NASA Astrophysics Data System (ADS)
Farengo, R.; Guzdar, P. N.; Lee, Y. C.
1989-08-01
The effect of finite parallel wavenumber and electron temperature gradients on the lower hybrid drift instability is studied in the parameter regime corresponding to the TRX-2 device [Fusion Technol. 9, 48 (1986)]. Perturbations in the electrostatic potential and all three components of the vector potential are considered and finite beta electron orbit modifications are included. The electron temperature gradient decreases the growth rate of the instability but, for kz=0, unstable modes exist for ηe(=T'en0/Ten0)>6. Since finite kz effects completely stabilize the mode at small values of kz/ky(≂5×10-3), magnetic shear could be responsible for stabilizing the lower hybrid drift instability in field-reversed configurations.
Rao, Dantu Durga; Satyanarayana, N V; Malleswara Reddy, A; Sait, Shakil S; Chakole, Dinesh; Mukkanti, K
2010-02-05
A novel stability-indicating gradient reverse phase ultra-performance liquid chromatographic (RP-UPLC) method was developed for the determination of purity of desloratadine in presence of its impurities and forced degradation products. The method was developed using Waters Aquity BEH C18 column with mobile phase containing a gradient mixture of solvents A and B. The eluted compounds were monitored at 280nm. The run time was 8min within which desloratadine and its five impurities were well separated. Desloratadine was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. Desloratadine was found to degrade significantly in oxidative and thermal stress conditions and stable in acid, base, hydrolytic and photolytic degradation conditions. The degradation products were well resolved from main peak and its impurities, thus proved the stability-indicating power of the method. The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness. This method was also suitable for the assay determination of desloratadine in pharmaceutical dosage forms.
Thermal gradients for the stabilization of a single domain wall in magnetic nanowires.
Mejía-López, J; Velásquez, E A; Mazo-Zuluaga, J; Altbir, D
2018-08-24
By means of Monte Carlo simulations we studied field driven nucleation and propagation of transverse domain walls (DWs) in magnetic nanowires subjected to temperature gradients. Simulations identified the existence of critical thermal gradients that allow the existence of reversal processes driven by a single DW. Critical thermal gradients depend on external parameters such as temperature, magnetic field and wire length, and can be experimentally obtained through the measurement of the mean velocity of the magnetization reversal as a function of the temperature gradient. Our results show that temperature gradients provide a high degree of control over DW propagation, which is of great importance for technological applications.
Krishnaiah, Ch; Reddy, A Raghupathi; Kumar, Ramesh; Mukkanti, K
2010-11-02
A simple, precise, accurate stability-indicating gradient reverse phase ultra-performance liquid chromatographic (RP-UPLC) method was developed for the quantitative determination of purity of Valsartan drug substance and drug products in bulk samples and pharmaceutical dosage forms in the presence of its impurities and degradation products. The method was developed using Waters Aquity BEH C18 (100 mm x 2.1 mm, 1.7 microm) column with mobile phase containing a gradient mixture of solvents A and B. The eluted compounds were monitored at 225 nm, the run time was within 9.5 min, which Valsartan and its seven impurities were well separated. Valsartan was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. Valsartan was found to degrade significantly in acid and oxidative stress conditions and stable in base, hydrolytic and photolytic degradation conditions. The degradation products were well resolved from main peak and its impurities, proving the stability-indicating power of the method. The developed method was validated as per international conference on harmonization (ICH) guidelines with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness. This method was also suitable for the assay determination of Valsartan in pharmaceutical dosage forms.
Temperature modeling of laser-irradiated azo-polymer thin films.
Yager, Kevin G; Barrett, Christopher J
2004-01-08
Azobenzene polymer thin films exhibit reversible surface mass transport when irradiated with a light intensity and/or polarization gradient, although the exact mechanism remains unknown. In order to address the role of thermal effects in the surface relief grating formation process peculiar to azo polymers, a cellular automaton simulation was developed to model heat flow in thin films undergoing laser irradiation. Typical irradiation intensities of 50 mW/cm2 resulted in film temperature rises on the order of 5 K, confirmed experimentally. The temperature gradient between the light maxima and minima was found, however, to stabilize at only 10(-4) K within 2 micros. These results indicate that thermal effects play a negligible role during inscription, for films of any thickness. Experiments monitoring surface relief grating formation on substrates of different thermal conductivity confirm that inscription is insensitive to film temperature. Further simulations suggest that high-intensity pulsed irradiation leads to destructive temperatures and sample ablation, not to reversible optical mass transport. (c) 2004 American Institute of Physics
Byrne, Jonathan; Velasco-Torrijos, Trinidad; Reinhardt, Robert
2014-08-05
A novel stability-indicating reversed phase high performance liquid chromatographic (RP-HPLC) method for the simultaneous assay of betamethasone-17-valerate, fusidic acid and potassium sorbate as well as methyl- and propylparaben in a topical cream preparation has been developed. A 100mm×3.0mm ID. Ascentis Express C18 column maintained at 30°C and UV detection at 240nm were used. A gradient programme was employed at a flow-rate of 0.75ml/min. Mobile phase A comprised of an 83:17 (v/v) mixture of acetonitrile and methanol and mobile phase B of a 10g/l solution of 85% phosphoric acid in purified water. The method has been validated according to current International Conference on Harmonisation (ICH) guidelines and applied during formulation development and stability studies. The procedure has been shown to be stability-indicating for the topical cream. Copyright © 2014 Elsevier B.V. All rights reserved.
González, Lina M; Ruder, Warren C; Mitchell, Aaron P; Messner, William C; LeDuc, Philip R
2015-01-01
Many motile unicellular organisms have evolved specialized behaviors for detecting and responding to environmental cues such as chemical gradients (chemotaxis) and oxygen gradients (aerotaxis). Magnetotaxis is found in magnetotactic bacteria and it is defined as the passive alignment of these cells to the geomagnetic field along with active swimming. Herein we show that Magnetospirillum magneticum (AMB-1) show a unique set of responses that indicates they sense and respond not only to the direction of magnetic fields by aligning and swimming, but also to changes in the magnetic field or magnetic field gradients. We present data showing that AMB-1 cells exhibit sudden motility reversals when we impose them to local magnetic field gradients. Our system employs permalloy (Ni80Fe20) islands to curve and diverge the magnetic field lines emanating from our custom-designed Helmholtz coils in the vicinity of the islands (creating a drop in the field across the islands). The three distinct movements we have observed as they approach the permalloy islands are: unidirectional, single reverse and double reverse. Our findings indicate that these reverse movements occur in response to magnetic field gradients. In addition, using a permanent magnet we found further evidence that supports this claim. Motile AMB-1 cells swim away from the north and south poles of a permanent magnet when the magnet is positioned less than ∼30 mm from the droplet of cells. All together, these results indicate previously unknown response capabilities arising from the magnetic sensing systems of AMB-1 cells. These responses could enable them to cope with magnetic disturbances that could in turn potentially inhibit their efficient search for nutrients. PMID:25478682
González, Lina M; Ruder, Warren C; Mitchell, Aaron P; Messner, William C; LeDuc, Philip R
2015-06-01
Many motile unicellular organisms have evolved specialized behaviors for detecting and responding to environmental cues such as chemical gradients (chemotaxis) and oxygen gradients (aerotaxis). Magnetotaxis is found in magnetotactic bacteria and it is defined as the passive alignment of these cells to the geomagnetic field along with active swimming. Herein we show that Magnetospirillum magneticum (AMB-1) show a unique set of responses that indicates they sense and respond not only to the direction of magnetic fields by aligning and swimming, but also to changes in the magnetic field or magnetic field gradients. We present data showing that AMB-1 cells exhibit sudden motility reversals when we impose them to local magnetic field gradients. Our system employs permalloy (Ni(80)Fe(20)) islands to curve and diverge the magnetic field lines emanating from our custom-designed Helmholtz coils in the vicinity of the islands (creating a drop in the field across the islands). The three distinct movements we have observed as they approach the permalloy islands are: unidirectional, single reverse and double reverse. Our findings indicate that these reverse movements occur in response to magnetic field gradients. In addition, using a permanent magnet we found further evidence that supports this claim. Motile AMB-1 cells swim away from the north and south poles of a permanent magnet when the magnet is positioned less than ∼30 mm from the droplet of cells. All together, these results indicate previously unknown response capabilities arising from the magnetic sensing systems of AMB-1 cells. These responses could enable them to cope with magnetic disturbances that could in turn potentially inhibit their efficient search for nutrients.
Fu, Qiang; Shou, Minshan; Chien, Dwight; Markovich, Robert; Rustum, Abu M
2010-02-05
Betamethasone (9alpha-fluoro-16beta-methylprednisolone) is one of the members of the corticosteriod family of active pharmaceutical ingredient (API), which is widely used as an anti-inflammatory agent and also as a starting material to manufacture various esters of betamethasone. A stability-indicating reverse-phase high performance liquid chromatography (RP-HPLC) method has been developed and validated which can separate and accurately quantitate low levels of 26 betamethasone related compounds. The stability-indicating capability of the method was demonstrated through adequate separation of all potential betamethasone related compounds from betamethasone and also from each other that are present in aged and stress degraded betamethasone stability samples. Chromatographic separation of betamethasone and its related compounds was achieved by using a gradient elution at a flow rate of 1.0mL/min on a ACE 3 C18 column (150mmx4.6mm, 3microm particle size, 100A pore size) at 40 degrees C. Mobile phase A of the gradient was 0.1% methanesulfonic acid in aqueous solution and mobile phase B was a mixture of tert-butanol and 1,4-dioxane (7:93, v/v). UV detection at 254nm was employed to monitor the analytes. For betamethasone 21-aldehyde, the QL and DL were 0.02% and 0.01% respectively. For betamethasone and the rest of the betamethasone related compounds, the QL and DL were 0.05% and 0.02%. The precision of betamethasone assay is 0.6% and the accuracy of betamethasone assay ranged from 98.1% to 99.9%.
Reddy, Sunil Pingili; Babu, K Sudhakar; Kumar, Navneet; Sekhar, Y V V Sasi
2011-10-01
A stability-indicating gradient reverse phase liquid chromatographic (RP-LC) method was developed for the quantitative determination of related substances of guaifenesin in pharmaceutical formulations. The baseline separation for guaifenesin and all impurities was achieved by utilizing a Water Symmetry C18 (150 mm × 4.6 mm) 5 μm column particle size and a gradient elution method. The mobile phase A contains a mixture of 0.02 M KH2PO4 (pH 3.2) and methanol in the ratio of 90:10 v/v, while the mobile phase B contains 0.02 M KH2PO4 (pH 3.2) and methanol in the ratio of 10:90 v/v, respectively. The flow rate of the mobile phase was 0.8 ml/min with a column temperature of 25°C and detection wavelength at 273 nm. Guaifenesin was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal, and photolytic degradation. The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of detection and quantification, accuracy, precision, and robustness.
Reddy, Sunil Pingili; Babu, K. Sudhakar; Kumar, Navneet; Sekhar, Y. V. V. Sasi
2011-01-01
Aim and background: A stability-indicating gradient reverse phase liquid chromatographic (RP-LC) method was developed for the quantitative determination of related substances of guaifenesin in pharmaceutical formulations. Materials and methods: The baseline separation for guaifenesin and all impurities was achieved by utilizing a Water Symmetry C18 (150 mm × 4.6 mm) 5 μm column particle size and a gradient elution method. The mobile phase A contains a mixture of 0.02 M KH2PO4 (pH 3.2) and methanol in the ratio of 90:10 v/v, while the mobile phase B contains 0.02 M KH2PO4 (pH 3.2) and methanol in the ratio of 10:90 v/v, respectively. The flow rate of the mobile phase was 0.8 ml/min with a column temperature of 25°C and detection wavelength at 273 nm. Results: Guaifenesin was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal, and photolytic degradation. Conclusion: The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of detection and quantification, accuracy, precision, and robustness. PMID:23781462
Kumar, Navneet; Sangeetha, Dhanaraj; Reddy, Pingili Sunil; Prakash, Lakkireddy
2012-01-01
A novel, sensitive and selective stability-indicating gradient reverse phase ultra performance liquid chromatographic method was developed and validated for the quantitative determination of desloratadine and sodium benzoate in pharmaceutical oral liquid formulation. The chromatographic separation was achieved on Acquity BEH C8 (100 mm × 2.1 mm) 1.7 μm column by using mobile phase containing a gradient mixture of solvent A (0.05 M KH(2)PO(4) and 0.07 M triethylamine, pH 3.0) and B (50:25:25 v/v/v mixture of acetonitrile, methanol and water) at flow rate of 0.4 mL/min. Column temperature was maintained at 40°C and detection was carried out at a wavelength of 272 nm. The described method shows excellent linearity over a range of 0.254 μg/mL to 76.194 μg/mL for desloratadine and 1.006 μg/mL to 301.67 μg/mL for sodium benzoate. The correlation coefficient for desloratadine and sodium benzoate was more than 0.999. To establish stability-indicating capability of the method, drug product was subjected to the stress conditions of acid, base, oxidative, hydrolytic, thermal and photolytic degradation. The degradation products were well resolved from desloratadine and sodium benzoate. The developed method was validated as per international ICH guidelines with respect to specificity, linearity, LOD, LOQ, accuracy, precision and robustness.
A search for stability gradients in North American breeding bird communities
Noon, B.R.; Dawson, D.K.; Kelly, J.P.
1985-01-01
To search for the existence of stability gradients in North American breeding land bird communities we operationally defined stability (after Jarvinen 1979) as year-to-year persistence in species composition and distribution of species abundances. From the census data for 174 study plots we derived nine indices that estimate the annual variability of species composition, the species abundance distribution, diversity, and breeding density. The resulting matrix of study plot by stability indices was used to estimate the correlation structure of the stability indices. The correlation matrix was, in turn, subjected to a principal components analysis to derive synthetic gradients of variation. We then searched for patterns of variation in these stability gradients associated with either geographic location or habitat type. Three independent principal component axes reproduced most of the variation in the initial data and were interpreted as gradients of variation in species turnover, diversity, and breeding abundance. Thus, the annual stability of community structure apparently responds independently to species and abundance variation. Despite the clarity of the derived gradients, few patterns emerged when the plots were ordinated by either habitat or geographic location. In general, grasslands showed greater annual variation in diversity than forested habitats, and, for some habitats, northern communities were less stable than more southern communities. However, few of these patterns were very strong, and we interpret them cautiously.
Tian, Jingzhi; Rustum, Abu
2018-02-01
Imidacloprid is used as an active pharmaceutical ingredient (API) in veterinary drugs to control fleas and ticks for dogs and cats. Here we are reporting for the first time a validated stability-indicating reversed-phase UPLC-UV method for the assay of imidacloprid and estimation of its related compounds. The stability-indicating capability of this method has been demonstrated by a forced degradation study. All related compounds including processing impurities, imidacloprid API and degradates from stressed samples were well separated from each other. Structures of major degradates from forced degradation study were elucidated through UPLC-MS/MS and key degradation pathways were proposed from the proposed chemical structures of major degradates. The UPLC-UV method is carried out using an HSS T3 column (C18, 2.1 × 30 mm, 1.8 μm particle size) maintained at 30°C with mobile phase A (0.05% v/v of phosphoric acid in water) and mobile phase B (methanol/acetonitrile 75/25 v/v). Analytes are separated by a gradient elution and detected at 270 nm. The UPLC method is green and fast with only 6.5 min run time and about 3.5 ml mobile phase consumption for each sample analysis. The UPLC-UV method was validated according to ICH guidelines. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Inugala, Ugandar Reddy; Pothuraju, Nageswara Rao; Vangala, Ranga Reddy
2013-01-01
This paper describes the development of a rapid, novel, stability-indicating gradient reversed-phase high-performance liquid chromatographic method and associated system suitability parameters for the analysis of naproxcinod in the presence of its related substances and degradents using a quality-by-design approach. All of the factors that affect the separation of naproxcinod and its impurities and their mutual interactions were investigated and robustness of the method was ensured. The method was developed using an Ascentis Express C8 150 × 4.6 mm, 2.7 µm column with a mobile phase containing a gradient mixture of two solvents. The eluted compounds were monitored at 230 nm, the run time was 20 min within which naproxcinod and its eight impurities were satisfactorily separated. Naproxcinod was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. Naproxcinod was found to degrade significantly in acidic and basic conditions and to be stable in thermal, photolytic, oxidative and aqueous degradation conditions. The degradation products were satisfactorily resolved from the primary peak and its impurities, proving the stability-indicating power of the method. The developed method was validated as per International Conference on Harmonization guidelines with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness.
Yanamandra, Ramesh; Vadla, Chandra Sekhar; Puppala, Umamaheshwar; Patro, Balaram; Murthy, Yellajyosula L N; Ramaiah, Parimi Atchuta
2012-01-01
A new rapid, simple, sensitive, selective and accurate reversed-phase stability-indicating Ultra Performance Liquid Chromatography (RP-UPLC) technique was developed for the assay of Tolterodine Tartrate in pharmaceutical dosage form, human plasma and urine samples. The developed UPLC method is superior in technology to conventional HPLC with respect to speed, solvent consumption, resolution and cost of analysis. Chromatographic run time was 6 min in reversed-phase mode and ultraviolet detection was carried out at 220 nm for quantification. Efficient separation was achieved for all the degradants of Tolterodine Tartrate on BEH C18 sub-2-μm Acquity UPLC column using Trifluoroacetic acid and acetonitrile as organic solvent in a linear gradient program. The active pharmaceutical ingredient was extracted from tablet dosage form using a mixture of acetonitrile and water as diluent. The calibration graphs were linear and the method showed excellent recoveries for bulk and tablet dosage form. The test solution was found to be stable for 40 days when stored in the refrigerator between 2 and 8 °C. The developed UPLC method was validated and meets the requirements delineated by the International Conference on Harmonization (ICH) guidelines with respect to linearity, accuracy, precision, specificity and robustness. The intra-day and inter-day variation was found be less than 1%. The method was reproducible and selective for the estimation of Tolterodine Tartrate. Because the method could effectively separate the drug from its degradation products, it can be employed as a stability-indicating one.
Yanamandra, Ramesh; Vadla, Chandra Sekhar; Puppala, Umamaheshwar; Patro, Balaram; Murthy, Yellajyosula. L. N.; Ramaiah, Parimi Atchuta
2012-01-01
A new rapid, simple, sensitive, selective and accurate reversed-phase stability-indicating Ultra Performance Liquid Chromatography (RP-UPLC) technique was developed for the assay of Tolterodine Tartrate in pharmaceutical dosage form, human plasma and urine samples. The developed UPLC method is superior in technology to conventional HPLC with respect to speed, solvent consumption, resolution and cost of analysis. Chromatographic run time was 6 min in reversed-phase mode and ultraviolet detection was carried out at 220 nm for quantification. Efficient separation was achieved for all the degradants of Tolterodine Tartrate on BEH C18 sub-2-μm Acquity UPLC column using Trifluoroacetic acid and acetonitrile as organic solvent in a linear gradient program. The active pharmaceutical ingredient was extracted from tablet dosage form using a mixture of acetonitrile and water as diluent. The calibration graphs were linear and the method showed excellent recoveries for bulk and tablet dosage form. The test solution was found to be stable for 40 days when stored in the refrigerator between 2 and 8 °C. The developed UPLC method was validated and meets the requirements delineated by the International Conference on Harmonization (ICH) guidelines with respect to linearity, accuracy, precision, specificity and robustness. The intra-day and inter-day variation was found be less than 1%. The method was reproducible and selective for the estimation of Tolterodine Tartrate. Because the method could effectively separate the drug from its degradation products, it can be employed as a stability-indicating one. PMID:22396907
Tam, James; Ahmad, Imad A Haidar; Blasko, Andrei
2018-06-05
A four parameter optimization of a stability indicating method for non-chromophoric degradation products of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), 1-stearoyl-sn-glycero-3-phosphocholine and 2-stearoyl-sn-glycero-3-phosphocholine was achieved using a reverse phase liquid chromatography-charged aerosol detection (RPLC-CAD) technique. Using the hydrophobic subtraction model of selectivity, a core-shell, polar embedded RPLC column was selected followed by gradient-temperature optimization, resulting in ideal relative peak placements for a robust, stability indicating separation. The CAD instrument parameters, power function value (PFV) and evaporator temperature were optimized for lysophosphatidylcholines to give UV absorbance detector-like linearity performance within a defined concentration range. The two lysophosphatidylcholines gave the same response factor in the selected conditions. System specific power function values needed to be set for the two RPLC-CAD instruments used. A custom flow-divert profile, sending only a portion of the column effluent to the detector, was necessary to mitigate detector response drifting effects. The importance of the PFV optimization for each instrument of identical build and how to overcome recovery issues brought on by the matrix effects from the lipid-RP stationary phase interaction is reported. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kuiroukidis, Ap.; Throumoulopoulos, G. N.
2015-08-01
We construct nonlinear toroidal equilibria of fixed diverted boundary shaping with reversed magnetic shear and flows parallel to the magnetic field. The equilibria have hole-like current density and the reversed magnetic shear increases as the equilibrium nonlinearity becomes stronger. Also, application of a sufficient condition for linear stability implies that the stability is improved as the equilibrium nonlinearity correlated to the reversed magnetic shear gets stronger with a weaker stabilizing contribution from the flow. These results indicate synergetic stabilizing effects of reversed magnetic shear, equilibrium nonlinearity and flow in the establishment of Internal Transport Barriers (ITBs).
Ramsay, Douglas S; Woods, Stephen C; Kaiyala, Karl J
2014-01-01
Initial administration of 60% nitrous oxide (N2O) to rats at an ambient temperature of 21°C decreases core temperature (Tc), primarily via increased heat loss (HL). Over repeated N2O administrations, rats first develop tolerance to this hypothermia and subsequently exhibit hyperthermia (a sign-reversal) due primarily to progressive increases in heat production (HP). When rats initially receive 60% N2O in a thermal gradient, they become hypothermic while selecting cooler ambient temperatures that facilitate HL. This study investigated whether rats repeatedly administered 60% N2O in a thermal gradient would use the gradient to behaviorally facilitate, or oppose, the development of chronic tolerance and a hyperthermic sign-reversal. Male Long-Evans rats (N = 16) received twelve 3-h administrations of 60% N2O in a gas-tight, live-in thermal gradient. Hypothermia (Sessions 1–3), complete chronic tolerance (Sessions 4–6), and a subsequent transient hyperthermic sign-reversal (Sessions 7–12) sequentially developed. Despite the progressive recovery and eventual hyperthermic sign-reversal of Tc, rats consistently selected cooler ambient temperatures during all N2O administrations. A final 60% N2O administration in a total calorimeter indicated that the hyperthermic sign-reversal resulted primarily from increased HP. Thus, rats did not facilitate chronic tolerance development by moving to warmer locations in the gradient, and instead selected cooler ambient temperatures while simultaneously increasing autonomic HP. The inefficient concurrent activation of opposing effectors and the development of a sign-reversal are incompatible with homeostatic models of drug-adaptation and may be better interpreted using a model of drug-induced allostasis. PMID:25938127
Li, Shihong; Goins, Beth; Phillips, William T; Bao, Ande
2011-03-01
Efficient, convenient, and stable radiolabeling plays a critical role for the monitoring of liposome behavior via either blood sampling, organ distribution, or noninvasive nuclear imaging. The direct labeling of liposome-carrying drugs without any prior modification undoubtedly is convenient and optimal for liposomal drug testing. In this article, we investigated the effect of various lipid formulations and pH/chemical gradients on the radiolabeling efficiency and entrapment stability of technetium-99m ((99m)Tc) remotely loaded into liposomes, using (99m)Tc-N,N-bis(2-mercaptoethyl)-N',N'-diethyl-ethylenediamine ((99m)Tc-BMEDA) complex. The tested liposomes either contained unsaturated lipid or possessed various surface charges. (99m)Tc could be efficiently loaded into various premanufactured liposomes containing either an ammonium sulfate pH, citrate pH, or glutathione (GSH) chemical gradient. (99m)Tc-entrapment stabilities of these liposomes in phosphate-buffered saline (PBS; pH 7.4) buffer at 25°C were mainly dependent on the pH/chemical gradient, but not lipid formulation. Stability sequence was ammonium sulfate pH-gradient>citrate pH-gradient>GSH-gradient. Stabilities of (99m)Tc-liposomes in 50% fetal bovine serum (FBS)/PBS (pH 7.4) buffer at 37°C are dependent on both lipid formulation and pH/chemical gradient. Specifically, (99m)Tc labeling of the ammonium sulfate pH-gradient liposomes were less stable in 50% FBS/PBS than in PBS, whereas noncationic liposomes with citrate pH- or GSH-gradient displayed higher stability, except that anionic citrate pH-gradient liposomes showed no stability difference in these two media. Cationic liposomes aggregated in 50% FBS/PBS, forming a new discrete fraction with larger particle sizes. These in vitro characterization results have indicated the optimism of using (99m)Tc-BMEDA for labeling pH/GSH gradient liposomes without the requirement of modifying lipid formulation for liposomal therapeutic-agent development.
Lalitha Devi, M; Chandrasekhar, K B
2009-12-05
The objective of current study was to develop a validated specific stability indicating reversed-phase liquid chromatographic method for the quantitative determination of levofloxacin as well as its related substances determination in bulk samples, pharmaceutical dosage forms in the presence of degradation products and its process related impurities. Forced degradation studies were performed on bulk sample of levofloxacin as per ICH prescribed stress conditions using acid, base, oxidative, water hydrolysis, thermal stress and photolytic degradation to show the stability indicating power of the method. Significant degradation was observed during oxidative stress and the degradation product formed was identified by LCMS/MS, slight degradation in acidic stress and no degradation was observed in other stress conditions. The chromatographic method was optimized using the samples generated from forced degradation studies and the impurity spiked solution. Good resolution between the peaks corresponds to process related impurities and degradation products from the analyte were achieved on ACE C18 column using the mobile phase consists a mixture of 0.5% (v/v) triethyl amine in sodium dihydrogen orthophosphate dihydrate (25 mM; pH 6.0) and methanol using a simple linear gradient. The detection was carried out at 294 nm. The limit of detection and the limit of quantitation for the levofloxacin and its process related impurities were established. The stressed test solutions were assayed against the qualified working standard of levofloxacin and the mass balance in each case was in between 99.4 and 99.8% indicating that the developed LC method was stability indicating. Validation of the developed LC method was carried out as per ICH requirements. The developed LC method was found to be suitable to check the quality of bulk samples of levofloxacin at the time of batch release and also during its stability studies (long term and accelerated stability).
Perturbing Hele-Shaw flow with a small gap gradient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, H.; Casademunt, J.; Yeung, C.
1992-02-15
A controlled perturbation is introduced into the Saffman-Taylor flow problem by adding a gradient to the gap of a Hele-Shaw cell. The stability of the single-finger steady state was found to be strongly affected by such a perturbation. Compared with patterns in a standard Hele-Shaw cell, the single Saffman-Taylor finger was stabilized or destabilized according to the sign of the gap gradient. While a linear stability analysis shows that this perturbation should have a negligible effect on the early-stage pattern formation, the experimental data indicate that the characteristic length for the initial breakup of a flat interface has been changedmore » by the perturbation.« less
Sizzled controls dorso-ventral polarity by repressing cleavage of the Chordin protein.
Muraoka, Osamu; Shimizu, Takashi; Yabe, Taijiro; Nojima, Hideaki; Bae, Young-Ki; Hashimoto, Hisashi; Hibi, Masahiko
2006-04-01
The Bone morphogenetic protein (Bmp) signalling gradient has a major function in the formation of the dorso-ventral axis. The zebrafish ventralized mutant, ogon, encodes Secreted Frizzled (Sizzled). sizzled is ventrally expressed in a Bmp-dependent manner and is required for the suppression of Bmp signalling on the ventral side of zebrafish embryos. However, it remains unclear how Sizzled inhibits Bmp signalling and controls ventro-lateral cell fate. We found that Sizzled stabilizes Chordin, a Bmp antagonist, by binding and inhibiting the Tolloid-family metalloproteinase, Bmp1a, which cleaves and inactivates Chordin. The cysteine-rich domain of Sizzled is required for inhibition of Bmp1a activity. Loss of both Bmp1a and Tolloid-like1 (Tll1; another Tolloid-family metalloproteinase) function leads to a complete suppression and reversal of the ogon mutant phenotype. These results indicate that Sizzled represses the activities of Tolloid-family proteins, thereby creating the Chordin-Bmp activity gradient along the dorso-ventral axis. Here, we describe a previously unrecognized role for a secreted Frizzled-related protein.
NASA Astrophysics Data System (ADS)
Kumar, Nitin; Sangeetha, D.; Kalyanraman, L.
2017-11-01
For determination of process related impurities and degradation products of asenapine maleate in asenapine sublingual Tablets, a reversed phase, stability indicating UPLC method was developed. Acetonitrile, methanol and potassium dihydrogen phosphate buffer with tetra-n- butyl ammonium hydrogen sulphate as ion pair (pH 2.2; 0.01 M) at flow rate of 0.2 ml/min were used in gradient elution mode. Separation was achieved by using acquity BEH Shield RP18 column (1.7 μm, 2.1 mm×100 mm) at 35 ºC. UV detection was performed at 228 nm. Subsequently the liquid chromatography method was validated as per ICH. The drug product was exposed to the stress conditions of acid hydrolysis, base hydrolysis, water hydrolysis, oxidative, thermal, and photolytic. In oxidative stress and thermal stress significant degradation was observed. All the degradation products were well separated from analyte peak and its impurities. Stability indicating nature of the method was proved by demonstrating the peak purity of Asenapine peak in all the stressed samples. The mass balance was found >95% for all the stress conditions. Based on method validation, the method was found specific, linear, accurate, precise, rugged and robust.
Crombie, Iain K; Precious, Elaine
2011-01-01
To explore the nature of the social class gradient of cirrhosis mortality in England and Wales across the 20th century. Data on male cirrhosis mortality by social class were obtained from the Registrar General's Decennial Supplements for the years 1921-1991. Data for 1941 were not collected because of the second World War. In 1921, cirrhosis mortality was substantially higher among the professional and managerial classes (I and II) than among the other social classes (III-V). This marked social class difference persisted until 1961 when the differences between the social classes were inconsistent. By 1991, the gradient had reversed and the lower social classes (IV and V) had the higher mortality. The excess mortality was greatest for social class V. The change in the mortality gradient is stark: in 1921social classes I and II had a cirrhosis mortality at least twice that of social classes IV and V, but by 1991 this ratio had reversed. The reversal in the social class gradient of cirrhosis mortality indicates a major change in risk factor distribution across social classes. Differential changes in alcohol consumption are a possible explanation for this change, although the 1991 social class gradient in cirrhosis is inconsistent with alcohol consumption data from national surveys. Further research is required to clarify the explanation for the observed gradient, so that appropriate preventive measures can be put into place.
Lin, Jia-De; Wang, Tsai-Yen; Mo, Ting-Shan; Huang, Shuan-Yu; Lee, Chia-Rong
2016-01-01
This work successfully develops a largely-gradient-pitched polymer-stabilized blue phase (PSBP) photonic bandgap (PBG) device with a wide-band spatial tunability in nearly entire visible region within a wide blue phase (BP) temperature range including room temperature. The device is fabricated based on the reverse diffusion of two injected BP-monomer mixtures with a low and a high chiral concentrations and afterwards through UV-curing. This gradient-pitched PSBP can show a rainbow-like reflection appearance in which the peak wavelength of the PBG can be spatially tuned from the blue to the red regions at room temperature. The total tuning spectral range for the cell is as broad as 165 nm and covers almost the entire visible region. Based on the gradient-pitched PSBP, a spatially tunable laser is also demonstrated in this work. The temperature sensitivity of the lasing wavelength for the laser is negatively linear and approximately −0.26 nm/°C. The two devices have a great potential for use in applications of photonic devices and displays because of their multiple advantages, such as wide-band tunability, wide operated temperature range, high stability and reliability, no issue of hysteresis, no need of external controlling sources, and not slow tuning speed (mechanically). PMID:27456475
Narayana, M B V; Chandrasekhar, K B; Rao, B M
2014-09-01
A validated specific stability-indicating reverse-phase liquid chromatographic method was developed for the quantitative determination of Ambrisentan as well as its related substances in bulk samples, pharmaceutical dosage forms in the presence of degradation products and its related impurities. Forced degradation studies were performed on bulk samples of Ambrisentan as per the ICH-prescribed stress conditions using acid, base, oxidative, thermal stress and photolytic degradation to show the stability-indicating power of the LC method. Significant degradation in acidic, basic stress conditions was observed and no degradation was observed in other stress conditions. The chromatographic method was optimized using the samples generated from the forced degradation studies and the impurity-spiked solution. Good resolution between the peaks corresponds to Ambrisentan-related impurities and degradation products from the analyte were achieved on a SunFire C18 column using a mobile phase consisting of a mixture of potassium dihydrogen orthophosphate at a pH adjusted to 2.5 with ortho-phosphoric acid in water and a mixture of acetonitrile:methanol using a simple linear gradient. The detection was carried out at 225 nm. The limit of detection and the limit of quantification for the Ambrisentan and its related impurities were established. The stressed test solutions were assayed against the qualified working standard of Ambrisentan and the mass balance in each case was between 98.9 and 100.3%, indicating that the developed LC method was stability indicating. Validation of the developed LC method was carried out as per the ICH requirements. The developed method was found to be suitable to check the quality of bulk samples of Ambrisentan at the time of batch release and also during its storage (long-term and accelerated stability). © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Study of Second Stability for Global ITG Modes in MHD-stable Equilibria
NASA Astrophysics Data System (ADS)
Fivaz, Mathieu; Sauter, Olivier; Appert, Kurt; Tran, Trach-Minh; Vaclavik, Jan
1997-11-01
We study finite pressure effects on the Ion Temperature Gradient (ITG) instabilities; these modes are stabilized when the magnetic field gradient is reversed at high β [1]. This second stability regime for ITG modes is studied in details with a global linear gyrokinetic Particle-In-Cell code which takes the full toroidal MHD equilibrium data from the equilibrium solver CHEASE [2]. Both the trapped-ion and the toroidal ITG regimes are explored. In contrast to second stability for MHD ballooning modes, low magnetic shear and high values of the safety factor do not facilitate strongly the access to the second-stable ITG regime. The consequences for anomalous ion heat transport in tokamaks are explored. We use the results to find optimized configurations that are stable to ideal MHD modes for both the long (kink) and short (ballooning) wavelengths and where the ITG modes are stable or have very low growth rates; such configurations might present very low level of anomalous transport. [1] M. Fivaz, T.M. Tran, K. Appert, J. Vaclavik and S. E. Parker, Phys. Rev. Lett. 78, 1997, p. 3471 [2] H. Lütjens, A. Bondeson and O. Sauter, Comput. Phys. Commun. 97, 1996, p. 219
NASA Astrophysics Data System (ADS)
Takenaga, H.; Ide, S.; Sakamoto, Y.; Fujita, T.; JT-60 Team
2008-07-01
Effects of low central fuelling on density and ion temperature profiles have been investigated using negative ion based neutral beam injection and electron cyclotron heating (ECH) in reversed shear plasmas on JT-60U. Strong internal transport barrier (ITB) was maintained in density and ion temperature profiles, when central fuelling was decreased by switching positive ion based neutral beam injection to ECH after the strong ITB formation. Similar density and ion temperature ITBs were formed for the low and high central fuelling cases during the plasma current ramp-up phase. Strong correlation between the density gradient and the ion temperature gradient was observed, indicating that particle transport and ion thermal transport are strongly coupled or the density gradient assists the ion temperature ITB formation through suppression of drift wave instabilities such as ion temperature gradient mode. These results support that the density and ion temperature ITBs can be formed under reactor relevant conditions.
Metal Fluoride Inhibition of a P-type H+ Pump
Pedersen, Jesper Torbøl; Falhof, Janus; Ekberg, Kira; Buch-Pedersen, Morten Jeppe; Palmgren, Michael
2015-01-01
The plasma membrane H+-ATPase is a P-type ATPase responsible for establishing electrochemical gradients across the plasma membrane in fungi and plants. This essential proton pump exists in two activity states: an autoinhibited basal state with a low turnover rate and a low H+/ATP coupling ratio and an activated state in which ATP hydrolysis is tightly coupled to proton transport. Here we characterize metal fluorides as inhibitors of the fungal enzyme in both states. In contrast to findings for other P-type ATPases, inhibition of the plasma membrane H+-ATPase by metal fluorides was partly reversible, and the stability of the inhibition varied with the activation state. Thus, the stability of the ATPase inhibitor complex decreased significantly when the pump transitioned from the activated to the basal state, particularly when using beryllium fluoride, which mimics the bound phosphate in the E2P conformational state. Taken together, our results indicate that the phosphate bond of the phosphoenzyme intermediate of H+-ATPases is labile in the basal state, which may provide an explanation for the low H+/ATP coupling ratio of these pumps in the basal state. PMID:26134563
Evolution of a Planar Wake in Adverse Pressure Gradient
NASA Technical Reports Server (NTRS)
Driver, David M.; Mateer, George G.
2016-01-01
In the interest of improving the predictability of high-lift systems at maximum lift conditions, a series of fundamental experiments were conducted to study the effects of adverse pressure gradient on a wake flow. Mean and fluctuating velocities were measured with a two-component laser-Doppler velocimeter. Data were obtained for several cases of adverse pressure gradient, producing flows ranging from no reversed flow to massively reversed flow. While the turbulent Reynolds stresses increase with increasing size of the reversed flow region, the gradient of Reynolds stress does not. Computations using various turbulence models were unable to reproduce the reversed flow.
Comparison of Coral Reef Ecosystems along a Fishing Pressure Gradient
Weijerman, Mariska; Fulton, Elizabeth A.; Parrish, Frank A.
2013-01-01
Three trophic mass-balance models representing coral reef ecosystems along a fishery gradient were compared to evaluate ecosystem effects of fishing. The majority of the biomass estimates came directly from a large-scale visual survey program; therefore, data were collected in the same way for all three models, enhancing comparability. Model outputs–such as net system production, size structure of the community, total throughput, production, consumption, production-to-respiration ratio, and Finn’s cycling index and mean path length–indicate that the systems around the unpopulated French Frigate Shoals and along the relatively lightly populated Kona Coast of Hawai’i Island are mature, stable systems with a high efficiency in recycling of biomass. In contrast, model results show that the reef system around the most populated island in the State of Hawai’i, O’ahu, is in a transitional state with reduced ecosystem resilience and appears to be shifting to an algal-dominated system. Evaluation of the candidate indicators for fishing pressure showed that indicators at the community level (e.g., total biomass, community size structure, trophic level of the community) were most robust (i.e., showed the clearest trend) and that multiple indicators are necessary to identify fishing perturbations. These indicators could be used as performance indicators when compared to a baseline for management purposes. This study shows that ecosystem models can be valuable tools in identification of the system state in terms of complexity, stability, and resilience and, therefore, can complement biological metrics currently used by monitoring programs as indicators for coral reef status. Moreover, ecosystem models can improve our understanding of a system’s internal structure that can be used to support management in identification of approaches to reverse unfavorable states. PMID:23737951
Jadhav, Sushant B; Reddy, P Sunil; Narayanan, Kalyanaraman L; Bhosale, Popatrao N
2017-06-27
The novel reverse phase-high performance liquid chromatography (RP-HPLC), stability indicating method was developed for determination of linagliptin (LGP) and its related substances in linagliptin and metformin HCl (MET HCl) tablets by implementing design of experiment to understand the critical method parameters and their relation with critical method attributes; to ensure robustness of the method. The separation of nine specified impurities was achieved with a Zorbax SB-Aq 250 × 4.6 mm, 5 µm column, using gradient elution and a detector wavelength of 225 nm, and validated in accordance with International Conference on Harmonization (ICH) guidelines and found to be accurate, precise, reproducible, robust, and specific . The drug was found to be degrading extensively in heat, humidity, basic, and oxidation conditions and was forming degradation products during stability studies. After slight modification in the buffer and the column, the same method was used for liquid chromatography-mass spectrometry (LC-MS) and ultra-performance liquid chromatography -time-of-flight/mass spectrometry UPLC-TOF/MS analysis, to identify m/z and fragmentation of maximum unspecified degradation products i.e., Impurity-VII ( 7 ), Impurity-VIII ( 8 ), and Impurity-IX ( 9 ) formed during stability studies. Based on the results, a degradation pathway for the drug has been proposed and synthesis of Impurity-VII ( 7 ) is also discussed to ensure an in-depth understanding of LGP and its related degradation products and optimum performance during the lifetime of the product.
Elkady, Ehab Farouk; Fouad, Marwa Ahmed
2015-11-01
Two new hydrolytic products of letrozole were identified and proved to be true degradation products obtained by alkaline and acidic degradation of the drug. The acid and amide forms of the nitrile groups of letrozole were prepared and identified by IR and mass spectroscopic techniques. Subsequently, a simple, precise and selective stability-indicating RPLC method was developed and validated for the determination of letrozole in the presence of its degradation products. Letrozole was subjected to alkali and acid hydrolysis, oxidation, thermal degradation and photo-degradation. The degradation products were well isolated from letrozole. The chromatographic method was achieved using gradient elution of the drug and its degradation products on a reversed phase Zorbax Eclipse C18 column (100mm x 4.6mm, 3.5 μm) using a mobile phase consisting of 0.01M KH₂PO₄and methanol at a flow rate of 1 mL min⁻¹. Quantitation was achieved with UV detection at 230 nm. Linearity, accuracy and precision were found to be acceptable over the concentration range of 0.01-80 μgmL⁻¹. The proposed method was successfully applied to the determination of letrozole in bulk, plasma and in its pharmaceutical preparation.
Olmo, B; García, A; Marín, A; Barbas, C
2005-03-25
The development of new pharmaceutical forms with classical active compounds generates new analytical problems. That is the case of sugar-free sachets of cough-cold products containing acetaminophen, phenylephrine hydrochloride and chlorpheniramine maleate. Two cyanopropyl stationary phases have been employed to tackle the problem. The Discovery cyanopropyl (SUPELCO) column permitted the separation of the three actives, maleate and excipients (mainly saccharine and orange flavour) with a constant proportion of aqueous/ organic solvent (95:5, v/v) and a pH gradient from 7.5 to 2. The run lasted 14 min. This technique avoids many problems related to baseline shifts with classical organic solvent gradients and opens great possibilities to modify selectivity not generally used in reversed phase HPLC. On the other hand, the Agilent Zorbax SB-CN column with a different retention profile permitted us to separate not only the three actives and the excipients but also the three known related compounds: 4-aminophenol, 4-chloracetanilide and 4-nitrophenol in an isocratic method with a run time under 30 min. This method was validated following ICH guidelines and validation parameters showed that it could be employed as stability-indicating method for this pharmaceutical form.
Three-dimensional desirability spaces for quality-by-design-based HPLC development.
Mokhtar, Hatem I; Abdel-Salam, Randa A; Hadad, Ghada M
2015-04-01
In this study, three-dimensional desirability spaces were introduced as a graphical representation method of design space. This was illustrated in the context of application of quality-by-design concepts on development of a stability indicating gradient reversed-phase high-performance liquid chromatography method for the determination of vinpocetine and α-tocopheryl acetate in a capsule dosage form. A mechanistic retention model to optimize gradient time, initial organic solvent concentration and ternary solvent ratio was constructed for each compound from six experimental runs. Then, desirability function of each optimized criterion and subsequently the global desirability function were calculated throughout the knowledge space. The three-dimensional desirability spaces were plotted as zones exceeding a threshold value of desirability index in space defined by the three optimized method parameters. Probabilistic mapping of desirability index aided selection of design space within the potential desirability subspaces. Three-dimensional desirability spaces offered better visualization and potential design spaces for the method as a function of three method parameters with ability to assign priorities to this critical quality as compared with the corresponding resolution spaces. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Nanoscale Phase Stability Reversal During the Nucleation and Growth of Titanium Oxide Minerals
NASA Astrophysics Data System (ADS)
Hummmer, D. R.; Heaney, P. J.; Kubicki, J. D.; Kent, P. R.; Post, J. E.
2008-12-01
Fine-grained titanium oxide minerals are important in soils, where they affect a variety of geochemical processes. They are also industrially important as catalysts, pigments, food additives, and dielectrics. Recent research has indicated an apparent reversal of thermodynamic stability between TiO2 phases at the nanoscale thought to be caused by an increased contribution of surface energy to the total free energy. Time-resolved X-ray diffraction (XRD) experiments in which titanium oxides crystallize from aqueous TiCl4 solutions confirm that anatase, a metastable phase, is always the first phase to nucleate under our range of initial conditions. Rutile peaks are observed only minutes after the first appearance of anatase, after which anatase abundance slowly decreases while rutile continues to form. Whole pattern refinement of diffraction data reveals that lattice constants of both phases increase throughout the crystallization process. In addition, transmission electron microscope (TEM) observations and kinetic modeling indicate that anatase does not undergo a solid-state transformation to the rutile structure as once thought. Instead, anatase appears to re-dissolve and then feed the growth of already nucleated rutile nanocrystals. Density functional theory (DFT) calculations were employed to model 1, 2, and 3 nm particles of both mineral phases. The total surface energies calculated from these models did yield lower values for anatase than for rutile by 8-13 kJ/mol depending on particle size, indicating that surface free energy is sufficient to account for stability reversal. However, these whole-particle surface energies were much higher than the sum of energies of each particle's constituent crystallographic surfaces. We attribute the excess energy to defects associated with the edges and corners of nanoparticles, which are not present on a 2-D periodic surface. This previously unreported edge and corner energy may play a dominant role in the stability reversal of nanocrystalline titanium oxides, as well as other mineral systems susceptible to reversals in phase stability at the nanoscale.
Jadhav, Sushant Bhimrao; Kumar, C Kiran; Bandichhor, Rakeshwar; Bhosale, P N
2016-01-25
A new UPLC-TOF/MS compatible, reverse phase-stability indicating method was developed for determination of Omeprazole (OMP) and its related substances in pharmaceutical dosage forms by implementing Design of Experiment (DoE) i.e. two level full factorial Design (2(3)+3 center points=11 experiments) to understand the Critical Method Parameters (CMP) and its relation with Critical Method Attribute (CMA); to ensure robustness of the method. The separation of eleven specified impurities including conversion product of OMP related compound F (13) and G (14) i.e. Impurity-I (1), OMP related compound-I (11) and OMP 4-chloro analog (12) was achieved in a single method on Acquity BEH shield RP18 100 × 2.1 mm, 1.7 μm column, with inlet filter (0.2 μm) using gradient elution and detector wavelength at 305 nm and validated in accordance with ICH guidelines and found to be accurate, precise, reproducible, robust and specific. The drug was found to degrade extensively in heat, humidity and acidic conditions and forms unknown degradation products during stability studies. The same method was used for LC-MS analysis to identify m/z and fragmentation of maximum unknown impurities (Non-Pharmacopoeial) i.e. Impurity-I (1), Impurity-III (3), Impurity-V (5) and Impurity-VIII (9) formed during stability studies. Based on the results, degradation pathway for the drug has been proposed and synthesis of identified impurities i.e. impurities (Impurity-I (1), Impurity-III (3), Impurity-V (5) and Impurity-VIII (9)) are discussed in detail to ensure in-depth understanding of OMP and its related impurities and optimum performance during lifetime of the product. Copyright © 2015. Published by Elsevier B.V.
Kumar, Navneet; Sangeetha, Dhanaraj; Reddy, Sunil P
2012-10-01
The objective of the current investigation was to study the degradation behavior of irinotecan hydrochloride under different International Conference on Harmonization (ICH) recommended stress conditions using ultra-performance liquid chromatography and liquid chromatography-mass spectrometry and to establish a validated stability-indicating reverse-phase ultra-performance liquid chromatographic method for the quantitative determination of irinotecan hydrochloride and its seven impurities and degradation products in pharmaceutical dosage forms. Irinotecan hydrochloride was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. Irinotecan hydrochloride was found to degrade significantly in oxidative and base hydrolysis and photolytic degradation conditions. The degradation products were well resolved from the main peak and its impurities, thus proving the stability-indicating power of the method. Chromatographic separation was achieved on a Waters Acquity BEH C8 (100 × 2.1 mm) 1.7-µm column with a mobile phase containing a gradient mixture of solvent A (0.02M KH(2)PO(4) buffer, pH 3.4) and solvent B (a mixture of acetonitrile and methanol in the ratio of 62:38 v/v). The mobile phase was delivered at a flow rate of 0.3 mL/min with ultraviolet detection at 220 nm. The run time was 8 min, within which irinotecan and its seven impurities and degradation products were satisfactorily separated. The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness. This method was also suitable for the assay determination of irinotecan hydrochloride in pharmaceutical dosage forms.
NASA Technical Reports Server (NTRS)
Annis, J. F.; Webb, P.
1980-01-01
Using a new nomex lycra elastic fabric and individualized garment engineering techniques, reverse gradient garments (RGG's) were designed, constructed, and tested for effectiveness as a countermeasure against cardiovascular deconditioning. By combining torso compensated positive pressure breathing with a distally diminishing gradient of counterpressure supplied by the elastic fabric on the limbs, the RGG acts to pool blood in the extremities of recumbent persons much as though they were standing erect in 1 g. The RGG stresses the vasculature in a fashion similar to that experienced by the normally active man, hence preventing or limiting the development of post weightlessness orthostatic intolerance and related conditions. Four male, college age subjects received daily treatments with the RGG during a 15 day bedrest study. Four additional subjects also underwent the bedrest, but received no treatments; they served as controls. The preliminary indication was that the RGG was somewhat effective in limiting the deconditioning process.
Mendoza, James; Passafaro, Rachael; Baby, Santhosh; Young, Alex P; Bates, James N; Gaston, Benjamin; Lewis, Stephen J
2013-10-01
This study determined whether the membrane-permeable ventilatory stimulant, L-cysteine ethylester (L-CYSee), reversed the deleterious actions of morphine on arterial blood-gas chemistry in isoflurane-anesthetized rats. Morphine (2 mg/kg, i.v.) elicited sustained decreases in arterial blood pH, pO₂ and sO₂, and increases in pCO₂ (all responses indicative of hypoventilation) and alveolar-arterial gradient (indicative of ventilation-perfusion mismatch). Injections of L-CYSee (100 μmol/kg, i.v.) reversed the effects of morphine in tracheotomized rats but were minimally active in non-tracheotomized rats. L-cysteine or L-serine ethylester (100 μmol/kg, i.v.) were without effect. It is evident that L-CYSee can reverse the negative effects of morphine on arterial blood-gas chemistry and alveolar-arterial gradient but that this positive activity is negated by increases in upper-airway resistance. Since L-cysteine and L-serine ethylester were ineffective, it is evident that cell penetrability and the sulfur moiety of L-CYSee are essential for activity. Due to its ready penetrability into the lungs, chest wall muscle and brain, the effects of L-CYSee on morphine-induced changes in arterial blood-gas chemistry are likely to involve both central and peripheral sites of action. Copyright © 2013 Elsevier B.V. All rights reserved.
Electronic Structure Calculations of Hydrogen Storage in Lithium-Decorated Metal-Graphyne Framework.
Kumar, Sandeep; Dhilip Kumar, Thogluva Janardhanan
2017-08-30
Porous metal-graphyne framework (MGF) made up of graphyne linker decorated with lithium has been investigated for hydrogen storage. Applying density functional theory spin-polarized generalized gradient approximation with the Perdew-Burke-Ernzerhof functional containing Grimme's diffusion parameter with double numeric polarization basis set, the structural stability, and physicochemical properties have been analyzed. Each linker binds two Li atoms over the surface of the graphyne linker forming MGF-Li 8 by Dewar coordination. On saturation with hydrogen, each Li atom physisorbs three H 2 molecules resulting in MGF-Li 8 -H 24 . H 2 and Li interact by charge polarization mechanism leading to elongation in average H-H bond length indicating physisorption. Sorption energy decreases gradually from ≈0.4 to 0.20 eV on H 2 loading. Molecular dynamics simulations and computed sorption energy range indicate the high reversibility of H 2 in the MGF-Li 8 framework with the hydrogen storage capacity of 6.4 wt %. The calculated thermodynamic practical hydrogen storage at room temperature makes the Li-decorated MGF system a promising hydrogen storage material.
The Role of Plasma Rotation in C-Mod Internal Transport Barriers
NASA Astrophysics Data System (ADS)
Fiore, C. L.; Ernst, D. R.; Rice, J. E.; Podpaly, Y.; Reinke, M. L.; Greenwald, M. J.; Hughes, J. W.; Ma, Y.; Bespamyatnov, I. O.; Rowan, W. L.
2010-11-01
ITBs in Alcator C-Mod featuring highly peaked density and pressure profiles are induced by injecting ICRF power with the second harmonic of the resonant frequency for minority hydrogen off-axis at the plasma half radius. These ITBs are formed in the absence of particle or momentum injection, and with monotonic q profiles with qmin < 1. In C-Mod a strong co-current toroidal rotation, peaked on axis, develops after the transition to H-mode. If an ITB forms, this rotation decreases in the center of the plasma and forms a well, and often reverses direction in the core. This indicates that there is a strong EXB shearing rate in the region where the foot in the ITB density profile is observed. Preliminary gyrokinetic analyses indicate that this shearing rate is comparable to the ion temperature gradient mode (ITG) growth rate at this location and may be responsible for stabilizing the turbulence. Gyrokinetic analyses of recent experimental data obtained from a complete scan of the ICRF resonance position across the entire C-Mod plasma will be presented.
USDA-ARS?s Scientific Manuscript database
Semiarid ecosystems can exhibit non-reversible shifts among alternative stable ecosystem states (thresholds and hysteresis), but can also be characterized by slow, continuous, and reversible changes in plant composition (successional gradients). Conceptual state-and-transition models (STMs) attempt ...
Saibaba, B; Vishnuvardhan, Ch; Johnsi Rani, P; Satheesh Kumar, N
2018-01-01
Almotriptan maleate (ALMT), a highly selective 5-hydroxy tryptamine 1B/1D (5-HT1B/1D) receptor agonist used in the treatment of migraine headache was subjected to various ICH (Q1A (R2)) specified guidelines. The drug underwent significant degradation under hydrolytic (acid, base and neutral), oxidative and photolytic stress conditions, while it was stable under thermal stress condition. A total of seven significant degradation products (DPs) were obtained. A simple, selective and reliable UPLC method has been developed for the separation of ALMT and its DPs using Acquity UPLC HSS Cyano (100 × 2.1 mm, 1.8 μm) column with mobile phase consisting of ammonium acetate (10 mM, pH 4.4) buffer and acetonitrile in gradient elution mode. Chromatographic analysis was performed at a flow rate of 0.3 mL/min using a PDA detector at a wavelength of 230 nm. All the DPs (DP-1 to DP-7) were characterized using UHPLC-ESI-QTOF based on mass fragmentation pattern and accurate m/z values. The developed UPLC method was validated in terms of specificity, linearity, precision and accuracy. The developed stability-indicating method helps in quantification of drug in the presence of DPs. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sreenivasulu, J; Venkata Ramana, P; Sampath Kumar Reddy, G; Nagaraju, Ch V S; Thirumalai Rajan, S; Eswaraiah, S
2015-10-01
A novel, rapid, specific and stability-indicating reverse-phase high-performance liquid chromatography method was developed for the quantitative determination of related compounds, obtained from two different synthetic routes and degradation products of Azilsartan kamedoxomil (AZL). The method was developed by using a YMC-Pack pro C18 (150 × 4.6 mm, 3 µm) column with a mobile phase containing a gradient mobile phase combination. The eluted compounds were measured at wavelength 220 nm. The developed method run time was 25 min, within which AZL and its eight impurities were well separated with minimum 3.0 resolution. The drug substance was subjected to stress conditions of hydrolysis (acid, base and water), oxidation, photolysis, sunlight, 75% relative humidity and thermal degradation as per International Conference on Harmonization (ICH) prescribed stress conditions to ascertain the stability-indicating power of the method. Significant degradation was observed during acid, base, peroxide, water hydrolysis and 75% relative humidity studies. The mass balance of AZL was close to 100% in all the stress condition. The developed method was validated as per the ICH guidelines with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Pujeri, Sudhakar S.; Khader, Addagadde M. A.; Seetharamappa, Jaldappagari
2012-01-01
A simple, rapid and stability-indicating reversed-phase liquid chromatographic method was developed for the assay of varenicline tartrate (VRT) in the presence of its degradation products generated from forced decomposition studies. The HPLC separation was achieved on a C18 Inertsil column (250 mm × 4.6 mm i.d. particle size is 5 μm) employing a mobile phase consisting of ammonium acetate buffer containing trifluoroacetic acid (0.02M; pH 4) and acetonitrile in gradient program mode with a flow rate of 1.0 mL min−1. The UV detector was operated at 237 nm while column temperature was maintained at 40 °C. The developed method was validated as per ICH guidelines with respect to specificity, linearity, precision, accuracy, robustness and limit of quantification. The method was found to be simple, specific, precise and accurate. Selectivity of the proposed method was validated by subjecting the stock solution of VRT to acidic, basic, photolysis, oxidative and thermal degradation. The calibration curve was found to be linear in the concentration range of 0.1–192 μg mL−1 (R2 = 0.9994). The peaks of degradation products did not interfere with that of pure VRT. The utility of the developed method was examined by analyzing the tablets containing VRT. The results of analysis were subjected to statistical analysis. PMID:22396908
Localized, gradient-reversed ultrafast z-spectroscopy in vivo at 7T.
Wilson, Neil E; D'Aquilla, Kevin; Debrosse, Catherine; Hariharan, Hari; Reddy, Ravinder
2016-10-01
To collect ultrafast z-spectra in vivo in situations where voxel homogeneity cannot be assured. Saturating in the presence of a gradient encodes the frequency offset spatially across a voxel. This encoding can be resolved by applying a similar gradient during readout. Acquiring additional scans with the gradient polarity reversed effectively mirrors the spatial locations of the frequency offsets so that the same physical location of a positive offset in the original scan will contribute a negative offset in the gradient-reversed scan. Gradient-reversed ultrafast z-spectroscopy (GRUFZS) was implemented and tested in a modified, localized PRESS sequence at 7T. Lysine phantoms were scanned at various concentrations and compared with coventionally-acquired z-spectra. Scans were acquired in vivo in human brain from homogeneous and inhomogeneous voxels with the ultrafast direction cycled between read, phase, and slice. Results were compared to those from a similar conventional z-spectroscopy PRESS-based sequence. Asymmetry spectra from GRUFZS are more consistent and reliable than those without gradient reversal and are comparable to those from conventional z-spectroscopy. GRUFZS offers significant acceleration in data acquisition compared to traditional chemical exchange saturation transfer methods with high spectral resolution and showed higher relative SNR effficiency. GRUFZS offers a method of collecting ultrafast z-spectra in voxels with the inhomogeneity often found in vivo. Magn Reson Med 76:1039-1046, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Peterson, Jayson Luc
2011-10-01
Observations in the National Spherical Torus Experiment (NSTX) have found electron temperature gradients that greatly exceed the linear threshold for the onset for electron temperature gradient-driven (ETG) turbulence. These discharges, deemed electron internal transport barriers (e-ITBs), coincide with a reversal in the shear of the magnetic field and with a reduction in electron-scale density fluctuations, qualitatively consistent with earlier gyrokinetic predictions. To investigate this phenomenon further, we numerically model electron turbulence in NSTX reversed-shear plasmas using the gyrokinetic turbulence code GYRO. These first-of-a-kind nonlinear gyrokinetic simulations of NSTX e-ITBs confirm that reversing the magnetic shear can allow the plasma to reach electron temperature gradients well beyond the critical gradient for the linear onset of instability. This effect is very strong, with the nonlinear threshold for significant transport approaching three times the linear critical gradient in some cases, in contrast with moderate shear cases, which can drive significant ETG turbulence at much lower gradients. In addition to the experimental implications of this upshifted nonlinear critical gradient, we explore the behavior of ETG turbulence during reversed shear discharges. This work is supported by the SciDAC Center for the Study of Plasma Microturbulence, DOE Contract DE-AC02-09CH11466, and used the resources of NCCS at ORNL and NERSC at LBNL. M. Ono et al., Nucl. Fusion 40, 557 (2000).
The linear tearing instability in three dimensional, toroidal gyro-kinetic simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hornsby, W. A., E-mail: william.hornsby@ipp.mpg.de; Migliano, P.; Buchholz, R.
2015-02-15
Linear gyro-kinetic simulations of the classical tearing mode in three-dimensional toroidal geometry were performed using the global gyro-kinetic turbulence code, GKW. The results were benchmarked against a cylindrical ideal MHD and analytical theory calculations. The stability, growth rate, and frequency of the mode were investigated by varying the current profile, collisionality, and the pressure gradients. Both collisionless and semi-collisional tearing modes were found with a smooth transition between the two. A residual, finite, rotation frequency of the mode even in the absence of a pressure gradient is observed, which is attributed to toroidal finite Larmor-radius effects. When a pressure gradientmore » is present at low collisionality, the mode rotates at the expected electron diamagnetic frequency. However, the island rotation reverses direction at high collisionality. The growth rate is found to follow a η{sup 1∕7} scaling with collisional resistivity in the semi-collisional regime, closely following the semi-collisional scaling found by Fitzpatrick. The stability of the mode closely follows the stability analysis as performed by Hastie et al. using the same current and safety factor profiles but for cylindrical geometry, however, here a modification due to toroidal coupling and pressure effects is seen.« less
Electron Bernstein Wave Studies in MST
NASA Astrophysics Data System (ADS)
Seltzman, Andrew; Anderson, Jay; Forest, Cary; Nonn, Paul; Thomas, Mark; Reusch, Joshua; Hendries, Eric
2013-10-01
The overdense condition in a RFP prevents electromagnetic waves from propagating past the extreme edge. However use of the electron Bernstein wave (EBW) has the potential to heat and drive current in the plasma. MHD simulations have demonstrated that resistive tearing mode stability is very sensitive to the gradient in the edge current density profile, allowing EBW current drive to influence and potentially stabilize tearing mode activity. Coupling between the X-mode and Bernstein waves is strongly dependent on the edge density gradient. The effects on coupling of plasma density, magnetic field strength, antenna radial position and launch polarization have been examined. Coupling as high as 90% has been observed. Construction of a 450 kw RF source is complete and initial experimental results will be reported. The power and energy of this auxiliary system should be sufficient for several scientific purposes, including verifying mode conversion, EBW propagation and absorption in high beta plasmas. Target plasmas in the 300-400 kA range will be heated near the reversal surface, potentially allowing mode control, while target plasmas in the 250 kA range will allow heating near the core, allowing better observation of heating effects. Heating and heat pulse propagation experiments are planned, as well as probing the stability of parametric decay during mode conversion, at moderate injected power. Work supported by USDOE.
Reversible ratchet effects for vortices in conformal pinning arrays
Reichhardt, Charles; Ray, Dipanjan; Reichhardt, Cynthia Jane Olson
2015-05-04
A conformal transformation of a uniform triangular pinning array produces a structure called a conformal crystal which preserves the sixfold ordering of the original lattice but contains a gradient in the pinning density. Here we use numerical simulations to show that vortices in type-II superconductors driven with an ac drive over gradient pinning arrays produce the most pronounced ratchet effect over a wide range of parameters for a conformal array, while square gradient or random gradient arrays with equivalent pinning densities give reduced ratchet effects. In the conformal array, the larger spacing of the pinning sites in the direction transversemore » to the ac drive permits easy funneling of interstitial vortices for one driving direction, producing the enhanced ratchet effect. In the square array, the transverse spacing between pinning sites is uniform, giving no asymmetry in the funneling of the vortices as the driving direction switches, while in the random array, there are numerous easy-flow channels present for either direction of drive. We find multiple ratchet reversals in the conformal arrays as a function of vortex density and ac amplitude, and correlate the features with a reversal in the vortex ordering, which is greater for motion in the ratchet direction. In conclusion, the enhanced conformal pinning ratchet effect can also be realized for colloidal particles moving over a conformal array, indicating the general usefulness of conformal structures for controlling the motion of particles.« less
Arteyeva, Natalia V; Azarov, Jan E
2017-01-01
The changes in ventricular repolarization gradients lead to significant alterations of the electrocardiographic body surface T waves up to the T wave inversion. However, the contribution of a specific gradient remains to be elucidated. The objective of the present investigation was to study the role of the transmural repolarization gradient in the inversion of the body surface T wave with a mathematical model of the hypothermia-induced changes of ventricular repolarization. By means of mathematical simulation, we set the hypothermic action potential duration (APD) distribution on the rabbit ventricular epicardium as it was previously experimentally documented. Then the parameters of the body surface potential distribution were tested with the introduction of different scenarios of the endocardial and epicardial APD behavior in hypothermia resulting in the unchanged, reversed or enlarged transmural repolarization gradient. The reversal of epicardial repolarization gradients (apicobasal, anterior-posterior and interventricular) caused the inversion of the T waves regardless of the direction of the transmural repolarization gradient. However, the most realistic body surface potentials were obtained when the endocardial APDs were not changed under hypothermia while the epicardial APDs prolonged. This produced the reversed and increased transmural repolarization gradient in absolute magnitude. The body surface potentials simulated under the unchanged transmural gradient were reduced in comparison to those simulated under the reversed transmural gradient. The simulations demonstrated that the transmural repolarization gradient did not play a crucial role in the cardiac electric field inversion under hypothermia, but its magnitude and direction contribute to the T wave amplitude. © 2016 Wiley Periodicals, Inc.
Gyrokinetic simulation of driftwave instability in field-reversed configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulton, D. P., E-mail: dfulton@trialphaenergy.com; University of California, Irvine, California 92697; Lau, C. K.
2016-05-15
Following the recent remarkable progress in magnetohydrodynamic (MHD) stability control in the C-2U advanced beam driven field-reversed configuration (FRC), turbulent transport has become one of the foremost obstacles on the path towards an FRC-based fusion reactor. Significant effort has been made to expand kinetic simulation capabilities in FRC magnetic geometry. The recently upgraded Gyrokinetic Toroidal Code (GTC) now accommodates realistic magnetic geometry from the C-2U experiment at Tri Alpha Energy, Inc. and is optimized to efficiently handle the FRC's magnetic field line orientation. Initial electrostatic GTC simulations find that ion-scale instabilities are linearly stable in the FRC core for realisticmore » pressure gradient drives. Estimated instability thresholds from linear GTC simulations are qualitatively consistent with critical gradients determined from experimental Doppler backscattering fluctuation data, which also find ion scale modes to be depressed in the FRC core. Beyond GTC, A New Code (ANC) has been developed to accurately resolve the magnetic field separatrix and address the interaction between the core and scrape-off layer regions, which ultimately determines global plasma confinement in the FRC. The current status of ANC and future development targets are discussed.« less
Gyrokinetic simulation of driftwave instability in field-reversed configuration
NASA Astrophysics Data System (ADS)
Fulton, D. P.; Lau, C. K.; Schmitz, L.; Holod, I.; Lin, Z.; Tajima, T.; Binderbauer, M. W.
2016-05-01
Following the recent remarkable progress in magnetohydrodynamic (MHD) stability control in the C-2U advanced beam driven field-reversed configuration (FRC), turbulent transport has become one of the foremost obstacles on the path towards an FRC-based fusion reactor. Significant effort has been made to expand kinetic simulation capabilities in FRC magnetic geometry. The recently upgraded Gyrokinetic Toroidal Code (GTC) now accommodates realistic magnetic geometry from the C-2U experiment at Tri Alpha Energy, Inc. and is optimized to efficiently handle the FRC's magnetic field line orientation. Initial electrostatic GTC simulations find that ion-scale instabilities are linearly stable in the FRC core for realistic pressure gradient drives. Estimated instability thresholds from linear GTC simulations are qualitatively consistent with critical gradients determined from experimental Doppler backscattering fluctuation data, which also find ion scale modes to be depressed in the FRC core. Beyond GTC, A New Code (ANC) has been developed to accurately resolve the magnetic field separatrix and address the interaction between the core and scrape-off layer regions, which ultimately determines global plasma confinement in the FRC. The current status of ANC and future development targets are discussed.
Transitions and coexistence along a grazing gradient in the Eurasian steppe
NASA Astrophysics Data System (ADS)
Ren, Haiyan; Taube, Friedelm; Zhang, Yingjun; Bai, Yongfei; Hu, Shuijin
2017-04-01
Ecological resilience theory has often been applied to explain species coexistence and range condition assessment of various community states and to explicate the dynamics of ecosystems. Grazing is a primary disturbance that can alter rangeland resilience by causing hard-to-reverse transitions in grasslands. Yet, how grazing affects the coexistence of plant functional group (PFG) and transition remains unclear. We conducted a six-year grazing experiment in a typical steppe of Inner Mongolia, using seven grazing intensities (0, 1.5, 3.0, 4.5, 6.0, 7.5 and 9.0 sheep/ hectare) and two grazing systems (i.e. a continuous annual grazing as in the traditional grazing system, and a mixed grazing system combining grazing and haymaking), to examine grazing effects on plant functional group shifts and species coexistence in the semi-arid grassland system. Our results indicate that the relative richness of dominant bunchgrasses and forbs had a compensatory coexistence at all grazing intensities, and the richness of rhizomatous grasses fluctuated but was persistent. The relative productivity of dominant bunchgrasses and rhizomatous grasses had compensatory interactions with grazing intensity and grazing system. Dominant bunchgrasses and rhizomatous grasses resist grazing effects by using their dominant species functional traits: high specific leaf area and low leaf nitrogen content. Our results suggest that: 1. Stabilizing mechanisms beyond grazing management are more important in determining plant functional group coexistence and ecological resilience. 2. Plant functional group composition is more important in influencing ecosystem functioning than diversity. 3. Ecosystem resilience at a given level is related to the biomass of dominant PFG, which is determined by a balanced shift between dominant species biomass. The relatively even ecosystem resilience along the grazing gradient is attributed to the compensatory interactions of dominant species in their biomass variations. Community stability may rely on constantly regulating internal PFGs composition to maintain functional stability in grassland ecosystems. In the semi-arid grassland system, environmental factors mediate grazing effects on PFG transition, leading to homogeneous grassland dominated by bunchgrass.
Chang, Hing-Chiu; Chuang, Tzu-Chao; Lin, Yi-Ru; Wang, Fu-Nien; Huang, Teng-Yi; Chung, Hsiao-Wen
2013-04-01
This study investigates the application of a modified reversed gradient algorithm to the Propeller-EPI imaging method (periodically rotated overlapping parallel lines with enhanced reconstruction based on echo-planar imaging readout) for corrections of geometric distortions due to the EPI readout. Propeller-EPI acquisition was executed with 360-degree rotational coverage of the k-space, from which the image pairs with opposite phase-encoding gradient polarities were extracted for reversed gradient geometric and intensity corrections. The spatial displacements obtained on a pixel-by-pixel basis were fitted using a two-dimensional polynomial followed by low-pass filtering to assure correction reliability in low-signal regions. Single-shot EPI images were obtained on a phantom, whereas high spatial resolution T2-weighted and diffusion tensor Propeller-EPI data were acquired in vivo from healthy subjects at 3.0 Tesla, to demonstrate the effectiveness of the proposed algorithm. Phantom images show success of the smoothed displacement map concept in providing improvements of the geometric corrections at low-signal regions. Human brain images demonstrate prominently superior reconstruction quality of Propeller-EPI images with modified reversed gradient corrections as compared with those obtained without corrections, as evidenced from verification against the distortion-free fast spin-echo images at the same level. The modified reversed gradient method is an effective approach to obtain high-resolution Propeller-EPI images with substantially reduced artifacts.
Protic ionic liquid modified electrocatalyst enables robust anode under cell reversal condition
NASA Astrophysics Data System (ADS)
Zhu, Zhengyu; Yan, Xiaocong; Tang, Haolin; Cai, Haopeng; Pan, Mu; Zhang, Haining; Luo, Jiangshui
2017-05-01
Pt/C has been commercially used as anode electrocatalyst for fuel cells but generally exhibits limited durability under conditions of fuel starvation and subsequent cell reversal. Herein we report an improved scaffold concept to simultaneously stabilize the catalyst against particle growth and reduce the adverse effects of cell reversal by modifying Pt/C with suitable protic ionic liquids (PILs). The modified Pt/C catalysts show enhanced cell reversal tolerance because of their high activity towards oxygen evolution reaction (OER), up to 300 mV lower overpotential compared to the unmodified Pt/C. Moreover, the PIL modified catalysts show better resistance to the loss of electrochemical surface area (ECSA) under simulated cell reversal conditions. The results indicate that modification of Pt/C catalysts with PILs is a promising strategy to enhance the stability and durability of electrocatalysts in fuel cell applications with the risk of frequent fuel starvation events, such as automotive fuel cells.
EL-Houssini, Ola M.; Zawilla, Nagwan H.; Mohammad, Mohammad A.
2013-01-01
Specific stability indicating reverse-phase liquid chromatography (RP-LC) assay method (SIAM) was developed for the determination of cinnarizine (Cinn)/piracetam (Pira) and cinnarizine (Cinn)/heptaminol acefyllinate (Hept) in the presence of the reported degradation products of Cinn. A C18 column and gradient mobile phase was applied for good resolution of all peaks. The detection was achieved at 210 nm and 254 nm for Cinn/Pira and Cinn/Hept, respectively. The responses were linear over concentration ranges of 20–200, 20–1000 and 25–1000 μgmL−1 for Cinn, Pira, and Hept respectively. The proposed method was validated for linearity, accuracy, repeatability, intermediate precision, and robustness via statistical analysis of the data. The method was shown to be precise, accurate, reproducible, sensitive, and selective for the analysis of Cinn/Pira and Cinn/Hept in laboratory prepared mixtures and in pharmaceutical formulations. PMID:24137049
Dow, William H.
2009-01-01
Background To determine socioeconomic status (SES) gradients in the different dimensions of health among elderly Costa Ricans. Hypothesis: SES disparities in adult health are minimal in Costa Rican society. Methods Data from the Costa Rican Study on Longevity and Healthy Aging study: 8,000 elderly Costa Ricans to determine mortality in the period 2000–2007 and a subsample of 3,000 to determine prevalence of several health conditions and biomarkers from anthropometry and blood and urine specimens. Results The ultimate health indicator, mortality, as well as the metabolic syndrome, reveals that better educated and wealthier individuals are worse off. In contrast, quality of life–related measures such as functional and cognitive disabilities, physical frailty, and depression all clearly worsen with lower SES. Overall self-reported health (SRH) also shows a strong positive SES gradient. Traditional cardiovascular risk factors such as diabetes and cholesterol are not significantly related to SES, but hypertension and obesity are worse among high-SES individuals. Reflecting mixed SES gradients in behaviors, smoking and lack of exercise are more common among low SES, but high calorie diets are more common among high SES. Conclusions Negative modern behaviors among high-SES groups may be reversing cardiovascular risks across SES groups, hence reversing mortality risks. But negative SES gradients in healthy years of life persist. PMID:19196695
Global plasma oscillations in electron internal transport barriers in TCV
NASA Astrophysics Data System (ADS)
Udintsev, V. S.; Sauter, O.; Asp, E.; Fable, E.; Goodman, T. P.; Turri, G.; Graves, J. P.; Scarabosio, A.; Zhuang, G.; Zucca, C.; TCV Team
2008-12-01
In the Tokamak à Configuration Variable (TCV) (Hofmann F et al1994 Plasma Phys. Control. Fusion 36 B277), global plasma oscillations have been discovered in fully non-inductively driven plasmas featuring electron internal transport barriers (ITB) with strong ECRH/ECCD. These oscillations are linked to the destabilization and stabilization of MHD modes near the foot of the ITB and can lead to large oscillations of the total plasma current and line-averaged density, among others. They are intrinsically related to the fact that ITBs have large pressure gradients in a region of low magnetic shear. Therefore, the ideal MHD limit is relatively low and infernal modes can be unstable. Depending on the proximity to the ideal limit, small crashes or resistive modes can appear which affect the time evolution of the discharge. Being near marginal stability, the modes can self-stabilize due to the modification of the pressure gradient and local q-profile. The plasma recovers good confinement, reverses shear and the ITB builds up, until a new MHD mode is destabilized. TCV results show that this cycling behaviour can be controlled by modifying the current density or the pressure profiles, either with Ohmic current density perturbation or by modifying the ECH/ECCD power. It is demonstrated that many observations such as q >= 2 sawteeth, beta collapses, minor disruptions and oscillation regimes in ITBs can be assigned to the same physics origin: the proximity to the infernal mode stability limit.
Turbulent transport stabilization by ICRH minority fast ions in low rotating JET ILW L-mode plasmas
NASA Astrophysics Data System (ADS)
Bonanomi, N.; Mantica, P.; Di Siena, A.; Delabie, E.; Giroud, C.; Johnson, T.; Lerche, E.; Menmuir, S.; Tsalas, M.; Van Eester, D.; Contributors, JET
2018-05-01
The first experimental demonstration that fast ion induced stabilization of thermal turbulent transport takes place also at low values of plasma toroidal rotation has been obtained in JET ILW (ITER-like wall) L-mode plasmas with high (3He)-D ICRH (ion cyclotron resonance heating) power. A reduction of the gyro-Bohm normalized ion heat flux and higher values of the normalized ion temperature gradient have been observed at high ICRH power and low NBI (neutral beam injection) power and plasma rotation. Gyrokinetic simulations indicate that ITG (ion temperature gradient) turbulence stabilization induced by the presence of high-energetic 3He ions is the key mechanism in order to explain the experimental observations. Two main mechanisms have been identified to be responsible for the turbulence stabilization: a linear electrostatic wave-fast particle resonance mechanism and a nonlinear electromagnetic mechanism. The dependence of the stabilization on the 3He distribution function has also been studied.
