Development of Modern Methods for Determination of Stabilizers in Propellants
1996-04-01
powder will! . gtve information Jbout the history of this powder and an indication of its future: usefulness. In othdrs words, the determination of...been excluded in Tables I and II. According to Table I, in order to develop an HPLC method for DPA-stabilized powders , the products that should be... powders were determined by each country using its own HPLC method . The results are given in Table XVI. As indicated, the agreement between the two
El-Fatatry, Hamed M; Mabrouk, Mokhtar M; Hewala, Ismail I; Emam, Ehab H
2014-08-01
Two selective stability-indicating HPLC methods are described for determination of rabeprazole sodium (RZ)-mosapride citrate (MR) and RZ-itopride hydrochloride (IO) mixtures in the presence of their ICH-stress formed degradation products. Separations were achieved on X-Bridge C18 column using two mobile phases: the first for RZ-MR mixture consisted of acetonitrile: 0.025 M KH 2 PO 4 solution: TEA (30:69:1 v/v; pH 7.0); the second for RZ-IO mixture was at ratio of 25:74:1 (v/v; pH 9.25). The detection wavelength was 283 nm. The two methods were validated and validation acceptance criteria were met in all cases. Peak purity testing using contrast angle theory, relative absorbance and log A versus the wavelengths plots were presented. The % recoveries of the intact drugs were between 99.1% and 102.2% with RSD% values less than 1.6%. Application of the proposed HPLC methods indicated that the methods could be adopted to follow the stability of their formulations.
Beasley, Christopher A; Shaw, Jessica; Zhao, Zack; Reed, Robert A
2005-03-09
The purpose of the research described herein was to develop and validate a stability-indicating HPLC method for lisinopril, lisinopril degradation product (DKP), methyl paraben and propyl paraben in a lisinopril extemporaneous formulation. The method developed in this report is selective for the components listed above, in the presence of the complex and chromatographically rich matrix presented by the Bicitra and Ora-Sweet SF formulation diluents. The method was also shown to have adequate sensitivity with a detection limit of 0.0075 microg/mL (0.03% of lisinopril method concentration). The validation elements investigated showed that the method has acceptable specificity, recovery, linearity, solution stability, and method precision. Acceptable robustness indicates that the assay method remains unaffected by small but deliberate variations, which are described in ICH Q2A and Q2B guidelines.
Patel, Sejal K; Patel, Natvarlal J
2010-01-01
This paper describes the development of a stability-indicating RP-HPLC method for the determination of atomoxetine hydrochloride (ATX) in the presence of its degradation products generated from forced decomposition studies. The drug substance was subjected to stress conditions of acid, base, oxidation, wet heat, dry heat, and photodegradation. In stability tests, the drug was susceptible to acid, base, oxidation, and dry and wet heat degradation. It was found to be stable under the photolytic conditions tested. The drug was successfully separated from the degradation products formed under stress conditions on a Phenomenex C18 column (250 x 4.6 mm id, 5 microm particle size) by using acetonitrile-methanol-0.032 M ammonium acetate (55 + 05 + 40, v/v/v) as the mobile phase at 1.0 mL/min and 40 degrees C. Photodiode array detection at 275 nm was used for quantitation after RP-HPLC over the concentration range of 0.5-5 microg/mL with a mean recovery of 100.8 +/- 0.4% for ATX. Statistical analysis demonstrated that the method is repeatable, specific, and accurate for the estimation of ATX. Because the method effectively separates the drug from its degradation products, it can be used as a stability-indicating method.
Chhalotiya, Usmangani K.; Bhatt, Kashyap K.; Shah, Dimal A.; Baldania, Sunil L.
2010-01-01
The objective of the present work was to develop a stability-indicating RP-HPLC method for duloxetine hydrochloride (DUL) in the presence of its degradation products generated from forced decomposition studies. The drug substance was found to be susceptible to stress conditions of acid hydrolysis. The drug was found to be stable to dry heat, photodegradation, oxidation and basic condition attempted. Successful separation of the drug from the degradation products formed under acidic stress conditions was achieved on a Hypersil C-18 column (250 mm × 4.6 mm id, 5μm particle size) using acetonitrile: 0.01 M potassium dihydrogen phosphate buffer (pH 5.4 adjusted with orthophosphoric acid) (50:50, v/v) as the mobile phase at a flow rate of 1.0 ml/min. Quantification was achieved with photodiode array detection at 229 nm over the concentration range 1–25 μg/ml with range of recovery 99.8–101.3 % for DUL by the RP-HPLC method. Statistical analysis proved the method to be repeatable, specific, and accurate for estimation of DUL. It can be used as a stability-indicating method due to its effective separation of the drug from its degradation products, PMID:21179321
Ahmed, Amal B; Abdelrahman, Maha M; Abdelwahab, Nada S; Salama, Fathy M
2016-11-01
Newly established TLC-densitometric and RP-HPLC methods were developed and validated for the simultaneous determination of Piracetam (PIR) and Vincamine (VINC) in their pharmaceutical formulation and in the presence of PIR and VINC degradation products, PD and VD, respectively. The proposed TLC-densitometric method is based on the separation and quantitation of the studied components using a developing system that consists of chloroform-methanol-glacial acetic acid-triethylamine (8 + 2 + 0.1 + 0.1, v/v/v/v) on TLC silica gel 60 F254 plates, followed by densitometric scanning at 230 nm. On the other hand, the developed RP-HPLC method is based on the separation of the studied components using an isocratic elution of 0.05 M KH2PO4 (containing 0.1% triethylamine adjusted to pH 3 with orthophosphoric acid)-methanol (95 + 5, v/v) on a C8 column at a flow rate of 1 mL/min with diode-array detection at 230 nm. The developed methods were validated according to International Conference on Harmonization guidelines and demonstrated good accuracy and precision. Moreover, the developed TLC-densitometric and RP-HPLC methods are suitable as stability-indicating assay methods for the simultaneous determination of PD and VD either in bulk powder or pharmaceutical formulation. The results were statistically compared with those obtained by the reported RP-HPLC method using t- and F-tests.
Stability of extemporaneously prepared preservative-free prochlorperazine nasal spray.
Yellepeddi, Venkata K
2018-01-01
The stability of an extemporaneously prepared preservative-free prochlorperazine 5-mg/mL nasal spray was evaluated. The preservative-free prochlorperazine nasal spray was prepared by adding 250 mg of prochlorperazine edisylate to 50 mL of citrate buffer in a low-density polyethylene nasal spray bottle. A stability-indicating high-performance liquid chromatography (HPLC) method was developed and validated using the major degradant prochlorperazine sulfoxide and by performing forced-degradation studies. For chemical stability studies, 3 100-μL samples of the preservative-free prochlorperazine from 5 nasal spray bottles stored at room temperature were collected at days 0, 20, 30, 45, and 60 and were assayed in triplicate using the stability-indicating HPLC method. Microbiological testing involved antimicrobial effectiveness testing based on United States Pharmacopeia ( USP ) chapter 51 and quantitative microbiological enumeration of aerobic bacteria, yeasts, and mold based on USP chapter 61. Samples for microbiological testing were collected at days 0, 30, and 60. The stability-indicating HPLC method clearly identified the degradation product prochlorperazine sulfoxide without interference from prochlorperazine. All tested solutions retained over 90% of the initial prochlorperazine concentration for the 60-day study period. There were no detectable changes in color, pH, and viscosity in any sample. There was no growth of bacteria, yeast, and mold for 60 days in all samples tested. An extemporaneously prepared preservative-free nasal spray solution of prochlorperazine edisylate 5 mg/mL was physically, chemically, and microbiologically stable for 60 days when stored at room temperature in low-density polyethylene bottles. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Byrne, Jonathan; Velasco-Torrijos, Trinidad; Reinhardt, Robert
2014-08-05
A novel stability-indicating reversed phase high performance liquid chromatographic (RP-HPLC) method for the simultaneous assay of betamethasone-17-valerate, fusidic acid and potassium sorbate as well as methyl- and propylparaben in a topical cream preparation has been developed. A 100mm×3.0mm ID. Ascentis Express C18 column maintained at 30°C and UV detection at 240nm were used. A gradient programme was employed at a flow-rate of 0.75ml/min. Mobile phase A comprised of an 83:17 (v/v) mixture of acetonitrile and methanol and mobile phase B of a 10g/l solution of 85% phosphoric acid in purified water. The method has been validated according to current International Conference on Harmonisation (ICH) guidelines and applied during formulation development and stability studies. The procedure has been shown to be stability-indicating for the topical cream. Copyright © 2014 Elsevier B.V. All rights reserved.
Rao, Kareti Srinivasa; Kumar, Keshar Nargesh; Joydeep, Datta
2011-01-01
A simple stability indicating reversed-phase HPLC method was developed and subsequently validated for estimation of Cefpirome sulphate (CPS) present in pharmaceutical dosage forms. The proposed RP-HPLC method utilizes a LiChroCART-Lichrosphere100, C18 RP column (250 mm × 4mm × 5 μm) in an isocratic separation mode with mobile phase consisting of methanol and water in the proportion of 50:50 % (v/v), at a flow rate 1ml/min, and the effluent was monitored at 270 nm. The retention time of CPS was 2.733 min and its formulation was exposed to acidic, alkaline, photolytic, thermal and oxidative stress conditions, and the stressed samples were analyzed by the proposed method. The described method was linear over a range of 0.5-200μg/ml. The percentage recovery was 99.46. F-test and t-test at 95% confidence level were used to check the intermediate precision data obtained under different experimental setups; the calculated value was found to be less than the critical value.
NASA Astrophysics Data System (ADS)
Gouda, Ayman A.; Hashem, Hisham; Jira, Thomas
2014-09-01
Simple, rapid and accurate high performance liquid chromatographic (HPLC) and spectrophotometric methods are described for determination of antihistaminic acrivastine in capsules. The first method (method A) is based on accurate, sensitive and stability indicating chromatographic separation method. Chromolith® Performance RP-18e column, a relatively new packing material consisting of monolithic rods of highly porous silica, was used as stationary phase applying isocratic binary mobile phase of ACN and 25 mM NaH2PO4 pH 4.0 in the ratio of 22.5:77.5 at flow rate of 5.0 mL/min and 40 °C. A diode array detector was used at 254 nm for detection. The elution time of acrivastine was found to be 2.080 ± 0.032. The second and third methods (methods B and C) are based on the oxidation of acrivastine with excess N-bromosuccinimide (NBS) and determination of the unconsumed NBS with, metol-sulphanilic acid (λmax: 520 nm) or amaranth dye (λmax: 530 nm). The reacted oxidant corresponds to the drug content. Beer’s law is obeyed over the concentration range 1.563-50, 2.0-20 and 1.0-10 μg mL-1 for methods A, B and C, respectively. The limits of detection and quantitation were 0.40, 0.292 and 0.113 μg mL-1 and 0.782, 0.973 and 0.376 μg mL-1 for methods A, B and C, respectively. The HPLC method was validated for system suitability, linearity, precision, limits of detection and quantitation, specificity, stability and robustness. Stability tests were done through exposure of the analyte solution for four different stress conditions and the results indicate no interference of degradants with HPLC-method. The proposed methods was favorably applied for determination of acrivastine in capsules formulation. Statistical comparison of the obtained results from the analysis of the studied drug to those of the reported method using t- and F-tests showed no significant difference between them.
Shah, Umang; Patel, Shraddha; Raval, Manan
2018-01-01
High performance liquid chromatography is an integral analytical tool in assessing drug product stability. HPLC methods should be able to separate, detect, and quantify the various drug-related degradants that can form on storage or manufacturing, plus detect any drug-related impurities that may be introduced during synthesis. A simple, economic, selective, precise, and stability-indicating HPLC method has been developed and validated for analysis of Rifampicin (RIFA) and Piperine (PIPE) in bulk drug and in the formulation. Reversed-phase chromatography was performed on a C18 column with Buffer (Potassium Dihydrogen Orthophosphate) pH 6.5 and Acetonitrile, 30:70), (%, v/v), as mobile phase at a flow rate of 1 mL min-1. The detection was performed at 341 nm and sharp peaks were obtained for RIFA and PIPE at retention time of 3.3 ± 0.01 min and 5.9 ± 0.01 min, respectively. The detection limits were found to be 2.385 ng/ml and 0.107 ng/ml and quantification limits were found to be 7.228ng/ml and 0.325ng/ml for RIFA and PIPE, respectively. The method was validated for accuracy, precision, reproducibility, specificity, robustness, and detection and quantification limits, in accordance with ICH guidelines. Stress study was performed on RIFA and PIPE and it was found that these degraded sufficiently in all applied chemical and physical conditions. Thus, the developed RP-HPLC method was found to be suitable for the determination of both the drugs in bulk as well as stability samples of capsule containing various excipients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Souri, Effat; Zargarpoor, Mohammad; Mottaghi, Siavash; Ahmadkhaniha, Reza; Kebriaeezadeh, Abbas
2015-01-01
Fingolimod is an immunosuppressive agent which is used for the prophylaxis of organ transplantation rejection or multiple sclerosis treatment. In this study, systematic forced degradation studies on fingolimod bulk powder were performed to develop a stability-indicating HPLC method. Separation of fingolimod and its degradation products was achieved on a Nova-Pak C8 column. The mobile phase was a mixture of potassium dihydrogenphosphate 50 mM (pH 3.0) and acetonitrile (45:55, v/v) at a flow rate of 1 ml/min. The proposed method was linear in the range of 0.125-20 μg mL(-1). The within-day and between-day coefficients of variation were in the range of 0.6-1.2%. The developed method was successfully applied for the determination of the fingolimod amount in pharmaceutical dosage forms.
Syed, Haroon Khalid; Liew, Kai Bin; Loh, Gabriel Onn Kit; Peh, Kok Khiang
2015-03-01
A stability-indicating HPLC-UV method for the determination of curcumin in Curcuma longa extract and emulsion was developed. The system suitability parameters, theoretical plates (N), tailing factor (T), capacity factor (K'), height equivalent of a theoretical plate (H) and resolution (Rs) were calculated. Stress degradation studies (acid, base, oxidation, heat and UV light) of curcumin were performed in emulsion. It was found that N>6500, T<1.1, K' was 2.68-3.75, HETP about 37 and Rs was 1.8. The method was linear from 2 to 200 μg/mL with a correlation coefficient of 0.9998. The intra-day precision and accuracy for curcumin were ⩽0.87% and ⩽2.0%, while the inter-day precision and accuracy values were ⩽2.1% and ⩽-1.92. Curcumin degraded in emulsion under acid, alkali and UV light. In conclusion, the stability-indicating method could be employed to determine curcumin in bulk and emulsions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Souri, Effat; Zargarpoor, Mohammad; Mottaghi, Siavash; Ahmadkhaniha, Reza; Kebriaeezadeh, Abbas
2015-01-01
Fingolimod is an immunosuppressive agent which is used for the prophylaxis of organ transplantation rejection or multiple sclerosis treatment. In this study, systematic forced degradation studies on fingolimod bulk powder were performed to develop a stability-indicating HPLC method. Separation of fingolimod and its degradation products was achieved on a Nova-Pak C8 column. The mobile phase was a mixture of potassium dihydrogenphosphate 50 mM (pH 3.0) and acetonitrile (45:55, v/v) at a flow rate of 1 ml/min. The proposed method was linear in the range of 0.125–20 μg mL−1. The within-day and between-day coefficients of variation were in the range of 0.6–1.2%. The developed method was successfully applied for the determination of the fingolimod amount in pharmaceutical dosage forms. PMID:26839803
In Vitro Evaluation of Eslicarbazepine Delivery via Enteral Feeding Tubes.
Reindel, Kristin; Zhao, Fang; Hughes, Susan; Dave, Vivek S
2017-12-01
Purpose: The feasibility of preparing an eslicarbazepine acetate suspension using Aptiom tablets for administration via enteral feeding tubes was evaluated. Methods: Eslicarbazepine acetate suspension (40 mg/mL) was prepared using Aptiom tablets after optimizing the tablet crushing methods and the vehicle composition. A stability-indicating high-performance liquid chromatography (HPLC) method was developed to monitor the eslicarbazepine stability in the prepared suspension. Three enteric feeding tubes of various composition and dimensions were evaluated for the delivery of the suspensions. The suspension was evaluated for the physical and chemical stability for 48 hours. Results: The reproducibility and consistency of particle size reduction was found to be best with standard mortar/pestle. The viscosity analysis and physical stability studies showed that ORA-Plus:water (50:50 v/v) was optimal for suspending ability and flowability of suspension through the tubes. The developed HPLC method was found to be stability indicating and suitable for the assay of eslicarbazepine acetate in the prepared suspension. The eslicarbazepine concentrations in separately prepared suspensions were within acceptable range (±3%), indicating accuracy and reproducibility of the procedure. The eslicarbazepine concentrations in suspensions before and after delivery through the enteric feeding tubes were within acceptable range (±4%), indicating absence of any physical/chemical interactions of eslicarbazepine with the tubes and a successful delivery of eslicarbazepine dosage via enteric feeding tubes. The stability study results showed that eslicarbazepine concentration in the suspension remained unchanged when stored at room temperature for 48 hours. Conclusion: The study presents a convenient procedure for the preparation of a stable suspension of eslicarbazepine acetate (40 mg/mL) using Aptiom tablets, for administration via enteral feeding tubes.
Peraman, Ramalingam; Nayakanti, Devanna; Dugga, Hari Hara Theja; Kodikonda, Sudhakara
2013-01-01
A validated stability-indicating RP-HPLC method for etofenamate (ETF) was developed by separating its degradation products on a C18 (250 mm × 4.6 mm 5 μm) Qualisil BDS column using a phosphate buffer (pH-adjusted to 6.0 with orthophosphoric acid) and methanol in the ratio of 20:80 % v/v as the mobile phase at a flow rate of 1.0 mL/min. The column effluents were monitored by a photodiode array detector set at 286 nm. The method was validated in terms of specificity, linearity, accuracy, precision, detection limit, quantification limit, and robustness. Forced degradation of etofenamate was carried out under acidic, basic, thermal, photo, and peroxide conditions and the major degradation products of acidic and basic degradation were isolated and characterized by 1H-NMR, 13C-NMR, and mass spectral studies. The mass balance of the method varied between 92–99%. PMID:24482770
Sadeghi, Fahimeh; Navidpour, Latifeh; Bayat, Sima; Afshar, Minoo
2013-01-01
A green, simple, and stability-indicating RP-HPLC method was developed for the determination of diltiazem in topical preparations. The separation was based on a C18 analytical column using a mobile phase consisted of ethanol: phosphoric acid solution (pH = 2.5) (35 : 65, v/v). Column temperature was set at 50°C and quantitation was achieved with UV detection at 240 nm. In forced degradation studies, the drug was subjected to oxidation, hydrolysis, photolysis, and heat. The method was validated for specificity, selectivity, linearity, precision, accuracy, and robustness. The applied procedure was found to be linear in diltiazem concentration range of 0.5–50 μg/mL (r 2 = 0.9996). Precision was evaluated by replicate analysis in which % relative standard deviation (RSD) values for areas were found below 2.0. The recoveries obtained (99.25%–101.66%) ensured the accuracy of the developed method. The degradation products as well as the pharmaceutical excipients were well resolved from the pure drug. The expanded uncertainty (5.63%) of the method was also estimated from method validation data. Accordingly, the proposed validated and sustainable procedure was proved to be suitable for routine analyzing and stability studies of diltiazem in pharmaceutical preparations. PMID:24163778
Souri, Effat; Donyayi, Hassan; Khaniha, Reza Ahmad; Barazandeh Tehrani, Maliheh
2015-01-01
Fluvoxamine maleate is a selective serotonin reuptake inhibitor, which is used for the treatment of different types of depressive disorders. In the present study, a stability indicating HPLC method was developed and validated for the determination of fluvoxamine maleate. The chromatographic separation was carried out using a Nova-Pak CN column and a mixture of K2HPO4 50 mM (pH 7.0) and acetonitrile (60: 40, v/v) as the mobile phase. Target compounds were detected using a UV detector set at 235 nm. The developed method was linear over the concentration range of 1-80 μg/ml with acceptable precision (CV values < 2.0%) and accuracy (error values < 1.6%). The degradation studies showed that fluvoxamine maleate is relatively unstable under acidic, basic and oxidative conditions and also when exposed to UV radiation. On the other hand, the bulk powder of fluvoxamine maleate was relatively stable when exposed to visible light or heat. The proposed method was successfully applied for the determination of active ingredient of fluvoxamine dosage form without any interference from tablet excipients.
Rifaximin Stability: A Look at UV, IR, HPLC, and Turbidimetry Methods.
Kogawa, Ana Carolina; Salgado, Hérida Regina Nunes
2018-03-01
The study of the stability of medicines is mandated by the International Conference on Harmonization and the World Health Organization. Rifaximin, an antimicrobial marketed in the form of tablets, has no record of stability studies. Thus, the objective of the present work was to investigate the behavior and stability of rifaximin tablets for 6 months under simultaneous conditions of temperature and humidity by UV, IR, HPLC, and turbidimetry techniques. After 6 months of stability study, rifaximin tablets were shown to obey zero-order kinetics when analyzed by physicochemical methods and second-order kinetics when analyzed by a microbiological method. However, the UV method was not suitable for the evaluation of rifaximin. IR, HPLC, and turbidimetry methods can already be used to evaluate the stability of rifaximin tablets. It is important to analyze products with more than one type of method before releasing results mainly in the case of antimicrobial products in which the association of physicochemical and microbiological techniques must be a rule. Rifaximin tablets can be considered stable after 6 months under conditions of 40 ± 2°C and 75 ± 5% relative humidity.
Kaur, Jaspreet; Srinivasan, K. K.; Joseph, Alex; Gupta, Abhishek; Singh, Yogendra; Srinivas, Kona S.; Jain, Garima
2010-01-01
Objective: Venlafaxine,hydrochloride is a structurally novel phenethyl bicyclic antidepressant, and is usually categorized as a serotonin–norepinephrine reuptake inhibitor (SNRI) but it has been referred to as a serotonin–norepinephrine–dopamine reuptake inhibitor. It inhibits the reuptake of dopamine. Venlafaxine HCL is widely prescribed in the form of sustained release formulations. In the current article we are reporting the development and validation of a fast and simple stability indicating, isocratic high performance liquid chromatographic (HPLC) method for the determination of venlafaxine hydrochloride in sustained release formulations. Materials and Methods: The quantitative determination of venlafaxine hydrochloride was performed on a Kromasil C18 analytical column (250 × 4.6 mm i.d., 5 μm particle size) with 0.01 M phosphate buffer (pH 4.5): methanol (40: 60) as a mobile phase, at a flow rate of 1.0 ml/min. For HPLC methods, UV detection was made at 225 nm. Results: During method validation, parameters such as precision, linearity, accuracy, stability, limit of quantification and detection and specificity were evaluated, which remained within acceptable limits. Conclusions: The method has been successfully applied for the quantification and dissolution profiling of Venlafaxine HCL in sustained release formulation. The method presents a simple and reliable solution for the routine quantitative analysis of Venlafaxine HCL. PMID:21814426
Bellur Atici, Esen; Yazar, Yücel; Ağtaş, Çağan; Ridvanoğlu, Nurten; Karlığa, Bekir
2017-03-20
Antibacterial combinations consisting of the semisynthetic antibiotic amoxicillin (amox) and the β-lactamase inhibitor potassium clavulanate (clav) are commonly used and several chromatographic methods were reported for their quantification in mixtures. In the present work, single HPLC method for related substances analyses of amoxicillin and potassium clavulanate mixtures was developed and validated according to international conference on harmonization (ICH) guidelines. Eighteen amoxicillin and six potassium clavulanate impurities were successfully separated from each other by using triple gradient elution using a Thermo Hypersil Zorbax BDS C18 (250 mm×4.6mm, 3μm) column with 50μL injection volumes at a wavelength of 215nm. Commercially unavailable impurities were formed by degradation of amoxicillin and potassium clavulanate, identified by LC-MS studies and used during analytical method development and validation studies. Also, process related amoxicillin impurity-P was synthesized and characterized by using nuclear magnetic resonance (NMR) and mass spectroscopy (MS) for the first time. As complementary of this work, an assay method for amoxicillin and potassium clavulanate mixtures was developed and validated; stress-testing and stability studies of amox/clav mixtures was carried out under specified conditions according to ICH and analyzed by using validated stability-indicating assay and related substances methods. Copyright © 2016 Elsevier B.V. All rights reserved.
[Spectrophotometric and HPLC evaluation of ceftazidime stability].
Palade, B; Cioroiu, B; Lazăr, Doina; Corciovă, Andreia; Lazăr, M I
2010-01-01
In this paper we followed up the stability of ceftazidime, raw material used in drug industry. Matherials and methods: We used three spectrophotometric methods based on ceftazidime property to form complexes with p-chloranilic acid (ac. p-CA), 3-methylbenzothiazolin-2-on hydrazone (MBTH) and N-(1-naphtil) etilendiamine (NEDA) and a chromatographic method (HPLC). Our results revealed that the substances analyzed maintained minimum content allowable.
Bianchi, Sara E; Teixeira, Helder F; Kaiser, Samuel; Ortega, George G; Schneider, Paulo Henrique; Bassani, Valquiria L
2016-05-01
Coumestrol is present in several species of the Fabaceae family widely distributed in plants. The estrogenic and antioxidant activities of this molecule show its potential as skin anti-aging agent. These characteristics reveal the interest in developing analytical methodology for permeation studies, as well as to know the stability of coumestrol identifying the major degradation products. Thus, the present study was designed, first, to develop and validate a versatile liquid chromatography (HPLC) method to quantify coumestrol in a hydrogel formulation in different porcine skin layers (stratum corneum, epidermis, and dermis) in permeation tests. In the stability-indicating test coumestrol samples were exposed to stress conditions: temperature, UVC light, oxidative, acid and alkaline media. The degradation products, as well as the constituents extracted from the hydrogel, adhesive tape or skin were not eluted in the retention time of the coumestrol. Hence, the HPLC method showed to be versatile, specific, accurate, precise and robust showing excellent performance for quantifying coumestrol in complex matrices involving skin permeation studies. Coumestrol recovery from porcine ear skin was found to be in the range of 97.07-107.28 μg/mL; the intra-day precision (repeatability) and intermediate precision (inter-day precision), respectively lower than 4.71% and 2.09%. The analysis using ultra-performance liquid chromatography coupled to a quadrupole time-of-flight high definition mass spectrometry detector (UPLC-QTOF/HDMS) suggest the MS fragmentation patterns and the chemical structure of the main degradation products. These results represent new and relevant findings for the development of coumestrol pharmaceutical and cosmetic products. Copyright © 2016 Elsevier B.V. All rights reserved.
Dunphy, Michael J; Sysel, Annette M; Lupica, Joseph A; Griffith, Kristie; Sherrod, Taylor; Bauer, Joseph A
2014-04-01
Nitrosylcobalamin (NO-Cbl), a novel vitamin B 12 analog and anti-tumor agent, functions as a biologic 'Trojan horse', utilizing the vitamin B 12 transcobalamin II transport protein and cell surface receptor to specifically target cancer cells. a stability-indicating HPLC method was developed for the detection of NO-Cbl during forced degradation studies. This method utilized an ascentis ® RP-amide (150 mm × 4.6 mm, 5 μm) column at 35 °C with a mobile phase (1.0 mL min -1 ) combining a gradient of methanol and an acetate buffer at pH 6.0. Detection wavelengths of 450 and 254 nm were used to detect corrin and non-corrin-based products, respectively. NO-Cbl, synthesized from hydroxocobalamin and pure nitric oxide gas, was subjected to degradative stress conditions including oxidation, hydrolysis and thermal and radiant energy challenge. The method was validated by assessing linearity, accuracy, precision, detection and quantitation limits and robustness. The method was applied successfully for purity assessment of synthesized NO-Cbl and for the determination of NO-Cbl during kinetic studies in aqueous solution and in solid-state degradation assessments. This HPLC method is suitable for the separation of cobalamins in aqueous and methanolic solutions, for routine detection of NO-Cbl and for purity assessment of synthesized NO-Cbl. additionally, this method has potential application in identification and monitoring of diseases involving altered nitric oxide homeostasis where vitamin B 12 therapy is utilized to scavenge excess nitric oxide, subsequently resulting in the in vivo production of NO-Cbl.
Dunphy, Michael J.; Sysel, Annette M.; Lupica, Joseph A.; Griffith, Kristie; Sherrod, Taylor
2014-01-01
Nitrosylcobalamin (NO-Cbl), a novel vitamin B12 analog and anti-tumor agent, functions as a biologic ‘Trojan horse’, utilizing the vitamin B12 transcobalamin II transport protein and cell surface receptor to specifically target cancer cells. a stability-indicating HPLC method was developed for the detection of NO-Cbl during forced degradation studies. This method utilized an ascentis® RP-amide (150 mm × 4.6 mm, 5 μm) column at 35 °C with a mobile phase (1.0 mL min−1) combining a gradient of methanol and an acetate buffer at pH 6.0. Detection wavelengths of 450 and 254 nm were used to detect corrin and non-corrin-based products, respectively. NO-Cbl, synthesized from hydroxocobalamin and pure nitric oxide gas, was subjected to degradative stress conditions including oxidation, hydrolysis and thermal and radiant energy challenge. The method was validated by assessing linearity, accuracy, precision, detection and quantitation limits and robustness. The method was applied successfully for purity assessment of synthesized NO-Cbl and for the determination of NO-Cbl during kinetic studies in aqueous solution and in solid-state degradation assessments. This HPLC method is suitable for the separation of cobalamins in aqueous and methanolic solutions, for routine detection of NO-Cbl and for purity assessment of synthesized NO-Cbl. additionally, this method has potential application in identification and monitoring of diseases involving altered nitric oxide homeostasis where vitamin B12 therapy is utilized to scavenge excess nitric oxide, subsequently resulting in the in vivo production of NO-Cbl. PMID:24855323
Liu, Meiqiong; Wu, Youjiao; Huang, Shushi; Liu, Huagang; Feng, Jie
2018-02-23
Curcuma aromatica is used as a traditional Chinese medicine, and it is mainly distributed in Guangxi, China. In this study, 10 batches of C. aromatica were collected from different origins in Guangxi. The fingerprints were established by HPLC technique to investigate the quality stability of C. aromatica. The spectrum-effect relationship between HPLC fingerprints and hypolipidemic effect of C. aromatica was assessed by similarity analysis, gray relational analysis and multiple linear regression analysis. From the results, the similarity values between each batch of C. aromatica and reference fingerprint were >0.880, indicating the good quality stability of the 10 batches of C. aromatica. Twenty common peaks were selected as the fingerprints to evaluate the quality and hypolipidemic effect of C. aromatica. The results of spectrum-effect relationship showed that peaks 10, 18, 13, 15 and 17 in the fingerprints were closely related to hypolipidemic effect. This study successfully established the spectrum-effect relationship between HPLC fingerprints and hypolipidemic effect of C. aromatica, which provided methods for quality control and more effectively studies on bioactive compounds of C. aromatica. It could also provide a new simple and effective method for utilizing the fingerprints to optimize the Chinese prescription and develop traditional Chinese medicine. Copyright © 2018 John Wiley & Sons, Ltd.
Ortega, Raquel; Navas, Natalia; Salmerón, Antonio; Cabeza, José; Capitán-Vallvey, Luís F
2011-01-01
A stability-indicating HPLC method with diode array detection for the determination of paricalcitol, a synthetic vitamin D2 analog, was developed. Analytical parameters were studied according to International Conference on Harmonization guidelines. A C18 column (250 x 4.6 mm, 5 microm particle size) maintained at 25 degrees C was used as the stationary phase, and acetonitrile-water (70 + 30, v/v) as the mobile phase. Chromatograms were recorded at 250 nm. In forced degradation studies, the effects of acid, base, oxidation, temperature, and UV light were investigated and showed no interference with the drug peak. The method was found to be linear (r = 0.9989) at concentrations ranging from 0.6 to 10.0 mg/L paricalcitol, precise (repeatability and intermediate precision estimated as RSD less than 3.5%), accurate (recoveries higher than 95%), specific, and robust. The LOD and LOQ were 0.6 and 0.2 mg/L, respectively. The validated method was used for paricalcitol determination in a formal stability study of its pharmaceutical dosage form in preloaded syringes. The stability of a diluted solution of its pharmaceutical form in Viaflo bags was also tested. The results showed that paricalcitol was stable in preloaded syringes during a period of 30 days from preparation in the different storage conditions tested (room temperature without protection from daylight and 4.4 degrees C with protection from daylight). On the contrary, paricalcitol was quickly lost when stored in Viaflo bags by adsorption onto the walls of the container.
Jadhav, Sushant B; Reddy, P Sunil; Narayanan, Kalyanaraman L; Bhosale, Popatrao N
2017-06-27
The novel reverse phase-high performance liquid chromatography (RP-HPLC), stability indicating method was developed for determination of linagliptin (LGP) and its related substances in linagliptin and metformin HCl (MET HCl) tablets by implementing design of experiment to understand the critical method parameters and their relation with critical method attributes; to ensure robustness of the method. The separation of nine specified impurities was achieved with a Zorbax SB-Aq 250 × 4.6 mm, 5 µm column, using gradient elution and a detector wavelength of 225 nm, and validated in accordance with International Conference on Harmonization (ICH) guidelines and found to be accurate, precise, reproducible, robust, and specific . The drug was found to be degrading extensively in heat, humidity, basic, and oxidation conditions and was forming degradation products during stability studies. After slight modification in the buffer and the column, the same method was used for liquid chromatography-mass spectrometry (LC-MS) and ultra-performance liquid chromatography -time-of-flight/mass spectrometry UPLC-TOF/MS analysis, to identify m/z and fragmentation of maximum unspecified degradation products i.e., Impurity-VII ( 7 ), Impurity-VIII ( 8 ), and Impurity-IX ( 9 ) formed during stability studies. Based on the results, a degradation pathway for the drug has been proposed and synthesis of Impurity-VII ( 7 ) is also discussed to ensure an in-depth understanding of LGP and its related degradation products and optimum performance during the lifetime of the product.
Salman, D; Peron, J-M R; Goronga, T; Barton, S; Swinden, J; Nabhani-Gebara, S
2016-03-01
The aim of this study is to conduct a forced degradation study on ifosfamide under several stress conditions to investigate the robustness of the developed HPLC method. It also aims to provide further insight into the stability of ifosfamide and its degradation profile using both HPLC and NMR. Ifosfamide solutions (20mg/mL; n=15, 20mL) were stressed in triplicate by heating (70°C), under acidic (pH 1 & 4) and alkaline (pH 10 & 12) conditions. Samples were analysed periodically using HPLC and FT-NMR. Ifosfamide was most stable under weakly acidic conditions (pH 4). NMR results suggested that the mechanism of ifosfamide degradation involves the cleavage of the PN bond. For all stress conditions, HPLC was not able to detect ifosfamide degradation products that were detected by NMR. These results suggest that the developed HPLC method for ifosfamide did not detect the degradation products shown by NMR. It is possible that degradation products co-elute with ifosfamide, do not elute altogether or are not amenable to the detection method employed. Therefore, investigation of ifosfamide stability requires additional techniques that do not suffer from the aforementioned shortcomings. Copyright © 2015 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.
Fu, Qiang; Shou, Minshan; Chien, Dwight; Markovich, Robert; Rustum, Abu M
2010-02-05
Betamethasone (9alpha-fluoro-16beta-methylprednisolone) is one of the members of the corticosteriod family of active pharmaceutical ingredient (API), which is widely used as an anti-inflammatory agent and also as a starting material to manufacture various esters of betamethasone. A stability-indicating reverse-phase high performance liquid chromatography (RP-HPLC) method has been developed and validated which can separate and accurately quantitate low levels of 26 betamethasone related compounds. The stability-indicating capability of the method was demonstrated through adequate separation of all potential betamethasone related compounds from betamethasone and also from each other that are present in aged and stress degraded betamethasone stability samples. Chromatographic separation of betamethasone and its related compounds was achieved by using a gradient elution at a flow rate of 1.0mL/min on a ACE 3 C18 column (150mmx4.6mm, 3microm particle size, 100A pore size) at 40 degrees C. Mobile phase A of the gradient was 0.1% methanesulfonic acid in aqueous solution and mobile phase B was a mixture of tert-butanol and 1,4-dioxane (7:93, v/v). UV detection at 254nm was employed to monitor the analytes. For betamethasone 21-aldehyde, the QL and DL were 0.02% and 0.01% respectively. For betamethasone and the rest of the betamethasone related compounds, the QL and DL were 0.05% and 0.02%. The precision of betamethasone assay is 0.6% and the accuracy of betamethasone assay ranged from 98.1% to 99.9%.
Maia, Adriana M; Baby, André Rolim; Pinto, Claudinéia A S O; Yasaka, Wilson J; Suenaga, Eunice; Kaneko, Telma M; Velasco, Maria Valéria Robles
2006-09-28
Vitamin C exerts several functions on skin as collagen synthesis, depigmentant and antioxidant activity. Vitamin C is unstable in the presence of oxygen, luminosity, humidity, high temperatures and heavy metals, which presents a significant challenge to the development of cosmetic formulations. Therefore, the utilization of an effective antioxidant system is required to maintain the vitamin C stability. The purpose of this research work was to develop prototypes of cosmetic formulations, as O/W emulsion and extemporaneous aqueous gel, containing vitamin C and to evaluate the influence of sodium metabisulfite (SMB) and glutathione (GLT), as antioxidants, on the stability of the active substance. A HPLC stability-indicating method was developed and validated for this study and stability assays were performed in 90 and 26 days and storage conditions were 5.0+/-0.5, 24+/-2 and 40.0+/-0.5 degrees C. The HPLC stability-indicating method showed linearity (r(2)>0.99), specificity, R.S.D.<1.22% and accuracy/recovery ranging from 95.46 to 101.54%. Preparations with SMB or GLT and the antioxidant-free presented results statistically distinct, demonstrating the necessity of the antioxidant system addition. O/W emulsions with SMB or GLT retained the vitamin C content >90.38% stored at 5.0+/-0.5 and 24+/-2 degrees C. For the aqueous gel with SMB or GLT, the active substance concentration was maintained >94.03%. Considering the vitamin C stability, the SMB and the GLT showed to be statistically adequate, as antioxidants, for the cosmetic formulations.
Onal, Armağan
2009-12-01
In this study, three spectrophotometric methods and one HPLC method were developed for analysis of anti-diabetic drugs in tablets. The two spectrophotometric methods were based on the reaction of rosiglitazone (RSG) with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and bromocresol green (BCG). Linear relationship between the absorbance at lambda(max) and the drug concentration was found to be in the ranges 6.0-50.0 and 1.5-12 microg ml(-1) for DDQ and BCG methods, respectively. The third spectrophotometric method consists of a zero-crossing first-derivative spectrophotometric method for simultaneous analysis of RSG and metformin (MTF) in tablets. The calibration curves were linear within the concentration ranges of 5.0-50 microg ml(-1) for RSG and 1.0-10.0 microg ml(-1) for MTF. The fourth method is a rapid stability-indicating HPLC method developed for the determination of RSG. A linear response was observed within the concentration range of 0.25-2.5 microg ml(-1). The proposed methods have been successfully applied to the tablet analysis.
Degradation of components in drug formulations: a comparison between HPLC and DSC methods.
Ceschel, G C; Badiello, R; Ronchi, C; Maffei, P
2003-08-08
Information about the stability of drug components and drug formulations is needed to predict the shelf-life of the final products. The studies on the interaction between the drug and the excipients may be carried out by means of accelerated stability tests followed by analytical determination of the active principle (HPLC and other methods) and by means of the differential scanning calorimetry (DSC). This research has been focused to the acetyl salicylic acid (ASA) physical-chemical characterisation by using DSC method in order to evaluate its compatibility with some of the most used excipients. It was possible to show, with the DSC method, the incompatibility of magnesium stearate with ASA; the HPLC data confirm the reduction of ASA concentration in the presence of magnesium stearate. With the other excipients the characteristic endotherms of the drug were always present and no or little degradation was observed with the accelerated stability tests. Therefore, the results with the DSC method are comparable and in good agreement with the results obtained with other methods.
Venkateswarlu, Kambham; Rangareddy, Ardhgeri; Narasimhaiah, Kanaka; Sharma, Hemraj; Bandi, Naga Mallikarjuna Raja
2017-01-01
The main objective of present study was to develop a RP-HPLC method for estimation of Armodafinil in pharmaceutical dosage forms and characterization of its base hydrolytic product. The method was developed for Armodafinil estimation and base hydrolytic products were characterized. The separation was carried out on C18 column by using mobile phase as mixture of water and methanol (45:55%v/v). Eluents were detected at 220nm at 1ml/min. Stress studies were performed with milder conditions followed by stronger conditions so as to get sufficient degradation around 20%. A total of five degradation products were detected and separated from analyte. The linearity of the proposed method was investigated in the range of 20-120µg/ml for Armodafinil. The detection limit and quantification limit was found to be 0.01183μg/ml and 0.035µg/ml respectively. The precision % RSD was found to be less than 2% and the recovery was between 98-102%. Armodafinil was found to be more sensitive to the base hydrolysis and yielded its carboxylic acid as degradant. The developed method was stability indicating assay, suitable to quantify Armodafinil in presence of possible degradants. The drug was sensitive to acid, base &photolytic stress and resistant to thermal &oxidation.
Yang, Xian; Yang, Shui-Ping; Zhang, Xue; Yu, Xiao-Dong; He, Qi-Yi; Wang, Bo-Chu
2014-01-01
The aim of this paper is to develop a rapid and highly sensitive quantitative HPLC fingerprint method with multiple indicators by using the Compound Chinese Medicine Wuwei Changyanning granule and 5 herbs in the prescription. The quantitative fingerprint chromatogram with multiple indicators was investigated. і)6 compositions included rutin, gallic acid, chlorogenic acid, atractylenolide Ⅰ, pachymic acid and apigenin, which originated from 5 herbs respectively, were selected as quantitative compositions, and their contents were determined using HPLC from 11 batches granules and the corresponding 5 medicinal materials. ⅱ) The precision, stability and repeatability of fingerprinting were investigated. In addition, common peaks number, the percentage of non-common peaks and similarity were also studied. Among them, 21 common peaks in the granule could find the source of peaks from the 5 herbs, among of 10 peaks from Niuerfeng, 9 peaks from Laliao, 3 peaks from Baishu, 3 peaks from Fuling and 5 peaks from Guanghuoxiang. The results showed that the identification method of fingerprinting was reliable. PMID:25587307
Asafu-Adjaye, Ebenezer B; Faustino, Patrick J; Tawakkul, Mobin A; Anderson, Lawrence W; Yu, Lawrence X; Kwon, Hyojong; Volpe, Donna A
2007-04-11
Gastrointestinal stability of venlafaxine was evaluated in vitro in simulated gastric (SGF) and intestinal (SIF) fluids using a stability indicating HPLC method. The method was validated using a 5 microm Ascentis C18 column (150 mm x 4.6 mm) and mobile phase consisting of 30% acetonitrile in 20 mM potassium phosphate buffer (pH 6.5) delivered isocratically at a flow rate of 1 mL/min with UV detection at 228 nm. Venlafaxine in USP simulated gastric and intestinal fluids (0.4 mg/mL) was incubated at 37 degrees C in a shaking water bath. The gastric stability study samples were assayed at 0, 15, 30 and 60 min intervals while sampling for the intestinal stability study was at 0, 1, 2 and 3 h. System suitability determinations gave R.S.D.s of 0.68, 0.5 and 3.9% for retention factor (k'), peak area and tailing factor, respectively. The method was shown to be accurate, precise, specific, and linear over the analytical range. Intra- and inter-day precision was <5.3%. Forced degradation studies of drug substance in basic media at 70 degrees C as well as in H2O2 for 1 h and ultra-violet photostability studies at 255 and 365 nm for 24 h did not produce any detectable degradation products. Forced degradation studies of drug substance in acidic media at 70 degrees C for 1 h produced the dehydro-venlafaxine degradant. Venlafaxine was stable in SGF (pH approximately 1.2) for the 1-h incubation period and in SIF (pH 6.8) up to 3 h with <1.5% relative difference (RD) between the amount of drug added and that found for all time points. This stability experiment in simulated gastric and intestinal fluids suggests that drug loss in the gastrointestinal tract takes place by membrane permeation rather than a degradation process.
Sono-Koree, N K; Crist, R A; Frank, E L; Rodgers, G M; Smock, K J
2016-02-01
The serotonin release assay (SRA) is considered the gold standard laboratory test for heparin-induced thrombocytopenia (HIT). The historic SRA method uses platelets loaded with radiolabeled serotonin to evaluate platelet activation by HIT immune complexes. However, a nonradioactive method is desirable. We report the performance characteristics of a high-performance liquid chromatography (HPLC) SRA method. We validated the performance characteristics of an HPLC-SRA method, including correlation with a reference laboratory using the radioactive method. Serotonin released from reagent platelets was quantified by HPLC using fluorescent detection. Results were expressed as % release and classified as positive, negative, or indeterminate based on previously published cutoffs. Serum samples from 250 subjects with suspected HIT were tested in the HPLC-SRA and with the radioactive method. Concordant classifications were observed in 230 samples (92%). Sera from 41 healthy individuals tested negative. Between-run imprecision studies showed standard deviation of <6 (% release) for positive, weak positive, and negative serum pools. Stability studies demonstrated stability after two freeze-thaw cycles or up to a week of refrigeration. The HPLC-SRA has robust performance characteristics, equivalent to the historic radioactive method, but avoids the complexities of working with radioactivity. © 2015 John Wiley & Sons Ltd.
Pujeri, Sudhakar S.; Khader, Addagadde M. A.; Seetharamappa, Jaldappagari
2012-01-01
A simple, rapid and stability-indicating reversed-phase liquid chromatographic method was developed for the assay of varenicline tartrate (VRT) in the presence of its degradation products generated from forced decomposition studies. The HPLC separation was achieved on a C18 Inertsil column (250 mm × 4.6 mm i.d. particle size is 5 μm) employing a mobile phase consisting of ammonium acetate buffer containing trifluoroacetic acid (0.02M; pH 4) and acetonitrile in gradient program mode with a flow rate of 1.0 mL min−1. The UV detector was operated at 237 nm while column temperature was maintained at 40 °C. The developed method was validated as per ICH guidelines with respect to specificity, linearity, precision, accuracy, robustness and limit of quantification. The method was found to be simple, specific, precise and accurate. Selectivity of the proposed method was validated by subjecting the stock solution of VRT to acidic, basic, photolysis, oxidative and thermal degradation. The calibration curve was found to be linear in the concentration range of 0.1–192 μg mL−1 (R2 = 0.9994). The peaks of degradation products did not interfere with that of pure VRT. The utility of the developed method was examined by analyzing the tablets containing VRT. The results of analysis were subjected to statistical analysis. PMID:22396908
Stability of Cyclophosphamide in Extemporaneous Oral Suspensions
Kennedy, Rachel; Groepper, Daniel; Tagen, Michael; Christensen, Robbin; Navid, Fariba; Gajjar, Amar; Stewart, Clinton F.
2010-01-01
Background Cyclophosphamide, an alkylating agent, is widely used for the treatment of many adult and pediatric malignancies. The stability of cyclophosphamide in aqueous- and methylcellulose-based oral suspending vehicles is currently unknown. Objectives The goals of this study were (1) to develop and validate a stability-indicating HPLC method to measure cyclophosphamide concentrations in simple syrup and Ora-Plus, and (2) to assess the 56-day chemical stability and physical appearance of cyclophosphamide in these suspensions at both room temperature and 4°C. Methods The i.v. formulation of cyclophosphamide was diluted to 20 mg/mL in normal saline, compounded 1:1 with either suspending vehicle, and stored in the dark in 3mL amber polypropylene oral syringes at 4°C and 22°C. Aliquots from each syringe were obtained on days 0, 3, 7, 14, 21, 28, 35, 42, 49, and 56 and assayed using the validated stability-indicating HPLC-UV method. A C18 analytical column was used to separate cyclophosphamide from the internal standard, ifosfamide, with a mobile phase of 21% acetonitrile in 79% sodium phosphate buffer. The suspension was examined for odor change, visually examined under normal fluorescent light for color change, and examined under a light microscope for evidence of microbial growth. Results Samples of cyclophosphamide in both simple syrup and Ora-Plus were stable when kept at 4°C for at least 56 days. At room temperature, cyclophosphamide in simple syrup and Ora-Plus had a shelf life of 8 and 3 days, respectively. No changes in color or odor or evidence of microbial growth were observed. Conclusion Cyclophosphamide can be extemporaneously prepared in simple syrup or Ora-Plus and stored at least 2 months under refrigeration without significant degradation. PMID:20103616
Schelstraete, Wim; Devreese, Mathias; Croubels, Siska
2018-02-01
Microsomes are an ideal medium to investigate cytochrome P450 (CYP450) enzyme-mediated drug metabolism. However, before microsomes are prepared, tissues can be stored for a long time. Studies about the stability of these enzymes in porcine hepatic and intestinal tissues upon storage are lacking. To be able to investigate CYP450 stability in microsomes prepared from these tissues, a highly sensitive and rapid HPLC-MS/MS method for the simultaneous determination of six CYP450 metabolites in incubation medium was developed and validated. The metabolites, paracetamol (CYP1A), 7-hydroxy-coumarin (CYP2A), 1-hydroxy-midazolam (CYP3A), 4-hydroxy-tolbutamide (CYP2C), dextrorphan (CYP2D), and 6-hydroxy-chlorzoxazone (CYP2E) were extracted with ethyl acetate at pH 1.0, followed by evaporation and separation on an Agilent Zorbax Eclipse Plus C18 column. The method was fully validated in a GLP-compliant laboratory according to European guidelines and was highly sensitive (LOQ = 0.25-2.5 ng/mL), selective, had good precision (RSD-within, 1.0-9.1%; RSD-between, 1.0-18.4%) and accuracy (within-run, 83.3-102%; between-run, 78.5-102%), and showed no relative signal suppression and enhancement. Consequently, this method was applied to study the stability of porcine hepatic and intestinal CYP450 isoenzymes when tissues were stored at - 80 °C. The results indicate that porcine CYP450 isoenzymes are stable in tissues at least up to 4 months when snap frozen and stored at - 80 °C. Moreover, the results indicate differences in porcine CYP450 stability compared to rat, rabbit, and fish CYP450, as observed by other research groups, hence stressing the importance to investigate the CYP450 stability of a specific species.
A New Improved RP-HPLC Method for Assay of Rosuvastatin Calcium in Tablets
Kaila, H. O.; Ambasana, M. A.; Thakkar, R. S.; Saravaia, H. T.; Shah, A. K.
2010-01-01
A reliable and sensitive isocratic stability indicating RP-HPLC method has been developed and validated for assay of rosuvastatin calcium in tablets and for determination of content uniformity. An isocratic separation of rosuvastatin calcium was achieved on YMC C8, 150×4.6 mm i.d., 5 μm particle size columns with a flow rate of 1.5 ml/min and using a photodiode array detector to monitor the eluate at 242 nm. The mobile phase consisted of acetonitrile: water (40:60, v/v) pH 3.5 adjusted with phosphoric acid. The drug was subjected to oxidation, hydrolysis, photolysis and thermal degradation. All degradation products in an overall analytical run time of approximately 10 min with the parent compound rosuvastatin eluting at approximately 5.2 min. Response was a linear function of drug concentration in the range of 0.5-80 μg/ml (r2= 0.9993) with a limit of detection and quantification of 0.1 and 0.5 μg/ml respectively. Accuracy (recovery) was between 99.6 and 101.7%. Degradation products resulting from the stress studies did not interfere with the detection of rosuvastatin and the assay is thus stability-indicating. PMID:21694991
2011-01-01
A simple, sensitive and accurate stability-indicating HPLC method has been developed and validated for determination of varenicline (VRC) in its bulk form and pharmaceutical tablets. Chromatographic separation was achieved on a Zorbax Eclipse XDB-C8 column (150 mm × 4.6 mm i.d., particle size 5 μm, maintained at ambient temperature) by a mobile phase consisted of acetonitrile and 50 mM potassium dihydrogen phosphate buffer (10:90, v/v) with apparent pH of 3.5 ± 0.1 and a flow rate of 1.0 ml/min. The detection wavelength was set at 235 nm. VRC was subjected to different accelerated stress conditions. The degradation products, when any, were well resolved from the pure drug with significantly different retention time values. The method was linear (r = 0.9998) at a concentration range of 2 - 14 μg/ml. The limit of detection and limit of quantitation were 0.38 and 1.11 μg/ml, respectively. The intra- and inter-assay precisions were satisfactory; the relative standard deviations did not exceed 2%. The accuracy of the method was proved; the mean recovery of VRC was 100.10 ± 1.08%. The proposed method has high throughput as the analysis involved short run-time (~ 6 min). The method met the ICH/FDA regulatory requirements. The proposed method was successfully applied for the determination of VRC in bulk and tablets with acceptable accuracy and precisions; the label claim percentages were 99.65 ± 0.32%. The results demonstrated that the method would have a great value when applied in quality control and stability studies for VRC. PMID:21672253
Porel, A.; Haty, Sanjukta; Kundu, A.
2011-01-01
The aim of the present study was the development and subsequent validation of a simple, precise and stability-indicating reversed phase HPLC method for the simultaneous determination of guaifenesin, terbutaline sulphate and bromhexine hydrochloride in the presence of their potential impurities in a single run. The photolytic as well as hydrolytic impurities were detected as 3,5-dihydroxybenzoic acid, 3,5-dihydroxybenzaldehyde, 1-(3,5-dihydroxyphenyl)-2-[(1,1-dimethylethyl) amino]-ethanone from terbutaline, 2-methoxyphenol and an unknown impurity identified as (2RS)-3-(2-hydroxyphenoxy)-propane-1,2-diol from guaifenesin. The chromatographic separation of all the three active components and their impurities was achieved on Wakosil II column, using phosphate buffer (pH 3.0) and acetonitrile as mobile phase which was delivered initially in the ratio of 80:20 (v/v) for 18 min, then changed to 60:40 (v/v) for next 12 min, and finally equilibrated back to 80:20 (v/v) for 10 min. Other HPLC parameters were: Flow rate at 1.0 ml/min, detection wavelengths 248 and 280 nm, injection volume 10 μl. The calibration graphs plotted with five concentrations of each component were linear with a regression coefficient R2 >0.9999. The limit of detection and limit of quantitation were estimated for all the five impurities. The established method was then validated for linearity, precision, accuracy, and specificity and demonstrated to be applicable to the determination of the active ingredients in commercial and model cough syrup. No interference from the formulation excipients was observed. These results suggest that this LC method can be used for the determination of multiple active ingredients and their impurities in a cough and cold syrup. PMID:22131621
Porel, A; Haty, Sanjukta; Kundu, A
2011-01-01
The aim of the present study was the development and subsequent validation of a simple, precise and stability-indicating reversed phase HPLC method for the simultaneous determination of guaifenesin, terbutaline sulphate and bromhexine hydrochloride in the presence of their potential impurities in a single run. The photolytic as well as hydrolytic impurities were detected as 3,5-dihydroxybenzoic acid, 3,5-dihydroxybenzaldehyde, 1-(3,5-dihydroxyphenyl)-2-[(1,1-dimethylethyl) amino]-ethanone from terbutaline, 2-methoxyphenol and an unknown impurity identified as (2RS)-3-(2-hydroxyphenoxy)-propane-1,2-diol from guaifenesin. The chromatographic separation of all the three active components and their impurities was achieved on Wakosil II column, using phosphate buffer (pH 3.0) and acetonitrile as mobile phase which was delivered initially in the ratio of 80:20 (v/v) for 18 min, then changed to 60:40 (v/v) for next 12 min, and finally equilibrated back to 80:20 (v/v) for 10 min. Other HPLC parameters were: Flow rate at 1.0 ml/min, detection wavelengths 248 and 280 nm, injection volume 10 μl. The calibration graphs plotted with five concentrations of each component were linear with a regression coefficient R(2) >0.9999. The limit of detection and limit of quantitation were estimated for all the five impurities. The established method was then validated for linearity, precision, accuracy, and specificity and demonstrated to be applicable to the determination of the active ingredients in commercial and model cough syrup. No interference from the formulation excipients was observed. These results suggest that this LC method can be used for the determination of multiple active ingredients and their impurities in a cough and cold syrup.
Stability indicating HPLC method for the estimation of oxycodone and lidocaine in rectal gel.
Gebauer, M G; McClure, A F; Vlahakis, T L
2001-07-31
An HPLC method for the quantification of oxycodone and lidocaine in a gel matrix is described. The mobile phase consisted of methanol--water--acetic acid (35:15:1 v/v/v) and was delivered at 1.5 ml/min through a 4.6 x 250 mm Zorbax SB-C8 column. Oxycodone was detected at 285 nm and lidocaine at 264 nm. Linear calibration curves were obtained for oxycodone in the range of 0.05--1.5% (w/w) and for lidocaine in the range of 0.1--5.0% (w/w). Oxycodone and lidocaine were treated with hydrogen peroxide and the oxidation products were readily separated on the column. The method was applied to assess the stability of a gel containing oxycodone hydrochloride (0.3% w/w) and lidocaine (1.5% w/w). The gel was stored under refrigeration in ready-to-use syringes and under these conditions oxycodone and lidocaine were stable for at least 1 year. The gel is useful in the management of tenesmus in rectal cancer.
Darsazan, Bahar; Shafaati, Alireza; Mortazavi, Seyed Alireza; Zarghi, Afshin
2017-01-01
A simple and reliable stability-indicating RP-HPLC method was developed and validated for analysis of adefovir dipivoxil (ADV).The chromatographic separation was performed on a C 18 column using a mixture of acetonitrile-citrate buffer (10 mM at pH 5.2) 36:64 (%v/v) as mobile phase, at a flow rate of 1.5 mL/min. Detection was carried out at 260 nm and a sharp peak was obtained for ADV at a retention time of 5.8 ± 0.01 min. No interferences were observed from its stress degradation products. The method was validated according to the international guidelines. Linear regression analysis of data for the calibration plot showed a linear relationship between peak area and concentration over the range of 0.5-16 μg/mL; the regression coefficient was 0.9999and the linear regression equation was y = 24844x-2941.3. The detection (LOD) and quantification (LOQ) limits were 0.12 and 0.35 μg/mL, respectively. The results proved the method was fast (analysis time less than 7 min), precise, reproducible, and accurate for analysis of ADV over a wide range of concentration. The proposed specific method was used for routine quantification of ADV in pharmaceutical bulk and a tablet dosage form.
Analysis and stability of retinol in plasma.
Peng, Y M; Xu, M J; Alberts, D S
1987-01-01
A simple, precise, and specific high-performance liquid chromatography (HPLC) method was developed for the simultaneous measurement of retinol (ROH), 13-cis-retinoic acid (13-cRA), and 4-oxo-13-cRA. The average recovery of ROH from serum or plasma was 95%, and the precision of the assay was less than 5%. With this HPLC method, a series of studies was carried out to evaluate the stability of ROH in various matrices. ROH was stable under our HPLC assay conditions as well as in plasma- and in serum-enriched culture media; however, ROH was not stable in aqueous matrices. Serum or heparinized plasma may be routinely used for measurement of ROH concentrations, providing EDTA, oxalate, and citrate are not used as anticoagulants. Because of ROH stability, blood samples can be kept on ice in the dark for at least 24 hours prior to separation of plasma. In addition, plasma samples containing ROH can be stored for up to 1 year at -20 degrees C without loss of stability.
Kim, Won Il; Zhao, Bing Tian; Zhang, Hai Yan; Lee, Je Hyun; Son, Jong Keun; Woo, Mi Hee
2014-01-01
Two rapid and simple HPLC methods with UV detector to determine three main compounds (magnoflorine, spinosin and 6'''-feruloyl spinosin) and evaporative light scattering detector (ELSD) to determine jujuboside A were developed for the chemical analyses of Zizyphi Semen. Magnoflorine, spinosin, and 6'''-feruloyl spinosin were separated with an YMC J'sphere ODS-H80 column (250 mm × 4.6 mm, 4 μm) by the gradient elution followed by the isocratic elution using methanol with 0.1 % formic acid and water with 0.1 % formic acid as the mobile phase. The flow rate was 1.0 mL/min. Jujuboside A was separated by HPLC-ELSD with YoungJinBioChrom Aegispak C18-L column (250 mm × 4.6 mm, 5 μm) column in a gradient elution using methanol with 0.1 % formic acid (A) and water with 0.1 % formic acid as the mobile phase. These two methods were fully validated with respect to linearity, precision, accuracy, stability, and robustness. These HPLC methods were applied successfully to quantify four compounds in a Zizyphi Semen extract. The HPLC analytical methods were validated for pattern recognition analysis by repeated analysis of 91 seed samples corresponding to 48 Zizyphus jujuba var. spinosa (J01-J48) and 43 Zizyphus mauritiana (M01-M43). The results indicate that these methods are suitable for a quality evaluation of Zizyphi Semen.
2013-01-01
Background Artemisinin-based fixed dose combination (FDC) products are recommended by World Health Organization (WHO) as a first-line treatment. However, the current artemisinin FDC products, such as β-artemether and lumefantrine, are inherently unstable and require controlled distribution and storage conditions, which are not always available in resource-limited settings. Moreover, quality control is hampered by lack of suitable analytical methods. Thus, there is a need for a rapid and simple, but stability-indicating method for the simultaneous assay of β-artemether and lumefantrine FDC products. Methods Three reversed-phase fused-core HPLC columns (Halo RP-Amide, Halo C18 and Halo Phenyl-hexyl), all thermostated at 30°C, were evaluated. β-artemether and lumefantrine (unstressed and stressed), and reference-related impurities were injected and chromatographic parameters were assessed. Optimal chromatographic parameters were obtained using Halo RP-Amide column and an isocratic mobile phase composed of acetonitrile and 1mM phosphate buffer pH 3.0 (52:48; V/V) at a flow of 1.0 ml/min and 3 μl injection volume. Quantification was performed at 210 nm and 335 nm for β-artemether and for lumefantrine, respectively. In-silico toxicological evaluation of the related impurities was made using Derek Nexus v2.0®. Results Both β-artemether and lumefantrine were separated from each other as well as from the specified and unspecified related impurities including degradants. A complete chromatographic run only took four minutes. Evaluation of the method, including a Plackett-Burman robustness verification within analytical QbD-principles, and real-life samples showed the method is suitable for quantitative assay purposes of both active pharmaceutical ingredients, with a mean recovery relative standard deviation (± RSD) of 99.7 % (± 0.7%) for β-artemether and 99.7 % (± 0.6%) for lumefantrine. All identified β-artemether-related impurities were predicted in Derek Nexus v2.0® to have toxicity risks similar to β-artemether active pharmaceutical ingredient (API) itself. Conclusions A rapid, robust, precise and accurate stability-indicating, quantitative fused-core isocratic HPLC method was developed for simultaneous assay of β-artemether and lumefantrine. This method can be applied in the routine regulatory quality control of FDC products. The in-silico toxicological investigation using Derek Nexus® indicated that the overall toxicity risk for β-artemether-related impurities is comparable to that of β-artemether API. PMID:23631682
Toporisic, Rebeka; Mlakar, Anita; Hvala, Jernej; Prislan, Iztok; Zupancic-Kralj, Lucija
2010-06-05
Stress stability testing and forced degradation were used to determine the stability of enalapril maleate (EM) and to find a degradation pathway for the drug. The degradation impurities, formed under different stressed conditions, were investigated by HPLC and UPLC-MS methods. HPLC analysis showed several degradation impurities of which several were already determined, but on oxidation in the presence of magnesium monoperoxyphthalate (MMPP) several impurities of EM were observed which were not yet characterized. The HPLC methods for determination of EM were validated. The linearity of HPLC method was established in the concentration range between 0.5 and 10 microg/mL with correlation coefficient greater than 0.99. The LOD of EM was 0.2 microg/mL and LOQ was 0.5 microg/mL. The validated HPLC method was used to determine the degradation impurities in samples after stress stability testing and forced degradation of EM. In order to identify new degradation impurities of EM after forced degradation UPLC-MS/MS(n), Orbitrap has been used. It was found that new impurities are oxidation products: (S)-1-((S)-2-((S)-1-ethoxy-4-(o,m,p-hydroxyphenyl)-1-oxobutan-2-ylamino)propanoyl)pyrrolidine-2-carboxylic acid, (2S)-1-((2S)-2-((2S)-1-ethoxy-4-hydroxy-1-oxo-4-phenylbutan-2-ylamino)propanoyl)pyrrolidine-2-carboxylic acid. (S)-2-(3-phenylpropylamino)-1-(pyrrolidin-1-yl)propan-1-one was identified as a new degradation impurity. Copyright (c) 2010. Published by Elsevier B.V.
Satheeshkumar, N; Pradeepkumar, M; Shanthikumar, S; Rao, V J
2014-03-01
A simple, precise and stability-indicating HPLC method was developed and validated for the simultaneous determination of metformin hydrochloride (MET) and vildagliptin (VLG) in pharmaceutical dosage forms. The method involves use of easily available inexpensive laboratory reagents. The separation was achieved on Grace Cyano column (250 mm×4.6 mm) 5 µm with isocratic flow. The mobile phase was pumped at a flow rate of 1.0 mL/min, consisted of 25 mM ammonium bicarbonate buffer and acetonitrile (65:35, v/v). The UV detection was carried out at 207 nm. A linear response was observed over the concentration range of 25-125 µg/mL for MET and 50-250 µg/mL for VLG respectively. Limit of detection and limit of quantification for MET were 0.36 µg/mL and 1.22 µg/mL, and for VLG were 0.75 µg/mL and 2.51 µg/mL respectively. The method was successfully validated in accordance to ICH guidelines acceptance criteria for specificity, linearity, accuracy, precision, robustness, and system suitability. Individual drugs (MET and VLG) were exposed to thermal, photolytic, hydrolytic and oxidative stress conditions. The resultant stressed samples were analyzed by the proposed method. The method gave high resolution among the degradation products and the analytes. The peak purity of analyte peak in the stressed samples was confirmed by photo diode array detector. The proposed method was successfully applied for the quantitative analysis of MET and VLG in tablet dosage form, which will help to improve quality control and contribute to stability studies of pharmaceutical tablets containing these drugs. © Georg Thieme Verlag KG Stuttgart · New York.
Stability of dronabinol capsules when stored frozen, refrigerated, or at room temperature.
Wempe, Michael F; Oldland, Alan; Stolpman, Nancy; Kiser, Tyree H
2016-07-15
Results of a study to determine the 90-day stability of dronabinol capsules stored under various temperature conditions are reported. High-performance liquid chromatography (HPLC) with ultraviolet (UV) detection was used to assess the stability of dronabinol capsules (synthetic delta-9-tetrahydrocannabinol [Δ9-THC] mixed with high-grade sesame oil and other inactive ingredients and encapsulated as soft gelatin capsules) that were frozen, refrigerated, or kept at room temperature for three months. The dronabinol capsules remained in the original foil-sealed blister packs until preparation for HPLC-UV assessment. The primary endpoint was the percentage of the initial Δ9-THC concentration remaining at multiple designated time points. The secondary aim was to perform forced-degradation studies under acidic conditions to demonstrate that the HPLC-UV method used was stability indicating. The appearance of the dronabinol capsules remained unaltered during frozen, cold, or room-temperature storage. Regardless of storage condition, the percentage of the initial Δ9-THC content remaining was greater than 97% for all evaluated samples at all time points over the three-month study. These experimental data indicate that the product packaging and the sesame oil used to formulate dronabinol capsules efficiently protect Δ9-THC from oxidative degradation to cannabinol; this suggests that pharmacies can store dronabinol capsules in nonrefrigerated automated dispensing systems, with a capsule expiration date of 90 days after removal from the refrigerator. Dronabinol capsules may be stored at room temperature in their original packaging for up to three months without compromising capsule appearance and with minimal reduction in Δ9-THC concentration. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gupta, Lokesh Kumar
2012-11-01
Seven process related impurities were identified by LC-MS in the atorvastatin calcium drug substance. These impurities were identified by LC-MS. The structure of impurities was confirmed by modern spectroscopic techniques like 1H NMR and IR and physicochemical studies conducted by using synthesized authentic reference compounds. The synthesized reference samples of the impurity compounds were used for the quantitative HPLC determination. These impurities were detected by newly developed gradient, reverse phase high performance liquid chromatographic (HPLC) method. The system suitability of HPLC analysis established the validity of the separation. The analytical method was validated according to International Conference of Harmonization (ICH) with respect to specificity, precision, accuracy, linearity, robustness and stability of analytical solutions to demonstrate the power of newly developed HPLC method.
Kumar, Thangarathinam; Ramya, Mohandass; Arockiasamy Xavier, S J
2016-11-01
Stress degradation studies using high-performance liquid chromatography (HPLC) was performed and validated for Droxidopa (L-DOPS). Droxidopa was susceptible to acid hydrolysis (0.1 N HCl), alkaline hydrolysis (0.15 N NaOH) and thermal degradation (105°C). It was found to be resistant to white light, oxidation and UV light exposure (72 h). The thermal, acid and alkali degradation impurities were detected with the retention time (RT) of 12.7, 19.25 and 22.95 min. Our HPLC method detected process impurities (2R,3R)-2-amino-3-(3,4-dihydroxyphenyl)-3-hydroxypropionic acid (Impurity H), N-Hydroxypthalimide (Impurity N), (2R,3S)-2-amino-3-(benzo[d][1,3]dioxol-5-yl)-3-hydroxypropionic acid (Impurity L) and L-threo n-phthaloyl-3-(3, 4-dihydroxyphenyl)-serine (Intermediate) with RTs of 3.48, 15.5, 25.76 and 28.0 min. The related substances were further characterized and confirmed by liquid chromatography-mass spectroscopy (LC-MS), and nuclear magnetic resonance spectroscopy analysis. Our HPLC method detected up to 0.05 µg/mL of Droxidopa with S/N > 3.0 and quantified up to 0.10 µg /mL of Droxidopa with S/N ratio > 10.0. Droxidopa was highly stable for 12 h after its preparation for HPLC analysis. Our newly developed HPLC method was highly precise, specific, reliable and accurate for the analysis of Droxidopa and its related substances. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wu, Yonghua; Yang, Xu; Wang, Haining; Li, Zhenrong; Wang, Tiancheng
2017-04-01
Glycated hemoglobin (HbA 1c ) measurement from whole blood (WB) samples is inconvenient for epidemic surveillance and self-monitoring of glycemic level. We evaluated HbA 1c measurement from WB blotted on filter paper (FP), which can be easily transported to central laboratories, with high-performance liquid chromatography (HPLC) and immunoturbidimetric assay (ITA). WB was applied to Whatman filter paper. By using HPLC and WB samples as reference methods, these FP samples were evaluated on HPLC and ITA. Inter- and intra-assay variation, WB vs. FP agreement and sample stability at 20-25 °C and -70 °C were assessed by statistical analysis. Results showed that the coefficient of variation (CV, %) of FP samples for HPLC and ITA were 0.44-1.02% and 1.47-2.72%, respectively (intra-assay); 2.13-3.56% and 3.21-4.82%, respectively (inter-assay). The correlation of WB HPLC with FP analyzed using HPLC and ITA are both significant (p < 0.001). Sample stability showed that FP method up to 5 days at 20-25 °C and 5 weeks at -70 °C is accurate and reproducible. In conclusion, FP samples analyzed by HPLC and ITA can both provide an alternative to WB for HbA 1c measurement, supporting the use of FP method in epidemic surveillance and healthcare units.
Hasan, Najmul; Chaiharn, Mathurot; Khan, Sauleha; Khalid, Hira; Sher, Nawab; Siddiqui, Farhan Ahmed; Siddiqui, Muhammad Zain
2013-01-01
A reverse phase stability indicating HPLC method for simultaneous determination of two antispasmodic drugs in pharmaceutical parenteral dosage forms (injectable) and in serum has been developed and validated. Mobile phase ingredients consist of Acetonitrile : buffer : sulfuric acid 0.1 M (50 : 50 : 0.3 v/v/v), at flow rate 1.0 mL/min using a Hibar μ Bondapak ODS C18 column monitored at dual wavelength of 266 nm and 205 nm for phloroglucinol and trimethylphloroglucinol, respectively. The drugs were subjected to stress conditions of hydrolysis (oxidation, base, acid, and thermal degradation). Oxidation degraded the molecule drastically while there was not so much significant effect of other stress conditions. The calibration curve was linear with a correlation coefficient of 0.9999 and 0.9992 for PG and TMP, respectively. The drug recoveries fall in the range of 98.56% and 101.24% with 10 pg/mL and 33 pg/mL limit of detection and limit of quantification for both phloroglucinol and trimethylphloroglucinol. The method was validated in accordance with ICH guidelines and was applied successfully to quantify the amount of trimethylphloroglucinol and phloroglucinol in bulk, injectable form and physiological fluid. Forced degradation studies proved the stability indicating abilities of the method.
USDA-ARS?s Scientific Manuscript database
Geometrical isomers of carotenoids behave differently in aspects like stability towards oxidants, bioavailability, vitamin A activity and specificity for enzymes. The availability of HPLC methods for their detailed profiling is therefore advisable to expand our knowledge on their metabolism and biol...
Stability Indicating HPLC Determination of Risperidone in Bulk Drug and Pharmaceutical Formulations
Dedania, Zarna R.; Dedania, Ronak R.; Sheth, Navin R.; Patel, Jigar B.; Patel, Bhavna
2011-01-01
The objective of the current study was to develop a validated stability-indicating assay method (SIAM) for risperidone after subjecting it to forced decomposition under hydrolysis, oxidation, photolysis, and thermal stress conditions. The liquid chromatographic separation was achieved isocratically on a symmetry C18 column (5 μm size, 250 mm × 4.6 mm i.d.) using a mobile phase containing methanol: acetonitrile (80 : 20, v/v) at a flow rate of 1 mL/min and UV detection at 280 nm. Retention time of risperidone was found to be 3.35 ± 0.01. The method was linear over the concentration range of 10–60 μg/mL(r 2 = 0.998) with a limit of detection and quantitation of 1.79 and 5.44 μg/mL, respectively. The method has the requisite accuracy, specificity, sensitivity, and precision to assay risperidone in bulk form and pharmaceutical dosage forms. Degradation products resulting from the stress studies did not interfere with the detection of Risperidone, and the assay is thus stability indicating. PMID:22007220
High performance liquid chromatography used for quality control of Achyranthis Radix.
Zhao, Bing Tian; Jeong, Su Yang; Moon, Dong Cheul; Son, Kun Ho; Son, Jong Keun; Woo, Mi Hee
2012-08-01
To establish a standard of quality control and to identify reliable Achyranthis Radix, three phytoecdysones including ecdysterone (1), 25R-inokosterone (2) and 25S-inokosterone (3) were determined by quantitative HPLC/UV analysis. Three phytoecdysones were separated with an YMC J'sphere ODS C(18) column (250 mm × 4.6 mm, 4 μm) by isocratic elution using 0.1% formic acid in water and acetonitrile (85:15, v/v%) as the mobile phase. The flow rate was 1.0 mL/min and the UV detector wavelength was set at 245 nm. The standards were quantified by HPLC/UV from Achyranthes bidentata Blume and Achyranthes japonica Nakai, as well as Cyathula capitata Moq. and Cyathula officinalis Kuan, which are of a different genus but are comparative herbs. The method was successfully used in the analysis of Achyranthis Radix of different geographical origin or genera with relatively simple conditions and procedures, and the assay results were satisfactory for linearity, recovery, precision, accuracy, stability and robustness. The HPLC analytical method for pattern recognition analysis was validated by repeated analysis of eighteen A. bidentata Blume samples and ten A. japonica Nakai samples. The results indicate that the established HPLC/UV method is suitable for quantitation and pattern recognition analyses for quality evaluation of Achyranthis Radix.
Stability of cyclophosphamide in extemporaneous oral suspensions.
Kennedy, Rachel; Groepper, Daniel; Tagen, Michael; Christensen, Robbin; Navid, Fariba; Gajjar, Amar; Stewart, Clinton F
2010-02-01
Cyclophosphamide, an alkylating agent, is widely used for the treatment of many adult and pediatric malignancies. The stability of cyclophosphamide in aqueous- and methylcellulose-based oral suspending vehicles is currently unknown. To develop and validate a stability-indicating high-performance liquid chromatography (HPLC) method to measure cyclophosphamide concentrations in simple syrup and Ora-Plus, and assess the 56-day chemical stability and physical appearance of cyclophosphamide in these suspensions at both room temperature (22 degrees C) and 4 degrees C. The intravenous formulation of cyclophosphamide was diluted to 20 mg/mL in NaCl 0.9%, compounded 1:1 with either suspending vehicle, and stored in the dark in 3-mL amber polypropylene oral syringes at 4 degrees C and 22 degrees C. Aliquots from each syringe were obtained on days 0, 3, 7, 14, 21, 28, 35, 42, 49, and 56 and assayed using the validated stability-indicating HPLC-UV method. A C18 analytical column was used to separate cyclophosphamide from the internal standard, ifosfamide, with a mobile phase of 21% acetonitrile in 79% sodium phosphate buffer. The suspension was examined for odor change, visually examined under normal fluorescent light for color change, and examined under a light microscope for evidence of microbial growth. Samples of cyclophosphamide in both simple syrup and Ora-Plus were stable when kept at 4 degrees C for at least 56 days. At room temperature, cyclophosphamide in simple syrup and Ora-Plus had a shelf life of 8 and 3 days, respectively. No changes in color or odor or evidence of microbial growth were observed. Cyclophosphamide can be extemporaneously prepared in simple syrup or Ora-Plus and stored for at least 2 months under refrigeration without significant degradation.
Li, Mengqing; Forest, Jean-Marc; Coursol, Christian; Leclair, Grégoire
2011-09-01
The stability of cyclosporine diluted to 0.2 or 2.5 mg/mL with 0.9% sodium chloride injection or 5% dextrose injection and stored in polypropylene-polyolefin containers or polypropylene syringes was evaluated. Intravenous cyclosporine solutions (0.2 and 2.5 mg/mL) were aseptically prepared and transferred to 250-mL polypropylene-polyolefin bags or 60-mL polypropylene syringes. Chemical stability was measured using a stability-indicating high-performance liquid chromatography (HPLC) assay. Physical stability was assessed by visual inspection and a dynamic light scattering (DLS) method. After 14 days, HPLC assay showed that the samples of i.v. cyclosporine stored in polypropylene-polyolefin bags remained chemically stable (>98% of initial amount remaining); the physical stability of the samples was confirmed by DLS and visual inspection. The samples stored in polypropylene syringes were found to contain an impurity (attributed to leaching of a syringe component by the solution) that could be detected by HPLC after 1 day; on further investigation, no leaching was detected when the syringes were exposed to undiluted i.v. cyclosporine 50 mg/mL for 10 minutes. Samples of i.v. cyclosporine solutions of 0.2 and 2.5 mg/mL diluted in 0.9% sodium chloride injection or 5% dextrose injection and stored at 25 °C in polypropylene-polyolefin bags were physically and chemically stable for at least 14 days. When stored in polypropylene syringes, the samples were contaminated by an impurity within 1 day; however, the short-term (i.e., ≤10 minutes) use of the syringes for the preparation and transfer of i.v. cyclosporine solution is considered safe.
Bansal, Gulshan; Singh, Ranjit; Saini, Balraj; Bansal, Yogita
2013-01-01
The present study reports the characterization of forced degradation products of bosentan and a validated stability-indicating HPLC method for the stability testing of bosentan tablets. The forced degradation was carried out under the conditions of hydrolysis, oxidation, dry heat and photolysis. The drug was found unstable in acid, alkali and oxidative media whereas stable to the hydrolysis in water, to dry heat and to photolysis. In total, six degradation products were formed in all conditions which were resolved in a single run on a C-18 column with gradient elution using ammonium acetate buffer (pH 4.5, 5.0mM), methanol and acetonitrile. Structures of all the degradation products were characterized through +ESI-MS(n) and LC-ESI-MS spectral data of bosentan as well as LC-ESI-MS spectral data of the products. The products II-VI were characterized as 6-amino-[2,2']bipyrimidinyl-4,5-diol, 6-amino-5-(2-methoxyphenoxy)-[2,2']-bipyrimidinyl-4-ol, 2-[6-amino-5-(2-methoxyphenoxy)-[2,2']-bipyrimidinyl-4-yloxy]-ethanol, 4-tert-butyl-N-[6-(1-methoxyethoxy)-5-(2-methoxyphenoxy)-[2,2']-bipyrimidinyl-4-yl]-benzenesulfonamide and 4-tert-butyl-N-[6-hydroxy-5-(2-methoxyphenoxy)-[2,2']bipyrimidinyl-4-yl]-benzenesulfonamide, respectively. The peak of the product I was found to be due to two secondary degradation products which co-eluted and were characterized as β-hydroxyethyl p-tert-butylphenylsulfonate (Ia) and 2-[2-(2-hydroxyethoxy)-phenoxy]-ethanol (Ib). These products were formed due to hydrolysis of sulfonamide and alkylaryl ether and the diaryl ether linkages as well as dehydration of the primary alcohol group. The most probable degradation mechanisms were proposed. The HPLC method was found to be stability-indicating, linear (2-100 μg ml(-1)), accurate, precise, sensitive, specific, rugged and robust for quantitation of the drug. The method was applied to the stability testing of the commercially available bosentan tablets successfully. Copyright © 2012 Elsevier B.V. All rights reserved.
Stability of aspartame and neotame in pasteurized and in-bottle sterilized flavoured milk.
Kumari, Anuradha; Choudhary, Sonika; Arora, Sumit; Sharma, Vivek
2016-04-01
Analytical high performance liquid chromatography (HPLC) conditions were standardized along with the isolation procedure for separation of aspartame and neotame in flavoured milk (pasteurized and in-bottle sterilized flavoured milk). The recovery of the method was approximately 98% for both aspartame and neotame. The proposed HPLC method can be successfully used for the routine determination of aspartame and neotame in flavoured milk. Pasteurization (90 °C/20 min) resulted in approximately 40% loss of aspartame and only 8% of neotame was degraded. On storage (4-7°C/7 days) aspartame and neotame content decreased significantly (P<0.05) from 59.70% to 44.61% and 91.78% to 87.18%, respectively. Sterilization (121 °C/15 min) resulted in complete degradation of aspartame; however, 50.50% of neotame remained intact. During storage (30 °C/60 days) neotame content decreased significantly (P<0.05) from 50.36% to 8.67%. Results indicated that neotame exhibited better stability than aspartame in both pasteurized and in-bottle sterilized flavoured milk. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sheldon, E M; Downar, J B
2000-08-15
Novel approaches to the development of analytical procedures for monitoring incoming starting material in support of chemical/pharmaceutical processes are described. High technology solutions were utilized for timely process development and preparation of high quality clinical supplies. A single robust HPLC method was developed and characterized for the analysis of the key starting material from three suppliers. Each supplier used a different process for the preparation of this material and, therefore, each suppliers' material exhibited a unique impurity profile. The HPLC method utilized standard techniques acceptable for release testing in a QC/manufacturing environment. An automated experimental design protocol was used to characterize the robustness of the HPLC method. The method was evaluated for linearity, limit of quantitation, solution stability, and precision of replicate injections. An LC-MS method that emulated the release HPLC method was developed and the identities of impurities were mapped between the two methods.
