Sample records for stabilized hexagonal dymno3

  1. The prominent role of oxygen in the multiferroicity of DyMnO3 and TbMnO3: a resonant soft x-ray scattering spectroscopy study

    DOE PAGES

    S. W. Huang; Lee, J. M.; Jeng, H. -T.; ...

    2016-07-21

    Oxygen is known to play an important role in the multiferroicity of rare earth manganites; however, how this role changes with rare earth elements is still not fully understood. To address this question, we have used resonant soft x-ray scattering spectroscopy to study the F-type (0; ; 0) diffraction peak from the antiferromagnetic order in DyMnO 3 and TbMnO 3. We focus on the measurements at O K-edge of these two manganites, supplemented by the results at Mn L2- and Dy M5-edge of DyMnO 3. We show that the electronic states of di erent elements are coupled more strongly inmore » DyMnO 3 than in TbMnO 3, presumably due to the stronger lattice distortion and the tendency to develop E-type antiferromagnetism in the ferroelectric state that promote the orbital hybridization. We also show that the anomaly in the correlation length of (0; ; 0) peak in DyMnO 3 signifies the exchange interaction between Mn and rare earth spins, which is absent in TbMnO 3. Our findings reveal the prominent role of oxygen orbitals in the multiferroicity of rare earth manganites and the distinct energetics between them.« less

  2. Continuous Magnetoelectric Control in Multiferroic DyMnO3 Films with Twin-like Domains

    NASA Astrophysics Data System (ADS)

    Lu, Chengliang; Deniz, Hakan; Li, Xiang; Liu, Jun-Ming; Cheong, Sang-Wook

    2016-02-01

    The magnetic control of ferroelectric polarization is currently a central topic in the multiferroic researches, owing to the related gigantic magnetoelectric coupling and fascinating physics. Although a bunch of novel magnetoelectric effect have been discovered in multiferroics of magnetic origin, the manipulation of polarization was found to be fundamentally determined by the microscopic origin in a certain multiferroic phase, hindering the development of unusual magnetoelectric control. Here, we report emergent magnetoelectric control in DyMnO3/Nb:SrTiO3 (001) films showing twin-like domain structure. Our results demonstrate interesting magnetically induced partial switch of polarization due to the coexistence of polarizations along both the a-axis and c-axis enabled by the twin-like domain structure in DyMnO3 films, despite the polarization-switch was conventionally believed to be a one-step event in the bulk counterpart. Moreover, a continuous and periodic control of macroscopic polarization by an in-plane rotating magnetic field is evidenced in the thin films. This distinctive magnetic manipulation of polarization is the consequence of the cooperative action of the twin-like domains and the dual magnetic origin of polarization, which promises additional applications using the magnetic control of ferroelectricity.

  3. Thermal stability of hexagonal OsB2

    NASA Astrophysics Data System (ADS)

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; Cullen, David A.; Andrew Payzant, E.

    2014-11-01

    The synthesis of novel hexagonal ReB2-type OsB2 ceramic powder was performed by high energy ball milling of elemental Os and B powders. Two different sources of B powder have been used for this mechanochemical synthesis. One B powder consisted of a mixture of amorphous and crystalline phases and a mixture of 10B and 11B isotopes with a fine particle size, while another B powder was a purely crystalline (rhombohedral) material consisting of enriched 11B isotope with coarse particle size. The same Os powder was used for the synthesis in both cases. It was established that, in the first case, the hexagonal OsB2 phase was the main product of synthesis with a small quantity of Os2B3 phase present after synthesis as an intermediate product. In the second case, where coarse crystalline 11B powder was used as a raw material, only Os2B3 boride was synthesized mechanochemically. The thermal stability of hexagonal OsB2 powder was studied by heating under argon up to 876 °C and cooling in vacuo down to -225 °C. During the heating, the sacrificial reaction 2OsB2+3O2→2Os+2B2O3 took place due to presence of O2/water vapor molecules in the heating chamber, resulting in the oxidation of B atoms and formation of B2O3 and precipitation of Os metal out of the OsB2 lattice. As a result of such phase changes during heating, the lattice parameters of hexagonal OsB2 changed significantly. The shrinkage of the a lattice parameter was recorded in 276-426 °C temperature range upon heating, which was attributed to the removal of B atoms from the OsB2 lattice due to oxidation followed by the precipitation of Os atoms and formation of Os metal. While significant structural changes occurred upon heating due to presence of O2, the hexagonal OsB2 ceramic demonstrated good phase stability upon cooling in vacuo with linear shrinkage of the lattice parameters and no phase changes detected during cooling.

  4. Rotating non-Boussinesq convection: oscillating hexagons

    NASA Astrophysics Data System (ADS)

    Moroz, Vadim; Riecke, Hermann; Pesch, Werner

    2000-11-01

    Within weakly nonlinear theory hexagon patterns are expected to undergo a Hopf bifurcation to oscillating hexagons when the chiral symmetry of the system is broken. Quite generally, the oscillating hexagons are expected to exhibit bistability of spatio-temporal defect chaos and periodic dynamics. This regime is described by the complex Ginzburg-Landau equation, which has been investigated theoretically in great detail. Its complex dynamics have, however, not been observed in experiments. Starting from the Navier-Stokes equations with realistic boundary conditions, we derive the three coupled real Ginzburg-Landau equations describing hexagons in rotating non-Boussinesq convection. We use them to provide quantitative results for the wavenumber range of stability of the stationary hexagons as well as the range of existence and stability of the oscillating hexagons. Our investigation is complemented by direct numerical simulations of the Navier-Stokes equations.

  5. Effect of van der Waals interactions on the stability of SiC polytypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawanishi, Sakiko, E-mail: s-kawa@tagen.tohoku.ac.jp; Mizoguchi, Teruyasu

    2016-05-07

    Density functional theory calculations with a correction of the long-range dispersion force, namely, the van der Waals (vdW) force, are performed for SiC polytypes. The lattice parameters are in good agreement with those obtained from the experiments. Furthermore, the stability of the polytypes in the experiments, which show 3C-SiC as the most stable, is reproduced by the present calculations. The effects of the vdW force on the electronic structure and the stability of polytypes are discussed. We observe that the vdW interaction is more sensitive to the cubic site than the hexagonal site. Thus, the influence of the vdW forcemore » increases with decreasing the hexagonality of the polytype, which results in the confirmation that the most stable polytype is 3C-SiC.« less

  6. Stability, electronic structures and thermoelectric properties of binary Zn–Sb materials

    DOE PAGES

    He, Xin; Fu, Yuhao; Singh, David J.; ...

    2016-11-03

    We report first principles studies of the binary Zn–Sb phases in relation to thermoelectric properties and chemical stability. We identify the unknown structure of the Zn 3Sb 2 phase using particle swarm optimization, finding a tetragonal structure different from the hexagonal Mg 3Sb 2 and the hexagonal or cubic Ca 3Sb 2 phases. All the phases are found to be semiconducting with bandgaps in the range of 0.06–0.77 eV. This semiconducting behavior is understood in Zintl terms as a balance between the Zn:Sb and Sb 3-:½(Sb 2) 4- ratios in the stable crystal structures. With the exception of Zn 3Sbmore » 2, which has a small gap, all the compounds have electronic properties favorable for thermoelectric performance.« less

  7. Crystal structure, chemical expansion and phase stability of HoMnO{sub 3} at high temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selbach, Sverre M., E-mail: selbach@material.ntnu.no; Nordli Lovik, Amund; Bergum, Kristin

    Anisotropic thermal and chemical expansion of hexagonal HoMnO{sub 3} was investigated by high temperature X-ray diffraction in inert (N{sub 2}) and oxidizing (air) atmospheres up to 1623 K. A second order structural phase transition directly from P6{sub 3}cm to P6{sub 3}/mmc was found at 1298{+-}4 K in N{sub 2} atmosphere, and 1318{+-}4 K in air. For the low temperature polymorph P6{sub 3}cm the contraction of the c-axis was more rapid in inert than in oxidizing atmosphere. The c-axis of the P6{sub 3}/mmc polymorph of HoMnO{sub 3} displayed anomalously high expansion above 1400 K, which is discussed in relation to chemicalmore » expansion caused by point defects. The a-axis expanded stronger in inert than oxidizing atmosphere. Anisotropic chemical and thermal expansion of the P6{sub 3}cm phase of YMnO{sub 3} in N{sub 2}, air and O{sub 2} atmospheres was found to be qualitatively similar to that of HoMnO{sub 3}. Decomposition of hexagonal HoMnO{sub 3} by two different processes occurs in oxidizing atmosphere above {approx}1200 K followed by nucleation and growth of the perovskite polymorph of HoMnO{sub 3}. A rapid, reconstructive transition from the perovskite back to the hexagonal polymorph was observed in situ at 1623 K upon reduction of the partial pressure of oxygen. A phase stability diagram of the hexagonal and orthorhombic polymorphs is proposed. Finally, distinctly non-linear electrical conductivity was observed for both HoMnO{sub 3} and YMnO{sub 3} in oxidizing atmosphere between 555 and 630 K, and shown to be associated with excess oxygen. - Graphical abstract: Chemical expansion of hexagonal HoMnO{sub 3} is observed during HTXRD in different pO{sub 2}. Oxidizing atmosphere favors the competing perovskite polymorph. Electrical conductivity anomalies related to excess oxygen are found at 550-630 K. Highlights: Black-Right-Pointing-Pointer Thermal evolution of crystal structure of HoMnO{sub 3} studied up to 1623 K in air and N{sub 2}. Black-Right-Pointing-Pointer Anisotropic chemical expansion of HoMnO{sub 3} and YMnO{sub 3} in N{sub 2}, air and O{sub 2}. Black-Right-Pointing-Pointer Hexagonal phase destabilized with respect to perovskite in oxidizing atmosphere. Black-Right-Pointing-Pointer Crystal structure and phase stability discussed in terms of point defect chemistry. Black-Right-Pointing-Pointer Electrical conductivity anomalies associated with excess oxygen at 550-630 K.« less

  8. Control over self-assembly of diblock copolymers on hexagonal and square templates for high area density circuit boards.

    PubMed

    Feng, Jie; Cavicchi, Kevin A; Heinz, Hendrik

    2011-12-27

    Self-assembled diblock copolymer melts on patterned substrates can induce a smaller characteristic domain spacing compared to predefined lithographic patterns and enable the manufacture of circuit boards with a high area density of computing and storage units. Monte Carlo simulation using coarse-grain models of polystyrene-b-polydimethylsiloxane shows that the generation of high-density hexagonal and square patterns is controlled by the ratio N(D) of the surface area per post and the surface area per spherical domain of neat block copolymer. N(D) represents the preferred number of block copolymer domains per post. Selected integer numbers support the formation of ordered structures on hexagonal (1, 3, 4, 7, 9) and square (1, 2, 5, 7) templates. On square templates, only smaller numbers of block copolymer domains per post support the formation of ordered arrays with significant stabilization energies relative to hexagonal morphology. Deviation from suitable integer numbers N(D) increases the likelihood of transitional morphologies between square and hexagonal. Upon increasing the spacing of posts on the substrate, square arrays, nested square arrays, and disordered hexagonal morphologies with multiple coordination numbers were identified, accompanied by a decrease in stabilization energy. Control over the main design parameter N(D) may allow an up to 7-fold increase in density of spherical block copolymer domains per surface area in comparison to the density of square posts and provide access to a wide range of high-density nanostructures to pattern electronic devices.

  9. Hexagonally packed DNA within bacteriophage T7 stabilized by curvature stress.

    PubMed Central

    Odijk, T

    1998-01-01

    A continuum computation is proposed for the bending stress stabilizing DNA that is hexagonally packed within bacteriophage T7. Because the inner radius of the DNA spool is rather small, the stress of the curved DNA genome is strong enough to balance its electrostatic self-repulsion so as to form a stable hexagonal phase. The theory is in accord with the microscopically determined structure of bacteriophage T7 filled with DNA within the experimental margin of error. PMID:9726924

  10. Preparation of fluorinated Cr2O3 hexagonal prism and catalytic performance for the dehydrofluorination of 1,1-difluoroethane to vinyl fluoride

    NASA Astrophysics Data System (ADS)

    Han, Wenfeng; Li, Xiaojuan; Tang, Haodong; Wang, Zhikun; Xi, Miao; Li, Ying; Liu, Huazhang

    2015-09-01

    A Cr2O3 hexagonal prism structure synthesized via the reaction of aqueous CrCl3 solution with NaBH4 solution at room temperature followed by calcination of the precipitate in N2 atmosphere at 500 °C is investigated as an efficient catalyst for dehydrofluorination of 1,1-difluoroethane producing vinyl fluoride. With the assistance of scanning electron microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy, experimental results revealed that the uniform hexagonal prism has a prism length of 285 ± 43 nm and width of 233 ± 33 nm. It is in the form of loose and net-like aggregation of nano-Cr2O3 with diameter less than 3-5 nm with polycrystalline structure. NH3 temperature programmed desorption and chlorodifluoromethane dismutation experiments confirm the existence of relatively abundant and strong acidic sites. As a catalyst for dehydrofluorination of 1,1-difluoroethane, compared with commercial Cr2O3, much higher activity and stability were observed due to the evolution of CrO x F y species and much higher surface area and mesoporous structure. No significant morphology changes or sintering of the catalyst are observed after 70-h reaction. Compared with the commercial Cr2O3, we suggest that the much smaller size of Cr2O3 crystalline which possesses higher surface energy, lower strength, and more abundant Lewis acidity and the formation of CrO x F y during reaction over hexagonal prism catalyst probably contributes to the activity and stability difference between these two catalysts.

  11. Tuning of magnetism in DyMn1-xFexO3 (x<0.1) system by iron substitution

    NASA Astrophysics Data System (ADS)

    Mihalik, Matúš; Mihalik, Marián; Zentková, Mária; Uhlířová, Klára; Kratochvílová, Marie; Fitta, Magdalena; Quintero, Pedro A.; Meisel, Mark W.

    2018-05-01

    The effect of Fe doping on the magnetism of DyMn1-xFexO3 (x<0.1) single crystals is reported. Specifically, TN of the Mn sublattice decreases from 38 K (x = 0) to 33 K (x = 0.1), TS = 17.9 K (x = 0) connected with the transition of Mn-spins into the cycloidal magnetic phase decreases to 15.9 K (x = 0.01) and vanishes for higher x concentrations, while the ordering temperature of the Dy sublattice varies between 5.9 K (x = 0.01) and 4.1 K (x = 0.02). These results indicate the ground state magnetic structure of DyMnO3 can be destabilized, and the multiferroicity is completely suppressed by very low Fe doping. Similar effects were previously observed in the multiferroic TbMn1-xFexO3 system.

  12. Synthesis of hexagonal ultrathin tungsten oxide nanowires with diameters below 5 nm for enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Lu, Huidan; Zhu, Qin; Zhang, Mengying; Yan, Yi; Liu, Yongping; Li, Ming; Yang, Zhishu; Geng, Peng

    2018-04-01

    Semiconductor with one dimension (1D) ultrathin nanostructure has been proved to be a promising nanomaterial in photocatalytic field. Great efforts were made on preparation of monoclinic ultrathin tungsten oxide nanowires. However, non-monoclinic phase tungsten oxides with 1D ultrathin structure, especially less than 5 nm width, have not been reported. Herein, we report the synthesis of hexagonal ultrathin tungsten oxide nanowires (U-WOx NW) by modified hydrothermal method. Microstructure characterization showed that U-WOx NW have the diameters of 1-3 nm below 5 nm and are hexagonal phase sub-stoichiometric WOx. U-WOx NW show absorption tail in the visible and near infrared region due to oxygen vacancies. For improving further photocatalytic performance, Ag co-catalyst was grown directly onto U-WOx NW surface by in situ redox reaction. Photocatalytic measurements revealed hexagonal U-WOx NW have better photodegradation activity, compared with commercial WO3(C-WO3) and oxidized U-WOx NW, ascribe to larger surface area, short diffusion length of photo-generated charge carriers and visible absorption of oxygen-vacancy-rich hexagonal ultrathin nanostructures. Moreover, the photocatalytic activity and stability of U-WOx NW using Ag co-catalyst were further improved.

  13. Enhanced field emission from hexagonal rhodium nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathe, Bhaskar R.; Kakade, Bhalchandra A.; Mulla, Imtiaz S.

    2008-06-23

    Shape selective synthesis of nanostructured Rh hexagons has been demonstrated with the help of a modified chemical vapor deposition using rhodium acetate. An ultralow threshold field of 0.72 V/{mu}m is observed to generate a field emission current density of 4x10{sup -3} {mu}A/cm{sup 2}. The high enhancement factor (9325) indicates that the origin of electron emission is from nanostructured features. The smaller size of emitting area, excellent current density, and stability over a period of more than 3 h are promising characteristics for the development of electron sources.

  14. Hydrothermal synthesis of In2O3 nanoparticles hybrid twins hexagonal disk ZnO heterostructures for enhanced photocatalytic activities and stability

    NASA Astrophysics Data System (ADS)

    Liu, Hairui; Zhai, Haifa; Hu, Chunjie; Yang, Jien; Liu, Zhiyong

    2017-07-01

    In2O3 nanoparticles hybrid twins hexagonal disk (THD) ZnO with different ratios were fabricated by a hydrothermal method. The as-obtained ZnO/In2O3 composites are constituted by hexagonal disks ZnO with diameters of about 1 μm and In2O3 nanoparticles with sizes of about 20-50 nm. With the increase of In2O3 content in ZnO/In2O3 composites, the absorption band edges of samples shifted from UV to visible light region. Compared with pure ZnO, the ZnO/In2O3 composites show enhanced photocatalytic activities for degradation of methyl orange (MO) and 4-nitrophenol (4-NP) under solar light irradiation. Due to suitable alignment of their energy band-gap structure of the In2O3 and ZnO, the formation of type п heterostructure can enhance efficient separation of photo-generate electro-hole pairs and provides convenient carrier transfer paths.

  15. Discovery of a hexagonal ultradense hydrous phase in (Fe,Al)OOH

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Yuan, Hongsheng; Meng, Yue; Mao, Ho-kwang

    2018-03-01

    A deep lower-mantle (DLM) water reservoir depends on availability of hydrous minerals which can store and transport water into the DLM without dehydration. Recent discoveries found hydrous phases AlOOH (Z = 2) with a CaCl2-type structure and FeOOH (Z = 4) with a cubic pyrite-type structure stable under the high-pressure–temperature (P-T) conditions of the DLM. Our experiments at 107–136 GPa and 2,400 K have further demonstrated that (Fe,Al)OOH is stabilized in a hexagonal lattice. By combining powder X-ray-diffraction techniques with multigrain indexation, we are able to determine this hexagonal hydrous phase with a = 10.5803(6) Å and c = 2.5897(3) Å at 110 GPa. Hexagonal (Fe,Al)OOH can transform to the cubic pyrite structure at low T with the same density. The hexagonal phase can be formed when δ-AlOOH incorporates FeOOH produced by reaction between water and Fe, which may store a substantial quantity of water in the DLM.

  16. Rotating non-Boussinesq Rayleigh-Benard convection

    NASA Astrophysics Data System (ADS)

    Moroz, Vadim Vladimir

    This thesis makes quantitative predictions about the formation and stability of hexagonal and roll patterns in convecting system unbounded in horizontal direction. Starting from the Navier-Stokes, heat and continuity equations, the convection problem is then reduced to normal form equations using equivariant bifurcation theory. The relative stabilities of patterns lying on a hexagonal lattice in Fourier space are then determined using appropriate amplitude equations, with coefficients obtained via asymptotic expansion of the governing partial differential equations, with the conducting state being the base state, and the control parameter and the non-Boussinesq effects being small. The software package Mathematica was used to calculate amplitude coefficients of the appropriate coupled Ginzburg-Landau equations for the rigid-rigid and free-free case. A Galerkin code (initial version of which was written by W. Pesch et al.) is used to determine pattern stability further from onset and for strongly non-Boussinesq fluids. Specific predictions about the stability of hexagon and roll patterns for realistic experimental conditions are made. The dependence of the stability of the convective patterns on the Rayleigh number, planform wavenumber and the rotation rate is studied. Long- and shortwave instabilities, both steady and oscillatory, are identified. For small Prandtl numbers oscillatory sideband instabilities are found already very close to onset. A resonant mode interaction in hexagonal patterns arising in non-Boussinesq Rayleigh-Benard convection is studied using symmetry group methods. The lowest-order coupling terms for interacting patterns are identified. A bifurcation analysis of the resulting system of equations shows that the bifurcation is transcritical. Stability properties of resulting patterns are discussed. It is found that for some fluid properties the traditional hexagon convection solution does not exist. Analytical results are supported by numerical solutions of the convection equations using the Galerkin procedure and a Floquet analysis.

  17. Magnetic ground state of the multiferroic hexagonal LuFe O3

    NASA Astrophysics Data System (ADS)

    Suresh, Pittala; Vijaya Laxmi, K.; Bera, A. K.; Yusuf, S. M.; Chittari, Bheema Lingam; Jung, Jeil; Anil Kumar, P. S.

    2018-05-01

    The structural, electric, and magnetic properties of bulk hexagonal LuFe O3 are investigated. Single phase hexagonal LuFe O3 has been successfully stabilized in the bulk form without any doping by sol-gel method. The hexagonal crystal structure with P 63c m space group has been confirmed by x-ray-diffraction, neutron-diffraction, and Raman spectroscopy study at room temperature. Neutron diffraction confirms the hexagonal phase of LuFe O3 persists down to 6 K. Further, the x-ray photoelectron spectroscopy established the 3+ oxidation state of Fe ions. The temperature-dependent magnetic dc susceptibility, specific heat, and neutron-diffraction studies confirm an antiferromagnetic ordering below the Néel temperature (TN)˜130 K . Analysis of magnetic neutron-diffraction patterns reveals an in-plane (a b -plane) 120∘ antiferromagnetic structure, characterized by a propagation vector k =(0 0 0 ) with an ordered moment of 2.84 μB/F e3 + at 6 K. The 120∘ antifferomagnetic ordering is further confirmed by spin-orbit coupling density functional theory calculations. The on-site coulomb interaction (U ) and Hund's parameter (JH) on Fe atoms reproduced the neutron-diffraction Γ1 spin pattern among the Fe atoms. P -E loop measurements at room temperature confirm an intrinsic ferroelectricity of the sample with remnant polarization Pr˜0.18 μ C /c m2 . A clear anomaly in the dielectric data is observed at ˜TN revealing the presence of magnetoelectric coupling. A change in the lattice constants at TN has also been found, indicating the presence of a strong magnetoelastic coupling. Thus a coupling between lattice, electric, and magnetic degrees of freedom is established in bulk hexagonal LuFe O3 .

  18. Structure and strain relaxation mechanisms of ultrathin epitaxial Pr2O3 films on Si(111)

    NASA Astrophysics Data System (ADS)

    Schroeder, T.; Lee, T.-L.; Libralesso, L.; Joumard, I.; Zegenhagen, J.; Zaumseil, P.; Wenger, C.; Lupina, G.; Lippert, G.; Dabrowski, J.; Müssig, H.-J.

    2005-04-01

    The structure of ultrathin epitaxial Pr2O3 films on Si(111) was studied by synchrotron radiation-grazing incidence x-ray diffraction. The oxide film grows as hexagonal Pr2O3 phase with its (0001) plane attached to the Si(111) substrate. The hexagonal (0001) Pr2O3 plane matches the in-plane symmetry of the hexagonal Si(111) surface unit cell by aligning the ⟨101¯0⟩Pr2O3 along the ⟨112¯⟩ Si directions. The small lattice mismatch of 0.5% results in the growth of pseudomorphic oxide films of high crystalline quality with an average domain size of about 50 nm. The critical thickness tc for pseudomorphic growth amounts to 3.0±0.5nm. The relaxation of the oxide film from pseudomorphism to bulk behavior beyond tc causes the introduction of misfit dislocations, the formation of an in-plane small angle mosaicity structure, and the occurence of a phase transition towards a (111) oriented cubic Pr2O3 film structure. The observed phase transition highlights the influence of the epitaxial interface energy on the stability of Pr2O3 phases on Si(111). A mechanism is proposed which transforms the hexagonal (0001) into the cubic (111) Pr2O3 epilayer structure by rearranging the oxygen network but leaving the Pr sublattice almost unmodified.

  19. Hexagonal-structured epsilon-NbN. Ultra-incompressibility, high shear rigidity, and a possible hard superconducting material

    DOE PAGES

    Zou, Y.; Wang, X.; Chen, T.; ...

    2015-06-01

    Exploring the structural stability and elasticity of hexagonal ε-NbN helps discover correlations among its physical properties for scientific and technological applications. Here, for the first time, we measured the ultra-incompressibility and high shear rigidity of polycrystalline hexagonal ε-NbN using ultrasonic interferometry and in situ X-ray diffraction, complemented with first-principles density-functional theory calculations up to 30 GPa in pressure. Using a finite strain equation of state approach, the elastic bulk and shear moduli, as well as their pressure dependences are derived from the measured velocities and densities, yielding BS0 = 373.3(15) GPa, G0 = 200.5(8) GPa, ∂B S/∂P = 3.81(3) andmore » ∂G/∂P = 1.67(1). The hexagonal ε-NbN possesses a very high bulk modulus, rivaling that of superhard material cBN (B0 = 381.1 GPa). The high shear rigidity is comparable to that for superhard γ-B (G 0 = 227.2 GPa). We found that the crystal structure of transition-metal nitrides and the outmost electrons of the corresponding metals may dominate their pressure dependences in bulk and shear moduli. In addition, the elastic moduli, Vickers hardness, Debye temperature, melting temperature and a possible superconductivity of hexagonal ε-NbN all increase with pressures, suggesting its exceptional suitability for applications under extreme conditions.« less

  20. Hexagonal-structured epsilon-NbN. Ultra-incompressibility, high shear rigidity, and a possible hard superconducting material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Y.; Wang, X.; Chen, T.