The Harang reversal and the interchange stability of the magnetotail
NASA Astrophysics Data System (ADS)
Ohtani, Shinichi; Gkioulidou, Matina; Wang, Chih-Ping; Wolf, Richard A.
2016-04-01
The present study addresses steady convection in the plasma sheet in terms of the interchange stability with special attention to the Harang reversal. The closure of the tail current with a field-aligned current (FAC) results from the divergence/convergence of the pressure gradient current. If the magnetotail is in a steady state, the associated change of local plasma pressure p has to balance with its advective change. Accordingly, for adiabatic transport, the flux tube entropy parameter pVγ increases and decreases along the convection path in regions corresponding to downward and upward FACs, respectively. This requirement, along with the condition for the interchange stability imposes an important constraint on the direction of convection especially in the regions of downward FACs. It is deduced that for the dusk cell, the convection in the downward R2 current has to be directed azimuthally duskward, which follows the sunward, possibly dawnward deflected, convection in the region of the premidnight upward R1 current. This duskward turn of convection takes place in the vicinity of the R1-R2 demarcation, and it presumably corresponds to the Harang reversal. For the dawn cell the convection in the postmidnight downward R1 current has to deflect dawnward, and then it proceeds sunward in the upward R2 current. The continuity of the associated ionospheric currents consistently reproduces the assumed FAC distribution. The proposed interrelationships between the convection and FACs are also verified with a quasi-steady plasma sheet configuration and convection reproduced by a modified Rice Convection Model with force balance.
pH Gradient Reversal: An Emerging Hallmark of Cancers.
Sharma, Mohit; Astekar, Madhusudan; Soi, Sonal; Manjunatha, Bhari S; Shetty, Devi C; Radhakrishnan, Raghu
2015-01-01
Several tumors exhibit pH gradient reversal, with acidification of extracellular pH (pHe) and alkalinization of intracellular pH (pHi). The pH gradient reversal is evident even during the preliminary stages of tumorigenesis and is crucial for survival and propagation of tumors, irrespective of their pathology, genetics and origins. Moreover, this hallmark seems to be present ubiquitously in all malignant tumors. Based on these facts, we propose a new emerging hallmark of cancer "pH gradient reversal". Normalizing pH gradient reversal through inhibition of various proton transporters such as Na(+)-H(+) exchanger (NHE), Vacuolar-type H(+)-ATPase (V-ATPase), H(+)/K(+)-ATPases and carbonic anhydrases (CAs) has demonstrated substantial therapeutic benefits. Indeed, inhibition of NHE1 is now being regarded as the latest concept in cancer treatment. A recent patent deals with the utilization of cis-Urocanic acid to acidify the pHi and induce apoptosis in tumors. Another patent reports therapeutic benefit by inhibiting Lactate Dehydrogenase - 5 (LDH-5) in various cancers. Several patents have been formulated by designing drugs activated through acidic pHe providing a cancer specific action. The purpose of this review is to analyze the available literature and help design selective therapies that could be a valuable adjunct to the conventional therapies or even replace them.
NASA Astrophysics Data System (ADS)
Liu, Tao; Qin, Weilun; Wang, Dong; Huang, Zhirong
2017-08-01
The microbunching instability driven by beam collective effects in a linear accelerator of a free-electron laser (FEL) facility significantly degrades the electron beam quality and FEL performance. A conventional method to suppress this instability is to introduce an additional uncorrelated energy spread by laser-electron interaction, which has been successfully operated in the Linac Coherent Light Source and Fermi@Elettra, etc. Some other ideas are recently proposed to suppress the instability without increasing energy spread, which could benefit the seeded FEL schemes. In this paper, we propose a reversible electron beam heater using two transverse gradient undulators to suppress the microbunching instability. This scheme introduces both an energy spread increase and a transverse-to-longitudinal phase space coupling, which suppress the microbunching instabilities driven by both longitudinal space charge and coherent synchrotron radiation before and within the system. Finally the induced energy spread increase and emittance growth are reversed. Theoretical analysis and numerical simulations are presented to verify the feasibility of the scheme and indicate the capability to improve the seeded FEL radiation performance.
Liu, Tao; Qin, Weilun; Wang, Dong; ...
2017-08-02
The microbunching instability driven by beam collective effects in a linear accelerator of a free-electron laser (FEL) facility significantly degrades the electron beam quality and FEL performance. A conventional method to suppress this instability is to introduce an additional uncorrelated energy spread by laser-electron interaction, which has been successfully operated in the Linac Coherent Light Source and Fermi@Elettra, etc. Some other ideas are recently proposed to suppress the instability without increasing energy spread, which could benefit the seeded FEL schemes. In this paper, we propose a reversible electron beam heater using two transverse gradient undulators to suppress the microbunching instability.more » This scheme introduces both an energy spread increase and a transverse-to-longitudinal phase space coupling, which suppress the microbunching instabilities driven by both longitudinal space charge and coherent synchrotron radiation before and within the system. Finally the induced energy spread increase and emittance growth are reversed. In conclusion, theoretical analysis and numerical simulations are presented to verify the feasibility of the scheme and indicate the capability to improve the seeded FEL radiation performance.« less
Chang, Hing-Chiu; Chuang, Tzu-Chao; Wang, Fu-Nien; Huang, Teng-Yi; Chung, Hsiao-Wen
2013-01-01
Objective This study investigates the application of a modified reversed gradient algorithm to the Propeller-EPI imaging method (periodically rotated overlapping parallel lines with enhanced reconstruction based on echo-planar imaging readout) for corrections of geometric distortions due to the EPI readout. Materials and methods Propeller-EPI acquisition was executed with 360-degree rotational coverage of the k-space, from which the image pairs with opposite phase-encoding gradient polarities were extracted for reversed gradient geometric and intensity corrections. The spatial displacements obtained on a pixel-by-pixel basis were fitted using a two-dimensional polynomial followed by low-pass filtering to assure correction reliability in low-signal regions. Single-shot EPI images were obtained on a phantom, whereas high spatial resolution T2-weighted and diffusion tensor Propeller-EPI data were acquired in vivo from healthy subjects at 3.0 Tesla, to demonstrate the effectiveness of the proposed algorithm. Results Phantom images show success of the smoothed displacement map concept in providing improvements of the geometric corrections at low-signal regions. Human brain images demonstrate prominently superior reconstruction quality of Propeller-EPI images with modified reversed gradient corrections as compared with those obtained without corrections, as evidenced from verification against the distortion-free fast spin-echo images at the same level. Conclusions The modified reversed gradient method is an effective approach to obtain high-resolution Propeller-EPI images with substantially reduced artifacts. PMID:23630654
Static stability and thermal wind in an atmosphere of variable composition Applications to Mars
NASA Technical Reports Server (NTRS)
Hess, S. L.
1979-01-01
Radiometric measurements of the temperature of the south polar cap of Mars in winter have yielded values significantly below the expected 148 K. One proposed explanation for this result is a substantial reduction in the CO2 content of the atmosphere and a lowering of the mean molecule weight near the surface. The meteorological consequences of this explanation are explored by deriving a criterion for vertical static stability and a thermal wind law for an atmosphere of variable composition. The atmosphere proves to be statically unstable unless the anomaly in the CO2 mixing ratio extends to heights of tens of kilometers. The effect of varying molecular weight exceeds the effect of temperature gradient, producing shears with height of reversed sign. The shears are baroclinically unstable, and this instability would eradicate the latitudinal gradient of molecular weight. This inconsistency can be resolved by invoking a reasonable elevation of the central polar cap and by imposing an adequate zonal wind. It is concluded that if the explanation requiring a change in atmospheric composition is correct, it must be accompanied by other special circumstances to make it meteorologically consistent.
Racetrack-shape fixed field induction accelerator for giant cluster ions
NASA Astrophysics Data System (ADS)
Takayama, Ken; Adachi, Toshikazu; Wake, Masayoshi; Okamura, Katsuya
2015-05-01
A novel scheme for a racetrack-shape fixed field induction accelerator (RAFFIA) capable of accelerating extremely heavy cluster ions (giant cluster ions) is described. The key feature of this scheme is rapid induction acceleration by localized induction cells. Triggering the induction voltages provided by the signals from the circulating bunch allows repeated acceleration of extremely heavy cluster ions. The given RAFFIA example is capable of realizing the integrated acceleration voltage of 50 MV per acceleration cycle. Using 90° bending magnets with a reversed field strip and field gradient is crucial for assuring orbit stability in the RAFFIA.
Jain, P S; Patel, M K; Gorle, A P; Chaudhari, A J; Surana, S J
2012-09-01
A simple, specific, accurate and precise stability-indicating reversed-phase high-performance liquid chromatographic method was developed for simultaneous estimation of olmesartan medoxomile (OLME), amlodipine besylate (AMLO) and hydrochlorothiazide (HCTZ) in tablet dosage form. The method was developed using an RP C18 base deactivated silica column (250 × 4.6 mm, 5 µm) with a mobile phase consisting of triethylamine (pH 3.0) adjusted with orthophosphoric acid (A) and acetonitrile (B), with a timed gradient program of T/%B: 0/30, 7/70, 8/30, 10/30 with a flow rate of 1.4 mL/min. Ultraviolet detection was used at 236 nm. The retention times for OLME, AMLO and HCTZ were found to be 6.72, 4.28 and 2.30, respectively. The proposed method was validated for precision, accuracy, linearity, range, robustness, ruggedness and force degradation study. The calibration curves of OLME, AMLO and HCTZ were linear over the range of 50-150, 12.5-37.5 and 31-93 µg/mL, respectively. The method was found to be sensitive. The limits of detection of OLME, AMLO and HCTZ were determined 0.19, 0.16 and 0.22 µg/mL and limits of quantification of OLME, AMLO and HCTZ were determined 0.57, 0.49 and 0.66, respectively. Forced degradation study was performed according to International Conference on Harmonization guidelines.
Rheological Properties of Quasi-2D Fluids in Microgravity
NASA Technical Reports Server (NTRS)
Trittel, Torsten; Stannarius, Ralf; Eremin, Alexey; Harth, Kirsten; Clark, Noel A.; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha
2016-01-01
Freely suspended smectic films of sub-micrometer thickness and lateral extensions of several millimeters are used to study thermally driven convection and diffusion in the film plane. The experiments were performed during a six minute microgravity phase of a TEXUS suborbital rocket flight (Texus 52, launched April 27, 2015). The project served as a preliminary test for a planned ISS Experiment with liquid crystal films (OASIS), and in addition it provided new experimental data on smectic films exposed to in-plane thermal gradients.We find an attraction of the smectic material towards the cold edge of the film in a temperature gradient, similar to a Soret effect. This process is reversed when this edge is heated up again. Thermal convection driven by two thermocontacts in the film is practically absent, even at temperature gradients up to 10 Kmm, thermally driven convection sets in when the hot post reaches the transition temperature to the nematic phase.An additional experiment was performed under microgravity conditions to test the stability of liquid crystal bridges in different smectic phases.
[Several indicators of tissue oxygen during modeling of extravehicular activity of man].
Lan'shina, O E; Loginov, V A; Akinfiev, A V; Kovalenko, E A
1995-01-01
Investigations of tissue oxygen indices during simulation of extravehicular activity (EVA) of cosmonauts demonstrated that breathing pure oxygen at approximately 280 mmHg elevates oxygen tension in capillary blood, and capillary-tissue gradient during physical work. Physical work alone stimulates tissue oxygenation due to, apparently, intensification of the processes of oxidative phosphorylation. The observed shifts in oxygen status reverse significantly within the first 5 min after completion of the experiment.
Silveira, José Leandro R; Dib, Samia R; Faria, Anizio M
2014-01-01
A new material based on silica coated with alumina nanoparticles was proposed for use as a chromatographic support for reversed-phase high-performance liquid chromatography. Alumina nanoparticles were synthesized by a sol-gel process in reversed micelles composed of sodium bis(2-ethylhexyl)sulfosuccinate, and the support material was formed by the self-assembly of alumina layers on silica spheres. Spectroscopic and (29)Si nuclear magnetic resonance results showed evidence of chemical bonds between the alumina nanoparticles and the silica spheres, while morphological characterizations showed that the aluminized silica maintained the morphological properties of silica desired for chromatographic purposes after alumina incorporation. Stability studies indicated that bare silica showed high dissolution (~83%), while the aluminized silica remained practically unchanged (99%) after passing one liter of the alkaline mobile phase, indicating high stability under alkaline conditions. The C18 bonded aluminized silica phase showed great potential for use in high-performance liquid chromatography to separate basic molecules in the reversed-phase mode.
Yu, Jia; Wang, Yanlei; Mou, Lihui; Fang, Daliang; Chen, Shimou; Zhang, Suojiang
2018-02-27
In allusion to traditional transition-metal oxide (TMO) anodes for lithium-ion batteries, which face severe volume variation and poor conductivity, herein a bimetal oxide dual-composite strategy based on two-dimensional (2D)-mosaic three-dimensional (3D)-gradient design is proposed. Inspired by natural mosaic dominance phenomena, Zn 1-x Co x O/ZnCo 2 O 4 2D-mosaic-hybrid mesoporous ultrathin nanosheets serve as building blocks to assemble into a 3D Zn-Co hierarchical framework. Moreover, a series of derivative frameworks with high evolution are controllably synthesized, based on which a facile one-pot synthesis process can be developed. From a component-composite perspective, both Zn 1-x Co x O and ZnCo 2 O 4 provide superior conductivity due to bimetal doping effect, which is verified by density functional theory calculations. From a structure-composite perspective, 2D-mosaic-hybrid mode gives rise to ladder-type buffering and electrochemical synergistic effect, thus realizing mutual stabilization and activation between the mosaic pair, especially for Zn 1-x Co x O with higher capacity yet higher expansion. Moreover, the inside-out Zn-Co concentration gradient in 3D framework and rich oxygen vacancies further greatly enhance Li storage capability and stability. As a result, a high reversible capacity (1010 mA h g -1 ) and areal capacity (1.48 mA h cm -2 ) are attained, while ultrastable cyclability is obtained during high-rate and long-term cycles, rending great potential of our 2D-mosaic 3D-gradient design together with facile synthesis.
Kaplan, W.; Hüsler, P.; Klump, H.; Erhardt, J.; Sluis-Cremer, N.; Dirr, H.
1997-01-01
A glutathione S-transferase (Sj26GST) from Schistosoma japonicum, which functions in the parasite's Phase II detoxification pathway, is expressed by the Pharmacia pGEX-2T plasmid and is used widely as a fusion-protein affinity tag. It contains all 217 residues of Sj26GST and an additional 9-residue peptide linker with a thrombin cleavage site at its C-terminus. Size-exclusion HPLC (SEC-HPLC) and SDS-PAGE studies indicate that purification of the homodimeric protein under nonreducing conditions results in the reversible formation of significant amounts of 160-kDa and larger aggregates without a loss in catalytic activity. The basis for oxidative aggregation can be ascribed to the high degree of exposure of the four cysteine residues per subunit. The conformational stability of the dimeric protein was studied by urea- and temperature-induced unfolding techniques. Fluorescence-spectroscopy, SEC-HPLC, urea- and temperature-gradient gel electrophoresis, differential scanning microcalorimetry, and enzyme activity were employed to monitor structural and functional changes. The unfolding data indicate the absence of thermodynamically stable intermediates and that the unfolding/refolding transition is a two-state process involving folded native dimer and unfolded monomer. The stability of the protein was found to be dependent on its concentration, with a delta G degree (H2O) = 26.0 +/- 1.7 kcal/mol. The strong relationship observed between the m-value and the size of the protein indicates that the amount of protein surface area exposed to solvent upon unfolding is the major structural determinant for the dependence of the protein's free energy of unfolding on urea concentration. Thermograms obtained by differential scanning microcalorimetry also fitted a two-state unfolding transition model with values of delta Cp = 7,440 J/mol per K, delta H = 950.4 kJ/mol, and delta S = 1,484 J/mol. PMID:9041642
Kaplan, W; Hüsler, P; Klump, H; Erhardt, J; Sluis-Cremer, N; Dirr, H
1997-02-01
A glutathione S-transferase (Sj26GST) from Schistosoma japonicum, which functions in the parasite's Phase II detoxification pathway, is expressed by the Pharmacia pGEX-2T plasmid and is used widely as a fusion-protein affinity tag. It contains all 217 residues of Sj26GST and an additional 9-residue peptide linker with a thrombin cleavage site at its C-terminus. Size-exclusion HPLC (SEC-HPLC) and SDS-PAGE studies indicate that purification of the homodimeric protein under nonreducing conditions results in the reversible formation of significant amounts of 160-kDa and larger aggregates without a loss in catalytic activity. The basis for oxidative aggregation can be ascribed to the high degree of exposure of the four cysteine residues per subunit. The conformational stability of the dimeric protein was studied by urea- and temperature-induced unfolding techniques. Fluorescence-spectroscopy, SEC-HPLC, urea- and temperature-gradient gel electrophoresis, differential scanning microcalorimetry, and enzyme activity were employed to monitor structural and functional changes. The unfolding data indicate the absence of thermodynamically stable intermediates and that the unfolding/refolding transition is a two-state process involving folded native dimer and unfolded monomer. The stability of the protein was found to be dependent on its concentration, with a delta G degree (H2O) = 26.0 +/- 1.7 kcal/mol. The strong relationship observed between the m-value and the size of the protein indicates that the amount of protein surface area exposed to solvent upon unfolding is the major structural determinant for the dependence of the protein's free energy of unfolding on urea concentration. Thermograms obtained by differential scanning microcalorimetry also fitted a two-state unfolding transition model with values of delta Cp = 7,440 J/mol per K, delta H = 950.4 kJ/mol, and delta S = 1,484 J/mol.
Du, Hongying; Wang, Jie; Yao, Xiaojun; Hu, Zhide
2009-01-01
The heuristic method (HM) and support vector machine (SVM) were used to construct quantitative structure-retention relationship models by a series of compounds to predict the gradient retention times of reversed-phase high-performance liquid chromatography (HPLC) in three different columns. The aims of this investigation were to predict the retention times of multifarious compounds, to find the main properties of the three columns, and to indicate the theory of separation procedures. In our method, we correlated the retention times of many diverse structural analytes in three columns (Symmetry C18, Chromolith, and SG-MIX) with their representative molecular descriptors, calculated from the molecular structures alone. HM was used to select the most important molecular descriptors and build linear regression models. Furthermore, non-linear regression models were built using the SVM method; the performance of the SVM models were better than that of the HM models, and the prediction results were in good agreement with the experimental values. This paper could give some insights into the factors that were likely to govern the gradient retention process of the three investigated HPLC columns, which could theoretically supervise the practical experiment.
A comprehensive study on rotation reversal in KSTAR: experimental observations and modelling
NASA Astrophysics Data System (ADS)
Na, D. H.; Na, Yong-Su; Angioni, C.; Yang, S. M.; Kwon, J. M.; Jhang, Hogun; Camenen, Y.; Lee, S. G.; Shi, Y. J.; Ko, W. H.; Lee, J. A.; Hahm, T. S.; KSTAR Team
2017-12-01
Dedicated experiments have been performed in KSTAR Ohmic plasmas to investigate the detailed physics of the rotation reversal phenomena. Here we adapt the more general definition of rotation reversal, a large change of the intrinsic toroidal rotation gradient produced by minor changes in the control parameters (Camenen et al 2017 Plasma Phys. Control. Fusion 59 034001), which is commonly observed in KSTAR regardless of the operating conditions. The two main phenomenological features of the rotation reversal are the normalized toroidal rotation gradient ({{u}\\prime} ) change in the gradient region and the existence of an anchor point. For the KSTAR Ohmic plasma database including the experiment results up to the 2016 experimental campaign, both features were investigated. First, the observations show that the locations of the gradient and the anchor point region are dependent on {{q}95} . Second, a strong dependence of {{u}\\prime} on {νeff} is clearly observed in the gradient region, whereas the dependence on R/{{L}{{Ti}}} , R/{{L}{{Te}}} , and R/{{L}{{ne}}} is unclear considering the usual variation of the normalized gradient length in KSTAR. The experimental observations were compared against several theoretical models. The rotation reversal might not occur due to the transition of the dominant turbulence from the trapped electron mode to the ion temperature gradient mode or the neoclassical equilibrium effect in KSTAR. Instead, it seems that the profile shearing effects associated with a finite ballooning tilting well reproduce the experimental observations of both the gradient region and the anchor point; the difference seems to be related to the magnetic shear and the q value. Further analysis implies that the increase of {{u}\\prime} in the gradient region with the increase of the collisionality would occur when the reduction of the momentum diffusivity is comparatively larger than the reduction of the residual stress. It is supported by the perturbative analysis of the experiments and the nonlinear gyrokinetic simulations. The absence of the sign change of {{u}\\prime} even when a much lower collisionality is produced by additional electron cyclotron heating brings further experimental support to this interpretation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisiger, R.A.; Mendel, C.M.; Cavalieri, R.R.
1986-03-01
Two general models have been proposed for predicting the effects of metabolism, protein binding, and plasma flow on the removal of drugs by the liver. These models differ in the degree of plasma mixing assumed to exist within each hepatic sinusoid. The venous equilibrium model treats the sinusoid as a single well-stirred compartment, whereas the sinusoidal model effectively breaks up the sinusoid into a large number of sequentially perfused compartments which do not exchange their contents except through plasma flow. As a consequence, the sinusoidal model, but not the venous equilibrium model, predicts that the concentration of highly extracted drugsmore » will decline as the plasma flows through the hepatic lobule. To determine which of these alternative models best describes the hepatic uptake process, we looked for evidence that concentration gradients are formed during the uptake of (/sup 125/I)thyroxine by the perfused rat liver. Autoradiography of tissue slices after perfusion of the portal vein at physiologic flow rates with protein-free buffer containing (/sup 125/I)thyroxine demonstrated a rapid exponential fall in grain density with distance from the portal venule, declining by half for each 8% of the mean length of the sinusoid. Reversing the direction of perfusate flow reversed the direction of the autoradiographic gradients, indicating that they primarily reflect differences in the concentration of thyroxine within the hepatic sinusoids rather than differences in the uptake capacity of portal and central hepatocytes. Analysis of the data using models in which each sinusoid was represented by different numbers of sequentially perfused compartments (1-20) indicated that at least eight compartments were necessary to account for the magnitude of the gradients seen.« less
NASA Technical Reports Server (NTRS)
Seybert, C. D.; Evans, J. W.; Leslie, F.; Jones, W. K., Jr.
2000-01-01
Natural convection, driven by temperature-or concentration gradients or both, is an inherent phenomenon during solidification of materials on Earth. This convection has practical consequences (e.g effecting macrosegregation) but also renders difficult the scientific examination of diffusive/conductive phenomena during solidification. It is possible to halt, or even reverse, natural convection by exploiting the variation (with temperature, for example) of the susceptibility of a material. If the material is placed in a vertical magnetic field gradient, a buoyancy force of magnetic origin arises and, at a critical field gradient, can balance the normal buoyancy forces to halt convection. At higher field gradients the convection can be reversed. The effect has been demonstrated in experiments at Marshall Space Flight Center where flow was measured by PIV in MnCl2 solution in a superconducting magnet. In auxiliary experiments the field in the magnet and the properties of the solution were measured. Computations of the natural convection, its halting and reversal, using the commercial software FLUENT were in good agreement with the measurements.
Performance of the reverse Helmbold universal portfolio
NASA Astrophysics Data System (ADS)
Tan, Choon Peng; Kuang, Kee Seng; Lee, Yap Jia
2017-04-01
The universal portfolio is an important investment strategy in a stock market where no stochastic model is assumed for the stock prices. The zero-gradient set of the objective function estimating the next-day portfolio which contains the reverse Kullback-Leibler order-alpha divergence is considered. From the zero-gradient set, the explicit, reverse Helmbold universal portfolio is obtained. The performance of the explicit, reverse Helmbold universal portfolio is studied by running them on some stock-price data sets from the local stock exchange. It is possible to increase the wealth of the investor by using these portfolios in investment.
Characterization of Rare Reverse Flow Events in Adverse Pressure Gradient Turbulent Boundary Layers
NASA Astrophysics Data System (ADS)
Kaehler, Christian J.; Bross, Matthew; Fuchs, Thomas
2017-11-01
Time-resolved tomographic flow fields measured in the viscous sublayer region of a turbulent boundary layer subjected to an adverse pressure gradient (APG) are examined with the aim to resolve and characterize reverse flow events at Reτ = 5000. The fields were measured using a novel high resolution tomographic particle tracking technique. It is shown that this technique is able to fully resolve mean and time dependent features of the complex three-dimensional flow with high accuracy down to very near-wall distances ( 10 μm). From time resolved Lagrangian particle trajectories, statistical information as well as instantaneous topological features of near-wall flow events are deduced. Similar to the zero pressure gradient case (ZPG), it was found that individual events with reverse flow components still occur relatively rarely under the action of the pressure gradient investigated here. However, reverse flow events comprised of many individual events, are shown to appear in relatively organized groupings in both spanwise and streamise directions. Furthermore, instantaneous measurements of reverse flow events show that these events are associated with the motion of low-momentum streaks in the near-wall region. This work is supported by the Priority Programme SPP 1881 Turbulent Superstructures and the individual project Grant KA1808/8-2 of the Deutsche Forschungsgemeinschaft.
Mazzucato, E; Smith, D R; Bell, R E; Kaye, S M; Hosea, J C; LeBlanc, B P; Wilson, J R; Ryan, P M; Domier, C W; Luhmann, N C; Yuh, H; Lee, W; Park, H
2008-08-15
Measurements with coherent scattering of electromagnetic waves in plasmas of the National Spherical Torus Experiment indicate the existence of turbulent fluctuations in the range of wave numbers k perpendicular rho(e)=0.1-0.4, corresponding to a turbulence scale length nearly equal to the collisionless skin depth. Experimental observations and agreement with numerical results from a linear gyrokinetic stability code support the conjecture that the observed turbulence is driven by the electron-temperature gradient.
Factors affecting the palmitoyl-coenzyme A desaturase of Saccharomyces cerevisiae
NASA Technical Reports Server (NTRS)
Klein, H. P.; Volkmann, C. M.
1975-01-01
The activity and stability of the palmitoyl-coenzyme A (CoA) desaturase complex of Saccharomyces cerevisiae was influenced by several factors. Cells, grown nonaerobically and then incubated with glucose, either in air or under N2, showed a marked increase in desaturase activity. Cycloheximide, added during such incubations, prevented the increase in activity, suggesting de novo synthesis. The stability of the desaturase from cells grown nonaerobically was affected by subsequent treatment of the cells; enzyme from freshly harvested cells, or from cells that were then shaken under nitrogen, readily lost activity upon washing or during density gradient analysis, whereas aerated cells, in the presence or absence of glucose, yielded stable enzyme preparations. The loss of activity in nonaerobic preparations could be reversed by adding soluble supernatant from these homogenates and could be prevented by growing the cells in the presence of palmitoleic acid and ergosterol, but not with several other lipids tested.
Montez, Jennifer Karas; Berkman, Lisa F
2014-01-01
We investigated trends in the educational gradient of US adult mortality, which has increased at the national level since the mid-1980s, within US regions. We used data from the 1986-2006 National Health Interview Survey Linked Mortality File on non-Hispanic White and Black adults aged 45 to 84 years (n = 498,517). We examined trends in the gradient within 4 US regions by race-gender subgroup by using age-standardized death rates. Trends in the gradient exhibited a few subtle regional differences. Among women, the gradient was often narrowest in the Northeast. The region's distinction grew over time mainly because low-educated women in the Northeast did not experience a significant increase in mortality like their counterparts in other regions (particularly for White women). Among White men, the gradient narrowed to a small degree in the West. The subtle regional differences indicate that geographic context can accentuate or suppress trends in the gradient. Studies of smaller areas may provide insights into the specific contextual characteristics (e.g., state tax policies) that have shaped the trends, and thus help explain and reverse the widening mortality disparities among US adults.
The effect of recombination and attachment on meteor radar diffusion coefficient profiles
NASA Astrophysics Data System (ADS)
Lee, C. S.; Younger, J. P.; Reid, I. M.; Kim, Y. H.; Kim, J.-H.
2013-04-01
Estimates of the ambipolar diffusion coefficient producedusing meteor radar echo decay times display an increasing trend below 80-85 km, which is inconsistent with a diffusion-only theory of the evolution of meteor trails. Data from the 33 MHz meteor radar at King Sejong Station, Antarctica, have been compared with observations from the Aura Earth Observing System Microwave Limb Sounder satellite instrument. It has been found that the height at which the diffusion coefficient gradient reverses follows the height of a constant neutral atmospheric density surface. Numerical simulations of meteor trail diffusion including dissociative recombination with atmospheric ions and three-body attachment of free electrons to neutral molecules indicate that three-body attachment is responsible for the distortion of meteor radar diffusion coefficient profiles at heights below 90 km, including the gradient reversal below 80-85 km. Further investigation has revealed that meteor trails with low initial electron line density produce decay times more consistent with a diffusion-only model of meteor trail evolution.
Riley, Jeffrey W.; Jacobson, Robert B.
2009-01-01
This report presents the data used to assess geomorphic adjustment of streams over time and to changing land-use conditions. Thirty-seven U.S. Geological Survey streamgages were selected within the Piedmont physiographic region of Georgia. Width, depth, stage, and discharge data from these streams were analyzed to assess channel stability and determine if systematic adjustments of channel morphology could be related to time or land use and land cover. Residual analyses of stage-discharge data were used to infer channel stability, which could then be used as an indicator of habitat stability. Streamgages, representing a gradient of urbanization, were selected to test hypotheses regarding stream stability and adjustment to urban conditions. Results indicate that 14 sites exhibited long-term channel stability, 11 were degrading, 6 were aggrading, and 6 showed variability in response over the study period.
Wang, Jie; Jiang, Long; Xiong, Xiaolei; ...
2016-06-10
The present work reports a systematic study on the structural, thermal, electrical and electrochemical stability of SrCo 1–xNb xO 2.5+δ series as a potential reversible oxygen-electrode for intermediate-temperature solid oxide fuel cells. The identified best composition is x = 0.10, which exhibits a stable pseudo primitive cubic structure at <700°C and a reversible oxygen redox reaction at 350°C. The conductivity of this material is p-type and also exhibits a peak at 350°C, implying that the electron hole conduction is closely associated with the oxygen nonstoichiometry. Electrochemical impedance spectroscopy analysis indicates a low polarization resistance rate-limited by a slower surface Omore » 2 dissociation step. Altogether, the material is thermally stable and oxygen redox reversible below 700°C, above which a catalytically less active brownmillerite SrCoO 2.5 is formed.« less
Ferreyra, Carola F; Ortiz, Cristina S
2005-01-01
The aim of this research was to develop and validate a sensitive, rapid, easy, and precise reversed-phase liquid chromatography (LC) method for stability studies of bifonazole (I) formulated with tinctures of calendula flower (II). The method was especially developed for the analysis and quantitative determination of I and II in pure and combined forms in cream pharmaceutical formulations without using gradient elution and at room temperature. The influence on the stability of compound I of temperature, artificial radiation, and drug II used for the new pharmaceutical design was evaluated. The LC separation was carried out using a Supelcosil LC-18 column (25 cm x 4.6 mm id, 5 microm particle size); the mobile phase was composed of methanol-0.1 M ammonium acetate buffer (85 + 15, v/v) pumped isocratically at a flow rate of 1 mL/min; and ultraviolet detection was at 254 nm. The analysis time was less than 10 min. Calibration graphs were found to be linear in the 0.125-0.375 mg/mL (rI = 0.9991) and 0.639-1.916 mg/mL (rII = 0.9995) ranges for I and II, respectively. The linearity, precision, recovery, and limits of detection and quantification were satisfactory for I and II. The results obtained suggested that the developed LC method is selective and specific for the analysis of I and II in pharmaceutical products, and that it can be applied to stability studies.
Vojta, Jiří; Jedlička, Aleš; Coufal, Pavel; Janečková, Lucie
2015-05-10
A new rapid stability-indicating UPLC method for separation and determination of impurities in amlodipine besylate, valsartan and hydrochlorothiazide in their combined tablet dosage form was developed. The separation of Ph. Eur. related substances of amlodipine besylate (A, B, D, E, F, G), hydrochlorothiazide (A, B, C), valsartan (B, C), two other valsartan impurities (S)-2-(N-{[2'-cyanobiphenyl-4-yl]methyl}pentanamido)-3-methylbutanoic acid and (S)-3-methyl-2-{[2'-(1H-tetrazol-5-yl)biphenyl-4-yl]methylamino}butanoic acid and several unknown impurities was achieved by reversed phase liquid chromatography with UV detection. The detection wavelengths were set as follows: 225nm for valsartan, its impurities and for the impurity D of amlodipine, 271nm for hydrochlorothiazide and its impurities and 360nm for amlodipine and its impurities except for impurity D. Zorbax Eclipse C8 RRHD (100mm×3.0mm, 1.8μm) was used as a separation column and the analytes were eluted within 11min by a programmed gradient mixture of 0.01M phosphate buffer pH 2.5 and acetonitrile. The method was successfully validated in accordance to the International Conference of Harmonization (ICH) guidelines for amlodipine besylate and its impurity D, valsartan and its impurity C and hydrochlorothiazide and its impurities A, B and C. The triple-combined tablets were exposed to thermal, higher humidity, acid, alkaline, oxidative and photolytic stress conditions. Stressed samples were analyzed by the proposed method. All the significant degradation products and impurities were satisfactory separated from each other and from the principal peaks of drug substances. The peak purity test complied for peaks of amlodipine, valsartan and hydrochlorothiazide in all the stressed samples and indicated no co-elution of degradation products. The method was found to be precise, linear, accurate, sensitive, specific, robust and stability-indicating and could be used as a routine purity test method for amlodipine besylate, valsartan, hydrochlorothiazide and their pharmaceutical combinations. Copyright © 2015 Elsevier B.V. All rights reserved.
Gradient Scouting in Reversed-Phase HPLC Revisited
ERIC Educational Resources Information Center
Alcazar, A.; Jurado, J. M.; Gonzalez, A. G.
2011-01-01
Gradient scouting is the best way to decide the most suitable elution mode in reversed-phase high-performance liquid chromatography (RP-HPLC). A simple rule for this decision involves the evaluation of the ratio [delta]t/t[subscript G] (where [delta]t is the difference in the retention time between the last and the first peak and t[subscript G] is…
NASA Technical Reports Server (NTRS)
Young, Philip R.
1999-01-01
A reverse phase High Performance Liquid Chromatographic method was developed to rapidly fingerprint a phenol-formaldehyde resole resin similar to Durite(R) SC-1008. This resin is used in the fabrication of carbon-carbon composite materials from which Space Shuttle Solid Rocket Booster nozzles are manufactured. A knowledge of resin chemistry is essential to successful composite processing and performance. The results indicate that a high quality separation of over 35 peaks in 25 minutes were obtained using a 15 cm Phenomenex LUNA C8 bonded reverse phase column, a three-way water-acetonitrile-methanol nonlinear gradient, and LTV detection at 280 nm.
NASA Astrophysics Data System (ADS)
Porkolab, M.; Ennever, P.; Baek, S. G.; Creely, A. J.; Edlund, E. M.; Hughes, J.; Rice, J. E.; Rost, J. C.; White, A. E.; Reinke, M. L.; Staebler, G.; Candy, J.; Alcator C-Mod Team
2016-10-01
Recent experiments on C-Mod ohmic plasmas and gyrokinetic studies indicated that dilution of deuterium plasmas by injection of nitrogen decreased the ion diffusivity and may also alter the direction of intrinsic toroidal rotation. Simulations with TGLF and GYRO showed that dilution of deuterium ions in low density (LOC) plasmas increased the critical ion temperature gradient, while in high density (SOC) plasmas it decreased the stiffness. The density fluctuation spectrum measured in low q95 plasmas with Phase Contrast Imaging (PCI), and corroborated with spatially localized reflectometer measurements show a reduction of turbulence near r/a = 0.8 with kρs <= 1, in agreement with modeling predictions in this region where the ion turbulence is well above marginal stability. Measurements also indicate that reversal of the toroidal rotation direction near the SOC-LOC transition may depend on ion collisionality rather than that of electrons. New experiments with neon seeding, which may be more relevant to ITER than with nitrogen seeding, show similar results. The impact of dilution on Te turbulence as measured with CECE diagnostic will also be presented. Supported by US DOE Awards DE-FG02-94-ER54235 and DE-FC02-99-ER54512.
Li, Xiaohu; Angelidaki, Irini; Zhang, Yifeng
2018-06-14
Biological conversion of CO 2 to value-added chemicals and biofuels has emerged as an attractive strategy to address the energy and environmental concerns caused by the over-reliance on fossil fuels. In this study, an innovative microbial reverse-electrodialysis electrolysis cell (MREC), which combines the strengths of reverse electrodialysis (RED) and microbial electrosynthesis technology platforms, was developed to achieve efficient CO 2 -to-value chemicals bioconversion by using the salinity gradient energy as driven energy sources. In the MREC, maximum acetate and ethanol concentrations of 477.5 ± 33.2 and 46.2 ± 8.2 mg L -1 were obtained at the cathode, catalyzed by Sporomusa ovata with production rates of 165.79 ± 11.52 and 25.11 ± 4.46 mmol m -2 d -1 , respectively. Electron balance analysis indicates that 94.4 ± 3.9% of the electrons derived from wastewater and salinity gradient were recovered in acetate and ethanol. This work for the first time proved the potential of innovative MREC configuration has the potential as an efficient technology platform for simultaneous CO 2 capture and electrosynthesis of valuable chemicals. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dynamics of Atmospheric Boundary Layers: Large-Eddy Simulations and Reduced Analytical Models
NASA Astrophysics Data System (ADS)
Momen, Mostafa
Real-world atmospheric and oceanic boundary layers (ABL) involve many inherent complexities, the understanding and modeling of which manifestly exceeds our current capabilities. Previous studies largely focused on the "textbook ABL", which is (quasi) steady and barotropic. However, it is evident that the "real-world ABL", even over flat terrain, rarely meets such simplifying assumptions. The present thesis aims to illustrate and model four complicating features of ABLs that have been overlooked thus far despite their ubiquity: 1) unsteady pressure gradients in neutral ABLs (Chapters 2 and 3), 2) interacting effects of unsteady pressure gradients and static stability in diabatic ABLs (Chapter 4), 3) time-variable buoyancy fluxes (Chapter 5) , and 4) impacts of baroclinicity in neutral and diabatic ABLs (Chapter 6). State-of-the-art large-eddy simulations will be used as a tool to explain the underlying physics and to validate analytical models we develop for these features. Chapter 2 focuses on the turbulence equilibrium: when the forcing time scale is comparable to the turbulence time scale, the turbulence is shown to be out of equilibrium, and the velocity profiles depart from the log-law; However, for longer, and surprisingly for shorter forcing times, quasi-equilibrium is maintained. In Chapter 3, a reduced analytical model, based on the Navier-Stokes equations, will be introduced and shown to be analogous to a damped oscillator where inertial, Coriolis, and friction forces mirror the mass, spring, and damper, respectively. When a steady buoyancy (stable or unstable) is superposed on the unsteady pressure gradient, the same model structure can be maintained, but the damping term, corresponding to friction forces and vertical coupling, needs to account for stability. However, for the reverse case with variable buoyancy flux and stability, the model needs to be extended to allow time-variable damper coefficient. These extensions of the analytical model are presented respectively in Chapters 4 and 5. Chapter 6 investigates the interacting effects of baroclinicity (direction and strength) and stability on ABLs. Cold advection and positive shear increased the friction velocity, the low-level jet elevation and strength while warm advection and negative shear acted opposite. Finally, Chapter 7 provides a synthesis and a future outlook.
A, Vijaya Bhaskar Reddy; Yusop, Zulkifli; Jaafar, Jafariah; Aris, Azmi B; Majid, Zaiton A; Umar, Khalid; Talib, Juhaizah
2016-09-05
In this study a sensitive and selective gradient reverse phase UPLC-MS/MS method was developed for the simultaneous determination of six process related impurities viz., Imp-I, Imp-II, Imp-III, Imp-IV, Imp-V and Imp-VI in darunavir. The chromatographic separation was performed on Acquity UPLC BEH C18 (50 mm×2.1mm, 1.7μm) column using gradient elution of acetonitrile-methanol (80:20, v/v) and 5.0mM ammonium acetate containing 0.01% formic acid at a flow rate of 0.4mL/min. Both negative and positive electrospray ionization (ESI) modes were operated simultaneously using multiple reaction monitoring (MRM) for the quantification of all six impurities in darunavir. The developed method was fully validated following ICH guidelines with respect to specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision, robustness and sample solution stability. The method was able to quantitate Imp-I, Imp-IV, Imp-V at 0.3ppm and Imp-II, Imp-III, and Imp-VI at 0.2ppm with respect to 5.0mg/mL of darunavir. The calibration curves showed good linearity over the concentration range of LOQ to 250% for all six impurities. The correlation coefficient obtained was >0.9989 in all the cases. The accuracy of the method lies between 89.90% and 104.60% for all six impurities. Finally, the method has been successfully applied for three formulation batches of darunavir to determine the above mentioned impurities, however no impurity was found beyond the LOQ. This method is a good quality control tool for the trace level quantification of six process related impurities in darunavir during its synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.
Stability and nuclear dynamics of the Bicoid morphogen gradient
Gregor, Thomas; Wieschaus, Eric F.; McGregor, Alistair P.; Bialek, William; Tank, David W.
2008-01-01
Patterning in multicellular organisms results from spatial gradients in morphogen concentration, but the dynamics of these gradients remains largely unexplored. We characterize, through in vivo optical imaging, the development and stability of the Bicoid morphogen gradient in Drosophila embryos that express a Bicoid-eGFP fusion protein. The gradient is established rapidly (~1 hour after fertilization) with nuclear Bicoid concentration rising and falling during mitosis. Interphase levels result from a rapid equilibrium between Bicoid uptake and removal. Initial interphase concentration in nuclei in successive cycles is constant (±10%), demonstrating a form of gradient stability, but subsequently decays by approximately 30%. Both direct photobleaching measurements and indirect estimates of Bicoid-eGFP diffusion constants (D ≤ 1 μm2/s), provide a consistent picture of Bicoid transport on short (~min) time scales, but challenge traditional models of long range gradient formation. A new model is presented emphasizing the possible role of nuclear dynamics in shaping and scaling the gradient. PMID:17632061
NASA Astrophysics Data System (ADS)
T., Ii; Inomoto, M.; Gi, K.; Umezawa, T.; Ito, T.; Kadowaki, K.; Kaminou, Y.; Ono, Y.
2013-07-01
A low-energy, high-current neutral beam injection (NBI) was applied to an oblate field-reversed configuration (FRC) for the first time. The NB fast ions reduce growth rates of low-n modes dangerous for the oblate FRC, extending the FRC lifetime by a factor of 1.2. The reduced loss power of 5 MW is much higher than the NBI power of 0.5 MW, indicating that the NBI not only heats the FRC plasma but also improves its stability and transport properties. The NBI also maintains higher pressure and current density profiles of the FRC, improving its flux and energy decay times by a factor of 2.
Nonlinear Diamagnetic Stabilization of Double Tearing Modes in Cylindrical MHD Simulations
NASA Astrophysics Data System (ADS)
Abbott, Stephen; Germaschewski, Kai
2014-10-01
Double tearing modes (DTMs) may occur in reversed-shear tokamak configurations if two nearby rational surfaces couple and begin reconnecting. During the DTM's nonlinear evolution it can enter an ``explosive'' growth phase leading to complete reconnection, making it a possible driver for off-axis sawtooth crashes. Motivated by similarities between this behavior and that of the m = 1 kink-tearing mode in conventional tokamaks we investigate diamagnetic drifts as a possible DTM stabilization mechanism. We extend our previous linear studies of an m = 2 , n = 1 DTM in cylindrical geometry to the fully nonlinear regime using the MHD code MRC-3D. A pressure gradient similar to observed ITB profiles is used, together with Hall physics, to introduce ω* effects. We find the diamagnetic drifts can have a stabilizing effect on the nonlinear DTM through a combination of large scale differential rotation and mechanisms local to the reconnection layer. MRC-3D is an extended MHD code based on the libMRC computational framework. It supports nonuniform grids in curvilinear coordinates with parallel implicit and explicit time integration.
Spin-orbit torque induced magnetic vortex polarity reversal utilizing spin-Hall effect
NASA Astrophysics Data System (ADS)
Li, Cheng; Cai, Li; Liu, Baojun; Yang, Xiaokuo; Cui, Huanqing; Wang, Sen; Wei, Bo
2018-05-01
We propose an effective magnetic vortex polarity reversal scheme that makes use of spin-orbit torque introduced by spin-Hall effect in heavy-metal/ferromagnet multilayers structure, which can result in subnanosecond polarity reversal without endangering the structural stability. Micromagnetic simulations are performed to investigate the spin-Hall effect driven dynamics evolution of magnetic vortex. The mechanism of magnetic vortex polarity reversal is uncovered by a quantitative analysis of exchange energy density, magnetostatic energy density, and their total energy density. The simulation results indicate that the magnetic vortex polarity is reversed through the nucleation-annihilation process of topological vortex-antivortex pair. This scheme is an attractive option for ultra-fast magnetic vortex polarity reversal, which can be used as the guidelines for the choice of polarity reversal scheme in vortex-based random access memory.
Reversible Folding of Human Peripheral Myelin Protein 22, a Tetraspan Membrane Protein†
Schlebach, Jonathan P.; Peng, Dungeng; Kroncke, Brett M.; Mittendorf, Kathleen F.; Narayan, Malathi; Carter, Bruce D.; Sanders, Charles R.
2013-01-01
Misfolding of the α-helical membrane protein peripheral myelin protein 22 (PMP22) has been implicated in the pathogenesis of the common neurodegenerative disease known as Charcot-Marie-Tooth disease (CMTD) and also several other related peripheral neuropathies. Emerging evidence suggests that the propensity of PMP22 to misfold in the cell may be due to an intrinsic lack of conformational stability. Therefore, quantitative studies of the conformational equilibrium of PMP22 are needed to gain insight into the molecular basis of CMTD. In this work, we have investigated the folding and unfolding of wild type (WT) human PMP22 in mixed micelles. Both kinetic and thermodynamic measurements demonstrate that the denaturation of PMP22 by n-lauroyl sarcosine (LS) in dodecylphosphocholine (DPC) micelles is reversible. Assessment of the conformational equilibrium indicates that a significant fraction of unfolded PMP22 persists even in the absence of the denaturing detergent. However, we find the stability of PMP22 is increased by glycerol, which facilitates quantitation of thermodynamic parameters. To our knowledge, this work represents the first report of reversible unfolding of a eukaryotic multispan membrane protein. The results indicate that WT PMP22 possesses minimal conformational stability in micelles, which parallels its poor folding efficiency in the endoplasmic reticulum. Folding equilibrium measurements for PMP22 in mixed micelles may provide an approach to assess the effects of cellular metabolites or potential therapeutic agents on its stability. Furthermore, these results pave the way for future investigation of the effects of pathogenic mutations on the conformational equilibrium of PMP22. PMID:23639031
Higher Nucleoporin-Importinβ Affinity at the Nuclear Basket Increases Nucleocytoplasmic Import
Azimi, Mohammad; Mofrad, Mohammad R. K.
2013-01-01
Several in vitro studies have shown the presence of an affinity gradient in nuclear pore complex proteins for the import receptor Importinβ, at least partially contributing to nucleocytoplasmic transport, while others have historically argued against the presence of such a gradient. Nonetheless, the existence of an affinity gradient has remained an uncharacterized contributing factor. To shed light on the affinity gradient theory and better characterize how the existence of such an affinity gradient between the nuclear pore and the import receptor may influence the nucleocytoplasmic traffic, we have developed a general-purpose agent based modeling (ABM) framework that features a new method for relating rate constants to molecular binding and unbinding probabilities, and used our ABM approach to quantify the effects of a wide range of forward and reverse nucleoporin-Importinβ affinity gradients. Our results indicate that transport through the nuclear pore complex is maximized with an effective macroscopic affinity gradient of 2000 µM, 200 µM and 10 µM in the cytoplasmic, central channel and nuclear basket respectively. The transport rate at this gradient is approximately 10% higher than the transport rate for a comparable pore lacking any affinity gradient, which has a peak transport rate when all nucleoporins have an affinity of 200 µM for Importinβ. Furthermore, this optimal ratio of affinity gradients is representative of the ratio of affinities reported for the yeast nuclear pore complex – suggesting that the affinity gradient seen in vitro is highly optimized. PMID:24282617
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Rajan, M.
1977-01-01
The effects of gravity gradient torques during boom deployment maneuvers of a spinning spacecraft are examined. Configurations where the booms extended only along the hub principal axes and where one or two booms are offset from the principal axes were considered. For the special case of symmetric deployment (principal axes booms) the stability boundaries are determined, and a stability chart is used to study the system behavior. Possible cases of instability during this type of maneuver are identified. In the second configuration an expression for gravity torque about the hub center of mass was developed. The nonlinear equations of motion are solved numerically, and the substantial influence of the gravity torque during asymmetric deployment maneuvers is indicated.
Epigenetic stability, adaptability, and reversibility in human embryonic stem cells
Tompkins, Joshua D.; Hall, Christine; Chen, Vincent Chang-yi; Li, Arthur Xuejun; Wu, Xiwei; Hsu, David; Couture, Larry A.; Riggs, Arthur D.
2012-01-01
The stability of human embryonic stem cells (hESCs) is of critical importance for both experimental and clinical applications. We find that as an initial response to altered culture conditions, hESCs change their transcription profile for hundreds of genes and their DNA methylation profiles for several genes outside the core pluripotency network. After adaption to conditions of feeder-free defined and/or xeno-free culture systems, expression and DNA methylation profiles are quite stable for additional passaging. However, upon reversion to the original feeder-based culture conditions, numerous transcription changes are not reversible. Similarly, although the majority of DNA methylation changes are reversible, highlighting the plasticity of DNA methylation, a few are persistent. Collectively, this indicates these cells harbor a memory of culture history. For culture-induced DNA methylation changes, we also note an intriguing correlation: hypomethylation of regions 500–2440 bp upstream of promoters correlates with decreased expression, opposite to that commonly seen at promoter-proximal regions. Lastly, changes in regulation of G-coupled protein receptor pathways provide a partial explanation for many of the unique transcriptional changes observed during hESC adaptation and reverse adaptation. PMID:22802633
Wilhelmsen, Øivind; Bedeaux, Dick; Kjelstrup, Signe; Reguera, David
2014-01-14
Formation of nanosized droplets/bubbles from a metastable bulk phase is connected to many unresolved scientific questions. We analyze the properties and stability of multicomponent droplets and bubbles in the canonical ensemble, and compare with single-component systems. The bubbles/droplets are described on the mesoscopic level by square gradient theory. Furthermore, we compare the results to a capillary model which gives a macroscopic description. Remarkably, the solutions of the square gradient model, representing bubbles and droplets, are accurately reproduced by the capillary model except in the vicinity of the spinodals. The solutions of the square gradient model form closed loops, which shows the inherent symmetry and connected nature of bubbles and droplets. A thermodynamic stability analysis is carried out, where the second variation of the square gradient description is compared to the eigenvalues of the Hessian matrix in the capillary description. The analysis shows that it is impossible to stabilize arbitrarily small bubbles or droplets in closed systems and gives insight into metastable regions close to the minimum bubble/droplet radii. Despite the large difference in complexity, the square gradient and the capillary model predict the same finite threshold sizes and very similar stability limits for bubbles and droplets, both for single-component and two-component systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilhelmsen, Øivind, E-mail: oivind.wilhelmsen@ntnu.no; Bedeaux, Dick; Kjelstrup, Signe
Formation of nanosized droplets/bubbles from a metastable bulk phase is connected to many unresolved scientific questions. We analyze the properties and stability of multicomponent droplets and bubbles in the canonical ensemble, and compare with single-component systems. The bubbles/droplets are described on the mesoscopic level by square gradient theory. Furthermore, we compare the results to a capillary model which gives a macroscopic description. Remarkably, the solutions of the square gradient model, representing bubbles and droplets, are accurately reproduced by the capillary model except in the vicinity of the spinodals. The solutions of the square gradient model form closed loops, which showsmore » the inherent symmetry and connected nature of bubbles and droplets. A thermodynamic stability analysis is carried out, where the second variation of the square gradient description is compared to the eigenvalues of the Hessian matrix in the capillary description. The analysis shows that it is impossible to stabilize arbitrarily small bubbles or droplets in closed systems and gives insight into metastable regions close to the minimum bubble/droplet radii. Despite the large difference in complexity, the square gradient and the capillary model predict the same finite threshold sizes and very similar stability limits for bubbles and droplets, both for single-component and two-component systems.« less
Contrasting mercury and manganese deposition in a mangrove-dominated estuary (Guaratuba Bay, Brazil)
NASA Astrophysics Data System (ADS)
Sanders, C. J.; Santos, I. R.; Silva-Filho, E. V.; Patchineelam, S. R.
2008-08-01
Sediment cores were taken at seven sites along the mangrove-bound Guaratuba Bay estuary (southern Brazil), with the purpose of assessing conditions controlling Hg deposition along a horizontal estuarine sediment gradient. The data suggest contrasting depositional patterns for Hg and Mn in this relatively pristine setting. Total Hg contents of bulk sediments ranged from 12 to 36 ng/g along the estuary, the highest values being found in muddier organic-rich sediments of the upper estuary (the corresponding mud gradient is 12 to 42 wt.%, and the organic matter gradient 4 to 10 wt.%). Thus, the deposition of fine sediments relatively enriched in mercury occurs primarily in closer proximity to the freshwater source. The data also indicate a reverse gradient in reactive Mn contents, ranging from 29 to 81 μg/g, and increasing seaward. This implies that reactive Mn is mobilized from fine-grained reducing mangrove forest sediments in the upper estuary, and deposited downstream in sandier, oxygen-rich nearshore sediments. These results suggest that mangrove-surrounded estuaries may act as barriers to mercury transport to coastal waters, but as a source of manganese. The present findings also imply that reactive Mn may be used as an indication of Hg depositional patterns in other similar coastal sedimentary settings.
Reversed magnetic shear suppression of electron-scale turbulence on NSTX
NASA Astrophysics Data System (ADS)
Yuh, Howard Y.; Levinton, F. M.; Bell, R. E.; Hosea, J. C.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E.; Smith, D. R.; Domier, C. W.; Luhmann, N. C.; Park, H. K.
2009-11-01
Electron thermal internal transport barriers (e-ITBs) are observed in reversed (negative) magnetic shear NSTX discharges^1. These e-ITBs can be created with either neutral beam heating or High Harmonic Fast Wave (HHFW) RF heating. The e-ITB location occurs at the location of minimum magnetic shear determined by Motional Stark Effect (MSE) constrained equilibria. Statistical studies show a threshold condition in magnetic shear for e-ITB formation. High-k fluctuation measurements at electron turbulence wavenumbers^3 have been made under several different transport regimes, including a bursty regime that limits temperature gradients at intermediate magnetic shear. The growth rate of fluctuations has been calculated immediately following a change in the local magnetic shear, resulting in electron temperature gradient relaxation. Linear gyrokinetic simulation results for NSTX show that while measured electron temperature gradients exceed critical linear thresholds for ETG instability, growth rates can remain low under reversed shear conditions up to high electron temperatures gradients. ^1H. Yuh, et. al., PoP 16, 056120 ^2D.R. Smith, E. Mazzucato et al., RSI 75, 3840 ^3E. Mazzucato, D.R. Smith et al., PRL 101, 075001
NASA Astrophysics Data System (ADS)
Li, Guannan; Huang, Xiaokun; Hu, Jingsan; Zhang, Weiyi
2017-04-01
Based on the first-principles total-energy calculation, we have studied the shear-strain gradient effect on the polarization reversal of ferroelectric BaTiO3 thin films. By calculating the energies of double-domain supercells for different electric polarization, shear-strain gradients, and domain-wall displacement, we extracted, in addition to the domain-wall energy, the polarization energy, elastic energy, and flexoelectric coefficient of a single domain. The constructed Landau-Devonshire phenomenological theory yields a critical shear-strain gradient of 9.091 ×107/m (or a curvature radius (R ) of 110 Å) for reversing the 180∘ domain at room temperature, which is on the same order of the experimentally estimated value of 3.333 ×107/m (R =300 Å ). In contrast to the commonly used linear response theory, the flexoelectric coefficient derived from fitting the total energy to a Landau-Devonshire energy functional does not depend on the specific pseudopotential. Thus, our method offers an alternative numerical approach to study the flexoelectric effect.
USDA-ARS?s Scientific Manuscript database
Empirical and mechanistic modeling indicate that aerially transmitted pathogens follow a power law, resulting in dispersive epidemic waves. The spread parameter (b) of the power law model, which defines the distance travelled by the epidemic wave front, has been found to be approximately 2 for sever...
Phenotypic selection in natural populations: what limits directional selection?
Kingsolver, Joel G; Diamond, Sarah E
2011-03-01
Studies of phenotypic selection document directional selection in many natural populations. What factors reduce total directional selection and the cumulative evolutionary responses to selection? We combine two data sets for phenotypic selection, representing more than 4,600 distinct estimates of selection from 143 studies, to evaluate the potential roles of fitness trade-offs, indirect (correlated) selection, temporally varying selection, and stabilizing selection for reducing net directional selection and cumulative responses to selection. We detected little evidence that trade-offs among different fitness components reduced total directional selection in most study systems. Comparisons of selection gradients and selection differentials suggest that correlated selection frequently reduced total selection on size but not on other types of traits. The direction of selection on a trait often changes over time in many temporally replicated studies, but these fluctuations have limited impact in reducing cumulative directional selection in most study systems. Analyses of quadratic selection gradients indicated stabilizing selection on body size in at least some studies but provided little evidence that stabilizing selection is more common than disruptive selection for most traits or study systems. Our analyses provide little evidence that fitness trade-offs, correlated selection, or stabilizing selection strongly constrains the directional selection reported for most quantitative traits.
Arumugam, Abiramasundari; Joshi, Amita; Vasu, Kamala K
2017-11-01
The present work focused on the application of design of experiment (DoE) principles to the development and optimization of a stability-indicating method (SIM) for the drug imidapril hydrochloride and its degradation products (DPs). The resolution of peaks for the DPs and their drug in a SIM can be influenced by many factors. The factors studied here were pH, gradient time, organic modifier, flow rate, molar concentration of the buffer, and wavelength, with the aid of a Plackett-Burman design. Results from the Plackett-Burman study conspicuously showed influence of two factors, pH and gradient time, on the analyzed response, particularly, the resolution of the closely eluting DPs (DP-5 and DP-6) and the retention time of the last peak. Optimization of the multiresponse processes was achieved through Derringer's desirability function with the assistance of a full factorial design. Separation was achieved using a C18 Phenomenex Luna column (250 × 4.6 mm id, 5 µm particle size) at a flow rate of 0.8 mL/min at 210 nm. The optimized mobile phase composition was ammonium-acetate buffer (pH 5) in pump A and acetonitrile-methanol (in equal ratio) in pump B with a run time of 40 min using a gradient method.
Pérez-Rico, A; Crespo, F; Sanmartín, M L; De Santiago, A; Vega-Pla, J L
2014-10-01
Equine germplasm bank management involves not only the conservation and use of semen doses, in addition it can also be a resource to study stallion semen quality and after thawing semen properties for reproductive purposes. A possible criterion to measure quality may be based on differential gene expression of loci involved during spermatogenesis and sperm quality maturation. The rapid degradation of sperm after thawing affects the integrity and availability of RNA. In this study we have analyzed genes expressed in equine cryopreserved sperm, which provided an adequate amplification, specificity, and stability to be used as future reference genes in expression studies. Live spermatozoa were selected from cryopreserved semen straws derived from 20 stallions, through a discontinuous concentration gradient. RNA purification followed a combination of the organic and column extraction methods together with a deoxyribonuclease treatment. The selective amplification of nine candidate genes was undertaken using reverse transcription and real-time polymerase chain reaction (qPCR) carried out in a one-step mode (qRT-PCR). Specificities were tested by melting curves, agarose gel electrophoresis and sequencing. In addition, gene stabilities were also calculated. Results indicated that five out of the nine candidate genes amplified properly (β-Actin, ATP synthase subunit beta, Protamine 1, L32 ribosomal protein and Ubiquitin B), of which β-Actin and the L32 Ribosomal protein showed the highest stability thus being the most suitable to be considered as reference genes for equine cryopreserved sperm studies, followed by the ATP synthase subunit beta and Ubiquitin B. Copyright © 2014 Elsevier B.V. All rights reserved.
Application Number 3: Using Tethers for Attitude Control
NASA Technical Reports Server (NTRS)
Muller, R. M.
1985-01-01
Past application of the gravity gradient concept to satellite attitude control produced attitude stabilities of from 1 to 10 degrees. The satellite members were rigigly interconnected and any motion in one part of the satellite would cause motion in all members. This experience has restricted gravity gradient stabilization to applications that need attitude stability no better than 1 degree. A gravity gradient technique that combines the flexible tether with an active control that will allow control stability much better than 1 degree is proposed. This could give gravity gradient stabilization much broader application. In fact, for a large structure like a space station, it may become the preferred method. Two possible ways of demonstrating the techniques using the Tethered Satellite System (TSS) tether to control the attitude of the shuttle are proposed. Then a possible space station tether configuration is shown that could be used to control the initial station. It is then shown how the technique can be extended to the control of space stations of virtually any size.
External heating and current drive source requirements towards steady-state operation in ITER
NASA Astrophysics Data System (ADS)
Poli, F. M.; Kessel, C. E.; Bonoli, P. T.; Batchelor, D. B.; Harvey, R. W.; Snyder, P. B.
2014-07-01
Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of heating and current drive (H/CD) sources that sustain reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that a combination of electron cyclotron (EC) and lower hybrid (LH) waves is a promising route towards steady state operation in ITER. The LH forms and sustains expanded barriers and the EC deposition at mid-radius freezes the bootstrap current profile stabilizing the barrier and leading to confinement levels 50% higher than typical H-mode energy confinement times. Using LH spectra with spectrum centred on parallel refractive index of 1.75-1.85, the performance of these plasma scenarios is close to the ITER target of 9 MA non-inductive current, global confinement gain H98 = 1.6 and fusion gain Q = 5.
Purification and stability characterization of a cell regulatory sialoglycopeptide inhibitor
NASA Technical Reports Server (NTRS)
Moos, P. J.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)
1995-01-01
Previous attempts to physically separate the cell cycle inhibitory and protease activities in preparations of a purified cell regulatory sialoglycopeptide (CeReS) inhibitor were largely unsuccessful. Gradient elution of the inhibitor preparation from a DEAE HPLC column separated the cell growth inhibitor from the protease, and the two activities have been shown to be distinct and non-overlapping. The additional purification increased the specific biological activity of the CeReS preparation by approximately two-fold. The major inhibitory fraction that eluted from the DEAE column was further analyzed by tricine-SDS-PAGE and microbore reverse phase HPLC and shown to be homogeneous in nature. Two other fractions separated by DEAE HPLC, also devoid of protease activity, were shown to be inhibitory to cell proliferation and most likely represented modified relatives of the CeReS inhibitor. The highly purified CeReS was chemically characterized for amino acid and carbohydrate composition and the role of the carbohydrate in cell proliferation inhibition, stability, and protease resistance was assessed.
Reverse ray tracing for transformation optics.
Hu, Chia-Yu; Lin, Chun-Hung
2015-06-29
Ray tracing is an important technique for predicting optical system performance. In the field of transformation optics, the Hamiltonian equations of motion for ray tracing are well known. The numerical solutions to the Hamiltonian equations of motion are affected by the complexities of the inhomogeneous and anisotropic indices of the optical device. Based on our knowledge, no previous work has been conducted on ray tracing for transformation optics with extreme inhomogeneity and anisotropicity. In this study, we present the use of 3D reverse ray tracing in transformation optics. The reverse ray tracing is derived from Fermat's principle based on a sweeping method instead of finding the full solution to ordinary differential equations. The sweeping method is employed to obtain the eikonal function. The wave vectors are then obtained from the gradient of that eikonal function map in the transformed space to acquire the illuminance. Because only the rays in the points of interest have to be traced, the reverse ray tracing provides an efficient approach to investigate the illuminance of a system. This approach is useful in any form of transformation optics where the material property tensor is a symmetric positive definite matrix. The performance and analysis of three transformation optics with inhomogeneous and anisotropic indices are explored. The ray trajectories and illuminances in these demonstration cases are successfully solved by the proposed reverse ray tracing method.
Nano iron particles transport in fractured rocks: laboratory and field scale
NASA Astrophysics Data System (ADS)
Cohen, Meirav; Weisbrod, Noam
2017-04-01
Our study deals with the transport potential of nano iron particles (NIPs) in fractured media. Two different systemswere used to investigate transport on two scales: (1 )a laboratory flow system of a naturally discrete fractured chalk core, 0.43 and 0.18 m in length and diamater, respectively; and (2) a field system of hydraulically connected boreholes located 47 m apart which penetrate a fractured chalk aquifer. We started by testing the transport potential of various NIPs under different conditions. Particle stability experiments were conducted using various NIPs and different stabilizersat two ionic strengths. Overall, four different NIPs and three stabilizers were tested. Particles and solution properties (stability, aggregate/particle size, viscosity and density) were tested in batch experiments, and transport experiments (breakthrough curves (BTCs) and recovery) were conduted in the fractured chalk core. We have learned that the key parameters controlling particle transport are the particle/aggregate size and stability, which govern NIP settling rates and ultimately their migration distance. The governing mechanism controlling NIP transport was found to be sedimentation, and to a much lesser extent, processes such as diffusion, straining or interception. On the basis of these experiments, Carbo-Iron® particles ( 800 nm activated carbon particles doped with nano zero valent iron particles) and Carboxymethyl cellulose (CMC) stabilizer were selected for the field test injection. In the field, Carbo-Iron particles were initially injected into the fractured aquifer using an excess of stabilizer in order to ensure maximum recovery. This resulted in high particle recovery and fast arrival time, similar to the ideal tracer (iodide). The high recovery of the stable particle solution emphasized the importance of particle stability for transport in fractures. To test mobility manipulation potential of the particles and simulate more realistic scenarios, a second field experiment was conducted where the CMC - Carbo Iron ratio was reduced from 0.8:1 to 0.05:1. As expected, the lower stabilizer ratio resulted in lower recovery of the particles, demonstrating that particle mobility can be manipulated by changing stabilizer concentration. Additionally, a sudden increase in the hydraulic gradient between the injection and pumping well resulted in the release and remobilization of Carbo-iron particles which had settled within the fractures, indicating thatparticle settling is reversible within the aquifer.
Cardiovascular Pressures with Venous Gas Embolism and Decompression
NASA Technical Reports Server (NTRS)
Butler, B. D.; Robinson, R.; Sutton, T.; Kemper, G. B.
1995-01-01
Venous gas embolism (VGE) is reported with decompression to a decreased ambient pressure. With severe decompression, or in cases where an intracardiac septal defect (patent foramen ovale) exists, the venous bubbles can become arterialized and cause neurological decompression illness. Incidence rates of patent foramen ovale in the general population range from 25-34% and yet aviators, astronauts, and deepsea divers who have decompression-induced venous bubbles do not demonstrate neurological symptoms at these high rates. This apparent disparity may be attributable to the normal pressure gradient across the atria of the heart that must be reversed for there to be flow potency. We evaluated the effects of: venous gas embolism (0.025, 0.05 and 0.15 ml/ kg min for 180 min.) hyperbaric decompression; and hypobaric decompression on the pressure gradient across the left and right atria in anesthetized dogs with intact atrial septa. Left ventricular end-diastolic pressure was used as a measure of left atrial pressure. In a total of 92 experimental evaluations in 22 dogs, there were no reported reversals in the mean pressure gradient across the atria; a total of 3 transient reversals occurred during the peak pressure gradient changes. The reasons that decompression-induced venous bubbles do not consistently cause serious symptoms of decompression illness may be that the amount of venous gas does not always cause sufficient pressure reversal across a patent foramen ovale to cause arterialization of the venous bubbles.
The stability properties of cylindrical force-free fields - Effect of an external potential field
NASA Technical Reports Server (NTRS)
Chiuderi, C.; Einaudi, G.; Ma, S. S.; Van Hoven, G.
1980-01-01
A large-scale potential field with an embedded smaller-scale force-free structure gradient x B equals alpha B is studied in cylindrical geometry. Cases in which alpha goes continuously from a constant value alpha 0 on the axis to zero at large r are considered. Such a choice of alpha (r) produces fields which are realistic (few field reversals) but not completely stable. The MHD-unstable wavenumber regime is found. Since the considered equilibrium field exhibits a certain amount of magnetic shear, resistive instabilities can arise. The growth rates of the tearing mode in the limited MHD-stable region of k space are calculated, showing time-scales much shorter than the resistive decay time.
Analysis of edge stability for models of heat flux width
Makowski, Michael A.; Lasnier, Charles J.; Leonard, Anthony W.; ...
2017-05-12
Detailed measurements of the n e, and T e, and T i profiles in the vicinity of the separatrix of ELMing H-mode discharges have been used to examine plasma stability at the extreme edge of the plasma and assess stability dependent models of the heat flux width. The results are strongly contrary to the critical gradient model, which posits that a ballooning instability determines a gradient scale length related to the heat flux width. The results of this analysis are not sensitive to the choice of location to evaluate stability. Significantly, it is also found that the results are completelymore » consistent with the heuristic drift model for the heat flux width. Here the edge pressure gradient scales with plasma density and is proportional to the pressure gradient inferred from the equilibrium in accordance with the predictions of that theory.« less
Clathrate hydrate stability models for Titan: implications for a global subsurface ocean
NASA Astrophysics Data System (ADS)
Basu Sarkar, D.; Elwood Madden, M.
2013-12-01
Titan is the only planetary body in the solar system, apart from the Earth, with liquid at its surface. Titan's changing rotational period suggests that a global subsurface ocean decouples the icy crust from the interior. Several studies predict the existence of such an internal ocean below an Ice I layer, ranging in depth between a few tens of kilometers to a few hundreds of kilometers, depending on the composition of the icy crust and liquid-ocean. While the overall density of Titan is well constrained, the degree of differentiation within the interior is unclear. These uncertainties lead to poor understanding of the volatile content of the moon. However, unlike other similar large icy moons like Ganymede and Callisto, Titan has a thick nitrogen atmosphere, with methane as the second most abundant constituent - 5% near the surface. Titan's atmosphere, surface, and interior are likely home to various compounds such as C2H6, CO2, Ar, N2 and CH4, capable of forming clathrate hydrates. In addition, the moon has low temperature and low-to-high pressure conditions required for clathrate formation. Therefore the occurrence of extensive multicomponent hydrates may effect the composition of near-surface materials, the subsurface ocean, as well as the atmosphere. This work uses models of hydrate stability for a number of plausible hydrate formers including CH4, C2H6, CH4 + C2H6 and CH4 + NH3, and equilibrium geothermal gradients for probable near-surface materials to delineate the lateral and vertical extent of clathrate hydrate stability zones for Titan. By comparing geothermal gradients with clathrate stability fields for these systems we investigate possible compositions of Titan's global subsurface ocean. Preliminary model results indicate that ethane hydrates or compound hydrates of ethane and methane could be destabilized within the proposed depth range of the internal ocean, while methane/ammonia or pure methane hydrates may not be affected. Therefore, ethane or ethane-methane clathrates may be a major component of Titan's icy shell. Modeled geothermal gradients and stability fields of possible clathrate formers with three different scenarios for an internal ocean from the recent literature. Geothermal gradients obtained from thermal conductivity and density representing water ice and pure CH4-C2H6 hydrate. Clathrate stability field determined using HYDOFF and recent publications of NH3 clathrate stability.
Soil Aggregate Stability and Grassland Productivity Associations in a Northern Mixed-Grass Prairie
Reinhart, Kurt O.; Vermeire, Lance T.
2016-01-01
Soil aggregate stability data are often predicted to be positively associated with measures of plant productivity, rangeland health, and ecosystem functioning. Here we revisit the hypothesis that soil aggregate stability is positively associated with plant productivity. We measured local (plot-to-plot) variation in grassland community composition, plant (aboveground) biomass, root biomass, % water-stable soil aggregates, and topography. After accounting for spatial autocorrelation, we observed a negative association between % water-stable soil aggregates (0.25–1 and 1–2 mm size classes of macroaggregates) and dominant graminoid biomass, and negative associations between the % water-stable aggregates and the root biomass of a dominant sedge (Carex filifolia). However, variation in total root biomass (0–10 or 0–30 cm depths) was either negatively or not appreciably associated with soil aggregate stabilities. Overall, regression slope coefficients were consistently negative thereby indicating the general absence of a positive association between measures of plant productivity and soil aggregate stability for the study area. The predicted positive association between factors was likely confounded by variation in plant species composition. Specifically, sampling spanned a local gradient in plant community composition which was likely driven by niche partitioning along a subtle gradient in elevation. Our results suggest an apparent trade-off between some measures of plant biomass production and soil aggregate stability, both known to affect the land’s capacity to resist erosion. These findings further highlight the uncertainty of plant biomass-soil stability associations. PMID:27467598
Soil Aggregate Stability and Grassland Productivity Associations in a Northern Mixed-Grass Prairie.
Reinhart, Kurt O; Vermeire, Lance T
2016-01-01
Soil aggregate stability data are often predicted to be positively associated with measures of plant productivity, rangeland health, and ecosystem functioning. Here we revisit the hypothesis that soil aggregate stability is positively associated with plant productivity. We measured local (plot-to-plot) variation in grassland community composition, plant (aboveground) biomass, root biomass, % water-stable soil aggregates, and topography. After accounting for spatial autocorrelation, we observed a negative association between % water-stable soil aggregates (0.25-1 and 1-2 mm size classes of macroaggregates) and dominant graminoid biomass, and negative associations between the % water-stable aggregates and the root biomass of a dominant sedge (Carex filifolia). However, variation in total root biomass (0-10 or 0-30 cm depths) was either negatively or not appreciably associated with soil aggregate stabilities. Overall, regression slope coefficients were consistently negative thereby indicating the general absence of a positive association between measures of plant productivity and soil aggregate stability for the study area. The predicted positive association between factors was likely confounded by variation in plant species composition. Specifically, sampling spanned a local gradient in plant community composition which was likely driven by niche partitioning along a subtle gradient in elevation. Our results suggest an apparent trade-off between some measures of plant biomass production and soil aggregate stability, both known to affect the land's capacity to resist erosion. These findings further highlight the uncertainty of plant biomass-soil stability associations.
Hierarchy of stability factors in reverse shoulder arthroplasty.
Gutiérrez, Sergio; Keller, Tony S; Levy, Jonathan C; Lee, William E; Luo, Zong-Ping
2008-03-01
Reverse shoulder arthroplasty is being used more frequently to treat irreparable rotator cuff tears in the presence of glenohumeral arthritis and instability. To date, however, design features and functions of reverse shoulder arthroplasty, which may be associated with subluxation and dislocation of these implants, have been poorly understood. We asked: (1) what is the hierarchy of importance of joint compressive force, prosthetic socket depth, and glenosphere size in relation to stability, and (2) is this hierarchy defined by underlying and theoretically predictable joint contact characteristics? We examined the intrinsic stability in terms of the force required to dislocate the humerosocket from the glenosphere of eight commercially available reverse shoulder arthroplasty devices. The hierarchy of factors was led by compressive force followed by socket depth; glenosphere size played a much lesser role in stability of the reverse shoulder arthroplasty device. Similar results were predicted by a mathematical model, suggesting the stability was determined primarily by compressive forces generated by muscles.
Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films
Damodaran, Anoop; Okatan, M. B.; Kacher, J.; ...
2016-02-15
Domains and domain walls are critical in determining the response of ferroelectrics, and the ability to controllably create, annihilate, or move domains is essential to enable a range of next-generation devices. Whereas electric-field control has been demonstrated for ferroelectric 180° domain walls, similar control of ferroelastic domains has not been achieved. Here, using controlled composition and strain gradients, we demonstrate deterministic control of ferroelastic domains that are rendered highly mobile in a controlled and reversible manner. Through a combination of thin-film growth, transmission-electron-microscopy-based nanobeam diffraction and nanoscale band-excitation switching spectroscopy, we show that strain gradients in compositionally graded PbZr 1-xTimore » xO 3 heterostructures stabilize needle-like ferroelastic domains that terminate inside the film. These needle-like domains are highly labile in the out-of-plane direction under applied electric fields, producing a locally enhanced piezoresponse. This work demonstrates the efficacy of novel modes of epitaxy in providing new modalities of domain engineering and potential for as-yet-unrealized nanoscale functional devices.« less
Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damodaran, Anoop; Okatan, M. B.; Kacher, J.
Domains and domain walls are critical in determining the response of ferroelectrics, and the ability to controllably create, annihilate, or move domains is essential to enable a range of next-generation devices. Whereas electric-field control has been demonstrated for ferroelectric 180° domain walls, similar control of ferroelastic domains has not been achieved. Here, using controlled composition and strain gradients, we demonstrate deterministic control of ferroelastic domains that are rendered highly mobile in a controlled and reversible manner. Through a combination of thin-film growth, transmission-electron-microscopy-based nanobeam diffraction and nanoscale band-excitation switching spectroscopy, we show that strain gradients in compositionally graded PbZr 1-xTimore » xO 3 heterostructures stabilize needle-like ferroelastic domains that terminate inside the film. These needle-like domains are highly labile in the out-of-plane direction under applied electric fields, producing a locally enhanced piezoresponse. This work demonstrates the efficacy of novel modes of epitaxy in providing new modalities of domain engineering and potential for as-yet-unrealized nanoscale functional devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz Ruiz, J.; White, A. E.; Ren, Y.