Panda, Sagar Suman; Patanaik, Debasis; Ravi Kumar, Bera V. V.
2012-01-01
A simple, precise and accurate isocratic RP-HPLC stability-indicating assay method has been developed to determine diclofenac potassium and metaxalone in their combined dosage forms. Isocratic separation was achieved on a Hibar-C18, Lichrosphere-100® (250 mm × 4.6 mm i.d., particle size 5 μm) column at room temperature in isocratic mode, the mobile phase consists of methanol: water (80:20, v/v) at a flow rate of 1.0 ml/min, the injection volume was 20 μl and UV detection was carried out at 280nm. The drug was subjected to acid and alkali hydrolysis, oxidation, photolysis and heat as stress conditions. The method was validated for specificity, linearity, precision, accuracy, robustness and system suitability. The method was linear in the drug concentration range of 2.5–30 μg/ml and 20–240 μg/ml for diclofenac potassium and metaxalone, respectively. The precision (RSD) of six samples was 0.83 and 0.93% for repeatability, and the intermediate precision (RSD) among six-sample preparation was 1.63 and 0.49% for diclofenac potassium and metaxalone, respectively. The mean recoveries were between 100.99–102.58% and 99.97–100.01% for diclofenac potassium and metaxalone, respectively. The proposed method can be used successfully for routine analysis of the drug in bulk and combined pharmaceutical dosage forms. PMID:22396909
Stability of gabapentin in extemporaneously compounded oral suspensions.
Friciu, Mihaela; Roullin, V Gaëlle; Leclair, Grégoire
2017-01-01
This study reports the stability of extemporaneously prepared gabapentin oral suspensions prepared at 100 mg/mL from bulk drug and capsules in either Oral Mix or Oral Mix SF suspending vehicles. Suspensions were packaged in amber plastic bottles and amber plastic syringes at 25°C / 60%RH for up to 90 days. Throughout the study period, the following tests were performed to evaluate the stability of the preparations: organoleptic inspection to detect homogeneity, color or odor changes; pH measurements; and gabapentin assay using a stability-indicating HPLC-UV method. As crystallization was observed at 5°C, storage at this temperature condition is not recommended. All preparations stored at 25°C / 60%RH remained stable for the whole study duration of 90 days.
A simple method for plasma total vitamin C analysis suitable for routine clinical laboratory use.
Robitaille, Line; Hoffer, L John
2016-04-21
In-hospital hypovitaminosis C is highly prevalent but almost completely unrecognized. Medical awareness of this potentially important disorder is hindered by the inability of most hospital laboratories to determine plasma vitamin C concentrations. The availability of a simple, reliable method for analyzing plasma vitamin C could increase opportunities for routine plasma vitamin C analysis in clinical medicine. Plasma vitamin C can be analyzed by high performance liquid chromatography (HPLC) with electrochemical (EC) or ultraviolet (UV) light detection. We modified existing UV-HPLC methods for plasma total vitamin C analysis (the sum of ascorbic and dehydroascorbic acid) to develop a simple, constant-low-pH sample reduction procedure followed by isocratic reverse-phase HPLC separation using a purely aqueous low-pH non-buffered mobile phase. Although EC-HPLC is widely recommended over UV-HPLC for plasma total vitamin C analysis, the two methods have never been directly compared. We formally compared the simplified UV-HPLC method with EC-HPLC in 80 consecutive clinical samples. The simplified UV-HPLC method was less expensive, easier to set up, required fewer reagents and no pH adjustments, and demonstrated greater sample stability than many existing methods for plasma vitamin C analysis. When compared with the gold-standard EC-HPLC method in 80 consecutive clinical samples exhibiting a wide range of plasma vitamin C concentrations, it performed equivalently. The easy set up, simplicity and sensitivity of the plasma vitamin C analysis method described here could make it practical in a normally equipped hospital laboratory. Unlike any prior UV-HPLC method for plasma total vitamin C analysis, it was rigorously compared with the gold-standard EC-HPLC method and performed equivalently. Adoption of this method could increase the availability of plasma vitamin C analysis in clinical medicine.
Kakde, Rajendra B; Satone, Dinesh D; Gadapayale, Kamalesh K; Kakde, Megha G
2013-07-01
The objective of the current study was to develop a validated, specific stability-indicating reversed-phase liquid chromatographic (LC) method for the quantitative determination of escitalopram oxalate and clonazepam and their related substances in bulk drugs and pharmaceutical dosage forms in the presence of degradation products. Forced degradation studies were performed on the pure drugs of escitalopram oxalate and clonazepam, as per the stress conditions prescribed by the International Conference on Harmonization (ICH) using acid, base, oxidation, thermal stress and photolytic degradation to show the stability-indicating power of the method. Significant degradation was observed during acid and alkaline hydrolysis and no degradation was observed in other stress conditions. The chromatographic method was optimized using the samples generated from forced degradation studies. Good resolution between the peaks corresponded to the active pharmaceutical ingredients, escitalopram oxalate and clonazepam, and degradation products from the analyte were achieved on an ODS Hypersil C18 column (250 × 4.6 mm) using a mobile phase consisting of a mixture of acetonitrile-50 mM phosphate buffer + 10 mM triethylamine (70:30, v/v). The detection was conducted at 268 nm. The limit of detection and the limit of quantitation for escitalopram oxalate and clonazepam were established. The stress test solutions were assayed against the qualified working standards of escitalopram oxalate and clonazepam, which indicated that the developed LC method was stability-indicating. Validation of the developed LC method was conducted as per ICH requirements. The developed LC method was found to be suitable to check the quality of bulk samples of escitalopram oxalate and clonazepam.
Jahan, Md. Sarowar; Islam, Md. Jahirul; Begum, Rehana; Kayesh, Ruhul; Rahman, Asma
2014-01-01
A rapid and stability-indicating reversed phase high-performance liquid chromatography (RP-HPLC) method was developed for simultaneous quantification of paracetamol and ibuprofen in their combined dosage form especially to get some more advantages over other methods already developed for this combination. The method was validated according to United States Pharmacopeia (USP) guideline with respect to accuracy, precision, specificity, linearity, solution stability, robustness, sensitivity, and system suitability. Forced degradation study was validated according to International Conference on Harmonisation (ICH). For this, an isocratic condition of mobile phase comprising phosphate buffer (pH 6.8) and acetonitrile in a ratio of 65:35, v/v at a flow rate of 0.7 mL/minute over RP C18 (octadecylsilane (ODS), 150 × 4.6 mm, 5 μm, Phenomenex Inc.) column at ambient temperature was maintained. The method showed excellent linear response with correlation coefficient (R2) values of 0.999 and 1.0 for paracetamol and ibuprofen respectively, which were within the limit of correlation coefficient (R2 > 0.995). The percent recoveries for two drugs were found within the acceptance limit of (97.0–103.0%). Intra-and inter-day precision studies of the new method were less than the maximum allowable limit percentage of relative standard deviation (%RSD) ≤ 2.0. Forced degradation of the drug product was carried out as per the ICH guidelines with a view to establishing the stability-indicating property of this method and providing useful information about the degradation pathways, degradation products, and how the quality of a drug substance and drug product changes with time under the influence of various stressing conditions. The degradation of ibuprofen was within the limit (5–20%, according to the guideline of ICH), while paracetamol showed <20% degradation in oxidation and basic condition. PMID:25452691
Jahan, Md Sarowar; Islam, Md Jahirul; Begum, Rehana; Kayesh, Ruhul; Rahman, Asma
2014-01-01
A rapid and stability-indicating reversed phase high-performance liquid chromatography (RP-HPLC) method was developed for simultaneous quantification of paracetamol and ibuprofen in their combined dosage form especially to get some more advantages over other methods already developed for this combination. The method was validated according to United States Pharmacopeia (USP) guideline with respect to accuracy, precision, specificity, linearity, solution stability, robustness, sensitivity, and system suitability. Forced degradation study was validated according to International Conference on Harmonisation (ICH). For this, an isocratic condition of mobile phase comprising phosphate buffer (pH 6.8) and acetonitrile in a ratio of 65:35, v/v at a flow rate of 0.7 mL/minute over RP C18 (octadecylsilane (ODS), 150 × 4.6 mm, 5 μm, Phenomenex Inc.) column at ambient temperature was maintained. The method showed excellent linear response with correlation coefficient (R (2)) values of 0.999 and 1.0 for paracetamol and ibuprofen respectively, which were within the limit of correlation coefficient (R (2) > 0.995). The percent recoveries for two drugs were found within the acceptance limit of (97.0-103.0%). Intra-and inter-day precision studies of the new method were less than the maximum allowable limit percentage of relative standard deviation (%RSD) ≤ 2.0. Forced degradation of the drug product was carried out as per the ICH guidelines with a view to establishing the stability-indicating property of this method and providing useful information about the degradation pathways, degradation products, and how the quality of a drug substance and drug product changes with time under the influence of various stressing conditions. The degradation of ibuprofen was within the limit (5-20%, according to the guideline of ICH), while paracetamol showed <20% degradation in oxidation and basic condition.
Ahmad, Abdel Kader S; Kawy, M Abdel; Nebsen, M
2002-10-15
Three methods are presented for the determination of Nicergoline in presence of its hydrolysis-induced degradation product. The first method was based on measurement of the first derivative of ratio spectra amplitude of Nicergoline at 291 nm. The second method was based on separation of Nicergoline from its degradation product followed by densitometric measurement of the spots at 287 nm. The separation was carried out on HPTLC silica gel F(254) plates, using methanol-ethyl acetate-glacial acetic acid (5:7:3, v/v/v) as mobile phase. The third method was based on high performance liquid chromatographic (HPLC) separation and determination of Nicergoline from its degradation product on a reversed phase, nucloesil C(18) column using a mobile phase of methanol-water-glacial acetic acid (80:20:0.1, v/v/v) with UV detection at 280 nm. Chlorpromazine hydrochloride was used as internal standard. Laboratory prepared mixtures containing different percentages of the degradation product were analysed by the proposed methods and satisfactory results were obtained. These methods have been successfully applied to the analysis of Nicergoline in Sermion tablets. The validities of these methods were ascertained by applying standard addition technique, the mean percentage recovery +/- R.S.D.% was found to be 99.47 +/- 0.752, 100.01 +/- 0.940, 99.75 +/- 0.740 for the first derivative of ratio spectra method, the HPTLC method and the HPLC method, respectively. The proposed methods were statistically compared with the manufacturer's HPLC method of analysis of Nicergoline and no significant difference was found with respect to both precision and accuracy. They have the advantage of being stability indicating. Therefore, they can be used for routine analysis of the drug in quality control laboratories. Copyright 2002 Elsevier Science B.V.
Stability of gabapentin in extemporaneously compounded oral suspensions
Friciu, Mihaela; Roullin, V. Gaëlle
2017-01-01
This study reports the stability of extemporaneously prepared gabapentin oral suspensions prepared at 100 mg/mL from bulk drug and capsules in either Oral Mix or Oral Mix SF suspending vehicles. Suspensions were packaged in amber plastic bottles and amber plastic syringes at 25°C / 60%RH for up to 90 days. Throughout the study period, the following tests were performed to evaluate the stability of the preparations: organoleptic inspection to detect homogeneity, color or odor changes; pH measurements; and gabapentin assay using a stability-indicating HPLC-UV method. As crystallization was observed at 5°C, storage at this temperature condition is not recommended. All preparations stored at 25°C / 60%RH remained stable for the whole study duration of 90 days. PMID:28414771
Youssef, Nadia F
2005-10-04
Stability-indicating high performance liquid chromatography (HPLC), thin-layer chromatography (TLC) and first-derivative of ratio spectra (1DD) methods are developed for the determination of piretanide in presence of its alkaline induced degradates. HPLC method depends on separation of piretanide from its degradates on mu-Bondapak C18 column using methanol:water:acetic acid (70:30:1, v/v/v) as a mobile phase at flow rate 1.0 ml/min and UV detector at 275 nm. TLC densitometic method is based on the difference in Rf-values between the intact drug and its degradates on thin-layer silica gel. Iso-propanol:ammonia 33% (8:2, v/v) was used as a developing mobile phase and the chromatogram was scanned at 275 nm. The derivative of ratio spectra method (1DD) depends on the measurement of the absorbance at 288 nm in the first-derivative of ratio spectra for the determination of the cited drug in the presence of its degradates. Calibration graphs of the three suggested methods are linear in the concentration ranges 0.02-0.3 microg/20 microl, 0.5-10 microg/spot and 5-50 microg/ml, with mean percentage recovery 99.27+/-0.52, 99,17+/-1.01 and 99.65+/-1.01%, respectively. The three proposed methods were successfully applied for the determination of piretanide in bulk powder, laboratory-prepared mixtures and pharmaceutical dosage form with good accuracy and precision. The results were statistically analyzed and compared with those obtained by the official method. Validation of the method was determined with favourable specificity, linearity, precision, and accuracy was assessed by applying the standard addition technique.
Cho, GyeYoon; Han, KyuChul; Yoon, JinYoung
2015-01-01
Objectives: Scolopendra subspinipes mutilans (S. subspinipes mutilans) is known as a traditional medicine and includes various amino acids, peptides and proteins. The amino acids in the pharmacopuncture extracted from S. subspinipes mutilans by using derivatization methods were analyzed quantitatively and qualitatively by using high performance liquid chromatography (HPLC) over a 12 month period to confirm its stability. Methods: Amino acids of pharmacopuncture extracted from S. subspinipes mutilans were derived by using O-phthaldialdehyde (OPA) & 9-fluorenyl methoxy carbonyl chloride (FMOC) reagent and were analyzed using HPLC. The amino acids were detected by using a diode array detector (DAD) and a fluorescence detector (FLD) to compare a mixed amino acid standard (STD) to the pharmacopuncture from centipedes. The stability tests on the pharmacopuncture from centipedes were done using HPLC for three conditions: a room temperature test chamber, an acceleration test chamber, and a cold test chamber. Results: The pharmacopuncture from centipedes was prepared by using the method of the Korean Pharmacopuncture Institute (KPI) and through quantitative analyses was shown to contain 9 amino acids of the 16 amino acids in the mixed amino acid STD. The amounts of the amino acids in the pharmacopuncture from centipedes were 34.37 ppm of aspartate, 123.72 ppm of arginine, 170.63 ppm of alanine, 59.55 ppm of leucine and 57 ppm of lysine. The relative standard deviation (RSD %) results for the pharmacopuncture from centipedes had a maximum value of 14.95% and minimum value of 1.795% on the room temperature test chamber, the acceleration test chamber and the cold test chamber stability tests. Conclusion: Stability tests on and quantitative and qualitative analyses of the amino acids in the pharmacopuncture extracted from centipedes by using derivatization methods were performed by using HPLC. Through research, we hope to determine the relationship between time and the concentrations of the amino acids in the pharmacopuncture extracted from centipedes. PMID:25830058
Lalitha Devi, M; Chandrasekhar, K B
2009-12-05
The objective of current study was to develop a validated specific stability indicating reversed-phase liquid chromatographic method for the quantitative determination of levofloxacin as well as its related substances determination in bulk samples, pharmaceutical dosage forms in the presence of degradation products and its process related impurities. Forced degradation studies were performed on bulk sample of levofloxacin as per ICH prescribed stress conditions using acid, base, oxidative, water hydrolysis, thermal stress and photolytic degradation to show the stability indicating power of the method. Significant degradation was observed during oxidative stress and the degradation product formed was identified by LCMS/MS, slight degradation in acidic stress and no degradation was observed in other stress conditions. The chromatographic method was optimized using the samples generated from forced degradation studies and the impurity spiked solution. Good resolution between the peaks corresponds to process related impurities and degradation products from the analyte were achieved on ACE C18 column using the mobile phase consists a mixture of 0.5% (v/v) triethyl amine in sodium dihydrogen orthophosphate dihydrate (25 mM; pH 6.0) and methanol using a simple linear gradient. The detection was carried out at 294 nm. The limit of detection and the limit of quantitation for the levofloxacin and its process related impurities were established. The stressed test solutions were assayed against the qualified working standard of levofloxacin and the mass balance in each case was in between 99.4 and 99.8% indicating that the developed LC method was stability indicating. Validation of the developed LC method was carried out as per ICH requirements. The developed LC method was found to be suitable to check the quality of bulk samples of levofloxacin at the time of batch release and also during its stability studies (long term and accelerated stability).
Bernart, Matthew W
2015-01-01
The citrus-derived bioactive monoterpene limonene is an important industrial commodity and fragrance constituent. An RP isocratic elution C18 ultra-HPLC (UHPLC) method using a superficially porous stationary phase and photodiode array (PDA) detector has been developed for determining the limonene content of sweet orange (Citrus sinensis) oil. The method is fast with a cycle time of 1.2 min, linear, precise, accurate, specific, and stability indicating, and it satisfies U.S. Pharmacopeia suitability parameters. The method may be useful in its present form for limonene processing, or modified for research on more polar compounds of the terpenome. A forced-degradation experiment showed that limonene is degraded by heat in hydro-ethanolic solution. PDA detection facilitates classification of minor components of the essential oil, including β-myrcene.
Chorny, Michael; Levy, Daniel; Schumacher, Ilana; Lichaa, Chaim; Gruzman, Boris; Livshits, Oleg; Lomnicky, Yossi
2003-04-24
Benoxinate is a local anaesthetic used for ophthalmic applications. The aim of this study was to develop a rapid and simple stability-indicating method for the determination of benoxinate formulated for ophthalmic use, evaluate its long-term stability and identify its major degradation product. Benoxinate was eluted on a 10 microm Spherisorb phenyl column, 250 x 3.2 mm, with a mobile phase consisting of acetonitrile-buffer (pH 3.5) (35:65, v/v), pumped at 0.8 ml min(-1) flow rate. The buffer was composed of sodium dihydrogen phosphate (50 mM), sodium hydrogen sulfate (2.5 mM) and 1-heptanesulfonic acid sodium salt (5 mM). The analyte was quantified spectrophotometrically at 308 nm. The chromatograms of benoxinate formulations obtained by this method showed benoxinate (t = 4.5 min) well resolved from its degradation product (t = 2.3 min), which was separately identified by means of HPLC-MS as 4-amino-3-butoxybenzoic acid. The assay was demonstrated to have high accuracy, precision and linearity. The method was implemented in investigating the long-term stability of benoxinate 0.4% ophthalmic solutions. The method was found to be simple, quick and selective in determining benoxinate concentrations in fresh and aged preparations.
Darwish, Hany W.; Abdelhameed, Ali S.; Bakheit, Ahmed H.; Khalil, Nasr Y.; Al-Majed, Abdulrahman A.
2014-01-01
A rapid, simple, sensitive, and accurate isocratic reversed-phase stability-indicating high performance liquid chromatography method has been developed and validated for the determination of stiripentol and its degradation product in its bulk form and pharmaceutical dosage form. Chromatographic separation was achieved on a Symmetry C18 column and quantification was achieved using photodiode array detector (DAD). The method was validated in accordance with the ICH requirements showing specificity, linearity (r 2 = 0.9996, range of 1–25 μg/mL), precision (relative standard deviation lower than 2%), accuracy (mean recovery 100.08 ± 1.73), limits of detection and quantitation (LOD = 0.024 and LOQ = 0.081 μg/mL), and robustness. Stiripentol was subjected to various stress conditions and it has shown marked stability under alkaline hydrolytic stress conditions, thermal, oxidative, and photolytic conditions. Stiripentol degraded only under acidic conditions, forming a single degradation product which was well resolved from the pure drug with significantly different retention time values. This degradation product was characterized by 1H-NMR and 13C-NMR spectroscopy as well as ion trap mass spectrometry. The results demonstrated that the method would have a great value when applied in quality control and stability studies for stiripentol. PMID:25371844
NASA Astrophysics Data System (ADS)
Frey, Felix J.; Frey, Brigitte M.; Benet, Leslie Z.
If a radioimmunoassay, a protein binding method, or a colorimetric assay for the assessment of a steroid level is replaced by high performance liquid chromatography (HPLC), the cost for the determination of a steroid level increases at least initially because one must acquire the new HPLC equipment. Therefore, if an older method provides the same results as the new, "advanced" HPLC method, the only advantage resulting from the introduction of a high performance chromatographic assay is that gained by the manufacturer in terms of greater sales. Thus, justification for the assessment of steroids by HPLC is only obtained if the quality and/or quantity of information gained is significantly increased as compared to that provided by the conventional methods. But this evidential relation, that more and better information justifies a higher price in any case, is no longer true in health care, with the birth some years ago of the categoric imperative for the reduction of costs in the medical sector. That is, each new technology introduced for health maintenance should demonstrate at least a stabilizing impact on total medical expenditures. Therefore, after reviewing the presently available HPLC methods for the clinically important steroids, we will consider whether HPLC analyses for these steroids can be recommended without violating this vox populi.
Moenes, Eman M; Al-Ghobashy, Medhat A; Mohamed, Abeer A; Salem, Maissa Y
2018-01-01
Darbepoetin alfa (DA); hyper-glycosylated Erythropoietin alfa (EPO) is an essential treatment of anemia in patients with chronic kidney failure and cancer. In this study, DA and EPO were subjected to physicochemical stress factors that might be encountered during production, transport and storage (pH, temperature, agitation, repeated freeze-thaw and oxidation). An orthogonal stability-indicating assay protocol comprised of SE-HPLC, RP-HPLC, ELISA and SDS-PAGE was developed and validated to investigate the effect of further glycosylation of DA on the pattern and kinetics of degradation. Results showed a relatively higher stability and lower tendency to form high molecular weight aggregates in the case of DA when compared to EPO, under equivalent stress conditions. Dimers and aggregates were formed for both drugs across the whole pH range and following incubation at temperatures higher than 2-8°C or repeated freeze/thaw. The same observation was noted upon agitation of standard samples prepared in the formulation buffers at high speed and upon oxidation with hydrogen peroxide. The agreement between SE-HPLC, supported with spectral purity data and ELISA confirmed the specificity of both techniques for the intact drugs. Results of RP-HPLC and SDS-PAGE indicated that dimerization occurred through disulfide and bi-tyrosine covalent bonds in the case of pH and oxidation, respectively. It was evident that aggregation was significantly suppressed upon increasing the glycan size and under any of the studied stress factors loss of the glycan has not been observed. These observations supported with the slow kinetics of degradation confirmed the superiority of glyco-engineering over chemical pegylation to enhance the stability of EPO. Formation of such potentially immunogenic product-related impurities at all tested stress factors confirmed the need for orthogonal testing protocols to investigate the complex pattern of degradation of such sensitive products. Copyright © 2017 Elsevier B.V. All rights reserved.
Jin, Peng-fei; Wu, Xue-jun; Zou, Ding; Kuang, Yong-mei; Hu, Xin; Jiang, Wen-qing; Sun, Chun-hua
2011-03-01
A HPLC-ICP-MS method for simultaneous determination of As(III), As(V), MMA and DMA in traditional Chinese medicines (TCMs) was established, and the contents of As(III), As(V), MMA and DMA in a TCM with high total arsenic content (Cordyceps) and 5 crude and processed TCMs (Radix Astragali, Radix et Rhizoma Rhei, Radix Scutellariae, Radix Polygoni Multiflori and Radix Rehmanniae) were determined and analyzed. The method validation indicated that the correlative coefficients (r) for all speciations were bigger than 0.9984; the limits of quantitation (LOQ) were from 0.8 to 1.0 microg x L(-1); the reproducibility and stability were satisfactory with all RSDs less than 10%; the spiked recoveries ranged from 82.40% to 119.5%. The results of samples analysis showed that the inorganic arsenic (As(III) and As(V)) was the dominating speciation in the tested TCMs; MMA and DMA were not found in all plant resourced TCMs, but MMA was found in Cordyceps; all the tested TCMs indicated a content increasing of inorganic arsenic after processing.
Zhang, Xia; Hu, Changqin
2017-09-08
Penicillins are typical of complex ionic samples which likely contain large number of degradation-related impurities (DRIs) with different polarities and charge properties. It is often a challenge to develop selective and robust high performance liquid chromatography (HPLC) methods for the efficient separation of all DRIs. In this study, an analytical quality by design (AQbD) approach was proposed for stability-indicating method development of cloxacillin. The structures, retention and UV characteristics rules of penicillins and their impurities were summarized and served as useful prior knowledge. Through quality risk assessment and screen design, 3 critical process parameters (CPPs) were defined, including 2 mixture variables (MVs) and 1 process variable (PV). A combined mixture-process variable (MPV) design was conducted to evaluate the 3 CPPs simultaneously and a response surface methodology (RSM) was used to achieve the optimal experiment parameters. A dual gradient elution was performed to change buffer pH, mobile-phase type and strength simultaneously. The design spaces (DSs) was evaluated using Monte Carlo simulation to give their possibility of meeting the specifications of CQAs. A Plackett-Burman design was performed to test the robustness around the working points and to decide the normal operating ranges (NORs). Finally, validation was performed following International Conference on Harmonisation (ICH) guidelines. To our knowledge, this is the first study of using MPV design and dual gradient elution to develop HPLC methods and improve separations for complex ionic samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Stability study of the anticonvulsant enaminone (E118) using HPLC and LC-MS.
Abdel-Hamid, Mohammed E; Edafiogho, Ivan O; Hamza, Huda M
2002-01-01
The stability of the new chemical synthetic enaminone derivative (E118) was investigated using a stability-indicating high-performance liquid chromatography (HPLC) procedure. The examined samples were analyzed using a chiral HSA column and a mobile phase (pH 7.5) containing n-octanoic acid (5 mM), isopropyl alcohol and 100 mM disodium hydrogen phosphate solution (1:9 v/v) at a flow rate of 1 ml min(-1). The developed method was specific, accurate and reproducible. The HPLC chromatograms exhibited well-resolved peaks of E118 and the degradation products at retention times <5 min. The stability of E118 was performed in 0.1 M hydrochloric acid, 0.1 M sodium hydroxide, water/ethanol (1:1) and phosphate buffer (pH approximately 7.5) solutions. E118 was found to undergo fast hydrolysis in 0.1 M hydrochloric acid solution. The decomposition of E118 followed first order kinetics under the experimental conditions. The results confirmed that protonation of the enaminone system in the molecule enhanced the hydrolysis of E118 at degradation rate constant of 0.049 min(-1) and degradation half-life of 14.1 min at 25 degrees C. However, E118 was significantly stable in 0.1 M sodium hydroxide, physiological phosphate buffer (pH 7.5) and ethanol/water (1:1) solutions. The degradation rate constants and degradation half-lives were in the ranges 0.0023-0.0086 h(-1) and 80.6-150.6 h, respectively. Analysis of the acid-induced degraded solution of E118 by liquid chromatography-mass spectrometry (LC-MS) revealed at least two degradation products of E118 at m/z 213.1 and 113.1, respectively.
van Heugten, A J P; de Boer, W; de Vries, W S; Markesteijn, C M A; Vromans, H
2018-02-05
A stability indicating high performance liquid chromatography method has been developed for the determination of triamcinolone acetonide (TCA) and its main degradation products in ointment formulations. The method, based on extensive stress testing using metal salts, azobisisobutyronitrile, acid, base and peroxide, showed that TCA undergoes oxidative degradation. All degradation products were identified using HPLC mass spectrometry. Separation and quantification was achieved using an Altima C18 RP18 HP column (250×4.6mm 2 , with 5μm particles) using a mobile phase consisting of acetonitrile and water buffered at pH 7 using 10mM phosphate buffer. A gradient mode was operated at a flow rate of 1.5ml/min and detection was at 241nm. The method showed linearity for TCA and Impurity C in 0.02-125% of the workload, both square roots of the correlation coefficients were larger than 0.9999. Repeatability and intermediate precision were performed by six consecutive injections of both 1.25% and 125% of the work load for both TCA and Impurity C divided equally over two days. RSD were 0.6% and 0.7% for TCA and 0.5% and 0.1% for Impurity C respectively. Accuracy was determined as well, the average recoveries were 99.5% (±0.1%, n=3) for TCA and 96.9% (±1.3%, n=3) for impurity C respectively from spiked ointment samples. The robustness was also evaluated by variations of column (old vs new), mobile phase pH and filter retention. The applicability of the method was evaluated by analysis of a commercial ointment formulation. Interestingly, the extensive stress tests were able to predict all degradation products of TCA in a long term stability ointment sample. Copyright © 2017 Elsevier B.V. All rights reserved.
El Yazbi, Fawzy A; Hassan, Ekram M; Khamis, Essam F; Ragab, Marwa A A; Hamdy, Mohamed M A
2017-11-15
Ketorolac tromethamine (KTC) with phenylephrine hydrochloride (PHE) binary mixture (mixture 1) and their ternary mixture with chlorpheniramine maleate (CPM) (mixture 2) were analyzed using a validated HPLC-DAD method. The developed method was suitable for the in vitro as well as quantitative analysis of the targeted mixtures in rabbit aqueous humor. The analysis in dosage form (eye drops) was a stability indicating one at which drugs were separated from possible degradation products arising from different stress conditions (in vitro analysis). For analysis in aqueous humor, Guaifenesin (GUF) was used as internal standard and the method was validated according to FDA regulation for analysis in biological fluids. Agilent 5 HC-C18(2) 150×4.6mm was used as stationary phase with a gradient eluting solvent of 20mM phosphate buffer pH 4.6 containing 0.2% triethylamine and acetonitrile. The drugs were resolved with retention times of 2.41, 5.26, 7.92 and 9.64min for PHE, GUF, KTC and CPM, respectively. The method was sensitive and selective to analyze simultaneously the three drugs in presence of possible forced degradation products and dosage form excipients (in vitro analysis) and also with the internal standard, in presence of aqueous humor interferences (analysis in biological fluid), at a single wavelength (261nm). No extraction procedure was required for analysis in aqueous humor. The simplicity of the method emphasizes its capability to analyze the drugs in vivo (in rabbit aqueous humor) and in vitro (in pharmaceutical formulations). Copyright © 2017 Elsevier B.V. All rights reserved.
Ramisetti, Nageswara Rao; Kuntamukkala, Ramakrishna; Lakshetti, Sridhar; Sripadi, Prabhakar
2014-07-01
The current study dealt with the degradation behavior of lacosamide (LAC) under ICH prescribed stress conditions. LAC was found to be labile under acid and base hydrolytic stress conditions, while it was stable to neutral hydrolytic, oxidative, photolytic and thermal stress. In total, seven degradation products (DPs) were formed, which were separated on a C18 column using a stability-indicating method. LC-MS analyses indicated that one of the DPs had the same molecular mass as that of the drug. Structural characterization of DPs was carried out using ESI-Q-TOF-MS/MS technique. The degradation pathways and mechanisms of degradation of the drug were delineated by carrying out the degradation in different co-solvents viz. methanol, deuterated methanol, ethanol, 1-propanol and acetonitrile. The developed LC method was validated for the determination of related substances and assay of LAC as per ICH guidelines. This study demonstrates a comprehensive approach of LAC degradation studies during its development phase. Copyright © 2014. Published by Elsevier B.V.
Cho, GyeYoon; Han, KyuChul; Yoon, JinYoung
2015-03-01
Scolopendra subspinipes mutilans (S. subspinipes mutilans) is known as a traditional medicine and includes various amino acids, peptides and proteins. The amino acids in the pharmacopuncture extracted from S. subspinipes mutilans by using derivatization methods were analyzed quantitatively and qualitatively by using high performance liquid chromatography (HPLC) over a 12 month period to confirm its stability. Amino acids of pharmacopuncture extracted from S. subspinipes mutilans were derived by using O-phthaldialdehyde (OPA) & 9-fluorenyl methoxy carbonyl chloride (FMOC) reagent and were analyzed using HPLC. The amino acids were detected by using a diode array detector (DAD) and a fluorescence detector (FLD) to compare a mixed amino acid standard (STD) to the pharmacopuncture from centipedes. The stability tests on the pharmacopuncture from centipedes were done using HPLC for three conditions: a room temperature test chamber, an acceleration test chamber, and a cold test chamber. The pharmacopuncture from centipedes was prepared by using the method of the Korean Pharmacopuncture Institute (KPI) and through quantitative analyses was shown to contain 9 amino acids of the 16 amino acids in the mixed amino acid STD. The amounts of the amino acids in the pharmacopuncture from centipedes were 34.37 ppm of aspartate, 123.72 ppm of arginine, 170.63 ppm of alanine, 59.55 ppm of leucine and 57 ppm of lysine. The relative standard deviation (RSD %) results for the pharmacopuncture from centipedes had a maximum value of 14.95% and minimum value of 1.795% on the room temperature test chamber, the acceleration test chamber and the cold test chamber stability tests. Stability tests on and quantitative and qualitative analyses of the amino acids in the pharmacopuncture extracted from centipedes by using derivatization methods were performed by using HPLC. Through research, we hope to determine the relationship between time and the concentrations of the amino acids in the pharmacopuncture extracted from centipedes.
Kumar, Sandeep; Lather, Viney; Pandita, Deepti
2016-04-15
Resveratrol and quercetin are well-known polyphenolic compounds present in common foods, which have demonstrated enormous potential in the treatment of a wide variety of diseases. Owing to their exciting synergistic potential and combination delivery applications, we developed a simple and rapid RP-HPLC method based on isosbestic point detection. The separation was carried out on phenomenex Synergi 4μ Hydro-RP 80A column using methanol: acetonitrile (ACN): 0.1% phosphoric acid (60:10:30) as mobile phase. The method was able to quantify nanograms of analytes simultaneously on a single wavelength (269 nm), making it highly sensitive, rapid as well as economical. Additionally, forced degradation studies of resveratrol and quercetin were established and the method's applicability was evaluated on PLGA nanoparticles and human plasma. The analytes peaks were found to be well resolved in the presence of degradation products and excipients. The simplicity of the developed method potentializes its suitability for routine in vitro and in vivo analysis of resveratrol and quercetin. Copyright © 2015 Elsevier Ltd. All rights reserved.
Narayana, M B V; Chandrasekhar, K B; Rao, B M
2014-09-01
A validated specific stability-indicating reverse-phase liquid chromatographic method was developed for the quantitative determination of Ambrisentan as well as its related substances in bulk samples, pharmaceutical dosage forms in the presence of degradation products and its related impurities. Forced degradation studies were performed on bulk samples of Ambrisentan as per the ICH-prescribed stress conditions using acid, base, oxidative, thermal stress and photolytic degradation to show the stability-indicating power of the LC method. Significant degradation in acidic, basic stress conditions was observed and no degradation was observed in other stress conditions. The chromatographic method was optimized using the samples generated from the forced degradation studies and the impurity-spiked solution. Good resolution between the peaks corresponds to Ambrisentan-related impurities and degradation products from the analyte were achieved on a SunFire C18 column using a mobile phase consisting of a mixture of potassium dihydrogen orthophosphate at a pH adjusted to 2.5 with ortho-phosphoric acid in water and a mixture of acetonitrile:methanol using a simple linear gradient. The detection was carried out at 225 nm. The limit of detection and the limit of quantification for the Ambrisentan and its related impurities were established. The stressed test solutions were assayed against the qualified working standard of Ambrisentan and the mass balance in each case was between 98.9 and 100.3%, indicating that the developed LC method was stability indicating. Validation of the developed LC method was carried out as per the ICH requirements. The developed method was found to be suitable to check the quality of bulk samples of Ambrisentan at the time of batch release and also during its storage (long-term and accelerated stability). © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Pinto, Eduardo Costa; Dolzan, Maressa Danielli; Cabral, Lucio Mendes; Armstrong, Daniel W; de Sousa, Valéria Pereira
2016-02-01
An important step during the development of high-performance liquid chromatography (HPLC) methods for quantitative analysis of drugs is choosing the appropriate detector. High sensitivity, reproducibility, stability, wide linear range, compatibility with gradient elution, non-destructive detection of the analyte and response unaffected by changes in the temperature/flow are some of the ideal characteristics of a universal HPLC detector. Topiramate is an anticonvulsant drug mainly used for the treatment of different types of seizures and prophylactic treatment of migraine. Different analytical approaches to quantify topiramate by HPLC have been described because of the lack of chromophoric moieties on its structure, such as derivatization with fluorescent moieties and UV-absorbing moieties, conductivity detection, evaporative light scattering detection, refractive index detection, chemiluminescent nitrogen detection and MS detection. Some methods for the determination of topiramate by capillary electrophoresis and gas chromatography have also been published. This systematic review provides a description of the main analytical methods presented in the literature to analyze topiramate in the drug substance and in pharmaceutical formulations. Each of these methods is briefly discussed, especially considering the detector used with HPLC. In addition, this article presents a review of the data available regarding topiramate stability, degradation products and impurities. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wang, Lu; Qu, Haibin
2016-03-01
A method combining solid phase extraction, high performance liquid chromatography, and ultraviolet/evaporative light scattering detection (SPE-HPLC-UV/ELSD) was developed according to Quality by Design (QbD) principles and used to assay nine bioactive compounds within a botanical drug, Shenqi Fuzheng Injection. Risk assessment and a Plackett-Burman design were utilized to evaluate the impact of 11 factors on the resolutions and signal-to-noise of chromatographic peaks. Multiple regression and Pareto ranking analysis indicated that the sorbent mass, sample volume, flow rate, column temperature, evaporator temperature, and gas flow rate were statistically significant (p < 0.05) in this procedure. Furthermore, a Box-Behnken design combined with response surface analysis was employed to study the relationships between the quality of SPE-HPLC-UV/ELSD analysis and four significant factors, i.e., flow rate, column temperature, evaporator temperature, and gas flow rate. An analytical design space of SPE-HPLC-UV/ELSD was then constructed by calculated Monte Carlo probability. In the presented approach, the operating parameters of sample preparation, chromatographic separation, and compound detection were investigated simultaneously. Eight terms of method validation, i.e., system-suitability tests, method robustness/ruggedness, sensitivity, precision, repeatability, linearity, accuracy, and stability, were accomplished at a selected working point. These results revealed that the QbD principles were suitable in the development of analytical procedures for samples in complex matrices. Meanwhile, the analytical quality and method robustness were validated by the analytical design space. The presented strategy provides a tutorial on the development of a robust QbD-compliant quantitative method for samples in complex matrices.
Zhang, Juzhou; Li, Jing; Shao, Dongliang; Yao, Bangben; Jiang, Junshu
2012-02-01
An effective high performance liquid chromatographic (HPLC) method has been developed for the simultaneous determination of 9 ultraviolet stabilizers in food plastic packaging materials. The food packaging samples were firstly extracted by methanol-ethyl acetate, and then purified by a C18 solid-phase extraction (SPE) column. The target compounds were separated on a ZORBAX SB-C18 column (250 mm x 4.6 mm, 5 microm) in gradient elution mode using methanol and water as mobile phases. The detection wavelength was at 310 nm. The linear plots of the nine ultraviolet stabilizers were obtained between 0.2 and 10 mg/L, with the correlation coefficients of above 0. 999 for the nine ultraviolet stabilizers. The limits of detection for this method were in the range from 0.05 to 0.1 mg/L. The recoveries spiked in commercial food plastic packaging materials were in the range of 70.2% - 89.0% with the relative standard deviations of 0.4% - 4.5%. The results indicated that the method is simple, accurate, and suitable for the simultaneous determination of the nine ultraviolet stabilizers in food plastic packaging materials.
Stability-Indicating HPLC Determination of Gemcitabine in Pharmaceutical Formulations
Singh, Rahul; Shakya, Ashok K.; Naik, Rajashri; Shalan, Naeem
2015-01-01
A simple, sensitive, inexpensive, and rapid stability indicating high performance liquid chromatographic method has been developed for determination of gemcitabine in injectable dosage forms using theophylline as internal standard. Chromatographic separation was achieved on a Phenomenex Luna C-18 column (250 mm × 4.6 mm; 5μ) with a mobile phase consisting of 90% water and 10% acetonitrile (pH 7.00 ± 0.05). The signals of gemcitabine and theophylline were recorded at 275 nm. Calibration curves were linear in the concentration range of 0.5–50 μg/mL. The correlation coefficient was 0.999 or higher. The limit of detection and limit of quantitation were 0.1498 and 0.4541 μg/mL, respectively. The inter- and intraday precision were less than 2%. Accuracy of the method ranged from 100.2% to 100.4%. Stability studies indicate that the drug was stable to sunlight and UV light. The drug gives 6 different hydrolytic products under alkaline stress and 3 in acidic condition. Aqueous and oxidative stress conditions also degrade the drug. Degradation was higher in the alkaline condition compared to other stress conditions. The robustness of the methods was evaluated using design of experiments. Validation reveals that the proposed method is specific, accurate, precise, reliable, robust, reproducible, and suitable for the quantitative analysis. PMID:25838825
Ramalingam, P.; Bhaskar, V. Udaya; Reddy, Y. Padmanabha; Kumar, K. Vinod
2014-01-01
A new stability-indicating high-performance liquid chromatographic method for simultaneous analysis of sitagliptin and simvastatin in pharmaceutical dosage form was developed and validated. The mobile phase consisted of methanol and water (70:30, v/v) with 0.2 % of n-heptane sulfonic acid adjusted to pH 3.0 with ortho phosphoric acid was used. Retentions of sitagliptin and simvastatin were 4.3 min and 30.4 min, respectively with a flow rate of 1 ml/min on C8 (Qualisil BDS, 250×4.6 mm, 5 μ). Eluents were detected at 253 nm using photodiode diode array detector. The linear regression analysis data for the linearity plot showed correlation coefficient values of 0.9998 and 0.9993 for sitagliptin and simvastatin, with respective concentration ranges of 20-150 μg/ml and 8-60 μg/ml. The relative standard deviation for inter-day precision was lower than 2.0%. The assay of sitagliptin and simvastatin was determined in tablet dosage form was found to be within limits. Both drugs were subjected to a variety of stress conditions such as acidic, basic, oxidation, photolytic, neutral and thermal stress in order to achieve adequate degradation. Results revealed that considerable degradation was found in all stress conditions except oxidative degradations. The method has proven specificity for stability indicating assay method. PMID:25425754
Zhang, Kai; Cai, Song-Liang; Yan, Yi-Lun; He, Zi-Hao; Lin, Hui-Mei; Huang, Xiao-Ling; Zheng, Sheng-Run; Fan, Jun; Zhang, Wei-Guang
2017-10-13
Covalent organic frameworks (COFs), as an emerging class of crystalline porous organic polymers, have great potential for applications in chromatographic separation owning to their fascinating crystalline structures and outstanding properties. However, development of COF materials as novel stationary phases in high performance liquid chromatography (HPLC) is just in its infancy. Herein, we report the design and construction of a new hydrazone-linked chiral COF, termed BtaMth COF, from a chiral hydrazide building block (Mth) and present a one-pot synthetic method for the fabrication of BtaMth@SiO 2 composite for HPLC separation of isomers. The as-synthesized BtaMth chiral COF displays good crystallinity, high porosity, as well as excellent chemical stability. Meanwhile, the fabricated HPLC column by using BtaMth@SiO 2 composite as the new stationary phase exhibits high resolution performances for the separation of positional isomers including nitrotoluene and nitrochlorobenzene, as well as cis-trans isomers including beta-cypermethrin and metconazole. Additionally, some effects such as the composition of the mobile phase and column temperature for HPLC separations on the BtaMth@SiO 2 packed column also have been studied in detail. The successful applications indicate the great potentials of hydrazone-linked chiral COF-silica composite as novel stationary phase for the efficient HPLC separation. Copyright © 2017 Elsevier B.V. All rights reserved.
Validation of a Stability-Indicating Method for Methylseleno-l-Cysteine (l-SeMC)
Canady, Kristin; Cobb, Johnathan; Deardorff, Peter; Larson, Jami; White, Jonathan M.; Boring, Dan
2016-01-01
Methylseleno-l-cysteine (l-SeMC) is a naturally occurring amino acid analogue used as a general dietary supplement and is being explored as a chemopreventive agent. As a known dietary supplement, l-SeMC is not regulated as a pharmaceutical and there is a paucity of analytical methods available. To address the lack of methodology, a stability-indicating method was developed and validated to evaluate l-SeMC as both the bulk drug and formulated drug product (400 µg Se/capsule). The analytical approach presented is a simple, nonderivatization method that utilizes HPLC with ultraviolet detection at 220 nm. A C18 column with a volatile ion-pair agent and methanol mobile phase was used for the separation. The method accuracy was 99–100% from 0.05 to 0.15 mg/mL l-SeMC for the bulk drug, and 98–99% from 0.075 to 0.15 mg/mL l-SeMC for the drug product. Method precision was <1% for the bulk drug and was 3% for the drug product. The LOQ was 0.1 µg/mL l-SeMC or 0.002 µg l-SeMC on column. PMID:26199341
Pinder, Nadine; Brenner, Thorsten; Swoboda, Stefanie; Weigand, Markus A; Hoppe-Tichy, Torsten
2017-09-05
Therapeutic drug monitoring (TDM) is a useful tool to optimize antibiotic therapy. Increasing interest in alternative dosing strategies of beta-lactam antibiotics, e.g. continuous or prolonged infusion, require a feasible analytical method for quantification of these antimicrobial agents. However, pre-analytical issues including sample handling and stability are to be considered to provide valuable analytical results. For the simultaneous determination of piperacillin, meropenem, ceftazidime and flucloxacillin, a high performance liquid chromatography (HPLC) method including protein precipitation was established utilizing ertapenem as internal standard. Long-term stability of stock solutions and plasma samples were monitored. Furthermore, whole blood stability of the analytes in heparinized blood tubes was investigated comparing storage under ambient conditions and 2-8°C. A calibration range of 5-200μg/ml (piperacillin, ceftazidime, flucloxacillin) and 2-200μg/ml (meropenem) was linear with r 2 >0.999, precision and inaccuracy were <9% and <11%, respectively. The successfully validated HPLC assay was applied to clinical samples and stability investigations. At -80°C, plasma samples were stable for 9 months (piperacillin, meropenem) or 13 months (ceftazidime, flucloxacillin). Concentrations of the four beta-lactam antibiotics in whole blood tubes were found to remain within specifications for 8h when stored at 2-8°C but not at room temperature. The presented method is a rapid and simple option for routine TDM of piperacillin, meropenem, ceftazidime and flucloxacillin. Whereas long-term storage of beta-lactam samples at -80°C is possible for at least 9 months, whole blood tubes are recommended to be kept refrigerated until analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Aberham, Anita; Cicek, Serhat Sezai; Schneider, Peter; Stuppner, Hermann
2010-10-27
Today, the medicinal use of wormwood (Artemisia absinthium) is enjoying a resurgence of popularity. This study presents a specific and validated high-performance liquid chromatography (HPLC)-diode array detection method for the simultaneous determination and quantification of bioactive compounds in wormwood and commercial preparations thereof. Five sesquiterpene lactones, two lignans, and a polymethoxylated flavonoid were baseline separated on RP-18 material, using a solvent gradient consisting of 0.085% (v/v) o-phosphoric acid and acetonitrile. The flow rate was 1.0 mL/min, and chromatograms were recorded at 205 nm. The stability of absinthin was tested exposing samples to light, moisture, and different temperatures. Methanolic and aqueous solutions of absinthin were found to be stable for up to 6 months. This was also the case when the solid compound was kept in the refrigerator at -35 °C. In contrast, the colorless needles, when stored at room temperature, turned yellow. Three degradation compounds (anabsin, anabsinthin, and the new dimer 3'-hydroxyanabsinthin) were identified by HPLC-mass spectrometry and HPLC-solid-phase extraction-nuclear magnetic resonance and quantified by the established HPLC method.
Jalalizadeh, Hassan; Raei, Mahdi; Tafti, Razieh Fallah; Farsam, Hassan; Kebriaeezadeh, Abbas; Souri, Effat
2014-01-01
Memantine is chemically a tricyclic amine and is used for Parkinson’s disease and movement disorders. Although several HPLC methods with different derivatization reagents have been developed for the determination of memantine in biological fluids, there are some complications which limit the use of these methods in routine analysis of memantine in in vitro tests. We established a simple, sensitive, precise, and accurate HPLC method for the quantification of memantine in dosage forms. Pre-column derivatization of memantine was performed with 1-fluoro-2,4-dinitrobenzene and the reaction product was separated on a Nova-Pak C18 column. A mixture of acetonitrile and sodium dihydrogenphosphate (pH 2.5; 0.05 M) (70: 30, v/v) was used as the mobile phase. UV detection was performed at 360 nm. Forced degradation studies were performed on a powdered tablet sample of memantine hydro-chloride using acidic (0.1 M hydrochloric acid), basic (0.1 M sodium hydroxide), oxidative (10% hydrogen peroxide), thermal (105°C), photolytic, and humidity conditions. Good linearity (r2=0.999) was obtained over the range of 1–12 μg mL−1 of memantine hydrochloride with acceptable within-day and between-day precision values in the range of 0.05–0.95%. The proposed method was used for the assay determination and dissolution rate study of memantine dosage forms with excellent specificity. PMID:24959398
Raju, Thummala Veera Raghava; Seshadri, Raja Kumar; Arutla, Srinivas; Mohan, Tharlapu Satya Sankarsana Jagan; Rao, Ivaturi Mrutyunjaya; Nittala, Someswara Rao
2013-01-01
A novel, sensitive, stability-indicating HPLC method has been developed for the quantitative estimation of Tolperisone-related impurities in both bulk drugs and pharmaceutical dosage forms. Effective chromatographic separation was achieved on a C18 stationary phase with a simple mobile phase combination delivered in a simple gradient programme, and quantitation was by ultraviolet detection at 254 nm. The mobile phase consisted of a buffer and acetonitrile delivered at a flow rate 1.0 ml/min. The buffer consisted of 0.01 M potassium dihydrogen phosphate with the pH adjusted to 8.0 by using diethylamine. In the developed HPLC method, the resolution between Tolperisone and its four potential impurities was found to be greater than 2.0. Regression analysis showed an R value (correlation coefficient) of greater than 0.999 for the Tolperisone impurities. This method was capable of detecting all four impurities of Tolperisone at a level of 0.19 μg/mL with respect to the test concentration of 1000 μg/mL for a 10 µl injection volume. The tablets were subjected to the stress conditions of hydrolysis, oxidation, photolysis, and thermal degradation. Considerable degradation was found to occur in base hydrolysis, water hydrolysis, and oxidation. The stress samples were assayed against a qualified reference standard and the mass balance was found to be close to 100%. The established method was validated and found to be linear, accurate, precise, specific, robust, and rugged.
Uner, M; Wissing, S A; Yener, G; Müller, R H
2005-08-01
The aim of this study was to improve the chemical stability of ascorbyl palmitate (AP) in a colloidal lipid carrier for its topical use. For this purpose, AP-loaded solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and for comparison, a nanoemulsion (NE) were prepared employing the high pressure homogenization technique and stored at room temperature (RT), 4 degrees C and 40 degrees C. During 3 months, physical stability of these formulations compared to placebo formulations which were prepared by the same production method, was studied including recrystallization behaviour of the lipid with differential scanning calorimetry (DSC), particle size distribution and storage stability with photon correlation spectroscopy (PCS) and laser diffractometry (LD). After evaluating data indicating excellent physical stability, AP-loaded SLN, NLC and NE were incorporated into a hydrogel by the same production method as the next step. Degradation of AP by HPLC and physical stability in the same manner were investigated at the same storage temperatures during 3 months. As a result, AP was found most stable in both the NLC and SLN stored at 4 degrees C (p > 0.05) indicating the importance of storage temperature. Nondegraded AP content in NLC, SLN and NE was found to be 71.1% +/- 1.4, 67.6% +/- 2.9 and 55.2% +/- 0.3 after 3 months, respectively. Highest degradation was observed with NE at all the storage temperatures indicating even importance of the carrier structure.
Analysis of aldehydes in human exhaled breath condensates by in-tube SPME-HPLC.
Wang, ShuLing; Hu, Sheng; Xu, Hui
2015-11-05
In this paper, polypyrrole/graphene (PPy/G) composite coating was prepared by a facile electrochemical polymerization strategy on the inner surface of a stainless steel (SS) tube. Based on the coating tube, a novel online in-tube solid-phase microextraction -high performance liquid chromatography (IT-SPME-HPLC) was developed and applied for the extraction of aldehydes in the human exhaled breath condensates (EBC). The hybrid PPy/G nanocomposite exhibits remarkable chemical and mechanical stability, high selectivity, and satisfactory extraction performance toward aldehyde compounds. Moreover, the proposed online IT-SPME-HPLC method possesses numerous superiorities, such as time and cost saving, process simplicity, high precision and sensitivity. Some parameters related to extraction efficiency were optimized systematically. Under the optimal conditions, the recoveries of the aldehyde compounds at three spiked concentration levels varied in the range of 85%-117%. Good linearity was obtained with excellent correlation coefficients (R(2)) being larger than 0.994. The relative standard deviations (n = 5) of the method ranged from 1.8% to 11.3% and the limits of detection were between 2.3 and 3.3 nmol L(-1). The successful application of the proposed method in human EBC indicated that it is a promising approach for the determination of trace aldehyde metabolites in complex EBC samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Investigations Concerning Hydrolysis and Stabilization of Antiradiation Compounds
1982-01-01
a. HPLC Unit A 3 b. HPLC Unit B 3 c. Solvents 3 d. Reagents 3 B. In Vivo Studies 3 C. Microencapsulation 4 1. Materials 4 a... Microencapsulation 63 VI. CONCLUSIONS 64 VII. RECOMMENDATIONS 65 LITERATURE CITED 66 APPENDU A - IN VIVO PILOT STUDIES 67 APPENDIX B...stomach. One convenient method of applying such a coating is microencapsulation , a process which may subject the drug to elevated temperatures
Reddy, Sunil Pingili; Babu, K. Sudhakar; Kumar, Navneet; Sekhar, Y. V. V. Sasi
2011-01-01
Aim and background: A stability-indicating gradient reverse phase liquid chromatographic (RP-LC) method was developed for the quantitative determination of related substances of guaifenesin in pharmaceutical formulations. Materials and methods: The baseline separation for guaifenesin and all impurities was achieved by utilizing a Water Symmetry C18 (150 mm × 4.6 mm) 5 μm column particle size and a gradient elution method. The mobile phase A contains a mixture of 0.02 M KH2PO4 (pH 3.2) and methanol in the ratio of 90:10 v/v, while the mobile phase B contains 0.02 M KH2PO4 (pH 3.2) and methanol in the ratio of 10:90 v/v, respectively. The flow rate of the mobile phase was 0.8 ml/min with a column temperature of 25°C and detection wavelength at 273 nm. Results: Guaifenesin was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal, and photolytic degradation. Conclusion: The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of detection and quantification, accuracy, precision, and robustness. PMID:23781462
Granada, Andréa; Tagliari, Monika Piazzon; Soldi, Valdir; Silva, Marcos António Segatto; Zanetti-Ramos, Betina Ghiel; Fernandes, Daniel; Stulzer, Hellen Karine
2013-01-01
A simple stability-indicating analytical method was developed and validated to quantify nifedipine in polymeric nanocapsule suspensions; an in vitro drug release study was then carried out. The analysis was performed using an RP C18 column, UV-Vis detection at 262 nm, and methanol-water (70 + 30, v/v) mobile phase at a flow rate of 1.2 mL/min. The method was validated in terms of specificity, linearity and range, LOQ, accuracy, precision, and robustness. The results obtained were within the acceptable ranges. The nanocapsules, made of poly(epsilon-caprolactone), were prepared by the solvent displacement technique and showed high entrapment efficiency. The entrapment efficiency was 97.6 and 98.2% for the nifedipine-loaded polymeric nanocapsules prepared from polyvinyl alcohol (PVA) and Pluronic F68 (PF68), respectively. The particle size and zeta potential of nanocapsules were found to be influenced by the nature of the stabilizer used. The mean diameter and zeta potential for nanocapsules with PVA and PF68 were 290.9 and 179.9 nm, and -17.7 mV and -32.7 mV, respectively. The two formulations prepared showed a drug release of up to 70% over 4 days. This behavior indicates the viability of this drug delivery system for use as a controlled-release system.
[A new method for safety monitoring of natural dietary supplements--quality profile].
Wang, Juan; Wang, Li-Ping; Yang, Da-Jin; Chen, Bo
2008-07-01
A new method for safety monitoring of natural dietary supplements--quality profile was proposed. It would convert passive monitoring of synthetic drug to active, and guarantee the security of natural dietary supplements. Preliminary research on quality profile was completed by high performance liquid chromatography (HPLC) and mass spectrometry (MS). HPLC was employed to analyze chemical constituent profiles of natural dietary supplements. The separation was completed on C18 column with acetonitrile and water (0.05% H3PO4) as mobile phase, the detection wavelength was 223 nm. Based on HPLC, stability of quality profile had been studied, and abnormal compounds in quality profile had been analyzed after addition of phenolphthalein, sibutramine, rosiglitazone, glibenclamide and gliclazide. And by MS, detector worked with ESI +, capillary voltage: 3.5 kV, cone voltage: 30 V, extractor voltage: 4 V, RF lens voltage: 0.5 V, source temperature: 105 degrees C, desolvation temperature: 300 degrees C, desolvation gas flow rate: 260 L/h, cone gas flow rate: 50 L/h, full scan mass spectra: m/z 100-600. Abnormal compound in quality profile had been analyzed after addition of N-mono-desmethyl sibutramine. Quality profile based on HPLC had good stability (Similarity > 0.877). Addition of phenolphthalein, sibutramine, rosiglitazone, glibenclamide and gliclazide in natural dietary supplements could be reflected by HPLC, and addition of N-mono-desmethyl sibutramine in natural dietary supplements could be reflected by MS. Quality profile might monitor adulteration of natural dietary supplements, and prevent addition of synthetic drug after "approval".
Heinänen, M; Barbas, C
2001-03-01
A method is described for ambroxol, trans-4-(2-amino-3,5-dibromobenzylamino) cyclohexanol hydrochloride, and benzoic acid separation by HPLC with UV detection at 247 nm in a syrup as pharmaceutical presentation. Optimal conditions were: Column Symmetry Shield RPC8, 5 microm 250 x 4.6 mm, and methanol/(H(3)PO(4) 8.5 mM/triethylamine pH=2.8) 40:60 v/v. Validation was performed using standards and the pharmaceutical preparation which contains the compounds described above. Results from both standards and samples show suitable validation parameters. The pharmaceutical grade substances were tested by factors that could influence the chemical stability. These reaction mixtures were analysed to evaluate the capability of the method to separate degradation products. Degradation products did not interfere with the determination of the substances tested by the assay.
Siddiqui, Farhan Ahmed; Sher, Nawab; Shafi, Nighat; Wafa Sial, Alisha; Ahmad, Mansoor; Mehjebeen; Naseem, Huma
2014-01-01
RP-HPLC ultraviolet detection simultaneous quantification of piracetam and levetiracetam has been developed and validated. The chromatography was obtained on a Nucleosil C18 column of 25 cm×0.46 cm, 10 μm, dimension. The mobile phase was a (70:30 v/v) mixture of 0.1 g/L of triethylamine and acetonitrile. Smooth flow of mobile phase at 1 mL/min was set and 205 nm wavelength was selected. Results were evaluated through statistical parameters which qualify the method reproducibility and selectivity for the quantification of piracetam, levetiracetam, and their impurities hence proving stability-indicating properties. The proposed method is significantly important, permitting the separation of the main constituent piracetam from levetiracetam. Linear behavior was observed between 20 ng/mL and 10,000 ng/mL for both drugs. The proposed method was checked in bulk drugs, dosage formulations, physiological condition, and clinical investigations and excellent outcome was witnessed.
Tuominen, Anu; Sundman, Terhi
2013-01-01
Hydrolysable tannins occur in plants that are used for food or medicine by humans or herbivores. Basic conditions can alter the structures of tannins, that is, the oxidation of phenolic groups can lead to the formation of toxic quinones. Previously, these labile quinones and other oxidation products have been studied with colorimetric or electron paramagnetic resonance methods, which give limited information about products. To study the stability and oxidation products of hydrolysable tannins in basic conditions using HPLC with a diode-array detector (DAD) combined with electrospray ionisation (ESI) and quadrupole time-of-flight (QTOF) MS. Three galloyl glucoses, four galloyl derivatives with different polyols and three ellagitannins were purified from plants. The incubation reactions of tannins were monitored by HPLC/DAD at five pH values and in reduced oxygen conditions. Reaction products were identified based on UV spectra and mass spectral fragmentation obtained with the high-resolution HPLC/DAD-ESI/QTOF/MS. The use of a base-resistant HPLC column enabled injections without the sample pre-treatment and thus detection of short-lived products. Hydrolysable tannins were unstable in basic conditions and half-lives were mostly less than 10 min at pH 10. Degradation rates were faster at pH 11 but slower at milder pH. The HPLC analyses revealed that various products were formed and identified to be the result of hydrolysis, deprotonation and oxidation. Interestingly, the main hydrolysis product was ellagic acid; it was also formed from galloyl glucoses that do not contain oxidatively coupled galloyl groups in their initial structures. HPLD/DAD-ESI/QTOF/MS was an efficient method for the identification of polyphenol oxidation products and showed how different pH conditions determine the fate of hydrolysable tannins. Copyright © 2013 John Wiley & Sons, Ltd.
Yanamandra, Ramesh; Vadla, Chandra Sekhar; Puppala, Umamaheshwar; Patro, Balaram; Murthy, Yellajyosula L N; Ramaiah, Parimi Atchuta
2012-01-01
A new rapid, simple, sensitive, selective and accurate reversed-phase stability-indicating Ultra Performance Liquid Chromatography (RP-UPLC) technique was developed for the assay of Tolterodine Tartrate in pharmaceutical dosage form, human plasma and urine samples. The developed UPLC method is superior in technology to conventional HPLC with respect to speed, solvent consumption, resolution and cost of analysis. Chromatographic run time was 6 min in reversed-phase mode and ultraviolet detection was carried out at 220 nm for quantification. Efficient separation was achieved for all the degradants of Tolterodine Tartrate on BEH C18 sub-2-μm Acquity UPLC column using Trifluoroacetic acid and acetonitrile as organic solvent in a linear gradient program. The active pharmaceutical ingredient was extracted from tablet dosage form using a mixture of acetonitrile and water as diluent. The calibration graphs were linear and the method showed excellent recoveries for bulk and tablet dosage form. The test solution was found to be stable for 40 days when stored in the refrigerator between 2 and 8 °C. The developed UPLC method was validated and meets the requirements delineated by the International Conference on Harmonization (ICH) guidelines with respect to linearity, accuracy, precision, specificity and robustness. The intra-day and inter-day variation was found be less than 1%. The method was reproducible and selective for the estimation of Tolterodine Tartrate. Because the method could effectively separate the drug from its degradation products, it can be employed as a stability-indicating one.
Yanamandra, Ramesh; Vadla, Chandra Sekhar; Puppala, Umamaheshwar; Patro, Balaram; Murthy, Yellajyosula. L. N.; Ramaiah, Parimi Atchuta
2012-01-01
A new rapid, simple, sensitive, selective and accurate reversed-phase stability-indicating Ultra Performance Liquid Chromatography (RP-UPLC) technique was developed for the assay of Tolterodine Tartrate in pharmaceutical dosage form, human plasma and urine samples. The developed UPLC method is superior in technology to conventional HPLC with respect to speed, solvent consumption, resolution and cost of analysis. Chromatographic run time was 6 min in reversed-phase mode and ultraviolet detection was carried out at 220 nm for quantification. Efficient separation was achieved for all the degradants of Tolterodine Tartrate on BEH C18 sub-2-μm Acquity UPLC column using Trifluoroacetic acid and acetonitrile as organic solvent in a linear gradient program. The active pharmaceutical ingredient was extracted from tablet dosage form using a mixture of acetonitrile and water as diluent. The calibration graphs were linear and the method showed excellent recoveries for bulk and tablet dosage form. The test solution was found to be stable for 40 days when stored in the refrigerator between 2 and 8 °C. The developed UPLC method was validated and meets the requirements delineated by the International Conference on Harmonization (ICH) guidelines with respect to linearity, accuracy, precision, specificity and robustness. The intra-day and inter-day variation was found be less than 1%. The method was reproducible and selective for the estimation of Tolterodine Tartrate. Because the method could effectively separate the drug from its degradation products, it can be employed as a stability-indicating one. PMID:22396907
Reddy, Sunil Pingili; Babu, K Sudhakar; Kumar, Navneet; Sekhar, Y V V Sasi
2011-10-01
A stability-indicating gradient reverse phase liquid chromatographic (RP-LC) method was developed for the quantitative determination of related substances of guaifenesin in pharmaceutical formulations. The baseline separation for guaifenesin and all impurities was achieved by utilizing a Water Symmetry C18 (150 mm × 4.6 mm) 5 μm column particle size and a gradient elution method. The mobile phase A contains a mixture of 0.02 M KH2PO4 (pH 3.2) and methanol in the ratio of 90:10 v/v, while the mobile phase B contains 0.02 M KH2PO4 (pH 3.2) and methanol in the ratio of 10:90 v/v, respectively. The flow rate of the mobile phase was 0.8 ml/min with a column temperature of 25°C and detection wavelength at 273 nm. Guaifenesin was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal, and photolytic degradation. The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of detection and quantification, accuracy, precision, and robustness.
Roasting pumpkin seeds and changes in the composition and oxidative stability of cold-pressed oils.
Raczyk, Marianna; Siger, Aleksander; Radziejewska-Kubzdela, Elżbieta; Ratusz, Katarzyna; Rudzińska, Magdalena
2017-01-01
Pumpkin seed oil is valuable oil for its distinctive taste and aroma, as well as supposed health- promoting properties. The aim of this study was to investigate how roasting pumpkin seeds influences the physicochemical properties of cold-pressed oils. The fatty acid composition, content of phytosterols, carotenoids and tocopherols, oxidative stability and colour were determined in oils after cold pressing and storage for 3 months using GC-FID, GCxGC-ToFMS, HPLC, Rancimat and spectrophotometric methods. The results of this study indicate that the seed-roasting and storage process have no effect on the fatty acid composition of pumpkin seed oils, but does affect phytosterols and tocopherols. The carotenoid content decreased after storage. The colour of the roasted oil was darker and changed significantly during storage. Pumpkin oil obtained from roasted seeds shows better physicochemical properties and oxidative stability than oil from unroasted seeds.
Gite, Sandip; Patravale, Vandana
2015-01-01
A stability-indicating high-performance liquid chromatography (HPLC) procedure was developed for the determination of metformin HCl (MTH), atorvastatin calcium (AC) and glimepiride (GP) in combination and their main degradation products. The separation and quantization were achieved on a 5-µm Qualisil gold, C18 column (4.6 mm × 250 mm). The mobile phase selected was phosphate buffer (pH 2.9)-organic phase in proportion of 70:30. Organic phase consisted of methanol-acetonitrile (90:10) at a flow rate of 1 mL/min and detection of analytes was carried out at 230 nm. The method exhibited good linearity over the range of 10-60 µg/mL for MTH, 2-20 µg/mL for AC and 5-30 µg/mL for GP. Square of the correlation coefficients was found to be >0.999. Various stress degradation studies were carried out in combination as per International Conference of Harmonization (ICH) guidelines for 4 h. The recovery and precision were determined in terms of intraday and interday precisions and expressed as relative standard deviations. These were <1 and <2%, respectively. Finally, the applicability of the method was evaluated in nanoparticle analysis of MTH, AC and GP as well as in stability studies of nanoformulation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hrvolová, Barbora; Martínez-Huélamo, Miriam; Colmán-Martínez, Mariel; Hurtado-Barroso, Sara; Lamuela-Raventós, Rosa Maria; Kalina, Jiří
2016-10-14
The concentration of carotenoids and fat-soluble vitamins in human plasma may play a significant role in numerous chronic diseases such as age-related macular degeneration and some types of cancer. Although these compounds are of utmost interest for human health, methods for their simultaneous determination are scarce. A new high pressure liquid chromatography (HPLC)-tandem mass spectrometry (MS/MS) method for the quantification of selected carotenoids and fat-soluble vitamins in human plasma was developed, validated, and then applied in a pilot dietary intervention study with healthy volunteers. In 50 min, 16 analytes were separated with an excellent resolution and suitable MS signal intensity. The proposed HPLC-MS/MS method led to improvements in the limits of detection (LOD) and quantification (LOQ) for all analyzed compounds compared to the most often used HPLC-DAD methods, in some cases being more than 100-fold lower. LOD values were between 0.001 and 0.422 µg/mL and LOQ values ranged from 0.003 to 1.406 µg/mL, according to the analyte. The accuracy, precision, and stability met with the acceptance criteria of the AOAC (Association of Official Analytical Chemists) International. According to these results, the described HPLC-MS/MS method is adequately sensitive, repeatable and suitable for the large-scale analysis of compounds in biological fluids.
Wang, Yongyi; Xu, Jinzhong; Qu, Haibin
2013-01-01
A simple and accurate analytical method was developed for simultaneous quantification of three steroidal saponins in the roots of Ophiopogon japonicus via high-performance liquid chromatography (HPLC) with mass spectrometry (MS) in this study. Separation was performed on a Tigerkin C(18) column and detection was performed by mass spectrometry. A mobile phase consisted of 0.02% formic acid in water (v/v) and 0.02% formic acid in acetonitrile (v/v) was used with a flow rate of 0.5 mL min(-1). The quantitative HPLC-MS method was validated for linearity, precision, repeatability, stability, recovery, limits of detection and quantification. This developed method provides good linearity (r >0.9993), intra- and inter-day precisions (RSD <4.18%), repeatability (RSD <5.05%), stability (RSD <2.08%) and recovery (93.82-102.84%) for three steroidal saponins. It could be considered as a suitable quality control method for O. japonicus.
Grosa, Giorgio; Del Grosso, Erika; Russo, Roberta; Allegrone, Gianna
2006-06-07
A stability indicating high performance liquid chromatography procedure has been developed for the simultaneous determination of guaifenesin (GUA), methyl p-hydroxybenzoate (MHB) and propyl p-hydroxybenzoate (PHB) in a commercial cough syrup dosage form. The method was specific and stability indicating as chromatographic conditions were selected to provide adequate separation of GUA, MHB and PHB from the putative degradation products guaiacol (GUAI) and p-hydroxybenzoic acid (HBA) as well as from excipients. The isocratic separation and quantitation were achieved within 17 min on a 150-mm column with an ether-linked phenyl stationary phase and a hydrophilic endcapping. The mobile phase was constituted of eluant A: aqueous phosphate buffer (pH 3.0, 10 mM)/acetonitrile 25/75 (v/v) and eluant B:methanol; the A:B ratio was 85:15 (v/v) with a flow rate 1 ml min-1 and detection of analytes at 254 and 276 nm. The method showed good linearity for the GUA-MHB-PHB mixture in the 95-285, 4-12, and 1-3 microg ml-1 ranges, respectively, being all the square of the correlation coefficients greater than 0.999. The interday R.S.D.s were 1.17, 1.14, and 0.91%, for GUA, MHB, and PHP, respectively. The method demonstrated also to be accurate; indeed the average recoveries, at 100% of the target assay concentration, were 100.5, 100.3, and 100.7% with relative standard deviations of 0.8, 0.7, and 0.4% for GUA, MHB, and PHB, respectively, from laboratory prepared samples. The applicability of the method was evaluated in commercial dosage form analysis as well as in stability studies.
Validation of a Stability-Indicating Method for Methylseleno-L-Cysteine (L-SeMC).
Canady, Kristin; Cobb, Johnathan; Deardorff, Peter; Larson, Jami; White, Jonathan M; Boring, Dan
2016-01-01
Methylseleno-L-cysteine (L-SeMC) is a naturally occurring amino acid analogue used as a general dietary supplement and is being explored as a chemopreventive agent. As a known dietary supplement, L-SeMC is not regulated as a pharmaceutical and there is a paucity of analytical methods available. To address the lack of methodology, a stability-indicating method was developed and validated to evaluate L-SeMC as both the bulk drug and formulated drug product (400 µg Se/capsule). The analytical approach presented is a simple, nonderivatization method that utilizes HPLC with ultraviolet detection at 220 nm. A C18 column with a volatile ion-pair agent and methanol mobile phase was used for the separation. The method accuracy was 99-100% from 0.05 to 0.15 mg/mL L-SeMC for the bulk drug, and 98-99% from 0.075 to 0.15 mg/mL L-SeMC for the drug product. Method precision was <1% for the bulk drug and was 3% for the drug product. The LOQ was 0.1 µg/mL L-SeMC or 0.002 µg L-SeMC on column. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Yu, Kate; Di, Li; Kerns, Edward; Li, Susan Q; Alden, Peter; Plumb, Robert S
2007-01-01
We report in this paper an ultra-performance liquid chromatography/tandem mass spectrometric (UPLC(R)/MS/MS) method utilizing an ESI-APCI multimode ionization source to quantify structurally diverse analytes. Eight commercial drugs were used as test compounds. Each LC injection was completed in 1 min using a UPLC system coupled with MS/MS multiple reaction monitoring (MRM) detection. Results from three separate sets of experiments are reported. In the first set of experiments, the eight test compounds were analyzed as a single mixture. The mass spectrometer was switching rapidly among four ionization modes (ESI+, ESI-, APCI-, and APCI+) during an LC run. Approximately 8-10 data points were collected across each LC peak. This was insufficient for a quantitative analysis. In the second set of experiments, four compounds were analyzed as a single mixture. The mass spectrometer was switching rapidly among four ionization modes during an LC run. Approximately 15 data points were obtained for each LC peak. Quantification results were obtained with a limit of detection (LOD) as low as 0.01 ng/mL. For the third set of experiments, the eight test compounds were analyzed as a batch. During each LC injection, a single compound was analyzed. The mass spectrometer was detecting at a particular ionization mode during each LC injection. More than 20 data points were obtained for each LC peak. Quantification results were also obtained. This single-compound analytical method was applied to a microsomal stability test. Compared with a typical HPLC method currently used for the microsomal stability test, the injection-to-injection cycle time was reduced to 1.5 min (UPLC method) from 3.5 min (HPLC method). The microsome stability results were comparable with those obtained by traditional HPLC/MS/MS.
Bianchini, Romina M; Castellano, Patricia M; Kaufman, Teodoro S
2008-12-01
The stability of pridinol mesylate (PRI) was investigated under different stress conditions, including hydrolytic, oxidative, photolytic and thermal, as recommended by the ICH guidelines. Relevant degradation was found to take place under acidic (0.1N HCl) and photolytic (visible and long-wavelength UV-light) conditions, both yielding the product resulting from water elimination (ELI), while submission to an oxidizing environment gave the N-oxidation derivative (NOX). The standards of these degradation products were synthesized and characterized by IR, (1)H and (13)C NMR spectroscopy. A simple, sensitive and specific HPLC method was developed for the quantification of PRI, ELI and NOX in bulk drug, and the conditions were optimized by means of a statistical design strategy. The separation employs a C(18) column and a 51:9:40 (v/v/v) mixture of MeOH, 2-propanol and potassium phosphate solution (50mM, pH 6.0), as mobile phase, delivered at 1.0 ml min(-1); the analytes were detected and quantified at 220 nm. The method was validated, demonstrating to be accurate and precise (repeatability and intermediate precision levels) within the corresponding linear ranges of PRI (0.1-1.5 mg ml(-1); r=0.9983, n=18) and both impurities (0.1-1.3% relative to PRI, r=0.9996 and 0.9995 for ELI and NOX, respectively, n=18). Robustness against small modifications of pH and percentage of the aqueous mobile phase was ascertained and the limits of quantification of the analytes were also determined (0.4 and 0.5 microg ml(-1); 0.04% and 0.05% relative to PRI for ELI and NOX, respectively). Peak purity indices (>0.9997), obtained with the aid of diode-array detection, and satisfactory resolution (R(s)>2.0) between PRI and its impurities established the specificity of the determination, all these results proving the stability-indicating capability of the method. The kinetics of the degradation of PRI in acid medium was also studied, determining that this is a first-order process with regards to drug concentration, with an activation energy of 25.5 Kcal mol(-1) and a t(1/2)=10,830 h, in 0.1N HCl at 38 degrees C.
Zhao, Ying-Yong; Zhao, Ye; Zhang, Yong-Min; Lin, Rui-Chao; Sun, Wen-Ji
2009-06-01
Polyporus umbellatus is a widely used anti-aldosteronic diuretic in Traditional Chinese medicine (TCM). A new, sensitive and selective high-performance liquid chromatography-fluorescence detector (HPLC-FLD) and high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (HPLC-APCI-MS/MS) method for quantitative and qualitative determination of ergosta-4,6,8(14),22-tetraen-3-one(ergone), which is the main diuretic component, was provided for quality control of P. umbellatus crude drug. The ergone in the ethanolic extract of P. umbellatus was unambiguously characterized by HPLC-APCI, and further confirmed by comparing with a standard compound. The trace ergone was detected by the sensitive and selective HPLC-FLD. Linearity (r2 > 0.9998) and recoveries of low, medium and high concentration (100.5%, 100.2% and 100.4%) were consistent with the experimental criteria. The limit of detection (LOD) of ergone was around 0.2 microg/mL. Our results indicated that the content of ergone in P. umbellatus varied significantly from habitat to habitat with contents ranging from 2.13 +/- 0.02 to 59.17 +/- 0.05 microg/g. Comparison among HPLC-FLD and HPLC-UV or HPLC-APCI-MS/MS demonstrated that the HPLC-FLD and HPLC-APCI-MS/MS methods gave similar quantitative results for the selected herb samples, the HPLC-UV methods gave lower quantitative results than HPLC-FLD and HPLC-APCI-MS/MS methods. The established new HPLC-FLD method has the advantages of being rapid, simple, selective and sensitive, and could be used for the routine analysis of P. umbellatus crude drug.
Douša, Michal; Srbek, Jan; Rádl, Stanislav; Cerný, Josef; Klecán, Ondřej; Havlíček, Jaroslav; Tkadlecová, Marcela; Pekárek, Tomáš; Gibala, Petr; Nováková, Lucie
2014-06-01
Two new impurities were described and determined using gradient HPLC method with UV detection in retigabine (RET). Using LC-HRMS, NMR and IR analysis the impurities were identified as RET-dimer I: diethyl {4,4'-diamino-6,6'-bis[(4-fluorobenzyl)amino]biphenyl-3,3'-diyl}biscarbamate and RET-dimer II: ethyl {2-amino-5-[{2-amino-4-[(4-fluorobenzyl) amino] phenyl} (ethoxycarbonyl) amino]-4-[(4-fluorobenzyl)amino] phenyl}carbamate. Reference standards of these impurities were synthesized followed by semipreparative HPLC purification. The mechanism of the formation of these impurities is also discussed. An HPLC method was optimized in order to separate, selectively detect and quantify all process-related impurities and degradation products of RET. The presented method, which was validated in terms of linearity, limit of detection (LOD), limit of quantification (LOQ) and selectivity is very quick (less than 11min including re-equilibration time) and therefore highly suitable for routine analysis of RET related substances as well as stability studies. Copyright © 2014 Elsevier B.V. All rights reserved.
Eissa, Maya S; Abd El-Sattar, Osama I
2017-04-01
Loxoprofen sodium (LOX) is a recently developed novel propionic acid derivative. Owing to its instability under both hydrolytic and oxidative conditions, the development of simple, rapid and sensitive methods for its determination in the presence of its possible forced degradation products becomes essential. Two simple chromatographic methods, high-performance thin layer chromatography (HPTLC) and high-performance liquid chromatography (HPLC), were developed associated with ultraviolet (UV) detection. In HPTLC-densitometric method, the separation of LOX from its degradation products was achieved using silica gel F254 plates and toluene:acetone:acetic acid (1.8:1.0:0.1, v/v/v) as the developing system followed by densitometric scanning at 220 nm. In the HPLC-UV method, the separation was performed using isocratic elution system with acetonitrile: 0.15% triethylamine (pH 2.2) (50:50, v/v) on C18 analytical column. The flow rate was optimized at 1.0 mL·min-1 and UV detection was achieved at 220 nm. Validation was performed in accordance with the International Conference on Harmonization guidelines and the method was perfectly applied for determination of LOX in its pharmaceutical preparation. The results obtained were statistically compared to those obtained after application of the official HPLC method, where no significant difference was found incompliance with precision and accuracy. Identification and characterization of the possible hydrolytic degradation product under alkaline conditions and that produced during oxidative degradation using hydrogen peroxide were structurally elucidated using infrared and mass spectrometry analyses. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mulgund, S. V.; Phoujdar, M. S.; Londhe, S. V.; Mallade, P. S.; Kulkarni, T. S.; Deshpande, A. S.; Jain, K. S.
2009-01-01
A simple, specific, accurate and stability-indicating reversed phase high performance liquid chromatographic method was developed for the simultaneous determination of mephenesin and diclofenac diethylamine, using a Spheri-5-RP-18 column and a mobile phase composed of methanol: water (70:30, v/v), pH 3.0 adjusted with o-phosphoric acid. The retention times of mephenesin and diclofenac diethylamine were found to be 3.9 min and 14.5 min, respectively. Linearity was established for mephenesin and diclofenac diethylamine in the range of 50-300 μg/ml and 10-60 μg/ml, respectively. The percentage recoveries of mephenesin and diclofenac diethylamine were found to be in the range of 99.06-100.60% and 98.95-99.98%, respectively. Both the drugs were subjected to acid, alkali and neutral hydrolysis, oxidation, dry heat, photolytic and UV degradation. The degradation studies indicated, mephenesin to be susceptible to neutral hydrolysis, while diclofenac diethylamine showed degradation in acid, H2O2, photolytic and in presence of UV radiation. The degradation products of diclofenac diethylamine in acidic and photolytic conditions were well resolved from the pure drug with significant differences in their retention time values. This method can be successfully employed for simultaneous quantitative analysis of mephenesin and diclofenac diethylamine in bulk drugs and formulations. PMID:20177453
Mulgund, S V; Phoujdar, M S; Londhe, S V; Mallade, P S; Kulkarni, T S; Deshpande, A S; Jain, K S
2009-01-01
A simple, specific, accurate and stability-indicating reversed phase high performance liquid chromatographic method was developed for the simultaneous determination of mephenesin and diclofenac diethylamine, using a Spheri-5-RP-18 column and a mobile phase composed of methanol: water (70:30, v/v), pH 3.0 adjusted with o-phosphoric acid. The retention times of mephenesin and diclofenac diethylamine were found to be 3.9 min and 14.5 min, respectively. Linearity was established for mephenesin and diclofenac diethylamine in the range of 50-300 mug/ml and 10-60 mug/ml, respectively. The percentage recoveries of mephenesin and diclofenac diethylamine were found to be in the range of 99.06-100.60% and 98.95-99.98%, respectively. Both the drugs were subjected to acid, alkali and neutral hydrolysis, oxidation, dry heat, photolytic and UV degradation. The degradation studies indicated, mephenesin to be susceptible to neutral hydrolysis, while diclofenac diethylamine showed degradation in acid, H(2)O(2), photolytic and in presence of UV radiation. The degradation products of diclofenac diethylamine in acidic and photolytic conditions were well resolved from the pure drug with significant differences in their retention time values. This method can be successfully employed for simultaneous quantitative analysis of mephenesin and diclofenac diethylamine in bulk drugs and formulations.