    Exploring the structural stability and elasticity of hexagonal ε-NbN helps discover correlations among its physical properties for scientific and technological applications. Here, for the first time, we measured the ultra-incompressibility and high shear rigidity of polycrystalline hexagonal ε-NbN using ultrasonic interferometry and in situ X-ray diffraction, complemented with first-principles density-functional theory calculations up to 30 GPa in pressure. Using a finite strain equation of state approach, the elastic bulk and shear moduli, as well as their pressure dependences are derived from the measured velocities and densities, yielding BS0 = 373.3(15) GPa, G0 = 200.5(8) GPa, ∂B S/∂P = 3.81(3) andmore » ∂G/∂P = 1.67(1). The hexagonal ε-NbN possesses a very high bulk modulus, rivaling that of superhard material cBN (B0 = 381.1 GPa). The high shear rigidity is comparable to that for superhard γ-B (G 0 = 227.2 GPa). We found that the crystal structure of transition-metal nitrides and the outmost electrons of the corresponding metals may dominate their pressure dependences in bulk and shear moduli. In addition, the elastic moduli, Vickers hardness, Debye temperature, melting temperature and a possible superconductivity of hexagonal ε-NbN all increase with pressures, suggesting its exceptional suitability for applications under extreme conditions.« less

  1. Controllable growth of shaped graphene domains by atmospheric pressure chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Fan, Lili; Li, Zhen; Li, Xiao; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Zhu, Hongwei

    2011-12-01

    Graphene domains in different shapes have been grown on copper substrates via atmospheric pressure chemical vapour deposition by controlling the growth process parameters. Under stabilized conditions, graphene domains tend to be six-fold symmetric hexagons under low flow rate methane with some domains in an irregular hexagonal shape. After further varying the growth duration, methane flow rate, and temperature, graphene domains have developed shapes from hexagon to shovel and dendrite. Two connecting modes, through overlap and merging of adjacent graphene domains, are proposed.Graphene domains in different shapes have been grown on copper substrates via atmospheric pressure chemical vapour deposition by controlling the growth process parameters. Under stabilized conditions, graphene domains tend to be six-fold symmetric hexagons under low flow rate methane with some domains in an irregular hexagonal shape. After further varying the growth duration, methane flow rate, and temperature, graphene domains have developed shapes from hexagon to shovel and dendrite. Two connecting modes, through overlap and merging of adjacent graphene domains, are proposed. Electronic supplementary information (ESI) available: Schematics of CVD setups for graphene growth, Raman spectra and SEM images. See DOI: 10.1039/c1nr11480h

  2. Ab initio study of the structural, vibrational and thermal properties of Ge2Sb2Te5

    NASA Astrophysics Data System (ADS)

    Odhiambo, Henry; Othieno, Herick

    2015-05-01

    The structural, vibrational and thermal properties of hexagonal as well as cubic Ge2Sb2Te5 (GST) have been calculated from first principles. The relative stability of the possible stacking sequences of hexagonal GST has been confirmed to depend on the choice for the exchange-correlation (XC) energy functional. It is apparent that without the inclusion of the Te 4d orbitals in the valence states, the lattice parameters can be underestimated by as much as 3.9% compared to experiment and all-electron calculations. From phonon dispersion curves, it has been confirmed that the hexagonal phase is, indeed, stable whereas the cubic phase is metastable. In particular, calculations based on the quasi-harmonic approximation (QHA) reveal an extra heat capacity beyond the Dulong-Petit limit at high temperatures for both hexagonal and cubic GST. Moreover, cubic GST exhibits a residual entropy at 0 K, in agreement with experimental studies which attribute this phenomenon to substitutional disorder on the Sb/Ge/v sublattice.

  3. Tropomodulin1 is required for membrane skeleton organization and hexagonal geometry of fiber cells in the mouse lens

    PubMed Central

    Nowak, Roberta B.; Fischer, Robert S.; Zoltoski, Rebecca K.; Kuszak, Jerome R.

    2009-01-01

    Hexagonal packing geometry is a hallmark of close-packed epithelial cells in metazoans. Here, we used fiber cells of the vertebrate eye lens as a model system to determine how the membrane skeleton controls hexagonal packing of post-mitotic cells. The membrane skeleton consists of spectrin tetramers linked to actin filaments (F-actin), which are capped by tropomodulin1 (Tmod1) and stabilized by tropomyosin (TM). In mouse lenses lacking Tmod1, initial fiber cell morphogenesis is normal, but fiber cell hexagonal shapes and packing geometry are not maintained as fiber cells mature. Absence of Tmod1 leads to decreased γTM levels, loss of F-actin from membranes, and disrupted distribution of β2-spectrin along fiber cell membranes. Regular interlocking membrane protrusions on fiber cells are replaced by irregularly spaced and misshapen protrusions. We conclude that Tmod1 and γTM regulation of F-actin stability on fiber cell membranes is critical for the long-range connectivity of the spectrin–actin network, which functions to maintain regular fiber cell hexagonal morphology and packing geometry. PMID:19752024

  4. Phase transitions of BaTi{sub 0.9}Rh{sub 0.1}O{sub 3±δ} perovskite-type oxides under reducing environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodríguez, G.C.Mondragón, E-mail: guillermo.mondragon-rodriguez@dlr.de; Gönüllü, Y.; Ferri, Davide

    2015-01-15

    Highlights: • Solid solution formation BaTi{sub 0.9}Rh{sub 0.1}O{sub 3±δ} with a new wet chemical synthesis method. • Rhodium in the BaTiO{sub 3} perovskite stabilizes the hexagonal structure. • New Rh segregation mechanism for hexagonal BaTi{sub 0.9}Rh{sub 0.1}O{sub 3±δ} upon reduction. - Abstract: Perovskite-type oxides of composition BaTi{sub 0.9}Rh{sub 0.1}O{sub 3±δ} were prepared following a new chemical route that avoids the formation of hydroxyl species and precipitation, and allows the homogeneous distribution of Rh in the final mixed metal oxide. The high dispersion of Rh and the formation of the solid solution between Rh and the BaTiO{sub 3} perovskite is confirmedmore » by means of X-ray diffraction (XRD) and extended X-ray absorption fine structure spectroscopy (EXAFS). The presence of Rh stabilized the hexagonal BaTi{sub 0.9}Rh{sub 0.1}O{sub 3±δ} phase, which decomposes into barium orthotitanate (BaTi{sub 2}O{sub 4}) and metallic Rh° in reducing environment. This phase transition starts already at 700 °C and is only partially completed at 900 °C suggesting that part of the Rh present in the perovskite lattice might not be easily reduced by hydrogen. These aspects and further open questions are discussed.« less

  5. The influence of abutment screw tightening on screw joint configuration.

    PubMed

    Lang, Lisa A; Wang, Rui-Feng; May, Kenneth B

    2002-01-01

    Limiting abutment-to-implant hexagonal discrepancies and rotational movement of the abutment around the implant to less than 5 degrees would result in a more stable screw joint. However, the exact relationship after abutment screw tightening is unknown, as is the effect of a counter-torque device in limiting abutment movement during screw tightening. This study examined the orientation of the abutment hexagon to the implant hexagon after tightening of the abutment screw for several abutment systems with and without the use of a counter-torque device. Thirty conical self-tapping implants (3.75 x 10.0 mm) and 10 wide-platform Brånemark System implants (5.0 x 10.0 mm), along with 10 abutment specimens from the CeraOne, Estheticone, Procera, and AuraAdapt systems, were selected for this investigation. The implants were placed in a holding device prior to tightening of the abutments. When the tightening torque recommended for each abutment system was reached with the use of a torque controller, each implant abutment specimen was removed from the holding device and embedded in a hard resin medium. The specimens were sectioned in a horizontal direction at the level of the hexagons and cleansed of debris prior to examination. The hexagon orientations were assessed as the degree and direction of rotation of the abutment hexagon around the implant hexagon. The range of the maximum degrees of rotation for all 4 abutment groups tightened with or without the counter-torque device was slightly more than 3.53 degrees. The absolute degrees of rotation for all 4 abutment groups were less than 1.50 degrees with or without the use of the counter-torque device. The hexagon-to-hexagon orientation measured as rotational fit on all abutment systems was below the 5 degrees suggested as optimal for screw joint stability. The absolute degrees of rotation for all 4 abutment groups were less than 1.50 degrees regardless of whether the counter-torque device was used.

  6. A phase width for CaGaSn. Crystal structure of mixed intermetallic Ca{sub 4}Ga{sub 4+x}Sn{sub 4−x} and SmGa{sub x}Sn{sub 3−x}, stability, geometry and electronic structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tillard, Monique, E-mail: mtillard@univ-montp2.fr

    X-ray single-crystal structure has been established for new compositions in intermetallic systems of tin and gallium. Crystals were successfully obtained in alloys prepared from elements. The structure of SmGaSn{sub 2} (cubic Pm3̄m, a=4.5778(8) Å, Z=1, R1=0.012) is described with atomic disorder at all Sn/Ga positions and the structure of Ca{sub 4}Ga{sub 4.9}Sn{sub 3.1} (hexagonal, P6{sub 3}/mmc, a=4.2233(9), c=17.601(7) Å, Z=1, R1=0.062) raises an interesting question about existence of a composition domain for CaGaSn. Finally, Ca{sub 4}Ga{sub 4.9}Sn{sub 3.1} should be considered as a particular composition of Ca{sub 4}Ga{sub 4+x}Sn{sub 4−x}, a compound assumed to exist in the range x ~more » 0−1. Partial atomic ordering characterizes the Sn/Ga puckered layers of hexagons whose geometries are analyzed and discussed comparatively with analogous arrangements in AlB{sub 2} related hexagonal compounds. The study is supported by rigid band model and DFT calculations performed for different experimental and hypothetic arrangements. - Graphical abstract: A phase width for Ca{sub 4}Ga{sub 4+x}Sn{sub 4−x} belonging to the hexagonal YPtAs structure-type. - Highlights: • Single crystals of mixed tin gallium ternary intermetallics were obtained. • Partial ordering at metal sites and phase width are evidenced for Ca{sub 4}Ga{sub 4+x}Sn{sub 4−x}. • Layer deviation to flatness is studied comparatively with related structures. • Geometry and stability analyses based on DFT calculations are provided.« less

  7. Hexagonal OsB 2 reduction upon heating in H 2 containing environment

    DOE PAGES

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; ...

    2014-10-23

    The stability of hexagonal ReB 2 type OsB 2 powder upon heating under reforming gas was investigated. Pure Os metal particles were detected by powder X-ray diffraction starting at 375⁰ C and complete transformation of OsB 2 to metallic Os was observed at 725⁰ C. The mechanisms of precipitation of metallic Os is proposed and changes in the lattice parameters of OsB 2 upon heating are analysed in terms of the presence of oxygen or water vapour in the heating chamber. Previous studies suggested that Os atoms possess (0) valence, while B atoms possess both (+3) and ( 3) valencesmore » in the alternating boron/osmium sheet structure of hexagonal (P63/mmc, No. 194) OsB 2; if controllable method for Os removal from the lattice could be found, the opportunity would arise to form two-dimensional (2D) layers consisting of pure B atoms.« less

  8. Growth optimization and applicability of thick on-axis SiC layers using sublimation epitaxy in vacuum

    NASA Astrophysics Data System (ADS)

    Jokubavicius, Valdas; Sun, Jianwu; Liu, Xinyu; Yazdi, Gholamreza; Ivanov, Ivan. G.; Yakimova, Rositsa; Syväjärvi, Mikael

    2016-08-01

    We demonstrate growth of thick SiC layers (100-200 μm) on nominally on-axis hexagonal substrates using sublimation epitaxy in vacuum (10-5 mbar) at temperatures varying from 1700 to 1975 °C with growth rates up to 270 μm/h and 70 μm/h for 6H- and 4H-SiC, respectively. The stability of hexagonal polytypes are related to process growth parameters and temperature profile which can be engineered using different thermal insulation materials and adjustment of the induction coil position with respect to the graphite crucible. We show that there exists a range of growth rates for which single-hexagonal polytype free of foreign polytype inclusions can be maintained. Further on, foreign polytypes like 3C-SiC can be stabilized by moving out of the process window. The applicability of on-axis growth is demonstrated by growing a 200 μm thick homoepitaxial 6H-SiC layer co-doped with nitrogen and boron in a range of 1018 cm-3 at a growth rate of about 270 μm/h. Such layers are of interest as a near UV to visible light converters in a monolithic white light emitting diode concept, where subsequent nitride-stack growth benefits from the on-axis orientation of the SiC layer.

  9. On the buckling of hexagonal boron nitride nanoribbons via structural mechanics

    NASA Astrophysics Data System (ADS)

    Giannopoulos, Georgios I.

    2018-03-01

    Monolayer hexagonal boron nitride nanoribbons have similar crystal structure as graphene nanoribbons, have excellent mechanical, thermal insulating and dielectric properties and additionally present chemical stability. These allotropes of boron nitride can be used in novel applications, in which graphene is not compatible, to achieve remarkable performance. The purpose of the present work is to provide theoretical estimations regarding the buckling response of hexagonal boron nitride monolayer under compressive axial loadings. For this reason, a structural mechanics method is formulated which employs the exact equilibrium atomistic structure of the specific two-dimensional nanomaterial. In order to represent the interatomic interactions appearing between boron and nitrogen atoms, the Dreiding potential model is adopted which is realized by the use of three-dimensional, two-noded, spring-like finite elements of appropriate stiffness matrices. The critical compressive loads that cause the buckling of hexagonal boron nitride nanoribbons are computed with respect to their size and chirality while some indicative buckled shapes of them are illustrated. Important conclusions arise regarding the effect of the size and chirality on the structural stability of the hexagonal boron nitride monolayers. An analytical buckling formula, which provides good fitting of the numerical outcome, is proposed.

  10. Phase stability and mechanical properties of Mo1-xNx with 0 ≤ x ≤ 1

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Karthik; Huang, Liping; Gall, Daniel

    2017-11-01

    First-principle density-functional calculations coupled with the USPEX evolutionary phase-search algorithm are employed to calculate the convex hull of the Mo-N binary system. Eight molybdenum nitride compound phases are found to be thermodynamically stable: tetragonal β-Mo3N, hexagonal δ-Mo3N2, cubic γ-Mo11N8, orthorhombic ɛ-Mo4N3, cubic γ-Mo14N11, monoclinic σ-MoN and σ-Mo2N3, and hexagonal δ-MoN2. The convex hull is a straight line for 0 ≤ x ≤ 0.44 such that bcc Mo and the five listed compound phases with x ≤ 0.44 are predicted to co-exist in thermodynamic equilibrium. Comparing the convex hulls of cubic and hexagonal Mo1-xNx indicates that cubic structures are preferred for molybdenum rich (x < 0.3) compounds, and hexagonal phases are favored for nitrogen rich (x > 0.5) compositions, while similar formation enthalpies for cubic and hexagonal phases at intermediate x = 0.3-0.5 imply that kinetic factors play a crucial role in the phase formation. The volume per atom Vo of the thermodynamically stable Mo1-xNx phases decreases from 13.17 to 9.56 Å3 as x increases from 0.25 to 0.67, with plateaus at Vo = 11.59 Å3 for hexagonal and cubic phases and Vo = 10.95 Å3 for orthorhombic and monoclinic phases. The plateaus are attributed to the changes in the average coordination numbers of molybdenum and nitrogen atoms, which increase from 2 to 6 and decrease from 6 to 4, respectively, indicating an increasing covalent bonding character with increasing x. The change in bonding character and the associated phase change from hexagonal to cubic/orthorhombic to monoclinic cause steep increases in the isotropic elastic modulus E = 387-487 GPa, the shear modulus G = 150-196 GPa, and the hardness H = 14-24 GPa in the relatively narrow composition range x = 0.4-0.5. This also causes a drop in Poisson's ratio from 0.29 to 0.24 and an increase in Pugh's ratio from 0.49 to 0.64, indicating a ductile-to-brittle transition between x = 0.44 and 0.5.

  11. Phase diagram and polarization of stable phases of (Ga1- x In x )2O3

    NASA Astrophysics Data System (ADS)

    Maccioni, Maria Barbara; Fiorentini, Vincenzo

    2016-04-01

    The full phase diagram of (Ga1- x In x )2O3 is obtained theoretically. The phases competing for the ground state are monoclinic β (low x), hexagonal (x ˜ 0.5), and bixbyite (large x). Three disconnected mixing regions interlace with two distinct phase-separation regions, and at x ˜ 0.5, the coexistence of hexagonal and β alloys with phase-separated binary components is expected. We also explore the permanent polarization of the phases, but none of them are polar. On the other hand, we find that ɛ-Ga2O3, which was stabilized in recent experiments, is pyroelectric with a large polarization and piezoelectric coupling, and could be used to produce high-density electron gases at interfaces.

  12. A summary of lateral-stability derivatives calculated for wing plan forms in supersonic flow

    NASA Technical Reports Server (NTRS)

    Jones, Arthur L; Alksne, Alberta

    1951-01-01

    A compilation of theoretical values of the lateral-stability derivatives for wings at supersonic speeds is presented in the form of design charts. The wing plan forms for which this compilation has been prepared include a rectangular, two trapezoidal, two triangular, a fully-tapered swept-back, a sweptback hexagonal, an unswept hexagonal, and a notched triangular plan form. A full set of results, that is, values for all nine of the lateral-stability derivatives for wings, was available for the first six of these plan forms only. The reasons for the incompleteness of the results available for other plan forms are discussed.

  13. Hexagonal convection patterns and their evolutionary scenarios in electroconvection induced by a strong unipolar injection

    NASA Astrophysics Data System (ADS)

    Luo, Kang; Wu, Jian; Yi, Hong-Liang; Liu, Lin-Hua; Tan, He-Ping

    2018-05-01

    A regular hexagonal pattern of three-dimensional electroconvective flow induced by unipolar injection in dielectric liquids is numerically observed by solving the fully coupled governing equations using the lattice Boltzmann method. A small-amplitude perturbation in the form of a spatially periodic pattern of hexagonal cells is introduced initially. The transient development of convective cells that undergo a sequence of transitions agrees with the idea of flow seeking an optimal scale. Stable hexagonal convective cells and their subcritical bifurcation together with a hysteresis loop are clearly observed. In addition, the stability of the hexagonal flow pattern is analyzed in a wide range of relevant parameters, including the electric Rayleigh number T , nondimensional mobility M , and wave number k . It is found that centrally downflowing hexagonal cells, which are characterized by the central region being empty of charge, are preferred in the system.

  14. Structural and electronic stability of a volleyball-shaped B80 fullerene

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Qian

    2010-10-01

    We have studied the structural and electronic characteristics of a volleyball-shaped B80 cage using first-principles density-functional calculations. In contrast to the popularly ratified “magic” B80 buckyball with 20 hexagonal pyramids and 12 hollow pentagons, the volleyball-shaped B80 constitutes 12 pentagonal pyramids, 8 hexagonal pyramids, and 12 hollow hexagons. The B80 volleyball is markedly more stable than the previously assumed magic B80 buckyball, which is attributed to the improved aromaticity associated with the distinct configuration.

  15. Synthesis and oxygen content dependent properties of hexagonal DyMnO[subscript 3+delta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remsen, S.; Dabrowski, B.; Chmaissem, O.

    2011-10-28

    Oxygen deficient polycrystalline samples of hexagonal P6{sub 3}cm (space group No.185) DyMnO{sub 3+{delta}} ({delta} < 0) were synthesized in Ar by intentional decomposition of its perovskite phase obtained in air. The relative stability of these phases is in accord with our previous studies of the temperature and oxygen vacancy dependent tolerance factor. Thermogravimetric measurements have shown that hexagonal samples of DyMnO{sub 3+{delta}} (0 {le} {delta} {le} 0.4) exhibit unusually large excess oxygen content, which readily incorporates on heating near 300 C in various partial-pressures of oxygen atmospheres. Neutron and synchrotron diffraction data show the presence of two new structural phasesmore » at {delta} {approx} 0.25 (Hex{sub 2}) and {delta} {approx} 0.40 (Hex{sub 3}). Rietveld refinements of the Hex{sub 2} phase strongly suggest it is well modeled by the R3 space group (No.146). These phases were observed to transform back to P6{sub 3}cm above {approx} 350 C when material becomes stoichiometric in oxygen content ({delta} = 0). Chemical expansion of the crystal lattice corresponding to these large changes of oxygen was found to be 3.48 x 10{sup -2} mol{sup -1}. Thermal expansion of stoichiometric phases were determined to be 11.6 x 10{sup -6} and 2.1 x 10{sup -6} K{sup -1} for the P6{sub 3}cm and Hex{sub 2} phases, respectively. Our measurements also indicate that the oxygen non-stoichiometry of hexagonal RMnO{sub 3+{delta}} materials may have important influence on their multiferroic properties.« less

  16. First-Principles Study of Structural, Electronic and Magnetic Properties of Metal-Centered Tetrahexahedral V15+ Cluster

    PubMed Central

    Ren, Hongjiang; Huang, Xinwei; Li, Shuna

    2017-01-01

    The V-centered bicapped hexagonal antiprism structure (A), as the most stable geometry of the cationic V15+ cluster, is determined by using infrared multiple photo dissociation (IR-MPD) in combination with density functional theory computations. It is found that the A structure can be stabilized by 18 delocalized 3c-2e σ-bonds on outer V3 triangles of the bicapped hexagonal antiprism surface and 12 delocalized 4c-2e σ-bonds on inner trigonal pyramidal V4 moiety, and the features are related to the strong p-d hybridization of the cluster. The total magnetic moments on the cluster are predicted to be 2.0 µB, which come mainly from the central vanadium atom. PMID:28665337

  17. Cerium-doped -Ni(OH)2 hexagon nanosheets: an effective photocatalyst for degradation of the emerging water pollutant naproxen.

    PubMed

    Regmi, Chhabilal; Maya-Flores, Etel; Lee, Soo Wohn; Rodríguez-González, Vicente

    2018-06-21

    Nickel hydroxide β-Ni(OH)2 hexagonal nanosheets were synthetized via a hydrothermal exfoliation process. The practical microwave assisted hydrothermal method facilitated obtain layered nickel 3D nanoplates with cerium functionalization in 5h. The as-produced nanostructures were characterized by XRD, XPS, FESEM, FT-IR, PL, UV-vis, and BET techniques. The hydroxilated structures are nano-thick hexagonal plates having sides with 28 nm in length and 5 nm of average thickness. UV and PL irradiation was used to study the photoactive properties in the degradation of a pharmaceutical emerging pollutant, naproxen. UV-vis spectroscopy and high-performance liquid chromatography (HPLC) monitoring indicated that the Ni(OH)2-Ce nanostructures are an effective photocatalyst for naproxen degradation including 40 % of mineralization of this highly recalcitrant drug. The photocatalyst showed stability for two consecutive cycles, preserving its photoactive and structural characteristics. Ce3+ doped nanoplates and surface functionalized Ce4+ act as charge separators and scavenging agents for the enhanced photodegradation of naproxen. © 2018 IOP Publishing Ltd.

  18. Nb5+-Doped SrCoO3-δ Perovskites as Potential Cathodes for Solid-Oxide Fuel Cells.

    PubMed

    Cascos, Vanessa; Alonso, José Antonio; Fernández-Díaz, María Teresa

    2016-07-15

    SrCoO 3- δ outperforms as cathode material in solid-oxide fuel cells (SOFC) when the three-dimensional (3C-type) perovskite structure is stabilized by the inclusion of highly-charged transition-metal ions at the octahedral positions. In a previous work we studied the Nb incorporation at the Co positions in the SrCo 1- x Nb x O 3- δ system, in which the stabilization of a tetragonal P4 / mmm perovskite superstructure was described for the x = 0.05 composition. In the present study we extend this investigation to the x = 0.10-0.15 range, also observing the formation of the tetragonal P4 / mmm structure instead of the unwanted hexagonal phase corresponding to the 2H polytype. We also investigated the effect of Nb 5+ doping on the thermal, electrical, and electrochemical properties of SrCo 1- x Nb x O 3- δ ( x = 0.1 and 0.15) perovskite oxides performing as cathodes in SOFC. In comparison with the undoped hexagonal SrCoO 3- δ phase, the resulting compounds present high thermal stability and an increase of the electrical conductivity. The single-cell tests for these compositions ( x = 0.10 and 0.15) with La 0.8 Sr 0.2 Ga 0.83 Mg 0.17 O 3- δ (LSGM) as electrolyte and SrMo 0.8 Fe 0.2 CoO 3- δ as anode gave maximum power densities of 693 and 550 mW∙cm -2 at 850 °C respectively, using pure H₂ as fuel and air as oxidant.

  19. Ultra-bright emission from hexagonal boron nitride defects as a new platform for bio-imaging and bio-labelling

    NASA Astrophysics Data System (ADS)

    Elbadawi, Christopher; Tran, Trong Toan; Shimoni, Olga; Totonjian, Daniel; Lobo, Charlene J.; Grosso, Gabriele; Moon, Hyowan; Englund, Dirk R.; Ford, Michael J.; Aharonovich, Igor; Toth, Milos

    2016-12-01

    Bio-imaging requires robust ultra-bright probes without causing any toxicity to the cellular environment, maintain their stability and are chemically inert. In this work we present hexagonal boron nitride (hBN) nanoflakes which exhibit narrowband ultra-bright single photon emitters1. The emitters are optically stable at room temperature and under ambient environment. hBN has also been noted to be noncytotoxic and seen significant advances in functionalization with biomolecules2,3. We further demonstrate two methods of engineering this new range of extremely robust multicolour emitters across the visible and near infrared spectral ranges for large scale sensing and biolabeling applications.

  20. The 3R polymorph of CaSi{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nedumkandathil, Reji; Benson, Daryn E.; Grins, Jekabs

    The Zintl phase CaSi{sub 2} commonly occurs in the 6R structure where puckered hexagon layers of Si atoms are stacked in an AA′BB′CC′ fashion. In this study we show that sintering of CaSi{sub 2} in a hydrogen atmosphere (30 bar) at temperatures between 200 and 700 °C transforms 6R-CaSi{sub 2} quantitatively into 3R-CaSi{sub 2}. In the 3R polymorph (space group R-3m (no. 166), a=3.8284(1), c=15.8966(4), Z=3) puckered hexagon layers are stacked in an ABC fashion. The volume per formula unit is about 3% larger compared to 6R-CaSi{sub 2}. First principles density functional calculations reveal that 6R and 3R-CaSi{sub 2} aremore » energetically degenerate at zero Kelvin. With increasing temperature 6R-CaSi{sub 2} stabilizes over 3R because of its higher entropy. This suggests that 3R-CaSi{sub 2} should revert to 6R at elevated temperatures, which however is not observed up to 800 °C. 3R-CaSi{sub 2} may be stabilized by small amounts of incorporated hydrogen and/or defects. - Graphical abstract: The common 6R form of CaSi{sub 2} can be transformed quantitatively into 3R-CaSi{sub 2} upon sintering in a hydrogen atmosphere. - Highlights: • Quantitative and reproducible bulk synthesis of the rare 3R polymorph of CaSi{sub 2}. • Clarification of the energetic relation between 3R and conventional 6R form. • 3R-CaSi{sub 2} is presumably stabilized by small amounts of incorporated hydrogen and/or defects.« less

  1. Investigation on the formation of lonsdaleite from graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greshnyakov, V. A.; Belenkov, E. A., E-mail: belenkov@csu.ru

    2017-02-15

    Structural stability and the possible pathways to experimental formation of lonsdaleite—a hexagonal 2H polytype of diamond—have been studied in the framework of the density functional theory (DFT). It is established that the structural transformation of orthorhombic Cmmm graphite to 2H polytype of diamond must take place at a pressure of 61 GPa, while the formation of lonsdaleite from hexagonal P6/mmm graphite must take place at 56 GPa. The minimum potential barrier height separating the 2H polytype state from graphite is only 0.003 eV/atom smaller than that for the cubic diamond. The high potential barrier is indicative of the possibility ofmore » stable existence of the hexagonal diamond under normal conditions. In this work, we have also analyzed the X-ray diffraction and electron-microscopic data available for nanodiamonds found in meteorite impact craters in search for the presence of hexagonal diamond. Results of this analysis showed that pure 3C and 2H polytypes are not contained in the carbon materials of impact origin, the structure of nanocrystals found representing diamonds with randomly packed layers. The term “lonsdaleite,” used to denote carbon materials found in meteorite impact craters and diamond crystals with 2H polytype structure, is rather ambiguous, since no pure hexagonal diamond has been identified in carbon phases found at meteorite fall sites.« less

  2. Experimental Investigation of Hexagon Stability in Two Frequency Forced Faraday Waves

    NASA Astrophysics Data System (ADS)

    Ding, Yu; Umbanhowar, Paul

    2003-03-01

    We have conducted experiments on a deep layer of silicone oil vertically oscillated with an acceleration a(t) = Am sin(m ω t + φ_m) + An sin(n ω t + φ_n). The stability of hexagonal surface wave patterns is investigated as a function of the overall acceleration, the ratio m:n, and the phase of the two rationally related driving frequencies. When the ratio A_m/An is chosen so the system is near a co-dimension two point, the stability of hexagons above onset is determined by the acceleration amplitude and the relative phase. Recent results by Porter and Silver (J. Porter and M. Silber, Phys. Rev. Lett. 084501, 2002) predicts that the range of pattern stability above onset as a function of acceleration is determined by cos(Φ), where Φ = π/4 - m φn / 2- n φm /2. We have tested this prediction for a number of m:n ratios and for various values of the dimensionless damping coefficient γ. We find that the patterns exhibit the predicted functional dependence on s(Φ) but with an additional phase offset. We measure the phase offset as a function of m:n and γ for varying frequency ω and fluid viscosity 5 cS <= ν <= 30 cS.

