8.81 kJ/mol on conjugation with dextran. Analysis of secondary structure of α-amylase after covalent binding with dextran showed helix to turn conversion without loss of functional properties of α-amylase. Covalent bonding was found to be mandatory for the formation of conjugate.

  20. Large-Signal Lyapunov-Based Stability Analysis of DC/AC Inverters and Inverter-Based Microgrids

    NASA Astrophysics Data System (ADS)

    Kabalan, Mahmoud

    Microgrid stability studies have been largely based on small-signal linearization techniques. However, the validity and magnitude of the linearization domain is limited to small perturbations. Thus, there is a need to examine microgrids with large-signal nonlinear techniques to fully understand and examine their stability. Large-signal stability analysis can be accomplished by Lyapunov-based mathematical methods. These Lyapunov methods estimate the domain of asymptotic stability of the studied system. A survey of Lyapunov-based large-signal stability studies showed that few large-signal studies have been completed on either individual systems (dc/ac inverters, dc/dc rectifiers, etc.) or microgrids. The research presented in this thesis addresses the large-signal stability of droop-controlled dc/ac inverters and inverter-based microgrids. Dc/ac power electronic inverters allow microgrids to be technically feasible. Thus, as a prelude to examining the stability of microgrids, the research presented in Chapter 3 analyzes the stability of inverters. First, the 13 th order large-signal nonlinear model of a droop-controlled dc/ac inverter connected to an infinite bus is presented. The singular perturbation method is used to decompose the nonlinear model into 11th, 9th, 7th, 5th, 3rd and 1st order models. Each model ignores certain control or structural components of the full order model. The aim of the study is to understand the accuracy and validity of the reduced order models in replicating the performance of the full order nonlinear model. The performance of each model is studied in three different areas: time domain simulations, Lyapunov's indirect method and domain of attraction estimation. The work aims to present the best model to use in each of the three domains of study. Results show that certain reduced order models are capable of accurately reproducing the performance of the full order model while others can be used to gain insights into those three areas of

  1. Dynamical investigation and parameter stability region analysis of a flywheel energy storage system in charging mode

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Ya; Li, Yong-Li; Chang, Xiao-Yong; Wang, Nan

    2013-09-01

    In this paper, the dynamic behavior analysis of the electromechanical coupling characteristics of a flywheel energy storage system (FESS) with a permanent magnet (PM) brushless direct-current (DC) motor (BLDCM) is studied. The Hopf bifurcation theory and nonlinear methods are used to investigate the generation process and mechanism of the coupled dynamic behavior for the average current controlled FESS in the charging mode. First, the universal nonlinear dynamic model of the FESS based on the BLDCM is derived. Then, for a 0.01 kWh/1.6 kW FESS platform in the Key Laboratory of the Smart Grid at Tianjin University, the phase trajectory of the FESS from a stable state towards chaos is presented using numerical and stroboscopic methods, and all dynamic behaviors of the system in this process are captured. The characteristics of the low-frequency oscillation and the mechanism of the Hopf bifurcation are investigated based on the Routh stability criterion and nonlinear dynamic theory. It is shown that the Hopf bifurcation is directly due to the loss of control over the inductor current, which is caused by the system control parameters exceeding certain ranges. This coupling nonlinear process of the FESS affects the stability of the motor running and the efficiency of energy transfer. In this paper, we investigate into the effects of control parameter change on the stability and the stability regions of these parameters based on the averaged-model approach. Furthermore, the effect of the quantization error in the digital control system is considered to modify the stability regions of the control parameters. Finally, these theoretical results are verified through platform experiments.

  2. Traffic stability of a car-following model considering driver’s desired velocity

    NASA Astrophysics Data System (ADS)

    Zhang, Geng; Sun, Di-Hua; Liu, Wei-Ning; Liu, Hui

    2015-07-01

    In this paper, a new car-following model is proposed by considering driver’s desired velocity according to Transportation Cyber Physical Systems. The effect of driver’s desired velocity on traffic flow has been investigated through linear stability theory and nonlinear reductive perturbation method. The linear stability condition shows that driver’s desired velocity effect can enlarge the stable region of traffic flow. From nonlinear analysis, the Burgers equation and mKdV equation are derived to describe the evolution properties of traffic density waves in the stable and unstable regions respectively. Numerical simulation is carried out to verify the analytical results, which reveals that traffic congestion can be suppressed efficiently by taking driver’s desired velocity effect into account.

  3. An experimental investigation of vortex stability, tip shapes, compressibility, and noise for hovering model rotors

    NASA Technical Reports Server (NTRS)

    Tangler, J. L.; Wohlfeld, R. M.; Miley, S. J.

    1973-01-01

    Schlieren methods of flow visualization and hot-wire anemometry for velocity measurements were used to investigate the wakes generated by hovering model propellers and rotors. The research program was directed toward investigating (1) the stability of the tip vortex, (2) the effects produced by various tip shapes on performance and tip vortex characteristics, and (3) the shock formation and noise characteristics associated with various tip shapes. A free-wake analysis was also conducted for comparison with the vortex stability experimental results. Schlieren photographs showing wake asymmetry, interaction, and instability are presented along with a discussion of the effects produced by the number of blades, collective pitch, and tip speed. Two hot-wire anemometer techniques, used to measure the maximum circumferential velocity in the tip vortex, are discussed.

  4. Computer-aided molecular modeling techniques for predicting the stability of drug cyclodextrin inclusion complexes in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Faucci, Maria Teresa; Melani, Fabrizio; Mura, Paola

    2002-06-01

    Molecular modeling was used to investigate factors influencing complex formation between cyclodextrins and guest molecules and predict their stability through a theoretical model based on the search for a correlation between experimental stability constants ( Ks) and some theoretical parameters describing complexation (docking energy, host-guest contact surfaces, intermolecular interaction fields) calculated from complex structures at a minimum conformational energy, obtained through stochastic methods based on molecular dynamic simulations. Naproxen, ibuprofen, ketoprofen and ibuproxam were used as model drug molecules. Multiple Regression Analysis allowed identification of the significant factors for the complex stability. A mathematical model ( r=0.897) related log Ks with complex docking energy and lipophilic molecular fields of cyclodextrin and drug.

  5. Implications of stability analysis for heat transfer at Yucca Mountain

    SciTech Connect

    Ross, B.; Yiqiang Zhang; Ning Lu

    1993-03-01

    An analytical solution has been obtained to the stability problem for an infinite horizontal layer of gas with Its humidity constrained to 100%. Latent heat transfer makes convective heat transfer much more Important for this moist gas than for a dry gas. The critical Rayleigh number for the onset of convective flow in the moist gas, with a lower no-flow boundary at 97{degrees}C and an upper no-flow boundary at 27{degrees}C, is 0.18, much less than the value of 4m{sup 2} for a dry gas. Although the heat source at Yucca Mountain will be finite in extent, the solution for an infinite horizontal layer still gives a useful criterion for the qualitative importance of convective heat transfer. The critical Rayleigh number of 0.18 corresponds to a permeability of 4 {times} 10{sup {minus}12} m{sup 2} if other parameters ate given values measured at Yucca Mountain. This value falls roughly in the middle of the range of measured permeabilities. The analysis also gives a time constant for the onset of convection, which at twice the critical Rayleigh number is 1000 yr. Thus convection will probably make an important contribution, to host transfer at Yucca Mountain if the rock permeability falls in the upper portion of the range of measurements to date, but only at times after a few hundred or thousand years.

  6. BLSTA: A boundary layer code for stability analysis

    NASA Technical Reports Server (NTRS)

    Wie, Yong-Sun

    1992-01-01

    A computer program is developed to solve the compressible, laminar boundary-layer equations for two-dimensional flow, axisymmetric flow, and quasi-three-dimensional flows including the flow along the plane of symmetry, flow along the leading-edge attachment line, and swept-wing flows with a conical flow approximation. The finite-difference numerical procedure used to solve the governing equations is second-order accurate. The flow over a wide range of speed, from subsonic to hypersonic speed with perfect gas assumption, can be calculated. Various wall boundary conditions, such as wall suction or blowing and hot or cold walls, can be applied. The results indicate that this boundary-layer code gives velocity and temperature profiles which are accurate, smooth, and continuous through the first and second normal derivatives. The code presented herein can be coupled with a stability analysis code and used to predict the onset of the boundary-layer transition which enables the assessment of the laminar flow control techniques. A user's manual is also included.

  7. Crack stability analysis of low alloy steel primary coolant pipe

    SciTech Connect

    Tanaka, T.; Kameyama, M.; Urabe, Y.

    1997-04-01

    At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.

  8. Gyrokinetic linear stability analysis of NSTX L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Han, Ke; Ren, Yang

    2016-10-01

    NSTX offered unique opportunities in studying transport and turbulence with low aspect ratio, strong plasma shaping and strong E ×B shear. NSTX L-mode plasmas have some favorable properties to facilitate the study of the relation between microturbulence and thermal transport: easier to obtain stationary profiles; easier to maintain MHD quiescence; no complications from edge transport barrier. Studies of NSTX RF/NBI-heated L-mode plasmas have provided new insight into the role of ion and electron-scale turbulence in driving anomalous transport. Here we present linear stability analysis of some NSTX L-mode plasmas with GS2 gyrokinetic code. GS2 is an initial value gyrokinetic code which, in its linear mode, finds the fastest growing mode for a given pair of poloidal and radial wavenumbers. The linear simulations used local Miller equilibria and plasma parameters derived from measured experimental profiles with electromagnetic effects, electron and ion collisions and carbon impurity. The work is supported by DOE, China Scholarship Council, the Natural Science Foundation of China (61402138) and the Natural Science Foundation of Heilongjiang Province (E201452).

  9. Stability analysis of lower dimensional gravastars in noncommutative geometry

    NASA Astrophysics Data System (ADS)

    Banerjee, Ayan; Hansraj, Sudan

    2016-11-01

    The Bañados et al. (Phys. Rev. Lett 69:1849, 1992), black hole solution is revamped from the Einstein field equations in (2 + 1)-dimensional anti-de Sitter spacetime, in a context of noncommutative geometry (Phys. Rev. D 87:084014, 2013). In this article, we explore the exact gravastar solutions in three-dimensional anti-de Sitter space given in the same geometry. As a first step we derive BTZ solution assuming the source of energy density as point-like structures in favor of smeared objects, where the particle mass M, is diffused throughout a region of linear size √{α } and is described by a Gaussian function of finite width rather than a Dirac delta function. We matched our interior solution to an exterior BTZ spacetime at a junction interface situated outside the event horizon. Furthermore, a stability analysis is carried out for the specific case when χ < 0. 214 under radial perturbations about the static equilibrium solutions. To give theoretical support we are also trying to explore their physical properties and characteristics.

  10. PPM mixtures of formaldehyde in gas cylinders: Stability and analysis

    SciTech Connect

    Wong, K.C.; Miller, S.B.; Patterson, L.M.

    1999-07-01

    Scott Specialty Gases has been successful in producing stable calibration gases of formaldehyde at low concentration. Critical to this success has been the development of a treatment process for high pressure aluminum cylinders. Formaldehyde cylinders having concentrations of 20ppm and 4ppm were found to show only small decline in concentrations over a period of approximately 12 months. Since no NIST traceable formaldehyde standards (or Standard Reference Material) are available, all Scott's formaldehyde cylinders were originally certified by traditional impinger method. This method involves an extremely tedious purification procedure for 2,4-dinitrophenylhydrazine (2,4-DNPH). A modified version of the impinger method has been developed and does not require extensive reagent purification for formaldehyde analysis. Extremely low formaldehyde blanks have been obtained with the modified method. The HPLC conditions in the original method were used for chromatographic separations. The modified method results in a lower analytical uncertainty for the formaldehyde standard mixtures. Consequently, it is possible to discern small differences between analytical results that are important for stability study.

  11. Lidov-Kozai Mechanism in Hydrodynamical Disks: Linear Stability Analysis

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2017-01-01

    Recent SPH simulations by Martin et al. (2014) suggest a circumstellar gaseous disk may exhibit coherent eccentricity-inclination oscillations due to the tidal forcing of an inclined binary companion, in a manner that resembles Lidov-Kozai oscillations in hierarchical triple systems. We carry out linear stability analysis for the eccentricity growth of circumstellar disks in binaries, including the effects of gas pressure and viscosity and secular (orbital-averaged) tidal force from the inclined companion. We find that the growth of disk eccentricity depends on the dimensionless ratio (S) between c_s^2 (the disk sound speed squared) and the tidal torque acting on the disk (per unit mass) from the companion. For S ≪ 1, the standard Lidov-Kozai result is recovered for a thin disk annulus: eccentricity excitation occurs when the mutual inclination I between the disk and binary lies between 39° and 141°. As S increases, the inclination window for eccentricity growth generally becomes narrower. For S ≳ a few, eccentricity growth is suppressed for all inclination angles. Surprisingly, we find that for S ˜ 1 and certain disk density/pressure profiles, eccentricity excitation can occur even when I is much less than 39°.