2015-12-15
Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which ismore » shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.« less
Simultaneous concentration and purification through gradient deformation chromatography
NASA Technical Reports Server (NTRS)
Velayudhan, A.; Hendrickson, R. L.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)
1995-01-01
Mobile-phase additives, commonly used to modulate absorbate retention in gradient elution chromatography, are usually assumed to be either linearly retained or unretained. Previous theoretical work from our laboratory has shown that these modulators, such as salts in ion-exchange and hydrophobic interaction chromatography and organic modifiers in reversed-phase chromatography, can absorb nonlinearly, giving rise to gradient deformation. Consequently, adsorbate peaks that elute in the vicinity of the head of the deformed gradient may exhibit unusual shapes, form shoulders, and/or be concentrated. These effects for a reversed-phase sorbent with aqueous acetonitrile (ACN) as the modulator are verified experimentally. Gradient deformation is demonstrated experimentally and agrees with simulations based on ACN isotherm parameters that are independently determined from batch equilibrium studies using the layer model. Unusual absorbate peak shapes were found experimentally for single-component injections of phenylalanine, similar to those calculated by the simulations. A binary mixture of tryptophan and phenylalanine is used to demonstrate simultaneous concentration and separation, again in agreement with simulations. The possibility of gradient deformation in ion-exchange and hydrophobic interaction chromatography is discussed.
Regularized magnetotelluric inversion based on a minimum support gradient stabilizing functional
NASA Astrophysics Data System (ADS)
Xiang, Yang; Yu, Peng; Zhang, Luolei; Feng, Shaokong; Utada, Hisashi
2017-11-01
Regularization is used to solve the ill-posed problem of magnetotelluric inversion usually by adding a stabilizing functional to the objective functional that allows us to obtain a stable solution. Among a number of possible stabilizing functionals, smoothing constraints are most commonly used, which produce spatially smooth inversion results. However, in some cases, the focused imaging of a sharp electrical boundary is necessary. Although past works have proposed functionals that may be suitable for the imaging of a sharp boundary, such as minimum support and minimum gradient support (MGS) functionals, they involve some difficulties and limitations in practice. In this paper, we propose a minimum support gradient (MSG) stabilizing functional as another possible choice of focusing stabilizer. In this approach, we calculate the gradient of the model stabilizing functional of the minimum support, which affects both the stability and the sharp boundary focus of the inversion. We then apply the discrete weighted matrix form of each stabilizing functional to build a unified form of the objective functional, allowing us to perform a regularized inversion with variety of stabilizing functionals in the same framework. By comparing the one-dimensional and two-dimensional synthetic inversion results obtained using the MSG stabilizing functional and those obtained using other stabilizing functionals, we demonstrate that the MSG results are not only capable of clearly imaging a sharp geoelectrical interface but also quite stable and robust. Overall good performance in terms of both data fitting and model recovery suggests that this stabilizing functional is effective and useful in practical applications.[Figure not available: see fulltext.
Tian, Wang; Zhang, Huayong; Zhao, Lei; Zhang, Feifan; Huang, Hai
2017-01-20
The relationship between biodiversity and ecosystem functioning is a central issue in ecology, but how this relationship is affected by nutrient stress is still unknown. In this study, we analyzed the phytoplankton diversity effects on community biomass and stability along nutrient gradients in an artificial eutrophic lake. Four nutrient gradients, varying from slightly eutrophic to highly eutrophic states, were designed by adjusting the amount of polluted water that flowed into the lake. Mean phytoplankton biomass, species richness, and Shannon diversity index all showed significant differences among the four nutrient gradients. Phytoplankton community biomass was correlated with diversity (both species richness and Shannon diversity index), varying from positive to negative along the nutrient gradients. The influence of phytoplankton species richness on resource use efficiency (RUE) also changed from positive to negative along the nutrient gradients. However, the influence of phytoplankton Shannon diversity on RUE was not significant. Both phytoplankton species richness and Shannon diversity had a negative influence on community turnover (measured as community dissimilarity), i.e., a positive diversity-stability relationship. Furthermore, phytoplankton spatial stability decreased along the nutrient gradients in the lake. With increasing nutrient concentrations, the variability (standard deviation) of phytoplankton community biomass increased more rapidly than the average total biomass. Results in this study will be helpful in understanding the phytoplankton diversity effects on ecosystem functioning and how these effects are influenced by nutrient conditions in aquatic ecosystems.
Bailey-Shaw, Y A; Golden, K D; Pearson, A G M; Porter, R B R
2012-09-01
This paper describes the determination of fatty acid composition of coffee, citrus and rum distillery wastes using reversed-phase high-performance liquid chromatography (RP-HPLC). Lipid extracts of the waste samples are derivatized with phenacyl bromide and their phenacyl esters are separated on a C8 reversed-phase column by using continuous gradient elution with water and acetonitrile. The presence of saturated and unsaturated fatty acids in quantifiable amounts in the examined wastes, as well as the high percentage recoveries, are clear indications that these wastes have potential value as inexpensive sources of lipids. The HPLC procedures described here could be adopted for further analysis of materials of this nature.
Negative permittivity chamber inside a stack of silver nanorings
NASA Astrophysics Data System (ADS)
Chen, Sheng Chung; Shiu Chau, Jr.
2010-05-01
The interactions of silver nanorings with polarized optical wave are numerically studied. If the resonant conditions are tuned, the polarization of incident field, inside the nanoring hole, will be reversed by the single silver nanoring due to the surface plasmon resonance, thus, the nanoring hole becomes a region of which permittivity is negative. Put two identical silver nanorings closely, there are two nodes happened between nanorings. It indicates that there is a very steep gradient of electric field and quasi-standing waves exist between nanorings. If many silver nanorings are lined up, the holes of the nanorings will form a negative permittivity chamber. The more close to the center of the chamber, the more ideal the polarization is reversed.
Evidence for retrovirus infections in green turtles Chelonia mydas from the Hawaiian islands
Casey, R.N.; Quackenbush, S.L.; Work, Thierry M.; Balazs, G.H.; Bowser, P.R.; Casey, J.W.
1997-01-01
Apparently normal Hawaiian green turtles Chelonia mydas and those displaying fibropapillomas were analyzed for infection by retroviruses. Strikingly, all samples were positive for polymerase enhanced reverse transcriptase (PERT) with levels high enough to quantitate by the conventional reverse transcriptase (RT) assay. However, samples of skin, even from asymptomatic turtles, were RT positive, although the levels of enzyme activity in healthy turtles hatched and raised in captivity were much lower than those observed in asymptomatic free-ranging turtles. Turtles with fibropapillomas displayed a broad range of reverse transcriptase activity. Skin and eye fibropapillomas and a heart tumor were further analyzed and shown to have reverse transcriptase activity that banded in a sucrose gradient at 1.17 g ml-1. The reverse transcriptase activity purified from the heart tumor displayed a temperature optimum of 37??C and showed a preference for Mn2+ over Mg2+. Sucrose gradient fractions of this sample displaying elevated reverse transcriptase activity contained primarily retrovitalsized particles with prominent envelope spikes, when negatively stained and examined by electron microscopy. Sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of gradient-purified virions revealed a conserved profile among 4 independent tumors and showed 7 prominent proteins having molecular weights of 116, 83, 51, 43, 40, 20 and 14 kDa. The data suggest that retroviral infections are widespread in Hawaiian green turtles and a comprehensive investigation is warranted to address the possibility that these agents cause green turtle fibropapillomatosis (GTFP).
Wei, Yujie; Wu, Xinliang; Xia, Jinwen; Shen, Xue; Cai, Chongfa
2016-01-01
The formation and stabilization of soil aggregates play a key role in soil functions. To date, few studies have been performed on the variation of soil aggregation with increasing soil weathering degree. Here, soil aggregation and its influencing factors along the weathering gradient were investigated. Six typical zonal soils (derived from similar parent materials) were sampled from temperate to tropical regions. Grain size distribution (GSD) in aggregate fragmentation with increasing disruptive forces (air-dried, water dispersion and chemical dispersion) was determined by laser diffraction particle size analyzer. Different forms of sesquioxides were determined by selective chemical extraction and their contributions to soil aggregation were identified by multiple stepwise regression analysis. The high variability of sesquioxides in different forms appeared with increasing free oxide content (Fed and Ald) from the temperate to tropical soils. The transformation of GSD peak to small size varied with increasing disruptive forces (p<0.05). Although in different weathering degrees, zonal soils showed a similar fragmentation process. Aggregate water stability generally increased with increasing soil weathering (p<0.01), with higher stability in eluvium (A) horizon than in illuvium (B) horizon (p<0.01). Crystalline oxides and amorphous iron oxides (Feo), especially (Fed-Feo) contributed to the formation of air-dried macroaggregates and their stability against slaking (R2 = 55%, p<0.01), while fine particles (<50μm) and Feo (excluding the complex form Fep) played a positive role in the formation of water stable aggregates (R2 = 93%, p<0.01). Additionally, water stable aggregates (including stability, size distribution and specific surface area) were closely related with pH, organic matter, cation exchange capacity (CEC), bulk density (BD), and free oxides (including various forms) (p<0.05). The overall results indicate that soil aggregation conforms to aggregate hierarchy theory to some extent along the weathering gradient and different forms of sesquioxides perform their specific roles in the formation and stabilization of different size aggregates.
NASA Astrophysics Data System (ADS)
Liu, Gang; Xiao, Hai; Liu, Puling
2017-04-01
Soil aggregates, being a key soil structural unit, influence several soil physical properties such as water infiltration, runoff and erosion. The relationship between soil aggregate stability and interrill and rill erodibility is unclear but critical to process-based erosion prediction models. One obvious reason is that it is hard to distinguish between interrill and rill-eroded sediment during the erosion process. This study was designed to partition interrill and rill erosion rates and relates them to the aggregate stability of Ultisols in subtropical China. Six kinds of rare earth element (REE) were applied as tracers mixed with two cultivated soils derived from the Quaternary red clay soil and the shale soil at six slope positions. Soil aggregate stability was determined by the Le Bissonnais (LB)-method. Simulated rainfall with three intensities (60, 90 and 120 mm/h) were applied to a soil plot (2.25 m long, 0.5 m wide, 0.2 m deep) at three slope gradients (10°, 20° and 30°) with duration of 30 min after runoff initiation. The results indicated that interrill and rill erosion increased with increasing rainfall intensity and slope gradient for both types of soil. Rill and interrill erosion rates of the shale soil were much higher than those of the Quaternary red clay soil. Rill erosion contribution enhanced with increasing rainfall intensity and slope gradient for both soils. Percentage of the downslope area erosion to total erosion was the largest, followed by the mid-slope area and then upslope area. Equations using an aggregate stability index As to replace the erodibility factor of interrill and rill erosion in the Water Erosion Prediction Project (WEPP) model were constructed after analyzing the relationships between estimated and measured rill and interrill erosion data. It was shown that these equations based on the stability index, As, have the potential to improve methods for assessing interrill and rill erosion erodibility synchronously for the subtropical Ultisols by using REE tracing method.
Wu, Xinliang; Xia, Jinwen; Shen, Xue; Cai, Chongfa
2016-01-01
The formation and stabilization of soil aggregates play a key role in soil functions. To date, few studies have been performed on the variation of soil aggregation with increasing soil weathering degree. Here, soil aggregation and its influencing factors along the weathering gradient were investigated. Six typical zonal soils (derived from similar parent materials) were sampled from temperate to tropical regions. Grain size distribution (GSD) in aggregate fragmentation with increasing disruptive forces (air-dried, water dispersion and chemical dispersion) was determined by laser diffraction particle size analyzer. Different forms of sesquioxides were determined by selective chemical extraction and their contributions to soil aggregation were identified by multiple stepwise regression analysis. The high variability of sesquioxides in different forms appeared with increasing free oxide content (Fed and Ald) from the temperate to tropical soils. The transformation of GSD peak to small size varied with increasing disruptive forces (p<0.05). Although in different weathering degrees, zonal soils showed a similar fragmentation process. Aggregate water stability generally increased with increasing soil weathering (p<0.01), with higher stability in eluvium (A) horizon than in illuvium (B) horizon (p<0.01). Crystalline oxides and amorphous iron oxides (Feo), especially (Fed-Feo) contributed to the formation of air-dried macroaggregates and their stability against slaking (R2 = 55%, p<0.01), while fine particles (<50μm) and Feo (excluding the complex form Fep) played a positive role in the formation of water stable aggregates (R2 = 93%, p<0.01). Additionally, water stable aggregates (including stability, size distribution and specific surface area) were closely related with pH, organic matter, cation exchange capacity (CEC), bulk density (BD), and free oxides (including various forms) (p<0.05). The overall results indicate that soil aggregation conforms to aggregate hierarchy theory to some extent along the weathering gradient and different forms of sesquioxides perform their specific roles in the formation and stabilization of different size aggregates. PMID:27529618
Reversible mechanosensitive ion pumping as a part of mechanoelectrical transduction.
Markin, V. S.; Tsong, T. Y.
1991-01-01
To explain the ability of some mechanosensitive cells to reverse the process of mechanotransduction and to generate mechanical oscillations and emit sound, a piezo-conformational coupling model (PCC model) is proposed. The model includes a transport protein which changes either its volume (PV-coupling) or its area in the membrane (gamma A-coupling) when undergoing conformational transitions. Such a protein can interact with an oscillating pressure to pump ions and create a transmembrane gradient if the affinities of the protein for ions are different at the two sides of membrane. The frequency and concentration windows for mechanical energy transduction were determined. Under optimal conditions, the efficiency of energy transduction can approach the theoretical maximum of 100%. If the concentration gradient exceeds the static head value (quasi-equilibrium which can be built up and maintained by this transport system), the energy transduction reverses and the transporter becomes a generator of mechanical oscillations at the expense of a concentration gradient. Estimation of thermodynamic parameters of the pump shows that the PV-coupling model would require large pressure oscillations to work while the gamma A-coupling model could work in physiological conditions. The gamma A-coupling mechanism may be used by cells for two purposes. In the reverse mode, it can be a force generator for various applications. In the direct mode, it may serve bioenergetic purposes by harvesting the energy of mechanical oscillations and storing it in the form of a concentration gradient. This pump has an unusual thermodynamic feature: it can distinguish the two components of the electrochemical potential gradient,i.e., the concentration gradient and the electrical potential, the latter serving as a permissive switch to open, or close, the pump when the potential reaches the threshold value.Predictions of the PCC model and its probable involvement in biological mechanotransduction are dicussed. PMID:1873468
Trail-following behavior ofReticulitermes hesperus Banks (Isoptera: Rhinotermitidae).
Grace, J K; Wood, D L; Frankie, G W
1988-02-01
The behavior ofReticulitermes hesperus Banks pseudergates (workers) was assessed on artificial trails containing different concentrations of sternal gland extract. On nongiadient trails, more pseudergates were recruited to trails of greater pheromone concentration, they traveled a greater distance without pausing, and their rate of locomotion increased over that observed on trails of lesser concentration (positive orthokinesis). Of the individuals pausing before completing trails of high concentration, fewer left the trails or reversed direction (negative klinokinesis) than on trails of lower concentration. Termites walking down concentration gradients failed to complete these trails to the low-concentration termini. At a point representing an average decrease of slightly more than 10-fold in the original concentration of pheromone, individuals reversed their direction of travel and returned to the high-concentration terminus. Termites walking up pheromone gradients proceeded to the high-concentration termini without reversing direction.R. hesperus pseudergates are thus able to orient along a gradient of trail pheromone by longitudinal klinotaxis.
Microturbulence studies of pulsed poloidal current drive discharges in the reversed field pinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmody, D., E-mail: dcarmody@wisc.edu; Pueschel, M. J.; Anderson, J. K.
2015-01-15
Experimental discharges with pulsed poloidal current drive (PPCD) in the Madison Symmetric Torus reversed field pinch are investigated using a semi-analytic equilibrium model in the gyrokinetic turbulence code GENE. PPCD cases, with plasma currents of 500 kA and 200 kA, exhibit a density-gradient-driven trapped electron mode (TEM) and an ion temperature gradient mode, respectively. Relative to expectations of tokamak core plasmas, the critical gradients for the onset of these instabilities are found to be greater by roughly a factor of the aspect ratio. A significant upshift in the nonlinear TEM transport threshold, previously found for tokamaks, is confirmed in nonlinear reversed fieldmore » pinch simulations and is roughly three times the threshold for linear instability. The simulated heat fluxes can be brought in agreement with measured diffusivities by introducing a small, resonant magnetic perturbation, thus modeling the residual fluctuations from tearing modes. These fluctuations significantly enhance transport.« less
Bergh, Marianne Skov-Skov; Bogen, Inger Lise; Andersen, Jannike Mørch; Øiestad, Åse Marit Leere; Berg, Thomas
2018-01-01
A novel ion pair reversed phase ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous determination of the stress hormones adrenaline, noradrenaline and corticosterone in rodent blood was developed and fully validated. Separations were performed on an Acquity HSS T3 column (2.1mm i.d.×100mm, 1.8μm) with gradient elution and a runtime of 5.5min. The retention of adrenaline and noradrenaline was substantially increased by employing the ion pair reagent heptafluorobutyric acid (HFBA). Ion pair reagents are usually added to the mobile phase only, but we demonstrate for the first time that including HFBA to the sample reconstitution solvent as well, has a major impact on the chromatography of these compounds. The stability of adrenaline and corticosterone in rodent blood was investigated using the surrogate analytes adrenaline-d 3 and corticosterone-d 8 . The applicability of the described method was demonstrated by measuring the concentration of stress hormones in rodent blood samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Journal of Chemical Education: Software.
ERIC Educational Resources Information Center
Journal of Chemical Education, 1988
1988-01-01
Describes a chemistry software program that emulates a modern binary gradient HPLC system with reversed phase column behavior. Allows for solvent selection, adjustment of gradient program, column selection, detectory selection, handling of computer sample data, and sample preparation. (MVL)
Wichitnithad, Wisut; O'Callaghan, James P; Miller, Diane B; Train, Brian C; Callery, Patrick S
2011-12-15
A novel class of N-substituted tetrahydropyridine derivatives was found to have multiple kinetic mechanisms of monoamine oxidase A inhibition. Eleven structurally similar tetrahydropyridine derivatives were synthesized and evaluated as inhibitors of MAO-A and MAO-B. The most potent MAO-A inhibitor in the series, 2,4-dichlorophenoxypropyl analog 12, displayed time-dependent mixed noncompetitive inhibition. The inhibition was reversed by dialysis, indicating reversible enzyme inhibition. Evidence that the slow-binding inhibition of MAO-A with 12 involves a covalent bond was gained from stabilizing a covalent reversible intermediate product by reduction with sodium borohydride. The reduced enzyme complex was not reversible by dialysis. The results are consistent with slowly reversible, mechanism-based inhibition. Two tetrahydropyridine analogs that selectively inhibited MAO-A were characterized by kinetic mechanisms differing from the kinetic mechanism of 12. As reversible inhibitors of MAO-A, tetrahydropyridine analogs are at low risk of having an adverse effect of tyramine-induced hypertension. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tomikawa, Y.; Yamanouchi, T.
2010-08-01
An analysis of the static stability and ozone vertical gradient in the ozone tropopause based (OTB) coordinate is applied to the ozonesonde data at 10 stations in the Southern Hemisphere (SH) extratropics. The tropopause inversion layer (TIL) with a static stability maximum just above the tropopause shows similar seasonal variations at two Antarctic stations, which are latitudinally far from each other. Since the sunshine hour varies with time in a quite different way between these two stations, it implies that the radiative heating due to solar ultraviolet absorption of ozone does not contribute to the seasonal variation of the TIL. A meridional section of the static stability in the OTB coordinate shows that the static stability just above the tropopause has a large latitudinal gradient between 60° S and 70° S in austral winter because of the absence of the TIL over the Antarctic. It is accompanied by an increase of westerly shear with height above the tropopause, so that the polar-night jet is formed above this latitude region. This result suggests a close relationship between the absence of the TIL and the stratospheric polar vortex in the Antarctic winter. A vertical gradient of ozone mixing ratio, referred to as ozone vertical gradient, around the tropopause shows similar latitudinal and seasonal variations with the static stability in the SH extratropics. In a height region above the TIL, a small ozone vertical gradient in the midlatitudes associated with the Antarctic ozone hole is observed in a height region of the subvortex but not around the polar vortex. This is a clear evidence of active latitudinal mixing between the midlatitudes and subvortex.
Schaarschmidt, Klaus; Lempe-Sellin, Michael; Schlesinger, Frank; Jaeschke, Uwe; Polleichtner, Susanne
2011-04-01
Since 2001 we minimized access (2.9-4.7 cm) for universally applicable endoscopic hybrid carinatum technique with two transsternal Willital bars in 173 endoscopic hybrid (EH) patients with very satisfactory results. In 2008-2009, endoscopic Nuss bar compression with endoscopic repair of costal flaring applied a new eight-hole stabilizer, which allows the use in pectus carinatum (PC) beyond adolescence including redos and combined deformities. This prospective study of 35 "endoscopic Berlin-Buch reversed Nuss" repairs intends to establish indications for this improved technique. In February 2008 to February 2010, we used endoscopic Nuss bar compression by applying a bilateral new eight-hole stabilizer fixed to the bar without screws or wires, which allows unprecedented versatility and the use in pectus carinatum beyond adolescence. Thirty-five patients aged 17.05 ± 10.2 years (range: 11.3-33.1 years) were recorded prospectively and followed at 3 monthly intervals. We implanted a standard Nuss bar (11-14') into an endoscopically dissected submuscular presternal pocket correcting PC by sternal pressure. The bars were put under tension by traction via bilateral eight-hole stabilizers and three pericostal wire sutures on each side. Bars were removed after 2 years. All 35 "reversed Nuss" pectus carinatum repairs, including 2 redos after Ravitch, were successful, with no conversion. So far there was no local or general complication and no seroma or bar dislocation. Thirty-one patients judged their result as excellent and 4 as good. Although this is a very early experience, "reversed Nuss" is safe and effective and new technical improvements have expanded the range of applicability to older patients and suitable redos.
Stability of peptides in high-temperature aqueous solutions
NASA Astrophysics Data System (ADS)
Shock, Everett L.
1992-09-01
Estimated standard molal thermodynamic properties of aqueous dipeptides and their constituent amino acids indicate that temperature increases correspond to increased stability of peptide bonds relative to hydrolysis reactions. Pressure increases cause slight decreases in peptide bond stability, which are generally offset by greater stability caused by temperature increases along geothermal gradients. These calculations suggest that peptides, polypeptides, and proteins may survive hydrothermal alteration of organic matter depending on the rates of the hydrolysis reactions. Extremely thermophilic organisms may be able to take advantage of the decreased energy required to form peptide bonds in order to maintain structural proteins and enzymes at elevated temperatures and pressures. As the rates of hydrolysis reactions increase with increasing temperature, formation of peptide bonds may become a facile process in hydrothermal systems and deep in sedimentary basins.
Tian, Wang; Zhang, Huayong; Zhao, Lei; Zhang, Feifan; Huang, Hai
2017-01-01
The relationship between biodiversity and ecosystem functioning is a central issue in ecology, but how this relationship is affected by nutrient stress is still unknown. In this study, we analyzed the phytoplankton diversity effects on community biomass and stability along nutrient gradients in an artificial eutrophic lake. Four nutrient gradients, varying from slightly eutrophic to highly eutrophic states, were designed by adjusting the amount of polluted water that flowed into the lake. Mean phytoplankton biomass, species richness, and Shannon diversity index all showed significant differences among the four nutrient gradients. Phytoplankton community biomass was correlated with diversity (both species richness and Shannon diversity index), varying from positive to negative along the nutrient gradients. The influence of phytoplankton species richness on resource use efficiency (RUE) also changed from positive to negative along the nutrient gradients. However, the influence of phytoplankton Shannon diversity on RUE was not significant. Both phytoplankton species richness and Shannon diversity had a negative influence on community turnover (measured as community dissimilarity), i.e., a positive diversity–stability relationship. Furthermore, phytoplankton spatial stability decreased along the nutrient gradients in the lake. With increasing nutrient concentrations, the variability (standard deviation) of phytoplankton community biomass increased more rapidly than the average total biomass. Results in this study will be helpful in understanding the phytoplankton diversity effects on ecosystem functioning and how these effects are influenced by nutrient conditions in aquatic ecosystems. PMID:28117684
NASA Astrophysics Data System (ADS)
Colangelo, Antonio C.
2010-05-01
The central purpose of this work is to perform a reverse procedure in the mass movement conventional parameterization approach. The idea is to generate a number of synthetic mass movements by means of the "slope stability simulator" (Colangelo, 2007), and compeer their morphological and physical properties with "real" conditions of effective mass movements. This device is an integrated part of "relief unity emulator" (rue), that permits generate synthetic mass movements in a synthetic slope environment. The "rue" was build upon fundamental geomorphological concepts. These devices operate with an integrated set of mechanical, geomorphic and hydrological models. The "slope stability simulator" device (sss) permits to perform a detailed slope stability analysis in a theoretical three dimensional space, by means of evaluation the spatial behavior of critical depths, gradients and saturation levels in the "potential rupture surfaces" inferred along a set of slope profiles, that compounds a synthetic slope unity. It's a meta-stable 4-dimensional object generated by means of "rue", that represents a sequence evolution of a generator profile applied here, was adapted the infinite slope model for slope. Any slope profiles were sliced by means of finite element solution like in Bishop method. For the synthetic slope systems generated, we assume that the potential rupture surface occurs at soil-regolith or soil-rock boundary in slope material. Sixteen variables were included in the "rue-sss" device that operates in an integrated manner. For each cell, the factor of safety was calculated considering the value of shear strength (cohesion and friction) of material, soil-regolith boundary depth, soil moisture level content, potential rupture surface gradient, slope surface gradient, top of subsurface flow gradient, apparent soil bulk density and vegetation surcharge. The slope soil was considered as cohesive material. The 16 variables incorporated in the models were analyzed for each cell in synthetic slope systems performed by relief unity emulator. The central methodological strategy is to locate the potential rupture surfaces (prs), main material discontinuities, like soil-regolith or regolith-rock transitions. Inner these "prs", we would to outline the effective potential rupture surfaces (eprs). This surface is a sub-set of the "prs" that presents safety factor less than unity (f<1), the sub-region in the "prs" equal or deeper than critical depths. When the effective potential rupture surface acquires significant extension with respect the thickness of critical depth and retaining walls, the "slope stability simulator" generates a synthetic mass movement. The overlay material will slide until that a new equilibrium be attained at residual shear strength. These devices generate graphic 3D cinematic sequences of experiments in synthetic slope systems and numerical results about physical and morphological data about scars and deposits. Thus, we have a detailed geotechnical, morphological, topographic and morphometric description of these mass movements prototypes, for deal with effective mass movements found in the real environments.
Sousa, Ângela; Pereira, Patrícia; Sousa, Fani; Queiroz, João A
2014-10-31
Histamine and agmatine amino acid derivatives were immobilized into monolithic disks, in order to combine the specificity and selectivity of the ligand with the high mass transfer and binding capacity offered by monolithic supports, to purify potential plasmid DNA biopharmaceuticals. Different elution strategies were explored by changing the type and salt concentration, as well as the pH, in order to understand the retention pattern of different plasmids isoforms The pVAX1-LacZ supercoiled isoform was isolated from a mixture of pDNA isoforms by using NaCl increasing stepwise gradient and also by ammonium sulfate decreasing stepwise gradient, in both histamine and agmatine monoliths. Acidic pH in the binding buffer mainly strengthened ionic interactions with both ligands in the presence of sodium chloride. Otherwise, for histamine ligand, pH values higher than 7 intensified hydrophobic interactions in the presence of ammonium sulfate. In addition, circular dichroism spectroscopy studies revealed that the binding and elution chromatographic conditions, such as the combination of high ionic strength with extreme pH values can reversibly influence the structural stability of the target nucleic acid. Therefore, ascending sodium chloride gradients with pH manipulation can be preferable chromatographic conditions to be explored in the purification of plasmid DNA biopharmaceuticals, in order to avoid the environmental impact of ammonium sulfate. Copyright © 2014. Published by Elsevier B.V.
Dynamics of a gravity-gradient stabilized flexible spacecraft
NASA Technical Reports Server (NTRS)
Meirovitch, L.; Juang, J. N.
1974-01-01
The dynamics of gravity-gradient stabilized flexible satellite in the neighborhood of a deformed equilibrium configuration are discussed. First the equilibrium configuration was determined by solving a set of nonlinear differential equations. Then stability of motion about the deformed equilibrium was tested by means of the Liapunov direct method. The natural frequencies of oscillation of the complete structure were calculated. The analysis is applicable to the RAE/B satellite.
NASA Astrophysics Data System (ADS)
Gupta, Lokesh Kumar
2012-11-01
Seven process related impurities were identified by LC-MS in the atorvastatin calcium drug substance. These impurities were identified by LC-MS. The structure of impurities was confirmed by modern spectroscopic techniques like 1H NMR and IR and physicochemical studies conducted by using synthesized authentic reference compounds. The synthesized reference samples of the impurity compounds were used for the quantitative HPLC determination. These impurities were detected by newly developed gradient, reverse phase high performance liquid chromatographic (HPLC) method. The system suitability of HPLC analysis established the validity of the separation. The analytical method was validated according to International Conference of Harmonization (ICH) with respect to specificity, precision, accuracy, linearity, robustness and stability of analytical solutions to demonstrate the power of newly developed HPLC method.
Stabilization of the Rayleigh-Taylor instability in quantum magnetized plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L. F.; Ye, W. H.; He, X. T.
2012-07-15
In this research, stabilization of the Rayleigh-Taylor instability (RTI) due to density gradients, magnetic fields, and quantum effects, in an ideal incompressible plasma, is studied analytically and numerically. A second-order ordinary differential equation (ODE) for the RTI including quantum corrections, with a continuous density profile, in a uniform external magnetic field, is obtained. Analytic expressions of the linear growth rate of the RTI, considering modifications of density gradients, magnetic fields, and quantum effects, are presented. Numerical approaches are performed to solve the second-order ODE. The analytical model proposed here agrees with the numerical calculation. It is found that the densitymore » gradients, the magnetic fields, and the quantum effects, respectively, have a stabilizing effect on the RTI (reduce the linear growth of the RTI). The RTI can be completely quenched by the magnetic field stabilization and/or the quantum effect stabilization in proper circumstances leading to a cutoff wavelength. The quantum effect stabilization plays a central role in systems with large Atwood number and small normalized density gradient scale length. The presence of external transverse magnetic fields beside the quantum effects will bring about more stability on the RTI. The stabilization of the linear growth of the RTI, for parameters closely related to inertial confinement fusion and white dwarfs, is discussed. Results could potentially be valuable for the RTI treatment to analyze the mixing in supernovas and other RTI-driven objects.« less
Al7CX (X=Li-Cs) clusters: Stability and the prospect for cluster materials
NASA Astrophysics Data System (ADS)
Ashman, C.; Khanna, S. N.; Pederson, M. R.; Kortus, J.
2000-12-01
Al7C clusters, recently found to have a high-electron affinity and exceptional stability, are shown to form ionic molecules when combined with alkali-metal atoms. Our studies, based on an ab initio gradient-corrected density-functional scheme, show that Al7CX (X=Li-Cs) clusters have a very low-electron affinity and a high-ionization potential. When combined, the two- and four-atom composite clusters of Al7CLi units leave the Al7C clusters almost intact. Preliminary studies indicate that Al7CLi may be suitable to form cluster-based materials.
Isoelectric focusing of red blood cells in a density gradient stabilized column
NASA Technical Reports Server (NTRS)
Smolka, A. J. K.; Miller, T. Y.
1980-01-01
The effects of Ficoll and cell application pH on red blood cell electrophoretic mobility and focusing pH were investigated by focusing cells in a density gradient stabilized column. Sample loading, cell dispersion, column conductivity, resolution of separation, and the effect of Ampholines were examined.
Cserháti, T; Forgács, E; Morais, M H; Mota, T; Ramos, A
2000-10-27
The performance of reversed-phase thin-layer (RP-TLC) and reversed-phase high-performance liquid chromatography (RP-HPLC) was compared for the separation and determination of the colour pigments of chili (Capsicum frutescens) powder using a wide variety of eluent systems. No separation of pigments was achieved in RP-TLC, however, it was established that tetrahydrofuran shows an unusually high solvent strength. RP-HPLC using water-methanol-acetonitrile gradient elution separated the chili pigments in many fractions. Diode array detection (DAD) indicated that yellow pigments are eluted earlier than the red ones and chili powder contains more yellow pigments than common paprika powders. It was established that the very different absorption spectra of pigments make the use of DAD necessary.
Induced venous pooling and cardiorespiratory responses to exercise after bed rest
NASA Technical Reports Server (NTRS)
Convertino, V. A.; Sandler, H.; Webb, P.; Annis, J. F.
1982-01-01
Venous pooling induced by a specially constructed garment is investigated as a possible means for reversing the reduction in maximal oxygen uptake regularly observed following bed rest. Experiments involved a 15-day period of bed rest during which four healthy male subjects, while remaining recumbent in bed, received daily 210-min venous pooling treatments from a reverse gradient garment supplying counterpressure to the torso. Results of exercise testing indicate that while maximal oxygen uptake endurance time and plasma volume were reduced and maximal heart rate increased after bed rest in the control group, those parameters remained essentially unchanged for the group undergoing venous pooling treatment. Results demonstrate the importance of fluid shifts and venous pooling within the cardiovascular system in addition to physical activity to the maintenance of cardiovascular conditioning.
Thermally induced delay and reversal of liquid film dewetting on chemically patterned surfaces.
Kalpathy, Sreeram K; Francis, Lorraine F; Kumar, Satish
2013-10-15
A thin liquid film resting on a solid substrate that is heated or cooled from below experiences surface tension gradients, which lead to Marangoni flows. We explore the behavior of such a film on a chemically patterned substrate which drives film dewetting in order to determine how surface patterning and applied temperature gradients can be designed to influence the behavior of thin-film coatings. A nonlinear partial differential equation for the film height based on lubrication theory is solved numerically for a broad range of problem parameters. Uniform cooling of the substrate is found to significantly delay dewetting that is driven by wettability gradients. Uniform heating speeds up dewetting but can destroy the near-perfect templating imposed by the surface patterning. However, localized heating and cooling together can accelerate dewetting while maintaining templating quality. Localized heating and cooling can also be used to drive liquid onto areas that it would dewet from in the absence of heating. Overall, these results indicate that applied temperature gradients can significantly influence dewetting driven by surface patterning, and suggest strategies for the creation of spatially patterned thin-film coatings and flow control in microfluidic devices. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, L. J.; Kotschenreuther, M. T.; Valanju, P.
2014-06-15
The diamagnetic drift effects on the low-n magnetohydrodynamic instabilities at the high-mode (H-mode) pedestal are investigated in this paper with the inclusion of bootstrap current for equilibrium and rotation effects for stability, where n is the toroidal mode number. The AEGIS (Adaptive EiGenfunction Independent Solutions) code [L. J. Zheng and M. T. Kotschenreuther, J. Comp. Phys. 211 (2006)] is extended to include the diamagnetic drift effects. This can be viewed as the lowest order approximation of the finite Larmor radius effects in consideration of the pressure gradient steepness at the pedestal. The H-mode discharges at Jointed European Torus is reconstructedmore » numerically using the VMEC code [P. Hirshman and J. C. Whitson, Phys. Fluids 26, 3553 (1983)], with bootstrap current taken into account. Generally speaking, the diamagnetic drift effects are stabilizing. Our results show that the effectiveness of diamagnetic stabilization depends sensitively on the safe factor value (q{sub s}) at the safety-factor reversal or plateau region. The diamagnetic stabilization are weaker, when q{sub s} is larger than an integer; while stronger, when q{sub s} is smaller or less larger than an integer. We also find that the diamagnetic drift effects also depend sensitively on the rotation direction. The diamagnetic stabilization in the co-rotation case is stronger than in the counter rotation case with respect to the ion diamagnetic drift direction.« less
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.
1996-01-01
A numerical model of heat transfer using combined conduction, radiation and convection in AADSF was used to evaluate temperature gradients in the vicinity of the crystal/melt interface for variety of hot and cold zone set point temperatures specifically for the growth of mercury cadmium telluride (MCT). Reverse usage of hot and cold zones was simulated to aid the choice of proper orientation of crystal/melt interface regarding residual acceleration vector without actual change of furnace location on board the orbiter. It appears that an additional booster heater will be extremely helpful to ensure desired temperature gradient when hot and cold zones are reversed. Further efforts are required to investigate advantages/disadvantages of symmetrical furnace design (i.e. with similar length of hot and cold zones).
Constantz, J.; Thomas, C.L.
1997-01-01
Stream bed temperature profiles were monitored continuously during water year 1990 and 1991 (WY90 and 91) in two New Mexico arroyos, similar in their meteorological features and dissimilar in their hydrological features. Stream bed temperature profiles between depths of 30 and 300 cm were examined to determine whether temporal changes in temperature profiles represent accurate indicators of the timing, depth and duration of percolation in each stream bed. These results were compared with stream flow, air temperature, and precipitation records for WY90 and 91, to evaluate the effect of changing surface conditions on temperature profiles. Temperature profiles indicate a persistently high thermal gradient with depth beneath Grantline Arroyo, except during a semi-annual thermal reversal in spring and autumn. This typifies the thermal response of dry sediments with low thermal conductivities. High thermal gradients were disrupted only during infrequent stream flows, followed by rapid re-establishment of high gradients. The stream bed temperature at 300 cm was unresponsive to individual precipitation or stream flow during WY90 and 91. This thermal pattern provides strong evidence that most seepage into Grantline Arroyo failed to percolate at a sufficient rate to reach 300 cm before being returned to the atmosphere. A distinctly different thermal pattern was recorded beneath Tijeras Arroyo. Low thermal gradients between 30 and 300 cm and large diurnal variations in temperature, suggest that stream flow created continuous, advection-dominated heat transport for over 300 days, annually. Beneath Tijeras Arroyo, low thermal gradients were interrupted only briefly during periodic, dry summer conditions. Comparisons of stream flow records for WY90 and 91 with stream bed temperature profiles indicate that independent analysis of thermal patterns provides accurate estimates of the timing, depth and duration of percolation beneath both arroyos. Stream flow loss estimates indicate that seepage rates were 15 times greater for Tijeras Arroyo than for Grantline Arroyo, which supports qualitative conclusions derived from analysis of stream bed temperature responses to surface conditions. ?? 1997 John Wiley & Sons, Ltd.
LAZY Genes Mediate the Effects of Gravity on Auxin Gradients and Plant Architecture1[OPEN
2017-01-01
A rice (Oryza sativa) mutant led to the discovery of a plant-specific LAZY1 protein that controls the orientation of shoots. Arabidopsis (Arabidopsis thaliana) possesses six LAZY genes having spatially distinct expression patterns. Branch angle phenotypes previously associated with single LAZY genes were here studied in roots and shoots of single and higher-order atlazy mutants. The results identify the major contributors to root and shoot branch angles and gravitropic behavior of seedling hypocotyls and primary roots. AtLAZY1 is the principal determinant of inflorescence branch angle. The weeping inflorescence phenotype of atlazy1,2,4 mutants may be due at least in part to a reversal in the gravitropism mechanism. AtLAZY2 and AtLAZY4 determined lateral root branch angle. Lateral roots of the atlazy2,4 double mutant emerged slightly upward, approximately 10° greater than perpendicular to the primary root axis, and they were agravitropic. Etiolated hypocotyls of the quadruple atlazy1,2,3,4 mutant were essentially agravitropic, but their phototropic response was robust. In light-grown seedlings, the root of the atlazy2,3,4 mutant was also agravitropic but when adapted to dim red light it displayed a reversed gravitropic response. A reversed auxin gradient across the root visualized by a fluorescent signaling reporter explained the reversed, upward bending response. We propose that AtLAZY proteins control plant architecture by coupling gravity sensing to the formation of auxin gradients that override a LAZY-independent mechanism that creates an opposing gravity-induced auxin gradient. PMID:28821594
Simple method for RF pulse measurement using gradient reversal.
Landes, Vanessa L; Nayak, Krishna S
2018-05-01
To develop and evaluate a simple method for measuring the envelope of small-tip radiofrequency (RF) excitation waveforms in MRI, without extra hardware or synchronization. Gradient reversal approach to evaluate RF (GRATER) involves RF excitation with a constant gradient and reversal of that gradient during signal reception to acquire the time-reversed version of an RF envelope. An outer-volume suppression prepulse is used optionally to preselect a uniform volume. GRATER was evaluated in phantom and in vivo experiments. It was compared with the programmed waveform and the traditional pick-up coil method. In uniform phantom experiments, pick-up coil, GRATER, and outer-volume suppression + GRATER matched the programmed waveforms to less than 2.1%, less than 6.1%, and less than 2.4% normalized root mean square error, respectively, for real RF pulses with flip angle less than or equal to 30°, time-bandwidth product 2 to 8, and two to five excitation bands. For flip angles greater than 30°, GRATER measurement error increased as predicted by Bloch simulation. Fat-water phantom and in vivo experiments with outer-volume suppression + GRATER demonstrated less than 6.4% normalized root mean square error. The GRATER sequence measures small-tip RF envelopes without extra hardware or synchronization in just over two times the RF duration. The sequence may be useful in prescan calibration and for measurement and precompensation of RF amplifier nonlinearity. Magn Reson Med 79:2642-2651, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Swimming pattern of Pseudomonas putida - navigating with stops and reversals
NASA Astrophysics Data System (ADS)
Hintsche, Marius; Waljor, Veronika; Alirezaeizanjani, Zahra; Theves, Matthias; Beta, Carsten
Bacterial swimming strategies depend on factors such as the chemical and physical environment, as well as the flagellation pattern of a species. For some bacteria the motility pattern and the underlying flagellar dynamics are well known, such as the classical run-and-tumble behavior of E. coli. Here we study the swimming motility and chemotactic behavior of the polar, multi-flagellated soil dwelling bacterium Pseudomonas putida. Compared to E. coli, its motility pattern is more diverse. In addition to different speed levels, P. putida exhibits two types of reorientation events, stops and reversals, the occurrence of which is modulated according to the growth conditions. We also analyzed the swimming pattern in the presence of chemical gradients. Using benzoate as a chemoattractant, we measured key motility parameters in order to characterize P. putida's chemotaxis strategy and to quantify the directional bias in its random walk. Our results indicate a change in the reversal frequency depending on changes in the chemoattractant concentration consistent with the classical scenario of temporal sensing. DFG.
Electrical characteristics in reverse electrodialysis using nanoporous membranes
NASA Astrophysics Data System (ADS)
Chanda, Sourayon; Tsai, Peichun Amy
2017-11-01
We experimentally and numerically investigate the effects of concentration difference and flow velocity on sustainable electricity generation and associated fluid dynamics using a single reverse electrodialysis (RED) cell. By exploiting the charge-selective nature of nanoporous interfaces, electrical energy is generated by reverse electrodialysis harnessing chemical Gibbs energy via a salinity gradient. Experimentally, a RED cell was designed with two reservoirs, which are separated by a nanoporous, cation-selective membrane. We injected deionized water through one reservoir, whereas a solution of high salt concentration through the other. The gradient of salt concentration primarily drives the flow in the charged nano-pores, due to the interplay between charge selectivity, diffusion processes, and electro-migration. The current-voltage characteristics of the single RED cell shows a linear current-voltage relationship, similar to an electrochemical cell. The membrane resistance is increased with increasing salt concentration difference and external flow rate. The present experimental work was further analyzed numerically to better understand the detailed electrical and flow fields under different concentration gradients and external flows. NSERC Discovery, Accelerator, and CRC Programs.
The Relationships Between ELM Suppression, Pedestal Profiles, and Lithium Wall Coatings in NSTX
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.P. Boyle, R. Maingi, P.B. Snyder, J. Manickam, T.H. Osborne, R.E. Bell, B.P. LeBlanc, and the NSTX Team
2012-08-17
Recently in the National Spherical Torus Experiment (NSTX), increasing lithium wall coatings suppressed edge localized modes (ELMs), gradually but not quite monotonically. This work details profile and stability analysis as ELMs disappeared throughout the lithium scan. While the quantity of lithium deposited between discharges did not uniquely determine the presence of ELMs, profile analysis demonstrated that lithium was correlated to wider density and pressure pedestals with peak gradients farther from the separatrix. Moreover, the ELMy and ELM-free discharges were cleanly separated by their density and pedestal widths and peak gradient locations. Ultimately, ELMs were only suppressed when lithium caused themore » density pedestal to widen and shift inward. These changes in the density gradient were directly reflected in the pressure gradient and calculated bootstrap current. This supports the theory that ELMs in NSTX are caused by peeling and/or ballooning modes, as kink/peeling modes are stabilized when the edge current and pressure gradient shift away from the separatrix. Edge stability analysis using ELITE corroborated this picture, as reconstructed equilibria from ELM-free discharges were generally farther from their kink/peeling stability boundaries than ELMy discharges. We conclude that density profile control provided by lithium is the key first step to ELM suppression in NSTX« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, D. P.; Maingi, R.; Snyder, P. B.
2011-01-01
Recently in the National Spherical Torus Experiment (NSTX), increasing lithium wall coatings suppressed edge localized modes (ELMs), gradually but not quite monotonically. This work details profile and stability analysis as ELMs disappeared throughout the lithium scan. While the quantity of lithium deposited between discharges did not uniquely determine the presence of ELMs, profile analysis demonstrated that lithium was correlated with wider density and pressure pedestals with peak gradients farther from the separatrix. Moreover, the ELMy and ELM-free discharges were cleanly separated by their density and pedestal widths and peak gradient locations. Ultimately, ELMs were only suppressed when lithium caused themore » density pedestal to widen and shift inward. These changes in the density gradient were directly reflected in the pressure gradient and calculated bootstrap current. This supports the theory that ELMs in NSTX are caused by peeling and/or ballooning modes, as kink/peeling modes are stabilized when the edge current and pressure gradient shift away from the separatrix. Edge stability analysis using ELITE corroborated this picture, as reconstructed equilibria from ELM-free discharges were generally farther from their kink/peeling stability boundaries than ELMy discharges. We conclude that density profile control provided by lithium is the key first step to ELM suppression in NSTX.« less
Acceleration of Convergence to Equilibrium in Markov Chains by Breaking Detailed Balance
NASA Astrophysics Data System (ADS)
Kaiser, Marcus; Jack, Robert L.; Zimmer, Johannes
2017-07-01
We analyse and interpret the effects of breaking detailed balance on the convergence to equilibrium of conservative interacting particle systems and their hydrodynamic scaling limits. For finite systems of interacting particles, we review existing results showing that irreversible processes converge faster to their steady state than reversible ones. We show how this behaviour appears in the hydrodynamic limit of such processes, as described by macroscopic fluctuation theory, and we provide a quantitative expression for the acceleration of convergence in this setting. We give a geometrical interpretation of this acceleration, in terms of currents that are antisymmetric under time-reversal and orthogonal to the free energy gradient, which act to drive the system away from states where (reversible) gradient-descent dynamics result in slow convergence to equilibrium.
Reverse Stability Kinetics of Meat Pigment Oxidation in Aqueous Extract from Fresh Beef.
Frelka, John C; Phinney, David M; Wick, Macdonald P; Heldman, Dennis R
2017-12-01
The use of kinetic models is an evolving approach to describing quality changes in foods during processes, including storage. Previous studies indicate that the oxidation rate of myoglobin is accelerated under frozen storage conditions, a phenomenon termed reverse stability. The goal of this study was to develop a model for meat pigment oxidation to incorporate the phenomenon of reverse stability. In this investigation, the model system was an aqueous extract from beef which was stored under a range of temperatures, both unfrozen and frozen. The kinetic analysis showed that in unfrozen solutions, the temperature dependence of oxidation rate followed Arrhenius kinetics. However, under in frozen solutions the rate of oxidation increased with decreasing temperature until reaching a local maximum around -20 °C. The addition of NaCl to the model system increased oxidation rates at all temperatures, even above the initial freezing temperature. This observation suggests that this reaction is dependent on the ionic strength of the solution as well as temperature. The mechanism of this deviant kinetic behavior is not fully understood, but this study shows that the interplay of temperature and composition on the rate of oxidation of meat pigments is complicated and may involve multiple mechanisms. A better understanding of the kinetics of quality loss in a meat system allows for a re-examination of the current recommendations for frozen storage. The deviant kinetic behavior observed in this study indicates that the relationship between quality loss and temperature in a frozen food is not as simple as once thought. Product-specific recommendations could be implemented in the future that would allow for a decrease in energy consumption without a significant loss of quality. © 2017 Institute of Food Technologists®.
Stability Operations: Policy and Doctrine Awaiting Implementation
2013-03-01
periods move through offense and defense (or reverse ) sequentially while stability is presented throughout the rotation. This causes stability to...The author’s personal experience in Afghanistan and having studied the complex nature of stability operations suggests the reverse is true. June...climate change, Euro/EU collapse, a democratic or collapsed China, a reformed Iran, nuclear war or WMD/cyber-attack, solar geomagnetic storms, U.S
Zhang, Xia; Hu, Changqin
2017-09-08
Penicillins are typical of complex ionic samples which likely contain large number of degradation-related impurities (DRIs) with different polarities and charge properties. It is often a challenge to develop selective and robust high performance liquid chromatography (HPLC) methods for the efficient separation of all DRIs. In this study, an analytical quality by design (AQbD) approach was proposed for stability-indicating method development of cloxacillin. The structures, retention and UV characteristics rules of penicillins and their impurities were summarized and served as useful prior knowledge. Through quality risk assessment and screen design, 3 critical process parameters (CPPs) were defined, including 2 mixture variables (MVs) and 1 process variable (PV). A combined mixture-process variable (MPV) design was conducted to evaluate the 3 CPPs simultaneously and a response surface methodology (RSM) was used to achieve the optimal experiment parameters. A dual gradient elution was performed to change buffer pH, mobile-phase type and strength simultaneously. The design spaces (DSs) was evaluated using Monte Carlo simulation to give their possibility of meeting the specifications of CQAs. A Plackett-Burman design was performed to test the robustness around the working points and to decide the normal operating ranges (NORs). Finally, validation was performed following International Conference on Harmonisation (ICH) guidelines. To our knowledge, this is the first study of using MPV design and dual gradient elution to develop HPLC methods and improve separations for complex ionic samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Novel determinants of the neuronal Cl− concentration
Delpire, Eric; Staley, Kevin J
2014-01-01
It is now a well-accepted view that cation-driven Cl− transporters in neurons are involved in determining the intracellular Cl− concentration. In the present review, we propose that additional factors, which are often overlooked, contribute substantially to the Cl− gradient across neuronal membranes. After briefly discussing the data supporting and opposing the role of cation–chloride cotransporters in regulating Cl−, we examine the participation of the following factors in the formation of the transmembrane Cl− gradient: (i) fixed ‘Donnan’ charges inside and outside the cell; (ii) the properties of water (free vs. bound); and (iii) water transport through the cotransporters. We demonstrate a steep relationship between intracellular Cl− and the concentration of fixed negative charges on macromolecules. We show that in the absence of water transport through the K+–Cl− cotransporter, a large osmotic gradient builds at concentrations below or above a set value of ‘Donnan’ charges, and show that at any value of these fixed charges, the reversal potential for Cl− equates that of K+. When the movement of water across the membrane is a source of free energy, it is sufficient to modify the movement of Cl− through the cotransporter. In this scenario, the reversal potential for Cl− does not closely follow that of K+. Furthermore, our simulations demonstrate that small differences in the availability of freely diffusible water between inside and outside the cell greatly affect the Cl− reversal potential, particularly when osmolar transmembrane gradients are minimized, for example by idiogenic osmoles. We also establish that the presence of extracellular charges has little effect on the chloride reversal potential, but greatly affects the effective inhibitory conductance for Cl−. In conclusion, our theoretical analysis of the presence of fixed anionic charges and water bound on macromolecules inside and outside the cell greatly impacts both Cl− gradient and Cl− conductance across neuronal membranes. PMID:25107928
Aichele, Stephen S.
2005-01-01
This apparent contradiction may be caused by the differences in the changes measured in each analysis. The change-through-time approach describes change from a fixed starting point of approximately 1970; the gradient approach describes the cumulative effect of all change up to approximately 2000. These findings indicate that although urbanization in Oakland County results in most of the effects observed in the literature, as evidenced in the gradient approach, relatively few of the anticipated effects have been observed during the past three decades. This relative stability despite rapid land-cover change may be related to efforts to mitigate the effects of development and a general decrease in the density of new residential development. It may also be related to external factors such as climate variability and reduced atmospheric deposition of specific chemicals.
Superactivity of peroxidase solubilized in reversed micellar systems.
Setti, L; Fevereiro, P; Melo, E P; Pifferi, P G; Cabral, J M; Aires-Barros, M R
1995-12-01
Vaccinium mirtyllus peroxidase solubilized in reversed micelles was used for the oxidation of guaiacol. Some relevant parameters for the enzymatic activity, such as pH, w(o) (molar ratio water/surfactant), surfactant type and concentration, and cosurfactant concentration, were investigated. The peroxidase showed higher activities in reversed micelles than in aqueous solution. The stability of the peroxidase in reversed micelles was also studied, namely, the effect of w(o) and temperature on enzyme deactivation. The peroxidase displayed higher stabilities in CTAB/hexanol in isooctane reversed micelles, with half-life times higher than 500 h.
Influence of wheelchair front caster wheel on reverse directional stability.
Guo, Songfeng; Cooper, Rory A; Corfman, Tom; Ding, Dan; Grindle, Garrett
2003-01-01
The purpose of this research was to study directional stability during reversing of rear-wheel drive, electric powered wheelchairs (EPW) under different initial front caster orientations. Specifically, the weight distribution differences caused by certain initial caster orientations were examined as a possible mechanism for causing directional instability that could lead to accidents. Directional stability was quantified by measuring the drive direction error of the EPW by a motion analysis system. The ground reaction forces were collected to determine the load on the front casters, as well as back-emf data to attain the speed of the motors. The drive direction error was found to be different for various initial caster orientations. Drive direction error was greatest when both casters were oriented 90 degrees to the left or right, and least when both casters were oriented forward. The results show that drive direction error corresponds to the loading difference on the casters. The data indicates that loading differences may cause asymmetric drag on the casters, which in turn causes unbalanced torque load on the motors. This leads to a difference in motor speed and drive direction error.
Oh, Juwon; Sung, Young Mo; Hong, Yongseok; Kim, Dongho
2018-03-06
Aromaticity, the special energetic stability derived from cyclic [4 n + 2]π-conjugated electronic structures, has been the topic of intense interest in chemistry because it plays a critical role in rationalizing molecular stability, reactivity, and physical/chemical properties. Recently, the pioneering work by Colin Baird on aromaticity reversal, postulating that aromatic (antiaromatic) character in the ground state reverses to antiaromatic (aromatic) character in the lowest excited triplet state, has attracted much scientific attention. The completely reversed aromaticity in the excited state provides direct insight into understanding the photophysical/chemical properties of photoactive materials. In turn, the application of aromatic molecules to photoactive materials has led to numerous studies revealing this aromaticity reversal. However, most studies of excited-state aromaticity have been based on the theoretical point of view. The experimental evaluation of aromaticity in the excited state is still challenging and strenuous because the assessment of (anti)aromaticity with conventional magnetic, energetic, and geometric indices is difficult in the excited state, which practically restricts the extension and application of the concept of excited-state aromaticity. Time-resolved optical spectroscopies can provide a new and alternative avenue to evaluate excited-state aromaticity experimentally while observing changes in the molecular features in the excited states. Time-resolved optical spectroscopies take advantage of ultrafast laser pulses to achieve high time resolution, making them suitable for monitoring ultrafast changes in the excited states of molecular systems. This can provide valuable information for understanding the aromaticity reversal. This Account presents recent breakthroughs in the experimental assessment of excited-state aromaticity and the verification of aromaticity reversal with time-resolved optical spectroscopic measurements. To scrutinize this intriguing and challenging scientific issue, expanded porphyrins have been utilized as the ideal testing platform for investigating aromaticity because they show distinct aromatic and antiaromatic characters with aromaticity-specific spectroscopic features. Expanded porphyrins exhibit perfect aromatic and antiaromatic congener pairs having the same molecular framework but different numbers of π electrons, which facilitates the study of the pure effect of aromaticity by comparative analyses. On the basis of the characteristics of expanded porphyrins, time-resolved electronic and vibrational absorption spectroscopies capture the changes in electronic structure and molecular conformations driven by the change in aromaticity and provide clear evidence for aromaticity reversal in the excited states. The approaches described in this Account pave the way for the development of new and alternative experimental indices for the evaluation of excited-state aromaticity, which will enable overarching and fundamental comprehension of the role of (anti)aromaticity in the stability, dynamics, and reactivity in the excited states with possible implications for practical applications.
NASA Technical Reports Server (NTRS)
Tetervin, Neal
1959-01-01
The minimum critical Reynolds numbers for the similar solutions of the compressible laminar boundary layer computed by Cohen and Reshotko and also for the Falkner and Skan solutions as recomputed by Smith have been calculated by Lin's rapid approximate method for two-dimensional disturbances. These results enable the stability of the compressible laminar boundary layer with heat transfer and pressure gradient to be easily estimated after the behavior of the boundary layer has been computed by the approximate method of Cohen and Reshotko. The previously reported unusual result (NACA Technical Note 4037) that a highly cooled stagnation point flow is more unstable than a highly cooled flat-plate flow is again encountered. Moreover, this result is found to be part of the more general result that a favorable pressure gradient is destabilizing for very cool walls when the Mach number is less than that for complete stability. The minimum critical Reynolds numbers for these wall temperature ratios are, however, all larger than any value of the laminar-boundary-layer Reynolds number likely to be encountered. For Mach numbers greater than those for which complete stability occurs a favorable pressure gradient is stabilizing, even for very cool walls.
Shi, Ji-Lei; Qi, Ran; Zhang, Xu-Dong; Wang, Peng-Fei; Fu, Wei-Gui; Yin, Ya-Xia; Xu, Jian; Wan, Li-Jun; Guo, Yu-Guo
2017-12-13
Delivery of high capacity with high thermal and air stability is a great challenge in the development of Ni-rich layered cathodes for commercialized Li-ion batteries (LIBs). Herein we present a surface concentration-gradient spherical particle with varying elemental composition from the outer end LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) to the inner end LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA). This cathode material with the merit of NCM concentration-gradient protective buffer and the inner NCA core shows high capacity retention of 99.8% after 200 cycles at 0.5 C. Furthermore, this cathode material exhibits much improved thermal and air stability compared with bare NCA. These results provide new insights into the structural design of high-performance cathodes with high energy density, long life span, and storage stability materials for LIBs in the future.
Hydrodynamic Stability of Multicomponent Droplet Gasification in Reduced Gravity
NASA Technical Reports Server (NTRS)
Aharon, I.; Shaw, B. D.
1995-01-01
This investigation addresses the problem of hydrodynamic stability of a two-component droplet undergoing spherically-symmetrical gasification. The droplet components are assumed to have characteristic liquid species diffusion times that are large relative to characteristic droplet surface regression times. The problem is formulated as a linear stability analysis, with a goal of predicting when spherically-symmetric droplet gasification can be expected to be hydrodynamically unstable from surface-tension gradients acting along the surface of a droplet which result from perturbations. It is found that for the conditions assumed in this paper (quasisteady gas phase, no initial droplet temperature gradients, diffusion-dominated gasification), surface tension gradients do not play a role in the stability characteristics. In addition, all perturbations are predicted to decay such that droplets were hydrodynamically stable. Conditions are identified, however, that deserve more analysis as they may lead to hydrodynamic instabilities driven by capillary effects.
Species diversity of abuscular mycorrhizal fungi (AMF) was assessed along a dunes stabilization gradient (embyonic dune, foredune and fixed dune) at Praia da Joaquina (Joaquina Beach), Ilha de Santa Catarina. These dunes served as a case study to assess whether diversity and myc...
Solar energy powered microbial fuel cell with a reversible bioelectrode.
Strik, David P B T B; Hamelers, Hubertus V M; Buisman, Cees J N
2010-01-01
The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel cells is the pH membrane gradient which reduces cell voltage and power output. This problem is caused by acid production at the anode, alkaline production at the cathode, and the nonspecific proton exchange through the membrane. Here we report a solution for a new kind of solar energy powered microbial fuel cell via development of a reversible bioelectrode responsible for both biocatalyzed anodic and cathodic electron transfer. Anodic produced protons were used for the cathodic reduction reaction which held the formation of a pH membrane gradient. The microbial fuel cell continuously generated electricity and repeatedly reversed polarity dependent on aeration or solar energy exposure. Identified organisms within biocatalyzing biofilm of the reversible bioelectrode were algae, (cyano)bacteria and protozoa. These results encourage application of solar energy powered microbial fuel cells.
Kinetic simulation of edge instability in fusion plasmas
NASA Astrophysics Data System (ADS)
Fulton, Daniel Patrick
In this work, gyrokinetic simulations in edge plasmas of both tokamaks and field reversed. configurations (FRC) have been carried out using the Gyrokinetic Toroidal Code (GTC) and A New Code (ANC) has been formulated for cross-separatrix FRC simulation. In the tokamak edge, turbulent transport in the pedestal of an H-mode DIII-D plasma is. studied via simulations of electrostatic driftwaves. Annulus geometry is used and simulations focus on two radial locations corresponding to the pedestal top with mild pressure gradient and steep pressure gradient. A reactive trapped electron instability with typical ballooning mode structure is excited in the pedestal top. At the steep gradient, the electrostatic instability exhibits unusual mode structure, peaking at poloidal angles theta=+- pi/2. Simulations find this unusual mode structure is due to steep pressure gradients in the pedestal but not due to the particular DIII-D magnetic geometry. Realistic DIII-D geometry has a stabilizing effect compared to a simple circular tokamak geometry. Driftwave instability in FRC is studied for the first time using gyrokinetic simulation. GTC. is upgraded to treat realistic equilibrium calculated by an MHD equilibrium code. Electrostatic local simulations in outer closed flux surfaces find ion-scale modes are stable due to the large ion gyroradius and that electron drift-interchange modes are excited by electron temperature gradient and bad magnetic curvature. In the scrape-off layer (SOL) ion-scale modes are excited by density gradient and bad curvature. Collisions have weak effects on instabilities both in the core and SOL. Simulation results are consistent with density fluctuation measurements in the C-2 experiment using Doppler backscattering (DBS). The critical density gradients measured by the DBS qualitatively agree with the linear instability threshold calculated by GTC simulations. One outstanding critical issue in the FRC is the interplay between turbulence in the FRC. core and SOL regions. While the magnetic flux coordinates used by GTC provide a number of computational advantages, they present unique challenges at the magnetic field separatrix. To address this limitation, a new code, capable of coupled core-SOL simulations, is formulated, implemented, and successfully verified.
Zhu, Xiuping; Kim, Taeyoung; Rahimi, Mohammad; Gorski, Christopher A; Logan, Bruce E
2017-02-22
Salinity gradient energy can be directly converted into electrical power by using reverse electrodialysis (RED) and other technologies, but reported power densities have been too low for practical applications. Herein, the RED stack performance was improved by using 2,6-dihydroxyanthraquinone and ferrocyanide as redox couples. These electrolytes were then used in a flow battery to produce an integrated RED stack and flow battery (RED-FB) system capable of capturing, storing, and discharging salinity gradient energy. Energy captured from the RED stack was discharged in the flow battery at a maximum power density of 3.0 kW m -2 -anode, which was similar to the flow batteries charged by electrical power and could be used for practical applications. Salinity gradient energy captured from the RED stack was recovered from the electrolytes as electricity with 30 % efficiency, and the maximum energy density of the system was 2.4 kWh m -3 -anolyte. The combined RED-FB system overcomes many limitations of previous approaches to capture, store, and use salinity gradient energy from natural or engineered sources. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tsonev, Latchezar I; Hirsh, Allen G
2016-10-14
We have previously described a liquid chromatographic (LC) method for uncoupling controlled, wide range pH gradients and simultaneous controlled gradients of a non-buffering solute on ion exchange resins (Hirsh and Tsonev, 2012) [1]. Here we report the application of this two dimensional LC technique to the problem of resolving Human Transferrin (HT) isoforms. This important iron transporting protein should theoretically occur in several thousand glycoforms, but only about a dozen have been reported. Using dual simultaneous independent gradients (DSIGs) of acetonitrile (ACN) and pH on a mixed bed stationary phase (SP) consisting of a mixture of an anion exchange resin and a reversed phase (RP) resin we partially resolve about 60 isoforms. These are likely to be partially refolded glycoforms generated by interaction of HT with the highly hydrophobic RP SP, as well as distinct folded glycoforms. Thus this study should have interesting implications for both glycoform separation and the study of protein folding. Copyright © 2016 Elsevier B.V. All rights reserved.
Rapid purification of staphylococcal enterotoxin B by high-pressure liquid chromatography.
Strickler, M P; Neill, R J; Stone, M J; Hunt, R E; Brinkley, W; Gemski, P
1989-01-01
The Staphylococcus aureus enterotoxins represent a group of proteins that cause emesis and diarrhea in humans and other primates. We have developed a rapid two-step high-pressure liquid chromatography (HPLC) procedure for purification of staphylococcal enterotoxin B (SEB). Sterile filtrates (2.5 liters) of strain 10-275 were adsorbed directly onto a reversed-phase column (50 mm by 30 cm Delta Pak; 300 A [30 nm], 15 microns, C18). SEB was obtained by using a unique sequential gradient system. First, an aqueous ammonium acetate to acetonitrile gradient followed by an aqueous trifluoroacetic acid (TFA) wash was used to remove contaminants. A subsequent TFA to acetonitrile-TFA gradient eluted the bound SEB. Further purification was obtained by rechromatography on a cation-exchange column. From 35 to 45% of the SEB in starting filtrates was recovered. Analysis by immunoblotting of samples separated on sodium dodecyl sulfate-polyacrylamide gels indicated that HPLC-purified SEB exhibited immunological and biochemical properties similar to those of the SEB standard. Induction of an emetic response in rhesus monkeys showed that the HPLC-purified toxin also retained biological activity. Images PMID:2745678
Krstanović, Marina; Frkanec, Ruza; Vranesić, Branka; Ljevaković, Durdica; Sporec, Vesna; Tomasić, Jelka
2002-06-25
The reversed-phase HPLC method using UV detection was developed for the determination of (a) immunostimulating peptidoglycan monomers represented by the basic structure GlcNAc-MurNAc-L-Ala-D-isoGln-meso-DAP(omegaNH(2))-D-Ala-D-Ala (PGM) and two more lipophilic derivatives, Boc-Tyr-PGM and (Ada-1-yl)-CH(2)-CO-PGM, (b) two diastereomeric immunostimulating adamantyltripeptides L- and D-(adamant-2-yl)-Gly-L-Ala-D-isoGln and (c) peptides obtained by the enzyme hydrolyses of peptidoglycans and related peptides. The enzymes used, N-acetylmuramyl-L-alanine amidase and an L,D-aminopeptidase are present in mammalian sera and are involved in the metabolism of peptidoglycans and related peptides. Appropriate solvent systems were chosen with regard to structure and lipophilicity of each compound. As well, different gradient systems within the same solvent system had to be applied in order to achieve satisfactory separation and retention time. HPLC separation was developed with the aim to use this method for the study of the stability of the tested compounds, the purity during preparation and isolation and for following the enzyme hydrolyses.
Microbial response to environmental gradients in a ceramic-based diffusion system.
Wolfaardt, G M; Hendry, M J; Birkham, T; Bressel, A; Gardner, M N; Sousa, A J; Korber, D R; Pilaski, M
2008-05-01
A solid, porous matrix was used to establish steady-state concentration profiles upon which microbial responses to concentration gradients of nutrients or antimicrobial agents could be quantified. This technique relies on the development of spatially defined concentration gradients across a ceramic plate resulting from the diffusion of solutes through the porous ceramic matrix. A two-dimensional, finite-element numerical transport model was used to predict the establishment of concentration profiles, after which concentration profiles of conservative tracers were quantified fluorometrically and chemically at the solid-liquid interface to verify the simulated profiles. Microbial growth responses to nutrient, hypochloride, and antimicrobial concentration gradients were then quantified using epifluorescent or scanning confocal laser microscopy. The observed microbial response verified the establishment and maintenance of stable concentration gradients along the solid-liquid interface. These results indicate the ceramic diffusion system has potential for the isolation of heterogeneous microbial communities as well as for testing the efficacy of antimicrobial agents. In addition, the durability of the solid matrix allowed long-term investigations, making this approach preferable to conventional gel-stabilized systems that are impeded by erosion as well as expansion or shrinkage of the gel. Copyright 2008 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zeb, Alam; Ullah, Fareed
2017-04-01
Adiantum capillus-veneris is important endangered fern species with several medicinal properties. In this study, the leaves samples were extracted and separated using reversed phase HPLC with DAD for carotenoids, chlorophylls and phenolic compounds. Separation of carotenoids and chlorophylls were carried out using a tertiary gradient system of water, MTBE and methanol-water, while a binary gradient system of methanol-water-acetic acid was used for phenolic profiling. Results revealed eight carotenoids, four pheophytins and two chlorophylls. Lutein (806.0 µg/g), chlorophyll b' (410.0 µg/g), chlorophyll a (162.4 µg/g), 9'-Z-neoxanthin (142.8 µg/g) and all-E-violaxanthin (82.2 µg/g)) were present in higher amounts. The relatively high amounts of lutein may be one of the key indicator of beneficial antioxidant properties. The phenolic profile revealed a total of thirteen compounds, namely p-hydroxybenzoic acid, chlorogenic acid, caftaric acid, kaempferol glycosides, p-coumaric acid, rosmarinic acid, 5-caffeoylquinic acid, and quercetin glycosides. Kaempferol-3-sophorotrioside (58.7 mg/g), chlorogenic acid (28.5 mg/g), 5-O-caffeoylquinic acid (18.7 mg/g), coumaric acid (11.2 mg/g) and its derivative (33.1 mg/g) were present in high amounts. These results suggest that the reversed phase HPLC profiling of adiantum leaves provides a better understanding in to the actual composition of bioactive compounds, which may be responsible for possible medicinal properties. Adiantum leaves rich in important bioactive phytochemicals can be used as a potential source of nutraceuticals or as a functional food ingredient.
Zeb, Alam; Ullah, Fareed
2017-01-01
Adiantum capillus-veneris is important endangered fern species with several medicinal properties. In this study, the leaves samples were extracted and separated using reversed phase HPLC with DAD for carotenoids, chlorophylls and phenolic compounds. Separation of carotenoids and chlorophylls were carried out using a tertiary gradient system of water, MTBE and methanol-water, while a binary gradient system of methanol-water-acetic acid was used for phenolic profiling. Results revealed eight carotenoids, four pheophytins, and two chlorophylls. Lutein (806.0 μg/g), chlorophyll b′ (410.0 μg/g), chlorophyll a (162.4 μg/g), 9′-Z-neoxanthin (142.8 μg/g) and all-E-violaxanthin (82.2 μg/g) were present in higher amounts. The relatively high amounts of lutein may be one of the key indicator of beneficial antioxidant properties. The phenolic profile revealed a total of 13 compounds, namely 4-hydroxybenzoic acid, chlorogenic acid, caftaric acid, kaempferol glycosides, p-coumaric acid, rosmarinic acid, 5-caffeoylquinic acid, and quercetin glycosides. Kaempferol-3-sophorotrioside (58.7 mg/g), chlorogenic acid (28.5 mg/g), 5-O-caffeoylquinic acid (18.7 mg/g), coumaric acid (11.2 mg/g), and its derivative (33.1 mg/g) were present in high amounts. These results suggest that the reversed phase HPLC profiling of Adiantum leaves provides a better understanding in to the actual composition of bioactive compounds, which may be responsible for the potential medicinal properties. Adiantum leaves rich in important bioactive phytochemicals can be used as a possible source of nutraceuticals or as a functional food ingredient. PMID:28497036
Zeb, Alam; Ullah, Fareed
2017-01-01
Adiantum capillus-veneris is important endangered fern species with several medicinal properties. In this study, the leaves samples were extracted and separated using reversed phase HPLC with DAD for carotenoids, chlorophylls and phenolic compounds. Separation of carotenoids and chlorophylls were carried out using a tertiary gradient system of water, MTBE and methanol-water, while a binary gradient system of methanol-water-acetic acid was used for phenolic profiling. Results revealed eight carotenoids, four pheophytins, and two chlorophylls. Lutein (806.0 μg/g), chlorophyll b ' (410.0 μg/g), chlorophyll a (162.4 μg/g), 9'- Z -neoxanthin (142.8 μg/g) and all- E -violaxanthin (82.2 μg/g) were present in higher amounts. The relatively high amounts of lutein may be one of the key indicator of beneficial antioxidant properties. The phenolic profile revealed a total of 13 compounds, namely 4-hydroxybenzoic acid, chlorogenic acid, caftaric acid, kaempferol glycosides, p-coumaric acid, rosmarinic acid, 5-caffeoylquinic acid, and quercetin glycosides. Kaempferol-3-sophorotrioside (58.7 mg/g), chlorogenic acid (28.5 mg/g), 5- O -caffeoylquinic acid (18.7 mg/g), coumaric acid (11.2 mg/g), and its derivative (33.1 mg/g) were present in high amounts. These results suggest that the reversed phase HPLC profiling of Adiantum leaves provides a better understanding in to the actual composition of bioactive compounds, which may be responsible for the potential medicinal properties. Adiantum leaves rich in important bioactive phytochemicals can be used as a possible source of nutraceuticals or as a functional food ingredient.
NASA Astrophysics Data System (ADS)
Giddings, S. N.; MacCready, P.
2017-12-01
Estuarine exchange flow governs the interaction between oceans and estuaries and thus plays a large role in their biogeochemical processes. This study investigates the variability in estuarine exchange flow due to offshore oceanic conditions including upwelling/downwelling, and the presence of a river plume offshore (from a neighboring estuary). We address these processes via numerical simulations at the mouth of the Salish Sea, a large estuarine system in the Northeast Pacific. An analysis of the Total Exchange Flow indicates that during the upwelling season, the exchange flow is fairly consistent in magnitude and oriented in a positive (into the estuary at depth and out at the surface) direction. However, during periods of downwelling favorable winds, the exchange flow shows significantly more variability including multiple reversals, consistent with observations, and surface intrusions of the Columbia River plume which originates 250 km to the south. Numerical along-strait momentum budgets show that the exchange flow is forced dominantly by the pressure gradients, particularly the baroclinic. The pressure gradient is modified by Coriolis and sometimes advection, highlighting the importance of geostrophy and local adjustments. In experiments conducted without the offshore river plume, reversals still occur but are weaker, and the baroclinic pressure gradient plays a reduced role. These results suggest that estuaries along strong upwelling coastlines should experience significant modulation in the exchange flow during upwelling versus downwelling conditions. Additionally, they highlight the importance of nearby estuaries impacting one-another, not only in terms of connectivity, but also altering the exchange flow.
Enhancement in Elastic Bending Rigidity of Polymer Loaded Reverse Microemulsions.
Geethu, P M; Yadav, Indresh; Aswal, Vinod K; Satapathy, Dillip K
2017-11-14
Elastic bending rigidity of the surfactant shell is a crucial parameter which determines the phase behavior and stability of microemulsion droplets. For water-in-oil reverse microemulsions stabilized by AOT (sodium 1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate) surfactant, the elastic bending rigidity is close to thermal energy at room temperature (k B T) and can be modified by the presence of hydrophilic polymers. Here, we explore the influence of two polymers polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP), both having nearly same size (radius of gyration, R g ) but different dipole moment, on elastic bending rigidity of water-AOT-n-decane reverse microemulsions via estimating the percolation temperatures (T P ) and droplet radii using dielectric relaxation spectroscopy (DRS) and small-angle neutron scattering (SANS) techniques. Notably, an increase in T P is observed on introducing PEG and PVP polymers and is attributed to the adsorption of polymer chains onto the surfactant monolayer. The stability of the droplet phase of microemulsion after the incorporation of PEG and PVP polymers is confirmed by contrast matching SANS experiments. An enhancement in elastic bending rigidity of AOT surfactant shell amounting to ∼46% is observed upon incorporation of PVP into the droplet core, whereas for PEG addition, a smaller increase of about 17% is recorded. We conjecture that the considerable increase in elastic bending rigidity of the surfactant monolayer upon introducing PVP is because of the strong ion-dipole interaction between anionic AOT and dipoles present along the PVP polymer chains. Scaling exponents extracted from the temperature dependent electrical conductivity measurements and the frequency dependent scaling of conductivity at percolation indicate the dynamic nature of percolation for both pure and polymer loaded reverse microemulsions. The decrease in activation energy of percolation upon incorporating PEG and PVP polymer molecules also reflects the increased stability of microemulsion droplets against thermal fluctuations.
Temperature Gradient-Induced Instability of Perovskite via Ion Transport.