Physical and Chemical Stability of Mycophenolate Mofetil (MMF) Suspension Prepared at the Hospital
Fahimi, Fanak; Baniasadi, Shadi; Mortazavi, Seyed Alireza; Dehghan, Hanie; Zarghi, Afshin
2012-01-01
To evaluate the physical and chemical stability of a suspension of mycophenolate mofetil (MMF) prepared in the hospital from commercially available MMF capsules and tablets. Extemporaneous pharmacy was used as a feasible method in this experimental study to prepare suspension form of MMF. Suspension formulations were prepared from both tablets and capsules forms of MMF. Thereafter the stability parameters such as pH, microbial control, thermal and physical stability and particle sizes were evaluated. The amount of MMF, in the suspension was measured at various time points by HPLC. The HPLC method showed that concentration of suspensions prepared from tablets and capsules were 49 mg/mL and 50 mg/mL at time 0, respectively. The effective amount of suspensions prepared from capsules was 101% at time 0, 100% after 7 days, 98% after 14 days, and less than 70% after 28 days. According to the obtained results in this study, capsule-based suspension was stable for as long as 14 days at 5°C. This formulation appears to be clinically acceptable and provides a convenient dosage form for pediatric patients and for adults during the early postoperative period. PMID:24250439
Han, Stanisław; Karłowicz-Bodalska, Katarzyna; Potaczek, Piotr; Wójcik, Adam; Ozimek, Lukasz; Szura, Dorota; Musiał, Witold
2014-02-01
The identification of new contaminants is critical in the development of new medicinal products. Many impurities, such as pentanedioic acid, hexanedioic acid, heptanedioic acid, octanedioic acid, decanedioic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, and tetradecanedioic acid, have been identified in samples of azelaic acid. The aim of this study was to identify impurities observed during the stability tests of a new liposomal dosage form of azelaic acid that is composed of phosphatidylcholine and a mixture of ethyl alcohol and water, using high-performance liquid chromatography with evaporative light-scattering detector (HPLC-ELSD), gas chromatography-flame ionisation detection (GC-FID), and gas chromatography-mass spectrometry (GC-MS) methods. During the research and development of a new liposomal formulation of azelaic acid, we developed a method for determining the contamination of azelaic acid using HPLC-ELSD. During our analytical tests, we identified a previously unknown impurity of a liposomal preparation of azelaic acid that appeared in the liposomal formulation of azelaic acid during preliminary stability studies. The procedure led to the conclusion that the impurity was caused by the reaction of azelaic acid with one of the excipients that was applied in the product. The impurity was finally identified as an ethyl monoester of azelaic acid. The identification procedure of this compound was carried out in a series of experiments comparing the chromatograms that were obtained via the following chromatographic methods: HPLC-ELSD, GC-FID, and GC-MS. The final identification of the compound was carried out by GC with MS.
Han, Chao; Chen, Junhui; Chen, Bo; Lee, Frank Sen-Chun; Wang, Xiaoru
2006-09-01
A simple and reliable high performance liquid chromatographic (HPLC) method has been developed and validated for the fingerprinting of extracts from the root of Pseudostellaria heterophylla (Miq.) Pax. HPLC with gradient elution was performed on an authentic reference standard of powdered P. heterophylla (Miq.) Pax root and 11 plant samples of the root were collected from different geographic locations. The HPLC chromatograms have been standardized through the selection and identification of reference peaks and the normalization of retention times and peak intensities of all the common peaks. The standardized HPLC fingerprints show high stability and reproducibility, and thus can be used effectively for the screening analysis or quality assessment of the root or its derived products. Similarity index calculations based on cosine angle values or correlation methods have been performed on the HPLC fingerprints. As a group, the fingerprints of the P. heterophylla (Miq.) Pax samples studied are highly correlated with closely similar fingerprints. Within the group, the samples can be further divided into subgroups based on hierarchical clustering analysis (HCA). Sample grouping based on HCA coincides nicely with those based on the geographical origins of the samples. The HPLC fingerprinting techniques thus have high potential in authentication or source-tracing types of applications.
Siddiraju, S; Sahithi, M
2015-03-01
The objective of the present work is to develop stability indicating high-performance liquid chromatographic method for the simultaneous determination of aminexil and minoxidil in pharmaceutical dosage form. The chromatographic separation was achieved with BDS Hypersil C18 column (250 mm×4.6 mm×5 μ) as stationary phase and phosphate buffer and acetonitrile (78:22) as mobile phase. The method was employed by using a flow rate of 1.1 mL/min kept at 30°C. The detection wavelength was kept at 238 nm by using photo-diode array detector. The retention times of the aminexil and minoxidil were found to be 2.3 min and 3.9 min, respectively. The method developed was validated in accordance with ICH guidelines with respect to the stability indicating capacity of the method including system suitability, accuracy, precision, linearity, range, limit of detection, limit of quantification and robustness. The linearity responses of aminexil and minoxidil were found to be in the concentration ranges of 18.75-112.5 μg/mL and 25-150 μg/mL, respectively. The LOD and LOQ values for aminexil were found to be 0.31 and 0.92 μg/mL and minoxidil were found to be 0.03 and 0.10 μg/mL respectively. The percentage recoveries for both the drugs were found in the range of 98-101%. This method is accurate, precise and sensitive; hence, it can be employed for routine quality control of aminexil and minoxidil in pharmaceutical industries and drug testing laboratories. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Souri, E.; Aghdami, A. Negahban; Adib, N.
2014-01-01
An HPLC method for determination of mebeverine hydrochloride (MH) in the presence of its degradation products was developed. The degradation of MH was studied under hydrolysis, oxidative and photolysis stress conditions. Under alkaline, acidic and oxidative conditions, degradation of MH was observed. The separation was performed using a Symmetry C18 column and a mixture of 50 mM KH2PO4, acetonitrile and tetrahydrfuran (THF) (63:35:2; v/v/v) as the mobile phase. No interference peaks from degradation products in acidic, alkaline and oxidative conditions were observed. The linearity, accuracy and precision of the method were studied. The method was linear over the range of 1-100 μg/ml MH (r2>0.999) and the CV values for intra-day and inter-day variations were in the range of 1.0-1.8%. The limit of quantification (LOQ) and the limit of detection (LOD) of the method were 1.0 and 0.2 μg/ml, respectively. Determination of MH in pharmaceutical dosage forms was performed using the developed method. Furthermore the kinetics of the degradation of MH in the presence of hydrogen peroxide was investigated. The proposed method could be a suitable method for routine quality control studies of mebeverine dosage forms. PMID:25657790
Souri, E; Aghdami, A Negahban; Adib, N
2014-01-01
An HPLC method for determination of mebeverine hydrochloride (MH) in the presence of its degradation products was developed. The degradation of MH was studied under hydrolysis, oxidative and photolysis stress conditions. Under alkaline, acidic and oxidative conditions, degradation of MH was observed. The separation was performed using a Symmetry C18 column and a mixture of 50 mM KH2PO4, acetonitrile and tetrahydrfuran (THF) (63:35:2; v/v/v) as the mobile phase. No interference peaks from degradation products in acidic, alkaline and oxidative conditions were observed. The linearity, accuracy and precision of the method were studied. The method was linear over the range of 1-100 μg/ml MH (r(2)>0.999) and the CV values for intra-day and inter-day variations were in the range of 1.0-1.8%. The limit of quantification (LOQ) and the limit of detection (LOD) of the method were 1.0 and 0.2 μg/ml, respectively. Determination of MH in pharmaceutical dosage forms was performed using the developed method. Furthermore the kinetics of the degradation of MH in the presence of hydrogen peroxide was investigated. The proposed method could be a suitable method for routine quality control studies of mebeverine dosage forms.
Lima, Eliana Martins; Diniz, Danielle G Almeida; Antoniosi-Filho, Nelson R
2005-07-15
This paper describes the development of a gas chromatography (GC) method used for the assay of isotretinoin in its isolated form and in pharmaceutical formulations. Isotretinoin soft and hard gelatin capsules were prepared with various excipients. The performance of the proposed gas chromatography method was compared to that of traditional high performance liquid chromatography (HPLC) systems for this substance, and the GC parameters were established based on several preliminary tests, including thermal analysis of isotretinoin. Results showed that gas chromatography-flame ionization detector (GC-FID) exhibited a separation efficiency superior to that of HPLC, particularly for separating isotretinoin degradation products. This method was proven to be effectively applicable to stability evaluation assays of isotretinoin and isotretinoin based pharmaceuticals.
Yang, Xing-Xin; Zhang, Xiao-Xia; Chang, Rui-Miao; Wang, Yan-Wei; Li, Xiao-Ni
2011-01-01
A simple and reliable high performance liquid chromatography (HPLC) method has been developed for the simultaneous quantification of five major bioactive components in ‘Shu-Jin-Zhi-Tong’ capsules (SJZTC), for the purposes of quality control of this commonly prescribed traditional Chinese medicine. Under the optimum conditions, excellent separation was achieved, and the assay was fully validated in terms of linearity, precision, repeatability, stability and accuracy. The validated method was applied successfully to the determination of the five compounds in SJZTC samples from different production batches. The HPLC method can be used as a valid analytical method to evaluate the intrinsic quality of SJZTC. PMID:29403711
Siddiqui, Farhan Ahmed; Sher, Nawab; Shafi, Nighat; Wafa Sial, Alisha; Ahmad, Mansoor; Mehjebeen
2014-01-01
RP-HPLC ultraviolet detection simultaneous quantification of piracetam and levetiracetam has been developed and validated. The chromatography was obtained on a Nucleosil C18 column of 25 cm × 0.46 cm, 10 μm, dimension. The mobile phase was a (70 : 30 v/v) mixture of 0.1 g/L of triethylamine and acetonitrile. Smooth flow of mobile phase at 1 mL/min was set and 205 nm wavelength was selected. Results were evaluated through statistical parameters which qualify the method reproducibility and selectivity for the quantification of piracetam, levetiracetam, and their impurities hence proving stability-indicating properties. The proposed method is significantly important, permitting the separation of the main constituent piracetam from levetiracetam. Linear behavior was observed between 20 ng/mL and 10000 ng/mL for both drugs. The proposed method was checked in bulk drugs, dosage formulations, physiological condition, and clinical investigations and excellent outcome was witnessed. PMID:25114921
NASA Astrophysics Data System (ADS)
Syarifah, V. B.; Rafi, M.; Wahyuni, W. T.
2017-05-01
Brotowali (Tinospora crispa) is widely used in Indonesia as ingredient of herbal medicine formulation. To ensure the quality, safety, and efficacy of herbal medicine products, its chemical constituents should be continuously evaluated. High performance liquid chromatography (HPLC) fingerprint is one of powerful technique for this quality control process. In this study, HPLC fingerprint analysis method was developed for quality control of brotowali. HPLC analysis was performed in C18 column and detection was performed using photodiode array detector. The optimum mobile phase for brotowali fingerprint was acetonitrile (ACN) and 0.1% formic acid in gradient elution mode at a flow rate of 1 mL/min. The number of peaks detected in HPLC fingerprint of brotowali was 32 peaks and 23 peaks for stems and leaves, respectively. Berberine as marker compound was detected at retention time of 20.525 minutes. Evaluation of analytical performance including precision, reproducibility, and stability prove that this HPLC fingerprint analysis was reliable and could be applied for quality control of brotowali.
NASA Astrophysics Data System (ADS)
Metwally, Fadia H.; Abdelkawy, M.; Abdelwahab, Nada S.
2007-12-01
Spectrophotometric, spectrodensitometric and HPLC are stability indicating methods described for determination of Zaleplon in pure and dosage forms. As Zaleplon is easily degradable, the proposed techniques in this manuscript are adopted for its determination in presence of its alkaline degradation product, namely N-[4-(3-cyano-pyrazolo[1,5a]pyridin-7-yl)-phenyl]- N-ethyl-acetamide. These approaches are successfully applied to quantify Zaleplon using the information included in the absorption spectra of appropriate solutions. The second derivative (D 2) spectrophotometric method, allows determination of Zaleplon without interference of its degradate at 235.2 nm using 0.01N HCl as a solvent with obedience to Beer's law over a concentration range of 1-10 μg ml -1 with mean percentage recovery 100.24 ± 0.86%. The first derivative of the ratio spectra ( 1DD) based on the simultaneous use of ( 1DD) and measurement at 241.8 nm using the same solvent and over the same concentration range as (D 2) spectrophotometric method, with mean percentage recovery 99.9 ± 1.07%. The spectrodensitometric analysis allows the separation and quantitation of Zaleplon from its degradate on silica gel plates using chloroform:acetone:ammonia solution (9:1:0.2 by volume) as a mobile phase. This method depends on quantitave densitometric evaluation of thin layer chromatogram of Zaleplon at 338 nm over a concentration range of 0.2-1 μg band -1, with mean percentage recovery 99.73 ± 1.35. Also a reversed-phase liquid chromatographic method using 5-C8 (22 cm × 4.6 mm i.d. 5 μm particle size) column was described and validated for quantitation of Zaleplon using acetonitrile:deionised water (35:65, v/v) as a mobile phase using Paracetamol as internal standard and a flow rate of 1.5 ml min -1 with UV detection of the effluent at 232 nm at ambient temperature over a concentration range of 2-20 μg ml -1 with mean percentage recovery 100.19 ± 1.15%. The insignificance difference of the proposed methods results with those of the reference one proved their accuracy and precision.
Fangueiro, Joana F; Parra, Alexander; Silva, Amélia M; Egea, Maria A; Souto, Eliana B; Garcia, Maria L; Calpena, Ana C
2014-11-20
Epigallocatechin gallate (EGCG) is a green tea catechin with potential health benefits, such as anti-oxidant, anti-carcinogenic and anti-inflammatory effects. In general, EGCG is highly susceptible to degradation, therefore presenting stability problems. The present paper was focused on the study of EGCG stability in HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) medium regarding the pH dependency, storage temperature and in the presence of ascorbic acid a reducing agent. The evaluation of EGCG in HEPES buffer has demonstrated that this molecule is not able of maintaining its physicochemical properties and potential beneficial effects, since it is partially or completely degraded, depending on the EGCG concentration. The storage temperature of EGCG most suitable to maintain its structure was shown to be the lower values (4 or -20 °C). The pH 3.5 was able to provide greater stability than pH 7.4. However, the presence of a reducing agent (i.e., ascorbic acid) was shown to provide greater protection against degradation of EGCG. A validation method based on RP-HPLC with UV-vis detection was carried out for two media: water and a biocompatible physiological medium composed of Transcutol®P, ethanol and ascorbic acid. The quantification of EGCG for purposes, using pure EGCG, requires a validated HPLC method which could be possible to apply in pharmacokinetic and pharmacodynamics studies. Copyright © 2014. Published by Elsevier B.V.
Li, Pu; Wang, Xin; Li, Jian; Meng, Zhi-Yun; Li, Shu-Chun; Li, Zhong-Jun; Lu, Ying-Yuan; Ren, Hong; Lou, Ya-Qing; Lu, Chuang; Dou, Gui-Fang; Zhang, Guo-Liang
2015-01-01
Fructose-based 3-acetyl-2,3-dihydro-1,3,4-oxadiazole (GLB) is a novel antitumor agent and belongs to glycosylated spiro-heterocyclic oxadiazole scaffold derivative. This research first reported a simple, specific, sensitive and stable high performance liquid chromatography -ultraviolet detector (HPLC-UV) method for the quantitative determination of GLB in plasma. In this method, the chromatographic separation was achieved with a reversed phase C18 column. The calibration curve for GLB was linear at 300 nm. The lower limit of quantification was 10 ng/mL. The precision, accuracy and stability of the method were validated adequately. This method was successfully applied to the pharmacokinetic study in rats for detection of GLB after oral administration. Moreover, the structures of parent compound GLB and its two major metabolites M1 and M2 were identified in plasma using an ultra performance liquid chromatography- electrospray ionization-quadrupole-time of flight- mass spectrometry (UPLC-ESI-QTOF-MS) method. Our results indicated that the di-hydroxylation (M1) and hydroxylation (M2) of GLB are the major metabolites. In conclusion, the present study provided valuable information on an analytical method for the determination of GLB and its metabolites in rats, can be used to support further developing of this antitumor agent. PMID:26148672
Imam, Syed Sarim; Ahad, Abdul; Aqil, Mohammed; Sultana, Yasmin; Ali, Asgar
2013-01-01
Objective: A simple, precise, and stability indicating high performance liquid chromatography (HPLC) method was developed and validated for the simultaneous determination of propranolol hydrochloride and valsartan in pharmaceutical dosage form. Materials and Methods: The method involves the use of easily available inexpensive laboratory reagents. The separation was achieved on Hypersil ODS C-18 column (250*4.6 mm, i.d., 5 μm particle size) with isocratic flow with UV detector. The mobile phase at a flow rate of 1.0 mL/min consisted of acetonitrile, methanol, and 0.01 M disodium hydrogen phosphate (pH 3.5) in the ratio of 50:35:15 v/v. Results: A linear response was observed over the concentration range 5-50 μg/mL of propranolol and the concentration range 4-32 μg/mL of valsartan. Limit of detection and limit of quantitation for propranolol were 0.27 μg/mL and 0.85 μg/mL, and for valsartan were 0.45 μg/mL and 1.39 μg/mL, respectively. The method was successfully validated in accordance to ICH guidelines acceptance criteria for linearity, accuracy, precision, specificity, robustness. Conclusion: The analysis concluded that the method was selective for simultaneous estimation of propranolol and valsartan can be potentially used for the estimation of these drugs in combined dosage form. PMID:23559826
Srivastava, Pratibha; Raut, Hema N; Puntambekar, Hemalata M; Desai, Anagha C
2012-01-01
Bacopa monnieri (BM) contains several dammarane-type triterpenoid saponins including bacopaside I and bacoside A. These bioactive compounds may be used as chemical markers for the quality control of different BM products used for promoting mental health and intellect. Quantification of bacopaside I and bacoside A in crude plant material of BM stored under the stability study conditions by HPLC. Crude BM samples were stored at long-term (LS; 30°C and 65% RH), accelerated (AS; 40°C and 75% RH) and real-time (RT) study conditions. HPLC of BM extracts was carried out using a LiChroCART Purospher® STAR RP-18 endcapped column along with a guard column, Purospher STAR RP 18e 4.0 4.0 mm 5 µm using a gradient of acetonitrile (A) and water containing 0.05% (v/v) orthophosphoric acid (B) at a flow rate 1.5 mL/min with UV detection at 205 nm. The linear range of bacopaside I and bacoside A was 0.2 to 1 mg/mL. With the help of a regression equation the coefficient of determination (r²) values for bacopaside I and bacoside A were found to be > 0.999 and > 0.994 respectively. Relative standard deviation (RSD) values were < 4.0 for all the concentrations injected (n = 3). The HPLC study indicated that BM samples kept under LS condition are rich in saponin contents as compared with the samples stored under AS and RT study conditions. The study indicated that BM plant material should be used fresh to obtain maximum concentration of active saponins or it should be stored under LS conditions up to 3 months. Copyright © 2012 John Wiley & Sons, Ltd.
Patel, Rashmin B; Patel, Nilay M; Patel, Mrunali R; Solanki, Ajay B
2017-03-01
The aim of this work was to develop and optimize a robust HPLC method for the separation and quantitation of ambroxol hydrochloride and roxithromycin utilizing Design of Experiment (DoE) approach. The Plackett-Burman design was used to assess the impact of independent variables (concentration of organic phase, mobile phase pH, flow rate and column temperature) on peak resolution, USP tailing and number of plates. A central composite design was utilized to evaluate the main, interaction, and quadratic effects of independent variables on the selected dependent variables. The optimized HPLC method was validated based on ICH Q2R1 guideline and was used to separate and quantify ambroxol hydrochloride and roxithromycin in tablet formulations. The findings showed that DoE approach could be effectively applied to optimize a robust HPLC method for quantification of ambroxol hydrochloride and roxithromycin in tablet formulations. Statistical comparison between results of proposed and reported HPLC method revealed no significant difference; indicating the ability of proposed HPLC method for analysis of ambroxol hydrochloride and roxithromycin in pharmaceutical formulations. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Shehzadi, Naureen; Hussain, Khalid; Islam, Muhammad; Bukhari, Nadeem Irfan; Asif, Noman; Khan, Muhammad Tanveer; Salman, Muhammad; Qamar, Shaista; Parveen, Sajida; Zahid, Fakhra; Shah, Arshad Ali; Bilal, Abida; Abbasi, Muhammad Athar; Siddiqui, Sabahat Zahra; Rehman, Azizur
2018-03-01
The present study describes the development and validation of a simple high performance liquid chromatographic method for the determination of a novel drug candidate, 5-[(4-chlorophenoxy) methyl]-1, 3, 4-oxadiazole-2-thiol. The stability-indicating capacity of the method was evaluated by subjecting the compound's solution to hydrolytic, oxidative, photolytic, transition metal- and thermal- stress. The chromatographic separation was achieved over a C18 column (Promosil, 5 µm, 4.60 × 250 mm), maintained at 25°C, using an isocratic mobile phase comprising a mixture of acetonitrile and acidified water of pH 2.67 (1:1, v/v), at a flow rate of 1.00 mL/min and detection using a fluorescent light detector (excitation at 250 nm and emission at 410 nm). The Beer's law was followed over the concentration range 2.50-50.00 μg/ml. The recovery (98.56-100.19%, SD <5%), intraday accuracy and precision (97.31-100.81%, RSD <5%), inter-day accuracy and precision (97.50-100.75%, RSD <5%) and intermediate accuracy and precision (98.10-99.91%, RSD <5%) indicated that the method was reliable, repeatable, reproducible and rugged. The resolution and selectivity factors of the compound's peak from the nearest resolving peak, particularly in case of dry heat and copper metal stress, were found to be greater than 2 and 1, respectively, which indicated specificity and selectivity. The compound was extensively decomposed in alkaline-hydrolytic, oxidative, metal- and dry heat- stress. However, the compound in acidic and neutral conditions was resistant to photolysis. The results of the present study indicate that the developed method is specific, selective, sensitive and suitable, hence, may be used for quality control, stability testing and preformulation studies.
Sreenivasulu, J; Venkata Ramana, P; Sampath Kumar Reddy, G; Nagaraju, Ch V S; Thirumalai Rajan, S; Eswaraiah, S
2015-10-01
A novel, rapid, specific and stability-indicating reverse-phase high-performance liquid chromatography method was developed for the quantitative determination of related compounds, obtained from two different synthetic routes and degradation products of Azilsartan kamedoxomil (AZL). The method was developed by using a YMC-Pack pro C18 (150 × 4.6 mm, 3 µm) column with a mobile phase containing a gradient mobile phase combination. The eluted compounds were measured at wavelength 220 nm. The developed method run time was 25 min, within which AZL and its eight impurities were well separated with minimum 3.0 resolution. The drug substance was subjected to stress conditions of hydrolysis (acid, base and water), oxidation, photolysis, sunlight, 75% relative humidity and thermal degradation as per International Conference on Harmonization (ICH) prescribed stress conditions to ascertain the stability-indicating power of the method. Significant degradation was observed during acid, base, peroxide, water hydrolysis and 75% relative humidity studies. The mass balance of AZL was close to 100% in all the stress condition. The developed method was validated as per the ICH guidelines with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Pesce, Michael A.; Strauss, Shiela M.; Rosedale, Mary; Netterwald, Jane; Wang, Hangli
2016-01-01
Objectives To validate an ion exchange high-pressure liquid chromatography (HPLC) method for measuring glycated hemoglobin (HbA1c) in gingival crevicular blood (GCB) spotted on filter paper, for use in screening dental patients for diabetes. Methods We collected the GCB specimens for this study from the oral cavities of patients during dental visits, using rigorous strategies to obtain GCB that was as free of debris as possible. The analytical performance of the HPLC method was determined by measuring the precision, linearity, carryover, stability of HbA1c in GCB, and correlation of HbA1c results in GCB specimens with finger-stick blood (FSB) specimens spotted on filter paper. Results The coefficients of variation (CVs) for the inter- and intrarun precision of the method were less than 2.0%. Linearity ranged between 4.2% and 12.4%; carryover was less than 2.0%, and the stability of the specimen was 6 days at 4°C and as many as 14 days at −70°C. Linear regression analysis comparing the HbA1c results in GCB with FSB yielded a correlation coefficient of 0.993, a slope of 0.981, and an intercept of 0.13. The Bland-Altman plot showed no difference in the HbA1c results from the GCB and FSB specimens at normal, prediabetes, and diabetes HbA1c levels. Conclusion We validated an HPLC method for measuring HbA1c in GCB; this method can be used to screen dental patients for diabetes. PMID:26489673
Composition and stability of phytochemicals in five varieties of black soybeans (glycine max)
USDA-ARS?s Scientific Manuscript database
Phytochemical compositions of five varieties of black soybeans (Glycine max) and their stabilities at room temperature, 4 deg.C and -80 deg.C over 14 months were determined by HPLC systems with electrochemical (HPLC-ECD) and UV detectors. Polyphenol profiling was carried out by liquid chromatography...
Zheng, Bei; Li, Wentao; Liu, Lin; Wang, Xin; Chen, Chen; Yu, Zhiyong; Li, Hongyan
2017-08-18
A novel nanosilica/polydimethylsiloxane (SiO 2 /PDMS) coated stirring bar was adopted in the sorption extraction (SBSE) of phenols in water, and the high performance liquid chromatography-fourier transform infrared spectroscopy (HPLC-FTIR) was subsequently used to determination of phenol concentration. The SiO 2 /PDMS coating was prepared by sol-gel method and characterized with respect to morphology and specific surface area. The results of field-emission scanning electron microscope (FE-SEM) and N 2 adsorption-desorption as well as phenol adsorption experiments denoted that SiO 2 /PDMS has larger surface area and better adsorption capacity than commercial PDMS. The extraction efficiency of phenol with SiO 2 /PDMS coated stirring bar was optimized in terms of ion strength, flow rate of phenol-involved influent, type of desorption solvent and desorption time. More than 75% of phenol desorption efficiency could be kept even after 50 cycles of extraction, indicating the high stability of the SiO 2 /PDMS coated stirring bar. Approximately 0.16 mg/L 2, 5-dimethylphenol (2, 5-DMP), which was 34-fold more toxic than phenol, was detected in water through HPLC-FTIR. However, 2, 5-DMP could be oxidized to 5-methy-2-hydroxy benzaldehyde after disinfection in drinking water treatment process. Therefore, the proposed method of SiO 2 /PDMS-SBSE-HPLC-FTIR is successfully applied in the analysis of phenols isomers in aqueous environment.
Hau Fung Cheung, Rodney; Morrison, Paul D; Small, Darryl M; Marriott, Philip J
2008-12-05
A single enzyme treatment with alpha-amylase, prior to the quantification of added folic acid (FA) in fortified instant fried Asian noodles with analysis performed by capillary zone electrophoresis (CZE) and reversed-phase high performance liquid chromatography (RP-HPLC) with UV detection, is described. The method was validated and optimized for capillary electrophoresis (CE) with separation achieved using a 8 mM phosphate-12 mM borate run buffer with 5% MeOH at pH 9.5. FA was well separated from matrix components with nicotinic acid (NA) employed as an internal standard. In a comparative study, separation of FA was performed using HPLC with a mobile phase consisting of 27% MeOH (v/v) in aqueous potassium phosphate buffer (3.5 mM KH(2)PO(4) and 3.2 mM K(2)HPO(4)), pH 8.5, and containing 5 mM tetrabutylammonium dihydrogen phosphate as an ion-pairing agent. For both methods, excellent results were obtained for various analytical parameters including linearity, accuracy and precision. The limit of detection was calculated to be 2.2 mg/L for CE without sample stacking and 0.10 mg/L with high performance liquid chromatography (HPLC). Sample extraction involved homogenization and enzymatic extraction with alpha-amylase. Results indicated that FA was stable during four main stages of instant fried noodle manufacturing (dough crumbs, cut sheets, steaming and frying).
Luo, Zhiqiang; Deng, Zhongqing; Liu, Yang; Wang, Guopeng; Yang, Wenning; Hou, Chengbo; Tang, Minming; Yang, Ruirui; Zhou, Huaming
2015-07-01
Ezetimibe is a novel lipid-lowering agent that inhibits intestinal absorption of dietary and biliary cholesterol. In the present work, a simple, sensitive and reproducible gradient reverse phase high performance liquid chromatographic (RP-HPLC) method for separation and determination of the related substances of ezetimibe was developed and validated. Eleven potential process-related impurities (starting materials, (3S,4S,3'S)-isomer, degradants and byproducts) were identified in the crude samples. Tentative structures for all the impurities were assigned primarily based on comparison of their retention time and mass spectrometric data with that of available standards and references. This method can be applied to routine analysis in quality control of both bulk drugs and commercial tablets. Separation of all these compounds was performed on a Phenomenex Luna Phenyl-Hexyl (100mm×4.6mm, 5μm) analytical column. The mobile phase-A consists of acetonitrile-water (pH adjusted to 4.0 with phosphoric acid)-methanol at 15:75:10 (v/v/v), and mobile phase-B contains acetonitrile. The eluted compounds were monitored at 210nm. Ezetimibe was subjected to hydrolytic, acid, base, oxidative, photolytic and thermal stress conditions as per ICH serves to generate degradation products that can be used as a worst case to assess the analytical method performance. The drug showed extensive degradation in thermal, acid, oxidative, base and hydrolytic stress conditions, while it was stable to photolytic degradation conditions. The main degradation product formed under thermal, acid, oxidative, base and hydrolytic stress conditions corresponding to (2R,3R,6S)-N, 6-bis(4-fluorophenyl)-2-(4-hydroxyphenyl)-oxane-3-carboxamide (Ezetimibe tetrahydropyran impurity) was characterized by LC-MS/MS analysis. The degradation products were well resolved from the main peak and its impurities, thus proved the stability-indicating power of the method. The developed method was validated as per international conference on harmonization (ICH) guidelines with respect to specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision and robustness. Copyright © 2015 Elsevier B.V. All rights reserved.
Bazylak, Grzegorz; Malak, Anna; Ali, Imran; Borowiak, Teresa; Dutkiewicz, Grzegorz
2008-06-01
Retention profiles in series of the neutral and highly hydrophobic 1,3,4-oxadiazoles containing chlorophenylurea and halogenobenzamide moiety and indicating analgesic activity were determined in the isocratic standard- and narrow-bore HPLC systems employing, respectively, various octadecylsilica and different calixarene bonded stationary phases. When acetonitrile - 2.65 mM phosphoric acid (55 : 45, %, v/v), pH* 3.25, mobile phase was applied retention of these compounds increased with decline of their overall hydrophobicity according to the general preference of more polar compounds by calixarene cavity in time of its non-specific host-guest supramolecular interactions with halogenated substances. The size of calixarene nanocavity and its upper-rim substitution did not change the observed retention order, resolution and selectivity of separation for oxadiazoles. Compared to the retention on the non-end-capped and the highly-end-capped octadecylsilica HPLC column a most improved separation of some regioisomers of halogenated 1,3,4-oxadiazoles were observed on both used calixarene-type HPLC supports. In addition, preliminary data on the self-assembled supramolecular crystal structure of exemplary 1,3,4-oxadiazolchlorophenylurea with cis-elongated conformation was reported and formation of the monovalent inclusion host-guest complexes between 1,3,4-oxadiazoles and each calixarene-type stationary phase was studied with molecular modelling MM+ and AM1 methods. The structural, isomeric and energetic factors leading to the hydrogen bond stabilized inclusion complexes between these species were considered and used for explanation of observed retention sequence and selectivity of 1,3,4-oxadiazoles separation in applied calixarene-based HPLC systems. All these data would be useful in future development of optimized procedures enabling encapsulation of 1,3,4-oxadiazolurea-type drugs with calixarenes.
Hauck, M; Köbler, H
1990-01-01
A method for the analysis of cyclamate in complex foodstuffs has been developed. This method is applicable in strongly coloured and protein-rich foodstuffs. The quantitative determination depends on oxidation of cyclamate to cyclohexylamine and derivatisation with 4-fluoro-7-nitrobenzofuran (NBD-F). The derivatives are analysed by HPLC on a C18: reversed-phase column, their minimal stability being 12 h. There are two possible methods of detection: (a) absorbance at 485 nm and (b) fluorescence with excitation at 485 nm and emission at 530 nm. The detection limit of cyclamate is 5 mg/kg foodstuff, with fluorescence detection 0.4 mg/kg. The recoveries are in the range of 88% to 104%.
Improvement in Thermal Stability of Sucralose by γ-Cyclodextrin Metal-Organic Frameworks.
Lv, Nana; Guo, Tao; Liu, Botao; Wang, Caifen; Singh, Vikaramjeet; Xu, Xiaonan; Li, Xue; Chen, Dawei; Gref, Ruxandra; Zhang, Jiwen
2017-02-01
To explain thermal stability enhancement of an organic compound, sucralose, with cyclodextrin based metal organic frameworks. Micron and nanometer sized basic CD-MOFs were successfully synthesized by a modified vapor diffusion method and further neutralized with glacial acetic acid. Sucralose was loaded into CD-MOFs by incubating CD-MOFs with sucralose ethanol solutions. Thermal stabilities of sucralose-loaded basic CD-MOFs and neutralized CD-MOFs were investigated using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and high performance liquid chromatography with evaporative light-scattering detection (HPLC-ELSD). Scanning electron microscopy (SEM) and powder X-ray diffraction (PXRD) results showed that basic CD-MOFs were cubic crystals with smooth surface and uniform sizes. The basic CD-MOFs maintained their crystalline structure after neutralization. HPLC-ELSD analysis indicated that the CD-MOF crystal size had significant influence on sucralose loading (SL). The maximal SL of micron CD-MOFs (CD-MOF-Micro) was 17.5 ± 0.9% (w/w). In contrast, 27.9 ± 1.4% of sucralose could be loaded in nanometer-sized basic CD-MOFs (CD-MOF-Nano). Molecular docking modeling showed that sucralose molecules preferentially located inside the cavities of γ-CDs pairs in CD-MOFs. Raw sucralose decomposed fast at 90°C, with 86.2 ± 0.2% of the compound degraded within only 1 h. Remarkably, sucralose stability was dramatically improved after loading in neutralized CD-MOFs, with only 13.7 ± 0.7% degradation at 90°C within 24 h. CD-MOFs efficiently incorporated sucralose and maintained its integrity upon heating at elevated temperatures.
Zhang, Kelly; Li, Yi; Tsang, Midco; Chetwyn, Nik P
2013-09-01
To overcome challenges in HPLC impurity analysis of pharmaceuticals, we developed an automated online multi-heartcutting 2D HPLC system with hyphenated UV-charged aerosol MS detection. The first dimension has a primary column and the second dimension has six orthogonal columns to enhance flexibility and selectivity. The two dimensions were interfaced by a pair of switching valves equipped with six trapping loops that allow multi-heartcutting of peaks of interest in the first dimension and also allow "peak parking." The hyphenated UV-charged aerosol MS detection provides comprehensive detection for compounds with and without UV chromophores, organics, and inorganics. It also provides structural information for impurity identification. A hidden degradation product that co-eluted with the drug main peak was revealed by RP × RP separation and thus enabled the stability-indicating method development. A poorly retained polar component with no UV chromophores was analyzed by RP × hydrophilic interaction liquid chromatography separation with charged aerosol detection. Furthermore, using this system, the structures of low-level impurities separated by a method using nonvolatile phosphate buffer were identified and tracked by MS in the second dimension. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Naguib, Ibrahim A; Abdelrahman, Maha M; El Ghobashy, Mohamed R; Ali, Nesma A
2016-01-01
Two accurate, sensitive, and selective stability-indicating methods are developed and validated for simultaneous quantitative determination of agomelatine (AGM) and its forced degradation products (Deg I and Deg II), whether in pure forms or in pharmaceutical formulations. Partial least-squares regression (PLSR) and spectral residual augmented classical least-squares (SRACLS) are two chemometric models that are being subjected to a comparative study through handling UV spectral data in range (215-350 nm). For proper analysis, a three-factor, four-level experimental design was established, resulting in a training set consisting of 16 mixtures containing different ratios of interfering species. An independent test set consisting of eight mixtures was used to validate the prediction ability of the suggested models. The results presented indicate the ability of mentioned multivariate calibration models to analyze AGM, Deg I, and Deg II with high selectivity and accuracy. The analysis results of the pharmaceutical formulations were statistically compared to the reference HPLC method, with no significant differences observed regarding accuracy and precision. The SRACLS model gives comparable results to the PLSR model; however, it keeps the qualitative spectral information of the classical least-squares algorithm for analyzed components.
Baietto, Lorena; D'Avolio, Antonio; Marra, Cristina; Simiele, Marco; Cusato, Jessica; Pace, Simone; Ariaudo, Alessandra; De Rosa, Francesco Giuseppe; Di Perri, Giovanni
2012-11-01
Therapeutic drug monitoring (TDM) of triazoles is widely used in clinical practice to optimize therapy. TDM is limited by technical problems and cost considerations, such as sample storage and dry-ice shipping. We aimed to develop and validate a new method to analyse itraconazole, posaconazole and voriconazole in plasma spotted on dry sample spot devices (DSSDs) and to quantify them by an HPLC system. Extraction from DSSDs was done using n-hexane/ethyl acetate and ammonia solution. Samples were analysed using HPLC with mass spectrometry (HPLC-MS). Accuracy and precision were assayed by inter- and intra-day validation. The stability of triazoles in plasma spotted on DSSDs was investigated at room temperature for 1 month. The method was compared with a validated standard HPLC method for quantification of triazoles in human plasma. Mean inter- and intra-day accuracy and precision were <15% for all compounds. Triazoles were stable for 2 weeks at room temperature. The method was linear (r(2) > 0.999) in the range 0.031-8 mg/L for itraconazole and posaconazole, and 0.058-15 mg/L for voriconazole. High sensitivity was observed; limits of detection were 0.008, 0.004 and 0.007 mg/L for itraconazole, posaconazole and voriconazole, respectively. A high degree of correlation (r(2) > 0.94) was obtained between the DSSD method and the standard method of analysis. The method that we developed and validated to quantify triazoles in human plasma spotted on DSSDs is accurate and precise. It overcomes problems related to plasma sample storage and shipment, allowing TDM to be performed in a cheaper and safer manner.
Aljuffali, Ibrahim A; Kalam, Mohd Abul; Sultana, Yasmin; Imran, Ahamad; Alshamsan, Aws
2015-01-01
Quantitative determination of gatifloxacin in tablets, solid lipid nanoparticles (SLNs) and eye-drops using a very simple and rapid chromatographic technique was validated and developed. Formulations were analyzed using a reverse phase SUPELCO® 516 C-18-DB, 50306-U, HPLC column (250 mm × 4.6 mm, 5 μm) and a mobile phase consisting of disodium hydrogen phosphate buffer:acetonitrile (75:25, v/v) and with orthophosphoric acid pH was adjusted to 3.3 The flow rate was 1.0 mL/min and analyte concentrations were measured using a UV-detector at 293 nm. The analyses were performed at room temperature (25 ± 2 °C). Gatifloxacin was separated in all the formulations within 2.767 min. There were linear calibration curves over a concentration range of 4.0-40 μg.mL(-1) and correlation coefficients of 0.9998 with an average recovery above 99.91%. Detection of analyte from different dosage forms at the same Rt indicates the specificity and stability of the developed method.
Kaplan, W.; Hüsler, P.; Klump, H.; Erhardt, J.; Sluis-Cremer, N.; Dirr, H.
1997-01-01
A glutathione S-transferase (Sj26GST) from Schistosoma japonicum, which functions in the parasite's Phase II detoxification pathway, is expressed by the Pharmacia pGEX-2T plasmid and is used widely as a fusion-protein affinity tag. It contains all 217 residues of Sj26GST and an additional 9-residue peptide linker with a thrombin cleavage site at its C-terminus. Size-exclusion HPLC (SEC-HPLC) and SDS-PAGE studies indicate that purification of the homodimeric protein under nonreducing conditions results in the reversible formation of significant amounts of 160-kDa and larger aggregates without a loss in catalytic activity. The basis for oxidative aggregation can be ascribed to the high degree of exposure of the four cysteine residues per subunit. The conformational stability of the dimeric protein was studied by urea- and temperature-induced unfolding techniques. Fluorescence-spectroscopy, SEC-HPLC, urea- and temperature-gradient gel electrophoresis, differential scanning microcalorimetry, and enzyme activity were employed to monitor structural and functional changes. The unfolding data indicate the absence of thermodynamically stable intermediates and that the unfolding/refolding transition is a two-state process involving folded native dimer and unfolded monomer. The stability of the protein was found to be dependent on its concentration, with a delta G degree (H2O) = 26.0 +/- 1.7 kcal/mol. The strong relationship observed between the m-value and the size of the protein indicates that the amount of protein surface area exposed to solvent upon unfolding is the major structural determinant for the dependence of the protein's free energy of unfolding on urea concentration. Thermograms obtained by differential scanning microcalorimetry also fitted a two-state unfolding transition model with values of delta Cp = 7,440 J/mol per K, delta H = 950.4 kJ/mol, and delta S = 1,484 J/mol. PMID:9041642
Kaplan, W; Hüsler, P; Klump, H; Erhardt, J; Sluis-Cremer, N; Dirr, H
1997-02-01
A glutathione S-transferase (Sj26GST) from Schistosoma japonicum, which functions in the parasite's Phase II detoxification pathway, is expressed by the Pharmacia pGEX-2T plasmid and is used widely as a fusion-protein affinity tag. It contains all 217 residues of Sj26GST and an additional 9-residue peptide linker with a thrombin cleavage site at its C-terminus. Size-exclusion HPLC (SEC-HPLC) and SDS-PAGE studies indicate that purification of the homodimeric protein under nonreducing conditions results in the reversible formation of significant amounts of 160-kDa and larger aggregates without a loss in catalytic activity. The basis for oxidative aggregation can be ascribed to the high degree of exposure of the four cysteine residues per subunit. The conformational stability of the dimeric protein was studied by urea- and temperature-induced unfolding techniques. Fluorescence-spectroscopy, SEC-HPLC, urea- and temperature-gradient gel electrophoresis, differential scanning microcalorimetry, and enzyme activity were employed to monitor structural and functional changes. The unfolding data indicate the absence of thermodynamically stable intermediates and that the unfolding/refolding transition is a two-state process involving folded native dimer and unfolded monomer. The stability of the protein was found to be dependent on its concentration, with a delta G degree (H2O) = 26.0 +/- 1.7 kcal/mol. The strong relationship observed between the m-value and the size of the protein indicates that the amount of protein surface area exposed to solvent upon unfolding is the major structural determinant for the dependence of the protein's free energy of unfolding on urea concentration. Thermograms obtained by differential scanning microcalorimetry also fitted a two-state unfolding transition model with values of delta Cp = 7,440 J/mol per K, delta H = 950.4 kJ/mol, and delta S = 1,484 J/mol.
Raphael, Chenzira D; Zhao, Fang; Hughes, Susan E; Juba, Katherine M
2015-01-01
Levetiracetam is a commonly used antiepileptic medication for tumor-related epilepsy. However, the 100 mL intravenous (IV) infusion volume can be burdensome to imminently dying hospice patients. A reduced infusion volume would improve patient tolerability. The purpose of this study was to evaluate the stability of 1000 mg/25 mL (40 mg/mL) levetiracetam IV solution in sodium chloride 0.9%. We prepared levetiracetam 40 mg/mL IV solution and added it to polyvinyl chloride (PVC) bags, polyolefin bags, and polypropylene syringes. Triplicate samples of each product were stored at refrigeration (2-8°C) and analyzed on days 0, 1, 4, 7, and 14. Samples were subjected to visual inspection, pH measurement, and stability-indicating high-performance liquid chromatography (HPLC) analysis. Over the 2-week storage period, there was no significant change in visual appearance or pH for any of the stability samples. The HPLC results confirmed that all stability samples retained 94.2-101.3% of initial drug concentration and no degradation products or leachable material from the packaging materials were observed. We conclude that levetiracetam 1000 mg/25 mL IV solution in sodium chloride 0.9% is physically and chemically stable for up to 14 days under refrigeration in polypropylene syringes, PVC bags, and polyolefin bags.
Kubec, Roman; Dadáková, Eva
2009-10-09
A novel HPLC method for determination of a wide variety of S-substituted cysteine derivatives in Allium species has been developed and validated. This method allows simultaneous separation and quantification of S-alk(en)ylcysteine S-oxides, gamma-glutamyl-S-alk(en)ylcysteines and gamma-glutamyl-S-alk(en)ylcysteine S-oxides in a single run. The procedure is based on extraction of these amino acids and dipeptides by methanol, their derivatization by dansyl chloride and subsequent separation by reversed phase HPLC. The main advantages of the new method are simplicity, excellent stability of derivatives, high sensitivity, specificity and the ability to simultaneously analyze the whole range of S-substituted cysteine derivatives. This method was critically compared with other chromatographic procedures used for quantification of S-substituted cysteine derivatives, namely with two other HPLC methods (derivatization by o-phthaldialdehyde/tert-butylthiol and fluorenylmethyl chloroformate), and with determination by gas chromatography or capillary electrophoresis. Major advantages and drawbacks of these analytical procedures are discussed. Employing these various chromatographic methods, the content and relative proportions of individual S-substituted cysteine derivatives were determined in four most frequently consumed alliaceous vegetables (garlic, onion, shallot, and leek).
Every year over 250 million pounds of cyanuric acid (CA) and chloroisocyanurates are produced industrially. These compounds are standard ingredients in formulations for household bleaches, industrial cleansers, dishwasher compounds, general sanitizers, and chlorine stabilizers. ...
Preservative-free triamcinolone acetonide suspension developed for intravitreal injection.
Bitter, Christoph; Suter, Katja; Figueiredo, Verena; Pruente, Christian; Hatz, Katja; Surber, Christian
2008-02-01
All commercially available triamcinolone acetonide (TACA) suspensions, used for intravitreal treatment, contain retinal toxic vehicles (e.g., benzyl alcohol, solubilizer). Our aim was to find a convenient and reproducible method to compound a completely preservative-free TACA suspension, adapted to the intraocular physiology, with consistent quality (i.e., proven sterility and stability, constant content and dose uniformity, defined particle size, and 1 year shelf life). We evaluated two published (Membrane-filter, Centrifugation) and a newly developed method (Direct Suspending) to compound TACA suspensions for intravitreal injection. Parameters as TACA content (HPLC), particle size (microscopy and laser spectrometry), sterility, and bacterial endotoxins were assessed. Stability testing (at room temperature and 40 degrees C) was performed: color and homogeneity (visually), particle size (microscopically), TACA content and dose uniformity (HPLC) were analyzed according to International Conference on Harmonisation guidelines. Contrary to the known methods, the direct suspending method is convenient, provides a TACA suspension, which fulfills all compendial requirements, and has a 2-year shelf life. We developed a simple, reproducible method to compound stable, completely preservative-free TACA suspensions with a reasonable shelf-life, which enables to study the effect of intravitreal TACA--not biased by varying doses and toxic compounds or their residues.
Casas, Mònica Escolà; Kretschmann, Andreas Christopher; Andernach, Lars; Opatz, Till; Bester, Kai
2016-06-24
A simple method for the separation of the enantiomers of the fungicide imazalil was developed. Racemic imazalil was separated into its enantiomers with an enantiomeric purity of 99% using HPLC-UV with an enantioselective column (permethylated cyclodextrin) operated in reversed phase mode (water with 0.2% trimethylamine and 0.08% acetic acid and methanol). The absolute configuration of the separated enantiomers was assigned and unequivocally confirmed by optical rotation as well as by vibrational circular dichroism (VCD) and electronic circular dichroism (ECD) combined with ab-initio calculations. The same enantioselective column was also used to develop an HPLC-MS/MS method for the quantification of imazalil enantiomers. The HPLC-MS/MS method reached limits of quantification (LOQs) of 0.025mg/mL with 5μL injections. This method was used to verify imazalil concentrations and enantiomeric fractions in samples from an in vitro test on effects on human steroidogenesis (H295R steroidogenesis assay). The quantification verified the stability of the enantiomers of imazalil during the in vitro tests. Copyright © 2016 Elsevier B.V. All rights reserved.
Methods and applications of HPLC-AMS (WBio 5)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucholz, B A; Clifford, A J; Duecker, S R
Pharmacokinetics of physiologic doses of nutrients, pesticides, and herbicides can easily be traced in humans using a {sup 14}C-labelled compound. Basic kinetics can be monitored in blood or urine by measuring the elevation in the {sup 14}C content above the control predose tissue and converting to equivalents of the parent compound. High Performance Liquid Chromatography (HPLC) is an excellent method for the chemical separation of complex mixtures whose profiles afford estimation of biochemical pathways of metabolism. Compounds elute from the HPLC systems with characteristic retention times and can be collected in fractions that can then be graphitized for AMS measurement.more » Unknowns are identified by coelution with known standards and chemical tests that reveal functional groupings. Metabolites are quantified with the {sup 14}C signal. Thoroughly accounting for the carbon inventory in the LC solvents, ion-pairing agents, samples, and carriers adds some complexity to the analysis. In most cases the total carbon inventory is dominated by carrier. Baseline background and stability need to be carefully monitored. Limits of quantitation near 10 amol of {sup 14}C per HPLC fraction are typically achieved. Baselines are maintained by limiting injected {sup 14}C activity <0.17 Bq (4.5 pCi) on the HPLC column.« less
Zelaya, Ian A; Anderson, Jennifer A H; Owen, Micheal D K; Landes, Reid D
2011-03-23
Endogenous shikimic acid determinations are routinely used to assess the efficacy of glyphosate in plants. Numerous analytical methods exist in the public domain for the detection of shikimic acid, yet the most commonly cited comprise spectrophotometric and high-pressure liquid chromatography (HPLC) methods. This paper compares an HPLC and two spectrophotometric methods (Spec 1 and Spec 2) and assesses the effectiveness in the detection of shikimic acid in the tissues of glyphosate-treated plants. Furthermore, the study evaluates the versatility of two acid-based shikimic acid extraction methods and assesses the longevity of plant extract samples under different storage conditions. Finally, Spec 1 and Spec 2 are further characterized with respect to (1) the capacity to discern between shikimic acid and chemically related alicyclic hydroxy acids, (2) the stability of the chromophore (t1/2), (3) the detection limits, and (4) the cost and simplicity of undertaking the analytical procedure. Overall, spectrophotometric methods were more cost-effective and simpler to execute yet provided a narrower detection limit compared to HPLC. All three methods were specific to shikimic acid and detected the compound in the tissues of glyphosate-susceptible crops, increasing exponentially in concentration within 24 h of glyphosate application and plateauing at approximately 72 h. Spec 1 estimated more shikimic acid in identical plant extract samples compared to Spec 2 and, likewise, HPLC detection was more effective than spectrophotometric determinations. Given the unprecedented global adoption of glyphosate-resistant crops and concomitant use of glyphosate, an effective and accurate assessment of glyphosate efficacy is important. Endogenous shikimic acid determinations are instrumental in corroborating the efficacy of glyphosate and therefore have numerous applications in herbicide research and related areas of science as well as resolving many commercial issues as a consequence of glyphosate utilization.
Simultaneous Speciation of Arsenic, Selenium, and Chromium by HPLC-ICP-MS
Wolf, Ruth E.; Morman, Suzette A.; Morrison, Jean M.; Lamothe, Paul J.
2008-01-01
An adaptation of an analytical method developed for chromium speciation has been utilized for the simultaneous determination of As(III), As(V), Se(IV), Se(VI), Cr(III), and Cr(VI) species using high performance liquid chromatography (HPLC) separation with ICP-MS detection. Reduction of interferences for the determination of As, Se, and Cr by ICP-MS is a major consideration for this method. Toward this end, a Dynamic Reaction Cell (DRC) ICP-MS system was used to detect the species eluted from the chromatographic column. A variety of reaction cell gases and conditions may be utilized, and the advantages and limitations of the gases tested to date will be presented and discussed. The separation and detection of the As, Se, and Cr species of interest can be achieved using the same chromatographic conditions in less than 2 minutes by complexing the Cr(III) with EDTA prior to injection on the HPLC column. Practical aspects of simultaneous speciation analysis will be presented and discussed, including issues with HPLC sample vial contamination, standard and sample contamination, species stability, and considerations regarding sample collection and preservation methods. The results of testing to determine the method's robustness to common concomitant element and anion effects will also be discussed. Finally, results will be presented using the method for the analysis of a variety of environmental and geological samples including waters, soil leachates and simulated bio-fluid leachates.
Determination of CMPO using HPLC -UV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gracy Elias; Gary S. Groenewold; Bruce J. Mincher
Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) is an extractant proposed for selective separation of radionuclide metals from used nuclear fuel solutions using solvent extraction. Radiolysis reactions can degrade CMPO and reduce separation performance and hence methods for measuring concentration of CMPO and identifying degradation products are needed. A novel high performance liquid chromatography (HPLC) method employing ultraviolet detection (UV) was developed to detect and quantitate CMPO in dodecane. Some radiolysis products in gamma and alpha irradiated CMPO solutions were identified using HPLC/electrospray ionization-mass spectrometry (ESI-MS). Validation data indicated that the HPLC-UV method for CMPO determination provided good linearity, sensitivity, procedure accuracy and systemmore » precision. CMPO-nitric acid complexes were also identified, that account for the apparent loss of CMPO in acidic environment, independent of irradiation.« less
Kasawar, G B; Farooqui, M N
2009-09-01
A chiral reverse phase liquid chromatographic method was developed for the enantiomeric resolution of racemic mixture of (-)-5-[2-aminopropyl]-2-methoxybenzene sulfonamide in bulk drug. The enantiomeric separation of sulfonamide was resolved on a Crownpak CR (+) column using perchloric acid buffer of pH 1.0 as mobile phase and with UV detection at 226 nm. The method is validated and proved to be robust. The limit of detection and quantification of S (-)-(5)-[2-aminopropyl]-2-methoxybenzene sulfonamide] was found to be 0.084 and 0.159 mug/ml, respectively for 20 mul injection volume. The percentage recovery of S (-)-(5)-[2-aminopropyl]-2-methoxybenzene sulfonamide] ranged from 99.57 to 101.88 in bulk drug samples of R (-)-(5)-[2- aminopropyl]-2-methoxybenzene sulfonamide].
Kasawar, G. B.; Farooqui, M. N.
2009-01-01
A chiral reverse phase liquid chromatographic method was developed for the enantiomeric resolution of racemic mixture of (-)-5-[2-aminopropyl]-2-methoxybenzene sulfonamide in bulk drug. The enantiomeric separation of sulfonamide was resolved on a Crownpak CR (+) column using perchloric acid buffer of pH 1.0 as mobile phase and with UV detection at 226 nm. The method is validated and proved to be robust. The limit of detection and quantification of S (-)-(5)-[2-aminopropyl]-2-methoxybenzene sulfonamide] was found to be 0.084 and 0.159 μg/ml, respectively for 20 μl injection volume. The percentage recovery of S (-)-(5)-[2-aminopropyl]-2-methoxybenzene sulfonamide] ranged from 99.57 to 101.88 in bulk drug samples of R (-)-(5)-[2- aminopropyl]-2-methoxybenzene sulfonamide]. PMID:20502572
Stability of alemtuzumab solutions at room temperature.
Goldspiel, Justin T; Goldspiel, Barry R; Grimes, George J; Yuan, Peng; Potti, Gopal
2013-03-01
The 24-hour stability of alemtuzumab solutions prepared at concentrations not included in the product label and stored in glass or polyolefin containers at room temperature was evaluated. Triplicate solutions of alemtuzumab (6.67, 40, and 120 μg/mL) in 0.9% sodium chloride were prepared in either glass bottles or polyolefin containers and stored at room temperature under normal fluorescent lighting conditions. The solutions were analyzed by a validated stability-indicating high-performance liquid chromatography (HPLC) assay at time zero and 8, 14, and 24 hours after preparation; solution pH values were measured and the containers visually inspected at all time points. Stability was defined as the retention of ≥90% of the initial alemtuzumab concentration. HPLC analysis indicated that the percentage of the initial alemtuzumab concentration retained was >90% for all solutions evaluated, with no significant changes over the study period. The most dilute alemtuzumab solution (6.67 μg/mL) showed some degradation (91% of the initial concentration retained at hour 24), whereas the retained concentration was >99% for all other preparations throughout the study period. Solution pH values varied by drug concentration but did not change significantly over 24 hours. No evidence of particle formation was detected in any solution by visual inspection at any time during the study. Solutions of alemtuzumab 6.67 μg/mL stored in glass bottles and solutions of 40 and 120 μg/mL stored in polyolefin containers were stable for at least 24 hours at room temperature.
Ok, Hyun Ee; Choi, Sung-Wook; Kim, Meehye; Chun, Hyang Sook
2014-11-15
High-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography (UPLC) were compared to validate a method for determination of zearalenone (ZON) in noodles, cereal snacks, and infant formulas. The limits of detection and quantification in HPLC and UPLC were found to be 4.0 and 13.0 μg kg(-1) and 2.5 and 8.3 μg kg(-1), respectively. The average recoveries of ZON by HPLC and UPLC ranged from 79.1% to 105.3% and from 85.1% to 114.5%, respectively. The measurement uncertainties of the two methods for ZON determination were within the maximum standard uncertainty. The two methods showed that the levels of ZON in 163 naturally contaminated samples ranged from 4.3 to 8.3 μg kg(-1) by HPLC and 3.1 to 17.6 μg kg(-1) by UPLC. These findings indicate that either method is suitable for the determination of ZON in noodles, cereal snacks, and infant formulas, but UPLC gives faster results with better sensitivity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cyanuric acid (CA) and chloroisocyanurates are commonly used as standard ingredients in formulations for household bleaches, industrial cleansers, dishwasher compounds, general sanitizers, and chlorine stabilizers. They are very well known for preventing the photolytic decomposi...
[Comparison between colorimetry and HPLC on the stability test of roxithromycin].
Wei, Z P; Mao, S R; Bi, D Z
2000-11-01
To compare the stability of roxithromycin in solutions of different pH. Roxithromycin solutions of different pH were prepared with water, simulate intestinal fluid (SIF) and simulate gastric fluid (SGF) shown to be the stability of these solutions were tested by colorimetry and HPLC. Roxithromycin was stable in water, SGF and SIF determined by colorimetry. However, it was found to be stable only in water and SIF but unstable in SGF as determined by HPLC. Roxithromycin is unstable in acidic medium like SGF. The metabolite of roxithromycin showed unfavorable interference on the assay of roxithromycin when colorimetry was used. Colorimetry can not be used for the determination and assay of roxithromycin in acidic solution like SGF.
Near-Infrared Spectroscopy Assay of Key Quality-Indicative Ingredients of Tongkang Tablets.
Pan, Wenjie; Ma, Jinfang; Xiao, Xue; Huang, Zhengwei; Zhou, Huanbin; Ge, Fahuan; Pan, Xin
2017-04-01
The objective of this paper is to develop an easy and fast near-infrared spectroscopy (NIRS) assay for the four key quality-indicative active ingredients of Tongkang tablets by comparing the true content of the active ingredients measured by high performance liquid chromatography (HPLC) and the NIRS data. The HPLC values for the active ingredients content of Cimicifuga glycoside, calycosin glucoside, 5-O-methylvisamminol and hesperidin in Tongkang tablets were set as reference values. The NIRS raw spectra of Tongkang tablets were processed using first-order convolution method. The iterative optimization method was chosen to optimize the band for Cimicifuga glycoside and 5-O-methylvisamminol, and correlation coefficient method was used to determine the optimal band of calycosin glucoside and hesperidin. A near-infrared quantitative calibration model was established for each quality-indicative ingredient by partial least-squares method on the basis of the contents detected by HPLC and the obtained NIRS spectra. The correlation coefficient R 2 values of the four models of Cimicifuga glycoside, calycosin glucoside, 5-O-methylvisamminol and hesperidin were 0.9025, 0.8582, 0.9250, and 0.9325, respectively. It was demonstrated that the accuracy of the validation values was approximately 90% by comparison of the predicted results from NIRS models and the HPLC true values, which suggested that NIRS assay was successfully established and validated. It was expected that the quantitative analysis models of the four indicative ingredients could be used to rapidly perform quality control in industrial production of Tongkang tablets.
Khan, Wahid; Kumar, Neeraj
2011-06-01
Paromomycin (PM) is an aminoglycoside antibiotic, first isolated in the 1950s, and approved in 2006 for treatment of visceral leishmaniasis. Although isolated six decades back, sufficient information essential for development of pharmaceutical formulation is not available for PM. The purpose of this paper was to determine thermal stability and development of new analytical method for formulation development of PM. PM was characterized by thermoanalytical (DSC, TGA, and HSM) and by spectroscopic (FTIR) techniques and these techniques were used to establish thermal stability of PM after heating PM at 100, 110, 120, and 130 °C for 24 h. Biological activity of these heated samples was also determined by microbiological assay. Subsequently, a simple, rapid and sensitive RP-HPLC method for quantitative determination of PM was developed using pre-column derivatization with 9-fluorenylmethyl chloroformate. The developed method was applied to estimate PM quantitatively in two parenteral dosage forms. PM was successfully characterized by various stated techniques. These techniques indicated stability of PM for heating up to 120 °C for 24 h, but when heated at 130 °C, PM is liable to degradation. This degradation is also observed in microbiological assay where PM lost ∼30% of its biological activity when heated at 130 °C for 24 h. New analytical method was developed for PM in the concentration range of 25-200 ng/ml with intra-day and inter-day variability of < 2%RSD. Characterization techniques were established and stability of PM was determined successfully. Developed analytical method was found sensitive, accurate, and precise for quantification of PM. Copyright © 2010 John Wiley & Sons, Ltd. Copyright © 2010 John Wiley & Sons, Ltd.
Yadav, Nand K; Raghuvanshi, Ashish; Sharma, Gajanand; Beg, Sarwar; Katare, Om P; Nanda, Sanju
2016-03-01
The current studies entail systematic quality by design (QbD)-based development of simple, precise, cost-effective and stability-indicating high-performance liquid chromatography method for estimation of ketoprofen. Analytical target profile was defined and critical analytical attributes (CAAs) were selected. Chromatographic separation was accomplished with an isocratic, reversed-phase chromatography using C-18 column, pH 6.8, phosphate buffer-methanol (50 : 50v/v) as a mobile phase at a flow rate of 1.0 mL/min and UV detection at 258 nm. Systematic optimization of chromatographic method was performed using central composite design by evaluating theoretical plates and peak tailing as the CAAs. The method was validated as per International Conference on Harmonization guidelines with parameters such as high sensitivity, specificity of the method with linearity ranging between 0.05 and 250 µg/mL, detection limit of 0.025 µg/mL and quantification limit of 0.05 µg/mL. Precision was demonstrated using relative standard deviation of 1.21%. Stress degradation studies performed using acid, base, peroxide, thermal and photolytic methods helped in identifying the degradation products in the proniosome delivery systems. The results successfully demonstrated the utility of QbD for optimizing the chromatographic conditions for developing highly sensitive liquid chromatographic method for ketoprofen. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zhao, Bing Tian; Kim, Eun Jung; Son, Kun Ho; Son, Jong Keun; Min, Byung Sun; Woo, Mi Hee
2015-08-01
To establish a standard of quality control and to identify different origins for the Rutaceae family [Citri Unshiu Peel (CU), Citri Unshiu Immature Peel (CI), Ponciri Immature Fructus (PI), Aurantii Immature Fructus (AI), and Aurantii Fructus (AU)], 13 standards including rutin (1), narirutin (2), naringin (3), hesperidin (4), neohesperidin (5), neoponcirin (6), poncirin (7), naringenin (8), isosinensetin (9), sinensetin (10), nobiletin (11), heptamethoxyflavone (12), and tangeretin (13) were determined by high performance liquid chromatography (HPLC)/photo-diode array (PDA) analysis. A YMC ODS C18 (250 × 4.6 mm, 5 µm) column was used and the ratio of mobile phases of water (A) and acetonitrile (B) delivered to the column for gradient elution was applied. This method was fully validated with respect to linearity, accuracy, precision, stability, and robustness. The HPLC/PDA method was applied successfully to quantify 13 major compounds in the extracts of CU, CI, PI, AI, and AU. The pattern recognition analysis combined with LC chromatographic data was performed by repeated analysis of 27 reference samples in the above five Rutaceae oriental medicinal drugs. The established HPLC method was rapid and reliable for quantitative analysis and quality control of multiple components in five Rutaceae species with different origins.
Citti, Cinzia; Ciccarella, Giuseppe; Braghiroli, Daniela; Parenti, Carlo; Vandelli, Maria Angela; Cannazza, Giuseppe
2016-09-05
In the last few years, there has been a boost in the use of cannabis-based extracts for medicinal purposes, although their preparation procedure has not been standardized but rather decided by the individual pharmacists. The present work describes the development of a simple and rapid high performance liquid chromatography method with UV detection (HPLC-UV) for the qualitative and quantitative determination of the principal cannabinoids (CBD-A, CBD, CBN, THC and THC-A) that could be applied to all cannabis-based medicinal extracts (CMEs) and easily performed by a pharmacist. In order to evaluate the identity and purity of the analytes, a high-resolution mass spectrometry (HPLC-ESI-QTOF) analysis was also carried out. Full method validation has been performed in terms of specificity, selectivity, linearity, recovery, dilution integrity and thermal stability. Moreover, the influence of the solvent (ethyl alcohol and olive oil) was evaluated on cannabinoids degradation rate. An alternative extraction method has then been proposed in order to preserve cannabis monoterpene component in final CMEs. Copyright © 2016 Elsevier B.V. All rights reserved.
Runja, Chinnalalaiah; Ravi Kumar, Pigili; Avanapu, Srinivasa Rao
2016-01-01
A new simple, rapid stability indicating assay method has been developed and validated for the determination of emtricitabine, tenofovir disoproxil fumarate, elvitegravir and cobicistat using reverse-phase high-performance liquid chromatography in their pharmaceutical dosage form. The chromatographic separation was performed on an ODS column (250 × 4.6 mm, 5 µm) using mobile phase A (potassium dihydrogen orthophosphate, pH adjusted to 2.5) and mobile phase B (acetonitrile) in the ratio of 55:45% v/v at a flow rate of 1 mL/min. The analytes were detected at 250 nm. The method was found to be linear in the concentration range of 2–12 µg/mL for EMT, 3–18 µg/mL for TNDF, 1.5–9 µg/mL for ELV and COB, with the coefficient value (R2) of >0.9990. The accuracy was measured via recovery studies and found to be acceptable, and the percentage recoveries were found in the range of 99.93–100.08 ± 0.5%. Forced degradation studies were also conducted, and the drugs were subjected to various stress conditions such as acid hydrolysis, base hydrolysis, oxidative, photolytic and thermal degradation. The proposed method was successfully validated and applied for the quantitative estimation of these drugs in both bulk and tablet dosage forms. PMID:26865655
Stability studies on diloxanide furoate: effect of pH, temperature, gastric and intestinal fluids.
Gadkariem, E A; Belal, F; Abounassif, M A; El-Obeid, H A; E E Ibrahim, K
2004-04-01
The degradation of the amoebicide diloxanide furoate in alkaline medium at different temperatures was investigated using both a spectrophotometric and a developed HPLC method. In solutions, the drug was found to undergo decomposition, i.e., temperature and pH dependent. The pH-rate profile at pH between 7.6 and 9.6 indicated a first-order dependence of Kobs on [-OH]. Arrhenius plot obtained at pH 8 was linear between 40 and 63 degrees C. The estimated activation energy of hydrolysis was found to be 18.25 kcal degree.mol(-1). The effect of simulated gastric and intestinal fluids on the drug was also investigated. A new thin-layer chromatographic (TLC) procedure for the fractionation of the drug and its alkaline hydrolysis products has been developed and was found to compare favorably with that of the British Pharmacopoeia. Three hydrolysis products of a basic methanolic solution of the drug, namely furoic acid, diloxanide and methylfuroate could be identified by the use of TLC, HPLC, infrared and mass spectrometry.
Bellon, L; Maloney, L; Zinnen, S P; Sandberg, J A; Johnson, K E
2000-08-01
Versatile bioanalytical assays to detect chemically stabilized hammerhead ribozyme and putative ribozyme metabolites from plasma are described. The extraction protocols presented are based on serial solid-phase extractions performed on a 96-well plate format and are compatible with either IEX-HPLC or CGE back-end analysis. A validation of both assays confirmed that both the HPLC and the CGE methods possess the required linearity, accuracy, and precision to accurately measure concentrations of hammerhead ribozyme extracted from plasma. These methods should be of general use to detect and quantitate ribozymes from other biological fluids such as serum and urine. Copyright 2000 Academic Press.
Pesce, Michael A; Strauss, Shiela M; Rosedale, Mary; Netterwald, Jane; Wang, Hangli
2015-01-01
To validate an ion exchange high-pressure liquid chromatography (HPLC) method for measuring glycated hemoglobin (HbA1c) in gingival crevicular blood (GCB) spotted on filter paper, for use in screening dental patients for diabetes. We collected the GCB specimens for this study from the oral cavities of patients during dental visits, using rigorous strategies to obtain GCB that was as free of debris as possible. The analytical performance of the HPLC method was determined by measuring the precision, linearity, carryover, stability of HbA1c in GCB, and correlation of HbA1c results in GCB specimens with finger-stick blood (FSB) specimens spotted on filter paper. The coefficients of variation (CVs) for the inter- and intrarun precision of the method were less than 2.0%. Linearity ranged between 4.2% and 12.4%; carryover was less than 2.0%, and the stability of the specimen was 6 days at 4°C and as many as 14 days at -70°C. Linear regression analysis comparing the HbA1c results in GCB with FSB yielded a correlation coefficient of 0.993, a slope of 0.981, and an intercept of 0.13. The Bland-Altman plot showed no difference in the HbA1c results from the GCB and FSB specimens at normal, prediabetes, and diabetes HbA1c levels. We validated an HPLC method for measuring HbA1c in GCB; this method can be used to screen dental patients for diabetes. Copyright© by the American Society for Clinical Pathology (ASCP).
Li, Jian; Milne, Robert W.; Nation, Roger L.; Turnidge, John D.; Coulthard, Kingsley
2003-01-01
The stabilities of colistin and colistin methanesulfonate (CMS) in different aqueous media were studied by specific high-performance liquid chromatography (HPLC) methods. Colistin was stable in water at 4 and 37°C for up to 60 days and 120 h, respectively. However, degradation was observed when colistin was stored in isotonic phosphate buffer (0.067 M, pH 7.4) and human plasma at 37°C. The stability of CMS from three different sources in water was explored by strong-anion-exchange (SAX) HPLC for CMS and by measuring the concentrations of colistin formed from the hydrolysis of CMS. The peaks of CMS in SAX HPLC disappeared almost completely after 12 h at 37°C, but appeared to remain intact for up to 2 days at 4°C. Over the same period, there was no formation of colistin at 4°C. In water, phosphate buffer, and plasma, there was rapid formation of colistin within 24 to 48 h at 37°C from the three sources of CMS. The hydrolysis products were assumed to be a complex mixture of many different sulfomethyl derivatives, including colistin. The stability of a fourth source of CMS in Mueller-Hinton broth examined during 30 min at 37°C revealed no formation of colistin. Along with previous microbiological studies, this suggested that different sulfomethyl CMSs possess intrinsic antibacterial activity. These results will be helpful for understanding the pharmacokinetics and pharmacodynamics of colistin and CMS in humans and animals. PMID:12654671
Bertolini, Tiziana; Vicentini, Lorenza; Boschetti, Silvia; Andreatta, Paolo; Gatti, Rita
2014-10-24
A simple, sensitive and fast hydrophilic interaction liquid chromatography (HILIC) method using ultraviolet diode-array detector (UV-DAD)/electrospray ionization tandem mass spectrometry was developed for the automated high performance liquid chromatography (HPLC) determination of sodium risedronate (SR) and its degradation products in new pharmaceuticals. The chromatographic separations were performed on Ascentis Express HILIC 2.7μm (150mm×2.1mm, i.d.) stainless steel column (fused core). The mobile phase consisted of formate buffer solution (pH 3.4; 0.03M)/acetonitrile 42:58 and 45:55 (v/v) for granules for oral solution and effervescent tablet analysis, respectively, at a flow-rate of 0.2mL/min, setting the wavelength at 262nm. Stability characteristics of SR were evaluated by performing stress test studies. The main degradation product formed under oxidation conditions corresponding to sodium hydrogen (1-hydroxy-2-(1-oxidopyridin-3-yl)-1-phosphonoethyl)phosphonate was characterized by high performance liquid chromatography-electrospray ionization-mass tandem mass spectrometry (HPLC-ESI-MS/MS). The validation parameters such as linearity, sensitivity, accuracy, precision and selectivity were found to be highly satisfactory. Linear responses were observed in standard and in fortified placebo solutions. Intra-day precision (relative standard deviation, RSD) was ≤1.1% for peak area and ≤0.2% for retention times (tR) without significant differences between intra- and inter-day data. Recovery studies showed good results for all the examined compounds (from 98.7 to 101.0%) with RSD ranging from 0.6 to 0.7%. The limits of detection (LOD) and quantitation (LOQ) were 1 and 3ng/mL, respectively. The high stability of standard and sample solutions at room temperature means an undoubted advantage of the method allowing the simultaneous preparation of many samples and consecutive chromatographic analyses by using an autosampler. The developed stability indicating method is suitable for the quality control of SR in new and commercial pharmaceutical formulations. Copyright © 2014 Elsevier B.V. All rights reserved.
Chen, Jun; Chen, Jianwei; Wang, Sijia; Zhou, Guangmin; Chen, Danqing; Zhang, Huawei; Wang, Hong
2018-04-02
A novel, green, rapid, and precise polar RP-HPLC method has been successfully developed and screened for ectoine high-yield strain in marine bacteria. Ectoine is a polar and extremely useful solute which allows microorganisms to survive in extreme environmental salinity. This paper describes a polar-HPLC method employed polar RP-C18 (5 μm, 250 × 4.6 mm) using pure water as the mobile phase and a column temperature of 30 °C, coupled with a flow rate at 1.0 mL/min and detected under a UV detector at wavelength of 210 nm. Our method validation demonstrates excellent linearity (R 2 = 0.9993), accuracy (100.55%), and a limit of detection LOQ and LOD of 0.372 and 0.123 μgmL -1 , respectively. These results clearly indicate that the developed polar RP-HPLC method for the separation and determination of ectoine is superior to earlier protocols.
Yuan, Zhenting; Xu, Haiyan; Wang, Ke; Zhao, Zhonghua; Hu, Ming
2012-01-01
A straightforward and sensitive reversed-phase high-performance liquid chromatography (HPLC) assay was developed and validated for the analysis of osthol and its phase I metabolites (internal standard: umbelliferone). The method was validated for the determination of osthol with respect to selectivity, precision, linearity, limit of detection, recovery, and stability. The linear response range was 0.47 ~ 60 μM, and the average recoveries ranged from 98 to 101%. The inter-day and intra-day relative standard deviations were both less than 5%. Using this method, we showed that more than 80% of osthol was metabolized in 20 min in a phase I metabolic reaction system. Transport experiments in the Caco-2 cell culture model indicated that osthol was easily absorbed with high absorptive permeability (>10×10-6 cm/sec). The permeability did not display concentration-dependence or vectorial-dependence and is mildly temperature sensitive (activation energy less than 10 Kcal/mole), indicating passive mechanism of transport. When analyzed by LC-MS/MS, five metabolites were detected in a phase I reaction system and in the receiver side of a modified Caco-2 cell model, which was supplemented with the phase I reaction system. The major metabolites appeared to be desmethyl-osthol and multiple isomers of dehydro-osthol. In conclusion, a likely cause of poor osthol bioavailability is rapid phase I metabolism via the cytochrome P-450 pathways. PMID:19304430
Influence of cooking on anthocyanins in black rice (Oryza sativa L. japonica var. SBR).
Hiemori, Miki; Koh, Eunmi; Mitchell, Alyson E
2009-03-11
The composition and thermal stability of anthocyanins in black rice (Oryza sativa L. japonica var. SBR) produced in California were investigated. Six anthocyanin pigments were identified and quantified by high performance liquid chromatography using photo diode-array detection (HPLC-PDA) and electrospray ionization mass spectrometry [LC-(ESI)MS/MS]. The predominant anthocyanins are cyanidin-3-glucoside (572.47 microg/g; 91.13% of total) and peonidin-3-glucoside (29.78 microg/g; 4.74% of total). Minor constituents included three cyanidin-dihexoside isomers and one cyanidin hexoside. Thermal stability of anthocyanins was assessed in rice cooked using a rice cooker, pressure cooker, or on a gas range. All cooking methods caused significant (P < 0.001) decreases in the anthocyanins identified. Pressure cooking resulted in the greatest loss of cyanidin-3-glucoside (79.8%) followed by the rice cooker (74.2%) and gas range (65.4%). Conversely, levels of protocatechuic acid increased 2.7 to 3.4 times in response to all cooking methods. These findings indicate that cooking black rice results in the thermal degradation of cyanidin-3-glucoside and concomitant production of protocatechuic acid.
Meng, X; Ma, Q; Bai, H; Wang, Z; Han, C; Wang, C
2017-08-01
A comprehensive methodology for the simultaneous determination of 15 multiclass organic UV filters in sunscreen cosmetics was developed using high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Sunscreen cosmetics of various matrices, such as toning lotion, emulsion, cream and lipstick, were analysed. Ultrasound-assisted extraction (UAE) was utilized as the extraction technique for sample preparation. The 15 UV filters were chromatographically separated by two groups of mobile phase system on an XBridge C 18 analytical column (150 × 2.1 mm I.D., 3.5 μm particle size) and quantified using HPLC-ESI-MS/MS. The quantitation was performed using the external calibration method. The established method was validated in terms of linearity, sensitivity, specificity, accuracy, stability, intraday and interday precisions, recovery and matrix effect. The method was also applied for the determination of UV filters in commercial sunscreen cosmetics. The experimental results demonstrated that the developed method was accurate, rapid and sensitive and can be used for the analytical control of sunscreen cosmetics. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Zhang, Yuping; Nie, Mingkun; Shi, Shuyun; You, Qingping; Guo, Junfang; Liu, Liangliang
2014-03-01
Radix Astragali is one of the most popular traditional medicinal herb and healthy dietary supplement. Isoflavonoids and astragalosides are the main bioactive ingredients. However, the systematic bioactive component analysis is inadequate so far. Then a facile method based on Fe3O4@SiO2-human serum albumin (Fe3O4@SiO2-HSA) magnetic solid phase fishing integrated with two-dimensional high-performance liquid chromatography-diode array detector-mass spectrometry (2D HPLC-DAD-MS(n)) was developed to fish out and identify HSA binders from Radix Astragali. The immobilized HSA displayed a high stability with 96.2% retained after ten consecutive cycles. 2D HPLC system (size exclusion chromatography×reversed phase chromatography, SEC×RP) were developed and optimised. Forty-seven bioactive compounds including thirty-four isoflavonoids and thirteen astragalosides were screened and identified or tentatively deduced based on their retention time, ultraviolet (UV), accurate molecular weight and diagnostic fragment ions. The results indicated that the integrated method could be widely applied for systematical fishing and identification of bioactive compounds, especially for low-abundance and overlapped compounds, from complex mixtures. Copyright © 2013 Elsevier Ltd. All rights reserved.
Jain, P S; Patel, M K; Gorle, A P; Chaudhari, A J; Surana, S J
2012-09-01
A simple, specific, accurate and precise stability-indicating reversed-phase high-performance liquid chromatographic method was developed for simultaneous estimation of olmesartan medoxomile (OLME), amlodipine besylate (AMLO) and hydrochlorothiazide (HCTZ) in tablet dosage form. The method was developed using an RP C18 base deactivated silica column (250 × 4.6 mm, 5 µm) with a mobile phase consisting of triethylamine (pH 3.0) adjusted with orthophosphoric acid (A) and acetonitrile (B), with a timed gradient program of T/%B: 0/30, 7/70, 8/30, 10/30 with a flow rate of 1.4 mL/min. Ultraviolet detection was used at 236 nm. The retention times for OLME, AMLO and HCTZ were found to be 6.72, 4.28 and 2.30, respectively. The proposed method was validated for precision, accuracy, linearity, range, robustness, ruggedness and force degradation study. The calibration curves of OLME, AMLO and HCTZ were linear over the range of 50-150, 12.5-37.5 and 31-93 µg/mL, respectively. The method was found to be sensitive. The limits of detection of OLME, AMLO and HCTZ were determined 0.19, 0.16 and 0.22 µg/mL and limits of quantification of OLME, AMLO and HCTZ were determined 0.57, 0.49 and 0.66, respectively. Forced degradation study was performed according to International Conference on Harmonization guidelines.
Bhusal, Prabhat; Sharma, Manisha; Harrison, Jeff; Procter, Georgina; Andrews, Gavin; Jones, David S; Hill, Andrew G; Svirskis, Darren
2017-09-01
An efficient and cost-effective quantification procedure for lidocaine by HPLC has been developed to estimate lidocaine from an EVA matrix, plasma, peritoneal fluid and intra-articular fluid (IAF). This method guarantees the resolution of lidocaine from the degradation products obtained from alkaline and oxidative stress. Chromatographic separation of lidocaine was achieved with a retention time of 7 min using a C18 column with a mobile phase comprising acetonitrile and potassium dihydrogen phosphate buffer (pH 5.5; 0.02 M) in the ratio of 26:74 at a flow rate of 1 mL min-1 with detection at 230 nm. Instability of lidocaine was observed to an oxidizing (0.02% H2O2) and alkaline environments (0.1 M NaOH). The calibration curve was found to be linear within the concentration range of 0.40-50.0 μg/mL. Intra-day and inter-day accuracy ranged between 95.9% and 99.1%, with precision (% RSD) below 6.70%. The limit of quantification and limit of detection were 0.40 μg/mL and 0.025 μg/mL, respectively. The simple extraction method described enabled the quantification of lidocaine from an EVA matrix using dichloromethane as a solvent. The assay and content uniformity of lidocaine within an EVA matrix were 103 ± 3.60% and 100 ± 2.60%, respectively. The ability of this method to quantify lidocaine release from EVA films was also demonstrated. Extraction of lidocaine from plasma, peritoneal fluid and IAF followed by HPLC analysis confirmed the utility of this method for ex vivo and in vivo studies where the calibration plot was found to be linear from 1.60 to 50.0 μg/mL. © Crown copyright 2017.