  12. Thermohaline Circulation Stability: A Box Model Study. Part II: Coupled Atmosphere-Ocean Model.

    NASA Astrophysics Data System (ADS)

    Lucarini, Valerio; Stone, Peter H.

    2005-02-01

    A thorough analysis of the stability of a coupled version of an interhemispheric three-box model of thermohaline circulation (THC) is presented. This study follows a similarly structured analysis of an uncoupled version of the same model presented in Part I of this paper. The model consists of a northern high-latitude box, a tropical box, and a southern high-latitude box, which can be thought of as corresponding to the northern, tropical, and southern Atlantic Ocean, respectively. This paper examines how the strength of THC changes when the system undergoes forcings representing global warming conditions.Since a coupled model is used, a direct representation of the radiative forcing is possible because the main atmospheric physical processes responsible for freshwater and heat fluxes are formulated separately. Each perturbation to the initial equilibrium is characterized by the total radiative forcing realized, by the rate of increase, and by the north-south asymmetry. Although only weakly asymmetric or symmetric radiative forcings are representative of physically reasonable conditions, general asymmetric forcings are considered in order to get a more complete picture of the mathematical properties of the system. The choice of suitably defined metrics makes it possible to determine the boundary dividing the set of radiative forcing scenarios that lead the system to equilibria characterized by a THC pattern similar to the present one, from those that drive the system to equilibria where the THC is reversed. This paper also considers different choices for the atmospheric transport parameterizations and for the ratio between the high-latitude and tropical radiative forcing. It is generally found that fast forcings are more effective than slow forcings in disrupting the present THC pattern, forcings that are stronger in the northern box are also more effective in destabilizing the system, and very slow forcings do not destabilize the system whatever their asymmetry

  13. Practical stability analysis of fractional-order impulsive control systems.

    PubMed

    Stamova, Ivanka; Henderson, Johnny

    2016-09-01

    In this paper we obtain sufficient conditions for practical stability of a nonlinear system of differential equations of fractional order subject to impulse effects. Our results provide a design method of impulsive control law which practically stabilizes the impulse free fractional-order system.

  14. SDI CFD MODELING ANALYSIS

    SciTech Connect

    Lee, S.

    2011-05-05

    The Savannah River Remediation (SRR) Organization requested that Savannah River National Laboratory (SRNL) develop a Computational Fluid Dynamics (CFD) method to mix and blend the miscible contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank; such as, Tank 50H, to the Salt Waste Processing Facility (SWPF) feed tank. The work described here consists of two modeling areas. They are the mixing modeling analysis during miscible liquid blending operation, and the flow pattern analysis during transfer operation of the blended liquid. The transient CFD governing equations consisting of three momentum equations, one mass balance, two turbulence transport equations for kinetic energy and dissipation rate, and one species transport were solved by an iterative technique until the species concentrations of tank fluid were in equilibrium. The steady-state flow solutions for the entire tank fluid were used for flow pattern analysis, for velocity scaling analysis, and the initial conditions for transient blending calculations. A series of the modeling calculations were performed to estimate the blending times for various jet flow conditions, and to investigate the impact of the cooling coils on the blending time of the tank contents. The modeling results were benchmarked against the pilot scale test results. All of the flow and mixing models were performed with the nozzles installed at the mid-elevation, and parallel to the tank wall. From the CFD modeling calculations, the main results are summarized as follows: (1) The benchmark analyses for the CFD flow velocity and blending models demonstrate their consistency with Engineering Development Laboratory (EDL) and literature test results in terms of local velocity measurements and experimental observations. Thus, an application of the established criterion to SRS full scale tank will provide a better, physically-based estimate of the required mixing time, and

  15. Electrical transient stability and underfrequency load shedding analysis for a large pump station

    SciTech Connect

    Shilling, S.R.

    1995-12-31

    Electrical transients from faults, loss of generation, and load swings can disrupt pump station operations. Isolated stations with no utility tie and those with weak utility ties are especially at risk. Relative to this problem, the following four main issues are addressed: (1) Analyze the methods that use high-speed underfrequency load shedding to maintain system stability and preserve station operations. (2) Analyze combustion gas turbine generator and diesel generator transient responses, as they pertain to the Electrical Engineer. (3) Discuss system component modeling and the use of low voltage circuit switching devices to shed loads. (4) Compare two computer analysis program outputs for underfrequency load shedding responses.

  16. Electrical transient stability and underfrequency load shedding analysis for a large pump station

    SciTech Connect

    Shilling, S.R.

    1997-01-01

    Electrical transients from faults, loss of generation, and load swings can disrupt pump station operations. Isolated stations with no utility tie, and those with weak utility ties, are especially at risk. Relative to this problem, the following four main issues are addressed: (1) analyze the methods that use high-speed underfrequency load shedding to maintain system stability and preserve station operations; (2) analyze combustion gas turbine generator and diesel generator transient responses, as they pertain to the electrical engineer; (3) discuss system component modeling and the use of low voltage circuit switching devices to shed loads; (4) compare two computer analysis program outputs for underfrequency load shedding responses.

  17. CFD analysis of sludge accumulation and hydraulic performance of a waste stabilization pond.

    PubMed

    Alvarado, Andres; Sanchez, Esteban; Durazno, Galo; Vesvikar, Mehul; Nopens, Ingmar

    2012-01-01

    Sludge management in waste stabilization ponds (WSPs) is essential for safeguarding the system performance. Sludge accumulation patterns in WSPs are strongly influenced by the pond hydrodynamics. CFD modeling was applied to study the relation between velocity profiles and sludge deposition during 10 years of operation of the Ucubamba WSP in Cuenca (Ecuador). One tracer experiment was performed and three sludge accumulation scenarios based on bathymetric surveys were simulated. A residence time distribution (RTD) analysis illustrated the decrease of residence times due to sludge deposition. Sludge accumulation rates were calculated. The influence of flow pattern on the sludge deposition was studied, enabling better planning of future pond operation and desludging.

  18. Modal analysis for Liapunov stability of rotating elastic bodies. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Colin, A. D.

    1973-01-01

    This study consisted of four parallel efforts: (1) modal analyses of elastic continua for Liapunov stability analysis of flexible spacecraft; (2) development of general purpose simulation equations for arbitrary spacecraft; (3) evaluation of alternative mathematical models for elastic components of spacecraft; and (4) examination of the influence of vehicle flexibility on spacecraft attitude control system performance. A complete record is given of achievements under tasks (1) and (3), in the form of technical appendices, and a summary description of progress under tasks two and four.

  19. Understanding the Behavior of Systems Pharmacology Models Using Mathematical Analysis of Differential Equations: Prolactin Modeling as a Case Study

    PubMed Central

    Bakshi, S; de Lange, EC; Danhof, M; Peletier, LA

    2016-01-01

    In this tutorial, we introduce basic concepts in dynamical systems analysis, such as phase‐planes, stability, and bifurcation theory, useful for dissecting the behavior of complex and nonlinear models. A precursor‐pool model with positive feedback is used to demonstrate the power of mathematical analysis. This model is nonlinear and exhibits multiple steady states, the stability of which is analyzed. The analysis offers insight into model behavior and suggests useful parameter regions, which simulations alone could not. PMID:27405001

  20. Equilibrium and stability of bioeconomic models of renewable resources under diverse harvesting regimes

    SciTech Connect

    Castro Ospina, J.M.

    1984-01-01

    A review is presented of some bioeconomic mathematical models that incorporate constant harvesting. This is followed by a complete qualitative and quantitative analysis of competition and predator-prey Lotka-Volterra bioeconomic models. The trivial and non-trivial equilibrium points of these systems are analyzed and the Routh-Hurwitz criteria are used to determine the necessary and sufficient conditions for stability in relation to the effort parameter eta. Some numerical examples that illustrate the corresponding qualitative stability analysis for the open access and bioeconomic equilibria for the competition and predator-prey systems are given. In the numerical examples analyzed, three different open access and bioeconomic equilibria were found. The non-trivial equilibrium points are unstable and infeasible. A critical level of effort was also derived for the predator-prey numerical example and corresponding management policies were formulated. When only the predator is harvested, it can be shown that the system under analysis undergoes a critical bifurcation at the point E/sub c/.

  1. Nonlinear simulation and linear stability analysis of viscous fingering instability of viscoelastic liquids

    NASA Astrophysics Data System (ADS)

    Shokri, H.; Kayhani, M. H.; Norouzi, M.

    2017-03-01

    In this study, the viscous fingering instability of miscible displacement involving a viscoelastic fluid is investigated using both linear stability analysis and computational fluid dynamics for the first time. The Oldroyd-B model is used as the constitutive equation of a viscoelastic fluid. Here, it is assumed that one of the displacing fluids or the displaced one is viscoelastic. In linear stability analysis, the quasi-steady state approximation and six order shooting method are used to predict the growth rate of the disturbance in the flow. It is shown that the flow is more stabilized when the elasticity (Weissenberg number) of the displaced or displacing viscoelastic fluid is increased. In the nonlinear simulation, using the spectral method based on Hartley transforms and the fourth-order Adams-Bashforth technique, the effect of the viscoelastic fluid on this instability has been studied. Evaluation of concentration contours, mixing length, sweep efficiency, and transversely average concentration show that the elasticity has a significant effect on the fingering instability and the flow becomes more stable by increasing the Weissenberg number.

  2. Parametric analysis of a predator-prey system stabilized by a top predator.

    PubMed

    Morozov, Andrew Y; Li, Bai-Lian

    2006-08-01

    We present a complete parametric analysis of a predator-prey system influenced by a top predator. We study ecosystems with abundant nutrient supply for the prey where the prey multiplication can be considered as proportional to its density. The main questions we examine are the following: (1) Can the top predator stabilize such a system at low densities of prey? (2) What possible dynamic behaviors can occur? (3) Under which conditions can the top predation result in the system stabilization? We use a system of two nonlinear ordinary differential equations with the density of the top predator as a parameter. The model is investigated with methods of qualitative theory of ODEs and the theory of bifurcations. The existence of 12 qualitatively different types of dynamics and complex structure of the parametric space are demonstrated. Our studies of phase portraits and parametric diagrams show that a top predator can be an important factor leading to stabilization of the predator-prey system with abundant nutrient supply. Although the model here is applied to the plankton communities with fish (or carnivorous zooplankton) as the top trophic level, the general form of the equations allows applications of our results to other ecological systems.

  3. Performance analysis of a GPS Interferometric attitude determination system for a gravity gradient stabilized spacecraft

    NASA Astrophysics Data System (ADS)

    Stoll, John C.

    1995-05-01

    The performance of an unaided attitude determination system based on GPS interferometry is examined using linear covariance analysis. The modelled system includes four GPS antennae onboard a gravity gradient stabilized spacecraft, specifically the Air Force's RADCAL satellite. The principal error sources are identified and modelled. The optimal system's sensitivities to these error sources are examined through an error budget and by varying system parameters. The effects of two satellite selection algorithms, Geometric and Attitude Dilution of Precision (GDOP and ADOP, respectively) are examined. The attitude performance of two optimal-suboptimal filters is also presented. Based on this analysis, the limiting factors in attitude accuracy are the knowledge of the relative antenna locations, the electrical path lengths from the antennae to the receiver, and the multipath environment. The performance of the system is found to be fairly insensitive to torque errors, orbital inclination, and the two satellite geometry figures-of-merit tested.

  4. Rotordynamics analysis of a Jeffcott model with deadband

    NASA Technical Reports Server (NTRS)

    Zalik, R. A.

    1990-01-01

    A method is developed for determining the stability margins of a simple Jeffcott model with deadband via analysis of the discrete Fourier transform of the system response. The model in question is of a uniform, unbalanced, flexible shaft that is supported by a bearing as it rotates about its x axis. This model is represented by a system of coupled nonlinear differential equations.

  5. Rotordynamics analysis of a Jeffcott model with deadband

    NASA Astrophysics Data System (ADS)

    Zalik, R. A.