Wang, Xinwei; Liu, Hong; Zhou, Feng; Dahan, Jeremy; Wang, Xin; Li, Zhengping; Shen, Wenzhong
2018-01-10
Perovskite has been known as a promising novel material for photovoltaics and other fields because of its excellent opto-electric properties and convenient fabrication. However, its stability has been a widely known haunting factor that has severely deteriorated its application in reality. In this work, it has been discovered for the first time that perovskite can become significantly chemically unstable with the existence of a temperature gradient in the system, even at temperature far below its thermal decomposition condition. A study of the detailed mechanism has revealed that the existence of a temperature gradient could induce a mass transport process of extrinsic ionic species into the perovskite layer, which enhances its decomposition process. Moreover, this instability could be effectively suppressed with a reduced temperature gradient by simple structural modification of the device. Further experiments have proved the existence of this phenomenon in different perovskites with various mainstream substrates, indicating the universality of this phenomenon in many previous studies and future research. Hopefully, this work may bring deeper understanding of its formation mechanisms and facilitate the general development of perovskite toward its real application.
NASA Astrophysics Data System (ADS)
Pankin, A. Y.; Kritz, A. H.; Rafiq, T.; Garofalo, A. M.; Holod, I.; Weiland, J.
2018-05-01
The Multi-Mode Model (MMM7.1) for anomalous transport is tested in predictive modeling of temperature profiles of a high beta poloidal DIII-D discharge. This new H-mode plasma regime, with high beta poloidal and high bootstrap currents, has been studied in DIII-D tokamak discharges [A. Garofalo et al., Nucl. Fusion 55, 123025 (2015)]. The role of instabilities that can drive the anomalous transport described by MMM7.1 is investigated. The temperature profiles for a high beta poloidal DIII-D discharge are computed using the NCLASS model for the neoclassical transport and the Weiland and Electron Temperature Gradient (ETG) components of the MMM7.1 model for the anomalous transport. The neoclassical transport is found to be the main contributor to the ion thermal transport in the plasma core. The contributions from the ion temperature gradient driven modes are found to be important only outside of the internal transport barrier. The magnitudes of the predicted temperature profiles are found to be in a reasonable agreement with experimental profiles. The simulation results approximately reproduce the internal transport barrier in the ion temperature profile but not in the electron temperature profile due to a weak dependence of the ETG driven transport on the Shafranov shift in the ETG component of MMM7.1. Possible effects that can contribute to stabilization of these modes, for example, effects associated with the large beta poloidal such as the Shafranov shift stabilization in the MMM7.1 model, are discussed. It is demonstrated that the E × B flow shear has a relatively small effect in the formation of the internal transport barrier in the high beta poloidal DIII-D discharge 154406. The Shafranov shift (alpha stabilization) and small or reversed magnetic shear profiles are found to be the primary reasons for quenched anomalous transport in this discharge.
Chawla, Mohit; Abdel-Azeim, Safwat; Oliva, Romina; Cavallo, Luigi
2014-01-01
The G:C reverse Watson–Crick (W:W trans) base pair, also known as Levitt base pair in the context of tRNAs, is a structurally and functionally important base pair that contributes to tertiary interactions joining distant domains in functional RNA molecules and also participates in metabolite binding in riboswitches. We previously indicated that the isolated G:C W:W trans base pair is a rather unstable geometry, and that dicationic metal binding to the Guanine base or posttranscriptional modification of the Guanine can increase its stability. Herein, we extend our survey and report on other H-bonding interactions that can increase the stability of this base pair. To this aim, we performed a bioinformatics search of the PDB to locate all the occurencies of G:C trans base pairs. Interestingly, 66% of the G:C trans base pairs in the PDB are engaged in additional H-bonding interactions with other bases, the RNA backbone or structured water molecules. High level quantum mechanical calculations on a data set of representative crystal structures were performed to shed light on the structural stability and energetics of the various crystallographic motifs. This analysis was extended to the binding of the preQ1 metabolite to a preQ1-II riboswitch. PMID:24121683
Synthesis of cadmium sulfide in situ in reverse micelles and in hydrocarbon gels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petit, C.; Pileni, M.P.
1988-04-21
The synthesis in situ of cadmium sulfide semiconductors in AOT reverse micelles produces smaller and more monodispersed particles than are obtained in Triton reverse micelles or in aqueous solution. When gelatine is added to the previous solution, the semiconductor is entrapped in a hydrocarbon gel and it size remains the same as that obtained in reverse micelles. The size of the sulfite cadmium aggregate formed in AOT hydrocarbon gels is similar to that obtained under similar conditions in AOT reverse micelles. AOT surfactant can play the role of stabilizing agent. However, a more efficient stabilization is obtained by adding tomore » AOT reverse micelles another stabilizing agent such as sodium hexametaphosphate. The crystallite size is strongly dependent on the ratio of the cadmium and sulfur ions, defined by x = (Cd/sup 2 +/)/(S/sup 2 -//. The yield of reduced viologen obtained by CdS irradiation in AOT reverse micelles is 15 times more efficient than that formed in aqueous solutions whereas it is only three times more in hydrocarbon gels.« less
Reynolds and Maxwell stress measurements in the reversed field pinch experiment Extrap-T2R
NASA Astrophysics Data System (ADS)
Vianello, N.; Antoni, V.; Spada, E.; Spolaore, M.; Serianni, G.; Cavazzana, R.; Bergsåker, H.; Cecconello, M.; Drake, J. R.
2005-08-01
The complete Reynolds stress (RS) has been measured in the edge region of the Extrap-T2R reversed field pinch experiment. The RS exhibits a strong gradient in the region where a high E × B shear takes place. Experimental results show this gradient to be almost entirely due to the electrostatic contribution. This has been interpreted as experimental evidence of flow generation via turbulence mechanism. The scales involved in flow generation are deduced from the frequency decomposition of RS tensor. They are found related to magnetohydrodynamic activity but are different with respect to the scales responsible for turbulent transport.
NASA Astrophysics Data System (ADS)
Zhu, Shiyao; Zheng, Junsheng; Huang, Jun; Dai, Ningning; Li, Ping; Zheng, Jim P.
2018-07-01
Polyelectrolyte poly(diallyldimethylammonium chloride) (PDDA) functionalized carbon nanotubes (CNTs) supported Pt electrocatalyst was synthesized as a substitute for commonly used Pt/C and Pt/CNTs (modified by harsh acid-oxidation treatment) catalysts. In addition, this catalyst was fabricated as the cathode catalyst layer (CL) with a unique double-layered structure for proton exchange membrane fuel cells (PEMFCs). Thermogravimetric analysis shows an enhanced thermal stability of Pt/PDDA-CNTs. The Pt/PDDA-CNTs catalyst with an average Pt particle size of ∼3.1 nm exhibits the best electrocatalytic activity and a significantly enhanced electrochemical stability. Scanning electron microscope, energy dispersive spectrometer and mercury intrusion porosimetry results demonstrate the gradient distribution of Pt content and pore size along the thickness of buckypaper catalyst layer (BPCL). The accelerated degradation test results of BPCLs indicate that this gradient structure can ensure a high Pt utilization in the BPCLs (up to 90%) and further improve the catalyst durability. In addition, the membrane electrode assembly (MEA) fabricated with cathode BPCL-PDDA shows the best single cell performance and long-term stability, and a reduction of Pt loading can be achieved. The feasibility of BPCL for improving the Pt utilization is also demonstrated by the cathode cyclic voltammetry in MEA.
NASA Astrophysics Data System (ADS)
Sun, Xiao-Dong; Ge, Zhong-Hui; Li, Zhen-Chun
2017-09-01
Although conventional reverse time migration can be perfectly applied to structural imaging it lacks the capability of enabling detailed delineation of a lithological reservoir due to irregular illumination. To obtain reliable reflectivity of the subsurface it is necessary to solve the imaging problem using inversion. The least-square reverse time migration (LSRTM) (also known as linearized reflectivity inversion) aims to obtain relatively high-resolution amplitude preserving imaging by including the inverse of the Hessian matrix. In practice, the conjugate gradient algorithm is proven to be an efficient iterative method for enabling use of LSRTM. The velocity gradient can be derived from a cross-correlation between observed data and simulated data, making LSRTM independent of wavelet signature and thus more robust in practice. Tests on synthetic and marine data show that LSRTM has good potential for use in reservoir description and four-dimensional (4D) seismic images compared to traditional RTM and Fourier finite difference (FFD) migration. This paper investigates the first order approximation of LSRTM, which is also known as the linear Born approximation. However, for more complex geological structures a higher order approximation should be considered to improve imaging quality.
Yip, Ngai Yin; Elimelech, Menachem
2014-09-16
Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. The two processes have intrinsically different working principles: controlled mixing in PRO is achieved by water permeation across salt-rejecting membranes, whereas RED is driven by ion flux across charged membranes. This study compares the energy efficiency and power density performance of PRO and RED with simulated technologically available membranes for natural, anthropogenic, and engineered salinity gradients (seawater-river water, desalination brine-wastewater, and synthetic hypersaline solutions, respectively). The analysis shows that PRO can achieve both greater efficiencies (54-56%) and higher power densities (2.4-38 W/m(2)) than RED (18-38% and 0.77-1.2 W/m(2)). The superior efficiency is attributed to the ability of PRO membranes to more effectively utilize the salinity difference to drive water permeation and better suppress the detrimental leakage of salts. On the other hand, the low conductivity of currently available ion exchange membranes impedes RED ion flux and, thus, constrains the power density. Both technologies exhibit a trade-off between efficiency and power density: employing more permeable but less selective membranes can enhance the power density, but undesired entropy production due to uncontrolled mixing increases and some efficiency is sacrificed. When the concentration difference is increased (i.e., natural → anthropogenic → engineered salinity gradients), PRO osmotic pressure difference rises proportionally but not so for RED Nernst potential, which has logarithmic dependence on the solution concentration. Because of this inherently different characteristic, RED is unable to take advantage of larger salinity gradients, whereas PRO power density is considerably enhanced. Additionally, high solution concentrations suppress the Donnan exclusion effect of the charged RED membranes, severely reducing the permselectivity and diminishing the energy conversion efficiency. This study indicates that PRO is more suitable to extract energy from a range of salinity gradients, while significant advancements in ion exchange membranes are likely necessary for RED to be competitive with PRO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yip, NY; Elimelech, M
Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. The two processes have intrinsically different working principles: controlled mixing in PRO is achieved by water permeation across salt-rejecting membranes, whereas RED is driven by ion flux across charged membranes. This study compares the energy efficiency and power density performance of PRO and RED with simulated technologically available membranes for natural, anthropogenic, and engineered salinity gradients (seawater-river water, desalination brine-wastewater, and synthetic hypersaline solutions, respectively). The analysis shows that PRO can achieve both greater efficiencies (54-56%) andmore » higher power densities (2.4-38 W/m(2)) than RED (18-38% and 0.77-1.2 W/m(2)). The superior efficiency is attributed to the ability of PRO membranes to more effectively utilize the salinity difference to drive water permeation and better suppress the detrimental leakage of salts. On the other hand, the low conductivity of currently available ion exchange membranes impedes RED ion flux and, thus, constrains the power density. Both technologies exhibit a trade-off between efficiency and power density: employing more permeable but less selective membranes can enhance the power density, but undesired entropy production due to uncontrolled mixing increases and some efficiency is sacrificed. When the concentration difference is increased (i.e., natural -> anthropogenic -> engineered salinity gradients), PRO osmotic pressure difference rises proportionally but not so for RED Nernst potential, which has logarithmic dependence on the solution concentration. Because of this inherently different characteristic, RED is unable to take advantage of larger salinity gradients, whereas PRO power density is considerably enhanced. Additionally, high solution concentrations suppress the Donnan exclusion effect of the charged RED membranes, severely reducing the permselectivity and diminishing the energy conversion efficiency. This study indicates that PRO is more suitable to extract energy from a range of salinity gradients, while significant advancements in ion exchange membranes are likely necessary for RED to be competitive with PRO.« less
Urea transport through composite polyallylamine membranes
NASA Technical Reports Server (NTRS)
Ballou, E. V.; Kubo, L. Y.; Spitze, L. A.; Wydeven, T.; Clark, J. A.
1977-01-01
Polyallylamine composite reverse osmosis membranes were prepared by plasma polymerization and deposition onto small-pored cellulose acetate/cellulose nitrate films. The polyallylamine coated the porous substrate with a thin uniform polymer film which exhibited water permeability and urea rejection, of interest because of the potential application of reverse osmosis to urine purification in closed environmental systems. The flux of C-14 labeled urea was studied under the influence of osmotic gradients provided by sodium chloride solutions. The urea flux was found to be enhanced by an osmotic pressure gradient in the same direction and diminished, but not prevented, by an opposing osmotic pressure gradient. Consideration is given to the mechanism of the urea transport, as well as to the influence of concentration polarization on the experimental results. The minimization of coupled flow in pores of a critical size range is apparently necessary to improve urea rejection.
Wind-Tunnel Investigation of a 1/5-Scale Model of the Ryan XF2R Airplane
NASA Technical Reports Server (NTRS)
Wong, Park Y.
1947-01-01
Wind-tunnel tests on a 1/5-scale model of the Ryan XF2R airplane were conducted to determine the aerodynamic characteristics of the air intake for the front power plant, a General Electric TG-100 gas turbine, and to determine the stability and control characteristics of the airplane. The results indicated low-dynamic-pressure recover3- for the air intake to the TG-100 gas turbine rith the standard propeller in operation. Propeller cuffs were designed and tested for the purpose of impoving the dynamic-pressure recovery. Data obtained with the cuffs installed and the gap between the spinner an& the cuff sealed indicated a substantial gain in dynamic pressure recovery over that obtained with the standard propeller and with the cuffed propeller unsealed. Stability and control tests were conducted with the sealed cuffs installed on the propeller. The data from these tests indicated the following unsatisfactory characteristics for the airplane: 1. Marginal static longitudinal stability. 2. Inadequate directional stability and control. 3. Rudder-pedal-force reversal in the climb condition. 4. Negative dihedral effect in the power-on approach and wave-off conditions.
Physical integrity: the missing link in biological monitoring and TMDLs.
Asmus, Brenda; Magner, Joseph A; Vondracek, Bruce; Perry, Jim
2009-12-01
The Clean Water Act mandates that the chemical, physical, and biological integrity of our nation's waters be maintained and restored. Physical integrity has often been defined as physical habitat integrity, and as such, data collected during biological monitoring programs focus primarily on habitat quality. However, we argue that channel stability is a more appropriate measure of physical integrity and that channel stability is a foundational element of physical habitat integrity in low-gradient alluvial streams. We highlight assessment tools that could supplement stream assessments and the Total Maximum Daily Load stressor identification process: field surveys of bankfull cross-sections; longitudinal thalweg profiles; particle size distribution; and regionally calibrated, visual, stream stability assessments. Benefits of measuring channel stability include a more informed selection of reference or best attainable stream condition for an Index of Biotic Integrity, establishment of a baseline for monitoring changes in present and future condition, and indication of channel stability for investigations of chemical and biological impairments associated with sediment discontinuity and loss of habitat quality.
Stabilization of porous glass reverse-osmosis membranes
NASA Technical Reports Server (NTRS)
Ballou, E. V.; Leban, M. I.; Wydeven, T.
1972-01-01
Application of porous glass in form of capillary tubes for low capacity ion exchange in hyperfiltration experiments is discussed. Efficiency of desalination by process of reverse osmosis is described. Stabilization of porous glass membrane by presence of aluminum chloride is analyzed.
Great bowerbirds create theaters with forced perspective when seen by their audience.
Endler, John A; Endler, Lorna C; Doerr, Natalie R
2010-09-28
Birds in the infraorder Corvida [1] (ravens, jays, bowerbirds) are renowned for their cognitive abilities [2-4], which include advanced problem solving with spatial inference [4-8], tool use and complex constructions [7-10], and bowerbird cognitive ability is associated with mating success [11]. Great bowerbird males construct bowers with a long avenue from within which females view the male displaying over his bower court [10]. This predictable audience viewpoint is a prerequisite for forced (altered) visual perspective [12-14]. Males make courts with gray and white objects that increase in size with distance from the avenue entrance. This gradient creates forced visual perspective for the audience; court object visual angles subtended on the female viewer's eye are more uniform than if the objects were placed at random. Forced perspective can yield false perception of size and distance [12, 15]. After experimental reversal of their size-distance gradient, males recovered their gradients within 3 days, and there was little difference from the original after 2 wks. Variation among males in their forced-perspective quality as seen by their female audience indicates that visual perspective is available for use in mate choice, perhaps as an indicator of cognitive ability. Regardless of function, the creation and maintenance of forced visual perspective is clearly important to great bowerbirds and suggests the possibility of a previously unknown dimension of bird cognition. Copyright © 2010 Elsevier Ltd. All rights reserved.
Effect of reverse shoulder design philosophy on muscle moment arms.
Hamilton, Matthew A; Diep, Phong; Roche, Chris; Flurin, Pierre Henri; Wright, Thomas W; Zuckerman, Joseph D; Routman, Howard
2015-04-01
This study analyzes the muscle moment arms of three different reverse shoulder design philosophies using a previously published method. Digital bone models of the shoulder were imported into a 3D modeling software and markers placed for the origin and insertion of relevant muscles. The anatomic model was used as a baseline for moment arm calculations. Subsequently, three different reverse shoulder designs were virtually implanted and moment arms were analyzed in abduction and external rotation. The results indicate that the lateral offset between the joint center and the axis of the humerus specific to one reverse shoulder design increased the external rotation moment arms of the posterior deltoid relative to the other reverse shoulder designs. The other muscles analyzed demonstrated differences in the moment arms, but none of the differences reached statistical significance. This study demonstrated how the combination of variables making up different reverse shoulder designs can affect the moment arms of the muscles in different and statistically significant ways. The role of humeral offset in reverse shoulder design has not been previously reported and could have an impact on external rotation and stability achieved post-operatively. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Experimental Study of Unsteady Flow Separation in a Laminar Boundary Layer
NASA Astrophysics Data System (ADS)
Bonacci, Andrew; Lang, Amy; Wahidi, Redha; Santos, Leonardo
2017-11-01
Flow separation, caused by an adverse pressure gradient, is a major problem in many applications. Reversing flow near the wall is the first sign of incipient separation and can bristle shark scales which may be linked to a passive, flow actuated separation control mechanism. An investigation of how this backflow forms and how it interacts with shark skin is of interest due to the fact that this could be used as a bioinspired means of initiating flow control. A water tunnel experiment aims to study unsteady separation with a focus on the reversing flow development near the wall within a flat plate laminar boundary layer (Re on order of 105) as an increasing adverse pressure gradient is induced by a rotating cylinder. Unsteady reversing flow development is documented using DPIV. Funding was provided by the National Science Foundation under the Research Experience for Undergraduates (REU) program (EEC 1659710) and the Army Research Office.
Shu, Beatrice; Johnston, Tyler; Lindsey, Derek P; McAdams, Timothy R
2012-02-01
Enhancing anterior-posterior (AP) stability in acromioclavicular (AC) reconstruction may be advantageous. To compare the initial stability of AC reconstructions with and without augmentation by either (1) a novel "reverse" coracoacromial (CA) ligament transfer or (2) an intramedullary AC tendon graft. Reverse CA transfer will improve AP stability compared with isolated coracoclavicular (CC) reconstruction. Controlled laboratory study. Six matched pairs of cadaveric shoulders underwent distal clavicle resection and CC reconstruction. Displacement (mm) was measured during cyclic loading along AP (±25 N) and superior-inferior (SI; 10-N compression, 70-N tension) axes. Pairs were randomized to receive each augmentation and the same loading protocol applied. Reverse CA transfer (3.71 ± 1.3 mm, standard error of the mean [SEM]; P = .03) and intramedullary graft (3.41 ± 1.1 mm; P = .03) decreased AP translation compared with CC reconstruction alone. The SI displacement did not differ. Equivalence tests suggest no difference between augmentations in AP or SI restraint. Addition of either reverse CA transfer or intramedullary graft demonstrates improved AP restraint and provides similar SI stability compared with isolated CC reconstruction. Reverse CA ligament transfer may be a reasonable alternative to a free tendon graft to augment AP restraint in AC reconstruction.
Control of bootstrap current in the pedestal region of tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaing, K. C.; Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53796; Lai, A. L.
2013-12-15
The high confinement mode (H-mode) plasmas in the pedestal region of tokamaks are characterized by steep gradient of the radial electric field, and sonic poloidal U{sub p,m} flow that consists of poloidal components of the E×B flow and the plasma flow velocity that is parallel to the magnetic field B. Here, E is the electric field. The bootstrap current that is important for the equilibrium, and stability of the pedestal of H-mode plasmas is shown to have an expression different from that in the conventional theory. In the limit where ‖U{sub p,m}‖≫ 1, the bootstrap current is driven by themore » electron temperature gradient and inductive electric field fundamentally different from that in the conventional theory. The bootstrap current in the pedestal region can be controlled through manipulating U{sub p,m} and the gradient of the radial electric. This, in turn, can control plasma stability such as edge-localized modes. Quantitative evaluations of various coefficients are shown to illustrate that the bootstrap current remains finite when ‖U{sub p,m}‖ approaches infinite and to provide indications how to control the bootstrap current. Approximate analytic expressions for viscous coefficients that join results in the banana and plateau-Pfirsch-Schluter regimes are presented to facilitate bootstrap and neoclassical transport simulations in the pedestal region.« less
Dextromethorphan inhibition of voltage-gated proton currents in BV2 microglial cells.
Song, Jin-Ho; Yeh, Jay Z
2012-05-10
Dextromethorphan, an antitussive drug, has a neuroprotective property as evidenced by its inhibition of microglial production of pro-inflammatory cytokines and reactive oxygen species. The microglial activation requires NADPH oxidase activity, which is sustained by voltage-gated proton channels in microglia as they dissipate an intracellular acid buildup. In the present study, we examined the effect of dextromethorphan on proton currents in microglial BV2 cells. Dextromethorphan reversibly inhibited proton currents with an IC(50) value of 51.7 μM at an intracellular/extracellular pH gradient of 5.5/7.3. Dextromethorphan did not change the reversal potential or the voltage dependence of the gating. Dextrorphan and 3-hydroxymorphinan, major metabolites of dextromethorphan, and dextromethorphan methiodide were ineffective in inhibiting proton currents. The results indicate that dextromethorphan inhibition of proton currents would suppress NADPH oxidase activity and, eventually, microglial activation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
A revised velocity-reversal and sediment-sorting model for a high-gradient, pool-riffle stream
Thompson, D.M.; Wohl, E.E.; Jarrett, R.D.
1996-01-01
Sediment-sorting processes related to varying channel-bed morphology were investigated from April to November 1993 along a 1-km pool-riffle and step-pool reach of North Saint Vrain Creek, a small mountain stream in the Rocky Mountains of northern Colorado. Measured cross-sectional areas of flow were used to suggest higher velocities in pools than in riffles at high flow. Three hundred and sixteen tracer particles, ranging in size from 16 mm to 256 mm, were placed in two separate pool-riffle-pool sequences and used to assess sediment-sorting patterns and sediment-transport competence variations. Tracer-particle depositional evidence indicated higher sediment-transport competence in pools than in riffles at high flow. Pool-riffle sediment sorting may be created by velocity reversals, and more localized sorting results from gravitational forces along the upstream sloping portion of the channel bed located at the downstream end of pools.
Tidally influenced alongshore circulation at an inlet-adjacent shoreline
Hansen, Jeff E.; Elias, Edwin P.L.; List, Jeffrey H.; Erikson, Li H.; Barnard, Patrick L.
2013-01-01
The contribution of tidal forcing to alongshore circulation inside the surfzone is investigated at a 7 km long sandy beach adjacent to a large tidal inlet. Ocean Beach in San Francisco, CA (USA) is onshore of a ∼150 km2 ebb-tidal delta and directly south of the Golden Gate, the sole entrance to San Francisco Bay. Using a coupled flow-wave numerical model, we find that the tides modulate, and in some cases can reverse the direction of, surfzone alongshore flows through two separate mechanisms. First, tidal flow through the inlet results in a barotropic tidal pressure gradient that, when integrated across the surfzone, represents an important contribution to the surfzone alongshore force balance. Even during energetic wave conditions, the tidal pressure gradient can account for more than 30% of the total alongshore pressure gradient (wave and tidal components) and up to 55% during small waves. The wave driven component of the alongshore pressure gradient results from alongshore wave height and corresponding setup gradients induced by refraction over the ebb-tidal delta. Second, wave refraction patterns over the inner shelf are tidally modulated as a result of both tidal water depth changes and strong tidal flows (∼1 m/s), with the effect from currents being larger. These tidally induced changes in wave refraction result in corresponding variability of the alongshore radiation stress and pressure gradients within the surfzone. Our results indicate that tidal contributions to the surfzone force balance can be significant and important in determining the direction and magnitude of alongshore flow.
D'Archivio, Angelo Antonio; Maggi, Maria Anna; Ruggieri, Fabrizio
2014-08-01
In this paper, a multilayer artificial neural network is used to model simultaneously the effect of solute structure and eluent concentration profile on the retention of s-triazines in reversed-phase high-performance liquid chromatography under linear gradient elution. The retention data of 24 triazines, including common herbicides and their metabolites, are collected under 13 different elution modes, covering the following experimental domain: starting acetonitrile volume fraction ranging between 40 and 60% and gradient slope ranging between 0 and 1% acetonitrile/min. The gradient parameters together with five selected molecular descriptors, identified by quantitative structure-retention relationship modelling applied to individual separation conditions, are the network inputs. Predictive performance of this model is evaluated on six external triazines and four unseen separation conditions. For comparison, retention of triazines is modelled by both quantitative structure-retention relationships and response surface methodology, which describe separately the effect of molecular structure and gradient parameters on the retention. Although applied to a wider variable domain, the network provides a performance comparable to that of the above "local" models and retention times of triazines are modelled with accuracy generally better than 7%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Matteucci, Elena; Giampietro, Ottavio; Covolan, Vera; Giustarini, Daniela; Fanti, Paolo; Rossi, Ranieri
2015-01-01
Insulin is a life-saving medication for people with type 1 diabetes, but traditional insulin replacement therapy is based on multiple daily subcutaneous injections or continuous subcutaneous pump-regulated infusion. Nonphysiologic delivery of subcutaneous insulin implies a rapid and sustained increase in systemic insulin levels due to the loss of concentration gradient between portal and systemic circulations. In fact, the liver degrades about half of the endogenous insulin secreted by the pancreas into the venous portal system. The reverse insulin distribution has short- and long-term effects on glucose metabolism. Thus, researchers have explored less-invasive administration routes based on innovative pharmaceutical formulations, which preserve hormone stability and ensure the therapeutic effectiveness. This review examines some of the recent proposals from clinical and material chemistry point of view, giving particular attention to patients’ (and diabetologists’) ideal requirements that organic chemistry could meet. PMID:26124635
van Dongen, Joost T; Licausi, Francesco
2015-01-01
Oxygen is an indispensable substrate for many biochemical reactions in plants, including energy metabolism (respiration). Despite its importance, plants lack an active transport mechanism to distribute oxygen to all cells. Therefore, steep oxygen gradients occur within most plant tissues, which can be exacerbated by environmental perturbations that further reduce oxygen availability. Plants possess various responses to cope with spatial and temporal variations in oxygen availability, many of which involve metabolic adaptations to deal with energy crises induced by low oxygen. Responses are induced gradually when oxygen concentrations decrease and are rapidly reversed upon reoxygenation. A direct effect of the oxygen level can be observed in the stability, and thus activity, of various transcription factors that control the expression of hypoxia-induced genes. Additional signaling pathways are activated by the impact of oxygen deficiency on mitochondrial and chloroplast functioning. Here, we describe the molecular components of the oxygen-sensing pathway.
Chang, Hon Weng; Tan, Tai Boon; Tan, Phui Yee; Abas, Faridah; Lai, Oi Ming; Wang, Yong; Wang, Yonghua; Nehdi, Imededdine Arbi; Tan, Chin Ping
2018-03-01
Fish oil-in-water emulsions containing fish oil, thiol-modified β-lactoglobulin (β-LG) fibrils, chitosan and maltodextrin were fabricated using a high-energy method. The results showed that chitosan coating induced charge reversal; denoting successful biopolymers complexation. A significantly (p<0.05) larger droplet size and lower polydispersity index value, attributed to the thicker chitosan coating at the oil-water interface, were observed. At high chitosan concentrations, the cationic nature of chitosan strengthened the electrostatic repulsion between the droplets, thus conferring high oxidative stability and low turbidity loss rate to the emulsions. The apparent viscosity of emulsions stabilized using thiol-modified β-LG fibrils-chitosan complex was higher than those stabilized using β-LG fibrils alone, resulting in the former's higher creaming stability. Under thermal treatments (63°C and 100°C), emulsions stabilized using thiol-modified β-LG fibrils-chitosan complex possessed higher heat stability as indicated by the consistent droplet sizes observed. Chitosan provided a thicker protective layer that protected the oil droplets against high temperature. Bridging flocculation occurred at low chitosan concentration (0.1%, w/w), as revealed through microscopic observations which indicated the presence of large flocs. All in all, this work provided us with a better understanding of the application of protein fibrils-polysaccharide complex to produce stable emulsion. Copyright © 2017 Elsevier Ltd. All rights reserved.
Robles-Molina, José; Gilbert-López, Bienvenida; García-Reyes, Juan F; Molina-Díaz, Antonio
2017-09-29
Pesticide testing of foodstuffs is usually accomplished with generic wide-scope multi-residue methods based on liquid chromatography tandem mass spectrometry (LC-MS/MS). However, this approach does not cover some special pesticides, the so called "single-residue method" compounds, that are hardly compatible with standard reversed-phase (RP) separations due to their specific properties. In this article, we propose a comprehensive strategy for the integration of single residue method compounds and standard multiresidue pesticides within a single run. It is based on the use of a parallel LC column assembly with two different LC gradients performing orthogonal hydrophilic interaction chromatography (HILIC) and reversed-phase (RPLC) chromatography within one analytical run. Two sample aliquots were simultaneously injected on each column, using different gradients, being the eluents merged post-column prior to mass spectrometry detection. The approach was tested with 41 multiclass pesticides covering a wide range of physicochemical properties across several orders of log K ow (from -4 to +5.5). With this assembly, distinct separation from the void was attained for all the pesticides studied, keeping similar performance in terms of sensitivity, peak area reproducibility (<6 RSD% in most cases) and retention time stability of standard single column approaches (better than±0.1min). The application of the proposed approach using parallel HILIC/RPLC and RPLC/aqueous normal phase (Obelisc) were assessed in leek using LC-MS/MS. For this purpose, a hybrid QuEChERS (Quick, easy, cheap, effective, rugged and safe)/QuPPe (quick method for polar pesticides) method was evaluated based on solvent extraction with MeOH and acetonitrile followed by dispersive solid-phase extraction, delivering appropriate recoveries for most of the pesticides included in the study within the log K ow in the range from -4 to +5.5. The proposed strategy may be extended to other fields such as sport drug testing or environmental analysis, where the same type of variety of analytes featuring poor retention within a single chromatographic separation occurs. Copyright © 2017 Elsevier B.V. All rights reserved.
Duan, Liang; Song, Yonghui; Xia, Siqing; Hermanowicz, Slawomir W
2013-12-01
This study investigated the nitrifying bacterial community in membrane bioreactor (MBR) at short solids retention times (SRTs) of 3, 5 and 10 days. The denaturing gradient gel electrophoresis results showed that different types of ammonia-oxidizing bacteria (AOB) can survive at different operating conditions. The diversity of AOB increased as the SRT increased. The real-time PCR results showed that the amoA gene concentrations were similar when MBRs were stabilized, and it can be a good indicator of stabilized nitrification. The results of clone library indicated that Nitrosomonas was the dominant group of AOB in three reactors. The microarray results showed that Nitrospira was the dominant group of nitrite-oxidizing bacteria (NOB) in the system. All groups of AOB and NOB except Nitrosolobus and Nitrococcus were found in MBR, indicated that the nitrifying bacterial community structure was more complicated. The combination of some molecular tools can provide more information of microbial communities. Copyright © 2013 Elsevier Ltd. All rights reserved.
Weavers, Paul T; Tao, Shengzhen; Trzasko, Joshua D; Shu, Yunhong; Tryggestad, Erik J; Gunter, Jeffrey L; McGee, Kiaran P; Litwiller, Daniel V; Hwang, Ken-Pin; Bernstein, Matt A
2017-05-01
Spatial position accuracy in magnetic resonance imaging (MRI) is an important concern for a variety of applications, including radiation therapy planning, surgical planning, and longitudinal studies of morphologic changes to study neurodegenerative diseases. Spatial accuracy is strongly influenced by gradient linearity. This work presents a method for characterizing the gradient non-linearity fields on a per-system basis, and using this information to provide improved and higher-order (9th vs. 5th) spherical harmonic coefficients for better spatial accuracy in MRI. A large fiducial phantom containing 5229 water-filled spheres in a grid pattern is scanned with the MR system, and the positions all the fiducials are measured and compared to the corresponding ground truth fiducial positions as reported from a computed tomography (CT) scan of the object. Systematic errors from off-resonance (i.e., B0) effects are minimized with the use of increased receiver bandwidth (±125kHz) and two acquisitions with reversed readout gradient polarity. The spherical harmonic coefficients are estimated using an iterative process, and can be subsequently used to correct for gradient non-linearity. Test-retest stability was assessed with five repeated measurements on a single scanner, and cross-scanner variation on four different, identically-configured 3T wide-bore systems. A decrease in the root-mean-square error (RMSE) over a 50cm diameter spherical volume from 1.80mm to 0.77mm is reported here in the case of replacing the vendor's standard 5th order spherical harmonic coefficients with custom fitted 9th order coefficients, and from 1.5mm to 1mm by extending custom fitted 5th order correction to the 9th order. Minimum RMSE varied between scanners, but was stable with repeated measurements in the same scanner. The results suggest that the proposed methods may be used on a per-system basis to more accurately calibrate MR gradient non-linearity coefficients when compared to vendor standard corrections. Copyright © 2016 Elsevier Inc. All rights reserved.
Cold pulse and rotation reversals with turbulence spreading and residual stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hariri, F.; Naulin, V.; Juul Rasmussen, J.
2016-05-15
Transport modeling based on inclusion of turbulence spreading and residual stresses shows internal rotation reversals and polarity reversal of cold pulses, with a clear indication of nonlocal transport effects due to fast spreading in the turbulence intensity field. The effects of turbulence spreading and residual stress are calculated from the gradient of the turbulence intensity. In the model presented in this paper, the flux is carried by the turbulence intensity field, which in itself is subject to radial transport effects. The pulse polarity inversion and the rotation profile reversal positions are close to the radial location of the stable/unstable transition.more » Both effects have no direct explanation within the framework of classical transport modeling, where the fluxes are related directly to the linear growth rates, the turbulence intensity profile is not considered and the corresponding residual stress is absent. Our simulations are in qualitative agreement with measurements from ohmically heated plasmas. Rotation reversal at a finite radius is found in situations not displaying saturated confinement, which we identify as situations where the plasma is nearly everywhere unstable. As an additional and new effect, the model predicts a perturbation of the velocity profile following a cold pulse from the edge. This allows direct experimental confirmation of both the existence of residual stress caused by turbulence intensity profiles and fundamental ideas of transport modeling presented here.« less
Nikitas, P; Pappa-Louisi, A
2005-09-01
The original work carried out by Freiling and Drake in gradient liquid chromatography is rewritten in the current language of reversed-phase liquid chromatography. This allows for the rigorous derivation of the fundamental equation for gradient elution and the development of two alternative expressions of this equation, one of which is free from the constraint that the holdup time must be constant. In addition, the above derivation results in a very simple numerical solution of the various equations of gradient elution under any gradient profile. The theory was tested using eight catechol-related solutes in mobile phases modified with methanol, acetonitrile, or 2-propanol. It was found to be a satisfactory prediction of solute gradient retention behavior even if we used a simple linear description for the isocratic elution of these solutes.
Yusuf, Kareem; Badjah-Hadj-Ahmed, Ahmed Yacine; Aqel, Ahmad; ALOthman, Zeid Abdullah
2016-03-01
A monolithic capillary column containing a composite of metal-organic framework MIL-53(Al) incorporated into hexyl methacrylate-co-ethylene dimethacrylate was prepared to enhance the separation of mixtures of small aromatic compounds by using capillary liquid chromatography. The addition of 10 mg/mL MIL-53(Al) microparticles increased the micropore content in the monolithic matrix and increased the Brunauer-Emmett-Teller surface area from 26.92 to 85.12 m(2) /g. The presence of 1,4-benzenedicarboxylate moieties within the structure of MIL-53(Al) as an organic linker greatly influenced the separation of aromatic mixtures through π-π interactions. High-resolution separation was obtained for a series of alkylbenzenes (with resolution factors in the range 0.96-1.75) in less than 8 min, with 14 710 plates/m efficiency for propylbenzene, using a binary polar mobile phase of water/acetonitrile in isocratic mode. A reversed-phase separation mechanism was indicated by the increased retention factor and resolution as the water percentage in the mobile phase increased. A stability study on the composite column showed excellent mechanical stability under various conditions. The higher resolution and faster separation observed at increased temperature indicated an exothermic separation, whereas the negative values for the free energy change of transfer indicated a spontaneous process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Genealogy of Convex Solids Via Local and Global Bifurcations of Gradient Vector Fields
NASA Astrophysics Data System (ADS)
Domokos, Gábor; Holmes, Philip; Lángi, Zsolt
2016-12-01
Three-dimensional convex bodies can be classified in terms of the number and stability types of critical points on which they can balance at rest on a horizontal plane. For typical bodies, these are non-degenerate maxima, minima, and saddle points, the numbers of which provide a primary classification. Secondary and tertiary classifications use graphs to describe orbits connecting these critical points in the gradient vector field associated with each body. In previous work, it was shown that these classifications are complete in that no class is empty. Here, we construct 1- and 2-parameter families of convex bodies connecting members of adjacent primary and secondary classes and show that transitions between them can be realized by codimension 1 saddle-node and saddle-saddle (heteroclinic) bifurcations in the gradient vector fields. Our results indicate that all combinatorially possible transitions can be realized in physical shape evolution processes, e.g., by abrasion of sedimentary particles.
Shah, Umang; Patel, Shraddha; Raval, Manan
2018-01-01
High performance liquid chromatography is an integral analytical tool in assessing drug product stability. HPLC methods should be able to separate, detect, and quantify the various drug-related degradants that can form on storage or manufacturing, plus detect any drug-related impurities that may be introduced during synthesis. A simple, economic, selective, precise, and stability-indicating HPLC method has been developed and validated for analysis of Rifampicin (RIFA) and Piperine (PIPE) in bulk drug and in the formulation. Reversed-phase chromatography was performed on a C18 column with Buffer (Potassium Dihydrogen Orthophosphate) pH 6.5 and Acetonitrile, 30:70), (%, v/v), as mobile phase at a flow rate of 1 mL min-1. The detection was performed at 341 nm and sharp peaks were obtained for RIFA and PIPE at retention time of 3.3 ± 0.01 min and 5.9 ± 0.01 min, respectively. The detection limits were found to be 2.385 ng/ml and 0.107 ng/ml and quantification limits were found to be 7.228ng/ml and 0.325ng/ml for RIFA and PIPE, respectively. The method was validated for accuracy, precision, reproducibility, specificity, robustness, and detection and quantification limits, in accordance with ICH guidelines. Stress study was performed on RIFA and PIPE and it was found that these degraded sufficiently in all applied chemical and physical conditions. Thus, the developed RP-HPLC method was found to be suitable for the determination of both the drugs in bulk as well as stability samples of capsule containing various excipients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Jung, Stephanie; Effelsberg, Uwe; Tallarek, Ulrich
2011-12-01
Dynamic changes in mobile phase composition during high-performance liquid chromatography (HPLC) gradient elution coupled to mass spectrometry (MS) sensitively affect electrospray modes. We investigate the impact of the eluent composition on spray stability and MS response by infusion and injection experiments with a small tetrapeptide in water-acetonitrile mixtures. The employed HPLC/electrospray (ESI)-MS configuration uses a microchip equipped with an enrichment column, a separation column, and a makeup flow (MUF) channel. One nano pump is connected to the separation column, while a second one delivers solvent of exactly inverted composition to the MUF channel. Both solvent streams are united behind the separation column, before the ESI tip, such that the resulting electrosprayed solution always has identical composition during a gradient elution. Analyte peak parameters without and with MUF compensation are determined and discussed with respect to the electrospray mode and eluent composition. The postcolumn MUF significantly improves spray and signal stability over the entire solvent gradient, without compromising the performance of the HPLC separation column. It can also be conveniently implemented on microchip platforms.
Thermodiffusion as a means to manipulate liquid film dynamics on chemically patterned surfaces
Kalpathy, Sreeram K.; Shreyes, Amrita Ravi
2017-01-01
The model problem examined here is the stability of a thin liquid film consisting of two miscible components, resting on a chemically patterned solid substrate and heated from below. In addition to surface tension gradients, the temperature variations also induce gradients in the concentration of the film by virtue of thermodiffusion/Soret effects. We study the stability and dewetting behaviour due to the coupled interplay between thermal gradients, Soret effects, long-range van der Waals forces, and wettability gradient-driven flows. Linear stability analysis is first employed to predict growth rates and the critical Marangoni number for chemically homogeneous surfaces. Then, nonlinear simulations are performed to unravel the interfacial dynamics and possible locations of the film rupture on chemically patterned substrates. Results suggest that appropriate tuning of the Soret parameter and its direction, in conjunction with either heating or cooling, can help manipulate the location and time scales of the film rupture. The Soret effect can either potentially aid or oppose film instability depending on whether the thermal and solutal contributions to flow are cooperative or opposed to each other. PMID:28595391
Wacker, Jan
2018-01-01
The influence of positive emotions on the balance between cognitive stability and flexibility has been suggested to (a) differ among various positive emotional/motivational states (e.g., of varying approach motivation intensity), and (b) be mediated by brain dopamine (DA). Frontal EEG alpha asymmetry (ASY) is considered an indicator of approach motivational states and may be modulated by DA. The personality trait of extraversion is strongly linked to positive emotions and is now thought to reflect DA-based individual differences in incentive/approach motivation. The present study independently manipulated positive emotion (high approach wanting-expectancy [WE] vs. low approach warmth-liking [WL]) and dopamine (placebo vs. DA D2 blocker sulpiride) to examine their effects on both cognitive stability-flexibility and emotion-related ASY changes. The results showed numerically lower stability-flexibility in WE versus WL under placebo and a complete reversal of this effect under the D2 blocker, no differentiation between WE and WL groups in terms of emotion-related ASY change, but an association between self-reported WE and WL and ASY changes toward left and right frontal cortical activity, respectively. Finally, extraversion was positively associated with both stability-flexibility and ASY changes toward left frontal cortical activity under placebo, and these associations were completely reversed under the D2 blocker. The results (a) support a dopaminergic basis for frontal EEG asymmetry, extraversion, and the modulating effect of positive emotions on stability-flexibility, and (b) extend previous reports of cognitive differences between introverts and extraverts. © 2017 Society for Psychophysiological Research.
Baroclinic instability with variable gravity: A perturbation analysis
NASA Technical Reports Server (NTRS)
Giere, A. C.; Fowliss, W. W.; Arias, S.
1980-01-01
Solutions for a quasigeostrophic baroclinic stability problem in which gravity is a function of height were obtained. Curvature and horizontal shear of the basic state flow were omitted and the vertical and horizontal temperature gradients of the basic state were taken as constant. The effect of a variable dielectric body force, analogous to gravity, on baroclinic instability for the design of a spherical, baroclinic model for Spacelab was determined. Such modeling could not be performed in a laboratory on the Earth's surface because the body force could not be made strong enough to dominate terrestrial gravity. A consequence of the body force variation and the preceding assumptions was that the potential vorticity gradient of the basic state vanished. The problem was solved using a perturbation method. The solution gives results which are qualitatively similar to Eady's results for constant gravity; a short wavelength cutoff and a wavelength of maximum growth rate were observed. The averaged values of the basic state indicate that both the wavelength range of the instability and the growth rate at maximum instability are increased. Results indicate that the presence of the variable body force will not significantly alter the dynamics of the Spacelab experiment. The solutions are also relevant to other geophysical fluid flows where gravity is constant but the static stability or Brunt-Vaisala frequency is a function of height.
Gradient Self-Doped CuBi2O4 with Highly Improved Charge Separation Efficiency.
Wang, Fuxian; Septina, Wilman; Chemseddine, Abdelkrim; Abdi, Fatwa F; Friedrich, Dennis; Bogdanoff, Peter; van de Krol, Roel; Tilley, S David; Berglund, Sean P
2017-10-25
A new strategy of using forward gradient self-doping to improve the charge separation efficiency in metal oxide photoelectrodes is proposed. Gradient self-doped CuBi 2 O 4 photocathodes are prepared with forward and reverse gradients in copper vacancies using a two-step, diffusion-assisted spray pyrolysis process. Decreasing the Cu/Bi ratio of the CuBi 2 O 4 photocathodes introduces Cu vacancies that increase the carrier (hole) concentration and lowers the Fermi level, as evidenced by a shift in the flat band toward more positive potentials. Thus, a gradient in Cu vacancies leads to an internal electric field within CuBi 2 O 4 , which can facilitate charge separation. Compared to homogeneous CuBi 2 O 4 photocathodes, CuBi 2 O 4 photocathodes with a forward gradient show highly improved charge separation efficiency and enhanced photoelectrochemical performance for reduction reactions, while CuBi 2 O 4 photocathodes with a reverse gradient show significantly reduced charge separation efficiency and photoelectrochemical performance. The CuBi 2 O 4 photocathodes with a forward gradient produce record AM 1.5 photocurrent densities for CuBi 2 O 4 up to -2.5 mA/cm 2 at 0.6 V vs RHE with H 2 O 2 as an electron scavenger, and they show a charge separation efficiency of 34% for 550 nm light. The gradient self-doping accomplishes this without the introduction of external dopants, and therefore the tetragonal crystal structure and carrier mobility of CuBi 2 O 4 are maintained. Lastly, forward gradient self-doped CuBi 2 O 4 photocathodes are protected with a CdS/TiO 2 heterojunction and coated with Pt as an electrocatalyst. These photocathodes demonstrate photocurrent densities on the order of -1.0 mA/cm 2 at 0.0 V vs RHE and evolve hydrogen with a faradaic efficiency of ∼91%.
Heating and current drive requirements towards steady state operation in ITER
NASA Astrophysics Data System (ADS)
Poli, F. M.; Bonoli, P. T.; Kessel, C. E.; Batchelor, D. B.; Gorelenkova, M.; Harvey, B.; Petrov, Y.
2014-02-01
Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H/CD sources that maintain weakly reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that, with a trade-off of the EC equatorial and upper launcher, the formation and sustainment of quasi-steady state ITBs could be demonstrated in ITER with the baseline heating configuration. However, with proper constraints from peeling-ballooning theory on the pedestal width and height, the fusion gain and the maximum non-inductive current are below the ITER target. Upgrades of the heating and current drive system in ITER, like the use of Lower Hybrid current drive, could overcome these limitations, sustaining higher non-inductive current and confinement, more expanded ITBs which are ideal MHD stable.
Marine fish may be biochemically constrained from inhabiting the deepest ocean depths
Yancey, Paul H.; Gerringer, Mackenzie E.; Drazen, Jeffrey C.; Rowden, Ashley A.; Jamieson, Alan
2014-01-01
No fish have been found in the deepest 25% of the ocean (8,400–11,000 m). This apparent absence has been attributed to hydrostatic pressure, although direct evidence is wanting because of the lack of deepest-living species to study. The common osmolyte trimethylamine N-oxide (TMAO) stabilizes proteins against pressure and increases with depth, going from 40 to 261 mmol/kg in teleost fishes from 0 to 4,850 m. TMAO accumulation with depth results in increasing internal osmolality (typically 350 mOsmol/kg in shallow species compared with seawater's 1,100 mOsmol/kg). Preliminary extrapolation of osmolalities of predicted isosmotic state at 8,000–8,500 m may indicate a possible physiological limit, as greater depths would require reversal of osmotic gradients and, thus, osmoregulatory systems. We tested this prediction by capturing five of the second-deepest known fish, the hadal snailfish (Notoliparis kermadecensis; Liparidae), from 7,000 m in the Kermadec Trench. We found their muscles to have a TMAO content of 386 ± 18 mmol/kg and osmolality of 991 ± 22 mOsmol/kg. These data fit previous extrapolations and, combined with new osmolalities from bathyal and abyssal fishes, predict isosmotic state at 8,200 m. This is previously unidentified evidence that biochemistry could constrain the depth of a large, complex taxonomic group. PMID:24591588
Numerical Prediction of the Influence of Thrust Reverser on Aeroengine's Aerodynamic Stability
NASA Astrophysics Data System (ADS)
Zhiqiang, Wang; Xigang, Shen; Jun, Hu; Xiang, Gao; Liping, Liu
2017-11-01
A numerical method was developed to predict the aerodynamic stability of a high bypass ratio turbofan engine, at the landing stage of a large transport aircraft, when the thrust reverser was deployed. 3D CFD simulation and 2D aeroengine aerodynamic stability analysis code were performed in this work, the former is to achieve distortion coefficient for the analysis of engine stability. The 3D CFD simulation was divided into two steps, the single engine calculation and the integrated aircraft and engine calculation. Results of the CFD simulation show that with the decreasing of relative wind Mach number, the engine inlet will suffer more severe flow distortion. The total pressure and total temperature distortion coefficients at the inlet of the engines were obtained from the results of the numerical simulation. Then an aeroengine aerodynamic stability analysis program was used to quantitatively analyze the aerodynamic stability of the high bypass ratio turbofan engine. The results of the stability analysis show that the engine can work stably, when the reverser flow is re-ingested. But the anti-distortion ability of the booster is weaker than that of the fan and high pressure compressor. It is a weak link of engine stability.
You, Lei; Berman, Jeffrey S.; Anslyn, Eric V.
2011-01-01
Reversible covalent bonding is often employed for the creation of novel supramolecular structures, multi-component assemblies, and sensing ensembles. In spite of remarkable success of dynamic covalent systems, the reversible binding of a mono-alcohol with high strength is challenging. Here we show that a strategy of carbonyl activation and hemiaminal ether stabilization can be embodied in a four-component reversible assembly that creates a tetradentate ligand and incorporates secondary alcohols with exceptionally high affinity. Evidence is presented that the intermediate leading to binding and exchange of alcohols is an iminium ion. Further, to demonstrate the use of this assembly process we explored chirality sensing and enantiomeric excess determinations. An induced twist in the ligand by a chiral mono-ol results in large Cotton effects in the circular dichroism spectra indicative of the alcohol’s handedness. The strategy revealed in this study should prove broadly applicable for the incorporation of alcohols into supramolecular architecture construction. PMID:22109274
Nocturnal Reversed Flows Above Parallel Ridges in Perdigão, Portugal
NASA Astrophysics Data System (ADS)
Krishnamurthy, R.; Fernando, H. J.; Leo, L. S.; Vassallo, D.; Hocut, C. M.; Creegan, E.; Rodriguez, C. V.; Palma, J. L.
2017-12-01
Prediction of topographically forced or induced wind events is extremely important for dispersion modeling and wind energy studies in complex terrain. To improve the current understanding of micro-scale processes over complex terrain, a large-scale field experiment was conducted in Perdigão, Portugal from May 1st, 2017 to June 15th, 2017. Measurements over a periodic valley were performed using 52 meteorological met-masts, 30 Doppler Lidars (scanning & vertical profilers), 2 tethered lifting systems and other remote sensing instruments (Sodar-rass, wind profilers & radiometer), and radiosondes were released every 6 hours over the period of study. The observations showed several cases of flow reversals confined to a thin layer of 70 - 100 m above the ridge under stably stratified conditions. These flow reversals were mostly observed during the lee wave formation over the periodic valley. It was observed that the flow reversal occurs predominantly under two atmospheric conditions: a) presence of large recirculation zones on the lee side of the hill causing a pressure gradient between the lee-side floor and the mountain ridge, and b) local change in the horizontal pressure gradient due to differential heating rates of the neighboring valley atmospheres. Microscale flow simulations could capture these observed flow reversals. Based on the network of tower instruments and remote sensing devices, the development, structure and occurrences of the flow reversals are being analyzed and quantified. Since these flow reversals are observed within the rotor swept area of modern wind turbines, they would drastically increase the fatigue loads on wind turbine blades. This presentation will include reversed flow observations from several synchronized scanning Doppler Lidars and meteorological towers and a theoretical framework for reverse flow over parallel valleys.
The influence of the chloride gradient across red cell membranes on sodium and potassium movements
Cotterrell, D.; Whittam, R.
1971-01-01
1. A study has been made to see whether active and passive movements of sodium and potassium in human red blood cells are influenced by changing the chloride gradient and hence the potential difference across the cell membrane. 2. Chloride distribution was measured between red cells and isotonic solutions with a range of concentrations of chloride and non-penetrating anions (EDTA, citrate, gluconate). The cell chloride concentration was greater than that outside with low external chloride, suggesting that the sign of the membrane potential was reversed. The chloride ratio (internal/external) was approximately equal to the inverse of the hydrogen ion ratio at normal and low external chloride, and inversely proportional to external pH. These results show that chloride is passively distributed, making it valid to calculate the membrane potential from the chloride ratio. 3. Ouabain-sensitive (pump) potassium influx and sodium efflux were decreased by not more than 20 and 40% respectively on reversing the chloride gradient, corresponding to a change in membrane potential from -9 to +30 mV. In contrast, passive (ouabain-insensitive) movements were reversibly altered — potassium influx was decreased about 60% and potassium efflux was increased some tenfold. Sodium influx was unaffected by the nature of the anion and depended only on the external sodium concentration, whereas ouabain-insensitive sodium efflux was increased about threefold. When external sodium was replaced by potassium there was a decrease in ouabain-insensitive sodium efflux with normal chloride, but an increase in low-chloride medium. 4. Net movements of sodium and potassium were roughly in accord with the unidirectional fluxes. 5. The results suggest that reversing the chloride gradient and, therefore, the sign of the membrane potential, had little effect on the sodium pump, but caused a marked increase in passive outward movements of both sodium and potassium ions. PMID:4996368
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutzler, F.W.; Painter, G.S.
1992-02-15
A fully self-consistent series of nonlocal (gradient) density-functional calculations has been carried out using the augmented-Gaussian-orbital method to determine the magnitude of gradient corrections to the potential-energy curves of the first-row diatomics, Li{sub 2} through F{sub 2}. Both the Langreth-Mehl-Hu and the Perdew-Wang gradient-density functionals were used in calculations of the binding energy, bond length, and vibrational frequency for each dimer. Comparison with results obtained in the local-spin-density approximation (LSDA) using the Vosko-Wilk-Nusair functional, and with experiment, reveals that bond lengths and vibrational frequencies are rather insensitive to details of the gradient functionals, including self-consistency effects, but the gradient correctionsmore » reduce the overbinding commonly observed in the LSDA calculations of first-row diatomics (with the exception of Li{sub 2}, the gradient-functional binding-energy error is only 50--12 % of the LSDA error). The improved binding energies result from a large differential energy lowering, which occurs in open-shell atoms relative to the diatomics. The stabilization of the atom arises from the use of nonspherical charge and spin densities in the gradient-functional calculations. This stabilization is negligibly small in LSDA calculations performed with nonspherical densities.« less
Guo, Jilong; Gong, Guohua; Zhang, Bin
2017-07-01
Breast cancer has attracted substantial attention as one of the major cancers causing death in women. It is crucial to find potential biomarkers of prognostic value in breast cancer. In this study, the expression pattern of anterior gradient protein 2 in breast cancer was identified based on the main molecular subgroups. Through analysis of 69 samples from the Gene Expression Omnibus database, we found that anterior gradient protein 2 expression was significantly higher in non-triple-negative breast cancer tissues compared with normal tissues and triple-negative breast cancer tissues (p < 0.05). The data from a total of 622 patients from The Cancer Genome Atlas were analysed. The data from The Cancer Genome Atlas and results from quantitative reverse transcription polymerase chain reaction also verified the anterior gradient protein 2 expression pattern. Furthermore, we performed immunohistochemical analysis. The quantification results revealed that anterior gradient protein 2 is highly expressed in non-triple-negative breast cancer (grade 3 excluded) and grade 1 + 2 (triple-negative breast cancer excluded) tumours compared with normal tissues. Anterior gradient protein 2 was significantly highly expressed in non-triple-negative breast cancer (grade 3 excluded) and non-triple-negative breast cancer tissues compared with triple-negative breast cancer tissues (p < 0.01). In addition, anterior gradient protein 2 was significantly highly expressed in grade 1 + 2 (triple-negative breast cancer excluded) and grade 1 + 2 tissues compared with grade 3 tissues (p < 0.05). Analysis by Fisher's exact test revealed that anterior gradient protein 2 expression was significantly associated with histologic type, histological grade, oestrogen status and progesterone status. Univariate analysis of clinicopathological variables showed that anterior gradient protein 2 expression, tumour size and lymph node status were significantly correlated with overall survival in patients with grade 1 and 2 tumours. Cox multivariate analysis revealed anterior gradient protein 2 as a putative independent indicator of unfavourable outcomes (p = 0.031). All these data clearly showed that anterior gradient protein 2 is highly expressed in breast cancer and can be regarded as a putative biomarker for breast cancer prognosis.
Increasing Paid Work Time? A New Puzzle for Multinational Time-Diary Research
ERIC Educational Resources Information Center
Gershuny, Jonathan
2011-01-01
This explores the reasons that paid work time may be rising, at least in anglophone countries. Three explanations are discussed. (1) An historical reversal of the work/leisure gradient with respect to social position or social status. This gradient was once positive, but is now negative; evidence of this change from 11 developed countries is drawn…
Crevecoeur, Sophie; Vincent, Warwick F.; Comte, Jérôme; Lovejoy, Connie
2015-01-01
Permafrost thawing leads to the formation of thermokarst ponds that potentially emit CO2 and CH4 to the atmosphere. In the Nunavik subarctic region (northern Québec, Canada), these numerous, shallow ponds become well-stratified during summer. This creates a physico-chemical gradient of temperature and oxygen, with an upper oxic layer and a bottom low oxygen or anoxic layer. Our objective was to determine the influence of stratification and related limnological and landscape properties on the community structure of potentially active bacteria in these waters. Samples for RNA analysis were taken from ponds in three contrasting valleys across a gradient of permafrost degradation. A total of 1296 operational taxonomic units were identified by high throughput amplicon sequencing, targeting bacterial 16S rRNA that was reverse transcribed to cDNA. β-proteobacteria were the dominant group in all ponds, with highest representation by the genera Variovorax and Polynucleobacter. Methanotrophs were also among the most abundant sequences at most sites. They accounted for up to 27% of the total sequences (median of 4.9% for all samples), indicating the importance of methane as a bacterial energy source in these waters. Both oxygenic (cyanobacteria) and anoxygenic (Chlorobi) phototrophs were also well-represented, the latter in the low oxygen bottom waters. Ordination analyses showed that the communities clustered according to valley and depth, with significant effects attributed to dissolved oxygen, pH, dissolved organic carbon, and total suspended solids. These results indicate that the bacterial assemblages of permafrost thaw ponds are filtered by environmental gradients, and are complex consortia of functionally diverse taxa that likely affect the composition as well as magnitude of greenhouse gas emissions from these abundant waters. PMID:25926816
Reversed flow of Atlantic deep water during the Last Glacial Maximum.
Negre, César; Zahn, Rainer; Thomas, Alexander L; Masqué, Pere; Henderson, Gideon M; Martínez-Méndez, Gema; Hall, Ian R; Mas, José L
2010-11-04
The meridional overturning circulation (MOC) of the Atlantic Ocean is considered to be one of the most important components of the climate system. This is because its warm surface currents, such as the Gulf Stream, redistribute huge amounts of energy from tropical to high latitudes and influence regional weather and climate patterns, whereas its lower limb ventilates the deep ocean and affects the storage of carbon in the abyss, away from the atmosphere. Despite its significance for future climate, the operation of the MOC under contrasting climates of the past remains controversial. Nutrient-based proxies and recent model simulations indicate that during the Last Glacial Maximum the convective activity in the North Atlantic Ocean was much weaker than at present. In contrast, rate-sensitive radiogenic (231)Pa/(230)Th isotope ratios from the North Atlantic have been interpreted to indicate only minor changes in MOC strength. Here we show that the basin-scale abyssal circulation of the Atlantic Ocean was probably reversed during the Last Glacial Maximum and was dominated by northward water flow from the Southern Ocean. These conclusions are based on new high-resolution data from the South Atlantic Ocean that establish the basin-scale north to south gradient in (231)Pa/(230)Th, and thus the direction of the deep ocean circulation. Our findings are consistent with nutrient-based proxies and argue that further analysis of (231)Pa/(230)Th outside the North Atlantic basin will enhance our understanding of past ocean circulation, provided that spatial gradients are carefully considered. This broader perspective suggests that the modern pattern of the Atlantic MOC-with a prominent southerly flow of deep waters originating in the North Atlantic-arose only during the Holocene epoch.
NASA Astrophysics Data System (ADS)
Garcia-Franco, Noelia; Wiesmeier, Martin; Kiese, Ralf; Dannenmann, Michael; Wolf, Benjamin; Zistl-Schlingmann, Marcus; Kögel-Knabner, Ingrid
2017-04-01
C sequestration in mountainous grassland soils is regulated by physical, chemical and biological soil process. An improved knowledge of the relationship between these stabilization mechanisms is decisive to recommend the best management practices for climate change mitigation. In this regard, the identification of a successful indicator of soil structural improvement and C sequestration in mountainous grassland soils is necessary. Alpine and pre-alpine grassland soils in Bavaria represent a good example for mountainous grassland soils faced with climate change. We sampled grassland soils of the northern limestone alps in Bavaria along an elevation gradient from 550 to 1300 m above sea level. We analyzed C dynamics by a comparative analysis of the distribution of C according to aggregate size classes: large-macroaggregates (> 2000 µm), small-macroaggregates (250-2000 µm), microaggregates (63-250 µm), silt plus clay particles (<63 µm) and bulk soil. Our preliminary results showed higher C content and changed water-stable aggregate distribution in the high elevation sites compared to lower elevations. Magnesium carbonate seem to play an important role in stabilizing macroaggregates formed from fresh OM. In addition, the isolation of occluded microaggregates within macroaggregates will help us to improve our understanding on the effects of climate change on soil structure and on the sensitivity of different C stabilization mechanisms present in mountainous soils.
Spacecraft stability and control
NASA Technical Reports Server (NTRS)
Barret, Chris
1992-01-01
The Earth's first artificial satellite, Sputnik 1, slowly tumbled in orbit. The first U.S. satellite, Explorer 1, also tumbled out of control. Today, satellite stability and control has become a higher priority. For a satellite design that is to have a life expectancy of 14 years, appropriate spacecraft flight control systems will be reviewed, stability requirements investigated, and an appropriate flight control system recommended in order to see the design process. Disturbance torques, including aerodynamic, magnetic, gravity gradient, solar, micrometeorite, debris, collision, and internal torques, will be assessed to quantify the disturbance environment so that the required compensating torques can be determined. The control torques, including passive versus active, momentum control, bias momentum, spin stabilization, dual spin, gravity gradient, magnetic, reaction wheels, control moment gyros, inertia augmentation techniques, three-axis control, and reaction control systems (RCSs), will be considered. Conditions for stability will also be considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yambe, Kiyoyuki; Inomoto, Michiaki; Okada, Shigefumi
The effects of an internal structure on the equilibrium of a field-reversed configuration (FRC) plasma sustained by rotating magnetic field is investigated by using detailed electrostatic probe measurements in the FRC Injection Experiment apparatus [S. Okada, et al., Nucl. Fusion. 45, 1094 (2005)]. An internal structure installed axially on the geometrical axis, which simulates Ohmic transformer or external toroidal field coils on the FRC device, brings about substantial changes in plasma density profile. The internal structure generates steep density-gradients not only on the inner side but on the outer side of the torus. The radial electric field is observed tomore » sustain the ion thermal pressure-gradient in the FRC without the internal structure; however, the radial electric field is not sufficient to sustain the increased ion thermal pressure-gradient in the FRC with the internal structure. Spontaneously driven azimuthal ion flow will be accountable for the imbalance of the radial pressure which is modified by the internal structure.« less
Observation of trapped-electron-mode microturbulence in reversed field pinch plasmas
NASA Astrophysics Data System (ADS)
Duff, J. R.; Williams, Z. R.; Brower, D. L.; Chapman, B. E.; Ding, W. X.; Pueschel, M. J.; Sarff, J. S.; Terry, P. W.
2018-01-01
Density fluctuations in the large-density-gradient region of improved confinement Madison Symmetric Torus reversed field pinch (RFP) plasmas exhibit multiple features that are characteristic of the trapped-electron mode (TEM). Core transport in conventional RFP plasmas is governed by magnetic stochasticity stemming from multiple long-wavelength tearing modes. Using inductive current profile control, these tearing modes are reduced, and global confinement is increased to that expected for comparable tokamak plasmas. Under these conditions, new short-wavelength fluctuations distinct from global tearing modes appear in the spectrum at a frequency of f ˜ 50 kHz, which have normalized perpendicular wavenumbers k⊥ρs≲ 0.2 and propagate in the electron diamagnetic drift direction. They exhibit a critical-gradient threshold, and the fluctuation amplitude increases with the local electron density gradient. These characteristics are consistent with predictions from gyrokinetic analysis using the Gene code, including increased TEM turbulence and transport from the interaction of remnant tearing magnetic fluctuations and zonal flow.
Stability of Gradient Field Corrections for Quantitative Diffusion MRI.
Rogers, Baxter P; Blaber, Justin; Welch, E Brian; Ding, Zhaohua; Anderson, Adam W; Landman, Bennett A
2017-02-11
In magnetic resonance diffusion imaging, gradient nonlinearity causes significant bias in the estimation of quantitative diffusion parameters such as diffusivity, anisotropy, and diffusion direction in areas away from the magnet isocenter. This bias can be substantially reduced if the scanner- and coil-specific gradient field nonlinearities are known. Using a set of field map calibration scans on a large (29 cm diameter) phantom combined with a solid harmonic approximation of the gradient fields, we predicted the obtained b-values and applied gradient directions throughout a typical field of view for brain imaging for a typical 32-direction diffusion imaging sequence. We measured the stability of these predictions over time. At 80 mm from scanner isocenter, predicted b-value was 1-6% different than intended due to gradient nonlinearity, and predicted gradient directions were in error by up to 1 degree. Over the course of one month the change in these quantities due to calibration-related factors such as scanner drift and variation in phantom placement was <0.5% for b-values, and <0.5 degrees for angular deviation. The proposed calibration procedure allows the estimation of gradient nonlinearity to correct b-values and gradient directions ahead of advanced diffusion image processing for high angular resolution data, and requires only a five-minute phantom scan that can be included in a weekly or monthly quality assurance protocol.
Genetic and phenotypic variation along an ecological gradient in lake trout Salvelinus namaycush
Baillie, Shauna M.; Muir, Andrew M.; Hansen, Michael J.; Krueger, Charles C.; Bentzen, Paul
2016-01-01
BackgroundAdaptive radiation involving a colonizing phenotype that rapidly evolves into at least one other ecological variant, or ecotype, has been observed in a variety of freshwater fishes in post-glacial environments. However, few studies consider how phenotypic traits vary with regard to neutral genetic partitioning along ecological gradients. Here, we present the first detailed investigation of lake trout Salvelinus namaycushthat considers variation as a cline rather than discriminatory among ecotypes. Genetic and phenotypic traits organized along common ecological gradients of water depth and geographic distance provide important insights into diversification processes in a lake with high levels of human disturbance from over-fishing.ResultsFour putative lake trout ecotypes could not be distinguished using population genetic methods, despite morphological differences. Neutral genetic partitioning in lake trout was stronger along a gradient of water depth, than by locality or ecotype. Contemporary genetic migration patterns were consistent with isolation-by-depth. Historical gene flow patterns indicated colonization from shallow to deep water. Comparison of phenotypic (Pst) and neutral genetic variation (Fst) revealed that morphological traits related to swimming performance (e.g., buoyancy, pelvic fin length) departed more strongly from neutral expectations along a depth gradient than craniofacial feeding traits. Elevated phenotypic variance with increasing water depth in pelvic fin length indicated possible ongoing character release and diversification. Finally, differences in early growth rate and asymptotic fish length across depth strata may be associated with limiting factors attributable to cold deep-water environments.ConclusionWe provide evidence of reductions in gene flow and divergent natural selection associated with water depth in Lake Superior. Such information is relevant for documenting intraspecific biodiversity in the largest freshwater lake in the world for a species that recently lost considerable genetic diversity and is now in recovery. Unknown is whether observed patterns are a result of an early stage of incipient speciation, gene flow-selection equilibrium, or reverse speciation causing formerly divergent ecotypes to collapse into a single gene pool.
Stage structure alters how complexity affects stability of ecological networks
Rudolf, V.H.W.; Lafferty, Kevin D.
2011-01-01
Resolving how complexity affects stability of natural communities is of key importance for predicting the consequences of biodiversity loss. Central to previous stability analysis has been the assumption that the resources of a consumer are substitutable. However, during their development, most species change diets; for instance, adults often use different resources than larvae or juveniles. Here, we show that such ontogenetic niche shifts are common in real ecological networks and that consideration of these shifts can alter which species are predicted to be at risk of extinction. Furthermore, niche shifts reduce and can even reverse the otherwise stabilizing effect of complexity. This pattern arises because species with several specialized life stages appear to be generalists at the species level but act as sequential specialists that are hypersensitive to resource loss. These results suggest that natural communities are more vulnerable to biodiversity loss than indicated by previous analyses.
Unfolding energetics and stability of banana lectin.
Gupta, Garima; Sinha, Sharmistha; Surolia, Avadhesha
2008-08-01
The unfolding pathway of banana lectin from Musa paradisiaca was determined by isothermal denaturation induced by the chaotrope GdnCl. The unfolding was found to be a reversible process. The data obtained by isothermal denaturation provided information on conformational stability of banana lectin. The high values of DeltaG of unfolding at various temperatures indicated the strength of intersubunit interactions. It was found that banana lectin is a very stable and denatures at high chaotrope concentrations only. The basis of the stability may be attributed to strong hydrogen bonds of the order 2.5-3.1 A at the dimeric interface along with the presence of water bridges. This is perhaps very unique example in proteins where subunit association is not a consequence of the predominance of hydrophobic interactions. (c) 2008 Wiley-Liss, Inc.
Replication fork reversal triggers fork degradation in BRCA2-defective cells.
Mijic, Sofija; Zellweger, Ralph; Chappidi, Nagaraja; Berti, Matteo; Jacobs, Kurt; Mutreja, Karun; Ursich, Sebastian; Ray Chaudhuri, Arnab; Nussenzweig, Andre; Janscak, Pavel; Lopes, Massimo
2017-10-16
Besides its role in homologous recombination, the tumor suppressor BRCA2 protects stalled replication forks from nucleolytic degradation. Defective fork stability contributes to chemotherapeutic sensitivity of BRCA2-defective tumors by yet-elusive mechanisms. Using DNA fiber spreading and direct visualization of replication intermediates, we report that reversed replication forks are entry points for fork degradation in BRCA2-defective cells. Besides MRE11 and PTIP, we show that RAD52 promotes stalled fork degradation and chromosomal breakage in BRCA2-defective cells. Inactivation of these factors restores reversed fork frequency and chromosome integrity in BRCA2-defective cells. Conversely, impairing fork reversal prevents fork degradation, but increases chromosomal breakage, uncoupling fork protection, and chromosome stability. We propose that BRCA2 is dispensable for RAD51-mediated fork reversal, but assembles stable RAD51 nucleofilaments on regressed arms, to protect them from degradation. Our data uncover the physiopathological relevance of fork reversal and illuminate a complex interplay of homologous recombination factors in fork remodeling and stability.BRCA2 is involved in both homologous recombination (HR) and the protection of stalled replication forks from degradation. Here the authors reveal how HR factors cooperate in fork remodeling, showing that BRCA2 supports RAD51 loading on the regressed arms of reversed replication forks to protect them from degradation.
Yang, Yang; Tan, Yun; Wang, Xionglei; An, Wenli; Xu, Shimei; Liao, Wang; Wang, Yuzhong
2018-03-07
Recent research of hydrogel actuators is still not sophisticated enough to meet the requirement of fast, reversible, complex, and robust reconfiguration. Here, we present a new kind of poly( N-isopropylacrylamide)/graphene oxide gradient hydrogel by utilizing direct current electric field to induce gradient and oriented distribution of graphene oxide into poly( N-isopropylacrylamide) hydrogel. Upon near-infrared light irradiation, the hydrogel exhibited excellent comprehensive actuation performance as a result of directional bending deformation, promising great potential in the application of soft actuators and optomechanical system.
Initial Edge Stability Observations in the PEGASUS Toroidal Experiment
NASA Astrophysics Data System (ADS)
Bongard, M. W.; Battaglia, D. J.; Garstka, G. D.; Sontag, A. C.; Unterberg, E. A.
2007-11-01
Edge stability is an important consideration for design of fusion experiments, as transient heat loads generated by edge instabilities may damage the first wall. Such instabilities are now believed to include peeling (current driven) and ballooning (pressure driven) components. Peeling instability may be expected for high values of edge j||/B and low edge pressure gradient. This matches the operating space of Pegasus, with typical
Störmer, Elke; Bauer, Steffen; Kirchheiner, Julia; Brockmöller, Jürgen; Roots, Ivar
2003-01-05
A new HPLC method for the simultaneous determination of celecoxib, carboxycelecoxib and hydroxycelecoxib in human plasma samples has been developed. Following a solid-phase extraction procedure, the samples were separated by gradient reversed-phase HLPC (C(18)) and quantified using UV detection at 254 nm. The method was linear over the concentration range 10-500 ng/ml. The intra-assay variability for the three analytes ranged from 4.0 to 12.6% and the inter-assay variability from 4.9 to 14.2%. The achieved limits of quantitation (LOQ) of 10 ng/ml for each analyte allowed the determination of the pharmacokinetic parameters of the analytes after administration of 100 mg celecoxib.
A new method of determining moisture gradient in wood
Zhiyong Cai
2008-01-01
Moisture gradient in wood and wood composites is one of most important factors that affects both physical stability and mechanical performance. This paper describes a method for measuring moisture gradient in lumber and engineering wood composites as it varies across material thickness. This innovative method employs a collimated radiation beam (x rays or [gamma] rays...
Parametric instability of a non-uniform beam with thermal gradient and elastic end support
NASA Astrophysics Data System (ADS)
Kar, R. C.; Sujata, T.
1988-04-01
The influence of an elastic end support and a thermal gradient on the dynamic instability of a non-uniform cantilever beam subjected to a pulsating axial load has been studied. The results reveal that stiffening of the end support has a stabilizing effect, whereas increasing the thermal gradient has a destabilizing one.
NASA Technical Reports Server (NTRS)
Mathews, Charles W; Talmage, Donald B; Whitten, James B
1952-01-01
A longitudinal stability and control characteristics of a Boeing B-29 airplane have been measured with a booster incorporated in the elevator-control system. Tests were made to determine the effects on the handling qualities of the test airplane of variations in the pilot's control-force gradients as well as the effects of variations in the maximum rate of control motion supplied by the booster. The results of the control-rate investigation indicate that large airplanes may have satisfactory handling qualities with the booster adjusted to give much lower rates of control motion than those normally used by pilots.
Overview of physics results from the conclusive operation of the National Spherical Torus Experiment
NASA Astrophysics Data System (ADS)
Sabbagh, S. A.; Ahn, J.-W.; Allain, J.; Andre, R.; Balbaky, A.; Bastasz, R.; Battaglia, D.; Bell, M.; Bell, R.; Beiersdorfer, P.; Belova, E.; Berkery, J.; Betti, R.; Bialek, J.; Bigelow, T.; Bitter, M.; Boedo, J.; Bonoli, P.; Boozer, A.; Bortolon, A.; Boyle, D.; Brennan, D.; Breslau, J.; Buttery, R.; Canik, J.; Caravelli, G.; Chang, C.; Crocker, N.; Darrow, D.; Davis, B.; Delgado-Aparicio, L.; Diallo, A.; Ding, S.; D'Ippolito, D.; Domier, C.; Dorland, W.; Ethier, S.; Evans, T.; Ferron, J.; Finkenthal, M.; Foley, J.; Fonck, R.; Frazin, R.; Fredrickson, E.; Fu, G.; Gates, D.; Gerhardt, S.; Glasser, A.; Gorelenkov, N.; Gray, T.; Guo, Y.; Guttenfelder, W.; Hahm, T.; Harvey, R.; Hassanein, A.; Heidbrink, W.; Hill, K.; Hirooka, Y.; Hooper, E. B.; Hosea, J.; Humphreys, D.; Indireshkumar, K.; Jaeger, F.; Jarboe, T.; Jardin, S.; Jaworski, M.; Kaita, R.; Kallman, J.; Katsuro-Hopkins, O.; Kaye, S.; Kessel, C.; Kim, J.; Kolemen, E.; Kramer, G.; Krasheninnikov, S.; Kubota, S.; Kugel, H.; La Haye, R. J.; Lao, L.; LeBlanc, B.; Lee, W.; Lee, K.; Leuer, J.; Levinton, F.; Liang, Y.; Liu, D.; Lore, J.; Luhmann, N., Jr.; Maingi, R.; Majeski, R.; Manickam, J.; Mansfield, D.; Maqueda, R.; Mazzucato, E.; McLean, A.; McCune, D.; McGeehan, B.; McKee, G.; Medley, S.; Meier, E.; Menard, J.; Menon, M.; Meyer, H.; Mikkelsen, D.; Miloshevsky, G.; Mueller, D.; Munsat, T.; Myra, J.; Nelson, B.; Nishino, N.; Nygren, R.; Ono, M.; Osborne, T.; Park, H.; Park, J.; Park, Y. S.; Paul, S.; Peebles, W.; Penaflor, B.; Perkins, R. J.; Phillips, C.; Pigarov, A.; Podesta, M.; Preinhaelter, J.; Raman, R.; Ren, Y.; Rewoldt, G.; Rognlien, T.; Ross, P.; Rowley, C.; Ruskov, E.; Russell, D.; Ruzic, D.; Ryan, P.; Schaffer, M.; Schuster, E.; Scotti, F.; Shaing, K.; Shevchenko, V.; Shinohara, K.; Sizyuk, V.; Skinner, C. H.; Smirnov, A.; Smith, D.; Snyder, P.; Solomon, W.; Sontag, A.; Soukhanovskii, V.; Stoltzfus-Dueck, T.; Stotler, D.; Stratton, B.; Stutman, D.; Takahashi, H.; Takase, Y.; Tamura, N.; Tang, X.; Taylor, G.; Taylor, C.; Tritz, K.; Tsarouhas, D.; Umansky, M.; Urban, J.; Untergberg, E.; Walker, M.; Wampler, W.; Wang, W.; Whaley, J.; White, R.; Wilgen, J.; Wilson, R.; Wong, K. L.; Wright, J.; Xia, Z.; Youchison, D.; Yu, G.; Yuh, H.; Zakharov, L.; Zemlyanov, D.; Zimmer, G.; Zweben, S. J.