  3. Sodium-Doped Mesoporous Ni2P2O7 Hexagonal Tablets for High-Performance Flexible All-Solid-State Hybrid Supercapacitors.

    PubMed

    Wei, Chengzhen; Cheng, Cheng; Wang, Shanshan; Xu, Yazhou; Wang, Jindi; Pang, Huan

    2015-08-01

    A simple hydrothermal method has been developed to prepare hexagonal tablet precursors, which are then transformed into porous sodium-doped Ni2P2O7 hexagonal tablets by a simple calcination method. The obtained samples were evaluated as electrode materials for supercapacitors. Electrochemical measurements show that the electrode based on the porous sodium-doped Ni2P2O7 hexagonal tablets exhibits a specific capacitance of 557.7 F g(-1) at a current density of 1.2 A g(-1) . Furthermore, the porous sodium-doped Ni2P2O7 hexagonal tablets were successfully used to construct flexible solid-state hybrid supercapacitors. The device is highly flexible and achieves a maximum energy density of 23.4 Wh kg(-1) and a good cycling stability after 5000 cycles, which confirms that the porous sodium-doped Ni2P2 O7 hexagonal tablets are promising active materials for flexible supercapacitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. High-temperature molecular dynamics simulation of aragonite.

    PubMed

    Miyake, Akira; Kawano, Jun

    2010-06-09

    For molecular dynamics simulations using aragonite structure as the initial state, a new phase of space group P6₃22 (hexagonal aragonite) appeared at temperatures above 510 K at a pressure of 1 atm. It was a first-order phase transition which occurs metastably within the stable region of calcite and the dT/dP slope of the phase boundary between orthorhombic and hexagonal aragonite was about 1.25 × 10³ K GPa⁻¹. In the hexagonal aragonite structure, CO₃ groups were rotated by 30° around the c axis and move up and down along the c axis from their position in aragonite, and Ca ions were six-coordinated as they are in calcite. The CaO₆ octahedron of hexagonal aragonite was strongly distorted, whereas in the calcite structure it is an almost ideal octahedron. The transition between hexagonal and orthorhombic aragonite involves only small movements of CO₃ groups. Therefore, it is possible that hexagonal aragonite plays an important part in the metastable formation of aragonite within the stability field of calcite and in the development of sector trilling in aragonite.

  5. Hexagonal-like Nb2O5 Nanoplates-Based Photodetectors and Photocatalyst with High Performances

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Gao, Nan; Liao, Meiyong; Fang, Xiaosheng

    2015-01-01

    Ultraviolet (UV) photodetectors are important tools in the fields of optical imaging, environmental monitoring, and air and water sterilization, as well as flame sensing and early rocket plume detection. Herein, hexagonal-like Nb2O5 nanoplates are synthesized using a facile solvothermal method. UV photodetectors based on single Nb2O5 nanoplates are constructed and the optoelectronic properties have been probed. The photodetectors show remarkable sensitivity with a high external quantum efficiency (EQE) of 9617%, and adequate wavelength selectivity with respect to UV-A light. In addition, the photodetectors exhibit robust stability and strong dependence of photocurrent on light intensity. Also, a low-cost drop-casting method is used to fabricate photodetectors based on Nb2O5 nanoplate film, which exhibit singular thermal stability. Moreover, the hexagonal-like Nb2O5 nanoplates show significantly better photocatalytic performances in decomposing Methylene-blue and Rhdamine B dyes than commercial Nb2O5.

  6. Multifunctional cyanate ester nanocomposites reinforced by hexagonal boron nitride after noncovalent biomimetic functionalization.

    PubMed

    Wu, Hongchao; Kessler, Michael R

    2015-03-18

    Boron nitride (BN) reinforced polymer nanocomposites have attracted a growing research interest in the microelectronic industry for their uniquely thermal conductive but electrical insulating properties. To overcome the challenges in surface functionalization, in this study, hexagonal boron nitride (h-BN) nanoparticles were noncovalently modified with polydopamine in a solvent-free aqueous condition. The strong π-π interaction between the hexagonal structural BN and aromatic dopamine molecules facilitated 15 wt % polydopamine encapsulating the nanoparticles. High-performance bisphenol E cyanate ester (BECy) was incorporated by homogeneously dispersed h-BN at different loadings and functionalities to investigate their effects on thermo-mechanical, dynamic-mechanical, and dielectric properties, as well as thermal conductivity. Different theoretical and empirical models were successfully applied to predict thermal and dielectric properties of h-BN/BECy nanocomposites. Overall, the prepared h-BN/BECy nanocomposites exhibited outstanding performance in dimensional stability, dynamic-mechanical properties, and thermal conductivity, together with the controllable dielectric property and preserved thermal stability for high-temperature applications.

  7. Air separation and oxygen storage properties of hexagonal rare-earth manganites

    NASA Astrophysics Data System (ADS)

    Abughayada, Castro

    This dissertation presents evaluation results of hexagonal Y1-x RxMnO3+delta (R = Er, Y, Dy, Pr, La, Tb and Ho) rare-earth manganites for prospective air separation applications. In these materials, oxygen content is sensitively dependent on the surrounding conditions of temperature and/or oxygen partial pressure, and therefore they exhibit the ability to selectively absorb, store, and release significant amounts of separated oxygen from air. This study presents a full characterization of their thermogravimetric characteristics and air separation capabilities. With the expected potential impact of oxygen content on the physical properties of these materials, the scope of this work is expanded to explore other relevant properties such as magnetic, transport, and dilatometric characteristics. Single-phase polycrystalline samples of these materials were achieved in the hexagonal P63cm phase through solid state reaction at elevated temperatures. Further annealings under reducing conditions were required for samples with large rare-earth cations in order to suppress the competing perovskite structure and form in the anticipated hexagonal phase. Thermogravimetric measurements in oxygen atmospheres demonstrated that samples with the larger R ionic radii show rapid and reversible incorporation of significant amounts of excess oxygen (0.41 > delta > 0) at an unusual low temperature range ~190-325 °C. The reversible oxygen storage characteristics of HoMnO3+delta and related materials shown by the fast incorporation and release of interstitial oxygen at easily accessible elevated temperatures of ~300 °C demonstrate the feasibility and potential for low-cost thermal swing adsorption TSA process for oxygen separation and enrichment from air. Neutron and X-ray powder diffraction measurements confirmed the presence of three line compounds RMnO3+delta, the oxygen stoichiometric P6 3cm (delta = 0 for all R), the intermediate oxygen content superstructure phase R3c (delta ~ 0.28 for R = Ho, Dy, Dy0.5Y0.5, and Dy0.3Y0.7) constructed by tripling the c-axis of the original unit cell, and the highly oxygen-loaded Pca21 phase (delta = 0.40 for all R). In-situ synchrotron diffraction showed thermal stability of these single phases and their coexistence ranges, demonstrating that the stability of the delta = 0.28 phase increases with the ionic size of the R ion. The magnetic properties of the multiferroic RMnO3+delta were found to be dependent on the oxygen content of these compounds. Below the magnetic ordering temperatures, samples with higher oxygen content showed slightly decreased magnetization relative to the less oxygenated ones. Dilatometry measurements suggest that the thermal expansion coefficient TEC of the oxygen-loaded Pca21 phase is slightly larger than that of the stoichiometric P63cm phase. The calculated Pca21 to P63cm chemical expansion coefficient 14.38 x 10-3 [mole-O]-1 was found to be within the expected range for the hexagonal Y0.97La0.03MnO3+delta sample.

  8. Atomically Thin Hexagonal Boron Nitride Nanofilm for Cu Protection: The Importance of Film Perfection.

    PubMed

    Khan, Majharul Haque; Jamali, Sina S; Lyalin, Andrey; Molino, Paul J; Jiang, Lei; Liu, Hua Kun; Taketsugu, Tetsuya; Huang, Zhenguo

    2017-01-01

    Outstanding protection of Cu by high-quality boron nitride nanofilm (BNNF) 1-2 atomic layers thick in salt water is observed, while defective BNNF accelerates the reaction of Cu toward water. The chemical stability, insulating nature, and impermeability of ions through the BN hexagons render BNNF a great choice for atomic-scale protection. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Magnetic properties of epitaxial hexagonal HoFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Xiao, Zhuyun; Xu, Xiaoshan; Wang, Wenbin; Keavney, David; Liu, Yaohua; Cheng, X. M.

    2014-03-01

    Multiferroic materials exhibit multiple ferroic orders simultaneously and thus have great potential applications in information technology, sensing and actuation. Epitaxial hexagonal HoFeO3 (h-HFO) films are very promising candidates as multiferroic materials with room temperature ferromagnetism, because magnetic Ho3+ ions are expected to have stronger exchange interactions with Fe3+ ions than the well-studied h-LuFeO3 films. We report study of magnetic properties of epitaxial h-HFO thin films deposited using laser molecular beam epitaxy on Yttria-stabilized zirconia (YSZ) substrates. X-ray diffraction measurements confirmed the epitaxial registry and six-fold symmetry of the film. Temperature dependence of magnetization of the film measured by a Quantum Design SQUID magnetometer shows dominating paramagnetic characteristic. Element specific x-ray magnetic circular dichroism measurements performed at beamline 4-ID-C of the Advanced Photon Source show a ferromagnetic ordering of Fe and an exchange coupling between Ho3+ and Fe3+ ions. Work at BMC is supported by NSF Career award (DMR 1053854). Work at ANL is supported by US-DOE, Office of Science, BES (No. DE-AC02-06CH11357).

  10. Nature of phase transitions in crystalline and amorphous GeTe-Sb2Te3 phase change materials.

    PubMed

    Kalkan, B; Sen, S; Clark, S M

    2011-09-28

    The thermodynamic nature of phase stabilities and transformations are investigated in crystalline and amorphous Ge(1)Sb(2)Te(4) (GST124) phase change materials as a function of pressure and temperature using high-resolution synchrotron x-ray diffraction in a diamond anvil cell. The phase transformation sequences upon compression, for cubic and hexagonal GST124 phases are found to be: cubic → amorphous → orthorhombic → bcc and hexagonal → orthorhombic → bcc. The Clapeyron slopes for melting of the hexagonal and bcc phases are negative and positive, respectively, resulting in a pressure dependent minimum in the liquidus. When taken together, the phase equilibria relations are consistent with the presence of polyamorphism in this system with the as-deposited amorphous GST phase being the low entropy low-density amorphous phase and the laser melt-quenched and high-pressure amorphized GST being the high entropy high-density amorphous phase. The metastable phase boundary between these two polyamorphic phases is expected to have a negative Clapeyron slope. © 2011 American Institute of Physics

  11. Hole-mediated stabilization of cubic GaN.

    PubMed

    Dalpian, Gustavo M; Wei, Su-Huai

    2004-11-19

    We propose here a new approach to stabilize the cubic zinc-blende (ZB) phase by incorporation of impurities into a compound that has a hexagonal wurtzite (WZ) ground state. For GaN, we suggest that this can be achieved by adding 3d acceptors such as Zn, Mn, or Cu because the p-d repulsion between the 3d impurity levels and the valence band maximum is larger in the ZB phase than in the WZ phase. This makes the top of the valence states of the ZB structure higher than that of the WZ structure. As holes are created at the top of the valence states by the impurities, it will cost less energy for the holes to be created in the ZB structure, thus stabilizing this phase. Our first-principles total energy calculations confirm this novel idea.

  12. [Plasma temperature of white-eye hexagonal pattern in dielectric barrier discharge].

    PubMed

    Zhao, Yang; Dong, Li-fang; Fu, Hong-yan

    2015-01-01

    By using the water-electrode discharge experimental setup, the white-eye hexagonal pattern is firstly observed and investigated in the dielectric barrier discharge with the mixture of argon and air whose content can be varied whenever necessary, and the study shows that the white-eye cell is an interleaving of three different hexagonal sub-structures: the spot, the ring, and the halo. The white-eye hexagonal pattern has the excellent discharge stability and sustainability during the experiment. Pictures recorded by ordinary camera with long exposure time in the same argon content condition show that the spot, the ring, and the halo of the white-eye hexagonal pattern have different brightness, which may prove that their plasma states are different. And, it is worth noting that there are obvious differences not only on the brightness but also on the color of the white-eye cell in conditions of different argon content, which shows that its plasma state also changed with the variation of the argon content. The white-eye hexagonal pattern is observed at a lower applied voltage so that the temperature of the water electrodes almost keeps unchanged during the whole experiment, which is advantageous for the long term stable measurement. The plasma state will not be affected by the temperature of the electrodes during the continuous discharge. Based on the above phenomena, plasma temperatures of the spot, the ring, and the halo in white-eye hexagonal pattern including molecule vibrational temperature and variations of electron density at different argon content are investigated by means of optical emission spectroscopy (OES). The emission spectra of the N2 second positive band(C3Πu-->B3Πg)are measured, and the molecule vibrational temperature of the spot, the ring, and the halo of the white-eye hexagonal pattern are calculated by the emission intensities. Furthermore, emission spectra of Ar I (2P2-->1S5)is collected and the changes of its width with different argon content are used to estimate the variations of electron density of the spot, the ring, and the halo of the white-eye hexagonal pattern. In the same argon content condition, the molecule vibrational temperatures of halo, ring, and spot in the white-eye hexagonal pattern are in descending order, while the electron densities of halo, ring, and spot are in ascending order. With argon content increasing from 70% to 90%, both the molecule vibrational temperature and the electron density of the spot increase, while both of them of the halo decrease. And the molecule vibrational temperature of the ring keeps constant, while its electron density decreases. The experimental results indicate that the plasma state of the spot, the halo and the ring in a white-eye cell of the white-eye hexagonal pattern is different. These results are of great importance to the investigation of the multilayer structure of the patterns in dielectric barrier discharge and applications in industry.

  13. Investigation of electronic and magnetic properties of FeS: First principle and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Bouachraoui, Rachid; El Hachimi, Abdel Ghafour; Ziat, Younes; Bahmad, Lahoucine; Tahiri, Najim

    2018-06-01

    Electronic and magnetic properties of hexagonal Iron (II) Sulfide (hexagonal FeS) have been investigated by combining the Density functional theory (DFT) and Monte Carlo simulations (MCS). This compound is constituted by magnetic hexagonal lattice occupied by Fe2+ with spin state (S = 2). Based on ab initio method, we calculated the exchange coupling JFe-Fe between two magnetic atoms Fe-Fe in different directions. Also phase transitions, magnetic stability and magnetizations have been investigated in the framework of Monte Carlo simulations. Within this method, a second phase transition is observed at the Néel temperature TN = 450 K. This finding in good agreement with the reported data in the literature. The effect of the applied different parameters showed how can these parameters affect the critical temperature of this system. Moreover, we studied the density of states and found that the hexagonal FeS will be a promoting material for spintronic applications.

  14. Oxygen interaction with hexagonal OsB 2 at high temperature

    DOE PAGES

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; ...

    2016-08-10

    The stability of ReB 2-type hexagonal OsB 2 powder at high temperature with oxygen presence has been studied by thermogravimetric analysis, differential scanning calorimetry, SEM, EDS, and high-temperature scanning transmission electron microscopy and XRD. Results of the study revealed that OsB 2 ceramics interact readily with oxygen present in reducing atmosphere, especially at high temperature and produces boric acid, which decomposes on the surface of the powder resulting in the formation of boron vacancies in the hexagonal OsB 2 lattice as well as changes in the stoichiometry of the compound. It was also found that under low oxygen partial pressure,more » sintering of OsB 2 powders occurred at a relatively low temperature (900°C). Finally, hexagonal OsB 2 ceramic is prone to oxidation and it is very sensitive to oxygen partial pressures, especially at high temperatures.« less

  15. Oxygen interaction with hexagonal OsB 2 at high temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina

    The stability of ReB 2-type hexagonal OsB 2 powder at high temperature with oxygen presence has been studied by thermogravimetric analysis, differential scanning calorimetry, SEM, EDS, and high-temperature scanning transmission electron microscopy and XRD. Results of the study revealed that OsB 2 ceramics interact readily with oxygen present in reducing atmosphere, especially at high temperature and produces boric acid, which decomposes on the surface of the powder resulting in the formation of boron vacancies in the hexagonal OsB 2 lattice as well as changes in the stoichiometry of the compound. It was also found that under low oxygen partial pressure,more » sintering of OsB 2 powders occurred at a relatively low temperature (900°C). Finally, hexagonal OsB 2 ceramic is prone to oxidation and it is very sensitive to oxygen partial pressures, especially at high temperatures.« less

  16. Island shape, size and interface dependency on electronic and magnetic properties of graphene hexagonal-boron nitride (h-BN) in-plane hybrids

    NASA Astrophysics Data System (ADS)

    Akman, Nurten; Özdoğan, Cem

    2018-04-01

    We systematically investigate the energetics of ion implantation, stability, electronic, and magnetic properties of graphene/hexagonal boron nitrate (h-BN) in-plane hybrids through first principle calculations. We consider hexagonal and triangular islands in supercells of graphene and h-BN layouts. In the case of triangular islands, both phases mix with each other by either solely Csbnd N or Csbnd B bonds. We also patterned triangles with predominating Csbnd N or Csbnd B bonds at their interfaces. The energetics of island implantation is discussed in detail. Formation energies point out that the island implantation could be even exothermic for all hybrids studied in this work. Effects of size and shape of the island, and dominating bonding sort at the island-layout interfaces on the stability, band gap, and magnetic properties of hybrids are studied particularly. The hybrids become more stable with increasing island size. Regardless of the layout, hybrids with hexagonal islands are all non-magnetic and semiconducting. One can thus open a band gap in the semimetallic graphene by mixing it with the h-BN phase. In general, hybrids containing graphene triangles show metallic property and exhibit considerable amount of magnetic moments for possible localized spin utilizations. Total magnetic moment of hybrids with both graphene and h-BN layouts increases with growing triangle island as well. The spin densities of magnetic hybrids are derived from interfaces of the islands and diminish towards their center. We suggest that the increase in stability and magnetic moment depend on the number of atoms at the interfaces rather than the island size.

  17. Stress-Induced Cubic-to-Hexagonal Phase Transformation in Perovskite Nanothin Films.

    PubMed

    Cao, Shi-Gu; Li, Yunsong; Wu, Hong-Hui; Wang, Jie; Huang, Baoling; Zhang, Tong-Yi

    2017-08-09

    The strong coupling between crystal structure and mechanical deformation can stabilize low-symmetry phases from high-symmetry phases or induce novel phase transformation in oxide thin films. Stress-induced structural phase transformation in oxide thin films has drawn more and more attention due to its significant influence on the functionalities of the materials. Here, we discovered experimentally a novel stress-induced cubic-to-hexagonal phase transformation in the perovskite nanothin films of barium titanate (BaTiO 3 ) with a special thermomechanical treatment (TMT), where BaTiO 3 nanothin films under various stresses are annealed at temperature of 575 °C. Both high-resolution transmission electron microscopy and Raman spectroscopy show a higher density of hexagonal phase in the perovskite thin film under higher tensile stress. Both X-ray photoelectron spectroscopy and electron energy loss spectroscopy does not detect any change in the valence state of Ti atoms, thereby excluding the mechanism of oxygen vacancy induced cubic-to-hexagonal (c-to-h) phase transformation. First-principles calculations show that the c-to-h phase transformation can be completed by lattice shear at elevated temperature, which is consistent with the experimental observation. The applied bending plus the residual tensile stress produces shear stress in the nanothin film. The thermal energy at the elevated temperature assists the shear stress to overcome the energy barriers during the c-to-h phase transformation. The stress-induced phase transformation in perovskite nanothin films with TMT provides materials scientists and engineers a novel approach to tailor nano/microstructures and properties of ferroelectric materials.

  18. Monodisperse hexagonal silver nanoprisms: synthesis via thiolate-protected cluster precursors and chiral, ligand-imprinted self-assembly.

    PubMed

    Cathcart, Nicole; Kitaev, Vladimir

    2011-09-27

    Silver nanoprisms of a predominantly hexagonal shape have been prepared using a ligand combination of a strongly binding thiol, captopril, and charge-stabilizing citrate together with hydrogen peroxide as an oxidative etching agent and a strong base that triggered nanoprism formation. The role of the reagents and their interplay in the nanoprism synthesis is discussed in detail. The beneficial role of chloride ions to attain a high degree of reproducibility and monodispersity of the nanoprisms is elucidated. Control over the nanoprism width, thickness, and, consequently, plasmon resonance in the system has been demonstrated. One of the crucial factors in the nanoprism synthesis was the slow, controlled aggregation of thiolate-stabilized silver nanoclusters as the intermediates. The resulting superior monodispersity (better than ca. 10% standard deviation in lateral size and ca. 15% standard deviation in thickness (<1 nm variation)) and charge stabilization of the produced silver nanoprisms enabled the exploration of the rich diversity of the self-assembled morphologies in the system. Regular columnar assemblies of the self-assembled nanoprisms spanning 2-3 μm in length have been observed. Notably, the helicity of the columnar phases was evident, which can be attributed to the chirality of the strongly binding thiol ligand. Finally, the enhancement of Raman scattering has been observed after oxidative removal of thiolate ligands from the AgNPR surface. © 2011 American Chemical Society

  19. Electrically dependent bandgaps in graphene on hexagonal boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, D., E-mail: daniel.b.kaplan.civ@mail.mil; Swaminathan, V.; Recine, G.

    2014-03-31

    We present first-principles calculations on the bandgap of graphene on a layer of hexagonal boron nitride in three different stacking configurations. Relative stability of the configurations is identified and bandgap tunability is demonstrated through the application of an external, perpendicularly applied electric field. We carefully examine the bandgap's sensitivity to both magnitude of the applied field as well as separation between the graphene and hexagonal boron nitride layers. Features of the band structure are examined and configuration-dependent relationships between the field and bandgap are revealed and elucidated through the atom-projected density of states. These findings suggest the potential for openingmore » and modulating a bandgap in graphene as high as several hundred meV.« less

  20. Phase transformation of molecular beam epitaxy-grown nanometer-thick Gd₂O₃ and Y₂O₃ on GaN.

    PubMed

    Chang, Wen-Hsin; Wu, Shao-Yun; Lee, Chih-Hsun; Lai, Te-Yang; Lee, Yi-Jun; Chang, Pen; Hsu, Chia-Hung; Huang, Tsung-Shiew; Kwo, J Raynien; Hong, Minghwei

    2013-02-01

    High quality nanometer-thick Gd₂O₃ and Y₂O₃ (rare-earth oxide, R₂O₃) films have been epitaxially grown on GaN (0001) substrate by molecular beam epitaxy (MBE). The R₂O₃ epi-layers exhibit remarkable thermal stability at 1100 °C, uniformity, and highly structural perfection. Structural investigation was carried out by in situ reflection high energy electron diffraction (RHEED) and ex-situ X-ray diffraction (XRD) with synchrotron radiation. In the initial stage of epitaxial growth, the R₂O₃ layers have a hexagonal phase with the epitaxial relationship of R₂O₃ (0001)(H)<1120>(H)//GaN(0001)(H)<1120>(H). With the increase in R₂O₃ film thickness, the structure of the R₂O₃ films changes from single domain hexagonal phase to monoclinic phase with six different rotational domains, following the R₂O₃ (201)(M)[020](M)//GaN(0001)(H)<1120>(H) orientational relationship. The structural details and fingerprints of hexagonal and monoclinic phase Gd₂O₃ films have also been examined by using electron energy loss spectroscopy (EELS). Approximate 3-4 nm is the critical thickness for the structural phase transition depending on the composing rare earth element.

  1. Structure evolution upon chemical and physical pressure in (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiittanen, T.; Karppinen, M., E-mail: maarit.karppinen@aalto.fi

    Here we demonstrate the gradual structural transformation from the monoclinic I2/m to tetragonal I4/m, cubic Fm-3m and hexagonal P6{sub 3}/mmc structure upon the isovalent larger-for-smaller A-site cation substitution in the B-site ordered double-perovskite system (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6}. This is the same transformation sequence previously observed up to Fm-3m upon heating the parent Sr{sub 2}FeSbO{sub 6} phase to high temperatures. High-pressure treatment, on the other hand, transforms the hexagonal P6{sub 3}/mmc structure of the other end member Ba{sub 2}FeSbO{sub 6} back to the cubic Fm-3m structure. Hence we may conclude that chemical pressure, physical pressure and decreasing temperature allmore » work towards the same direction in the (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6} system. Also shown is that with increasing Ba-for-Sr substitution level, i.e. with decreasing chemical pressure effect, the degree-of-order among the B-site cations, Fe and Sb, decreases. - Graphical abstract: In the (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6} double-perovskite system the gradual structural transformation from the monoclinic I2/m to tetragonal I4/m, cubic Fm-3m and hexagonal P6{sub 3}/mmc structure is seen upon the isovalent larger-for-smaller A-site cation substitution. High-pressure treatment under 4 GPa extends stability of the cubic Fm-3m structure within a wider substitution range of x. - Highlights: • Gradual structural transitions upon A-cation substitution in (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6.} • With increasing x structure changes from I2/m to I4/m, Fm-3m and P6{sub 3}/mmc. • Degree of B-site order decreases with increasing x and A-site cation radius. • High-pressure treatment extends cubic Fm-3m phase stability for wider x range. • High-pressure treatment affects bond lengths mostly around the A-cation.« less

  2. Overcoming double-step CO2 adsorption and minimizing water co-adsorption in bulky diamine-appended variants of Mg2(dobpdc).

    PubMed

    Milner, Phillip J; Martell, Jeffrey D; Siegelman, Rebecca L; Gygi, David; Weston, Simon C; Long, Jeffrey R

    2018-01-07

    Alkyldiamine-functionalized variants of the metal-organic framework Mg 2 (dobpdc) (dobpdc 4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) are promising for CO 2 capture applications owing to their unique step-shaped CO 2 adsorption profiles resulting from the cooperative formation of ammonium carbamate chains. Primary , secondary (1°,2°) alkylethylenediamine-appended variants are of particular interest because of their low CO 2 step pressures (≤1 mbar at 40 °C), minimal adsorption/desorption hysteresis, and high thermal stability. Herein, we demonstrate that further increasing the size of the alkyl group on the secondary amine affords enhanced stability against diamine volatilization, but also leads to surprising two-step CO 2 adsorption/desorption profiles. This two-step behavior likely results from steric interactions between ammonium carbamate chains induced by the asymmetrical hexagonal pores of Mg 2 (dobpdc) and leads to decreased CO 2 working capacities and increased water co-adsorption under humid conditions. To minimize these unfavorable steric interactions, we targeted diamine-appended variants of the isoreticularly expanded framework Mg 2 (dotpdc) (dotpdc 4- = 4,4''-dioxido-[1,1':4',1''-terphenyl]-3,3''-dicarboxylate), reported here for the first time, and the previously reported isomeric framework Mg-IRMOF-74-II or Mg 2 (pc-dobpdc) (pc-dobpdc 4- = 3,3'-dioxidobiphenyl-4,4'-dicarboxylate, pc = para -carboxylate), which, in contrast to Mg 2 (dobpdc), possesses uniformally hexagonal pores. By minimizing the steric interactions between ammonium carbamate chains, these frameworks enable a single CO 2 adsorption/desorption step in all cases, as well as decreased water co-adsorption and increased stability to diamine loss. Functionalization of Mg 2 (pc-dobpdc) with large diamines such as N -( n -heptyl)ethylenediamine results in optimal adsorption behavior, highlighting the advantage of tuning both the pore shape and the diamine size for the development of new adsorbents for carbon capture applications.