    A method is developed for determining the stability margins of a simple Jeffcott model with deadband via analysis of the discrete Fourier transform of the system response. The model in question is of a uniform, unbalanced, flexible shaft that is supported by a bearing as it rotates about its x axis. This model is represented by a system of coupled nonlinear differential equations.

  6. Thermosolutal Marangoni effects on the inclined flow of a binary liquid with variable density. I. Linear stability analysis

    NASA Astrophysics Data System (ADS)

    Pascal, J. P.; D'Alessio, S. J. D.

    2016-12-01

    We consider the stability of a binary liquid film flowing down a heated incline. A theoretical model is implemented which captures the Soret effect and the dependence of surface tension on both temperature and solutal concentration. The model also allows for variation in the density of the liquid mixture with thermal and solutal differences. A linear stability analysis is performed with asymptotic and numerical results being obtained. The coupling of the effect of a variable density with the thermosolutal-Marangoni instability and the Soret effect is investigated. Good agreement with previous results for the constant density case is found.

  7. Consensus and Stability Analysis of Networked Multiagent Predictive Control Systems.

    PubMed

    Liu, Guo-Ping

    2016-03-17

    This paper is concerned with the consensus and stability problem of multiagent control systems via networks with communication delays and data loss. A networked multiagent predictive control scheme is proposed to achieve output consensus and also compensate for the communication delays and data loss actively. The necessary and sufficient conditions of achieving both consensus and stability of the closed-loop networked multiagent control systems are derived. An important result that is obtained is that the consensus and stability of closed-loop networked multiagent predictive control systems are not related to the communication delays and data loss. An example illustrates the performance of the networked multiagent predictive control scheme.

  8. Stabilized plane and axisymmetric Lobatto finite element models

    NASA Astrophysics Data System (ADS)

    Hu, Y. C.; Sze, K. Y.; Zhou, Y. X.

    2015-11-01

    High order elements are renowned for their high accuracy and convergence. Among them, Lobatto spectral finite elements are commonly used in explicit dynamic analyses as their mass matrices when evaluated by the Lobatto integration rule are diagonal. While there are numerous advanced first and second order elements, advanced high order elements are rarely seen. In this paper, generic stabilization schemes are devised for the reduced integrated plane and axisymmetric elements. Static and explicit dynamic tests are considered for evaluating the relatively merits of the stabilized and conventional elements. The displacement errors of the stabilized elements are less than those of the conventional Lobatto elements. When the material is nearly incompressible, the stabilized elements are also more accurate in terms of the energy error norm. This advantage is of practical importance for bio-tissue and hydrated soil analyses.

  9. Kinetic analysis of enhanced thermal stability of an alkaline protease with engineered twin disulfide bridges and calcium-dependent stability.

    PubMed

    Ikegaya, Kazuo; Sugio, Shigetoshi; Murakami, Kohji; Yamanouchi, Kouichi

    2003-01-20

    The thermal stability of a cysteine-free alkaline protease (Alp) secreted by the eukaryote Aspergillus oryzae was improved both by the introduction of engineered twin disulfide bridges (Cys-69/Cys-101 and Cys-169/Cys-200), newly constructed as part of this study, and by the addition of calcium ions. We performed an extensive kinetic analysis of the increased thermal stability of the mutants as well as the role of calcium dependence. The thermodynamic activation parameters for irreversible thermal inactivation, the activation free energy (deltaG), the activation enthalpy (deltaH), and the activation entropy (deltaS) were determined from absolute reaction rate theory. The values of deltaH and deltaS were significantly and concomitantly increased as a result of introducing the twin disulfide bridges, for which the increase in the value of deltaH outweighed that of deltaS, resulting in significant increases in the value of deltaG. The enhancement of the thermal stability obtained by introducing the twin disulfide bridges is an example of the so-called low-temperature stabilization of enzymes. The stabilizing effect of calcium ions on wild-type Alp is similar to the results we obtained by introducing the engineered twin disulfide bridges.

  10. Genotypic stability and adaptability in tropical maize based on AMMI and GGE biplot analysis.

    PubMed

    Balestre, M; Von Pinho, R G; Souza, J C; Oliveira, R L

    2009-11-03

    We evaluated the phenotypic and genotypic stability and adaptability of hybrids using the additive main effect and multiplicative interaction (AMMI) and genotype x genotype-environment interaction (GGE) biplot models. Starting with 10 single-cross hybrids, a complete diallel was done, resulting in 45 double-cross hybrids that were appraised in 15 locations in Southeast, Center-West and Northeast Brazil. In most cases, when the effects were considered as random (only G effects or G and GE simultaneously) in AMMI and GGE analysis, the distances between predicted values and observed values were smaller than for AMMI and GGE biplot phenotypic means; the best linear unbiased predictors of G and GE generally showed more accurate predictions in AMMI and GGE analysis. We found the GGE biplot method to be superior to the AMMI 1 graph, due to more retention of GE and G + GE in the graph analysis. However, based on cross-validation results, the GGE biplot was less accurate than the AMMI 1 graph, inferring that the quantity of GE or G + GE retained in the graph analysis alone is not a good parameter for choice of stabilities and adaptabilities when comparing AMMI and GGE analyses.

  11. Bifurcation analysis of parametrically excited bipolar disorder model

    NASA Astrophysics Data System (ADS)

    Nana, Laurent

    2009-02-01

    Bipolar II disorder is characterized by alternating hypomanic and major depressive episode. We model the periodic mood variations of a bipolar II patient with a negatively damped harmonic oscillator. The medications administrated to the patient are modeled via a forcing function that is capable of stabilizing the mood variations and of varying their amplitude. We analyze analytically, using perturbation method, the amplitude and stability of limit cycles and check this analysis with numerical simulations.

  12. Prediction and analysis of structure, stability and unfolding of thermolysin-like proteases

    NASA Astrophysics Data System (ADS)

    Vriend, Gert; Eijsink, Vincent

    1993-08-01

    Bacillus neutral proteases (NPs) form a group of well-characterized homologous enzymes, that exhibit large differences in thermostability. The three-dimensional (3D) structures of several of these enzymes have been modelled on the basis of the crystal structures of the NPs of B. thermoproteolyticus (thermolysin) and B. cercus. Several new techniques have been developed to improve the model-building procedures. Also a model-building by mutagenesis' strategy was used, in which mutants were designed just to shed light on parts of the structures that were particularly hard to model. The NP models have been used for the prediction of site-directed mutations aimed at improving the thermostability of the enzymes. Predictions were made using several novel computational techniques, such as position-specific rotamer searching, packing quality analysis and property-profile database searches. Many stabilizing mutations were predicted and produced: improvement of hydrogen bonding, exclusion of buried water molecules, capping helices, improvement of hydrophobic interactions and entropic stabilization have been applied successfully. At elevated temperatures NPs are irreversibly inactivated as a result of autolysis. It has been shown that this denaturation process is independent of the protease activity and concentration and that the inactivation follows first-order kinetics. From this it has been conjectured that local unfolding of (surface) loops, which renders the protein susceptible to autolysis, is the rate-limiting step. Despite the particular nature of the thermal denaturation process, normal rules for protein stability can be applied to NPs. However, rather than stabilizing the whole protein against global unfolding, only a small region has to be protected against local unfolding. In contrast to proteins in general, mutational effects in proteases are not additive and their magnitude is strongly dependent on the location of the mutation. Mutations that alter the stability

  13. APPLICATIONS ANALYSIS REPORT: CHEMFIX TECHNOLOGIES, INC. - SOLIDIFICATION/STABILIZATION PROCESS

    EPA Science Inventory

    In support of the U.S. Environmental Protection Agency's (EPA) Superfund Innovative Technology Evaluation (SITE) Program, this report evaluates the Chemfix Technologies, Inc. (Chemfix), solidification/stabilization technology for on-site treatment of hazardous waste. The Chemfix ...

  14. Stability analysis of a variable-speed wind turbine

    SciTech Connect

    Bir, G.S.; Wright, A.D.; Butterfield, C.P.

    1996-10-01

    This paper examines the elastomechanical stability of a four-bladed wind turbine over a specific rotor speed range. Stability modes, frequencies, and dampings are extracted using a specialized modal processor developed at NREL that post-processes the response data generated by the ADAMS simulation code. The processor can analyze a turbine with an arbitrary number of rotor blades and offers a novel capability of isolating stability modes that become locked at a single frequency. Results indicate that over a certain rotor speed range, the tower lateral mode and the rotor regressive in-plane mode coalesce, resulting in a self-excited instability. Additional results show the effect of tower and nacelle parameters on the stability boundaries.

  15. Vaccine stability study design and analysis to support product licensure.

    PubMed

    Schofield, Timothy L

    2009-11-01

    Stability evaluation supporting vaccine licensure includes studies of bulk intermediates as well as final container product. Long-term and accelerated studies are performed to support shelf life and to determine release limits for the vaccine. Vaccine shelf life is best determined utilizing a formal statistical evaluation outlined in the ICH guidelines, while minimum release is calculated to help assure adequate potency through handling and storage of the vaccine. In addition to supporting release potency determination, accelerated stability studies may be used to support a strategy to recalculate product expiry after an unintended temperature excursion such as a cold storage unit failure or mishandling during transport. Appropriate statistical evaluation of vaccine stability data promotes strategic stability study design, in order to reduce the uncertainty associated with the determination of the degradation rate, and the associated risk to the customer.

  16. Global stability and a comparison of SVEIP and delayed SVIP epidemic models with indirect transmission

    NASA Astrophysics Data System (ADS)

    Hou, Qiang; Wang, Tao

    2017-02-01

    The latent period is one of the important risk factors considered in epidemiological research literatures. In general, a latent period can be modelled by incorporating a delay effect (delay system), or by introducing an exposed class defined as E. In this paper, a susceptible-vaccinated-exposed-infectious-pathogen (SVEIP) dynamic model and its corresponding delayed SVIP model are proposed. Under biologically motivated assumptions, the stability of equilibria is investigated by the global Lyapunov functions and functionals, and the dynamical properties of two systems are found to depend entirely on the basic reproduction numbers R01 and R02: if R01(R02) ≤ 1 , the disease-free equilibrium is globally asymptotically stable; if R01(R02) > 1 , the endemic equilibrium exists and is globally asymptotically stable, which implies time delay span has no effect on the stability of equilibria in delay system. Finally, a comparison between SVEIP and delayed SVIP epidemic model is made by numerical analysis, elaborating the epidemiological significance of these results.

  17. Closed-Loop System Analysis Using Lyapunov Stability Theory

    DTIC Science & Technology

    1988-01-01

    Sarachik, P.E., "Stability of Circuits with Randomly Time-Varying Parameters", IEEE Transactions on Circuit Theory, pp. 260-270, May 1959. 19. Bhatia...Rinehart, and Winston, 1970. 33. Chen, C., and Desoer , C., "Simplified Conditions for Controllability and Observability of Linear Time- Invari-ant...Dynamical Systems", Circuits Systems and Signal Processing, pp. 171-202, 1982. v 100. Mitchell, R.R., "Sample Stability of Second-Order S Stochastic

  18. Analysis of Faint Glints from Stabilized GEO Satellites

    DTIC Science & Technology

    2013-09-01

    INTRODUCTION Ground-based optical and radar sites routinely acquire resolved images of satellites, yielding a great deal of knowledge about orbiting...BRF) requires knowledge of the stabilization scheme used to maintain the attitude of the satellite’s main bus [13]. Modern 3-axis stabilized...Spacecraft Attitude Determination and Control”, Astrophysics and Space Sciences Library, Vol. 73., D. Reidel Publishing Co., Boston, MA, 1978. 14. Africano

  19. Model Analysis ToolKit

    SciTech Connect

    Harp, Dylan R.

    2015-05-15

    MATK provides basic functionality to facilitate model analysis within the Python computational environment. Model analysis setup within MATK includes: - define parameters - define observations - define model (python function) - define samplesets (sets of parameter combinations) Currently supported functionality includes: - forward model runs - Latin-Hypercube sampling of parameters - multi-dimensional parameter studies - parallel execution of parameter samples - model calibration using internal Levenberg-Marquardt algorithm - model calibration using lmfit package - model calibration using levmar package - Markov Chain Monte Carlo using pymc package MATK facilitates model analysis using: - scipy - calibration (scipy.optimize) - rpy2 - Python interface to R

  20. Stability of landsat-4 thematic mapper outgassing models

    USGS Publications Warehouse

    Micijevic, E.; Chander, G.