Kosmus, Patrick; Steiner, Oliver; Goessler, Walter; Gollas, Bernhard; Fauler, Gisela
2016-04-01
Plating bath additives are essential for optimization of the morphology of electroplated layers. The ionic liquid 1-ethyl-3-methylimidazolium (EMIM) chloride plus 1.5 mol equivalents of AlCl3 has great potential for electroplating of aluminum. In this study, the chemical and electrochemical stability of the additives EMIM-nicotinate and sodium dodecyl sulfate and their effect on the stability of EMIM was investigated and analyzed. Nicotinate and its electrochemical decomposition product β-picoline could be detected and we show with a single HPLC-UV-MS method that EMIM is not affected by the decomposition of this additive. An adapted standard HPLC-UV-MS method together with GC-MS and ion chromatography was used to analyze the decomposition products of SDS and possible realkylation products of EMIM. Several volatile medium and short chain-length alkanes as well as sulfate ions have been found as decomposition products of SDS. Alkenium ions formed as intermediates during the decomposition of SDS realkylate EMIM to produce mono- up to pentasubstituted alkyl-imidazoles. A reaction pathway involving Wagner-Meerwein rearrangements and Friedel-Crafts alkylations has been suggested to account for the formation of the detected products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of formononetin from black cohosh (Actaea racemosa).
Jiang, B; Kronenberg, F; Balick, M J; Kennelly, E J
2006-07-01
Black cohosh has been widely used as an herbal medicine for the treatment of symptoms related to menopause in America and Europe during the past several decades, but the bioactive constituents are still unknown. Formononetin is an isoflavone with known estrogen-like activity. This compound was first reported to be isolated from black cohosh in 1985, but subsequent research in 2002 using HPLC-PDA and LC-MS revealed no evidence to show the presence of formononetin in 13 populations of American black cohosh. A more recent report published in 2004 claimed to detect formononetin in an extract of black cohosh rhizomes using a TLC-fluorescent densitometry method. To further resolve these conflicting reports, we analyzed black cohosh roots and rhizomes for the presence of formononetin, using a combined TLC, HPLC-PDA and LC-MS method. We examined both methanolic and aqueous methanolic black cohosh extracts by HPLC-PDA and LC-MS methods, and did not detect formononetin in any extracts. We further determined the limits of detection of formononetin by HPLC-PDA and LC-MS. Our experimental results indicated that the sensitivity and accuracy of the HPLC-PDA and LC-MS methods for the analysis of formononetin were slightly higher than those of the reported fluorescent method, suggesting that the HPLC-PDA and LC-MS methods were reliable for the analysis of formononetin from black cohosh. We also repeated the reported TLC method to concentrate two fractions from a modern black cohosh sample and an 86-year-old black cohosh sample, respectively, and then analyzed these two fractions for formononetin using the HPLC-PDA and LC-MS method instead of the fluorescent method. Formononetin was not detected by HPLC-PDA or LC-MS. From the results of the present study it is not reasonable to attribute the estrogen-like activity of black cohosh extracts to formononetin.
Patil, Dada; Gautam, Manish; Jadhav, Umesh; Mishra, Sanjay; Karupothula, Suresh; Gairola, Sunil; Jadhav, Suresh; Patwardhan, Bhushan
2010-03-01
Stability testing at preformulation stages is a crucial part of drug development. We studied physicochemical stability and biological activity of Withania somnifera (ashwagandha) dried root aqueous extract during six months real-time and under accelerated storage conditions. The characteristic constituents of ashwagandha roots include withanolides such as withaferin A and withanolide A. We modified and validated the HPLC-DAD method for quantitative measurement of withanolides and fingerprint analysis. The results suggest a significant decline in withaferin A and withanolide A content under real and accelerated conditions. The HPLC fingerprint analysis showed significant changes in some peaks during real and accelerated storage (> 20 %). We also observed incidences of clump formation and moisture sensitivity (> 10 %) under real-time and accelerated storage conditions. These changes were concurrent with a significant decline in immunomodulatory activity (p < 0.01) during the third month of the accelerated storage. Thus, adequate control of temperature and humidity is important for WSE containing formulations. This study may help in proposing suitable guidance for storage conditions and shelf life of ashwagandha formulations. (c) Georg Thieme Verlag KG Stuttgart . New York.
Arumugam, Abiramasundari; Joshi, Amita; Vasu, Kamala K
2017-11-01
The present work focused on the application of design of experiment (DoE) principles to the development and optimization of a stability-indicating method (SIM) for the drug imidapril hydrochloride and its degradation products (DPs). The resolution of peaks for the DPs and their drug in a SIM can be influenced by many factors. The factors studied here were pH, gradient time, organic modifier, flow rate, molar concentration of the buffer, and wavelength, with the aid of a Plackett-Burman design. Results from the Plackett-Burman study conspicuously showed influence of two factors, pH and gradient time, on the analyzed response, particularly, the resolution of the closely eluting DPs (DP-5 and DP-6) and the retention time of the last peak. Optimization of the multiresponse processes was achieved through Derringer's desirability function with the assistance of a full factorial design. Separation was achieved using a C18 Phenomenex Luna column (250 × 4.6 mm id, 5 µm particle size) at a flow rate of 0.8 mL/min at 210 nm. The optimized mobile phase composition was ammonium-acetate buffer (pH 5) in pump A and acetonitrile-methanol (in equal ratio) in pump B with a run time of 40 min using a gradient method.
Furlong, E.T.; Martin, Jeffrey D.; Werner, S.L.; Gates, Paul M.
2002-01-01
The sensitivity and selective determination of polar pesticides were analyzed using high-performance liquid chromatography/electrospray ionization-mass spectrometry (HPLC/ESI-MS). The effects of multiple operators and instruments on method performance were evaluated using 440 pairs of fortified reagent-water and blank reagent-water samples. The influence of varying environmental matrices on recovery and precision were also analyzed using 200 fortified ambient water samples and duplicate ambient water samples. The results show that compound stability in filtered water was matrix-, chemical class- and compound-dependent which ranged from 1 day to 2 weeks.
Chemical stability of oseltamivir in oral solutions.
Albert, K; Bockshorn, J
2007-09-01
The stability of oseltamivir in oral aqueous solutions containing the preservative sodium benzoate was studied by a stability indicating HPLC-method. The separation was achieved on a RP-18 ec column using a gradient of mobile phase A (aqueous solution of 50 mM ammonium acetate) and mobile phase B (60% (v/v) acetonitrile/40% (v/v) mobile phase A). The assay was subsequently validated according to the ICH guideline Q2(R1). The extemporaneously prepared "Oseltamivir Oral Solution 15 mg/ml for Adults or for Children" (NRF 31.2.) according to the German National Formulary ("Neues Rezeptur-Formularium") was stable for 84 days if stored under refrigeration. After storage at 25 degrees C the content of oseltamivir decreased to 98.4%. Considering the toxicological limit of 0.5% of the 5-acetylamino derivative (the so-called isomer I) the solution is stable for 46 days. Oseltamivir was less stable in a solution prepared with potable water instead of purified water. Due to an increasing pH the stability of this solution decreased to 14 days. Furthermore a white precipitate of mainly calcium phosphate was observed. The addition of 0.1% anhydrous citric acid avoided these problems and improved the stability of the solution prepared with potable water to 63 days. Sodium benzoate was stable in all oral solutions tested.
Zhang, Y; Cedergren, R A; Nieuwenhuis, T J; Hollingsworth, R I
1993-02-01
A simple, sensitive method for the structural characterization of oligosaccharides by fast atom bombardment-mass spectrometry (FAB-MS) has been designed. Oligosaccharides are labeled with a uv chromophore (which also serves as a charge stabilizing group) and with a hydrophobic alkyl tail. The chromophore, a 2,4-dinitrophenyl group, aids uv detection during HPLC and stabilizes negative ion species formed during analysis by FAB-MS. The hydrophobic tail, provided by an octyl group, enhances the surface activity of the analytes and makes them amenable to separation by reverse-phase chromatography using a C18 bonded phase. This method was applied to the structural analysis of the components of a mixture of starch maltodextrins with a degree of polymerization 1-16, to the analysis of the structure of pure maltohexaose, and to a previously characterized oligosaccharide from a Rhizobium capsular polysaccharide. The method gave a good yield of [M-H]- anions for the derivatized compounds, which in most cases were detectable at a level of about 1 pmol. In the case of maltohexaose, four series of sequence anions corresponding to sequential loss of glycosyl residues from the reducing and nonreducing end by different mechanisms were observed. The mixture of derivatized malto-oligosaccharides could easily be separated by HPLC. Based on the relative proportions of the individual oligomers in the mixture calculated from HPLC analysis, even though the higher oligomers were present in amounts of about 0.1%, they could still be easily detected in mass spectra of the entire mixture.(ABSTRACT TRUNCATED AT 250 WORDS)
Taylor, C; Duffy, L K; Plumley, F G; Bowyer, R T
2000-09-01
A spectrofluorometric method (B. Grandchamp et al., 1980, Biochem. Biophys. Acta 629, 577-586) developed for the determination of amounts of uroporphyrin I (Uro I), coproporphyrin III (Copro III), and protoporphyrin IX (Proto IX) in skin fibroblasts was compared with a high-performance liquid chromatography (HPLC) method for the analysis of porphyrins in fecal samples of river otters (Lutra canadensis). Heptacarboxylate porphyrin I and coproporphyrin I, two porphyrins determined to be critical in defining the porphyrin profile in fecal samples of river otters with the HPLC method, contributed substantially to the calculation of the concentrations of Uro I and Copro III, respectively, in standard solutions of porphyrins with the spectrofluorometric method. Fluorescent components of the fecal matrix complicated the determination of the concentrations of Uro I, Copro III, and Proto IX with the spectrofluorometric method and resulted in erroneous values for the concentrations of these porphyrins compared with values determined with the HPLC method. These results indicate that the complexity of the sample, particularly with regard to the potential presence of interfering fluorescent compounds, as well as porphyrins additional to Uro I, Copro III, and Proto IX, should be considered prior to the application of the spectrofluorometric method. An alternative HPLC method developed for the rapid characterization of porphyrin profiles in fecal samples of river otters is described. Copyright 2000 Academic Press.
Determination of Urine Albumin by New Simple High-Performance Liquid Chromatography Method.
Klapkova, Eva; Fortova, Magdalena; Prusa, Richard; Moravcova, Libuse; Kotaska, Karel
2016-11-01
A simple high-performance liquid chromatography (HPLC) method was developed for the determination of albumin in patients' urine samples without coeluting proteins and was compared with the immunoturbidimetric determination of albumin. Urine albumin is important biomarker in diabetic patients, but part of it is immuno-nonreactive. Albumin was determined by high-performance liquid chromatography (HPLC), UV detection at 280 nm, Zorbax 300SB-C3 column. Immunoturbidimetric analysis was performed using commercial kit on automatic biochemistry analyzer COBAS INTEGRA ® 400, Roche Diagnostics GmbH, Manheim, Germany. The HLPC method was fully validated. No significant interference with other proteins (transferrin, α-1-acid glycoprotein, α-1-antichymotrypsin, antitrypsin, hemopexin) was found. The results from 301 urine samples were compared with immunochemical determination. We found a statistically significant difference between these methods (P = 0.0001, Mann-Whitney test). New simple HPLC method was developed for the determination of urine albumin without coeluting proteins. Our data indicate that the HPLC method is highly specific and more sensitive than immunoturbidimetry. © 2016 Wiley Periodicals, Inc.
Temesi, David G; Martin, Scott; Smith, Robin; Jones, Christopher; Middleton, Brian
2010-06-30
Screening assays capable of performing quantitative analysis on hundreds of compounds per week are used to measure metabolic stability during early drug discovery. Modern orthogonal acceleration time-of-flight (OATOF) mass spectrometers equipped with analogue-to-digital signal capture (ADC) now offer performance levels suitable for many applications normally supported by triple quadruple instruments operated in multiple reaction monitoring (MRM) mode. Herein the merits of MRM and OATOF with ADC detection are compared for more than 1000 compounds screened in rat and/or cryopreserved human hepatocytes over a period of 3 months. Statistical comparison of a structurally diverse subset indicated good agreement for the two detection methods. The overall success rate was higher using OATOF detection and data acquisition time was reduced by around 20%. Targeted metabolites of diazepam were detected in samples from a CLint determination performed at 1 microM. Data acquisition by positive and negative ion mode switching can be achieved on high-performance liquid chromatography (HPLC) peak widths as narrow as 0.2 min (at base), thus enabling a more comprehensive first pass analysis with fast HPLC gradients. Unfortunately, most existing OATOF instruments lack the software tools necessary to rapidly convert the huge amounts of raw data into quantified results. Software with functionality similar to open access triple quadrupole systems is needed for OATOF to truly compete in a high-throughput screening environment. Copyright 2010 John Wiley & Sons, Ltd.
Bouguéon, Guillaume; Lagarce, Frédéric; Martin, Ludovic; Pailhoriès, Hélène; Bastiat, Guillaume; Vrignaud, Sandy
2016-07-25
Medicines for the treatment of rare diseases frequently do not attract the interest of the pharmaceutical industry, and hospital pharmacists are thus often requested by physicians to prepare personalized medicines. Tuberous Sclerosis Complex (TSC) is a rare disease that causes disfiguring lesions named facial angiofibromas. Various topical formulations of rapamycin (=sirolimus) have been proved effective in treating these changes in small case series. The present study provides for the first time characterization of a 0.1% rapamycin cream formulation presenting good rapamycin solubilisation. The first step of the formulation is solubilisation of rapamycin in Transcutol(®), and the second step is the incorporation of the mixture in an oil-in-water cream. A HPLC stability-indicating method was developed. Rapamycin concentration in the cream was tested by HPLC and confirmed that it remained above 95% of the initial concentration for at least 85days, without characteristic degradation peaks. The preparation met European Pharmacopoeia microbial specifications throughout storage in aluminum tubes, including when patient use was simulated. Odour, appearance and colour of the preparation were assessed and no change was evidenced during storage. The rheological properties of the cream also remained stable throughout storage. To conclude, we report preparation of a novel cream formulation presenting satisfactory rapamycin solubilisation for the treatment of TSC cutaneous manifestations, with stability data. The cream is currently being used by our patients. Efficacy and tolerance will be reported later. Copyright © 2016 Elsevier B.V. All rights reserved.
Mohamed, Afaf O; Fouad, Manal M; Hasan, Mona M; Abdel Razeq, Sawsan A; Elsherif, Zeinab A
2009-12-01
Three stability-indicating methods were developed for the determination of racecadotril (RCT) in the presence of its alkaline degradation products. The first was an HPLC method in which efficient chromatographic separation was achieved on a C18 analytical column and a mobile phase of acetonitrile-methanol-water-acetic acid (52:28:20:0.1, v/v/v/v). Linearity was obtained in the range of 4-40 microg/mL with mean accuracy of 99.5 +/- 0.88%. The second method was a densitometric evaluation of thin-layer chromatograms of the drug using a mobile phase of isopropanol-ammonia (33%)-n-hexane (9:0.5:20, v/v/v). The chromatograms were scanned at 232 nm, a wavelength at which RCT can be readily separated from its degradation products and determined in the range of 2-20 microg per spot with mean accuracy of 99.5 +/- 0.56%. The third method is based on the use of first-derivative spectrophotometry (D1) at 240 nm, and the drug was determined in the range of 5-40 microg/mL with mean accuracy of 99.2 +/- 1.02%. The three methods provided satisfactory recovery of the intact drug (100.8 +/- 0.82, 100.4 +/- 0.55, and 99.9 +/- 0.72%, respectively) in the presence of up to 90% of its degradation products. Determination was also successful when analyzing RCT in a formulation in the form of acetorphan packets. Results were statistically analyzed and found to be in accordance with those given by a reported method.
HPLC fingerprint analysis combined with chemometrics for pattern recognition of ginger.
Feng, Xu; Kong, Weijun; Wei, Jianhe; Ou-Yang, Zhen; Yang, Meihua
2014-03-01
Ginger, the fresh rhizome of Zingiber officinale Rosc. (Zingiberaceae), has been used worldwide; however, for a long time, there has been no standard approbated internationally for its quality control. To establish an efficacious and combinational method and pattern recognition technique for quality control of ginger. A simple, accurate and reliable method based on high-performance liquid chromatography with photodiode array (HPLC-PDA) detection was developed for establishing the chemical fingerprints of 10 batches of ginger from different markets in China. The method was validated in terms of precision, reproducibility and stability; and the relative standard deviations were all less than 1.57%. On the basis of this method, the fingerprints of 10 batches of ginger samples were obtained, which showed 16 common peaks. Coupled with similarity evaluation software, the similarities between each fingerprint of the sample and the simulative mean chromatogram were in the range of 0.998-1.000. Then, the chemometric techniques, including similarity analysis, hierarchical clustering analysis and principal component analysis were applied to classify the ginger samples. Consistent results were obtained to show that ginger samples could be successfully classified into two groups. This study revealed that HPLC-PDA method was simple, sensitive and reliable for fingerprint analysis, and moreover, for pattern recognition and quality control of ginger.
Song, Zhixin; Xie, Baoyuan; Ma, Huaian; Zhang, Rui; Li, Pengfei; Liu, Lihong; Yue, Yuhong; Zhang, Jianping; Tong, Qing; Wang, Qingtao
2016-09-01
The level of glycated hemoglobin (HbA1c ) has been recognized as an important indicator of long-term glycemic control. However, the HbA1c measurement is not currently included as a diagnostic determinant in China. Current study aims to assess a candidate modified International Federation of Clinical Chemistry reference method for the forthcoming standardization of HbA1c measurements in China. The HbA1c concentration was measured using a modified high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) method. The modified method replaces the propylcyanide column with a C18 reversed-phase column, which has a lower cost and is more commonly used in China, and uses 0.1% (26.5 mmol/l) formic acid instead of trifluoroacetic acid. Moreover, in order to minimize matrix interference and reduce the running time, a solid-phase extraction was employed. The discrepancies between HbA1c measurements using conventional methods and the HPLC-ESI-MS method were clarified in clinical samples from healthy people and diabetic patients. Corresponding samples were distributed to 89 hospitals in Beijing for external quality assessment. The linearity, reliability, and accuracy of the modified HPLC-ESI-MS method with a shortened running time of 6 min were successfully validated. Out of 89 hospitals evaluated, the relative biases of HbA1c concentrations were < 8% for 74 hospitals and < 5% for 60 hospitals. Compared with other conventional methods, HbA1c concentrations determined by HPLC methods were similar to the values obtained from the current HPLC-ESI-MS method. The HPLC-ESI-MS method represents an improvement over existing methods and provides a simple, stable, and rapid HbA1c measurement with strong signal intensities and reduced ion suppression. © 2015 Wiley Periodicals, Inc.
Hasan, Najmul; Chaiharn, Mathurot; Toor, Umair Ali; Mirani, Zulfiqar Ali; Sajjad, Ghulam; Sher, Nawab; Aziz, Mubashir; Siddiqui, Farhan Ahmed
2016-01-01
In this article we describe development and validation of stability indicating, accurate, specific, precise and simple Ion-pairing RP-HPLC method for simultaneous determination of paracetamol and cetirizine HCl along with preservatives i.e. propylparaben, and methylparaben in pharmaceutical dosage forms of oral solution and in serum. Acetonitrile: Buffer: Sulfuric Acid (45:55:0.3 v/v/v) was the mobile phase at flow rate 1.0 mL min(-1) using a Hibar(®) Lichrosorb(®) C18 column and monitored at wavelength of 230nm. The averages of absolute and relative recoveries were found to be 99.3%, 99.5%, 99.8% and 98.7% with correlation coefficient of 0.9977, 0.9998, 0.9984, and 0.9997 for cetirizine HCl, paracetamol, methylparaben and Propylparaben respectively. The limit of quantification and limit of detection were in range of 0.3 to 2.7 ng mL(-1) and 0.1 to 0.8 ng mL(-1) respectively. Under stress conditions of acidic, basic, oxidative, and thermal degradation, maximum degradation was observed in basic and oxidative stress where a significant impact was observed while all drugs were found almost stable in the other conditions. The developed method was validated in accordance with ICH and AOAC guidelines. The proposed method was successfully applied to quantify amount of paracetamol, cetirizine HCl and two most common microbial preservatives in bulk, dosage form and physiological fluid.
Hasan, Najmul; Chaiharn, Mathurot; Toor, Umair Ali; Mirani, Zulfiqar Ali; Sajjad, Ghulam; Sher, Nawab; Aziz, Mubashir; Siddiqui, Farhan Ahmed
2016-01-01
In this article we describe development and validation of stability indicating, accurate, specific, precise and simple Ion-pairing RP-HPLC method for simultaneous determination of paracetamol and cetirizine HCl along with preservatives i.e. propylparaben, and methylparaben in pharmaceutical dosage forms of oral solution and in serum. Acetonitrile: Buffer: Sulfuric Acid (45:55:0.3 v/v/v) was the mobile phase at flow rate 1.0 mL min-1 using a Hibar® Lichrosorb® C18 column and monitored at wavelength of 230nm. The averages of absolute and relative recoveries were found to be 99.3%, 99.5%, 99.8% and 98.7% with correlation coefficient of 0.9977, 0.9998, 0.9984, and 0.9997 for cetirizine HCl, paracetamol, methylparaben and Propylparaben respectively. The limit of quantification and limit of detection were in range of 0.3 to 2.7 ng mL-1 and 0.1 to 0.8 ng mL-1 respectively. Under stress conditions of acidic, basic, oxidative, and thermal degradation, maximum degradation was observed in basic and oxidative stress where a significant impact was observed while all drugs were found almost stable in the other conditions. The developed method was validated in accordance with ICH and AOAC guidelines. The proposed method was successfully applied to quantify amount of paracetamol, cetirizine HCl and two most common microbial preservatives in bulk, dosage form and physiological fluid. PMID:27651840
Jia, Bei-Xi; Huangfu, Qian-Qian; Ren, Feng-Xiao; Jia, Lu; Zhang, Yan-Bing; Liu, Hong-Min; Yang, Jie; Wang, Qiang
2015-01-01
This article marks the first report on high-performance liquid chromatography (HPLC) coupled with diode-array detection (DAD) and quadruple time-of-flight mass spectrometry (Q-TOF/MS) for the identification and quantification of main bioactive constituents in Baeckea frutescens. In total, 24 compounds were identified or tentatively characterised based on their retention behaviours, UV profiles and MS fragment information. Furthermore, a validated method with good linearity, sensitivity, precision, stability, repeatability and accuracy was successfully applied for simultaneous determination of five flavonoids and one chromone in different plant parts of B. frutescens collected at different harvest times, and their dynamic contents revealed the appropriate harvest times. The established HPLC-DAD-Q-TOF/MS using multi-bioactive markers was proved to be a validated strategy for the quality evaluation on both raw materials and related products of B. frutescens.
Zhu, Kevin Y; Leung, K Wing; Ting, Annie K L; Wong, Zack C F; Ng, Winki Y Y; Choi, Roy C Y; Dong, Tina T X; Wang, Tiejie; Lau, David T W; Tsim, Karl W K
2012-03-01
A microfluidic chip based nano-HPLC coupled to tandem mass spectrometry (nano-HPLC-Chip-MS/MS) has been developed for simultaneous measurement of abused drugs and metabolites: cocaine, benzoylecgonine, cocaethylene, norcocaine, morphine, codeine, 6-acetylmorphine, phencyclidine, amphetamine, methamphetamine, MDMA, MDA, MDEA, and methadone in the hair of drug abusers. The microfluidic chip was fabricated by laminating polyimide films and it integrated an enrichment column, an analytical column and a nanospray tip. Drugs were extracted from hairs by sonication, and the chromatographic separation was achieved in 15 min. The drug identification and quantification criteria were fulfilled by the triple quardropule tandem mass spectrometry. The linear regression analysis was calibrated by deuterated internal standards with all of the R(2) at least over 0.993. The limit of detection (LOD) and the limit of quantification (LOQ) were from 0.1 to 0.75 and 0.2 to 1.25 pg/mg, respectively. The validation parameters including selectivity, accuracy, precision, stability, and matrix effect were also evaluated here. In conclusion, the developed sample preparation method coupled with the nano-HPLC-Chip-MS/MS method was able to reveal the presence of drugs in hairs from the drug abusers, with the enhanced sensitivity, compared with the conventional HPLC-MS/MS.
Stability-indicating HPLC-DAD/UV-ESI/MS impurity profiling of the anti-malarial drug lumefantrine.
Verbeken, Mathieu; Suleman, Sultan; Baert, Bram; Vangheluwe, Elien; Van Dorpe, Sylvia; Burvenich, Christian; Duchateau, Luc; Jansen, Frans H; De Spiegeleer, Bart
2011-02-28
Lumefantrine (benflumetol) is a fluorene derivative belonging to the aryl amino alcohol class of anti-malarial drugs and is commercially available in fixed combination products with β-artemether. Impurity characterization of such drugs, which are widely consumed in tropical countries for malaria control programmes, is of paramount importance. However, until now, no exhaustive impurity profile of lumefantrine has been established, encompassing process-related and degradation impurities in active pharmaceutical ingredients (APIs) and finished pharmaceutical products (FPPs). Using HPLC-DAD/UV-ESI/ion trap/MS, a comprehensive impurity profile was established based upon analysis of market samples as well as stress, accelerated and long-term stability results. In-silico toxicological predictions for these lumefantrine related impurities were made using Toxtree® and Derek®. Several new impurities are identified, of which the desbenzylketo derivative (DBK) is proposed as a new specified degradant. DBK and the remaining unspecified lumefantrine related impurities are predicted, using Toxtree® and Derek®, to have a toxicity risk comparable to the toxicity risk of the API lumefantrine itself. From unstressed, stressed and accelerated stability samples of lumefantrine API and FPPs, nine compounds were detected and characterized to be lumefantrine related impurities. One new lumefantrine related compound, DBK, was identified and characterized as a specified degradation impurity of lumefantrine in real market samples (FPPs). The in-silico toxicological investigation (Toxtree® and Derek®) indicated overall a toxicity risk for lumefantrine related impurities comparable to that of the API lumefantrine itself.
A pretreatment method for HPLC analysis of cypermethrin in microbial degradation systems.
Liu, Shuliang; Yao, Kai; Jia, Dongying; Zhao, Nan; Lai, Wen; Yuan, Huaiyu
2012-07-01
In this paper, a pretreatment method for high-performance liquid chromatography (HPLC) determination of cypermethrin (CY) in microbial degradation systems was systemically studied, primarily to solve the problem of inaccurate determination of CY concentration caused by its uneven distribution in the systems. A suitable pretreatment method was established, including sampling, extraction and dehydration of CY. Partial sampling could be taken for bacterial and yeast systems in which CY was uniformly dispersed by an emulsifying agent, while total sampling was only suitable for mold systems with or without an emulsifying agent. CY could be fully extracted from the samples in which microbial cells were disrupted by ultrasonic treatment with acetonitrile under ultrasonic condition. The extract could be effectively dehydrated and purified by passing it through an anhydrous Na(2)SO(4) column followed by an elution with acetonitrile. The determination of CY in the pretreated sample by HPLC showed a high precision [relative standard deviation (RSD) = 1.14%, n = 5] and a good stability over a period of five days (RSD = 1.57%, n = 5). The recoveries of CY in microbial degradation systems at three different spiked levels ranged from 95.68 to 108.09% (RSD = 0.50-5.87%, n = 5).
Wang, Yan-Hong; Avonto, Cristina; Avula, Bharathi; Wang, Mei; Rua, Diego; Khan, Ikhlas A
2015-01-01
An HPLC-UV method was developed for the quantitative analysis of nine skin whitening agents in a single injection. These compounds are α-arbutin, β-arbutin, kojic acid, nicotinamide, resorcinol, ascorbic acid, hydroquinone, 4-methoxyphenol, and 4-ethoxyphenol. The separation was achieved on a reversed-phase C18 column within 30 min. The mobile phase was composed of water and methanol, both containing 0.1% acetic acid (v/v). The stability of the analytes was evaluated at different pH values between 2.3 and 7.6, and the extraction procedure was validated for different types of skin whitening product matrixes, which included two creams, a soap bar, and a capsule. The best solvent system for sample preparation was 20 mM NaH2PO4 containing 10% methanol at pH 2.3. The analytical method was validated for accuracy, precision, LOD, and LOQ. The developed HPLC-UV method was applied for the quantitation of the nine analytes in 59 skin whitening products including creams, lotions, sera, foams, gels, mask sheets, soap bars, tablets, and capsules.
Fang, Xinsheng; Wang, Jianhua; Zhou, Hongying; Jiang, Xingkai; Zhu, Lixiang; Gao, Xin
2009-07-01
An optimized microwave-assisted extraction method using water (MAE-W) as the extractant and an efficient HPLC analysis method were first developed for the fast extraction and simultaneous determination of D(+)-(3,4-dihydroxyphenyl) lactic acid (Dla), salvianolic acid B (SaB), and lithospermic acid (La) in radix Salviae Miltiorrhizae. The key parameters of MAE-W were optimized. It was found that the degradation of SaB was inhibited when using the optimized MAE-W and the stable content of Dla, La, and SaB in danshen was obtained. Furthermore, compared to the conventional extraction methods, the proposed MAE-W is a more rapid method with higher yield and lower solvent consumption with a reproducibility (RSD <6%). In addition, using water as extractant is safe and helpful for environment protection, which could be referred to as green extraction. The separation and quantitative determination of the three compounds was carried out by a developed reverse-phase high-performance liquid chromatographic (RP-HPLC) method with UV detection. Highly efficient separation was obtained using gradient solvent system. The optimized HPLC analysis method was validated to have specificity, linearity, precision, and accuracy. The results indicated that MAE-W followed by HPLC-UV determination is an appropriate alternative to previously proposed method for quality control of radix Salviae Miltiorrhizae.
Activity study of biogenic spherical silver nanoparticles towards microbes and oxidants
NASA Astrophysics Data System (ADS)
Hoskote Anand, Kiran Kumar; Mandal, Badal Kumar
2015-01-01
The eco-friendly approach for the green synthesis of silver nanoparticles (SNP) using Terminalia bellirica (T. bellirica) fruit extract is reported herein. Initially formation of SNP was noticed through visual color change from yellow to reddish brown and further analyzed by surface plasmonic resonance (SPR) band at 429 nm using UV-Vis spectroscopy. Identification of different polyphenols present in T. bellirica extract was done using High Pressure Liquid Chromatography (HPLC). Aqueous T. bellirica extract contains high amount of gallic acid which is major secondary metabolite responsible for the reduction and stabilization process. It was established by analyses of extracts before and after reduction using HPLC. Formation of spherical SNP was characterized by Transmission Electron Microscopy (TEM) analysis. X-ray Diffraction (XRD) study revealed crystalline nature of SNP. Presence of different functional groups on the surface of SNP was evidenced by Fourier Transform Infrared Spectroscopy (FTIR) study. A plausible mechanism of reduction and stabilization processes involved in the synthesis of stable SNP was also explained based on HPLC and FTIR data. In addition, the synthesized SNP was tested for antibacterial and antioxidant activities. SNP showed good antimicrobial activity against both gram positive (S. aureus) and gram negative (E. coli) bacteria. It also showed good antioxidant activity compared to ascorbic acid as standard antioxidant by using standard DPPH method.
Klovrzová, Sylva; Zahálka, Lukáš; Matysová, Ludmila; Horák, Petr; Sklubalová, Zdenka
2013-02-01
The aim of this study is to formulate an extemporaneous pediatric oral solution of propranolol hydrochloride (PRO) 2 mg/ml for the therapy of infantile haemangioma or hypertension in a target age group of 1 month to school children and to evaluate its stability. A citric acid solution and/or a citrate-phosphate buffer solution, respectively, were used as the vehicles to achieve pH value of about 3, optimal for the stability of PRO. In order to mask the bitter taste of PRO, simple syrup was used as the sweetener. All solutions were stored in tightly closed brown glass bottles at 5 ± 3 °C and/or 25 ± 3 °C, respectively. The validated HPLC method was used to evaluate the concentration of PRO and a preservative, sodium benzoate, at time intervals of 0-180 days. All preparations were stable at both storage temperatures with pH values in the range of 2.8-3.2. According to pharmacopoeial requirements, the efficacy of sodium benzoate 0.05 % w/v was proved (Ph.Eur., 5.1.3). The preparation formulated with the citrate-phosphate buffer, in our experience, had better palatability than that formulated with the citric acid solution. propranolol hydrochloride pediatric preparation extemporaneous preparation solution stability testing HPLC.
Derogis, Priscilla Bento Matos; Sanches, Livia Rentas; de Aranda, Valdir Fernandes; Colombini, Marjorie Paris; Mangueira, Cristóvão Luis Pitangueira; Katz, Marcelo; Faulhaber, Adriana Caschera Leme; Mendes, Claudio Ernesto Albers; Ferreira, Carlos Eduardo Dos Santos; França, Carolina Nunes; Guerra, João Carlos de Campos
2017-01-01
Rivaroxaban is an oral direct factor Xa inhibitor, therapeutically indicated in the treatment of thromboembolic diseases. As other new oral anticoagulants, routine monitoring of rivaroxaban is not necessary, but important in some clinical circumstances. In our study a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was validated to measure rivaroxaban plasmatic concentration. Our method used a simple sample preparation, protein precipitation, and a fast chromatographic run. It was developed a precise and accurate method, with a linear range from 2 to 500 ng/mL, and a lower limit of quantification of 4 pg on column. The new method was compared to a reference method (anti-factor Xa activity) and both presented a good correlation (r = 0.98, p < 0.001). In addition, we validated hemolytic, icteric or lipemic plasma samples for rivaroxaban measurement by HPLC-MS/MS without interferences. The chromogenic and HPLC-MS/MS methods were highly correlated and should be used as clinical tools for drug monitoring. The method was applied successfully in a group of 49 real-life patients, which allowed an accurate determination of rivaroxaban in peak and trough levels.
Leung, Elvis M K; Chan, Wan
2014-02-01
Creatinine is an important biomarker for renal function diagnosis and normalizing variations in urinary drug/metabolites concentration. Quantification of creatinine in biological fluids such as urine and plasma is important for clinical diagnosis as well as in biomonitoring programs and urinary metabolomics/metabonomics research. Current methods for creatinine determination either are nonselective or involve the use of expensive mass spectrometers. In this paper, a novel reversed-phase high-performance liquid chromatographic (HPLC) method for the determination of creatinine of high hydrophilicity by pre-column derivatization with ethyl chloroformate is presented. N-Ethyloxycarbonylation of creatinine significantly enhanced the hydrophobicity of creatinine, facilitating its chromatographic retention as well as quantification by HPLC. Factors governing the derivatization reaction were studied and optimized. The developed method was validated and applied for the determination of creatinine in rat urine samples. Comparative studies with isotope-dilution mass spectrometric method revealed that the two methods do not yield systematic differences in creatinine concentrations, indicating the HPLC method is suitable for the determination of creatinine in urine samples.
Dawson, Verdel K.; Meinertz, Jeffery R.; Schmidt, Larry J.; Gingerich, William H.
2003-01-01
Concentrations of chloramine-T must be monitored during experimental treatments of fish when studying the effectiveness of the drug for controlling bacterial gill disease. A surrogate analytical method for analysis of chloramine-T to replace the existing high-performance liquid chromatography (HPLC) method is described. A surrogate method was needed because the existing HPLC method is expensive, requires a specialist to use, and is not generally available at fish hatcheries. Criteria for selection of a replacement method included ease of use, analysis time, cost, safety, sensitivity, accuracy, and precision. The most promising approach was to use the determination of chlorine concentrations as an indicator of chloramine-T. Of the currently available methods for analysis of chlorine, the DPD (N,N-diethyl-p-phenylenediamine) colorimetric method best fit the established criteria. The surrogate method was evaluated under a variety of water quality conditions. Regression analysis of all DPD colorimetric analyses with the HPLC values produced a linear model (Y=0.9602 X+0.1259) with an r2 value of 0.9960. The average accuracy (percent recovery) of the DPD method relative to the HPLC method for the combined set of water quality data was 101.5%. The surrogate method was also evaluated with chloramine-T solutions that contained various concentrations of fish feed or selected densities of rainbow trout. When samples were analyzed within 2 h, the results of the surrogate method were consistent with those of the HPLC method. When samples with high concentrations of organic material were allowed to age more than 2 h before being analyzed, the DPD method seemed to be susceptible to interference, possibly from the development of other chloramine compounds. However, even after aging samples 6 h, the accuracy of the surrogate DPD method relative to the HPLC method was within the range of 80–120%. Based on the data comparing the two methods, the U.S. Food and Drug Administration has concluded that the DPD colorimetric method is appropriate to use to measure chloramine-T in water during pivotal efficacy trials designed to support the approval of chloramine-T for use in fish culture.
Direct injection analysis of fatty and resin acids in papermaking process waters by HPLC/MS.
Valto, Piia; Knuutinen, Juha; Alén, Raimo
2011-04-01
A novel HPLC-atmospheric pressure chemical ionization/MS (HPLC-APCI/MS) method was developed for the rapid analysis of selected fatty and resin acids typically present in papermaking process waters. A mixture of palmitic, stearic, oleic, linolenic, and dehydroabietic acids was separated by a commercial HPLC column (a modified stationary C(18) phase) using gradient elution with methanol/0.15% formic acid (pH 2.5) as a mobile phase. The internal standard (myristic acid) method was used to calculate the correlation coefficients and in the quantitation of the results. In the thorough quality parameters measurement, a mixture of these model acids in aqueous media as well as in six different paper machine process waters was quantitatively determined. The measured quality parameters, such as selectivity, linearity, precision, and accuracy, clearly indicated that, compared with traditional gas chromatographic techniques, the simple method developed provided a faster chromatographic analysis with almost real-time monitoring of these acids. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Główka, Franciszek K; Romański, Michał; Teżyk, Artur; Żaba, Czesław
2013-01-01
Treosulfan (TREO) is an alkylating agent registered for treatment of advanced platin-resistant ovarian carcinoma. Nowadays, TREO is increasingly applied iv in high doses as a promising myeloablative agent with low organ toxicity in children. Under physiological conditions it undergoes pH-dependent transformation into epoxy-transformers (S,S-EBDM and S,S-DEB). The mechanism of this reaction is generally known, but not its kinetic details. In order to investigate kinetics of TREO transformation, HPLC method with refractometric detection for simultaneous determination of the three analytes in one analytical run has been developed for the first time. The samples containing TREO, S,S-EBDM, S,S-DEB and acetaminophen (internal standard) were directly injected onto the reversed phase column. To assure stability of the analytes and obtain their complete resolution, mobile phase composed of acetate buffer pH 4.5 and acetonitrile was applied. The linear range of the calibration curves of TREO, S,S-EBDM and S,S-DEB spanned concentrations of 20-6000, 34-8600 and 50-6000 μM, respectively. Intra- and interday precision and accuracy of the developed method fulfilled analytical criteria. The stability of the analytes in experimental samples was also established. The validated HPLC method was successfully applied to the investigation of the kinetics of TREO activation to S,S-EBDM and S,S-DEB. At pH 7.4 and 37 °C the transformation of TREO followed first-order kinetics with a half-life 1.5h. Copyright © 2012 Elsevier B.V. All rights reserved.
Shen, Xinggui; Chakraborty, Sourav; Dugas, Tammy R; Kevil, Christopher G
2015-01-01
Accurate measurement of hydrogen sulfide bioavailability remains a technical challenge due to numerous issues involving sample processing, detection methods used, and actual biochemical products measured. Our group and others have reported that reverse phase HPLC detection of sulfide dibimane (SDB) product from the reaction of H2S/HS− with monobromobimane allows for analytical detection of hydrogen sulfide bioavailability in free and other biochemical forms. However, it remains unclear whether possible interfering contaminants may contribute to HPLC SDB peak readings that may result in inaccurate measurements of bioavailable sulfide. In this study, we critically compared hydrogen sulfide dependent SDB detection using reverse phase HPLC (RP-HPLC) versus quantitative SRM electrospray ionization mass spectrometry (ESI/MS) to obtain greater clarity into the validity of the reverse phase HPLC method for analytical measurement of hydrogen sulfide. Using an LCQ-deca ion-trap mass spectrometer, SDB was identified by ESI/MS positive ion mode, and quantified by selected reaction monitoring (SRM) using hydrocortisone as an internal standard. Collision induced dissociation (CID) parameters were optimized at MS2 level for SDB and hydrocortisone. ESI/MS detection of SDB standard was found to be a log order more sensitive than RP-HPLC with a lower limit of 0.25 nM. Direct comparison of tissue and plasma SDB levels using RP-HPLC and ESI/MS methods revealed comparable sulfide levels in plasma, aorta, heart, lung and brain. Together, these data confirm the use of SDB as valid indicator of H2S bioavailability and highlights differences between analytical detection methods. PMID:24932544
Osman, Afaf Osman; Osman, Afaf; Osman, Mohamed
2009-01-01
The objective of this study is to develop validated stability-indicating spectrofluorometric, TLC-densitometric, and HPLC methods for the determination of rabeprazole sodium and its degradation products. The first method was based on measuring the fluorescence intensity of the drug at 416 and 311 nm for the emission and at 320 and 274 nm for the excitation for acid and oxidized solutions, respectively. The second method was based on the separation of the drug from its acidic and oxidized degradation products followed by densitometric measurement of the intact drug spot at 284 nm. The separation was carried out on Fluka TLC sheets of silica gel 60 F254 using isopropyl alcohol--30% ammonia (80 + 2, v/v) mobile phase. The third method was based on HPLC separation of rabeprazole sodium from its acidic and oxidized degradation products on a reversed-phase Waters Nova-Pak C18 column using 0.05 M potassium dihydrogen phosphate-methanol-acetonitrile (5 + 3 + 2, v/v/v) pH 7 +/- 0.2 mobile phase. The proposed procedures were successfully applied for the determination of rabeprazole sodium in pure form, laboratory-prepared mixtures, tablet, and expired batch. The obtained results were statistically compared with those of a reported method and validated according to United States Pharmacopeia guidelines. Two main acidic degradation products of the drug were separated and subjected to IR spectrometry and MS to confirm their structures, and the schemes for their formation were elucidated.
Åsberg, Dennis; Leśko, Marek; Samuelsson, Jörgen; Kaczmarski, Krzysztof; Fornstedt, Torgny
2014-10-03
This is the first investigation in a series that aims to enhance the scientific knowledge needed for reliable analytical method transfer between HPLC and UHPLC using the quality by design (QbD) framework. Here, we investigated the differences and similarities from a thermodynamic point of view between RP-LC separations conducted with 3.5μm (HPLC) and 1.7μm (UHPLC) C18 particles. Three different model solutes and one pharmaceutical compound were used: the uncharged cycloheptanone, the cationic benzyltriethylammonium chloride, the anionic sodium 2-naphatlene sulfonate and the pharmaceutical compound omeprazole, which was anionic at the studied pH. Adsorption data were determined for the four solutes at varying fractions of organic modifier and in gradient elution in both the HPLC and UHPLC system, respectively. From the adsorption data, the adsorption energy distribution of each compound was calculated and the adsorption isotherm model was estimated. We found that the adsorption energy distribution was similar, with only minor differences in degree of homogeneity, for HPLC and UHPLC stationary phases. The adsorption isotherm model did not change between HPLC and UHPLC, but the parameter values changed considerably especially for the ionic compounds. The dependence of the organic modifier followed the same trend in HPLC as in UHPLC. These results indicates that the adsorption mechanism of a solute is the same on HPLC and UHPLC stationary phases which simplifies design of a single analytical method applicable to both HPLC and UHPLC conditions within the QbD framework. Copyright © 2014. Published by Elsevier B.V.
Detection of honey adulteration with starch syrup by high performance liquid chromatography.
Wang, Shaoqing; Guo, Qilei; Wang, Linlin; Lin, Li; Shi, Hailiang; Cao, Hong; Cao, Baosen
2015-04-01
According to saccharide profile comparison between starch syrups and pure honeys analysed through high performance liquid chromatography (HPLC), a characteristic peak was found at 15.25 min retention time in HPLC chromatogram of syrup, but no peak was observed at the same retention time in chromatogram of pure honeys. This characteristic peak for syrup was identified as an overlapping peak of oligosaccharides with more than 5 degree of polymerisation (DP) based on HPLC chromatogram comparison between starch syrup and a series of standard mono-, di- and oligosaccharides of 3-7 DP. Additionally syrup content correlated linearly with the height of the characteristic peak of syrup under different slope in two ranges 2.5-7.5% and 10-100%, respectively. Therefore, the characteristic peak at 15.25 min retention time can serve as a syrup indicator in HPLC analysis of the adulterated honeys. This new HPLC method for honey adulteration detection was further applied in an authenticity inspection on more than 100 commercial honeys. In addition to the improved accuracy of honey adulteration detection, the proposed HPLC method was simple, low cost and easy practice for honey product quality control by government department considering the popularity of HPLC device and technology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Xijun; Lv, Haitao; Sun, Hui; Jiang, Xingang; Wu, Zeming; Sun, Wenjun; Wang, Ping; Liu, Lian; Bi, Kaishun
2008-01-01
A completely validated method based on HPLC coupled with photodiode array detector (HPLC-UV) was described for evaluating and controlling quality of Yin Chen Hao Tang extract (YCHTE). First, HPLC-UV fingerprint chromatogram of YCHTE was established for preliminarily elucidating amount and chromatographic trajectory of chemical constituents in YCHTE. Second, for the first time, five mainly bioactive constituents in YCHTE were simultaneously determined based on fingerprint chromatogram for furthermore controlling the quality of YCHTE quantitatively. The developed method was applied to analyze 12 batches of YCHTE samples which consisted of herbal drugs from different places of production, showed acceptable linearity, intraday (RSD <5%), interday precision (RSD <4.80%), and accuracy (RSD <2.80%). As a result, fingerprint chromatogram determined 15 representative general fingerprint peaks, and the fingerprint chromatogram resemblances are all better than 0.9996. The contents of five analytes in different batches of YCHTE samples do not indicate significant difference. So, it is concluded that the developed HPLC-UV method is a more fully validated and complete method for evaluating and controlling the quality of YCHTE.
Mustafa, Ahmed M; Caprioli, Giovanni; Ricciutelli, Massimo; Maggi, Filippo; Marín, Rosa; Vittori, Sauro; Sagratini, Gianni
2015-05-01
The root of Gentiana lutea L., famous for its bitter properties, is often used in alcoholic bitter beverages, food products and traditional medicine to stimulate the appetite and improve digestion. This study presents a new, fast, and accurate HPLC method using HPLC/ESI-MS and HPLC/DAD for simultaneous analysis of iridoids (loganic acid), secoiridoids (gentiopicroside, sweroside, swertiamarin, amarogentin) and xanthones (isogentisin) in different populations of G.lutea L., cultivated in the Monti Sibillini National Park, obtained wild there, or purchased commercially. Comparison of HPLC/ESI-MS and HPLC/DAD indicated that HPLC/ESI-MS is more sensitive, reliable and selective. Analysis of twenty samples showed that gentiopicroside is the most dominant compound (1.85-3.97%), followed by loganic acid (0.11-1.30%), isogentisin (0.03-0.48%), sweroside (0.05-0.35%), swertiamarin (0.08-0.30%), and amarogentin (0.01-0.07%). The results confirmed the high quality of the G.lutea cultivated in the Monti Sibillini National Park. Copyright © 2014 Elsevier Ltd. All rights reserved.
Al-Kurdi, Zakieh I.; Chowdhry, Babur Z.; Leharne, Stephen A.; Al Omari, Mahmoud M. H.; Badwan, Adnan A.
2015-01-01
The aim of the work reported herein was to investigate the effect of various low molecular weight chitosans (LMWCs) on the stability of insulin using USP HPLC methods. Insulin was found to be stable in a polyelectrolyte complex (PEC) consisting of insulin and LMWC in the presence of a Tris-buffer at pH 6.5. In the presence of LMWC, the stability of insulin increased with decreasing molecular weight of LMWC; 13 kDa LMWC was the most efficient molecular weight for enhancing the physical and chemical stability of insulin. Solubilization of insulin-LMWC polyelectrolyte complex (I-LMWC PEC) in a reverse micelle (RM) system, administered to diabetic rats, results in an oral delivery system for insulin with acceptable bioactivity. PMID:25830681
Gremmel, Christoph; Frömel, Tobias; Knepper, Thomas P
2017-02-01
Two quantitative methods using high-performance liquid chromatography (HPLC) combined with triple quadrupole tandem mass spectrometry (MS/MS) were developed to determine perfluoroalkyl and polyfluoroalkyl substances (PFASs) in aqueous samples. The first HPLC-MS/MS method was applied to 47 PFASs of 12 different substance classes with acidic characteristics such as perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs), as well as precursor substances and biotransformation intermediates (e.g., unsaturated fluorotelomer carboxylic acids). In addition, 25 13 C-, 18 O-, and 2 H-labeled PFASs were used as internal standards in this method. The second HPLC-MS/MS method was applied to fluorotelomer alcohols (FTOHs) and perfluorooctane sulfonamidoethanols as these compounds have physicochemical properties different from those of the previous ones. Accuracy between 82% and 110% and a standard deviation in the range from 2% to 22% depending on the substances were determined during the evaluation of repeatability and precision. The method quantification limit after solid-phase extraction ranged from 0.3 to 199 ng/L depending on the analyte and matrix. The HPLC-MS/MS methods developed were suitable for the determination of PFASs in aqueous samples (e.g., wastewater treatment plant effluents or influents after solid-phase extraction). These methods will be helpful in monitoring campaigns to evaluate the relevance of precursor substances as indirect sources of perfluorinated substances in the environment. In one exemplary application in an industrial wastewater treatment plant, FTOHs were found to be the major substance class in the influent; in particular, 6:2-FTOH was the predominant compound in the industrial samples and accounted for 74% of the total PFAS concentration. The increase in the concentration of the transformation products of FTOHs in the corresponding effluent, such as fluorotelomer carboxylic acids, unsaturated fluorotelomer carboxylic acids, n:3 polyfluorinated saturated carboxylic acids (n indicates the number of nonfluorinated carbon atoms), and PFCAs, indicated biotransformation of FTOHs or their derivatives during wastewater treatment. However, only 33 mol% of the total amount of PFASs present in the influent was quantified in the corresponding effluent. Graphical abstract Method development of an HPLC-MS/MS multi-method for the determination of PFASs in aqueos samples.
Shih, Tsung-Ting; Lin, Cheng-Hsing; Hsu, I-Hsiang; Chen, Jian-Yi; Sun, Yuh-Chang
2013-11-05
We developed a selective and sensitive hyphenated system employing a microfluidic-based vapor generation (VG) system in conjunction with high-performance liquid chromatography (HPLC) separation and inductively coupled plasma-mass spectrometry (ICPMS) detection for the determination of trace inorganic selenium (Se) species. The VG system exploited poly(methyl methacrylate) (PMMA) substrates of high optical quality to fabricate a microfluidic-based photocatalyst-assisted reduction device (microfluidic-based PCARD). Moreover, to reduce the consumption of photocatalysts during analytical procedures, a microfluidic-based PCARD coated with titanium dioxide nanoparticles (nano-TiO2) was employed to avoid consecutive loading. Notably, to simplify the coating procedure and improve the stability of the coating materials, a dynamic coating method was utilized. Under the optimized conditions for the selenicals of interest, the online HPLC/TiO2-coated microfluidic-based PCARD/ICPMS system enabled us to achieve detection limits (based on 3σ) of 0.043 and 0.042 μg L(-1) for Se(IV) and Se(VI), respectively. Both Se(IV) and Se(VI) could be efficiently vaporized within 15 s, while a series of validation experiments indicated that our proposed method could be satisfactorily applied to the determination of inorganic Se species in the environmental water samples.
Nahata, M C; Morosco, R S; Sabados, B K; Weber, T R
1997-06-01
The stability and compatibility of anakinra (recombinant human interleukin-1 receptor antagonist) with ceftriaxone sodium in 0.9% sodium chloride or 5% dextrose injection was determined during a 4-h period at ambient room temperature and light. Anakinra was diluted in 0.9% sodium chloride or 5% dextrose to the concentrations of 4 and 36 mg/ml. Anakinra, at each concentration was mixed with ceftriaxone sodium (20 mg/ml) in a 50:50 proportion and stored in plastic culture vials with polypropylene caps. The samples were collected at 0, 2 and 4 h after mixing. Anakinra and ceftriaxone concentrations were measured using stability-indicating HPLC methods. In 0.9% sodium chloride injection, the mean concentrations of anakinra and ceftriaxone exceeded 98% of initial concentrations at the end of the study period. In 5% dextrose, however, anakinra concentrations were below 90% of the expected initial concentration at the time of first analysis (within 0.5 h). Thus, anakinra appears to be stable and compatible with ceftriaxone sodium when diluted in 0.9% sodium chloride injection, but not in 5% dextrose injection over 4 h at ambient room temperature and light.
Li, Xihao; Blondino, Frank E; Hindle, Michael; Soine, William H; Byron, Peter R
2005-10-13
Perphenazine (a potent antiemetic) was aerosolized using capillary aerosol generator to generate respirable condensation aerosols from drug in propylene glycol (PG) solutions, by pumping the liquids through a heated capillary tube. The study characterized the stability of perphenazine during and following aerosol generation. The stability-indicating HPLC method (C-8 column with a mobile phase of 52% 0.01 M pH 3.0 acetate buffer+48% acetonitrile) also enabled the study of perphenazine stability in solution under acidic, basic, oxidizing and photolysing conditions. An LC-MS (ESI+) method was used to characterize the degradation products. Perphenazine was found to be stable in acidic and basic conditions, while perphenazine sulfoxide was the major product formed in dilute peroxide solutions. Two photo-degradation products were formed in PG that were tentatively identified by LC-MS; one of these was synthesized and confirmed to be 2-[4-(3-phenothiazin-10-yl-propyl)-piperazino]-ethanol. Both photolysis products showed that aromatic dechlorination had occurred and one appeared to also result from interaction with the solvent. Within an aerosolization energy window of 84-95 J, fine particle aerosols were generated from perphenazine PG formulations with no significant degradation. Small amounts of degradation products were produced in all samples during aerosolization at elevated (non-optimal) energies. These were largely consistent with those seen to result from oxidation and photolysis in solution, showing that oxidation and dehalogenation appeared to be the main degradation pathways followed when the CAG system was overheated.
Zou, Liang; Sun, Lili; Zhang, Hui; Hui, Wenkai; Zou, Qiaogen; Zhu, Zheying
2017-07-01
The characterization of process-related impurities and degradation products of safinamide mesilate (SAFM) in bulk drug and a stability-indicating HPLC method for the separation and quantification of all the impurities were investigated. Four process-related impurities (Imp-B, Imp-C, Imp-D, and Imp-E) were found in the SAFM bulk drug. Five degradation products (Imp-A, Imp-C, Imp-D, Imp-E, and Imp-F) were observed in SAFM under oxidative conditions. Imp-C, Imp-D, and Imp-E were also degradation products and process-related impurities. Remarkably, one new compound, identified as (S)-2-[4-(3-fluoro-benzyloxy) benzamido] propanamide (i.e., Imp-D), is being reported here as an impurity for the first time. Furthermore, the structures of the aforementioned impurities were characterized and confirmed via IR, NMR, and MS techniques, and the most probable formation mechanisms of all impurities proposed according to the synthesis route. Optimum separation was achieved on an Inertsil ODS-3 column (250 × 4.6 mm, 5 μm), using 0.1% formic acid in water (pH adjusted to 5.0) and acetonitrile as the mobile phase in gradient mode. The proposed method was found to be stability-indicating, precise, linear, accurate, sensitive, and robust for the quantitation of SAFM and its process-related substances, including its degradation products.
NASA Astrophysics Data System (ADS)
Larsen, Erik H.
1998-02-01
Achievement of optimum selectivity, sensitivity and robustness in speciation analysis using high performance liquid chromatography (HPLC) with inductively coupled mass spectrometry (ICP-MS) detection requires that each instrumental component is selected and optimized with a view to the ideal operating characteristics of the entire hyphenated system. An isocratic HPLC system, which employs an aqueous mobile phase with organic buffer constituents, is well suited for introduction into the ICP-MS because of the stability of the detector response and high degree of analyte sensitivity attained. Anion and cation exchange HPLC systems, which meet these requirements, were used for the seperation of selenium and arsenic species in crude extracts of biological samples. Furthermore, the signal-to-noise ratios obtained for these incompletely ionized elements in the argon ICP were further enhanced by a factor of four by continously introducing carbon as methanol via the mobile phase into the ICP. Sources of error in the HPLC system (column overload), in the sample introduction system (memory by organic solvents) and in the ICP-MS (spectroscopic interferences) and their prevention are also discussed. The optimized anion and cation exchange HPLC-ICP-MS systems were used for arsenic speciation in contaminated ground water and in an in-house shrimp reference sample. For the purpose of verification, HPLC coupled with tandem mass spectrometry with electrospray ionization was additionally used for arsenic speciation in the shrimp sample. With this analytical technique the HPLC retention time in combination with mass analysis of the molecular ions and their collision-induced fragments provide almost conclusive evidence of the identity of the analyte species. The speciation methods are validated by establishing a mass balance of the analytes in each fraction of the extraction procedure, by recovery of spikes and by employing and comparing independent techniques. The urgent need for reference materials certified for elemental species is stressed.
Villanueva-Suárez, M J; Redondo-Cuenca, A; Rodríguez-Sevilla, M D; de las Heras Martínez, M
2003-09-24
Content and composition of dietary fiber as nonstarch polysaccharides (NSP) was determined in vegetables belonging to different types of edible organs, using GC and HPLC. Samples analyzed were subterranean organs (radish and leek), leaves (celery, swiss chard, and lettuce), stalks (celery, swiss chard, and asparagus), inflorescence (broccoli), and fruits (tomato, green pepper, and marrow). The results indicate that though the monomeric profile is similar in all these samples quantitative differences were found for neutral sugars and uronic acids among samples of the same type of vegetal organ. The NSP values determined using CG method were in good agreement with HPLC method (R(2) = 0.9005). However, arabinose, mannose, and galactose plus rhamnose are more influenced by the analytical method used than the rest of the monomers in nearly all the samples analyzed. Final values of NSP depend on the method used in celery stalks, broccoli, and green pepper.
Fodaroni, Giada; Burico, Michela; Gaetano, Anna; Maidecchi, Anna; Pagiotti, Rita; Mattoli, Luisa; Traldi, Pietro; Ragazzi, Eugenio
2014-04-01
The availability of reliable herbal formulations is essential in order to assure the maximal activity and to limit unwanted side-effects. The correct concentration of declared components of herbal products is a matter of health legislation and regulation, but is still a topic under debate in the field of quality control assessment. In the present work specific constituents of artichoke leaf extracts, considered as a test herbal product, were measured by standard spectrophotometric and HPLC methods (for quantitative determination of some components only), and results were correlated with the ESI-MS (showing the full metabolomic fingerprint). Phytocomplex stability over time was also investigated in batches submitted to different storage conditions. The results indicated excellent agreement between the two approaches in the measurement of total caffeoylquinic acids and chlorogenic acid contents, but the metabolomic ESI-MS method approach provides a more complete evaluation and monitoring of the composition of a herbal product, without focusing only on a single/few compound measurements. Therefore, the ESI-MS method can be proposed for the evaluation of the quality of complex matrices, such as those in a phytocomplex. Another aspect lies in the possibility to obtain a broad-spectrum stability control of herbal formulations, requiring minimal sample pre-processing procedures.
NASA Astrophysics Data System (ADS)
Yehia, Ali M.; Arafa, Reham M.; Abbas, Samah S.; Amer, Sawsan M.
2016-01-01
Spectral resolution of cefquinome sulfate (CFQ) in the presence of its degradation products was studied. Three selective, accurate and rapid spectrophotometric methods were performed for the determination of CFQ in the presence of either its hydrolytic, oxidative or photo-degradation products. The proposed ratio difference, derivative ratio and mean centering are ratio manipulating spectrophotometric methods that were satisfactorily applied for selective determination of CFQ within linear range of 5.0-40.0 μg mL- 1. Concentration Residuals Augmented Classical Least Squares was applied and evaluated for the determination of the cited drug in the presence of its all degradation products. Traditional Partial Least Squares regression was also applied and benchmarked against the proposed advanced multivariate calibration. Experimentally designed 25 synthetic mixtures of three factors at five levels were used to calibrate and validate the multivariate models. Advanced chemometrics succeeded in quantitative and qualitative analyses of CFQ along with its hydrolytic, oxidative and photo-degradation products. The proposed methods were applied successfully for different pharmaceutical formulations analyses. These developed methods were simple and cost-effective compared with the manufacturer's RP-HPLC method.
Shah, R B; Bryant, A; Collier, J; Habib, M J; Khan, M A
2008-08-06
A simple, sensitive, accurate, and robust stability indicating analytical method is presented for identification, separation, and quantitation of l-thyroxine and eight degradation impurities with an internal standard. The method was used in the presence of commonly used formulation excipients such as butylated hydroxyanisole, povidone, crospovidone, croscarmellose sodium, mannitol, sucrose, acacia, lactose monohydrate, confectionary sugar, microcrystalline cellulose, sodium laurel sulfate, magnesium stearate, talc, and silicon dioxide. The two active thyroid hormones: 3,3',5,5'-tetra-iodo-l-thyronine (l-thyroxine-T4) and 3,3',5-tri-iodo-l-thyronine (T3) and degradation products including di-iodothyronine (T2), thyronine (T0), tyrosine (Tyr), di-iodotyrosine (DIT), mono-iodotyrosine (MIT), 3,3',5,5'-tetra-iodothyroacetic acid (T4AA) and 3,3',5-tri-iodothyroacetic acid (T3AA) were assayed by the current method. The separation of l-thyroxine and eight metabolites along with theophylline (internal standard) was achieved using a C18 column (25 degrees C) with a mobile phase of trifluoroacetic acid (0.1%, v/v, pH 3)-acetonitrile in gradient elution at 0.8 ml/min at 223 nm. The sample diluent was 0.01 M methanolic NaOH. Method was validated according to FDA, USP, and ICH guidelines for inter-day accuracy, precision, and robustness after checking performance with system suitability. Tyr (4.97 min), theophylline (9.09 min), MIT (9.55 min), DIT (11.37 min), T0 (11.63 min), T2 (14.47 min), T3 (16.29 min), T4 (17.60 min), T3AA (22.71 min), and T4AA (24.83 min) separated in a single chromatographic run. Linear relationship (r2>0.99) was observed between the peak area ratio and the concentrations for all of the compounds within the range of 2-20 microg/ml. The total time for analysis, equilibration and recovery was 40 min. The method was shown to separate well from commonly employed formulation excipients. Accuracy ranged from 95 to 105% for T4 and 90 to 110% for all other compounds. Precision was <2% for all the compounds. The method was found to be robust with minor changes in injection volume, flow rate, column temperature, and gradient ratio. Validation results indicated that the method shows satisfactory linearity, precision, accuracy, and ruggedness and also stress degradation studies indicated that the method can be used as stability indicating method for l-thyroxine in the presence of excipients.
Analysis of clonazepam in a tablet dosage form using smallbore HPLC.
Spell, J C; Stewart, J T
1998-11-01
A stability indicating, reversed phase high-performance liquid chromatographic method utilizing a smallbore HPLC column has been developed for the determination of clonazepam in a commercial tablet dosage form. The use of a small bore column results in a substantial solvent savings, as well as a greater mass sensitivity, especially in the identification of degradation peaks in a chromatogram. The method involves ultraviolet detection at 254 nm and utilized a 150 x 3.0 mm i.d. column packed with 3 microm octyldecylsilane particles with a mobile phase of water methanol acetonitrile (40:30:30, v/v/v) at a flow rate of 400 microl min(-1) at ambient temperature, with and without the use of 1,2-dichlorobenzene as the internal standard. The current USP method for the analysis of clonazepam using a 300 x 3.9 mm i.d. conventional octyldecylsilane column was utilized as a comparison to the smallbore method. The retention times for clonazepam and the internal standard on the 3.0 mm i.d. column were 4.0 and 12.5 min, respectively. The intra- and interday RSDs on the 3.0 mm i.d. column were < 0.55% (n =4) using the internal standard, and < 0.19% (n = 4) without the internal standard at the lower limit of the standard curve, 50 microg ml(-1) and had a limit of detection of 24 ng ml(-1). The assay using the 3.0 mm i.d. column was shown to be suitable for measuring clonazepam in a tablet dosage form.
Feutry, Frédéric; Simon, Nicolas; Genay, Stéphanie; Lannoy, Damien; Barthélémy, Christine; Décaudin, Bertrand; Labalette, Pierre; Odou, Pascal
2016-01-01
Injecting intracameral cefuroxime has been found beneficial in reducing the risk of postoperative endophthalmitis but its use has been limited through a lack of approved marketing and of ready-to-use single-units as well as the problem of aseptic compounding. Our aim was to assess a new automated primary packaging system which should ensure a higher level of sterility, thanks to its closed, sterile, ready-to-use polymer vial called "Crystal® vial". The chemical stability of a 10 mg/mL cefuroxime solution was compared in 1 mL Crystal® vials and 1 mL Luer-lock polypropylene syringes (actual reference) to eliminate any potential and specific interactions with its cyclic olefin copolymer (COC) body and elastomer stopper. Cefuroxime solution was introduced into vials and syringes and stored at -20 °C, +5 °C and +25°C/60% Relative Humidity. Cefuroxime concentration and the relative amount of the main degradation product (descarbamoyl-cefuroxime) were both determined by an HPLC/UV method indicating stability. Solutions were considered steady if the concentration remained at over 90% of the initial value. In the adapted storage conditions, the evolution of osmolality, pH and sterility was assessed. Stability profiles were identical between vials and syringes in all storage and temperature conditions. The solution was stable (cefuroxime concentration, pH and osmolality) and still sterile for 365 days at -20°C. The concentration fell below 90% after 21 days at +5 °C and after 16 h at +25°C/60%s relative humidity. The COC and thermoplastic elastomer of the vials had no impact on the degradation process confirming its possible use for a ready-to-use cefuroxime solution single-unit dose.
Back, Hyun-moon; Lee, Jong-Hwa; Chae, Jung-woo; Song, Byungjeong; Seo, Joung-Wook; Yun, Hwi-yeol; Kwon, Kwang-il
2015-10-10
Astemizole (AST), a second-generation antihistamine, is metabolized to desmethyl astemizole (DEA), and although it has been removed from the market for inducing QT interval prolongation, it has reemerged as a potential anticancer and antimalarial agent. This report describes a novel high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for simultaneously determining the concentrations of AST and DEA in beagle dog and cynomolgus monkey plasma with simple preparation method and short retention time. Prior to HPLC analyses, the plasma samples were extracted with simple liquid-liquid extraction method. The isocratic mobile phase was 0.025% trifluoroacetic acid (TFA dissolved in acetonitrile) and 20 mM ammonium acetate (94:6) at a flow rate of 0.25 mL/min and diphenhydramine used as internal standard. In MS/MS analyses, precursor ions of the analytes were optimized as protonated molecular ions: [M+H](+). The lower limit of quantification of astemizole was 2.5 ng/mL in both species and desmethyl astemizole were 7.5 ng/mL and 10 ng/mL in dog and monkey plasma, respectively. The accuracy, precision, and stability of the method were in accordance with FDA guidelines for the validation of bioanalytical methods. Finally this validated method was successfully applied to a pharmacokinetic study in dogs and monkeys after oral administration of 10 mg/kg AST. Copyright © 2015 Elsevier B.V. All rights reserved.
Derogis, Priscilla Bento Matos; Sanches, Livia Rentas; de Aranda, Valdir Fernandes; Colombini, Marjorie Paris; Mangueira, Cristóvão Luis Pitangueira; Katz, Marcelo; Faulhaber, Adriana Caschera Leme; Mendes, Claudio Ernesto Albers; Ferreira, Carlos Eduardo dos Santos; França, Carolina Nunes; Guerra, João Carlos de Campos
2017-01-01
Rivaroxaban is an oral direct factor Xa inhibitor, therapeutically indicated in the treatment of thromboembolic diseases. As other new oral anticoagulants, routine monitoring of rivaroxaban is not necessary, but important in some clinical circumstances. In our study a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was validated to measure rivaroxaban plasmatic concentration. Our method used a simple sample preparation, protein precipitation, and a fast chromatographic run. It was developed a precise and accurate method, with a linear range from 2 to 500 ng/mL, and a lower limit of quantification of 4 pg on column. The new method was compared to a reference method (anti-factor Xa activity) and both presented a good correlation (r = 0.98, p < 0.001). In addition, we validated hemolytic, icteric or lipemic plasma samples for rivaroxaban measurement by HPLC-MS/MS without interferences. The chromogenic and HPLC-MS/MS methods were highly correlated and should be used as clinical tools for drug monitoring. The method was applied successfully in a group of 49 real-life patients, which allowed an accurate determination of rivaroxaban in peak and trough levels. PMID:28170419
Fang, Xin-sheng; Tan, Xiao-mei
2005-09-01
To purify salvianolic acids by macroreticular resin,then mensurate the contents of salvianolic acids and analyse the chromatogram with HPLC. Make salvianolic acids with macroreticular resin; mensurate the content of Salvianolic acids with UV spestrophotometry: the control compound is protocaechuic aldehyde, and the wavelength is 281 nm. Analysis the chromatogram with HPLC, and compare the chromatogram in different technics: zorbax ODS column (4.6 mm x 250 mm, 5 microm), mobilephase: 1% aceticacid-water and methanol in different proportions, the wavelength is 281 nm. The contents of salvianolic acids is 53.8%; HPLC chromatogram indicate that the method is reasonable to make salvianolic acids. Determination of contents and HPLC chromatogram can control the quality of Salvianolic acids more accurately.
Youssof, Abdullah M E; Salem-Bekhit, Mounir M; Shakeel, Faiyaz; Alanazi, Fars K; Haq, Nazrul
2016-07-01
The objective of the present investigation was to develop and validate a 'green' reversed phase high-performance liquid chromatography (RP-HPLC) method for rapid analysis of a cytotoxic drug 5-fluorouracil (5-FU) in bulk drug, marketed injection, water-in-oil (w/o) nanoemulsion, double water-in-oil-in-water (w/o/w) nanoemulsion and bacterial ghost (BG) matrix. The chromatography study was carried out at room temperature (25±1°C) using an HPLC system with the help of ultraviolet (UV)-visible detector. The chromatographic performance was achieved with a Nucleodur 150mm×4.6mm RP C8 column filled with 5µm filler as a static phase. The mobile phase consisted of ethyl acetate: methanol (7:3% v/v) which was delivered at a flow rate of 1.0mLmin(-1) and the drug was detected in UV mode at 254nm. The developed method was validated in terms of linearity (r(2)=0.998), accuracy (98.19-102.09%), precision (% RSD=0.58-1.17), robustness (% RSD=0.12-0.53) and sensitivity with satisfactory results. The efficiency of the method was demonstrated by the assay of the drug in marketed injection, w/o nanoemulsion, w/o/w nanoemulsion and BG with satisfactory results. The successful resolution of the drug along with its degradation products clearly established the stability-indicating nature of the proposed method. Overall, these results suggested that the proposed analytical method could be effectively applied to the routine analysis of 5-FU in bulk drug, various pharmaceutical dosage forms and BG. Copyright © 2016 Elsevier B.V. All rights reserved.
Subramanian, Venkatesan; Nagappan, Kannappan; Sandeep Mannemala, Sai
2015-01-01
A sensitive, accurate, precise and rapid HPLC-PDA method was developed and validated for the simultaneous determination of torasemide and spironolactone in human plasma using Design of experiments. Central composite design was used to optimize the method using content of acetonitrile, concentration of buffer and pH of mobile phase as independent variables, while the retention factor of spironolactone, resolution between torasemide and phenobarbitone; and retention time of phenobarbitone were chosen as dependent variables. The chromatographic separation was achieved on Phenomenex C(18) column and the mobile phase comprising 20 mM potassium dihydrogen ortho phosphate buffer (pH-3.2) and acetonitrile in 82.5:17.5 v/v pumped at a flow rate of 1.0 mL min(-1). The method was validated according to USFDA guidelines in terms of selectivity, linearity, accuracy, precision, recovery and stability. The limit of quantitation values were 80 and 50 ng mL(-1) for torasemide and spironolactone respectively. Furthermore, the sensitivity and simplicity of the method suggests the validity of method for routine clinical studies.
Bonfilio, Rudy; Tarley, César Ricardo Teixeira; Pereira, Gislaine Ribeiro; Salgado, Hérida Regina Nunes; de Araújo, Magali Benjamim
2009-11-15
This paper describes the optimization and validation of an analytical methodology for the determination of losartan potassium in capsules by HPLC using 2(5-1) fractional factorial and Doehlert designs. This multivariate approach allows a considerable improvement in chromatographic performance using fewer experiments, without additional cost for columns or other equipment. The HPLC method utilized potassium phosphate buffer (pH 6.2; 58 mmol L(-1))-acetonitrile (65:35, v/v) as the mobile phase, pumped at a flow rate of 1.0 mL min(-1). An octylsilane column (100 mm x 4.6mm i.d., 5 microm) maintained at 35 degrees C was used as the stationary phase. UV detection was performed at 254 nm. The method was validated according to the ICH guidelines, showing accuracy, precision (intra-day relative standard deviation (R.S.D.) and inter-day R.S.D values <2.0%), selectivity, robustness and linearity (r=0.9998) over a concentration range from 30 to 70 mg L(-1) of losartan potassium. The limits of detection and quantification were 0.114 and 0.420 mg L(-1), respectively. The validated method may be used to quantify losartan potassium in capsules and to determine the stability of this drug.
Wang, Ting; Xie, Huiru; Chen, Xu; Jiang, Xuehua; Wang, Ling
2015-10-10
Leucine (Leu), isoleucine (Ile) and valine (Val) are three branched-chain amino acids (BCAAs), which have been widely used as dietary supplements for professional athletes and patients with liver failure or catabolic diseases. To date, no pharmacokinetic studies of BCAAs in vivo useful for the assessment of clinical effect following daily intake has been reported. Thus in this study, an HPLC-MS/MS method for simultaneous determination of Leu, Ile and Val in Beagle dog plasma using homoarginine as the internal standard was developed and validated in terms of specificity, linearity, precision, accuracy, and stability. This assay method was then applied to a pharmacokinetic study of BCAAs in dogs following oral administration of 0.25 g/kg and 0.50 g/kg BCAAs. The HPLC-MS/MS method was found to be sensitive and reproducible for quantification of BCAAs in dog plasma and successfully applied to the pharmacokinetic study. All these BCAAs were well absorbed with a substantial increase in the plasma concentration after a baseline modification. No statistical significance was identified in different gender group and no drug accumulation was observed following multiple doses. Copyright © 2015 Elsevier B.V. All rights reserved.
C 90 temperature effects on relative stabilities of the IPR isomers
NASA Astrophysics Data System (ADS)
Slanina, Zdeněk; Zhao, Xiang; Lee, Shyi-Long; Ōsawa, Eiji
1997-07-01
The complete set of 46 isolated-pentagon-rule (IPR) isomers of C 90 is treated by the SAMI quantum-chemical method (Semi-Ab-Initio Model 1), and their energetics is also checked by ab initio SCF computations (HF/3-21G, HF/4-31G) and the AM1 and PM3 semiempirical methods. All the methods point out a C2 species as the system state (with an exception at the HF/3-21G level). However, the energetics itself is not able to produce a good agreement with recent observations (one C2 v, three C2, and one C1, separeted into three HPLC fractions). The symmetries of the five SAM1 lowest-energy structures are: C2, C2 v, Cs, D5 h, C1. In order to respect temperature effects on relative stabilities, entropy contributions are also computed and significant changes are found. The symmetries of the five structures most populated in a high-temperature region are according to the SAM1 computations: two times C2, Cs, C2 v, C1. One of the recently reported HPLC fractions shows 70 lines in the 13C NMR spectrum, assigned to a C2 species (45 lines) and C2 v species (25 lines, 5 weaker). There is however an alternative interpretation of the spectrum: a Cs (46 lines, 2 weaker) and a C2 v species (24 lines, 3 weaker). The last two structures are indeed present in the SAM1 high-temperature stability set so that agreement between observations and calculations can be achieved.
Dawson, V.K.; Meinertz, J.R.; Schmidt, L.J.; Gingerich, W.H.
2003-01-01
Concentrations of chloramine-T must be monitored during experimental treatments of fish when studying the effectiveness of the drug for controlling bacterial gill disease. A surrogate analytical method for analysis of chloramine-T to replace the existing high-performance liquid chromatography (HPLC) method is described. A surrogate method was needed because the existing HPLC method is expensive, requires a specialist to use, and is not generally available at fish hatcheries. Criteria for selection of a replacement method included ease of use, analysis time, cost, safety, sensitivity, accuracy, and precision. The most promising approach was to use the determination of chlorine concentrations as an indicator of chloramine-T. Of the currently available methods for analysis of chlorine, the DPD (N,N-diethyl-p-phenylenediamine) colorimetric method best fit the established criteria. The surrogate method was evaluated under a variety of water quality conditions. Regression analysis of all DPD colorimetric analyses with the HPLC values produced a linear model (Y=0.9602 X+0.1259) with an r2 value of 0.9960. The average accuracy (percent recovery) of the DPD method relative to the HPLC method for the combined set of water quality data was 101.5%. The surrogate method was also evaluated with chloramine-T solutions that contained various concentrations of fish feed or selected densities of rainbow trout. When samples were analyzed within 2 h, the results of the surrogate method were consistent with those of the HPLC method. When samples with high concentrations of organic material were allowed to age more than 2 h before being analyzed, the DPD method seemed to be susceptible to interference, possibly from the development of other chloramine compounds. However, even after aging samples 6 h, the accuracy of the surrogate DPD method relative to the HPLC method was within the range of 80-120%. Based on the data comparing the two methods, the U.S. Food and Drug Administration has concluded that the DPD colorimetric method is appropriate to use to measure chloramine-T in water during pivotal efficacy trials designed to support the approval of chloramine-T for use in fish culture. ?? 2003 Elsevier Science B.V. All rights reserved.
A rapid liquid chromatography determination of free formaldehyde in cod.
Storey, Joseph M; Andersen, Wendy C; Heise, Andrea; Turnipseed, Sherri B; Lohne, Jack; Thomas, Terri; Madson, Mark
2015-01-01
A rapid method for the determination of free formaldehyde in cod is described. It uses a simple water extraction of formaldehyde which is then derivatised with 2,4-dinitrophenylhydrazine (DNPH) to form a sensitive and specific chromophore for high-performance liquid chromatography (HPLC) detection. Although this formaldehyde derivative has been widely used in past tissue analysis, this paper describes an improved derivatisation procedure. The formation of the DNPH formaldehyde derivative has been shortened to 2 min and a stabilising buffer has been added to the derivative to increase its stability. The average recovery of free formaldehyde in spiked cod was 63% with an RSD of 15% over the range of 25-200 mg kg(-1) (n = 48). The HPLC procedure described here was also compared to a commercial qualitative procedure - a swab test for the determination of free formaldehyde in fish. Several positive samples were compared by both methods.
Shumow, Laura; Bodor, Alison
2011-07-05
This manuscript describes the results of an HPLC study for the determination of the flavan-3-ol monomers, (±)-catechin and (±)-epicatechin, in cocoa and plain dark and milk chocolate products. The study was performed under the auspices of the National Confectioners Association (NCA) and involved the analysis of a series of samples by laboratories of five member companies using a common method. The method reported in this paper uses reversed phase HPLC with fluorescence detection to analyze (±)-epicatechin and (±)-catechin extracted with an acidic solvent from defatted cocoa and chocolate. In addition to a variety of cocoa and chocolate products, the sample set included a blind duplicate used to assess method reproducibility. All data were subjected to statistical analysis with outliers eliminated from the data set. The percent coefficient of variation (%CV) of the sample set ranged from approximately 7 to 15%. Further experimental details are described in the body of the manuscript and the results indicate the method is suitable for the determination of (±)-catechin and (±)-epicatechin in cocoa and chocolate products and represents the first collaborative study of this HPLC method for these compounds in these matrices.
Matysova, Ludmila; Zahalkova, Oxana; Klovrzova, Sylva; Sklubalova, Zdenka; Solich, Petr; Zahalka, Lukas
2015-01-01
A selective and sensitive gradient HPLC-UV method for quantification of sotalol hydrochloride and potassium sorbate in five types of oral liquid preparations was developed and fully validated. The separation of an active substance sotalol hydrochloride, potassium sorbate (antimicrobial agent), and other substances (for taste and smell correction, etc.) was performed using an Ascentis Express C18 (100 × 4.6 mm, particles 2.7 μm) solid core HPLC column. Linear gradient elution mode with a flow rate of 1.3 mL min(-1) was used, and the injection volume was 5 µL. The UV/Vis absorbance detector was set to a wavelength of 237 nm, and the column oven was conditioned at 25°C. A sodium dihydrogen phosphate dihydrate solution (pH 2.5; 17.7 mM) was used as the mobile phase buffer. The total analysis time was 4.5 min (+2.5 min for reequilibration). The method was successfully employed in a stability evaluation of the developed formulations, which are now already being used in the therapy of arrhythmias in pediatric patients; the method is also suitable for general quality control, that is, not only just for extemporaneous preparations containing the mentioned substances.