2013-10-01
Research on the National Spherical Torus Experiment, NSTX, targets physics understanding needed for extrapolation to a steady-state ST Fusion Nuclear Science Facility, pilot plant, or DEMO. The unique ST operational space is leveraged to test physics theories for next-step tokamak operation, including ITER. Present research also examines implications for the coming device upgrade, NSTX-U. An energy confinement time, τE, scaling unified for varied wall conditions exhibits a strong improvement of BTτE with decreased electron collisionality, accentuated by lithium (Li) wall conditioning. This result is consistent with nonlinear microtearing simulations that match the experimental electron diffusivity quantitatively and predict reduced electron heat transport at lower collisionality. Beam-emission spectroscopy measurements in the steep gradient region of the pedestal indicate the poloidal correlation length of turbulence of about ten ion gyroradii increases at higher electron density gradient and lower Ti gradient, consistent with turbulence caused by trapped electron instabilities. Density fluctuations in the pedestal top region indicate ion-scale microturbulence compatible with ion temperature gradient and/or kinetic ballooning mode instabilities. Plasma characteristics change nearly continuously with increasing Li evaporation and edge localized modes (ELMs) stabilize due to edge density gradient alteration. Global mode stability studies show stabilizing resonant kinetic effects are enhanced at lower collisionality, but in stark contrast have almost no dependence on collisionality when the plasma is off-resonance. Combined resistive wall mode radial and poloidal field sensor feedback was used to control n = 1 perturbations and improve stability. The disruption probability due to unstable resistive wall modes (RWMs) was surprisingly reduced at very high βN/li > 10 consistent with low frequency magnetohydrodynamic spectroscopy measurements of mode stability. Greater instability seen at intermediate βN is consistent with decreased kinetic RWM stabilization. A model-based RWM state-space controller produced long-pulse discharges exceeding βN = 6.4 and βN/li = 13. Precursor analysis shows 96.3% of disruptions can be predicted with 10 ms warning and a false positive rate of only 2.8%. Disruption halo currents rotate toroidally and can have significant toroidal asymmetry. Global kinks cause measured fast ion redistribution, with full-orbit calculations showing redistribution from the core outward and towards V∥/V = 1 where destabilizing compressional Alfvén eigenmode resonances are expected. Applied 3D fields altered global Alfvén eigenmode characteristics. High-harmonic fast-wave (HHFW) power couples to field lines across the entire width of the scrape-off layer, showing the importance of the inclusion of this phenomenon in designing future RF systems. The snowflake divertor configuration enhanced by radiative detachment showed large reductions in both steady-state and ELM heat fluxes (ELMing peak values down from 19 MW m-2 to less than 1.5 MW m-2). Toroidal asymmetry of heat deposition was observed during ELMs or by 3D fields. The heating power required for accessing H-mode decreased by 30% as the triangularity was decreased by moving the X-point to larger radius, consistent with calculations of the dependence of E × B shear in the edge region on ion heat flux and X-point radius. Co-axial helicity injection reduced the inductive start-up flux, with plasmas ramped to 1 MA requiring 35% less inductive flux. Non-inductive current fraction (NICF) up to 65% is reached experimentally with neutral beam injection at plasma current Ip = 0.7 MA and between 70-100% with HHFW application at Ip = 0.3 MA. NSTX-U scenario development calculations project 100% NICF for a large range of 0.6 < Ip(MA) < 1.35.
The role of large-scale eddies in the climate equilibrium. Part 2: Variable static stability
NASA Technical Reports Server (NTRS)
Zhou, Shuntai; Stone, Peter H.
1993-01-01
Lorenz's two-level model on a sphere is used to investigate how the results of Part 1 are modified when the interaction of the vertical eddy heat flux and static stability is included. In general, the climate state does not depend very much on whether or not this interaction is included, because the poleward eddy heat transport dominates the eddy forcing of mean temperature and wind fields. However, the climatic sensitivity is significantly affected. Compared to two-level model results with fixed static stability, the poleward eddy heat flux is less sensitive to the meridional temperature gradient and the gradient is more sensitive to the forcing. For example, the logarithmic derivative of the eddy flux with respect to the gradient has a slope that is reduced from approximately 15 on a beta-plane with fixed static stability and approximately 6 on a sphere with fixed static stability, to approximately 3 to 4 in the present model. This last result is more in line with analyses from observations. The present model also has a stronger baroclinic adjustment than that in Part 1, more like that in two-level beta-plane models with fixed static stability, that is, the midlatitude isentropic slope is very insensitive to the forcing, the diabatic heating, and the friction, unless the forcing is very weak.
Lacreuse, Agnès; Moore, Constance M; LaClair, Matthew; Payne, Laurellee; King, Jean A
2018-07-02
This study used Magnetic Resonance Spectroscopy (MRS) to identify potential neurometabolitic markers of cognitive performance in male (n = 7) and female (n = 8) middle-aged (∼5 years old) common marmosets (Callithrix jacchus). Anesthetized marmosets were scanned with a 4.7 T/40 cm horizontal magnet equipped with 450 mT/m magnetic field gradients and a 20 G/cm magnetic field gradient insert, within 3 months of completing the CANTAB serial Reversal Learning task. Neurometabolite concentrations of N-Acetyl Asparate, Myo-Inositol, Choline, Phosphocreatine + creatine, Glutamate and Glutamine were acquired from a 3 mm 3 voxel positioned in the Prefrontal Cortex (PFC). Males acquired the reversals (but not simple discriminations) faster than the females. Higher PFC Glx (glutamate + glutamine) concentration was associated with faster acquisition of the reversals. Interestingly, the correlation between cognitive performance and Glx was significant in males, but not in females. These results suggest that MRS is a useful tool to identify biochemical markers of cognitive performance in the healthy nonhuman primate brain and that biological sex modulates the relationship between neurochemical composition and cognition. Copyright © 2018 Elsevier B.V. All rights reserved.
Esposito, Simone; Mele, Riccardo; Ingenito, Raffaele; Bianchi, Elisabetta; Bonelli, Fabio; Monteagudo, Edith; Orsatti, Laura
2017-04-01
In drug discovery, there is increasing interest in peptides as therapeutic agents due to several appealing characteristics that are typical of this class of compounds, including high target affinity, excellent selectivity, and low toxicity. However, peptides usually present also some challenging ADME (absorption, distribution, metabolism, and excretion) issues such as limited metabolic stability, poor oral bioavailability, and short half-lives. In this context, early preclinical in vitro studies such as plasma metabolic stability assays are crucial to improve developability of a peptidic drug. In order to speed up the optimization of peptide metabolic stability, a strategy was developed for the integrated semi-quantitative determination of metabolic stability of peptides and qualitative identification/structural elucidation of their metabolites in preclinical plasma metabolic stability studies using liquid chromatography-high-resolution Orbitrap™ mass spectrometry (LC-HRMS). Sample preparation was based on protein precipitation: experimental conditions were optimized after evaluating and comparing different organic solvents in order to obtain an adequate extraction of the parent peptides and their metabolites and to minimize matrix effect. Peptides and their metabolites were analyzed by reverse-phase liquid chromatography: a template gradient (total run time, 6 min) was created to allow retention and good peak shape for peptides of different polarity and isoelectric points. Three LC columns were selected to be systematically evaluated for each series of peptides. Targeted and untargeted HRMS data were simultaneously acquired in positive full scan + data-dependent MS/MS acquisition mode, and then processed to calculate plasma half-life and to identify the major cleavage sites, this latter by using the software Biopharma Finder™. Finally, as an example of the application of this workflow, a study that shows the plasma stability improvement of a series of antimicrobial peptides is described. This approach was developed for the evaluation of in vitro plasma metabolic stability studies of peptides, but it could also be applied to other in vitro metabolic stability models (e.g., whole blood, hepatocytes). Graphical Abstract Left: trend plot for omiganan and major metabolites. Right: stability plot for five antimicrobial peptidesafter incubation with mouse plasma.
Improved image reconstruction of low-resolution multichannel phase contrast angiography
P. Krishnan, Akshara; Joy, Ajin; Paul, Joseph Suresh
2016-01-01
Abstract. In low-resolution phase contrast magnetic resonance angiography, the maximum intensity projected channel images will be blurred with consequent loss of vascular details. The channel images are enhanced using a stabilized deblurring filter, applied to each channel prior to combining the individual channel images. The stabilized deblurring is obtained by the addition of a nonlocal regularization term to the reverse heat equation, referred to as nonlocally stabilized reverse diffusion filter. Unlike reverse diffusion filter, which is highly unstable and blows up noise, nonlocal stabilization enhances intensity projected parallel images uniformly. Application to multichannel vessel enhancement is illustrated using both volunteer data and simulated multichannel angiograms. Robustness of the filter applied to volunteer datasets is shown using statistically validated improvement in flow quantification. Improved performance in terms of preserving vascular structures and phased array reconstruction in both simulated and real data is demonstrated using structureness measure and contrast ratio. PMID:26835501
Thermal Design to Meet Stringent Temperature Gradient/Stability Requirements of SWIFT BAT Detectors
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2000-01-01
The Burst Alert Telescope (BAT) is an instrument on the National Aeronautics and Space Administration (NASA) SWIFT spacecraft. It is designed to detect gamma ray burst over a broad region of the sky and quickly align the telescopes on the spacecraft to the gamma ray source. The thermal requirements for the BAT detector arrays are very stringent. The maximum allowable temperature gradient of the 256 cadmium zinc telluride (CZT) detectors is PC. Also, the maximum allowable rate of temperature change of the ASICs of the 256 Detector Modules (DMs) is PC on any time scale. The total power dissipation of the DMs and Block Command & Data Handling (BCDH) is 180 W. This paper presents a thermal design that uses constant conductance heat pipes (CCHPs) to minimize the temperature gradient of the DMs, and loop heat pipes (LHPs) to transport the waste heat to the radiator. The LHPs vary the effective thermal conductance from the DMs to the radiator to minimize heater power to meet the heater power budget, and to improve the temperature stability. The DMs are cold biased, and active heater control is used to meet the temperature gradient and stability requirements.
Blandl, Tamas; Cochran, Andrea G; Skelton, Nicholas J
2003-02-01
The turn-forming ability of a series of three-residue sequences was investigated by substituting them into a well-characterized beta-hairpin peptide. The starting scaffold, bhpW, is a disulfide-cyclized 10-residue peptide that folds into a stable beta-hairpin with two antiparallel strands connected by a two-residue reverse turn. Substitution of the central two residues with the three-residue test sequences leads to less stable hairpins, as judged by thiol-disulfide equilibrium measurements. However, analysis of NMR parameters indicated that each molecule retains a significant folded population, and that the type of turn adopted by the three-residue sequence is the same in all cases. The solution structure of a selected peptide with a PDG turn contained an antiparallel beta-hairpin with a 3:5 type I + G1 bulge turn. Analysis of the energetic contributions of individual turn residues in the series of peptides indicates that substitution effects have significant context dependence, limiting the predictive power of individual amino acid propensities for turn formation. The most stable and least stable sequences were also substituted into a more stable disulfide-cyclized scaffold and a linear beta-hairpin scaffold. The relative stabilities remained the same, suggesting that experimental measurements in the bhpW context are a useful way to evaluate turn stability for use in protein design projects. Moreover, these scaffolds are capable of displaying a diverse set of turns, which can be exploited for the mimicry of protein loops or for generating libraries of reverse turns.
Visualization of an endogenous retinoic acid gradient across embryonic development.
Shimozono, Satoshi; Iimura, Tadahiro; Kitaguchi, Tetsuya; Higashijima, Shin-Ichi; Miyawaki, Atsushi
2013-04-18
In vertebrate development, the body plan is determined by primordial morphogen gradients that suffuse the embryo. Retinoic acid (RA) is an important morphogen involved in patterning the anterior-posterior axis of structures, including the hindbrain and paraxial mesoderm. RA diffuses over long distances, and its activity is spatially restricted by synthesizing and degrading enzymes. However, gradients of endogenous morphogens in live embryos have not been directly observed; indeed, their existence, distribution and requirement for correct patterning remain controversial. Here we report a family of genetically encoded indicators for RA that we have termed GEPRAs (genetically encoded probes for RA). Using the principle of fluorescence resonance energy transfer we engineered the ligand-binding domains of RA receptors to incorporate cyan-emitting and yellow-emitting fluorescent proteins as fluorescence resonance energy transfer donor and acceptor, respectively, for the reliable detection of ambient free RA. We created three GEPRAs with different affinities for RA, enabling the quantitative measurement of physiological RA concentrations. Live imaging of zebrafish embryos at the gastrula and somitogenesis stages revealed a linear concentration gradient of endogenous RA in a two-tailed source-sink arrangement across the embryo. Modelling of the observed linear RA gradient suggests that the rate of RA diffusion exceeds the spatiotemporal dynamics of embryogenesis, resulting in stability to perturbation. Furthermore, we used GEPRAs in combination with genetic and pharmacological perturbations to resolve competing hypotheses on the structure of the RA gradient during hindbrain formation and somitogenesis. Live imaging of endogenous concentration gradients across embryonic development will allow the precise assignment of molecular mechanisms to developmental dynamics and will accelerate the application of approaches based on morphogen gradients to tissue engineering and regenerative medicine.
Observations of a tidal intrusion front in a tidal channel
NASA Astrophysics Data System (ADS)
Lu, Shasha; Xia, Xiaoming; Thompson, Charlie E. L.; Cao, Zhenyi; Liu, Yifei
2017-11-01
A visible front indicated by a surface colour change, and sometimes associated with foam or debris lines, was observed in a tidal channel during neap tide. This is an example of a tidal intrusion front occurring in the absence of sudden topographical changes or reversing flows, typically reported to be associated with such fronts. Detailed Acoustic Doppler Current Profiler and conductivity/temperature/depth measurements were taken on repeated transects both with fronts apparent and with fronts absent. The results indicated that the front occurred as a result of stratification, which was sustained by the buoyancy flux and the weak tide-induced mixing during neap ebb tide. The stronger tide-induced mixing during spring tide restrained stratification, leading to the absence of a front. The mechanism of the frontogenesis was the density gradient between the stratified water formed during neap ebb tide, and the more mixed seawater during neap flood tide; thus, the water on the landward (southwestern) side of the front was stratified, and that on the seaward side (northeastern) of the front was vertically well mixed. Gradient Richardson number estimates suggest that the flow between the stratified and mixed water was near the threshold 0.25 for shear instability. Meanwhile, the density gradient would provide an initial baroclinic contribution to velocity convergence, which is indicated by the accumulation of buoyant matter such as foam, grass, and debris into a sharply defined line along the surface. The front migrates with the flood current, with a local maximum towards the eastern side of the channel, leading to an asymmetrical shape with the eastern side of the front driven further into the Tiaozhoumen tidal channel.
Liang, Chao; Qiao, Jun-Qin; Lian, Hong-Zhen
2017-12-15
Reversed-phase liquid chromatography (RPLC) based octanol-water partition coefficient (logP) or distribution coefficient (logD) determination methods were revisited and assessed comprehensively. Classic isocratic and some gradient RPLC methods were conducted and evaluated for neutral, weak acid and basic compounds. Different lipophilicity indexes in logP or logD determination were discussed in detail, including the retention factor logk w corresponding to neat water as mobile phase extrapolated via linear solvent strength (LSS) model from isocratic runs and calculated with software from gradient runs, the chromatographic hydrophobicity index (CHI), apparent gradient capacity factor (k g ') and gradient retention time (t g ). Among the lipophilicity indexes discussed, logk w from whether isocratic or gradient elution methods best correlated with logP or logD. Therefore logk w is recommended as the preferred lipophilicity index for logP or logD determination. logk w easily calculated from methanol gradient runs might be the main candidate to replace logk w calculated from classic isocratic run as the ideal lipophilicity index. These revisited RPLC methods were not applicable for strongly ionized compounds that are hardly ion-suppressed. A previously reported imperfect ion-pair RPLC method was attempted and further explored for studying distribution coefficients (logD) of sulfonic acids that totally ionized in the mobile phase. Notably, experimental logD values of sulfonic acids were given for the first time. The IP-RPLC method provided a distinct way to explore logD values of ionized compounds. Copyright © 2017 Elsevier B.V. All rights reserved.
Mills, Amanda J; Wilkie, John; Britton, Melanie M
2014-09-11
The size, shape, and composition of reverse micelles (RMs) in a cetyltrimethylammonium bromide (CTAB)/pentanol/n-hexane/water microemulsion were investigated using pulsed gradient stimulated echo (PGSTE) nuclear magnetic resonance (NMR) measurements and molecular modeling. PGSTE data were collected at observation times (Δ) of 10, 40, and 450 ms. At long observation times, CTAB and pentanol exhibited single diffusion coefficients. However, at short (Δ ≤ 40 ms) observation times both CTAB and pentanol exhibited slow and fast diffusion coefficients. These NMR data indicate that both CTAB and pentanol molecules reside in different environments within the microemulsion and that there is exchange between regions on the millisecond time scale. Molecular dynamic simulations of the CTAB RM, in a solvent box containing n-hexane and pentanol, produced an ellipsoid shaped RM. Using structural parameters from these simulations and the Stokes-Einstein relation, the structure factor and dimensions of the reverse micelle were determined. Analysis of the composition of the interphase also showed that there was a variation in the ratio of surfactant to cosurfactant molecules depending on the curvature of the interphase.
NASA Technical Reports Server (NTRS)
Righter, Kevin; Arculus, Richard J.; Paslick, Cassi; Delano, John W.
1990-01-01
The intrinsic oxygen fugacity (IOF) of olivine separates from the Salta, Springwater, and Eagle Station pallasites was measured between 850 and 1150 C using oxygen-specific solid zirconia electrolytes at 100,000 Pa. Thermodynamic calculations of redox equilibria involving equalibrium pallasite assemblages are in good agreement with the experimental results and provide a lower limit to pallasite redox stability; others involving disequilibrium assemblages, suggest that pallasites experienced localized, late-stage oxidation and reduction effects. Consideration of the redox buffer metal-olivine-orthopyroxene utilizing calculated Eucrite Parent Body (EPB) mantle phase compositions indicates that small redox gradients may have existed in the EPB. Such gradients may have produced strong compositional variation within the EPB. In addition, there is apparently significant redox heterogeneity in the source area of Eagle Station Trio pallasites and Bocaiuva iron meteorites.
Microorganism-regulated mechanisms of temperature effects on the performance of anaerobic digestion.
Lin, Qiang; He, Guihua; Rui, Junpeng; Fang, Xiaoyu; Tao, Yong; Li, Jiabao; Li, Xiangzhen
2016-06-03
Temperature is an important factor determining the performance and stability of the anaerobic digestion process. However, the microorganism-regulated mechanisms of temperature effects on the performance of anaerobic digestion systems remain further elusive. To address this issue, we investigated the changes in composition, diversity and activities of microbial communities under temperature gradient from 25 to 55 °C using 16S rRNA gene amplicon sequencing approach based on genomic DNA (refer to as "16S rDNA") and total RNA (refer to as "16S rRNA"). Microbial community structure and activities changed dramatically along the temperature gradient, which corresponded to the variations in digestion performance (e.g., daily CH4 production, total biogas production and volatile fatty acids concentration). The ratios of 16S rRNA to 16S rDNA of microbial taxa, as an indicator of the potentially relative activities in situ, and whole activities of microbial community assessed by the similarity between microbial community based on 16S rDNA and rRNA, varied strongly along the temperature gradient, reflecting different metabolic activities. The daily CH4 production increased with temperature from 25 to 50 °C and declined at 55 °C. Among all the examined microbial properties, the whole activities of microbial community and alpha-diversity indices of both microbial communities and potentially relative activities showed highest correlations to the performance. The whole activities of microbial community and alpha-diversity indices of both microbial communities and potentially relative activities were sensitive indicators for the performance of anaerobic digestion systems under temperature gradient, while beta-diversity could predict functional differences. Microorganism-regulated mechanisms of temperature effects on anaerobic digestion performance were likely realized through increasing alpha-diversity of both microbial communities and potentially relative activities to supply more functional pathways and activities for metabolic network, and increasing the whole activities of microbial community, especially methanogenesis, to improve the strength and efficiency in anaerobic digestion process.
Regularized lattice Boltzmann model for immiscible two-phase flows with power-law rheology
NASA Astrophysics Data System (ADS)
Ba, Yan; Wang, Ningning; Liu, Haihu; Li, Qiang; He, Guoqiang
2018-03-01
In this work, a regularized lattice Boltzmann color-gradient model is developed for the simulation of immiscible two-phase flows with power-law rheology. This model is as simple as the Bhatnagar-Gross-Krook (BGK) color-gradient model except that an additional regularization step is introduced prior to the collision step. In the regularization step, the pseudo-inverse method is adopted as an alternative solution for the nonequilibrium part of the total distribution function, and it can be easily extended to other discrete velocity models no matter whether a forcing term is considered or not. The obtained expressions for the nonequilibrium part are merely related to macroscopic variables and velocity gradients that can be evaluated locally. Several numerical examples, including the single-phase and two-phase layered power-law fluid flows between two parallel plates, and the droplet deformation and breakup in a simple shear flow, are conducted to test the capability and accuracy of the proposed color-gradient model. Results show that the present model is more stable and accurate than the BGK color-gradient model for power-law fluids with a wide range of power-law indices. Compared to its multiple-relaxation-time counterpart, the present model can increase the computing efficiency by around 15%, while keeping the same accuracy and stability. Also, the present model is found to be capable of reasonably predicting the critical capillary number of droplet breakup.
Wang, Shouju; Teng, Zhaogang; Huang, Peng; Liu, Dingbin; Liu, Ying; Tian, Ying; Sun, Jing; Li, Yanjun; Ju, Huangxian; Chen, Xiaoyuan; Lu, Guangming
2015-04-17
Shielding nanoparticles from nonspecific interactions with normal cells/tissues before they reach and after they leave tumors is crucial for the selective delivery of NPs into tumor cells. By utilizing the reversible protonation of weak electrolytic groups to pH changes, long-chain amine/carboxyl-terminated polyethylene glycol (PEG) decorated gold nanostars (GNSs) are designed, exhibiting reversible, significant, and sensitive response in cell affinity and therapeutic efficacy to the extracellular pH (pHe) gradient between normal tissues and tumors. This smart nanosystem shows good dispersity and unimpaired photothermal efficacy in complex bioenvironment at pH 6.4 and 7.4 even when their surface charge is neutral. One PEGylated mixed-charge GNSs with certain surface composition, GNS-N/C 4, exhibits high cell affinity and therapeutic efficacy at pH 6.4, and low affinity and almost "zero" damage to cells at pH 7.4. Remarkably, this significant and sensitive response in cell affinity and therapeutic efficacy is reversible as local pH alternated. In vivo, GNS-N/C 4 shows higher accumulation in tumors and improved photothermal therapeutic efficacy than pH-insensitive GNSs. This newly developed smart nanosystem, whose cell affinity reversibly transforms in response to pHe gradient with unimpaired biostability, provides a novel effective means of tumor-selective therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ramsay, Douglas S; Woods, Stephen C; Kaiyala, Karl J
2014-01-01
Initial administration of 60% nitrous oxide (N2O) at 21°C ambient temperature reduces core temperature (Tc) in rats, but tolerance develops to this hypothermic effect over several administrations. After additional N2O administrations, a hyperthermic overcompensation (sign-reversal) develops such that Tc exceeds control levels during N2O inhalation. This study investigated whether rats would employ behavioral thermoregulation to facilitate, or oppose, a previously acquired hyperthermic overcompensation during N2O administration. To establish a hyperthermic sign-reversal, male Long-Evans rats (N = 12) received 10 3-h administrations of 60% N2O while housed in a gas-tight, live-in, “inactive” thermal gradient (∼21°C). Following the tenth N2O exposure, the thermal gradient was activated (range of 10–37°C), and rats received both a control gas session and a 60% N2O test session in counterbalanced order. Mean Tc during N2O inhalation in the inactive gradient was reliably hypothermic during the first exposure but was reliably hyperthermic by the tenth exposure. When subsequently exposed to 60% N2O in the active gradient, rats selected a cooler Ta, which blunted the hyperthermic sign-reversal and lowered Tc throughout the remainder of the N2O exposure. Thus, autonomic heat production effectors mediating the hyperthermia were opposed by a behavioral effector that promoted increased heat loss via selection of a cooler ambient temperature. These data are compatible with an allostatic model of drug addiction that suggests that dysregulatory overcompensation in the drugged-state may motivate behaviors (e.g., drug taking) that oppose the overcompensation, thereby creating a vicious cycle of escalating drug consumption and recurring dysregulation. PMID:25938126
Crichton, Paul G.; Lee, Yang; Ruprecht, Jonathan J.; Cerson, Elizabeth; Thangaratnarajah, Chancievan; King, Martin S.; Kunji, Edmund R. S.
2015-01-01
Mitochondrial carriers, including uncoupling proteins, are unstable in detergents, which hampers structural and mechanistic studies. To investigate carrier stability, we have purified ligand-free carriers and assessed their stability with a fluorescence-based thermostability assay that monitors protein unfolding with a thiol-reactive dye. We find that mitochondrial carriers from both mesophilic and thermophilic organisms exhibit poor stability in mild detergents, indicating that instability is inherent to the protein family. Trends in the thermostability of yeast ADP/ATP carrier AAC2 and ovine uncoupling protein UCP1 allow optimal conditions for stability in detergents to be established but also provide mechanistic insights into the interactions of lipids, substrates, and inhibitors with these proteins. Both proteins exhibit similar stability profiles across various detergents, where stability increases with the size of the associated detergent micelle. Detailed analysis shows that lipids stabilize carriers indirectly by increasing the associated detergent micelle size, but cardiolipin stabilizes by direct interactions as well. Cardiolipin reverses destabilizing effects of ADP and bongkrekic acid on AAC2 and enhances large stabilizing effects of carboxyatractyloside, revealing that this lipid interacts in the m-state and possibly other states of the transport cycle, despite being in a dynamic interface. Fatty acid activators destabilize UCP1 in a similar way, which can also be prevented by cardiolipin, indicating that they interact like transport substrates. Our controls show that carriers can be soluble but unfolded in some commonly used detergents, such as the zwitterionic Fos-choline-12, which emphasizes the need for simple validation assays like the one used here. PMID:25653283
Climatology of the autumn Red Sea trough
NASA Astrophysics Data System (ADS)
Awad, Adel M.; Mashat, Abdul-Wahab S.
2018-03-01
In this study, the Sudan low and the associated Red Sea trough (RST) are objectively identified using the mean sea level pressure (SLP) data from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis dataset covering the period 1955-2015. The Sudan low was detected in approximately 60.6% of the autumn periods, and approximately 83% of the detected low-pressure systems extended into RSTs, with most generated at night and during cold months. The distribution of the RSTs demonstrated that Sudan, South Sudan and Red Sea are the primary development areas of the RSTs, generating 97% of the RSTs in the study period. In addition, the outermost areas affected by RSTs, which include the southern, central and northern Red Sea areas, received approximately 91% of the RSTs originating from the primary generation areas. The synoptic features indicated that a Sudan low developed into an RST when the Sudan low deepened in the atmosphere, while the low pressures over the southern Arabian Peninsula are shallow and the anticyclonic systems are weakened over the northern Red Sea. Moreover, stabile areas over Africa and Arabian Peninsula form a high stability gradient around the Red Sea and the upper maximum winds weaken. The results of the case studies indicate that RSTs extend northward when the upper cyclonic and anticyclonic systems form a high geopotential gradient over Arabian Peninsula. Furthermore, the RST is oriented from the west to the east when the Azores high extends eastward and the Siberian high shrinks eastward or shifts northward.
Impact of a large density gradient on linear and nonlinear edge-localized mode simulations
Xi, P. W.; Xu, X. Q.; Xia, T. Y.; ...
2013-09-27
Here, the impact of a large density gradient on edge-localized modes (ELMs) is studied linearly and nonlinearly by employing both two-fluid and gyro-fluid simulations. In two-fluid simulations, the ion diamagnetic stabilization on high-n modes disappears when the large density gradient is taken into account. But gyro-fluid simulations show that the finite Larmor radius (FLR) effect can effectively stabilize high-n modes, so the ion diamagnetic effect alone is not sufficient to represent the FLR stabilizing effect. We further demonstrate that additional gyroviscous terms must be kept in the two-fluid model to recover the linear results from the gyro-fluid model. Nonlinear simulations show that the density variation significantly weakens the E × B shearing at the top of the pedestal and thus leads to more energy loss during ELMs. The turbulence spectrum after an ELM crash is measured and has the relation ofmore » $$P(k_{z})\\propto k_{z}^{-3.3}$$ .« less
Luo, Zhiqiang; Deng, Zhongqing; Liu, Yang; Wang, Guopeng; Yang, Wenning; Hou, Chengbo; Tang, Minming; Yang, Ruirui; Zhou, Huaming
2015-07-01
Ezetimibe is a novel lipid-lowering agent that inhibits intestinal absorption of dietary and biliary cholesterol. In the present work, a simple, sensitive and reproducible gradient reverse phase high performance liquid chromatographic (RP-HPLC) method for separation and determination of the related substances of ezetimibe was developed and validated. Eleven potential process-related impurities (starting materials, (3S,4S,3'S)-isomer, degradants and byproducts) were identified in the crude samples. Tentative structures for all the impurities were assigned primarily based on comparison of their retention time and mass spectrometric data with that of available standards and references. This method can be applied to routine analysis in quality control of both bulk drugs and commercial tablets. Separation of all these compounds was performed on a Phenomenex Luna Phenyl-Hexyl (100mm×4.6mm, 5μm) analytical column. The mobile phase-A consists of acetonitrile-water (pH adjusted to 4.0 with phosphoric acid)-methanol at 15:75:10 (v/v/v), and mobile phase-B contains acetonitrile. The eluted compounds were monitored at 210nm. Ezetimibe was subjected to hydrolytic, acid, base, oxidative, photolytic and thermal stress conditions as per ICH serves to generate degradation products that can be used as a worst case to assess the analytical method performance. The drug showed extensive degradation in thermal, acid, oxidative, base and hydrolytic stress conditions, while it was stable to photolytic degradation conditions. The main degradation product formed under thermal, acid, oxidative, base and hydrolytic stress conditions corresponding to (2R,3R,6S)-N, 6-bis(4-fluorophenyl)-2-(4-hydroxyphenyl)-oxane-3-carboxamide (Ezetimibe tetrahydropyran impurity) was characterized by LC-MS/MS analysis. The degradation products were well resolved from the main peak and its impurities, thus proved the stability-indicating power of the method. The developed method was validated as per international conference on harmonization (ICH) guidelines with respect to specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision and robustness. Copyright © 2015 Elsevier B.V. All rights reserved.
Sensitivity analysis of automatic flight control systems using singular value concepts
NASA Technical Reports Server (NTRS)
Herrera-Vaillard, A.; Paduano, J.; Downing, D.
1985-01-01
A sensitivity analysis is presented that can be used to judge the impact of vehicle dynamic model variations on the relative stability of multivariable continuous closed-loop control systems. The sensitivity analysis uses and extends the singular-value concept by developing expressions for the gradients of the singular value with respect to variations in the vehicle dynamic model and the controller design. Combined with a priori estimates of the accuracy of the model, the gradients are used to identify the elements in the vehicle dynamic model and controller that could severely impact the system's relative stability. The technique is demonstrated for a yaw/roll damper stability augmentation designed for a business jet.
Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects.
Yip, Ngai Yin; Brogioli, Doriano; Hamelers, Hubertus V M; Nijmeijer, Kitty
2016-11-15
Combining two solutions of different composition releases the Gibbs free energy of mixing. By using engineered processes to control the mixing, chemical energy stored in salinity gradients can be harnessed for useful work. In this critical review, we present an overview of the current progress in salinity gradient power generation, discuss the prospects and challenges of the foremost technologies - pressure retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix) and provide perspectives on the outlook of salinity gradient power generation. Momentous strides have been made in technical development of salinity gradient technologies and field demonstrations with natural and anthropogenic salinity gradients (for example, seawater-river water and desalination brine-wastewater, respectively), but fouling persists to be a pivotal operational challenge that can significantly ebb away cost-competitiveness. Natural hypersaline sources (e.g., hypersaline lakes and salt domes) can achieve greater concentration difference and, thus, offer opportunities to overcome some of the limitations inherent to seawater-river water. Technological advances needed to fully exploit the larger salinity gradients are identified. While seawater desalination brine is a seemingly attractive high salinity anthropogenic stream that is otherwise wasted, actual feasibility hinges on the appropriate pairing with a suitable low salinity stream. Engineered solutions are foulant-free and can be thermally regenerative for application in low-temperature heat utilization. Alternatively, PRO, RED, and CapMix can be coupled with their analog separation process (reverse osmosis, electrodialysis, and capacitive deionization, respectively) in salinity gradient flow batteries for energy storage in chemical potential of the engineered solutions. Rigorous techno-economic assessments can more clearly identify the prospects of low-grade heat conversion and large-scale energy storage. While research attention is squarely focused on efficiency and power improvements, efforts to mitigate fouling and lower membrane and electrode cost will be equally important to reduce levelized cost of salinity gradient energy production and, thus, boost PRO, RED, and CapMix power generation to be competitive with other renewable technologies. Cognizance of the recent key developments and technical progress on the different technological fronts can help steer the strategic advancement of salinity gradient as a sustainable energy source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zohar, S.; Choi, Y.; Love, D. M.
We use X-ray Excited Luminescence Microscopy to investigate the elemental and layer resolved magnetic reversal in an interlayer exchange coupled (IEC) epitaxial Fe/Cr wedge/Co heterostructure. The transition from strongly coupled parallel Co-Fe reversal for Cr thickness t(Cr) < 0.34 nm to weakly coupled layer independent reversal for t(Cr) > 1.5 nm is punctuated at 0.34 < t(Cr) < 1.5 nm by a combination of IEC guided domain wall motion and stationary zig zag domain walls. Domain walls nucleated at switching field minima are guided by IEC spatial gradients and collapse at switching field maxima.
Internal transport barriers in the National Spherical Torus Experimenta)
NASA Astrophysics Data System (ADS)
Yuh, H. Y.; Levinton, F. M.; Bell, R. E.; Hosea, J. C.; Kaye, S. M.; LeBlanc, B. P.; Mazzucato, E.; Peterson, J. L.; Smith, D. R.; Candy, J.; Waltz, R. E.; Domier, C. W.; Luhmann, N. C.; Lee, W.; Park, H. K.
2009-05-01
In the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 41, 1435 (2001)], internal transport barriers (ITBs) are observed in reversed (negative) shear discharges where diffusivities for electron and ion thermal channels and momentum are reduced. While neutral beam heating can produce ITBs in both electron and ion channels, high harmonic fast wave heating can also produce electron ITBs (e-ITBs) under reversed magnetic shear conditions without momentum input. Interestingly, the location of the e-ITB does not necessarily match that of the ion ITB (i-ITB). The e-ITB location correlates best with the magnetic shear minima location determined by motional Stark effect constrained equilibria, whereas the i-ITB location better correlates with the location of maximum E ×B shearing rate. Measured electron temperature gradients in the e-ITB can exceed critical gradients for the onset of electron thermal gradient microinstabilities calculated by linear gyrokinetic codes. A high-k microwave scattering diagnostic shows locally reduced density fluctuations at wave numbers characteristic of electron turbulence for discharges with strongly negative magnetic shear versus weakly negative or positive magnetic shear. Reductions in fluctuation amplitude are found to be correlated with the local value of magnetic shear. These results are consistent with nonlinear gyrokinetic simulations predicting a reduction in electron turbulence under negative magnetic shear conditions despite exceeding critical gradients.
Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Lukman, Salihu; Bukhari, Alaadin
2013-01-01
In this study, an integrated in situ remediation technique which couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic clay soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil electrical conductivity. Box-Behnken Design (BBD) was used for the experimental design and response surface methodology (RSM) was employed to model, optimize, and interpret the results obtained using Design-Expert version 8 platform. The total number of experiments conducted was 15 with voltage gradient, polarity reversal rate, and initial contaminant concentration as variables. The main target response discussed in this paper is the soil electrical conductivity due to its importance in electrokinetic remediation process. Responses obtained were fitted to quadratic models whose R (2) ranges from 84.66% to 99.19% with insignificant lack of fit in each case. Among the investigated factors, voltage gradient and initial contaminant concentration were found to be the most significant influential factors.
Enhancement of Edge Stability with Lithium Wall Coatings in NSTX
NASA Astrophysics Data System (ADS)
Maingi, R.; Bell, R. E.; Leblanc, B. P.; Kaita, R.; Kaye, S. M.; Kugel, H. W.; Mansfield, D. K.; Osborne, T. H.
2008-11-01
ELM reduction or elimination while maintaining high confinement is essential for ITER, which has been designed for H-mode operation. Large ELMs are thought to be triggered by exceeding either edge current density and/or pressure gradient limits (peeling, ballooning modes). Stability calculations show that spherical tori should have access to higher pressure gradients and pedestal heights than higher R/a tokamaks, owing to access to second stability regimes[...1]. An ELM-free regime was recently observed in the NSTX following the application of lithium onto the graphite plasma facing components[......2]. ELMs were eliminated in phases[.....3], with the resulting pressure gradients and pedestal widths increasing substantially. Calculations with TRANSP have shown that the edge bootstrap current increased substantially, consistent with second stability access. These ELM-free discharges have a substantial improvement in energy confinement, up to the global βN˜ 5.5 limit. * Supported by US DOE DE-FG02-04ER54520, DE-AC-76CH03073, and DE-FC02-04ER54698. [.1] P. B. Snyder, et. al., Plasma Phys. Contr. Fusion 46 (2004) A131. [2] H. W. Kugel, et. al., Phys. Plasma 15 (2008) #056118. [3] D. M. Mansfield, et. al., J. Nucl. Materials (2009) submitted.
Carter-Storch, Rasmus; Møller, Jacob E; Christensen, Nicolaj L; Irmukhadenov, Akhmadjon; Rasmussen, Lars M; Pecini, Redi; Øvrehus, Kristian A; Søndergård, Eva V; Marcussen, Niels; Dahl, Jordi S
2017-12-01
Severe aortic stenosis (AS) most often presents with reduced aortic valve area (<1 cm 2 ), normal stroke volume index (≥35 mL/m 2 ), and either high mean gradient (≥40 mm Hg; normal-flow high-gradient AS) or low mean gradient (normal-flow low-gradient [NFLG] AS). The benefit of aortic valve replacement (AVR) among NFLG patients is controversial. We compared the impact of NFLG condition on preoperative left ventricular (LV) remodeling and myocardial fibrosis and postoperative remodeling and symptomatic benefit. Eighty-seven consecutive patients with reduced aortic valve area and normal stroke volume index undergoing AVR underwent echocardiography, magnetic resonance imaging, a 6-minute walk test, and measurement of natriuretic peptides before and 1 year after AVR. Myocardial fibrosis was assessed from magnetic resonance imaging. Patients were stratified as NFLG or normal-flow high-gradient. In total, 33 patients (38%) had NFLG. Before AVR, they were characterized by similar symptom burden but less severe AS measured by aortic valve area index (0.50±0.09 versus 0.40±0.08 cm 2 /m 2 ; P <0.0001), lower LV mass index (74±18 versus 90±26 g/m 2 ; P =0.01), but the same degree of myocardial fibrosis. After AVR, NFLG had a smaller reduction in LV mass index (-3±10 versus -±18 g/m 2 ; P <0.0001) and a smaller reduction in natriuretic peptides. Both groups experienced similar symptomatic improvement. Normal-flow high-gradient condition independently predicted change in LV mass index. Patients with NFLG had less severe AS and LV remodeling than patients with normal-flow high-gradient. Furthermore, NFLG patients experienced less reverse remodeling but the same symptomatic benefit. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02316587. © 2017 American Heart Association, Inc.
Wake measurements in a strong adverse pressure gradient
NASA Technical Reports Server (NTRS)
Hoffenberg, R.; Sullivan, John P.; Schneider, S. P.
1994-01-01
The behavior of wakes in adverse pressure gradients is critical to the performance of high-lift systems for transport aircraft. Wake deceleration is known to lead to sudden thickening and the onset of reversed flow; this 'wake bursting' phenomenon can occur while surface flows remain attached. Although 'wake bursting' is known to be important for high-lift systems, no detailed measurements of 'burst' wakes have ever been reported. Wake bursting has been successfully achieved in the wake of a flat plate as it decelerated in a two-dimensional diffuser, whose sidewalls were forced to remain attached by use of slot blowing. Pilot probe surveys, L.D.V. measurements, and flow visualization have been used to investigate the physics of this decelerated wake, through the onset of reversed flow.
δ 13C evidence that high primary productivity delayed recovery from end-Permian mass extinction
NASA Astrophysics Data System (ADS)
Meyer, K. M.; Yu, M.; Jost, A. B.; Kelley, B. M.; Payne, J. L.
2011-02-01
Euxinia was widespread during and after the end-Permian mass extinction and is commonly cited as an explanation for delayed biotic recovery during Early Triassic time. This anoxic, sulfidic episode has been ascribed to both low- and high-productivity states in the marine water column, leaving the causes of euxinia and the mechanisms underlying delayed recovery poorly understood. Here we use isotopic analysis to examine the changing chemical structure of the water column through the recovery interval and thereby better constrain paleoproductivity. The δ 13C of limestones from 5 stratigraphic sections in south China displays a negative gradient of approximately 4‰ from shallow-to-deep water facies within the Lower Triassic. This intense gradient declines within Spathian and lowermost Middle Triassic strata, coincident with accelerated biotic recovery and carbon cycle stabilization. Model simulations show that high nutrient levels and a vigorous biological pump are required to sustain such a large gradient in δ 13C, indicating that Early Triassic ocean anoxia and delayed recovery of benthic animal ecosystems resulted from too much productivity rather than too little.
Enhancement of the Accelerating Gradient in Superconducting Microwave Resonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Checchin, Mattia; Grassellino, Anna; Martinello, Martina
2017-05-01
The accelerating gradient of superconducting resonators can be enhanced by engineering the thickness of a dirty layer grown at the cavity's rf surface. In this paper the description of the physics behind the accelerating gradient enhancement by meaning of the dirty layer is carried out by solving numerically the the Ginzburg-Landau (GL) equations for the layered system. The calculation shows that the presence of the dirty layer stabilizes the Meissner state up to the lower critical field of the bulk, increasing the maximum accelerating gradient.
Ambrosio, Leonardo A; Hernández-Figueroa, Hugo E
2010-11-08
Gradient forces on double negative (DNG) spherical dielectric particles are theoretically evaluated for v-th Bessel beams supposing geometrical optics approximations based on momentum transfer. For the first time in the literature, comparisons between these forces for double positive (DPS) and DNG particles are reported. We conclude that, contrary to the conventional case of positive refractive index, the gradient forces acting on a DNG particle may not reverse sign when the relative refractive index n goes from |n|>1 to |n|<1, thus revealing new and interesting trapping properties.
Preiss, Laura; Hicks, David B.; Suzuki, Shino; Meier, Thomas; Krulwich, Terry Ann
2015-01-01
Alkaliphilic bacteria typically grow well at pH 9, with the most extremophilic strains growing up to pH values as high as pH 12–13. Interest in extreme alkaliphiles arises because they are sources of useful, stable enzymes, and the cells themselves can be used for biotechnological and other applications at high pH. In addition, alkaline hydrothermal vents represent an early evolutionary niche for alkaliphiles and novel extreme alkaliphiles have also recently been found in alkaline serpentinizing sites. A third focus of interest in alkaliphiles is the challenge raised by the use of proton-coupled ATP synthases for oxidative phosphorylation by non-fermentative alkaliphiles. This creates a problem with respect to tenets of the chemiosmotic model that remains the core model for the bioenergetics of oxidative phosphorylation. Each of these facets of alkaliphilic bacteria will be discussed with a focus on extremely alkaliphilic Bacillus strains. These alkaliphilic bacteria have provided a cogent experimental system to probe adaptations that enable their growth and oxidative phosphorylation at high pH. Adaptations are clearly needed to enable secreted or partially exposed enzymes or protein complexes to function at the high external pH. Also, alkaliphiles must maintain a cytoplasmic pH that is significantly lower than the pH of the outside medium. This protects cytoplasmic components from an external pH that is alkaline enough to impair their stability or function. However, the pH gradient across the cytoplasmic membrane, with its orientation of more acidic inside than outside, is in the reverse of the productive orientation for bioenergetic work. The reversed gradient reduces the trans-membrane proton-motive force available to energize ATP synthesis. Multiple strategies are hypothesized to be involved in enabling alkaliphiles to circumvent the challenge of a low bulk proton-motive force energizing proton-coupled ATP synthesis at high pH. PMID:26090360
Preiss, Laura; Hicks, David B; Suzuki, Shino; Meier, Thomas; Krulwich, Terry Ann
2015-01-01
Alkaliphilic bacteria typically grow well at pH 9, with the most extremophilic strains growing up to pH values as high as pH 12-13. Interest in extreme alkaliphiles arises because they are sources of useful, stable enzymes, and the cells themselves can be used for biotechnological and other applications at high pH. In addition, alkaline hydrothermal vents represent an early evolutionary niche for alkaliphiles and novel extreme alkaliphiles have also recently been found in alkaline serpentinizing sites. A third focus of interest in alkaliphiles is the challenge raised by the use of proton-coupled ATP synthases for oxidative phosphorylation by non-fermentative alkaliphiles. This creates a problem with respect to tenets of the chemiosmotic model that remains the core model for the bioenergetics of oxidative phosphorylation. Each of these facets of alkaliphilic bacteria will be discussed with a focus on extremely alkaliphilic Bacillus strains. These alkaliphilic bacteria have provided a cogent experimental system to probe adaptations that enable their growth and oxidative phosphorylation at high pH. Adaptations are clearly needed to enable secreted or partially exposed enzymes or protein complexes to function at the high external pH. Also, alkaliphiles must maintain a cytoplasmic pH that is significantly lower than the pH of the outside medium. This protects cytoplasmic components from an external pH that is alkaline enough to impair their stability or function. However, the pH gradient across the cytoplasmic membrane, with its orientation of more acidic inside than outside, is in the reverse of the productive orientation for bioenergetic work. The reversed gradient reduces the trans-membrane proton-motive force available to energize ATP synthesis. Multiple strategies are hypothesized to be involved in enabling alkaliphiles to circumvent the challenge of a low bulk proton-motive force energizing proton-coupled ATP synthesis at high pH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medvedev, S. Yu., E-mail: medvedev@a5.kiam.ru; Ivanov, A. A., E-mail: aai@a5.kiam.ru; Martynov, A. A., E-mail: martynov@a5.kiam.ru
The influence of current density and pressure gradient profiles in the pedestal on the access to the regimes free from edge localized modes (ELMs) like quiescent H-mode in ITER is investigated. Using the simulator of MHD modes localized near plasma boundary based on the KINX code, calculations of the ELM stability were performed for the ITER plasma in scenarios 2 and 4 under variations of density and temperature profiles with the self-consistent bootstrap current in the pedestal. Low pressure gradient values at the separatrix, the same position of the density and temperature pedestals and high poloidal beta values facilitate reachingmore » high current density in the pedestal and a potential transition into the regime with saturated large scale kink modes. New version of the localized MHD mode simulator allows one to compute the growth rates of ideal peeling-ballooning modes with different toroidal mode numbers and to determine the stability region taking into account diamagnetic stabilization. The edge stability diagrams computations and sensitivity studies of the stability limits to the value of diamagnetic frequency show that diamagnetic stabilization of the modes with high toroidal mode numbers can help to access the quiescent H-mode even with high plasma density but only with low pressure gradient values at the separatrix. The limiting pressure at the top of the pedestal increases for higher plasma density. With flat density profile the access to the quiescent H-mode is closed even with diamagnetic stabilization taken into account, while toroidal mode numbers of the most unstable peeling-ballooning mode decrease from n = 10−40 to n = 3−20.« less
NASA Astrophysics Data System (ADS)
Guzdar, P. N.; Kleva, R. G.; Groebner, R. J.; Gohil, P.
2004-03-01
Shear flow stabilization of edge turbulence in tokamaks has been the accepted paradigm for the improvement in confinement observed in high (H) confinement mode plasmas. Results on the generation of zonal flow and fields in finite β plasmas are presented. This theory yields a criterion for bifurcation from low to high (L-H) confinement mode, proportional to Te/√Ln , where Te is the electron temperature and Ln is the density scale-length at the steepest part of the density gradient. When this parameter exceeds a critical value (mostly determined by the strength of the toroidal magnetic field), the transition occurs. The predicted threshold based on this parameter shows good agreement with edge measurements on discharges undergoing L-H transitions in DIII-D [J. L. Luxon, R. Anderson, F. Batty et al., in Proceedings of the 11th Conference on Plasma Physics and Controlled Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159]. The observed differences in the transitions with the reversal of the toroidal magnetic field are reconciled in terms of this critical parameter due to the differences in the density gradient scale-lengths in the edge. The theory also provides a possible explanation for lowered threshold power, pellet injection H modes in DIII-D, thereby providing a unified picture of the varied observations on the L-H transition.
Reversibly crosslinked nanocarriers for on-demand drug delivery in cancer treatment
Shao, Yu; Huang, Wenzhe; Shi, Changying; Atkinson, Sean T; Luo, Juntao
2013-01-01
Polymer micelles have proven to be one of the most versatile nanocarriers for anticancer drug delivery. However, the in vitro and in vivo stability of micelles remains a challenge due to the dynamic nature of these self-assembled systems, which leads to premature drug release and nonspecific biodistribution in vivo. Recently, reversibly crosslinked micelles have been developed to provide solutions to stabilize nanocarriers in blood circulation. Increased stability allows nanoparticles to accumulate at tumor sites efficiently via passive and/or active tumor targeting, while cleavage of the micelle crosslinkages, through internal or external stimuli, facilitates on-demand drug release. In this review, various crosslinking chemistries as well as the choices for reversible linkages in these nanocarriers will be introduced. Then, the development of reversibly crosslinked micelles for on-demand drug release in response to single or dual stimuli in the tumor microenvironment is discussed, for example, acidic pH, reducing microenvironment, enzymatic microenvironment, photoirradiation and the administration of competitive reagents postmicelle delivery. PMID:23323559
Escalation of polymerization in a thermal gradient
Mast, Christof B.; Schink, Severin; Gerland, Ulrich; Braun, Dieter
2013-01-01
For the emergence of early life, the formation of biopolymers such as RNA is essential. However, the addition of nucleotide monomers to existing oligonucleotides requires millimolar concentrations. Even in such optimistic settings, no polymerization of RNA longer than about 20 bases could be demonstrated. How then could self-replicating ribozymes appear, for which recent experiments suggest a minimal length of 200 nt? Here, we demonstrate a mechanism to bridge this gap: the escalated polymerization of nucleotides by a spatially confined thermal gradient. The gradient accumulates monomers by thermophoresis and convection while retaining longer polymers exponentially better. Polymerization and accumulation become mutually self-enhancing and result in a hyperexponential escalation of polymer length. We describe this escalation theoretically under the conservative assumption of reversible polymerization. Taking into account the separately measured thermophoretic properties of RNA, we extrapolate the results for primordial RNA polymerization inside a temperature gradient in pores or fissures of rocks. With a dilute, nanomolar concentration of monomers the model predicts that a pore length of 5 cm and a temperature difference of 10 K suffice to polymerize 200-mers of RNA in micromolar concentrations. The probability to generate these long RNAs is raised by a factor of >10600 compared with polymerization in a physical equilibrium. We experimentally validate the theory with the reversible polymerization of DNA blocks in a laser-driven thermal trap. The results confirm that a thermal gradient can significantly enlarge the available sequence space for the emergence of catalytically active polymers. PMID:23630280
Project SKYLITE: A Design Exploration.
1987-09-01
5. Gravity Gradient Boom The SKYLITE satellite uses gravity gradient stabilization. This technique requires a gravity gradient boom for attitude ... attitude of the satellite. To satisfy SKYLITE mission requirements, the satellite contains an array of IR sensors for evaluation of radiation from the ...3.1 Extended GAS Canister. The Orion satellite has been designed with 7 thrusters. Six thrusters are .1 lbr rated, and used for spin up and attitude
Kakde, Rajendra B; Satone, Dinesh D; Gadapayale, Kamalesh K; Kakde, Megha G
2013-07-01
The objective of the current study was to develop a validated, specific stability-indicating reversed-phase liquid chromatographic (LC) method for the quantitative determination of escitalopram oxalate and clonazepam and their related substances in bulk drugs and pharmaceutical dosage forms in the presence of degradation products. Forced degradation studies were performed on the pure drugs of escitalopram oxalate and clonazepam, as per the stress conditions prescribed by the International Conference on Harmonization (ICH) using acid, base, oxidation, thermal stress and photolytic degradation to show the stability-indicating power of the method. Significant degradation was observed during acid and alkaline hydrolysis and no degradation was observed in other stress conditions. The chromatographic method was optimized using the samples generated from forced degradation studies. Good resolution between the peaks corresponded to the active pharmaceutical ingredients, escitalopram oxalate and clonazepam, and degradation products from the analyte were achieved on an ODS Hypersil C18 column (250 × 4.6 mm) using a mobile phase consisting of a mixture of acetonitrile-50 mM phosphate buffer + 10 mM triethylamine (70:30, v/v). The detection was conducted at 268 nm. The limit of detection and the limit of quantitation for escitalopram oxalate and clonazepam were established. The stress test solutions were assayed against the qualified working standards of escitalopram oxalate and clonazepam, which indicated that the developed LC method was stability-indicating. Validation of the developed LC method was conducted as per ICH requirements. The developed LC method was found to be suitable to check the quality of bulk samples of escitalopram oxalate and clonazepam.
An activity index for geomagnetic paleosecular variation, excursions, and reversals
NASA Astrophysics Data System (ADS)
Panovska, S.; Constable, C. G.
2017-04-01
Magnetic indices provide quantitative measures of space weather phenomena that are widely used by researchers in geomagnetism. We introduce an index focused on the internally generated field that can be used to evaluate long term variations or climatology of modern and paleomagnetic secular variation, including geomagnetic excursions, polarity reversals, and changes in reversal rate. The paleosecular variation index, Pi, represents instantaneous or average deviation from a geocentric axial dipole field using normalized ratios of virtual geomagnetic pole colatitude and virtual dipole moment. The activity level of the index, σPi, provides a measure of field stability through the temporal standard deviation of Pi. Pi can be calculated on a global grid from geomagnetic field models to reveal large scale geographic variations in field structure. It can be determined for individual time series, or averaged at local, regional, and global scales to detect long term changes in geomagnetic activity, identify excursions, and transitional field behavior. For recent field models, Pi ranges from less than 0.05 to 0.30. Conventional definitions for geomagnetic excursions are characterized by Pi exceeding 0.5. Strong field intensities are associated with low Pi unless they are accompanied by large deviations from axial dipole field directions. σPi provides a measure of geomagnetic stability that is modulated by the level of PSV or frequency of excursional activity and reversal rate. We demonstrate uses of Pi for paleomagnetic observations and field models and show how it could be used to assess whether numerical simulations of the geodynamo exhibit Earth-like properties.
NASA Astrophysics Data System (ADS)
Shi, Xue-Feng; Wang, Hai-Chen; Tang, Ping-Ying; Tang, Bi-Yu
2017-09-01
To predict and compare the main reinforcement effects of the key precipitation phases Mg2Cu3Si, Mg2Si and MgCu2 in Mg-Cu-Si alloy, the structural, mechanical and electronic properties of these phases have been studied by ab initio calculations. The lowest formation enthalpy and cohesive energy indicate that Mg2Cu3Si has the strongest alloying ability and structural stability. The mechanical modulus indicates that Mg2Cu3Si has the strongest resistance to reversible shear/volume distortion and has maximum hardness. The characterization of brittle (ductile) behavior manifests that MgCu2 has favorable ductility. Meanwhile the evaluation of elastic anisotropy indicates that Mg2Si possesses elastic isotropy. Debye temperature prediction shows that Mg2Si and Mg2Cu3Si have better thermal stability. To achieve an unbiased interpretation on the phase stability and mechanical behavior of these precipitation phases, the density of states and differential charge densities are also analyzed. The current study deepens the comprehensive understanding of main reinforcement effects of these precipitation phases on Mg-Cu-Si alloys, and also benefits to optimize the overall performances of Mg-Cu-Si alloy from the hardness, ductility and thermal stability by controlling these second precipitation phases during the heat treatment process.
NASA Technical Reports Server (NTRS)
Annis, J. F.; Webb, P.
1973-01-01
Using a new Nomex-Lycra elastic fabric and individualized garment engineering techniques, reverse gradient garments (RGG's) were designed, constructed, and tested for effectiveness as a countermeasure against cardiovascular deconditioning. By combining torso-compensated positive pressure breathing with a distally diminishing gradient of counterpressure supplied by the elastic fabric on the limbs, the RGG acts to pool blood in the extremities of recumbent persons much as though they were standing erect in 1 g. It was theorized that through the use of a dynamic pressurization scheme, the RGG would stress the vasculature in a fashion similar to that experienced by the noramlly active man, hence preventing or limiting the development of post-weightlessness orthostatic intolerance and related conditions. Four male, college-age subjects received daily treatments with the RGG during a 15-day bedrest study. Four additional subjects also underwent the bedrest, but received no treatments; they served as controls. The design and construction of the garments are described, and results of the treatment related measurements are given.
NASA Technical Reports Server (NTRS)
Mercer, C. E.; Maiden, D. L.
1972-01-01
The changes in thrust minus drag performance as well as longitudinal and directional stability and control characteristics of a single-engine jet aircraft attributable to an in-flight thrust reverser of the blocker-deflector door type were investigated in a 16-foot transonic wind tunnel. The longitudinal and directional stability data are presented. Test conditions simulated landing approach conditions as well as high speed maneuvering such as may be required for combat or steep descent from high altitude.
High static stability in the mixing layer above the extratropical tropopause
NASA Astrophysics Data System (ADS)
Kunz, A.; Konopka, P.; Müller, R.; Pan, L. L.; Schiller, C.; Rohrer, F.
2009-08-01
The relationship between the static stability N2 and the mixing in the tropopause inversion layer (TIL) is investigated using in situ aircraft observations during SPURT (trace gas transport in the tropopause region). With a new simple measure of mixing degree based on O3-CO tracer correlations, high N2 related to an enhanced mixing in the extratropical mixing layer is found. This relation becomes even more pronounced if fresh mixing events are excluded, indicating that mixing within the TIL occurs on a larger than synoptic timescale. A temporal variance analysis of N2 suggests that processes responsible for the composition of the TIL take place on seasonal timescales. Using radiative transfer calculations, we simulate the influence of a change in O3 and H2O vertical gradients on the temperature gradient and thus on the static stability above the tropopause, which are contrasted in an idealized nonmixed atmosphere and in a reference mixed atmosphere. The results show that N2 increases with enhanced mixing degree near the tropopause. At the same time, the temperature above the tropopause decreases together with the development of an inversion and the TIL. In the idealized case of nonmixed profiles the TIL vanishes. Furthermore, the results suggest that H2O plays a major role in maintaining the temperature inversion and the TIL structure compared to O3. The results substantiate the link between the extratropical mixing layer and the TIL.
De Beer, Maarten; Lynen, Fréderic; Chen, Kai; Ferguson, Paul; Hanna-Brown, Melissa; Sandra, Pat
2010-03-01
Stationary-phase optimized selectivity liquid chromatography (SOS-LC) is a tool in reversed-phase LC (RP-LC) to optimize the selectivity for a given separation by combining stationary phases in a multisegment column. The presently (commercially) available SOS-LC optimization procedure and algorithm are only applicable to isocratic analyses. Step gradient SOS-LC has been developed, but this is still not very elegant for the analysis of complex mixtures composed of components covering a broad hydrophobicity range. A linear gradient prediction algorithm has been developed allowing one to apply SOS-LC as a generic RP-LC optimization method. The algorithm allows operation in isocratic, stepwise, and linear gradient run modes. The features of SOS-LC in the linear gradient mode are demonstrated by means of a mixture of 13 steroids, whereby baseline separation is predicted and experimentally demonstrated.
Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors
1977-01-01
Polymorphonuclear leukocyte (PMN) chemotaxis has been examined under conditions which allow phase microscope observations of cells responding to controlled gradients of chemotactic factors. With this visual assay, PMNs can be seen to orient rapidly and reversibly to gradients of N-formylmethionyl peptides. The level of orientation depends upon the mean concentration of peptide present as well as the concentration gradient. The response allows an estimation of the binding constant of the peptide to the cell. In optimal gradients, PMNs can detect a 1% difference in the concentration of peptide. At high cell densities, PMNs incubated with active peptides orient their locomotion away from the center of the cell population. This orientation appears to be due to inactivation of the peptides by the cells. Such inactivation in vivo could help to limit an inflammatory response. PMID:264125
NASA Technical Reports Server (NTRS)
Proctor, M. P.; Tien, J. S.
1985-01-01
A stainless steel, two-dimensional (rectangular), center-dump, premixed-prevaporized combustor with quartz window sidewalls for visual access was designed, built, and used to study flashback. A parametric study revealed that the flashback equivalence ratio decreased slightly as the inlet air temperature increased. It also indicated that the average premixer velocity and premixer wall temperature were not governing parameters of flashback. The steady-state velocity balance concept as the flashback mechanism was not supported. From visual observation several stages of burning were identified. High speed photography verified upstream flame propagation with the leading edge of the flame front near the premixer wall. Combustion instabilities (spontaneous pressure oscillations) were discovered during combustion at the dump plane and during flashback. The pressure oscillation frequency ranged from 40 to 80 Hz. The peak-to-peak amplitude (up to 1.4 psi) increased as the fuel/air equivalence ratio was increased attaining a maximum value just before flashback. The amplitude suddenly decreased when the flame stabilized in the premixer. The pressure oscillations were large enough to cause a local flow reversal. A simple test using ceramic fiber tufts indicated flow reversals existed at the premixer exit during flickering. It is suspected that flashback occurs through the premixer wall boundary layer flow reversal caused by combustion instability. A theoretical analysis of periodic flow in the premixing channel has been made. The theory supports the flow reversal mechanism.
Flame stabilization and mixing characteristics in a Stagnation Point Reverse Flow combustor
NASA Astrophysics Data System (ADS)
Bobba, Mohan K.
A novel combustor design, referred to as the Stagnation Point Reverse-Flow (SPRF) combustor, was recently developed that is able to operate stably at very lean fuel-air mixtures and with low NOx emissions even when the fuel and air are not premixed before entering the combustor. The primary objective of this work is to elucidate the underlying physics behind the excellent stability and emissions performance of the SPRF combustor. The approach is to experimentally characterize velocities, species mixing, heat release and flame structure in an atmospheric pressure SPRF combustor with the help of various optical diagnostic techniques: OH PLIF, chemiluminescence imaging, PIV and Spontaneous Raman Scattering. Results indicate that the combustor is primarily stabilized in a region downstream of the injector that is characterized by low average velocities and high turbulence levels; this is also the region where most of the heat release occurs. High turbulence levels in the shear layer lead to increased product entrainment levels, elevating the reaction rates and thereby enhancing the combustor stability. The effect of product entrainment on chemical timescales and the flame structure is illustrated with simple reactor models. Although reactants are found to burn in a highly preheated (1300 K) and turbulent environment due to mixing with hot product gases, the residence times are sufficiently long compared to the ignition timescales such that the reactants do not autoignite. Turbulent flame structure analysis indicates that the flame is primarily in the thin reaction zones regime throughout the combustor, and it tends to become more flamelet like with increasing distance from the injector. Fuel-air mixing measurements in case of non-premixed operation indicate that the fuel is shielded from hot products until it is fully mixed with air, providing nearly premixed performance without the safety issues associated with premixing. The reduction in NOx emissions in the SPRF combustor are primarily due to its ability to stably operate under ultra lean (and nearly premixed) condition within the combustor. Further, to extend the usefulness of this combustor configuration to various applications, combustor geometry scaling rules were developed with the help of simplified coaxial and opposed jet models.
NASA Astrophysics Data System (ADS)
Lakhin, V. P.; Ilgisonis, V. I.; Smolyakov, A. I.; Sorokina, E. A.; Marusov, N. A.
2018-01-01
The gradient-drift instabilities of partially magnetized plasmas in plasma devices with crossed electric and magnetic fields are investigated in the framework of the two-fluid model with finite electron temperature in an inhomogeneous magnetic field. The finite electron Larmor radius (FLR) effects are also included via the gyroviscosity tensor taking into account the magnetic field gradient. This model correctly describes the electron dynamics for k⊥ρe>1 in the sense of Padé approximants (here, k⊥ and ρe are the wavenumber perpendicular to the magnetic field and the electron Larmor radius, respectively). The local dispersion relation for electrostatic plasma perturbations with the frequency in the range between the ion and electron cyclotron frequencies and propagating strictly perpendicular to the magnetic field is derived. The dispersion relation includes the effects of the equilibrium E ×B electron current, finite ion velocity, electron inertia, electron FLR, magnetic field gradients, and Debye length effects. The necessary and sufficient condition of stability is derived, and the stability boundary is found. It is shown that, in general, the electron inertia and FLR effects stabilize the short-wavelength perturbations. In some cases, such effects completely suppress the high-frequency short-wavelength modes so that only the long-wavelength low-frequency (with respect to the lower-hybrid frequency) modes remain unstable.
Gyrokinetic stability of electron-positron-ion plasmas
NASA Astrophysics Data System (ADS)
Mishchenko, A.; Zocco, A.; Helander, P.; Könies, A.
2018-02-01
The gyrokinetic stability of electron-positron plasmas contaminated by an ion (proton) admixture is studied in a slab geometry. The appropriate dispersion relation is derived and solved. Stable K-modes, the universal instability, the ion-temperature-gradient-driven instability, the electron-temperature-gradient-driven instability and the shear Alfvén wave are considered. It is found that the contaminated plasma remains stable if the contamination degree is below some threshold and that the shear Alfvén wave can be present in a contaminated plasma in cases where it is absent without ion contamination.
Rotational stability of a long field-reversed configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, D. C., E-mail: coronadocon@msn.com; Steinhauer, L. C.
2014-02-15
Rotationally driven modes of long systems with dominantly axial magnetic field are considered. We apply the incompressible model and order axial wavenumber small. A recently developed gyro-viscous model is incorporated. A one-dimensional equilibrium is assumed, but radial profiles are arbitrary. The dominant toroidal (azimuthal) mode numbers ℓ=1 and ℓ=2 modes are examined for a variety of non-reversed (B) and reversed profiles. Previous results for both systems with rigid rotor equilibria are reproduced. New results are obtained by incorporation of finite axial wavenumber and by relaxing the assumption of rigid electron and ion rotation. It is shown that the frequently troublesomemore » ℓ=2 field reversed configuration (FRC) mode is not strongly affected by ion kinetic effects (in contrast to non-reversed cases) and is likely stabilized experimentally only by finite length effects. It is also shown that the ℓ=1 wobble mode has a complicated behavior and is affected by a variety of configuration and profile effects. The rotationally driven ℓ=1 wobble is completely stabilized by strong rotational shear, which is anticipated to be active in high performance FRC experiments. Thus, observed wobble modes in these systems are likely not driven by rotation alone.« less
Superoxide Stabilization and a Universal KO2 Growth Mechanism in Potassium-Oxygen Batteries.
Wang, Wanwan; Lai, Nien-Chu; Liang, Zhuojian; Wang, Yu; Lu, Yi-Chun
2018-04-23
Rechargeable potassium-oxygen (K-O 2 ) batteries promise to provide higher round-trip efficiency and cycle life than other alkali-oxygen batteries with satisfactory gravimetric energy density (935 Wh kg -1 ). Exploiting a strong electron-donating solvent, for example, dimethyl sulfoxide (DMSO) strongly stabilizes the discharge product (KO 2 ), resulting in significant improvement in electrode kinetics and chemical/electrochemical reversibility. The first DMSO-based K-O 2 battery demonstrates a much higher energy efficiency and stability than the glyme-based electrolyte. A universal KO 2 growth model is developed and it is demonstrated that the ideal solvent for K-O 2 batteries should strongly stabilize superoxide (strong donor ability) to obtain high electrode kinetics and reversibility while providing fast oxygen diffusion to achieve high discharge capacity. This work elucidates key electrolyte properties that control the efficiency and reversibility of K-O 2 batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Schäfer, K.; Grant, R. H.; Emeis, S.; Raabe, A.; von der Heide, C.; Schmid, H. P.
2012-07-01
Measurements of land-surface emission rates of greenhouse and other gases at large spatial scales (10 000 m2) are needed to assess the spatial distribution of emissions. This can be readily done using spatial-integrating micro-meteorological methods like flux-gradient methods which were evaluated for determining land-surface emission rates of trace gases under stable boundary layers. Non-intrusive path-integrating measurements are utilized. Successful application of a flux-gradient method requires confidence in the gradients of trace gas concentration and wind, and in the applicability of boundary-layer turbulence theory; consequently the procedures to qualify measurements that can be used to determine the flux is critical. While there is relatively high confidence in flux measurements made under unstable atmospheres with mean winds greater than 1 m s-1, there is greater uncertainty in flux measurements made under free convective or stable conditions. The study of N2O emissions of flat grassland and NH3 emissions from a cattle lagoon involves quality-assured determinations of fluxes under low wind, stable or night-time atmospheric conditions when the continuous "steady-state" turbulence of the surface boundary layer breaks down and the layer has intermittent turbulence. Results indicate that following the Monin-Obukhov similarity theory (MOST) flux-gradient methods that assume a log-linear profile of the wind speed and concentration gradient incorrectly determine vertical profiles and thus flux in the stable boundary layer. An alternative approach is considered on the basis of turbulent diffusivity, i.e. the measured friction velocity as well as height gradients of horizontal wind speeds and concentrations without MOST correction for stability. It is shown that this is the most accurate of the flux-gradient methods under stable conditions.
NASA Astrophysics Data System (ADS)
Ikeura, Takuro; Nozaki, Takayuki; Shiota, Yoichi; Yamamoto, Tatsuya; Imamura, Hiroshi; Kubota, Hitoshi; Fukushima, Akio; Suzuki, Yoshishige; Yuasa, Shinji
2018-04-01
Using macro-spin modeling, we studied the reduction in the write error rate (WER) of voltage-induced dynamic magnetization switching by enhancing the effective thermal stability of the free layer using a voltage-controlled magnetic anisotropy change. Marked reductions in WER can be achieved by introducing reverse bias voltage pulses both before and after the write pulse. This procedure suppresses the thermal fluctuations of magnetization in the initial and final states. The proposed reverse bias method can offer a new way of improving the writing stability of voltage-driven spintronic devices.
Palencia, Manuel; Rivas, Bernabé L
2011-11-15
Metal-ion retention properties of water-soluble amphiphilic polymers in presence of double emulsion were studied by diafiltration. Double emulsion systems, water-in-oil-in-water, with a pH gradient between external and internal aqueous phases were prepared. A poly(styrene-co-maleic anhydride) (PSAM) solution at pH 6.0 was added to the external aqueous phase of double emulsion and by application of pressure a divalent metal-ion stream was continuously added. Metal-ions used were Cu(2+) and Cd(2+) at the same pH of polymer solution. According to our results, metal-ion retention is mainly the result of polymer-metal interaction. Interaction between PSMA and reverse emulsion globules is strongly controlled by amount of metal-ions added in the external aqueous phase. In addition, as metal-ion concentration was increased, a negative effect on polymer retention capacity and promotion of flocculation phenomena were produced. Copyright © 2011 Elsevier Inc. All rights reserved.
Kotler, Moshe; Weinberg, Eynat; Haspel, Osnat; Becker, Yechiel
1972-01-01
Incubation of rat cells transformed by Rous sarcoma virus (RSV) in an arginine-deficient medium resulted in accumulation of particles in the culture medium. Such particles did not appear when the transformed rat cells were incubated in a complete medium nor in the medium of primary rat cells which were incubated either in arginine-deficient or complete media. The particles which were released from the arginine-deprived transformed rat cells resemble C-type particles in their properties. These particles band in sucrose gradients at a density of 1.16 g/ml and contain 35S ribonucleic acid (RNA) molecules and a reverse transcriptase activity. Analysis of the cytoplasm of transformed and primary rat cells, deprived and undeprived of arginine, revealed the presence of reverse transcriptase-containing particles which banded in sucrose gradients at a density of 1.14 g/ml. These particles differed from the particles released into the medium by the arginine-deprived RSV-transformed rat cells. The deoxyribonucleic acid (DNA) molecules synthesized in vitro by the reverse transcriptase present in the particles isolated from the medium of arginine-deprived cells hybridized to RSV RNA, whereas the DNA synthesized by the cell-bound enzyme had no homology to RSV RNA. PMID:4116137
NASA Technical Reports Server (NTRS)
Kuhn, Reinhard; Wagner, Horst; Mosher, Richard A.; Thormann, Wolfgang
1987-01-01
Isoelectric focusing in the continuous flow mode can be more quickly and economically performed by admitting a stepwise pH gradient composed of simple buffers instead of uniform mixtures of synthetic carrier ampholytes. The time-consuming formation of the pH gradient by the electric field is thereby omitted. The stability of a three-step system with arginine - morpholinoethanesulfonic acid/glycylglycine - aspartic acid is analyzed theoretically by one-dimensional computer simulation as well as experimentally at various flow rates in a continuous flow apparatus. Excellent agreement between experimental and theoretical data was obtained. This metastable configuration was found to be suitable for focusing of proteins under continuous flow conditions. The influence of various combinations of electrolytes and membranes between electrophoresis chamber and electrode compartments is also discussed.
Edge Pushing is Equivalent to Vertex Elimination for Computing Hessians
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Mu; Pothen, Alex; Hovland, Paul
We prove the equivalence of two different Hessian evaluation algorithms in AD. The first is the Edge Pushing algorithm of Gower and Mello, which may be viewed as a second order Reverse mode algorithm for computing the Hessian. In earlier work, we have derived the Edge Pushing algorithm by exploiting a Reverse mode invariant based on the concept of live variables in compiler theory. The second algorithm is based on eliminating vertices in a computational graph of the gradient, in which intermediate variables are successively eliminated from the graph, and the weights of the edges are updated suitably. We provemore » that if the vertices are eliminated in a reverse topological order while preserving symmetry in the computational graph of the gradient, then the Vertex Elimination algorithm and the Edge Pushing algorithm perform identical computations. In this sense, the two algorithms are equivalent. This insight that unifies two seemingly disparate approaches to Hessian computations could lead to improved algorithms and implementations for computing Hessians. Read More: http://epubs.siam.org/doi/10.1137/1.9781611974690.ch11« less
Charge-reversal nanoparticles: novel targeted drug delivery carriers.
Chen, Xinli; Liu, Lisha; Jiang, Chen
2016-07-01
Spurred by significant progress in materials chemistry and drug delivery, charge-reversal nanocarriers are being developed to deliver anticancer formulations in spatial-, temporal- and dosage-controlled approaches. Charge-reversal nanoparticles can release their drug payload in response to specific stimuli that alter the charge on their surface. They can elude clearance from the circulation and be activated by protonation, enzymatic cleavage, or a molecular conformational change. In this review, we discuss the physiological basis for, and recent advances in the design of charge-reversal nanoparticles that are able to control drug biodistribution in response to specific stimuli, endogenous factors (changes in pH, redox gradients, or enzyme concentration) or exogenous factors (light or thermos-stimulation).
NASA Astrophysics Data System (ADS)
Du, Huarong; Jhang, Hogun; Hahm, T. S.; Dong, J. Q.; Wang, Z. X.