    2006-01-01

    Oscillations in radiometric gains of the short wave infrared (SWIR) bands in Landsat-4 (L4) and Landsat-5 (L5) Thematic Mappers (TMs) are observed through an analysis of detector responses to the Internal Calibrator (IC) pulses. The oscillations are believed to be caused by an interference effect due to a contaminant film buildup on the window of the cryogenically cooled dewar that houses these detectors. This process of contamination, referred to as outgassing effects, has been well characterized using an optical thin-film model that relates detector responses to the accumulated film thickness and its growth rate. The current models for L4 TM are based on average detector responses to the second brightest IC lamp and have been derived from three data sets acquired during different times throughout the instrument's lifetime. Unlike in L5 TM outgassing characterization, it was found that the L4 TM responses to all three IC lamps can be used to provide accurate characterization and correction for outgassing effects. The analysis of single detector responses revealed an up to five percent difference in the estimated oscillating periods and also indicated a gradual variation of contaminant growth rate over the focal plane.

  1. A multiloop generalization of the circle criterion for stability margin analysis

    NASA Technical Reports Server (NTRS)

    Safonov, M. G.; Athans, M.

    1981-01-01

    In order to provide a theoretical tool well suited for use in characterizing the stability margins (e.g., gain and phase margins) of multiloop feedback systems, multiloop input-output stability results generalizing the circle stability criterion are considered. Generalized conic sectors with 'centers' and 'radii' determined by linear dynamical operators are employed to enable an engineer to specify the stability margins which he desires as a frequency-dependent convex set of modeling errors (including nonlinearities, gain variations, and phase variations) which the system must be able to tolerate in each feedback loop without instability. The resulting stability criterion gives sufficient conditions for closed-loop stability in the presence of such frequency-dependent modeling errors, even when the modeling errors occur simultaneously in all loops.

  2. Operations and Modeling Analysis

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles

    2005-01-01

    The Reliability and Maintainability Analysis Tool (RMAT) provides NASA the capability to estimate reliability and maintainability (R&M) parameters and operational support requirements for proposed space vehicles based upon relationships established from both aircraft and Shuttle R&M data. RMAT has matured both in its underlying database and in its level of sophistication in extrapolating this historical data to satisfy proposed mission requirements, maintenance concepts and policies, and type of vehicle (i.e. ranging from aircraft like to shuttle like). However, a companion analyses tool, the Logistics Cost Model (LCM) has not reached the same level of maturity as RMAT due, in large part, to nonexistent or outdated cost estimating relationships and underlying cost databases, and it's almost exclusive dependence on Shuttle operations and logistics cost input parameters. As a result, the full capability of the RMAT/LCM suite of analysis tools to take a conceptual vehicle and derive its operations and support requirements along with the resulting operating and support costs has not been realized.

  3. Modeling the convective stability of CO2 sequestration by a discontinuous and unstably stratified density profile

    NASA Astrophysics Data System (ADS)

    Wanstall, Taber; Hadji, Layachi

    2016-11-01

    The convective stability associated with carbon sequestration is modeled by adopting an unstably stratified basic profile having a step function density with top heavy carbon saturated layer overlying a lighter carbon free layer. The model takes into account the anisotropy in both permeability and carbon dioxide diffusion, and chemical reactions between the CO2 rich brine and host mineralogy. We carry out a linear stability analysis to derive the instability threshold parameters for a variety of CO2 boundary conditions. We solve for the minimum thickness of the carbon-rich layer at which convection sets in and quantify how its value is influenced by diffusion, anisotropy, permeability, reaction and type of boundary conditions. The discontinuity leads to convective concentration contours that have the shape of an asymmetric lens which we quantify by deriving and making use of the CO2 flux expressions at the interface. The linear problem is extended to the nonlinear regime, the analysis of which leads to the determination of a uniformly valid super critical steady solution.

  4. Longitudinal structure of MHD perturbations at the boundary of convective stability in the Kruskal-Oberman model

    SciTech Connect

    Arsenin, V. V.

    2010-10-15

    It is shown that, in contrast to the MHD model, a perturbation at the boundary of convective stability of a finite-pressure plasma in confinement systems without an averaged minB in the Kruskal-Oberman model is not generally a purely flute one. The reasons for this discrepancy are clarified. The analysis is carried out for axisymmetric configurations formed by a poloidal magnetic field.

  5. Stability analysis and trend study of a balloon tethered in a wind, with experimental comparisons

    NASA Technical Reports Server (NTRS)

    Redd, L. T.; Bland, S. R.; Bennett, R. M.

    1973-01-01

    A stability analysis and trend study for a balloon tethered in a steady wind are presented. The linearized, stability-derivative type analysis includes balloon aerodynamics, buoyancy, mass (including apparent mass), and static forces resulting from the tether cable. The analysis has been applied to a balloon 7.64 m in length, and the results are compared with those from tow tests of this balloon. This comparison shows that the analysis gives reasonable predictions for the damping, frequencies, modes of motion, and stability boundaries exhibited by the balloon. A trend study for the 7.64-m balloon was made to illustrate how the stability boundaries are affected by changes in individual stability parameters. The trends indicated in this study may also be applicable to many other tethered-balloon systems.

  6. GraTeLPy: graph-theoretic linear stability analysis

    PubMed Central

    2014-01-01

    Background A biochemical mechanism with mass action kinetics can be represented as a directed bipartite graph (bipartite digraph), and modeled by a system of differential equations. If the differential equations (DE) model can give rise to some instability such as multistability or Turing instability, then the bipartite digraph contains a structure referred to as a critical fragment. In some cases the existence of a critical fragment indicates that the DE model can display oscillations for some parameter values. We have implemented a graph-theoretic method that identifies the critical fragments of the bipartite digraph of a biochemical mechanism. Results GraTeLPy lists all critical fragments of the bipartite digraph of a given biochemical mechanism, thus enabling a preliminary analysis on the potential of a biochemical mechanism for some instability based on its topological structure. The correctness of the implementation is supported by multiple examples. The code is implemented in Python, relies on open software, and is available under the GNU General Public License. Conclusions GraTeLPy can be used by researchers to test large biochemical mechanisms with mass action kinetics for their capacity for multistability, oscillations and Turing instability. PMID:24572152

  7. A generalized hydrodynamic model for acoustic mode stability in viscoelastic plasma fluid

    NASA Astrophysics Data System (ADS)

    Borah, B.; Haloi, A.; Karmakar, P. K.

    2016-05-01

    In this paper a generalized hydrodynamic (GH) model to investigate acoustic-mode excitation and stability in simplified strongly coupled bi-component plasma is proposed. The goal is centered in seeing the viscoelasticity-influences on the instability properties. The dispersive and nondispersive features are methodologically explored followed by numerical illustrations. It is seen that, unlike usual plasma acoustic mode, here the mode stability is drastically modified due to the considered viscoelastic effects contributed from both the electronic and ionic fluids. For example, it is found that there exists an excitation threshold value on angular wavenumber, K ≈3 in the K-space on the Debye scale, beyond which only dispersive characteristic features prevail. Further, it is demonstrated that the viscoelastic relaxation time plays a stabilizing influential role on the wave dynamics. In contrast, it is just opposite for the effective viscoelastic relaxation effect. Consistency with the usual viscoelasticity-free situations, with and without plasma approximation taken into account, is also established and explained. It is identified and conjectured that the plasma fluid viscoelasticity acts as unavoidable dispersive agency in attributing several new characteristics to acoustic wave excitation and propagation. The analysis is also exploited to derive a quantitative glimpse on the various basic properties and dimensionless numbers of the viscoelastic plasma. Finally, extended implications of our results tentative to different cosmic, space and astrophysical situations, amid the entailed facts and faults, are highlighted together with indicated future directions.

  8. Model Systems of Precursor Cellular Membranes: Long-Chain Alcohols Stabilize Spontaneously Formed Oleic Acid Vesicles

    PubMed Central

    Rendón, Adela; Carton, David Gil; Sot, Jesús; García-Pacios, Marcos; Montes, Ruth; Valle, Mikel; Arrondo, José-Luis R.; Goñi, Felix M.; Ruiz-Mirazo, Kepa

    2012-01-01

    Oleic acid vesicles have been used as model systems to study the properties of membranes that could be the evolutionary precursors of more complex, stable, and impermeable phospholipid biomembranes. Pure fatty acid vesicles in general show high sensitivity to ionic strength and pH variation, but there is growing evidence that this lack of stability can be counterbalanced through mixtures with other amphiphilic or surfactant compounds. Here, we present a systematic experimental analysis of the oleic acid system and explore the spontaneous formation of vesicles under different conditions, as well as the effects that alcohols and alkanes may have in the process. Our results support the hypothesis that alcohols (in particular 10- to 14-C-atom alcohols) contribute to the stability of oleic acid vesicles under a wider range of experimental conditions. Moreover, studies of mixed oleic-acid-alkane and oleic-acid-alcohol systems using infrared spectroscopy and Langmuir trough measurements indicate that precisely those alcohols that increased vesicle stability also decreased the mobility of oleic acid polar headgroups, as well as the area/molecule of lipid. PMID:22339864

  9. Liner stability analysis of the two-dimensional Taylor-Green vortices in a stratified flow

    NASA Astrophysics Data System (ADS)

    Suzuki, Shota; Hirota, Makoto; Hattori, Yuji

    2015-11-01

    The linear stability of the two-dimensional Taylor-Green vortices in a stratified fluid is studied by modal stability analysis and short-wavelength stability analysis. By modal stability analysis it is found that the growth rate of the most unstable mode depends on the horizontal Froude number Fh and the stratification effects on the growth rate change as Fh becomes small or stratification becomes strong. There are three regions of Fh where the stratification effects are different: the stabilizing region where the elliptic instability is dominant at large Fh, the region where the growth rate has maximum, the slightly destabilizing region where the zigzag instability is dominant at small Fh. In order to reveal the mechanism of the behavior of the growth rate in the second region, we investigate the local stability of the flow near the vortex center and the flow near the boundaries between vortices by short-wavelength analysis. As a result, it is found that the competition between stabilizing elliptic instability near the vortex center and destabilizing hyperbolic instability near the boundaries occurs in the weakly stratified region. The relation between modal stability and the competition of short-wavelength stabilities will be discussed.

  10. Self-optimization, community stability, and fluctuations in two individual-based models of biological coevolution.

    PubMed

    Rikvold, Per Arne

    2007-11-01

    We compare and contrast the long-time dynamical properties of two individual-based models of biological coevolution. Selection occurs via multispecies, stochastic population dynamics with reproduction probabilities that depend nonlinearly on the population densities of all species resident in the community. New species are introduced through mutation. Both models are amenable to exact linear stability analysis, and we compare the analytic results with large-scale kinetic Monte Carlo simulations, obtaining the population size as a function of an average interspecies interaction strength. Over time, the models self-optimize through mutation and selection to approximately maximize a community potential function, subject only to constraints internal to the particular model. If the interspecies interactions are randomly distributed on an interval including positive values, the system evolves toward self-sustaining, mutualistic communities. In contrast, for the predator-prey case the matrix of interactions is antisymmetric, and a nonzero population size must be sustained by an external resource. Time series of the diversity and population size for both models show approximate 1/f noise and power-law distributions for the lifetimes of communities and species. For the mutualistic model, these two lifetime distributions have the same exponent, while their exponents are different for the predator-prey model. The difference is probably due to greater resilience toward mass extinctions in the food-web like communities produced by the predator-prey model.

  11. Stability of Blowup for a 1D Model of Axisymmetric 3D Euler Equation

    NASA Astrophysics Data System (ADS)

    Do, Tam; Kiselev, Alexander; Xu, Xiaoqian

    2016-10-01

    The question of the global regularity versus finite- time blowup in solutions of the 3D incompressible Euler equation is a major open problem of modern applied analysis. In this paper, we study a class of one-dimensional models of the axisymmetric hyperbolic boundary blow-up scenario for the 3D Euler equation proposed by Hou and Luo (Multiscale Model Simul 12:1722-1776, 2014) based on extensive numerical simulations. These models generalize the 1D Hou-Luo model suggested in Hou and Luo Luo and Hou (2014), for which finite-time blowup has been established in Choi et al. (arXiv preprint. arXiv:1407.4776, 2014). The main new aspects of this work are twofold. First, we establish finite-time blowup for a model that is a closer approximation of the three-dimensional case than the original Hou-Luo model, in the sense that it contains relevant lower-order terms in the Biot-Savart law that have been discarded in Hou and Luo Choi et al. (2014). Secondly, we show that the blow-up mechanism is quite robust, by considering a broader family of models with the same main term as in the Hou-Luo model. Such blow-up stability result may be useful in further work on understanding the 3D hyperbolic blow-up scenario.