2015-01-01
A selective and sensitive gradient HPLC-UV method for quantification of sotalol hydrochloride and potassium sorbate in five types of oral liquid preparations was developed and fully validated. The separation of an active substance sotalol hydrochloride, potassium sorbate (antimicrobial agent), and other substances (for taste and smell correction, etc.) was performed using an Ascentis Express C18 (100 × 4.6 mm, particles 2.7 μm) solid core HPLC column. Linear gradient elution mode with a flow rate of 1.3 mL min−1 was used, and the injection volume was 5 µL. The UV/Vis absorbance detector was set to a wavelength of 237 nm, and the column oven was conditioned at 25°C. A sodium dihydrogen phosphate dihydrate solution (pH 2.5; 17.7 mM) was used as the mobile phase buffer. The total analysis time was 4.5 min (+2.5 min for reequilibration). The method was successfully employed in a stability evaluation of the developed formulations, which are now already being used in the therapy of arrhythmias in pediatric patients; the method is also suitable for general quality control, that is, not only just for extemporaneous preparations containing the mentioned substances. PMID:25878920
Wang, Yongqing; Zhang, Peipei; Jiang, Ningling; Gong, Xiaojian; Meng, Ling; Wang, Dewang; Ou, Ning; Zhang, Haibo
2012-06-15
The aim of this study was to develop a rapid and sensitive method for the simultaneous quantification of metronidazole (MEZ), tinidazole (TNZ), ornidazole (ONZ) and morinidazole (MNZ) in human saliva. A reversed-phase high-performance liquid chromatography (HPLC) method with ultraviolet (UV) detection at 318 nm was carried out on a C18 column, using a mixture of potassium dihydrogen phosphate buffer, acetonitrile, and methanol (55:15:30, v/v/v) as a mobile phase with a flow rate of 1.0 ml/min. The saliva samples (100 μl) were firstly deproteinized by precipitation with methanol (400 μl), after which they were centrifuged and the supernatants were directly injected into the HPLC system. This method produced linear responses in the concentration ranges of 25.2-5040.0, 23.9-4790.0, 25.4-5080.0, 25.0-5000.0 ng/ml with detection limits of 6.0, 17.6, 10.0 and 11.3 ng/ml for MEZ, TNZ, ONZ and MNZ (S/N=3), respectively. The methods were validated in terms of intra- and inter-batch precision (within 7.3% and 9.1%, respectively), accuracy, linearity, recovery and stability. The study proved that HPLC is both sensitive and selective for the simultaneous quantification of MEZ, TNZ, ONZ and MNZ in human saliva using a single mobile phase. Copyright © 2012 Elsevier B.V. All rights reserved.
Beresford, Nicola J; Martino, Angela; Feavers, Ian M; Corbel, Michael J; Bai, Xilian; Borrow, Ray; Bolgiano, Barbara
2017-06-16
A physicochemical and immunological study of the stability of three different meningococcal (Men) ACWY conjugate vaccines was performed to evaluate any patterns of serogroup oligo- or polysaccharide-specific or carrier protein-specific stability that would affect immunogenicity. Critical quality and stability-indicating characteristics were measured, with the study supporting the suitability of both HPLC-SEC and HPAEC-PAD methods to detect changes following inappropriate vaccine storage. All three final products, ACWY-CRM 197 , -DT and -TT conjugate vaccines had expected quality indicator values and similar immunogenicity in a mouse model (anti-PS IgG and rSBA) when stored at +2-8°C. When stored at ≥+37°C, all conjugated carrier proteins and serogroup saccharides were affected. Direct correlations were observed between the depolymerization of the MenA saccharide as evidenced by a size-reduction in the MenA conjugates (CRM 197 , DT and TT) and their immunogenicity. MenA was the most labile serogroup, followed by MenC; then MenW and Y, which were similar. At high temperatures, the conjugated carrier proteins were prone to unfolding and/or aggregation. The anti-MenC IgG responses of the multivalent conjugate vaccines in mice were equivalent to those observed in monovalent MenC conjugate vaccines, and were independent of the carrier protein. For any newly developing MenACWY saccharide-protein conjugate vaccines, a key recommendation would be to consider the lyophilization of final product to prevent deleterious degradation that would affect immunogenicity. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
HPLC analysis and standardization of Brahmi vati - An Ayurvedic poly-herbal formulation.
Mishra, Amrita; Mishra, Arun K; Tiwari, Om Prakash; Jha, Shivesh
2013-09-01
The aim of the present study was to standardize Brahmi vati (BV) by simultaneous quantitative estimation of Bacoside A3 and Piperine adopting HPLC-UV method. BV very important Ayurvedic polyherbo formulation used to treat epilepsy and mental disorders containing thirty eight ingredients including Bacopa monnieri L. and Piper longum L. An HPLC-UV method was developed for the standardization of BV in light of simultaneous quantitative estimation of Bacoside A3 and Piperine, the major constituents of B. monnieri L. and P. longum L. respectively. The developed method was validated on parameters including linearity, precision, accuracy and robustness. The HPLC analysis showed significant increase in amount of Bacoside A3 and Piperine in the in-house sample of BV when compared with all three different marketed samples of the same. Results showed variations in the amount of Bacoside A3 and Piperine in different samples which indicate non-uniformity in their quality which will lead to difference in their therapeutic effects. The outcome of the present investigation underlines the importance of standardization of Ayurvedic formulations. The developed method may be further used to standardize other samples of BV or other formulations containing Bacoside A3 and Piperine.
Dinç Zor, Şule; Aşçı, Bürge; Aksu Dönmez, Özlem; Yıldırım Küçükkaraca, Dilek
2016-07-01
In this study, development and validation of a HPLC method was described for simultaneous determination of potassium sorbate, sodium benzoate, quinoline yellow and sunset yellow. A Box-Behnken design using three variables at three levels was employed to determine the optimum conditions of chromatographic separation: pH of mobile phase, 6.0-7.0; flow rate, 0.8-1.2 mL min(-1) and the ratio of mobile phase composed of a 0.025 M sodium acetate/acetic acid buffer, 80-90%. Resolution was chosen as a response. The optimized method was validated for linearity, the limits of detection and quantification, accuracy, precision and stability. All the validation parameters were within the acceptance range. The applicability of the developed method to the determination of these food additives in commercial lemonade and lemon sauce samples was successfully demonstrated. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Elkins, Phyllis; Coleman, Donna; Burgess, Jason; Gardner, Michael; Hines, John; Scott, Brendan; Kroenke, Michelle; Larson, Jami; Lightner, Melissa; Turner, Gregory; White, Jonathan; Liu, Paul
2014-01-01
(Z)-Endoxifen (4-hydroxy-N-desmethyltamoxifen), an active metabolite generated via actions of CYP3A4/5 and CYP2D6, is a more potent selective estrogen receptor modulator (SERM) than tamoxifen. In the MCF-7 human mammary tumor xenograft model with female athymic mice, (Z)-endoxifen, at an oral dose of 4⬜8 mg/kg, significantly inhibits tumor growth. (Z)-Endoxifen's potential as an alternative therapeutic agent independent of CYP2D6 activities, which can vary widely in ER+ breast cancer patients, is being actively evaluated. This paper describes confirmation of the configuration of the active (Z)-isomer through 2D NMR experiments, including NOE (ROESY) to establish spatial proton⬜proton correlations, and identification of the major impurity as the (E)-isomer in endoxifen drug substance by HPLC/HRMS (HPLC/MS-TOF). Stability of NMR solutions was confirmed by HPLC/UV analysis. For pre-clinical studies, a reverse-phase HPLC⬜UV method, with methanol/water mobile phases containing 10 mM ammonium formate at pH 4.3, was developed and validated for the accurate quantitation and impurity profiling of drug substance and drug product. Validation included demonstration of linearity, method precision, accuracy, and specificity in the presence of impurities, excipients (for the drug product), and degradation products. Ruggedness and reproducibility of the method were confirmed by collaborative studies between two independent laboratories. The method is being applied for quality control of the API and oral drug product. Kinetic parameters of Z- to E-isomerization were also delineated in drug substance and in aqueous formulation, showing conversion at temperatures above 25 °C. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Martono, Y.; Rohman, A.; Riyanto, S.; Martono, S.
2018-04-01
Solid Phase Extraction (SPE) method using silica as sorbent for stevioside and rebaudiosida A analysis in Stevia rebaudiana Bertoni leaf have not been performed. The aim of this study is to develop SPE method using silica as sorbent for Reverse Phase-High Performance Liquid Chromatography (RP-HPLC) analysis of stevioside and rebaudiosida A in S. rebaudiana leaf. The results of this study indicate that the optimal conditions for normal phase SPE (silica) are conditioned with 3.0 mL of hexane. The sample loading volume is 0.1 mL. Cartridge is eluted with 1.0 mL acetonitrile: water (80: 20, v/v) to separate both analytes. The cartridge is washed with chloroform and water of 0.3 mL respectively. The developed SPE sample preparation method meets the accuracy and precision test and can be used for the analysis of stevioside and rebaudioside A by RP-HPLC.
Luo, Zhiqiang; Chen, Xinjing; Wang, Guopeng; Du, Zhibo; Ma, Xiaoyun; Wang, Hao; Yu, Guohua; Liu, Aoxue; Li, Mengwei; Peng, Wei; Liu, Yang
2018-01-01
Trelagliptin succinate is a dipeptidyl peptidase IV (DPP-4) inhibitor which is used as a new long-acting drug for once-weekly treatment of type 2 diabetes mellitus (DM). In the present study, a rapid, sensitive and accurate high-performance liquid chromatography (HPLC) method was developed and validated for separation and determination of trelagliptin succinate and its eight potential process-related impurities. The chromatographic separation was achieved on a Waters Xselect CSH™ C 18 (250mm×4.6mm, 5.0μm) column. The mobile phases comprised of 0.05% trifluoroacetic acid in water as well as acetonitrile containing 0.05% trifluoroacetic acid. The compounds of interest were monitored at 224nm and 275nm. The stability-indicating capability of this method was evaluated by performing stress test studies. Trelagliptin succinate was found to degrade significantly in acid, base, oxidative and thermal stress conditions and only stable in photolytic degradation condition. The degradation products were well resolved from the main peak and its impurities. In addition, the major degradation impurities formed under acid, base, oxidative and thermal stress conditions were characterized by ultra-high-performance liquid chromatography coupled with linear ion trap-Orbitrap tandem mass spectrometry (UHPLC-LTQ-Orbitrap). The method was validated to fulfill International Conference on Harmonisation (ICH) requirements and this validation included specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision and robustness. The developed method in this study could be applied for routine quality control analysis of trelagliptin succinate tablets, since there is no official monograph. Copyright © 2017 Elsevier B.V. All rights reserved.
Ji, Wenhua; Zhang, Mingming; Duan, Wenjuan; Wang, Xiao; Zhao, Hengqiang; Guo, Lanping
2017-11-15
Phytic acid-stabilized Fe 3 O 4 -graphene oxide (GOPA@Fe 3 O 4 ) was assembled by microwave-enhanced hydrothermal synthesis and super-amphipathicity was demonstrated by measurement of dynamic oil and water contact angles. GOPA@Fe 3 O 4 was used as a sorbent for enrichment of eight polycyclic aromatic hydrocarbons (PAHs) from vegetable oils by magnetic solid-phase extraction (MSPE). The extraction-desorption factors were systematically investigated and, under optimum conditions, the super-amphiphilic sorbent achieved wide linear ranges (0.2-200ngg -1 ), satisfactory precision (3.44-6.64% for intra-day and 5.39-8.41% for inter-day) and low limits of detection (LODs, 0.06-0.15ngg -1 ) for PAHs. Excellent recoveries (85.6-102.3%) for spiked PAHs were obtained with genuine vegetable oil samples. These results indicate that MSPE using GOPA@Fe 3 O 4 as the sorbent, coupled with high performance liquid chromatography (HPLC), is an efficient and simple method for the detection of low concentrations of PAHs in vegetable oils. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ping, Bonnie Tay Yen; Aziz, Haliza Abdul; Idris, Zainab
2018-01-01
High-Performance Liquid Chromatography (HPLC) methods via evaporative light scattering (ELS) and refractive index (RI) detectors are used by the local palm oil industry to monitor the TAG profiles of palm oil and its fractions. The quantitation method used is based on area normalization of the TAG components and expressed as percentage area. Although not frequently used, peak-area ratios based on TAG profiles are a possible qualitative method for characterizing the TAG of palm oil and its fractions. This paper aims to compare these two detectors in terms of peak-area ratio, percentage peak area composition, and TAG elution profiles. The triacylglycerol (TAG) composition for palm oil and its fractions were analysed under similar HPLC conditions i.e. mobile phase and column. However, different sample concentrations were used for the detectors while remaining within the linearity limits of the detectors. These concentrations also gave a good baseline resolved separation for all the TAGs components. The results of the ELSD method's percentage area composition for the TAGs of palm oil and its fractions differed from those of RID. This indicates an unequal response of TAGs for palm oil and its fractions using the ELSD, also affecting the peak area ratios. They were found not to be equivalent to those obtained using the HPLC-RID. The ELSD method showed a better baseline separation for the TAGs components, with a more stable baseline as compared with the corresponding HPLC-RID. In conclusion, the percentage area compositions and peak-area ratios for palm oil and its fractions as derived from HPLC-ELSD and RID were not equivalent due to different responses of TAG components to the ELSD detector. The HPLC-RID has a better accuracy for percentage area composition and peak-area ratio because the TAG components response equally to the detector.
Naveen, P.; Lingaraju, H. B.; Prasad, K. Shyam
2017-01-01
Mangiferin, a polyphenolic xanthone glycoside from Mangifera indica, is used as traditional medicine for the treatment of numerous diseases. The present study was aimed to develop and validate a reversed-phase high-performance liquid chromatography (RP-HPLC) method for the quantification of mangiferin from the bark extract of M. indica. RP-HPLC analysis was performed by isocratic elution with a low-pressure gradient using 0.1% formic acid: acetonitrile (87:13) as a mobile phase with a flow rate of 1.5 ml/min. The separation was done at 26°C using a Kinetex XB-C18 column as stationary phase and the detection wavelength at 256 nm. The proposed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification, and robustness by the International Conference on Harmonisation guidelines. In linearity, the excellent correlation coefficient more than 0.999 indicated good fitting of the curve and also good linearity. The intra- and inter-day precision showed < 1% of relative standard deviation of peak area indicated high reliability and reproducibility of the method. The recovery values at three different levels (50%, 100%, and 150%) of spiked samples were found to be 100.47, 100.89, and 100.99, respectively, and low standard deviation value < 1% shows high accuracy of the method. In robustness, the results remain unaffected by small variation in the analytical parameters, which shows the robustness of the method. Liquid chromatography–mass spectrometry analysis confirmed the presence of mangiferin with M/Z value of 421. The assay developed by HPLC method is a simple, rapid, and reliable for the determination of mangiferin from M. indica. SUMMARY The present study was intended to develop and validate an RP-HPLC method for the quantification of mangiferin from the bark extract of M. indica. The developed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification and robustness by International Conference on Harmonization guidelines. This study proved that the developed assay by HPLC method is a simple, rapid and reliable for the quantification of the mangiferin from M. indica. Abbreviations Used: M. indica: Mangifera indica, RP-HPLC: Reversed-phase high-performance liquid chromatography, M/Z: Mass to charge ratio, ICH: International conference on harmonization, % RSD: Percentage of relative standard deviation, ppm: Parts per million, LOD: Limit of detection, LOQ: Limit of quantification. PMID:28539748
Naveen, P; Lingaraju, H B; Prasad, K Shyam
2017-01-01
Mangiferin, a polyphenolic xanthone glycoside from Mangifera indica , is used as traditional medicine for the treatment of numerous diseases. The present study was aimed to develop and validate a reversed-phase high-performance liquid chromatography (RP-HPLC) method for the quantification of mangiferin from the bark extract of M. indica . RP-HPLC analysis was performed by isocratic elution with a low-pressure gradient using 0.1% formic acid: acetonitrile (87:13) as a mobile phase with a flow rate of 1.5 ml/min. The separation was done at 26°C using a Kinetex XB-C18 column as stationary phase and the detection wavelength at 256 nm. The proposed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification, and robustness by the International Conference on Harmonisation guidelines. In linearity, the excellent correlation coefficient more than 0.999 indicated good fitting of the curve and also good linearity. The intra- and inter-day precision showed < 1% of relative standard deviation of peak area indicated high reliability and reproducibility of the method. The recovery values at three different levels (50%, 100%, and 150%) of spiked samples were found to be 100.47, 100.89, and 100.99, respectively, and low standard deviation value < 1% shows high accuracy of the method. In robustness, the results remain unaffected by small variation in the analytical parameters, which shows the robustness of the method. Liquid chromatography-mass spectrometry analysis confirmed the presence of mangiferin with M/Z value of 421. The assay developed by HPLC method is a simple, rapid, and reliable for the determination of mangiferin from M. indica . The present study was intended to develop and validate an RP-HPLC method for the quantification of mangiferin from the bark extract of M. indica . The developed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification and robustness by International Conference on Harmonization guidelines. This study proved that the developed assay by HPLC method is a simple, rapid and reliable for the quantification of the mangiferin from M. indica . Abbreviations Used: M. indica : Mangifera indica , RP-HPLC: Reversed-phase high-performance liquid chromatography, M/Z: Mass to charge ratio, ICH: International conference on harmonization, % RSD: Percentage of relative standard deviation, ppm: Parts per million, LOD: Limit of detection, LOQ: Limit of quantification.
de Souza Fernandes, Lígia; Amorim, Yuri Martins; Silva, Elton Libério da; Silva, Samuel Calixto; Santos, Alécia Junia Aparecida; Peixoto, Franciele Natália; Pires, Luara Moniele Neves; Sakamoto, Raquel Yumi; Pinto, Flávia do Carmo Horta; Scarpa, Maria Virgínia Costa; Gonzaga de Freitas Araújo, Marcelo
2018-03-08
Owing to the growing resistance among isolates of Candida species to usual antifungal agents and the well-known therapeutic potential of curcumin, the purpose of this study was to develop and validate a vaginal formulation containing this substance and to evaluating its effectiveness in the treatment of experimental vulvovaginal candidiasis METHODS: Curcumin was incorporated in a vaginal cream in three concentrations (0.01, 0.1 and 1.0%). The different concentrations of the cream and its controls were intravaginally administered in an immunosuppressed rat model to evaluate the efficacy in the treatment of experimental vulvovaginal candidiasis. Samples of the cream were also subjected to centrifugation and physical stability tests and an analytical method for quantification of curcumin was validated based on HPLC RESULTS: The formulation was stable and the HPLC method could be considered suitable for the quantitative determination of curcumin in the cream. After six days of pre-clinical study, the number of infected animals was 1/6 in all groups treated with curcumin vaginal cream and the fungal burden showed a progressive reduction. Reduction of the inflammatory infiltrate was observed in the group treated with 1.0% cream CONCLUSION: Vaginal cream containing curcumin could be considered a promising effective antifungal medicine in the treatment of vulvovaginal candidiasis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Namjoyan, Foroogh; Hejazi, Hoda; Ramezani, Zahra
2012-01-01
Background Black pepper (Piper nigrum) is one of the well-known spices extensively used worldwide especially in India, and Southeast Asia. The presence of alkaloids in the pepper, namely, piperine and its three stereoisomers, isopiperine, chavicine and isochavicine are well noticed. Objectives The current study evaluated the effect of lyophilization and oven drying on the stability and decomposition of constituents of black pepper ethanolic extract. Materials and Methods In the current study ethanolic extract of black pepper obtained by maceration method was dried using two methods. The effect of freeze and oven drying on the chemical composition of the extract especially piperine and its three isomers were evaluated by HPLC analysis of the ethanolic extract before and after drying processes using diode array detector. The UV Vis spectra of the peaks at piperine retention time before and after each drying methods indicated maximum absorbance at 341.2 nm corresponding to standard piperine. Results The results indicated a decrease in intensity of the chromatogram peaks at approximately all retention times after freeze drying, indicating a few percent loss of piperine and its isomers upon lyophilization. Two impurity peaks were completely removed from the extract. Conclusions In oven dried samples two of the piperine stereoisomers were completely removed from the extract and the intensity of piperine peak was increased. PMID:24624176
Zahedi Rad, Maliheh; Neyestani, Tirang Reza; Nikooyeh, Bahareh; Shariatzadeh, Nastaran; Kalayi, Ali; Khalaji, Niloufar; Gharavi, Azam
2015-01-01
The most reliable indicator of Vitamin D status is circulating concentration of 25-hydroxycalciferol (25(OH) D) routinely determined by enzyme-immunoassays (EIA) methods. This study was performed to compare commonly used competitive protein-binding assays (CPBA)-based EIA with the gold standard, high-pressure liquid chromatography (HPLC). Concentrations of 25(OH) D in sera from 257 randomly selected school children aged 9-11 years were determined by two methods of CPBA and HPLC. Mean 25(OH) D concentration was 22 ± 18.8 and 21.9 ± 15.6 nmol/L by CPBA and HPLC, respectively. However, mean 25(OH) D concentrations of the two methods became different after excluding undetectable samples (25.1 ± 18.9 vs. 29 ± 14.5 nmol/L, respectively; P = 0.04). Based on predefined Vitamin D deficiency as 25(OH) D < 12.5 nmol/L, CPBA sensitivity and specificity were 44.2% and 60.6%, respectively, compared to HPLC. In receiver operating characteristic curve analysis, the best cut-offs for CPBA was 5.8 nmol/L, which gave 82% sensitivity, but specificity was 17%. Though CPBA may be used as a screening tool, more reliable methods are needed for diagnostic purposes.
Wicha, Sebastian G; Kloft, Charlotte
2016-08-15
For pharmacokinetic/pharmacodynamic (PK/PD) assessment of antibiotics combinations in in vitro infection models, accurate and precise quantification of drug concentrations in bacterial growth medium is crucial for derivation of valid PK/PD relationships. We aimed to (i) develop a high-performance liquid chromatography (HPLC) assay to simultaneously quantify linezolid (LZD), vancomycin (VAN) and meropenem (MER), as typical components of broad-spectrum antibiotic combination therapy, in bacterial growth medium cation-adjusted Mueller-Hinton broth (CaMHB) and (ii) determine the stability profiles of LZD, VAN and MER under conditions in in vitro infection models. To separate sample matrix components, the final method comprised the pretreatment of 100μL sample with 400μL methanol, the evaporation of supernatant and its reconstitution in water. A low sample volume of 2μL processed sample was injected onto an Accucore C-18 column (2.6μm, 100×2.1mm) coupled to a Dionex Ultimate 3000 HPLC+ system. UV detection at 251, 240 and 302nm allowed quantification limits of 0.5, 2 and 0.5μg/mL for LZD, VAN and MER, respectively. The assay was successfully validated according to the relevant EMA guideline. The rapid method (14min) was successfully applied to quantify significant degradation of LZD, VAN and MER in in vitro infection models: LZD was stable, VAN degraded to 90.6% and MER to 62.9% within 24h compared to t=0 in CaMHB at 37°C, which should be considered when deriving PK/PD relationships in in vitro infection models. Inclusion of further antibiotics into the flexible gradient-based HPLC assay seems promising. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Bo; Wang, Zhi-Wei; Lin, Qin-Bao; Hu, Chang-Ying; Su, Qi-Zhi; Wu, Yu-Mei
2015-07-01
An analytical method for the quantitative determination of 4 antioxidants, 9 ultraviolet (UV) stabilizers, 12 phthalate plasticizers and 2 photoinitiators in plastic food package using accelerated solvent extraction (ASE) coupled with high-performance liquid chromatography-photodiode array detector (HPLC-PDA) has been developed. Parameters affecting the efficiency in the process such as extraction and chromatographic conditions were studied in order to determine operating conditions. The analytical method of ASE-HPLC showed good linearity with good correlation coefficients (R ≥ 0.9833). The limits of detection and quantification were between 0.03 and 0.30 µg mL(-1) and between 0.10 and 1.00 µg mL(-1) for 27 analytes. Average spiked recoveries for most analytes in samples were >70.4% at 10, 20 and 40 µg g(-1) spiked levels, except UV-9 and Irganox 1010 (58.6 and 64.0% spiked at 10 µg g(-1), respectively), the relative standard deviations were in the range from 0.4 to 15.4%. The methodology has been proposed for the analysis of 27 polymer additives in plastic food package. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dash, Rajendra Narayan; Mohammed, Habibuddin; Humaira, Touseef
2016-01-01
We studied the application of Taguchi orthogonal array (TOA) design during the development of an isocratic stability indicating HPLC method for glimepiride as per TOA design; twenty-seven experiments were conducted by varying six chromatographic factors. Percentage of organic phase was the most significant (p < 0.001) on retention time, while buffer pH had the most significant (p < 0.001) effect on tailing factor and theoretical plates. TOA design has shortcoming, which identifies the only linear effect, while ignoring the quadratic and interaction effects. Hence, a response surface model for each response was created including the linear, quadratic and interaction terms. The developed models for each response found to be well predictive bearing an acceptable adjusted correlation coefficient (0.9152 for retention time, 0.8985 for tailing factor and 0.8679 for theoretical plates). The models were found to be significant (p < 0.001) having a high F value for each response (15.76 for retention time, 13.12 for tailing factor and 9.99 for theoretical plates). The optimal chromatographic condition uses acetonitrile - potassium dihydrogen phosphate (pH 4.0; 30 mM) (50:50, v/v) as the mobile phase. The temperature, flow rate and injection volume were selected as 35 ± 2 °C, 1.0 mL min(-1) and 20 μL respectively. The method was validated as per ICH guidelines and was found to be specific for analyzing glimepiride from a novel supersaturatable self-nanoemulsifying formulation.
Liu, Feilong; Xu, Hui
2017-01-01
In this work, electrospun polystyrene/metal-organic frameworks-199 (PS/MOF-199) nanofiber film was synthesized and investigated as a novel adsorbent for thin film microextraction (TFME) of aldehydes in human urine. Some properties of the prepared PS/MOF-199 nanofiber film, including morphology, structure, wettability, solvent stability and extraction performance were studied systematically. Porous fibrous structure, large surface area, good stability, strong hydrophobicity and excellent extraction efficiency were obtained for the film. Based on the PS/MOF-199 film, a thin film microextraction-high performance liquid chromatography (TFME-HPLC) method was developed, and the experimental parameters that affected the extraction and desorption were optimized. Under the optimal conditions, the limits of detection (LODs) were in the range of 4.2-17.3nmolL -1 for the analysis of six aldehydes. Good linearity was achieved with correlation coefficients (R 2 ) being lager than 0.9943. Satisfactory recovery (82-112%) and acceptable reproducibility (relative standard deviation: 2.1-13.3%) were also obtained for the method. The developed TFME-HPLC method has been successfully applied to the analysis of aldehyde metabolites in the urine samples of lung cancer patients and healthy people. The method possesses the advantages of simplicity, rapidity, cost-effective, sensitivity and non-invasion, it provides an alternative tool for the determination of aldehydes in complex sample matrices. Copyright © 2016 Elsevier B.V. All rights reserved.
Moore, T D; Horton, R; Utrup, L J; Miller, L A; Poupard, J A
1996-01-01
The stabilities of amoxicillin (16 micrograms/ml) and clavulanate (8 micrograms/ml), alone and in combination in BACTEC medium (Middlebrook 7H12B medium), were determined by high-performance liquid chromatography (HPLC) and bioassay. By HPLC, the half-life of amoxicillin (trihydrate and sodium) in combination with clavulanate in nonradiolabelled 7H12B medium was 6.7 days, whereas the half-life of clavulanate in combination with amoxicillin was 2.0 days. By bioassay, the half-lives of amoxicillin trihydrate and clavulanate in radiolabelled 7H12B medium were comparable (7 and 2 days, respectively) to those determined by HPLC. When clavulanate was tested alone, the half-life was determined to be 1.88 days by HPLC and 1.87 days by bioassay. The relatively short half-life of clavulanate can be adjusted by a procedure of "topping up," or adding one-half the concentration of clavulanate every second day, in order to allow accurate amoxicillin-clavulanate MIC testing with the BACTEC mycobacterial susceptibility system. PMID:8727931
Jung, Stephanie; Effelsberg, Uwe; Tallarek, Ulrich
2011-12-01
Dynamic changes in mobile phase composition during high-performance liquid chromatography (HPLC) gradient elution coupled to mass spectrometry (MS) sensitively affect electrospray modes. We investigate the impact of the eluent composition on spray stability and MS response by infusion and injection experiments with a small tetrapeptide in water-acetonitrile mixtures. The employed HPLC/electrospray (ESI)-MS configuration uses a microchip equipped with an enrichment column, a separation column, and a makeup flow (MUF) channel. One nano pump is connected to the separation column, while a second one delivers solvent of exactly inverted composition to the MUF channel. Both solvent streams are united behind the separation column, before the ESI tip, such that the resulting electrosprayed solution always has identical composition during a gradient elution. Analyte peak parameters without and with MUF compensation are determined and discussed with respect to the electrospray mode and eluent composition. The postcolumn MUF significantly improves spray and signal stability over the entire solvent gradient, without compromising the performance of the HPLC separation column. It can also be conveniently implemented on microchip platforms.
Liu, Xiaofei; Ying, Guangyao; Sun, Chaonan; Yang, Meihua; Zhang, Lei; Zhang, Shanshan; Xing, Xiaoyan; Li, Qian; Kong, Weijun
2018-01-01
The high acidity and complex components of Hibiscus sabdariffa have provided major challenges for sensitive determination of trace aflatoxins. In this study, sample pretreatment of H. sabdariffa was systematically developed for sensitive high performance liquid chromatography-fluorescence detection (HPLC-FLD) after ultrasonication-assisted extraction, immunoaffinity column (IAC) clean-up and on-line post-column photochemical derivatization (PCD). Aflatoxins B1, B2, G1, G2 were extracted from samples by using methanol/water (70:30, v/v) with the addition of NaCl. The solutions were diluted 1:8 with 0.1 M phosphate buffer (pH 8.0) to negate the issues of high acidity and matrix interferences. The established method was validated with satisfactory linearity (R > 0.999), sensitivity (limits of detection (LODs) and limits of quantitation (LOQs) of 0.15–0.65 and 0.53–2.18 μg/kg, respectively), precision (RSD <11%), stability (RSD of 0.2–3.6%), and accuracy (recovery rates of 86.0–102.3%), which all met the stipulated analytical requirements. Analysis of 28 H. sabdariffa samples indicated that one sample incubated with Aspergillus flavus was positive with aflatoxin B1 (AFB1) at 3.11 μg/kg. The strategy developed in this study also has the potential to reliably extract and sensitively detect more mycotoxins in other complex acidic matrices, such as traditional Chinese medicines, foodstuffs, etc. PMID:29681848
Liu, Xiaofei; Ying, Guangyao; Sun, Chaonan; Yang, Meihua; Zhang, Lei; Zhang, Shanshan; Xing, Xiaoyan; Li, Qian; Kong, Weijun
2018-01-01
The high acidity and complex components of Hibiscus sabdariffa have provided major challenges for sensitive determination of trace aflatoxins. In this study, sample pretreatment of H. sabdariffa was systematically developed for sensitive high performance liquid chromatography-fluorescence detection (HPLC-FLD) after ultrasonication-assisted extraction, immunoaffinity column (IAC) clean-up and on-line post-column photochemical derivatization (PCD). Aflatoxins B 1 , B 2 , G 1 , G 2 were extracted from samples by using methanol/water (70:30, v/v ) with the addition of NaCl. The solutions were diluted 1:8 with 0.1 M phosphate buffer (pH 8.0) to negate the issues of high acidity and matrix interferences. The established method was validated with satisfactory linearity ( R > 0.999), sensitivity (limits of detection (LODs) and limits of quantitation (LOQs) of 0.15-0.65 and 0.53-2.18 μg/kg, respectively), precision (RSD <11%), stability (RSD of 0.2-3.6%), and accuracy (recovery rates of 86.0-102.3%), which all met the stipulated analytical requirements. Analysis of 28 H. sabdariffa samples indicated that one sample incubated with Aspergillus flavus was positive with aflatoxin B 1 (AFB 1 ) at 3.11 μg/kg. The strategy developed in this study also has the potential to reliably extract and sensitively detect more mycotoxins in other complex acidic matrices, such as traditional Chinese medicines, foodstuffs, etc.
Zahedi Rad, Maliheh; Neyestani, Tirang Reza; Nikooyeh, Bahareh; Shariatzadeh, Nastaran; Kalayi, Ali; Khalaji, Niloufar; Gharavi, Azam
2015-01-01
Background: The most reliable indicator of Vitamin D status is circulating concentration of 25-hydroxycalciferol (25(OH) D) routinely determined by enzyme-immunoassays (EIA) methods. This study was performed to compare commonly used competitive protein-binding assays (CPBA)-based EIA with the gold standard, high-pressure liquid chromatography (HPLC). Methods: Concentrations of 25(OH) D in sera from 257 randomly selected school children aged 9–11 years were determined by two methods of CPBA and HPLC. Results: Mean 25(OH) D concentration was 22 ± 18.8 and 21.9 ± 15.6 nmol/L by CPBA and HPLC, respectively. However, mean 25(OH) D concentrations of the two methods became different after excluding undetectable samples (25.1 ± 18.9 vs. 29 ± 14.5 nmol/L, respectively; P = 0.04). Based on predefined Vitamin D deficiency as 25(OH) D < 12.5 nmol/L, CPBA sensitivity and specificity were 44.2% and 60.6%, respectively, compared to HPLC. In receiver operating characteristic curve analysis, the best cut-offs for CPBA was 5.8 nmol/L, which gave 82% sensitivity, but specificity was 17%. Conclusions: Though CPBA may be used as a screening tool, more reliable methods are needed for diagnostic purposes. PMID:26330983
[Determination of rhynchophylline and isorhynchophylline in Uncaria rhynchophylla by HPLC].
Yang, Xiu-Juan; Hong, Yan-Long; Wu, Fei; Ruan, Ke-Feng; Feng, Yi
2013-03-01
To explore an HPLC method for determination of rhnchophylline and isorhnchophylline in Uncaria rhnchophylla. An HPLC method has been developed for determination of rhnchophylline and isorhnchophylline. The transformation of rhnchophylline and isorhnchophylline after heating was also studied by HPLC-ESI-MS. Good linearities of rhynchophylline and isorhynchophylline were 0.064-5.100, 0.064-5.110 mg, respectively. The average recoveries were from 87.51% to 88.83% for rhynchophylline and from 107.9% to 113.9% for isorhynchophylline. The recoveries of rhynchophylline and isorhnchophylline reference solutions after extraction were 12.60% and 40.00% in the reflux extraction procedure, respectively. While in the ultrasonic extraction procedure, the average recoveries of rhynchophylline and isorhynchophylline was from 99.48% to 103.2% and from 97.00% to 99.59%, resepectively. The recoveries of rhynchophylline and isorhnchophylline reference solutions after extraction were 47.08% and 51.03%, respectively. The unqualified recovery could be elucidated by HPLC-ESI-MS analysis, indicating that trhynchophylline could be transformed mostly into isorhynchophylline and a little amount of unkown composition, while isorhynchophylline could be transformed into rhynchophylline isocorynoxeine, corynoxeine and 22-O-beta-D-glucopyranosyl isocorynoxeinic acid during the extraction procedure. Ultrasonic extraction procedure was more sutble for HPLC determination of the content of rhynchophylline and isorhynchophylline in U. rhnchophylla, however, the recovery problems should be paid attention to when it comes to the determination.
Yoshie, Ayano; Kanda, Ayato; Nakamura, Takahiro; Igusa, Hisao; Hara, Setsuko
2009-01-01
Although there are various determination methods for gamma -oryzanol contained in rice bran oil by absorptiometry, normal-phase HPLC, and reversed-phase HPLC, their accuracies and the correlations among them have not been revealed yet. Chloroform-containing mixed solvents are widely used as mobile phases in some HPLC methods, but researchers have been apprehensive about its use in terms of safety for the human body and the environment.In the present study, a simple and accurate determination method was developed by improving the reversed-phase HPLC method. This novel HPLC method uses methanol/acetonitrile/acetic acid (52/45/3 v/v/v), a non-chlorinated solvent, as the mobile phase, and shows an excellent linearity (y = 0.9527x + 0.1241, R(2) = 0.9974) with absorptiometry. The mean relative errors among the existing 3 methods and the novel method, determined by adding fixed amounts of gamma-oryzanol into refined rice salad oil, were -4.7% for the absorptiometry, -6.8% for the existing normal-phase HPLC, +4.6% for the existing reversed-phase HPLC, and -1.6% for the novel reversed-phase HPLC method. gamma -Oryzanol content in 12 kinds of crude rice bran oils obtained from different sources were determined by the four methods. The mean content of those oils were 1.75+/-0.18% for the absorptiometry, 1.29+/-0.11% for the existing normal-phase HPLC, 1.51+/-0.10% for the existing reversed-phase HPLC, and 1.54+/-0.19% for the novel reversed-phase HPLC method.
77 FR 67282 - Dinotefuran; Pesticide Tolerances for Emergency Exemptions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-09
... performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) method is available. For the determination of residues of dinotefuran only, an HPLC/ultraviolet (UV) detection method is available. For the determination of only the metabolites (DN and UF), HPLC/MS and HPLC/MS/MS methods are available. These methods...
Haser, Abbe; Cao, Tu; Lubach, Joseph W; Zhang, Feng
2018-03-05
As the pipeline for poorly soluble compounds continues to grow, drug degradation during melt extrusion must be addressed. We present a novel method for stabilizing a thermally labile drug substance while preserving its physical stability and even improving its dissolution performance. In a previous study, we found that incorporating meglumine during extrusion of meloxicam results in chemical stabilization that cannot be achieved using process optimization alone. The purpose of this study is to understand the mechanism behind this stabilization and its impact on the performance of a meloxicam-Kollidon VA64 amorphous solid dispersion. The meloxicam concentration was maintained at 10% (w/w) for blends with and without meglumine. The optimal meglumine blend contained an equimolar amount of meloxicam to meglumine with the remainder consisting of Kollidon VA64. Both formulations were processed with optimized extrusion conditions and analyzed by HPLC for purity. Meglumine at a 1:1 molar ratio with meloxicam results in 100% purity of meloxicam after melt extrusion. Solid-state NMR revealed a proton transfer between the meloxicam and meglumine indicating an in situ salt formation. During non-sink dissolution, the meglumine ASD enables meloxicam to maintain supersaturatation (≅50 times more than meloxicam free acid) for >7.25 h. The ASD without meglumine began precipitating 2.25 h following the pH shift. The ASDs were placed at 40 °C/75% RH for 6 months, and their stability was assessed. No significant chemical degradation, recrystallization, or significant moisture uptake was observed after six months' storage at 40 °C/75% RH.
Liquid chromatography method to determine polyamines in thermosetting polymers.
Dopico-García, M S; López-Vilariño, J M; Fernández-Martínez, G; González-Rodríguez, M V
2010-05-14
A simple, robust and sensitive analytical method to determine three polyamines commonly used as hardeners in epoxy resin systems and in the manufacture of polyurethane is reported. The studied polyamines are: one tetramine, TETA (triethylenetetramine), and two diamines, IPDA (Isophorone diamine) and TCD-diamine (4,7-methano-1H-indene-5,?-dimethanamine, octahydro-). The latter has an incompletely defined structure, and, as far as we know, has not been previously determined by other methods. All three polyamines contain primary amines; TETA also contains secondary amines. The analytical method involves derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, used for the first time for these compounds, followed by high performance liquid chromatography (HPLC) analysis with a fluorescence (FL) detector (lambda excitation 248nm, lambda emision 395nm). The HPLC-DAD-LTQ Orbitrap MS was used in order to provide structural information about the obtained derivatized compounds. The hybrid linear ion trap LTQ Orbitrap mass spectrometer has been introduced in recent years and provides a high mass accuracy. The structures of the derivatized analytes were identified from the protonated molecular ions [M+H](+) and corresponded to the fully labelled analytes. The following analytical parameters were determined for the method using the HPLC-FL: linearity, precision (2.5-10%), instrumental precision intraday (0.8-1.5%) and interday (2.9-6.3%), and detection limits (0.02-0.14mgL(-1)). The stability of stock solutions and derivatized compounds was also investigated. The method was applied to determine the amine free content in epoxy resin dust collected in workplaces. Copyright 2010 Elsevier B.V. All rights reserved.
Pornprasert, Sakorn; Tookjai, Monthathip; Punyamung, Manoo; Pongpunyayuen, Panida; Jaiping, Kanokwan
2016-01-01
To date, the hemoglobin (Hb) typing control materials for laboratory investigation of thalassemia with low (1.8%-3.2%) and high (4%-6%) levels of HbA2 are available but there are no Hb typing quality control materials for analysis of thalassemia and hemoglobinopathies which are highly prevalent in South-East Asian countries. The main aim of the present study was to develop the lyophilized Hb typing control materials for laboratory investigation of thalassemia and hemoglobinopathies that are commonly found in South-East Asia. Erythrocytes of blood samples containing Hb Bart's, HbH, HbE, HbF, Hb Constant Spring (CS), Hb Hope, and Hb Q-Thailand were washed and dialysed with 0.85% saline solution. The erythrocytes were then lysed in 5% sucrose solution. The lyophilized Hb typing control materials were prepared by using a freeze drying (lyophilization) method. The high performance liquid chromatography (HPLC) analysis of lyophilized Hb was performed after the storage at -20 °C for 1 year and also after reconstitution and storage at 4 or -20 °C for 30 days. In addition, the Hb analysis was compared between the three different methods of HPLC, low pressure liquid chromatography (LPLC) and capillary electrophoresis (CE). Following a year of storage at -20 °C, the HPLC chromatograms of lyophilized Hb typing control materials showed similar patterns to the equivalent fresh whole blood. The stability of reconstituted Hb typing control materials was also observed through 30 days after reconstitution and storage at -20 °C. Moreover, the Hb typing control materials could be analyzed by three methods, HPLC, LPLC and CE. Even a degraded peak of HbCS was found on CE electropherogram. The lyophilized Hb typing control materials could be developed and used as control materials for investigation of thalassemia and hemoglobinopathies.
Yehia, Ali M; Arafa, Reham M; Abbas, Samah S; Amer, Sawsan M
2016-01-15
Spectral resolution of cefquinome sulfate (CFQ) in the presence of its degradation products was studied. Three selective, accurate and rapid spectrophotometric methods were performed for the determination of CFQ in the presence of either its hydrolytic, oxidative or photo-degradation products. The proposed ratio difference, derivative ratio and mean centering are ratio manipulating spectrophotometric methods that were satisfactorily applied for selective determination of CFQ within linear range of 5.0-40.0 μg mL(-1). Concentration Residuals Augmented Classical Least Squares was applied and evaluated for the determination of the cited drug in the presence of its all degradation products. Traditional Partial Least Squares regression was also applied and benchmarked against the proposed advanced multivariate calibration. Experimentally designed 25 synthetic mixtures of three factors at five levels were used to calibrate and validate the multivariate models. Advanced chemometrics succeeded in quantitative and qualitative analyses of CFQ along with its hydrolytic, oxidative and photo-degradation products. The proposed methods were applied successfully for different pharmaceutical formulations analyses. These developed methods were simple and cost-effective compared with the manufacturer's RP-HPLC method. Copyright © 2015 Elsevier B.V. All rights reserved.
Saito, Samuel; Silva, Givaldo; Santos, Regineide Xavier; Gosmann, Grace; Pungartnik, Cristina; Brendel, Martin
2012-01-01
Reverse phase-solid phase extraction from Cassia alata leaves (CaRP) was used to obtain a refined extract. Higher than wild-type sensitivity to CaRP was exhibited by 16 haploid Saccharomyces cerevisiae mutants with defects in DNA repair and membrane transport. CaRP had a strong DPPH free radical scavenging activity with an IC50 value of 2.27 μg mL−1 and showed no pro-oxidant activity in yeast. CaRP compounds were separated by HPLC and the three major components were shown to bind to DNA in vitro. The major HPLC peak was identified as kampferol-3-O-β-d-glucoside (astragalin), which showed high affinity to DNA as seen by HPLC-UV measurement after using centrifugal ultrafiltration of astragalin-DNA mixtures. Astragalin-DNA interaction was further studied by spectroscopic methods and its interaction with DNA was evaluated using solid-state FTIR. These and computational (in silico) docking studies revealed that astragalin-DNA binding occurs through interaction with G-C base pairs, possibly by intercalation stabilized by H-bond formation. PMID:22489129
Saito, Samuel; Silva, Givaldo; Santos, Regineide Xavier; Gosmann, Grace; Pungartnik, Cristina; Brendel, Martin
2012-01-01
Reverse phase-solid phase extraction from Cassia alata leaves (CaRP) was used to obtain a refined extract. Higher than wild-type sensitivity to CaRP was exhibited by 16 haploid Saccharomyces cerevisiae mutants with defects in DNA repair and membrane transport. CaRP had a strong DPPH free radical scavenging activity with an IC(50) value of 2.27 μg mL(-1) and showed no pro-oxidant activity in yeast. CaRP compounds were separated by HPLC and the three major components were shown to bind to DNA in vitro. The major HPLC peak was identified as kampferol-3-O-β-d-glucoside (astragalin), which showed high affinity to DNA as seen by HPLC-UV measurement after using centrifugal ultrafiltration of astragalin-DNA mixtures. Astragalin-DNA interaction was further studied by spectroscopic methods and its interaction with DNA was evaluated using solid-state FTIR. These and computational (in silico) docking studies revealed that astragalin-DNA binding occurs through interaction with G-C base pairs, possibly by intercalation stabilized by H-bond formation.
Liu, Jie; Gong, Tao; Wang, Changguang; Zhong, Zhirong; Zhang, Zhirong
2007-08-01
Solid lipid nanoparticles (SLNs) loaded with insulin-mixed micelles (Ins-MMs) were prepared by a novel reverse micelle-double emulsion method, in which sodium cholate (SC) and soybean phosphatidylcholine (SPC) were employed to improve the liposolubility of insulin, and the mixture of stearic acid and palmitic acid were employed to prepare insulin loaded solid lipid nanoparticles (Ins-MM-SLNs). Some of the formulation parameters were optimized to obtain high quality nanoparticles. The particle size and zeta potential measured by photon correlation spectroscopy (PCS) were 114.7+/-4.68 nm and -51.36+/-2.04 mV, respectively. Nanospheres observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed extremely spherical shape. The entrapment efficiency (EE%) and drug loading capacity (DL%) determined with high performance liquid chromatogram (HPLC) by modified ultracentrifuge method were 97.78+/-0.37% and 18.92+/-0.07%, respectively. Differential scanning calorimetry (DSC) of Ins-MM-SLNs indicated no tendency of recrystallisation. The core-shell drug loading pattern of the SLNs was confirmed by fluorescence spectra and polyacrylamide gel electrophoresis (PAGE) which also proved the integrity of insulin after being incorporated into lipid carrier. The drug release behavior was studied by in situ and externally sink method and the release pattern of drug was found to follow Weibull and Higuchi equations. Results of stability evaluation showed a relatively long-term stability after storage at 4 degrees C for 6 months. In conclusion, SLNs with small particle size, excellent physical stability, high entrapment efficiency, good loading capacity for protein drug can be produced by this novel reverse micelle-double emulsion method in present study.
Chen, Xu; Zhang, Wensheng; Rios, Sandy; Morkos, Miriam B; Ye, Xiaoli; Li, Gen; Jiang, Xuehua; Wang, Zhijun; Wang, Ling
2018-02-05
ET-26-HCl is a new analog of etomidate, a short-acting anesthetic drug, with less adrenal cortex inhibition. The pharmacokinetics of ET-26-HCl in rats needs to be determined for future clinical trials in human subjects. In order to facilitate the pharmacokinetic study, a liquid chromatography based tandem mass spectrometric (HPLC-MS/MS) method was developed and validated for quantification of ET-26-HCl and its major metabolite, ET-26-acid. These two compounds and gabapentin (internal standard) were extracted using a protein precipitation method with methanol and detected by Multiple Reaction Monitoring of m/z transition of 275.6-170.9, 217.7-113.1, and 172.5-154.3 for ET-26-HCl, ET-26-acid, and gabapentin respectively. This method was validated in terms of sensitivity, linearity, reproducibility, and stability. The HPLC-MS/MS method was found linear over the concentration ranges of 21.76-4352ng/mL, and 18.62-3724ng/mL with LLOQ of 21.76 and 18.62ng/mL for ET-26-HCl and ET-26-acid respectively. The mean intra-day and inter-day accuracy was between 94.11-107.78%, while the precision was within the limit of 15.0% for all the quality control samples. A pharmacokinetic study was then conducted in rats following intravenous injection of 2.1, 4.2, and 8.4mg/kg. The linear pharmacokinetics of ET-26-HCl was observed over the dose range of 2.1-8.4mg/kg. The average terminal phase elimination half-lives were 0.87 and 1.03h for ET-26-HCl and ET-26-acid respectively. In summary, an HPLC-MS/MS method for quantification of ET-26-HCl in rat plasma has been developed and successfully applied to a pharmacokinetic study. Copyright © 2017 Elsevier B.V. All rights reserved.
Studies on the stability of preservatives under subcritical water conditions.
Kapalavavi, B; Marple, R; Gamsky, C; Yang, Y
2015-06-01
The goal of this work was to further validate the subcritical water chromatography (SBWC) methods for separation and analysis of preservatives through the evaluation of analyte stability in subcritical water. In this study, the degradation of preservatives was investigated at temperatures of 100-200°C using two different approaches. First, the peak areas obtained by SBWC at high temperatures were compared with those achieved using the traditional high-performance liquid chromatography (HPLC) at 25°C. In the second approach, several preservatives and water were loaded into a vessel and heated at high temperatures for 30 or 60 min. The heated mixtures were then analysed by GC/MS to determine the stability of preservatives. The t- and F-test on the results of the first approach reveal that the peak areas achieved by HPLC and SBWC are not significantly different at the 95% confidence level, meaning that the preservatives studied are stable during the high-temperature SBWC runs. Although the results of the second approach show approximately 10% degradation of preservatives into mainly p-hydroxybenzoic acid and phenol at 200°C, the preservatives studied are stable at 100 and 150°C. This is in good agreement with the validation results obtained by the first approach. The findings of this work confirm that SBWC methods at temperatures up to 150°C are reliable for separation and analysis of preservatives in cosmetic and other samples. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
[HPLC fingerprint of the antiarrhythmic fraction of Valeriana officinalis].
Duan, Xue-Yun; Gong, Zhan-Feng; Chen, Shu-He; Fang, Ying; Liu, Yan-Wen
2009-06-01
To establish HPLC fingerprints of the Antiarrhythmic fraction of Valeriana officinalis. Agilent C18 (250 mm x 4.6 mm, 5 microm) column was used and the acetonitrile-water was chosen as the mobile phase in a gradient mode. The column temperature was 380 degrees C and the detection wavelength was 218 nm. The detection time was 70 min, and the flow rate was 1.0 mL/ min. Fifteen characteristic peaks were indicated in HPLC fingerprints. The relative retention time and the ranges of relative areas of the common peaks were also determined. This method is simple and accurate with a good reproducibility and provides a reference standard for the quality control of Valeriana officinalis.
Simultaneous Estimation of Withaferin A and Z-Guggulsterone in Marketed Formulation by RP-HPLC.
Agrawal, Poonam; Vegda, Rashmi; Laddha, Kirti
2015-07-01
A simple, rapid, precise and accurate high-performance liquid chromatography (HPLC) method was developed for simultaneous estimation of withaferin A and Z-guggulsterone in a polyherbal formulation containing Withania somnifera and Commiphora wightii. The chromatographic separation was achieved on a Purosphere RP-18 column (particle size 5 µm) with a mobile phase consisting of Solvent A (acetonitrile) and Solvent B (water) with the following gradients: 0-7 min, 50% A in B; 7-9 min, 50-80% A in B; 9-20 min, 80% A in B at a flow rate of 1 mL/min and detection at 235 nm. The marker compounds were well separated on the chromatogram within 20 min. The results obtained indicate accuracy and reliability of the developed simultaneous HPLC method for the quantification of withaferin A and Z-guggulsterone. The proposed method was found to be reproducible, specific, precise and accurate for simultaneous estimation of these marker compounds in a combined dosage form. The HPLC method was appropriate and the two markers are well resolved, enabling efficient quantitative analysis of withaferin A and Z-guggulsterone. The method can be successively used for quantitative analysis of these two marker constituents in combination of marketed polyherbal formulation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Oda, Hitomi; Mori, Akihiro; Hirowatari, Yuji; Takoura, Toshie; Manita, Daisuke; Takahashi, Tomoya; Shono, Saori; Onozawa, Eri; Mizutani, Hisashi; Miki, Yohei; Itabashi, Yukiko; Sako, Toshinori
2017-10-01
Anion-exchange (AEX)-high-performance liquid chromatography (HPLC) for measurement of cholesterol can be used to separate serum lipoproteins (high-density lipoprotein (HDL); low-density lipoprotein (LDL); intermediate-density lipoprotein (IDL); very-low-density lipoprotein (VLDL)) in humans. However, AEX-HPLC has not been applied in veterinary practice. We had three objectives: (i) the validation of AEX-HPLC methods including the correlation of serum cholesterol concentration in lipoprotein fraction measured by AEX-HPLC and gel permeation-HPLC (GP-HPLC) in healthy dogs and those with hypercholesterolemia was investigated; (ii) the reference intervals of lipoprotein fractions measured by AEX-HPLC from healthy dogs (n=40) was established; (iii) lipoprotein fractions from the serum of healthy dogs (n=12) and dogs with hypercholesterolemia (n=23) were compared. Analytic reproducibility and precision of AEX-HPLC were acceptable. Positive correlation between serum concentrations of total cholesterol (Total-Chol), HDL cholesterol (HDL-Chol), LDL cholesterol (LDL-Chol)+IDL cholesterol (IDL-Chol), and VLDL cholesterol (VLDL-Chol) was noted for AEX-HPLC and GP-HPLC in healthy dogs and dogs with hypercholesterolemia. Reference intervals measured by AEX-HPLC for serum concentrations of Total-Chol, HDL-Chol, and LDL-Chol were determined to be 2.97-9.32, 2.79-6.57, 0.16-3.28mmol/L (2.5-97.5% interval), respectively. Furthermore, there was significant difference in lipoprotein profiles between healthy and dogs with hypercholesterolemia. These results suggest that AEX-HPLC can be used to evaluate lipoprotein profiles in dogs and could be a new useful indicator of hyperlipidemia in dogs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Laaniste, Asko; Kruve, Anneli; Leito, Ivo
2013-08-01
Two different methods to reinforce the poly(glycidyl methacrylate-co-ethylene dimethacrylate) HPLC monolithic columns of 3 mm id in a glass column reservoir were studied: composite columns with polymeric particles in the monolith and surface treatment of the reservoir wall. Of the two methods used to counter the mechanical instability and formation of flow channels (composite columns and column wall surface treatment), we demonstrated that proper column wall surface treatment was sufficient to solve both problems. Our study also indicated that no surface treatment is efficient, and of the methods studied silanization in acidified ethanol solution and constant renewal of the reaction mixture (dynamic mode) proved to be the most effective. As a result of this study, we have been able to prepare repeatable and durable methacrylate HPLC columns with good efficiencies. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Study on stability of curcumine, demethoxycurcumin and bisdemethoxycurcumin].
Han, Gang; Cui, Jing-jing; Bi, Rui; Zhao, Lin-lin; Zhang, Wei-guo
2008-11-01
To investigate the stability of curcumin, demethoxycurcumin and bisdemethoxycurcumin in different buffer solution. To determine concentration of curcumin by HPLC when added curcumin, demethoxycurcumin and bisdemethoxycurcumin into the buffer solution the equation of degradation was established. The sequence of stability are bisdemethoxycurcumin > or = demethoxycurcumin > or =curcumin at the same condition. The demethoxycurcumin can stabilize curcumin more strong than the others. The demethoxycurcumin is a nature stabilizing agent for curcumin.
Wolf, Ruth E.; Morman, Suzette A.; Plumlee, Geoffrey S.
2008-01-01
Assessing potential exposures to toxic metals or metalloids such as arsenic and chromium in environmental materials is important in protecting public health. The chemical form of an element in, or released from, a material is also important, since some forms, such as Cr(VI), are more toxic than others, for example, Cr(III). We have used a variety of procedures to assess potential exposures to hexavalent chromium in ash and burned soils from October 2007 southern California wildfires. Synthetic lung-fluid and de-ionized water extractions simulate release in the lungs and potential environmental releases due to rainfall. Extracts were analyzed for specific chromium and arsenic species using HPLC-ICP-MS methodology. Results indicate that the highly oxidizing environment in wildfires promotes some chromium conversion to Cr(VI), and that the caustic alkalinity of ash enhances Cr(VI) release and stability in lung fluids and rainfall.
Faizan, Mohammad; Esatbeyoglu, Tuba; Bayram, Banu; Rimbach, Gerald
2014-04-01
Malondialdehyde (MDA) is a biomarker of lipid peroxidation and is present in foods and biological samples such as plasma. A high-performance liquid chromatography (HPLC) method was applied to determine MDA in fish liver samples after derivatization with 2,4-dinitrophenylhydrazine (DNPH) using a ODS2 column (10 cm × 4.6 mm, 3 μm) and a photodiode array detector. The mobile phase consisted of 0.2% acetic acid (v/v) in distilled water and acetonitrile (42:58, v/v). The present method was validated in terms of linearity, lower limit of quantification, lower limit of detection, precision, accuracy, recovery, and stability of MDA according to U.S. Food and Drug Administration (FDA) guidelines. The limit of quantification of MDA was 0.39 μmol/L, which is comparable to other methods. The recovery of the spiked MDA liver samples was in the range of 92.4% to 104.2%. This newly modified HPLC method is specific, sensitive, and accurate and allows the analysis of MDA within 4 min in fish liver but also in other tissues and plasma. © 2014 Institute of Food Technologists®
Hann, S; Stefánka, Zs; Lenz, K; Stingeder, G
2005-01-01
A high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS) method is presented for analysis of cisplatin, monoaquacisplatin, diaquacisplatin, carboplatin, and oxaliplatin in biological and environmental samples. Chromatographic separation was achieved on pentafluorophenylpropyl-functionalized silica gel. For cisplatin, carboplatin, and oxaliplatin limits of detection of 0.09, 0.10, and 0.15 microg L(-1), respectively, were calculated at m/z 194, using aqueous standard solutions. (3 microL injection volume). The method was utilized for model experiments studying the stability of carboplatin and oxaliplatin at different chloride concentrations simulating wastewater and surface water conditions. It was found that a high fraction of carboplatin is stable in ultrapure water and in solutions containing 1.5 mol L(-1) Cl-, whereas oxaliplatin degradation was increased by increasing the chloride concentration. In order to support the assessment of oxaliplatin eco-toxicology, the method was tested for speciation of patient urine. The urine sample contained more than 17 different reaction products, which demonstrates the extensive biotransformation of the compound. In a second step of the study the method was successfully evaluated for monitoring cancerostatic platinum compounds in hospital waste water.
Ultratraces of carotenes in tomato purées: HPLC-TLS study
NASA Astrophysics Data System (ADS)
Luterotti, S.; Marković, K.; Franko, M.; Bicanic, D.; Vahčić, N.; Doka, O.
2003-01-01
The present study was designed to provide information about (i) the profile of carotene pigments and (ii) trace quantities of lycopene and β-carotene left in tomato purées. The ultrasensitive method comprising HPLC and thermal lens spectrometric (TLS) detection enabled us to detect as low as 0.3 and 1.1 ng ml-1 lycopene and β-carotene in purée extracts, respectively. Total concentration of β-carotene and lycopene (varying from 3 to 170 ng g-1) in the examined tomato purées may serve as an indicator of the carotene-specific antioxidative capacity of these products. Although conventional spectrophotometry can be used to rapidly assess the quality of products derived from tomatoes, a highly sensitive and selective method such as HPLC-TLS is needed for reliable analyses of samples such as, for example, those subjected to inappropriate storage and/or handling.
[HPLC fingerprint chromatogram of Polygonum multiflorum from Guizhou].
Li, Yan; Wang, Hui-Juan; Lin, Bing; Zhao, Zhi; Zhou, Ying
2012-12-01
To establish the fingerprint of Polygonum multiflorum from Guizhou and provide a standard for its quality control. HPLC analysis was performed on Agillent ZABAX-C18 (4.6 mm x 250 mm, 5 microm), gradient eluted composed of acetonitrile-0.4% water solution of phosphoric acid. Column temperature was set at 25 degrees C and the flow rate was 1 mL/min. The detection wavelength was 280 nm and the analysis time was 60 min. 9 common peaks were identified. The RSD of the relative retention time and the relative peak area were less than 3% in analyzing its precision, stability and repeatability of the common peaks, and the similarity of the 16 batches of sample was more than 0.9. The method is simple and reliable, and it can provide a standard and guidance for quality control of Polygonum multiflorum.
Different Stability-Indicating Chromatographic Techniques for the Determination of Netobimin
Ramadan, Nesrin K.; Mohamed, Afaf O.; Shawky, Sara E.; Salem, Maissa Y.
2012-01-01
Two simple, accurate, and sensitive methods were developed for the determination of netobimin in the presence of its degradation product. Method (A) was an HPLC method, performed on C18 column using acetonitrile/methanol/0.01 M potassium dihydrogen phosphate (56 : 14 : 30 by volume) as a mobile phase with a flow rate of 0.5 mL/min. Detection was performed at 254 nm. Method (B) was a TLC method, using silica gel 60 F254 plates; the optimized mobile phase was toluene/methanol/chloroform/ammonium hydroxide (5 : 4 : 6 : 0.1 by volume). The spots were scanned densitometrically at 346 nm. Linearity ranges were 1–10 μg/mL for method (A) and 0.5–5 μg/band for method (B), and the mean percentage recoveries were 99.3 ± 0.7% and 99.7 ± 0.7% for methods (A) and (B), respectively. The proposed methods were found to be specific for netobimin in the presence of up to 90% of its degradation product. Statistical comparison between the results obtained by these methods and the manufacturer method was done, and no significance difference was obtained. PMID:22567566
Three-dimensional desirability spaces for quality-by-design-based HPLC development.
Mokhtar, Hatem I; Abdel-Salam, Randa A; Hadad, Ghada M
2015-04-01
In this study, three-dimensional desirability spaces were introduced as a graphical representation method of design space. This was illustrated in the context of application of quality-by-design concepts on development of a stability indicating gradient reversed-phase high-performance liquid chromatography method for the determination of vinpocetine and α-tocopheryl acetate in a capsule dosage form. A mechanistic retention model to optimize gradient time, initial organic solvent concentration and ternary solvent ratio was constructed for each compound from six experimental runs. Then, desirability function of each optimized criterion and subsequently the global desirability function were calculated throughout the knowledge space. The three-dimensional desirability spaces were plotted as zones exceeding a threshold value of desirability index in space defined by the three optimized method parameters. Probabilistic mapping of desirability index aided selection of design space within the potential desirability subspaces. Three-dimensional desirability spaces offered better visualization and potential design spaces for the method as a function of three method parameters with ability to assign priorities to this critical quality as compared with the corresponding resolution spaces. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hassan, Mostafa A.; Zaghary, Wafaa A.
2018-01-01
New spectrophotometric and chemometric methods were carried out for the simultaneous assay of trelagliptin (TRG) and its acid degradation product (TAD) and applied successfully as a stability indicating assay to recently approved Zafatek® tablets. TAD was monitored using TLC to ensure complete degradation. Furthermore, HPLC was used to confirm dealing with one major acid degradation product. The proposed methods were developed by manipulating zero-order, first-derivative, and ratio spectra of TRG and TAD using simultaneous equation, first-derivative, and mean-centering methods, respectively. Using Spectra Manager II and Minitab v.14 software, the absorbance at 274 nm–260.4 nm, amplitudes at 260.4 nm–274.0 nm, and mean-centered values at 287.6 nm–257.2 nm were measured against methanol as a blank for TRG and TAD, respectively. Linearity and the other validation parameters were acceptable at concentration ranges of 5–50 μg/mL and 2.5–25 μg/mL for TRG and TAD, respectively. Using one-way analysis of variance (ANOVA), the optimized methods were compared and proved to be accurate for the simultaneous assay of TRG and TAD. PMID:29629213
Mowaka, Shereen; Ayoub, Bassam M; Hassan, Mostafa A; Zaghary, Wafaa A
2018-01-01
New spectrophotometric and chemometric methods were carried out for the simultaneous assay of trelagliptin (TRG) and its acid degradation product (TAD) and applied successfully as a stability indicating assay to recently approved Zafatek® tablets. TAD was monitored using TLC to ensure complete degradation. Furthermore, HPLC was used to confirm dealing with one major acid degradation product. The proposed methods were developed by manipulating zero-order, first-derivative, and ratio spectra of TRG and TAD using simultaneous equation, first-derivative, and mean-centering methods, respectively. Using Spectra Manager II and Minitab v.14 software, the absorbance at 274 nm-260.4 nm, amplitudes at 260.4 nm-274.0 nm, and mean-centered values at 287.6 nm-257.2 nm were measured against methanol as a blank for TRG and TAD, respectively. Linearity and the other validation parameters were acceptable at concentration ranges of 5-50 μ g/mL and 2.5-25 μ g/mL for TRG and TAD, respectively. Using one-way analysis of variance (ANOVA), the optimized methods were compared and proved to be accurate for the simultaneous assay of TRG and TAD.
Analysis of gold(I/III)-complexes by HPLC-ICP-MS demonstrates gold(III) stability in surface waters.
Ta, Christine; Reith, Frank; Brugger, Joël; Pring, Allan; Lenehan, Claire E
2014-05-20
Understanding the form in which gold is transported in surface- and groundwaters underpins our understanding of gold dispersion and (bio)geochemical cycling. Yet, to date, there are no direct techniques capable of identifying the oxidation state and complexation of gold in natural waters. We present a reversed phase ion-pairing HPLC-ICP-MS method for the separation and determination of aqueous gold(III)-chloro-hydroxyl, gold(III)-bromo-hydroxyl, gold(I)-thiosulfate, and gold(I)-cyanide complexes. Detection limits for the gold species range from 0.05 to 0.30 μg L(-1). The [Au(CN)2](-) gold cyanide complex was detected in five of six waters from tailings and adjacent monitoring bores of working gold mines. Contrary to thermodynamic predictions, evidence was obtained for the existence of Au(III)-complexes in circumneutral, hypersaline waters of a natural lake overlying a gold deposit in Western Australia. This first direct evidence for the existence and stability of Au(III)-complexes in natural surface waters suggests that Au(III)-complexes may be important for the transport and biogeochemical cycling of gold in surface environments. Overall, these results show that near-μg L(-1) enrichments of Au in environmental waters result from metastable ligands (e.g., CN(-)) as well as kinetically controlled redox processes leading to the stability of highly soluble Au(III)-complexes.
Colombo, Renata; Lanças, Fernando M; Yariwake, Janete H
2006-01-20
A high-performance liquid chromatography (HPLC) method with photo-diode array (DAD) detection was developed to separate and quantify flavonoids in sugarcane leaves and bagasse (= the crushed sugarcane refuse from juice extraction), and in sugarcane juice. Sugarcane flavonoids consist of a complex mixture of aglycones and glycosides (including flavonolignan glycosides), and the HPLC-UV method herein proposed is suitable for their quantification as total flavonoids. This method was applied to analyze samples of cultivated sugarcane, commercial juice and transgenic sugarcane leaves. Sugarcane leaves proved a promising source of flavonoids: an average of 1.10 mg of total flavonoids/g plant material was found in fresh leaves. Moreover, the flavonoid content of sugarcane juice (0.6 mg/mL) is comparable to other food sources of flavonoids previously reported. Transgenic sugarcane leaves ("Bowman-Birk" and "Kunitz") were compared with non-modified ("control") plant samples using the proposed HPLC-UV method, which indicated that the content of total flavonoids in transgenic plants is different from that in non-modified sugarcane.
The stability of 6-mercaptopurine riboside in neutral and basic medium.
Jelińska, A; Magdziarz, M
2000-01-01
The kinetics of hydrolysis of 6-mercaptopurine riboside (R-6-MP) was studied in aqueous solutions over the pH range of 6.11-12.13 at 353 K. The decomposition was investigated by HPLC method. At the pH range from 6.11 to 12.13 hydrolysis of 6-mercaptopurine riboside includes: spontaeous hydrolysis of non-protonated R-6-MP molecules mono- and di-anions R-6-MP molecules under the effect of water.
Sayar, Esin; Sahin, Selma; Cevheroglu, Semsettin; Hincal, A Atilla
2010-09-01
The combination of trimethoprim (TMP) and sulfamethoxazole (SMX) is used in the treatment of many common infections such as urinary, respiratory and gastrointestinal tract infections. The aim of this study was to determine TMP and SMX simultaneously in human plasma samples by high performance liquid chromatography (HPLC) using antipyrine as the internal standard. Separation of the compounds was achieved on a reverse-phase C8 column packed with 5 microm dimethyl octadecylsilyl bonded amorphous silica (4.6 mm x 250 mm) column using a mobile phase consisted of potassium hydrogen phosphate, acetonitrile, methanol and water adjusted to pH 6.2. The mobile phase was delivered at a flow rate of 1 mL min- and the effluent was monitored using Max plot technique at 25 derees C. Retention times were 5 min for TMP, 7 min for antipyrine and 9 min for SMX. Quantitation limits were 10 ng mL(-1) for TMP and 50 ng mL(-1) for SMX. Our findings indicated that the developed HPLC method was precise, accurate, specific and sensitive for simultaneous determination of TMP and SMX. Proposed HPLC method was successfully applied for the analysis of TMP and SMX in human plasma after oral administration of a co-trimoxazole tablet to human volunteers.
Determination and validation of six sunscreen agents in suncare products by UPLC and HPLC.
Lee, So-Mi; Jeong, Hye-Jin; Chang, Ih Seop
2008-01-01
Methylene bis-benzotriazolyl tetramethyl butylphenol and bis-ethylhexyloxy phenol methoxyphenyl triazine are sunscreen agents that have hydrophobic behaviors in common. They were not normally assayed with the following four sunscreen agents that have hydrophilic behaviors in a single chromatographic run: ethylhexyl methoxycinnamate, isoamyl p-methoxycinnamate, ethylhexyl salicylate, and ethylhexyl triazone. For that reason, methylene bis-benzotriazolyl tetramethyl butylphenol and bis-ethylhexyloxy phenol methoxyphenyl triazine require much time in order to assay products with those materials. A rapid, selective, and reproducible determination method needs to be developed for the simultaneous examination of methylene bis-benzotriazolyl tetramethyl butylphenol and bis-ethylhexyloxy phenol methoxyphenyl triazine with the sunscreen agents, ethylhexyl methoxycinnamate, isoamyl p-methoxycinnamate, ethylhexyl salicylate, and ethylhexyl triazone. This new technique could reduce time in examining the sunscreen agents and be effective for quality control of suncare products. In this paper, the HPLC and UPLC system is used for developing the determination of the sunscreen agents. Several evaluations of some mixtures of eluents and columns were obtained for the optimal condition of separation. In HPLC, the optimal peak resolution was obtained through ethanol-water gradient elution and a 75-mm C18 column with a 3.5-microm-sized particle on a flow rate of 1.0 ml/min. In UPLC, the most distinctive peak resolution was obtained through methanol-water gradient elution and a 50-mm C18 column with a 1.7-microm-sized particle on a flow rate 0.4 ml/min. Both of those chromatographic determination methods could be used in the examination of six types of sunscreen agents without any interference from other product excipients in the agents. The proposed determination methods were validated for specificity, linearity, repeatability, system stability, intermediate precision, and accuracy. Consequently, HPLC and UPLC determination methods could be rapid, selective, and proper applications for the assay of sunscreen agents in suncare products.
Xu, Xiaoma; van de Craats, Anick M; de Bruyn, Peter C A M
2004-11-01
A highly sensitive screening method based on high performance liquid chromatography atmospheric pressure ionization mass spectrometry (HPLC-API-MS) has been developed for the analysis of 21 nitroaromatic, nitramine and nitrate ester explosives, which include the explosives most commonly encountered in forensic science. Two atmospheric pressure ionization (API) methods, atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI), and various experimental conditions have been applied to allow for the detection of all 21 explosive compounds. The limit of detection (LOD) in the full-scan mode has been found to be 0.012-1.2 ng on column for the screening of most explosives investigated. For nitrobenzene, an LOD of 10 ng was found with the APCI method in the negative mode. Although the detection of nitrobenzene, 2-, 3-, and 4-nitrotoluene is hindered by the difficult ionization of these compounds, we have found that by forming an adduct with glycine, LOD values in the range of 3-16 ng on column can be achieved. Compared with previous screening methods with thermospray ionization, the API method has distinct advantages, including simplicity and stability of the method applied, an extended screening range and a low detection limit for the explosives studied.
Updated folate data in the Dutch Food Composition Database and implications for intake estimates
Westenbrink, Susanne; Jansen-van der Vliet, Martine; van Rossum, Caroline
2012-01-01
Background and objective Nutrient values are influenced by the analytical method used. Food folate measured by high performance liquid chromatography (HPLC) or by microbiological assay (MA) yield different results, with in general higher results from MA than from HPLC. This leads to the question of how to deal with different analytical methods in compiling standardised and internationally comparable food composition databases? A recent inventory on folate in European food composition databases indicated that currently MA is more widely used than HPCL. Since older Dutch values are produced by HPLC and newer values by MA, analytical methods and procedures for compiling folate data in the Dutch Food Composition Database (NEVO) were reconsidered and folate values were updated. This article describes the impact of this revision of folate values in the NEVO database as well as the expected impact on the folate intake assessment in the Dutch National Food Consumption Survey (DNFCS). Design The folate values were revised by replacing HPLC with MA values from recent Dutch analyses. Previously MA folate values taken from foreign food composition tables had been recalculated to the HPLC level, assuming a 27% lower value from HPLC analyses. These recalculated values were replaced by the original MA values. Dutch HPLC and MA values were compared to each other. Folate intake was assessed for a subgroup within the DNFCS to estimate the impact of the update. Results In the updated NEVO database nearly all folate values were produced by MA or derived from MA values which resulted in an average increase of 24%. The median habitual folate intake in young children was increased by 11–15% using the updated folate values. Conclusion The current approach for folate in NEVO resulted in more transparency in data production and documentation and higher comparability among European databases. Results of food consumption surveys are expected to show higher folate intakes when using the updated values. PMID:22481900
Tran, MinhPhuong; Turner, Erica B; Segro, Scott S; Fang, Li; Seyyal, Emre; Malik, Abdul
2017-11-03
A sol-gel organic-inorganic hybrid sorbent, consisting of chemically integrated tantalum (V) ethoxide (TaEO) and polypropylene glycol methacrylate (PPGM), was developed for capillary microextraction (CME). The sol-gel sorbent was synthesized within a fused silica capillary through hydrolytic polycondensation of TaEO and chemical incorporation of PPGM into the evolving sol-gel tantala network. A part of the organic-inorganic hybrid sol-gel network evolving in the vicinity of the capillary walls had favorable conditions to get chemically bonded to the silanol groups on the capillary surface forming a surface-bonded coating. The newly developed sol-gel sorbent was employed to isolate and enrich a variety of analytes from aqueous samples for on-line analysis by high-performance liquid chromatography (HPLC) equipped with a UV detector. CME was performed on aqueous samples containing trace concentrations of analytes representing polycyclic aromatic hydrocarbons, ketones, alcohols, amines, nucleosides, and nucleotides. This sol-gel hybrid coating provided efficient extraction with CME-HPLC detection limits ranging from 4.41pM to 28.19 pM. Due to direct chemical bonding between the sol-gel sorbent coating and the fused silica capillary inner surface, this sol-gel sorbent exhibited enhanced solvent stability. The sol-gel tantala-based sorbent also exhibited excellent pH stability over a wide pH range (pH 0-pH 14). Furthermore, it displayed great performance reproducibility in CME-HPLC providing run-to-run HPLC peak area relative standard deviation (RSD) values between 0.23% and 3.83%. The capillary-to-capillary RSD (n=3), characterizing capillary preparation method reproducibility, ranged from 0.24% to 4.11%. The results show great performance consistency and application potential for the sol-gel tantala-PPGM sorbent in various fields including biomedical, pharmaceutical, and environmental areas. Copyright © 2017 Elsevier B.V. All rights reserved.
Hossain, Mirza Akram; Friciu, Mihaela; Aubin, Sebastien; Leclair, Grégoire
2014-04-15
The stability of penicillin G sodium solutions stored in polyvinyl chloride (PVC) bags or elastomeric pump containers was studied. Test samples were prepared by diluting powdered penicillin G sodium (10 million units/10-mL vial) to solutions of 2,500 or 50,000 units/mL with 0.9% sodium chloride injection or 5% dextrose injection. The preparations were transferred to 250-mL PVC bags and elastomeric pump containers. All samples were prepared in triplicate and stored at 5°C. Chemical stability was measured by a stability-indicating high-performance liquid chromatographic (HPLC) assay and by pH evaluation. Particulate matter was evaluated according to compendial standards using a light-obscuration particle count test. Preparations were visually examined throughout the study. After 21 days of storage, all test samples remained chemically stable, with an HPLC assay recovery value of more than 90% of the initial value. After 28 days, all samples prepared with either diluent and stored in PVC bags, as well as the samples diluted to 2,500 units/mL with sodium chloride injection and stored in elastomeric pump containers, did not meet the recovery acceptance limit. For all test samples, the mean pH consistently decreased during storage, from about 6.4 to about 5.5. Particle counts remained acceptable throughout the study, and no change in appearance was observed. Penicillin G for injection (2,500 and 50,000 units/mL) diluted in 0.9% sodium chloride injection or 5% dextrose injection and stored at 5°C in PVC containers or elastomeric pump containers was physically and chemically stable for a period of at least 21 days.
Gradient RP-HPLC method for the determination of potential impurities in atazanavir sulfate.
Chitturi, Sreenivasa Rao; Somannavar, Yallappa Somappa; Peruri, Badarinadh Gupta; Nallapati, Sreenivas; Sharma, Hemant Kumar; Budidet, Shankar Reddy; Handa, Vijay Kumar; Vurimindi, Hima Bindu
2011-04-28
This paper proposes a simple and selective RP-HPLC method for the determination of process impurities and degradation products (degradants) of atazanavir sulfate (ATV) drug substance. Chromatographic separation was achieved on Ascentis(®) Express C8, (150mm×4.6mm, 2.7μm) column thermostated at 30°C under gradient elution by a binary mixture of potassium dihydrogen phosphate (pH 3.5, 0.02M) and ACN at a flow rate of 1.0ml/min. A photodiode array (PDA) detector set at 250nm was used for detection. Stress testing (forced degradation) of ATV was carried out under acidic, alkaline, oxidative, photolytic, thermal and humidity conditions. In presence of alkali, ATV transformed into cyclized products and the order of degradation reaction is determined by the method of initial rates. The unknown process impurities and alkaline degradants are isolated by preparative LC and characterized by ESI-MS/MS, (1)H NMR, and FT-IR spectral data. The developed method is validated with respect to sensitivity (lod and loq), linearity, precision, accuracy and robustness and can be implemented for routine quality control analysis and stability testing of ATV. Copyright © 2011 Elsevier B.V. All rights reserved.
2013-01-01
Background Athrixia phylicoides DC. (Asteraceae) is used medicinally in South Africa to treat a plethora of ailments, including heart problems, diabetes, diarrhoea, sores and infected wounds. It is also prepared in the form of a tea (hot decoction) taken as a refreshing, pleasant-tasting beverage with commercialization potential. Methods Extracts of the dried ground aerial parts were prepared using organic solvents (diethyl ether, dichloromethane/methanol, ethyl acetate and ethanol) and water. These extracts were subjected to HPLC, TLC and bioautography analysis with the aim of linking a range of peaks visualized in HPLC chromatography profiles to antibacterial and antifungal activity of the same extracts. Results HPLC revealed a group of compounds extracted by more than one solvent. Compounds identified include inositol, caffeic acid, quercetin, kaempferol, apigenin, hymenoxin and oleanolic acid. The organic extracts displayed similar TLC profiles, and bioautography indicated approximately five antibacterial compounds, but only two antifungal compounds in these extracts. Bioautography indicated that cold water extracted the least antimicrobial compounds. Conclusions Several previously unknown compounds were identified in Athrixia phylicoides extracts, and bioautography indicated a number of antibacterial and antifungal compounds. There were notable differences in chemical composition and bioactivity between the organic and aqueous extracts. Further research is necessary to fully characterize the active components of the extracts. PMID:24330447
Bertolini, Tiziana; Vicentini, Lorenza; Boschetti, Silvia; Andreatta, Paolo; Gatti, Rita
2016-09-10
A simple and fast chromatographic method using ultraviolet diode-array detector (UV-DAD) was developed for the automatic high performance liquid chromatography (HPLC) determination of the title of oleuropein in a new dietary supplements in form of effervescent granules. The chromatographic separations were performed on a C18 core-shell column with detection at λ=232nm. The mobile phase consisted of deionized water with 0.1% TFA and acetonitrile under gradient conditions at a flow-rate of 0.8mL/min. Oleuropein and oleuroside present in the raw material were characterized by high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). The validation of the analytical procedure has been performed determining the following parameters: specificity, linearity, repeatability, reproducibility, accuracy, limit of quantification (LOQ), stability of the standard and sample solutions. Linear response was observed in fortified placebo solutions (determination coefficient: 0.9998). Intra-day precision (relative standard deviation, RSD) was ≤5.0% for peak area and for retention times (tR) without significant differences between intra- and inter-day data. The limits of quantitation (LOQ) was about 5μg/mL and 9pmol/inject. Oleuropein recovery studies gave good results (99.9%) with a R.S.D. of 0.5%. The speed of analysis and the stability of the solutions with a fluctuation Δ (%) ≤2.0 at room temperature means an undoubted advantage of the method allowing the simultaneous preparation of many samples and consecutive chromatographic analyses by using an autosampler. The developed method is suitable for the quality control of oleuropein in raw material and industrial products. The method can be applied in any analytical laboratory not requiring a sophisticated instrumentation. Copyright © 2016 Elsevier B.V. All rights reserved.
Jin, Pengfei; Xia, Lufeng; Li, Zheng; Che, Ning; Zou, Ding; Hu, Xin
2012-11-01
A simple, isocratic, and stability-indicating high-performance liquid chromatography (HPLC) method has been developed for the rapid determination of thiamine (VB(1)), niacinamide (VB(3)), pyridoxine (VB(6)), ascorbic acid (VC), pantothenic acid (VB(5)), riboflavin (VB(2)) and folic acid (VB(9)) in Vitamins with Minerals Tablets (VMT). An Alltima C(18) column (250 mm × 4.6 mm i.d., 5 μm) was used for the separation at ambient temperature, with 50mM ammonium dihydrogen phosphate (adjusting with phosphoric acid to pH 3.0) and acetonitrile as the mobile phase at the flow rate of 0.5 ml min(-1). VB(1), VB(3), VB(6), VC and VB(5) were extracted with a solution containing 0.05% phosphoric acid (v/v) and 0.3% sodium thiosulfate (w/v), and were then simultaneously analyzed by using the mobile phase of phosphate buffer-acetonitrile (95:5, v/v), while VB(2) and VB(9) were extracted with a solution containing 0.5% ammonium hydroxide solution (v/v), and were then simultaneously analyzed by using the mobile phase of phosphate buffer-acetonitrile (85:15, v/v). The detection wavelengths were 275 nm for VB(1), VB(3), VB(6), VC, 210 nm for VB(5), and 282 nm for VB(2) and VB(9). The method showed good system suitability, sensitivity, linearity, specificity, precision, stability and accuracy. All the seven water-soluble vitamins were well separated from other ingredients and degradation products. Method comparison indicated good concordance between the developed method and the USP method. The developed method was reliable and convenient for the rapid determination of VB(1), VB(3), VB(6), VC, VB(5), VB(2) and VB(9) in VMT. Copyright © 2012 Elsevier B.V. All rights reserved.