2017-12-01
We perform a numerical study of linear stability of the ion temperature gradient (ITG) mode and the trapped electron mode (TEM) in tokamak plasmas with inverted density profiles. A local gyrokinetic integral equation is applied for this study. From comprehensive parametric scans, we obtain stability diagrams for ITG modes and TEMs in terms of density and temperature gradient scale lengths. The results show that, for the inverted density profile, there exists a normalized threshold temperature gradient above which the ITG mode and the TEM are either separately or simultaneously unstable. The instability threshold of the TEM for the inverted density profile is substantially different from that for normal and flat density profiles. In addition, deviations are found on the ITG threshold from an early analytic theory in sheared slab geometry with the adiabatic electron response [T. S. Hahm and W. M. Tang, Phys. Fluids B 1, 1185 (1989)]. A possible implication of this work on particle transport in pellet fueled tokamak plasmas is discussed.
Unstable behaviour of RPT when testing turbine characteristics in the laboratory
NASA Astrophysics Data System (ADS)
Nielsen, T. K.; Fjørtoft Svarstad, M.
2014-03-01
A reversible pump turbine is a machine that can operate in three modes of operation i.e. in pumping mode. in turbine mode and in phase compensating mode (idle speed). Reversible pump turbines have an increasing importance for regulation purposes for obtaining power balance in electric power systems. Especially in grids dominated by thermal energy. reversible pump turbines improve the overall power regulating ability. Increased use of renewables (wind-. wave- and tidal power plants) will utterly demand better regulation ability of the traditional water power systems. enhancing the use of reversible pump turbines. A reversible pump turbine is known for having incredible steep speed - flow characteristics. As the speed increases the flow decreases more than that of a Francis turbines with the same specific speed. The steep characteristics might cause severe stability problems in turbine mode of operation. Stability in idle speed is a necessity for phasing in the generator to the electric grid. In the design process of a power plant. system dynamic simulations must be performed in order to check the system stability. The turbine characteristics will have to be modelled with certain accuracy even before one knows the exact turbine design and have measured characteristics. A representation of the RPT characteristics for system dynamic simulation purposes is suggested and compared with measured characteristics. The model shows good agreement with RPT characteristics measured in The Waterpower Laboratory. Because of the S-shaped characteristics. there is a stability issue involved when measuring these characteristics. Without special measures. it is impossible to achieve stable conditions in certain operational points. The paper discusses the mechanism when using a throttle to achieve system stability. even if the turbine characteristics imply instability.
Zhang, Juzhou; Li, Jing; Shao, Dongliang; Yao, Bangben; Jiang, Junshu
2012-02-01
An effective high performance liquid chromatographic (HPLC) method has been developed for the simultaneous determination of 9 ultraviolet stabilizers in food plastic packaging materials. The food packaging samples were firstly extracted by methanol-ethyl acetate, and then purified by a C18 solid-phase extraction (SPE) column. The target compounds were separated on a ZORBAX SB-C18 column (250 mm x 4.6 mm, 5 microm) in gradient elution mode using methanol and water as mobile phases. The detection wavelength was at 310 nm. The linear plots of the nine ultraviolet stabilizers were obtained between 0.2 and 10 mg/L, with the correlation coefficients of above 0. 999 for the nine ultraviolet stabilizers. The limits of detection for this method were in the range from 0.05 to 0.1 mg/L. The recoveries spiked in commercial food plastic packaging materials were in the range of 70.2% - 89.0% with the relative standard deviations of 0.4% - 4.5%. The results indicated that the method is simple, accurate, and suitable for the simultaneous determination of the nine ultraviolet stabilizers in food plastic packaging materials.
NASA Astrophysics Data System (ADS)
Aykol, Muratahan; Doak, Jeff W.; Wolverton, C.
2017-06-01
We evaluate the energetic stabilities of white, red, and black allotropes of phosphorus using density functional theory (DFT) and hybrid functional methods, van der Waals (vdW) corrections (DFT+vdW and hybrid+vdW), vdW density functionals, and random phase approximation (RPA). We find that stability of black phosphorus over red-V (i.e., the violet form) is not ubiquitous among these methods, and the calculated enthalpies for the reaction phosphorus (red-V)→phosphorus (black) are scattered between -20 and 40 meV/atom. With local density and generalized gradient approximations, and hybrid functionals, mean absolute errors (MAEs) in densities of P allotropes relative to experiments are found to be around 10%-25%, whereas with vdW-inclusive methods, MAEs in densities drop below ˜5 %. While the inconsistency among the density functional methods could not shed light on the stability puzzle of black versus red phosphorus, comparison of their accuracy in predicting densities and the supplementary RPA results on relative stabilities indicate that opposite to the common belief, black and red phosphorus are almost degenerate, or the red-V (violet) form of phosphorus might even be the ground state.
Overview of results from the MST reversed field pinch experiment
NASA Astrophysics Data System (ADS)
Sarff, J. S.; Almagri, A. F.; Anderson, J. K.; Borchardt, M.; Carmody, D.; Caspary, K.; Chapman, B. E.; Den Hartog, D. J.; Duff, J.; Eilerman, S.; Falkowski, A.; Forest, C. B.; Goetz, J. A.; Holly, D. J.; Kim, J.-H.; King, J.; Ko, J.; Koliner, J.; Kumar, S.; Lee, J. D.; Liu, D.; Magee, R.; McCollam, K. J.; McGarry, M.; Mirnov, V. V.; Nornberg, M. D.; Nonn, P. D.; Oliva, S. P.; Parke, E.; Reusch, J. A.; Sauppe, J. P.; Seltzman, A.; Sovinec, C. R.; Stephens, H.; Stone, D.; Theucks, D.; Thomas, M.; Triana, J.; Terry, P. W.; Waksman, J.; Bergerson, W. F.; Brower, D. L.; Ding, W. X.; Lin, L.; Demers, D. R.; Fimognari, P.; Titus, J.; Auriemma, F.; Cappello, S.; Franz, P.; Innocente, P.; Lorenzini, R.; Martines, E.; Momo, B.; Piovesan, P.; Puiatti, M.; Spolaore, M.; Terranova, D.; Zanca, P.; Belykh, V.; Davydenko, V. I.; Deichuli, P.; Ivanov, A. A.; Polosatkin, S.; Stupishin, N. V.; Spong, D.; Craig, D.; Harvey, R. W.; Cianciosa, M.; Hanson, J. D.
2013-10-01
An overview of recent results from the MST programme on physics important for the advancement of the reversed field pinch (RFP) as well as for improved understanding of toroidal magnetic confinement more generally is reported. Evidence for the classical confinement of ions in the RFP is provided by analysis of impurity ions and energetic ions created by 1 MW neutral beam injection (NBI). The first appearance of energetic-particle-driven modes by NBI in a RFP plasma is described. MST plasmas robustly access the quasi-single-helicity state that has commonalities to the stellarator and ‘snake’ formation in tokamaks. In MST the dominant mode grows to 8% of the axisymmetric field strength, while the remaining modes are reduced. Predictive capability for tearing mode behaviour has been improved through nonlinear, 3D, resistive magnetohydrodynamic computation using the measured resistivity profile and Lundquist number, which reproduces the sawtooth cycle dynamics. Experimental evidence and computational analysis indicates two-fluid effects, e.g., Hall physics and gyro-viscosity, are needed to understand the coupling of parallel momentum transport and current profile relaxation. Large Reynolds and Maxwell stresses, plus separately measured kinetic stress, indicate an intricate momentum balance and a possible origin for MST's intrinsic plasma rotation. Gyrokinetic analysis indicates that micro-tearing modes can be unstable at high beta, with a critical gradient for the electron temperature that is larger than for tokamak plasmas by roughly the aspect ratio.
Transient shear banding in the nematic dumbbell model of liquid crystalline polymers
NASA Astrophysics Data System (ADS)
Adams, J. M.; Corbett, D.
2018-05-01
In the shear flow of liquid crystalline polymers (LCPs) the nematic director orientation can align with the flow direction for some materials but continuously tumble in others. The nematic dumbbell (ND) model was originally developed to describe the rheology of flow-aligning semiflexible LCPs, and flow-aligning LCPs are the focus in this paper. In the shear flow of monodomain LCPs, it is usually assumed that the spatial distribution of the velocity is uniform. This is in contrast to polymer solutions, where highly nonuniform spatial velocity profiles have been observed in experiments. We analyze the ND model, with an additional gradient term in the constitutive model, using a linear stability analysis. We investigate the separate cases of constant applied shear stress and constant applied shear rate. We find that the ND model has a transient flow instability to the formation of a spatially inhomogeneous flow velocity for certain starting orientations of the director. We calculate the spatially resolved flow profile in both constant applied stress and constant applied shear rate in start up from rest, using a model with one spatial dimension to illustrate the flow behavior of the fluid. For low shear rates flow reversal can be seen as the director realigns with the flow direction, whereas for high shear rates the director reorientation occurs simultaneously across the gap. Experimentally, this inhomogeneous flow is predicted to be observed in flow reversal experiments in LCPs.
Schicks, J M; Luzi, M; Beeskow-Strauch, B
2011-11-24
Microscopy, confocal Raman spectroscopy and powder X-ray diffraction (PXRD) were used for in situ investigations of the CO(2)-hydrocarbon exchange process in gas hydrates and its driving forces. The study comprises the exposure of simple structure I CH(4) hydrate and mixed structure II CH(4)-C(2)H(6) and CH(4)-C(3)H(8) hydrates to gaseous CO(2) as well as the reverse reaction, i.e., the conversion of CO(2)-rich structure I hydrate into structure II mixed hydrate. In the case of CH(4)-C(3)H(8) hydrates, a conversion in the presence of gaseous CO(2) from a supposedly more stable structure II hydrate to a less stable structure I CO(2)-rich hydrate was observed. PXRD data show that the reverse process requires longer initiation times, and structural changes seem to be less complete. Generally, the exchange process can be described as a decomposition and reformation process, in terms of a rearrangement of molecules, and is primarily induced by the chemical potential gradient between hydrate phase and the provided gas phase. The results show furthermore the dependency of the conversion rate on the surface area of the hydrate phase, the thermodynamic stability of the original and resulting hydrate phase, as well as the mobility of guest molecules and formation kinetics of the resulting hydrate phase.
A novel dynamic mechanical testing technique for reverse shoulder replacements.
Dabirrahmani, Danè; Bokor, Desmond; Appleyard, Richard
2014-04-01
In vitro mechanical testing of orthopedic implants provides information regarding their mechanical performance under simulated biomechanical conditions. Current in vitro component stability testing methods for reverse shoulder implants are based on anatomical shoulder designs, which do not capture the dynamic nature of these loads. With glenoid component loosening as one of the most prevalent modes of failure in reverse shoulder replacements, it is important to establish a testing protocol with a more realistic loading regime. This paper introduces a novel method of mechanically testing reverse shoulder implants, using more realistic load magnitudes and vectors, than is currently practiced. Using a custom made jig setup within an Instron mechanical testing system, it is possible to simulate the change in magnitude and direction of the joint load during arm abduction. This method is a step towards a more realistic testing protocol for measuring reverse shoulder implant stability.
An Approach to Stable Gradient-Descent Adaptation of Higher Order Neural Units.
Bukovsky, Ivo; Homma, Noriyasu
2017-09-01
Stability evaluation of a weight-update system of higher order neural units (HONUs) with polynomial aggregation of neural inputs (also known as classes of polynomial neural networks) for adaptation of both feedforward and recurrent HONUs by a gradient descent method is introduced. An essential core of the approach is based on the spectral radius of a weight-update system, and it allows stability monitoring and its maintenance at every adaptation step individually. Assuring the stability of the weight-update system (at every single adaptation step) naturally results in the adaptation stability of the whole neural architecture that adapts to the target data. As an aside, the used approach highlights the fact that the weight optimization of HONU is a linear problem, so the proposed approach can be generally extended to any neural architecture that is linear in its adaptable parameters.
Some Peculiarities of Water Transport through Plasticized Nonporous Membranes
Marian, S.; Jagur-Grodzinski, J.; Kedem, O.; Vofsi, D.
1970-01-01
“Liquid” and “plasticized” solvent membranes are of interest as possible analogues of biological systems. Semipermeable homogeneous films are prepared by plasticizing polyvinylchloride with organic phosphates. Water permeability of such films is relatively high. For a material containing 70% of 1.4-dihydroxyphenyl-bis(dibutylphosphate), the diffusion coefficient of water at room temperature was estimated to be about 1 × 10-6 cm2/sec. Conditioning of a plasticized membrane, under the osmotic gradient of solution of sodium nitrate, leads to profound changes in its morphology and to a drastic increase of its water permeability. The induced changes are reversible to a large extent. Their reversibility in various solutions may be correlated with the respective differences in permselectivity. The structure of expanded membranes and the mechanism of changes taking place under the osmotic gradients are discussed. ImagesFigure 2 PMID:5496907
Ultrasensitivity by Molecular Titration in Spatially Propagating Enzymatic Reactions
Semenov, Sergey N.; Markvoort, Albert J.; Gevers, Wouter B.L.; Piruska, Aigars; de Greef, Tom F.A.; Huck, Wilhelm T.S.
2013-01-01
Delineating design principles of biological systems by reconstitution of purified components offers a platform to gauge the influence of critical physicochemical parameters on minimal biological systems of reduced complexity. Here we unravel the effect of strong reversible inhibitors on the spatiotemporal propagation of enzymatic reactions in a confined environment in vitro. We use micropatterned, enzyme-laden agarose gels which are stamped on polyacrylamide films containing immobilized substrates and reversible inhibitors. Quantitative fluorescence imaging combined with detailed numerical simulations of the reaction-diffusion process reveal that a shallow gradient of enzyme is converted into a steep product gradient by addition of strong inhibitors, consistent with a mathematical model of molecular titration. The results confirm that ultrasensitive and threshold effects at the molecular level can convert a graded input signal to a steep spatial response at macroscopic length scales. PMID:23972857
NASA Technical Reports Server (NTRS)
Kupcis, E. A.
1974-01-01
The effects of the Refan JT8D side engine target thrust reverser on the stability and control characteristics of the Boeing 727-200 airplane were investigated using the Boeing-Vertol 20 x 20 ft Low-Speed Wind Tunnel. A powered model of the 727-200 was tested in groud effect in the landing configuration. The Refan target reverser configuration was evaluated relative to the basic production 727 airplane with its clamshell-deflector door thrust reverser design. The Refan configuration had slightly improved directional control characteristics relative to the basic airplane. Clocking the Refan thrust reversers 20 degrees outboard to direct the reverser flow away from the vertical tail, had little effect on directional control. However, clocking them 20 degrees inboard resulted in a complete loss of rudder effectiveness for speeds greater than 90 knots. Variations in Refan reverser lip/fence geometry had a minor effect on directional control.
NASA Technical Reports Server (NTRS)
Mosher, Richard A.; Thormann, Wolfgang; Graham, Aly; Bier, Milan
1985-01-01
Two methods which utilize simple buffers for the generation of stable pH gradients (useful for preparative isoelectric focusing) are compared and contrasted. The first employs preformed gradients comprised of two simple buffers in density-stabilized free solution. The second method utilizes neutral membranes to isolate electrolyte reservoirs of constant composition from the separation column. It is shown by computer simulation that steady-state gradients can be formed at any pH range with any number of components in such a system.
Stabilization of magnetic skyrmions by RKKY interactions
NASA Astrophysics Data System (ADS)
Bezvershenko, Alla V.; Kolezhuk, Alexei K.; Ivanov, Boris A.
2018-02-01
We study the stabilization of an isolated magnetic skyrmion in a magnetic monolayer on a nonmagnetic conducting substrate via the Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction. Two different types of the substrate are considered, usual normal metal and single-layer graphene. While the full stability analysis for skyrmions in the presence of the RKKY coupling requires a separate effort that is outside the scope of this work, we are able to study the radial stability (stability of a skyrmion against collapse) using variational energy estimates obtained within first-order perturbation theory, with the unperturbed Hamiltonian describing the isotropic Heisenberg magnet, and the two perturbations being the RKKY exchange and the easy-axis anisotropy. We show that a proper treatment of the long-range nature of the RKKY interaction leads to a qualitatively different stabilization scenario compared to previous studies, where solitons were stabilized by the frustrated exchange coupling (leading to terms with the fourth power of the magnetization gradients) or by the Dzyaloshinskii-Moriya interaction (described by terms linear in the magnetization gradients). In the case of a metallic substrate, the skyrmion stabilization is possible under restrictive conditions on the Fermi surface parameters, while in the case of a graphene substrate the stabilization is naturally achieved in several geometries with a lattice-matching of graphene and magnetic layer.
Zhang, YanPing; Kawedia, Jitesh D; Myers, Alan L; McIntyre, Chelsey M; Anderson, Peter M; Kramer, Mark A; Culotta, Kirk S
2014-02-01
Ifosfamide plus mesna have been used recently in a high-dose regimen that allows this chemotherapy to be given to outpatients with less toxicity over 14 days using a portable pump. However, there is a need for published stability information. The aim of this study was to investigate the physicochemical stability of ifosfamide with mesna in normal saline at room temperature over a prolonged period of 14 days. Infusion solutions of 1:1 ifosfamide and mesna at final concentrations of 10, 20 and 30 mg/mL were prepared with 0.9% sodium chloride in PVC bags. Solutions were stored at room temperature. Concentrations of ifosfamide and mesna were measured at 0 and 1, 3, 7 and 14 days using a stability-indicating reversed phase high-performance liquid chromatography (HPLC) assay with ultraviolet detection. Ifosfamide and mesna were both physicochemically stable (>94%) for 14 days in all tested infusion solutions (10, 20 and 30 mg/mL). Our stability data indicate that ifosfamide and mesna (1:1) combination can be administered as a prolonged continuous infusion with portable pump in an outpatient setting without replacement of the infusion bag. We suggest 20 mg/mL as a reasonable concentration for infusion rates of about 2-4 cc/hr over prolonged periods of time.
Beaulieu, G; Jaramillo, J; Cummings, J R
1984-03-01
Cetamolol, a new beta-adrenoceptor blocker with partial agonist activity and cardioselectivity, was studied in vivo to determine its membrane-stabilizing effects. Comparisons were carried out with atenolol, pindolol, practolol, propranolol, timolol, dexpropranolol, lidocaine, and procaine. The following results indicated that cetamolol lacked membrane-stabilizing activity: (i) failure to cause local anesthesia on the rabbit cornea and motor nerve of the rat tail; (ii) ineffectiveness in reversing ventricular arrhythmias induced by coronary artery litigation in dogs; (iii) failure to reduce cardiac automaticity in catecholamine-depleted dogs as determined by the rate of a subatrial rhythm during ventricular (vagal) escape; and (iv) lack of a significant increase in atrioventricular conduction time in vagotomized or atropinized dogs in contrast to the effect in normal dogs indicating a reflex effect of cetamolol. Other results include a restoration of sinus rhythm in dogs with ventricular tachycardia induced by ouabain, and a dose-related decline in the force of cardiac contraction in anesthetized dogs at doses from 3 to 15 mg/kg, which occurred after an initial increase in force owing to intrinsic sympathomimetic activity. Although the mechanisms for the latter two effects are not clear at this time, explanations other than membrane-stabilizing activity have been considered in view of the other findings. It is concluded that cetamolol lacks membrane-stabilizing activity even at inordinately high doses.
Simulation of drift wave instability in field-reversed configurations using global magnetic geometry
NASA Astrophysics Data System (ADS)
Fulton, D. P.; Lau, C. K.; Lin, Z.; Tajima, T.; Holod, I.; the TAE Team
2016-10-01
Minimizing transport in the field-reversed configuration (FRC) is essential to enable FRC-based fusion reactors. Recently, significant progress on advanced beam-driven FRCs in C-2 and C-2U (at Tri Alpha Energy) provides opportunities to study transport properties using Doppler backscattering (DBS) measurements of turbulent fluctuations and kinetic particle-in-cell simulations of driftwaves in realistic equilibria via the Gyrokinetic Toroidal Code (GTC). Both measurements and simulations indicate relatively small fluctuations in the scrape-off layer (SOL). In the FRC core, local, single flux surface simulations reveal strong stabilization, while experiments indicate quiescent but finite fluctuations. One possible explanation is that turbulence may originate in the SOL and propagate at very low levels across the separatrix into the core. To test this hypothesis, a significant effort has been made to develop A New Code (ANC) based on GTC physics formulations, but using cylindrical coordinates which span the magnetic separatrix, including both core and SOL. Here, we present first results from global ANC simulations.
The seasonal cycle of low stratiform clouds
NASA Technical Reports Server (NTRS)
Klein, Stephen A.; Hartmann, Dennis L.
1993-01-01
The seasonal cycle of low stratiform clouds is studied using data from surface-based cloud climatologies. The impact of low clouds on the radiation budget is illustrated by comparison of data from the Earth Radiation Budget Experiment with the cloud climatologies. Ten regions of active stratocumulus convection are identified. These regions fall into four categories: subtropical marine, midlatitude marine, Arctic stratus, and Chinese stratus. With the exception of the Chinese region, all the regions with high amounts of stratus clouds are over the oceans. In all regions except the Arctic, the season of maximum stratus corresponds to the season of greatest lower-troposphere static stability. Interannual variations in stratus cloud amount also are related to changes in static stability. A linear analysis indicates that a 6 percent increase in stratus fractional area coverage is associated with each 1 C increase in static stability. Over midlatitude oceans, sky-obscuring fog is a large component of the summertime stratus amount. The amount of fog appears to be related to warm advection across sharp gradients of SST.
The Seasonal Cycle of Low Stratiform Clouds.
NASA Astrophysics Data System (ADS)
Klein, Stephen A.; Hartmann, Dennis L.
1993-08-01
The seasonal cycle of low stratiform clouds is studied using data from surface-based cloud climatologies. The impact of low clouds on the radiation budget is illustrated by comparison of data from the Earth Radiation Budget Experiment with the cloud climatologies. Ten regions of active stratocumulus convection are identified. These regions fall into four categories: subtropical marine, midlatitude marine, Arctic stratus, and Chinese stratus. With the exception of the Chinese region, all the regions with high amounts of stratus clouds are over the oceans.In all regions except the Arctic, the season of maximum stratus corresponds to the season of greatest lower-troposphere static stability. Interannual variations in stratus cloud amount also are related to changes in static stability. A linear analysis indicates that a 6% increase in stratus fractional area coverage is associated with each 1°C increase in static stability. Over midlatitude oceans, sky-obscuring fog is a large component of the summertime stratus amount. The amount of fog appears to be related to warm advection across sharp gradients of SST.
NASA Astrophysics Data System (ADS)
Andreev, A. O.; Bykovskiy, D. P.; Osintsev, A. V.; Petrovskiy, V. N.; Ryashko, I. I.; Blinova, E. N.; Libman, M. A.; Glezer, A. M.
2017-12-01
The possibility of producing gradient materials, i.e. materials with pre-set distribution of areas having fundamentally different physical and mechanical characteristics, with the help of laser heat treatment was investigated. Using as an example austenitic-martensitic alloys of iron-chromium-nickel, subjected to cold plastic deformation led to formation of martensite, we show that using laser at the temperature higher than the temperature of reverse martensite transformation leads to the formation of areas of high-strength austenite having predetermined form inside the martensite matrix. Influence of austenite areas geometry on mechanical properties of gradient material was studied.
The educational gradient in marital disruption: a meta-analysis of European research findings.
Matysiak, Anna; Styrc, Marta; Vignoli, Daniele
2014-01-01
A large number of empirical studies have investigated the effects of women's education on union dissolution in Europe, but results have varied substantially. This paper seeks to assess the relationship between educational attainment and the incidence of marital disruption by systematizing the existing empirical evidence. A quantitative literature review (a meta-analysis) was conducted to investigate the temporal change in the relationship, net of inter-study differences. The results point to a weakening of the positive educational gradient in marital disruption over time and even to a reversal in the direction of this gradient in some countries. The findings also show that the change in the educational gradient can be linked to an increase in access to divorce. Finally, the results suggest that women's empowerment has played an important role in changing the educational gradient, while the liberalization of divorce laws has not.
Isom, Daniel G; Marguet, Philippe R; Oas, Terrence G; Hellinga, Homme W
2011-04-01
Protein thermodynamic stability is a fundamental physical characteristic that determines biological function. Furthermore, alteration of thermodynamic stability by macromolecular interactions or biochemical modifications is a powerful tool for assessing the relationship between protein structure, stability, and biological function. High-throughput approaches for quantifying protein stability are beginning to emerge that enable thermodynamic measurements on small amounts of material, in short periods of time, and using readily accessible instrumentation. Here we present such a method, fast quantitative cysteine reactivity, which exploits the linkage between protein stability, sidechain protection by protein structure, and structural dynamics to characterize the thermodynamic and kinetic properties of proteins. In this approach, the reaction of a protected cysteine and thiol-reactive fluorogenic indicator is monitored over a gradient of temperatures after a short incubation time. These labeling data can be used to determine the midpoint of thermal unfolding, measure the temperature dependence of protein stability, quantify ligand-binding affinity, and, under certain conditions, estimate folding rate constants. Here, we demonstrate the fQCR method by characterizing these thermodynamic and kinetic properties for variants of Staphylococcal nuclease and E. coli ribose-binding protein engineered to contain single, protected cysteines. These straightforward, information-rich experiments are likely to find applications in protein engineering and functional genomics. Copyright © 2010 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Guo, Xiaohui; Huang, Ying; Wu, Can; Mao, Leidong; Wang, Yue; Xie, Zhicheng; Liu, Caixia; Zhang, Yugang
2017-10-01
We demonstrated a flexible and reversibly deformable radio-frequency antenna based on SWCNTs/PANI/Lycra conductive fabric and semipermeable film for wireless wearable communications applications. The conductive fabric fabricated by using the ‘dip and dry’ process exhibits good flexibility, electrical stability, stretchability and mechanical properties, and a high electrical conductivity (with low sheet resistance of ˜35 Ω/sq) was obtained based on the SWCNTs/PANI synergistic conductive network. The morphology of the semipermeable film was investigated to further illustrate the waterproof breathable features. Meanwhile, the modeling, fabrication procedure and radiating properties of the radio-frequency textile antenna worked at 2.45 GHz were systematically illustrated. The measured reflection coefficient, VSWR and the -10 dB bandwidth is ˜-18.6 dB, 1.58 and ˜270 MHz respectively, which agreed well with the simulation results. Furthermore, the results indicate that the design methodology for the radio-frequency textile antenna could have promising applications in flexible and reversibly deformable antennas for wearable wireless communications systems.
Zhang, Lei; Zeng, Yan; Qi, Ji; Guan, Taiyuan; Zhou, Xin; Wang, Guoyou
2018-01-01
The anterior cruciate ligament (ACL) is an important structure maintaining stability of the knee joints. Deficits in physical stability and the proprioceptive capabilities of the knee joints are observed, when the ACL is damaged. Additionally, a unilateral ACL injury can affect bilateral knee proprioception; therefore, proprioception of the ACL may play a key role in stability. Electroacupuncture therapy has a definite effect nerve regeneration. In this study, cynomolgus monkeys were randomly divided into 4 groups: the model control group, intervention of the injured knee with electroacupuncture (IIKE) group, intervention of the bilateral knees with electroacupuncture (IBKE) group, and the blank control group. The unilateral ACL injury model was developed in IIKE and IBKE groups; acupuncture points around the knees underwent intervention similarly in the IIKE and IBKE groups. Then, mRNA and protein expressions of NT-3 and TrkC in the dorsal root ganglion and of growth-associated protein-43 in the ACL increased according to reverse-transcription quantitative polymerase chain reaction and Western blotting results. Decreased incubations and increased amplitudes were found for somatosensory-evoked potentials and motor nerve conduction velocity. The finding indicates that electroacupuncture may play an important role in the recovery of proprioception in the ACL by activating the NT-3/TrkC signalling pathway. PMID:29581981
The use of superconductivity in magnetic balance design
NASA Technical Reports Server (NTRS)
Moss, F. E.
1973-01-01
The magnetic field and field gradient requirements for magnetic suspension in a Mach 3, 6-in. diameter wind tunnel are stated, along with the power requirements for gradient coil pairs wound of copper operating at room temperature and aluminum cooled to 20 K. The power dissipated is large enough that the use of superconductivity in the coil design becomes an attractive alternative. The problems of stability and ac losses are outlined along with the properties of stabilized superconductors. A brief review of a simplified version of the critical state model of C. P. Bean is presented, and the problems involved in calculations of the ac losses in superconducting coils are outlined. A summary of ac loss data taken on pancake coils wound of commercially available Nb3Sn partially stabilized tape is presented and shown as leading to the U.Va. gradient coil design. The actual coil performance is compared with predictions based on the BNL results. Finally, some remarks are presented concerning scaling of the ac losses to larger magnetic suspension systems as well as prospects for improved performance using newer multifilament superconductors.
NASA Astrophysics Data System (ADS)
Adams, Peter N.
2018-04-01
The Merritt Island-Cape Canaveral (MICCSC) sedimentary complex consists of a series of adjacent, non-conformable, beach ridge sets that suggest a multi-phase constructional history, but the feature's geomorphic and sedimentary origins are not well-understood. In spite of its notable sedimentary volume (surface area = 1200 km2), the MICCSC lacks a clear sediment source, or supply mechanism, to explain its presence today. Previously published U/Th, radiocarbon and OSL dates indicate that beach ridge deposition was active during MIS 5 (130-80 ka) on Merritt Island, but has occurred over a shorter, younger time interval on Cape Canaveral proper (6 ka to present). In this paper, it is proposed that the MICCSC is an abandoned paleodelta whose fluvial source provided a sediment supply sufficient for coastal progradation. Although the MICCSC, today, does not receive an appreciable sediment supply, the nearly 23,000 km2 drainage basin of the St. Johns River may well have provided such a sediment supply during MIS 5 times. This low-gradient fluvial system currently empties to the Atlantic Ocean some 200 km north of the MICCSC (near Jacksonville, Florida) but may have flowed southward during the time of MICCSC sedimentary construction, then experienced flow reversal since MIS 5 times. Three possible uplift mechanisms are proposed to explain the northward down-tilting that may have reversed the flow direction of the St. Johns, abandoning deltaic construction of the MICCSC: (1) karst-driven, flexural isostatic uplift in response to carbonate rock dissolution in central Florida, (2) glacio-hydro-isostatic tilting/back-tilting cycles during loading and unloading of the Laurentide ice sheet during the Pleistocene, and (3) mantle convection-driven dynamic topography operating within southeastern North America since the Pliocene. This example testifies to the sensitivity of low-gradient, low-relief landscapes to various sources of uplift, be they isostatic or otherwise.
Nathenson, Manuel; Urban, Thomas C.; Covington, Harry R.
2014-01-01
For purposes of defining the thermal anomaly for the geothermal system, temperature gradients are calculated over long depth intervals on the basis of the appearance of reasonable linear segments on a temperature versus plot depth. Temperature versus depth data for some drill holes can be represented by a single gradient, whereas others require multiple gradients to match the data. Data for some drill holes clearly reflect vertical flows of water in the formation surrounding the drill holes, and water velocities are calculated for these drill holes. Within The Narrows area, temperature versus depth data show reversals at different depth in different drill holes. In the main thermal area, temperatures in intermediate-depth drill holes vary approximately linearly but with very high values of temperature gradient. Temperature gradients on a map of the area can be reasonable divided into a large area of regional gradients and smaller areas defining the thermal anomalies.
NASA Technical Reports Server (NTRS)
Rued, Klaus
1987-01-01
The requirements for fundamental experimental studies of the influence of free stream turbulence, pressure gradients and wall cooling are discussed. Under turbine-like free stream conditions, comprehensive tests of transitional boundary layers with laminar, reversing and turbulent flow increments were performed to decouple the effects of the parameters and to determine the effects during mutual interaction.
Darwish, Hany W.; Abdelhameed, Ali S.; Bakheit, Ahmed H.; Khalil, Nasr Y.; Al-Majed, Abdulrahman A.
2014-01-01
A rapid, simple, sensitive, and accurate isocratic reversed-phase stability-indicating high performance liquid chromatography method has been developed and validated for the determination of stiripentol and its degradation product in its bulk form and pharmaceutical dosage form. Chromatographic separation was achieved on a Symmetry C18 column and quantification was achieved using photodiode array detector (DAD). The method was validated in accordance with the ICH requirements showing specificity, linearity (r 2 = 0.9996, range of 1–25 μg/mL), precision (relative standard deviation lower than 2%), accuracy (mean recovery 100.08 ± 1.73), limits of detection and quantitation (LOD = 0.024 and LOQ = 0.081 μg/mL), and robustness. Stiripentol was subjected to various stress conditions and it has shown marked stability under alkaline hydrolytic stress conditions, thermal, oxidative, and photolytic conditions. Stiripentol degraded only under acidic conditions, forming a single degradation product which was well resolved from the pure drug with significantly different retention time values. This degradation product was characterized by 1H-NMR and 13C-NMR spectroscopy as well as ion trap mass spectrometry. The results demonstrated that the method would have a great value when applied in quality control and stability studies for stiripentol. PMID:25371844
2015-11-24
spatial concerns: ¤ how well are gradients captured? (resolution requirement) spatial/temporal concerns: ¤ dispersion and dissipation error...distribution is unlimited. Gradient Capture vs. Resolution: Single Mode FFT: Solution/Derivative: Convergence: f x( )= sin(x) with x∈[0,2π ] df dx...distribution is unlimited. Gradient Capture vs. Resolution: Multiple Modes FFT: Solution/Derivative: Convergence: 6 __ CD02 __ CD04 __ CD06
Phase Transition of Poly(acrylic acid-co-N-isopropylacrylamide) Core-shell Nanogels
NASA Astrophysics Data System (ADS)
Liu, Xiao-bing; Zhou, Jian-feng; Ye, Xiao-dong
2012-08-01
A series of poly(acrylic acid) macromolecular chain transfer agents with different molecular weights were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and characterized by 1H NMR and gel permeation chromatography. Multiresponsive core-shell nanogels were prepared by dispersion polymerization of N-isopropylacrylamide in water using these poly(potassium acrylate) macro-RAFT agents as the electrosteric stabilizer. The size of the nanogels decreases with the amount of the macro-RAFT agent, indicating that the surface area occupied by per polyelectrolyte group is a critical parameter for stabilizing the nanogels. The volume phase transition and the zeta potentials of the nanogels in aqueous solutions were studied by dynamic light scattering and zetasizer analyzer, respectively.
Product development studies of amino acid conjugate of Aceclofenac.
Singh, Ajay Pal; Ramadan, Wafa Mossa; Dahiya, Rajiv; Sarpal, A S; Pathak, Kamla
2009-04-01
The prodrugs designed by classical approach increase lipophilicity of the drug, which decreases the water solubility thus decreasing the concentration gradient, which controls drug absorption. To overcome the limitations of traditional prodrug approach, water soluble prodrugs can be designed by adding selected amino acid to the drug moiety that are the substrates for the enzyme located at the intestinal brush border thus overcoming pharmaceutical problem without compromising bioavailability. ACaa (Amino acid conjugate of Aceclofenac) was synthesized by conjugation with l-phenylalanine by conventional coupling method using N, N-dicyclohexylcarbodiimide and ACaa was characterized by melting point, TLC, photomicrograph, UV, FT-IR, FT-NMR, MS-FAB, XRD and DSC. As a part of product development study ACaa was subjected to studies like In-vivo in albino rats and in-vitro like ACaa reversion to AC (Aceclofenac) in aqueous buffers of pH 1.21, 2.38. 3.10, 6.22 and 7.41, at a constant concentration (0.05M), ionic strength (micro = 0.5) and at a temperature of 37 degrees C +/- 0.5 degrees C, ACaa showed negligible reversion (2.15 %) up to 24 hrs study at acidic pH thus suggesting stability in acidic environment of stomach, the rate of reversion increased as pH of medium increased. pH- partition profile, pH- solubility profile and micromeritic studies were also carried out in comparison to pure drug. The solubility and lipophilicity of ACaa exhibited higher values at all pH range when compared to AC. The micromeritic properties also evaluated in terms of particle shape and size, IQCS and kurtosis. Resulting IQCS value approached zero thus suggesting reducing in the degree of skewness.
ERIC Educational Resources Information Center
Gilbert, George L., Ed.
1985-01-01
Background information, procedures, and typical results obtained are provided for two demonstrations. The first involves the colorful complexes of copper(II). The second involves reverse-phase separation of Food, Drug, and Cosmetic (FD & C) dyes using a solvent gradient. (JN)
Reddy, Palavai Sripal; Hotha, Kishore Kumar; Sait, Shakil
2013-01-01
A complex, sensitive, and precise high-performance liquid chromatographic method for the profiling of impurities of esomeprazole in low-dose aspirin and esomeprazole capsules has been developed, validated, and used for the determination of impurities in pharmaceutical products. Esomeprazole and its related impurities' development in the presence of aspirin was traditionally difficult due to aspirin's sensitivity to basic conditions and esomeprazole's sensitivity to acidic conditions. When aspirin is under basic, humid, and extreme temperature conditions, it produces salicylic acid and acetic acid moieties. These two byproducts create an acidic environment for the esomeprazole. Due to the volatility and migration phenomenon of the produced acetic acid and salicylic acid from aspirin in the capsule dosage form, esomeprazole's purity, stability, and quantification are affected. The objective of the present research work was to develop a gradient reversed-phase liquid chromatographic method to separate all the degradation products and process-related impurities from the main peak. The impurities were well-separated on a RP8 column (150 mm × 4.6mm, X-terra, RP8, 3.5μm) by the gradient program using a glycine buffer (0.08 M, pH adjusted to 9.0 with 50% NaOH), acetonitrile, and methanol at a flow rate of 1.0 mL min(-1) with detection wavelength at 305 nm and column temperature at 30°C. The developed method was found to be specific, precise, linear, accurate, rugged, and robust. LOQ values for all of the known impurities were below reporting thresholds. The drug was subjected to stress conditions of hydrolysis, oxidation, photolysis, and thermal degradation in the presence of aspirin. The developed RP-HPLC method was validated according to the present ICH guidelines for specificity, linearity, accuracy, precision, limit of detection, limit of quantification, ruggedness, and robustness.
Shera, Christopher A; Cooper, Nigel P
2013-04-01
At low stimulus levels, basilar-membrane (BM) mechanical transfer functions in sensitive cochleae manifest a quasiperiodic rippling pattern in both amplitude and phase. Analysis of the responses of active cochlear models suggests that the rippling is a mechanical interference pattern created by multiple internal reflection within the cochlea. In models, the interference arises when reverse-traveling waves responsible for stimulus-frequency otoacoustic emissions (SFOAEs) reflect off the stapes on their way to the ear canal, launching a secondary forward-traveling wave that combines with the primary wave produced by the stimulus. Frequency-dependent phase differences between the two waves then create the rippling pattern measurable on the BM. Measurements of BM ripples and SFOAEs in individual chinchilla ears demonstrate that the ripples are strongly correlated with the acoustic interference pattern measured in ear-canal pressure, consistent with a common origin involving the generation of SFOAEs. In BM responses to clicks, the ripples appear as temporal fine structure in the response envelope (multiple lobes, waxing and waning). Analysis of the ripple spacing and response phase gradients provides a test for the role of fast- and slow-wave modes of reverse energy propagation within the cochlea. The data indicate that SFOAE delays are consistent with reverse slow-wave propagation but much too long to be explained by fast waves.
Fluctuations, Stratification and Stability in a Liquid Fluidized Bed at Low Reynolds Number
NASA Technical Reports Server (NTRS)
Segre, P. N.; McClymer, J. P.
2004-01-01
The sedimentation dynamics of extremely low polydispersity, non-colloidal, particles are studied in a liquid fluidized bed at low Reynolds number, Re much less than 1. When fluidized, the system reaches a steady state, defined where the local average volume fraction does not vary in time. In steady state, the velocity fluctuations and the particle concentrations are found to strongly depend on height. Using our results, we test a recently developed stability model for steady state sedimentation. The model describes the data well, and shows that in steady state there is a balancing of particle fluxes due to the fluctuations and the concentration gradient. Some results are also presented for the dependence of the concentration gradient in fluidized beds on particle size; the gradients become smaller as the particles become larger and fewer in number.
NASA Technical Reports Server (NTRS)
Poff, K. L.
1991-01-01
Thermotropism in primary roots of Zea mays L. was studied with respect to gradient strength (degrees C cm-1), temperature of exposure within a gradient, pre-treatment temperature, and gravitropic stimulation. The magnitude of the response decreased with gradient strength. Maximum thermotropism was independent of gradient strength and pre-treatment temperature. The range of temperature for positive and negative thermotropism did not change with pre-treatment temperature. However, the exact range of temperatures for positive and negative thermotropism varied with gradient strengths. In general, temperatures of exposure lower than 25 degrees C resulted in positive tropic responses while temperatures of exposure of 39 degrees C or more resulted in negative tropic responses. Thermotropism was shown to modify and reverse the normal gravitropic curvature of a horizontal root when thermal gradients were applied opposite the 1 g vector. It is concluded that root thermotropism is a consequence of thermal sensing and that the curvature of the primary root results from the interaction of the thermal and gravitational sensing systems.
Subsurface temperatures and geothermal gradients on the North Slope, Alaska
Collett, Timothy S.; Bird, Kenneth J.; Magoon, Leslie B.
1989-01-01
Geothermal gradients as interpreted from a series of high-resolution stabilized well-bore-temperature surveys from 46 North Slope, Alaska, wells vary laterally and vertically throughout the near-surface sediment (0-2,000 m). The data from these surveys have been used in conjunction with depths of ice-bearing permafrost, as interpreted from 102 well logs, to project geothermal gradients within and below the ice-bearing permafrost sequence. The geothermal gradients calculated from the projected temperature profiles are similar to the geothermal gradients measured in the temperature surveys. Measured and projected geothermal gradients in the ice-bearing permafrost sequence range from 1.5??C/100m in the Prudhoe Bay area to 5.1??C/100m in the National Petroleum Reserve in Alaska (NPRA).
Molecular diagnostics of periodontitis.
Korona-Głowniak, Izabela; Siwiec, Radosław; Berger, Marcin; Malm, Anna; Szymańska, Jolanta
2017-01-28
The microorganisms that form dental plaque are the main cause of periodontitis. Their identification and the understanding of the complex relationships and interactions that involve these microorganisms, environmental factors and the host's health status enable improvement in diagnostics and targeted therapy in patients with periodontitis. To this end, molecular diagnostics techniques (both techniques based on the polymerase chain reaction and those involving nucleic acid analysis via hybridization) come increasingly into use. On the basis of a literature review, the following methods are presented: polymerase chain reaction (PCR), real-time polymerase chain reaction (real-time PCR), 16S rRNA-encoding gene sequencing, checkerboard and reverse-capture checkerboard hybridization, microarrays, denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE), as well as terminal restriction fragment length polymorphism (TRFLP) and next generation sequencing (NGS). The advantages and drawbacks of each method in the examination of periopathogens are indicated. The techniques listed above allow fast detection of even small quantities of pathogen present in diagnostic material and prove particularly useful to detect microorganisms that are difficult or impossible to grow in a laboratory.
CO2 deficit in temperate forest soils receiving high atmospheric N-deposition.
Fleischer, Siegfried
2003-02-01
Evidence is provided for an internal CO2 sink in forest soils, that may have a potential impact on the global CO2-budget. Lowered CO2 fraction in the soil atmosphere, and thus lowered CO2 release to the aboveground atmosphere, is indicated in high N-deposition areas. Also at forest edges, especially of spruce forest, where additional N-deposition has occurred, the soil CO2 is lowered, and the gradient increases into the closed forest. Over the last three decades the capacity of the forest soil to maintain the internal sink process has been limited to a cumulative supply of approximately 1000 and 1500 kg N ha(-1). Beyond this limit the internal soil CO2 sink becomes an additional CO2 source, together with nitrogen leaching. This stage of "nitrogen saturation" is still uncommon in closed forests in southern Scandinavia, however, it occurs in exposed forest edges which receive high atmospheric N-deposition. The soil CO2 gradient, which originally increases from the edge towards the closed forest, becomes reversed.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Halbig, Michael Charles; Sing, Mrityunjay
2014-01-01
The environmental stability and thermal gradient cyclic durability performance of SA Tyrannohex composites were investigated for turbine engine component applications. The work has been focused on investigating the combustion rig recession, cyclic thermal stress resistance and thermomechanical low cycle fatigue of uncoated and environmental barrier coated Tyrannohex SiC SA composites in simulated turbine engine combustion water vapor, thermal gradients, and mechanical loading conditions. Flexural strength degradations have been evaluated, and the upper limits of operating temperature conditions for the SA composite material systems are discussed based on the experimental results.
Wu, Chih Cheng; Lee, Grace W M; Yang, Shinhao; Yu, Kuo-Pin; Lou, Chia Ling
2006-10-15
Although negative air ionizer is commonly used for indoor air cleaning, few studies examine the concentration gradient of negative air ion (NAI) in indoor environments. This study investigated the concentration gradient of NAI at various relative humidities and distances form the source in indoor air. The NAI was generated by single-electrode negative electric discharge; the discharge was kept at dark discharge and 30.0 kV. The NAI concentrations were measured at various distances (10-900 cm) from the discharge electrode in order to identify the distribution of NAI in an indoor environment. The profile of NAI concentration was monitored at different relative humidities (38.1-73.6% RH) and room temperatures (25.2+/-1.4 degrees C). Experimental results indicate that the influence of relative humidity on the concentration gradient of NAI was complicated. There were four trends for the relationship between NAI concentration and relative humidity at different distances from the discharge electrode. The changes of NAI concentration with an increase in relative humidity at different distances were quite steady (10-30 cm), strongly declining (70-360 cm), approaching stability (420-450 cm) and moderately increasing (560-900 cm). Additionally, the regression analysis of NAI concentrations and distances from the discharge electrode indicated a logarithmic linear (log-linear) relationship; the distance of log-linear tendency (lambda) decreased with an increase in relative humidity such that the log-linear distance of 38.1% RH was 2.9 times that of 73.6% RH. Moreover, an empirical curve fit based on this study for the concentration gradient of NAI generated by negative electric discharge in indoor air was developed for estimating the NAI concentration at different relative humidities and distances from the source of electric discharge.
Ballooning instabilities in tokamaks with sheared toroidal flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waelbroeck, F.L.; Chen, L.
1990-11-01
The stability of ballooning modes in the presence of sheared toroidal flows is investigated. The eigenmodes are shown to be related by a Fourier transformation to the non-exponentially growing Floquet solutions found by Cooper. It is further shown that the problem cannot be reduced further than to a two dimensional partial differential equation. Next, the generalized ballooning equation is solved analytically for a circular tokamak equilibrium with sonic flows, but with a small rotation shear compared to the sound speed. With this ordering, the centrifugal forces are comparable to the pressure gradient forces driving the instability, but coupling of themore » mode with the sound wave is avoided. A new stability criterion is derived which explicitly demonstrates that flow shear is stabilizing at constant centrifugal force gradient. 34 refs.« less
Hoaglund, J. R.; Kolak, J.J.; Long, D.T.; Larson, G.J.
2004-01-01
Two numerical models, one simulating present groundwater flow conditions and one simulating ice-induced hydraulic loading from the Port Huron ice advance, were used to characterize both modern and Pleistocene groundwater exchange between the Michigan Basin and near-surface water systems of Saginaw Bay (Lake Huron) and the surrounding Saginaw Lowlands area. These models were further used to constrain the origin of saline, isotopically light groundwater, and porewater from the study area. Output from the groundwater-flow model indicates that, at present conditions, head in the Marshall aquifer beneath Saginaw Bay exceeds the modern lake elevation by as much as 21 m. Despite this potential for flow, simulated groundwater discharge through the Saginaw Bay floor constitutes only 0.028 m3 s-1 (???1 cfs). Bedrock lithology appears to regulate the rate of groundwater discharge, as the portion of the Saginaw Bay floor underlain by the Michigan confining unit exhibits an order of magnitude lower flux than the portion underlain by the Saginaw aquifer. The calculated shoreline discharge of groundwater to Saginaw Bay is also relatively small (1.13 m3 s-1 or ???40 cfs) because of low gradients across the Saginaw Lowlands area and the low hydraulic conductivities of lodgement tills and glacial-lake clays surrounding the bay. In contrast to the present groundwater flow conditions, the Port Huron ice-induced hydraulic-loading model generates a groundwater-flow reversal that is localized to the region of a Pleistocene ice sheet and proglacial lake. This area of reversed vertical gradient is largely commensurate with the distribution of isotopically light groundwater presently found in the study area. Mixing scenarios, constrained by chloride concentrations and ??18O values in porewater samples, demonstrate that a mixing event involving subglacial recharge could have produced the groundwater chemistry currently observed in the Saginaw Lowlands area. The combination of models and mixing scenarios indicates that structural control is a major influence on both the present and Pleistocene flow systems.
Propulsion of Active Colloids by Self-Induced Field Gradients.
Boymelgreen, Alicia; Yossifon, Gilad; Miloh, Touvia
2016-09-20
Previously, metallodielectric Janus particles have been shown to travel with their dielectric hemisphere forward under low frequency applied electric fields as a result of asymmetric induced-charge electroosmotic flow. Here, it is demonstrated that at high frequencies, well beyond the charge relaxation time of the electric double layer induced around the particle, rather than the velocity decaying to zero, the Janus particles reverse direction, traveling with their metallic hemisphere forward. It is proposed that such motion is the result of a surface force, arising from localized nonuniform electric field gradients, induced by the dual symmetry-breaking of an asymmetric particle adjacent to a wall, which act on the induced dipole of the particle to drive net motion even in a uniform AC field. Although the field is external, since the driving gradient is induced on the particle level, it may be considered an active colloid. We have thus termed this propulsion mechanism "self-dielectrophoresis", to distinguish from traditional dielectrophoresis where the driving nonuniform field is externally fixed and the particle direction is restricted. It is demonstrated theoretically and experimentally that the critical frequency at which the particle reverses direction can be characterized by a nondimensional parameter which is a function of electrolyte concentration and particle size.
Gradient-type modeling of the effects of plastic recovery and surface passivation in thin films
NASA Astrophysics Data System (ADS)
Liu, Jinxing; Kah Soh, Ai
2016-08-01
The elasto-plastic responses of thin films subjected to cyclic tension-compression loading and bending are studied, with a focus on Bauschinger and size effects. For this purpose, a model is established by incorporating plastic recovery into the strain gradient plasticity theory we proposed recently. Elastic and plastic parts of strain and strain gradient, which are determined by the elasto-plastic decomposition according to the associative rule, are assumed to have a degree of material-dependent reversibility. Based on the above assumption, a dislocation reversibility-dependent rule is built to describe evolutions of different deformation components under cyclic loadings. Furthermore, a simple strategy is provided to implement the passivated boundary effects by introducing a gradual change to relevant material parameters in the yield function. Based on this theory, both bulge and bending tests under cyclic loading conditions are investigated. By comparing the present predictions with the existing experimental data, it is found that the yield function is able to exhibit the size effect, the Bauschinger effect, the influence of surface passivation and the hysteresis-loop phenomenon. Thus, the proposed model is deemed helpful in studying plastic deformations of micron-scale films.
Mukherjee, Tanmoy; Kumar, Dhivya; Burriss, Nathan; Xie, Zhihong
2016-01-01
ABSTRACT The genomes of most motile bacteria encode two or more chemotaxis (Che) systems, but their functions have been characterized in only a few model systems. Azospirillum brasilense is a motile soil alphaproteobacterium able to colonize the rhizosphere of cereals. In response to an attractant, motile A. brasilense cells transiently increase swimming speed and suppress reversals. The Che1 chemotaxis pathway was previously shown to regulate changes in the swimming speed, but it has a minor role in chemotaxis and root surface colonization. Here, we show that a second chemotaxis system, named Che4, regulates the probability of swimming reversals and is the major signaling pathway for chemotaxis and wheat root surface colonization. Experimental evidence indicates that Che1 and Che4 are functionally linked to coordinate changes in the swimming motility pattern in response to attractants. The effect of Che1 on swimming speed is shown to enhance the aerotactic response of A. brasilense in gradients, likely providing the cells with a competitive advantage in the rhizosphere. Together, the results illustrate a novel mechanism by which motile bacteria utilize two chemotaxis pathways regulating distinct motility parameters to alter movement in gradients and enhance the chemotactic advantage. IMPORTANCE Chemotaxis provides motile bacteria with a competitive advantage in the colonization of diverse niches and is a function enriched in rhizosphere bacterial communities, with most species possessing at least two chemotaxis systems. Here, we identify the mechanism by which cells may derive a significant chemotactic advantage using two chemotaxis pathways that ultimately regulate distinct motility parameters. PMID:27068592
Yechieli, Y.; Kafri, U.; Goldman, M.; Voss, C.I.
2001-01-01
TDEM (time domain electromagnetic) traverses in the Dead Sea (DS) coastal aquifer help to delineate the configuration of the interrelated fresh-water and brine bodies and the interface in between. A good linear correlation exists between the logarithm of TDEM resistivity and the chloride concentration of groundwater, mostly in the higher salinity range, close to that of the DS brine. In this range, salinity is the most important factor controlling resistivity. The configuration of the fresh-saline water interface is dictated by the hydraulic gradient, which is controlled by a number of hydrological factors. Three types of irregularities in the configuration of fresh-water and saline-water bodies were observed in the study area: 1. Fresh-water aquifers underlying more saline ones ("Reversal") in a multi-aquifer system. 2. "Reversal" and irregular residual saline-water bodies related to historical, frequently fluctuating DS base level and respective interfaces, which have not undergone complete flushing. A rough estimate of flushing rates may be obtained based on knowledge of the above fluctuations. The occurrence of salt beds is also a factor affecting the interface configuration. 3. The interface steepens towards and adjacent to the DS Rift fault zone. Simulation analysis with a numerical, variable-density flow model, using the US Geological Survey's SUTRA code, indicates that interface steep- ening may result from a steep water-level gradient across the zone, possibly due to a low hydraulic conductivity in the immediate vicinity of the fault.
NASA Astrophysics Data System (ADS)
Bhusari, Vijay; Katpatal, Y. B.; Kundal, Pradeep
2017-05-01
Drinking water scarcity in rural parts of central India in basaltic terrain is common. Most of the rural population depends on groundwater sources located in the fractured and weathered zone of the basaltic aquifers. Long-term indiscriminate withdrawal has caused an alarming rate of depletion of groundwater levels in both pre- and post-monsoon periods. The aquifer is not replenished through precipitation under natural conditions. To overcome this situation, an innovative artificial recharge system, called the reverse-gradient recharge system (RGRS), was implemented in seven villages of Wardha district of Maharashtra. The study described here presents a comparative analysis of recharge systems constructed in the year 2012 downstream of dug-well locations in these seven villages. The post-project comparative analysis reveals that the area of influence (AOI) of the groundwater recharge system, within which increases in groundwater levels and yield are observed, is directly related to the specific yield, thickness of the weathered and fractured zone, porosity, and transmissivity of the aquifer, showing high correlation coefficients of 0.92, 0.88, 0.85 and 0.83, respectively. The study indicates that the RGRS is most effective in vesicular weathered and fractured basalt, recording a maximum increase in well yield of 65-82 m3/day, while a minimum increase in yield of 15-30 m3/day was observed in weathered vesicular basalt. The comparative analysis thus identifies the controlling factors which facilitate groundwater recharge through the proposed RGRS. After implementation of these projects, the groundwater availability in these villages increased significantly, solving their drinking water problems.
Mukherjee, Tanmoy; Kumar, Dhivya; Burriss, Nathan; Xie, Zhihong; Alexandre, Gladys
2016-06-15
The genomes of most motile bacteria encode two or more chemotaxis (Che) systems, but their functions have been characterized in only a few model systems. Azospirillum brasilense is a motile soil alphaproteobacterium able to colonize the rhizosphere of cereals. In response to an attractant, motile A. brasilense cells transiently increase swimming speed and suppress reversals. The Che1 chemotaxis pathway was previously shown to regulate changes in the swimming speed, but it has a minor role in chemotaxis and root surface colonization. Here, we show that a second chemotaxis system, named Che4, regulates the probability of swimming reversals and is the major signaling pathway for chemotaxis and wheat root surface colonization. Experimental evidence indicates that Che1 and Che4 are functionally linked to coordinate changes in the swimming motility pattern in response to attractants. The effect of Che1 on swimming speed is shown to enhance the aerotactic response of A. brasilense in gradients, likely providing the cells with a competitive advantage in the rhizosphere. Together, the results illustrate a novel mechanism by which motile bacteria utilize two chemotaxis pathways regulating distinct motility parameters to alter movement in gradients and enhance the chemotactic advantage. Chemotaxis provides motile bacteria with a competitive advantage in the colonization of diverse niches and is a function enriched in rhizosphere bacterial communities, with most species possessing at least two chemotaxis systems. Here, we identify the mechanism by which cells may derive a significant chemotactic advantage using two chemotaxis pathways that ultimately regulate distinct motility parameters. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
McKinnon, Margaret C; Black, Sandra E; Miller, Bruce; Moscovitch, Morris; Levine, Brian
2006-01-01
We examined autobiographical memory performance in two patients with semantic dementia using a novel measure, the Autobiographical Interview [Levine, Svoboda, Hay, Winocur, & Moscovitch (2002). Aging and autobiographical memory: Dissociating episodic from semantic retrieval. Psychology and Aging, 17, 677-689], that is capable of dissociating episodic and personal semantic recall under varying levels of retrieval support. Earlier reports indicated that patients with semantic dementia demonstrate autobiographical episodic memory loss following a "reverse gradient" by which recent memories are preserved relative to remote memories. We found limited evidence for this pattern at conditions of low retrieval support. When structured probing was provided, patients' autobiographical memory performance was similar to that of controls. Retesting of one patient after 1 year indicated that retrieval support was insufficient to bolster performance following progressive prefrontal volume loss, as documented with quantified structural neuroimaging. These findings are discussed in relation to theories of limbic-neocortical interaction in autobiographical memory.
Heat Flux and Fluid Flow in the Terrebonne Basin, Northern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Meazell, K.; Flemings, P. B.
2016-12-01
We use a three-dimensional seismic survey to map the gas hydrate stability zone within a mid-slope salt-withdrawal minibasin in the northern Gulf of Mexico and identify anomalous regions within the basin where fluids may modify the hydrate stability zone. A discontinuous bottom-simulating reflector (BSR) marks the base of the hydrate stability zone and suggests an average geothermal gradient of 18.1 C/km based on the calculated temperature at the BSR assuming seawater salinity, hydrostatic pressure, and a seafloor temperature of 4 C. When compared to our model of the predicted base of gas hydrate stability assuming a basin-wide geothermal gradient of 18.1 C, two anomalies are found where the BSR is observed significantly shallower than expected. The southern anomaly has a lateral influence of 1500 m from the salt, and a maximum shoaling of 800 m. This anomaly is likely the result of increased salinity or heat from a rising salt diapir along the flank of the basin. A local geothermal gradient of 67.31 C/km or a salinity of 17.5 wt % can explain the observed position of the BSR at the southern anomaly. The northern anomaly is associated with active cold seep vents. In this area, the pluming BSR is crescent shaped, which we interpret as the result of warm and or salty fluids migrating up through a fault. This anomaly has a lateral influence of 1500 m, and a maximum shoaling of 600 m above the predicted base of gas hydrate stability. A local geothermal gradient of 35.45 C/km or a salinity of 14.7 wt % is required to adjust the position of the BSR to that which is observed at the northern anomaly. Active fluid migration suggests a combination of both heat and salinity is responsible for the altered position of the BSR.
NASA Astrophysics Data System (ADS)
Rafter, P. A.; Herguera, J. C.; Carriquiry, J. D.; Solomon, E. A.; Southon, J. R.
2017-12-01
Seafloor volcanism at ocean spreading centers may have played an important role in late Pleistocene glacial terminations by increasing the global inventory of the greenhouse gas carbon dioxide (CO2). Gulf of California geology and hydrography offer a unique opportunity to quantify this carbon contribution because CO2 from local seafloor volcanism will reduce/reverse the vertical gradient of seawater radiocarbon (14C). We reconstructed this surface-to-deep gradient by measuring the 14C content of seafloor- and surface-dwelling foraminifera and find several surface-deep 14C reversals during the most recent deglaciation—a 14C distribution that has no analog in the modern ocean. We interpret these observations as representing increased CO2 efflux from the seafloor during deglaciation, linking plate tectonics with the carbon cycle and global climate via enhanced seafloor volcanism.
Generation and precise control of dynamic biochemical gradients for cellular assays
NASA Astrophysics Data System (ADS)
Saka, Yasushi; MacPherson, Murray; Giuraniuc, Claudiu V.
2017-03-01
Spatial gradients of diffusible signalling molecules play crucial roles in controlling diverse cellular behaviour such as cell differentiation, tissue patterning and chemotaxis. In this paper, we report the design and testing of a microfluidic device for diffusion-based gradient generation for cellular assays. A unique channel design of the device eliminates cross-flow between the source and sink channels, thereby stabilizing gradients by passive diffusion. The platform also enables quick and flexible control of chemical concentration that makes highly dynamic gradients in diffusion chambers. A model with the first approximation of diffusion and surface adsorption of molecules recapitulates the experimentally observed gradients. Budding yeast cells cultured in a gradient of a chemical inducer expressed a reporter fluorescence protein in a concentration-dependent manner. This microfluidic platform serves as a versatile prototype applicable to a broad range of biomedical investigations.
NASA Astrophysics Data System (ADS)
Sugiyanto; Zukhronah, Etik; Pratiwi, Esteti Sophia
2017-12-01
Indonesia has been hit by financial crisis in the middle of 1997. The financial crisis that has occurred gives a severe impact to the economy of Indonesia resulting the needs for a detection system of financial crisis. Crisis can be detected based on several indicators such as M1, M2 per foreign exchange reserves, and M2 multiplier. These three indicators can affect the exchange rate stability and may further affect the financial stability so that it can be one of the causes of the financial crisis. This research aims to determine the appropriate model that can detect the financial crisis in Indonesia. Markov switching is an alternative model that can be approach and used often for detecting financial crisis. We can determine the combination of volatility and Markov switching model with AR and volatility model are determined first. The results of this research are that M1 can be modelled by SWARCH (3, 1) while M2 per foreign research exchange reserves and M2 multiplier can be modelled by SWARCH(3,2).
Mulkern, Robert V; Balasubramanian, Mukund; Mitsouras, Dimitrios
2014-07-30
To determine whether Lorentzian or Gaussian intra-voxel frequency distributions are better suited for modeling data acquired with gradient-echo sampling of single spin-echoes for the simultaneous characterization of irreversible and reversible relaxation rates. Clinical studies (e.g., of brain iron deposition) using such acquisition schemes have typically assumed Lorentzian distributions. Theoretical expressions of the time-domain spin-echo signal for intra-voxel Lorentzian and Gaussian distributions were used to fit data from a human brain scanned at both 1.5 Tesla (T) and 3T, resulting in maps of irreversible and reversible relaxation rates for each model. The relative merits of the Lorentzian versus Gaussian model were compared by means of quality of fit considerations. Lorentzian fits were equivalent to Gaussian fits primarily in regions of the brain where irreversible relaxation dominated. In the multiple brain regions where reversible relaxation effects become prominent, however, Gaussian fits were clearly superior. The widespread assumption that a Lorentzian distribution is suitable for quantitative transverse relaxation studies of the brain should be reconsidered, particularly at 3T and higher field strengths as reversible relaxation effects become more prominent. Gaussian distributions offer alternate fits of experimental data that should prove quite useful in general. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Green, Andrew N.; Cooper, J. Andrew G.; Salzmann, Leslee
2018-02-01
On the SE African shelf, a submerged shoreline at a depth of 60 m is examined and its attributes compared between two shelf sectors with different morphologies, yet similar energy regimes. The aim is to assess the controls of antecedent conditioning on shoreline development and later preservation from transgressive ravinement. Using a combination of multibeam bathymetry and single-channel seismic profiles, the stratigraphy and morphology of the shoreline is investigated. Low-gradient bedrock examples reveal several distinctive seismic facies, including onlapping chaotic reflector packages which are interpreted as calcarenite rubble fields. These palaeo-shorelines possess planform equilibrium morphologies, including parabolic dunes and blowout forms along with relict shore platforms. They are strongly associated with incised valleys of last glacial maximum age which underlie the shoreline locations; these provide wide, back -barrier accommodation space during transgression. In contrast, palaeo-shorelines on the steeper-gradient shelf have a simpler stratigraphic arrangement. They are not as well preserved, are generally covered by thick drapes of sediment, and lack the elaborate planform morphologies of their lower-shelf gradient equivalents. Isolated incised valleys and the steep bedrock gradient limit accommodation space. The comparison indicates that antecedent bedrock slope and available accommodation are amongst the dominant controls on overstepping, and thus potential preservation, of palaeo-shorelines on the shelf. Lower-gradient shelves not only promote rapid shoreline translation but, together with wide, sandy back -barrier accommodation, also foster larger barrier volumes. In suitable climates such as in the Mediterranean and other sub-tropical areas, the ensuing shoreline stability promotes rapid and effective cementation of the barrier. In comparison, steep bedrock profiles with limited back -barrier accommodation have much lower preservation potential. Transgressive ravinement is more focussed on steep slopes, effectively removing more material during the ravinement process. The more dynamic environment may also reduce the effectiveness of diagenesis. The potential of beachrock and aeolianite palaeo-shorelines as submerged sea-level indicators may be optimal in low-gradient settings in Mediterranean to subtropical environments.
Lee, Jee H; Elly, Chris; Park, Yoon; Liu, Yun-Cai
2015-06-16
Foxp3(+) regulatory T (Treg) cells play a critical role in immune homeostasis; however, the mechanisms to maintain their function remain unclear. Here, we report that the E3 ubiquitin ligase VHL is essential for Treg cell function. Mice with Foxp3-restricted VHL deletion displayed massive inflammation associated with excessive Treg cell interferon-γ (IFN-γ) production. VHL-deficient Treg cells failed to prevent colitis induction, but converted into Th1-like effector T cells. VHL intrinsically orchestrated such conversion under both steady and inflammatory conditions followed by Foxp3 downregulation, which was reversed by IFN-γ deficiency. Augmented hypoxia-inducible factor 1α (HIF-1α)-induced glycolytic reprogramming was required for IFN-γ production. Furthermore, HIF-1α bound directly to the Ifng promoter. HIF-1α knockdown or knockout could reverse the increased IFN-γ by VHL-deficient Treg cells and restore their suppressive function in vivo. These findings indicate that regulation of HIF-1α pathway by VHL is crucial to maintain the stability and suppressive function of Foxp3(+) T cells. Copyright © 2015 Elsevier Inc. All rights reserved.
Photoregulating RNA digestion using azobenzene linked dumbbell antisense oligodeoxynucleotides.
Wu, Li; He, Yujian; Tang, Xinjing
2015-06-17
Introduction of 4,4'-bis(hydroxymethyl)-azobenzene (azo) to dumbbell hairpin oligonucleotides at the loop position was able to reversibly control the stability of the whole hairpin structure via UV or visible light irradiation. Here, we designed and synthesized a series of azobenzene linked dumbbell antisense oligodeoxynucleotides (asODNs) containing two terminal hairpins that are composed of an asODN and a short inhibitory sense strand. Thermal melting studies of these azobenzene linked dumbbell asODNs indicated that efficient trans to cis photoisomerization of azobenzene moieties induced large difference in thermal stability (ΔTm = 12.1-21.3 °C). In addition, photomodulation of their RNA binding abilities and RNA digestion by RNase H was investigated. The trans-azobenzene linked asODNs with the optimized base pairs between asODN strands and inhibitory sense strands could only bind few percentage of the target RNA, while it was able to recover their binding to the target RNA and degrade it by RNase H after light irradiation. Upon optimization, it is promising to use these azobenzene linked asODNs for reversible spatial and temporal regulation of antisense activities based on both steric binding and RNA digestion by RNase H.
Controlled synthesis of MnOOH multilayer nanowires as anode materials for lithium-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yue; Yue, Kaiqiang; Wang, Yuanxin
MnOOH multilayer nanowires have been successfully synthesized by a hydrothermal method. It is found that the uniform multilayer structure of nanowires ran through the entire nanowire, which is formed via a layer by layer. The electrochemical properties of MnOOH multilayer nanowires as an anode material for Li-ion batteries (LIB) were investigated, and excellent capacity retention, superior cycling performance, and high rate capability were achieved. Specifically, the reversible capacity of MnOOH multilayer nanowires is 521 mAh/g after 500 cycles at 0.1 C, with excellent electrochemical stability. The multilayer nanowire electrodes exhibit short electron path lengths, high internal dislocation densities and largemore » surface to volume ratio, resulting in increased specific capacity, cycling stability and rate performance in the energy storage devices, which serves as an indication of their potential application in LIBs. - Highlights: •MnOOH multilayer nanowires were synthesized by a hydrothermal method. •The uniform multilayer structure of nanowires was formed via layer by layer. •The reversible capacity of product shows 521 mAh/g after 500 cycles at 0.1 C. •MnOOH multilayer nanowires showed higher property as anode material in LIB.« less
Liu, Degang; Li, Lei
2013-11-14
Substituted tolyl groups are considered as close isosteres of the thymine (T) residue. They can be recognized by DNA polymerases as if they were thymine. Although these toluene derivatives are relatively inert toward radical additions, our recent finding suggests that the dinucleotide analogue TpTo (To = 2'-deoxy-1-(3-tolyl)-β-D-ribofuranose) supports an ortho photocycloaddition reaction upon UV irradiation, producing two cyclobutane pyrimidine dimer (CPD) analogues 2 and 3 . Our report here further shows that formation of these CPD species is reversible under UVC irradiation, resembling the photochemical property of the CPD species formed between two Ts. Analyzing the stability of these CPD analogues suggests that one ( 2 ) is more stable than the other ( 3 ). The TpTo conformer responsible for 2 formation is also more stable than that responsible for 3 formation, as indicated by the Gibbs free energy change calculated from the constructed Bordwell thermodynamic cycle. These different stabilities are not due to the varying photochemical properties, as proved by quantum yields determined from the corresponding photoreactions. Instead, they are ascribed to the different stacking interaction between the T and the To rings both in the TpTo dinucleotide as well as in the formed CPD analogues. Factors contributing to the ring stacking interactions are also discussed. Our proof-of-concept approach suggests that a carefully designed Bordwell cycle coupled with reversible CPD formations under UV irradiation can be very useful in studying DNA base interactions.
Liu, Degang; Li, Lei
2013-01-01
Substituted tolyl groups are considered as close isosteres of the thymine (T) residue. They can be recognized by DNA polymerases as if they were thymine. Although these toluene derivatives are relatively inert toward radical additions, our recent finding suggests that the dinucleotide analogue TpTo (To = 2'-deoxy-1-(3-tolyl)-β-D-ribofuranose) supports an ortho photocycloaddition reaction upon UV irradiation, producing two cyclobutane pyrimidine dimer (CPD) analogues 2 and 3. Our report here further shows that formation of these CPD species is reversible under UVC irradiation, resembling the photochemical property of the CPD species formed between two Ts. Analyzing the stability of these CPD analogues suggests that one (2) is more stable than the other (3). The TpTo conformer responsible for 2 formation is also more stable than that responsible for 3 formation, as indicated by the Gibbs free energy change calculated from the constructed Bordwell thermodynamic cycle. These different stabilities are not due to the varying photochemical properties, as proved by quantum yields determined from the corresponding photoreactions. Instead, they are ascribed to the different stacking interaction between the T and the To rings both in the TpTo dinucleotide as well as in the formed CPD analogues. Factors contributing to the ring stacking interactions are also discussed. Our proof-of-concept approach suggests that a carefully designed Bordwell cycle coupled with reversible CPD formations under UV irradiation can be very useful in studying DNA base interactions. PMID:24223299
Multilayer biomimetics: reversible covalent stabilization of a nanostructured biofilm.
Li, Bingyun; Haynie, Donald T
2004-01-01
Designed polypeptides and electrostatic layer-by-layer self-assembly form the basis of promising research in bionanotechnology and medicine on development of polyelectrolyte multilayer films (PEMs). We show that PEMs can be formed from oppositely charged 32mers containing several cysteine residues. The polypeptides in PEMs become cross-linked under mild oxidizing conditions. This mimicking of disulfide (S-S) bond stabilization of folded protein structure confers on the PEMs a marked increase in resistance to film disassembly at acidic pH. The reversibility of S-S bond stabilization of PEMs presents further advantages for controlling physical properties of films, coatings, and other applications involving PEMs.
King, Joseph J; Nystrom, Lukas M; Reimer, Nickolas B; Gibbs, C Parker; Scarborough, Mark T; Wright, Thomas W
2016-01-01
Proximal humerus reconstructions after resection of tumors are challenging. Early success of the reverse shoulder arthroplasty for reconstructions has recently been reported. The reverse allograft-prosthetic composite offers the advantage of improved glenohumeral stability compared with hemiarthroplasty for proximal humeral reconstructions as it uses the deltoid for stability. This article describes the technique for treating proximal humeral tumors, including preoperative planning, biopsy principles, resection pearls, soft tissue tensioning, and specifics about reconstruction using the reverse allograft-prosthetic composite. Two cases are presented along with the functional outcomes with use of this technique. Biomechanical considerations during reconstruction are reviewed, including techniques to improve the deltoid compression force. Reported instability rates are less with reverse shoulder arthroplasty reconstruction as opposed to hemiarthroplasty or total shoulder arthroplasty reconstructions of tumor resections. Reported functional outcomes are promising for the reverse allograft-prosthetic composite reconstructions, although complications are reported. Reverse allograft-prosthetic composites are a promising option for proximal humeral reconstructions, although nonunion of the allograft-host bone junction continues to be a challenge for this technique. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Donnelly, Colleen A.; Tenbus, Fredrick J.
1998-01-01
Water-level data and interpretations from previous hydrogeological studies conducted by the U.S. Geological Survey in the Edgewood Area of Aberdeen Proving Ground (APG), Maryland, were compared to determine similarities and differences among the aquifers. Because the sediments that comprise the shallow aquifers are discontinuous, the shallow ground-water-flow systems are local rather than extensive across the Edgewood Area. Hydrogeologic cross sections, hydrographs of water levels, and vertical gradients calculated from previous studies in the Canal Creek area, Graces Quarters, the O-Field area, Carroll Island, and the J-Field area, over periods of record ranging from 1 to 10 years during 1986-97, were used to determine recharge and discharge areas, connections between aquifers, and hydrologic responses of aquifers to natural and anthropogenic stress. Each of the aquifers in the study areas exhibited variation of hydraulic head that was attributed to seasonal changes in recharge. Upward hydraulic gradients and seasonal reversals of vertical hydraulic gradients between aquifers indicate the potential for local ground-water discharge from most of the aquifers that were studied in the Edgewood Area. Hydraulic head in individual aquifers in Graces Quarters and Carroll Island responded to offsite pumping during part of the period of record. Hydraulic head in most of the confined aquifers responded to tidal loading effects from nearby estuaries.
Tokue, Hiroshi; Oyaizu, Kenichi; Sukegawa, Takashi; Nishide, Hiroyuki
2014-03-26
A couple of totally reversible redox-active molecules, which are different in redox potentials, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) and viologen (V(2+)), were employed to give rise to a rectified redox conduction effect. Single-layer and bilayer devices were fabricated using polymers containing these sites as pendant groups per repeating unit. The devices were obtained by sandwiching the redox polymer layer(s) with indium tin oxide (ITO)/glass and Pt foil electrodes. Electrochemical measurements of the single-layer device composed of polynorbornene-bearing TEMPO (PTNB) exhibited a diffusion-limited current-voltage response based on the TEMPO(+)/TEMPO exchange reaction, which was almost equivalent to a redox gradient through the PTNB layer depending upon the thickness. The bilayer device gave rise to the current rectification because of the thermodynamically favored cross-reaction between TEMPO(+) and V(+) at the polymer/polymer interface. A current-voltage response obtained for the bilayer device demonstrated a two-step diffusion-limited current behavior as a result of the concurrent V(2+)/V(+) and V(+)/V(0) exchange reactions according to the voltage and suggested that the charge transport process through the device was most likely to be rate-determined by a redox gradient in the polymer layer. Current collection experiments revealed a charge transport balance throughout the device, as a result of the electrochemical stability and robustness of the polymers in both redox states.
On the role and value of β in incompressible MHD simulations
NASA Astrophysics Data System (ADS)
Chahine, Robert; Bos, Wouter J. T.
2018-04-01
The parameter β, defined as the ratio of the pressure to the square of the magnetic field, is widely used to characterize astrophysical and fusion plasmas. However, in the dynamics of a plasma flow, it is the pressure gradient which is important rather than the value of the pressure itself. It is shown that if one is interested in the influence of the pressure gradient on the dynamics of a plasma, it is not the quantity β which should be considered, but a similar quantity depending on the pressure gradient. The scaling of this newly defined quantity is investigated using incompressible magnetohydrodynamic simulations in a periodic cylinder in the Reversed Field Pinch flow regime.