  12. Trajectory Stability Modeling And Tolerances in the LCLS

    SciTech Connect

    Wu, J.; Emma, P.; /SLAC

    2007-04-27

    To maintain stable performance of the Linac Coherent Light Source (LCLS) x-ray free-electron laser, one must control the electron trajectory stability through the undulator to a small fraction of the beam size. BPM-based feedback loops running at 120 Hz will be effective in controlling jitter at low frequencies less than a few Hz. On the other hand, linac and injector stability tolerances must be chosen to limit jitter at higher frequencies. In this paper we study possible sources of high frequency jitter, including: (1) steering coil current regulation; (2) quadrupole magnet transverse vibrations; (3) quadrupole current regulation with transverse misalignments; (4) charge variations coupled to jitter through transverse wakefields of misaligned RF structures; and (5) bunch length variations coupled through coherent synchrotron radiation in the bunch compressor chicanes. Based on this study, we set component tolerances and estimate expected trajectory stability in the LCLS.

  13. How to model the stability of terraced slopes? The case study of Tresenda (northern Italy)

    NASA Astrophysics Data System (ADS)

    Camera, Corrado; Apuani, Tiziana; Masetti, Marco

    2015-04-01

    Terraces are very common morphological features all around the Mediterranean Basin. They have been built to adapt the natural morphology of the territory to the development of anthropogenic activities, particularly agriculture. However, the increasing land abandonment during the last century is leading to soil degradation and stability issues, mainly due to lack of maintenance of these peculiar environments. The objective of this study was to develop a coupled hydrologic-stability model to identify possible triggering areas of superficial landslides during intense rainfall events. The model was tested on a slope uphill of the village of Tresenda, in Northern Italy, which experienced several superficial landslides in the last 35 years. Distributed stability analyses are usually carried out using an infinite slope approach, but in the case of terraces some basic assumptions of this method fail: the parallelism between topographical surface and potential sliding surface and the high ratio between slope length and failure surface depth are the most important examples. In addition, the interest is more on the stability of the terrace system (dry stone retaining wall and backfill soil) and not on soil alone. For these reasons, a stability analysis based on the global method of equilibrium is applied and soft coupled to a well know hydrological model (STARWARS). Sections of terrace, one cell wide, are recognized from the base of a wall to the top of the closest downstream one, and each cell (1 x 1 m2) is considered as a slice. The method of Sarma for circular and non-circular failure is applied. The very fine horizontal resolution (1 m) is crucial to take into consideration the hydrogeological and mechanical properties of dry stone walls (0.6-1.0 m wide). A sensitivity analysis was conducted for saturated water content, initial volumetric water content, the cohesion and friction angle of soil and walls and soil depth. The results of the sensitivity analysis showed that

  14. The stability analysis of rolling motion of hypersonic vehicles and its validations

    NASA Astrophysics Data System (ADS)

    Ye, YouDa; Zhao, ZhongLiang; Tian, Hao; Zhang, XianFeng

    2014-12-01

    The stability of the rolling motion of near space hypersonic vehicles with rudder control is studied using method of qualitative analysis of nonlinear differential equations, and the stability criteria of the deflected rolling motions are improved. The outcomes can serve as the basis for further study regarding the influence of pitching and lateral motion on the stability of rolling motion. To validate the theoretical results, numerical simulations were done for the rolling motion of two hypersonic vehicles with typical configurations. Also, wind tunnel experiments for four aircraft models with typical configurations have been done. The results show that: 1) there exist two dynamic patterns of the rolling motion under statically stable condition. The first one is point attractor, for which the motion of aircraft returns to the original state. The second is periodic attractor, for which the aircraft rolls periodically. 2) Under statically unstable condition, there exist three dynamic patterns of rolling motion, namely, the point attractor, periodic attractor around deflected state of rolling motion, and double periodic attractors or chaotic attractors.

  15. Stability analysis for acoustic wave propagation in tilted TI media by finite differences

    NASA Astrophysics Data System (ADS)

    Bakker, Peter M.; Duveneck, Eric

    2011-05-01

    Several papers in recent years have reported instabilities in P-wave modelling, based on an acoustic approximation, for inhomogeneous transversely isotropic media with tilted symmetry axis (TTI media). In particular, instabilities tend to occur if the axis of symmetry varies rapidly in combination with strong contrasts of medium parameters, which is typically the case at the foot of a steeply dipping salt flank. In a recent paper, we have proposed and demonstrated a P-wave modelling approach for TTI media, based on rotated stress and strain tensors, in which the wave equations reduce to a coupled set of two second-order partial differential equations for two scalar stress components: a normal component along the variable axis of symmetry and a lateral component of stress in the plane perpendicular to that axis. Spatially constant density is assumed in this approach. A numerical discretization scheme was proposed which uses discrete second-derivative operators for the non-mixed second-order derivatives in the wave equations, and combined first-derivative operators for the mixed second-order derivatives. This paper provides a complete and rigorous stability analysis, assuming a uniformly sampled grid. Although the spatial discretization operator for the TTI acoustic wave equation is not self-adjoint, this operator still defines a complete basis of eigenfunctions of the solution space, provided that the solution space is somewhat restricted at locations where the medium is elliptically anisotropic. First, a stability analysis is given for a discretization scheme, which is purely based on first-derivative operators. It is shown that the coefficients of the central difference operators should satisfy certain conditions. In view of numerical artefacts, such a discretization scheme is not attractive, and the non-mixed second-order derivatives of the wave equation are discretized directly by second-derivative operators. It is shown that this modification preserves

  16. Perturbed Stability Analysis of External Ideal MHD Modes

    NASA Astrophysics Data System (ADS)

    Comer, K. J.; Callen, J. D.; Hegna, C. C.; Garstka, G. D.; Turnbull, A. D.; Garofalo, A. M.; Cowley, S. C.

    2002-11-01

    Traditionally, numerical parameter scans are performed to study the effects of equilibrium shaping and profiles on long wavelength ideal MHD instabilities. Previously, we introduced a new perturbative technique to more efficiently explore these dependencies: changes in delta-W due to small equilibrium variations are found using a perturbation of the energy principle rather than with an eigenvalue-solver instability code. With this approach, the stability properties of similar equilibria can be efficiently explored without generating complete numerical results for every set of parameters (which is time-intensive for accurate representations of several configurations). Here, we apply this approach to toroidal geometry using GATO (an ideal MHD stability code) and experimental equilibria. In particular, we explore ideal MHD stability of external kink modes in the spherical tokamak Pegasus and resistive wall modes in DIII-D.

  17. Strength Analysis of Coconut Fiber Stabilized Earth for Farm Structures

    NASA Astrophysics Data System (ADS)

    Enokela, O. S.; P. O, Alada

    2012-07-01

    Investigation of the strength characteristic of soil from alluvial deposit of River Benue in makurdi stabilized with coconut fiber as a stabilizer was carried as local building material for farm structure. Processed coconut fibers were mixed with the soil at four different mix ratios of 1% fiber, 2% fiber, 3% fiber and 4% fiber by percentage weight with 0% fiber as control. Compaction test and compressive strength were carried out on the various stabilizing ratio. From the compaction test, the correlation between the maximum dry density and optimum moisture content is a second order polynomial with a coefficient of 63% obtained at1.91kg/m3and 20.0% respectively while the compressive strength test shows an optimum failure load of 8.62N/mm2 at 2%fibre:100% soil mix ratio at 2.16 maximum dry density.

  18. Stability analysis of non-inertial thin film flow over a heterogeneously heated porous substrate

    NASA Astrophysics Data System (ADS)

    Kumawat, Tara Chand; Tiwari, Naveen

    2016-02-01

    The dynamics and linear stability of a gravity drive thin film flowing over non-uniformly heated porous substrate are studied. A governing equation for the evolution of film-thickness is derived within the lubrication approximation. Darcy-Brinkman equation is used to model flow in the porous medium along with a tangential stress-jump condition at the interface of the porous layer and the fluid film. A temperature profile is imposed at the solid wall to model an embedded heater beneath the porous layer. At the upstream edge of the heater, an opposing thermocapillary stress at the liquid-air interface leads to the formation of a thermocapillary ridge. The ridge becomes unstable beyond a critical Marangoni number leading to the formation of rivulets that are periodic in the spanwise direction. Increase in the values of parameters such as Darcy number, stress jump coefficient, and porosity is shown to have stabilizing effect on the film dynamics. The critical Marangoni number is shown to increase monotonically with Darcy number for various values of porosity. At large values of stress-jump coefficient, a non-monotonic variation in critical Marangoni number versus Darcy number is shown. A correlation is developed numerically for the ratio of critical Marangoni number at large Darcy number to that for a non-porous substrate as a function of porosity and thickness of the porous substrate. A transient growth analysis is carried out followed by non-linear stability analysis. The non-modal growth is found to be negligible thus indicating that the eigenvalues are physically determinant.

  19. Advanced techniques for the analysis of crisis stability, deterrence, and latency

    SciTech Connect

    Canavan, G.H.

    1997-12-01

    Studies on crisis stability, deterrence, and latency are presented in chronological order, which also reflects their logical order of development, captures the main features of stability analysis; relates first strike, crisis, and arms control stability as seen from US and Russian perspective; and addresses questions such as whether uncertainty in damage preference or defense deployment can be destabilizing. It illustrates the problems with alternative metrics, latency and reconstitution, and deep unilateral and proportional force reductions.

  20. Reliability and Stability of VLBI-Derived Sub-Daily EOP Models

    NASA Technical Reports Server (NTRS)

    Artz, Thomas; Boeckmann, Sarah; Jensen, Laura; Nothnagel, Axel; Steigenberger, Peter

    2010-01-01

    Recent investigations have shown significant shortcomings in the model which is proposed by the IERS to account for the variations in the Earth s rotation with periods around one day and less. To overcome this, an empirical model can be estimated more or less directly from the observations of space geodetic techniques. The aim of this paper is to evaluate the quality and reliability of such a model based on VLBI observations. Therefore, the impact of the estimation method and the analysis options as well as the temporal stability are investigated. It turned out that, in order to provide a realistic accuracy measure of the model coefficients, the formal errors should be inflated by a factor of three. This coincides with the noise floor and the repeatability of the model coefficients and it captures almost all of the differences that are caused by different estimation techniques. The impact of analysis options is small but significant when changing troposphere parameterization or including harmonic station position variations.

  1. DIAGNOSIS, ANALYSIS, AND RESOLUTION OF THERMAL STABILITY ISSUES WITH HOM COUPLERS ON PROTOTYPE CEBAF SRF CAVITIES

    SciTech Connect

    Charles Reece; Edward Daly; G. Davis; William Hicks; Timothy Rothgeb; H. Phillips; Joseph Preble; Haipeng Wang; Genfa Wu

    2008-02-12

    During initial testing of the prototype cavities incorporated into the developmental cryomodule Renascence severe thermal stability issues were encountered during CW operation. Additional diagnostic instrumentation was added. This enabled identification of an unanticipated thermal impedance between the HOM coupler probe feedthrough assembly and the cavity beamtube. Subsequent detailed FE analysis successfully modeled the situation and indicated the need for alternate cooling path for the couplers on those cavities. HOM damping was measured to be adequate employing only two of the four HOM couplers. The two pickup probes on the couplers at the input power coupler side of each cavity were removed, the remaining HOM probe feedthroughs were heat stationed to two-phase helium supply piping, and a novel heat sink was added to station both the inner and outer conductors of the remaining HOM rf cables. The characterization measurements, analysis, modifications, and resulting performance are presented.

  2. ESF SOUTH PORTAL BOX-CUT/HIGHWALL STABILITY ANALYSIS (SCPB:N/A)

    SciTech Connect

    Saeed Bonabian

    1996-03-28

    The main purpose and objective of this analysis is to design a Box-Cut at the ESF South Portal to accommodate the Tunnel Boring Machine's (TBM) exit at the conclusion of the ESF Main Loop construction. The stability of the Highwall and the sidewalls at the Box-Cut are assessed using analytical methods by numerical modeling techniques. A ground reinforcement system for the South Ramp Box-Cut slopes will be recommended. This report summarizes the results of the analyses and provides the details of the recommended ground reinforcement system for the Box-Cut slopes at the South Portal. The reinforcement design details are then incorporated into design output documents for implementation in the field. Method of excavation for the Box-Cut is also discussed and a recommendation is provided in this analysis.