Tan, X; Meltzer, N; Lindebaum, S
1992-09-01
The solid-state stabilities of 13-cis-retinoic acid and all-trans-retinoic acid in the presence and absence of oxygen were investigated. The samples were first evaluated using microcalorimetry. The rate laws of different samples under different conditions were deduced from the shapes of the heat flow curves, and the activation energies of the reactions were determined from Arrhenius plots. Under an air atmosphere, the decomposition of 13-cis-retinoic acid is an autocatalytic reaction, while all-trans-retinoic acid undergoes a zero-order process. The degradation of the two compounds at a selected elevated temperature was also determined utilizing HPLC analysis. This technique confirmed the decomposition kinetics. Hence, their half-lives and shelf lives at room temperature could be calculated. Under a nitrogen atmosphere, the microcalorimetric experiment showed a first-order phenomenon for both samples, but HPLC analysis showed no degradation, suggesting that the two samples, in the absence of oxygen, undergo only a physical change.
Purification and stability characterization of a cell regulatory sialoglycopeptide inhibitor
NASA Technical Reports Server (NTRS)
Moos, P. J.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)
1995-01-01
Previous attempts to physically separate the cell cycle inhibitory and protease activities in preparations of a purified cell regulatory sialoglycopeptide (CeReS) inhibitor were largely unsuccessful. Gradient elution of the inhibitor preparation from a DEAE HPLC column separated the cell growth inhibitor from the protease, and the two activities have been shown to be distinct and non-overlapping. The additional purification increased the specific biological activity of the CeReS preparation by approximately two-fold. The major inhibitory fraction that eluted from the DEAE column was further analyzed by tricine-SDS-PAGE and microbore reverse phase HPLC and shown to be homogeneous in nature. Two other fractions separated by DEAE HPLC, also devoid of protease activity, were shown to be inhibitory to cell proliferation and most likely represented modified relatives of the CeReS inhibitor. The highly purified CeReS was chemically characterized for amino acid and carbohydrate composition and the role of the carbohydrate in cell proliferation inhibition, stability, and protease resistance was assessed.
Zhang, Wenpeng; Zhang, Zixin; Meng, Jiawei; Zhou, Wei; Chen, Zilin
2014-10-24
In this work, we interestingly happened to observe the adsorption of stainless steel sample loop of HPLC. The adsorptive behaviors of the stainless steel loop toward different kinds of compounds were studied, including polycyclic aromatic hydrocarbons (PAHs), halogeno benzenes, aniline derivatives, benzoic acid derivatives, phenols, benzoic acid ethyl ester, benzaldehyde, 1-phenyl-ethanone and phenethyl alcohol. The adsorptive mechanism was probably related to hydrophobic interaction, electron-rich element-metal interaction and hydrogen bond. Universal adsorption of stainless steels was also testified. Inspired by its strong adsorptive capability, bare stainless steel loop was developed as a modification-free in-tube device for solid-phase microextraction (SPME), which served as both the substrate and sorbent and possessed ultra-high strength and stability. Great extraction efficiency toward PAHs was obtained by stainless steel loop without any modification, with enrichment factors of 651-834. By connecting the stainless steel loop onto a six-port valve, an online SPME-HPLC system was set up and an SPME-HPLC method has been validated for determination of PAHs. The method has exceptionally low limits of detection of 0.2-2pg/mL, which is significantly lower than that of reported methods with different kinds of sorbents. Wide linear range (0.5-500 and 2-1000pg/mL), good linearity (R(2)≥0.9987) and good reproducibility (RSD≤2.9%) were also obtained. The proposed method has been applied to determine PAHs in environmental samples. Good recoveries were obtained, ranging from 88.5% to 93.8%. Copyright © 2014 Elsevier B.V. All rights reserved.
Hemanth Kumar, A K; Sudha, V; Swaminathan, Soumya; Ramachandran, Geetha
2010-10-01
Simple and reliable methods to estimate drugs in pharmaceutical products are needed. In most cases, antiretroviral drug estimations are performed using a HPLC method, requiring expensive equipment and trained technicians. A relatively simple and accurate method to estimate antiretroviral drugs in pharmaceutical preparations is by spectrophotometric method, which is cheap and simple to use as compared to HPLC. We undertook this study to standardise methods for estimation of nevirapine (NVP), lamivudine (3TC) and stavudine (d4T) in single tablets/capsules by HPLC and spectrophotometry and to compare the content of these drugs determined by both these methods. Twenty tablets/capsules of NVP, 3TC and d4T each were analysed for their drug content by HPLC and spectrophotometric methods. Suitably diluted drug solutions were run on HPLC fitted with a C18 column using UV detection at ambient temperature. The absorbance of the diluted drug solutions were read in a spectrophotometer at 300, 285 and 270 nm for NVP, 3TC and d4T respectively. Pure powders of the drugs were used to prepare calibration standards of known drug concentrations, which was set up with each assay. The inter-day variation (%) of standards for NVP, 3TC and d4T ranged from 2.5 to 6.7, 2.1 to 7.7 and 6.2 to 7.7, respectively by HPLC. The corresponding values by spectrophotometric method were 2.7 to 4.7, 4.2 to 7.2 and 3.8 to 6.0. The per cent variation between the HPLC and spectrophotometric methods ranged from 0.45 to 4.49 per cent, 0 to 4.98 per cent and 0.35 to 8.73 per cent for NVP, 3TC and d4T,respectively. The contents of NVP, 3TC and d4T in the tablets estimated by HPLC and spectrophotometric methods were similar, and the variation in the amount of these drugs estimated by HPLC and spectrophotometric methods was below 10 per cent. This suggests that the spectrophotometric method is as accurate as the HPLC method for estimation of NVP, 3TC and d4T in tablet/capsule. Hence laboratories that do not have HPLC equipment can also undertake these drug estimations using spectrophotometer.
Lesniewska, Monika A; Dereziński, Paweł; Klupczyńska, Agnieszka; Kokot, Zenon J; Ostrowski, Tomasz; Zeidler, Joanna; Muszalska, Izabela
2015-01-01
The degradation behavior of a tricyclic analog of acyclovir [6-(4-MeOPh)-TACV] was determined in accordance with International Conference on Harmonization guidelines for good clinical practice under different stress conditions (neutral hydrolysis, strong acid/base degradation, oxidative decomposition, photodegradation, and thermal degradation). Accelerated [40±2°C/75%±5% relative humidity (RH)] and intermediate (30±2°C/65%±5% RH) stability tests were also performed. For observation of the degradation of the tested compound the RP-HPLC was used, whereas for the analysis of its degradation products HPLC/MS/MS was used. Degradation of the tested substance allowed its classification as unstable in neutral environment, acidic/alkaline medium, and in the presence of oxidizing agent. The tested compound was also light sensitive and was classified as photolabile both in solution and in the solid phase. However, the observed photodegradation in the solid phase was at a much lower level than in the case of photodegradation in solution. The study showed that both air temperature and RH had no significant effect on the stability of the tested substance during storage for 1 month at 100°C (dry heat) as well as during accelerated and intermediate tests. Based on the HPLC/MS/MS analysis, it can be concluded that acyclovir was formed as a degradation product of 6-(4-MeOPh)-TACV.
Stability of levamisole oral solutions prepared from tablets and powder.
Chiadmi, Fouad; Lyer, Abdel; Cisternino, Salvatore; Toledano, Audrey; Schlatter, Joël; Ratiney, Robert; Fontan, Jean-Eudes
2005-08-12
To study the stability of levamisole oral solutions (25 mg/mL) prepared from powder and tablets stored at 4 +/- 3 degrees C and 23 +/- 2 degrees C in amber glass prescription bottles. Levamisole 25 mg/mL solutions were prepared from commercially available 50-mg tablets or from pure powder in sterile water. Levamisole concentrations were determined in duplicate by a stability-indicating HPLC method at 0, 1, 2, 3, 4, 7, 14, 30, 60 and 90 days. The initial and final pHs of solutions were measured. The recovery of levamisole from tablets was 100 +/- 2.1%. No color or odour changes were observed during the study period. The oral solutions prepared from powder were stable at least 90 days stored at 4 and 23 degrees C. The oral solutions prepared from tablets were stable at least 90 days at 4 degrees C and 15 days when stored at 23 degrees C. The initial pH of solutions prepared from powder and tablets were 5.30 and 4.55, respectively. Initial and final pH values were significantly different (p<0.001) for the two solutions. Levamisole 25 mg/mL oral solutions can be prepared from tablets or powder with sterile water for irrigation and stored for 90 days under refrigeration, taking account of the lack of microbiological contamination.
NASA Astrophysics Data System (ADS)
Tsuji, K.; Kane, M. P.; Rahn, P. D.; Steindler, K. A.
Effects of 60Co irradiation for sterilization of veterinary mastitis products were evaluated. The mastitis products which were examined contained various combinations of antibiotics and steroids suspended in peanut oil vehicle. Bioburden data indicated that the unirradiated products were only occasionally contaminated with microorganisms. The D-values of the nonsterile product and environmental isolates were 0.028, 0.15, 0.017, and 0.018 Mrads for Aspergillus fumigatus, Penicillium oxalicum, Pseudomonas aeruginosa, and Pseudomonas maltophilia, respectively. The D-value of the biological indicator organism, Bacillus pumilus spores, in the vehicle was 0.27 Mrads. Thus, an irradiation dose of 1.6 Mrads would be sufficient to achieve six log cycles of destruction of the biological indicator organism. The minimum absorbed irradiation dose of 2.5 Mrads preferred by many countries for sterilization would achieve 9.3 log cycle destruction of the indicator organism and guarantee a probability of 1 × 10 -15 assurance for the most radio-resistant product isolate, Penicillium oxalicum. In order to examine short and long term chemical stabilities of active components, stability indicating high-performance liquid chromatographic (HPLC) methods for the determination of the following antibiotics and steroids were developed. They were: dihydrostreptomycin, neomycin, novobiocin, penicillin G, hydrocortisone acetate, hydrocortisone sodium succinate, and prednisolone. The rates of degradation and radiolytic degradation schemes for the majority of these compounds were elucidated. Formation of new compounds was not observed in these antibiotics and steroids upon 60Co irradiation. The compounds that increased by irradiation were inherently present in commercially available non-irradiated lots and/or can easily be formed by either acidic, basic, or thermal treatment.
Physicochemical compatibility of propofol with thiopental sodium.
Prankerd, R J; Jones, R D
1996-11-01
The physicochemical compatibility of propofol and thiopental sodium when mixed together in various ratios and stored was studied. Mixtures of propofol and thiopental sodium in five volume ratios from 1:3 to 3:1 were refrigerated (4 degrees C) for up to seven days and then centrifuged at 2000g for two hours. Droplet sizes were determined at intervals by optical microscopy and laser diffraction, and chemical stability of the 1:1 mixture was evaluated by high-performance liquid chromatography (HPLC). Optical microscopy and laser diffraction indicated negligible changes in droplet size within 48 hours of mixing. A small increase in the width of the frequency distribution of droplet sizes occurred 24-48 hours after mixing for the two mixtures with the lowest propofol concentration. Some coalescence of droplets occurred on centrifugation. These results indicated negligible formation of droplets that might cause embolism after i.v. injection of fresh mixtures (not more than six hours old). A yellow color appearing after 24-48 hours indicated anticipated chemical changes. HPLC of samples stored at 25 degrees C indicated clinically unimportant drug loss after six hours. The mixtures were considered physically stable for not more than 48 hours. Droplet size in mixtures of propofol and thiopental sodium did not increase until at least 24 hours. Drug loss from mixtures containing propofol 5 mg/mL and thiopental sodium 12.5 mg/mL was insignificant for up to eight hours.
NASA Technical Reports Server (NTRS)
Daniels, Vernie; Du, Jianping; Crady, Camille; Satterfield, Rick; Putcha, Lakshmi
2007-01-01
The purpose is to assess physical and chemical degradation of select pharmaceutical formulations from the Shuttle and ISS medical kits. Eleven pharmaceuticals dispensed as different dosage forms were selected based on their physical / chemical characteristics and susceptibility to environmental factors such as, temperature, humidity and light sensitivity. When available, ground-controls of the study medications with matching brand and lot numbers were used for comparison. Samples retrieved from flight were stored along with their matching controls in a temperature and humidity controlled environmental chamber. Temperature, humidity, and radiation data from the Shuttle and ISS were retrieved from onboard HOBO U12 Temp/RH Data Loggers, and from passive dosimeters. Physical and chemical analyses of the pharmaceuticals were conducted using validated United States Pharmacopeia (USP) methods. Results indicated degradation of 6 of the 11 formulations returned from space flights. Four formulations, Amoxicillin / Clavulanate, promethazine, sulfamethoxazole / trimethoprim, and ciprofloxacin tablets depicted discoloration after flight. Chemical content analyses using High or Ultra Performance Liquid Chromatography (HPLC / UPLC) methods revealed that dosage forms of Amoxicillin / Clavulanate, promethazine, sulfamethoxazole / trimethoprim, lidocaine, ciprofloxacin and mupirocin contained less than 95% of manufacturer s labeled claim of active drug compound. Shuttle and ISS environments affect stability and shelf life of certain mediations flown on these missions. Data analysis is in progress to examine the effect of specific space flight environmental factors on pharmaceutical stability. The degradation profiles generated from ground studies in analog environments will be useful in establishing predictive shelf-life profiles for medications intended for use during long-term space exploration missions.
Smith, Lori L; Francis, Kyle A; Johnson, Joseph T; Gaskill, Cynthia L
2017-11-01
Pre-column derivatization with 9-fluorenylmethyl chloroformate (FMOC-Cl) was determined to be effective for quantitation of fumonisins B 1 and B 2 in feed. Liquid-solid extraction, clean-up using immunoaffinity solid phase extraction chromatography, and FMOC-derivatization preceded analysis by reverse phase HPLC with fluorescence. Instrument response was unchanged in the presence of matrix, indicating no need to use matrix-matched calibrants. Furthermore, high method recoveries indicated calibrants do not need to undergo clean-up to account for analyte loss. Established method features include linear instrument response from 0.04-2.5µg/mL and stable derivatized calibrants over 7days. Fortified cornmeal method recoveries from 0.1-30.0μg/g were determined for FB 1 (75.1%-109%) and FB 2 (96.0%-115.2%). Inter-assay precision ranged from 1.0%-16.7%. Method accuracy was further confirmed using certified reference material. Inter-laboratory comparison with naturally-contaminated field corn demonstrated equivalent results with conventional derivatization. These results indicate FMOC derivatization is a suitable alternative for fumonisins B 1 and B 2 quantitation in corn-based feeds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cao, X; Xu, X; Cui, W; Xi, Z
2001-08-01
The development and certification of a coal fly ash certified reference material (CRM) for polycyclic aromatic hydrocarbons (PAH) is described; this is the first natural matrix CRM for organic environmental analysis in China. The homogeneity and stability of this material have been tested by HPLC. The concentrations of several PAH were determined by use of two independent, different methods--solvent extraction-HPLC analysis with UV detection coupled with fluorescence detection (FLD) and solvent extraction, isolation with a silica column, and GC analysis with flame ionization detection (FID). Five certified values were determined: phenanthrene 7.1 +/- 2.6 microg g(-1), anthracene 2.0 +/- 0.8 microg g(-1), fluoranthene 7.4 +/- 1.9 microg g(-1), pyrene 7 +/- 2 microg g(-1), and benzo[a]pyrene 1.3 +/- 0.3 microg g(-1). Reference values for several other PAH are also suggested.
Vito, Virgina De; Saba, Alessandro; Lee, Hong-Ki; Owen, Helen; Poapolathep, Amnart; Giorgi, Mario
2016-01-25
Grapiprant, a novel pharmacologically active ingredient, acts as a selective EP4 receptor antagonist whose physiological ligand is prostaglandin E2 (PGE2). It is currently under development for use in humans and dogs for the control of pain and inflammation associated with osteoarthritis. The aim of the present study was to develop an easy and sensitive method to quantify grapiprant in canine plasma and to apply the method in a canine patient. Several parameters, both in the extraction and detection method were evaluated. The final mobile phase consisted of ACN:AcONH4 (20 mM) solution, pH 4 (70:30, v/v) at a flow rate of 1 mL/min. The elution of grapiprant and IS (metoclopramide) was carried out in isocratic mode through a Synergi Polar-RP 80A analytical column (150 mm × 4.6 mm). The best excitation and emission wavelengths were 320 and 365 nm, respectively. Grapiprant was extracted from the plasma using CHCl3, which gave a recovery of 88.1 ± 10.22% and a lower limit of quantification (LLOQ) of 10 ng/mL. The method was validated in terms of linearity, limit of detection (LOD), LLOQ, selectivity, accuracy and precision, extraction recovery, stability, and inter-laboratory cross validation, according to international guidelines. The chromatographic runs were specific with no interfering peaks at the retention times of the analyte and IS, as confirmed by HPLC-MS experiments. In conclusion, this was a simple and effective method using HPLC-FL to detect grapiprant in plasma, which may be useful for future pharmacokinetic studies. Copyright © 2015 Elsevier B.V. All rights reserved.
Separation methods applicable to urinary creatine and creatinine.
Smith-Palmer, Truis
2002-12-05
Urinary creatinine has been analyzed for many years as an indicator of glomerular filtration rate. More recently, interest in studying the uptake of creatine as a result of creatine supplementation, a practice increasingly common among bodybuilders and athletes, has lead to a need to measure urinary creatine concentrations. Creatine levels are of the same order of magnitude as creatinine levels when subjects have recently ingested creatine, while somewhat elevated urinary creatine concentrations in non-supplementing subjects can be an indication of a degenerative disease of the muscle. Urinary creatine and creatinine can be analyzed by HPLC using a variety of columns. Detection methods include absorption, fluorescence after post-column derivatization, and mass spectrometry, and some methods have been automated. Capillary zone electrophoresis and micellar electrokinetic capillary chromatography have also been used to analyze urinary creatine and creatinine. Creatine and creatinine have also been analyzed in serum and tissue using HPLC and CE, and many of these separations could also be applicable to urinary analysis.
Tatebe, Chiye; Ohtsuki, Takashi; Fujita, Tsuyoshi; Nishiyama, Koji; Itoh, Sumio; Sugimoto, Naoki; Kubota, Hiroki; Tada, Atsuko; Sato, Kyoko; Akiyama, Hiroshi
2017-12-15
The main subsidiary color of structure in Food Red No. 106 (R106) was identified to be a desethyl derivative (R106-SubA). High-performance liquid chromatography (HPLC) was performed for the quantitative determination of benzaldehyde-2,4-disulfonic acid, N,N-diethyl-m-aminophenol, leuco acid, pyrone acid, R106-SubA, etc. in R106. An ammonium acetate solution (20mM) and acetonitrile:water (7:3) were used to stabilize the retention time of the HPLC analytes. The linearity of the calibration curves was in the range of 0.05-10μg/mL, with good correlation coefficients (R 2 >0.9983). The recoveries of impurities at levels 0.1%, 0.5% and 1% ranged from 94.2% to 106.6% with relative standard deviations of 0.1%-1.0%. While surveying commercial R106, the amounts obtained by area% determination were similar to those obtained by the calibration-curve determination. The area% determination by HPLC for the determinations of impurities in R106 is a simple and reliable method and can be applied in routine analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
García-Rodríguez, M Valle; López-Córcoles, Horacio; Alonso, Gonzalo L; Pappas, Christos S; Polissiou, Moschos G; Tarantilis, Petros A
2017-04-15
The aim of this work was a comparison of the ISO 3632 (2011) method and an HPLC-DAD method for safranal quantity determination in saffron. Samples from different origins were analysed by UV-vis according to ISO 3632 (2011) and by HPLC-DAD. Both methods were compared, and there was no correlation between the safranal content obtained by UV-vis and HPLC-DAD. An over-estimation in the UV-vis experiment was observed, which was related to the cis-crocetin esters content, as well as other compounds. The results demonstrated that there was no relationship between ISO quality categories and safranal content using HPLC-DAD. Therefore, HPLC-DAD might be preferable to UV-vis for determining the safranal content and the classification of saffron for commercial purposes. In addition, HPLC-DAD was adequate for determining the three foremost parameters that define the quality of saffron (crocetin esters, picrocrocin and safranal); therefore, this approach could be included in the ISO 3632 method (2011). Copyright © 2016 Elsevier Ltd. All rights reserved.
Utrera, Mariana; Morcuende, David; Rodríguez-Carpena, Javier-Germán; Estévez, Mario
2011-12-01
Precise methodologies for the routine analysis of particular protein carbonyls are required in order to progress in this topic of increasing interest. The present paper originally describes the application of an improved method for the detection of α-aminoadipic and γ-glutamic semialdehydes in a meat system by using a derivatization procedure with p-amino-benzoic acid (ABA) followed by fluorescent high-performance liquid chromatography (HPLC). The method development comprises i) the description of a simple HPLC program which allows the efficient separation of the ABA and the key standard compounds and ii) the optimization of the procedure for the preparation of a meat sample in order to maximize the fluorescent signal for both protein carbonyls. Furthermore, the suitability of this method is evaluated by applying the technique to porcine burger patties. The present procedure enables an accurate and relatively fast analysis of both semialdehydes in meat samples in which they could play an interesting role as reliable indicators of protein oxidation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Thomson, C E; Gray, M R; Baxter, M P
1997-05-01
Capillary electrophoresis (CE) has been used as part of a validation experiment designed to prove the specificity of high performance liquid chromatography (HPLC) methods used for analysis of mitoguazone dihydrochloride drug substance. Data regarding accuracy, precision and sensitivity of the CE methods are presented as well as a comparison of results obtained from CE, HPLC and thin-layer chromatography (TLC) analysis of samples stressed under a variety of conditions. It was concluded that, not only were the HPLC methods being investigated specific, but that CE could potentially be used to replace HPLC for the routine assay of mitoguazone dihydrochloride.
Zhang, YanPing; Kawedia, Jitesh D; Myers, Alan L; McIntyre, Chelsey M; Anderson, Peter M; Kramer, Mark A; Culotta, Kirk S
2014-02-01
Ifosfamide plus mesna have been used recently in a high-dose regimen that allows this chemotherapy to be given to outpatients with less toxicity over 14 days using a portable pump. However, there is a need for published stability information. The aim of this study was to investigate the physicochemical stability of ifosfamide with mesna in normal saline at room temperature over a prolonged period of 14 days. Infusion solutions of 1:1 ifosfamide and mesna at final concentrations of 10, 20 and 30 mg/mL were prepared with 0.9% sodium chloride in PVC bags. Solutions were stored at room temperature. Concentrations of ifosfamide and mesna were measured at 0 and 1, 3, 7 and 14 days using a stability-indicating reversed phase high-performance liquid chromatography (HPLC) assay with ultraviolet detection. Ifosfamide and mesna were both physicochemically stable (>94%) for 14 days in all tested infusion solutions (10, 20 and 30 mg/mL). Our stability data indicate that ifosfamide and mesna (1:1) combination can be administered as a prolonged continuous infusion with portable pump in an outpatient setting without replacement of the infusion bag. We suggest 20 mg/mL as a reasonable concentration for infusion rates of about 2-4 cc/hr over prolonged periods of time.
Temperature dependence of autoxidation of perilla oil and tocopherol degradation.
Wang, Seonyeong; Hwang, Hyunsuk; Yoon, Sukhoo; Choe, Eunok
2010-08-01
Temperature dependence of the autoxidation of perilla oil and tocopherol degradation was studied with corn oil as a reference. The oils were oxidized in the dark at 20, 40, 60, and 80 degrees C. Oil oxidation was determined by peroxide and conjugated dienoic acid values. Tocopherols in the oils were quantified by HPLC. The oxidation of both oils increased with oxidation time and temperature. Induction periods for oil autoxidation decreased with temperature, and were longer in corn oil than in perilla oil, indicating higher sensitivity of perilla oil to oxidation. However, time lag for tocopherol degradation was longer in perilla oil, indicating higher stability of tocopherols in perilla oil than in corn oil. Activation energies for oil autoxidation and tocopherol degradation were higher in perilla oil (23.9 to 24.2, 9.8 kcal/mol, respectively) than in corn oil (12.5 to 15.8, 8.8 kcal/mol, respectively) indicating higher temperature-dependence in perilla oil. Higher stability of tocopherols in perilla oil was highly related with polyphenols. The study suggests that more careful temperature control is required to decrease the autoxidation of perilla oil than that of corn oil, and polyphenols contributed to the oxidative stability of perilla oil by protecting tocopherols from degradation, especially at the early stage of oil autoxidation.
Abdallah, Inas A; Hammell, Dana C; Hassan, Hazem E; Stinchcomb, Audra L
2016-06-05
Norelgestromin/ethinyl estradiol is a progestin/estrogen combination hormonal contraceptive indicated for the prevention of pregnancy in women. The very poor solubility and wettability of these drugs, along with their high potency (adsorption issues), give rise to difficulties in designing intravenous (IV) formulations to assess absolute bioavailability of products containing both drugs. The purpose of this study was to develop an IV formulation, evaluate its stability under different conditions and evaluate its compatibility with IV sets for potential use in absolute bioavailability studies in humans. Also, a selective high-performance liquid chromatography (HPLC) method for quantification of ethinyl estradiol and norelgestromin in polysorbate 80 matrix was developed and validated. Norelgestromin/ethinyl estradiol IV solution was prepared using sterile water for injection with 2.5% ethanol and 2.5% polysorbate 80 as a cosolvent/surfactant system to obtain a final drug solution of 25μg ethinyl estradiol and 252μg norelgestromin from a concentrated stock drug solution. The stabilities of the concentrated stock and IV solutions were assessed after storing them in the refrigerator (3.7±0.6°C) and at room temperature (19.5±0.5°C), respectively. Additional studies were conducted to examine the stability of the IV solution using an Alarias(®) low sorbing IV administration set with and without an inline filter. The solution was allowed to drip at 1mL/min over a 60min period. Samples were obtained at the beginning, middle and end of the 60min duration. The chemical stability was evaluated for up to 10 days. Norelgestromin and ethinyl estradiol concentration, purity, and degradant levels were determined using the HPLC method. The norelgestromin/ethinyl estradiol IV formulation met the chemical stability criteria when tested on day 1 through day 9 (216h). Norelgestromin concentrations assayed in stock and IV solutions were in the range of 90.0-98.5% and 90.9-98.8% after 9 days, respectively. As for ethinyl estradiol, the assayed concentrations were in the range of 91.8-100.9% and 92.7-100.8% for the stock and IV solutions, respectively. The administration set was found to be compatible with both drugs; the assayed concentrations were in the range of 99.2-100.3% for norelgestromin and 96.3-102.7% for ethinyl estradiol, but the inline filter showed some adsorption of ethinyl estradiol; where the assayed concentrations were in the range of 98.1-99.8% for norelgestromin and 95.9-97.4% for ethinyl estradiol. The present study provided evidence supporting the suitability of an intravenous formulation for norelgestromin/ethinyl estradiol using ethanol/polysorbate 80 as a cosolvent/surfactant system. Both IV and concentrated stock solutions when stored at room temperature and refrigeration, respectively, were found to be chemically stable up to 9 days. These results indicated that this formulation is chemically stable and can be used over the time period tested. This IV formulation can be used to evaluate the absolute bioavailability of products containing norelgestromin and ethinyl estradiol provided that microbial testing of the IV formulation is performed. Copyright © 2016. Published by Elsevier B.V.
Chrzanowski, Frank
2008-01-01
Practical examples of preformulation support of the form selected for formulation development are provided using several drug substances (DSs). The examples include determination of the solubilities vs. pH particularly for the range pH 1 to 8 because of its relationship to gastrointestinal (GI) conditions and dissolution method development. The advantages of equilibrium solubility and trial solubility methods are described. The equilibrium method is related to detecting polymorphism and the trial solubility method, to simplifying difficult solubility problems. An example of two polymorphs existing in mixtures of DS is presented in which one of the forms is very unstable. Accelerating stability studies are used in conjunction with HPLC and quantitative X-ray powder diffraction (QXRD) to demonstrate the differences in chemical and polymorphic stabilities. The results from two model excipient compatibility methods are compared to determine which has better predictive accuracy for room temperature stability. A DSC (calorimetric) method and an isothermal stress with quantitative analysis (ISQA) method that simulates wet granulation conditions were compared using a 2 year room temperature sample set as reference. An example of a pH stability profile for understanding stability and extrapolating stability to other environments is provided. The pH-stability of omeprazole and lansoprazole, which are extremely unstable in acidic and even mildly acidic conditions, are related to the formulation of delayed release dosage forms and the resolution of the problem associated with free carboxyl groups from the enteric coating polymers reacting with the DSs. Dissolution method requirements for CR dosage forms are discussed. The applicability of a modified disintegration time (DT) apparatus for supporting CR dosage form development of a pH sensitive DS at a specific pH such as duodenal pH 5.6 is related. This method is applicable for DSs such as peptides, proteins, enzymes and natural products where physical observation can be used in place of a difficult to perform analytical method, saving resources and providing rapid preformulation support.
Nagachinta, Supakana; Akoh, Casimir C
2013-05-08
Structured lipid (SL) enriched with arachidonic (ARA) and docosahexaenoic (DHA) acids was produced from tripalmitin using Lipozyme TL IM. The effects of acyl donors, that is, free fatty acids vs fatty acid ethyl esters, on the reactions were compared. The highest total incorporation of ARA and DHA was obtained when the reaction continued for 24 h, at a substrate mole ratio of 9, using free fatty acids as acyl donors (acidolysis). The SL prepared by a large-scale acidolysis reaction contained 17.69 ± 0.09% total ARA, 10.75 ± 0.15% total DHA, and 48.53 ± 1.40% sn-2 palmitic acid. SL thermograms exhibited multiple peaks indicating complexity of the triacylglycerol (TAG) distribution. RP-HPLC analysis of SL revealed nine of 26 TAG molecular species that were similar to those of human milk fat. Powdered infant formulas containing the SL were prepared by wet-mixing/spray-drying and dry-blending methods. Formula prepared with microencapsulated SL and the dry-blending method had better oxidative stability and color quality.
Dai, Sheng-Yun; Xu, Bing; Shi, Xin-Yuan; Xu, Xiang; Sun, Ying-Qiang; Qiao, Yan-Jiang
2017-03-01
This study is aimed to propose a continual improvement strategy based on quality by design (QbD). An ultra high performance liquid chromatography (UPLC) method was developed to accomplish the method transformation from HPLC to UPLC of Panax notogineng saponins (PNS) and achieve the continual improvement of PNS based on QbD, for example. Plackett-Burman screening design and Box-Behnken optimization design were employed to further understand the relationship between the critical method parameters (CMPs) and critical method attributes (CMAs). And then the Bayesian design space was built. The separation degree of the critical peaks (ginsenoside Rg₁ and ginsenoside Re) was over 2.0 and the analysis time was less than 17 min by a method chosen from the design space with 20% of the initial concentration of the acetonitrile, 10 min of the isocratic time and 6%•min⁻¹ of the gradient slope. At last, the optimum method was validated by accuracy profile. Based on the same analytical target profile (ATP), the comparison of HPLC and UPLC including chromatograph method, CMA identification, CMP-CMA model and system suitability test (SST) indicated that the UPLC method could shorten the analysis time, improve the critical separation and satisfy the requirement of the SST. In all, HPLC method could be replaced by UPLC for the quantity analysis of PNS. Copyright© by the Chinese Pharmaceutical Association.
Zhao, Mingming; Li, Guofei; Qiu, Feng; Sun, Yaxin; Xu, Yinghong; Zhao, Limei
2016-04-01
Valproic acid (VPA), a widely used antiepileptic drug, has a narrow therapeutic range of 50-100 mcg/mL and shows large individual variability. It is very important to monitor the trough concentration of VPA using a reliable method. Therefore, the aim of this study was to develop and validate a rapid ultraperformance liquid chromatographic-mass spectrometry (UPLC-MS) method for quantification of VPA in human serum and to compare with fluorescence polarization immunoassay (FPIA), chemiluminescence microparticle immunoassay (CMIA), and high-performance liquid chromatography (HPLC) methods. The method included extraction of VPA in serum by deproteinization with acetonitrile. The analysis was performed using an EC-C18 column (2.7 μm, 4.6 × 50 mm) under isocratic conditions with a mobile phase of acetonitrile/water (containing 0.1% formic acid) (45/55, vol/vol) at a flow rate of 0.6 mL/min. The detection was performed on a triple-quadrupole tandem mass spectrometer using an electrospary probe in the negative ionization mode. The method was validated by studies of selectivity, linearity, lower limit of quantification, accuracy, precision, recovery, matrix effect, and stability. Furthermore, all the 4 methods including FPIA, CMIA, and HPLC were subsequently used to assay the VPA concentration in 498 clinical serum samples collected from patients who received VPA. These methods were compared by Deming regression and Bland-Altman analysis. The retention time of VPA was 2.09 minutes. The calibration curve was linear over the concentration range of 1-200 mcg/mL, with a lower limit of quantification of 1 mcg/mL. The interday and intraday precision (RSD %) was less than 4.6% and 4.5%, respectively, and the accuracy (RE %) was below 7.9%. The recoveries and matrix effect of VPA at concentrations of 2, 50, and 160 mcg/mL met the requirement for the analysis of biological samples. No obvious degradation of VPA was observed under various storage conditions including room temperature for 12 hour, 3 freeze-thaw cycles, and -20°C for 3 months. Regression analysis showed that the correlation coefficients for the UPLC-MS versus FPIA, CMIA, and HPLC were 0.989, 0.988, and 0.987, respectively. The results of agreement tests between UPLC-MS and other methods showed that the mean difference of UPLC-MS and FPIA was -1.4 mcg/mL and 95% confidence interval of -7.7 to 4.9 mcg/mL, and the values for UPLC-MS and CMIA were -0.8 mcg/mL and -7.5 to 5.8 mcg/mL, for UPLC-MS and HPLC were 1.1 mcg/mL and -5.7 to 7.9 mcg/mL. The rapid UPLC-MS method we developed showed a good analytical performance required for therapeutic drug monitoring, leading to potential improvements in patient care and laboratory management. Compared with the FPIA, CMIA, and HPLC methods, the UPLC-MS method correlated well and displayed comparable VPA concentrations.
Stability of ramipril in water, apple juice, and applesauce.
Allen, L V; Stiles, M L; Prince, S J; McLaury, H J; Sylvestri, M F
1995-11-01
The stability of ramipril in water, in apple juice, and in applesauce was studied. The contents of a single capsule each of ramipril 1.25, 2.5, and 5 mg were mixed in glass beakers with 120 mL of deionized and filtered water, apple juice, or applesauce. Each mixture was apportioned into 10 120-mL amber polyethylene terephthalate (PET) containers. Five of the containers in each set were stored at 23 degrees C, and samples were taken at 0, 1, 2, 6, 12, and 24 hours. The other five containers were stored at 3 degrees C, and samples were taken at 4, 8, 12, 24, and 48 hours. The samples were analyzed for ramipril concentration by stability-indicating high-performance liquid chromatography (HPLC). The quantity of drug remaining in the PET container after "administration" was determined by mixing the contents of single 5-mg ramipril capsules with 60 mL of apple juice, pouring the mixture into a waste receptacle, rinsing the PET container three separate times with 10 mL of water, and analyzing the pooled fluid from these rinses for ramipril concentration by HPLC. Under no condition did the percentage of ramipril remaining drop below 90%. No peaks for degradation products appeared in the chromatograms. The mean +/- S.D. quantity of ramipril remaining in the PET containers after draining was 0.3 +/- 0.3% for the apple juice. Ramipril from 1.25-, 2.5-, and 5-mg capsules mixed in water, in apple juice, and in applesauce was stable for 24 hours at 23 degrees C and for 48 hours at 3 degrees C.
Stability of an extemporaneous alcohol-free melatonin suspension.
Johnson, Cary E; Cober, Mary Petrea; Thome, Tennille; Rouse, Emily
2011-03-01
The stability of alcohol-free oral suspensions of melatonin 1 mg/mL, extemporaneously prepared from two commercially available melatonin tablet products, was studied. Four 1-mg/mL melatonin suspensions were prepared. Formulations A and B contained 20 crushed 3-mg tablets of melatonin combined with a 1:1 mixture of Ora-Plus and either Ora-Sweet or Ora-Sweet SF to produce a volume of 60 mL. Formulations C and D were prepared by crushing 20 combination tablets containing melatonin 3 mg and pyridoxine hydrochloride 10 mg and then combining the powder with a 1:1 mixture of Ora-Plus and either Ora-Sweet or Ora-Sweet SF to produce a 60-mL volume. The suspensions were prepared in triplicate and stored at room temperature in amber plastic prescription bottles. Immediately after preparation and on days 7, 15, 30, 60, and 90, the samples were assayed in duplicate by stability-indicating high-performance liquid chromatography (HPLC). The samples were also evaluated for any changes in color, odor, and taste. HPLC analysis demonstrated that at least 94% of the initial melatonin concentration in formulations A and B, and at least 98% of that in formulations C and D, remained throughout the 90-day study period. Detectable changes in color, odor, or taste occurred in all of the formulations. Extemporaneously prepared, alcohol-free, 1-mg/mL suspensions of melatonin and melatonin-pyridoxine hydrochloride in a 1:1 mixture of Ora-Plus and either Ora Sweet or Ora Sweet SF were stable for at least 90 days when stored in 2-oz amber plastic bottles at room temperature.
Multiple fingerprinting analyses in quality control of Cassiae Semen polysaccharides.
Cheng, Jing; He, Siyu; Wan, Qiang; Jing, Pu
2018-03-01
Quality control issue overshadows potential health benefits of Cassiae Semen due to the analytic limitations. In this study, multiple-fingerprint analysis integrated with several chemometrics was performed to assess the polysaccharide quality of Cassiae Semen harvested from different locations. FT-IR, HPLC, and GC fingerprints of polysaccharide extracts from the authentic source were established as standard profiles, applying to assess the quality of foreign sources. Analyses of FT-IR fingerprints of polysaccharide extracts using either Pearson correlation analysis or principal component analysis (PCA), or HPLC fingerprints of partially hydrolyzed polysaccharides with PCA, distinguished the foreign sources from the authentic source. However, HPLC or GC fingerprints of completely hydrolyzed polysaccharides couldn't identify all foreign sources and the methodology using GC is quite limited in determining the monosaccharide composition. This indicates that FT-IR/HPLC fingerprints of non/partially-hydrolyzed polysaccharides, respectively, accompanied by multiple chemometrics methods, might be potentially applied in detecting and differentiating sources of Cassiae Semen. Copyright © 2018 Elsevier B.V. All rights reserved.
Theodoridis, Georgios
2006-01-18
Protein-drug interactions of seven common pharmaceuticals were studied using solid-phase microextraction (SPME). SPME can be used in such investigations on the condition that no analyte depletion occurs. In multi-compartment systems (e.g. a proteinaceous matrix) only the free portion of the analyte is able to partition into the SPME fiber. In addition if no sample depletion occurs, the bound drug-free drug equilibria are not disturbed. In the present study seven pharmaceuticals (quinine, quinidine, naproxen, ciprofloxacin, haloperidol, paclitaxel and nortriptyline) were assayed by SPME. For quantitative purposes SPME was validated first in the absence of proteins. Calibration curves were constructed for each drug by HPLC-fluorescence and HPLC-UV analysis. SPME was combined to HPLC off-line, desorption occurring in HPLC inserts filled with 200 microL methanol. Binding of each drug to human serum albumin was studied independently. Experimental results were in agreement with literature data and ultrafiltration experiments, indicating the feasibility of the method for such bioanalytical purposes.
D'Avolio, Antonio; Simiele, Marco; Siccardi, Marco; Baietto, Lorena; Sciandra, Mauro; Bonora, Stefano; Di Perri, Giovanni
2010-09-05
A bioanalytical method for the determination of most commonly prescribed protease inhibitors (saquinavir, atazanavir, amprenavir, darunavir, lopinavir and ritonavir) and non-nucleoside reverse transcriptase inhibitors (etravirine, efavirenz and nevirapine) was developed, modifying our previous HPLC-MS chromatographic run, validated and a complete short and long term stability evaluation was carried out. One hundred microlitres of plasma were distributed on a collection glass paper filter (Glass-Microfibre from Sartorius), then the filter underwent thermal treatment, both for drying and for HIV inactivation, and stored at room temperature, 4 degrees C and -20 degrees C. The analytes were extracted from the filter disc using tert-butylmethylether with basic pH, after the addition of the internal standards quinoxaline. The extract was dried, reconstituted and the chromatographic separation was performed on a reversed-phase C-18 column (150 mm x 2.0 mm) and the analytes were quantified using a single quadrupole mass spectrometer. The method was validated considering the concentration ranges encountered in clinical trials and the routine clinical practice. The assay was linear over the concentration ranges tested. Accuracies ranged from 92.1% to 111.9% and intra-day and inter-day relative standard deviation for all quality control levels ranged from 0.2 to 12.9 and 3.1 to 14.4, respectively. Analytes in dried plasma spots were stable for longer time when dried/inactivation step was carried out before storage compared to samples not dried/inactivated before the analysis. The dried/inactivation step allows shipment of samples at room temperature without any risks, therefore the developed and validated method enables an easy and cheap sample shipment for therapeutic drug monitoring and pharmacokinetic studies. 2010 Elsevier B.V. All rights reserved.
Erfani, Mostafa; Doroudi, Alireza; Hadisi, Leila; Andishmand, Ali; Mirshojaei, Seyedeh Fatemeh; Shafiei, Mohammad
2013-10-01
Even in recent decades, one of the major causes of death and unhealthiness in the whole world is infection and inflammation. The use of radiopharmaceuticals is a powerful tool in managing the patients with infectious diseases. In this study, ofloxacin as a second-generation fluoroquinolone has been labeled with [(99m) Tc(CO)3 (H2 O)3 ](+) core to formulate a suitable infection imaging agent. Ofloxacin was radiolabeled with (99m) Tc using carbonyl core. Radioligand chemical analysis involved HPLC methods. Radioconjugate stability and lipophilicity were determined. Binding with Staphylococcus aureus and biodistribution in infected mice for labeled compound were studied. The radioligand was characterized by HPLC, and its radiochemical purity was more than 90%. In vitro stability studies have shown the complex was stable at least 6 h after labeling at room temperature. The n-octanol/water partition coefficient experiment exhibited logP = 1.52 ± 0.21 for (99m) Tc(CO)3 -ofloxacin. The complex showed specific binding to S. aureus. Biodistribution results showed that radioligand had high accumulation in the infected muscle in a mice (T/NT = 2.02 ± 0.12 at 4 h postinjection). On the basis of stability and infection site uptake ratio, suitability of this complex as a radiotracer for imaging of infections is recognized. Copyright © 2013 John Wiley & Sons, Ltd.
A stability-study of expired ampoules manufactured more than 40 years ago.
Zilker, Markus; Sörgel, Fritz; Holzgrabe, Ulrike
2018-02-20
Pharmaceutical manufacturers have to study the stability of drug products before marketing according to ICH guideline Q1A(R2); data of those investigations aim to set expiry dates. The expiry date on the container of a remedy assures the physician and the patient a stability of the drug in its formulation i.e. within a specification of 95-105%. Only few studies show that shelf-lives of pharmaceutical products are often longer than expiration dates. The objective of the study presented here was determining the content of nine expired ampoules manufactured in the last century and identifying the impurity profile by means of HPLC-UV and HPLC-MS, respectively. The ampoules are part of the "PEAK-collection" of long expired finished pharmaceutical products at IBMP, Nürnberg-Heroldsberg, and consists among others of epinephrine (Suprarenin and Adrenalin in Oil), etilefrine (Effortil ® ), synephrine (Sympatol ® ), caffeine and procaine (Impletol), caffeine and sodium salicylate (Caffeinum Salicylicum), dipyridamole (Persantin ® ), furosemide (Lasix ® ), and metamizole (Novalgin ® ). For chromatographic investigations methods of the European Pharmacopoeia for related substances were used; for determining the content, they were validated for linearity, precision, and accuracy. The results were compared to current reference ampoules. Five out of nine ampoules were still within the specified content limits. In Suprarenin and Adrenalin in Oil, both containing epinephrine, Impletol (procaine), and Persantin ® (dipyridamole) contents were decreased to 70%, 74%, 79%, and 86%, respectively, and therefore out of specification. Copyright © 2017 Elsevier B.V. All rights reserved.
Du, Hongying; Wang, Jie; Yao, Xiaojun; Hu, Zhide
2009-01-01
The heuristic method (HM) and support vector machine (SVM) were used to construct quantitative structure-retention relationship models by a series of compounds to predict the gradient retention times of reversed-phase high-performance liquid chromatography (HPLC) in three different columns. The aims of this investigation were to predict the retention times of multifarious compounds, to find the main properties of the three columns, and to indicate the theory of separation procedures. In our method, we correlated the retention times of many diverse structural analytes in three columns (Symmetry C18, Chromolith, and SG-MIX) with their representative molecular descriptors, calculated from the molecular structures alone. HM was used to select the most important molecular descriptors and build linear regression models. Furthermore, non-linear regression models were built using the SVM method; the performance of the SVM models were better than that of the HM models, and the prediction results were in good agreement with the experimental values. This paper could give some insights into the factors that were likely to govern the gradient retention process of the three investigated HPLC columns, which could theoretically supervise the practical experiment.
High-pressure liquid chromatography analysis of antibiotic susceptibility disks.
Hagel, R B; Waysek, E H; Cort, W M
1979-01-01
The analysis of antibiotic susceptibility disks by high-pressure liquid chromatography (HPLC) was investigated. Methods are presented for the potency determination of mecillinam, ampicillin, carbenicillin, and cephalothin alone and in various combinations. Good agreement between HPLC and microbiological data is observed for potency determinations with recoveries of greater than 95%. Relative standard deviations of lower than 2% are recorded for each HPLC method. HPLC methods offer improved accuracy and greater precision when compared to the standard microbiological methods of analysis for susceptibility disks. PMID:507793
Marceau, Eric; Yaylayan, Varoujan A
2009-11-25
The alpha-dicarbonyl contents of commercial honey samples from different botanical origins were analyzed as their quinoxaline derivatives using HPLC-DAD, HPLC-MS, HPLC-MS/MS, and HPLC-TOF-MS. A total of nine such compounds were detected, of which five were previously reported in honey (glucosone, 3-deoxyglucosone, glyoxal, methylglyoxal, and 2,3-butanedione) and three were reported only from sources other than honey [3-deoxypentulose, 1,4-dideoxyhexulose, and 3,4-dideoxyglucoson-3-ene (3,4-DGE)]. An unknown alpha-dicarbonyl compound was also tentatively identified as an oxidation product of 3,4-DGE and was termed 3,4-dideoxyglucosone-3,5-diene (3,4-DGD). Only glyoxal (0.3-1.3 mg/kg), methylglyoxal (0.8-33 mg/kg), and 2,3-butanedione (0-4.3 mg/kg) were quantified in all honey samples. Furthermore, analysis of the alpha-dicarbonyl profile of various honey samples indicated that certain alpha-dicarbonyl compounds are found in specific honey samples in much higher proportions relative to the average amounts. The free radical scavenging activity as measured by DPPH method has also indicated that the darker honey samples such as buckwheat, manuka, blueberry, and eucalyptus had higher antioxidant properties compared to lighter-colored samples.
Li, Ke; Wang, Shudong
2005-05-01
A simple and reliable high performance liquid chromatographic (HPLC) method has been developed and validated for the study of fingerprint chromatograms of extracts from the leaves of Tripterygium wilfordii Hook. F. (TWHF) and for controlling the quality of the herb. HPLC separation of the extracts was performed on a Lichrospher RP-18 column and detected by ultraviolet absorbance at 210 nm. The column temperature was maintained at 35 degrees C. A mobile phase composed of acetonitrile:H2O in the ratio of 39:61 (v/v) was found to be most suitable for this separation at a flow rate of 0.8 mL/min with isocratic elution. Under the chromatographic conditions described, the peak profile of the 10 components collected within 35 min made up the fingerprint of the extracts from leaves of TWHF with universal features. The fingerprint chromatograms had a good stability, precision, and reproducibility. The similarity of the extracts from leaves of TWHF collected in summer and winter was studied with triptolide as a reference peak. The method is suitable for differentiation of extracts from the leaves of TWHF, and can be used as a quality control method for this herb.
Quantitative high-performance liquid chromatography of nucleosides in biological materials.
Gehrke, C W; Kuo, K C; Davis, G E; Suits, R D; Waalkes, T P; Borek, E
1978-03-21
A rigorous, comprehensive, and reliable reversed-phase high-performance liquid chromatographic (HPLC) method has been developed for the analysis of ribonucleosides in urine (psi, m1A, m1I, m2G, A, m2(2)G). An initial isolation of ribonucleosides with an affinity gel containing an immobilized phenylboronic acid was used to improve selectivity and sensitivity. Response for all nucleosides was linear from 0.1 to 50 nmoles injected and good quantitation was obtained for 25 microliter or less of sample placed on the HPLC column. Excellent precision of analysis for urinary nucleosides was achieved on matrix dependent and independent samples, and the high resolution of the reversed-phase column allowed the complete separation of 9 nucleosides from other unidentified UV absorbing components at the 1-ng level. Supporting experimental data are presented on precision, recovery, chromatographic methods, minimum detection limit, retention time, relative molar response, sample clean-up, stability of nucleosides, boronate gel capacity, and application to analysis of urine from patients with leukemia and breast cancer. This method is now being used routinely for the determination of the concentration and ratios of nucleosides in urine from patients with different types of cancer and in chemotherapy response studies.
Krstanović, Marina; Frkanec, Ruza; Vranesić, Branka; Ljevaković, Durdica; Sporec, Vesna; Tomasić, Jelka
2002-06-25
The reversed-phase HPLC method using UV detection was developed for the determination of (a) immunostimulating peptidoglycan monomers represented by the basic structure GlcNAc-MurNAc-L-Ala-D-isoGln-meso-DAP(omegaNH(2))-D-Ala-D-Ala (PGM) and two more lipophilic derivatives, Boc-Tyr-PGM and (Ada-1-yl)-CH(2)-CO-PGM, (b) two diastereomeric immunostimulating adamantyltripeptides L- and D-(adamant-2-yl)-Gly-L-Ala-D-isoGln and (c) peptides obtained by the enzyme hydrolyses of peptidoglycans and related peptides. The enzymes used, N-acetylmuramyl-L-alanine amidase and an L,D-aminopeptidase are present in mammalian sera and are involved in the metabolism of peptidoglycans and related peptides. Appropriate solvent systems were chosen with regard to structure and lipophilicity of each compound. As well, different gradient systems within the same solvent system had to be applied in order to achieve satisfactory separation and retention time. HPLC separation was developed with the aim to use this method for the study of the stability of the tested compounds, the purity during preparation and isolation and for following the enzyme hydrolyses.
Rabinovich-Guilatt, Laura; Dubernet, Catherine; Gaudin, Karen; Lambert, Gregory; Couvreur, Patrick; Chaminade, Pierre
2005-09-01
The aim of this work was to develop a simple high-performance liquid chromatography (HPLC) technique with evaporative light scattering detection (ELSD) for the separation and quantification of the major phospholipid (PL) and lysophospholipid (LPL) classes contained in a pharmaceutical phospholipid-based emulsion. In the established method, phosphatidylcholine (PC), phosphatidylethanolamine (PE), sphingomyeline (SM), lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) were separated with a PVA-Sil stationary phase and a binary gradient from pure chloroform to methanol:water (94:6 v/v) at 3.4%/min. The ELSD detection was enhanced using 0.1% triethylamine and formic acid in each gradient mobile phases. Factors such as stationary phase and ELSD drift tube temperature were optimized, concluding in optimal temperatures of 25 degrees C for separation and 50 degrees C for evaporation. This HPLC-ELSD method was then applied to a PL-emulsion exposed to autoclaving and accelerated thermal conditions at 50 degrees C. Hydrolysis of PC and PE followed first-order kinetics, representing only 45% of the total lipid mass after 3 months. The chemical stability was correlated to commonly measured formulation physical and physico-chemical parameters such as droplet size, emulsion pH and zeta-potential.
Mendez, Andreas S L; Steppe, Martin; Schapoval, Elfrides E S
2003-12-04
A high-performance liquid chromatographic method and a UV spectrophotometric method for the quantitative determination of meropenem, a highly active carbapenem antibiotic, in powder for injection were developed in present work. The parameters linearity, precision, accuracy, specificity, robustness, limit of detection and limit of quantitation were studied according to International Conference on Harmonization guidelines. Chromatography was carried out by reversed-phase technique on an RP-18 column with a mobile phase composed of 30 mM monobasic phosphate buffer and acetonitrile (90:10; v/v), adjusted to pH 3.0 with orthophosphoric acid. The UV spectrophotometric method was performed at 298 nm. The samples were prepared in water and the stability of meropenem in aqueous solution at 4 and 25 degrees C was studied. The results were satisfactory with good stability after 24 h at 4 degrees C. Statistical analysis by Student's t-test showed no significant difference between the results obtained by the two methods. The proposed methods are highly sensitive, precise and accurate and can be used for the reliable quantitation of meropenem in pharmaceutical dosage form.
PPM mixtures of formaldehyde in gas cylinders: Stability and analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, K.C.; Miller, S.B.; Patterson, L.M.
1999-07-01
Scott Specialty Gases has been successful in producing stable calibration gases of formaldehyde at low concentration. Critical to this success has been the development of a treatment process for high pressure aluminum cylinders. Formaldehyde cylinders having concentrations of 20ppm and 4ppm were found to show only small decline in concentrations over a period of approximately 12 months. Since no NIST traceable formaldehyde standards (or Standard Reference Material) are available, all Scott's formaldehyde cylinders were originally certified by traditional impinger method. This method involves an extremely tedious purification procedure for 2,4-dinitrophenylhydrazine (2,4-DNPH). A modified version of the impinger method has beenmore » developed and does not require extensive reagent purification for formaldehyde analysis. Extremely low formaldehyde blanks have been obtained with the modified method. The HPLC conditions in the original method were used for chromatographic separations. The modified method results in a lower analytical uncertainty for the formaldehyde standard mixtures. Consequently, it is possible to discern small differences between analytical results that are important for stability study.« less
Bao, Yimei; Mo, Xiaopeng; Xu, Xiaoying; He, Yuyu; Xu, Xiao; An, Haoyun
2008-11-04
Bis(4-fluorobenzyl)trisulfide, fluorapacin, has been extensively developed as a promising new anticancer drug candidate. Its degradation products were identified and verified by the newly synthesized compounds bis(4-fluorobenzyl)disulfide (A) and bis(4-fluorobenzyl)tetrasulfide (B) which were resulted from the disproportionation of fluorapacin under forced conditions. A stability-indicating HPLC method was used for the stability evaluation of active pharmaceutical ingredient (API) fluorapacin and finished pharmaceutical product (FPP) under various conditions. High recovery (99.57%) of API was found after three freeze-thaw cycle processes of fluorapacin FPP. Susceptibility of fluorapacin to oxidative degradation was studied by treating fluorapacin and FPP in 30% hydrogen peroxide aqueous solution, and the result verified the oxidative stability of fluorapacin. However, treatment of this drug candidate under strong light (4500 Lx+/-500 Lx) for 10 days showed substantial effect on the recovery of fluorapacin, especially from fluorapacin FPP. Strong acid (1.0M, HCl) did not affect the recovery of fluorapacin while strong basic condition (1.0M, NaOH) accelerated the disproportionation of fluorapacin to its related substances A and B. The stability of fluorapacin in its aqueous media at a pH range of 2.0-10.0 for up to 6h was further investigated, and 4.0-8.0 was found to be the most stable pH range. Fluorapacin and FPP were exposed to the elevated temperatures of 40 and 60 degrees C for 10 days without obvious impact on their stability. The thermal stability of fluorapacin API and FPP under constant humidity with light protection was also thoroughly investigated under accelerated (40+/-2 degrees C, RH 75+/-5%, 6 months) and long-term (25+/-2 degrees C, RH 60+/-10%, 24 months) conditions. There was no significant change except minor color change of fluorapacin FPP. Therefore, fluorapacin has excellent stability as a potential drug candidate for further clinical development investigation.
Liu, Jingying; Christophersen, Philip C; Yang, Mingshi; Nielsen, Hanne M; Mu, Huiling
2017-12-01
The present study aimed at elucidating the influence of polymorphic stability of lipid excipients on the physicochemical characters of different solid lipid microparticles (SLM), with the focus on the alteration of protein distribution in SLM. Labeled lysozyme was incorporated into SLM prepared with different excipients, i.e. trimyristin (TG14), glyceryl distearate (GDS), and glyceryl monostearate (GMS), by water-oil-water (w/o/w) or solid-oil-water (s/o/w) method. The distribution of lysozyme in SLM and the release of the protein from SLM were evaluated by confocal laser scanning microscopy. The storage stability of SLM was characterized by HPLC, differential scanning calorimetry, X-ray powder diffraction, and scanning electron microscopy. Lysozyme was displayed as small scattered domains inside GDS and GMS SLM, whereas it was incorporated in the core of TG14 SLM formulated by the w/o/w method or evenly distributed in TG14 SLM prepared by the s/o/w method. Stability study at 37 °C revealed that only TG14 SLM made by the w/o/w method was able to maintain the lysozyme amount both on the particle surface and released from the SLM. Elevated storage temperature induced polymorphic transition of lipids in GDS and GMS SLM, which was, however, not remarkable for the TG14 SLM. Lipid excipients and particle preparation methods were found to differently affect the lysozyme distribution in SLM, owning to varied storage stabilities of the lipids. The present study provides updated knowledge for rational development of lipid-based formulations for oral delivery of peptide or protein drugs.
Ramírez-Rigo, María V; Olivera, María E; Rubio, Modesto; Manzo, Ruben H
2014-05-13
The low bioavailability of enalapril maleate associated to its instability in solid state motivated the development of a polyelectrolyte-drug complex between enalapril maleate and the cationic polymethacrylate Eudragit E100. The solid complexes were characterized by DSC-TG, FT-IR and X-ray diffraction. Their aqueous dispersions were evaluated for drug delivery in bicompartimental Franz cells and electrokinetic potentials. Stability in solid state was also evaluated using an HPLC-UV stability indicating method. Absorption of enalapril maleate was assessed thorough the rat everted gut sac model. In addition, urinary recovery after oral administration in rats was used as an indicator of systemic exposition. The solid materials are stable amorphous solids in which both moieties of enalapril maleate are ionically bonded to the polymer. Their aqueous dispersions exhibited controlled release over more than 7h in physiologic saline solution, being ionic exchange the fundamental mechanism that modified the extent and rate of drug release. Intestinal permeation of enalapril maleate was 1.7 times higher in the presence of the cationic polymer. This increase can be related with the capacity to adhere the mucosa due to the positive zeta potential of the complexes. As a consequence bioavailability was significantly improved (1.39 times) after oral administration of the complexes. In addition, no signs of chemical decomposition were observed after a 14months period. The results indicated that the products are new chemical entities that improve unfavorable properties of a useful drug. Copyright © 2014 Elsevier B.V. All rights reserved.
Olmo, B; García, A; Marín, A; Barbas, C
2005-03-25
The development of new pharmaceutical forms with classical active compounds generates new analytical problems. That is the case of sugar-free sachets of cough-cold products containing acetaminophen, phenylephrine hydrochloride and chlorpheniramine maleate. Two cyanopropyl stationary phases have been employed to tackle the problem. The Discovery cyanopropyl (SUPELCO) column permitted the separation of the three actives, maleate and excipients (mainly saccharine and orange flavour) with a constant proportion of aqueous/ organic solvent (95:5, v/v) and a pH gradient from 7.5 to 2. The run lasted 14 min. This technique avoids many problems related to baseline shifts with classical organic solvent gradients and opens great possibilities to modify selectivity not generally used in reversed phase HPLC. On the other hand, the Agilent Zorbax SB-CN column with a different retention profile permitted us to separate not only the three actives and the excipients but also the three known related compounds: 4-aminophenol, 4-chloracetanilide and 4-nitrophenol in an isocratic method with a run time under 30 min. This method was validated following ICH guidelines and validation parameters showed that it could be employed as stability-indicating method for this pharmaceutical form.
Bueno, Ana María; Marín, Miguel Ángel; Contento, Ana María; Ríos, Ángel
2016-02-01
A chromatographic method, using amperometric detection, for the sensitive determination of six representative mutagenic amines was developed. A glassy carbon electrode (GCE), modified with multiwall carbon nanotubes (GCE-CNTs), was prepared and its response compared to a conventional glassy carbon electrode. The chromatographic method (HPLC-GCE-CNTs) allowed the separation and the determination of heterocyclic aromatic amines (HAAs) classified as mutagenic amines by the International Agency for Research of Cancer. The new electrode was systematically studied in terms of stability, sensitivity, and reproducibility. Statistical analysis of the obtained data demonstrated that the modified electrode provided better sensitivity than the conventional unmodified ones. Detection limits were in the 3.0 and 7.5 ng/mL range, whereas quantification limits ranged between 9.5 and 25.0 ng/mL were obtained. The applicability of the method was demonstrated by the determination of the amines in several types of samples (water and food samples). Recoveries indicate very good agreement between amounts added and those found for all HAAs (recoveries in the 92% and 105% range). Copyright © 2015 Elsevier Ltd. All rights reserved.
Rubio-Diaz, Daniel E; Santos, Alejandra; Francis, David M; Rodriguez-Saona, Luis E
2010-08-11
Chemical changes in carotenoids and lipids were studied during production and storage of canned tomato juice using ATR infrared spectroscopy and HPLC. Samples from 10 groups of tomatoes with different carotenoid profiles were analyzed fresh, after hot-break and screening, after canning, and at five different time points during 1 year of storage. An apparent increase of carotenoids was observed after hot-break due to improved extraction efficiency. This increase was accompanied by some degree of lipid oxidation and carotenoid isomerization. Canning produced the most intense changes in the lipid profile with breakdown of triglycerides ( approximately 1743 cm(-1)), formation of fatty acids ( approximately 1712 cm(-1)), and degradation and isomerization of trans-carotenoids ( approximately 960 and approximately 3006 cm(-1)). Isomerization was corroborated by the relative increase of HPLC areas corresponding to carotenoid cis isomers. Canning reduced trans-lycopene, trans-delta-carotene, trans-beta-carotene, and trans-lutein by 30, 34, 43, and 67%, respectively. HPLC data indicate that canning causes a drastic reduction of tetra-cis-lycopene and promotes its isomerization to other geometric forms, including all-trans-lycopene. Infrared spectra of tomato juice lipid fractions correlated well with the number of days in storage (SECV < 11 days, r values > 0.99), demonstrating continuous degradation of lipids. Results demonstrated that individual carotenoids and their isomeric forms behave differently during production and storage of canned tomato juice. Information collected by infrared spectroscopy complemented well that of HPLC, providing marker bands to further the understanding of chemical changes taking place during processing and storage of tomato juice.
The transition of new technology to solve today`s problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamin, R.A.; Martin, C.J.; Turner, L.M.
1995-05-01
Extensive research has been conducted in the development of methods to predict the degradation of F-44 in storage. The Low Pressure Reactor (LPR) has greatly enhanced the stability prediction capabilities necessary to make informed decisions concerning aviation fuel in storage. This technique has in the past been primarily used for research purposes. The Naval Air Warfare Center, Aircraft Division, Trenton, NJ, has used this technique successfully to assist the Defense Fuel Supply Center, Cameron Station, Alexandria, VA, in stability assessments of F-44. The High Performance Liquid Chromatography/Electrochemical Detector (HPLC/EC) antioxidant determination technique has also aided in making stability predictions bymore » establishing the amount of inhibitor currently in the product. This paper will address two case studies in which the above new technology was used to insure the rapid detection and diagnosis of today`s field and logistic problems.« less
Wang, Dan; Xiao, Qingqing; Yang, Wanqiu; Qian, Wei; Yang, Jin
2016-02-20
MB07133 is an intravenously administered cytarabine mononucleotide (araCMP) prodrug, for the treatment of hepatocellular carcinoma (HCC). A simple, selective and sensitive HPLC-MS/MS method using high pressure liquid chromatography (HPLC) coupled to triple-quadrupole mass spectrometer, was developed and validated for the detection of prodrug MB07133 and its metabolites, cytarabine (araC) and arabinofuranosyluracil (araU) in rat plasma. Protein precipitation using 3% trichloroacetic acid (TCA) was employed to extract analytes from 100μL rat plasma. Adequate separation of araC and araU from their endogenous compounds was achieved on the Synergi(®) fusion-RP column (150mm×4.6mm, 4μm) by a gradient-elution with a mobile phase consisting of ammonium formate (1mM) and methanol at a flow rate of 1mL/min. Multiple reaction monitoring mode (MRM) was applied in the detection of MB07133, araC, araU and Ganciclovir (internal standard) with ion pairs 441.2/330.2, 244.2/112.2, 245.2/113.2 and 256.1/152.2, respectively. The assays were validated with respect to specificity, linearity (100-50000ng/mL for MB07133, 2-1000ng/mL for araC and araU), accuracy and precision, extraction recovery, matrix effect and stability. The validated method has been successfully applied to an intravenous bolus pharmacokinetic study of MB07133 in male Sprague-Dawley rats (18mg/kg i.v.). Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Min; Deng, Yang; Cai, Hua-Lin; Fang, Ping-Fei; Yan, Miao; Zhang, Bi-Kui; Wu, Yan-Qin
2017-04-01
To develop a sensitive, two-dimensional liquid chromatography (2D-LC) method for determination of valsartan, applied to investigate bioequivalence of two valsartan tablets in Chinese volunteers under fasting condition. A full automatic 2D-HPLC system was used to quantify valsartan in human plasma. The analytes were extracted by protein precipitation, using telmisartan as internal standard. The analytical method was applied in a randomized, crossover bioequivalence study of valsartan tablets; the study enrolled 18 Chinese volunteers (12 were men and 6 were women). The subjects received a single 160-mg dose of test or reference preparation with 7-days of washout under fasting state. Plasma samples were collected, pharmacokinetic parameters were obtained and the bioequivalence was evaluated. The calibration range was 9.2 - 4213.8 ng×mL-1. Inter- and intraprecision was less than 7.0%, and accuracies ranged from 99.5 to 103.8%. The extraction recovery for valsartan varied between 89.3 and 97.8%, and the stability in all conditions was excellent. The 90% CI of AUC0→36h and Cmax were 96.5 - 109.4% and 94.2 - 108.6%, respectively. The relative bioavailability was 103.9 ± 15.7%. No gender difference was observed in pharmacokinetic parameters. A sensitive 2D-HPLC method was established for the estimation of valsartan in human plasma and successfully applied in a bioequivalence study of valsartan, which suggests that these two formulations can be assumed to be bioequivalent. .
Chen, Tianfeng; Wong, Yum-Shing; Zheng, Wenjie
2006-11-01
A fast protein liquid chromatographic method for purification of selenium-containing phycocyanin (Se-PC) from selenium-enriched Spirulina platensis was described in this study. The purification procedures involved fractionation by ammonium sulfate precipitation, DEAE-Sepharose ion-exchange chromatography and Sephacry S-300 size exclusion chromatography. The purity ratio (A620/A280) and the separation factor (A620/A655) of the purified Se-PC were 5.12 and 7.92, respectively. The Se concentration of purified Se-PC was 496.5 microg g(-1) protein, as determined by ICP-AES analysis. The purity of the Se-PC was further characterized by UV-VIS and fluorescence spectrometry, SDS-PAGE, RP-HPLC and gel filtration HPLC. The apparent molecular mass of the native Se-PC determined by gel filtration HPLC was 109 kDa, indicating that the protein existed as a trimer. SDS-PAGE of the purified Se-PC yielded two major bands corresponding to the alpha and beta subunits. A better separation of these two subunits was obtained by RP-HPLC. Identification of the alpha and beta subunits separated by SDS-PAGE and RP-HPLC was achieved by peptide mass fingerprinting (PMF) using MALDI-TOF-TOF mass spectrometry.
Elkhoudary, Mahmoud M; Naguib, Ibrahim A; Abdel Salam, Randa A; Hadad, Ghada M
2017-05-01
Four accurate, sensitive and reliable stability indicating chemometric methods were developed for the quantitative determination of Agomelatine (AGM) whether in pure form or in pharmaceutical formulations. Two supervised learning machines' methods; linear artificial neural networks (PC-linANN) preceded by principle component analysis and linear support vector regression (linSVR), were compared with two principle component based methods; principle component regression (PCR) as well as partial least squares (PLS) for the spectrofluorimetric determination of AGM and its degradants. The results showed the benefits behind using linear learning machines' methods and the inherent merits of their algorithms in handling overlapped noisy spectral data especially during the challenging determination of AGM alkaline and acidic degradants (DG1 and DG2). Relative mean squared error of prediction (RMSEP) for the proposed models in the determination of AGM were 1.68, 1.72, 0.68 and 0.22 for PCR, PLS, SVR and PC-linANN; respectively. The results showed the superiority of supervised learning machines' methods over principle component based methods. Besides, the results suggested that linANN is the method of choice for determination of components in low amounts with similar overlapped spectra and narrow linearity range. Comparison between the proposed chemometric models and a reported HPLC method revealed the comparable performance and quantification power of the proposed models.
Romański, Michał; Kasprzyk, Anna; Teżyk, Artur; Widerowska, Agnieszka; Żaba, Czesław; Główka, Franciszek
2017-06-05
A prodrug treosulfan (TREO) is currently investigated in clinical trials for conditioning prior to hematopoietic stem cell transplantation. Bioanalysis of TREO and its active derivatives, monoepoxide (S,S-EBDM) and diepoxide, in plasma and urine underlay the pharmacokinetic studies of these compounds but cannot explain an organ pharmacological action or toxicity. Recently, distribution of TREO and S,S-EBDM into brain, cerebrospinal fluid, and aqueous humor of the eye has been investigated in animal models and the obtained results presented clinical relevance. In this paper, a selective and rapid HPLC-ESI-MS/MS method was elaborated and validated for the studies of disposition of TREO and S,S-EBDM in rat plasma, liver, lungs, kidneys, muscle, and brain. The two analytes and codeine, internal standard (IS), were isolated from 50μL of plasma and 100μL of supernatants of the tissues homogenates using ultrafiltration Amicon vials. Chromatographic resolution was accomplished on C18 column with isocratic elution. The limits of quantitation of TREO and S,S-EBDM in the studied matrices ranged from 0.11 to 0.93μM. The HPLC-MS/MS method was adequately precise and accurate within and between runs. The IS-normalized matrix effect differed among the tissues and was the most pronounced in a liver homogenate supernatant (approximately 0.55 for TREO and 0.35 for S,S-EBDM). Stability of the analytes in experimental samples was also established. The validated method for the first time enabled determination of TREO and S,S-EBDM in the six life-important tissues in rats following administration of the prodrug. Copyright © 2017 Elsevier B.V. All rights reserved.
Jäppinen, A; Kokki, H; Naaranlahti, T J; Rasi, A S
1999-12-01
Combinations of opioids and adjuvant drug solutions are often used in clinical practice while little information is available on their microbiological or chemical stability. Currently there are no commercially available, prepacked, ready-to-use epidural or subcutaneous mixtures. Thus, epidural and subcutaneous analgesic mixtures must be prepared in the pharmacy on an as-needed basis. Such mixtures are typically used for the treatment of severe pain in cancer patients. The aim of this study was to investigate the microbiological and chemical stability of a buprenorphine, haloperidol and glycopyrrolate mixture in a 0.9% sodium chloride solution. A high performance liquid chromatographic (HPLC) method and pH-meter were used to conduct the analyses. Antimicrobial activity of each component was studied by an agar dilution method. According to the results from the chemical and microbiological stability studies, this mixture can be stored in polypropylene (PP) syringes and polyvinyl chloride (PVC) medication cassettes for at least 30 days at either 21 degrees C or 4 degrees C, and for 16 days in PP syringes at 36 degrees C, and for 9 days in PVC medication cassettes at 36 degrees C.
Wen, Fangfang; Cheng, Xuemei; Liu, Wei; Xuan, Min; Zhang, Lei; Zhao, Xin; Shan, Meng; Li, Yan; Teng, Liang; Wang, Zhengtao; Wang, Changhong
2014-12-01
The aerial parts of genus Peganum are officially used in traditional Chinese medicine. The paper aims to establish a high-performance liquid chromatography (HPLC) method for fingerprint analysis and simultaneous determination of three alkaloids and two flavonoids in aerial parts of genus Peganum, and to analyze accumulative difference of secondary metabolites in inter-species, individuals of plants, inter-/intra-population and from different growing seasons. HPLC analysis was performed on a C18 column with gradient elution using 0.1% trifloroacetic acid and acetonitrile as mobile phase and detected at 265 nm, by conventional methodology validation. For fingerprint analysis, the RSDs of relative retention time and relative peak area of the characteristic peaks were within 0.07-0.78 and 0.94-9.09%, respectively. For simultaneous determination of vasicine, harmaline, harmine, deacetylpeganetin and peganetin, all calibration curves showed good linearity (r > 0.9990) within the test range. The relative standard deviations of precision, repeatability and stability test did not exceed 2.37, 2.68 and 2.67%, respectively. The average recoveries for the five analytes were between 96.47 and 101.20%. HPLC fingerprints play a minor role in authenticating and differentiating the herbs of different species of genus Peganum. However, the secondary metabolites levels of alkaloids and flavonoids in aerial parts of genus Peganum rely on species-, habitat-, and growth season-dependent accumulation. Copyright © 2014 John Wiley & Sons, Ltd.
Simoncic, Z; Roskar, R; Gartner, A; Kogej, K; Kmetec, V
2008-05-22
Perindopril Erbumine (PER) is one of the newly used angiotensin-converting enzyme inhibitors (ACE inhibitors) and is used for the treatment of patients with hypertension and symptomatic heart failure. It has two main degradation pathways, i.e. the degradation by hydrolysis and the degradation by cyclization. An isothermal heat conduction microcalorimetry (MC) and high pressure liquid chromatography (HPLC) were used for the characterization of aqueous solutions of PER and its stability properties. The rates of heat evolved during degradation of perindopril were measured by MC as a function of temperature and pH and from these data rate constant and change in enthalpy of the reactions were determined. With the HPLC method the concentration of perindopril and its degradation products were measured as a function of time in aqueous solutions of different pH that were stored at different temperatures. We demonstrated that reactions of degradation of perindopril at observed conditions follow the first order kinetics. The Arrhenius equation for each pH was determined. At pH 6.8 only one degradation pathway is present, i.e. the degradation by hydrolysis. Degradation constants for this pathway calculated from MC data are in good agreement with those obtained from HPLC. MC as a non-specific technique was shown to be useful in studies of PER when one reaction was present in the sample and also when more chemical and physical processes were simultaneously running.
Zimmerman, L.R.; Hostetler, K.A.; Thurman, E.M.
2000-01-01
Analytical methods using high-performance liquid chromatography-diode array detection (HPLC-DAD) and high-performance liquid chromatography/mass spectrometry (HPLC/MS) were developed for the analysis of the following chloroacetanilide herbicide metabolites in water: acetochlor ethanesulfonic acid (ESA), acetochlor oxanilic acid (OXA), alachlor ESA, alachlor OXA, metolachlor ESA, and metolachlor OXA. Good precision and accuracy were demonstrated for both the HPLC-DAD and HPLC/MS methods in reagent water, surface water, and ground water. The mean HPLC-DAD recoveries of the chloroacetanilide herbicide metabolites from water samples spiked at 0.25, 0.50, and 2.0 mg/L (micrograms per liter) ranged from 84 to 112 percent, with relative standard deviations of 18 percent or less. The mean HPLC/MS recoveries of the metabolites from water samples spiked at 0.05, 0.20, and 2.0 mg/L ranged from 81 to 125 percent, with relative standard deviations of 20 percent or less. The limit of quantitation (LOQ) for all metabolites using the HPLC-DAD method was 0.20 mg/L, whereas the LOQ using the HPLC/MS method was 0.05 mg/L. These metabolite-determination methods are valuable for acquiring information about water quality and the fate and transport of the parent chloroacetanilide herbicides in water.
Stability of amlodipine besylate in two liquid dosage forms.
Nahata, M C; Morosco, R S; Hipple, T F
1999-01-01
To determine the stability of amlodipine besylate in two liquid dosage forms under refrigeration and at room temperature. Commercially available amlodipine tablets (Norvasc-Pfizer) were used to prepare two suspensions: one in extemporaneously prepared 1% methylcellulose in syrup (1:1), and another in equal volumes of commercially available OraPlus/OraSweet. Each suspension containing amlodipine 1 mg/mL was stored in 10 plastic prescription bottles; 5 were stored at 4 degrees C and 5 at 25 degrees C. Samples were collected immediately after preparation (day 0) and on days 7, 14, 28, 42, 56, 70, and 91. Amlodipine concentration was measured by stability-indicating HPLC method (n = 15). Research laboratory at Children's Hospital. Physical and chemical stability (> 90% of the initial concentration) of amlodipine in the two extemporaneously prepared suspensions during storage in plastic prescription bottles at 4 degrees C and 25 degrees C. Observed mean concentrations exceeded 90% of the initial concentrations in both suspensions for 91 days at 4 degrees C and 56 days at 25 degrees C. No noticeable change in physical appearance or odor was observed; pH changed slightly in the methylcellulose-containing formulation stored at 25 degrees C. Amlodipine was stable in two suspensions when stored in plastic prescription bottles for 91 days at 4 degrees C or 56 days at 25 degrees C. These formulations may be considered for pediatric or elderly patients who are unable to swallow tablets. The liquid dosage form would also permit accurate administration of amlodipine doses to infants and young children based on their body weight.
Chemmalil, Letha; Suravajjala, Sreekanth; See, Kate; Jordan, Eric; Furtado, Marsha; Sun, Chong; Hosselet, Stephen
2015-01-01
This paper describes a novel approach for the quantitation of nonderivatized sialic acid in glycoproteins, separated by hydrophilic interaction chromatography, and detection by Nano Quantity Analyte Detector (NQAD). The detection technique of NQAD is based on measuring change in the size of dry aerosol and converting the particle count rate into chromatographic output signal. NQAD detector is suitable for the detection of sialic acid, which lacks sufficiently active chromophore or fluorophore. The water condensation particle counting technology allows the analyte to be enlarged using water vapor to provide highest sensitivity. Derivatization-free analysis of glycoproteins using HPLC/NQAD method with PolyGLYCOPLEX™ amide column is well correlated with HPLC method with precolumn derivatization using 1, 2-diamino-4, 5-methylenedioxybenzene (DMB) as well as the Dionex-based high-pH anion-exchange chromatography (or ion chromatography) with pulsed amperometric detection (HPAEC-PAD). With the elimination of derivatization step, HPLC/NQAD method is more efficient than HPLC/DMB method. HPLC/NQAD method is more reproducible than HPAEC-PAD method as HPAEC-PAD method suffers high variability because of electrode fouling during analysis. Overall, HPLC/NQAD method offers broad linear dynamic range as well as excellent precision, accuracy, repeatability, reliability, and ease of use, with acceptable comparability to the commonly used HPAEC-PAD and HPLC/DMB methods. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Ji, Kun; Lee, Changsuk; Janesko, Benjamin G; Simanek, Eric E
2015-08-03
Condensation of a hydrazine-substituted s-triazine with an aldehyde or ketone yields an equivalent to the widely used, acid-labile acyl hydrazone. Hydrolysis of these hydrazones using a formaldehyde trap as monitored using HPLC reveals that triazine-substituted hydrazones are more labile than acetyl hydrazones at pH>5. The reactivity trends mirror that of the corresponding acetyl hydrazones, with hydrolysis rates increasing along the series (aromatic aldehyde
Löscher, W; Fassbender, C P; Gram, L; Gramer, M; Hörstermann, D; Zahner, B; Stefan, H
1993-03-01
The novel antiepileptic drug vigabatrin (Sabril) acts by inhibiting degradation of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), increasing the GABA concentrations in the brain. Because the GABA degrading enzyme GABA aminotransferase (GABA-T) is also present in peripheral tissues, including blood platelets, measurement of plasma GABA levels might be a useful indication of the pharmacological response to vigabatrin during therapeutic monitoring. However, because of the very low concentrations of GABA in plasma, the few methods available for plasma GABA analysis are time-consuming, difficult to perform and/or not selective enough because of potential interference with other plasma constituents. In the present study, a rapid, selective and sensitive amino acid analysis HPLC method has been developed for plasma GABA determination with fluorescence detection, using o-phthaldialdehyde as a precolumn derivatizing agent. By employing a 3 microns particle size reversed-phase column and a multi-step gradient system of two solvents, the very low endogenous concentration of GABA in human plasma could be reproducibly quantitated without interference of other endogenous compounds. Incubation of human plasma samples with GABA degrading enzyme(s) resulted in an almost total loss of the GABA peak, thus demonstrating the specificity of the method for GABA analysis. In addition to GABA and other endogenous amino acids, the HPLC method could be used to quantitate plasma levels of vigabatrin. Thus, this improved HPLC amino acid assay might be used to examine whether concomitant monitoring of plasma GABA and vigabatrin is useful for clinical purposes. This was examined in 20 epileptic patients undergoing chronic treatment with vigabatrin. The average plasma GABA level of these 20 patients did not differ significantly from non-epileptic controls. However, when epileptic patients were subdivided according to their clinical response to vigabatrin, vigabatrin responders had significantly higher GABA levels than nonresponders or controls. In contrast to the difference in plasma GABA, vigabatrin responders and nonresponders did not differ in dose or plasma level of vigabatrin. These data may indicate that determination of plasma GABA is a valuable non-invasive method for therapeutic monitoring in patients on medication with vigabatrin.