  3. Overcoming double-step CO 2 adsorption and minimizing water co-adsorption in bulky diamine-appended variants of Mg 2(dobpdc)

    DOE PAGES

    Milner, Phillip J.; Martell, Jeffrey D.; Siegelman, Rebecca L.; ...

    2017-10-26

    Alkyldiamine-functionalized variants of the metal–organic framework Mg 2(dobpdc) (dobpdc 4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) are promising for CO 2 capture applications owing to their unique step-shaped CO 2 adsorption profiles resulting from the cooperative formation of ammonium carbamate chains. Primary,secondary (1°,2°) alkylethylenediamine-appended variants are of particular interest because of their low CO 2 step pressures (≤1 mbar at 40 °C), minimal adsorption/desorption hysteresis, and high thermal stability. Herein, we demonstrate that further increasing the size of the alkyl group on the secondary amine affords enhanced stability against diamine volatilization, but also leads to surprising two-step CO 2 adsorption/desorption profiles. This two-step behaviormore » likely results from steric interactions between ammonium carbamate chains induced by the asymmetrical hexagonal pores of Mg 2(dobpdc) and leads to decreased CO 2 working capacities and increased water co-adsorption under humid conditions. To minimize these unfavorable steric interactions, we targeted diamine-appended variants of the isoreticularly expanded framework Mg 2(dotpdc) (dotpdc 4- = 4,4''-dioxido-[1,1':4',1''-terphenyl]-3,3''-dicarboxylate), reported here for the first time, and the previously reported isomeric framework Mg-IRMOF-74-II or Mg 2(pc-dobpdc) (pc-dobpdc 4- = 3,3'-dioxidobiphenyl-4,4'-dicarboxylate, pc = para-carboxylate), which, in contrast to Mg 2(dobpdc), possesses uniformally hexagonal pores. By minimizing the steric interactions between ammonium carbamate chains, these frameworks enable a single CO 2 adsorption/desorption step in all cases, as well as decreased water co-adsorption and increased stability to diamine loss. Functionalization of Mg 2(pc-dobpdc) with large diamines such as N-(n-heptyl)ethylenediamine results in optimal adsorption behavior, highlighting the advantage of tuning both the pore shape and the diamine size for the development of new adsorbents for carbon capture applications.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milner, Phillip J.; Martell, Jeffrey D.; Siegelman, Rebecca L.

    Alkyldiamine-functionalized variants of the metal–organic framework Mg 2(dobpdc) (dobpdc 4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) are promising for CO 2 capture applications owing to their unique step-shaped CO 2 adsorption profiles resulting from the cooperative formation of ammonium carbamate chains. Primary,secondary (1°,2°) alkylethylenediamine-appended variants are of particular interest because of their low CO 2 step pressures (≤1 mbar at 40 °C), minimal adsorption/desorption hysteresis, and high thermal stability. Herein, we demonstrate that further increasing the size of the alkyl group on the secondary amine affords enhanced stability against diamine volatilization, but also leads to surprising two-step CO 2 adsorption/desorption profiles. This two-step behaviormore » likely results from steric interactions between ammonium carbamate chains induced by the asymmetrical hexagonal pores of Mg 2(dobpdc) and leads to decreased CO 2 working capacities and increased water co-adsorption under humid conditions. To minimize these unfavorable steric interactions, we targeted diamine-appended variants of the isoreticularly expanded framework Mg 2(dotpdc) (dotpdc 4- = 4,4''-dioxido-[1,1':4',1''-terphenyl]-3,3''-dicarboxylate), reported here for the first time, and the previously reported isomeric framework Mg-IRMOF-74-II or Mg 2(pc-dobpdc) (pc-dobpdc 4- = 3,3'-dioxidobiphenyl-4,4'-dicarboxylate, pc = para-carboxylate), which, in contrast to Mg 2(dobpdc), possesses uniformally hexagonal pores. By minimizing the steric interactions between ammonium carbamate chains, these frameworks enable a single CO 2 adsorption/desorption step in all cases, as well as decreased water co-adsorption and increased stability to diamine loss. Functionalization of Mg 2(pc-dobpdc) with large diamines such as N-(n-heptyl)ethylenediamine results in optimal adsorption behavior, highlighting the advantage of tuning both the pore shape and the diamine size for the development of new adsorbents for carbon capture applications.« less

  5. X-ray crystallographic studies on C-phycocyanins from cyanobacteria from different habitats: marine and freshwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satyanarayana, L.; Suresh, C. G., E-mail: cgsuresh@ncl.res.in; Patel, Anamika

    2005-09-01

    The protein C-phycocyanin, involved in photosynthesis, has been purified from three cyanobacterial species: Spirulina, Phormidium and Lyngbya. These three proteins have been crystallized and characterized using X-ray crystallography. C-phycocyanins from three cyanobacterial cultures of freshwater and marine habitat, Spirulina, Phormidium and Lyngbya spp., were purified to homogeneity and crystallized using the hanging-drop vapour-diffusion method. Blue-coloured crystals in different crystal forms, monoclinic and hexagonal, were obtained for the three species. The crystals took 1–12 weeks to grow to full size using polyethylene glycols of different molecular weights as precipitants. The amino-acid sequences of these proteins show high similarity to other knownmore » C-phycocyanins from related organisms; however, the C-phycocyanins reported here showed different biochemical and biophysical properties, i.e. molecular weight, stability etc. The X-ray diffraction data were collected at resolutions of 3.0 Å for the monoclinic and 3.2 and 3.6 Å for the hexagonal forms. The unit-cell parameters corresponding to the monoclinic space group P2{sub 1} are a = 107.33, b = 115.64, c = 183.26 Å, β = 90.03° for Spirulina sp. C-phycocyanin and are similar for crystals of Phormidium and Lyngbya spp. C-phycocyanins. Crystals belonging to the hexagonal space group P6{sub 3}, with unit-cell parameters a = b = 154.97, c = 40.35 Å and a = b = 151.96, c = 39.06 Å, were also obtained for the C-phycocyanins from Spirulina and Lyngbya spp., respectively. The estimated solvent content is around 50% for the monoclinic crystals of all three species assuming the presence of two hexamers per asymmetric unit. The solvent content is 66.5 and 64.1% for the hexagonal crystals of C-phycocyanin from Spirulina and Lyngbya spp. assuming the presence of one αβ monomer per asymmetric unit.« less

  6. In situ x-ray diffraction studies of a new LiMg{sub 0.125}Ni{sub 0.75}O{sub 2} cathode material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X.Q.; Sun, X.; McBreen, J.

    A Synchrotron x-ray source was used for In Situ x-ray diffraction studies during charge on a new LiMg{sub 0.125}Ti{sub 0.125}Ni{sub 0.75} cathode material synthesized by FMC Corp. It had been demonstrated by Gao that this new material has superior thermal stability than LiNiO{sub 2} and LiCo{sub 0.2}Ni{sub 0.8}O{sub 2} at over-charged state. In this current paper, studies on the relationship between the structural changes and thermal stability at over-charged state for these materials are presented. For the first time, the thermal stability of these materials are related to their structural changes during charge, especially to the formation and lattice constantmore » change of a hexagonal phase (H3). The spectral evidence support the hypothesis that the improvement of thermal stability is obtained by suppressing the formation of H3 phase and reducing the shrinkage of its lattice constant c when charged above 4.3 V.« less

  7. Effect of plasma absorption on dust lattice waves in hexagonal dust crystals

    NASA Astrophysics Data System (ADS)

    Kerong, HE; Hui, CHEN; Sanqiu, LIU

    2018-04-01

    In the present paper, the effect of plasma absorption on lattice waves in 2D hexagonal dust crystals is investigated. The dispersion relations with the effect of plasma absorption are derived. It is found that the temperature effect (electron-to-ion temperature ratio τ) enhances the frequency of the dust lattice waves, while the spatial effect (dimensionless Debye shielding parameter \\tilde{κ }) weakens the frequency of the dust lattice waves. In addition, the system stabilities under the conditions of plasma absorption are studied. It is found that the temperature effect narrows the range of instability, while the spatial effect extends this range. And the range of instability is calculated, i.e. the system will always in the stable state regardless of the value of \\tilde{κ } when τ > 3.5. However, the system will be unstable when τ = 1 and \\tilde{κ }> 4.1.

  8. Interaction of multiferroic properties and interfaces in hexagonal LuMnO3 ceramics

    NASA Astrophysics Data System (ADS)

    Baghizadeh, A.; Vieira, J. M.; Stroppa, D. G.; Mirzadeh Vaghefi, P.; Graça, M. P.; Amaral, J. S.; Willinger, M.-G.; Amaral, V. S.

    2017-02-01

    A study on the underlying interaction mechanisms between lattice constants, magnetic and dielectric properties with inhomogeneities or internal interfaces in hexagonal, off-stoichiometric LuMnO3 oxide is presented. By increasing Mn content the a-axis constant and volume of the unit cell, the antiferromagnetic (AFM) Néel temperature, T N, and frustration factor of the frustrated Mn3+ trimmers in basal plane show decreasing trends. It was found that increasing the annealing time improves the properties of the lattices and progressively eliminates secondary phases for compositions within the solid solution stability limits. A magnetic contribution below T N is observed for all samples. Two regimes of magnetization below and above 45 K were observed in the AFM state. The magnetic contribution below T N is assigned to either the secondary phase or internal interfaces like ferroelectric (FE) domain walls. Magneto-dielectric coupling at T N is preserved in off-stoichiometric ceramics. The presence of a low temperature anomaly of the dielectric constant is correlated to the composition of the solid solution in off-stoichiometric ceramics. Large FE domains are observed in piezoresponse force microscopy (PFM) images of doped and un-doped ceramics, whereas atomic structure analysis indicates the parallel formation of nano-sized FE domains. A combination of measured properties and microscopy images of micron- and nano-sized domains ascertain the role of lattice distortion and stability of solid solution on multiferroic properties.

  9. Growth of Ferromagnetic Epitaxial Film of Hexagonal FeGe on (111) Ge Surface

    NASA Astrophysics Data System (ADS)

    Kumar, Dushyant; Joshi, P. C.; Hossain, Z.; Budhani, R. C.

    2014-03-01

    The realization of semiconductors showing ferromagnetic order at easily accessible temperatures has been of interest due to their potential use in spintronic devices where long spin life times are of key interest. We have realized the growth of FeGe thin films on Ge (111) wafers using pulsed laser deposition (PLD). The stoichiometric and single phase FeGe target used in PLD chamber has been made by arc melting. A typical θ-2 θ diffraction spectra performed on 40 nm thick FeGe film suggests the stabilization of β-Ni2In (B82-type) hexagonal phase with an epitaxial orientation of (0001)FeGe ||(111)Ge and [11-20]FeGe ||[-110]Ge. SEM images shows a granular structure with the formation of very large grains of about 100 to 500 nm in lateral dimension. The magnetization vs. temperature data taken from SQUID reveal the TC of ~ 270K. Since, PLD technique makes it easier to stabilize the B82 (Ni2In) hexagonal phase in thin FeGe films, this work opens opportunities to reinvestigate many conflicting results on various properties of the FeGe system.

  10. Characterization of Oxygen Storage and Structural Properties of Oxygen-Loaded Hexagonal R MnO 3+δ ( R = Ho, Er, and Y)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abughayada, C.; Dabrowski, B.; Kolesnik, S.

    2015-09-22

    Single-phase polycrystalline samples of stoichiometric RMnO3+delta (R = Er, Y, and Ho) were achieved in the hexagonal P6(3)cm structure through solid state reaction at, similar to 1300 degrees C. Thermogravimetric measurements in oxygen atmospheres demonstrated that samples with the larger Ho and Y show rapid and reversible incorporation of large amounts of excess oxygen (0.3 > delta> 0) at an unusually low temperature range of similar to 190-325 degrees C, indicating the industrial usefulness of RMnO3+delta materials for lower cost thermal swing adsorption processes for oxygen separation from air. Further increase of the excess oxygen intake to delta similar tomore » 0.38 was achieved for all the investigated materials when annealed under high pressures of oxygen. The formation of three oxygen stable phases with 6 = 0, 0.28, and 0.38 was confirmed by thermogravimetric measurements, synchrotron X-rays, and neutron diffraction. In situ synchrotron diffraction proved the thermal stability of these single phases and the regions of their creation and coexistence, and demonstrated that the stability of the delta = 0.28 phase increases with the ionic size of the R ion. Structural modeling using neutron powder diffraction for oxygen excess phases describes the formation and details of a large R3c superstructure observed for HoMnO3.28 by tripling the c-axis of the original parent unit cell. Modeling of the RMnO3.38 (R = Y and Er) oxygen-loaded phase converged on a structural model consistent with the symmetry of Pca2(1).« less

  11. Stability, elastic and electronic properties of a novel BN2 sheet with extended hexagons with N-N bonds

    NASA Astrophysics Data System (ADS)

    Waters, Kevin; Pandey, Ravindra

    2018-04-01

    A new B-N monolayer material (BN2) consisting of a network of extended hexagons is predicted using density functional theory. The distinguishable nature of this 2D material is found to be the presence of the bonded N atoms (N-N) in the lattice. Analysis of the phonon dispersion curves show this phase of BN2 to be stable. The calculated elastic properties exhibit anisotropic mechanical properties that surpass graphene in the armchair direction. The BN2 monolayer is metallic with in-plane p states dominating the Fermi level. Novel applications resulting from a strong anisotropic mechanical strength together with the metallic properties of the BN2 sheet with the extended hexagons with N-N bonds may enable future innovation at the nanoscale.

  12. ZIF-8 derived hexagonal-like α-Fe2O3/ZnO/Au nanoplates with tunable surface heterostructures for superior ethanol gas-sensing performance

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Li, Hui; Ma, Qian; Che, Quande; Wang, Junpeng; Wang, Gang; Yang, Ping

    2018-05-01

    A series of hexagonal-like α-Fe2O3/ZnO/Au nanoplate heterostructures with tunable morphologies and superior ethanol gas-sensing performance were successfully synthesized via the facile multi-step reaction processes. Hexagonal-like α-Fe2O3 nanoplates with uniform size around 150 nm are employed as new sensor substrates for loading the well-distributed ZnO and Au nanoparticles with adjustable size distribution on the different surfaces. Brunauer-EmmeQ-Teller (BET) surface areas of α-Fe2O3 and α-Fe2O3/ZnO samples are evaluated to be 37.94 and 61.27 m2/g, respectively, while α-Fe2O3/ZnO/Au composites present the highest value of 79.08 m2/g. These α-Fe2O3-based functional materials can exhibit outstanding sensing properties to ethanol. When the ethanol concentration is 100 ppm, the response value of α-Fe2O3/ZnO/Au composites can reach up to 170, which is 14.6 and 80.3 times higher than that of α-Fe2O3/ZnO and pure α-Fe2O3, respectively. The recycling stability and long-time effectiveness can be availably maintained within 30 days, as well as the response and recovery times are shortened to 4 and 5 s, respectively. Significantly, the response value of α-Fe2O3/ZnO/Au composite is still up to 63 at an operating temperature of 280 °C even though the ethanol concentration decreases to 10 ppm. The enhanced gas sensing mechanism would be focused on the synergistic effects of phase compositions, surface heterogeneous structures, large specific surface area, and the selective depositions of Au nanoparticles in α-Fe2O3/ZnO/Au sensors. The synergistic effect of different surface heterostructures referring to α-Fe2O3/Au and α-Fe2O3/ZnO/Au and their novel electron transport processes on the surfaces are first investigated and discussed in details. It is expected that hexagonal-like α-Fe2O3/ZnO/Au nanoplate heterostructures with excellent sensing performance can be the promising highly-sensitive materials in the actual application for monitoring and detecting ethanol.

  13. Corrosion resistance of monolayer hexagonal boron nitride on copper

    PubMed Central

    Mahvash, F.; Eissa, S.; Bordjiba, T.; Tavares, A. C.; Szkopek, T.; Siaj, M.

    2017-01-01

    Hexagonal boron nitride (hBN) is a layered material with high thermal and chemical stability ideal for ultrathin corrosion resistant coatings. Here, we report the corrosion resistance of Cu with hBN grown by chemical vapor deposition (CVD). Cyclic voltammetry measurements reveal that hBN layers inhibit Cu corrosion and oxygen reduction. We find that CVD grown hBN reduces the Cu corrosion rate by one order of magnitude compared to bare Cu, suggesting that this ultrathin layer can be employed as an atomically thin corrosion-inhibition coating. PMID:28191822

  14. Mechanosynthesis of Precursors for TiC-Cu Cermets

    NASA Astrophysics Data System (ADS)

    Eremina, M. A.; Lomaeva, S. F.; Burnyshev, I. N.; Kalyuzhnyi, D. G.

    2018-04-01

    The structural and phase state of the samples obtained by co-grinding of Ti and Cu powders under different conditions (with graphite, in petroleum ether, and in xylene) is investigated. It is demonstrated that after thermal treatment of powders obtained by milling of titanium, copper, and graphite in petroleum ether, both cubic titanium carbide and hexagonal titanium carbohydride are formed, whereas by milling without graphite, only hexagonal carbohydride possessing high thermal stability is formed. CuTi and CuTi2 intermetallic phases are formed under all examined conditions of mechanosynthesis.

  15. Effects of Variable Aspect-Ratio Inclusions on the Electrical Impedance of an Alumina Zirconia Composite at Intermediate Temperatures

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2010-01-01

    A series of alumina-yttria-stabilized zirconia composites containing either a high aspect ratio (5 and 30 mol%) hexagonal platelet alumina or an alumina low aspect ratio (5 and 30 mol%) spherical particulate was used to determine the effect of the aspect ratio on the temperature-dependent impedance of the composite material. The highest impedance across the temperature range of 373 to 1073 K is attributed to the grain boundary of the hexagonal platelet second phase in this alumina zirconia composite.

  16. The nature of the structural phase transition from the hexagonal (4H) phase to the cubic (3C) phase of silver.

    PubMed

    Chakraborty, Indrani; Shirodkar, Sharmila N; Gohil, Smita; Waghmare, Umesh V; Ayyub, Pushan

    2014-03-19

    The phase transition from the hexagonal 4H polytype of silver to the commonly known 3C (fcc) phase was studied in detail using x-ray diffraction, electron microscopy, differential scanning calorimetry and Raman spectroscopy. The phase transition is irreversible and accompanied by extensive microstructural changes and grain growth. Detailed scanning and isothermal calorimetric analysis suggests that it is an autocatalytic transformation. Though the calorimetric data suggest an exothermic first-order phase transition with an onset at 155.6 °C (for a heating rate of 2 K min(-1)) and a latent heat of 312.9 J g(-1), the microstructure and the electrical resistance appear to change gradually from much lower temperatures. The 4H phase shows a Raman active mode at 64.3 cm(-1) (at 4 K) that undergoes mode softening as the 4H → 3C transformation temperature is approached. A first-principles density functional theory calculation shows that the stacking fault energy of 4H-Ag increases monotonically with temperature. That 4H-Ag has a higher density of stacking faults than 3C-Ag, implies the metastability of the former at higher temperatures. Energetically, the 4H phase is intermediate between the hexagonal 2H phase and the 3C ground state, as indicated by the spontaneous transformation of the 2H to the 4H phase at -4 °C. Our data appear to indicate that the 4H-Ag phase is stabilized at reduced dimensions and thermally induced grain growth is probably responsible for triggering the irreversible transformation to cubic Ag.

  17. In pursuit of the rhabdophane crystal structure: from the hydrated monoclinic LnPO{sub 4}.0.667H{sub 2}O to the hexagonal LnPO{sub 4} (Ln = Nd, Sm, Gd, Eu and Dy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mesbah, Adel, E-mail: adel.mesbah@cea.fr; Clavier, Nicolas; Elkaim, Erik

    The dehydration process of the hydrated rhabdophane LnPO{sub 4}.0.667H{sub 2}O (Ln = La to Dy) was thoroughly studied over the combination of in situ high resolution synchrotron powder diffraction and TGA experiments. In the case of SmPO{sub 4}.0.667H{sub 2}O (monoclinic, C2), a first dehydration step was identified around 80 °C leading to the formation of SmPO{sub 4}.0.5H{sub 2}O (Monoclinic, C2) with Z =12 and a =17.6264(1) Å, b =6.9704(1) Å, c =12.1141(1) Å, β=133.74(1) °, V =1075.33(1) Å{sup 3}. In agreement with the TGA and dilatometry experiments, all the water molecules were evacuated above 220 °C yielding to the anhydrousmore » form, which crystallizes in the hexagonal P3{sub 1}21 space group with a =7.0389(1) Å, c =6.3702(1) Å and V =273.34(1) Å{sup 3}. This study was extended to selected LnPO{sub 4}.0.667H{sub 2}O samples (Ln= Nd, Gd, Eu, Dy) and the obtained results confirmed the existence of two dehydration steps before the stabilization of the anhydrous form, with the transitory formation of LnPO{sub 4}.0.5H{sub 2}O. - Graphical abstract: The dehydration process of the rhabdophane SmPO{sub 4}.0.667H{sub 2}O was studied over combination of in situ high resolution synchrotron powder diffraction and TGA techniques, a first dehydration was identified around 80 °C leading to the formation of SmPO{sub 4}.0.5H{sub 2}O (Monoclinic, C2). Then above 220 °C, the anhydrous form of the rhabdophane SmPO{sub 4} was stabilized and crystallizes in the hexagonal P3{sub 1}21 space group. - Highlights: • In situ synchrotron powder diffraction was carried out during the dehydration of the rhabdopahe LnPO{sub 4}.0.667H{sub 2}O. • The heat of the rhabdophane LnPO{sub 4}.0.667H{sub 2}O leads to LnPO{sub 4}.0.5H{sub 2}O then to anhydrous rhabdophane LnPO{sub 4}. • LnPO{sub 4}.0.5H{sub 2}O (monoclinic, C2) and LnPO{sub 4} (Hexagonal, P3{sub 1}21) were solved over the use of direct methods.« less

  18. Thermal stability of simple tetragonal and hexagonal diamond germanium

    DOE PAGES

    Huston, Larissa Q.; Johnson, Brett C.; Haberl, Bianca; ...

    2017-11-07

    Here, exotic phases of germanium, that form under high pressure but persist under ambient conditions, are of technological interest due to their unique optical and electrical properties. The thermal evolution and stability of two of these exotic Ge phases, the simple tetragonal (st12) and hexagonal diamond (hd) phases, are investigated in detail. These metastable phases, formed by high pressure decompression in either a diamond anvil cell or by nanoindentation, are annealed at temperatures ranging from 280 to 320 °C for st12-Ge and 200 to 550 °C for hd-Ge. In both cases, the exotic phases originated from entirely pure Ge precursormore » materials. Raman microspectroscopy is used to monitor the phase changes ex situ following annealing. Our results show that hd-Ge synthesized via a pure form of a-Ge first undergoes a subtle change in structure and then an irreversible phase transformation to dc-Ge with an activation energy of (4.3 ± 0.2) eV at higher temperatures. St12-Ge was found to transform to dc-Ge with an activation energy of (1.44 ± 0.08) eV. Taken together with results from previous studies, this study allows for intriguing comparisons with silicon and suggests promising technological applications.« less

  19. Thermal stability of simple tetragonal and hexagonal diamond germanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huston, Larissa Q.; Johnson, Brett C.; Haberl, Bianca

    Here, exotic phases of germanium, that form under high pressure but persist under ambient conditions, are of technological interest due to their unique optical and electrical properties. The thermal evolution and stability of two of these exotic Ge phases, the simple tetragonal (st12) and hexagonal diamond (hd) phases, are investigated in detail. These metastable phases, formed by high pressure decompression in either a diamond anvil cell or by nanoindentation, are annealed at temperatures ranging from 280 to 320 °C for st12-Ge and 200 to 550 °C for hd-Ge. In both cases, the exotic phases originated from entirely pure Ge precursormore » materials. Raman microspectroscopy is used to monitor the phase changes ex situ following annealing. Our results show that hd-Ge synthesized via a pure form of a-Ge first undergoes a subtle change in structure and then an irreversible phase transformation to dc-Ge with an activation energy of (4.3 ± 0.2) eV at higher temperatures. St12-Ge was found to transform to dc-Ge with an activation energy of (1.44 ± 0.08) eV. Taken together with results from previous studies, this study allows for intriguing comparisons with silicon and suggests promising technological applications.« less

  20. Improvement of oxygen storage properties of hexagonal YMnO3+δ by microstructural modifications

    NASA Astrophysics Data System (ADS)

    Klimkowicz, Alicja; Świerczek, Konrad; Kobayashi, Shuntaro; Takasaki, Akito; Allahyani, Wadiah; Dabrowski, Bogdan

    2018-02-01

    Hexagonal YMnO3+δ is shown to be an effective temperature-swing oxygen storage material working at low temperatures (150-300 °C) in pure oxygen if adequately processed or obtained having sub-micrometer primary particles with limited number of big agglomerates. A substantial increase of a practical oxygen storage capacity is observed for a sample synthesized by a solid-state method, which was subjected to a high impact mechanical milling. However, even better properties can be achieved for the sol-gel technique-produced YMnO3+δ. The reversible incorporation and release of the oxygen is associated with a structural transformation between stoichiometric YMnO3 (Hex0) phase and a mixture of oxygen-loaded Hex1 with δ ≈ 0.28 and Hex2 with δ ≈ 0.41 phases, as documented by in situ structural X-ray diffraction studies, supported by thermogravimetric experiments. Contrary to HoMnO3+δ, it was not possible to obtain single phase Hex1 material in oxygen, as well as to oxidize YMnO3 in air. Results confirm crucial role of the ionic size of rare earth element Ln on the oxygen storage-related properties and stability of the oxygen-loaded LnMnO3+δ phases.

  1. Eutectic equilibria in the quaternary system Fe-Cr-Mn-C

    NASA Technical Reports Server (NTRS)

    Nowotny, H.; Wayne, S.; Schuster, J. C.

    1982-01-01

    The constitution of the quaternary system, Fe-Cr-Mn-C and to a lesser extent of the quinary system, Fe-Cr-Mn-Al-C were examined for in situ composite alloy candidates. Multivariant eutectic compositions were determined from phase equilibria studies wherein M7C3 carbides (approximately 30% by volume) formed from the melt within gamma iron. An extended field of the hexagonal carbide, (Cr, Fe, Mn)7 C3, was found without undergoing transformation to the orthorhombic structure. Increasing stability for this carbide was found for higher ratios of Cr/Fe(+) Cr + Mn. Aluminum additions promoted a ferritic matrix while manganese favored the desired gamma austenitic matrix. In coexistence with the matrix phase, chromium enters preferentially the carbide phase while manganese distributes equally between the gamma matrix and the M7C3 carbide. The composition and lattice parameters of the carbide and matrix phases were determined to establish their respective stabilities.