  3. Global stability of a multiple infected compartments model for waterborne diseases

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Cao, Jinde

    2014-10-01

    In this paper, mathematical analysis is carried out for a multiple infected compartments model for waterborne diseases, such as cholera, giardia, and rotavirus. The model accounts for both person-to-person and water-to-person transmission routes. Global stability of the equilibria is studied. In terms of the basic reproduction number R0, we prove that, if R0⩽1, then the disease-free equilibrium is globally asymptotically stable and the infection always disappears; whereas if R0>1, there exists a unique endemic equilibrium which is globally asymptotically stable for the corresponding fast-slow system. Numerical simulations verify our theoretical results and present that the decay rate of waterborne pathogens has a significant impact on the epidemic growth rate. Also, we observe numerically that the unique endemic equilibrium is globally asymptotically stable for the whole system. This statement indicates that the present method need to be improved by other techniques.

  4. Stability of Solitary Waves and Vortices in a 2D Nonlinear Dirac Model.

    PubMed

    Cuevas-Maraver, Jesús; Kevrekidis, Panayotis G; Saxena, Avadh; Comech, Andrew; Lan, Ruomeng

    2016-05-27

    We explore a prototypical two-dimensional massive model of the nonlinear Dirac type and examine its solitary wave and vortex solutions. In addition to identifying the stationary states, we provide a systematic spectral stability analysis, illustrating the potential of spinor solutions to be neutrally stable in a wide parametric interval of frequencies. Solutions of higher vorticity are generically unstable and split into lower charge vortices in a way that preserves the total vorticity. These conclusions are found not to be restricted to the case of cubic two-dimensional nonlinearities but are found to be extended to the case of quintic nonlinearity, as well as to that of three spatial dimensions. Our results also reveal nontrivial differences with respect to the better understood nonrelativistic analogue of the model, namely the nonlinear Schrödinger equation.

  5. A Quasi-Steady Flexible Launch Vehicle Stability Analysis Using Steady CFD with Unsteady Aerodynamic Enhancement

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2011-01-01

    Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin is caused by an undamping of the aerodynamics in one of the lower frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic lineloads derived from steady rigid computational fluid dynamics (CFD). However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers where experiment or unsteady computational aeroelastic (CAE) analysis show a reduced or even negative aerodynamic damping. This paper will present a method of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics. The enhanced formulation uses unsteady CFD to compute the response of selected lower frequency modes. The response is contained in a time history of the vehicle lineloads. A proper orthogonal decomposition of the unsteady aerodynamic lineload response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping and mass matrices. The results of the enhanced quasi-static aeroelastic stability analysis are compared with the damping and frequency computed from unsteady CAE analysis and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady CAE analysis.

  6. Stabilization precision control methods of photoelectric aim-stabilized system

    NASA Astrophysics Data System (ADS)

    Song, Xiaoru; Chen, Hua; Xue, Yonggang

    2015-09-01

    To solve the question that photoelectric aim-stabilized system can be controlled with high precision and stability, this paper researches a new photoelectric aim-stabilized control algorithm, analyzes the photoelectric aim-stabilized system architecture, sets up stability control system mathematical model, designs the stability of the photoelectric aim-stabilized LSSVM identification and control system, discusses uncertain factors and calculates the LSSVM parameters by the Chaos theory, gives the predictive controller model by the LSSVM and designs new photoelectric aim-stabilized system. Through the simulation calculation and experimental analysis, new photoelectric aim-stabilized control algorithm was verified; the results show the new photoelectric aim-stabilized control method can meet the demand of high precision control in photoelectric aim-stabilized system.

  7. Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet

    SciTech Connect

    Frisch, Josef; Chang, Allison; Decker, Valentin; Doyle, Eric; Eriksson, Leif; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Partridge, Richard; Seryi, Andrei; /SLAC

    2006-09-28

    The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system.

  8. Stability of traveling waves of a diffusive susceptible-infective-removed (SIR) epidemic model

    NASA Astrophysics Data System (ADS)

    Li, Yan; Li, Wan-Tong; Yang, Yun-Rui

    2016-04-01

    This paper is concerned with the stability and uniqueness of traveling waves of a delayed diffusive susceptible-infective-removed (SIR) epidemic model. We first prove the exponential stability of traveling waves by using the weighted energy method, where the traveling waves are allowed to be non-monotone. Then we establish the exact asymptotic behavior of traveling waves at -∞ by using Ikehara's theorem. Finally, the uniqueness of traveling waves is proved by the stability result of traveling waves.

  9. Quantum chemical analysis of reaction paths in chorismate mutase: Conformational effects and electrostatic stabilization

    NASA Astrophysics Data System (ADS)

    Szefczyk, Borys; Claeyssens, Frederik; Mulholland, Adrian J.; Sokalski, W. Andrzej

    We have performed a detailed, quantum chemical, decomposition analysis of the physical nature of key interactions in the model enzyme chorismate mutase (CM), for several active conformations produced by high level combined quantum mechanics/molecular mechanics (QM/MM) modeling. In opposition to our previous study, interactions between selected residues in the active site of CM were analysed along the whole reaction path, for several paths. The interaction energy is calculated up to Møller-Plesset second order level of theory and decomposed into physically meaningful components (electrostatic, exchange, delocalization, and electron correlation). This analysis shows, that the dominant interaction is differential stabilization by Arg90: this residue significantly stabilizes the transition state (TS) relative to the substrate in all the paths studied. Interactions in the active site of CM are dominated by the electrostatic component, whereas other components, for example electron correlation, are constant during reaction. Electrostatic effects alone are found to be responsible for lowering the barrier for reaction at the active site. Analysis of four reaction paths derived from QM/MM modeling shows that differences in the height of the barrier are due to differences in the electrostatic interactions of several weakly interacting residues. The influence of conformational effects, such as hydroxyl group rotation in the chorismate/TS, and the distance between Arg90 and the reacting chorismate, have also been analysed. The results show that specific conformations provide better activation barrier lowering. Even small changes in the conformation, like rotation of the hydroxyl group in chorismate (substrate), can significantly alter the activation barrier.0

  10. Nonlinear global stability analysis of compressor stall phenomena

    NASA Technical Reports Server (NTRS)

    Razavi, H.

    1985-01-01

    Compressor stall phenomena are analyzed from the point of view of nonlinear control theory, based on bifurcation-catastrophe techniques. This new approach appears promising and offers insight into such well-known compressor instability problems as surge and rotating stall and suggests strategies for recovery. Three interlocking dynamic nonlinear state space models are developed. It is shown that the problem of rotating stall can be viewed as an induced bifurcation of solution of the unstalled model. Hysteresis effects are shown to exist in the stall/recovery process. Surge cycles are observed for some critical parameter values. The oscillatory behavior is seen to be due to development of limit cycles, generated by Hopf bifurcation of solutions. More specifically, it is observed that at certain critical values of parameters, a family of stable limit cycles with growning and then diminishing amplitudes is generated, then giving rise to an unstable family of limit cycles. This unstable family in turn bifurcates into other unstable families. To further illustrate the utility of the methodology, some partial computation of domains is carried out, and parameter sensitivity analysis is performed.

  11. A reservation protocol for satellite packet communication - A performance analysis and stability considerations

    NASA Astrophysics Data System (ADS)

    Tasaka, S.; Ishibashi, Y.

    1984-08-01

    The dynamic behavior of a reservation system with a slotted ALOHA reservation channel is analyzed in this paper. It is assumed that each user handles one message at a time and that each message consists of a group of packets with a general probability distribution for group size. An approximate Markovian model of the system is developed on the assumption that the state transition can occur only at the beginning of each frame. The model is analyzed by an approximate analytical technique called equilibrium point analysis. The throughput and average mega delay characteristics are obtained, and the system stability behavior is demonstrated. A procedure is also given to get the optimum set of system parameters under constraints that the system is stable.

  12. Aeroelastic stability analysis of a high-energy turbine blade. [for SSME High Pressure Oxidizer TurboPump first stage

    NASA Technical Reports Server (NTRS)

    Smith, Todd E.

    1990-01-01

    The dynamic analysis for the SSME HPOTP first stage turbine blade is presented wherein the rotor aeroelastic stability is assessed. The method employs normal modes analysis to simulate the coupled blade/fluid system. A three-dimensional finite element model of the blade is used in conjunction with a two-dimensional linearized unsteady aerodynamic theory which accounts for steady aerodynamic loading effects. This unsteady aerodynamic model is applied in stacked axisymmetric strips along the airfoil span. The blade dynamic and aerodynamic behaviors are coupled within modal space by expressing the unsteady aerodynamic forces in the frequency domain. A complex eigenvalue problem is solved to determine the stability of the rotor assuming tuned blades. The present analysis indicates that the HPOTP rotor experiences very low aerodynamic damping in the first four vibrational modes. The edgewise mode was found to be dynamically unstable. This mode of the blade became stable when the effect of mechanical damping was considered.

  13. Hierarchical modeling of population stability and species group attributes from survey data

    USGS Publications Warehouse

    Sauer, J.R.; Link, W.A.

    2002-01-01

    Many ecological studies require analysis of collections of estimates. For example, population change is routinely estimated for many species from surveys such as the North American Breeding Bird Survey (BBS), and the species are grouped and used in comparative analyses. We developed a hierarchical model for estimation of group attributes from a collection of estimates of population trend. The model uses information from predefined groups of species to provide a context and to supplement data for individual species; summaries of group attributes are improved by statistical methods that simultaneously analyze collections of trend estimates. The model is Bayesian; trends are treated as random variables rather than fixed parameters. We use Markov Chain Monte Carlo (MCMC) methods to fit the model. Standard assessments of population stability cannot distinguish magnitude of trend and statistical significance of trend estimates, but the hierarchical model allows us to legitimately describe the probability that a trend is within given bounds. Thus we define population stability in terms of the probability that the magnitude of population change for a species is less than or equal to a predefined threshold. We applied the model to estimates of trend for 399 species from the BBS to estimate the proportion of species with increasing populations and to identify species with unstable populations. Analyses are presented for the collection of all species and for 12 species groups commonly used in BBS summaries. Overall, we estimated that 49% of species in the BBS have positive trends and 33 species have unstable populations. However, the proportion of species with increasing trends differs among habitat groups, with grassland birds having only 19% of species with positive trend estimates and wetland birds having 68% of species with positive trend estimates.

  14. F-111 natural laminar flow glove flight test data analysis and boundary layer stability analysis

    NASA Technical Reports Server (NTRS)

    Runyan, L. J.; Navran, B. H.; Rozendaal, R. A.

    1984-01-01

    An analysis of 34 selected flight test data cases from a NASA flight program incorporating a natural laminar flow airfoil into partial wing gloves on the F-111 TACT airplane is given. This analysis determined the measured location of transition from laminar to turbulent flow. The report also contains the results of a boundary layer stability analysis of 25 of the selected cases in which the crossflow (C-F) and Tollmien-Schlichting (T-S) disturbance amplification factors are correlated with the measured transition location. The chord Reynolds numbers for these cases ranges from about 23 million to 29 million, the Mach numbers ranged from 0.80 to 0.85, and the glove leading-edge sweep angles ranged from 9 deg to 25 deg. Results indicate that the maximum extent of laminar flow varies from 56% chord to 9-deg sweep on the upper surface, and from 51% chord at 16-deg sweep to 6% chord at 25-deg sweep on the lower. The results of the boundary layer stability analysis indicate that when both C-F and T-S disturbances are amplified, an interaction takes place which reduces the maximum amplification factor of either type of disturbance that can be tolerated without causing transition.

  15. Does Premarital Cohabitation Predict Subsequent Marital Stability and Marital Quality? A Meta-Analysis

    ERIC Educational Resources Information Center

    Jose, Anita; O'Leary, K. Daniel; Moyer, Anne

    2010-01-01

    Cohabitation with a romantic partner has become common in recent decades. This meta-analysis examined the link between premarital cohabitation and marital stability (k = 16) and marital quality (k = 12). Cohabitation had a significant negative association with both marital stability and marital quality. The negative predictive effect on marital…

  16. Stability and Change in Work Values: A Meta-Analysis of Longitudinal Studies

    ERIC Educational Resources Information Center

    Jin, Jing; Rounds, James

    2012-01-01

    A meta-analysis of longitudinal studies was conducted to investigate stability and change in work values across the life span. Both rank-order stability and mean-level change were investigated using an integrative classification for intrinsic, extrinsic, social and status work values (Ross, Schwartz, & Surkis, 1999). Results of rank-order…

  17. Stability and sensitivity analysis of experimental data for passive control of a turbulent wake

    NASA Astrophysics Data System (ADS)

    Siconolfi, Lorenzo; Camarri, Simone; Trip, Renzo; Fransson, Jens H. M.