NASA Astrophysics Data System (ADS)
van der Voort, Tessa Sophia; Hagedorn, Frank; Zell, Claudia; McIntyre, Cameron; Eglinton, Tim
2016-04-01
Understanding the interaction between soil organic matter (SOM) and climatic, geologic and ecological factors is essential for the understanding of potential susceptibility and vulnerability to climate and land use change. Radiocarbon constitutes a powerful tool for unraveling SOM dynamics and is increasingly used in studies of carbon turnover. The complex and inherently heterogeneous nature of SOM renders it challenging to assess the processes that govern SOM stability by solely looking at the bulk signature on a plot-scale level. This project combines bulk radiocarbon measurements on a regional-scale spanning wide climatic and geologic gradients with a more in-depth approach for a subset of locations. For this subset, time-series and carbon pool-specific radiocarbon data has been acquired for both topsoil and deeper soils. These well-studied sites are part of the Long-Term Forest Ecosystem Research (LWF) program of the Swiss Federal Institute for Forest, Snow and Landscape research (WSL). Statistical analysis was performed to examine relationships of radiocarbon signatures with variables such as temperature, precipitation and elevation. Bomb-curve modeling was applied determine carbon turnover using time-series data. Results indicate that (1) there is no significant correlation between Δ14C signature and environmental conditions except a weak positive correlation with mean annual temperature, (2) vertical gradients in Δ14C signatures in surface and deeper soils are highly similar despite covering disparate soil-types and climatic systems, and (3) radiocarbon signatures vary significantly between time-series samples and carbon pools. Overall, this study provides a uniquely comprehensive dataset that allows for a better understanding of links between carbon dynamics and environmental settings, as well as for pool-specific and long-term trends in carbon (de)stabilization.
The distribution of ground ice on Mars
NASA Technical Reports Server (NTRS)
Mellon, M. T.; Jakosky, B. M.
1993-01-01
A wealth of geologic evidence indicates that subsurface water ice has played an important role in the evolution of Martian landforms. Theoretical models of the stability of ground ice show that in the near-surface regolith ice is currently stable at latitudes poleward of about +/- 40 deg and below a depth of a few centimeters to a meter, with some variations with longitude. If ice is not previously present at a particular location where it is stable, atmospheric water will diffuse into the regolith and condense as ice, driven by the annual subsurface thermal oscillations. The lower boundary of this ice deposit is found to occur at a depth (typically a few meters) where the annual thermal oscillations give way to the geothermal gradient. In the equatorial regions near-surface ice is currently not stable, resulting in the sublimation of any existing ice and subsequent loss to the atmosphere. However, subliming ice might be maintained at a steady-state depth, where diffusion and loss to the atmosphere are balanced by resupply from a possible deeper source of water (either deeper, not yet depleted, ice deposits or ground water). This depth is typically a few tens to hundreds of meters and depends primarily on the surface temperature and the nature of the geothermal gradient, being deeper for a higher surface temperature and a lower geothermal gradient. Such an equatorial deposit is characterized by the regolith ice content being low nearer the surface and increasing with depth in the deposit. Oscillations in the orbit will affect this picture of ground ice in two ways: by causing periodic changes in the pattern of near-surface stability and by producing subsurface thermal waves that may be capable of driving water ice deeper into the regolith.
NASA Astrophysics Data System (ADS)
Sung, C.; Wang, G.; Rhodes, T. L.; Smith, S. P.; Osborne, T. H.; Ono, M.; McKee, G. R.; Yan, Z.; Groebner, R. J.; Davis, E. M.; Zeng, L.; Peebles, W. A.; Evans, T. E.
2017-11-01
The first observation of increased electron temperature turbulence during edge localized mode (ELM) suppression by resonant magnetic perturbations (RMPs) is presented. These are long wavelength fluctuations (kθρs ≤ 0.2, where kθ = poloidal wavenumber and ρs = ion sound gyroradius) observed during H-mode plasmas on the DIII-D. This increase occurs only after ELMs are suppressed and are not observed during the initial RMP application. The T˜ e/Te increases ( >60%) are coincident with changes in normalized density and electron temperature gradients in the region from the top of the pedestal outward to the upper portion of the steep edge gradient. Density turbulence (kθρs ≤ 0.4) in this location was also observed to increase only after ELM suppression. These results are significant since they indicate that increased gradient-driven turbulent transport is one possible mechanism to regulate and maintain ELM-free H-mode operation. Investigation of linear stability of drift wave instabilities using the CGYRO code [Candy et al., J. Comput. Phys. 324, 73 (2016)] shows that the dominant mode moves closer to the electron mode branch from the ion mode branch only after ELMs are suppressed, correlated with the increased turbulence. The increased turbulence during ELM suppression, rather than with the initial RMP application, indicates that the often observed RMP induced "density pump-out" cannot be attributed to long wavelength edge turbulence level changes.
Wetz, J.J.; Lipp, E.K.; Griffin, Dale W.; Lukasik, J.; Wait, D.; Sobsey, M.D.; Scott, T.M.; Rose, J.B.
2004-01-01
Concerns about the presence of enteric viruses in the surface waters of the Florida Keys prompted analyses of virus stability and persistence in these waters. In an in vitro study we evaluated the survival of poliovirus and stability of viral RNA in filtered natural seawater (FSW), unfiltered natural seawater (USW), artificial seawater (ASW) and DI water. This study compared cell culture infectivity with direct reverse transcription-polymerase chain reaction analysis. Attenuated poliovirus was seeded in the above water types and incubated in the dark at 22 and 30??C for 60 days. At 22??C, enhanced poliovirus survival and enhanced detection of viral RNA was observed in the seeded DI water control, artificial seawater and FSW samples. Detection of viruses in unfiltered seawater decreased rapidly at both temperatures by both methods of detection, suggesting that in the natural environment detection of enteroviral RNA may indicate a recent contamination event. In addition, in situ sampling in the Florida Keys during the late winter of 2000 revealed the presence of infectious enteroviruses at two sites and no sites exceeded recommended levels of microbial water quality indicators (enterococci or fecal coliform bacteria). ?? 2003 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jhang, Hogun; Kim, S. S.; Kwon, J. M.; Terzolo, L.; Kim, J. Y.; Diamond, P. H.
2010-11-01
It is accepted that the intrinsic rotation is generated via the residual stress, which is non-diffusive components of the turbulent Reynolds stress, without external momentum input. The physics leading to the onset of intrinsic rotation in L- and H- mode plasmas have been elucidated elsewhere. However, the physics responsible for the generation and transport of the intrinsic rotation and its relationship to the formation of internal transport barriers (ITBs) in reversed shear (RS) plasmas have not been explored in detail, which is the main subject in the present work. The revised version of the global gyrofluid code TRB is used for this study. It is found that the large intrinsic rotation (˜10-30% of the ion sound speed depending on ITB characteristics) is generated near the ITB region and propagates into the core. The intrinsic rotation increases linearly as the temperature gradient at ITB position increases, albeit not indefinitely. Key parameters related to the symmetry breaking, such as turbulent intensity and its gradient, the flux surface averaged parallel wavenumber are evaluated dynamically during the ITB formation. In particular, the role of reversed shear and the q-profile curvature is presented in relation to the symmetry breaking in RS plasmas.
Intrinsic Rotation and Momentum Transport in Reversed Shear Plasmas with Internal Transport Barriers
NASA Astrophysics Data System (ADS)
Jhang, Hogun; Kim, S. S.; Diamond, P. H.
2010-11-01
The intrinsic rotation in fusion plasmas is believed to be generated via the residual stress without external momentum input. The physical mechanism responsible for the generation and transport of intrinsic rotation in L- and H-mode tokamak plasmas has been studied extensively. However, it is noted that the physics of intrinsic rotation generation and its relationship to the formation of internal transport barriers (ITBs) in reversed shear (RS) tokamak plasmas have not been explored in detail, which is the main subject in the present work. A global gyrofluid code TRB is used for this study. It is found that the large intrinsic rotation (˜10-30% of the ion sound speed depending on ITB characteristics) is generated near the ITB region and propagates into the core. The intrinsic rotation increases linearly as the temperature gradient at ITB position increases, albeit not indefinitely. Key parameters related to the symmetry breaking, such as turbulent intensity and its gradient, the flux surface averaged parallel wavenumber are evaluated dynamically during the ITB formation. The role of reversed shear and the q-profile curvature is presented in relation to the symmetry breaking mechanism in RS plasmas.
NASA Technical Reports Server (NTRS)
He, H.; Sui, C-H.; Jian, M.; Wen, Z.
2000-01-01
The mean state and year-to-year variations of the tropospheric temperature fields and their relationship with the establishment of the summertime East Asian monsoon (EAM) and the Indian monsoon (INM) are studied using the NCEP reanalysis data of 15 years (1982-1996). The results show that the seasonal shift of the South Asian High in the upper troposphere and the establishment of the EAM and the INM are closely related to the seasonal warming which causes a reversal of the meridional gradient of upper tropospheric mean temperature over the monsoon regions. On the average of 15 years, the reversal time of the temperature gradient in the EAM region (INM region) is concurrent with (one pentad earlier than) the onset time of the summer monsoon. In most years of the 15-year period, the reversal of temperature gradient coincides or precedes the onset time of the summer monsoon in both the EAM region and the INM region. The results suggest an important role of thermal processes on the establishment of the Asian monsoon. The contributors to the upper tropospheric warming over the EAM region are the strong horizontal warm advection and the diabetic heating against the adiabatic cooling due to upward motion. In the INM region, strong adiabatic heating by subsidence and the diabetic heating are major warming processes against the strong horizontal cold advection related to the persistent northwestlies to the southwestern periphery of the Tibetan Plateau. It appears that the early or late establishment of the Asian summer monsoon is not directly related to the differential warming near the surface.
Factors controlling soil organic carbon stability along a temperate forest altitudinal gradient
Tian, Qiuxiang; He, Hongbo; Cheng, Weixin; Bai, Zhen; Wang, Yang; Zhang, Xudong
2016-01-01
Changes in soil organic carbon (SOC) stability may alter carbon release from the soil and, consequently, atmospheric CO2 concentration. The mean annual temperature (MAT) can change the soil physico-chemical characteristics and alter the quality and quantity of litter input into the soil that regulate SOC stability. However, the relationship between climate and SOC stability remains unclear. A 500-day incubation experiment was carried out on soils from an 11 °C-gradient mountainous system on Changbai Mountain in northeast China. Soil respiration during the incubation fitted well to a three-pool (labile, intermediate and stable) SOC decomposition model. A correlation analysis revealed that the MAT only influenced the labile carbon pool size and not the SOC stability. The intermediate carbon pool contributed dominantly to cumulative carbon release. The size of the intermediate pool was strongly related to the percentage of sand particle. The decomposition rate of the intermediate pool was negatively related to soil nitrogen availability. Because both soil texture and nitrogen availability are temperature independent, the stability of SOC was not associated with the MAT, but was heavily influenced by the intrinsic processes of SOC formation and the nutrient status. PMID:26733344
NASA Astrophysics Data System (ADS)
LeMesurier, Brenton
2012-01-01
A new approach is described for generating exactly energy-momentum conserving time discretizations for a wide class of Hamiltonian systems of DEs with quadratic momenta, including mechanical systems with central forces; it is well-suited in particular to the large systems that arise in both spatial discretizations of nonlinear wave equations and lattice equations such as the Davydov System modeling energetic pulse propagation in protein molecules. The method is unconditionally stable, making it well-suited to equations of broadly “Discrete NLS form”, including many arising in nonlinear optics. Key features of the resulting discretizations are exact conservation of both the Hamiltonian and quadratic conserved quantities related to continuous linear symmetries, preservation of time reversal symmetry, unconditional stability, and respecting the linearity of certain terms. The last feature allows a simple, efficient iterative solution of the resulting nonlinear algebraic systems that retain unconditional stability, avoiding the need for full Newton-type solvers. One distinction from earlier work on conservative discretizations is a new and more straightforward nearly canonical procedure for constructing the discretizations, based on a “discrete gradient calculus with product rule” that mimics the essential properties of partial derivatives. This numerical method is then used to study the Davydov system, revealing that previously conjectured continuum limit approximations by NLS do not hold, but that sech-like pulses related to NLS solitons can nevertheless sometimes arise.
NASA Astrophysics Data System (ADS)
Grotberg, James
2005-11-01
This brief overview of our groups activities includes liquid plug propagation in single and bifurcating tubes, a subject which pertains to surfactant delivery, liquid ventilation, pulmonary edema, and drowning. As the plug propagates, a variety of flow patterns may emerge depending on the parameters. It splits unevenly at airway bifurcations and can rupture, which reopens the airway to gas flow. Both propagation and rupture may damage the underlying airway wall cells. Another topic is surfactant dynamics and flow in a model of an oscillating alveolus. The analysis shows a nontrivial cycle-averaged surfactant concentration gradient along the interface that generates steady streaming. The steady streaming patterns particularly depend on the ratio of inspiration to expiration time periods and the sorption parameter. Vortices, single and multiple, may be achieved, as well as a saddle point configuration. Potential applications are pulmonary drug administration, cell-cell signaling pathways, and gene therapy. Finally, capillary instabilities which cause airway closure, and strategies for stabilization, will be presented. This involves the core-annular flow of a liquid-lined tube, where the core (air) is forced to oscillate axially. The stabilization mechanism is similar to that of a reversing butter knife, where the core shear wipes the growing liquid bulge, from the Rayleigh instability, back on to the tube wall during the main tidal volume stroke, but allows it to grow back as the stroke and shear turn around.
The Price Equation, Gradient Dynamics, and Continuous Trait Game Theory.
Lehtonen, Jussi
2018-01-01
A recent article convincingly nominated the Price equation as the fundamental theorem of evolution and used it as a foundation to derive several other theorems. A major section of evolutionary theory that was not addressed is that of game theory and gradient dynamics of continuous traits with frequency-dependent fitness. Deriving fundamental results in these fields under the unifying framework of the Price equation illuminates similarities and differences between approaches and allows a simple, unified view of game-theoretical and dynamic concepts. Using Taylor polynomials and the Price equation, I derive a dynamic measure of evolutionary change, a condition for singular points, the convergence stability criterion, and an alternative interpretation of evolutionary stability. Furthermore, by applying the Price equation to a multivariable Taylor polynomial, the direct fitness approach to kin selection emerges. Finally, I compare these results to the mean gradient equation of quantitative genetics and the canonical equation of adaptive dynamics.
Magnetic anisotropy at material interfaces
NASA Astrophysics Data System (ADS)
Greene, Peter Kevin
In this dissertation, a comprehensive set of depth dependent magnetic measurements, as well as structural characterizations, were carried out on the Co/Pd multilayer system. The first-order reversal curve (FORC) technique is applied extensively to identify reversal mechanisms and different reversal phases within the material. In particular, the extension of the FORC technique to x-ray magnetic circular dichroism (XMCD) as a surface sensitive technique that identifies reversible magnetization change was performed for the first time. Polarized neutron reflectivity (PNR) was also used to directly measure the magnetization as a function of depth. The effects of deposition pressure grading within the Co/Pd multilayers were investigated. Structures were graded with three distinct pressure regions. FORC analysis shows that not only does increasing the deposition pressure increase the coercivity and effective anisotropy within that region, but also the order in which the pressure is changed also affects the entire structure. Layers grown at high sputtering pressures tend to reverse via domain wall pinning and rotation while those grown at lower pressures reverse via rapid domain wall propagation laterally across the film. Having high pressure layers underneath low pressure layers causes disorder to vertically propagate and lessen the induced anisotropy gradient. This analysis is confirmed by depth dependent magnetization profiles obtain from PNR. Continuously pressure-graded Co/Pd multilayers were then sputtered at two incident angles onto porous aluminum oxide templates with different pore aspect ratios. The effects of pressure grading versus uniform low pressure deposition is studied, as well as the effect of the angle of the incident deposition flux. The coercivity of the pressure graded perpendicular flux sample is compared to the low pressure sample. Additionally the effect of deposition angle and pore sidewall deposition is investigated. It is shown that sidewall deposition strongly affects the reversal behavior. As another way to induce a vertical anisotropy gradient, Co/Pd multilayers were bombarded with Ar+ ions at different energies and fluences. The effects of the depth dependent structural damage as a function of irradiation conditions were investigated. It is shown that the structural damage weakens the perpendicular anisotropy of the surface layers, causing a tilting of the surface magnetic moment into the plane of the film. The surface behavior is explicitly measured and shown to have a significant tilting angle in the top 5 nm depending on irradiation energy and fluence. Continuing the study of vertical anisotropy gradients in Co/Pd multilayers, multilayers with varied Co thickness were studied. Four films with varying Co thickness profiles were created and then patterned into nanodot arrays with diameters between 700 nm and 70 nm. The different films were graded continuously, or in stacks with varying Co thicknesses. An anisotropy gradient is shown to be established in the graded samples, and the switching field is lowered as a result. Furthermore, in the continuously graded samples the magnetization reversal behavior is fundamentally different from all other samples. The thermal energy barriers are measured in the uniform and continuously graded samples, yielding similar results. Finally, the establishment of exchange anisotropy at the ferromagnet / antiferromagnet (FM/AFM) interface in the epitaxial Fe/CoO system is investigated as a function of AFM thickness. The establishment of frozen AFM moments is analyzed using the FORC technique. The FORC technique combined with vector coil measurements also shows the transition from rotatable AFM to pinned AFM moments and suggests a mechanism of winding domain walls within the bulk AFM. (Abstract shortened by UMI.).
Measurements in Flight of the Flying Qualities of a Chance Vought F4U-4 Airplane: TED No. NACA 2388
NASA Technical Reports Server (NTRS)
Liddell, Charles J., Jr.; Reynolds, Robert M.; Christofferson, Frank E.
1947-01-01
The results of flight tests to determine flying qualities of a Chance Vought F4U-4 airplane are presented and discussed herein. In addition to comprehensive measurements at low altitude (about 8000 ft), tests of limited scope were made at high altitude (about 25,000 ft). The more important characteristics, based on a comparison of the test results and opinions of the pilots with the Navy requirements, can be summarized as follows: 1. The short-period control-free oscillations of the elevator angle and the normal acceleration were satisfactorily damped. 2. The most rearward center-of-gravity locations for satisfactory static longitudinal stability with power on, as determined by the control-force variations, were approximately 30 and 27 percent M.A.C. with flaps and gear up and down, respectively. 3. In maneuvering flight the conditions for which control-force gradients of satisfactory magnitude were obtained were seriously limited by sizable changes in the gradient with center-of-gravity location, airspeed, altitude, acceleration factor, and direction of turn. 4. The elevator and rudder controls were satisfactory for landings and take-offs. 5. The trim tabs were sufficiently effective for all controls. 6. The directional and lateral dynamic stability was positive, but the rudder oscillation did not damp within one cycle. The airplane oscillation damped sufficiently at low altitude but not at high altitude. 7. Both rudder-fixed and rudder-free static directional stability were positive over a sideslip range of +/-15 deg. However, the rudder force tended to reverse at high angles of right sideslip with flaps and gear up, power on, at low speeds. 8. The stick-fixed static lateral stability (dihedral effect) was positive in all conditions, but the stick-free dihedral effect was neutral at low speeds with flap and gear down, power on. 9. The yaw due to abrupt full aileron deflection at low speed was mot excessive, and the rudder control was adequate to hold trim sideslip. 10. In abrupt rudder-fixed aileron rolls in the clean configuration the maximum pb/2V for full aileron deflection at low and normal speeds was only 0.064. 11. The stalling characteristics were considered unsatisfactory in all configurations in both straight and turning flight due to inadequate stall warning. The motions in the stalls were not unduly severe, and recovery could be effected promptly by normal use of the controls.
Role of Disulfide Bridges in the Activity and Stability of a Cold-Active α-Amylase
Siddiqui, Khawar Sohail; Poljak, Anne; Guilhaus, Michael; Feller, Georges; D'Amico, Salvino; Gerday, Charles; Cavicchioli, Ricardo
2005-01-01
The cold-adapted α-amylase from Pseudoalteromonas haloplanktis unfolds reversibly and cooperatively according to a two-state mechanism at 30°C and unfolds reversibly and sequentially with two transitions at temperatures below 12°C. To examine the role of the four disulfide bridges in activity and conformational stability of the enzyme, the eight cysteine residues were reduced with β-mercaptoethanol or chemically modified using iodoacetamide or iodoacetic acid. Matrix-assisted laser desorption-time of flight mass spectrometry analysis confirmed that all of the cysteines were modified. The iodoacetamide-modified enzyme reversibly folded/unfolded and retained approximately one-third of its activity. Removal of all disulfide bonds resulted in stabilization of the least stable region of the enzyme (including the active site), with a concomitant decrease in activity (increase in activation enthalpy). Disulfide bond removal had a greater impact on enzyme activity than on stability (particularly the active-site region). The functional role of the disulfide bridges appears to be to prevent the active site from developing ionic interactions. Overall, the study demonstrated that none of the four disulfide bonds are important in stabilizing the native structure of enzyme, and instead, they appear to promote a localized destabilization to preserve activity. PMID:16109962
NASA Astrophysics Data System (ADS)
Romanelli, M.; Zocco, A.; Crisanti, F.; Contributors, JET-EFDA
2010-04-01
Understanding and modelling turbulent transport in thermonuclear fusion plasmas are crucial for designing and optimizing the operational scenarios of future fusion reactors. In this context, plasmas exhibiting state transitions, such as the formation of an internal transport barrier (ITB), are particularly interesting since they can shed light on transport physics and offer the opportunity to test different turbulence suppression models. In this paper, we focus on the modelling of ITB formation in the Joint European Torus (JET) [1] hybrid-scenario plasmas, where, due to the monotonic safety factor profile, magnetic shear stabilization cannot be invoked to explain the transition. The turbulence suppression mechanism investigated here relies on the increase in the plasma pressure gradient in the presence of a minority of energetic ions. Microstability analysis of the ion temperature gradient driven modes (ITG) in the presence of a fast-hydrogen minority shows that energetic ions accelerated by the ion cyclotron resonance heating (ICRH) system (hydrogen, nH,fast/nD,thermal up to 10%, TH,fast/TD,thermal up to 30) can increase the pressure gradient enough to stabilize the ITG modes driven by the gradient of the thermal ions (deuterium). Numerical analysis shows that, by increasing the temperature of the energetic ions, electrostatic ITG modes are gradually replaced by nearly electrostatic modes with tearing parity at progressively longer wavelengths. The growth rate of the microtearing modes is found to be lower than that of the ITG modes and comparable to the local E × B-velocity shearing rate. The above mechanism is proposed as a possible trigger for the formation of ITBs in this type of discharges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhailenko, V. V., E-mail: vladimir@pusan.ac.kr; Mikhailenko, V. S.; Faculty of Transportation Systems, Kharkiv National Automobile and Highway University, 61002 Kharkiv
2014-07-15
The cross-magnetic-field (i.e., perpendicular) profile of ion temperature and the perpendicular profile of the magnetic-field-aligned (parallel) plasma flow are sometimes inhomogeneous for space and laboratory plasma. Instability caused either by a gradient in the ion-temperature profile or by shear in the parallel flow has been discussed extensively in the literature. In this paper, (1) hydrodynamic plasma stability is investigated, (2) real and imaginary frequency are quantified over a range of the shear parameter, the normalized wavenumber, and the ratio of density-gradient and ion-temperature-gradient scale lengths, and (3) the role of inverse Landau damping is illustrated for the case of combinedmore » ion-temperature gradient and parallel-flow shear. We find that increasing the ion-temperature gradient reduces the instability threshold for the hydrodynamic parallel-flow shear instability, also known as the parallel Kelvin-Helmholtz instability or the D'Angelo instability. We also find that a kinetic instability arises from the coupled, reinforcing action of both free-energy sources. For the case of comparable electron and ion temperature, we illustrate analytically the transition of the D'Angelo instability to the kinetic instability as (a) the shear parameter, (b) the normalized wavenumber, and (c) the ratio of density-gradient and ion-temperature-gradient scale lengths are varied and we attribute the changes in stability to changes in the amount of inverse ion Landau damping. We show that near a normalized wavenumber k{sub ⊥}ρ{sub i} of order unity (i) the real and imaginary values of frequency become comparable and (ii) the imaginary frequency, i.e., the growth rate, peaks.« less
A method to stabilize linear systems using eigenvalue gradient information
NASA Technical Reports Server (NTRS)
Wieseman, C. D.
1985-01-01
Formal optimization methods and eigenvalue gradient information are used to develop a stabilizing control law for a closed loop linear system that is initially unstable. The method was originally formulated by using direct, constrained optimization methods with the constraints being the real parts of the eigenvalues. However, because of problems in trying to achieve stabilizing control laws, the problem was reformulated to be solved differently. The method described uses the Davidon-Fletcher-Powell minimization technique to solve an indirect, constrained minimization problem in which the performance index is the Kreisselmeier-Steinhauser function of the real parts of all the eigenvalues. The method is applied successfully to solve two different problems: the determination of a fourth-order control law stabilizes a single-input single-output active flutter suppression system and the determination of a second-order control law for a multi-input multi-output lateral-directional flight control system. Various sets of design variables and initial starting points were chosen to show the robustness of the method.
Flow convergence caused by a salinity minimum in a tidal channel
Warner, John C.; Schoellhamer, David H.; Burau, Jon R.; Schladow, S. Geoffrey
2006-01-01
Residence times of dissolved substances and sedimentation rates in tidal channels are affected by residual (tidally averaged) circulation patterns. One influence on these circulation patterns is the longitudinal density gradient. In most estuaries the longitudinal density gradient typically maintains a constant direction. However, a junction of tidal channels can create a local reversal (change in sign) of the density gradient. This can occur due to a difference in the phase of tidal currents in each channel. In San Francisco Bay, the phasing of the currents at the junction of Mare Island Strait and Carquinez Strait produces a local salinity minimum in Mare Island Strait. At the location of a local salinity minimum the longitudinal density gradient reverses direction. This paper presents four numerical models that were used to investigate the circulation caused by the salinity minimum: (1) A simple one-dimensional (1D) finite difference model demonstrates that a local salinity minimum is advected into Mare Island Strait from the junction with Carquinez Strait during flood tide. (2) A three-dimensional (3D) hydrodynamic finite element model is used to compute the tidally averaged circulation in a channel that contains a salinity minimum (a change in the sign of the longitudinal density gradient) and compares that to a channel that contains a longitudinal density gradient in a constant direction. The tidally averaged circulation produced by the salinity minimum is characterized by converging flow at the bed and diverging flow at the surface, whereas the circulation produced by the constant direction gradient is characterized by converging flow at the bed and downstream surface currents. These velocity fields are used to drive both a particle tracking and a sediment transport model. (3) A particle tracking model demonstrates a 30 percent increase in the residence time of neutrally buoyant particles transported through the salinity minimum, as compared to transport through a constant direction density gradient. (4) A sediment transport model demonstrates increased deposition at the near-bed null point of the salinity minimum, as compared to the constant direction gradient null point. These results are corroborated by historically noted large sedimentation rates and a local maximum of selenium accumulation in clams at the null point in Mare Island Strait.
Suppressing magnetic island growth by resonant magnetic perturbation
NASA Astrophysics Data System (ADS)
Yu, Q.; Günter, S.; Lackner, K.
2018-05-01
The effect of externally applied resonant magnetic perturbations (RMPs) on the growth of magnetic islands is investigated based on two-fluid equations. It is found that if the local bi-normal electron fluid velocity at the resonant surface is sufficiently large, static RMPs of the same helicity and of moderate amplitude can suppress the growth of magnetic islands in high-temperature plasmas. These islands will otherwise grow, driven by an unfavorable plasma current density profile and bootstrap current perturbation. These results indicate that the error field can stabilize island growth, if the error field amplitude is not too large and the local bi-normal electron fluid velocity is not too low. They also indicate that applied rotating RMPs with an appropriate frequency can be utilized to suppress island growth in high-temperature plasmas, even for a low bi-normal electron fluid velocity. A significant change in the local equilibrium plasma current density gradient by small amplitude RMPs is found for realistic plasma parameters, which are important for the island stability and are expected to be more important for fusion reactors with low plasma resistivity.
Staudenmayer, Herman; Binkley, Karen E; Leznoff, Arthur; Phillips, Scott
2003-01-01
Idiopathic environmental intolerance (IEI) is a descriptor for a phenomenon that has many names including environmental illness, multiple chemical sensitivity and chemical intolerance. Toxicogenic and psychogenic theories have been proposed to explain IEI. This paper presents a causality analysis of the toxicogenic theory using Bradford Hill's nine criteria (strength, consistency, specificity, temporality, biological gradient, biological plausibility, coherence, experimental intervention and analogy) and an additional criteria (reversibility) and reviews critically the scientific literature on the topic. The results of this analysis indicate that the toxicogenic theory fails all of these criteria. There is no convincing evidence to support the fundamental postulate that IEI has a toxic aetiology; the hypothesised biological processes and mechanisms are implausible.
Stability of spatially developing boundary layers
NASA Astrophysics Data System (ADS)
Govindarajan, Rama
1993-07-01
A new formulation of the stability of boundary-layer flows in pressure gradients is presented, taking into account the spatial development of the flow. The formulation assumes that disturbance wavelength and eigenfunction vary downstream no more rapidly than the boundary-layer thickness, and includes all terms of O(1) and O(R(exp -1)) in the boundary-layer Reynolds number R. Although containing the Orr-Sommerfeld operator, the present approach does not yield the Orr-Sommerfeld equation in any rational limit. In Blasius flow, the present stability equation is consistent with that of Bertolotti et al. (1992) to terms of O(R(exp -1)). For the Falkner-Skan similarity solutions neutral boundaries are computed without the necessity of having to march in space. Results show that the effects of spatial growth are striking in flows subjected to adverse pressure gradients.
Hunt, R.J.; Strand, M.; Walker, J.F.
2006-01-01
Measurements of groundwater-surface water exchange at three wetland stream sites were related to patterns in benthic productivity as part of the US Geological Survey's Northern Temperate Lakes-Water, Energy and Biogeochemical Budgets (NTL-WEBB) project. The three sites included one high groundwater discharge (HGD) site, one weak groundwater discharge (WGD) site, and one groundwater recharge (GR) site. Large upward vertical gradients at the HGD site were associated with smallest variation in head below the stream and fewest gradient reversals between the stream and the groundwater beneath the stream, and the stream and the adjacent streambank. The WGD site had the highest number of gradient reversals reflecting the average condition being closest to zero vertical gradient. The duration of groundwater discharge events was related to the amount of discharge, where the HGD site had the longest strong-gradient durations for both horizontal and vertical groundwater flow. Strong groundwater discharge also controlled transient temperature and chemical hyporheic conditions by limiting the infiltration of surface water. Groundwater-surface water interactions were related to highly significant patterns in benthic invertebrate abundance, taxonomic richness, and periphyton respiration. The HGD site abundance was 35% greater than in the WGD site and 53% greater than the GR site; richness and periphyton respiration were also significantly greater (p???0.001, 31 and 44%, respectively) in the HGD site than in the GR site. The WGD site had greater abundance (27%), richness (19%) and periphyton respiration (39%) than the GR site. This work suggests groundwater-surface water interactions can strongly influence benthic productivity, thus emphasizing the importance of quantitative hydrology for management of wetland-stream ecosystems in the northern temperate regions. ?? 2005 Elsevier B.V. All rights reserved.
Balkatzopoulou, P; Fasoula, S; Gika, H; Nikitas, P; Pappa-Louisi, A
2015-05-29
In the present work the retention of three highly polar and ionizable solutes - uric acid, nicotinic acid and ascorbic acid - was investigated on a mixed-mode reversed-phase and weak anion-exchange (RP/WAX) stationary phase in buffered aqueous acetonitrile (ACN) mobile phases. A U-shaped retention behavior was observed for all solutes with respect to the eluent organic modifier content studied in a range of 5-95% (v/v). This retention behavior clearly demonstrates the presence of a HILIC-type retention mechanism at ACN-rich hydro-organic eluents and an RP-like retention at aqueous-rich hydro-organic eluents. Hence, this column should be promising for application under both RP and HILIC gradient elution modes. For this reason, a series of programmed elution runs were carried out with increasing (RP) and decreasing (HILIC) organic solvent concentration in the mobile phase. This dual gradient process was successfully modeled by two retention models exhibiting a quadratic or a cubic dependence of the logarithm of the solute retention factor (lnk) upon the organic modifier volume fraction (φ). It was found that both models produced by gradient retention data allow the prediction of solute retention times for both types of programmed elution on the mixed-mode column. Four, in the case of the quadratic model, or five, in the case of the cubic model, initial HILIC- and RP-type gradient runs gave satisfactory retention predictions of any similar kind elution program, even with different flow rate, with an overall error of only 2.5 or 1.7%, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
Chemical stability of oseltamivir in oral solutions.
Albert, K; Bockshorn, J
2007-09-01
The stability of oseltamivir in oral aqueous solutions containing the preservative sodium benzoate was studied by a stability indicating HPLC-method. The separation was achieved on a RP-18 ec column using a gradient of mobile phase A (aqueous solution of 50 mM ammonium acetate) and mobile phase B (60% (v/v) acetonitrile/40% (v/v) mobile phase A). The assay was subsequently validated according to the ICH guideline Q2(R1). The extemporaneously prepared "Oseltamivir Oral Solution 15 mg/ml for Adults or for Children" (NRF 31.2.) according to the German National Formulary ("Neues Rezeptur-Formularium") was stable for 84 days if stored under refrigeration. After storage at 25 degrees C the content of oseltamivir decreased to 98.4%. Considering the toxicological limit of 0.5% of the 5-acetylamino derivative (the so-called isomer I) the solution is stable for 46 days. Oseltamivir was less stable in a solution prepared with potable water instead of purified water. Due to an increasing pH the stability of this solution decreased to 14 days. Furthermore a white precipitate of mainly calcium phosphate was observed. The addition of 0.1% anhydrous citric acid avoided these problems and improved the stability of the solution prepared with potable water to 63 days. Sodium benzoate was stable in all oral solutions tested.
Cavity Self-Stabilization and Enhancement of Laser Gyroscopes by (Coupled) Optical Resonators
NASA Technical Reports Server (NTRS)
Smith, David D.
2006-01-01
We analyze the effect of a highly dispersive element placed inside a modulated optical cavity on the frequency and amplitude of the modulation to determine the conditions for cavity self-stabilization and enhanced gyroscopic sensitivity. Hence, we model cavity rotation or instability by an arbitrary AM/FM modulation, and the dispersive element as a phase and amplitude filter. We find that anomalous dispersion may be used to self-stabilize a laser cavity, provided the magnitude of the group index of refraction is smaller than the phase index of refraction in the cavity. The optimal stabilization is found to occur when the group index is zero. Group indices with magnitudes larger than the phase index (both normal and anomalous dispersion) are found to enhance the sensitivity of a laser gyroscope to rotation. Furthermore, our results indicate that atomic media, even coherent superpositions in multilevel atoms, are not useful for these applications, because the amplitude and phase filters work against one another, i.e., decreasing the modulation frequency increases its amplitude and vice versa, with one exception: negative group indices whose magnitudes are larger than the phase index result in negative, but enhanced, beat frequencies. On the other hand, for optical resonators the dispersion reversal associated with critical coupling enables the amplitude and phase filters to work together under a greater variety of circumstances than for atomic media. We find that for single over-coupled resonators, or in the case of under-coupled coupled-resonator-induced absorption, the absorption and normal dispersion on-resonance increase the contrast and frequency of the beat-note, respectively, resulting in a substantial enhancement of the gyroscopic response. Moreover, for cavity self-stabilization, we propose the use of a variety of coupled-resonator induced transparency that is accompanied by anomalous dispersion.
NASA Astrophysics Data System (ADS)
Swinkels, Laura; Borstad, Chris
2017-04-01
Field observations are the main tools for assessing the snow stability concerning dry snow slab avalanche release. Often, theoretical studies cannot directly be translated into useful information for avalanche recreationists and forecasters in the field, and vice versa; field observations are not always objective and quantifiable for theoretical studies. Moreover, numerical models often simplify the snowpack and generally use an isotropic single layer slab which is not representative of the real-life situation. The aim of this study is to investigate the stress distribution in a snowpack with an elastic modulus that continuously varies with depth. The focus lies on the difference between a slab with a gradient in hardness and a slab with isotropic hardness and the effect on the calculated maximum stress and the stability evaluation in the field. Approximately 20 different snow pits were evaluated in the mountains around Tromsø, Norway and Longyearbyen, Svalbard. In addition to the standard snowpack observations, the hardness was measured using a thin-blade gauge. Extended column tests were executed for stability evaluation. Measurements from the field were used as input for stress calculations for each snow pit using a line load solution for a sloping half space with a non-homogeneous elastic modulus. The hardness measurements were used to calculate the elastic modulus and a power law relation was fit through the modulus in the slab. The calculated shear stress was compared to the estimated stability and character of the specific snowpack The results show that the approach used for this study improves the calculation of stress at a given depth, although many assumptions and simplifications were still needed. Comparison with the snow profiles indicate that calculated stresses correlate well with the observed snowpack properties and stability. The calculated shear stresses can be introduced in the standard stability index and give a better indication for the snowpack stability. Further research is required to delimit the stresses needed for propagation of a weak layer fracture.
NASA Astrophysics Data System (ADS)
Duan, Jianguo; Hu, Guorong; Cao, Yanbing; Tan, Chaopu; Wu, Ceng; Du, Ke; Peng, Zhongdong
2016-09-01
LiNi1-x-yCoxAlyO2 is a commonly used Ni-rich cathode material because of its relatively low cost, excellent rate capability and high gravimetric energy density. Surface modification is an efficient way to overcome the shortcomings of Ni-rich cathodes such as poor cycling stability and poor thermal stability. A high-powered concentration-gradient cathode material with an average composition of LiNi0.815Co0.15Al0.035O2 (LGNCAO) has been successfully synthesized by using spherical concentration-gradient Ni0.815Co0.15Al0.035(OH)2 (GNCA)as the starting material. An efficient design of the Al3+ precipitation method is developed, which enables obtaining spherical GNCA with ∼10 μm particle size and high tap density. In LGNCAO, the nickel and cobalt concentration decreases gradually whereas the aluminum concentration increases from the centre to the outer layer of each particle. Electrochemical performance and storage properties of LGNCAO have been investigated comparatively. The LGNCAO displays better electrochemical performance and improved storage stability than LNCAO.
Observations of ELM stabilization during neutral beam injection in DIII-D
NASA Astrophysics Data System (ADS)
Bortolon, Alessandro; Kramer, Gerrit; Diallo, Ahmed; Knolker, Matthias; Maingi, Rajesh; Nazikian, Raffi; Degrassie, John; Osborne, Thomas
2017-10-01
Edge localized modes (ELMs) are generally interpreted as peeling-ballooning instabilities, driven by the pedestal current and pressure gradient, with other subdominant effects possibly relevant close to marginal stability. We report observations of transient stabilization of type-I ELMs during neutral beam injection (NBI), emerging from a combined dataset of DIII-D ELMy H-mode plasmas with moderate heating obtained through pulsed NBI waveforms. Statistical analysis of ELM onset times indicates that, in the selected dataset, the likelihood of onset of an ELM lowers significantly during NBI modulation pulses, with the stronger correlation found with counter-current NBI. The effect is also found in rf-heated H-modes, where ELMs appear inhibited when isolated diagnostic beam pulses are applied. Coherent average analysis is used to determine how plasma density, temperature, rotation as well as beam ion quantities evolve during a NB modulation cycle, finding relatively small changes ( 3%) of pedestal Te and ne and toroidal and poloidal rotation variations up to 5 km/s. The effect of these changes on pedestal stability will be discussed. Work supported by US DOE under DE-FC02-04ER54698, DE-AC02-09CH11466.
NASA Astrophysics Data System (ADS)
Cai, Huai-yu; Dong, Xiao-tong; Zhu, Meng; Huang, Zhan-hua
2018-01-01
Wavefront coding for athermal technique can effectively ensure the stability of the optical system imaging in large temperature range, as well as the advantages of compact structure and low cost. Using simulation method to analyze the properties such as PSF and MTF of wavefront coding athermal system under several typical temperature gradient distributions has directive function to characterize the working state of non-ideal temperature environment, and can effectively realize the system design indicators as well. In this paper, we utilize the interoperability of data between Solidworks and ZEMAX to simplify the traditional process of structure/thermal/optical integrated analysis. Besides, we design and build the optical model and corresponding mechanical model of the infrared imaging wavefront coding athermal system. The axial and radial temperature gradients of different degrees are applied to the whole system by using SolidWorks software, thus the changes of curvature, refractive index and the distance between the lenses are obtained. Then, we import the deformation model to ZEMAX for ray tracing, and obtain the changes of PSF and MTF in optical system. Finally, we discuss and evaluate the consistency of the PSF (MTF) of the wavefront coding athermal system and the image restorability, which provides the basis and reference for the optimal design of the wavefront coding athermal system. The results show that the adaptability of single material infrared wavefront coding athermal system to axial temperature gradient can reach the upper limit of temperature fluctuation of 60°C, which is much higher than that of radial temperature gradient.
Deller, Timothy W; Khalighi, Mohammad Mehdi; Jansen, Floris P; Glover, Gary H
2018-01-01
The recent introduction of simultaneous whole-body PET/MR scanners has enabled new research taking advantage of the complementary information obtainable with PET and MRI. One such application is kinetic modeling, which requires high levels of PET quantitative stability. To accomplish the required PET stability levels, the PET subsystem must be sufficiently isolated from the effects of MR activity. Performance measurements have previously been published, demonstrating sufficient PET stability in the presence of MR pulsing for typical clinical use; however, PET stability during radiofrequency (RF)-intensive and gradient-intensive sequences has not previously been evaluated for a clinical whole-body scanner. In this work, PET stability of the GE SIGNA PET/MR was examined during simultaneous scanning of aggressive MR pulse sequences. Methods: PET performance tests were acquired with MR idle and during simultaneous MR pulsing. Recent system improvements mitigating RF interference and gain variation were used. A fast recovery fast spin echo MR sequence was selected for high RF power, and an echo planar imaging sequence was selected for its high heat-inducing gradients. Measurements were performed to determine PET stability under varying MR conditions using the following metrics: sensitivity, scatter fraction, contrast recovery, uniformity, count rate performance, and image quantitation. A final PET quantitative stability assessment for simultaneous PET scanning during functional MRI studies was performed with a spiral in-and-out gradient echo sequence. Results: Quantitation stability of a 68 Ge flood phantom was demonstrated within 0.34%. Normalized sensitivity was stable during simultaneous scanning within 0.3%. Scatter fraction measured with a 68 Ge line source in the scatter phantom was stable within the range of 40.4%-40.6%. Contrast recovery and uniformity were comparable for PET images acquired simultaneously with multiple MR conditions. Peak noise equivalent count rate was 224 kcps at an effective activity concentration of 18.6 kBq/mL, and the count rate curves and scatter fraction curve were consistent for the alternating MR pulsing states. A final test demonstrated quantitative stability during a spiral functional MRI sequence. Conclusion: PET stability metrics demonstrated that PET quantitation was not affected during simultaneous aggressive MRI. This stability enables demanding applications such as kinetic modeling. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Kazarian, Artaches A; Nesterenko, Pavel N; Soisungnoen, Phimpha; Burakham, Rodjana; Srijaranai, Supalax; Paull, Brett
2014-08-01
Liquid chromatographic assays were developed using a mixed-mode column coupled in sequence with a hydrophilic interaction liquid chromatography column to allow the simultaneous comprehensive analysis of inorganic/organic anions and cations, active pharmaceutical ingredients, and excipients (carbohydrates). The approach utilized dual sample injection and valve-mediated column switching and was based upon a single high-performance liquid chromatography gradient pump. The separation consisted of three distinct sequential separation mechanisms, namely, (i) ion-exchange, (ii) mixed-mode interactions under an applied dual gradient (reversed-phase/ion-exchange), and (iii) hydrophilic interaction chromatography. Upon first injection, the Scherzo SS C18 column (Imtakt) provided resolution of inorganic anions and cations under isocratic conditions, followed by a dual organic/salt gradient to elute active pharmaceutical ingredients and their respective organic counterions and potential degradants. At the top of the mixed-mode gradient (high acetonitrile content), the mobile phase flow was switched to a preconditioned hydrophilic interaction liquid chromatography column, and the standard/sample was reinjected for the separation of hydrophilic carbohydrates, some of which are commonly known excipients in drug formulations. The approach afforded reproducible separation and resolution of up to 23 chemically diverse solutes in a single run. The method was applied to investigate the composition of commercial cough syrups (Robitussin®), allowing resolution and determination of inorganic ions, active pharmaceutical ingredients, excipients, and numerous well-resolved unknown peaks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Amininasab, S.; Sadighi-Bonabi, R.; Khodadadi Azadboni, F.
2018-02-01
Shear stress effect has been often neglected in calculation of the Weibel instability growth rate in laser-plasma interactions. In the present work, the role of the shear stress in the Weibel instability growth rate in the dense plasma with density gradient is explored. By increasing the density gradient, the shear stress threshold is increasing and the range of the propagation angles of growing modes is limited. Therefore, by increasing steps of the density gradient plasma near the relativistic electron beam-emitting region, the Weibel instability occurs at a higher stress flow. Calculations show that the minimum value of the stress rate threshold for linear polarization is greater than that of circular polarization. The Wiebel instability growth rate for linear polarization is 18.3 times circular polarization. One sees that for increasing stress and density gradient effects, there are smaller maximal growth rates for the range of the propagation angles of growing modes /π 2 < θ m i n < π and /3 π 2 < θ m i n < 2 π in circular polarized plasma and for /k c ω p < 4 in linear polarized plasma. Therefore, the shear stress and density gradient tend to stabilize the Weibel instability for /k c ω p < 4 in linear polarized plasma. Also, the shear stress and density gradient tend to stabilize the Weibel instability for the range of the propagation angles of growing modes /π 2 < θ m i n < π and /3 π 2 < θ m i n < 2 π in circular polarized plasma.
Reversible Quantum Brownian Heat Engines for Electrons
NASA Astrophysics Data System (ADS)
Humphrey, T. E.; Newbury, R.; Taylor, R. P.; Linke, H.
2002-08-01
Brownian heat engines use local temperature gradients in asymmetric potentials to move particles against an external force. The energy efficiency of such machines is generally limited by irreversible heat flow carried by particles that make contact with different heat baths. Here we show that, by using a suitably chosen energy filter, electrons can be transferred reversibly between reservoirs that have different temperatures and electrochemical potentials. We apply this result to propose heat engines based on mesoscopic semiconductor ratchets, which can quasistatically operate arbitrarily close to Carnot efficiency.
Reversible quantum heat engines for electrons
NASA Astrophysics Data System (ADS)
Linke, Heiner; Humphrey, Tammy E.; Newbury, Richard; Taylor, Richard P.
2002-03-01
Brownian heat engines use local temperature gradients in asymmetric potentials to move particles against an external force. The energy efficiency of such machines is generally limited by irreversible heat flow carried by particles that make contact with different heat baths. Here we show that, by using a suitably chosen energy filter, electrons can be transferred reversibly between reservoirs that have different temperatures and electrochemical potentials. We apply this result to propose heat engines based on quantum ratchets, which can quasistatically operate at Carnot efficiency.
Hillslope-Riparian-Streamflow Interactions in a Discontinuous Permafrost Alpine Environment
NASA Astrophysics Data System (ADS)
Carey, S. K.
2004-12-01
Hillslope-riparian-streamflow interactions are poorly characterized in mountainous discontinuous permafrost environments. Permafrost underlain soils have a distinct soil profile, characterized by thick near-surface organic horizons atop ice-rich mineral substrates, whereas slopes without permafrost have thinner or absent organic soils overlying well drained mineral horizons. Riparian areas occur at the base of both seasonally frozen and permafrost slopes, yet a stronger hydrologic and soil transition occurs at slope bases with only seasonal frost. In a subarctic alpine catchment within the Wolf Creek Research Basin, Yukon, Canada, experiments were conducted between 2001 and 2003 to evaluate linkages along the slope-riparian-stream continuum during melt and post-melt periods. Water table, hydraulic head, stable isotope (d2H, d18O) and simple geochemical (pH, SpC, DOC) data were collected along transects during melt and summer periods. In soils with only seasonal frost, there was a downward piezometric gradient in slopes and upward gradient in riparian areas during melt. In contrast, permafrost soils did not show a recharge/discharge gradient between the slope and riparian zone. DOC declined and SpC increased with depth at all sites during melt. DOC was lower in riparian zones and areas without organic soils. SpC declined in soils as dilute meltwater entered the soil, yet it was difficult to establish spatial relations due to differences in melt timing. The similarity in stable isotope composition among sites indicated that the slopes were well flushed with snowmelt water to depth. DOC in streamflow was greatest on the ascending freshet hydrograph, and declined rapidly following melt. Streamflow SpC declined dramatically in response to dilute meltwater inputs and a decline in stream pH indicates flowpaths through organic horizons. Following melt, DOC concentrations declined rapidly in both slopes and riparian areas. In summer, water tables lowered in seasonally frozen slopes, yet an upward hydraulic gradient and near-surface water table was maintained in the riparian area. In permafrost slopes, water tables fell into mineral soils, increasing SpC and reducing DOC. Riparian water tables remained high and DOC was greater than the seasonally frozen soils, yet riparian zone hydraulic gradient reversed suggesting a small recharge gradient. In permafrost soil, riparian zone DOC was an order of magnitude higher than seasonally frozen riparian zones, which had DOC concentrations similar to streamflow. The similarity in stable isotope ratios among sites throughout the summer indicated that soil waters were dominated by water supplied during melt period. Rainfall waters had little long-term effect on slope and riparian isotopic ratios. Mixing analysis of geochemical and isotopic parameters indicates that during melt, most water was supplied via near surface organic layers, whereas later in the year, subsurface pathways predominated. Permafrost slope-riparian zones have a different hydraulic and geochemical interaction than seasonally frozen ones, yet their respective contribution to streamflow during different times of the year remains unclear at this time.
Shah, R B; Bryant, A; Collier, J; Habib, M J; Khan, M A
2008-08-06
A simple, sensitive, accurate, and robust stability indicating analytical method is presented for identification, separation, and quantitation of l-thyroxine and eight degradation impurities with an internal standard. The method was used in the presence of commonly used formulation excipients such as butylated hydroxyanisole, povidone, crospovidone, croscarmellose sodium, mannitol, sucrose, acacia, lactose monohydrate, confectionary sugar, microcrystalline cellulose, sodium laurel sulfate, magnesium stearate, talc, and silicon dioxide. The two active thyroid hormones: 3,3',5,5'-tetra-iodo-l-thyronine (l-thyroxine-T4) and 3,3',5-tri-iodo-l-thyronine (T3) and degradation products including di-iodothyronine (T2), thyronine (T0), tyrosine (Tyr), di-iodotyrosine (DIT), mono-iodotyrosine (MIT), 3,3',5,5'-tetra-iodothyroacetic acid (T4AA) and 3,3',5-tri-iodothyroacetic acid (T3AA) were assayed by the current method. The separation of l-thyroxine and eight metabolites along with theophylline (internal standard) was achieved using a C18 column (25 degrees C) with a mobile phase of trifluoroacetic acid (0.1%, v/v, pH 3)-acetonitrile in gradient elution at 0.8 ml/min at 223 nm. The sample diluent was 0.01 M methanolic NaOH. Method was validated according to FDA, USP, and ICH guidelines for inter-day accuracy, precision, and robustness after checking performance with system suitability. Tyr (4.97 min), theophylline (9.09 min), MIT (9.55 min), DIT (11.37 min), T0 (11.63 min), T2 (14.47 min), T3 (16.29 min), T4 (17.60 min), T3AA (22.71 min), and T4AA (24.83 min) separated in a single chromatographic run. Linear relationship (r2>0.99) was observed between the peak area ratio and the concentrations for all of the compounds within the range of 2-20 microg/ml. The total time for analysis, equilibration and recovery was 40 min. The method was shown to separate well from commonly employed formulation excipients. Accuracy ranged from 95 to 105% for T4 and 90 to 110% for all other compounds. Precision was <2% for all the compounds. The method was found to be robust with minor changes in injection volume, flow rate, column temperature, and gradient ratio. Validation results indicated that the method shows satisfactory linearity, precision, accuracy, and ruggedness and also stress degradation studies indicated that the method can be used as stability indicating method for l-thyroxine in the presence of excipients.
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Huang, Wensheng; Gilland, James H.; Haag, Thomas W.; Mackey, Jonathan; Yim, John; Pinero, Luis; Williams, George; Peterson, Peter; Herman, Daniel
2017-01-01
NASA's Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5kW Technology Demonstration Unit-3 (TDU-3) has been the subject of extensive technology maturation in preparation for flight system development. Detailed performance, stability, and plume characterization tests of the thruster were performed at NASA GRC's Vacuum Facility 5 (VF-5). The TDU-3 thruster implements a magnetic topology that is identical to TDU-1. The TDU-3 boron nitride silica composite discharge channel material is different than the TDU-1 heritage boron nitride discharge channel material. Performance and stability characterization of the TDU-3 thruster was performed at discharge voltages between 300V and 600V and at discharge currents between 5A and 21.8A. The thruster performance and stability were assessed for varying magnetic field strength, cathode flow fractions between 5% and 9%, varying harness inductance, and for reverse magnet polarity. Performance characterization test results indicate that the TDU-3 thruster performance is in family with the TDU-1 levels. TDU-3's thrust efficiency of 65% and specific impulse of 2,800sec at 600V and 12.5kW exceed performance levels of SOA Hall thrusters. Thruster stability regimes were characterized with respect to the thruster discharge current oscillations (discharge current peak-to-peak and root mean square magnitudes), discharge current waveform power spectral density analysis, and maps of the current-voltage-magnetic field. Stability characterization test results indicate a stability profile similar to TDU-1. Finally, comparison of the TDU-1 and TDU-3 plume profiles found that there were negligible differences in the plasma plume characteristics between the TDU with heritage boron nitride versus the boron nitride silica composite discharge channel.
Bowles, Marlin L; Jones, Michael D
2013-03-01
Understanding temporal effects of fire frequency on plant species diversity and vegetation structure is critical for managing tallgrass prairie (TGP), which occupies a mid-continental longitudinal precipitation and productivity gradient. Eastern TGP has contributed little information toward understanding whether vegetation-fire interactions are uniform or change across this biome. We resampled 34 fire-managed mid- and late-successional ungrazed TGP remnants occurring across a dry to wet-mesic moisture gradient in the Chicago region of Illinois, USA. We compared hypotheses that burning acts either as a stabilizing force or causes change in diversity and structure, depending upon fire frequency and successional stage. Based on western TGP, we expected a unimodal species richness distribution across a cover-productivity gradient, variable functional group responses to fire frequency, and a negative relationship between fire frequency and species richness. Species diversity was unimodal across the cover gradient and was more strongly humpbacked in stands with greater fire frequency. In support of a stabilizing hypothesis, temporal similarity of late-successional vegetation had a logarithmic relationship with increasing fire frequency, while richness and evenness remained stable. Temporal similarity within mid-successional stands was not correlated with fire frequency, while richness increased and evenness decreased over time. Functional group responses to fire frequency were variable. Summer forb richness increased under high fire frequency, while C4 grasses, spring forbs, and nitrogen-fixing species decreased with fire exclusion. On mesic and wet-mesic sites, vegetation structure measured by the ratio of woody to graminoid species was negatively correlated with abundance of forbs and with fire frequency. Our findings that species richness responds unimodally to an environmental-productivity gradient, and that fire exclusion increases woody vegetation and leads to loss of C4 and N-fixing species, suggest that these processes are uniform across the TGP biome and not affected by its rainfall-productivity gradient. However, increasing fire frequency in eastern TGP appears to increase richness of summer forbs and stabilize late-successional vegetation in the absence of grazing, and these processes may differ across the longitudinal axis of TGP. Managing species diversity in ungrazed eastern TGP may be dependent upon high fire frequency that removes woody vegetation and prevents biomass accumulation.
Nonlinear stability research on the hydraulic system of double-side rolling shear.
Wang, Jun; Huang, Qingxue; An, Gaocheng; Qi, Qisong; Sun, Binyu
2015-10-01
This paper researches the stability of the nonlinear system taking the hydraulic system of double-side rolling shear as an example. The hydraulic system of double-side rolling shear uses unsymmetrical electro-hydraulic proportional servo valve to control the cylinder with single piston rod, which can make best use of the space and reduce reversing shock. It is a typical nonlinear structure. The nonlinear state-space equations of the unsymmetrical valve controlling cylinder system are built first, and the second Lyapunov method is used to evaluate its stability. Second, the software AMEsim is applied to simulate the nonlinear system, and the results indicate that the system is stable. At last, the experimental results show that the system unsymmetrical valve controlling the cylinder with single piston rod is stable and conforms to what is deduced by theoretical analysis and simulation. The construction and application of Lyapunov function not only provide the theoretical basis for using of unsymmetrical valve controlling cylinder with single piston rod but also develop a new thought for nonlinear stability evaluation.
Nonlinear stability research on the hydraulic system of double-side rolling shear
NASA Astrophysics Data System (ADS)
Wang, Jun; Huang, Qingxue; An, Gaocheng; Qi, Qisong; Sun, Binyu
2015-10-01
This paper researches the stability of the nonlinear system taking the hydraulic system of double-side rolling shear as an example. The hydraulic system of double-side rolling shear uses unsymmetrical electro-hydraulic proportional servo valve to control the cylinder with single piston rod, which can make best use of the space and reduce reversing shock. It is a typical nonlinear structure. The nonlinear state-space equations of the unsymmetrical valve controlling cylinder system are built first, and the second Lyapunov method is used to evaluate its stability. Second, the software AMEsim is applied to simulate the nonlinear system, and the results indicate that the system is stable. At last, the experimental results show that the system unsymmetrical valve controlling the cylinder with single piston rod is stable and conforms to what is deduced by theoretical analysis and simulation. The construction and application of Lyapunov function not only provide the theoretical basis for using of unsymmetrical valve controlling cylinder with single piston rod but also develop a new thought for nonlinear stability evaluation.
A Study on Rotordynamic Characteristics of Swirl Brakes for Three Types of Seals
NASA Astrophysics Data System (ADS)
Xu, Wanjun; Yang, Jiangang
2017-03-01
In order to understand swirl brakes mechanisms and their influence on rotordynamic characteristics for different types of seals, a three-dimensional flow numerical simulation was presented. Three typical seals including labyrinth seal, fully partitioned damper seal and hole-pattern seal were compared under three inlet conditions of no preswirl, preswirl and preswirl with swirl brakes. FAN boundary condition was used to provide inlet preswirl. A modified identification method of effective damping was proposed. Feasibility of the swirl brakes on improving performance of damper seals was discussed. The results show that the swirl brakes influence the seal stability characteristics with whirl frequency. For the labyrinth seal the swirl brakes reverse the sign of effective damping at low frequency and improve the seal stability performance in a wide frequency range. The swirl brakes also improve the damper seals’ stability performance by increasing the low frequency effective damping and reducing their crossover frequency. Further results indicate the swirl brakes affect the rotational direction of the maximum (minimum) pressure positions and enhance the stability of the seals by reducing tangential force in each cavity.
NASA Astrophysics Data System (ADS)
Clark, David A.
2013-04-01
Acquisition of magnetic gradient tensor data is anticipated to become routine in the near future. In the meantime, modern ultrahigh resolution conventional magnetic data can be used, with certain important caveats, to calculate magnetic vector components and gradient tensor elements from total magnetic intensity (TMI) or TMI gradient surveys. An accompanying paper presented new methods for inverting gradient tensor data to obtain source parameters for several elementary, but useful, models. These include point dipole (sphere), vertical line of dipoles (narrow vertical pipe), line of dipoles (horizontal cylinder), thin dipping sheet, and contact models. A key simplification is the use of eigenvalues and associated eigenvectors of the tensor. The normalised source strength (NSS), calculated from the eigenvalues, is a particularly useful rotational invariant that peaks directly over 3D compact sources, 2D compact sources, thin sheets, and contacts, independent of magnetisation direction. Source locations can be inverted directly from the NSS and its vector gradient. Some of these new methods have been applied to analysis of the magnetic signature of the Early Permian Mount Leyshon gold-mineralised system, Queensland. The Mount Leyshon magnetic anomaly is a prominent TMI low that is produced by rock units with strong reversed remanence acquired during the Late Palaeozoic Reverse Superchron. The inferred magnetic moment for the source zone of the Mount Leyshon magnetic anomaly is ~1010Am2. Its direction is consistent with petrophysical measurements. Given estimated magnetisation from samples and geological information, this suggests a volume of ~1.5km×1.5km×2km (vertical). The inferred depth of the centre of magnetisation is ~900m below surface, suggesting that the depth extent of the magnetic zone is ~1800m. Some of the deeper, undrilled portion of the magnetic zone could be a mafic intrusion similar to the nearby coeval Fenian Diorite, representing part of the parent magma chamber beneath the Mount Leyshon Intrusive Complex.
Fortier, Catherine; Desjardins, Marie-Pier; Agharazii, Mohsen
2018-03-01
Aortic stiffness, measured by carotid-femoral pulse wave velocity (cf-PWV), is used for the prediction of cardiovascular risk. This mini-review describes the nonlinear relationship between cf-PWV and operational blood pressure, presents the proposed methods to adjust for this relationship, and discusses a potential place for aortic-brachial PWV ratio (a measure of arterial stiffness gradient) as a blood pressure-independent measure of vascular aging. PWV is inherently dependent on the operational blood pressure. In cross-sectional studies, PWV adjustment for mean arterial pressure (MAP) is preferred, but still remains a nonoptimal approach, as the relationship between PWV and blood pressure is nonlinear and varies considerably among individuals due to heterogeneity in genetic background, vascular tone, and vascular remodeling. Extrapolations from the blood pressure-independent stiffness parameter β (β 0 ) have led to the creation of stiffness index β, which can be used for local stiffness. A similar approach has been used for cardio-ankle PWV to generate a blood pressure-independent cardio-ankle vascular index (CAVI). It was recently demonstrated that stiffness index β and CAVI remain slightly blood pressure-dependent, and a more appropriate formula has been proposed to make the proper adjustments. On the other hand, the negative impact of aortic stiffness on clinical outcomes is thought to be mediated through attenuation or reversal of the arterial stiffness gradient, which can also be influenced by a reduction in peripheral medium-sized muscular arteries in conditions that predispose to accelerate vascular aging. Arterial stiffness gradient, assessed by aortic-brachial PWV ratio, is emerging to be at least as good as cf-PWV for risk prediction, but has the advantage of not being affected by operating MAP. The negative impacts of aortic stiffness on clinical outcomes are proposed to be mediated through attenuation or reversal of arterial stiffness gradient. Aortic-brachial PWV ratio, a measure of arterial stiffness gradient, is independent of MAP.
Ionic requirements of proximal tubular sodium transport. I. Bicarbonate and chloride.
Green, R; Giebisch, G
1975-11-01
Simultaneous perfusion of peritubular capillaries and proximal convoluted tubules was used to study the effect of varying transepithelial ionic gradients on ionic fluxes. Results show that net sodium influx and volume flux was one-third of normal when bicarbonate was absent, no chloride gradient existed, and glucose and amino acids were absent. Addition of bicarbonate to the luminal fluid did not restore the flux to normal, but peritubular bicarbonate did restore it. A chloride gradient imposed when no bicarbonate was present could only increase the fluxes slightly, but his flux was significant even after cyanide had poisoned transport. Reversing the chloride concentration gradient decreased the net sodium and volume fluxes whether bicarbonate was present or not. Glucose had no effect on fluxes, but substitution of Na by choline abolished them entirely. It is concluded that sodium is actively transported, that a chloride concentration gradient from lumen to plasma could account for up to 20% of net transport, and that peritubular bicarbonate is necessary for normal rates of sodium and fluid absorption.
Grauwet, Tara; Van der Plancken, Iesel; Vervoort, Liesbeth; Hendrickx, Marc E; Van Loey, Ann
2009-01-01
The potential of Bacillus subtilis alpha-amylase (BSA) as a pressure-temperature-time indicator (pTTI) for high pressure pasteurization processing (400-600 MPa; T(i) 10-40 degrees C; 1-15 min) was investigated. A stepwise approach was followed for the development of an enzyme-based, extrinsic, isolated pTTI. First, based on literature data on the pressure stability, BSA was selected as a candidate indicator. Next to the accuracy and ease of the measurement of the indicator's response (residual activity) to the pressure treatment, the storage and handling stability of BSA at atmospheric pressure was verified. Second, the stability of BSA at a constant temperature (T) and time in function of pressure (p) was investigated. Solvent engineering was used to shift the inactivation window of BSA in the processing range of interest. Third, the enzyme (1 g/L BSA-MES 0.05 M pH 5.0) was kinetically calibrated under isobaric-isothermal conditions. Time dependent changes in activity could be modeled best by a first-order model. Except for low pressures and high temperatures, a synergistic effect between pressure and temperature could be observed. Based on the model selected to describe the combined p,T-dependency of the inactivation rate constant, an elliptically shaped isorate contour plot could be constructed, illustrating the processing range where BSA can be used to demonstrate temperature gradients. Fourth, the validity of the kinetic model was tested successfully under dynamic conditions similar to those used in food industry. Finally, the indicator was found suitable to demonstrate nonuniformity in two-sectional planes of a vertical, single vessel system. (c) 2009 American Institute of Chemical Engineers. Biotechnol. Prog., 2009.
Erni, F; Frei, R W
1976-09-29
A device is described that makes use of an eight-port motor valve to generate step gradients on the low-pressure side of a piston pump with a low dead volume. Such a gradient device with an automatic control unit, which also permits repetition of previous steps, can be built for about half the cost of a gradient system with two pumps. Applications of this gradient unit to the separation of complex mixtures of glycosides and alkaloids are discussed and compared with separations systems using two high-pressure pumps. The gradients that are used on reversed-phase material with solvent mixtures of water and completely miscible organic solvents are suitable for quantitative routine control of pharmaceutical products. The reproducibility of retention data is excellent over several months and, with the use of loop injectors, major components can be determined quantitatively with a reproducibility of better than 2% (relative standard deviation). The step gradient selector valve can also be used as an introduction system for very large sample volumes. Up to 11 can be injected and samples with concentrations of less than 1 ppb can be determined with good reproducibilities.
Cell-Surface Bound Nonreceptors and Signaling Morphogen Gradients
Wan, Frederic Y.M.
2013-01-01
The patterning of many developing tissues is orchestrated by gradients of signaling morphogens. Included among the molecular events that drive the formation of morphogen gradients are a variety of elaborate regulatory interactions. Such interactions are thought to make gradients robust, i.e. insensitive to change in the face of genetic or environmental perturbations. But just how this is accomplished is a major unanswered question. Recently extensive numerical simulations suggest that robustness of signaling gradients can be achieved through morphogen degradation mediated by cell surface bound non-signaling receptor molecules (or nonreceptors for short) such as heparan sulfate proteoglycans (HSPG). The present paper provides a mathematical validation of the results from the aforementioned numerical experiments. Extension of a basic extracellular model to include reversible binding with nonreceptors synthesized at a prescribed rate and mediated morphogen degradation shows that the signaling gradient diminishes with increasing concentration of cell-surface nonreceptors. Perturbation and asymptotic solutions obtained for i) low (receptor and nonreceptor) occupancy, and ii) high nonreceptor concntration permit more explicit delineation of the effects of nonreceptors on signaling gradients and facilitate the identification of scenarios in which the presence of nonreceptors may or may not be effective in promoting robustness. PMID:25232201
Zhang, Min; Chen, Apeng; Lu, Joann J; Cao, Chengxi; Liu, Shaorong
2016-08-19
In micro- or nano-flow high performance liquid chromatography (HPLC), flow-splitters and gradient elutions are commonly used for reverse phase HPLC separations. When a flow splitter was used at a high split-ratio (e.g., 1000:1 or higher), the actual gradient may deviate away from the programmed gradient. Sometimes, mobile phase concentrations can deviate by as much as 5%. In this work, we noticed that the conductivity (σ) of a gradient decreased with the increasing organic-solvent fraction (φ). Based on the relationship between σ and φ, a method was developed for monitoring gradient profile on-line to record any deviations in these HPLC systems. The conductivity could be measured by a traditional conductivity detector or a capacitively coupled contactless conductivity detector (C(4)D). The method was applied for assessing the performance of an electroosmotic pump (EOP) based nano-HPLC. We also observed that σ value of the gradient changed with system pressure; a=0.0175ΔP (R(2)=0.964), where a is the percentage of the conductivity increase and ΔP is the system pressure in bar. This effect was also investigated. Copyright © 2016. Published by Elsevier B.V.
Reddy, Lena Felice; Waltz, James A; Green, Michael F; Wynn, Jonathan K; Horan, William P
2016-07-01
Although individuals with schizophrenia show impaired feedback-driven learning on probabilistic reversal learning (PRL) tasks, the specific factors that contribute to these deficits remain unknown. Recent work has suggested several potential causes including neurocognitive impairments, clinical symptoms, and specific types of feedback-related errors. To examine this issue, we administered a PRL task to 126 stable schizophrenia outpatients and 72 matched controls, and patients were retested 4 weeks later. The task involved an initial probabilistic discrimination learning phase and subsequent reversal phases in which subjects had to adjust their responses to sudden shifts in the reinforcement contingencies. Patients showed poorer performance than controls for both the initial discrimination and reversal learning phases of the task, and performance overall showed good test-retest reliability among patients. A subgroup analysis of patients (n = 64) and controls (n = 49) with good initial discrimination learning revealed no between-group differences in reversal learning, indicating that the patients who were able to achieve all of the initial probabilistic discriminations were not impaired in reversal learning. Regarding potential contributors to impaired discrimination learning, several factors were associated with poor PRL, including higher levels of neurocognitive impairment, poor learning from both positive and negative feedback, and higher levels of indiscriminate response shifting. The results suggest that poor PRL performance in schizophrenia can be the product of multiple mechanisms. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Danise, Silvia; Holland, Steven
2017-04-01
Understanding how regional ecosystems respond to sea level and environmental perturbations is a main challenge in palaeoecology. Here we use quantitative abundance estimates, integrated within a sequence stratigraphic and environmental framework, to reconstruct benthic community changes through the 13 myr history of the Jurassic Sundance Seaway in the western United States. Faunal censuses of macroinvertebrates were obtained from marine rocks of the Gypsum Spring, Sundance and Twin Creek formations at 44 localities in Wyoming, Montana and South Dakota. Fossils were identified to species wherever possible. Ordination of samples shows a main turnover event at the Middle-Upper Jurassic transition, which coincided with the shift from carbonate to siliciclastic depositional systems in the Seaway. This shift was probably initiated by the northward migration of the North American Plate, which moved the study area from subtropical latitudes, fostering an arid climate, into progressively more humid conditions, and possibly also by global cooling at this time. Turnover was not uniform across the onshore-offshore gradient, but was higher in offshore environments, in both carbonate and siliciclastic settings. Both the Jaccard and the Bray-Curtis similarity measures indicate that taxonomic similarity decreases from onshore to offshore in successive third-order depositional sequences, although similarity values are low for both onshore and offshore environments The higher resilience of onshore communities to third-order sea-level fluctuations and to the change from a carbonate to a siliciclastic system was driven by a few abundant eurytopic species that persisted from the opening to the closing of the Seaway and that were not restricted to single depositional environments or sequences. Lower stability in offshore facies was instead controlled by the presence of more volatile stenotopic species. Such increased onshore stability in community composition contrasts with the well-documented onshore increase in taxonomic turnover rates, and indicates the need for ecological studies to complement taxonomic studies of macroevolutionary events. This study also shows how a stratigraphic palaeobiological approach is essential for understanding the link between environmental and faunal gradients, and for understanding the long-term changes in these gradients over time that produce the local stratigraphical pattern of changes in community composition.
Gradient and size effects on spinodal and miscibility gaps
NASA Astrophysics Data System (ADS)
Tsagrakis, Ioannis; Aifantis, Elias C.
2018-05-01
A thermodynamically consistent model of strain gradient elastodiffusion is developed. Its formulation is based on the enhancement of a robust theory of gradient elasticity, known as GRADELA, to account for a Cahn-Hilliard type of diffusion. Linear stability analysis is employed to determine the influence of concentration and strain gradients on the spinodal decomposition. For finite domains, spherically symmetric conditions are considered, and size effects on spinodal and miscibility gaps are discussed. The theoretical predictions are in agreement with the experimental trends, i.e., both gaps shrink as the grain diameter decreases and they are completely eliminated for crystals smaller than a critical size.
Physical and Chemical Stability of Urapidil in 0.9% Sodium Chloride in Elastomeric Infusion Pump.
Tomasello, Cristina; Leggieri, Anna; Rabbia, Franco; Veglio, Franco; Baietto, Lorena; Fulcheri, Chiara; De Nicolò, Amedeo; De Perri, Giovanni; D'Avolio, Antonio
2016-01-01
Urapidil is an antihypertensive agent, usually administered through intravenous bolus injection, slow-intravenous infusion, or continuous-drug infusion by perfusor. Since to date no evidences are available on drug stability in elastomeric pumps, patients have to be hospitalized. The purpose of this study was to validate an ultra-performance liquid chromatographic method to evaluate urapidil stability in an elastomeric infusion pump, in order to allow continuous infusion as home-care treatment. Analyses were conducted by diluting urapidil in an elastomeric pump. Two concentrations were evaluated: 1.6 mg/mL and 3.3 mg/mL. For the analyses, a reverse-phase ultra-performance liquid chromatographic- photodiode array detection instrument was used. Stressed degradation, pH changes, and visual clarity were used as stability indicators up to 10 days after urapidil solution preparation. The drug showed no more than 5% degradation during the test period at room temperature. No pH changes and no evidences of incompatibility were observed. Stress tests resulted in appreciable observation of degradation products. Considering the observed mean values, urapidil hydrochloride in sodium chloride 0.9% in elastomeric infusion pumps is stable for at least 10 days. These results indicate that this treatment could be administered at home for a prolonged duration (at least 7 days) with a satisfactory response. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Stabilization of Glucocerebrosidase by Active Site Occupancy
2017-01-01
Glucocerebrosidase (GBA) is a lysosomal β-glucosidase that degrades glucosylceramide. Its deficiency results in Gaucher disease (GD). We examined the effects of active site occupancy of GBA on its structural stability. For this, we made use of cyclophellitol-derived activity-based probes (ABPs) that bind irreversibly to the catalytic nucleophile (E340), and for comparison, we used the potent reversible inhibitor isofagomine. We demonstrate that cyclophellitol ABPs improve the stability of GBA in vitro, as revealed by thermodynamic measurements (Tm increase by 21 °C), and introduce resistance to tryptic digestion. The stabilizing effect of cell-permeable cyclophellitol ABPs is also observed in intact cultured cells containing wild-type GBA, N370S GBA (labile in lysosomes), and L444P GBA (exhibits impaired ER folding): all show marked increases in lysosomal forms of GBA molecules upon exposure to ABPs. The same stabilization effect is observed for endogenous GBA in the liver of wild-type mice injected with cyclophellitol ABPs. Stabilization effects similar to those observed with ABPs were also noted at high concentrations of the reversible inhibitor isofagomine. In conclusion, we provide evidence that the increase in cellular levels of GBA by ABPs and by the reversible inhibitor is in part caused by their ability to stabilize GBA folding, which increases the resistance of GBA against breakdown by lysosomal proteases. These effects are more pronounced in the case of the amphiphilic ABPs, presumably due to their high lipophilic potential, which may promote further structural compactness of GBA through hydrophobic interactions. Our study provides further rationale for the design of chaperones for GBA to ameliorate Gaucher disease. PMID:28485919
Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution.
Tung, Ching-Wei; Hsu, Ying-Ya; Shen, Yen-Ping; Zheng, Yixin; Chan, Ting-Shan; Sheu, Hwo-Shuenn; Cheng, Yuan-Chung; Chen, Hao Ming
2015-08-28
Electrochemically converting water into oxygen/hydrogen gas is ideal for high-density renewable energy storage in which robust electrocatalysts for efficient oxygen evolution play crucial roles. To date, however, electrocatalysts with long-term stability have remained elusive. Here we report that single-crystal Co3O4 nanocube underlay with a thin CoO layer results in a high-performance and high-stability electrocatalyst in oxygen evolution reaction. An in situ X-ray diffraction method is developed to observe a strong correlation between the initialization of the oxygen evolution and the formation of active metal oxyhydroxide phase. The lattice of skin layer adapts to the structure of the active phase, which enables a reversible facile structural change that facilitates the chemical reactions without breaking the scaffold of the electrocatalysts. The single-crystal nanocube electrode exhibits stable, continuous oxygen evolution for >1,000 h. This robust stability is attributed to the complementary nature of defect-free single-crystal electrocatalyst and the reversible adapting layer.
Transport of EDTA into cells of the EDTA-degrading bacterial strain DSM 9103.
Witschel, M; Egli, T; Zehnder, A J; Wehrli, E; Spycher, M
1999-04-01
In the bacterial strain DSM 9103, which is able to grow with the complexing agent EDTA as the sole source of carbon, nitrogen and energy, the transport of EDTA into whole cells was investigated. EDTA uptake was found to be dependent on speciation: free EDTA and metal-EDTA complexes with low stability constants were readily taken up, whereas those with stability constants higher than 1016 were not transported. In EDTA-grown cells, initial transport rates of CaEDTA showed substrate-saturation kinetics with a high apparent affinity for CaEDTA (affinity constant Kt= 0.39 microM). Several uncouplers had an inhibitory effect on CaEDTA transport. CaEDTA uptake was also significantly reduced in the presence of an inhibitor of ATPase and the ionophore nigericin, which dissipates the proton gradient. Valinomycin, however, which affects the electrical potential, had little effect on uptake, indicating that EDTA transport is probably driven by the proton gradient. Of various structurally related compounds tested only Ca2+-complexed diethylenetriaminepentaacetate (CaDTPA) competitively inhibited CaEDTA transport. Uptake in fumarate-grown cells was low compared to that measured in EDTA-grown bacteria. These results strongly suggest that the first step in EDTA degradation by strain DSM 9103 consists of transport by an inducible energy-dependent carrier. Uptake experiments with 45Ca2+ in the presence and absence of EDTA indicated that Ca2+ is transported together with EDTA into the cells. In addition, these transport studies and electron-dispersive X-ray analysis of electron-dense intracellular bodies present in EDTA-grown cells suggest that two mechanisms acting simultaneously allow the cells to cope with the large amounts of metal ions taken up together with EDTA. In one mechanism the metal ions are excreted, in the other they are inactivated intracellularly in polyphosphate granules.