  2. Electronic Structure, Mechanical and Dynamical Stability of Hexagonal Subcarbides M2C (M = Tc, Ru, Rh, Pd, Re, Os, Ir, and Pt): Ab Initio Calculations

    NASA Astrophysics Data System (ADS)

    Suetin, D. V.; Shein, I. R.

    2018-02-01

    Ab initio calculations were used to study the properties of a series of hexagonal (Fe2N-like) subcarbides M2C, where M = Tc, Ru, Rh, Pd, Re, Os, Ir, and Pt, and to calculate their equilibrium structural parameters, electronic properties, phase stability, elastic constants, compression modulus, shear modulus, Young's modulus, compressibility, Pugh's indicator, Poisson ratio, elastic anisotropy indices, and also hardness, Debye temperature, sound velocity, and low-temperature heat capacity. It is found based on these results that all the subcarbides are mechanically stable; however, their formation energies E form are positive with respect to a mixture of d-metal and graphite. In addition, the calculation of the phonon spectra of these subcarbides shows the existence of negative modes, which indicates their dynamical instability. Thus, a successful synthesis of these subcarbides at normal conditions is highly improbable.

  3. Stability and dynamic of strain mediated adatom superlattices on Cu<111 >

    NASA Astrophysics Data System (ADS)

    Kappus, Wolfgang

    2013-03-01

    Substrate strain mediated adatom equilibrium density distributions have been calculated for Cu<111 > surfaces using two complementing methods. A hexagonal adatom superlattice in a coverage range up to 0.045 ML is derived for repulsive short range interactions. For zero short range interactions a hexagonal superstructure of adatom clusters is derived in a coverage range about 0.08 ML. Conditions for the stability of the superlattice against formation of dimers or clusters and degradation are analyzed using simple neighborhood models. Such models are also used to investigate the dynamic of adatoms within their superlattice neighborhood. Collective modes of adatom diffusion are proposed from the analogy with bulk lattice dynamics and methods for measurement are suggested. The recently put forward explanation of surface state mediated interactions for superstructures found in scanning tunneling microscopy experiments is put in question and strain mediated interactions are proposed as an alternative.

  4. Selected Growth of Cubic and Hexagonal GaN Epitaxial Films on Polar MgO(111)

    NASA Astrophysics Data System (ADS)

    Lazarov, V. K.; Zimmerman, J.; Cheung, S. H.; Li, L.; Weinert, M.; Gajdardziska-Josifovska, M.

    2005-06-01

    Selected molecular beam epitaxy of zinc blende (111) or wurtzite (0001) GaN films on polar MgO(111) is achieved depending on whether N or Ga is deposited first. The cubic stacking is enabled by nitrogen-induced polar surface stabilization, which yields a metallic MgO(111)-(1×1)-ON surface. High-resolution transmission electron microscopy and density functional theory studies indicate that the atomically abrupt semiconducting GaN(111)/MgO(111) interface has a Mg-O-N-Ga stacking, where the N atom is bonded to O at a top site. This specific atomic arrangement at the interface allows the cubic stacking to more effectively screen the substrate and film electric dipole moment than the hexagonal stacking, thus stabilizing the zinc blende phase even though the wurtzite phase is the ground state in the bulk.

  5. Optical properties of boron-group (V) hexagonal nanowires: DFT investigation

    NASA Astrophysics Data System (ADS)

    Santhibhushan, B.; Soni, Mahesh; Srivastava, Anurag

    2017-07-01

    The paper presents structural, electronic and optical properties of boron-group V hexagonal nanowires (h-NW) within the framework of density functional theory. The h-NW of boron-group V compounds with an analogous diameter of 12 Å have been designed in (1 1 1) plane. Stability analysis performed through formation energies reveal that, the stability of these structures decreases with increasing atomic number of the group V element. The band nature predicts that these nanowires are good electrical conductors. Optical behaviour of the nanowires has been analysed through absorption coefficient, reflectivity, refractive index, optical conductivity and electron energy loss spectrum (EELS), that are computed from the frequency-dependent complex dielectric function. The analysis reveals high reactivity of BP and BAs h-NWs to the incident light especially in the IR and visible ranges, and the optical transparency of BN h-NW in the visible and UV ranges.

  6. Hexagonal VS2 Anchored MWCNTs: First Approach to Design Flexible Solid-State Symmetric Supercapacitor Device.

    PubMed

    Pandit, Bidhan; Karade, Swapnil S; Sankapal, Babasaheb R

    2017-12-27

    Transition metal chalcogenides (TMCs) embedded with a carbon network are gaining much attention because of their high power capability, which can be easily integrated to portable electronic devices. Facile chemical route has been explored to synthesize hexagonal structured VS 2 nanoparticles onto multiwalled carbon nanotubes (MWCNTs) matrix. Such surface-modified VS 2 /MWCNTs electrode has boosted the electrochemical performance to reach high capacitance to 830 F/g and excellent stability to 95.9% over 10 000 cycles. Designed flexible solid-state symmetric supercapacitor device (FSSD) with a wide voltage window of 1.6 V exhibited maximum gain in specific capacitance value of 182 F/g at scan rate of 2 mV/s along with specific energy of 42 Wh/kg and a superb stability of 93.2% over 5000 cycles. As a practical approach, FSSD has lightened up "VNIT" panel consisting of 21 red LEDs.

  7. Enhanced sensitivity in a butterfly gyroscope with a hexagonal oblique beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Dingbang; Cao, Shijie; Hou, Zhanqiang, E-mail: houzhanqiang@nudt.edu.cn

    2015-04-15

    A new approach to improve the performance of a butterfly gyroscope is developed. The methodology provides a simple way to improve the gyroscope’s sensitivity and stability, by reducing the resonant frequency mismatch between the drive and sense modes. This method was verified by simulations and theoretical analysis. The size of the hexagonal section oblique beam is the major factor that influences the resonant frequency mismatch. A prototype, which has the appropriately sized oblique beam, was fabricated using precise, time-controlled multilayer pre-buried masks. The performance of this prototype was compared with a non-tuned gyroscope. The scale factor of the prototype reachesmore » 30.13 mV/ °/s, which is 15 times larger than that obtained from the non-tuned gyroscope. The bias stability of the prototype is 0.8 °/h, which is better than the 5.2 °/h of the non-tuned devices.« less

  8. Half-metallic ferromagnetism prediction in MoS2-based two-dimensional superlattice from first-principles

    NASA Astrophysics Data System (ADS)

    Wen, Yan-Ni; Gao, Peng-Fei; Xia, Ming-Gang; Zhang, Sheng-Li

    2018-03-01

    Half-metallic ferromagnetism (HMFM) has great potential application in spin filter. However, it is extremely rare, especially in two-dimensional (2D) materials. At present, 2D materials have drawn international interest in spintronic devices. Here, we use ab initio density functional theory (DFT) calculations to study the structural stability and electrical and magnetic properties of the MoS2-based 2D superlattice formed by inserting graphene hexagonal ring in 6 × 6 × 1 MoS2 supercell. Two kinds of structures with hexagonal carbon ring were predicted with structural stability and were shown HMFM. The two structures combine the spin transport capacity of graphene with the magnetism of the defective 2D MoS2. And they have strong covalent bonding between the C and S or Mo atoms near the interface. This work is very useful to help us to design reasonable MoS2-based spin filter.

  9. First principles study of edge carboxylated graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Hazem; Elhaes, Hanan; Ibrahim, Medhat A.

    2018-05-01

    The structure stability and electronic properties of edge carboxylated hexagonal and triangular graphene quantum dots are investigated using density functional theory. The calculated binding energies show that the hexagonal clusters with armchair edges have the highest stability among all the quantum dots. The binding energy of carboxylated graphene quantum dots increases by increasing the number of carboxyl groups. Our study shows that the total dipole moment significantly increases by adding COOH with the highest value observed in triangular clusters. The edge states in triangular graphene quantum dots with zigzag edges produce completely different energy spectrum from other dots: (a) the energy gap in triangular zigzag is very small as compared to other clusters and (b) the highest occupied molecular orbital is localized at the edges which is in contrast to other clusters where it is distributed over the cluster surface. The enhanced reactivity and the controllable energy gap by shape and edge termination make graphene quantum dots ideal for various nanodevice applications such as sensors. The infrared spectra are presented to confirm the stability of the quantum dots.

  10. Hexagonal CeO2 nanostructures: an efficient electrode material for supercapacitors.

    PubMed

    Maheswari, Nallappan; Muralidharan, Gopalan

    2016-09-28

    Cerium oxide (CeO2) has emerged as a new and promising pseudocapacitive material due to its prominent valance states and extensive applications in various fields. In the present study, hexagonal CeO2 nanostructures have been prepared via the hydrothermal method employing cationic surfactant cetyl trimethyl ammonium bromide (CTAB). CTAB ensures a slow rate of hydrolysis to form small sized CeO2 nanostructures. The role of calcination temperature on the morphological, structural, electrochemical properties and cyclic stability has been assessed for supercapacitor applications. The mesoscopic hexagonal architecture endows the CeO2 with not only a higher specific capacity, but also with an excellent rate capability and cyclability. When the charge/discharge current density is increased from 2 to 10 A g(-1) the reversible charge capacity decreased from 927 F g(-1) to 475 F g(-1) while 100% capacity retention at a high current density of 20 A g(-1) even after 1500 cycles could be achieved. Furthermore, the asymmetric supercapacitor based on CeO2 exhibited a significantly higher energy density of 45.6 W h kg(-1) at a power density of 187.5 W kg(-1) with good cyclic stability. The electrochemical richness of the CeO2 nanostructure makes it a suitable electrode material for supercapacitor applications.

  11. Solvothermal synthesis of Fe{sub 7}C{sub 3} and Fe{sub 3}C nanostructures with phase and morphology control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Brent; Clifford, Dustin; Carpenter, Everett E., E-mail: aelgendy@vcu.edu, E-mail: ecarpenter2@vcu.edu

    A phase transition, from orthorhombic Fe{sub 3}C to hexagonal Fe{sub 7}C{sub 3}, was observed using a wet synthesis mediated by hexadecyltrimethylammonium chloride (CTAC). In this study, CTAC has been shown to control carbide phase, morphology, and size of the iron carbide nanostructures. Fe{sub 7}C{sub 3} hexagonal prisms were formed with an average diameter of 960 nm, the thickness of 150 nm, and Fe{sub 3}C nanostructures with an approximate size of 50 nm. Magnetic studies show ferromagnetic behavior with M{sub s} of 126 emu/g, and H{sub c} of 170 Oe with respect to Fe{sub 7}C{sub 3} and 95 emu/g and 590 Oe with respect to Fe{sub 3}C. Themore » thermal studies using high temperature x-ray diffraction show stability of Fe{sub 7}C{sub 3} up to 500 °C. Upon slow cooling, the Fe{sub 7}C{sub 3} phase is recovered with an intermediate oxide phase occurring around 300 °C. This study has demonstrated a simple route in synthesizing iron carbides for an in depth magnetic study and crystal phase transition study of Fe{sub 7}C{sub 3} at elevated temperatures.« less

  12. An Explanation for Saturn's Hexagon

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    For over three decades, weve been gathering observations of the mysterious hexagonal cloud pattern encircling Saturns north pole. Now, researchers believe they have a model that can better explain its formation.Fascinating GeometrySaturns northern Hexagon is a cloud band circling Saturns north pole at 78 N, first observed by the Voyager flybys in 198081. This remarkable pattern has now persisted for more than a Saturn year (29.5 Earth years).Eight frames demonstrating the motion within Saturns Hexagon. Click to watch the animation! The view is from a reference frame rotating with Saturn. [NASA/JPL-Caltech/SSI/Hampton University]Observations by Voyager and, more recently, Cassini have helped to identify many key characteristics of this bizarre structure. Two interesting things weve learned are:The Hexagon is associated with an eastward zonal jet moving at more than 200 mph.The cause of the Hexagon is believed to be a jet stream, similar to the ones that we experience on Earth. The path of the jet itself appears to follow the hexagons outline.The Hexagon rotates at roughly the same rate as Saturns overall rotation.While we observe individual storms and cloud patterns moving at different speeds within the Hexagon, the vertices of the Hexagon move at almost exactly the same rotational speed as that of Saturn itself.Attempts to model the formation of the Hexagon with a jet stream have yet to fully reproduce all of the observed features and behavior. But now, a team led by Ral Morales-Juberas of the New Mexico Institute of Mining and Technology believes they have created a model that better matches what we see.Simulating a Meandering JetThe team ran a series of simulations of an eastward, Gaussian-profile jet around Saturns pole. They introduced small perturbations to the jet and demonstrated that, as a result of the perturbations, the jet can meander into a hexagonal shape. With the initial conditions of the teams model, the meandering jet is able to settle into a stable hexagonal shape that rotates with very nearly the same period as Saturns rotational period.The formation of this hexagon depends on factors such as the initial amplitude and curvature of the jet. The models treatment of the wind profile within Saturns atmosphere is another key component that allowed them to match the observed characteristics of the Hexagon, such as its shape, vorticity behavior, temperature gradient, and seasonal stability.BonusThe gif below shows part of an animation the authors produced of the jet evolution in their model. You can see a hexagon begin to develop at around 230 days into the simulation, and by about 400 days it becomes stable and non-rotating (were looking at it from a reference frame rotating with Saturn). The full animation can be viewed here. [Morales-Juberas et al., 2015]CitationR. Morales-Juberas et al.2015 ApJ 806 L18 doi:10.1088/2041-8205/806/1/L18

  13. Structural stability and electronic properties of an octagonal allotrope of two dimensional boron nitride.

    PubMed

    Takahashi, Lauren; Takahashi, Keisuke

    2017-03-27

    An octagonal allotrope of two dimensional boron nitride is explored through first principles calculations. Calculations show that two dimensional octagonal boron nitride can be formed with a binding energy comparable to two dimensional hexagonal boron nitride. In addition, two dimensional octagonal boron nitride is found to have a band gap smaller than two dimensional hexagonal boron nitride, suggesting the possibility of semiconductive attributes. Two dimensional octagonal boron nitride also has the ability to layer through physisorption. Defects present within two dimensional octagonal boron nitride also lead toward the introduction of a magnetic moment through the absence of boron atoms. The presence of defects is also found to render both hexagonal and octagonal boron nitrides reactive against hydrogen, where greater reactivity is seen in the presence of nitrogen. Thus, two dimensional octagonal boron nitride is confirmed with potential to tailor properties and reactivity through lattice shape and purposeful introduction of defects.

  14. Effect of substrate on the atomic structure and physical properties of thermoelectric Ca3Co4O9 thin films

    NASA Astrophysics Data System (ADS)

    Qiao, Q.; Gulec, A.; Paulauskas, T.; Kolesnik, S.; Dabrowski, B.; Ozdemir, M.; Boyraz, C.; Mazumdar, D.; Gupta, A.; Klie, R. F.

    2011-08-01

    The incommensurately layered cobalt oxide Ca3Co4O9 exhibits an unusually high Seebeck coefficient as a polycrystalline bulk material, making it ideally suited for many high temperature thermoelectric applications. In this paper, we investigate properties of Ca3Co4O9 thin films grown on cubic perovskite SrTiO3, LaAlO3, and (La0.3Sr0.7)(Al0.65Ta0.35)O3 substrates and on hexagonal Al2O3 (sapphire) substrates using the pulsed laser deposition technique. X-ray diffraction and transmission electron microscopy analysis indicate strain-free growth of films, irrespective of the substrate. However, depending on the lattice and symmetry mismatch, defect-free growth of the hexagonal CoO2 layer is stabilized only after a critical thickness and, in general, we observe the formation of a stable Ca2CoO3 buffer layer near the substrate-film interface. Beyond this critical thickness, a large concentration of CoO2 stacking faults is observed, possibly due to weak interlayer interaction in this layered material. We propose that these stacking faults have a significant impact on the Seebeck coefficient and we report higher values in thinner Ca3Co4O9 films due to additional phonon scattering sites, necessary for improved thermoelectric properties.

  15. The influence of pozzolanic materials on the mechanical stability of aluminous cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collepardi, M.; Monosi, S.; Piccioli, P.

    1995-07-01

    High alumina cement is particularly suitable for manufacturing sulphate resistant concretes and in particular cement mixes which are able resist the sear water aggression. High alumina cement paste, in the presence of silica fume, shows an increasing strength trend even at 20 C and 40 C, since this pozzolan causes the formation of gehlenite hydrate (C{sub 2}ASH{sub 8}) and therefore strongly reduces the transformation of hexagonal aluminate hydrates (CAH{sub 10}, C{sub 2}AH{sub 8}) into the cubic hydrate (C{sub 3}AH{sub 6}) which is responsible for the strength loss of high-alumina cement mixes at higher temperatures (>20 C). On the contrary, flymore » ash is not suitable for reducing the transformation of hexagonal hydrates into the cubic phase. Consequently, the strength at 20 C and 40 C of the fly ash-high alumina cement mixes decrease as well as the high alumina cement pastes in the absence of pozzolan.« less

  16. The role of glycerol and phosphatidylcholine in solubilizing and enhancing insulin stability in reverse hexagonal mesophases.

    PubMed

    Amar-Yuli, Idit; Azulay, Doron; Mishraki, Tehila; Aserin, Abraham; Garti, Nissim

    2011-12-15

    The potential of reverse hexagonal mesophases based on monoolein (GMO) and glycerol (as cosolvent) to facilitate the solubilization of proteins, such as insulin was explored. H(II) mesophases composed of GMO/decane/water were compared to GMO/decane/glycerol/water and GMO/phosphatidylcholine (PC)/decane/glycerol/water systems. The stability of insulin was tested, applying external physical modifications such as low pH and heat treatment (up to 70°C), in which insulin is known to form ordered amyloid-like aggregates (that are associated with several neurodegenerative diseases) with a characteristic cross β-pleated sheet structure. The impact of insulin confinement within these carriers on its stability, unfolding, and aggregation pathways was studied by combining SAXS, FTIR, and AFM techniques. These techniques provided a better insight into the molecular level of the "component interplay" in solubilizing and stabilizing insulin and its conformational modifications that dictate its final aggregate morphology. PC enlarged the water channels while glycerol shrank them, yet both facilitated insulin solubilization within the channels. The presence of glycerol within the mesophase water channels led to the formation of stronger hydrogen bonds with the hosting medium that enhanced the thermal stability of the protein and remarkably affected the unfolding process even after heat treatment (at 70°C for 60 min). Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Effect of substrate on the atomic structure and physical properties of thermoelectric Ca₃Co₄O₉ thin films.

    PubMed

    Qiao, Q; Gulec, A; Paulauskas, T; Kolesnik, S; Dabrowski, B; Ozdemir, M; Boyraz, C; Mazumdar, D; Gupta, A; Klie, R F

    2011-08-03

    The incommensurately layered cobalt oxide Ca(3)Co(4)O(9) exhibits an unusually high Seebeck coefficient as a polycrystalline bulk material, making it ideally suited for many high temperature thermoelectric applications. In this paper, we investigate properties of Ca(3)Co(4)O(9) thin films grown on cubic perovskite SrTiO(3), LaAlO(3), and (La(0.3)Sr(0.7))(Al(0.65)Ta(0.35))O(3) substrates and on hexagonal Al(2)O(3) (sapphire) substrates using the pulsed laser deposition technique. X-ray diffraction and transmission electron microscopy analysis indicate strain-free growth of films, irrespective of the substrate. However, depending on the lattice and symmetry mismatch, defect-free growth of the hexagonal CoO(2) layer is stabilized only after a critical thickness and, in general, we observe the formation of a stable Ca(2)CoO(3) buffer layer near the substrate-film interface. Beyond this critical thickness, a large concentration of CoO(2) stacking faults is observed, possibly due to weak interlayer interaction in this layered material. We propose that these stacking faults have a significant impact on the Seebeck coefficient and we report higher values in thinner Ca(3)Co(4)O(9) films due to additional phonon scattering sites, necessary for improved thermoelectric properties.

  18. High catalytic activity and stability of Ni/CexZr1-xO2/MSU-H for CH4/CO2 reforming reaction

    NASA Astrophysics Data System (ADS)

    Chang, Xiaoqian; Liu, Bingsi; Xia, Hong; Amin, Roohul

    2018-06-01

    How to reduce emission of CO2 as greenhouse gases, which resulted in global warming, is of very important significance. A series of Ni/CexZr1-xO2/MSU-H catalysts was prepared by means of hexagonally ordered mesoporous MSU-H with thermal and hydrothermal stabilities, which is cheap and can be synthesized in the large scale. The 10%Ni/Ce0.75Zr0.25O2/MSU-H catalyst presents high catalytic activity, stability and the ability of coke-resistance for CH4/CO2 reforming reaction due to high SBET (428 m2/g) and smaller Nio nanoparticle size (3.14 nm). The high dispersed Nio nanoparticles over MSU-H promoted the decomposition of CH4 and the carbon species accumulated on active Nio sites reacting with crystal lattice oxygen in Ce0.75Zr0.25O2 to form CO molecules. In the meantime, the remained oxygen vacancies on the interface between Nio and Ce0.75Zr0.25O2 could be supplemented via CO2. HRTEM images and XRD results of Ni/Ce0.75Zr0.25O2/MSU-H verified that high dispersion of Ni nanoparticles over Ni/Ce0.75Zr0.25O2/MSU-H correlated closely with the synergistic action between Ce0.75Zr0.25O2 and MSU-H as well as hexagonally ordered structure of MSU-H, which can provide effectively the oxygen storage capacity and inhibit the formation of coke.

  19. Relevance of the Nuclear Quantum Effects on the Proton/Deuteron Transmission through Hexagonal Boron Nitride and Graphene Monolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekanayake, Niranji; Huang, Jingsong; Jakowski, Jacek

    According to recent experiments, atomically thin hexagonal boron nitride and graphene are permeable to protons and deuterons (and not to other atomic species), and the experimental estimates of the activation energy are lower than the theoretical values by about 0.5 eV for the isolated proton-membrane transfer model. Our analysis of the electronic potential energy surfaces along the normal to the transmission direction, obtained using correlated electronic structure methods, suggests that the aqueous environment is essential to stabilize the proton { as opposed to the hydrogenatom { transmission. Therefore, the process is examined within a molecular model of H 2O {more » H(D) + { material { H 2O. Exact quantum-mechanical scattering calculations are performed to assess the relevance of the nuclear quantum eects, such as tunneling factors and the kinetic isotope eect (KIE). Deuteration is found to aect the thermal reaction rate constants (KIE of 3-4 for hexagonal boron nitride and 20-30 for the graphene) and to eectively lower the barriers to the proton transfer by 0.2 and 0.4 eV for the two membranes, respectively. This lowering eect is reduced for the deuteron by approximately a factor of three. A more comprehensive description of the proton transmission is likely to require an extended explicit aqueous environment.« less

  20. Relevance of the Nuclear Quantum Effects on the Proton/Deuteron Transmission through Hexagonal Boron Nitride and Graphene Monolayers

    DOE PAGES

    Ekanayake, Niranji; Huang, Jingsong; Jakowski, Jacek; ...

    2017-10-02

    According to recent experiments, atomically thin hexagonal boron nitride and graphene are permeable to protons and deuterons (and not to other atomic species), and the experimental estimates of the activation energy are lower than the theoretical values by about 0.5 eV for the isolated proton-membrane transfer model. Our analysis of the electronic potential energy surfaces along the normal to the transmission direction, obtained using correlated electronic structure methods, suggests that the aqueous environment is essential to stabilize the proton { as opposed to the hydrogenatom { transmission. Therefore, the process is examined within a molecular model of H 2O {more » H(D) + { material { H 2O. Exact quantum-mechanical scattering calculations are performed to assess the relevance of the nuclear quantum eects, such as tunneling factors and the kinetic isotope eect (KIE). Deuteration is found to aect the thermal reaction rate constants (KIE of 3-4 for hexagonal boron nitride and 20-30 for the graphene) and to eectively lower the barriers to the proton transfer by 0.2 and 0.4 eV for the two membranes, respectively. This lowering eect is reduced for the deuteron by approximately a factor of three. A more comprehensive description of the proton transmission is likely to require an extended explicit aqueous environment.« less

  1. Face Centered Cubic and Hexagonal Close Packed Skyrmion Crystals in Centrosymmetric Magnets

    NASA Astrophysics Data System (ADS)

    Lin, Shi-Zeng; Batista, Cristian D.

    2018-02-01

    Skyrmions are disklike objects that typically form triangular crystals in two-dimensional systems. This situation is analogous to the so-called pancake vortices of quasi-two-dimensional superconductors. The way in which Skyrmion disks or "pancake Skyrmions" pile up in layered centrosymmetric materials is dictated by the interlayer exchange. Unbiased Monte Carlo simulations and simple stabilization arguments reveal face centered cubic and hexagonal close packed Skyrmion crystals for different choices of the interlayer exchange, in addition to the conventional triangular crystal of Skyrmion lines. Moreover, an inhomogeneous current induces a sliding motion of pancake Skyrmions, indicating that they behave as effective mesoscale particles.

  2. Search for giant magnetic anisotropy in transition-metal dimers on defected hexagonal boron nitride sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.; Wang, H.; Wu, R. Q., E-mail: wur@uci.edu

    2016-05-28

    Structural and magnetic properties of many transition-metal dimers embedded in a defected hexagonal boron nitride monolayer are investigated through density functional calculations to search for systems with magnetic anisotropy energies (MAEs) larger than 30meV. In particular, Ir–Ir@Dh–BN is found to have both large MAE (∼126 meV) and high structural stability against dissociation and diffusion, and it hence can serve as magnetic unit in spintronics and quantum computing devices. This giant MAE mainly results from the spin orbit coupling and the magnetization of the upper Ir atom, which is in a rather isolated environment.

  3. Effect of platform connection and abutment material on stress distribution in single anterior implant-supported restorations: a nonlinear 3-dimensional finite element analysis.