Kameswaran, Mythili; Samuel, Grace; Dev Sarma, Haladhar; Shinde, Swamirao N; Dash, Ashutosh; Venkatesh, Meera
2015-08-01
The anti-EGFR antibody Nimotuzumab was radioiodinated with I-131 by Chloramine T and Iodogen methods. The (131)I-Nimotuzumab was purified and characterized by HPLC. Purified (131)I-Nimotuzumab exhibited radiochemical purity of >95% and retained good in vitro stability upto 24h at room temperature by both the methods. Cell binding studies carried out in A431 cells expressing EGF receptors showed good immunoreactivity of the product upto 5 days post radioiodination. Biodistribution studies in normal Swiss mice showed fast clearance by both renal and gastrointestinal routes with minimal thyroid uptake. Copyright © 2015 Elsevier Ltd. All rights reserved.
Higashi, Kyohei; Shibasaki, Mana; Kuni, Kyoshiro; Uemura, Takeshi; Waragai, Masaaki; Uemura, Kenichi; Igarashi, Kazuei; Toida, Toshihiko
2017-09-29
A three column-switching high-performance liquid chromatography (HPLC) using an electrochemical detector (ECD) equipped with a diamond electrode was established to determine 3-hydroxypropylmercapturic acid (3-HPMA) in urine. An extracted urine sample was consecutively fractionated using a strong anion-exchange column (first column) and a C8 column (second column) via a switching valve before application on an Octa Decyl Silyl (ODS) column (third column), followed by ECD analysis. The% recovery of 3-HPMA standard throughout the three-column process and limit of detection (LOD) were 94±1% and 0.1pmol, respectively. A solid phase extraction step is required for the sensitive analysis of 3-HPMA in urine by column-switching HPLC-ECD despite a decreased% recovery (55%) of urine sample spiked with 100pmol of 3-HPMA. To test the utility of our column-switching HPLC-ECD method, 3-HPMA levels of 27 urine samples were determined, and the correlation between HPLC-ECD and LC-Electrospray ionization (ESI)-MS/MS method was examined. As a result, the median values of μmol 3-HPMA/g Creatinine (Cre) in urine obtained by column-switching HPLC-ECD and LC-MS/MS were 2.19±2.12μmol/g Cre and 2.13±3.38μmol/g Cre, respectively, and the calibration curve (y=1.5171x-1.007) exhibited good linearity within a defined range (r 2 =0.907). These results indicate that the combination of column-switching HPLC and ECD is a powerful tool for the specific, reliable detection of 3-HPMA in urine. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabourin, P.J.; Bechtold, W.E.; Henderson, R.F.
1988-05-01
The glucuronide and sulfate conjugates of benzene metabolite as well as muconic acid and pre-phenyl- and phenylmercapturic acids were separated by ion-pairing HPLC. The HPLC method developed was suitable for automated analysis of a large number of tissue or excreta samples. p-Nitrophenyl (/sup 14/C)glucuronide was used as an internal standard for quantitation of these water-soluble metabolites. Quantitation was verified by spiking liver tissue with various amounts of phenylsulfate or glucuronides of phenol, catechol, or hydroquinone and analyzing by HPLC. Values determined by HPLC analysis were within 10% of the actual amount with which the liver was spiked. The amount ofmore » metabolite present in urine following exposure to (/sup 3/H)benzene was determined using p-nitrophenyl (/sup 14/C)glucuronide as an internal standard. Phenylsulfate was the major water-soluble metabolite in the urine of F344 rats exposed to 50 ppm (/sup 3/H)benzene for 6 h. Muconic acid and an unknown metabolite which decomposed in acidic media to phenylmercapturic acid were also present. Liver, however, contained a different metabolic profile. This indicates that urinary metabolite profiles may not be a true reflection of what is seen in individual tissues.« less
Chu, Jun; Li, Song-Lin; Yin, Zhi-Qi; Ye, Wen-Cai; Zhang, Qing-Wen
2012-07-01
A high performance liquid chromatography coupled with diode array detector (HPLC-DAD) method was developed for simultaneous quantification of eleven major bioactive components including six coumarins, three flavonoids and two limonoids in Fructus Citri Sarcodactylis. The analysis was performed on a Cosmosil 5 C(18)-MS-II column (4.6 mm × 250 mm, 5 μm) with water-acetonitrile gradient elution. The method was validated in terms of linearity, sensitivity, precision, stability and accuracy. It was found that the calibration curves for all analytes showed good linearity (R(2)>0.9993) within the test ranges. The overall limit of detection (LOD) and limit of quantification (LOQ) were less than 3.0 and 10.2 ng. The relative standard deviations (RSDs) for intra- and inter-day repeatability were not more than 4.99% and 4.92%, respectively. The sample was stable for at least 48 h. The spike recoveries of eleven components were 95.1-104.9%. The established method was successfully applied to determine eleven components in three samples from different locations. The results showed that the newly developed HPLC-DAD method was linear, sensitive, precise and accurate, and could be used for quality control of Fructus Citri Sarcodactylis. Copyright © 2012 Elsevier B.V. All rights reserved.
HPLC-DAD and HPLC-ESI-MS/MS methods for metabolite profiling of propolis extracts.
Pellati, Federica; Orlandini, Giulia; Pinetti, Diego; Benvenuti, Stefania
2011-07-15
In this study, the composition of polyphenols (phenolic acids and flavonoids) in propolis extracts was investigated by HPLC-DAD and HPLC-ESI-MS/MS by comparing the performance of ion trap and triple quadrupole mass analyzers. The analyses were carried out on an Ascentis C(18) column (250mm×4.6mm I.D., 5μm), with a mobile phase composed by 0.1% formic acid in water and acetonitrile. Overall, the UV spectra, the MS and MS/MS data allowed the identification of 40 compounds. In the case of flavonoids, the triple quadrupole mass analyzer provided more collision energy if compared with the ion trap, originating product ions at best sensitivity. The HPLC method was validated in agreement with ICH guidelines: the correlation coefficients were >0.998; the limit of detection was in the range 1.6-4.6μg/ml; the recovery range was 96-105%; the intra- and inter-day %RSD values for retention times and peak areas were found to be <0.3 and 1.9%, respectively. The developed technique was applied to the analysis of hydroalcoholic extracts of propolis available on the Italian market. Although the chromatographic profile of the analyzed samples was similar, the quantitative analysis indicated that there is a great variability in the amount of the active compounds: the content of total phenolic acids ranged from 0.17 to 16.67mg/ml and the level of total flavonoids from 2.48 to 41.10mg/ml. The proposed method can be considered suitable for the phytochemical analysis of propolis extracts used in phytotherapy. Copyright © 2011 Elsevier B.V. All rights reserved.
Vidović, Stojanka; Stojanović, Biljana; Veljković, Jelena; Prazić-Arsić, Ljiljana; Roglić, Goran; Manojlović, Dragan
2008-08-22
HPLC stability-indicating method has been developed for the simultaneous determination of some water-soluble vitamins (ascorbic acid, thiamine hydrochloride, riboflavin-5'-phosphate sodium, pyridoxine hydrochloride, nicotinamide, D(+)-panthenol) and two preservatives (methylparaben and sodium benzoate) in multivitamin syrup preparation. Water-soluble vitamins, preservatives and their degradants were separated on Zorbax SB-Aq (C(18)) (250 mm x 4.6 mm, 5 microm) column at an ambient temperature. Combined isocratic and gradient elution was performed with a mobile phase consisting of 0.0125 M hexane-1-sulfonic acid sodium salt in 0.1% (m/v) o-phosphoric acid, pH 2.4-2.5 (solvent A) and acetonitrile (solvent B) at the flow-rate 1 ml min(-1). Starting with solvent A an isocratic elution was performed for 15 min, then the composition was changed to 85% of A and 15% of B during the next 20 min and it was constant for 5 min, then the composition was changed to 70% of A and 30% of B during next 15 min and it was constant for 5 min and finally was changed to 100% of A as at the beginning of the elution. Detection was performed with diode array detector at 210, 230 and 254 nm. Multivitamin syrup preparation was subjected to stress testing (forced degradation) in order to demonstrate that degradants from the vitamins, preservatives and/or product excipients do not interfere with the quantification of vitamins and preservatives. Typical validation characteristics: selectivity, accuracy, precision, linearity, range, limit of quantification and limit of detection were evaluated for vitamins and preservatives.
Comparison of UPLC and HPLC methods for determination of vitamin C.
Klimczak, Inga; Gliszczyńska-Świgło, Anna
2015-05-15
Ultra performance liquid chromatography (UPLC) and high-performance liquid chromatography (HPLC) methods for determination of ascorbic acid (AA) and total AA (TAA) contents (as the sum of AA and dehydroascorbic acid (DHAA) after its reduction to AA) in fruit beverages and in pharmaceutical preparations were compared. Both methods are rapid: total time of analysis was 15 and 6 min for HPLC and UPLC methods, respectively. The methods were validated in terms of linearity, instrument precision, limits of detection (LOD) and quantification (LOQ), accuracy and recovery. Intra- and inter-day instrument precisions for fruit juices, expressed as RSD, were 2.2% and 2.4% for HPLC, respectively, and 1.7% and 1.9% for UPLC, respectively. For vitamin C tablets, inter- and intra-day precisions were 0.4% and 0.5%, respectively (HPLC), and 0.5% and 0.3%, respectively (UPLC). Both methods were sensitive: LOD was 0.049 μg/mL for HPLC and 0.024 μg/mL for UPLC while LOQs were 0.149 and 0.073 μg/mL for HPLC and UPLC, respectively. These methods could be useful in the routine qualitative and quantitative analysis of AA or TAA in pharmaceutical preparations or fruit beverages. However, UPLC method is more sensitive, faster and consumes less eluent. Copyright © 2014 Elsevier Ltd. All rights reserved.
An Optimized Method for the Measurement of Acetaldehyde by High-Performance Liquid Chromatography
Guan, Xiangying; Rubin, Emanuel; Anni, Helen
2011-01-01
Background Acetaldehyde is produced during ethanol metabolism predominantly in the liver by alcohol dehydrogenase, and rapidly eliminated by oxidation to acetate via aldehyde dehydrogenase. Assessment of circulating acetaldehyde levels in biological matrices is performed by headspace gas chromatography and reverse phase high-performance liquid chromatography (RP-HPLC). Methods We have developed an optimized method for the measurement of acetaldehyde by RP-HPLC in hepatoma cell culture medium, blood and plasma. After sample deproteinization, acetaldehyde was derivatized with 2,4-dinitrophenylhydrazine (DNPH). The reaction was optimized for pH, amount of derivatization reagent,, time and temperature. Extraction methods of the acetaldehyde-hydrazone (AcH-DPN) stable derivative and product stability studies were carried out. Acetaldehyde was identified by its retention time in comparison to AcH-DPN standard, using a new chromatography gradient program, and quantitated based on external reference standards and standard addition calibration curves in the presence and absence of ethanol. Results Derivatization of acetaldehyde was performed at pH 4.0 with a 80-fold molar excess of DNPH. The reaction was completed in 40 min at ambient temperature, and the product was stable for 2 days. A clear separation of AcH-DNP from DNPH was obtained with a new 11-min chromatography program. Acetaldehyde detection was linear up to 80 μM. The recovery of acetaldehyde was >88% in culture media, and >78% in plasma. We quantitatively determined the ethanol-derived acetaldehyde in hepatoma cells, rat blood and plasma with a detection limit around 3 μM. The accuracy of the method was <9% for intraday and <15% for interday measurements, in small volume (70 μl) plasma sampling. Conclusions An optimized method for the quantitative determination of acetaldehyde in biological systems was developed using derivatization with DNPH, followed by a short RP-HPLC separation of AcH-DNP. The method has an extended linear range, is reproducible and applicable to small volume sampling of culture media and biological fluids. PMID:21895715
Development and stability of semisolid preparations based on a supercritical CO2 Arnica extract.
Bilia, Anna Rita; Bergonzi, Maria Camilla; Mazzi, Giovanni; Vincieri, Franco Francesco
2006-05-03
Conventional herbal drug preparations (HDP) based on Arnica montana L. have a low content of the active principles, sesquiterpene lactones, which show poor stability and low physical compatibility in semisolid formulations. Recently, an innovative supercritical carbon dioxide (CO2) extract with high sesquiterpene content has been marketed. Development of six semisolid preparations (cetomacrogol, polysorbate 60, polawax, anphyphil, natrosol and sepigel) based on this innovative CO2 extract is discussed. Stability of these preparations was investigated according to ICH guidelines. The evaluation of in vitro release of active constituents was performed using the cell method reported in the European Pharmacopoeia. Preliminary data on in vivo permeation of three selected formulations is demonstrated using the "skin stripping" test, according to the FDA, in healthy subjects. Analysis of sesquiterpene lactones within the extract and in vitro and in vivo studies was performed by RP-HPLC-DAD-MS method. The cetomacrogol showed the best release profile in the in vitro test, while in the in vivo test the best preparation resulted polysorbate 60 and polawax.
Podsędek, Anna; Koziołkiewicz, Maria
2014-01-01
Red cabbage is, among different vegetables, one of the major sources of anthocyanins. In the present study an in vitro digestion method has been used to assay the influence of the physiological conditions in the stomach and small intestine, as well as faecal microflora on anthocyanins stability in red cabbage and anthocyanin-rich extract. The recovery of anthocyanins during in vitro gastrointestinal digestion was strongly influenced by food matrix. The results showed that other constituents present in cabbage enhanced the stability of anthocyanins during the digestion. The amount of anthocyanins (HPLC method) and antioxidant capacity (ABTS and FRAP assays) strongly decreased after pancreatic-bile digestion in both matrices but total phenolics content (Folin-Ciocalteu assay) in these digestions was higher than in initial samples. Incubation with human faecal microflora caused further decline in anthocyanins content. The results obtained suggest that intact anthocyanins in gastric and products of their decomposition in small and large intestine may be mainly responsible for the antioxidant activity and other physiological effects after consumption of red cabbage. PMID:24575407
Hrvolová, Barbora; Martínez-Huélamo, Miriam; Colmán-Martínez, Mariel; Hurtado-Barroso, Sara; Lamuela-Raventós, Rosa Maria; Kalina, Jiří
2016-01-01
The concentration of carotenoids and fat-soluble vitamins in human plasma may play a significant role in numerous chronic diseases such as age-related macular degeneration and some types of cancer. Although these compounds are of utmost interest for human health, methods for their simultaneous determination are scarce. A new high pressure liquid chromatography (HPLC)-tandem mass spectrometry (MS/MS) method for the quantification of selected carotenoids and fat-soluble vitamins in human plasma was developed, validated, and then applied in a pilot dietary intervention study with healthy volunteers. In 50 min, 16 analytes were separated with an excellent resolution and suitable MS signal intensity. The proposed HPLC–MS/MS method led to improvements in the limits of detection (LOD) and quantification (LOQ) for all analyzed compounds compared to the most often used HPLC–DAD methods, in some cases being more than 100-fold lower. LOD values were between 0.001 and 0.422 µg/mL and LOQ values ranged from 0.003 to 1.406 µg/mL, according to the analyte. The accuracy, precision, and stability met with the acceptance criteria of the AOAC (Association of Official Analytical Chemists) International. According to these results, the described HPLC-MS/MS method is adequately sensitive, repeatable and suitable for the large-scale analysis of compounds in biological fluids. PMID:27754400
Han, Guomin; Wang, Hua; Webb, Michael R; Waterhouse, Andrew L
2015-03-01
Carbonyl compounds are produced during fermentation and chemical oxidation during wine making and aging, and they are important to wine flavor and color stability. Since wine also contains these compounds as α-hydroxysulfonates as a result of their reaction with sulfur dioxide, an alkaline pre-treatment requiring oxygen exclusion has been used to release these bound carbonyls for analysis. By modifying the method to hydrolyze the hydroxysulfonates with heating and acid in the presence of 2,4-dinitrophenylhydrazine (DNPH), the carbonyl compounds are simultaneously and quickly released and derivatized, resulting in a simpler and more rapid method. In addition, the method avoids air exclusion complications during hydrolysis by the addition of sulfur dioxide. The method was optimized for temperature, reaction time, and the concentrations of DNPH, sulfur dioxide and acid. The hydrazones were shown to be stable for 10 h, adequate time for chromatographic analysis by HPLC-DAD/MS. This method is demonstrated for 2-ketoglutaric acid, pyruvic acid, acetoin and acetaldehyde, wine carbonyls of very different reactivities, and it offers good specificity, high recovery and low limits of detection. This new rapid, simple method is demonstrated for the measurement of carbonyl compounds in a range of wines of different ages and grape varieties. Copyright © 2014 Elsevier B.V. All rights reserved.
Liu, Junguo; Song, Jiuxue; Huang, Karen; Michel, Deborah; Fang, Jim
2018-05-01
A high-performance liquid chromatography tandem-mass spectrometry (HPLC-MS/MS) method has been developed to analyze anthocyanins in urine and plasma to further understand their absorption, distribution, metabolism and excretion. The method employed a Synergi RP-Max column (250 × 4.6 mm, 4 μm) and an API 4000 mass spectrometer. A gradient elution system consisted of mobile phase A (water-1% formic acid) and mobile phase B (acetonitrile) with a flow rate of 0.60 mL/min. The gradient was initiated at 5% B, increased to 21% B at 20 min, and then increased to 40% B at 35 min. The analysis of anthocyanins presents a challenge because of the poor stability of anthocyanins during sample preparation, especially during solvent evaporation. In this method, the degradation of anthocyanins was minimized using protein precipitation and dilute-and-shoot and sample preparation methods for plasma and urine, respectively. No interferences were observed from endogenous compounds. The method has been used to analyze anthocyanin concentrations in urine and plasma samples from volunteers administered saskatoon berries. Cyanidin-3-galactoside, cyanidin-3-glucoside, cyanidin-3-arabinoside, cyanidin-3-xyloside and quercetin-3-galactoside, the five major flavonoid components in saskatoon berries, were identified in plasma and urine samples. Copyright © 2017 John Wiley & Sons, Ltd.
[Effect of Gegen Qinlian decoction on hepatic cytochrome CYP450 isozymes in rats by HPLC-MS/MS].
Liu, Zi-hua; An, Rui; Zhang, Yi-zhu; Gu, Qing-qing; You, Li-sha; Wang, Xin-hong
2015-08-01
To study the effect of Gegen Qinlian decoction and its major effective components on five hepatic microsomal CYP450 isozymes in rats. The in vitro hepatic microsomal incubation technique was used to co-culture Gegen Qinlian decoction and its major effective components together with each probe substrate. HPLC-MS/MS was used to establish the analytical method for metabolites of the five isoform probe substrates of CYP450 isozymes, detect the linearity among micoromal protein concentration, incubation time and metabolite formation amount. And HPLC-MS/MS was applied to determine the formation rate (V) of corresponding metabolites (acetaminophen, 4-OH-chlorzoxazone, dextrophan, 6-OH-chlorzoxazone and 6β-hydroxytestosterone) specific probe substrates of the five isoform probe substrates of CYP450 isozymes (phenacetin, polbutamide, dextromethorphan, chlorzoxazone, testosterone), in order to determine the activity of each isozyme. The result showed good linearity among acetaminophen, 4-OH-tolbutamide, dextrophan, 6-OH-chlorzoxazone and 6β-hydroxytestosterone, satisfactory precision, stability and average recovery, suggesting the method was feasible. The optimized in vitro microsomal incubation conditions conformed to the requirements in the guideline of drug-drug interaction. Gegen Qinlian decoction showed different degrees of inhibitor effect on 5 CYP450 isoforms (CYP1A2, CYP2C11, CYP2D2, CYP2E1, CYP3A1/2). Its major effective component berberine could inhibit each CYP450 isoform at high concentrations (except for CYP1A2, CYP3A1/2).
Khan, Hira; Akhtar, Naveed; Ali, Atif; Khan, Haji M Shoaib; Sohail, Muhammad; Naeem, Muhammad; Nawaz, Zarqa
2016-09-01
Stability of hydrophilic and lipophilic vitamin C derivatives for quenching synergistic antioxidant activities and to treat oxidative related diseases is a major issue. This study was aimed to encapsulate hydrophilic and lipophilic vitamin C derivatives (ascorbyl palmitate and sodium ascorbyl phosphate) as functional ingredients in a newly formulated multiple emulsion of the W//W type to attain the synergistic antioxidant effects and the resultant system's long term physical and chemical stability. Several multiple emulsions using the same concentration of emulsifiers but different concentrations of ascorbyl palmitate and sodium ascorbyl phosphate were developed. Three finally selected multiple emulsions (ME₁, ME₂ and ME₃) were evaluated for physical stability in terms of rheology, microscopy, conductivity, pH, and organoleptic characteristics under different storage conditions for 3 months. Chemical stability was determined by HPLC on Sykam GmbH HPLC system (Germany), equipped with a variable UV detector. Results showed that at accelerated storage conditions all the three multiple emulsions had shear thinning behavior of varying shear stress with no influence of location of functional ingredients in a carrier system. Conductivity values increased and pH values remained within the skin pH range for 3 months. Microscopic analysis showed an increase in globule size with the passage of time, especially at higher temperatures while decreased at low temperatures. Centrifugation test did not cause phase separation till the 45th day, but little effects after 2 months. Chemical stability analysis by HPLC at the end of 3 months showed that ascorbyl palmitate and sodium ascorbyl phosphate were almost stable in all multiple emulsions with no influence of their location in a carrier system. Multiple emulsions were found a stable carrier for hydrophilic and lipophilic vitamin C derivatives to enhance their desired effects. Considering that many topical formulations contain simple vitamin C it is suggested that present study may contribute to the development of more stable formulations with a combination of vitamin C derivatives to enhance their cosmetic benefits.
Hurst, William J; Stanley, Bruce; Glinski, Jan A; Davey, Matthew; Payne, Mark J; Stuart, David A
2009-10-15
This report describes the characterization of a series of commercially available procyanidin standards ranging from dimers DP = 2 to decamers DP = 10 for the determination of procyanidins from cocoa and chocolate. Using a combination of HPLC with fluorescence detection and MALDI-TOF mass spectrometry, the purity of each standard was determined and these data were used to determine relative response factors. These response factors were compared with other response factors obtained from published methods. Data comparing the procyanidin analysis of a commercially available US dark chocolate calculated using each of the calibration methods indicates divergent results and demonstrate that previous methods may significantly underreport the procyanidins in cocoa-containing products. These results have far reaching implications because the previous calibration methods have been used to develop data for a variety of scientific reports, including food databases and clinical studies.
Kamal, Abid; Khan, Washim; Ahmad, Sayeed; Ahmad, F. J.; Saleem, Kishwar
2015-01-01
Objective: The present study was used to design simple, accurate and sensitive reversed phase-high-performance liquid chromatography RP-HPLC and high-performance thin-layer chromatography (HPTLC) methods for the development of quantification of khellin present in the seeds of Ammi visnaga. Materials and Methods: RP-HPLC analysis was performed on a C18 column with methanol: Water (75: 25, v/v) as a mobile phase. The HPTLC method involved densitometric evaluation of khellin after resolving it on silica gel plate using ethyl acetate: Toluene: Formic acid (5.5:4.0:0.5, v/v/v) as a mobile phase. Results: The developed HPLC and HPTLC methods were validated for precision (interday, intraday and intersystem), robustness and accuracy, limit of detection and limit of quantification. The relationship between the concentration of standard solutions and the peak response was linear in both HPLC and HPTLC methods with the concentration range of 10–80 μg/mL in HPLC and 25–1,000 ng/spot in HPTLC for khellin. The % relative standard deviation values for method precision was found to be 0.63–1.97%, 0.62–2.05% in HPLC and HPTLC for khellin respectively. Accuracy of the method was checked by recovery studies conducted at three different concentration levels and the average percentage recovery was found to be 100.53% in HPLC and 100.08% in HPTLC for khellin. Conclusions: The developed HPLC and HPTLC methods for the quantification of khellin were found simple, precise, specific, sensitive and accurate which can be used for routine analysis and quality control of A. visnaga and several formulations containing it as an ingredient. PMID:26681890
Doh, Han Sol; Park, Hyun Jin
2018-06-01
Abalone is one of the most valuable marine products found in East Asia because it is rich in nutritious substances including iodine. In this study, the in vitro dialyzability approach was used to assess the bio-available iodine species in abalone. Iodide, iodate, 3-iodo-L-tyrosine (MIT), and 3,5-diiodo-L-tyrosine (DIT) were separated by high-performance liquid chromatography hyphenated with inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). To assure the consistency, reliability, and accuracy of the data, the method was validated. Comparison of the total iodine in abalone muscle and viscera indicated that abalone muscle showed greater digestion/absorption efficiency than abalone viscera (digestion efficiency: 68.13 ± 2.59% and 47.88 ± 5.76% and absorption efficiency: 59.78 ± 2.93% and 35.12 ± 1.43% for abalone viscera and muscle, respectively). However, evaluation of the sum of the analyzed iodine species targeted in this study by HPLC-ICP-MS indicated that abalone muscle showed lower digestion efficiency and similar absorption efficiency compared to that of abalone viscera (digestion efficiency: 35.52 ± 5.41% and 28.84 ± 1.83%; absorption efficiency: 23.56 ± 4.38% and 27.56 ± 1.51% for abalone viscera and muscle, respectively). The main forms of iodine detected in abalone muscle were iodide and MIT, whereas iodide was the major form in abalone viscera. The bio-available iodine in abalone was quantified via an in vitro method employing HPLC-ICP-MS. The results of this study indicated that abalone is feasible as a new iodine source and may prospectively find application in iodine-fortified foods. © 2018 Institute of Food Technologists®.
Hostetler, K.A.; Thurman, E.M.
2000-01-01
Analytical methods using high-performance liquid chromatography-diode array detection (HPLC-DAD) and high-performance liquid chromatography/mass spectrometry (HPLC/MS) were developed for the analysis of the following chloroacetanilide herbicide metabolites in water: alachlor ethanesulfonic acid (ESA); alachlor oxanilic acid; acetochlor ESA; acetochlor oxanilic acid; metolachlor ESA; and metolachlor oxanilic acid. Good precision and accuracy were demonstrated for both the HPLC-DAD and HPLC/MS methods in reagent water, surface water, and ground water. The average HPLC-DAD recoveries of the chloroacetanilide herbicide metabolites from water samples spiked at 0.25, 0.5 and 2.0 ??g/l ranged from 84 to 112%, with relative standard deviations of 18% or less. The average HPLC/MS recoveries of the metabolites from water samples spiked at 0.05, 0.2 and 2.0 ??g/l ranged from 81 to 118%, with relative standard deviations of 20% or less. The limit of quantitation (LOQ) for all metabolites using the HPLC-DAD method was 0.20 ??g/l, whereas the LOQ using the HPLC/MS method was at 0.05 ??g/l. These metabolite-determination methods are valuable for acquiring information about water quality and the fate and transport of the parent chloroacetanilide herbicides in water. Copyright (C) 2000 Elsevier Science B.V.
HPLC-DAD-MS identification of bioactive secondary metabolites from Ferula communis roots.
Arnoldi, Lolita; Ballero, Mauro; Fuzzati, Nicola; Maxia, Andrea; Mercalli, Enrico; Pagni, Luca
2004-06-01
A simple HPLC method was developed to distinguish between 'poisonous' and 'non-poisonous' chemotypes of Ferula communis. The method was performed on a C8 reverse phase analytical column using a binary eluent (aqueous TFA 0.01%-TFA 0.01% in acetonitrile) under gradient condition. The two chemotypes showed different fingerprints. The identification of five coumarins and eleven daucane derivatives by HPLC-diode array detection (HPLC-DAD) and HPLC-MS is described. A coumarin, not yet described, was detected. Copyright 2004 Elsevier B.V.
Long-Term Stability of Tramadol and Ketamine Solutions for Patient-Controlled Analgesia Delivery
Gu, Junfeng; Qin, Wengang; Chen, Fuchao; Xia, Zhongyuan
2015-01-01
Background Subanesthetic doses of ketamine as an adjuvant to tramadol in patient-controlled analgesia (PCA) for postoperative pain have been shown to improve the quality of analgesia. However, there are no such commercially available drug mixtures, and the stability of the combination has rarely been assessed. Material/Methods Admixtures were assessed for periods of up to 14 days at 4°C and 25°C. Three different mixtures of tramadol and ketamine (tramadol 5.0 mg/mL + ketamine 0.5 mg/mL, tramadol 5.0 mg/mL + ketamine 1.0 mg/mL, and tramadol 5.0 mg/mL + ketamine 2.0 mg/mL) were prepared in polyolefin bags by combining these 2 drugs with 0.9% sodium chloride (normal saline [NS]). The chemical stability of the admixtures was evaluated by a validated high-performance liquid chromatography (HPLC) method and by measurement of pH values. Solution appearance and color were assessed by observing the samples against black and white backgrounds. Solutions were considered stable if they maintained 90% of the initial concentration of each drug. Results The percentages of initial concentration of tramadol and ketamine in the various solutions remained above 98% when stored at 4°C or 25°C over the testing period. No changes in color or turbidity were observed in any of the prepared solutions. Throughout this period, pH values remained stable. Conclusions The results indicate that the drug mixtures of tramadol with ketamine in NS for PCA delivery systems were stable for 14 days when stored in polyolefin bags at 4°C or 25°C. PMID:26306476
Roberts, Norman B; Dutton, John; Higgins, Gerald; Allars, Lesley
2005-01-01
The problem in the measurement of cyclosporin (CyA) is that the widely used immuno-based assays suffer from interference by metabolites present in unpredictable excess. To resolve this, the consensus view has been to develop more specific and robust procedures for the measurement of CyA alone in order to give values similar to those obtained by HPLC. We developed an alternative strategy based on Abbott poly- and monoclonal assays to derive an adjusted monoclonal value as an equivalent measurement to HPLC. We have now evaluated a recently developed semi-automated HPLC procedure and used it to test the validity of the adjusted monoclonal value. The automated HPLC procedure with online clean-up was optimised for the separation of CyA and internal standard CyD. The assay was simple to use, precise and gave good recovery of cyclosporin from whole blood. Comparisons with the more specific immunoassays Abbott AxSym and EMIT showed close agreement, whereas Abbott monoclonal values indicated up to 20% positive bias. In contrast, the adjusted monoclonal values gave good agreement with HPLC. Data obtained from HPLC linked to tandem mass spectrometry (MS) indicated closer agreement with Abbott monoclonal values than expected, suggesting some positive bias with MS. The benefit of using an adjusted monoclonal value is that a result equivalent to HPLC is obtained, as well as an indication of the concentration of metabolites from the Abbott polyclonal measurement.
Environmentally evaluated HPLC-ELSD method to monitor enzymatic synthesis of a non-ionic surfactant.
Gaber, Yasser; Akerman, Cecilia Orellana; Hatti-Kaul, Rajni
2014-01-01
N-Lauroyl-N-methylglucamide is a biodegradable surfactant derived from renewable resources. In an earlier study, we presented an enzymatic solvent-free method for synthesis of this compound. In the present report, the HPLC method developed to follow the reaction between lauric acid/methyl laurate and N-methyl glucamine (MEG) and its environmental assessment are described. Use of ultraviolet (UV) absorption or refractive index (RI) detectors did not allow the detection of N-methyl glucamine (MEG). With Evaporative light scattering detector ELSD, it was possible to apply a gradient elution, and detect MEG with a limit of detection, LOD = 0.12 μg. A good separation of the peaks: MEG, lauric acid, product (amide) and by-product (amide-ester) was achieved with the gradient program with a run time of 40 min. The setting of ELSD detector was optimized using methyl laurate as the analyte. LC-MS/MS was used to confirm the amide and amide-ester peaks. We evaluated the greenness of the developed method using the freely available software HPLC-Environmental Assessment Tool (HPLC-EAT) and the method got a scoring of 73 HPLC-EAT units, implying that the analytical procedure was more environmentally benign compared to some other methods reported in literature whose HPLC-EAT values scored up to 182. Use of ELSD detector allowed the detection and quantification of the substrates and the reaction products of enzymatic synthesis of the surfactant, N-lauroyl-N-methylglucamide. The developed HPLC method has acceptable environmental profile based on HPLC-EAT evaluation.
Environmentally evaluated HPLC-ELSD method to monitor enzymatic synthesis of a non-ionic surfactant
2014-01-01
Background N-Lauroyl-N-methylglucamide is a biodegradable surfactant derived from renewable resources. In an earlier study, we presented an enzymatic solvent-free method for synthesis of this compound. In the present report, the HPLC method developed to follow the reaction between lauric acid/methyl laurate and N-methyl glucamine (MEG) and its environmental assessment are described. Results Use of ultraviolet (UV) absorption or refractive index (RI) detectors did not allow the detection of N-methyl glucamine (MEG). With Evaporative light scattering detector ELSD, it was possible to apply a gradient elution, and detect MEG with a limit of detection, LOD = 0.12 μg. A good separation of the peaks: MEG, lauric acid, product (amide) and by-product (amide-ester) was achieved with the gradient program with a run time of 40 min. The setting of ELSD detector was optimized using methyl laurate as the analyte. LC-MS/MS was used to confirm the amide and amide-ester peaks. We evaluated the greenness of the developed method using the freely available software HPLC-Environmental Assessment Tool (HPLC-EAT) and the method got a scoring of 73 HPLC-EAT units, implying that the analytical procedure was more environmentally benign compared to some other methods reported in literature whose HPLC-EAT values scored up to 182. Conclusion Use of ELSD detector allowed the detection and quantification of the substrates and the reaction products of enzymatic synthesis of the surfactant, N-lauroyl-N-methylglucamide. The developed HPLC method has acceptable environmental profile based on HPLC-EAT evaluation. PMID:24914404
Zhou, Wei; Wang, Chenlu; Wang, Xuemei; Chen, Zilin
2018-06-08
Development of stir bar sorptive extraction (SBSE) device with high stability and extraction efficiency is critical and challenging by date. In this work, etched poly(ether ether ketone) (PEEK) tube with high mechanical strength and large specific surface area was used as jacket for SBSE device. By etching with concentrated sulfuric acid, the smooth outer surface of PEEK become porous with plenty of micro holes, which was beneficial for coating of sorbents and significantly improved the extraction performance. After functionalized by bio-polydopamine method, strong hydrophobic p-naphtholbenzein molecular was immobilized onto the chemical resistant PEEK surface (PNB@E-PEEK) as stationary phase. We also firstly developed a simple detachable dumbbell-shaped structure for improving the workability of PEEK jacket stir bar. The dumbbell-shaped construction can eliminate the friction between stir bar and container, and the design of detachable structure make elution can be accomplished easier with small amount of organic solvent. It was interesting that the developed detachable dumbbell-shaped PNB@E-PEEK stir bar showed exceptional stability and extraction efficiency for SBSE enrichment of multiple analytes including several Sudan dyes, triazines, polycyclic aromatic hydrocarbons (PAHs), alkaloids and flavonoid. By coupling with high performance liquid chromatography-ultraviolet detection (HPLC-UV), PNB@E-PEEK stir bar based SBSE-HPLC-UV method was applied for the analysis of common Sudan dye pollutants. The method showed low limits of detection (0.02-0.03 ng/mL), good linearity (R 2 ≥ 0.9979) and good reproducibility (relative standard deviation ≤ 7.96%). It has been successfully applied to determine three dye pollutants in tap and lake water. Copyright © 2018 Elsevier B.V. All rights reserved.
Morais, Helena; Ramos, Cristina; Forgács, Esther; Cserháti, Tibor; Oliviera, José
2002-04-25
The effect of light, storage time and temperature on the decomposition rate of monomeric anthocyanin pigments extracted from skins of grape (Vitis vinifera var. Red globe) was determined by reversed-phase high-performance liquid chromatography (RP-HPLC). The impact of various storage conditions on the pigment stability was assessed by stepwise regression analysis. RP-HPLC separated well the five anthocyanins identified and proved the presence of other unidentified pigments at lower concentrations. Stepwise regression analysis confirmed that the overall decomposition rate of monomeric anthocyanins, peonidin-3-glucoside and malvidin-3-glucoside significantly depended on the time and temperature of storage, the effect of storage time being the most important. The presence or absence of light exerted a negligible impact on the decomposition rate.
Kim, Min Kyung; Yang, Dong-Hyug; Jung, Mihye; Jung, Eun Ha; Eom, Han Young; Suh, Joon Hyuk; Min, Jung Won; Kim, Unyong; Min, Hyeyoung; Kim, Jinwoong; Han, Sang Beom
2011-09-16
Methods using high performance liquid chromatography with diode array detection (HPLC-DAD) and tandem mass spectrometry (HPLC-MS/MS) were developed and validated for the simultaneous determination of 5 chromones and 6 coumarins: prim-O-glucosylcimifugin (1), cimifugin (2), nodakenin (3), 4'-O-β-d-glucosyl-5-O-methylvisamminol (4), sec-O-glucosylhamaudol (5), psoralen (6), bergapten (7), imperatorin (8), phellopterin (9), 3'-O-angeloylhamaudol (10) and anomalin (11), in Radix Saposhnikoviae. The separation conditions for HPLC-DAD were optimized using an Ascentis Express C18 (4.6 mm×100 mm, 2.7 μm particle size) fused-core column. The mobile phase was composed of 10% aqueous acetonitrile (A) and 90% acetonitrile (B) and the elution was performed under a gradient mode at a flow rate of 1.0 mL/min. The detection wavelength was set at 300 nm. The HPLC-DAD method yielded a base line separation of the 11 components in 50% methanol extract of Radix Saposhnikoviae with no interfering peaks detected. The HPLC-DAD method was validated in terms of linearity, accuracy and precision (intra- and inter-day), limit of quantification (LOQ), recovery, and robustness. Specific determination of the 11 components was also accomplished by a triple quadrupole tandem mass spectrometer equipped with an electrospray ionization (ESI) source. This HPLC-MS/MS method was also validated by determining the linearity, limit of quantification, accuracy, and precision. Quantification of the 11 components in 51 commercial Radix Saposhnikoviae samples was successfully performed using the developed HPLC-DAD method. The identity, batch-to-batch consistency, and authenticity of Radix Saposhnikoviae were successfully monitored by the proposed HPLC-DAD and HPLC-MS/MS methods. Copyright © 2011 Elsevier B.V. All rights reserved.
Sanchez-Gonzalez, Noe; Jaime-Fonseca, Monica R; San Martin-Martinez, Eduardo; Zepeda, L Gerardo
2013-12-11
Betalains were extracted and analyzed from Opuntia joconostle (the prickly pear known as xoconostle in Mexico). For the extraction, two solvent systems were used, methanol/water and ethanol/water. A three-variable Box-Behnken statistical design was used for extraction: solvent concentration (0-80%, v/v), temperature (5-30 °C), and treatment time (10-30 min). The extraction and stability of betalains from xoconostle were studied using response surface methodology (RSM). Techniques such as UV-vis, column chromatography, and HPLC were employed for the separation and analysis of the main pigments present in the extracts. Maximum pigment concentration (92 mg/100 g of fruit) was obtained at a temperature of 15 °C and a time of 10 min for methanol/water (20:80), whereas maximum stability of the pigment was observed at pH 5 and a temperature of 25 °C. HPLC chromatograms showed the main betalains of the xoconostle characterized were betalain, betanidin, and isobetalain.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-07
... (HPLC) method was validated for determination of dinotefuran, DN and UF in or on tomatoes and peppers... quantified after HPLC separation by tandem mass spectrometry (MS/MS) detection. Contact: Sidney Jackson, (703..., group 9 at 0.03 ppm. Adequate analytical methods (HPLC-fluorescence methods) are available for...
An optimized method for the measurement of acetaldehyde by high-performance liquid chromatography.
Guan, Xiangying; Rubin, Emanuel; Anni, Helen
2012-03-01
Acetaldehyde is produced during ethanol metabolism predominantly in the liver by alcohol dehydrogenase and rapidly eliminated by oxidation to acetate via aldehyde dehydrogenase. Assessment of circulating acetaldehyde levels in biological matrices is performed by headspace gas chromatography and reverse phase high-performance liquid chromatography (RP-HPLC). We have developed an optimized method for the measurement of acetaldehyde by RP-HPLC in hepatoma cell culture medium, blood, and plasma. After sample deproteinization, acetaldehyde was derivatized with 2,4-dinitrophenylhydrazine (DNPH). The reaction was optimized for pH, amount of derivatization reagent, time, and temperature. Extraction methods of the acetaldehyde-hydrazone (AcH-DNP) stable derivative and product stability studies were carried out. Acetaldehyde was identified by its retention time in comparison with AcH-DNP standard, using a new chromatography gradient program, and quantitated based on external reference standards and standard addition calibration curves in the presence and absence of ethanol. Derivatization of acetaldehyde was performed at pH 4.0 with an 80-fold molar excess of DNPH. The reaction was completed in 40 minutes at ambient temperature, and the product was stable for 2 days. A clear separation of AcH-DNP from DNPH was obtained with a new 11-minute chromatography program. Acetaldehyde detection was linear up to 80 μM. The recovery of acetaldehyde was >88% in culture media and >78% in plasma. We quantitatively determined the ethanol-derived acetaldehyde in hepatoma cells, rat blood and plasma with a detection limit around 3 μM. The accuracy of the method was <9% for intraday and <15% for interday measurements, in small volume (70 μl) plasma sampling. An optimized method for the quantitative determination of acetaldehyde in biological systems was developed using derivatization with DNPH, followed by a short RP-HPLC separation of AcH-DNP. The method has an extended linear range, is reproducible and applicable to small-volume sampling of culture media and biological fluids. Copyright © 2011 by the Research Society on Alcoholism.
Obmann, Astrid; Purevsuren, Sodnomtseren; Zehl, Martin; Kletter, Christa; Reznicek, Gottfried; Narantuya, Samdan; Glasl, Sabine
2012-01-01
Dianthus versicolor is used in traditional Mongolian medicine against liver impairment. Fractions enriched in flavone-di- and triglycosides were shown to enhance bile secretion. Therefore, reliable and accurate analytical methods are needed for the determination of these flavonoids in the crude drug and extracts thereof. To provide a validated HPLC-DAD (diode array detector) method especially developed for the separation of polar flavonoids and to compare the data obtained with those evaluated by UV spectrophotometry. Separations were carried out on an Aquasil® C₁₈-column (4.6 mm × 250.0 mm, 5 µm) with a linear gradient of acetonitrile and water (adjusted to pH 2.8 with trifluoroacetic acid) as mobile phase. Rutoside was employed as internal standard with linear behavior in a concentration range of 0.007-3.5 mg/mL. Accuracy was determined by spiking the crude drug with saponarin resulting in recoveries between 92% and 102%. The method allows the quantification of highly polar flavonoid glycosides and the determination of their total content. For saponarin a linear response was evaluated within the range 0.007-3.5 mg/mL (R² > 0.9999). It was proven that threefold sonication represents a time-saving, effective and cheap method for the extraction of the polar flavonoid glycosides. The contents determined by HPLC were shown to be in agreement with those obtained employing UV spectrophotometry. The study has indicated that the newly developed HPLC method represents a powerful technique for the quality control of D. versicolor. Ultraviolet spectrophotometry may be used alternatively provided that the less polar flavonoids are removed by purification. Copyright © 2011 John Wiley & Sons, Ltd.
Quality Analysis of Chlorogenic Acid and Hyperoside in Crataegi fructus
Weon, Jin Bae; Jung, Youn Sik; Ma, Choong Je
2016-01-01
Background: Crataegi fructus is a herbal medicine for strong stomach, sterilization, and alcohol detoxification. Chlorogenic acid and hyperoside are the major compounds in Crataegi fructus. Objective: In this study, we established novel high-performance liquid chromatography (HPLC)-diode array detection analysis method of chlorogenic acid and hyperoside for quality control of Crataegi fructus. Materials and Methods: HPLC analysis was achieved on a reverse-phase C18 column (5 μm, 4.6 mm × 250 mm) using water and acetonitrile as mobile phase with gradient system. The method was validated for linearity, precision, and accuracy. About 31 batches of Crataegi fructus samples collected from Korea and China were analyzed by using HPLC fingerprint of developed HPLC method. Then, the contents of chlorogenic acid and hyperoside were compared for quality evaluation of Crataegi fructus. Results: The results have shown that the average contents (w/w %) of chlorogenic acid and hyperoside in Crataegi fructus collected from Korea were 0.0438% and 0.0416%, respectively, and the average contents (w/w %) of 0.0399% and 0.0325%, respectively. Conclusion: In conclusion, established HPLC analysis method was stable and could provide efficient quality evaluation for monitoring of commercial Crataegi fructus. SUMMARY Quantitative analysis method of chlorogenic acid and hyperoside in Crataegi fructus is developed by high.performance liquid chromatography.(HPLC).diode array detectionEstablished HPLC analysis method is validated with linearity, precision, and accuracyThe developed method was successfully applied for quantitative analysis of Crataegi fructus sample collected from Korea and China. Abbreviations used: HPLC: High-performance liquid chromatography, GC: Gas chromatography, MS: Mass spectrometer, LOD: Limits of detection, LOQ: Limits of quantification, RSD: Relative standard deviation, RRT: Relative retention time, RPA: Relation peak area. PMID:27076744
Structural Characteristics of the Alpha-Synuclein Oligomers Stabilized By the Flavonoid Baicalein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, D.-P.; Fink, A.L.; Uversky, V.N.
The flavonoid baicalein inhibits fibrillation of alpha-synuclein, which is a major component of Lewy bodies in Parkinson's disease. It has been known that baicalein induces the formation of alpha-synuclein oligomers and consequently prevents their fibrillation. In order to evaluate the structural properties of baicalein-stabilized oligomers, we purified oligomer species by HPLC and examined their stability and structure by CD, Fourier transform infrared spectroscopy, size exclusion chromatography HPLC, small-angle X-ray scattering, and atomic force microscopy. Baicalein-stabilized oligomers are beta-sheet-enriched according to CD and Fourier transform infrared spectroscopy analyses. They did not form fibrils even after very prolonged incubation. From small-angle X-raymore » scattering data and atomic force microscopy images, the oligomers were characterized as quite compact globular species. Oligomers were extremely stable, with a GdmCl C(m)=3.3 M. This high stability explains the previously observed inhibition properties of baicalein against alpha-synuclein fibrillation. These baicalein-stabilized oligomers, added to the solution of aggregating alpha-synuclein, were able to noticeably inhibit its fibrillation. After prolonged coincubation, short fibrils were formed, suggesting an effective interaction of oligomers with monomeric alpha-synuclein. Membrane permeability tests suggested that the baicalein-stabilized oligomers had a mild effect on the integrity of the membrane surface. This effect was rather similar to that of the monomeric protein, suggesting that targeted stabilization of certain alpha-synuclein oligomers might offer a potential strategy for the development of novel Parkinson's disease therapies.« less
Park, Jung-Eun; Kim, Ki-Eun; Choi, Yong-Jun; Park, Yong-Duk; Kwon, Ha-Jeong
2016-02-01
The purpose of this study is to evaluate the vitamin stabilities in dentifrices by analyzing various vitamins according to the level and storage temperature. The stabilities of water- and fat-soluble vitamins were investigated in buffer solution at different pH values (4, 7, 8, 10 and 11) for 14 days and in dentifrices at different pH (7 and 10) for 5 months at two temperature conditions (room and refrigeration temperature) by analyzing the remaining amounts using HPLC methods. In the buffer solution, the stability of vitamins B1 , B6 and C was increased as the pH values increased. Vitamins E and K showed poor stability at pH 4, and vitamin B3 showed poor stability at pH 11. In dentifrices, the storage temperature highly influenced vitamin stability, especially vitamins C and E, but the stabilities of vitamins B1 and C according to pH values did not correspond to the buffer solution tests. Vitamin B group was relatively stable in dentifrices, but vitamin C completely disappeared after 5 months. Vitamin K showed the least initial preservation rates. Vitamins were not detected in commercial dentifrices for adults and detected amounts were less than the advertised contents in dentifrices for children. Copyright © 2015 John Wiley & Sons, Ltd.
Ouyang, Ying; Mansell, Robert S; Nkedi-Kizza, Peter
2004-01-01
A high performance liquid chromatography (HPLC) method with UV detection was developed to analyze paraquat (1,1'-dimethyl-4,4'-dipyridinium dichloride) herbicide content in soil solution samples. The analytical method was compared with the liquid scintillation counting (LSC) method using 14C-paraquat. Agreement obtained between the two methods was reasonable. However, the detection limit for paraquat analysis was 0.5 mg L(-1) by the HPLC method and 0.05 mg L(-1) by the LSC method. The LSC method was, therefore, 10 times more precise than the HPLC method for solution concentrations less than 1 mg L(-1). In spite of the high detection limit, the UC (nonradioactive) HPLC method provides an inexpensive and environmentally safe means for determining paraquat concentration in soil solution compared with the 14C-LSC method.
Xu, Guangkuan; Hao, Changchun; Tian, Suyang; Gao, Feng; Sun, Wenyuan; Sun, Runguang
2017-01-15
This study investigated a new and easy-to-industrialized extracting method for curcumin from Curcuma longa rhizomes using ultrasonic extraction technology combined with ammonium sulfate/ethanol aqueous two-phase system (ATPS), and the preparation of curcumin using the semi-preparative HPLC. The single-factor experiments and response surface methodology (RSM) were utilized to determine the optimal material-solvent ratio, ultrasonic intensity (UI) and ultrasonic time. The optimum extraction conditions were finally determined to be material-solvent rate of 3.29:100, ultrasonic intensity of 33.63W/cm 2 and ultrasonic time of 17min. At these optimum conditions, the extraction yield could reach 46.91mg/g. And the extraction yields of curcumin remained stable in the case of amplification, which indicated that scale-up extraction was feasible and efficient. Afterwards, the semi-preparative HPLC experiment was carried out, in which optimal preparation conditions were elected according to the single factor experiment. The prepared curcumin was obtained and the purity could up to 85.58% by the semi-preparative HPLC. Copyright © 2016 Elsevier B.V. All rights reserved.
Paseiro-Cerrato, R; de Quirós, A Rodríguez-Bernaldo; Sendón, Raquel; Bustos, Juana; Ruíz, E; Cruz, J M; Paseiro-Losada, P
2011-10-07
This paper describes the development of a multi-analyte method for the determination of polyfunctional amines commonly used as monomers in the manufacture of food contact materials. Amines were analyzed by high-performance-liquid chromatography with diode-array detection (HPLC-DAD) after derivatization with dansyl chloride. The chromatographic analysis and the derivatization conditions were optimized. The proposed method was validated in terms of linearity, limits of detection and repeatabilities. The method showed an excellent sensitivity (LOD≤0.05 μg/mL) and appropriate repeatabilites (RSD (n=7)≤5%)). LC-MS/MS was used as a confirmatory technique. The stability of the amines in five food simulants (distilled water, 3% acetic acid, 10% ethanol, 50% ethanol and olive oil) under the most common testing conditions (10 days at 40 °C) was also studied. Results showed that amines had an acceptable stability in aqueous simulants but in the olive oil a loss of 100% was observed for all analytes. Copyright © 2011. Published by Elsevier B.V.
Douki, T; Voituriez, L; Cadet, J
1995-03-01
Pyrimidine (6-4) pyrimidone photoproducts constitute one of the major classes of DNA lesions induced by far-UV irradiation. However, their biological role remains difficult to assess partly because of the lack of a specific and sensitive assay for monitoring their formation in DNA. Here is presented a measurement method based on the release of the (6-4) base adducts from DNA followed by an HPLC separation associated with a sensitive and specific fluorescence detection. The quantitative and mechanistic aspects of the chemical hydrolysis, based on the use of hydrogen fluoride stabilized in pyridine, were investigated, using dinucleoside monophosphate (6-4) photoproducts as model compounds. The final hydrolysis products were isolated and characterized by UV, fluorescence, mass, and 1H NMR spectroscopies. Application of the assay to far-UV irradiated calf thymus DNA provided information on the sequence effect on the rate of formation of three of the four possible bipyrimidine (6-4) photoproducts.
Berset, Jean-Daniel; Ochsenbein, Nicole
2012-07-01
A HPLC-MS/MS method is presented for the simultaneous determination of frequently used artificial sweeteners (ASs) and the main metabolite of aspartame (ASP), diketopiperazine (DKP), in environmental water samples using the direct-injection (DI) technique, thereby achieving limits of quantification (LOQ) of 10 ng L(-1). For a reliable quantification of ASP pH should be adjusted to 4.3 to prevent formation of the metabolite. Acesulfame (ACE), saccharin (SAC), cyclamate (CYC) and sucralose (SUC) were ubiquitously found in water samples. Highest concentrations up to 61 μg L(-1) of ACE were found in wastewater effluents, followed by surface water with concentrations up to 7 μg L(-1), lakes up to 600 ng L(-1) and groundwater and tap water up to 70 ng L(-1). The metabolite DKP was only detected in wastewater up to 200 ng L(-1) and at low detection frequencies. Copyright © 2012 Elsevier Ltd. All rights reserved.
Dönmez, Ozlem Aksu; Aşçi, Bürge; Bozdoğan, Abdürrezzak; Sungur, Sidika
2011-02-15
A simple and rapid analytical procedure was proposed for the determination of chromatographic peaks by means of partial least squares multivariate calibration (PLS) of high-performance liquid chromatography with diode array detection (HPLC-DAD). The method is exemplified with analysis of quaternary mixtures of potassium guaiacolsulfonate (PG), guaifenesin (GU), diphenhydramine HCI (DP) and carbetapentane citrate (CP) in syrup preparations. In this method, the area does not need to be directly measured and predictions are more accurate. Though the chromatographic and spectral peaks of the analytes were heavily overlapped and interferents coeluted with the compounds studied, good recoveries of analytes could be obtained with HPLC-DAD coupled with PLS calibration. This method was tested by analyzing the synthetic mixture of PG, GU, DP and CP. As a comparison method, a classsical HPLC method was used. The proposed methods were applied to syrups samples containing four drugs and the obtained results were statistically compared with each other. Finally, the main advantage of HPLC-PLS method over the classical HPLC method tried to emphasized as the using of simple mobile phase, shorter analysis time and no use of internal standard and gradient elution. Copyright © 2010 Elsevier B.V. All rights reserved.
Effect of Nanoparticle Surface on the HPLC Elution Profile of Liposomal Nanoparticles.
Itoh, Naoki; Yamamoto, Eiichi; Santa, Tomofumi; Funatsu, Takashi; Kato, Masaru
2016-06-01
Nanoparticles have been used in diverse areas, and even broader applications are expected in the future. Since surface modification can influence the configuration and toxicity of nanoparticles, a rapid screening method is important to ensure nanoparticle quality. We examined the effect of the nanoparticle surface morphology on the HPLC elution profile using two types of 100-nm liposomal nanoparticles (AmBisome(Ⓡ) and DOXIL(Ⓡ)). These 100-nm-sized nanoparticles eluted before the holdup time (about 4 min), even when a column packed with particles with a relatively large pore size (30 nm) was used. The elution time of the nanoparticles increased with pegylation of the nanoparticles and protein adsorption to the nanoparticles; however, the nanoparticles still eluted before the holdup time. The results of this study indicate that HPLC is a suitable tool for rapid evaluation of the surface of liposomal nanoparticles.
Ellagitannin composition of blackberry as determined by HPLC-ESI-MS and MALDI-TOF-MS.
Hager, Tiffany J; Howard, Luke R; Liyanage, Rohana; Lay, Jackson O; Prior, Ronald L
2008-02-13
Blackberries ( Rubus sp.) were evaluated by high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF-MS) to identify the ellagitannins present in flesh, torus (receptacle tissue), and seeds. Most ellagitannins were present (or detectable) only in seed tissues. Ellagitannins identified by HPLC-ESI-MS in the seeds included pedunculagin, casuarictin/potentillin, castalagin/vescalagin, lambertianin A/sanguiin H-6, lambertianin C, and lambertianin D. For several of the ellagitannins, isomeric separation was also obtained. The MALDI-TOF-MS analysis was primarily utilized to evaluate and identify high molecular mass (>1000 Da) ellagitannins. The MALDI analysis verified the presence of the ellagitannins identified by HPLC-ESI-MS including lambertianin A/sanguiin H-6, lambertianin C, and lambertianin D, but the analysis also indicated the presence of several other compounds that were most likely ellagitannins based on the patterns observed in the masses (i.e., loss or addition of a gallic acid moiety to a known ellagitannin). This study determined the presence of several possible isomeric forms of ellagitannins previously unidentified in fruit and presents a possible analytical HPLC method for the analysis of the major ellagitannins present in the fruit.
Rakete, Stefan; Glomb, Marcus A
2013-04-24
A novel universal method for the determination of reducing mono-, di-, and oligosaccharides in complex matrices on RP-HPLC using 1-naphthylamine for precolumn derivatization with sodium cyanoborhydride was established to study changes in the carbohydrate profile during beer brewing. Fluorescence and mass spectrometric detection enabled very sensitive analyses of beer-relevant carbohydrates. Mass spectrometry additionally allowed the identification of the molecular weight and thereby the degree of polymerization of unknown carbohydrates. Thus, carbohydrates with up to 16 glucose units were detected. Comparison demonstrated that the novel method was superior to fluorophore-assisted carbohydrate electrophoresis (FACE). The results proved the HPLC method clearly to be more powerful in regard to sensitivity and resolution. Analogous to FACE, this method was designated fluorophore-assisted carbohydrate HPLC (FAC-HPLC).
Siegel, David; Feist, Michael; Proske, Matthias; Koch, Matthias; Nehls, Irene
2010-09-08
The stability of the Alternaria mycotoxins alternariol, alternariol monomethyl ether, and altenuene upon bread baking was investigated by model experiments using a spiked wholemeal wheat flour matrix. For alternariol and alternariol monomethyl ether, but not for altenuene, degradation products, formed through a sequence of hydrolysis and decarboxylation, could be identified in pilot studies. The simultaneous quantification of alternariol, alternariol monomethyl ether, altenuene, and the degradation products was achieved by a newly developed high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) multimethod. The obtained quantitative data indicate that the Alternaria mycotoxins are barely degraded during wet baking, while significant degradation occurs upon dry baking, with the stability decreasing in the order alternariol monomethyl ether>alternariol>altenuene. The novel degradation products could be detected after the wet baking of flour spiked with alternariol and in a sample survey of 24 commercial cereal based baking products.
Schreier, Theresa M.; Dawson, V.K.; Cho, Yirang; Spanjers, N.J.; Boogaard, M.A.
2000-01-01
Bayluscide [the ethanolamine salt of niclosamide (NIC)] is a registered piscicide used in combination with 3-(trifluoromethyl)-4-nitrophenol (TFM) to control sea lamprey populations in streams tributary to the Great Lakes. A high-performance liquid chromatography (HPLC) method was developed for the determination of NIC residues in muscle fillet tissues of fish exposed to NIC and TFM during sea lamprey control treatments. NIC was extracted from fortified channel catfish and rainbow trout fillet tissue with a series of acetone extractions and cleaned up on C-18 solid-phase extraction cartridges. NIC concentrations were determined by HPLC with detection at 360 and 335 nm for rainbow trout and catfish, respectively. Recovery of NIC from rainbow trout (n = 7) fortified at 0.04 mu g/g was 77 +/- 6.5% and from channel catfish (n = 7) fortified at 0.02 mu g/g was 113 +/- 11%. NIC detection limit was 0.0107 mu g/g for rainbow trout and 0.0063 mu g/g for catfish. Percent recovery of incurred radioactive residues by this method from catfish exposed to [C-14]NIC was 89.3 +/- 4.1%. Percent recoveries of NIC from fortified storage stability tissue samples for rainbow trout (n = 3) analyzed at 5 and 7.5 month periods were 78 +/- 5.1 and 68 +/- 2.4%, respectively. Percent recoveries of NIC from fortified storage stability tissue samples for channel catfish (n = 3) analyzed at 5 and 7.5 month periods were 88 +/- 13 and 76 +/- 21%, respectively.
Photochemical transformation of azoxystrobin in aqueous solutions.
Boudina, A; Emmelin, C; Baaliouamer, A; Païssé, O; Chovelon, J M
2007-07-01
The photochemical behaviour of azoxystrobin fungicide (AZX) in water was studied under laboratory conditions. Photodegradation was initiated using a solar simulator (xenon arc lamp) or a jacketed Pyrex reaction cell equipped with a 125 W, high-pressure mercury lamp. HPLC/MS analysis (APCI and ESI in positive and negative modes) was used to identify AZX photoproducts. The calculated polychromatic quantum efficiencies (phi) of AZX at pH 4.5, 7 and 9 were 5.42 x 10(-3), 3.47 x 10(-3) and 3.06 x 10(-3) (degraded molecules per absorbed photon), respectively. The relatively narrow range of values indicates the stability of AZX with respect to photodegradation in the studied pH range. Results from the HPLC/MS analysis suggest that the phototransformation of AZX proceeds via multiple, parallel reaction pathways including: (1) photo-isomerization (E-->Z), (2) photo-hydrolysis of the methyl ester and of the nitrile group, (3) cleavage of the acrylate double bond, (4) photohydrolytic ether cleavage between the aromatic ring giving phenol, and (5) oxidative cleavage of the acrylate double bond.
Yang, Y; Kapalavavi, B; Gujjar, L; Hadrous, S; Marple, R; Gamsky, C
2012-10-01
Several high-temperature liquid chromatography (HTLC) and subcritical water chromatography (SBWC) methods have been successfully developed in this study for separation and analysis of preservatives contained in Olay skincare creams. Efficient separation and quantitative analysis of preservatives have been achieved on four commercially available ZirChrom and Waters XBridge columns at temperatures ranging from 100 to 200°C. The quantification results obtained by both HTLC and SBWC methods developed for preservatives analysis are accurate and reproducible. A large number of replicate HTLC and SBWC runs also indicate no significant system building-up or interference for skincare cream analysis. Compared with traditional HPLC separation carried out at ambient temperature, the HTLC methods can save up to 90% methanol required in the HPLC mobile phase. However, the SBWC methods developed in this project completely eliminated the use of toxic organic solvents required in the HPLC mobile phase, thus saving a significant amount of money and making the environment greener. Although both homemade and commercial systems can accomplish SBWC separations, the SBWC methods using the commercial system for preservative analysis are recommended for industrial applications because they can be directly applied in industrial plant settings. © 2012 The Authors ICS © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Djurdjevic, Predrag; Laban, Aleksandra; Jelikic-Stankov, Milena
2004-01-01
HPLC determination of fleroxacin in dosage forms was carried out using either reversed-phase column YMC pack ODS-AQ or Supelco LC Hisep shielded hydrophobic phase column, with UV detection at 280 nm. The mobile phase for ODS column consisted of 50:50:0.5 v/v/v and for Hisep column 15:85:0.5 v/v/v acetonitrile-water-triethylamine. The pH of the mobile phase was adjusted to 6.30 for ODS column and to 6.85 for Hisep column, with H3PO4. Linear response was obtained in the concentration range of fleroxacin between 0.01 and 1.30 micrograms/mL. Detection limit was 4.8 ng/mL. Recovery test in the determination of fleroxacin in "Quinodis" tablets (Hoffmann La Roche, nominal mass 400 or 200 mg) was 98-101% for both columns. The effect of the composition and pH of the mobile phase on spectra, retention time and dissociation constants of fleroxacin was discussed. The proposed method could be also used for separation of the photo-degradation products of fleroxacin. Ten degradation products were separated on the ODS-AQ column, thus confirming the suitability of the proposed method for stability study of fleroxacin in pharmaceuticals.
Liu, Yanhong; Zhang, Weihua; Yang, Yuhui
2008-10-19
A hydrophilic interaction high performance liquid chromatography-tandem mass spectrometric method has been developed and validated for simultaneous quantification of dacarbazine (DTIC) and its terminal metabolite, 5-amino-4-imidazole-carboxamide (AIC) in human plasma. The plasma samples are first extracted by a C8+SCX mixed-mode 96-well plate to extend the extraction stability of DTIC and AIC. The extracted residues are further cleaned by a primary and secondary amine (PSA) adsorbent for minimization of matrix effect. Analyses are done on an Amide-80 HPLC column coupled to a tandem mass spectrometer fitted with an atmospheric pressure turbo ion spray ionization interface in the positive-ion mode. Both DTIC and AIC have reproducible retention times on the Amide-80 HPLC column. This type of column not only has an excellent column life (over 4000 injections), but also has zero carryover effect. The injection volume should be limited at 10 microL or less to avoid the peak splitting. The validated concentration ranges are from 0.5 to 500 ng/mL for DTIC and from 2.0 to 500 ng/mL for AIC. The validated method has been successfully applied to determine the pharmacokinetic profiles for human patients receiving DTIC infusions.
Olivares, David; Bravo, Manuel; Feldmann, Jorg; Raab, Andrea; Neaman, Alexander; Quiroz, Waldo
2012-01-01
A new method for antimony speciation in terrestrial edible vegetables (spinach, onions, and carrots) was developed using HPLC with hydride generation-atomic fluorescence spectrometry. Mechanical agitation and ultrasound were tested as extraction techniques. Different extraction reagents were evaluated and optimal conditions were determined using experimental design methodology, where EDTA (10 mmol/L, pH 2.5) was selected because this chelate solution produced the highest extraction yield and exhibited the best compatibility with the mobile phase. The results demonstrated that EDTA prevents oxidation of Sb(III) to Sb(V) and maintains the stability of antimony species during the entire analytical process. The LOD and precision (RSD values obtained) for Sb(V), Sb(III), and trimethyl Sb(V) were 0.08, 0.07, and 0.9 microg/L and 5.0, 5.2, and 4.7%, respectively, for a 100 microL sample volume. The application of this method to real samples allowed extraction of 50% of total antimony content from spinach, while antimony extracted from carrots and onion samples ranged between 50 and 60 and 54 and 70%, respectively. Only Sb(V) was detected in three roots (onion and spinach) that represented 60-70% of the total antimony in the extracts.
Liu, Hao-Long; Luo, Rong; Chen, Xiao-Qing; Ba, Yin-Ying; Zheng, Li; Guo, Wei-Wei; Wu, Xia
2015-06-15
A simple, effective and suitable UFLC-ESI-MS/MS method was firstly developed to simultaneously determine five characteristic constituents (piperine, piperlonguminine, Δα,β-dihydropiperlonguminine, pellitorine and piperanine) of Piper longum L. The total alkaloids of P. longum L. was prepared. The alkaloid contents of Piper nigrum L. and P. longum L. were compared. The analysis was carried out in multiple reaction monitoring scan mode. The method showed a good specificity, linearity (R(2)>0.995), stability (RSD<2.53%), repeatability (RSD<2.58%), and recovery (90.0-103.5%). The limits of detection and limits of quantification of five alkaloids were in the range of 0.02-0.03 and 0.05-0.10 ng/mL, respectively. The intra- and inter-day precision was less than 9.30% and 9.55%, respectively. The validation results confirmed that the method could simultaneously determine the target alkaloids in the sample. Furthermore, the identities of the alkaloids were verified by HPLC-ESI-MS/MS. Compared with P. nigrum, P. longum had lower piperine content but was enriched in the other four alkaloids. Copyright © 2015 Elsevier Ltd. All rights reserved.
Stability of piritramide in patient-controlled analgesia (PCA) solutions.
Remane, D; Scriba, G; Meissner, W; Hartmann, M
2009-06-01
For patient controlled analgesia, syringes with solutions of 1.5 mg/ml piritramide in 0.9% aqueous sodium chloride are used. The physical and chemical stability for dilutions of the commercially available preparation of piritramide is limited up to 72 hours by the manufacturer. Since application duration for patient-controlled analgesia can exceed that limited time, stability was investigated by HPLC. Our results show that these solutions are chemically stable over a time period of 60 days.
Investigations Concerning Hydrolysis and Stabilization of Antiradiation Compounds
1982-01-01
Stability of Unencapsulated WR 2721 31 V. DISCUSSION 35 A. Microencapsulation 35 1. Microspheres 35 2. Microcapsules 35 B. Hydrolytic Stability of...in 1.5 hours at 370C in buffered solutions of pH 1.0 or 3.0. 3^ The more promising microspheres and microcapsules released the WR 2721 within two...hours at pH 7.5 in buffered solutions. 4) Analytical procedures were developed for: "♦ WR 2721 (directly) in microcapsules using an HPLC
Harnkarnsujarit, Nathdanai; Charoenrein, Sanguansri; Roos, Yrjö H
2012-09-26
Degradation of dispersed lipophilic compounds in hydrophilic solids depends upon matrix stability and lipid physicochemical properties. This study investigated effects of solid microstructure and size of lipid droplets on the stability of dispersed β-carotene in freeze-dried systems. Emulsions of β-carotene in sunflower oil were dispersed in maltodextrin systems (M040/DE6, M100/DE11, and M250/DE25.5) (8% w/w oil) and prefrozen at various freezing conditions prior to freeze-drying to control nucleation and subsequent pore size and structural collapse of freeze-dried solids. The particle size, physical state, and β-carotene contents of freeze-dried emulsions were measured during storage at various water activity (a(w)) using a laser particle size analyzer, differential scanning calorimeter, and high performance liquid chromatography (HPLC), respectively. The results showed that M040 stabilized emulsions in low temperature freezing exhibited lipid crystallization. Collapse of solids in storage at a(w) which plasticized systems to the rubbery state led to flow and increased the size of oil droplets. Degradation of β-carotene analyzed using a reversed-phase C(30) column followed first-order kinetics. Porosity of solids had a major effect on β-carotene stability; however, the highest stability was found in fully plasticized and collapsed solids.
Amanolahi, Farjad; Mohammadi, Ali; Kazemi Oskuee, Reza; Nassirli, Hooriyeh; Malaekeh-Nikouei, Bizhan
2017-01-01
Objective: This study was designed to develop and validate a new reversed-phase high-performance liquid chromatography (RP-HPLC) method based on Q2 (R1) International Conference on Harmonization (ICH) guideline for determination of curcumin in pharmaceutical samples. Materials and Methods: The HPLC instrument method was optimized with isocratic elution with acetonitrile: ammonium acetate (45:55, v/v, pH 3.5), C18 column (150 mm×4.6 mm×5 µm particle size) and a flow rate of 1 ml/min in ambient condition and total retention time of 17 min. The volume of injection was set at 20 µl and detection was recorded at 425 nm. The robustness of the method was examined by changing the mobile phase composition, mobile phase pH, and flow rate. Results: The method was validated with respect to precision, accuracy and linearity in a concentration range of 2-100 µg/ml. The limit of detection (LOD) and limit of quantification (LOQ) were 0.25 and 0.5 µg/ml, respectively. The percentage of recovery was 98.9 to 100.5 with relative standard deviation (RSD) < 0.638%. Conclusion: The method was found to be simple, sensitive and rapid for determination of curcumin in pharmaceutical samples and had enough sensitivity to detect degradation product of curcumin produced under photolysis and hydrolysis stress condition. PMID:29062806
Al-Majed, Abdulrahman A
2009-08-15
A direct chiral high-performance liquid chromatography (HPLC) method was developed and validated for the resolution and quantification of antiepileptic drug enantiomers, R-(-)- and S-(+)-vigabatrin (gamma-vinyl-gamma-aminobutyric acid) in pharmaceutical products. The separation was optimized on a macrocyclic glycopeptide antibiotic chiral stationary phase (CSP) based on teicoplanin aglycone, chirobiotic (TAG), using a mobile phase system containing ethanol-water (80:20, v/v), at a flow rate of 0.4ml/min and UV detection set at 210nm. The stability of vigabatrin enantiomers under different degrees of temperature was also studied. The enantiomers of vigabatrin were separated from each other. The calibration curves were linear over a range of 100-1600microg/ml (r=0.999) for both enantiomers. The overall recoveries of R-(-)- and S-(+)-vigabatrin enantiomers from pharmaceutical products were in the range of 98.3-99.8% with %RSD ranged from 0.48 to 0.52%. The limit of quantification (LOQ) and limit of detection (LOD) for each enantiomer were 100 and 25microg/ml, respectively. No interferences were found from commonly co-formulated excipients.
Effect of /sup 60/Co-irradiation on penicillin G procaine in veterinary mastitis products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuji, K.; Goetz, J.F.; Vanmeter, W.
The effect of /sup 60/Co-irradation on penicillin G procaine in a peanut oil-based veterinary mastitis product was examined by reversed-phase high-performance liquid chromatography (HPLC). The HPLC method is capable of separating and quantifiying procaine, penicillin G, and various degradation compounds. Values obtained by the HPLC method on the product irradiated and stored at various temperatures correlated well with those of the microbiological assay. No significant decrease in the procaine was detected even after 4.0-Mrad irradiation. The HPLC method is applicable for analysis of other beta-lactam antibiotics.
Gimeno, Pascal; Bousquet, Claudine; Lassu, Nelly; Maggio, Annie-Françoise; Civade, Corinne; Brenier, Charlotte; Lempereur, Laurent
2015-03-25
This manuscript presents an HPLC/UV method for the determination of hydrogen peroxide present or released in teeth bleaching products and hair products. The method is based on an oxidation of triphenylphosphine into triphenylphosphine oxide by hydrogen peroxide. Triphenylphosphine oxide formed is quantified by HPLC/UV. Validation data were obtained using the ISO 12787 standard approach, particularly adapted when it is not possible to make reconstituted sample matrices. For comparative purpose, hydrogen peroxide was also determined using ceric sulfate titrimetry for both types of products. For hair products, a cross validation of both ceric titrimetric method and HPLC/UV method using the cosmetic 82/434/EEC directive (official iodometric titration method) was performed. Results obtained for 6 commercialized teeth whitening products and 5 hair products point out similar hydrogen peroxide contain using either the HPLC/UV method or ceric sulfate titrimetric method. For hair products, results were similar to the hydrogen peroxide content using the cosmetic 82/434/EEC directive method and for the HPLC/UV method, mean recoveries obtained on spiked samples, using the ISO 12787 standard, ranges from 100% to 110% with a RSD<3.0%. To assess the analytical method proposed, the HPLC method was used to control 35 teeth bleaching products during a market survey and highlight for 5 products, hydrogen peroxide contents higher than the regulated limit. Copyright © 2015 Elsevier B.V. All rights reserved.
Lee, E.A.; Kish, J.L.; Zimmerman, L.R.; Thurman, E.
2001-01-01
An analytical method using high-performance liquid chromatography/mass spectrometry (HPLC/MS) was developed by the U.S. Geological Survey in 1999 for the analysis of selected chloroacetanilide herbicide degradation compounds in water. These compounds were acetochlor ethane sulfonic acid (ESA), acetochlor oxanilic acid (OXA), alachlor ESA, alachlor OXA, metolachlor ESA, and metolachlor OXA. The HPLC/MS method was updated in 2000, and the method detection limits were modified accordingly. Four other degradation compounds also were added to the list of compounds that can be analyzed using HPLC/MS; these compounds were dimethenamid ESA, dimethenamid OXA, flufenacet ESA, and flufenacet OXA. Except for flufenacet OXA, good precision and accuracy were demonstrated for the updated HPLC/MS method in buffered reagent water, surface water, and ground water. The mean HPLC/MS recoveries of the degradation compounds from water samples spiked at 0.20 and 1.0 ?g/L (microgram per liter) ranged from 75 to 114 percent, with relative standard deviations of 15.8 percent or less for all compounds except flufenacet OXA, which had relative standard deviations ranging from 11.3 to 48.9 percent. Method detection levels (MDL's) using the updated HPLC/MS method varied from 0.009 to 0.045 ?g/L, with the flufenacet OXA MDL at 0.072 ?g/L. The updated HPLC/MS method is valuable for acquiring information about the fate and transport of the parent chloroacetanilide herbicides in water.
Rao, Lei; Ma, Yi; Zhuang, Manjiao; Luo, Tianjie; Wang, Yayu; Hong, An
2014-01-01
As a potential protein therapeutic for type 2 diabetes mellitus (T2DM), BAY 55-9837 is limited by poor stability and a very short half-life in vivo. The purpose of this study was to construct a novel nanostructured biomaterial by conjugating BAY 55-9837 to chitosan-decorated selenium nanoparticles (CS-SeNPs) to prolong the in vivo half-life of BAY 55-9837 by reducing its renal clearance rate. BAY 55-9837-loaded CS-SeNPs (BAY-CS-SeNPs) were prepared, and their surface morphology, particle size, zeta potential, and structure were characterized. The stability, protein-loading rate, and in vitro release of BAY 55-9837 from CS-SeNPs were also quantified. Additionally, a sensitive high-performance liquid chromatography (HPLC) assay was developed for the quantification of BAY 55-9837 in mouse plasma. Thereafter, mice were injected via the tail vein with either BAY 55-9837 or BAY-CS-SeNPs, and the plasma concentration of BAY 55-9837 was determined via our validated HPLC method at different time intervals postinjection. Relevant in vivo pharmacokinetic parameters (half-life, area under the curve from time 0 to last sampling point, observed clearance) were then calculated and analyzed. BAY-CS-SeNPs were successfully synthesized, with diameters of approximately 200 nm. BAY-CS-SeNPs displayed good stability with a high protein-loading rate, and the release process of BAY 55-9837 from the CS-SeNPs lasted for over 70 hours, with the cumulative release reaching 78.9%. Moreover, the conjugation of CS-SeNPs to BAY 55-9837 significantly reduced its renal clearance to a rate of 1.56 mL/h and extended its half-life to 20.81 hours. In summary, our work provides a simple method for reducing the renal clearance rate and extending the half-life of BAY 55-9837 in vivo by utilizing CS-SeNPs as nanocarriers.
Ma, Liyun; Li, Jing; Zhao, Juan; Liao, Han; Xu, Li; Shi, Zhi-guo
2016-01-01
In the current study, novel featured silica, named penetrable silica, simultaneously containing macropores and mesopores, was immobilized with bovine serum albumin (BSA) via Schiff base method. The obtained BSA-SiO2 was employed as the high-performance liquid chromatographic (HPLC) stationary phase. Firstly, D- and L-tryptophan were used as probes to investigate the chiral separation ability of the BSA-SiO2 stationary phase. An excellent enantioseparation factor was obtained up to 4.3 with acceptable stability within at least 1 month. Next, the BSA-SiO2 stationary phase was applied to study the interaction between imatinib mesylate (IM) and BSA by frontal affinity chromatography. A single type of binding site was found for IM with the immobilized BSA, and the hydrogen-bonding and van der Waals interactions were expected to be contributing interactions based on the thermodynamic studies, and this was a spontaneous process. Compared to the traditional silica for HPLC stationary phase, the proposed penetrable silica microsphere possessed a larger capacity to bond more BSA, minimizing column overloading effects and enhancing enantioseparation ability. In addition, the lower running column back pressure and fast mass transfer were meaningful for the column stability and lifetime. It was a good substrate to immobilize biomolecules for fast chiral resolution and screening drug-protein interactions.
Burov, Sergey; Moskalenko, Yulia; Dorosh, Marina; Shkarubskaya, Zoya; Panarin, Evgeny
2009-11-01
N-terminal modification of peptides by unnatural amino acids significantly affects their enzymatic stability, conformational properties and biological activity. Application of N-amidino-amino acids, positively charged under physiological conditions, can change peptide conformation and its affinity to the corresponding receptor. In this article, we describe synthesis of short peptides, containing a new building block-N-amidino-pyroglutamic acid. Although direct guanidinylation of pyroglutamic acid and oxidation of N-amidino-proline using RuO(4) did not produce positive results, N-amidino-Glp-Phe-OH was synthesized on Wang polymer by cyclization of alpha-guanidinoglutaric acid residue. In the course of synthesis, it was found that literature procedure of selective Boc deprotection using TMSOTf/TEA reagent is accompanied by concomitant side reaction of triethylamine alkylation by polymer linker fragment. It should be mentioned that independently from cyclization time and coupling agent (DIC or HCTU), the lactam formation was incomplete. Separation of the cyclic product from the linear precursor was achieved by HPLC in ammonium formate buffer at pH 6. HPLC analysis showed N-amidino-Glp-Phe-OH stability at acidic and physiological pH and fast ring opening in water solution at pH 9. The suggested method of N-amidino-Glp residue formation can be applied in the case of short peptide chains, whereas synthesis of longer ones will require fragment condensation approach.
Pliszka, Barbara
2017-01-01
The pharmaceutical and food industries expect detailed knowledge on the physicochemical properties of elderberry fruit extracts, their stability and microbiological quality, as well as the polyphenol content in elderberry cultivars. The characteristics of the extracts might be additionally modified by citric acid, which improves the stability of anthocyanins and protects processed fruits and syrups from pathogenic microorganisms. The choice of the method with citric acid was a consequence of the physicochemical charac teristics of elderberry pigments, which are not stable under the effect of light in alcoholic solutions. The aim of study was to analyze the properties of elderberry fruit extracts regarding polyphenol content and antiradical activity, as well as their stability and microbiological quality. The plant material consisted of fruit from four cultivars (Alleso, Korsor, Sampo, Samyl) of black elderberry (Sambucus nigra L.). The following were determined in fruit extracts: polyphe- nolic content (HPLC), antiradical activity (ABTS and DPPH) and stability and microbiological quality. The HPLC analysis of polyphenols demonstrated that the extracts from fruits collected from cv. Samyl had the highest 3-sambubioside cyanidin content and those from cv. Korsor contained the highest quantity of 3-glucoside cyanidin. The extracts from cv. Sampo fruit had a dominant 3-sambubioside-5-gluco- side cyanidin and 3,5-diglucoside cyanidin content. The highest quercetin (5.92 mg 100 mg-1 of extract) and caffeic acid (1.21 mg 100 mg-1 of extract) content was found in fruit extracts from cv. Alleso. The cultivars Samyl and Korsor had a higher level of anthocyanins and higher antiradical activity (ABTS) in fruit extracts than cv. Alleso and Sampo. The antiradical activity (DPPH) of fruit extracts from elderberry cultivars as- sessed in this research was similar. The degradation index for all fruit extracts was similar (DI = 1.035). The microbiological species detected in extracts were classified as moulds (Penicillum sp., Aspergillus sp.) and yeasts (Rhodotorula sp., Torulopsis sp., Trichosporon sp., Saccharomyces sp.). The research findings may support the selection of certain cultivars for industrial applications. The high stability of anthocyanins and low level of microbiological impurities in elderberry extracts ensure the high quality of such a raw material in food and pharmaceutical processing.
Hähnel, Viola; Dormann, Frauke; Nitsopoulos, Athanasios; Friedle, Albrecht; Ahrens, Norbert
2017-02-15
Extracorporeal photopheresis (ECP) is an efficient method to treat various autoimmune diseases, cutaneous T-cell lymphoma, and graft-versus-host disease. It is based on the ex vivo inactivation of lymphocytes by 8-methoxypsoralen (8-MOP)/UV light treatment. Despite the adhesive, lipophilic nature of 8-MOP, no quality control is established for the ECP procedure. We developed a sensitive high-performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS) assay to monitor residual 8-MOP concentration after UVA irradiation in the whole blood supernatant after acetonitrile precipitation. The preanalytical stability of 8-MOP exceeded 7 days, allowing batch mode analysis. Linearity was determined with R 2 above 0.99. The 8-MOP concentrations decreased exponentially after UV exposure, with decay constants of 0.0259 in plasma and 0.0528 in saline. The recovery of 8-MOP in photopheresates was about 68%, indicating binding to DNA as well as to plastic structures. UVA induced no 8-MOP fragmentation, but caused self-adducts under extreme conditions (10-fold UV dosage). Detection of 8-MOP proved to be feasible and demonstrated that the doses were in the pharmaceutically active range.