    2016-11-01

    When the linear stability analysis is applied to the mean flow field past a bluff body, a quasi-marginally stable mode is identified, with a frequency very close to the real vortex shedding one. A formally consistent approach to justify this kind of analysis is based on a triple decomposition of the flow variables. With this formalism, the adjoint-based sensitivity analysis can be extended to investigate passive controls of high-Reynolds-number wakes (e.g.). The objective of the present work is to predict the effect of a small control cylinder on the vortex shedding frequency in a turbulent wake with an analysis which solely relies on PIV measurements available for the considered flow. The key ingredient of the numerical analysis is an ad-hoc tuned model for the mean flow field, built using an original procedure which includes all the experimental information available on the flow. This analysis is here applied to the wake flow past a thick porous plate at Reynolds numbers in the range between Re = 6 . 7 ×103 and Re= 5 . 3 ×104 . It is shown that the derived control map agrees reasonably well with the equivalent map obtained experimentally.

  18. A probabilistic method to report predictions from a human liver microsomes stability QSAR model: a practical tool for drug discovery.

    PubMed

    Aliagas, Ignacio; Gobbi, Alberto; Heffron, Timothy; Lee, Man-Ling; Ortwine, Daniel F; Zak, Mark; Khojasteh, S Cyrus

    2015-04-01

    Using data from the in vitro liver microsomes metabolic stability assay, we have developed QSAR models to predict in vitro human clearance. Models were trained using in house high-throughput assay data reported as the predicted human hepatic clearance by liver microsomes or pCLh. Machine learning regression methods were used to generate the models. Model output for a given molecule was reported as its probability of being metabolically stable, thus allowing for synthesis prioritization based on this prediction. Use of probability, instead of the regression value or categories, has been found to be an efficient way for both reporting and assessing predictions. Model performance is evaluated using prospective validation. These models have been integrated into a number of desktop tools, and the models are routinely used to prioritize the synthesis of compounds. We discuss two therapeutic projects at Genentech that exemplify the benefits of a probabilistic approach in applying the models. A three-year retrospective analysis of measured liver microsomes stability data on all registered compounds at Genentech reveals that the use of these models has resulted in an improved metabolic stability profile of synthesized compounds.

  19. A probabilistic method to report predictions from a human liver microsomes stability QSAR model: a practical tool for drug discovery

    NASA Astrophysics Data System (ADS)

    Aliagas, Ignacio; Gobbi, Alberto; Heffron, Timothy; Lee, Man-Ling; Ortwine, Daniel F.; Zak, Mark; Khojasteh, S. Cyrus

    2015-04-01

    Using data from the in vitro liver microsomes metabolic stability assay, we have developed QSAR models to predict in vitro human clearance. Models were trained using in house high-throughput assay data reported as the predicted human hepatic clearance by liver microsomes or pCLh. Machine learning regression methods were used to generate the models. Model output for a given molecule was reported as its probability of being metabolically stable, thus allowing for synthesis prioritization based on this prediction. Use of probability, instead of the regression value or categories, has been found to be an efficient way for both reporting and assessing predictions. Model performance is evaluated using prospective validation. These models have been integrated into a number of desktop tools, and the models are routinely used to prioritize the synthesis of compounds. We discuss two therapeutic projects at Genentech that exemplify the benefits of a probabilistic approach in applying the models. A three-year retrospective analysis of measured liver microsomes stability data on all registered compounds at Genentech reveals that the use of these models has resulted in an improved metabolic stability profile of synthesized compounds.

  20. Analysis of a Stabilized CNLF Method with Fast Slow Wave Splittings for Flow Problems

    SciTech Connect

    Jiang, Nan; Tran, Hoang A.

    2015-04-01

    In this work, we study Crank-Nicolson leap-frog (CNLF) methods with fast-slow wave splittings for Navier-Stokes equations (NSE) with a rotation/Coriolis force term, which is a simplification of geophysical flows. We propose a new stabilized CNLF method where the added stabilization completely removes the method's CFL time step condition. A comprehensive stability and error analysis is given. We also prove that for Oseen equations with the rotation term, the unstable mode (for which u(n+1) + u(n-1) equivalent to 0) of CNLF is asymptotically stable. Numerical results are provided to verify the stability and the convergence of the methods.

  1. Advanced techniques for the analysis of crisis stability, deterrence, and latency

    SciTech Connect

    Canavan, G.H.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The principal results of studies on crisis stability, deterrence, and latency are presented in their order of development. They capture the main features of stability analysis; relate first strike, crisis, and arms control stability as seen from US and Russian perspective; and address whether different metrics, uncertain damage preferences, or the deployment of defenses can be destabilizing. The report explores differences between unilateral and proportional force reductions in the region of deep reductions where concern shifts from stability to latency.

  2. Mathematics, Thermodynamics, and Modeling to Address Ten Common Misconceptions about Protein Structure, Folding, and Stability

    ERIC Educational Resources Information Center

    Robic, Srebrenka

    2010-01-01

    To fully understand the roles proteins play in cellular processes, students need to grasp complex ideas about protein structure, folding, and stability. Our current understanding of these topics is based on mathematical models and experimental data. However, protein structure, folding, and stability are often introduced as descriptive, qualitative…

  3. Bubbles breaking the wall: Two-dimensional stress and stability analysis

    NASA Astrophysics Data System (ADS)

    Eriksen, Jon Alm; Marks, Benjy; Sandnes, Bjørnar; Toussaint, Renaud

    2015-05-01

    Submerged granular material exhibits a wide range of behavior when the saturating fluid is slowly displaced by a gas phase. In confined systems, the moving interface between the invading gas and the fluid/grain mixture can cause beads to jam, and induce intermittency in the dynamics. Here, we study the stability of layers of saturated jammed beads around stuck air bubbles, and the deformation mechanism leading to air channel formations in these layers. We describe a two-dimensional extension of a previous model of the effective stress in the jammed packing. The effect of the tangential stress component on the yield stress is discussed, in particular how arching effects may impact the yield threshold. We further develop a linear stability analysis, to study undulations which develop under certain experimental conditions at the air-liquid interface. The linear analysis gives estimates for the most unstable wavelengths for the initial growth of the perturbations. The estimates correspond well with peak to peak length measurements of the experimentally observed undulations.

  4. Linear stability analysis for travelling waves of second order in time PDE's

    NASA Astrophysics Data System (ADS)

    Stanislavova, Milena; Stefanov, Atanas

    2012-09-01

    We study travelling waves φc of second order in time PDE's u_{tt}+{ L} u+N(u)=0 . The linear stability analysis for these models is reduced to the question of the stability of quadratic pencils in the form \\lambda^2Id+2c\\lambda \\partial_x+{ H}_c , where { H}_c=c^2 \\partial_{xx}+{ L}+N'(\\varphi_c) . If { H}_c is a self-adjoint operator, with a simple negative eigenvalue and a simple eigenvalue at zero, then we completely characterize the linear stability of φc. More precisely, we introduce an explicitly computable index \\omega^*({ H}_c)\\in (0, \\infty] , so that the wave φc is stable if and only if |c|\\geq \\omega^*({ H}_c) . The results are applicable both in the periodic case and in the whole line case. The method of proof involves a delicate analysis of a function { G} , associated with { H} , whose positive zeros are exactly the positive (unstable) eigenvalues of the pencil \\lambda^2Id+2c\\lambda \\partial_x+{ H} . We would like to emphasize that the function { G} is not the Evans function for the problem, but rather a new object that we define herein, which fits the situation rather well. As an application, we consider three classical models—the ‘good’ Boussinesq equation, the Klein-Gordon-Zakharov (KGZ) system and the fourth order beam equation. In the whole line case, for the Boussinesq case and the KGZ system (and as a direct application of the main results), we compute explicitly the set of speeds which give rise to linearly stable travelling waves (and for all powers of p in the case of Boussinesq). This result is new for the KGZ system, while it generalizes the results of Alexander et al (2012, personal communication) and Alexander and Sachs (1995 Nonlinear World 2 471-507), which apply to the case p = 2. For the beam equation, we provide an implicit formula (depending only on the function \\|\\varphi_c'\\|_{L^2}) , which works for all p and for both the periodic and the whole line cases. Our results complement (and exactly match

  5. Thermal stability analysis of the fine structure of solar prominences

    NASA Technical Reports Server (NTRS)

    Demoulin, Pascal; Malherbe, Jean-Marie; Schmieder, Brigitte; Raadu, Mickael A.

    1986-01-01

    The linear thermal stability of a 2D periodic structure (alternatively hot and cold) in a uniform magnetic field is analyzed. The energy equation includes wave heating (assumed proportional to density), radiative cooling and both conduction parallel and orthogonal to magnetic lines. The equilibrium is perturbed at constant gas pressure. With parallel conduction only, it is found to be unstable when the length scale 1// is greater than 45 Mn. In that case, orthogonal conduction becomes important and stabilizes the structure when the length scale is smaller than 5 km. On the other hand, when the length scale is greater than 5 km, the thermal equilibrium is unstable, and the corresponding time scale is about 10,000 s: this result may be compared to observations showing that the lifetime of the fine structure of solar prominences is about one hour; consequently, our computations suggest that the size of the unresolved threads could be of the order of 10 km only.

  6. Linear MHD Stability Analysis of the SSPX Spheromak

    NASA Astrophysics Data System (ADS)

    Jayakumar, R.; Cohen, B. I.; Hooper, E. B.; Lodestro, L. L.; McLean, H. S.; Pearlstein, L. D.; Wood, R.; Turnbull, A. D.; Sovinec, C.

    2007-11-01

    Good correlation between the toroidal mode numbers of measured magnetic fluctuations in high temperature SSPX plasmas and presence of low-order rational surfaces in the reconstructed q profiles, suggests that the quality of magnetic surfaces in SSPX is sufficiently good for applying standard linear MHD stability analyses. Previously we have reported on benchmarking the code NIMROD against GATO, with good agreement in growth rates for ideal-MHD internal kinks and an external kinks with no current on open field lines (for equilibria imported from the code Corsica). Recent stability analyses also show that presence of low order rational surfaces causes internal modes to become unstable. We will report on the progress in applying these tools for assessing beta limits in SSPX, using NIMROD analyses including current on open field lines and for comparison with experiments.

  7. Stability analysis of f( R)-AdS black holes

    NASA Astrophysics Data System (ADS)

    Moon, Taeyoon; Myung, Yun Soo; Son, Edwin J.

    2011-10-01

    We study the stability of the f( R)-AdS (Schwarzschild-AdS) black hole obtained from f( R) gravity. In order to resolve the difficulty of solving fourth-order linearized equations, we transform f( R) gravity into scalar-tensor theory by introducing two auxiliary scalars. In this case, the linearized curvature scalar becomes a dynamical scalaron, showing that all linearized equations are second order. Using the positivity of gravitational potentials and S-deformed technique allows us to guarantee the stability of f( R)-AdS black hole if the scalaron mass squared satisfies the Breitenlohner-Freedman bound. This is confirmed by computing quasinormal frequencies of the scalaron for the f( R)-AdS black hole.

  8. Flow structure and stability analysis for back-step flow

    NASA Astrophysics Data System (ADS)

    Mihaiescu, Adrian; Wesfreid, Jose Eduardo

    2005-11-01

    The structure and stability of the flow over a backward-facing step are studied using direct numerical simulation. Two-dimensional and three-dimensional simulations are conducted at a Reynolds number between 50 and 600. The reattachment length and velocity profiles are in agreement with the experimental and numerical results reported by J.-F. Beaudoin et al.(2003). The Rayleigh discriminant and the Gortler number are calculated for the stability study. Present results identify the same regions of instability as previously found by the two-dimensional simulations of Beaudoin et al., but the values of both Rayleigh discriminant and Gortler number are significantly different. Two Eckman structures close to the lateral walls, followed inside the flow domain by two Gortler structures, located downstream the step are identified. It is shown that other Gortler structures appear when a spanwise periodic perturbation of the inflow velocity is imposed. However, these longitudinal structures depend on the inflow conditions.