    PubMed

    Carvalho, Marco Aurélio; Sotto-Maior, Bruno Salles; Del Bel Cury, Altair Antoninha; Pessanha Henriques, Guilherme Elias

    2014-11-01

    Although various abutment connections and materials have recently been introduced, insufficient data exist regarding the effect of stress distribution on their mechanical performance. The purpose of this study was to investigate the effect of different abutment materials and platform connections on stress distribution in single anterior implant-supported restorations with the finite element method. Nine experimental groups were modeled from the combination of 3 platform connections (external hexagon, internal hexagon, and Morse tapered) and 3 abutment materials (titanium, zirconia, and hybrid) as follows: external hexagon-titanium, external hexagon-zirconia, external hexagon-hybrid, internal hexagon-titanium, internal hexagon-zirconia, internal hexagon-hybrid, Morse tapered-titanium, Morse tapered-zirconia, and Morse tapered-hybrid. Finite element models consisted of a 4×13-mm implant, anatomic abutment, and lithium disilicate central incisor crown cemented over the abutment. The 49 N occlusal loading was applied in 6 steps to simulate the incisal guidance. Equivalent von Mises stress (σvM) was used for both the qualitative and quantitative evaluation of the implant and abutment in all the groups and the maximum (σmax) and minimum (σmin) principal stresses for the numerical comparison of the zirconia parts. The highest abutment σvM occurred in the Morse-tapered groups and the lowest in the external hexagon-hybrid, internal hexagon-titanium, and internal hexagon-hybrid groups. The σmax and σmin values were lower in the hybrid groups than in the zirconia groups. The stress distribution concentrated in the abutment-implant interface in all the groups, regardless of the platform connection or abutment material. The platform connection influenced the stress on abutments more than the abutment material. The stress values for implants were similar among different platform connections, but greater stress concentrations were observed in internal connections. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  4. Bio-synthesis of triangular and hexagonal gold nanoparticles using palm oil fronds’ extracts at room temperature

    NASA Astrophysics Data System (ADS)

    Usman, Adamu Ibrahim; Aziz, Azlan Abdul; Abu Noqta, Osama

    2018-01-01

    Development of bio-reduction techniques for nanoparticles (NPs) synthesis in medical application remains a challenge to numerous researchers. This work reports a novel technique for the synthesis of triangular and hexagonal gold nanoparticles (AuNP) using palm oil fronds’ (POFs) extracts. The functional groups in the POFs’ extracts operate as a persuasive capping and reducing agent to growth AuNPs. The prepared AuNPs were characterized using UV-vis spectrophotometry, Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering, energy filtered transmission electron microscopy (EFTEM), and x-ray diffraction (XRD). The analysis of FTIR validates the coating of alkynes and phenolic composites on the AuNPs. This shows a feasible function of biomolecules for efficient stabilization of the AuNPs. EFTEM clearly show the triangular and hexagonal shapes of the prepared AuNPs. The XRD patterns display the peaks of fcc crystal structures at (111), (200), (220), (311) and (222), with average particle sizes of 66.7 and 79.02 nm for 1% and 5% POFs extracts concentrations respectively at room temperature. While at 120 °C the average particles size recorded for 1% and 5% of POFs extract concentrations were 32.17 nm and 45.66 nm respectively, and the reaction completed in less than 2 min. The prepared NPs could be potentially applied in biomedical application, due to their excellent stability and refine morphology without agglomeration.

  5. Torsional stability of interference screws derived from bovine bone - a biomechanical study

    PubMed Central

    2010-01-01

    Background In the present biomechanical study, the torsional stability of different interference screws, made of bovine bone, was tested. Interference screws derived from bovine bone are a possible biological alternative to conventional metallic or bioabsorbable polymer interference screws. Methods In the first part of the study we compared the torsional stability of self-made 8 mm Interference screws (BC) and a commercial 8 mm interference screw (Tutofix®). Furthermore, we compared the torsional strength of BC screws with different diameters. For screwing in, a hexagon head and an octagon head were tested. Maximum breaking torques in polymethyl methacrylate resin were recorded by means of an electronic torque screw driver. In the second part of the study the tibial part of a bone-patellar tendon-bone graft was fixed in porcine test specimens using an 8 mm BC screw and the maximum insertion torques were recorded. Each interference screw type was tested 5 times. Results There was no statistically significant difference between the different 8 mm interference screws (p = 0.121). Pairwise comparisons did not reveal statistically significant differences, either. It was demonstrated for the BC screws, that a larger screw diameter significantly leads to higher torsional stability (p = 9.779 × 10-5). Pairwise comparisons showed a significantly lower torsional stability for the 7 mm BC screw than for the 8 mm BC screw (p = 0.0079) and the 9 mm BC screw (p = 0.0079). Statistically significant differences between the 8 mm and the 9 mm BC screw could not be found (p = 0.15). During screwing into the tibial graft channel of the porcine specimens, insertion torques between 0.5 Nm and 3.2 Nm were recorded. In one case the hexagon head of a BC screw broke off during the last turn. Conclusions The BC screws show comparable torsional stability to Tutofix® interference screws. As expected the torsional strength of the screws increases significantly with the diameter. The safety and in vivo performance of products derived from xenogeneic bone should be the focus of further investigations. PMID:20433761

  6. Single layers and multilayers of GaN and AlN in square-octagon structure: Stability, electronic properties, and functionalization

    NASA Astrophysics Data System (ADS)

    Gürbüz, E.; Cahangirov, S.; Durgun, E.; Ciraci, S.

    2017-11-01

    Further to planar single-layer hexagonal structures, GaN and AlN can also form free-standing, single-layer structures constructed from squares and octagons. We performed an extensive analysis of dynamical and thermal stability of these structures in terms of ab initio finite-temperature molecular dynamics and phonon calculations together with the analysis of Raman and infrared active modes. These single-layer square-octagon structures of GaN and AlN display directional mechanical properties and have wide, indirect fundamental band gaps, which are smaller than their hexagonal counterparts. These density functional theory band gaps, however, increase and become wider upon correction. Under uniaxial and biaxial tensile strain, the fundamental band gaps decrease and can be closed. The electronic and magnetic properties of these single-layer structures can be modified by adsorption of various adatoms, or by creating neutral cation-anion vacancies. The single-layer structures attain magnetic moment by selected adatoms and neutral vacancies. In particular, localized gap states are strongly dependent on the type of vacancy. The energetics, binding, and resulting electronic structure of bilayer, trilayer, and three-dimensional (3D) layered structures constructed by stacking the single layers are affected by vertical chemical bonds between adjacent layers. In addition to van der Waals interaction, these weak vertical bonds induce buckling in planar geometry and enhance their binding, leading to the formation of stable 3D layered structures. In this respect, these multilayers are intermediate between van der Waals solids and wurtzite crystals, offering a wide range of tunability.

  7. Effects of temperature and electric field on order parameters in ferroelectric hexagonal manganites

    NASA Astrophysics Data System (ADS)

    Zhang, C. X.; Yang, K. L.; Jia, P.; Lin, H. L.; Li, C. F.; Lin, L.; Yan, Z. B.; Liu, J.-M.

    2018-03-01

    In Landau-Devonshire phase transition theory, the order parameter represents a unique property for a disorder-order transition at the critical temperature. Nevertheless, for a phase transition with more than one order parameter, such behaviors can be quite different and system-dependent in many cases. In this work, we investigate the temperature (T) and electric field (E) dependence of the two order parameters in improper ferroelectric hexagonal manganites, addressing the phase transition from the high-symmetry P63/mmc structure to the polar P63cm structure. It is revealed that the trimerization as the primary order parameter with two components: the trimerization amplitude Q and phase Φ, and the spontaneous polarization P emerging as the secondary order parameter exhibit quite different stability behaviors against various T and E. The critical exponents for the two parameters Q and P are 1/2 and 3/2, respectively. As temperature increases, the window for the electric field E enduring the trimerization state will shrink. An electric field will break the Z2 part of the Z2×Z3 symmetry. The present work may shed light on the complexity of the vortex-antivortex domain structure evolution near the phase transition temperature.

  8. Biosynthesis and characterization of ZnO nanoparticles using the aqueous leaf extract of Imperata cylindrica L.

    NASA Astrophysics Data System (ADS)

    Saputra, I. S.; Yulizar, Y.

    2017-04-01

    ZnO nanoparticles (ZnO NPs) were biosynthesized.The growth was observed by a sol-gel method. ZnO were successfully formed through the reaction of zinc nitrate tetrahydrate Zn(NO3)2.4H2O precursor with aqueous leaf extract of Imperata cylindrica L (ICL). The structural and optical properties of ZnO were investigated. The as-synthesized products were characterized by UV-Visible (UV-Vis), UV diffuse reflectance spectroscopy (UV-DRS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). UV-Vis absorption data showed hydrolysis and characteristic of absorption peak at 300 nm of Zn(OH)2. UV-DRS confirmed that ZnO NPs has the indirect band gap at 3.13 eV. FTIR spectrum revealed the functional groups and indicated the presence of protein as the capping and stabilizing agent on the ZnO surface. Powder XRD studies indicated the formation of pure wurtzite hexagonal structure with particle size of 11.9 nm. The detailed morphological and structural characterizations revealed that the synthesized products were hexagonal nanochip.

  9. Bi2Te3 thin hexagonal nanoplatelets: Synthesis and its characterization studies

    NASA Astrophysics Data System (ADS)

    Vinoth, S.; Balaganapathi, T.; KaniAmuthan, B.; Arun, T.; Muthuselvam, I. Panneer; Chou, Fang-Cheng; Thilakan, P.

    2017-08-01

    Solvothermal synthesis and optimization of pure Bismuth telluride (Bi2Te3) hexagonal nanoplatelets was carried out from Bismuth Oxide (Bi2O3) and Tellurium dioxide (TeO2). XRD measurements revealed a sensitive change in crystallization behaviour in correlation with variation in Te/Bi stoichiometry identified through the exchange in intensities between (10 10 ̅) and (110) peaks. Further, Energy Dispersive X-ray (EDAX) analysis revealed the variation in Te/Bi ratio with respect to autoclave temperature. Field emission scanning electron Microscope (FESEM) and the high resolution transmission electron Microscope (HRTEM) studies show the complete growth of hexagonal nanoplatelets at 200 °C. Confocal Micro-Raman measurements revealed the occurrence of symmetry breaking in the synthesized hexagonal nanoplatelets. The electrical conductivity and the activation energy were recorded as 6.01×10-3 S/m and 0.042 eV respectively. Highest maximum absolute value of Seebeck coefficient of -355 μV/K was obtained for the hexagonal nanoplatelets.

  10. Optical Temperature Sensor Based on Infrared Excited Green Upconversion Emission in Hexagonal Phase NaLuF4:Yb3+/Er3+ Nanorods.

    PubMed

    Li, Dongyu; Tian, Linlin; Huang, Zhen; Shao, Lexi; Quan, Jun; Wang, Yuxiao

    2016-04-01

    Hexagonal phase NaLuF4:Yb3+/Er3+ nanorods were synthesized hydrothermally. An analysis of the intense green upconversion emissions at 525 nm and 550 nm in hexagonal phase NaLuF4:Yb3/+Er3+ nanorods under excitation power density of 4.2 W/cm2 available from a diode laser emitting at 976 nm, have been undertaken. Fluorescence intensity ratio (FIR) variation of temperature-sensitive green upconversion emissions at 525 nm and 550 nm in this material was recorded in the physiological range from 295 to 343 K. The maximum sensitivity derived from the FIR technique of the green upconversion emissions is approximately 0.0044 K-1. Experimental results implied that hexagonal phase NaLuF4:Yb3/+Er3+ nanorods was a potential candidate for optical temperature sensor.

  11. Magnetic specific heat and structural phase transitions in (CH3)4NMnCl3 (TMMC) and TMMC:Cu2+ studied by crystal optics

    NASA Astrophysics Data System (ADS)

    Levola, T.; Kleemann, W.

    1985-10-01

    High-resolution refractive index (RI) and linear birefringence (LB) measurements are performed on the one-dimensional antiferromagnet tetramethyl ammonium manganese trichloride (TMMC) in order to reveal the temperature dependence of the magnetic short-range order. In agreement with values obtained by other methods an exchange constant J/kB=-7.3 K is reliably extracted. Anomalies of the in-plane LB and of the ordinary RI at the hexagonal-to-monoclinic structural phase transition (Tc=126 K) are successfully described with the use of linear elasto-optic response theory and the Landau approximation, which accounts for symmetry-adapted coupling between the components of the order parameter and of the spontaneous strain. Cu2+ ions, substituting Mn2+ ions of TMMC at a rate exceeding x=1.5%, are shown to stabilize an intermediate, possibly incommensurate phase. Its stability range is marked by very drastic decreases &=145 K and &=55 K for x=4.5%, respectively.

  12. Boron Nitride Nanostructures: Fabrication, Functionalization and Applications.

    PubMed

    Yin, Jun; Li, Jidong; Hang, Yang; Yu, Jin; Tai, Guoan; Li, Xuemei; Zhang, Zhuhua; Guo, Wanlin

    2016-06-01

    Boron nitride (BN) structures are featured by their excellent thermal and chemical stability and unique electronic and optical properties. However, the lack of controlled synthesis of quality samples and the electrically insulating property largely prevent realizing the full potential of BN nanostructures. A comprehensive overview of the current status of the synthesis of two-dimensional hexagonal BN sheets, three dimensional porous hexagonal BN materials and BN-involved heterostructures is provided, highlighting the advantages of different synthetic methods. In addition, structural characterization, functionalizations and prospective applications of hexagonal BN sheets are intensively discussed. One-dimensional BN nanoribbons and nanotubes are then discussed in terms of structure, fabrication and functionality. In particular, the existing routes in pursuit of tunable electronic and magnetic properties in various BN structures are surveyed, calling upon synergetic experimental and theoretical efforts to address the challenges for pioneering the applications of BN into functional devices. Finally, the progress in BN superstructures and novel B/N nanostructures is also briefly introduced. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. On the Effect of Feedback Control on Benard Convection in a Boussinesq Fluid

    NASA Technical Reports Server (NTRS)

    Shortis, Trudi A.; Hall, Philip

    1996-01-01

    The effect of nonlinear feedback control strategies on the platform of convection in a Boussinesq fluid heated from below is investigated. In the absence of the control, given that non-Boussinesq effects may be neglected, it is well known that convection begins in the form of a supercritical bifurcation to rolls. Non-Boussinesq behaviour destroys the symmetry of the basic state, and through a subcritical bifurcation leads to the formation of hexagonal cells. Here we discuss the influence of regulation of the lower surface temperature by means of a control mechanism, made up of a combination of a proportional linear and nonlinear controller, on the stability of the hexagonal cell pattern.

  14. Synthesis of Dispersible Mesoporous Nitrogen-Doped Hollow Carbon Nanoplates with Uniform Hexagonal Morphologies for Supercapacitors.

    PubMed

    Cao, Jie; Jafta, Charl J; Gong, Jiang; Ran, Qidi; Lin, Xianzhong; Félix, Roberto; Wilks, Regan G; Bär, Marcus; Yuan, Jiayin; Ballauff, Matthias; Lu, Yan

    2016-11-02

    In this study, dispersible mesoporous nitrogen-doped hollow carbon nanoplates have been synthesized as a new anisotropic carbon nanostructure using gibbsite nanoplates as templates. The gibbsite-silica core-shell nanoplates were first prepared before the gibbsite core was etched away. Dopamine as carbon precursor was self-polymerized on the hollow silica nanoplates surface assisted by sonification, which not only favors a homogeneous polymer coating on the nanoplates but also prevents their aggregation during the polymerization. Individual silica-polydopamine core-shell nanoplates were immobilized in a silica gel in an insulated state via a silica nanocasting technique. After pyrolysis in a nanoconfine environment and elimination of silica, discrete and dispersible hollow carbon nanoplates are obtained. The resulted hollow carbon nanoplates bear uniform hexagonal morphology with specific surface area of 460 m 2 ·g -1 and fairly accessible small mesopores (∼3.8 nm). They show excellent colloidal stability in aqueous media and are applied as electrode materials for symmetric supercapacitors. When using polyvinylimidazolium-based nanoparticles as a binder in electrodes, the hollow carbon nanoplates present superior performance in parallel to polyvinylidene fluoride (PVDF) binder.

  15. Arrays of size and distance controlled platinum nanoparticles fabricated by a colloidal method

    NASA Astrophysics Data System (ADS)

    Manzke, Achim; Vogel, Nicolas; Weiss, Clemens K.; Ziener, Ulrich; Plettl, Alfred; Landfester, Katharina; Ziemann, Paul

    2011-06-01

    Based on emulsion polymerization in the presence of a Pt complex, polystyrene (PS) particles were prepared exhibiting a well defined average diameter with narrow size-distribution. Furthermore, the colloids contain a controlled concentration of the Pt precursor complex. Optimized coating of Si substrates with such colloids leads to extended areas of hexagonally ordered close-packed PS particles. Subsequent application of plasma etching and annealing steps allows complete removal of the PS carriers and in parallel nucleation and growth of Pt nanoparticles (NPs) which are located at the original center of the PS colloids. In this way, hexagonally arranged spherical Pt NPs are obtained with controlled size and interparticle distances demonstrating variability and precision with so far unknown parameter scalability. This control is demonstrated by the fabrication of Pt NP arrays at a fixed particle distance of 185 nm while systematically varying the diameters between 8 and 15 nm. Further progress could be achieved by seeded emulsion polymerization. Here, Pt loaded PS colloids of 130 nm were used as seeds for a subsequent additional emulsion polymerization, systematically enlarging the diameter of the PS particles. Applying the plasma and annealing steps as above, in this way hexagonally ordered arrays of 9 nm Pt NPs could be obtained at distances up to 260 nm. To demonstrate their stability, such Pt particles were used as etching masks during reactive ion etching thereby transferring their hexagonal pattern into the Si substrate resulting in corresponding arrays of nanopillars.Based on emulsion polymerization in the presence of a Pt complex, polystyrene (PS) particles were prepared exhibiting a well defined average diameter with narrow size-distribution. Furthermore, the colloids contain a controlled concentration of the Pt precursor complex. Optimized coating of Si substrates with such colloids leads to extended areas of hexagonally ordered close-packed PS particles. Subsequent application of plasma etching and annealing steps allows complete removal of the PS carriers and in parallel nucleation and growth of Pt nanoparticles (NPs) which are located at the original center of the PS colloids. In this way, hexagonally arranged spherical Pt NPs are obtained with controlled size and interparticle distances demonstrating variability and precision with so far unknown parameter scalability. This control is demonstrated by the fabrication of Pt NP arrays at a fixed particle distance of 185 nm while systematically varying the diameters between 8 and 15 nm. Further progress could be achieved by seeded emulsion polymerization. Here, Pt loaded PS colloids of 130 nm were used as seeds for a subsequent additional emulsion polymerization, systematically enlarging the diameter of the PS particles. Applying the plasma and annealing steps as above, in this way hexagonally ordered arrays of 9 nm Pt NPs could be obtained at distances up to 260 nm. To demonstrate their stability, such Pt particles were used as etching masks during reactive ion etching thereby transferring their hexagonal pattern into the Si substrate resulting in corresponding arrays of nanopillars. Electronic supplementary information (ESI) available: Detailed description of the experimental part (S1-S4) platinum concentration inside the polymer particles synthesized by a seeded polymerization from the same seed particles measured by ICP-OES (Fig. S1 and S5); SEM image of Pt complex containing PS particles after oxygen plasma treatment (Fig. S2 and S6); effect of hydrofluoric acid treatment on silicon oxide elevation under Pt NPs (Fig. S3 and S6); SEM images demonstrating the variability of Pt NP distance while keeping the diameter constant (Fig. S4 and S8); results of experimental determination of Pt content by ICP-OES (Tables S1 and S9); diameter of the particles at different fabrication states (Tables S2 and S10). See DOI: 10.1039/c1nr10169b

  16. Manifestations of Kitaev physics in thermodynamic properties of hexagonal iridates and α-RuCl3

    NASA Astrophysics Data System (ADS)

    Tsirlin, Alexander

    Kitaev model is hard to achieve in real materials. Best candidates available so far are hexagonal iridates M2IrO3 (M = Li and Na) and the recently discovered α-RuCl3 featuring hexagonal layers coupled by weak van der Waals bonding. I will review recent progress in crystal growth of these materials and compare their thermodynamic properties. Both hexagonal iridates and α-RuCl3 feature highly anisotropic Curie-Weiss temperatures that not only differ in magnitude but also change sign depending on the direction of the applied magnetic field. Néel temperatures are largely suppressed compared to the energy scale of the Curie-Weiss temperatures. These experimental observations will be linked to features of the electronic structure and to structural peculiarities associated with deviations from the ideal hexagonal symmetry. I will also discuss how the different nature of ligand atoms affects electronic structure and magnetic superexchange. This work has been done in collaboration with M. Majumder, M. Schmidt, M. Baenitz, F. Freund, and P. Gegenwart.

  17. The stability of the epitaxially introduced metastable metallic structures of thin layers and multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadeville, M.C.

    Among the very large number of metallic thin films, sandwiches and multilayers which have been elaborated by epitaxy on various single crystalline substrates during the last decade, few new structures are reported. Limiting to the case of 3d metals, one finds with a great confidence bcc Cobalt, possibly bee Nickel and a non-compact hexagonal (hp) iron. Moreover structures existing at high temperature under ambient pressure are epitaxially stabilized at room temperature (RT) like fcc Cobalt, fcc Iron, fcc and bcc Manganese. The hcp iron which is stable under high pressure at RT would not be epitaxially stabilized at ambient pressuremore » conversely to first findings. The critical thickness of the metastable phase is generally limited to some monolayers in thin films, being slightly increased in sandwiches or multilayers, even if the phenomenological wetting criterion to build superlattices is not satisfied. No increased magnetic moment has been found up to now in the expanded lattices, contrary to band structure calculation predictions. 56 refs.« less

  18. Swollen hexagonal liquid crystals as smart nanoreactors: implementation in materials chemistry for energy applications.

    PubMed

    Ghosh, Srabanti; Ramos, Laurence; Remita, Hynd

    2018-03-29

    Materials are the key roadblocks for the commercialization of energy conversion devices in fuel cells and solar cells. Significant research has focused on tuning the intrinsic properties of materials at the nanometer scale. The soft template mediated controlled fabrication of advanced nanostructured materials is attracting considerable interest due to the promising applications of these materials in catalysis and electrocatalysis. Swollen hexagonal lyotropic liquid crystals (SLCs) consist of oil-swollen surfactant-stabilized 1D, 2D or 3D nanometric assemblies regularly arranged in an aqueous solvent. Interestingly, the characteristic size of the SLCs can be controlled by adjusting the volume ratio of oil to water. The non-polar and/or polar compartments of the SLCs can be doped with guest molecules and used as nanoreactors for the synthesis of various metals (Pt, Pd, Au, etc.), conducting polymers and composite nanostructures with controlled size and shape. 1D, 2D and 3D mono- and bimetallic nanostructures of controlled composition and porosity can also be fabricated. These materials have demonstrated impressive enhancements of their electrochemical properties as compared to their bulk counterparts and have been identified as promising for further implementation in energy harvesting applications. In this review article, recent research materials are described regarding the development of functional materials with much improved performances for catalysis applications. This review addresses a brief overview of swollen hexagonal mesophases as nanoreactors, describes examples of nanostructured materials synthesized in these nanoreactors, shows several examples of the energy conversion applications in solar light harvesting, fuel cells etc. and also summarizes the associated reaction mechanisms developed in the recent literature for enhanced catalytic activity.

  19. Overcoming double-step CO2 adsorption and minimizing water co-adsorption in bulky diamine-appended variants of Mg2(dobpdc)† †Electronic supplementary information (ESI) available: Additional experimental details, and full characterization (powder X-ray diffraction, infrared spectra, diamine loadings, dry N2 decomposition profiles, and CO2 adsorption data) for all new adsorbents. CCDC 1577354. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc04266c

    PubMed Central

    Milner, Phillip J.; Martell, Jeffrey D.; Siegelman, Rebecca L.; Gygi, David; Weston, Simon C.

    2017-01-01

    Alkyldiamine-functionalized variants of the metal–organic framework Mg2(dobpdc) (dobpdc4– = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) are promising for CO2 capture applications owing to their unique step-shaped CO2 adsorption profiles resulting from the cooperative formation of ammonium carbamate chains. Primary,secondary (1°,2°) alkylethylenediamine-appended variants are of particular interest because of their low CO2 step pressures (≤1 mbar at 40 °C), minimal adsorption/desorption hysteresis, and high thermal stability. Herein, we demonstrate that further increasing the size of the alkyl group on the secondary amine affords enhanced stability against diamine volatilization, but also leads to surprising two-step CO2 adsorption/desorption profiles. This two-step behavior likely results from steric interactions between ammonium carbamate chains induced by the asymmetrical hexagonal pores of Mg2(dobpdc) and leads to decreased CO2 working capacities and increased water co-adsorption under humid conditions. To minimize these unfavorable steric interactions, we targeted diamine-appended variants of the isoreticularly expanded framework Mg2(dotpdc) (dotpdc4– = 4,4′′-dioxido-[1,1′:4′,1′′-terphenyl]-3,3′′-dicarboxylate), reported here for the first time, and the previously reported isomeric framework Mg-IRMOF-74-II or Mg2(pc-dobpdc) (pc-dobpdc4– = 3,3′-dioxidobiphenyl-4,4′-dicarboxylate, pc = para-carboxylate), which, in contrast to Mg2(dobpdc), possesses uniformally hexagonal pores. By minimizing the steric interactions between ammonium carbamate chains, these frameworks enable a single CO2 adsorption/desorption step in all cases, as well as decreased water co-adsorption and increased stability to diamine loss. Functionalization of Mg2(pc-dobpdc) with large diamines such as N-(n-heptyl)ethylenediamine results in optimal adsorption behavior, highlighting the advantage of tuning both the pore shape and the diamine size for the development of new adsorbents for carbon capture applications. PMID:29629084

  20. Chiral Spin Texture in the Charge-Density-Wave Phase of the Correlated Metallic Pb /Si (111 ) Monolayer

    NASA Astrophysics Data System (ADS)

    Tresca, C.; Brun, C.; Bilgeri, T.; Menard, G.; Cherkez, V.; Federicci, R.; Longo, D.; Debontridder, F.; D'angelo, M.; Roditchev, D.; Profeta, G.; Calandra, M.; Cren, T.

    2018-05-01

    We investigate the 1 /3 monolayer α -Pb /Si (111 ) surface by scanning tunneling spectroscopy (STS) and fully relativistic first-principles calculations. We study both the high-temperature √{3 }×√{3 } and low-temperature 3 ×3 reconstructions and show that, in both phases, the spin-orbit interaction leads to an energy splitting as large as 25% of the valence-band bandwidth. Relativistic effects, electronic correlations, and Pb-substrate interaction cooperate to stabilize a correlated low-temperature paramagnetic phase with well-developed lower and upper Hubbard bands coexisting with 3 ×3 periodicity. By comparing the Fourier transform of STS conductance maps at the Fermi level with calculated quasiparticle interference from nonmagnetic impurities, we demonstrate the occurrence of two large hexagonal Fermi sheets with in-plane spin polarizations and opposite helicities.

  1. A quasi-hexagonal prism-shaped carbon nitride for photoreduction of carbon dioxide under visible light.

    PubMed

    He, Zhiqiao; Wang, Danfen; Tang, Juntao; Song, Shuang; Chen, Jianmeng; Tao, Xinyong

    2017-03-01

    A quasi-hexagonal prism-shaped carbon nitride (H-C 3 N 4 ) was synthesized from urea-derived C 3 N 4 (U-C 3 N 4 ) using an alkaline hydrothermal process. U-C 3 N 4 decomposition followed by hydrogen bond rearrangement of hydrolyzed products leads to the formation of a quasi-hexagonal prism-shaped structure. The H-C 3 N 4 catalysts displayed superior activity in the photoreduction of CO 2 with H 2 O compared to U-C 3 N 4 . The enhanced photocatalytic activities can be attributed to the promotion of incompletely coordinated nitrogen atom formation in the C 3 N 4 molecules. Graphical abstract ᅟ.