Sun, Xiaoxiang; Zhang, Liting; Cao, Yaqi; Gu, Qinying; Yang, Huan; Tam, James P.
2016-01-01
Background: Toona sinensis (A. Juss.) Roemer is an endemic species of Toona genus native to Asian area. Its dried leaves are applied in the treatment of many diseases; however, few investigations have been reported for the quantitative analysis and comparison of major bioactive flavonol glycosides in the leaves harvested from various origins. Objective: To quantitatively analyze four major flavonol glycosides including rutinoside, quercetin-3-O-β-D-glucoside, quercetin-3-O-α-L-rhamnoside, and kaempferol-3-O-α-L-rhamnoside in the leaves from different production sites and classify them according to the content of these glycosides. Materials and Methods: A high-performance liquid chromatography-diode array detector (HPLC-DAD) method for their simultaneous determination was developed and validated for linearity, precision, accuracy, stability, and repeatability. Moreover, the method established was then employed to explore the difference in the content of these four glycosides in raw materials. Finally, a hierarchical clustering analysis was performed to classify 11 voucher specimens. Results: The separation was performed on a Waters XBridge Shield RP18 column (150 mm × 4.6 mm, 3.5 μm) kept at 35°C, and acetonitrile and H2O containing 0.30% trifluoroacetic acid as mobile phase was driven at 1.0 mL/min during the analysis. Ten microliters of solution were injected and 254 nm was selected to monitor the separation. A strong linear relationship between the peak area and concentration of four analytes was observed. And, the method was also validated to be repeatable, stable, precise, and accurate. Conclusion: An efficient and reliable HPLC-DAD method was established and applied in the assays for the samples from 11 origins successfully. Moreover, the content of those flavonol glycosides varied much among different batches, and the flavonoids could be considered as biomarkers to control the quality of Chinese Toon. SUMMARY Four major flavonol glycosides in the leaves of Toona sinensis were determined by HPLC-DAD and their contents were compared among various origins by HCA. Abbreviations used: HPLC-DAD: High-performance liquid chromatography-diode array detector, HCA: Hierarchical clustering analysis, MS: Mass spectrometry, RSD: Relative standard deviation. PMID:27279719
Pimentel-Moral, Sandra; Rodríguez-Pérez, Celia; Segura-Carretero, Antonio; Martínez-Férez, Antonio
2018-09-15
New functional oils (extra virgin olive oil, EVOO and sunflower oil, SO) containing antioxidants from Hibiscus sabdariffa extract were developed by W/O emulsion. Their physical and chemical stability was measured over time. The lowest coalescence rate was obtained with 8 and 12 wt% surfactant amount for EVOO and SO emulsions, respectively. Before the evaluation of the oxidative stability, an optimization of phenolic compounds extraction from emulsions by multi-response surface methodology was performed. EVOO emulsions were chemically more stable over time than SO emulsions in terms of total phenolic content (TPC), antioxidant activity and chemical composition measured by HPLC-ESI.TOF-MS. TPC significantly increased (from 2.02 ± 0.07 to 2.71 ± 0.06 mg Eq GAE/g extract) and the antioxidant activity measured by TEAC remained constant for 1 month of storage. Thus, W/O emulsion technology has proven to be a potential method to vehiculize and stabilize bioactive compounds from H. sabdariffa into edible oils. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chen, Lingli; Bai, Guangling; Yang, Rui; Zang, Jiachen; Zhou, Ting; Zhao, Guanghua
2014-04-15
Carotenoids may play a number of potential health benefits for human. However, their use in food industry is limited mostly because of their poor water-solubility and low thermal stability. Ferritins are widely distributed in nature with a shell-like structure which offers a great opportunity to improve the water-solubility and thermal stability of the carotenoids by encapsulation. In this work, recombinant human H-chain ferritin (rHuHF) was prepared and used to encapsulate β-carotene, a typical compound among carotenoids, by taking advantage of the reversible dissociation and reassembly characteristic of apoferritin in different pH environments. Results from high-performance liquid chromatography (HPLC), UV/Vis spectroscopy and transmission electron microscope (TEM) indicated that β-carotene molecules were successfully encapsulated within protein cages with a β-carotene/protein molar ratio of 12.4-1. Upon such encapsulation, these β-carotene-containing apoferritin nanocomposites were water-soluble. Interestingly, the thermal stability of the β-carotene encapsulated within apoferritin nanocages was markedly improved as compared to free β-carotene. These new properties might be favourable to the utilisation of β-carotene in food industry. Copyright © 2013 Elsevier Ltd. All rights reserved.
Niu, Hongqing; Xu, Menghua; Li, Shuangtian; Chen, Junwei; Luo, Jing; Zhao, Xiangcong; Gao, Chong; Li, Xiaofeng
2017-04-14
BACKGROUND Neoangiogenesis occurring in inflamed articular synovium in early rheumatoid arthritis (RA) is characterized by enhanced vascular permeability that allows nanoparticle agents, including liposomes, to deliver encapsulated drugs to arthritic joints and subsequently improve therapeutic efficacy and reduce adverse effects. However, the targeting distribution of liposomes in arthritic joints during RA has not been quantitatively demonstrated. We performed this study to evaluate the targeting distribution of PEGylated doxorubicin liposomes in the arthritic joints of collagen-induced arthritis (CIA) rats by high-performance liquid chromatography (HPLC). MATERIAL AND METHODS Two doxorubicin formulations were administered to CIA rats via tail intravenous injection at a single dose (50 mg/m²). CIA rats were sacrificed and the tissues of the inflamed ankle joints were collected. The content of doxorubicin in the arthritic joints was analyzed by a validated and reproducible HPLC method. A two-way ANOVA for 2×5 factorial design was used for statistical analysis. RESULTS The developed HPLC method was sensitive, precise, and reproducible. The method was successfully applied to quantify doxorubicin content in arthritic tissues. At each time point (6, 12, 24, 48, and 72 h), doxorubicin content in the arthritic joints of the doxorubicin liposome group (DOX-LIP group) was higher than in the free doxorubicin group (DOX group) (P<0.05). In the DOX-LIP group, doxorubicin levels in the arthritic joints increased gradually and significantly in the interval of 6-72 h post-administration. CONCLUSIONS PEGylated doxorubicin liposomes were targeted to, accumulated, and retained in the arthritic joints of CIA rats. The present study indicates that liposome encapsulation increases the therapeutic efficacy of antirheumatic drugs, presenting a promising therapeutic strategy for RA.
Tay, B Y P; Yung, S C; Teoh, T Y
2016-12-01
Isopropyl p-toluenesulfonate (IPTS) is a potentially genotoxic by-product formed during the esterification of palm oil-based palmitic and palm kernel oil-based myristic acid with isopropanol to produce isopropyl palmitate or isopropyl myristate. There are no methods described for the analysis of IPTS in cosmetic products. In this work, we have established a simple, precise and accurate method to determine the presence and level of IPTS in various finished cosmetic products which contain palm-based esters in their formulations. An Agilent 1200 series high-performance liquid chromatography (HPLC) unit using a diode-array detector (DAD) has been employed and optimized to detect IPTS in cosmetic products. For the separation, a reverse-phase Hypersil Gold C8 column (5 μm, 4.6 mm i.d. 250 mm) 5 mM tetrabutylammonium phosphate buffer 50 : 50, (v/v) solution in acetonitrile as mobile phase, in isocratic mode and a flow rate of 0.8 mL min -1 were used. A second method using a gas chromatography/mass selective detector GC-MSD was also developed to confirm the IPTS identity in the cosmetic products. Recoveries of IPTS from cosmetic matrices such as a lotion, cleansing milk and a cream ranged from 94.0% to 101.1% with <5% relative standard deviation (%RSD) showing good accuracy and repeatability of the method. The six-point calibration curves (determined over the range 0.5-50 μg mL -1 ) have a correlation coefficient of 0.9999 (based on HPLC peak area) and 0.9998 (based on HPLC peak height). The intra- and interday precisions (measured by the %RSD) of the method were <2% and <5%, respectively, indicating that the developed method is reliable, precise and reproducible. The detection and quantification limit of the method were found to be 0.5 μg mL -1 and 1.6 μg mL -1 , respectively. Analyses of 83 commercial cosmetics showed no presence of IPTS. The validation data indicated that this method was suitable for the quantitative analysis of IPTS in commercial cosmetics. This method is applicable for analyses of trace levels of IPTS in cosmetics and has the advantage of using only simple sample preparation steps. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Standard line slopes as a measure of a relative matrix effect in quantitative HPLC-MS bioanalysis.
Matuszewski, B K
2006-01-18
A simple experimental approach for studying and identifying the relative matrix effect (for example "plasma-to-plasma" and/or "urine-to-urine") in quantitative analyses by HPLC-MS/MS is described. Using as a database a large number of examples of methods developed in recent years in our laboratories, the relationship between the precision of standard line slopes constructed in five different lots of a biofluid (for example plasma) and the reliability of determination of concentration of an analyte in a particular plasma lot (or subject) was examined. In addition, the precision of standard line slopes was compared when stable isotope-labeled analytes versus analogs were used as internal standards (IS). Also, in some cases, a direct comparison of standard line slopes was made when different HPLC-MS interfaces (APCI versus ESI) were used for the assay of the same compound, using the same IS and the same sample preparation and chromatographic separation conditions. In selected cases, the precision of standard line slopes in five different lots of a biofluid was compared with precision values determined five times in a single lot. The results of these studies indicated that the variability of standard line slopes in different lots of a biofluid [precision of standard line slopes expressed as coefficient of variation, CV (%)] may serve as a good indicator of a relative matrix effect and, it is suggested, this precision value should not exceed 3-4% for the method to be considered reliable and free from the relative matrix effect liability. Based on the results presented, in order to assess the relative matrix effect in bioanalytical methods, it is recommended to perform assay precision and accuracy determination in five different lots of a biofluid, instead of repeat (n=5) analysis in the same, single biofluid lot, calculate standard line slopes and precision of these slopes, and to use <3-4% slope precision value as a guide for method applicability to support clinical studies. It was also demonstrated that when stable isotope-labeled analytes were used as internal standards, the precision of standard line slopes in five different lots of a biofluid was =2.4% irrespective of the HPLC-MS interface utilized. This clearly indicated that, in all cases studied, the use of stable isotope-labeled IS eliminated relative matrix effect. Also, the utilization of the APCI interface instead of ESI led to the elimination of the relative matrix effect in all cases studied. When the precision of standard line slope values exceeds the 3-4% limit, the method may require improvements (a more efficient chromatography, a more selective extraction, a stable isotope-labeled IS instead of an analog as an IS, and/or a change in the HPLC-MS interface) to eliminate the relative matrix effect and to improve assay selectivity.
NASA Astrophysics Data System (ADS)
Hanley, Traci A.; Saadawi, Ryan; Zhang, Peng; Caruso, Joseph A.; Landero-Figueroa, Julio
2014-10-01
The production of commercially available products marketed to contain silver nanoparticles is rapidly increasing. Species-specific toxicity is a phenomenon associated with many elements, including silver, making it imperative to develop a method to identify and quantify the various forms of silver (namely, silver ions vs. silver nanoparticles) possibly present in these products. In this study a method was developed using high performance liquid chromatography (HPLC) with ultraviolet (UV-VIS) and inductively coupled mass spectrometric (ICP-MS) detection to separate starch stabilized silver nanoparticles (AgNPs) and silver ions (Ag+) by cation exchange chromatography with 0.5 M nitric acid mobile phase. The silver nanoparticles and ions were baseline resolved with an ICP-MS response linear over four orders of magnitude, 0.04 mg kg- 1 detection limit, and 90% chromatographic recovery for silver solutions containing ions and starch stabilized silver nanoparticles smaller than 100 nm.
Peraman, Ramalingam; Mallikarjuna, Sasikala; Ammineni, Pravalika; Kondreddy, Vinod kumar
2014-10-01
A simple, selective, rapid, precise and economical reversed-phase high-performance liquid chromatographic (RP-HPLC) method has been developed for simultaneous estimation of atorvastatin calcium (ATV) and pioglitazone hydrochloride (PIO) from pharmaceutical formulation. The method is carried out on a C8 (25 cm × 4.6 mm i.d., 5 μm) column with a mobile phase consisting of acetonitrile (ACN):water (pH adjusted to 6.2 using o-phosphoric acid) in the ratio of 45:55 (v/v). The retention time of ATV and PIO is 4.1 and 8.1 min, respectively, with the flow rate of 1 mL/min with diode array detector detection at 232 nm. The linear regression analysis data from the linearity plot showed good linear relationship with a correlation coefficient (R(2)) value for ATV and PIO of 0.9998 and 0.9997 in the concentration range of 10-80 µg mL(-1), respectively. The relative standard deviation for intraday precision has been found to be <2.0%. The method is validated according to the ICH guidelines. The developed method is validated in terms of specificity, selectivity, accuracy, precision, linearity, limit of detection, limit of quantitation and solution stability. The proposed method can be used for simultaneous estimation of these drugs in marketed dosage forms. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hewala, Ismail; El-Fatatry, Hamed; Emam, Ehab; Mabrouk, Mokhtar
2011-01-01
A simple, rapid, and sensitive RP-HPLC method using photodiode array detection was developed and validated for the simultaneous determination of granisetron hydrochloride, 1-methyl-1H-indazole-3-carboxylic acid (the main degradation product of granisetron), sodium benzoate, methylparaben, propylparaben, and 4-hydroxybenzoic acid (the main degradation product of parabens) in granisetron oral drops and solutions. The separation of the compounds was achieved within 8 min on a SymmetryShield RP18 column (100 x 4.6 mm id, 3.5 microm particle size) using the mobile phase acetonitrile--0.05 M KH2PO4 buffered to pH 3 using H3PO4 (3+7, v/v). The photodiode array detector was used to test the purity of the peaks, and the chromatograms were extracted at 240 nm. The method was validated, and validation acceptance criteria were met in all cases. The robust method was successfully applied to the determination of granisetron and preservatives, as well as their degradation products in different batches of granisetron oral drops and solutions. The method proved to be sensitive for determination down to 0.04% (w/w) of granisetron degradation product relative to granisetron and 0.03% (w/w) 4-hydroxybenzoic acid relative to total parabens.
Sosnowska, Katarzyna; Winnicka, Katarzyna; Czajkowska-Kośnik, Anna
2009-01-01
In this paper, the stability of enalapril maleate in oral formulations prepared from commercially available tablets was investigated. Extemporaneously compounded, 0.1 mg/mL and 1.0 mg/mL, oral suspensions of enalapril maleate in sugar-containing and sugar-free vehicles were stored in the absence of light at 4 degrees and 25 degrees C for 30 days. Enalapril maleate stability was quantified after 7, 14, 21, and 30 days using HPLC method. Viscosities and pH of prepared suspensions were measured on each study day and no appreciable changes from the initial pH and initial viscosities occurred in any of the samples both at 25 degrees and 4 degrees C. It was shown that all the formulations retain minimum 98% of the initial enalapril maleate concentration after 30 days of storage at 25 degrees and 4 degrees C and they may provide an option in situations where the marketed suspension is unavailable.
Yoo, Kil Sun; Lee, Eun Jin; Patil, Bhimanagouda S
2010-03-01
This study was performed to purify and quantify quercetin glycosides (QG) and aglycone (free) quercetin (Q) in 6 selected onion cultivars and to compare analytical approaches based on high-performance liquid chromatography (HPLC) and spectrophotometry for the quantification of total quercetin (TQ) concentrations. Individual mono- and di-glycoside Q compounds were purified using a semipreparative HPLC and identified by comparing spectral data and by confirming corresponding peaks of QG and Q after incomplete enzyme-hydrolysis. Purified QG were quantified as Q by enzyme-hydrolysis/HPLC. TQ concentrations obtained from 20 onion bulbs with enzyme-hydrolysis/HPLC, no-hydrolysis/HPLC, and a spectrophotometric method without prior hydrolysis were significantly correlated (r(2)= 0.99) and were about 15% higher, identical, or 10% less than those concentrations by a standard acid-hydrolysis/HPLC method, respectively. During enzyme-hydrolysis of onion extracts, progressive reduction of the QG and formation of the corresponding mono-glycosides and Q were monitored using an analytical HPLC. TQ ranged from 83 to 330 microg/g F.W. in 6 selected cultivars of long-day or short-day onions. Q3,4'G and Q4'G were the 2 major compounds and comprised approximately between 94% and 97% of TQ in onions.
Parks, W.S.; Carmichael, J.K.; Mirecki, J.E.
1993-01-01
Direct Push Technology (DPT) and a modified-auger method of sampling were used at an abandoned wood-preserving plant site at Jackson, Tennessee, to collect lithologic data and ground-water samples in an area known to be affected by a subsurface creosote plume. The groundwater samples were analyzed using (1) gas chromatography with photo-ionization detection (GS/PID), (2) high- performance liquid chromatography (HPLC), (3) colonmetric phenol analysis, and (4) toxicity bioassay. DPT piezocone and cone-penetrometer-type tools provided lithologic data and ground-water samples at two onsite stations to a depth of refusal of about 35 feet below land surface. With the assistance of an auger rig, this depth was extended to about 65 feet by pushing the tools in advance of the augers. Following the DPT work, a modified-auger method was tested by the USGS. This method left doubt as to the integrity of the samples collected once zones of contamination were penetrated. GC/PID and HPLC methods of water-quality analysis provided the most data concerning contaminants in the ground-water and proved to be the most effective in creosote plume detection. Analyses from these methods showed that the highest concentrations of contaminants were detected at depths less than about 35 feet below land surface. Phenol analyses provided data supplemental to the HPLC analyses. Bioassay data indicated that toxicity associated with the plume extended to depths of about 55 feet below land surface.
Selective Sorption of Dissolved Organic Carbon Compounds by Temperate Soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jagadamma, Sindhu; Mayes, Melanie; Phillips, Jana Randolph
Physico-chemical sorption of dissolved organic carbon (DOC) on soil minerals is one of the major processes of organic carbon (OC) stabilization in soils, especially in deeper layers. The attachment of C on soil solids is related to the reactivity of the soil minerals and the chemistry of the sorbate functional groups, but the sorption studies conducted without controlling microbial activity may overestimate the sorption potential of soil. This study was conducted to examine the sorptive characteristics of a diverse functional groups of simple OC compounds (D-glucose, L-alanine, oxalic acid, salicylic acid, and sinapyl alcohol) on temperate climate soil orders (Mollisols,more » Ultisols and Alfisols) with and without biological degradative processes. Equilibrium batch experiments were conducted using 0-100 mg C L-1 at a solid-solution ratio of 1:60 for 48 hrs and the sorption parameters were calculated by Langmuir model fitting. The amount of added compounds that remained in the solution phase was detected by high performance liquid chromatography (HPLC) and total organic C (TOC) analysis. Soil sterilization was performed by -irradiation technique and experiments were repeated to determine the contribution of microbial degradation to apparent sorption. Overall, Ultisols did not show a marked preference for apparent sorption of any of the model compounds, as indicated by a narrower range of maximum sorption capacity (Smax) of 173-527 mg kg soil-1 across compounds. Mollisols exhibited a strong preference for apparent sorption of oxalic acid (Smax of 5290 mg kg soil-1) and sinapyl alcohol (Smax of 2031 mg kg soil-1) over the other compounds. The propensity for sorption of oxalic acid is mainly attributed to the precipitation of insoluble Ca-oxalate due to the calcareous nature of most Mollisol subsoils and its preference for sinapyl alcohol could be linked to the polymerization of this lignin monomer on 2:2 mineral dominated soils. The reactivity of Alfisols to DOC was in between that of Ultisols and Mollisols. HPLC results revealed significantly higher sorption of D-glucose and L-alanine than did TOC results, and duplicate experiments with sterilized soils confirmed that glucose and alanine were mineralized leading to higher apparent sorption values via HPLC. This study demonstrated that three common temperate soil orders experienced differential sorption of simple OC compounds, indicating that sorbate chemistry plays a significant role in the sorptive stabilization of DOC.« less
Partial Analysis of Insta-Foam
NASA Technical Reports Server (NTRS)
Chou, L. W.
1983-01-01
Insta-Foam, used as a thermal insulator for the non-critical area of the external tank during the prelaunch phase to minimize icing, is a two-component system. Component A has polyisocyanates, blowing agents, and stabilizers; Component B has the polyols, catalysts, blowing agents, stabilizers and fire retardant. The blowing agents are Freon 11 and Freon 12, the stabilizers are silicone surfactants, the catalysts are tertiary amines, and the fire retardant is tri-(beta-chloro-isopropyl) phosphate (PCF). High performance liquid chromatography (HPLC) was quantitatively identified polyols and PFC.
Stability of Tranexamic Acid after 12-Week Storage at Temperatures from -20 deg C to 50 deg C
2013-07-01
PRELIMINARY REPORTS STABILITY OF TRANEXAMIC ACID AFTER 12-WEEK STORAGE AT TEMPERATURES FROM –20◦C TO 50◦C Rodolfo de Guzman, Jr., MT, I. Amy...Polykratis, BS, Jill L. Sondeen, PhD, Daniel N. Darlington, PhD, Andrew P. Cap, MD, PhD, Michael A. Dubick, PhD ABSTRACT Background. Tranexamic acid (TXA) is... tranexamic acid ; temperature stability; HPLC; thromboelastography; storage PREHOSPITAL EMERGENCY CARE 2013;17:394–400 BACKGROUND Hemorrhage is the leading
Attaie, Rahmat; Bsharat, Mohammed; Mora-Gutierrez, Adela; Woldesenbet, Sela
2015-07-01
Antibiotics are widely used in animal husbandry and the presence of antibiotics in milk is a health hazard. The objective of this study was to determine residual amounts of oxytetracycline in fresh, aged, and pasteurized milk of 3 breeds of goats using HPLC analysis. It was also essential to determine the safe withdrawal period of oxytetracycline in lactating goats. The quantitative results obtained using the HPLC system were compared with the tolerance limit of oxytetracycline in milk in the United States. Fifteen milking does, 5 Nubians, 5 Alpines, and 5 LaManchas were randomly selected from the milking herd at the International Goat Research Center at Prairie View A&M University. A simple sample preparation and isocratic HPLC method using ultraviolet detection was used for analysis of milk samples. The HPLC results indicated that the withdrawal period of oxytetracycline in treated Alpine does was 82h (7 milking), whereas for Nubian does the period was 58h (5 milking), and for LaManchas the period was 72h (6 milking) after drug administration. The overall withdrawal period for all the treated goats of 3 breeds was 72h. Although these results indicated that the depletion rate of this antibiotic was faster in goats than the reported data for cows, the 96-h withdrawal period that is currently used for lactating cows is still necessary for these 3 breeds of goats. Additionally, our results indicated that oxytetracycline is not stable in goat milk at refrigeration temperature or during pasteurization and will decrease significantly. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
76 FR 38033 - Cloquintocet-mexyl; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-29
... enforcement methods are the High Performance Liquid Chromatography with Ultraviolet Detection (HPLC/UV) method REM 138.01 for determination of cloquintocet-mexyl (parent) and the HPLC/UV Method REM 138.10 for...
Linget, J M; du Vignaud, P
1999-05-01
A 215 Gilson liquid handler was used to automate enzymatic incubations using microsomes, cytosol and plasma. The design of automated protocols are described. They were based on the use of 96 deep well plates and on HPLC-based methods for assaying the substrate. The assessment of those protocols was made with comparison between manual and automated incubations, reliability and reproducibility of automated incubations in microsomes and cytosol. Examples of the use of those programs in metabolic studies in drug research, i.e. metabolic screening in microsomes and plasma were shown. Even rapid processes (with disappearance half lives as low as 1 min) can be analysed. This work demonstrates how stability studies can be automated to save time, render experiments involving human biological media less hazardous and may be improve inter-laboratory reproducibility.
Wahlen, Raimund
2004-04-01
A high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) method has been developed for the fast and accurate analysis of arsenobetaine (AsB) in fish samples extracted by accelerated solvent extraction. The combined extraction and analysis approach is validated using certified reference materials for AsB in fish and during a European intercomparison exercise with a blind sample. Up to six species of arsenic (As) can be separated and quantitated in the extracts within a 10-min isocratic elution. The method is optimized so as to minimize time-consuming sample preparation steps and allow for automated extraction and analysis of large sample batches. A comparison of standard addition and external calibration show no significant difference in the results obtained, which indicates that the LC-ICP-MS method is not influenced by severe matrix effects. The extraction procedure can process up to 24 samples in an automated manner, yet the robustness of the developed HPLC-ICP-MS approach is highlighted by the capability to run more than 50 injections per sequence, which equates to a total run-time of more than 12 h. The method can therefore be used to rapidly and accurately assess the proportion of nontoxic AsB in fish samples with high total As content during toxicological screening studies.
Wu, Chunwei; Guan, Qingxiao; Wang, Shumei; Rong, Yueying
2017-01-01
Root of Panax ginseng C. A. Mey (Renseng in Chinese) is a famous Traditional Chinese Medicine. Ginsenosides are the major bioactive components. However, the shortage and high cost of some ginsenoside reference standards make it is difficult for quality control of P. ginseng . A method, single standard for determination of multicomponents (SSDMC), was developed for the simultaneous determination of nine ginsenosides in P. ginseng (ginsenoside Rg 1 , Re, Rf, Rg 2 , Rb 1 , Rc, Rb 2 , Rb 3 , Rd). The analytes were separated on Inertsil ODS-3 C18 (250 mm × 4.6 mm, 5 μm) with gradient elution of acetonitrile and water. The flow rate was 1 mL/min and detection wavelength was set at 203 nm. The feasibility and accuracy of SSDMC were checked by the external standard method, and various high-performance liquid chromatographic (HPLC) instruments and chromatographic conditions were investigated to verify its applicability. Using ginsenoside Rg 1 as the internal reference substance, the contents of other eight ginsenosides were calculated according to conversion factors (F) by HPLC. The method was validated with linearity ( r 2 ≥ 0.9990), precision (relative standard deviation [RSD] ≤2.9%), accuracy (97.5%-100.8%, RSD ≤ 1.6%), repeatability, and stability. There was no significant difference between the SSDMC method and the external standard method. New SSDMC method could be considered as an ideal mean to analyze the components for which reference standards are not readily available. A method, single standard for determination of multicomponents (SSDMC), was established by high-performance liquid chromatography for the simultaneous determination of nine ginsenosides in Panax ginseng (ginsenoside Rg1, Re, Rf, Rg2, Rb1, Rc, Rb2, Rb3, Rd)Various chromatographic conditions were investigated to verify applicability of FsThe feasibility and accuracy of SSDMC were checked by the external standard method. Abbreviations used: DRT: Different value of retention time; F: Conversion factor; HPLC: High-performance Liquid Chromatography; LOD: Limit of detection; LOQ: Limit of quantitation; PD: Percent difference; PPD: 20(S)-protopanaxadiol; PPT: 20(S)-protopanaxatriol; RSD: Relative standard deviation; SSDMC: Single Standard for Determination of Multicomponents; TCM: Traditional Chinese Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawamura, M.; Yoshida, K.; Akabane, S.
We measured endogenous angiotensins (ANGs) I, IIandIII using a system of extraction by Sep-Pak column followed by high performance liquid chromatography (HPLC) combined with radioimmunoassay (RIA). An excellent separation of ANGs was obtained by HPLC. The recovery of ANGs I, IIandIII was 80-84%, when these authentic peptides were added to 6 ml of plasma. The coefficient of variation of the ANGs was 0.04-0.09 for intra-assay and 0.08-0.13 for inter-assay, thereby indicating a good reproducibility. Plasma ANGs I, IIandIII measured by this method in 5 normal volunteers were 51,4.5 and 1.2 pg/ml. In the presence of captopril, ANGs IIandIII decreased bymore » 84% and 77%, respectively, while ANG I increased 5.1 times. This method is therefore useful to assess the precise levels of plasma ANGs.« less
Mahajan, Rishi; Chatterjee, Subhankar
2018-05-05
Indiscriminate use of two broad spectrum pesticides, profenofos and fenthion, in agricultural system, often results in their accumulation in a non-target niche and leaching into water bodies. The present study, therefore, aims at developing a simple and rapid HPLC method that allows simultaneous extraction and detection of these two pesticides, especially in run-off water. Extraction of the two pesticides from spiked water samples using dichloromethane resulted in recovery ranging between 80 and 90%. An HPLC run of 20 min under optimized chromatographic parameters (mobile phase: methanol (75%) and water (25%); flow rate of 0.8 ml min -1 ; diode array detector at wavelength 210 nm) resulted in a significant difference in retention times of two pesticides (4.593 min) which allows a window of opportunity to study any possible intermediates/transformants of the parent compounds while evaluating run-off waters from agricultural fields. The HPLC method developed allowed simultaneous detection of profenofos and fenthion with a single injection into the HPLC system with 0.0328 mg l -1 (32.83 ng ml -1 ) being the limit of detection (LOD) and 0.0995 mg l -1 (99.5 ng ml -1 ) as the limit of quantification (LOQ) for fenthion; for profenofos, LOD and LOQ were 0.104 mg l -1 (104.50 ng ml -1 ) and 0.316 mg l -1 (316.65 ng ml -1 ), respectively. The findings were further validated using the soil microcosm experiment that allowed simultaneous detection and quantification of profenofos and fenthion. The findings indicate towards the practical significance of the methodology developed as the soil microcosm experiment closely mimics the agricultural run-off water under natural environmental conditions.
Identification of a Panax ginseng fruit fingerprint by HPLC-ESI-MS.
Zhao, H F; Xu, F F; Guo, Y T; Mi, H
2016-03-11
Over many years, parts of Panax ginseng (root and rhizome) have been identified and applied for medical purposes as traditional Chinese herbal medicine. Recently, research has indicated that ginseng fruit also contains similar compounds and is as rich as the other parts of the ginseng. This discovery may dramatically improve the efficient of outputs derived from ginseng products. Here, a new technique combining high-performance liquid chromatography (HPLC) with electrospray ionization tandem mass spectrometry (ESI-MS) was employed to identify the fingerprint of P. ginseng fruit. Using HPLC, compounds that are important for medical purposes were extracted and purified. Combined with ESI-MS, the characteristic peaks (nine common peaks) of those compounds were identified, and the accuracy was confirmed by analysis using the Chromatographic Fingerprint Similarity Evaluation System (2004A edition). Overall, 15 batches of ginseng fruit had a similarity of more than 0.80, 13 batches of samples had a similarity between 0.97 and 0.99, and two batches had a similarity less than 0.90. The test solution and mobile phase selection was discussed. The HPLC-ESI-MS method can produce repeatable and reliable results and can be applied in the quality control of P. ginseng fruit.
Yin, Yong-guang; Chen, Ming; Peng, Jin-feng; Liu, Jing-fu; Jiang, Gui-bin
2010-06-15
A novel and simple solid phase extraction (SPE)-high performance liquid chromatography (HPLC)-inductively coupled plasma mass spectrometry (ICP-MS) method was developed for determination of inorganic mercury (IHg), methylmercury MeHg and ethylmercury (EtHg) in water samples in the present work. The procedure involves pre-functionalization of the commercially available C18 SPE column with dithizone, loading water sample, displacement elution of mercury species by Na(2)S(2)O(3) solution, followed by HPLC-ICP-MS determination. Characterization and optimization of operation parameters of this new SPE procedure were discussed, including eluting reagent selection, concentration of eluting reagent, volume of eluting reagent, effect of NaCl and humic acid in sample matrix. At optimized conditions, the detection limits of mercury species for 100mL water sample were about 3ngL(-1) and the average recoveries were 93.7, 83.4, and 71.7% for MeHg, IHg and EtHg, respectively, by spiking 0.2microgL(-1) mercury species into de-ion water. Stability experiment reveals that both the dithizone-functionalized SPE cartridge and the mercury species incorporated were stable in the storage procedure. These results obtained demonstrate that SPE-HPLC-ICP-MS is a simple and sensitive technique for the determination of mercury species at trace level in water samples with high reproducibility and accuracy.
Parr, Maria Kristina; Wuest, Bernhard; Naegele, Edgar; Joseph, Jan F; Wenzel, Maxi; Schmidt, Alexander H; Stanic, Mijo; de la Torre, Xavier; Botrè, Francesco
2016-09-01
HPLC is considered the method of choice for the separation of various classes of drugs. However, some analytes are still challenging as HPLC shows limited resolution capabilities for highly polar analytes as they interact insufficiently on conventional reversed-phase (RP) columns. Especially in combination with mass spectrometric detection, limitations apply for alterations of stationary phases. Some highly polar sympathomimetic drugs and their metabolites showed almost no retention on different RP columns. Their retention remains poor even on phenylhexyl phases that show different selectivity due to π-π interactions. Supercritical fluid chromatography (SFC) as an orthogonal separation technique to HPLC may help to overcome these issues. Selected polar drugs and metabolites were analyzed utilizing SFC separation. All compounds showed sharp peaks and good retention even for the very polar analytes, such as sulfoconjugates. Retention times and elution orders in SFC are different to both RP and HILIC separations as a result of the orthogonality. Short cycle times could be realized. As temperature and pressure strongly influence the polarity of supercritical fluids, precise regulation of temperature and backpressure is required for the stability of the retention times. As CO2 is the main constituent of the mobile phase in SFC, solvent consumption and solvent waste are considerably reduced. Graphical Abstract SFC-MS/MS vs. LC-MS/MS.
Truzzi, Cristina; Annibaldi, Anna; Illuminati, Silvia; Finale, Carolina; Rossetti, Monica; Scarponi, Giuseppe
2012-07-01
In this work we compared 2 official methods for the determination of HMF in honey, the spectrophotometric White method and the HPLC method (International Honey Commission) for the determination of HMF in unifloral honey and honeydew samples with a very low HMF content (<4 mg/kg), which is the most critical determination in terms of accuracy and precision of methods. In honey solutions, the limits of quantification for HPLC and White methods are 0.83 mg/L and 0.67 mg/L, respectively, and the linearity range is confirmed up to 20 mg/L for the HPLC method and up to 5 mg/L for the White method. In honeys with HMF >5 mg/kg, the molar extinction coefficient is 15369, lower than the literature value of 16830, and should be used for HMF determination. For samples with HMF content in the range 1-4 mg/kg the accuracy of the 2 methods is comparable both for unifloral and honeydew samples, whereas as regards precision, the HPLC method gives better results (3.5% compared with 6.4% for the White method). So, in general, the HPLC method seems to be more appropriate for the determination of HMF in honey in the range 1-4 mg/kg thanks to its greater precision, but for samples with a HMF content of less than 1 mg/kg the analyses are inaccurate for both methods. This work can help governmental and private laboratories that perform food analyses to choose the best method for the determination of HMF at very low levels in unifloral honey and honeydew samples. © 2012 Institute of Food Technologists®
Long-Term Stability of Tramadol and Ketamine Solutions for Patient-Controlled Analgesia Delivery.
Gu, Junfeng; Qin, Wengang; Chen, Fuchao; Xia, Zhongyuan
2015-08-26
Subanesthetic doses of ketamine as an adjuvant to tramadol in patient-controlled analgesia (PCA) for postoperative pain have been shown to improve the quality of analgesia. However, there are no such commercially available drug mixtures, and the stability of the combination has rarely been assessed. Admixtures were assessed for periods of up to 14 days at 4°C and 25°C. Three different mixtures of tramadol and ketamine (tramadol 5.0 mg/mL + ketamine 0.5 mg/mL, tramadol 5.0 mg/mL + ketamine 1.0 mg/mL, and tramadol 5.0 mg/mL + ketamine 2.0 mg/mL) were prepared in polyolefin bags by combining these 2 drugs with 0.9% sodium chloride (normal saline [NS]). The chemical stability of the admixtures was evaluated by a validated high-performance liquid chromatography (HPLC) method and by measurement of pH values. Solution appearance and color were assessed by observing the samples against black and white backgrounds. Solutions were considered stable if they maintained 90% of the initial concentration of each drug. The percentages of initial concentration of tramadol and ketamine in the various solutions remained above 98% when stored at 4°C or 25°C over the testing period. No changes in color or turbidity were observed in any of the prepared solutions. Throughout this period, pH values remained stable. The results indicate that the drug mixtures of tramadol with ketamine in NS for PCA delivery systems were stable for 14 days when stored in polyolefin bags at 4°C or 25°C.
Shan, Si-Ming; Luo, Jian-Guang; Huang, Fang; Kong, Ling-Yi
2014-02-01
Panax ginseng C.A. Meyer has been known as a valuable traditional Chinese medicines for thousands years of history. Ginsenosides, the main active constituents, exhibit prominent immunoregulation effect. The present study first describes a holistic method based on chemical characteristic and lymphocyte proliferative capacity to evaluate systematically the quality of P. ginseng in thirty samples from different seasons during 2-6 years. The HPLC fingerprints were evaluated using principle component analysis (PCA) and hierarchical clustering analysis (HCA). The spectrum-efficacy model between HPLC fingerprints and T-lymphocyte proliferative activities was investigated by principal component regression (PCR) and partial least squares (PLS). The results indicated that the growth of the ginsenosides could be grouped into three periods and from August of the fifth year, P. ginseng appeared significant lymphocyte proliferative capacity. Close correlation existed between the spectrum-efficacy relationship and ginsenosides Rb1, Ro, Rc, Rb2 and Re were the main contributive components to the lymphocyte proliferative capacity. This comprehensive strategy, providing reliable and adequate scientific evidence, could be applied to other TCMs to ameliorate their quality control. Copyright © 2013 Elsevier B.V. All rights reserved.
Gosselin, R C; Carlin, A C; Dwyre, D M
2011-04-01
Hemoglobin variants are a result of genetic changes resulting in abnormal or dys-synchronous hemoglobin chain production (thalassemia) or the generation of hemoglobin chain variants such as hemoglobin S. Automated high-pressure liquid chromatography (HPLC) systems have become the method of choice for the evaluation of patients suspected with hemoglobinopathies. In this study, we evaluated the performance of two HPLC methods used in the detection of common hemoglobin variants: Variant and Ultra2. There were 377 samples tested, 26% (99/377) with HbS, 8.5% (32/377) with HbC, 20.7% (78/377) with other hemoglobin variant or thalassemia, and 2.9% with increased hemoglobin A(1) c. The interpretations of each chromatograph were compared. There were no differences noted for hemoglobins A(0), S, or C. There were significant differences between HPLC methods for hemoglobins F, A(2), and A(1) c. However, there was good concordance between normal and abnormal interpretations (97.9% and 96.2%, respectively). Both Variant and Ultra2 HPLC methods were able to detect most common hemoglobin variants. There was better discrimination for fast hemoglobins, between hemoglobins E and A(2), and between hemoglobins S and F using the Ultra2 HPLC method. © 2010 Blackwell Publishing Ltd.
Zhang, Yanqing; Xie, Junbo; Chen, Wen-Qian; Zhou, Tian-Yan; Lu, Wei
2009-01-01
A sensitive HPLC method with simple extraction was developed for simultaneous determination of huperzine A (HupA) and huperzine B (HupB) in Huperzia serrata, H. crispata, H. miyoshiana, and Lycopodiastrum casuarinoides. In order to avoid conventional multiple-step and time-consuming sample preparation methods, direct reflux extraction with alkaline chloroform was adopted. The quantitative determination was conducted by reversed-phase HPLC with a photodiode array detector set at 308 nm. Separation was performed on a Luna C18 column (250 x 4.6 mm id, 5 microm) with methanol-0.2% aqueous acetic acid (18 + 82, v/v) mobile phase. The method was validated for accuracy, reproducibility, precision, and limits of detection and quantification. Quantification of the two active compounds in the samples was performed by this newly developed method, and the content of HupA and HupB varied substantially among four different species. The satisfactory results indicated that the developed method can readily be utilized for quality control of the species of Huperziaceae and Lycopodiaceae containing the two compounds.
Effect of light and heat on the stability of montelukast in solution and in its solid state.
Al Omari, Mahmoud M; Zoubi, Rufaida M; Hasan, Enas I; Khader, Tariq Z; Badwan, Adnan A
2007-11-05
The chemical stability of montelukast (Monte) in solution and in its solid state was studied. A simultaneous measurement of Monte and its degradation products was determined using a selective HPLC method. The HPLC system comprised a reversed phase column (C18) as the stationary phase and a mixture of ammonium acetate buffer of pH 3.5 and methanol (15:85 v/v) as the mobile phase. The UV detection was conducted at 254 nm. Monte in solution showed instability when exposed to light leading to the formation of its cis-isomer as the major photoproduct. The rate of photodegradation of Monte in solution exposed to various light sources increases in the order of; sodium
Carbonell, Pablo; Turpin, María C; Torres-Moreno, Daniel; Molina-Martínez, Irene; García-Solano, José; Perez-Guillermo, Miguel; Conesa-Zamora, Pablo
2011-09-01
The V600E mutation in the BRAF oncogene is associated with colorectal carcinomas, with mismatch-repair deficiency and, recently, with nonresponse to epidermal growth factor receptor inhibitor therapy. The use of reliable techniques for its detection is important. The aim of our study was to compare the performance characteristics in V600E detection of denaturing high-performance liquid chromatography (dHPLC) and high-resolution melting (HRM) with TaqMan allelic discrimination as well as direct-sequencing methods in a series of 195 colorectal paraffin-embedded specimens up to the age of 15 years. The effectiveness for obtaining results on mutation status was best using TaqMan (96.9%), followed by dHPLC (93.3%), HRM (88.7%), and sequencing (88.2%). In general, TaqMan was best for analyzing older tissues, whereas sequencing was the least efficient. Heterozygotic V600E was detected in 11.6%, 9.9%, 11.6%, and 9.9% of tissues using TaqMan, dHPLC, HRM, and sequencing, respectively. Result concordances between dHPLC and TaqMan or sequencing were excellent (κ = 0.9411 and κ = 0.8988, respectively); for HRM, the concordances were good (κ = 0.7973 and κ = 0.7488, respectively). By using DNA dilutions from tumor tissue, a minimum of 10% of V600E harboring cancer content was required for the analysis by dHPLC and HRM. dHPLC could detect four non-V600E mutations, whereas HRM detected one. Our results indicate that dHPLC and HRM are techniques that can be reliably used for the detection of the BRAFV600E mutation in archival paraffin-embedded tissues. Copyright © 2011 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Gobbo-Neto, Leonardo; Lopes, Norberto P
2008-02-27
Lychnophora ericoides Mart. (Asteraceae, Vernonieae) is a plant, endemic to Brazil, with occurrence restricted to the "cerrado" biome. Traditional medicine employs alcoholic and aqueous-alcoholic preparations of leaves from this species for the treatment of wounds, inflammation, and pain. Furthermore, leaves of L. ericoides are also widely used as flavorings for the Brazilian traditional spirit "cachaça". A method has been developed for the extraction and HPLC-DAD analysis of the secondary metabolites of L. ericoides leaves. This analytical method was validated with 11 secondary metabolites chosen to represent the different classes and polarities of secondary metabolites occurring in L. ericoides leaves, and good responses were obtained for each validation parameter analyzed. The same HPLC analytical method was also employed for online secondary metabolite identification by HPLC-DAD-MS and HPLC-DAD-MS/MS, leading to the identification of di- C-glucosylflavones, coumaroylglucosylflavonols, flavone, flavanones, flavonols, chalcones, goyazensolide, and eremantholide-type sesquiterpene lactones and positional isomeric series of chlorogenic acids possessing caffeic and/or ferulic moieties. Among the 52 chromatographic peaks observed, 36 were fully identified and 8 were attributed to compounds belonging to series of caffeoylferuloylquinic and diferuloylquinic acids that could not be individualized from each other.
Guo, Zhefei; Lu, Ming; Li, Yongcheng; Pang, Huishi; Lin, Ling; Liu, Xu; Wu, Chuanbin
2014-02-01
Interactions between drugs and polymers were utilized to lower the processing temperature of hot-melt extrusion (HME), and thus minimize the thermal degradation of heat-sensitive drugs during preparation of amorphous solid dispersions. Diflunisal (DIF), which would degrade upon melting, was selected as a model drug. Hydrogen bonds between DIF and polymeric carriers (PVP K30, PVP VA64, hydroxypropyl methylcellulose and Soluplus) were revealed by differential scanning calorimetry and Fourier transform infrared spectroscopy. The hot-melt extruded solid dispersion was characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-performance liquid chromatography (HPLC). The results of hot-stage polar microscopy indicated that DIF was dissolved in molten polymers at 160°C, much lower than the melting point of DIF (215°C). At this temperature, amorphous solid dispersions were successfully produced by HME, as confirmed by XRD and SEM. The related impurities in amorphous solid dispersions detected by HPLC were lower than 0.3%, indicating that thermal degradation was effectively minimized. The dissolution of DIF from amorphous solid dispersions was significantly enhanced as compared with the pure crystalline drug. This technique based on drug-polymer interactions to prepare chemically stable amorphous solid dispersions by HME provides an attractive opportunity for development of heat-sensitive drugs. © 2013 Royal Pharmaceutical Society.
Avantaggiato, Giuseppina; De La Campa, Regina; Miller, J David; Visconti, Angelo
2003-10-01
The persistence of fumonisins during cooking is known to be affected by several factors, including thermal degradation and the presence of various ingredients in corn-based food recipes that can react with the toxin. A method for the production of corn kernels containing 14C-fumonisins was developed. The corn kernels were colonized by Fusarium verticillioides MRC 826 and supplemented with 1,2-14C-sodium acetate. The specific activity of 14C-FB1 produced made the study of its fate in cornmeal muffins possible. The double-extraction acetonitrile-water-methanol/immunoaffinity column/o-phthaldialdehyde high-performance liquid chromatography (HPLC) method was used to determine FB1 levels in cornmeal muffins. Reductions in FB1 levels in muffins spiked with 14C-labeled and unlabeled FB1 (43 and 48%, respectively) were similar, indicating that the extraction method was efficient and consistent with previous reports. However, with the labeled corn kernel material, recovery levels based on the 14C counts for the eluate from an immunoaffinity column were much higher (90%). This finding indicates that some fumonisin-related compounds other than FB1 that were present in the cornmeal were recognized by the antibodies but not by the HPLC method.
Improved method for HPLC analysis of polyamines, agmatine and aromatic monoamines in plant tissue
NASA Technical Reports Server (NTRS)
Slocum, R. D.; Flores, H. E.; Galston, A. W.; Weinstein, L. H.
1989-01-01
The high performance liquid chromatographic (HPLC) method of Flores and Galston (1982 Plant Physiol 69: 701) for the separation and quantitation of benzoylated polyamines in plant tissues has been widely adopted by other workers. However, due to previously unrecognized problems associated with the derivatization of agmatine, this important intermediate in plant polyamine metabolism cannot be quantitated using this method. Also, two polyamines, putrescine and diaminopropane, also are not well resolved using this method. A simple modification of the original HPLC procedure greatly improves the separation and quantitation of these amines, and further allows the simulation analysis of phenethylamine and tyramine, which are major monoamine constituents of tobacco and other plant tissues. We have used this modified HPLC method to characterize amine titers in suspension cultured carrot (Daucas carota L.) cells and tobacco (Nicotiana tabacum L.) leaf tissues.
Simonzadeh, Ninus
2009-04-01
Phospholipids, such as 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and 1,1',2,2'-tetramyristoyl cardiolipin, along with cholesterol, form liposomes in aqueous media and have been investigated at NeoPharm (Lake Bluff, IL) as drug-delivery systems. To accurately assess the effectiveness of various formulations involving the use of aforementioned phospholipids and cholesterol, their quantitative determination is essential. An isocratic high-performance liquid chromatographic method for the simultaneous determination of cholesterol, cardiolipin, and DOPC in various pharmaceutical formulations containing the active drug substance has consequently been developed and is presented here. The current method utilizes an ASTEC-diol analytical column and is shown to be stability-indicating and free from interference from any of the formulation excipients, such as sucrose, sodium chloride, and sodium lactate. The analytes are detected using an evaporative light scattering detector (Alltech or Polymer Laboratories). The quantitation of each lipid component is performed using non-linear regression analysis. The retention characteristics of the analytes are examined as a function of eluent composition (e.g., pH, salt content, organic to aqueous phase ratio) and column temperature. The method was validated and was found to be sensitive, specific, rugged, and cost-effective. The current method provides enhanced chromatographic separation for lipid components as well as degradation products as compared to similar methods reported in the literature. It is also inherently simpler than other similar methods reported in the literature that typically use complex gradient elution.
Sun, Lei; Jin, Hong-Yu; Tian, Run-Tao; Wang, Ming-Juan; Liu, Li-Na; Ye, Liu-Ping; Zuo, Tian-Tian; Ma, Shuang-Cheng
2017-01-01
Analysis of related substances in pharmaceutical chemicals and multi-components in traditional Chinese medicines needs bulk of reference substances to identify the chromatographic peaks accurately. But the reference substances are costly. Thus, the relative retention (RR) method has been widely adopted in pharmacopoeias and literatures for characterizing HPLC behaviors of those reference substances unavailable. The problem is it is difficult to reproduce the RR on different columns due to the error between measured retention time (t R ) and predicted t R in some cases. Therefore, it is useful to develop an alternative and simple method for prediction of t R accurately. In the present study, based on the thermodynamic theory of HPLC, a method named linear calibration using two reference substances (LCTRS) was proposed. The method includes three steps, procedure of two points prediction, procedure of validation by multiple points regression and sequential matching. The t R of compounds on a HPLC column can be calculated by standard retention time and linear relationship. The method was validated in two medicines on 30 columns. It was demonstrated that, LCTRS method is simple, but more accurate and more robust on different HPLC columns than RR method. Hence quality standards using LCTRS method are easy to reproduce in different laboratories with lower cost of reference substances.
Abdulghani, Ahlam Jameel; Jasim, Hadi Hassan; Hassan, Abbas Shebeeb
2013-01-01
UV-visible and atomic spectrophotometry and HPLC techniques were applied for the determination of tetracycline (TC) in pharmaceutical preparations via complexation of the drug with Au(III) and Hg(II) ions in solutions. The mole ratio of TC to metal ions was 1 : 1. Maximum peak absorption at λ 425 and 320 nm for the two ions, respectively, was optimized at heating temperature 75°C for 15 minutes at pH = 4 followed by the extraction with ethyl acetate. The percentage of extraction and stability constants for the two complexes was 95.247, 95.335% and 2.518 × 104, 1.162 × 105 M−1, respectively. HPLC method was applied without extraction process. The analytical data obtained from direct calibration curves of UV-visible absorption, FAAS, and HPLC for Au(III) complexes were recovery (100.78, 104.85, and 101.777%, resp.); detection limits (0.7403, 0.0997, and 2.647 μg/ml, resp.); linearity (5–70, 5–30, and 10–150 μg/ml, resp.), and correlation coefficient (0.9991, 0.9967, and 0.9986, resp.). The analytical data obtained from direct calibration curves for Hg(II) complexes by UV-visible spectrophotometry and HPLC were recovery (100.95 and 102.000%, resp.); detection limits (0.5867 and 2.532 μg/ml, resp.); linearity (5–70 and 10–150 μg/ml, resp.); and correlation coefficients (0.9989 and 0.9997, resp.). PMID:23853607
Crean, Barry; Finnie, Cindy; Crosby, Anna
2013-06-01
Orally available ticagrelor in combination with low-dose aspirin (75-100 mg/day) is indicated for adult patients with acute coronary syndromes. However, patients with swallowing difficulties may be unable to consume the currently available 90-mg tablet. It is hypothesized that ticagrelor could be given to this patient cohort as a crushed dose administered either orally or via a naso-gastric (NG) tube. To investigate the potential use of crushed ticagrelor tablets (90- and 180-mg doses) for oral dose or NG tube administration. Ticagrelor tablets (90 or 180 mg [two 90-mg tablets]) were prepared to emulate oral and NG tube administration by similar methods. For the oral dose, ticagrelor tablets were crushed using a mortar and pestle and transferred to a dosing cup. 100 mL of water was added to the mortar, stirred, and the contents were transferred to the dosing cup and stirred to form a suspension. At this stage, where the suspension would normally be administered to a patient, it was collected for high performance liquid chromatography (HPLC) analysis. The mortar was then flushed with 100 mL of water, and the contents were again transferred to the dosing cup, stirred, and collected for HPLC analysis. For the NG dose, polyvinylchloride, polyurethane, and silicone size CH10 NG tubes were used. The tablets were crushed using a mortar and pestle, diluted with 50 mL of water, and stirred. At this stage, where the suspension would normally be administered to a patient through an NG tube using a syringe, it was collected for HPLC analysis. The mortar was then flushed with two additional 50 mL aliquots of water and the contents were passed through the NG tube. HPLC analysis examined the recoverability of ticagrelor in each of the dose suspensions and flushes and the stability of the suspension when held in a syringe for up to 2 h. One or two crushed 90-mg ticagrelor tablets, prepared for either oral or NG tube administration, delivers a mean dose of ≥97% of the original tablet. No degradation of the suspensions was detected after ticagrelor had been held in the syringe for up to 2 h. Although not an approved method of administration, these results suggest that ticagrelor tablets can be crushed and prepared for oral administration or for administration via an NG tube. From a clinical perspective, a syringe hold-time of up to 2 h should allow for enough time between preparation and administration (orally or via an NG tube) of the dispersed tablets to the patient. Future studies are required to test the effect of crushed dosing on pharmacokinetic and pharmacodynamic parameters.
Wan, Jun-Hui; Tian, Pei-Ling; Luo, Wei-Hao; Wu, Bing-Yi; Xiong, Fu; Zhou, Wan-Jun; Wei, Xiang-Cai; Xu, Xiang-Min
2012-07-15
Reversed-phase high-performance liquid chromatography (RP-HPLC) of human globin chains is an important tool for detecting thalassemias and hemoglobin variants. The challenges of this method that limit its clinical application are a long analytical time and complex sample preparation. The aim of this study was to establish a simple, rapid and high-resolution RP-HPLC method for the separation of globin chains in human blood. Red blood cells from newborns and adults were diluted in deionized water and injected directly onto a micro-jupiter C18 reversed-phase column (250 mm × 4.6 mm) with UV detection at 280 nm. Under the conditions of varying pH or the HPLC gradient, the globin chains (pre-β, β, δ, α, (G)γ and (A)γ) were denatured and separated from the heme groups in 12 min with a retention time coefficient of variation (CV) ranging from 0.11 to 1.29% and a peak area CV between 0.32% and 4.86%. Significant differences (P<0.05) among three groups (normal, Hb H and β thalassemia) were found in the area ratio of α/pre-β+β applying the rapid elution procedure, while P≥0.05 was obtained between the normal and α thalassemia silent/trait group. Based on the ANOVA results, receiver operating characteristic (ROC) curve analysis of the δ/β and α/pre-β+β area ratios showed a sensitivity of 100.0%, and a specificity of 100.0% for indicating β thalassemia carriers, and a sensitivity of 96.6% and a specificity of 89.6% for the prediction of hemoglobin H (Hb H) disease. The proposed cut-off was 0.026 of δ/β for β thalassemia carriers and 0.626 of α/pre-β+β for Hb H disease. In addition, abnormal hemoglobin hemoglobin E (Hb E) and Hb Westmead (Hb WS) were successfully identified using this RP-HPLC method. Our experience in developing this RP-HPLC method for the rapid separation of human globin chains could be of use for similar work. Copyright © 2012 Elsevier B.V. All rights reserved.
Llambias, E B; Luo, J
1996-01-01
Methods for the analysis of phenformin and its metabolite by high-performance liquid chromatography (HPLC), capillary electrophoresis (CE) and high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESIMS) are developed. The effects of pH, buffer concentration and proportion of organic modifier on the retention of the compounds in HPLC have been studied. The optimum condition was used for the separation and identification of phenformin and its metabolite in microsomal metabolism by HPLC-ESIMS. A simple CE method is also described for the separation of these compounds. Optimum incubation conditions and cofactor requirements for the formation of 4-hydroxyphenformin by microsomal preparations of rat liver were determined. A linear response in the formation of product was found with increasing concentrations of protein and up to 15 min incubation. High concentrations of phenformin inhibited its metabolite formation, and K(m) was 4 microM.
Fingerprint of Hedyotis diffusa Willd. by HPLC-MS.
Yang, Ting; Yang, Yi-Hua; Yang, Ju-Yun; Chen, Ben-Mei; Duan, Ju-Ping; Yu, Shu-Yi; Ouyang, Hong-Tao; Cheng, Jun-Ping; Chen, Yu-Xiang
2008-01-01
A HPLC-MS fingerprint method has been developed based on the consistent chromatographic features of the major chemical constituents among 10 batches of Hedyotis diffusa Willd. Chromatographic separation was conducted on a Hypersil-Keystone Hypurity C(18) column using methanol:water:acetic acid as the mobile phase. Major compounds, including oleanolic acid, ursolic acid and ferulic acid, were analysed by HPLC-MS. Their analysis was ascertained by comparison with data derived from the standard compounds. The HPLC-MS fingerprint was successfully applied to analyse and differentiate samples from different geographical origins, or processing methods. H. diffusa was well distinguished from Hedyotis chrysotricha by HPLC-MS. Therefore the establishment of fingerprint of H. diffusa is critical in assessing and controlling its overall quality.
Lu, Yingjian; Gao, Boyan; Chen, Pei; Charles, Denys; Yu, Liangli (Lucy)
2014-01-01
Sweet basil, Ocimum basilicum., is one of the most important and wildly used spices and has been shown to have antioxidant, antibacterial, and anti-diarrheal activities. In this study, high performance liquid chromatographic (HPLC) and flow-injection mass spectrometric (FIMS) fingerprinting techniques were used to differentiate organic and conventional sweet basil leaf samples. Principal component analysis (PCA) of the fingerprints indicated that both HPLC and FIMS fingerprints could effectively detect the chemical differences in the organic and conventional sweet basil leaf samples. This study suggested that the organic basil sample contained greater concentrations of almost all the major compounds than its conventional counterpart on a per same botanical weight basis. The FIMS method was able to rapidly differentiate the organic and conventional sweet basil leaf samples (1 min analysis time), whereas the HPLC fingerprints provided more information about the chemical composition of the basil samples with a longer analytical time. PMID:24518341
Lu, Yingjian; Gao, Boyan; Chen, Pei; Charles, Denys; Yu, Liangli Lucy
2014-07-01
Sweet basil, Ocimum basilicum, is one of the most important and wildly used spices and has been shown to have antioxidant, antibacterial, and anti-diarrheal activities. In this study, high performance liquid chromatographic (HPLC) and flow-injection mass spectrometric (FIMS) fingerprinting techniques were used to differentiate organic and conventional sweet basil leaf samples. Principal component analysis (PCA) of the fingerprints indicated that both HPLC and FIMS fingerprints could effectively detect the chemical differences in the organic and conventional sweet basil leaf samples. This study suggested that the organic basil sample contained greater concentrations of almost all the major compounds than its conventional counterpart on a per same botanical weight basis. The FIMS method was able to rapidly differentiate the organic and conventional sweet basil leaf samples (1min analysis time), whereas the HPLC fingerprints provided more information about the chemical composition of the basil samples with a longer analytical time. Copyright © 2014 Elsevier Ltd. All rights reserved.
Regmi, Chhabilal; Maya-Flores, Etel; Lee, Soo Wohn; Rodríguez-González, Vicente
2018-06-21
Nickel hydroxide β-Ni(OH)2 hexagonal nanosheets were synthetized via a hydrothermal exfoliation process. The practical microwave assisted hydrothermal method facilitated obtain layered nickel 3D nanoplates with cerium functionalization in 5h. The as-produced nanostructures were characterized by XRD, XPS, FESEM, FT-IR, PL, UV-vis, and BET techniques. The hydroxilated structures are nano-thick hexagonal plates having sides with 28 nm in length and 5 nm of average thickness. UV and PL irradiation was used to study the photoactive properties in the degradation of a pharmaceutical emerging pollutant, naproxen. UV-vis spectroscopy and high-performance liquid chromatography (HPLC) monitoring indicated that the Ni(OH)2-Ce nanostructures are an effective photocatalyst for naproxen degradation including 40 % of mineralization of this highly recalcitrant drug. The photocatalyst showed stability for two consecutive cycles, preserving its photoactive and structural characteristics. Ce3+ doped nanoplates and surface functionalized Ce4+ act as charge separators and scavenging agents for the enhanced photodegradation of naproxen. © 2018 IOP Publishing Ltd.
Bottoli, Carla B G; Chaudhry, Zahra F; Fonseca, Dania A; Collins, Kenneth E; Collins, Carol H
2002-03-01
Poly(methyloctylsiloxane) (PMOS) and poly(methyloctadecylsiloxane) (PMODS) were sorbed onto porous HPLC silica and thermally immobilized, in the absence of radical initiators, at temperatures in the range of 80 to 180 degrees C. Following extraction of non-immobilized polymer the materials were packed into columns and their chromatographic properties evaluated. The shorter chain (PMOS) stationary phase showed good HPLC characteristics after thermal immobilizations up to 120 degrees C while the longer chain (PMODS) phase gave satisfactory HPLC phases following thermal immobilizations at 80 and 100 degrees C. Stability evaluation for the PMOS and PMODS columns immobilized at 100 degrees C required 250 ml of pH 8.5 mobile phase at 60 degrees C to significantly decrease efficiency, suggesting a long useful life time at neutral pH and ambient temperature.
Piana, Mariana; Silva, Mariane Arnoldi; Trevisan, Gabriela; de Brum, Thiele Faccim; Silva, Cássia Regina; Boligon, Aline Augusti; Oliveira, Sara Marchesan; Zadra, Marina; Hoffmeister, Carin; Rossato, Mateus Fortes; Tonello, Raquel; Laporta, Luciane Varini; de Freitas, Robson Borba; Belke, Bianca Vargas; Jesus, Roberta da Silva; Ferreira, Juliano; Athayde, Margareth Linde
2013-11-25
Viola tricolor, popularly known as heartsease has been empirically used in several skin disorders, including burns. The objective of this study was investigate the antinociceptive and antiinflammatory effect of a gel containing extract of Viola tricolor flowers on thermal burn induced by UVB irradiation and to perform gel stability study. The antinociceptive and antiinflammatory effect were evaluated by static and dynamic mechanical allodynia model, paw edema, and neutrophilic cell infiltration. Metabolites compounds were quantified by HPLC. The gel stability study was performed analyzing organoleptical aspects, besides pH, viscosity, and quantification of rutin by HPLC. In the results were evidenced changes in threshold in statical and dynamic mechanical allodynia (I(max)=100 ± 10% and 49 ± 10%, respectively), paw edema (I(max)=61 ± 6%), and myeloperoxidase activity (I(max)=89 ± 5%). Such effects may be attributed, in part, to rutin, salicylic and chlorogenic acids, and others compounds found in this species. No important changes were detected in the stability study, in all aspects analyzed in temperature below 25 °C. These findings suggest that Viola tricolor gel has an antinociceptive and antiinflammatory effect in the ultraviolet-B-induced burn, since maintain the temperature below 25 °C. © 2013 Elsevier Ireland Ltd. All rights reserved.
Tenon, Mathieu; Feuillère, Nicolas; Roller, Marc; Birtić, Simona
2017-04-15
Yucca GRAS-labelled saponins have been and are increasingly used in food/feed, pharmaceutical or cosmetic industries. Existing techniques presently used for Yucca steroidal saponin quantification remain either inaccurate and misleading or accurate but time consuming and cost prohibitive. The method reported here addresses all of the above challenges. HPLC/ELSD technique is an accurate and reliable method that yields results of appropriate repeatability and reproducibility. This method does not over- or under-estimate levels of steroidal saponins. HPLC/ELSD method does not require each and every pure standard of saponins, to quantify the group of steroidal saponins. The method is a time- and cost-effective technique that is suitable for routine industrial analyses. HPLC/ELSD methods yield a saponin fingerprints specific to the plant species. As the method is capable of distinguishing saponin profiles from taxonomically distant species, it can unravel plant adulteration issues. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Detection of malondialdehyde in processed meat products without interference from the ingredients.
Jung, Samooel; Nam, Ki Chang; Jo, Cheorun
2016-10-15
Our aim was to develop a method for accurate quantification of malondialdehyde (MDA) in meat products. MDA content of uncured ground pork (Control); ground pork cured with sodium nitrite (Nitrite); and ground pork cured with sodium nitrite, sodium chloride, sodium pyrophosphate, maltodextrin, and a sausage seasoning (Mix) was measured by the 2-thiobarbituric acid (TBA) assay with MDA extraction by trichloroacetic acid (method A) and two high-performance liquid chromatography (HPLC) methods: i) HPLC separation of the MDA-dinitrophenyl hydrazine adduct (method B) and ii) HPLC separation of MDA (method C) after MDA extraction with acetonitrile. Methods A and B could not quantify MDA accurately in groups Nitrite and Mix. Nevertheless, MDA in groups Control, Nitrite, and Mix was accurately quantified by method C with good recovery. Therefore, direct MDA quantification by HPLC after MDA extraction with acetonitrile (method C) is useful for accurate measurement of MDA content in processed meat products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ortiz-Boyer, F; Tena, M T; Luque de Castro, M D; Valcárcel, M
1995-10-01
Methods are reported for the determination of tyrothricin and benzocaine by HPLC and menthol by GC in the analysis of throat lozenges (tablets) containing all three compounds. After optimization of the variables involved in both HPLC and GC the methods have been characterized and validated according to the guidelines of the Spanish Pharmacopoeia, and applied to both the monitoring of the manufacturing process and the quality control of the final product.
Huang, Hao-Zhou; Zhao, Sheng-Yu; Ke, Xiu-Mei; Lin, Jun-Zhi; Huang, Shu-Sen; Xu, Run-Chun; Ma, Hong-Yan; Zhang, Yi; Han, Li; Zhang, Ding-Kun
2018-06-04
Triphala is a well-known prescription in Indian Ayurveda and TCM medicine for its great effect on gingivitis and hyperlipidemia. However, its solution is unstable for the containing of excessive polyphenol, leading to the production of sediment in the short term and the decrease of efficacy. Based on the analysis of sediment formation, a novel control strategy is proposed. To conduct the analysis, the sediment formation was recorded for a consecutive five days. The changes in the composition of the supernatant and the sediment were studied by the HPLC profile analysis. The main components of the sediment were identified as corilagin, ellagic acid and gallic acid, and the amount of ellagic acid sediment increased with the storage time. Then, with a series of pH status adjustments of the Triphala solution, the physical and chemical stabilities were acquired by Turbiscan and HPLC respectively. The results showed that as the pH value increased, so did the physical stability, but the particle size and TSI of the association decreased. While the fingerprint of chemical profile similarity decreased, so did the chemical stability. Combining physical and chemical stability parameters, an equilibrium point was found out. When the pH value was adjusted to 5.0, both the physical and chemical stabilities were better: the verification test showed that the sedimentation inhibition rates on the 3rd, 5th,10th and15th days were 41%, 55%, 41%, and 23%, respectively. This manuscript provided a new control strategy that will pique pharmaceutical and food development engineers' interest and trigger research ideas controlling the quality of decoction. Copyright © 2018 Elsevier B.V. All rights reserved.
Shurbaji, Maher; Abu Al Rub, Mohamad H; Saket, Munib M; Qaisi, Ali M; Salim, Maher L; Abu-Nameh, Eyad S M
2010-01-01
A rapid, simple, and sensitive RP-HPLC analytical method was developed for the simultaneous determination of triclabendazole and ivermectin in combination using a C18 RP column. The mobile phase was acetonitrile-methanol-water-acetic acid (56 + 36 + 7.5 + 0.5, v/v/v/v) at a pH of 4.35 and flow rate of 1.0 mL/min. A 245 nm UV detection wavelength was used. Complete validation, including linearity, accuracy, recovery, LOD, LOQ, precision, robustness, stability, and peak purity, was performed. The calibration curve was linear over the range 50.09-150.26 microg/mL for triclabendazole with r = 0.9999 and 27.01-81.02 microg/mL for ivermectin with r = 0.9999. Calculated LOD and LOQ for triclabendazole were 0.03 and 0.08 microg/mL, respectively, and for ivermectin 0.07 and 0.20 microg/mL, respectively. The intraday precision obtained was 98.71% with RSD of 0.87% for triclabendazole and 100.79% with RSD 0.73% for ivermectin. The interday precision obtained was 99.51% with RSD of 0.35% for triclabendazole and 100.55% with RSD of 0.59% for ivermectin. Robustness was also studied, and there was no significant variation of the system suitability of the analytical method with small changes in experimental parameters.
New validated method for piracetam HPLC determination in human plasma.
Curticapean, Augustin; Imre, Silvia
2007-01-10
The new method for HPLC determination of piracetam in human plasma was developed and validated by a new approach. The simple determination by UV detection was performed on supernatant, obtained from plasma, after proteins precipitation with perchloric acid. The chromatographic separation of piracetam under a gradient elution was achieved at room temperature with a RP-18 LiChroSpher 100 column and aqueous mobile phase containing acetonitrile and methanol. The quantitative determination of piracetam was performed at 200 nm with a lower limit of quantification LLQ=2 microg/ml. For this limit, the calculated values of the coefficient of variation and difference between mean and the nominal concentration are CV%=9.7 and bias%=0.9 for the intra-day assay, and CV%=19.1 and bias%=-7.45 for the between-days assay. For precision, the range was CV%=1.8/11.6 in the intra-day and between-days assay, and for accuracy, the range was bias%=2.3/14.9 in the intra-day and between-days assay. In addition, the stability of piracetam in different conditions was verified. Piracetam proved to be stable in plasma during 4 weeks at -20 degrees C and for 36 h at 20 degrees C in the supernatant after protein precipitation. The new proposed method was used for a bioequivalence study of two medicines containing 800 mg piracetam.
NASA Astrophysics Data System (ADS)
Yugatama, A.; Rohmani, S.; Dewangga, A.
2018-03-01
Atorvastatin is the primary choice for dyslipidemia treatment. Due to patent expiration of atorvastatin, the pharmaceutical industry makes copy of the drug. Therefore, the development methods for tablet quality tests involving atorvastatin concentration on tablets needs to be performed. The purpose of this research was to develop and validate the simple atorvastatin tablet analytical method by HPLC. HPLC system used in this experiment consisted of column Cosmosil C18 (150 x 4,6 mm, 5 µm) as the stationary reverse phase chomatography, a mixture of methanol-water at pH 3 (80:20 v/v) as the mobile phase, flow rate of 1 mL/min, and UV detector at wavelength of 245 nm. Validation methods were including: selectivity, linearity, accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ). The results of this study indicate that the developed method had good validation including selectivity, linearity, accuracy, precision, LOD, and LOQ for analysis of atorvastatin tablet content. LOD and LOQ were 0.2 and 0.7 ng/mL, and the linearity range were 20 - 120 ng/mL.
NASA Astrophysics Data System (ADS)
Ren, Guoyan; Li, Bafang; Zhao, Xue; Zhuang, Yongliang; Yan, Mingyan; Hou, Hu; Zhang, Xiukun; Chen, Li
2009-03-01
In order to select an optimum extraction method for the target glycoprotein (TGP) from jellyfish ( Rhopilema esculentum) oral-arms, a high performance liquid chromatography (HPLC)-assay for the determination of the TGP was developed. Purified target glycoprotein was taken as a standard glycoprotein. The results showed that the calibration curves for peak area plotted against concentration for TGP were linear ( r = 0.9984, y = 4.5895 x+47.601) over concentrations ranging from 50 to 400 mgL-1. The mean extraction recovery was 97.84% (CV2.60%). The fractions containing TGP were isolated from jellyfish ( R. esculentum) oral-arms by four extraction methods: 1) water extraction (WE), 2) phosphate buffer solution (PBS) extraction (PE), 3) ultrasound-assisted water extraction (UA-WE), 4) ultrasound-assisted PBS extraction (UA-PE). The lyophilized extract was dissolved in Milli-Q water and analyzed directly on a short TSK-GEL G4000PWXL (7.8 mm×300 mm) column. Our results indicated that the UA-PE method was the optimum extraction method selected by HPLC.
The Second SeaWiFS HPLC Analysis Round-Robin Experiment (SeaHARRE-2)
NASA Technical Reports Server (NTRS)
2005-01-01
Eight international laboratories specializing in the determination of marine pigment concentrations using high performance liquid chromatography (HPLC) were intercompared using in situ samples and a variety of laboratory standards. The field samples were collected primarily from eutrophic waters, although mesotrophic waters were also sampled to create a dynamic range in chlorophyll concentration spanning approximately two orders of magnitude (0.3 25.8 mg m-3). The intercomparisons were used to establish the following: a) the uncertainties in quantitating individual pigments and higher-order variables (sums, ratios, and indices); b) an evaluation of spectrophotometric versus HPLC uncertainties in the determination of total chlorophyll a; and c) the reduction in uncertainties as a result of applying quality assurance (QA) procedures associated with extraction, separation, injection, degradation, detection, calibration, and reporting (particularly limits of detection and quantitation). In addition, the remote sensing requirements for the in situ determination of total chlorophyll a were investigated to determine whether or not the average uncertainty for this measurement is being satisfied. The culmination of the activity was a validation of the round-robin methodology plus the development of the requirements for validating an individual HPLC method. The validation process includes the measurements required to initially demonstrate a pigment is validated, and the measurements that must be made during sample analysis to confirm a method remains validated. The so-called performance-based metrics developed here describe a set of thresholds for a variety of easily-measured parameters with a corresponding set of performance categories. The aggregate set of performance parameters and categories establish a) the overall performance capability of the method, and b) whether or not the capability is consistent with the required accuracy objectives.
Alépée, N; Barroso, J; De Smedt, A; De Wever, B; Hibatallah, J; Klaric, M; Mewes, K R; Millet, M; Pfannenbecker, U; Tailhardat, M; Templier, M; McNamee, P
2015-06-01
A number of in vitro test methods using Reconstructed human Tissues (RhT) are regulatory accepted for evaluation of skin corrosion/irritation. In such methods, test chemical corrosion/irritation potential is determined by measuring tissue viability using the photometric MTT-reduction assay. A known limitation of this assay is possible interference of strongly coloured test chemicals with measurement of formazan by absorbance (OD). To address this, Cosmetics Europe evaluated use of HPLC/UPLC-spectrophotometry as an alternative formazan measurement system. Using the approach recommended by the FDA guidance for validation of bio-analytical methods, three independent laboratories established and qualified their HPLC/UPLC-spectrophotometry systems to reproducibly measure formazan from tissue extracts. Up to 26 chemicals were then tested in RhT test systems for eye/skin irritation and skin corrosion. Results support that: (1) HPLC/UPLC-spectrophotometry formazan measurement is highly reproducible; (2) formazan measurement by HPLC/UPLC-spectrophotometry and OD gave almost identical tissue viabilities for test chemicals not exhibiting colour interference nor direct MTT reduction; (3) independent of the test system used, HPLC/UPLC-spectrophotometry can measure formazan for strongly coloured test chemicals when this is not possible by absorbance only. It is therefore recommended that HPLC/UPLC-spectrophotometry to measure formazan be included in the procedures of in vitro RhT-based test methods, irrespective of the test system used and the toxicity endpoint evaluated to extend the applicability of these test methods to strongly coloured chemicals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jadhav, Sushant B; Mane, Rahul M; Narayanan, Kalyanraman L; Bhosale, Popatrao N
2016-10-17
A novel, stability indicating, reverse phase high-performance liquid chromatography (RP-HPLC) method was developed to determine the S -isomer of linagliptin (LGP) in linagliptin and metformin hydrochloride (MET HCl) tablets (LGP-MET HCl) by implementing design of experiment (DoE), i.e., two-level, full factorial design (2³ + 3 centre points = 11 experiments) to understand the critical method parameters (CMP) and its relation with the critical method attribute (CMA), and to ensure robustness of the method. The separation of the S -isomer, LGP and MET HCl in the presence of their impurities was achieved on Chiralpak ® IA-3 ( Amylose tris (3, 5-dimethylphenylcarbamate ), immobilized on 3 µm silica gel) stationary phase (250 × 4.6 mm, 3 µm) using isocratic elution and detector wavelength at 225 nm with a flow rate of 0.5 mL·min -1 , an injection volume of 10 µL with a sample cooler (5 °C) and column oven temperature of 25 °C. Ethanol:Methanol:Monoethanolamine (EtOH:MeOH:MEA) in the ratio of 60:40:0.2 v / v / v was used as a mobile phase. The developed method was validated in accordance with international council for harmonisation (ICH) guidelines and was applied for the estimation of the S -isomer of LGP in LGP-MET HCl tablets. The same method also can be extended for the estimation of the S -isomer in LGP dosage forms.
Park, Ah Yeon; Park, So-Young; Lee, Jaehyun; Jung, Mihye; Kim, Jinwoong; Kang, Sam Sik; Youm, Jeong-Rok; Han, Sang Beom
2009-10-01
Rapid, simple and reliable HPLC/UV and LC-ESI-MS/MS methods for the simultaneous determination of five active coumarins of Angelicae dahuricae Radix, byakangelicol (1), oxypeucedanin (2), imperatorin (3), phellopterin (4) and isoimperatorin (5) were developed and validated. The separation condition for HPLC/UV was optimized using a Develosil RPAQUEOUS C(30) column using 70% acetonitrile in water as the mobile phase. This HPLC/UV method was successful for providing the baseline separation of the five coumarins with no interfering peaks detected in the 70% ethanol extract of Angelicae dahuricae Radix. The specific determination of the five coumarins was also accomplished by a triple quadrupole tandem mass spectrometer equipped with an electrospray ionization source (LC-ESI-MS/MS). Multiple reaction monitoring (MRM) in the positive mode was used to enhance the selectivity of detection. The LC-ESI-MS/MS methods were successfully applied for the determination of the five major coumarins in Angelicae dahuricae Radix. These HPLC/UV and LC-ESI-MS/MS methods were validated in terms of recovery, linearity, accuracy and precision (intra- and inter-day validation). Taken together, the shorter analysis time involved makes these HPLC/UV and LC-ESI-MS/MS methods valuable for the commercial quality control of Angelicae dahuricae Radix extracts and its pharmaceutical preparations. Copyright (c) 2009 John Wiley & Sons, Ltd.
Implementation of AICAR analysis by GC-C-IRMS for anti-doping purposes.
Buisson, C; Frelat, C; Mongongu, C; Martinat, N; Audran, M
2017-11-01
AICAR (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside), is a naturally occurring substance which is part to the World Anti-Doping Agency (WADA) Prohibited List. It is claimed to improve physical performance when administered as a supplement. As for other endogenous compounds such as steroids, the gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) analysis remains an efficient tool to differentiate endogenous substances from exogenous ones. A protocol was described in the literature for the analysis of AICAR by GC-C-IRMS. The aim of the present study was to implement this protocol in our laboratory and to propose solutions to avoid the difficulties encountered. The first point discussed in this study is the derivatization step. Due to the structure of the AICAR molecule, conventional derivatization for GC-C-IRMS such as acetylation could not be applied and silylation was preferred. The improvement of the derivatives stability was achieved thanks to several derivatization conditions tested. This adjustment led to a reproducible derivatization pattern with the 3-TMS form as major derivative product. The second point discussed in this study is the diminution of extracts' background noise. Indeed, the implementation of the published protocol was not easy due to high performance liquid chromatography (HPLC) problems encountered when concentrated urine was injected into our system. Also, too many interferences in the endogenous reference compound fractions were observed. The addition of both a wash step before the HPLC purification and a HPLC purification step for the endogenous reference compound (ERC) fraction allowed us to increase the robustness of the method. This study presents the modified protocol compared to the original protocol as well as the evaluation of the whole method performances. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Mlangeni, Angstone Thembachako; Vecchi, Valeria; Norton, Gareth J; Raab, Andrea; Krupp, Eva M; Feldmann, Joerg
2018-10-15
A commercial arsenic field kit designed to measure inorganic arsenic (iAs) in water was modified into a field deployable method (FDM) to measure iAs in rice. While the method has been validated to give precise and accurate results in the laboratory, its on-site field performance has not been evaluated. This study was designed to test the method on-site in Malawi in order to evaluate its accuracy and precision in determination of iAs on-site by comparing with a validated reference method and giving original data on inorganic arsenic in Malawian rice and rice-based products. The method was validated by using the established laboratory-based HPLC-ICPMS. Statistical tests indicated there were no significant differences between on-site and laboratory iAs measurements determined using the FDM (p = 0.263, ά = 0.05) and between on-site measurements and measurements determined using HPLC-ICP-MS (p = 0.299, ά = 0.05). This method allows quick (within 1 h) and efficient screening of rice containing iAs concentrations on-site. Copyright © 2018 Elsevier Ltd. All rights reserved.
Influence of ionizing radiation on the stability of clarithromycin antibiotics
NASA Astrophysics Data System (ADS)
Salem, Issam Ben; Mezni, Mohamed; Khamassi, Mohamed Amine; Lagha, Afef; Hosni, Fawzi; Saidi, Mouldi
2018-04-01
The growing interest centered on treatment of pharmaceuticals by ionizing radiation arises from the clear advantages this process offers compared to other methods of sterilization. In this study, the effect of ionizing radiation on clarithromycin (CLA) powder commercially named Zeclar® was investigated. The analysis by HPLC confirms the stability of Zeclar® potency at 2, 5 and 25 kGy and no degradation products were observed. The anti-microbial assays revealed that the activity of irradiated clarithromycin at 2 and 5 kGy did not reduce against Staphylococus aureus ATCC 6538, Streptocoque B (Streptococcus agalactiae) Enterococcus feacium ATCC 19434 and Helicobacter pylori ATCC 43504 and stable during 30 days storage period. However, at 25 kGy, the antimicrobial activity of CLA was significantly reduced. The analysis of impurities by HPLC after irradiation at 5 kGy showed an acceptable impurity level as the content limit described by the European and United States Pharmacopeia. On the contrary, an unacceptable increase of single impurity was evidenced after irradiation at 25 kGy. Therefore, CLA is radiosensitive. After gamma irradiation, complex EPR lines were recorded confirming the presence of a large number of free radicals formed during the irradiation. Approximately 61 days after the irradiation of Zeclar®, the radical concentration decreased by 85% % and 95% respectively for 5 and 2 kGy. Numerical analysis of the time dependence of the integral amplitude of the measured EPR lines demonstrated good agreements between the experimental points and the properly fitted exponential first order function.