Yang, Haozhe; Mei, Hui; Seela, Frank
2015-07-06
Reverse Watson-Crick DNA with parallel-strand orientation (ps DNA) has been constructed. Pyrrolo-dC (PyrdC) nucleosides with phenyl and pyridinyl residues linked to the 6 position of the pyrrolo[2,3-d]pyrimidine base have been incorporated in 12- and 25-mer oligonucleotide duplexes and utilized as silver-ion binding sites. Thermal-stability studies on the parallel DNA strands demonstrated extremely strong silver-ion binding and strongly enhanced duplex stability. Stoichiometric UV and fluorescence titration experiments verified that a single (2py) PyrdC-(2py) PyrdC pair captures two silver ions in ps DNA. A structure for the PyrdC silver-ion base pair that aligns 7-deazapurine bases head-to-tail instead of head-to-head, as suggested for canonical DNA, is proposed. The silver DNA double helix represents the first example of a ps DNA structure built up of bidentate and tridentate reverse Watson-Crick base pairs stabilized by a dinuclear silver-mediated PyrdC pair. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reversible methylation of m6Am in the 5′ cap controls mRNA stability
Mauer, Jan; Luo, Xiaobing; Blanjoie, Alexandre; Jiao, Xinfu; Grozhik, Anya V.; Patil, Deepak P.; Linder, Bastian; Pickering, Brian F.; Vasseur, Jean-Jacques; Chen, Qiuying; Gross, Steven S.; Elemento, Olivier; Debart, Françoise; Kiledjian, Megerditch; Jaffrey, Samie R.
2017-01-01
Internal bases in mRNA can be subjected to modifications that influence the fate of mRNA in cells. One of the most prevalent modified bases is found at the 5′ end of mRNA, at the first encoded nucleotide adjacent to the 7-methylguanosine cap. Here we show that this nucleotide, N6,2′-O-dimethyladenosine (m6Am), is a reversible modification that influences cellular mRNA fate. Using a transcriptome-wide map of m6Am we find that m6Am-initiated transcripts are markedly more stable than mRNAs that begin with other nucleotides. We show that the enhanced stability of m6Am-initiated transcripts is due to resistance to the mRNA-decapping enzyme DCP2. Moreover, we find that m6Am is selectively demethylated by fat mass and obesity-associated protein (FTO). FTO preferentially demethylates m6Am rather than N6-methyladenosine (m6A), and reduces the stability of m6Am mRNAs. Together, these findings show that the methylation status of m6Am in the 5′ cap is a dynamic and reversible epitranscriptomic modification that determines mRNA stability. PMID:28002401
Sodium-bicarbonate cotransport in retinal Müller (glial) cells of the salamander.
Newman, E A
1991-12-01
An electrogenic Na+/HCO3- cotransport system was studied in freshly dissociated Müller cells of the salamander retina. Cotransporter currents were recorded from isolated cells using the whole-cell, voltage-clamp technique following the block of K+ conductance with external Ba2+ and internal Cs+. At constant pHo, an outward current was evoked when extracellular HCO3- concentration was raised by pressure ejecting a HCO3(-)-buffered solution onto the surface of cells bathed in nominally HCO3(-)-free solution. The HCO3(-)-evoked outward current was reduced to 4.4% of control by 0.5 mM DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonate), to 28.8% of control by 2 mM DNDS (4,4'-dinitrostilbene-2,2'-disulfonate), and to 28.4% of control by 2 mM harmaline. Substitution of choline for Na+ in bath and ejection solutions reduced the response to 1.3% of control. Bicarbonate-evoked currents of normal magnitude were recorded when methane sulfonate was substituted for Cl- in bath, ejection, and intracellular solutions. Similarly, an outward current was evoked when extracellular Na+ concentration was raised in the presence of HCO3-. The Na(+)-evoked response was reduced to 16.2% of control by 2 mM DNDS and was abolished by removal of HCO3- from bath and ejection solutions. Taken together, these results (block by stilbenes and harmaline, HCO3- and Na+ dependence, Cl- independence) indicate that salamander Müller cells possess an electrogenic Na+/HCO3- cotransport system. Na+/HCO3- cotransporter sites were localized primarily at the endfoot region of Müller cells. Ejection of HCO3- onto the endfoot evoked outward currents 10 times larger than currents evoked by ejections onto the opposite (distal) end of the cell. The reversal potential of the cotransporter was determined by DNDS block of cotransport current. In the absence of a transmembrane HCO3- gradient, the reversal potential varied systematically as a function of the transmembrane Na+ gradient. The reversal potential was -0.1 mV for a [Na+]o:[Na+]i ratio of 1:1 and -25.2 mV for a Na+ gradient ratio of 7.4:1. Based on these values, the estimated stoichiometry of the cotransporter was 2.80 +/- 0.13:1 (HCO3-:Na+). Possible functions of the glial cell Na+/HCO3- cotransporter, including the regulation of CO2 in the retina and the regulation of cerebral blood flow, are discussed.
Glatt, Vaida; Bartnikowski, Nicole; Quirk, Nicholas; Schuetz, Michael; Evans, Christopher
2016-01-01
Background: Reverse dynamization is a technology for enhancing the healing of osseous defects. With use of an external fixator, the axial stiffness across the defect is initially set low and subsequently increased. The purpose of the study described in this paper was to explore the efficacy of reverse dynamization under different conditions. Methods: Rat femoral defects were stabilized with external fixators that allowed the stiffness to be modulated on living animals. Recombinant human bone morphogenetic protein-2 (rhBMP-2) was implanted into the defects on a collagen sponge. Following a dose-response experiment, 5.5 μg of rhBMP-2 was placed into the defect under conditions of very low (25.4-N/mm), low (114-N/mm), medium (185-N/mm), or high (254-N/mm) stiffness. Reverse dynamization was evaluated with 2 different starting stiffnesses: low (114 N/mm) and very low (25.4 N/mm). In both cases, high stiffness (254 N/mm) was imposed after 2 weeks. Healing was assessed with radiographs, micro-computed tomography (μCT), histological analysis, and mechanical testing. Results: In the absence of dynamization, the medium-stiffness fixators provided the best healing. Reverse dynamization starting with very low stiffness was detrimental to healing. However, with low initial stiffness, reverse dynamization considerably improved healing with minimal residual cartilage, enhanced cortication, increased mechanical strength, and smaller callus. Histological analysis suggested that, in all cases, healing provoked by rhBMP-2 occurred by endochondral ossification. Conclusions: These data confirm the potential utility of reverse dynamization as a way of improving bone healing but indicate that the stiffness parameters need to be selected carefully. Clinical Relevance: Reverse dynamization may reduce the amount of rhBMP-2 needed to induce healing of recalcitrant osseous lesions, reduce the time to union, and decrease the need for prolonged external fixation. PMID:27098327
3D-Web-GIS RFID location sensing system for construction objects.
Ko, Chien-Ho
2013-01-01
Construction site managers could benefit from being able to visualize on-site construction objects. Radio frequency identification (RFID) technology has been shown to improve the efficiency of construction object management. The objective of this study is to develop a 3D-Web-GIS RFID location sensing system for construction objects. An RFID 3D location sensing algorithm combining Simulated Annealing (SA) and a gradient descent method is proposed to determine target object location. In the algorithm, SA is used to stabilize the search process and the gradient descent method is used to reduce errors. The locations of the analyzed objects are visualized using the 3D-Web-GIS system. A real construction site is used to validate the applicability of the proposed method, with results indicating that the proposed approach can provide faster, more accurate, and more stable 3D positioning results than other location sensing algorithms. The proposed system allows construction managers to better understand worksite status, thus enhancing managerial efficiency.
3D-Web-GIS RFID Location Sensing System for Construction Objects
2013-01-01
Construction site managers could benefit from being able to visualize on-site construction objects. Radio frequency identification (RFID) technology has been shown to improve the efficiency of construction object management. The objective of this study is to develop a 3D-Web-GIS RFID location sensing system for construction objects. An RFID 3D location sensing algorithm combining Simulated Annealing (SA) and a gradient descent method is proposed to determine target object location. In the algorithm, SA is used to stabilize the search process and the gradient descent method is used to reduce errors. The locations of the analyzed objects are visualized using the 3D-Web-GIS system. A real construction site is used to validate the applicability of the proposed method, with results indicating that the proposed approach can provide faster, more accurate, and more stable 3D positioning results than other location sensing algorithms. The proposed system allows construction managers to better understand worksite status, thus enhancing managerial efficiency. PMID:23864821
Observations of wave-induced pore pressure gradients and bed level response on a surf zone sandbar
NASA Astrophysics Data System (ADS)
Anderson, Dylan; Cox, Dan; Mieras, Ryan; Puleo, Jack A.; Hsu, Tian-Jian
2017-06-01
Horizontal and vertical pressure gradients may be important physical mechanisms contributing to onshore sediment transport beneath steep, near-breaking waves in the surf zone. A barred beach was constructed in a large-scale laboratory wave flume with a fixed profile containing a mobile sediment layer on the crest of the sandbar. Horizontal and vertical pore pressure gradients were obtained by finite differences of measurements from an array of pressure transducers buried within the upper several centimeters of the bed. Colocated observations of erosion depth were made during asymmetric wave trials with wave heights between 0.10 and 0.98 m, consistently resulting in onshore sheet flow sediment transport. The pore pressure gradient vector within the bed exhibited temporal rotations during each wave cycle, directed predominantly upward under the trough and then rapidly rotating onshore and downward as the wavefront passed. The magnitude of the pore pressure gradient during each phase of rotation was correlated with local wave steepness and relative depth. Momentary bed failures as deep as 20 grain diameters were coincident with sharp increases in the onshore-directed pore pressure gradients, but occurred at horizontal pressure gradients less than theoretical critical values for initiation of the motion for compact beds. An expression combining the effects of both horizontal and vertical pore pressure gradients with bed shear stress and soil stability is used to determine that failure of the bed is initiated at nonnegligible values of both forces.
Pastor, Marc-Frederic; Kraemer, Manuel; Wellmann, Mathias; Hurschler, Christof; Smith, Tomas
2016-11-01
The aim of this study was to investigate the stabilizing influence of the rotator cuff as well as the importance of glenosphere and onlay configuration on the anterior stability of the reverse total shoulder replacement (RTSR). A reverse total shoulder replacement was implanted into eight human cadaveric shoulders, and biomechanical testing was performed under three conditions: after implantation of the RTSR, after additional dissection of the subscapularis tendon, and after additional dissection of the infraspinatus and teres minor tendon. Testing was performed in 30° of abduction and three rotational positions: 30° internal rotation, neutral rotation, and 30° external rotation. Furthermore, the 38-mm and 42-mm glenospheres were tested in combination with a standard and a high-mobility humeral onlay. A gradually increased force was applied to the glenohumeral joint in anterior direction until the RTSR dislocated. The 42-mm glenosphere showed superior stability compared with the 38-mm glenosphere. The standard humeral onlay required significantly higher anterior dislocation forces than the more shallow high-mobility onlay. External rotation was the most stable position. Furthermore, isolated detachment of the subscapularis and combined dissection of the infraspinatus, teres minor, and subscapularis tendon increased anterior instability. This study showed superior stability with the 42-mm glenosphere and the more conforming standard onlay. External rotation was the most stable position. Detachment of the subscapularis as well as dissection of the complete rotator cuff decreased anterior stability.
Kitayama, Yukiya; Takeuchi, Toshifumi
2014-10-28
CO2/N2-triggered stability-controllable gold nanoparticles (AuNPs) grafted with poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA) layers (PDEAEMA-g-AuNPs) were synthesized by the surface-initiated atom transfer radical polymerization of DEAEMA with AuNPs bearing the bis[2-(2-bromoisobutyryloxy)undecyl] layer (grafting from method). Extension of the PDEAEMA chain length increased the stability of the PDEAEMA-g-AuNPs in CO2-bubbled water because of the electrosteric repulsion of the protonated PDEAEMA layer. The chain-length-dependent stability of PDEAEMA-g-AuNPs was confirmed by DLS and UV-vis spectra by using the localized surface plasmon resonance property of the AuNPs, where the extinction wavelength was shifted toward shorter wavelength with increasing PDEAEMA chain length. The reversible stability change with the gas stimuli of CO2/N2 was also successfully demonstrated. Finally, the transfer across the immiscible interface between water and organic solvent was successfully demonstrated by N2-triggered insolubilization of PDEAEMA layer on AuNPs in the aqueous phase, leading to the successful collection of AuNPs using organic solvent from the aqueous phase. Our "grafting from" method of reversible stability-controllable AuNPs can be applied to develop advanced materials such as reusable optical AuNP-based nanosensors because the molecular recognition layer can be constructed by two-step polymerization.
NASA Technical Reports Server (NTRS)
Klinar, Walter J.; Healy, Frederick M.
1952-01-01
An investigation of a 1/24-scale model of the Grumman F9F-6 airplane has been conducted in the Langley 20-foot free-spinning tunnel. The erect and inverted spin and recovery characteristics of the model were determined for the normal flight loading with the model in the clean condition. The effect of loading variations was investigated briefly. Spin-recovery parachute tests were also performed. The results indicate that erect spins obtained on the airplane in the clean condition will be satisfactorily terminated for all loading conditions provided full rudder reversal is accompanied by moving the ailerons and flaperons (lateral controls) to full with the spin (stick right in a right spin). Inverted spins should be satisfactorily terminated by full reversal of the rudder alone. The model tests indicate that an 11.4-foot (laid-out-flat diameter) tail parachute (drag coefficient approximately 0.73) should be effective as an emergency spin-recovery device during demonstration spins of the airplane provided the towline is attached above the horizontal stabilizer.
Huang, Hai; Lin, Saisai; Zhang, Lin; Hou, Li'an
2017-03-22
Improving chlorine stability is a high priority for aromatic polyamide (PA) reverse osmosis (RO) membranes especially in long-term desalination. In this Research Article, PA RO membranes of sustainable chlorine resistance was synthesized. Glycylglycine (Gly) was grafted onto the membrane surface as a regenerative chlorine sacrificial layer, and the zeta-potential was used to monitor the membrane performance and to conduct timely regeneration operations for chlorinated Gly. The Gly-grafted PA membrane exhibited ameliorative chlorine resistance in which the N-H moiety of glycylglycine served as sacrificial pendants against chlorine attacks. Cyclic chlorination experiments, combined with FT-IR and XPS analysis, were carried out to characterize the membrane. Results indicated that the resulting N-halamines could be fast regenerated by a simple alkaline reduction step (pH 10). A synchronous relationship between the zeta-potential and the chlorination extent of the sacrificial layer was observed. This indicated that the zeta-potential can be used as an on-site sensor to conduct a timely regeneration operation. The intrinsic mechanism of the surface sacrificial process was also studied.
Tan, XueHai; Wang, Liya; Holt, Chris M B; Zahiri, Beniamin; Eikerling, Michael H; Mitlin, David
2012-08-21
We have synthesized a new metastable metal hydride with promising hydrogen storage properties. Body centered cubic (bcc) magnesium niobium hydride (Mg(0.75)Nb(0.25))H(2) possesses 4.5 wt% hydrogen gravimetric density, with 4 wt% being reversible. Volumetric hydrogen absorption measurements yield an enthalpy of hydride formation of -53 kJ mol(-1) H(2), which indicates a significant thermodynamic destabilization relative to the baseline -77 kJ mol(-1) H(2) for rutile MgH(2). The hydrogenation cycling kinetics are remarkable. At room temperature and 1 bar hydrogen it takes 30 minutes to absorb a 1.5 μm thick film at sorption cycle 1, and 1 minute at cycle 5. Reversible desorption is achieved in about 60 minutes at 175 °C. Using ab initio calculations we have examined the thermodynamic stability of metallic alloys with hexagonal close packed (hcp) versus bcc crystal structure. Moreover we have analyzed the formation energies of the alloy hydrides that are bcc, rutile or fluorite.
NASA Astrophysics Data System (ADS)
Hosseini, Yaser; Mollica, Adriano; Mirzaie, Sako
2016-12-01
The human immunodeficiency virus (HIV) which is strictly related to the development of AIDS, is treated by a cocktail of drugs, but due its high propensity gain drug resistance, the rational development of new medicine is highly desired. Among the different mechanism of action we selected the reverse transcriptase (RT) inhibition, for our studies. With the aim to identify new chemical entities to be used for further rational drug design, a set of 3000 molecules from the Zinc Database have been screened by docking experiments using AutoDock Vina software. The best ranked compounds with respect of the crystallographic inhibitor MK-4965 resulted to be five compounds, and the best among them was further tested by molecular dynamics (MD) simulation. Our results indicate that comp1 has a stronger interaction with the subsite p66 of RT than MK-4965 and that both are able to stabilize specific conformational changes of the RT 3D structure, which may explain their activity as inhibitors. Therefore comp1 could be a good candidate for biological tests and further development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Y.F.; Thomas, K.M.
Various types of oxygen functional groups were introduced onto the surface of coconut shell derived activated carbon by oxidation using nitric acid. Fourier-transform infrared spectroscopy (FTIR), temperature-programmed desorption (TPD), and selective neutralization were used to characterize the surface oxygen functional groups. The oxidized carbons were also heat treated to provide a suite of carbons where the oxygen functional groups of various thermal stabilities were varied progressively. The adsorption of cadmium ions was enhanced dramatically by oxidation of the carbon. The ratio of released protons to adsorbed cadmium ions on oxidized carbon was approximately 2, indicating cation exchange was involved inmore » the process of adsorption. Na{sup +} exchange studies with the oxidized carbon gave a similar ratio. After heat treatment of the oxidized carbons to remove oxygen functional groups, the ratio of H{sup +} released to Cd{sup 2+} adsorbed and the adsorption capacity decreased significantly. Both reversible and irreversible processes were involved in cadmium ion adsorption with reversible adsorption having higher enthalpy. The irreversible adsorption resulted from cation exchange with carboxylic acid groups, whereas the reversible adsorption probably involved physisorption of the partially hydrated cadmium ion.« less
[Management of ascites due to portal hypertension].
Godat, S; Antonino, A T; Dehlavi, M-A; Moradpour, D; Doerig, C
2012-09-05
Portal hypertension is regularly encountered by the general practitioner. It is defined by an elevation of the porto-systemic pressure gradient, with complications such as ascites, spontaneous bacterial peritonitis, hepatorenal syndrome, variceal bleeding, hypersplenism, hepatopulmonary syndrome or hepatic encephalopathy occuring when a significant elevation of this gradient is reached. Cirrhosis is the primary cause of portal hypertension in industrialized countries. Symptomatic portal hypertension carries a poor prognosis. Management should be initiated rapidly, including the identification and correction of any reversible underlying condition. Liver transplantation should be considered in advanced cases.
Marini, N; Bevilacqua, C B; Büttow, M V; Raseira, M C B; Bonow, S
2017-05-25
Selecting and validating reference genes are the first steps in studying gene expression by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). The present study aimed to evaluate the stability of five reference genes for the purpose of normalization when studying gene expression in various cultivars of Prunus persica with different chilling requirements. Flower bud tissues of nine peach genotypes from Embrapa's peach breeding program with different chilling requirements were used, and five candidate reference genes based on the RT-qPCR that were useful for studying the relative quantitative gene expression and stability were evaluated using geNorm, NormFinder, and bestKeeper software packages. The results indicated that among the genes tested, the most stable genes to be used as reference genes are Act and UBQ10. This study is the first survey of the stability of reference genes in peaches under chilling stress and provides guidelines for more accurate RT-qPCR results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, C.H.; Luk, C.T.; Ogle, C.W.
1991-01-01
Zinc compounds have been shown to antagonize various types of gastric ulceration in rats. Zinc carnosine (Z-103), a newly developed agent was, therefore, examined for its antiulcer effect in stress-induced ulceration and also its membrane stabilizing action in rat stomachs. Cold-restraint stress induced severe hemorrhagic lesions together with increased mast cell degranulation and {beta}-glucuronidase release in the gastric glandular mucosa. A-103 pretreatment with a single oral dose reversed these actions in a dose-dependent manner. When the compound was incubated in concentrations of 10{sup {minus}7}, 10{sup {minus}6}, 10{sup {minus}5} or 10{sup {minus}4} M, with isolated hepatic lysosomes, it significantly reduced themore » spontaneous release of {beta}-glucuronidase in the medium. The present study not only demonstrates the antiulcer effect of Z-103 but also indicates that the protective action is likely to be mediated by its membrane-stabilizing action on mast cells and lysosomes in the gastric glandular mucosa.« less
Understanding the role of ecohydrological feedbacks in ecosystem state change in drylands
Turnbull, L.; Wilcox, B.P.; Belnap, J.; Ravi, S.; D'Odorico, P.; Childers, D.; Gwenzi, W.; Okin, G.; Wainwright, J.; Caylor, K.K.; Sankey, T.
2012-01-01
Ecohydrological feedbacks are likely to be critical for understanding the mechanisms by which changes in exogenous forces result in ecosystem state change. We propose that in drylands, the dynamics of ecosystem state change are determined by changes in the type (stabilizing vs amplifying) and strength of ecohydrological feedbacks following a change in exogenous forces. Using a selection of five case studies from drylands, we explore the characteristics of ecohydrological feedbacks and resulting dynamics of ecosystem state change. We surmise that stabilizing feedbacks are critical for the provision of plant-essential resources in drylands. Exogenous forces that break these stabilizing feedbacks can alter the state of the system, although such changes are potentially reversible if strong amplifying ecohydrological feedbacks do not develop. The case studies indicate that if amplifying ecohydrological feedbacks do develop, they are typically associated with abiotic processes such as runoff, erosion (by wind and water), and fire. These amplifying ecohydrological feedbacks progressively modify the system in ways that are long-lasting and possibly irreversible on human timescales.
Tercjak, Agnieszka; Gutierrez, Junkal; Ocando, Connie; Mondragon, Iñaki
2010-03-16
Conductive properties of different thermosetting materials modified with nematic 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) liquid crystal and rutile TiO(2) nanoparticles were successfully studied by means of tunneling atomic force miscroscopy (TUNA). Taking into account the liquid crystal state of the HBC at room temperature, depending on both the HBC content and the presence of TiO(2) nanoparticles, designed materials showed different TUNA currents passed through the sample. The addition of TiO(2) nanoparticles into the systems multiply the detected current if compared to the thermosetting systems without TiO(2) nanoparticles and simultaneously stabilized the current passed through the sample, making the process reversible since the absolute current values were almost the same applying both negative and positive voltage. Moreover, thermosetting systems modified with liquid crystals with and without TiO(2) nanoparticles are photoluminescence switchable materials as a function of temperature gradient during repeatable heating/cooling cycle. Conductive properties of switchable photoluminescence thermosetting systems based on liquid crystals can allow them to find potential application in the field of photoresponsive devices, with a high contrast ratio between transparent and opaque states.
Analysis of Rotation and Transport Data in C-Mod ITB Plasmas
NASA Astrophysics Data System (ADS)
Fiore, C. L.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Bespamyatnov, I. O.; Rowan, W. L.
2009-11-01
Internal transport barriers (ITBs) spontaneously form near the half radius of Alcator C-Mod plasmas when the EDA H-mode is sustained for several energy confinement times in either off-axis ICRF heated discharges or in purely ohmic heated plasmas. These plasmas exhibit strongly peaked density and pressure profiles, static or peaking temperature profiles, peaking impurity density profiles, and thermal transport coefficients that approach neoclassical values in the core. It has long been observed that the intrinsic central plasma rotation that is strongly co-current following the H-mode transition slows and often reverses as the density peaks as the ITB forms. Recent spatial measurements demonstrate that the rotation profile develops a well in the core region that decreases continuously as central density rises while the value outside of the core remains strongly co-current. This results in the formation of a steep potential gradient/strong electric field at the location of the foot of the ITB density profile. The resulting E X B shearing rate is also quite significant at the foot. These analyses and the implications for plasma transport and stability will be presented.
Choong, Eva; Rudaz, Serge; Kottelat, Astrid; Guillarme, Davy; Veuthey, Jean-Luc; Eap, Chin B
2009-12-05
A simple and sensitive LC-MS method was developed and validated for the simultaneous quantification of aripiprazole (ARI), atomoxetine (ATO), duloxetine (DUL), clozapine (CLO), olanzapine (OLA), sertindole (STN), venlafaxine (VEN) and their active metabolites dehydroaripiprazole (DARI), norclozapine (NCLO), dehydrosertindole (DSTN) and O-desmethylvenlafaxine (OVEN) in human plasma. The above mentioned compounds and the internal standard (remoxipride) were extracted from 0.5 mL plasma by solid-phase extraction (mix mode support). The analytical separation was carried out on a reverse phase liquid chromatography at basic pH (pH 8.1) in gradient mode. All analytes were monitored by MS detection in the single ion monitoring mode and the method was validated covering the corresponding therapeutic range: 2-200 ng/mL for DUL, OLA, and STN, 4-200 ng/mL for DSTN, 5-1000 ng/mL for ARI, DARI and finally 2-1000 ng/mL for ATO, CLO, NCLO, VEN, OVEN. For all investigated compounds, good performance in terms of recoveries, selectivity, stability, repeatability, intermediate precision, trueness and accuracy, was obtained. Real patient plasma samples were then successfully analysed.
das Neves, José; Sarmento, Bruno; Amiji, Mansoor; Bahia, Maria Fernanda
2012-12-12
Dapivirine, a non-nucleoside reverse transcriptase inhibitor, is being currently used for the development of potential anti-HIV microbicide formulations and delivery systems. A new high-performance liquid chromatography (HPLC) method with UV detection was developed for the assay of this drug in different biological matrices, namely cell lysates, receptor media from permeability experiments and homogenates of mucosal tissues. The method used a reversed-phase C18 column with a mobile phase composed of trifluoroacetic acid solution (0.1%, v/v) and acetonitrile in a gradient mode. Injection volume was 50μL and the flow rate 1mL/min. The total run time was 12min and UV detection was performed at 290nm for dapivirine and the internal standard (IS) diphenylamine. A Box-Behnken experimental design was used to study different experimental variables of the method, namely the ratio of the mobile phase components and the gradient time, and their influence in responses such as the retention factor, tailing factor, and theoretical plates for dapivirine and the IS, as well as the peak resolution between both compounds. The optimized method was further validated and its usefulness assessed for in vitro and ex vivo experiments using dapivirine or dapivirine-loaded nanoparticles. The method showed to be selective, linear, accurate and precise in the range of 0.02-1.5μg/mL. Other chromatographic parameters, namely carry-over, lower limit of quantification (0.02μg/mL), limit of detection (0.006μg/mL), recovery (equal or higher than 90.7%), and sample stability at different storage conditions, were also determined and found adequate for the intended purposes. The method was successfully used for cell uptake assays and permeability studies across cell monolayers and pig genital mucosal tissues. Overall, the proposed method provides a simple, versatile and reliable way for studying the behavior of dapivirine in different biological matrices and assessing its potential as an anti-HIV microbicide drug. Copyright © 2012 Elsevier B.V. All rights reserved.
Low speed streak formation in a separating turbulent boundary layer
NASA Astrophysics Data System (ADS)
Santos, Leonardo; Lang, Amy; Wahidi, Redha; Bonacci, Andrew
2017-11-01
Separation control mechanisms present on the skin of the shortfin mako shark may permit higher swimming speeds. The morphology of the scales varies over the entire body, with maximum scale flexibility found on the flank region with an adverse pressure gradient(APG). It is hypothesized that reversing flow close the skin bristles the scales inhibiting further flow reversal and controlling flow separation. Experiments are conducted in water tunnel facility and the flow field of a separating turbulent boundary layer(TBL) is measured using DPIV and Insight V3V. Flow separation is induced by a rotating cylinder which generates a controlled APG over a flat plate (Re = 510000 and 620000). Specifically, the low speed streak(LSS) formation is documented and matches predicted sizing based on viscous length scale calculations. It is surmised that shark scale width corresponds to this LSS sizing for real swimming TBL conditions. However, flow separation control has been demonstrated over real skin specimens under much lower speed conditions which indicates the mechanism is fairly Re independent if multiple scales are bristled as the width of the LSS increases. The formation of reversing flow within the streaks is studied specifically to better understand the process by which this flow initiates scale bristling on shortfin mako skin as a passive, flow actuated separation control mechanism. The authors would like to greatefully acknowledge the Army Research Office for funding this project.
NASA Technical Reports Server (NTRS)
Hyun, J. M.
1981-01-01
Quasi-geostrophic disturbance instability characteristics are studied in light of a linearized, two-layer Eady model in which both the static stability and the zonal current shear are uniform but different in each layer. It is shown that the qualitative character of the instability is determined by the sign of the basic-state potential vorticity gradient at the layer interface, and that there is a qualitative similarity between the effects of Richardson number variations due to changes in static stability and those due to changes in shear. The two-layer model is also used to construct an analog of the Williams (1974) continuous model of generalized Eady waves, the basic state in that case having zero potential vorticity gradient in the interior. The model results are in good agreement with the earlier Williams findings.
Gravitational modulation of thermosolutal convection during directional solidification
NASA Astrophysics Data System (ADS)
Murray, B. T.; Coriell, S. R.; McFadden, G. B.; Wheeler, A. A.; Saunders, B. V.
1993-03-01
During directional solidification of a binary alloy at constant velocity, thermosolutal convection may occur due to the temperature and solute gradients associated with the solidification process. For vertical growth in an ideal furnace (lacking horizontal gradients) a quiescent state is possible. The effect of a time-periodic vertical gravitational acceleration (or equivalently vibration) on the onset of thermosolutal convection is calculated based on linear stability using Floquet theory. Numerical calculations for the onset of instability have been carried out for a semiconductor alloy with Schmidt number of 10 and Prandtl number of 0.1 with primary emphasis on large modulation frequencies in a microgravity environment for which the background gravitational acceleration is negligible. The numerical results demonstrate that there is a significant difference in stability depending on whether a heavier or lighter solute is rejected. For large modulation frequencies, the stability behavior can be described by either the method of averaging or an asymptotic resonant mode analysis.
NASA Technical Reports Server (NTRS)
Donlan, C. J.; Kemp, W. B., Jr.; Polhamus, E. C.
1976-01-01
A 1/4 scale model of the Bell XS-1 transonic aircraft was tested in the Langley 300 mile-per-hour 7 by 10 foot tunnel to determine its low speed longitudinal stability and control characteristics. Pertinent longitudinal flying qualities expected of the XS-1 research airplane were estimated from the results of these tests including the effects of compressibility likely to be encountered at speeds below the force break. It appears that the static longitudinal stability and elevator control power will be adequate, but that the elevator control force gradient in steady flight will be undesirably low for all configurations. It is suggested that a centering spring be incorporated in the elevator control system of the airplane in order to increase the control force gradient in steady flight and in maneuvers.
Terborg, Lydia; Masini, Jorge C.; Lin, Michelle; ...
2014-11-04
A new approach has been developed for the preparation of mixed-mode stationary phases to separate proteins. The pore surface of monolithic poly(glycidyl methacrylate- co-ethylene dimethacrylate) capillary columns was functionalized with thiols and coated with gold nanoparticles. The final mixed mode surface chemistry was formed by attaching, in a single step, alkanethiols, mercaptoalkanoic acids, and their mixtures on the free surface of attached gold nanoparticles. Use of these mixtures allowed fine tuning of the hydrophobic/hydrophilic balance. The amount of attached gold nanoparticles according to thermal gravimetric analysis was 44.8 wt.%. This value together with results of frontal elution enabled calculation ofmore » surface coverage with the alkanethiol and mercaptoalkanoic acid ligands. Interestingly, alkanethiols coverage in a range of 4.46–4.51 molecules/nm 2 significantly exceeded that of mercaptoalkanoic acids with 2.39–2.45 molecules/nm 2. The mixed mode character of these monolithic stationary phases was for the first time demonstrated in the separations of proteins that could be achieved in the same column using gradient elution conditions typical of reverse phase (using gradient of acetonitrile in water) and ion exchange chromatographic modes (applying gradient of salt in water), respectively.« less
Fault-dominated deformation in an ice dam during annual filling and drainage of a marginal lake
Walder, J.S.; Trabant, D.C.; Cunico, M.; Anderson, S.P.; Anderson, R. Scott; Fountain, A.G.; Malm, A.
2005-01-01
Ice-dammed Hidden Creek Lake, Alaska, USA, outbursts annually in about 2-3 days. As the lake fills, a wedge of water penetrates beneath the glacier, and the surface of this 'ice dam' rises; the surface then falls as the lake drains. Detailed optical surveying of the glacier near the lake allows characterization of ice-dam deformation. Surface uplift rate is close to the rate of lake-level rise within about 400 m of the lake, then decreases by 90% over about 100 m. Such a steep gradient in uplift rate cannot be explained in terms of ice-dam flexure. Moreover, survey targets spanning the zone of steep uplift gradient move relative to one another in a nearly reversible fashion as the lake fills and drains. Evidently, the zone of steep uplift gradient is a fault zone, with the faults penetrating the entire thickness of the ice dam. Fault motion is in a reverse sense as the lake fills, but in a normal sense as the lake drains. As the overall fault pattern is the same from year to year, even though ice is lost by calving, the faults must be regularly regenerated, probably by linkage of surface and bottom crevasses as ice is advected toward the lake basin.
Reverse-time migration for subsurface imaging using single- and multi- frequency components
NASA Astrophysics Data System (ADS)
Ha, J.; Kim, Y.; Kim, S.; Chung, W.; Shin, S.; Lee, D.
2017-12-01
Reverse-time migration is a seismic data processing method for obtaining accurate subsurface structure images from seismic data. This method has been applied to obtain more precise complex geological structure information, including steep dips, by considering wave propagation characteristics based on two-way traveltime. Recently, various studies have reported the characteristics of acquired datasets from different types of media. In particular, because real subsurface media is comprised of various types of structures, seismic data represent various responses. Among them, frequency characteristics can be used as an important indicator for analyzing wave propagation in subsurface structures. All frequency components are utilized in conventional reverse-time migration, but analyzing each component is required because they contain inherent seismic response characteristics. In this study, we propose a reverse-time migration method that utilizes single- and multi- frequency components for analyzing subsurface imaging. We performed a spectral decomposition to utilize the characteristics of non-stationary seismic data. We propose two types of imaging conditions, in which decomposed signals are applied in complex and envelope traces. The SEG/EAGE Overthrust model was used to demonstrate the proposed method, and the 1st derivative Gaussian function with a 10 Hz cutoff was used as the source signature. The results were more accurate and stable when relatively lower frequency components in the effective frequency range were used. By combining the gradient obtained from various frequency components, we confirmed that the results are clearer than the conventional method using all frequency components. Also, further study is required to effectively combine the multi-frequency components.
Chemical osmosis, reverse chemical osmosis, and the origin of subsurface brines
NASA Astrophysics Data System (ADS)
Graf, Donald L.
1982-08-01
Calculations using recently-tabulated values of density and osmotic coefficient for NaCl-H 2O indicate that overpressuring is more than adequate to overcome chemical osmosis and drive reverse chemical osmosis in sedimentary sequences. The best-demonstrated overpressuring mechanism is the rapid deposition of fine-grained sediments. The dehydration of gypsum contributes to overpressuring for brief time intervals at shallow depths, whereas water evolved during the protracted conversion of smectite to illite is probably a subordinate, but continuing contributor to overpressuring at greater depth. Occurrences of overpressuring in sedimentary sections older than Cretaceous indicate that post-depositional mechanisms such as tectonic compression and aquathermal pressuring must also operate. The latter may be of major importance in geothermal areas with adequate low-permeability seals, and a nontrivial contributor in areas of normal geothermal gradient because of shales that sharply decrease normal fluid flow. The strongest arguments for the importance to present-day brine compositions of membrane concentration of sea-water solutes are (1) the correlation of δD values of water molecules of pore fluid with those of local meteoric water, (2) the need for major sources of Mg 2+ and Cl - in apparently evaporite-free basins. Even where dissolution of halite is a major contributor of solute, reverse chemical osmosis still operates to leak relatively dilute water. Of the associated diagenetic chemical reactions, that of Mg 2+ with limestone to form dolomite is particularly effective in generating concentrated Cl - brines rich in Ca 2+. It decreases the concentration of Mg 2+, increases that of Ca 2+, and decreases those of both SO 42- and CO 32- by precipitating CaCO 3 and CaSO 4 because of the Ca 2+ common-ion effect.
Gao, Chan; Zhang, Xueyong; Zhang, Chuanchao; Sui, Zhilei; Hou, Meng; Dai, Rucheng; Wang, Zhongping; Zheng, Xianxu; Zhang, Zengming
2018-05-17
Herein, pressure-induced phase transitions of RDX up to 50 GPa were systematically studied under different compression conditions. Precise phase transition points were obtained based on high-quality Raman spectra with small pressure intervals. This favors the correctness of the theoretical formula for detonation and the design of a precision weapon. The experimental results indicated that α-RDX immediately transformed to γ-RDX at 3.5 GPa due to hydrostatic conditions and possible interaction between the penetrating helium and RDX, with helium gas as the pressure-transmitting medium (PTM). Mapping of pressure distribution in samples demonstrates that the pressure gradient is generated in the chamber and independent of other PTMs. The gradient induced the first phase transition starts at 2.3 GPa and completed at 4.1 GPa. The larger pressure gradient promoted phase transition in advance under higher pressures. Experimental results supported that there existed two conformers of AAI and AAE for γ-RDX, as proposed by another group. δ-RDX was considered to only occur in a hydrostatic environment around 18 GPa using helium as the PTM. This study confirms that δ-RDX is independent of PTM and exists under non-hydrostatic conditions. Evidence for a new phase (ζ) was found at about 28 GPa. These 4 phases have also been verified via XRD under high pressures. In addition to this, another new phase (η) may exist above 38 GPa, and it needs to be further confirmed in the future. Moreover, all the phase transitions were reversible after the pressure was released, and original α-RDX was always obtained at ambient pressure.
Response of the surface tropical Atlantic Ocean to wind forcing
NASA Astrophysics Data System (ADS)
Castellanos, Paola; Pelegrí, Josep L.; Campos, Edmo J. D.; Rosell-Fieschi, Miquel; Gasser, Marc
2015-05-01
We use 10 years of satellite data (sea level pressure, surface winds and absolute dynamic topography [ADT]) together with Argo-inferred monthly-mean values of near-surface velocity and water transport, to examine how the tropical system of near-surface zonal currents responds to wind forcing. The data is analyzed using complex Hilbert empirical orthogonal functions, confirming that most of the variance has annual periodicity, with maximum amplitudes in the region spanned by the seasonal displacement of the Inter-Tropical Convergence Zone (ITCZ). The ADT mirrors the shape of the upper isopycnals, hence becoming a good indicator of the amount of water stored in the upper ocean. Within about 3° from the Equator, where the Coriolis force is small, there is year-long meridional Ekman-transport divergence that would lead to the eastward transport of the Equatorial Undercurrent and its northern and southern branches. Beyond 3° of latitude, and at least as far as 20°, the convergence of the Ekman transport generally causes a poleward positive ADT gradient, which sustains the westward South Equatorial Current (SEC). The sole exception occurs in summer, between 8°N and 12°N, when an Ekman-transport divergence develops and depletes de amount of surface water, resulting in an ADT ridge-valley system which reverses the ADT gradient and drives the eastward North Equatorial Countercurrent (NECC) at latitudes 4-9°N; in late fall, divergence ceases and the NECC drains the ADT ridge, so the ADT gradient again becomes positive and the SEC reappears. The seasonal evolution of a tilted ITCZ controls the surface water fluxes: the wind-induced transports set the surface divergence-convergence, which then drive the ADT and, through the ADT gradients, create the geostrophic jets that close the water balance.
Kaushik, S Sivaram; Freeman, Matthew S; Cleveland, Zackary I; Davies, John; Stiles, Jane; Virgincar, Rohan S; Robertson, Scott H; He, Mu; Kelly, Kevin T; Foster, W Michael; McAdams, H Page; Driehuys, Bastiaan
2013-09-01
Although some central aspects of pulmonary function (ventilation and perfusion) are known to be heterogeneous, the distribution of diffusive gas exchange remains poorly characterized. A solution is offered by hyperpolarized 129Xe magnetic resonance (MR) imaging, because this gas can be separately detected in the lung's air spaces and dissolved in its tissues. Early dissolved-phase 129Xe images exhibited intensity gradients that favored the dependent lung. To quantitatively corroborate this finding, we developed an interleaved, three-dimensional radial sequence to image the gaseous and dissolved 129Xe distributions in the same breath. These images were normalized and divided to calculate "129Xe gas-transfer" maps. We hypothesized that, for healthy volunteers, 129Xe gas-transfer maps would retain the previously observed posture-dependent gradients. This was tested in nine subjects: when the subjects were supine, 129Xe gas transfer exhibited a posterior-anterior gradient of -2.00 ± 0.74%/cm; when the subjects were prone, the gradient reversed to 1.94 ± 1.14%/cm (P < 0.001). The 129Xe gas-transfer maps also exhibited significant heterogeneity, as measured by the coefficient of variation, that correlated with subject total lung capacity (r = 0.77, P = 0.015). Gas-transfer intensity varied nonmonotonically with slice position and increased in slices proximal to the main pulmonary arteries. Despite substantial heterogeneity, the mean gas transfer for all subjects was 1.00 ± 0.01 while supine and 1.01 ± 0.01 while prone (P = 0.25), indicating good "matching" between gas- and dissolved-phase distributions. This study demonstrates that single-breath gas- and dissolved-phase 129Xe MR imaging yields 129Xe gas-transfer maps that are sensitive to altered gas exchange caused by differences in lung inflation and posture.
Pérez-Ferrer, Carolina; McMunn, Anne; Zaninotto, Paola; Brunner, Eric J
2018-05-10
The present study investigates whether the reversal of the social gradient in obesity, defined as a cross-over to higher obesity prevalence among groups with lower education level, has occurred among men and women in urban and rural areas of Mexico. Cross-sectional series of nationally representative surveys (1988, 1999, 2006, 2012 and 2016). The association between education and obesity was investigated over the period 1988-2016. Effect modification of the education-obesity association by household wealth was tested. Mexico. Women (n 54 816) and men (n 20 589) aged 20-49 years. In both urban and rural areas, the association between education and obesity in women varied by level of household wealth in the earlier surveys (1988, 1999 and 2006; interaction P<0·001). In urban areas in 1988, one level lower education was associated (prevalence ratio; 95 % CI) with 45 % higher obesity prevalence among the richest women (1·45; 1·24, 1·69), whereas among the poorest the same education difference was protective (0·84; 0·72, 0·99). In the latest surveys (2012, 2016), higher education was protective across all wealth groups. Among men, education level was not associated with obesity in urban areas; there was a direct association in rural areas. Wealth did not modify the association between education and obesity. The reversal of the educational gradient in obesity among women occurred once a threshold level of household wealth was reached. Among men, there was no evidence of a reversal of the gradient. Policies must not lose sight of the populations most vulnerable to the obesogenic environment.
Geenes, Victoria; Lövgren-Sandblom, Anita; Benthin, Lisbet; Lawrance, Dominic; Chambers, Jenny; Gurung, Vinita; Thornton, Jim; Chappell, Lucy; Khan, Erum; Dixon, Peter; Marschall, Hanns-Ulrich; Williamson, Catherine
2014-01-01
Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder associated with an increased risk of adverse fetal outcomes. It is characterised by raised maternal serum bile acids, which are believed to cause the adverse outcomes. ICP is commonly treated with ursodeoxycholic acid (UDCA). This study aimed to determine the fetal and maternal bile acid profiles in normal and ICP pregnancies, and to examine the effect of UDCA treatment. Matched maternal and umbilical cord serum samples were collected from untreated ICP (n = 18), UDCA-treated ICP (n = 46) and uncomplicated pregnancy (n = 15) cases at the time of delivery. Nineteen individual bile acids were measured using HPLC-MS/MS. Maternal and fetal serum bile acids are significantly raised in ICP compared with normal pregnancy (p = <0.0001 and <0.05, respectively), predominantly due to increased levels of conjugated cholic and chenodeoxycholic acid. There are no differences between the umbilical cord artery and cord vein levels of the major bile acid species. The feto-maternal gradient of bile acids is reversed in ICP. Treatment with UDCA significantly reduces serum bile acids in the maternal compartment (p = <0.0001), thereby reducing the feto-maternal transplacental gradient. UDCA-treatment does not cause a clinically important increase in lithocholic acid (LCA) concentrations. ICP is associated with significant quantitative and qualitative changes in the maternal and fetal bile acid pools. Treatment with UDCA reduces the level of bile acids in both compartments and reverses the qualitative changes. We have not found evidence to support the suggestion that UDCA treatment increases fetal LCA concentrations to deleterious levels. PMID:24421907
Geenes, Victoria; Lövgren-Sandblom, Anita; Benthin, Lisbet; Lawrance, Dominic; Chambers, Jenny; Gurung, Vinita; Thornton, Jim; Chappell, Lucy; Khan, Erum; Dixon, Peter; Marschall, Hanns-Ulrich; Williamson, Catherine
2014-01-01
Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder associated with an increased risk of adverse fetal outcomes. It is characterised by raised maternal serum bile acids, which are believed to cause the adverse outcomes. ICP is commonly treated with ursodeoxycholic acid (UDCA). This study aimed to determine the fetal and maternal bile acid profiles in normal and ICP pregnancies, and to examine the effect of UDCA treatment. Matched maternal and umbilical cord serum samples were collected from untreated ICP (n = 18), UDCA-treated ICP (n = 46) and uncomplicated pregnancy (n = 15) cases at the time of delivery. Nineteen individual bile acids were measured using HPLC-MS/MS. Maternal and fetal serum bile acids are significantly raised in ICP compared with normal pregnancy (p = <0.0001 and <0.05, respectively), predominantly due to increased levels of conjugated cholic and chenodeoxycholic acid. There are no differences between the umbilical cord artery and cord vein levels of the major bile acid species. The feto-maternal gradient of bile acids is reversed in ICP. Treatment with UDCA significantly reduces serum bile acids in the maternal compartment (p = <0.0001), thereby reducing the feto-maternal transplacental gradient. UDCA-treatment does not cause a clinically important increase in lithocholic acid (LCA) concentrations. ICP is associated with significant quantitative and qualitative changes in the maternal and fetal bile acid pools. Treatment with UDCA reduces the level of bile acids in both compartments and reverses the qualitative changes. We have not found evidence to support the suggestion that UDCA treatment increases fetal LCA concentrations to deleterious levels.
North, S M; Jones, E R; Smith, G N; Mykhaylyk, O O; Annable, T; Armes, S P
2017-02-07
The present study focuses on the use of copolymer nanoparticles as a dispersant for a model pigment (silica). Reversible addition-fragmentation chain transfer (RAFT) alcoholic dispersion polymerization was used to synthesize sterically stabilized diblock copolymer nanoparticles. The steric stabilizer block was poly(2-(dimethylamino)ethyl methacrylate) (PDMA) and the core-forming block was poly(benzyl methacrylate) (PBzMA). The mean degrees of polymerization for the PDMA and PBzMA blocks were 71 and 100, respectively. Transmission electron microscopy (TEM) studies confirmed a near-monodisperse spherical morphology, while dynamic light scattering (DLS) studies indicated an intensity-average diameter of 30 nm. Small-angle X-ray scattering (SAXS) reported a volume-average diameter of 29 ± 0.5 nm and a mean aggregation number of 154. Aqueous electrophoresis measurements confirmed that these PDMA 71 -PBzMA 100 nanoparticles acquired cationic character when transferred from ethanol to water as a result of protonation of the weakly basic PDMA chains. Electrostatic adsorption of these nanoparticles from aqueous solution onto 470 nm silica particles led to either flocculation at submonolayer coverage or steric stabilization at or above monolayer coverage, as judged by DLS. This technique indicated that saturation coverage was achieved on addition of approximately 465 copolymer nanoparticles per silica particle, which corresponds to a fractional surface coverage of around 0.42. These adsorption data were corroborated using thermogravimetry, UV spectroscopy and X-ray photoelectron spectroscopy. TEM studies indicated that the cationic nanoparticles remained intact on the silica surface after electrostatic adsorption, while aqueous electrophoresis confirmed that surface charge reversal occurred below pH 7. The relatively thick layer of adsorbed nanoparticles led to a significant reduction in the effective particle density of the silica particles from 1.99 g cm -3 to approximately 1.74 g cm -3 , as judged by disk centrifuge photosedimentometry (DCP). Combining the DCP and SAXS data suggests that essentially no deformation of the PBzMA cores occurs during nanoparticle adsorption onto the silica particles.
Primary stability in reversed-anatomy glenoid components.
Hopkins, A R; Hansen, U N
2009-10-01
Reversed-anatomy shoulder replacement is advocated for patients with poor rotator cuff condition, for whom an anatomical reconstruction would provide little or no stability. Modern generations of this concept appear to be performing well in the short-term to midterm clinical follow-up. These designs are almost always non-cemented, requiring a high degree of primary stability to encourage bone on-growth and so to establish long-term fixation. Six different inverse-anatomy glenoid implants, currently on the market and encompassing a broad range of geometrical differences, were compared on the basis of their ability to impart primary stability through the minimization of interface micromotions. Fixing screws were only included in the supero-inferior direction in appropriate implants and were always inclined at the steepest available angle possible during surgery (up to a maximum of 30 degrees). The extent of predicted bony on-growth was, of course, highly dependent on the threshold for interface micromotion. In some instances an additional 30 per cent of the interface was predicted to promote bone on-growth when the threshold was raised from 20 microm to 50 microm. With maximum thresholds of micromotion for bone on-growth set to 30 microm, the Zimmer Anatomical device was found to be the most stable of the series of the six designs tested herein, achieving an additional 3 per cent (by surface area) of bone on-growth above the closest peer product (Biomet Verso). When this threshold was raised to 50 microm, the Biomet Verso design was most stable (3 per cent above the second-most stable design, the Zimmer Anatomical). Peak micromotions were not a good indicator of the predicted area of bone on-growth and could lead to some misinterpretation of the implant's overall performance. All but one of the implants tested herein provided primary stability sufficient to resist motions in excess of 150 microm at the interface.
Novel gradient-diameter magnetic nanowire arrays with unconventional magnetic anisotropy behaviors.
Wang, Jing; Zuo, Zhili; Huang, Liang; Warsi, Muhammad Asif; Xiao, John Q; Hu, Jun
2018-06-21
Fe-Co-Ni gradient-diameter magnetic nanowire arrays were fabricated via direct-current electrodeposition into a tapered anodic aluminium oxide template. In contrast to the magnetic behaviors of uniform-diameter nanowire arrays, these arrays exhibited tailorable magnetic anisotropy that can be used to switch magnetic nanowires easily and unconventional temperature-dependent coercivity with much better thermal stability.
NASA Technical Reports Server (NTRS)
Coward, Adrian V.; Papageorgiou, Demetrios T.; Smyrlis, Yiorgos S.
1994-01-01
In this paper the nonlinear stability of two-phase core-annular flow in a pipe is examined when the acting pressure gradient is modulated by time harmonic oscillations and viscosity stratification and interfacial tension is present. An exact solution of the Navier-Stokes equations is used as the background state to develop an asymptotic theory valid for thin annular layers, which leads to a novel nonlinear evolution describing the spatio-temporal evolution of the interface. The evolution equation is an extension of the equation found for constant pressure gradients and generalizes the Kuramoto-Sivashinsky equation with dispersive effects found by Papageorgiou, Maldarelli & Rumschitzki, Phys. Fluids A 2(3), 1990, pp. 340-352, to a similar system with time periodic coefficients. The distinct regimes of slow and moderate flow are considered and the corresponding evolution is derived. Certain solutions are described analytically in the neighborhood of the first bifurcation point by use of multiple scales asymptotics. Extensive numerical experiments, using dynamical systems ideas, are carried out in order to evaluate the effect of the oscillatory pressure gradient on the solutions in the presence of a constant pressure gradient.
Evaluation of the stability of gas hydrates in Northern Alaska
Kamath, A.; Godbole, S.P.; Ostermann, R.D.; Collett, T.S.
1987-01-01
The factors which control the distribution of in situ gas hydrate deposits in colder regions such as Northern Alaska include; mean annual surface temperatures (MAST), geothermal gradients above and below the base of permafrost, subsurface pressures, gas composition, pore-fluid salinity and the soil condition. Currently existing data on the above parameters for the forty-six wells located in Northern Alaska were critically examined and used in calculations of depths and thicknesses of gas hydrate stability zones. To illustrate the effect of gas hydrate stability zones, calculations were done for a variable gas composition using the thermodynamic model of Holder and John (1982). The hydrostatic pressure gradient of 9.84 kPa/m (0.435 lbf/in2ft), the salinity of 10 parts per thousand (ppt) and the coarse-grained soil conditions were assumed. An error analysis was performed for the above parameters and the effect of these parameters on hydrate stability zone calculations were determined. After projecting the hydrate stability zones for the forty-six wells, well logs were used to identify and to obtain values for the depth and thickness of hydrate zones. Of the forty-six wells, only ten wells showed definite evidence of the presence of gas hydrates. ?? 1987.
Interface Promoted Reversible Mg Insertion in Nanostructured Tin-Antimony Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Yingwen; Shao, Yuyan; Parent, Lucas R.
This paper demonstrates intermetallic compounds SnSb are highly active materials for reversibly hosting Mg ions. Compared with monometallic Sn and Sb, SnSb alloy exhibited exceptionally high reversible capacity (420 mAh/g), excellent rate capability and good cyclic stability. Mg insertion into pristine SnSb involves an activation process to complete, which induces particle breakdown and results in phase segregation to Sn-rich and Sb-rich phases. Both experimental analysis and DFT simulation suggest that the Sn-rich phase is particularly active and provides most of the capacity whereas the Sb-rich phase is not as active, and the interface between these two phases play a keymore » role in promoting the formation and stabilization of the cubic Sn phase that is more favorable for fast and reversible Mg insertion. We further show that activated SnSb alloy has good compatibility with simple Mg electrolytes. Overall, this work could provide new approaches for designing materials capable of reversible Mg ion insertion and new opportunities for understanding Mg electrochemistry.« less
Kim, Sun Hee; Krämer, Irene
2017-01-01
Centralized aseptic preparation of ready-to-administer carfilzomib containing parenteral solutions in plastic syringes and polyolefine (PO) infusion bags needs profound knowledge about the physicochemical stability in order to determine the beyond-use-date of the preparations. Therefore, the purpose of this study was to determine the physicochemical stability of carfilzomib solution marketed as Kyprolis® powder for solution for infusion. Reconstituted solutions and ready-to-administer preparations of Kyprolis® stored under refrigeration (2-8℃) or at room temperature (25℃) were analyzed at predetermined intervals over a maximum storage period of 28 days. Chemical stability of carfilzomib was planned to be determined with a stability-indicating reversed-phase high-performance liquid chromatography assay. Physicochemical stability was planned to be determined by visual inspection of clarity and color as well as pH measurement. The study results show that reconstituted carfilzomib containing parenteral solutions are stable in glass vials as well as diluted solutions in plastic syringes and PO infusion bags over a period of at least 28 days when stored light protected under refrigeration. When stored at room temperature, reconstituted and diluted carfilzomib solutions are physicochemically stable over 14 days and 10 days, respectively. The physicochemical stability of carfilzomib infusion solutions allows cost-saving pharmacy-based centralized preparation of ready-to-administer preparations.
Penazzi, Lorène; Tackenberg, Christian; Ghori, Adnan; Golovyashkina, Nataliya; Niewidok, Benedikt; Selle, Karolin; Ballatore, Carlo; Smith, Amos B.; Bakota, Lidia; Brandt, Roland
2016-01-01
Dendritic spines represent the major postsynaptic input of excitatory synapses. Loss of spines and changes in their morphology correlate with cognitive impairment in Alzheimer’s disease (AD) and are thought to occur early during pathology. Therapeutic intervention at a preclinical stage of AD to modify spine changes might thus be warranted. To follow the development and to potentially interfere with spine changes over time, we established a long term ex vivo model from organotypic cultures of the hippocampus from APP transgenic and control mice. The cultures exhibit spine loss in principal hippocampal neurons, which closely resembles the changes occurring in vivo, and spine morphology progressively changes from mushroom-shaped to stubby. We demonstrate that spine changes are completely reversed within few days after blocking amyloid-β (Aβ) production with the gamma-secretase inhibitor DAPT. We show that the microtubule disrupting drug nocodazole leads to spine loss similar to Aβ expressing cultures and suppresses DAPT-mediated spine recovery in slices from APP transgenic mice. Finally, we report that epothilone D (EpoD) at a subnanomolar concentration, which slightly stabilizes microtubules in model neurons, completely reverses Aβ-induced spine loss and increases thin spine density. Taken together the data indicate that Aβ causes spine changes by microtubule destabilization and that spine recovery requires microtubule polymerization. Moreover, our results suggest that a low, subtoxic concentration of EpoD is sufficient to reduce spine loss during the preclinical stage of AD. PMID:26772969
Subsurface fluid pressures from drill-stem tests, Uinta Basin, Utah
Nelson, P.H.
2002-01-01
High fluid pressures are known to be associated with oil and gas fields in the Uinta Basin, Utah. Shut-in pressure measurements from drill-stem tests show how pressure varies with depth and by area within the basin. The data base used in this report incorporates over 2,000 pressure measurements from drill-stem tests in wells completed prior to 1985. However, the number of useful pressure measurements is considerably less, because many drill-stem tests fail to stabilize at the actual formation pressure if the permeability is low. By extracting the maximum pressure measurements recorded in a collection of wells within an area, the trend of formation pressure within that area can be approximated. Areal compilations of pressures from drill-stem tests show that overpressured rock formations occur throughout much of the northern and eastern areas of the Uinta Basin. In particular, significant overpressuring (0.5 < pressure gradient < 0.8 psi/ft) is found throughout much of the Altamont-Bluebell field at depths ranging from 10,000 to 13,000 ft, equivalent to 5,000 to 8,000 ft below sea level. Limited data indicate that the pressure gradient declines at depths greater than 13,000 ft. An underpressured zone appears to exist in the Altamont-Bluebell field at depths shallower than 5,000 ft. Throughout the eastern Uinta Basin, moderately overpressured zones (0.46 < pressure gradient < 0.5 psi/ft) are common, with local evidence of significantly overpressured zones, but pressure gradients greater than 0.6 psi/ft are rare.
Stability of boundary layer flow based on energy gradient theory
NASA Astrophysics Data System (ADS)
Dou, Hua-Shu; Xu, Wenqian; Khoo, Boo Cheong
2018-05-01
The flow of the laminar boundary layer on a flat plate is studied with the simulation of Navier-Stokes equations. The mechanisms of flow instability at external edge of the boundary layer and near the wall are analyzed using the energy gradient theory. The simulation results show that there is an overshoot on the velocity profile at the external edge of the boundary layer. At this overshoot, the energy gradient function is very large which results in instability according to the energy gradient theory. It is found that the transverse gradient of the total mechanical energy is responsible for the instability at the external edge of the boundary layer, which induces the entrainment of external flow into the boundary layer. Within the boundary layer, there is a maximum of the energy gradient function near the wall, which leads to intensive flow instability near the wall and contributes to the generation of turbulence.
NASA Astrophysics Data System (ADS)
Xu, Chang; Liu, Huicong; Liang, Weitao; Zhu, Liqun; Li, Weiping; Chen, Haining
2018-03-01
Gradient wetting surfaces are getting increasing attention due to their wide application in multiple fields such as droplet movement and biosorption. However, the fabrication processes of full gradient wetting surfaces are still complex and costly. In present work, a facile and low-cost chemical immersion method was used to create a full gradient wetting surface. By controlling the displacement time in Ni2+ solution, the prepared surfaces perform hydrophilic to superhydrophilic. After being modified by stearic acid, the gradient hydrophilic surfaces convert into hydrophobic. The surface morphology, composition, and wetting behaviors of the as-prepared surfaces were systematically studied and discussed. The gradient wetting property could be attributed to the change in microroughness and surface energy. In addition, these surfaces also exhibited excellent self-cleaning and wax prevention properties. Furthermore, high stability and corrosion resistance were also found for these surfaces, which further highlight their promising practical applications in many fields.
Carbonic anhydrase, a respiratory enzyme in the gills of the shore crab Carcinus maenas
NASA Astrophysics Data System (ADS)
Böttcher, K.; Siebers, D.; Sender, S.
1995-03-01
This paper summarizes investigations on the enzyme carbonic anhydrase (CA) in the gills of the osmoregulating shore crab Carcinus maenas. Carbonic anhydrase, an enzyme catalyzing the reversible hydration of CO2 to HCO3 - and H+, is localized with highest activities in the posterior salt-transporting gills of the shore crab- and here CA activity is strongly dependent on salinity. Contrary to the earlier hypothesis established for the blue crab Callinectes sapidus that cytoplasmic branchial CA provides the counter ions HCO3 - and H+ for apical exchange against Na+ and Cl-, the involvement of CA in NaCl uptake mechanisms can be excluded in Carcinus. Differential and density gradient centrifugations indicate that branchial CA is a predominantly membrane-associated protein. Branchial CA was greatly inhibited by the sulfonamide acetazolamide (AZ) Ki=2.4·10-8 mol/l). Using the preparation of the isolated perfused gill, application of 10-4 mol/l AZ resulted in an 80% decrease of CO2/HCO3 - excretion. Thus we conclude that CA is localized in plasma membranes, maintaining the CO2 gradient by accelerating adjustment of the pH-dependent CO2/HCO3 - equilibrium.
Using networks to detect regime changes in aquatic communities across nutrient gradients
NASA Astrophysics Data System (ADS)
Taranu, Z. E.
2015-12-01
Networks capture links or interactions between organisms within ecological webs. When an environmental stress occurs, rapid changes in ecosystem state are expected in food webs with highly connected networks and functionally redundant species. These networks can dissipate local disturbances quickly and provide resistance to change at first until a threshold is reached, at which point, a critical transition occurs (nodes shift in synchrony). In contrast, in low connectivity (modular) heterogeneous networks, the response in ecosystem state to an environmental stressor is gradual. Given that these ecosystem-level shifts can be difficult to predict, hard to reverse and can have undesirable consequences, there is considerable interest in identifying what type of response (gradual vs. hysteresis) is most likely in nature. In this work, we thus aimed to test for the support for a bifurcated response in aquatic ecosystem across a landscape of human impact and track which of the above scenarios was most common. More specifically, using the US EPA National Lake Assessment water quality dataset (2007 sampling), we quantified differences in food-web structures across a spatial gradient of human impact (eutrophication). Preliminary results indicate that certain network properties vary nonlinearly with respect to nutrient enrichment.
Particle transport in low-collisionality H-mode plasmas on DIII-D
Mordijck, Saskia; Wang, Xin; Doyle, Edward J.; ...
2015-10-05
In this article we show that changing from an ion temperature gradient (ITG) to trapped electron mode (TEM) dominant turbulence regime (based on linear gyrokinetic simulations) results experimentally in a strong density pump-out (defined as a reduction in line-averaged density) in low collisionality, low power H-mode plasmas. We vary the turbulence drive by changing the heating from pre-dominantly ion heatedusing neutral beam injection to electron heated using electron cyclotron heating, which changes the T e/T i ratio and the temperature gradients. Perturbed gas puff experiments show an increase in transport outside ρ = 0.6, through a strong increase in themore » perturbed diffusion coefficient and a decrease in the inward pinch. Linear gyrokinetic simulations with TGLF show an increase in the particle flux outside the mid-radius. In conjunction an increase in intermediate-scale length density fluctuations is observed, which indicates an increase in turbulence intensity at typical TEM wavelengths. However, although the experimental changes in particle transport agree with a change from ITG to TEM turbulence regimes, we do not observe a reduction in the core rotation at mid-radius, nor a rotation reversal.« less
Reversibility and stability of information processing systems
NASA Technical Reports Server (NTRS)
Zurek, W. H.
1984-01-01
Classical and quantum models of dynamically reversible computers are considered. Instabilities in the evolution of the classical 'billiard ball computer' are analyzed and shown to result in a one-bit increase of entropy per step of computation. 'Quantum spin computers', on the other hand, are not only microscopically, but also operationally reversible. Readoff of the output of quantum computation is shown not to interfere with this reversibility. Dissipation, while avoidable in principle, can be used in practice along with redundancy to prevent errors.
Ferroic Shape Memory Materials & Piezo:Pyro-Electric Oriented Recrystallized Glasses.
1986-07-01
microcope hot stage. The direction of crystallization was parallel to the direction of temperature gradient. The crystalline phases in the glass...may increase or decrease with temperature. Several compounds show a sign reversal in the pyroelectric coefficients, going from positive to negative
Experimental Study of Unsteady Separation in a Laminar Boundary Layer
NASA Astrophysics Data System (ADS)
Bonacci, Andrew; Lang, Amy; Wahidi, Redha; Santos, Leo
2016-11-01
Separation, caused by an adverse pressure gradient, can be a major problem to aircraft. Reversing flow occurs in separated regions and an investigation of how this backflow forms is of interest due to the fact that this could be used as a means of initiating flow control. Specifically, backflow can bristle shark scales which may be linked to a passive, flow actuated separation control mechanism. An experiment was conducted in a water tunnel to replicate separation, with a focus on the reversing flow development near the wall within a laminar boundary layer. Using a rotating cylinder, an adverse pressure gradient was induced creating a separated region over a flat plate. In this experiment the boundary layer grows to sizes great enough that the scale of the flow is increased, making it more measurable to DPIV. In the future, this research can be utilized to better understand flow control mechanisms such as those enabled by shark skin. Funding from Army Research Office and NSF REU site Grant EEC 1358991 is greatly appreciated.
One-dimensional transient finite difference model of an operational salinity gradient solar pond
NASA Technical Reports Server (NTRS)
Hicks, Michael C.; Golding, Peter
1992-01-01
This paper describes the modeling approach used to simulate the transient behavior of a salinity gradient solar pond. A system of finite difference equations are used to generate the time dependent temperature and salinity profiles within the pond. The stability of the pond, as determined by the capacity of the resulting salinity profile to suppress thermal convection within the primary gradient region of the pond, is continually monitored and when necessary adjustments are made to the thickness of the gradient zone. Results of the model are then compared to measurements taken during two representative seasonal periods at the University of Texas at El Paso's (UTEP's) research solar pond.
Ji, Kun; Lee, Changsuk; Janesko, Benjamin G; Simanek, Eric E
2015-08-03
Condensation of a hydrazine-substituted s-triazine with an aldehyde or ketone yields an equivalent to the widely used, acid-labile acyl hydrazone. Hydrolysis of these hydrazones using a formaldehyde trap as monitored using HPLC reveals that triazine-substituted hydrazones are more labile than acetyl hydrazones at pH>5. The reactivity trends mirror that of the corresponding acetyl hydrazones, with hydrolysis rates increasing along the series (aromatic aldehyde
Hsu, M C; Hsu, P W
1992-01-01
A reversed-phase column liquid chromatographic method was developed for the assay of amoxicillin and its preparations. The linear calibration range was 0.2 to 2.0 mg/ml (r = 0.9998), and recoveries were generally greater than 99%. The high-performance liquid chromatographic assay results were compared with those obtained from a microbiological assay of bulk drug substance and capsule, injection, and granule formulations containing amoxicillin and degraded amoxicillin. At the 99% confidence level, no significant intermethod differences were noted for the paired results. Commercial formulations were also analyzed, and the results obtained by the proposed method closely agreed with those found by the microbiological method. The results indicated that the proposed method is a suitable substitute for the microbiological method for assays and stability studies of amoxicillin preparations. PMID:1416827
From convection rolls to finger convection in double-diffusive turbulence
Verzicco, Roberto; Lohse, Detlef
2016-01-01
Double-diffusive convection (DDC), which is the buoyancy-driven flow with fluid density depending on two scalar components, is ubiquitous in many natural and engineering environments. Of great interests are scalars' transfer rate and flow structures. Here we systematically investigate DDC flow between two horizontal plates, driven by an unstable salinity gradient and stabilized by a temperature gradient. Counterintuitively, when increasing the stabilizing temperature gradient, the salinity flux first increases, even though the velocity monotonically decreases, before it finally breaks down to the purely diffusive value. The enhanced salinity transport is traced back to a transition in the overall flow pattern, namely from large-scale convection rolls to well-organized vertically oriented salt fingers. We also show and explain that the unifying theory of thermal convection originally developed by Grossmann and Lohse for Rayleigh–Bénard convection can be directly applied to DDC flow for a wide range of control parameters (Lewis number and density ratio), including those which cover the common values relevant for ocean flows. PMID:26699474
Bellur Atici, Esen; Yazar, Yücel; Ağtaş, Çağan; Ridvanoğlu, Nurten; Karlığa, Bekir
2017-03-20
Antibacterial combinations consisting of the semisynthetic antibiotic amoxicillin (amox) and the β-lactamase inhibitor potassium clavulanate (clav) are commonly used and several chromatographic methods were reported for their quantification in mixtures. In the present work, single HPLC method for related substances analyses of amoxicillin and potassium clavulanate mixtures was developed and validated according to international conference on harmonization (ICH) guidelines. Eighteen amoxicillin and six potassium clavulanate impurities were successfully separated from each other by using triple gradient elution using a Thermo Hypersil Zorbax BDS C18 (250 mm×4.6mm, 3μm) column with 50μL injection volumes at a wavelength of 215nm. Commercially unavailable impurities were formed by degradation of amoxicillin and potassium clavulanate, identified by LC-MS studies and used during analytical method development and validation studies. Also, process related amoxicillin impurity-P was synthesized and characterized by using nuclear magnetic resonance (NMR) and mass spectroscopy (MS) for the first time. As complementary of this work, an assay method for amoxicillin and potassium clavulanate mixtures was developed and validated; stress-testing and stability studies of amox/clav mixtures was carried out under specified conditions according to ICH and analyzed by using validated stability-indicating assay and related substances methods. Copyright © 2016 Elsevier B.V. All rights reserved.
Three-dimensional hydrodynamic modelling study of reverse estuarine circulation: Kuwait Bay.
Alosairi, Y; Pokavanich, T; Alsulaiman, N
2018-02-01
Hydrodynamics and associated environmental processes have always been of major concern to coastal-dependent countries, such as Kuwait. This is due to the environmental impact that accompanies the economic and commercial activities along the coastal areas. In the current study, a three-dimensional numerical model is utilized to unveil the main dynamic and physical properties of Kuwait Bay during the critical season. The model performance over the summer months (June, July and August 2012) is assessed against comprehensive field measurements of water levels, velocity, temperature and salinity data before using the model to describe the circulation as driven by tides, gravitational convection and winds. The results showed that the baroclinic conditions in the Bay are mainly determined by the horizontal salinity gradient and to much less extent temperature gradient. The gradients stretched over the southern coast of the Bay where dense water is found at the inner and enclosed areas, while relatively lighter waters are found near the mouth of the Bay. This gradient imposed a reversed estuarine circulation at the main axis of the Bay, particularly during neap tides when landward flow near the surface and seaward flow near the bed are most evident. The results also revealed that the shallow areas, including Sulaibikhat and Jahra Bays, are well mixed and generally flow in the counter-clockwise direction. Clockwise circulations dominated the northern portion of the Bay, forming a sort of large eddy, while turbulent fields associated with tidal currents were localized near the headlands. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Harp, D. R.; Ortiz, J. P.; Pandey, S.; Karra, S.; Viswanathan, H. S.; Stauffer, P. H.; Anderson, D. N.; Bradley, C. R.
2017-12-01
In unsaturated fractured media, the rate of gas transport is much greater than liquid transport in many applications (e.g., soil vapor extraction operations, methane leaks from hydraulic fracking, shallow CO2 transport from geologic sequestration operations, and later-time radionuclide gas transport from underground nuclear explosions). However, the relatively immobile pore water can inhibit or promote gas transport for soluble constituents by providing storage. In scenarios with constant pressure gradients, the gas transport will be retarded. In scenarios with reversing pressure gradients (i.e. barometric pressure variations) pore water storage can enhance gas transport by providing a ratcheting mechanism. Recognizing the computational efficiency that can be gained using a single-phase model and the necessity of considering pore water storage, we develop a Richard's solution approach that includes kinetic dissolution/volatilization of constituents. Henry's Law governs the equilibrium gaseous/aqueous phase partitioning in the approach. The approach is implemented in a development branch of the PFLOTRAN simulator. We verify the approach with analytical solutions of: (1) 1D gas diffusion, (2) 1D gas advection, (3) sinusoidal barometric pumping of a fracture, and (4) gas transport along a fracture with uniform flow and diffusive walls. We demonstrate the retardation of gas transport in cases with constant pressure gradients and the enhancement of gas transport with reversing pressure gradients. The figure presents the verification of our approach to the analytical solution of barometric pumping of a fracture from Nilson et al (1991) where the x-axis "Horizontal axis" is the distance into the matrix block from the fracture.
NASA Astrophysics Data System (ADS)
Harp, D. R.; Ortiz, J. P.; Pandey, S.; Karra, S.; Viswanathan, H. S.; Stauffer, P. H.; Anderson, D. N.; Bradley, C. R.
2016-12-01
In unsaturated fractured media, the rate of gas transport is much greater than liquid transport in many applications (e.g., soil vapor extraction operations, methane leaks from hydraulic fracking, shallow CO2 transport from geologic sequestration operations, and later-time radionuclide gas transport from underground nuclear explosions). However, the relatively immobile pore water can inhibit or promote gas transport for soluble constituents by providing storage. In scenarios with constant pressure gradients, the gas transport will be retarded. In scenarios with reversing pressure gradients (i.e. barometric pressure variations) pore water storage can enhance gas transport by providing a ratcheting mechanism. Recognizing the computational efficiency that can be gained using a single-phase model and the necessity of considering pore water storage, we develop a Richard's solution approach that includes kinetic dissolution/volatilization of constituents. Henry's Law governs the equilibrium gaseous/aqueous phase partitioning in the approach. The approach is implemented in a development branch of the PFLOTRAN simulator. We verify the approach with analytical solutions of: (1) 1D gas diffusion, (2) 1D gas advection, (3) sinusoidal barometric pumping of a fracture, and (4) gas transport along a fracture with uniform flow and diffusive walls. We demonstrate the retardation of gas transport in cases with constant pressure gradients and the enhancement of gas transport with reversing pressure gradients. The figure presents the verification of our approach to the analytical solution of barometric pumping of a fracture from Nilson et al (1991) where the x-axis "Horizontal axis" is the distance into the matrix block from the fracture.
Hybrid High-Order methods for finite deformations of hyperelastic materials
NASA Astrophysics Data System (ADS)
Abbas, Mickaël; Ern, Alexandre; Pignet, Nicolas
2018-01-01
We devise and evaluate numerically Hybrid High-Order (HHO) methods for hyperelastic materials undergoing finite deformations. The HHO methods use as discrete unknowns piecewise polynomials of order k≥1 on the mesh skeleton, together with cell-based polynomials that can be eliminated locally by static condensation. The discrete problem is written as the minimization of a broken nonlinear elastic energy where a local reconstruction of the displacement gradient is used. Two HHO methods are considered: a stabilized method where the gradient is reconstructed as a tensor-valued polynomial of order k and a stabilization is added to the discrete energy functional, and an unstabilized method which reconstructs a stable higher-order gradient and circumvents the need for stabilization. Both methods satisfy the principle of virtual work locally with equilibrated tractions. We present a numerical study of the two HHO methods on test cases with known solution and on more challenging three-dimensional test cases including finite deformations with strong shear layers and cavitating voids. We assess the computational efficiency of both methods, and we compare our results to those obtained with an industrial software using conforming finite elements and to results from the literature. The two HHO methods exhibit robust behavior in the quasi-incompressible regime.
Shi, F.; Hanes, D.M.; Kirby, J.T.; Erikson, L.; Barnard, P.; Eshleman, J.
2011-01-01
The nearshore circulation induced by a focused pattern of surface gravity waves is studied at a beach adjacent to a major inlet with a large ebb tidal shoal. Using a coupled wave and wave-averaged nearshore circulation model, it is found that the nearshore circulation is significantly affected by the heterogeneous wave patterns caused by wave refraction over the ebb tidal shoal. The model is used to predict waves and currents during field experiments conducted near the mouth of San Francisco Bay and nearby Ocean Beach. The field measurements indicate strong spatial variations in current magnitude and direction and in wave height and direction along Ocean Beach and across the ebb tidal shoal. Numerical simulations suggest that wave refraction over the ebb tidal shoal causes wave focusing toward a narrow region at Ocean Beach. Due to the resulting spatial variation in nearshore wave height, wave-induced setup exhibits a strong alongshore nonuniformity, resulting in a dramatic change in the pressure field compared to a simulation with only tidal forcing. The analysis of momentum balances inside the surf zone shows that, under wave conditions with intensive wave focusing, the alongshore pressure gradient associated with alongshore nonuniform wave setup can be a dominant force driving circulation, inducing heterogeneous alongshore currents. Pressure-gradient- forced alongshore currents can exhibit flow reversals and flow convergence or divergence, in contrast to the uniform alongshore currents typically caused by tides or homogeneous waves.