  2. Liquid phase deposition synthesis of hexagonal molybdenum trioxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deki, Shigehito; Beleke, Alexis Bienvenu; Kotani, Yuki

    2009-09-15

    Hexagonal molybdenum trioxide thin films with good crystallinity and high purity have been fabricated by the liquid phase deposition (LPD) technique using molybdic acid (H{sub 2}MoO{sub 4}) dissolved in 2.82% hydrofluoric acid (HF) and H{sub 3}BO{sub 3} as precursors. The crystal was found to belong to a hexagonal hydrate system MoO{sub 3}.nH{sub 2}O (napprox0.56). The unit cell lattice parameters are a=10.651 A, c=3.725 A and V=365.997 A{sup 3}. Scanning electron microscope (SEM) images of the as-deposited samples showed well-shaped hexagonal rods nuclei that grew and where the amount increased with increase in reaction time. X-ray photon electron spectroscopy (XPS) spectramore » showed a Gaussian shape of the doublet of Mo 3d core level, indicating the presence of Mo{sup 6+} oxidation state in the deposited films. The deposited films exhibited an electrochromic behavior by lithium intercalation and deintercalation, which resulted in coloration and bleaching of the film. Upon dehydration at about 450 deg. C, the hexagonal MoO{sub 3}.nH{sub 2}O was transformed into the thermodynamically stable orthorhombic phase. - Abstract: SEM photograph of typical h-MoO{sub 3}.nH{sub 2}O thin film nuclei obtained after 36 h at 40 deg. C by the LPD method. Display Omitted« less

  3. Stabilizing the hexagonal close packed structure of hard spheres with polymers: Phase diagram, structure, and dynamics

    NASA Astrophysics Data System (ADS)

    Edison, John R.; Dasgupta, Tonnishtha; Dijkstra, Marjolein

    2016-08-01

    We study the phase behaviour of a binary mixture of colloidal hard spheres and freely jointed chains of beads using Monte Carlo simulations. Recently Panagiotopoulos and co-workers predicted [Nat. Commun. 5, 4472 (2014)] that the hexagonal close packed (HCP) structure of hard spheres can be stabilized in such a mixture due to the interplay between polymer and the void structure in the crystal phase. Their predictions were based on estimates of the free-energy penalty for adding a single hard polymer chain in the HCP and the competing face centered cubic (FCC) phase. Here we calculate the phase diagram using free-energy calculations of the full binary mixture and find a broad fluid-solid coexistence region and a metastable gas-liquid coexistence region. For the colloid-monomer size ratio considered in this work, we find that the HCP phase is only stable in a small window at relatively high polymer reservoir packing fractions, where the coexisting HCP phase is nearly close packed. Additionally we investigate the structure and dynamic behaviour of these mixtures.

  4. The viability of MCM-41 as separator in secondary alkaline cells

    NASA Astrophysics Data System (ADS)

    Meskon, S. R.; Othman, R.; Ani, M. H.

    2018-01-01

    The viability of MCM-41 membrane as a separator material in secondary alkaline cell is investigated. The inorganic membrane was employed in an alkaline nickel-zinc system. MCM-41 mesoporous material consists of arrays of hexagonal nano-pore channels. The membrane was synthesized using sol-gel route from parent solution comprising of quarternary ammonium surfactant, cethyltrimethylammonium bromide C16H33(CH3)3NBr (CTAB), hydrochloric acid (HCl), deionized water (H2O), ethanol (C2H5OH), and tetraethylortosilicate (TEOS). Both the anodic zinc/zinc oxide and cathodic nickel hydroxide electrodeposited film were coated with MCM-41 membrane. The Ni/MCM-41/Zn alkaline cell was then subjected to 100-cycle durability test and the structural stability of MCM-41 separator throughout the progression of the charge-discharge cycles is studied. X-ray diffraction (XRD) analysis on the dismantled cell shows that MCM-41 began to transform to lamellar MCM-50 on the 5th cycle and transformed almost completely on the 25th cycle. The phase transformation of MCM-41 hexagonal structure into gel-like MCM-50 prevents the mesoporous cell separator from diminished in the caustic alkaline surround. This work has hence demonstrated MCM-41 membrane is viable to be employed in secondary alkaline cells.

  5. Strong, Ductile, and Thermally Stable bcc-Mg Nanolaminates.

    PubMed

    Pathak, Siddhartha; Velisavljevic, Nenad; Baldwin, J Kevin; Jain, Manish; Zheng, Shijian; Mara, Nathan A; Beyerlein, Irene J

    2017-08-15

    Magnesium has attracted attention worldwide because it is the lightest structural metal. However, a high strength-to-weight ratio remains its only attribute, since an intrinsic lack of strength, ductility and low melting temperature severely restricts practical applications of Mg. Through interface strains, the crystal structure of Mg can be transformed and stabilized from a simple hexagonal (hexagonal close packed hcp) to body center cubic (bcc) crystal structure at ambient pressures. We demonstrate that when introduced into a nanocomposite bcc Mg is far more ductile, 50% stronger, and retains its strength after extended exposure to 200 C, which is 0.5 times its homologous temperature. These findings reveal an alternative solution to obtaining lightweight metals critically needed for future energy efficiency and fuel savings.

  6. The Self-Assembly of DNA Nanostructures for use as Organizing Templates

    NASA Astrophysics Data System (ADS)

    Samec, Timothy; Cholewinski, Mitchell; Reamer, Nickalas; Reardon, Michael; Ford, Arlene

    There is growing interest in the self-assembling capabilities of DNA to create functional nanodevices for use in cancer detection and treatment. One important reason for this interest is that DNA nanostructures are highly programmable molecules. This means that these structures allow for increased stability and control when designing biomacromolecules via adhesion of plasmonic nanoparticles and other similar materials. Our current work reports on the procedure and construction of hexagonal two-dimensional DNA lattice structures using three specific DNA single strands. We also reflect on several barriers that were presented during fabrication as well as the adaptations made to overcome the aforementioned barriers by improving the quality, reproducibility, and yield of the hexagonal two-dimensional DNA lattice as organizing templates.

  7. The Role of Hexon Protein as a Molecular Mold in Patterning the Protein IX Organization in Human Adenoviruses.

    PubMed

    Reddy, Vijay S

    2017-09-01

    Adenoviruses are respiratory, ocular and enteric pathogens that form complex capsids, which are assembled from seven different structural proteins and composed of several core proteins that closely interact with the packaged dsDNA genome. The recent near-atomic resolution structures revealed that the interlacing continuous hexagonal network formed by the protein IX molecules is conserved among different human adenoviruses (HAdVs), but not in non-HAdVs. In this report, we propose a distinct role for the hexon protein as a "molecular mold" in enabling the formation of such hexagonal protein IX network that has been shown to preserve the stability and infectivity of HAdVs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Strong 3D and 1D magnetism in hexagonal Fe-chalcogenides FeS and FeSe vs. weak magnetism in hexagonal FeTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, David S.

    2017-06-13

    We present a comparative theoretical study of the hexagonal forms of the Fe-chalcogenides FeS, FeSe and FeTe with their better known tetragonal forms. While the tetragonal forms exhibit only an incipient antiferromagnetism and experimentally show superconductivity when doped, the hexagonal forms of FeS and FeSe display a robust magnetism. We show that this strong magnetism arises from a van Hove singularity associated with the direct Fe-Fe c-axis chains in the generally more three-dimensional NiAs structure. We also find that hexagonal FeTe is much less magnetic than the other two hexagonal materials, so that unconventional magnetically-mediated superconductivity is possible, although amore » large T c value is unlikely.« less

  9. Investigation on structural, thermal, optical and sensing properties of meta-stable hexagonal MoO(3) nanocrystals of one dimensional structure.

    PubMed

    Chithambararaj, Angamuthuraj; Bose, Arumugam Chandra

    2011-01-01

    Hexagonal molybdenum oxide (h-MoO(3)) was synthesized by a solution based chemical precipitation technique. Analysis by X-ray diffraction (XRD) confirmed that the as-synthesized powder had a metastable hexagonal structure. The characteristic vibrational band of Mo-O was identified from Fourier transform infrared spectroscopy (FT-IR). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images clearly depicted the morphology and size of h-MoO(3.) The morphology study showed that the product comprises one-dimensional (1D) hexagonal rods. From the electron energy loss spectroscopy (EELS) measurement, the elemental composition was investigated and confirmed from the characteristic peaks of molybdenum and oxygen. Thermogravimetric (TG) analysis on metastable MoO(3) revealed that the hexagonal phase was stable up to 430 °C and above this temperature complete transformation into a highly stable orthorhombic phase was achieved. The optical band gap energy was estimated from the Kubelka-Munk (K-M) function and was found to be 2.99 eV. Finally, the ethanol vapor-sensing behavior was investigated and the sensing response was found to vary linearly as a function of ethanol concentration in the parts per million (ppm) range.

  10. Chemically stabilized epitaxial wurtzite-BN thin film

    NASA Astrophysics Data System (ADS)

    Vishal, Badri; Singh, Rajendra; Chaturvedi, Abhishek; Sharma, Ankit; Sreedhara, M. B.; Sahu, Rajib; Bhat, Usha; Ramamurty, Upadrasta; Datta, Ranjan

    2018-03-01

    We report on the chemically stabilized epitaxial w-BN thin film grown on c-plane sapphire by pulsed laser deposition under slow kinetic condition. Traces of no other allotropes such as cubic (c) or hexagonal (h) BN phases are present. Sapphire substrate plays a significant role in stabilizing the metastable w-BN from h-BN target under unusual PLD growth condition involving low temperature and pressure and is explained based on density functional theory calculation. The hardness and the elastic modulus of the w-BN film are 37 & 339 GPa, respectively measured by indentation along <0001> direction. The results are extremely promising in advancing the microelectronic and mechanical tooling industry.

  11. Hydrothermally formed three-dimensional hexagon-like P doped Ni(OH)2 rod arrays for high performance all-solid-state asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Kunzhen; Li, Shikuo; Huang, Fangzhi; Lu, Yan; Wang, Lei; Chen, Hong; Zhang, Hui

    2018-01-01

    Three dimensional hexagon-like phosphrous (P) doped Ni(OH)2 rod arrays grown on Ni foam (NF) are fabricated by a facile and green one-step hydrothermal process. Ni foam is only reacted in a certain concentration of P containing H2O2 aqueous solution. The possible growth mechanism of the P doped Ni(OH)2 rod arrays is discussed. As a battery-type electrode material in situ formed on Ni foam, the binder-free P doped Ni(OH)2 rod arrays electrode displays a ultrahigh specific areal capacitance of 2.11C cm-2 (3.51 F cm-2) at 2 mA cm-2, and excellent cycling stability (95.5% capacitance retention after 7500 cycles). The assembled all-solid-state asymmetric supercapacitor (AAS) based on such P doped Ni(OH)2 rod arrays as the positive electrode and activated carbon as the negative electrode achieves an energy density of 81.3 Wh kg-1 at the power density of 635 W kg-1. The AAS device also exhibits excellent practical performance, which can easily drive an electric fan (3 W rated power) when two AAS devices are assembled in series. Thus, our synthesized P doped Ni(OH)2 rod arrays has a lot of potential applications in future energy storage prospects.

  12. Boron nitride nanotubes and nanosheets.

    PubMed

    Golberg, Dmitri; Bando, Yoshio; Huang, Yang; Terao, Takeshi; Mitome, Masanori; Tang, Chengchun; Zhi, Chunyi

    2010-06-22

    Hexagonal boron nitride (h-BN) is a layered material with a graphite-like structure in which planar networks of BN hexagons are regularly stacked. As the structural analogue of a carbon nanotube (CNT), a BN nanotube (BNNT) was first predicted in 1994; since then, it has become one of the most intriguing non-carbon nanotubes. Compared with metallic or semiconducting CNTs, a BNNT is an electrical insulator with a band gap of ca. 5 eV, basically independent of tube geometry. In addition, BNNTs possess a high chemical stability, excellent mechanical properties, and high thermal conductivity. The same advantages are likely applicable to a graphene analogue-a monatomic layer of a hexagonal BN. Such unique properties make BN nanotubes and nanosheets a promising nanomaterial in a variety of potential fields such as optoelectronic nanodevices, functional composites, hydrogen accumulators, electrically insulating substrates perfectly matching the CNT, and graphene lattices. This review gives an introduction to the rich BN nanotube/nanosheet field, including the latest achievements in the synthesis, structural analyses, and property evaluations, and presents the purpose and significance of this direction in the light of the general nanotube/nanosheet developments.

  13. Crystal structure, magnetic properties and advances in hexaferrites: A brief review

    NASA Astrophysics Data System (ADS)

    Jotania, Rajshree

    2014-10-01

    Hexaferrites are hard magnetic materials and specifically ferri-magnetic oxides with hexagonal magnetoplumbite type crystallographic structure. Hexagonal ferrites are used as permanent magnets, high-density perpendicular and magneto-optical recording media, and microwave devices like resonance isolators, filters, circulators, phase shifters because of their high magnetic permeability, high electrical resistivity and moderable permittivity. In addition to these; hexagonal ferrites have excellent chemical stability, mechanical hardness and low eddy current loss at high frequencies. The preparation of hexaferrites is a complicated process. Various experimental techniques like standard ceramic techniques, solvent free synthesis route, co precipitation, salt-melt, ion exchange, sol-gel, citrate synthesis, hydrothermal synthesis, spray drying, water-in-oil microemulsion, reverse micelle etc are used to prepare hexaferrite materials. Structural, dielectric and magnetic properties, crystallite size of hexaferrites depend upon nature of substituted ions, method of preparation, sintering temperature and time. The recent interest is nanotechnology, the development of hexaferrite fibres and composites with carbon nano tubes (CNT). Magnetic properties of some doped and un-doped hexaferrites are discussed here. Recent advances in hexaferrites also highlighted in present paper.

  14. Ab initio study of structural and mechanical property of solid molecular hydrogens

    NASA Astrophysics Data System (ADS)

    Ye, Yingting; Yang, Li; Yang, Tianle; Nie, Jinlan; Peng, Shuming; Long, Xinggui; Zu, Xiaotao; Du, Jincheng

    2015-06-01

    Ab initio calculations based on density functional theory (DFT) were performed to investigate the structural and the elastic properties of solid molecular hydrogens (H2). The influence of molecular axes of H2 on structural relative stabilities of hexagonal close-packed (hcp) and face-centered cubic (fcc) structured hydrogen molecular crystals were systematically investigated. Our results indicate that for hcp structures, disordered hydrogen molecule structure is more stable, while for fcc structures, Pa3 hydrogen molecular crystal is most stable. The cohesive energy of fcc H2 crystal was found to be lower than hcp. The mechanical properties of fcc and hcp hydrogen molecular crystals were obtained, with results consistent with previous theoretical calculations. In addition, the effects of zero point energy (ZPE) and van der Waals (vdW) correction on the cohesive energy and the stability of hydrogen molecular crystals were systematically studied and discussed.

  15. Three-dimensional finite amplitude electroconvection in dielectric liquids

    NASA Astrophysics Data System (ADS)

    Luo, Kang; Wu, Jian; Yi, Hong-Liang; Tan, He-Ping

    2018-02-01

    Charge injection induced electroconvection in a dielectric liquid lying between two parallel plates is numerically simulated in three dimensions (3D) using a unified lattice Boltzmann method (LBM). Cellular flow patterns and their subcritical bifurcation phenomena of 3D electroconvection are numerically investigated for the first time. A unit conversion is also derived to connect the LBM system to the real physical system. The 3D LBM codes are validated by three carefully chosen cases and all results are found to be highly consistent with the analytical solutions or other numerical studies. For strong injection, the steady state roll, polygon, and square flow patterns are observed under different initial disturbances. Numerical results show that the hexagonal cell with the central region being empty of charge and centrally downward flow is preferred in symmetric systems under random initial disturbance. For weak injection, the numerical results show that the flow directly passes from the motionless state to turbulence once the system loses its linear stability. In addition, the numerically predicted linear and finite amplitude stability criteria of different flow patterns are discussed.

  16. Different Effects of Long- and Short-Chain Ceramides on the Gel-Fluid and Lamellar-Hexagonal Transitions of Phospholipids: A Calorimetric, NMR, and X-Ray Diffraction Study

    PubMed Central

    Sot, Jesús; Aranda, Francisco J.; Collado, M.-Isabel; Goñi, Félix M.; Alonso, Alicia

    2005-01-01

    The effects on dielaidoylphosphatidylethanolamine (DEPE) bilayers of ceramides containing different N-acyl chains have been studied by differential scanning calorimetry small angle x-ray diffraction and 31P-NMR spectroscopy. N-palmitoyl (Cer16), N-hexanoyl (Cer6), and N-acetyl (Cer2) sphingosines have been used. Both the gel-fluid and the lamellar-inverted hexagonal transitions of DEPE have been examined in the presence of the various ceramides in the 0-25 mol % concentration range. Pure hydrated ceramides exhibit cooperative endothermic order-disorder transitions at 93°C (Cer16), 60°C (Cer6), and 54°C (Cer2). In DEPE bilayers, Cer16 does not mix with the phospholipid in the gel phase, giving rise to high-melting ceramide-rich domains. Cer16 favors the lamellar-hexagonal transition of DEPE, decreasing the transition temperature. Cer2, on the other hand, is soluble in the gel phase of DEPE, decreasing the gel-fluid and increasing the lamellar-hexagonal transition temperatures, thus effectively stabilizing the lamellar fluid phase. In addition, Cer2 was peculiar in that no equilibrium could be reached for the Cer2-DEPE mixture above 60°C, the lamellar-hexagonal transition shifting with time to temperatures beyond the instrumental range. The properties of Cer6 are intermediate between those of the other two, this ceramide decreasing both the gel-fluid and lamellar-hexagonal transition temperatures. Temperature-composition diagrams have been constructed for the mixtures of DEPE with each of the three ceramides. The different behavior of the long- and short-chain ceramides can be rationalized in terms of their different molecular geometries, Cer16 favoring negative curvature in the monolayers, thus inverted phases, and the opposite being true of the micelle-forming Cer2. These differences may be at the origin of the different physiological effects that are sometimes observed for the long- and short-chain ceramides. PMID:15695626

  17. Three-dimensional phase-field simulations of directional solidification

    NASA Astrophysics Data System (ADS)

    Plapp, Mathis

    2007-05-01

    The phase-field method has become the method of choice for simulating microstructural pattern formation during solidification. One of its main advantages is that time-dependent three-dimensional simulations become feasible, which makes it possible to address long-standing questions of pattern stability and pattern selection. Here, a brief introduction to the phase-field model and its implementation is given, and its capabilities are illustrated by examples taken from the directional solidification of binary alloys. In particular, the morphological stability of hexagonal cellular arrays and of eutectic lamellar patterns is investigated.

  18. Electronic structure, stability and magnetic properties of small M1-4(M = Fe, Co, Ni) clusters encapsulated inside a (BN)48 cage

    NASA Astrophysics Data System (ADS)

    Liang, Wenjuan; Jia, Jianfeng; Lv, Jin; Wu, Haishun

    2015-02-01

    The geometrical structure and magnetic properties of M1-4(M = Fe, Co and Ni) clusters within a (BN)48 cage were calculated at the BPW91/LanL2DZ level. The small M1-4 clusters generally prefer an off-centered position near the hexagonal rings in the (BN)48 cages. The (BN)48 cages can increase the stability of these small magnetic clusters while protecting the magnetic nature of M and M2 clusters.

  19. Conversion between hexagonal GaN and beta-Ga(2)O(3) nanowires and their electrical transport properties.

    PubMed

    Li, Jianye; An, Lei; Lu, Chenguang; Liu, Jie

    2006-02-01

    We have observed that the hexagonal GaN nanowires grown from a simple chemical vapor deposition method using gallium metal and ammonia gas are usually gallium-doped. By annealing in air, the gallium-doped hexagonal GaN nanowires could be completely converted to beta-Ga(2)O(3) nanowires. Annealing the beta-Ga(2)O(3) nanowires in ammonia could convert them back to undoped hexagonal GaN nanowires. Field effect transistors based on these three kinds of nanowires were fabricated, and their performances were studied. Because of gallium doping, the as-grown GaN nanowires show a weak gating effect. Through the conversion process of GaN nanowires (gallium-doped) --> Ga(2)O(3) nanowires --> GaN nanowires (undoped) via annealing, the final undoped GaN nanowires display different electrical properties than the initial gallium-doped GaN nanowires, show a pronounced n-type gating effect, and can be completely turned off.

  20. An enhancement of photoluminescence property of Ag doped La2O3 thin films at room temperature

    NASA Astrophysics Data System (ADS)

    Jbeli, R.; Boukhachem, A.; Ben Jemaa, I.; Mahdhi, N.; Saadallah, F.; Elhouichet, H.; Alleg, S.; Amlouk, M.; Ezzaouïa, H.

    2017-09-01

    Metal transition doped oxide thin films or nanocomposites have recently emerged at the forefront of potentials research. With the focus mainly on efficiency, the aspect of stability against optical irradiation of such materials has so far not been thoroughly addressed. This work covers the synthesis of silver doped lanthanum oxide thin films (La2O3:Ag) which have been prepared by the spray pyrolysis technique on glass substrates at 460 °C. Then, Ag thin films were grown on lanthanum oxide thin films by thermal evaporation. The present work aims to reach the synthesis of La2O3:Ag thin films using both the spray pyrolysis and thermal evaporation techniques. First, X-ray diffraction analysis shows that undoped and Ag doped films crystallize in a mixture of hexagonal and cubic phase with crystallites oriented along (001) direction. Raman spectroscopy shows the bands positions corresponding to hexagonal and cubic phases. On the other hand, an attempt regarding their optical properties has been carried out by means of photoluminescence measurements. Second, from electrical conductivity measurements, the activation energy decreases from 1.42 to 1.09 eV with the increase of annealing time and the charge carriers are following the CBH model as dominant charge transport mechanism. Finally, the annealing time influences the surface wettability property and transforms La2O3 character from hydrophobic (θ > 90°) to hydrophilic (θ < 90°).

  1. An enhancement of photoluminescence property of Ag doped La2O3 thin films at room temperature.

    PubMed

    Jbeli, R; Boukhachem, A; Ben Jemaa, I; Mahdhi, N; Saadallah, F; Elhouichet, H; Alleg, S; Amlouk, M; Ezzaouïa, H

    2017-09-05

    Metal transition doped oxide thin films or nanocomposites have recently emerged at the forefront of potentials research. With the focus mainly on efficiency, the aspect of stability against optical irradiation of such materials has so far not been thoroughly addressed. This work covers the synthesis of silver doped lanthanum oxide thin films (La 2 O 3 :Ag) which have been prepared by the spray pyrolysis technique on glass substrates at 460°C. Then, Ag thin films were grown on lanthanum oxide thin films by thermal evaporation. The present work aims to reach the synthesis of La 2 O 3 :Ag thin films using both the spray pyrolysis and thermal evaporation techniques. First, X-ray diffraction analysis shows that undoped and Ag doped films crystallize in a mixture of hexagonal and cubic phase with crystallites oriented along (001) direction. Raman spectroscopy shows the bands positions corresponding to hexagonal and cubic phases. On the other hand, an attempt regarding their optical properties has been carried out by means of photoluminescence measurements. Second, from electrical conductivity measurements, the activation energy decreases from 1.42 to 1.09eV with the increase of annealing time and the charge carriers are following the CBH model as dominant charge transport mechanism. Finally, the annealing time influences the surface wettability property and transforms La 2 O 3 character from hydrophobic (θ>90°) to hydrophilic (θ<90°). Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Solvation Dynamics in Different Phases of the Lyotropic Liquid Crystalline System.

    PubMed

    Roy, Bibhisan; Satpathi, Sagar; Gavvala, Krishna; Koninti, Raj Kumar; Hazra, Partha

    2015-09-03

    Reverse hexagonal (HII) liquid crystalline material based on glycerol monooleate (GMO) is considered as a potential carrier for drugs and other important biomolecules due to its thermotropic phase change and excellent morphology. In this work, the dynamics of encapsulated water, which plays important role in stabilization and formation of reverse hexagonal mesophase, has been investigated by time dependent Stokes shift method using Coumarin-343 as a solvation probe. The formation of the reverse hexagonal mesophase (HII) and transformation to the L2 phase have been monitored using small-angle X-ray scattering and polarized light microscopy experiments. REES studies suggest the existence of different polar regions in both HII and L2 systems. The solvation dynamics study inside the reverse hexagonal (HII) phase reveals the existence of two different types of water molecules exhibiting dynamics on a 120-900 ps time scale. The estimated diffusion coefficients of both types of water molecules obtained from the observed dynamics are in good agreement with the measured diffusion coefficient collected from the NMR study. The calculated activation energy is found to be 2.05 kcal/mol, which is associated with coupled rotational-translational water relaxation dynamics upon the transition from "bound" to "quasi-free" state. The observed ∼2 ns faster dynamics of the L2 phase compared to the HII phase may be associated with both the phase transformation as well as thermotropic effect on the relaxation process. Microviscosities calculated from time-resolved anisotropy studies infer that the interface is almost ∼22 times higher viscous than the central part of the cylinder. Overall, our results reveal the unique dynamical features of water inside the cylinder of reverse hexagonal and inverse micellar phases.

  3. Macroscopic and microscopic evaluation of a new implant design supporting immediately loaded full arch rehabilitation

    PubMed Central

    Tetè, Stefano; Zizzari, Vincenzo; De Carlo, Alessandro; Sinjari, Bruna; Gherlone, Enrico

    2012-01-01

    Summary The purpose of this study is to evaluate macroscopic and microscopic appearance of a new implant design, with particular emphasis given to the type of prosthesis connection. Two dental implants of the same type (Torque Type®, WinSix®, BioSAFin. S.r.l. - Ancona, Italy), with sandblasted and acid etched surfaces (Micro Rough Surface®), but differing from each other for the prosthesis connection system, were examined by scanning electron microscope (SEM) analysis at different magnifications: TTI implant, with a hexagonal internal connection, and TTX implant, with a hexagonal external connection. SEM analysis showed that the Torque Type® implant is characterized by a truncated cone shape with tapered tips. The implant body showed a double loop thread and double pitch with blunt tips. For both types of connection, the implant neck was 0.7 mm in height with a 3% taper. This implant design may be able to guarantee osteotomic properties at the time of insertion in a surgical site suitably prepared, a facilitated screwing, thanks to the thread pitch and to the broad and deep draining grooves, thereby ensuring a good primary stability. The different connection design appears defined and precise, in order to ensure a good interface between the fixture and the prosthetic components. Therefore, this design appears to be particularly suitable in cases where a good primary stability is necessary and a precise coupling between endosseous and prosthetic components, as it allows an easy insertion of the fixture even in conditions of reduced bone availability, and in cases of immediately loaded full-arch rehabilitations. PMID:23087785

  4. Macroscopic and microscopic evaluation of a new implant design supporting immediately loaded full arch rehabilitation.

    PubMed

    Tetè, Stefano; Zizzari, Vincenzo; De Carlo, Alessandro; Sinjari, Bruna; Gherlone, Enrico

    2012-04-01

    The purpose of this study is to evaluate macroscopic and microscopic appearance of a new implant design, with particular emphasis given to the type of prosthesis connection. Two dental implants of the same type (Torque Type(®), WinSix(®), BioSAFin. S.r.l. - Ancona, Italy), with sandblasted and acid etched surfaces (Micro Rough Surface(®)), but differing from each other for the prosthesis connection system, were examined by scanning electron microscope (SEM) analysis at different magnifications: TTI implant, with a hexagonal internal connection, and TTX implant, with a hexagonal external connection. SEM analysis showed that the Torque Type(®) implant is characterized by a truncated cone shape with tapered tips. The implant body showed a double loop thread and double pitch with blunt tips. For both types of connection, the implant neck was 0.7 mm in height with a 3% taper. This implant design may be able to guarantee osteotomic properties at the time of insertion in a surgical site suitably prepared, a facilitated screwing, thanks to the thread pitch and to the broad and deep draining grooves, thereby ensuring a good primary stability. The different connection design appears defined and precise, in order to ensure a good interface between the fixture and the prosthetic components. Therefore, this design appears to be particularly suitable in cases where a good primary stability is necessary and a precise coupling between endosseous and prosthetic components, as it allows an easy insertion of the fixture even in conditions of reduced bone availability, and in cases of immediately loaded full-arch rehabilitations.