  9. Thermal Stability Analysis for a Heliocentric Gravitational Radiation Detection Mission

    NASA Technical Reports Server (NTRS)

    Folkner, W.; McElroy, P.; Miyake, R.; Bender, P.; Stebbins, R.; Supper, W.

    1994-01-01

    The Laser Interferometer Space Antenna (LISA) mission is designed for detailed studies of low-frequency gravitational radiation. The mission is currently a candidate for ESA's post-Horizon 2000 program. Thermal noise affects the measurement in at least two ways. Thermal variation of the length of the optical cavity to which the lasers are stabilized introduces phase variations in the interferometer signal, which have to be corrected for by using data from the two arms separately.

  10. Preliminary Experimental Analysis of Soil Stabilizers for Contamination Control

    SciTech Connect

    Lagos, L.; Varona, J.; Zidan, A.; Gudavalli, R.; Wu, Kuang-His

    2006-07-01

    A major focus of Department of Energy's (DOE's) environmental management mission at the Hanford site involves characterizing and remediating contaminated soil and groundwater; stabilizing contaminated soil; remediating disposal sites; decontaminating and decommissioning structures, and demolishing former plutonium production process buildings, nuclear reactors, and separation plants; maintaining inactive waste sites; transitioning facilities into the surveillance and maintenance program; and mitigating effects to biological and cultural resources from site development and environmental cleanup and restoration activities. For example, a total of 470,914 metric tons of contaminated soil from 100 Areas remediation activities were disposed at the Environmental Restoration Disposal Facility (ERDF) during 2004. The Applied Research Center (ARC) at Florida International University (FIU) is supporting the Hanford's site remediation program by analyzing the effectiveness of several soil stabilizers (fixatives) for contamination control during excavation activities. The study is focusing on determining the effects of varying soil conditions, temperature, humidity and wind velocity on the effectiveness of the candidate stabilizers. The test matrix consists of a soil penetration-depth study, wind tunnel experiments for determination of threshold velocity, and temperature and moisture-controlled drying/curing experiments. These three set of experiments are designed to verify performance metrics, as well as provide insight into what fundamental forces are altered by the use of the stabilizer. This paper only presents the preliminary results obtained during wind tunnel experiments using dry Hanford soil samples (with 2.7% moisture by weight). These dry soil samples were exposed to varying wind speeds from 2.22 m/sec to 8.88 m/sec. Furthermore, airborne particulate data was collected for the dry Hanford soil experiments using an aerosol analyzer instrument. (authors)

  11. Local stability analysis for a planar shock wave

    NASA Technical Reports Server (NTRS)

    Salas, M. D.

    1984-01-01

    A procedure to study the local stability of planar shock waves is presented. The procedure is applied to a Rankine-Hugoniot shock in a divergent/convergent nozzle, to an isentropic shock in a divergent/convergent nozzle, and to Rankine-Hugoniot shocks attached to wedges and cones. It is shown that for each case, the equation governing the shock motion is equivalent to the damped harmonic oscillator equation.

  12. Linking hydrological, infinite slope stability and land-use change models through GIS for assessing the impact of deforestation on slope stability in high Andean watersheds

    NASA Astrophysics Data System (ADS)

    Vanacker, Veerle; Vanderschaeghe, Michiel; Govers, Gerard; Willems, Edith; Poesen, Jean; Deckers, Jozef; De Bievre, Bert

    2003-06-01

    In the Ecuadorian Andes, episodic slope movements comprising shallow rotational and translational slides and rapid flows of debris and soil material are common. Consequently, not only considerable financial costs are experienced, but also major ecological and environmental problems arise in a larger geographical area. Sediment production by slope movement on hillslopes directly affects sediment transport and deposition in downstream rivers and dams and morphological changes in the stream channels. In developing countries world-wide, slope movement hazards are growing: increasing population pressure and economic development force more people to move to potentially hazardous areas, which are less suitable for agriculture and rangelands. This paper describes the methods used to determine the controlling factors of slope failure and to build upon the results of the statistical analysis a process-based slope stability model, which includes a dynamic soil wetness index using a simple subsurface flow model. The model provides a time-varying estimate of slope movement susceptibility, by linking land-use data with spatially varying hydrologic (soil conductivity, evapotranspiration, soil wetness) and soil strength properties. The slope stability model was applied to a high Andean watershed (Gordeleg Catchment, 250 ha, southern Ecuadorian Andes) and was validated by calculating the association coefficients between the slope movement susceptibility map of 2000 and the spatial pattern of active slope movements, as measured in the field with GPS. The proposed methodology allows assessment of the effects of past and future land-use change on slope stability. A realistic deforestation scenario was presented: past land-use change includes a gradual fragmentation and clear cut of the secondary forests, as observed over the last four decades (1963-2000), future land-use change is simulated based on a binary logistic deforestation model, whereby it was assumed that future land

  13. Complete mode-set stability analysis of magnetically insulated ion diode equilibria

    SciTech Connect

    Slutz, S.A.; Lemke, R.W.

    1993-12-31

    We present the first analysis of the stability of magnetically insulated ion diodes that is fully relativistic and includes electromagnetic perturbations both parallel and perpendicular to the applied magnetic field. Applying this formalism to a simple diode equilibrium model that neglects velocity shear and density gradients, we find a fast growing mode that has all of the important attributes of the low frequency mode observed in numerical simulations of magnetically insulated ion diodes, which may be a major cause of ion divergence. We identify this mode as a modified two-stream instability. Previous stability analyses indicate a variety of unstable modes, but none of these exhibit the same behavior as the low frequency mode observed in the simulations. In addition, we analyze a realistic diode equilibrium model that includes velocity shear and an electron density profile consistent with that observed in the numerical simulations. We find that the diocotron instability is reduced, but not fully quenched by the extension of the electron sheath to the anode. However, the inclusion of perturbations parallel to the applied magnetic field with a wavelength smaller than the diode height does eliminate growth of this instability. This may explain why the diocotron mode has been observed experimentally with proton sources, but not with LiF, since the turn on of LiF is not uniform.

  14. Analysis of the stability and sensitivity of jets in crossflow

    NASA Astrophysics Data System (ADS)

    Regan, Marc; Mahesh, Krishnan

    2016-11-01

    Jets in crossflow (transverse jets) are a canonical fluid flow in which a jet of fluid is injected normal to a crossflow. A high-fidelity, unstructured, incompressible, DNS solver is shown (Iyer & Mahesh 2016) to reproduce the complex shear layer instability seen in low-speed jets in crossflow experiments. Vertical velocity spectra taken along the shear layer show good agreement between simulation and experiment. An analogy to countercurrent mixing layers has been proposed to explain the transition from absolute to convective stability with increasing jet to crossflow ratios. Global linear stability and adjoint sensitivity techniques are developed within the unstructured DNS solver in an effort to further understand the stability and sensitivity of jets in crossflow. An Arnoldi iterative approach is used to solve for the most unstable eigenvalues and their associated eigenmodes for the direct and adjoint formulations. Frequencies from the direct and adjoint modal analyses show good agreement with simulation and experiment. Development, validation, and results for the transverse jet will be presented. Supported by AFOSR.

  15. Experimental stability analysis of different water-based nanofluids

    NASA Astrophysics Data System (ADS)

    Fedele, Laura; Colla, Laura; Bobbo, Sergio; Barison, Simona; Agresti, Filippo

    2011-12-01

    In the recent years, great interest has been devoted to the unique properties of nanofluids. The dispersion process and the nanoparticle suspension stability have been found to be critical points in the development of these new fluids. For this reason, an experimental study on the stability of water-based dispersions containing different nanoparticles, i.e. single wall carbon nanohorns (SWCNHs), titanium dioxide (TiO2) and copper oxide (CuO), has been developed in this study. The aim of this study is to provide stable nanofluids for selecting suitable fluids with enhanced thermal characteristics. Different dispersion techniques were considered in this study, including sonication, ball milling and high-pressure homogenization. Both the dispersion process and the use of some dispersants were investigated as a function of the nanoparticle concentration. The high-pressure homogenization was found to be the best method, and the addition of n-dodecyl sulphate and polyethylene glycol as dispersants, respectively in SWCNHs-water and TiO2-water nanofluids, improved the nanofluid stability.

  16. Stability analysis of a simple rheonomic nonholonomic constrained system

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Liu, Shi-Xing; Mei, Feng-Xing

    2016-12-01

    It is a difficult problem to study the stability of the rheonomic and nonholonomic mechanical systems. Especially it is difficult to construct the Lyapunov function directly from the differential equation. But the gradient system is exactly suitable to study the stability of a dynamical system with the aid of the Lyapunov function. The stability of the solution for a simple rheonomic nonholonomic constrained system is studied in this paper. Firstly, the differential equations of motion of the system are established. Secondly, a problem in which the generalized forces are exerted on the system such that the solution is stable is proposed. Finally, the stable solutions of the rheonomic nonholonomic system can be constructed by using the gradient systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 11272050, 11202090, 11472124, 11572034, and 11572145), the Science and Technology Research Project of Liaoning Province, China (Grant No. L2013005), China Postdoctoral Science Foundation (Grant No. 2014M560203), and the Doctor Start-up Fund in Liaoning Province of China (Grant No. 20141050).

  17. APPLICATIONS ANALYSIS REPORT: SITE PROGRAM DEMONSTRATION TEST SOLIDITECH, INC. SOLIDIFICATION/ STABILIZATION PROCESS

    EPA Science Inventory

    This Applications Analysis Report evaluates the Soliditech, Inc., solidification/ stabilization process for the on-site treatment of waste materials. The Soliditech process mixes and chemically treats waste material with Urrichem (a proprietary reagent), additives, pozzolanic mat...

  18. SILICATE TECHNOLOGY CORPORATION'S SOLIDIFICATION/ STABILIZATION TECHNOLOGY FOR ORGANIC AND INORGANIC CONTAMINANTS IN SOILS - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    This Applications Analysis Report evaluates the solidification/stabilization treatment process of Silicate Technology Corporation (STC) for the on-site treatment of hazardous waste. The STC immobilization technology utilizes a proprietary product (FMS Silicate) to chemically stab...

  19. The effect of different humeral prosthesis fin designs on shoulder stability: a computational model.

    PubMed

    Chang, Chia-Ming; Yeh, Wen-Lin; Chen, Wen-Chuan; McClean, Colin J; Chen, Yi-Long; Lai, Yu-Shu; Cheng, Cheng-Kung

    2014-11-01

    Humeral prostheses commonly use a fin structure as an attachment point for the supraspinatus muscle in total shoulder arthroplasty (TSA), but these fins may cause injury to the muscle during implantation, inadvertently influencing stability. In order to prevent supraspinatus injury, the effect of different humeral prostheses on shoulder joint stability needs to be investigated. A commercially available prosthesis and two modified humeral prostheses that substituted the fin structure for 2 (2H) or 3 holes (3H) were evaluated using computational models. Glenohumeral abduction was simulated and the superioinferior/anterioposterior stability of the shoulder joint after TSA was calculated. The results revealed that the 2H design had better superioinferior stability than the other prostheses, but was still less stable than the intact shoulder. There were no obvious differences in anterioposterior stability, but the motion patterns were clearly distinguishable from the intact shoulder model. In conclusion, the 2H design showed better superioinferior stability than the 3H design and the commercial product during glenohumeral joint abduction; the three prostheses show similar results in anterioposterior stability. However, the stability of each tested prosthesis was not comparable to the intact shoulder. Therefore, as a compromise, the 2H design should be considered for TSA because of its superior stability.

  20. Non-parametric estimation and component analysis of phenotypic stability in chickpea (Cicer arietinum L.).

    PubMed

    Yaghotipoor, Anita; Farshadfar, E

    2007-08-15

    In order to determine phenotypic stability and contribution of yield components in the phenotypic stability of grain yield 21 genotypes of chickpea were evaluated in a randomized complete block design with three replications under rainfed and irrigated conditions in college of Agriculture, Razi University of Kermanshah, Iran, across 4 years. Non-parametric combined analysis of variance showed high significant differences for genotypes and genotype-environment interaction indicating the presence of genetic variation and possibility of selection for stable genotypes. The genotype number 8 (Filip92-9c) with minimum Si(2) and Si(2) of yield stability and grain yield in one parameter also revealed that genotype Filip92-9c was the most desirable variety for both yield and yield stability. Component analysis using Ci-value displayed that number of shrub per unit area has the most contribution on the grain yield phenotypic stability.