  5. New nanoparticles obtained by co-assembly of amphiphilic cyclodextrins and nonlamellar single-chain lipids: Preparation and characterization.

    PubMed

    Nguyễn, Cảnh Hưng; Putaux, Jean-Luc; Santoni, Gianluca; Tfaili, Sana; Fourmentin, Sophie; Coty, Jean-Baptiste; Choisnard, Luc; Gèze, Annabelle; Wouessidjewe, Denis; Barratt, Gillian; Lesieur, Sylviane; Legrand, François-Xavier

    2017-10-15

    This work aimed at preparing new nanoscale assemblies based on an amphiphilic bio-esterified β-cyclodextrin (β-CD), substituted at the secondary face with n-decanoic fatty acid chains (β-CD-C 10 ), and monoolein (MO) as new carriers for parenteral drug delivery. Stable binary (β-CD-C 10 /MO) and ternary (β-CD-C 10 /MO/stabilizer) nanoscale assemblies close to 100nm in size were successfully prepared in water by the solvent displacement method. The generated nanoparticles were fully characterized by dynamic light scattering, transmission electron microscopy, small-angle X-ray scattering, residual solvent analysis, complement activation and the contribution of each formulation parameter was determined by principal component analysis. The β-CD-C 10 units were shown to self-organize into nanoparticles with a hexagonal supramolecular packing that was significantly modulated by the molar ratio of the constituents and the presence of a steric or electrostatic stabilizer (DOPE-PEG 2000 or DOPA/POPA, respectively). Indeed, nanoparticles differing in morphology and in hexagonal lattice parameters were obtained while the co-existence of multiple mesophases was observed in some formulations, in particular for the β-CD-C 10 /MO/DOPA and β-CD-C 10 /MO/POPA systems. The mixed β-CD-C 10 /MO/DOPE-PEG 2000 nanoparticles (49:49:2 in mol%) appeared to be the most suitable for use as a drug delivery system since they contained a very low amount of residual solvent and showed a low level of complement C3 activation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Synthesis and characterization of high surface area TiO 2/SiO 2 mesostructured nanocomposite

    NASA Astrophysics Data System (ADS)

    Bonne, Magali; Pronier, Stéphane; Can, Fabien; Courtois, Xavier; Valange, Sabine; Tatibouët, Jean-Michel; Royer, Sébastien; Marécot, Patrice; Duprez, Daniel

    2010-06-01

    Recently titania synthesis was reported using various structuration procedures, leading to the production of solid presenting high surface area but exhibiting moderate thermal stability. The study presents the synthesis of TiO 2/SiO 2 nanocomposites, a solid that can advantageously replace bulk titania samples as catalyst support. The silica host support used for the synthesis of the nanocomposite is a SBA-15 type silica, having a well-defined 2D hexagonal pore structure and a large pore size. The control of the impregnation media is important to obtain dispersed titania crystals into the porosity, the best results have been obtained using an impregnation in an excess of solvent. After calcination at low temperature (400 °C), nanocomposites having titania nanodomains (˜2-3 nm) located inside the pores and no external aggregates visible are obtained. This nanocomposite exhibits high specific surface area (close to that of the silica host support, even with a titania loading of 55 wt.%) and a narrow pore size distribution. Surprisingly, the increase in calcination temperature up to 800 °C does not allow to detect the anatase to rutile transition. Even at 800 °C, the hexagonal mesoporous structure of the silica support is maintained, and the anatase crystal domain size is evaluated at ˜10 nm, a size close to that of the silica host support porosity (8.4 nm). Comparison of their physical properties with the results presented in literature for bulk samples evidenced that these TiO 2/SiO 2 solids are promising in term of thermal stability.

  7. Stability of skyrmion lattices and symmetries of quasi-two-dimensional chiral magnets

    DOE PAGES

    Gungordu, Utkan; Nepal, Rabindra; Tretiakov, Oleg A.; ...

    2016-02-24

    Recently there has been substantial interest in realizations of skyrmions, in particular in quasi-two-dimensional (2D) systems due to increased stability resulting from reduced dimensionality. A stable skyrmion, representing the smallest realizable magnetic texture, could be an ideal element for ultradense magnetic memories. Here we use the most general form of the quasi-2D free energy with Dzyaloshinskii-Moriya interactions constructed from general symmetry considerations reflecting the underlying system. We predict that the skyrmion phase is robust and it is present even when the system lacks the in-plane rotational symmetry. In fact, the lowered symmetry leads to increased stability of vortex-antivortex lattices withmore » fourfold symmetry and in-plane spirals, in some instances even in the absence of an external magnetic field. Our results relate different hexagonal and square cell phases to the symmetries of materials used for realizations of skyrmions. This will give clear directions for experimental realizations of hexagonal and square cell phases, and will allow engineering of skyrmions with unusual properties. We also predict striking differences in gyrodynamics induced by spin currents for isolated skyrmions and for crystals where spin currents can be induced by charge carriers or by thermal magnons. As a result, we find that under certain conditions, isolated skyrmions can move along the current without a side motion which can have implications for realizations of magnetic memories.« less

  8. Synthesis of the graphene-ZnTiO3 nanocomposite for solar light assisted photodegradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Gayathri, Shunmugiah; Jayabal, Palanisamy; Kottaisamy, Muniasamy; Ramakrishnan, Veerabahu

    2015-10-01

    Cubic and hexagonal phase zinc titanate (ZT) nanoparticles were synthesized via simple chemical precipitation method. The graphene-zinc titanate (GZT) nanocomposites were prepared by using the synthesized ZT nanoparticles and graphene oxide as precursors. The synthesized materials were characterized by various spectroscopic techniques. The agglomerated ZT nanoparticles anchored on graphene sheets are clearly visible in the field emission scanning electron micrograph (FE-SEM) image. Raman mapping of the GZT nanocomposites revealed the homogeneity and distribution of ZT nanoparticles on the surface of graphene. The UV-visible absorption and photoluminescence spectra of the samples suggest that the GZT nanocomposites can be used as efficient photocatalysts to remove organic dye from water. The photocatalytic activity of the synthesized photocatalysts was evaluated by the photodegradation of methylene blue dye under sunlight irradiation. The enhanced absorption in the visible region of the GZT samples compared to the ZT samples played a vital role during the photocatalysis. The hexagonal phase GZT nanocomposite displayed remarkable photocatalytic activity compared to the bare ZT nanoparticles. The possible electron transfer mechanism for graphene-ZT interface during the photocatalysis process is also proposed. Furthermore, the reusability and stability tests for the prepared photocatalysts were made and reported.

  9. Strong, Ductile, and Thermally Stable bcc-Mg Nanolaminates

    DOE PAGES

    Pathak, Siddhartha; Velisavljevic, Nenad; Baldwin, Jon Kevin Scott; ...

    2017-08-15

    Magnesium has attracted attention worldwide because it is the lightest structural metal. However, a high strength-to-weight ratio remains its only attribute, since an intrinsic lack of strength, ductility and low melting temperature severely restricts practical applications of Mg. Through interface strains, the crystal structure of Mg can be transformed and stabilized from a simple hexagonal (hexagonal close packed hcp) to body center cubic (bcc) crystal structure at ambient pressures. Here, we demonstrate that when introduced into a nanocomposite bcc Mg is far more ductile, 50% stronger, and retains its strength after extended exposure to 200°C, which is 0.5 times itsmore » homologous temperature. These findings reveal an alternative solution to obtaining lightweight metals critically needed for future energy efficiency and fuel savings.« less

  10. A hybrid density functional study of silicon and phosphorus doped hexagonal boron nitride monolayer

    NASA Astrophysics Data System (ADS)

    Mapasha, R. E.; Igumbor, E.; Chetty, N.

    2016-10-01

    We present a hybrid density functional study of silicon (Si) and phosphorus (P) doped hexagonal boron nitride (h-BN). The local geometry, electronic structure and thermodynamic stability of Si B , Si N , P B and P N are examined using hybrid Heyd-Scuseria- Ernzerhof (HSE) functional. The defect induced buckling and the local bond distances around the defect are sensitive to charge state modulation q = -2, -1, 0, +1 and +2. The +1 charge state is found to be the most energetically stable state and significantly reduces the buckling. Based on the charge state thermodynamic transition levels, we noted that the Si N , Si N and P B defects are too deep to be ionized, and can alter the optical properties of h-BN material.

  11. Cubic and orthorhombic structures of aluminum hydride Al H3 predicted by a first-principles study

    NASA Astrophysics Data System (ADS)

    Ke, Xuezhi; Kuwabara, Akihide; Tanaka, Isao

    2005-05-01

    The most stable structure of aluminum hydride AlH3 is believed to be a hexagonal symmetry. However, using the density functional theory, we have identified two more stable structures for the AlH3 with the cubic and orthorhombic symmetries. Based on the quasiharmonic approximation, the cubic and orthorhombic AlH3 are almost degenerate when the zero-point energies are included. The geometric and electronic structures, the phonon, and the thermodynamic properties for the hexagonal, cubic, and orthorhombic AlH3 have been studied by means of density functional theory and direct ab initio force constant approach. The calculated electronic structures, phonon density of states, and thermodynamic functions [including S(T) and H(T)-H(0) ] for the three hydrides are similar. The results show that these three hydrides have negative enthalpies of formation, but positive free energies of formation. This conclusion is the same as that made by Wolverton for the hexagonal AlH3 [Phys. Rev. B 69, 144109 (2004)]. The thermodynamic properties indicate that the orthorhombic and cubic AlH3 should be more difficult to dissociate than the hexagonal AlH3 .

  12. Electrochemical and solid-state NMR studies on LiCoO 2 coated with Al 2O 3 derived from carboxylate-alumoxane

    NASA Astrophysics Data System (ADS)

    Fey, George T. K.; Kao, H. M.; Muralidharan, P.; Kumar, T. P.; Cho, Y. D.

    The surface of LiCoO 2 cathodes was coated with various wt.% of Al 2O 3 derived from methoxyethoxy acetate-alumoxane (MEA-alumoxane) by a mechano-thermal coating procedure, followed by calcination at 723 K in air for 10 h. The structure and morphology of the surface modified LiCoO 2 samples have been characterized with XRD, SEM, EDS, TEM, BET, XPS/ESCA and solid-state 27Al magic angle spinning (MAS) NMR techniques. The Al 2O 3 coating forms a thin layer on the surface of the core material with an average thickness of 20 nm. The corresponding 27Al MAS NMR spectrum basically exhibited the same characteristics as the spectrum for pristine Al 2O 3 derived from MEA-alumoxane, indicating that the local environment of aluminum atoms was not significantly changed at coating levels below 1 wt.%. This provides direct evidence that Al 2O 3 was on the surface of the core materials. The LiCoO 2 coated with 1 wt.% Al 2O 3 sustained continuous cycle stability 13 times longer than pristine LiCoO 2. A comparison of the electrochemical impedance behavior of the pristine and coated materials revealed that the failure of pristine cathode performance is associated with an increase in the particle-particle resistance upon continuous cycling. Coating improved the cathode performance by suppressing the characteristic structural phase transitions (hexagonal to monoclinic to hexagonal) that occur in pristine LiCoO 2 during the charge-discharge processes.

  13. Hexaferrite multiferroics: from bulk to thick films

    NASA Astrophysics Data System (ADS)

    Koutzarova, T.; Ghelev, Ch; Peneva, P.; Georgieva, B.; Kolev, S.; Vertruyen, B.; Closset, R.

    2018-03-01

    We report studies of the structural and microstructural properties of Sr3Co2Fe24O41 in bulk form and as thick films. The precursor powders for the bulk form were prepared following the sol-gel auto-combustion method. The prepared pellets were synthesized at 1200 °C to produce Sr3Co2Fe24O41. The XRD spectra of the bulks showed the characteristic peaks corresponding to the Z-type hexaferrite structure as a main phase and second phases of CoFe2O4 and Sr3Fe2O7-x. The microstructure analysis of the cross-section of the bulk pellets revealed a hexagonal sheet structure. Large areas were observed of packages of hexagonal sheets where the separate hexagonal particles were ordered along the c axis. Sr3Co2Fe24O41 thick films were deposited from a suspension containing the Sr3Co2Fe24O41 powder. The microstructural analysis of the thick films showed that the particles had the perfect hexagonal shape typical for hexaferrites.

  14. Size-Tunable and Monodisperse Tm3+/Gd3+-Doped Hexagonal NaYbF4 Nanoparticles with Engineered Efficient Near Infrared-to-Near Infrared Upconversion for In Vivo Imaging

    PubMed Central

    2015-01-01

    Hexagonal NaYbF4:Tm3+ upconversion nanoparticles hold promise for use in high contrast near-infrared-to-near-infrared (NIR-to-NIR) in vitro and in vivo bioimaging. However, significant hurdles remain in their preparation and control of their morphology and size, as well as in enhancement of their upconversion efficiency. Here, we describe a systematic approach to produce highly controlled hexagonal NaYbF4:Tm3+ nanoparticles with superior upconversion. We found that doping appropriate concentrations of trivalent gadolinium (Gd3+) can convert NaYbF4:Tm3+ 0.5% nanoparticles with cubic phase and irregular shape into highly monodisperse NaYbF4:Tm3+ 0.5% nanoplates or nanospheres in a pure hexagonal-phase and of tunable size. The intensity and the lifetime of the upconverted NIR luminescence at 800 nm exhibit a direct dependence on the size distribution of the resulting nanoparticles, being ascribed to the varied surface-to-volume ratios determined by the different nanoparticle size. Epitaxial growth of a thin NaYF4 shell layer of ∼2 nm on the ∼22 nm core of hexagonal NaYbF4:Gd3+ 30%/Tm3+ 0.5% nanoparticles resulted in a dramatic 350 fold NIR upconversion efficiency enhancement, because of effective suppression of surface-related quenching mechanisms. In vivo NIR-to-NIR upconversion imaging was demonstrated using a dispersion of phospholipid-polyethylene glycol (DSPE-PEG)-coated core/shell nanoparticles in phosphate buffered saline. PMID:25027118

  15. Effect of intrinsic curvature and edge tension on the stability of binary mixed-membrane three-junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, Jasmine M.; Abrams, Cameron F.; Deserno, Markus

    We use a combination of coarse-grained molecular dynamics simulations and theoretical modeling to examine three-junctions in mixed lipid bilayer membranes. These junctions are localized defect lines in which three bilayers merge in such a way that each bilayer shares one monolayer with one of the other two bilayers. The resulting local morphology is non-lamellar, resembling the threefold symmetric defect lines in inverse hexagonal phases, but it regularly occurs during membrane fission and fusion events. We realize a system of junctions by setting up a honeycomb lattice, which in its primitive cell contains two hexagons and four three-line junctions, permitting usmore » to study their stability as well as their line tension. We specifically consider the effects of lipid composition and intrinsic curvature in binary mixtures, which contain a fraction of negatively curved lipids in a curvature-neutral background phase. Three-junction stability results from a competition between the junction and an open edge, which arises if one of the three bilayers detaches from the other two. We show that the stable phase is the one with the lower defect line tension. The strong and opposite monolayer curvatures present in junctions and edges enhance the mole fraction of negatively curved lipids in junctions and deplete it in edges. This lipid sorting affects the two line tensions and in turn the relative stability of the two phases. It also leads to a subtle entropic barrier for the transition between junction and edge that is absent in uniform membranes.« less

  16. Adiabatic demagnetization of the antiferromagnetic spin-1/2 Heisenberg hexagonal cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deb, Moumita, E-mail: moumitadeb44@gmail.com; Ghosh, Asim Kumar, E-mail: asimkumar96@yahoo.com

    2016-05-23

    Exact analytic expressions of eigenvalues of the antiferromagnetic spin-1/2 Heisenberg hexagon in the presence of uniform magnetic field have been obtained. Magnetization process, nature of isentrops and properties of magneto caloric effect in terms of adiabatic demagnetization have been investigated. Theoretical results have been used to study the magneto caloric effect of the spin-1/2 Heisenberg hexagonal compound Cu{sub 3}WO{sub 6}.

  17. Regular and platform switching: bone stress analysis varying implant type.

    PubMed

    Gurgel-Juarez, Nália Cecília; de Almeida, Erika Oliveira; Rocha, Eduardo Passos; Freitas, Amílcar Chagas; Anchieta, Rodolfo Bruniera; de Vargas, Luis Carlos Merçon; Kina, Sidney; França, Fabiana Mantovani Gomes

    2012-04-01

    This study aimed to evaluate stress distribution on peri-implant bone simulating the influence of platform switching in external and internal hexagon implants using three-dimensional finite element analysis. Four mathematical models of a central incisor supported by an implant were created: External Regular model (ER) with 5.0 mm × 11.5 mm external hexagon implant and 5.0 mm abutment (0% abutment shifting), Internal Regular model (IR) with 4.5 mm × 11.5 mm internal hexagon implant and 4.5 mm abutment (0% abutment shifting), External Switching model (ES) with 5.0 mm × 11.5 mm external hexagon implant and 4.1 mm abutment (18% abutment shifting), and Internal Switching model (IS) with 4.5 mm × 11.5 mm internal hexagon implant and 3.8 mm abutment (15% abutment shifting). The models were created by SolidWorks software. The numerical analysis was performed using ANSYS Workbench. Oblique forces (100 N) were applied to the palatal surface of the central incisor. The maximum (σ(max)) and minimum (σ(min)) principal stress, equivalent von Mises stress (σ(vM)), and maximum principal elastic strain (ε(max)) values were evaluated for the cortical and trabecular bone. For cortical bone, the highest stress values (σ(max) and σ(vm) ) (MPa) were observed in IR (87.4 and 82.3), followed by IS (83.3 and 72.4), ER (82 and 65.1), and ES (56.7 and 51.6). For ε(max), IR showed the highest stress (5.46e-003), followed by IS (5.23e-003), ER (5.22e-003), and ES (3.67e-003). For the trabecular bone, the highest stress values (σ(max)) (MPa) were observed in ER (12.5), followed by IS (12), ES (11.9), and IR (4.95). For σ(vM), the highest stress values (MPa) were observed in IS (9.65), followed by ER (9.3), ES (8.61), and IR (5.62). For ε(max) , ER showed the highest stress (5.5e-003), followed by ES (5.43e-003), IS (3.75e-003), and IR (3.15e-003). The influence of platform switching was more evident for cortical bone than for trabecular bone, mainly for the external hexagon implants. In addition, the external hexagon implants showed less stress concentration in the regular and switching platforms in comparison to the internal hexagon implants. © 2012 by the American College of Prosthodontists.

  18. Electronic properties of two-dimensional zinc oxide in hexagonal, (4,4)-tetragonal, and (4,8)-tetragonal structures by using Hybrid Functional calculation

    NASA Astrophysics Data System (ADS)

    Supatutkul, C.; Pramchu, S.; Jaroenjittichai, A. P.; Laosiritaworn, Y.

    2017-09-01

    This work reports the structures and electronic properties of two-dimensional (2D) ZnO in hexagonal, (4,8)-tetragonal, and (4,4)-tetragonal monolayer using GGA and HSE-hybrid functional. The calculated results show that the band gaps of 2D ZnO sheets are wider than those of the bulk ZnO. The hexagonal and (4,8)-tetragonal phases yield direct band gaps, which are 4.20 eV, and 4.59 eV respectively, while the (4,4)-tetragonal structure has an indirect band gap of 3.02 eV. The shrunken Zn-O bond lengths in the hexagonal and (4,8)-tetragonal indicate that they become more ionic in comparison with the bulk ZnO. In addition, the hexagonal ZnO sheet is the most energetically favourable. The total energy differences of (4,8)-tetragonal and (4,4)-tetragonal sheets from that of hexagonal monolayer (per formula unit) are 197 meV and 318 meV respectively.

  19. Size Controlled Two-dimensional Co3O4 with Exposure of {111} Plane: Synthesis and Catalytic Properties for Photooxidation of Organics

    EPA Science Inventory

    The size controlled 2D hexagonal structured Co3O4 with exposure of the {111} plane was fabricated, and the catalytic properties for photooxidation of organics using as-prepared samples were investigated. 2D hexagonal structured Co3O4 with the size of 3 m displays higher photocat...

  20. Energetics of cubic and hexagonal phases in Mn-doped GaN : First-principles pseudopotential calculations

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Ae; Kang, Joongoo; Chang, K. J.

    2006-12-01

    We perform first-principles pseudopotential calculations to study the influence of Mn doping on the stability of two polytypes, wurtzite and zinc-blende, in GaN . In Mn δ -doped GaN and GaMnN alloys, we find similar critical concentrations of the Mn ions for stabilizing the zinc-blende phase against the wurtzite phase. Using a slab geometry of hexagonal lattices, we find that it is energetically unfavorable to form inversion domains with Mn exposure, in contrast to Mg doping. At the initial stage of epitaxial growth, a stacking fault that leads to the cubic bonds can be generated with the Mn exposure to the Ga-polar surface. However, the influence of the Mn δ -doped layer on the formation of the cubic phase is only effective for GaN layers deposited up to two monolayers. We find that the Mn ions are energetically more stable on the growth front than in the bulk, indicating that these ions act as a surfactant. Thus it is possible to grow cubic GaN if the Mn ions are periodically supplied or diffuse out from the Mn δ -doped layer to the growth front during the growth process.

  1. On the dynamical nature of Saturn's North Polar hexagon

    NASA Astrophysics Data System (ADS)

    Rostami, Masoud; Zeitlin, Vladimir; Spiga, Aymeric

    2017-11-01

    An explanation of long-lived Saturn's North Polar hexagonal circumpolar jet in terms of instability of the coupled system polar vortex - circumpolar jet is proposed in the framework of the rotating shallow water model, where scarcely known vertical structure of the Saturn's atmosphere is averaged out. The absence of a hexagonal structure at Saturn's South Pole is explained similarly. By using the latest state-of-the-art observed winds in Saturn's polar regions a detailed linear stability analysis of the circumpolar jet is performed (i) excluding (;jet-only; configuration), and (2) including (;jet + vortex; configuration) the north polar vortex in the system. A domain of parameters: latitude of the circumpolar jet and curvature of its azimuthal velocity profile, where the most unstable mode of the system has azimuthal wavenumber 6, is identified. Fully nonlinear simulations are then performed, initialized either with the most unstable mode of small amplitude, or with the random combination of unstable modes. It is shown that developing barotropic instability of the ;jet+vortex; system produces a long-living structure akin to the observed hexagon, which is not the case of the ;jet-only; system, which was studied in this context in a number of papers in literature. The north polar vortex, thus, plays a decisive dynamical role. The influence of moist convection, which was recently suggested to be at the origin of Saturn's North Polar vortex system in the literature, is investigated in the framework of the model and does not alter the conclusions.

  2. On the dynamical nature of Saturn's North Polar hexagon

    NASA Astrophysics Data System (ADS)

    Rostami, Masoud; Zeitlin, Vladimir; Spiga, Aymeric

    2017-04-01

    An explanation of long-lived Saturn's North Pole hexagonal circumpolar jet in terms of instability of the coupled system polar vortex - circumpolar jet is proposed in the framework of the rotating shallow water model, where scarcely known vertical structure of the Saturn's atmosphere is averaged out. The absence of a hexagonal structure at the Saturn's South Pole is explained along the same lines. By using the latest state-of-the-art observed winds in Saturn's polar regions a detailed linear stability analysis of the circumpolar jet is performed (i) excluding (``jet-only" configuration), and (2) including (``jet+vortex" configuration) the north polar vortex in the system. A domain of parameters: latitude of the circumpolar jet and curvature of its azimuthal velocity profile, where the most unstable mode of the system has azimuthal wavenumber 6, is identified. Fully nonlinear simulations are then performed, initialized either with the most unstable mode of small amplitude, or with the random combination of unstable modes. It is shown that developing barotropic instability of the ``jet+vortex" system produces a long-living structure akin to the observed hexagon, which is not the case of the ``jet-only" system, which was studied in this context in a number of papers in literature. The north polar vortex, thus, plays a decisive dynamical role. The influence of moist convection, which was recently suggested to be at the origin of Saturn's north polar vortex system in the literature, is investigated in the framework of the model and does not alter the conclusions.

  3. Facile solution synthesis of hexagonal Alq3 nanorods and their field emission properties.

    PubMed

    Hu, Jin-Song; Ji, Heng-Xing; Cao, An-Min; Huang, Zheng-Xi; Zhang, Yang; Wan, Li-Jun; Xia, An-Dong; Yu, Da-Peng; Meng, Xiang-Min; Lee, Shuit-Tong

    2007-08-07

    A facile self-assembly growth route assisted by surfactant has been developed to synthesize tris(8-hydroxyquinoline)aluminium (Alq(3)) nanorods with regular hexagonal shape and good crystallinity, which exhibit field-emission characteristics with a very low turn-on field of ca. 3.1 V microm(-1) and a high field-enhancement factor of ca. 1300.

  4. In pursuit of the rhabdophane crystal structure: from the hydrated monoclinic LnPO4.0.667H2O to the hexagonal LnPO4 (Ln = Nd, Sm, Gd, Eu and Dy)

    NASA Astrophysics Data System (ADS)

    Mesbah, Adel; Clavier, Nicolas; Elkaim, Erik; Szenknect, Stéphanie; Dacheux, Nicolas

    2017-05-01

    The dehydration process of the hydrated rhabdophane LnPO4.0.667H2O (Ln = La to Dy) was thoroughly studied over the combination of in situ high resolution synchrotron powder diffraction and TGA experiments. In the case of SmPO4.0.667H2O (monoclinic, C2), a first dehydration step was identified around 80 °C leading to the formation of SmPO4.0.5H2O (Monoclinic, C2) with Z =12 and a =17.6264(1) Å, b =6.9704(1) Å, c =12.1141(1) Å, β=133.74(1) °, V =1075.33(1) Å3. In agreement with the TGA and dilatometry experiments, all the water molecules were evacuated above 220 °C yielding to the anhydrous form, which crystallizes in the hexagonal P3121 space group with a =7.0389(1) Å, c =6.3702(1) Å and V =273.34(1) Å3. This study was extended to selected LnPO4.0.667H2O samples (Ln= Nd, Gd, Eu, Dy) and the obtained results confirmed the existence of two dehydration steps before the stabilization of the anhydrous form, with the transitory formation of LnPO4.0.5H2O.

  5. Size-tunable and monodisperse Tm³⁺/Gd³⁺-doped hexagonal NaYbF₄ nanoparticles with engineered efficient near infrared-to-near infrared upconversion for in vivo imaging.

    PubMed

    Damasco, Jossana A; Chen, Guanying; Shao, Wei; Ågren, Hans; Huang, Haoyuan; Song, Wentao; Lovell, Jonathan F; Prasad, Paras N

    2014-08-27

    Hexagonal NaYbF4:Tm(3+) upconversion nanoparticles hold promise for use in high contrast near-infrared-to-near-infrared (NIR-to-NIR) in vitro and in vivo bioimaging. However, significant hurdles remain in their preparation and control of their morphology and size, as well as in enhancement of their upconversion efficiency. Here, we describe a systematic approach to produce highly controlled hexagonal NaYbF4:Tm(3+) nanoparticles with superior upconversion. We found that doping appropriate concentrations of trivalent gadolinium (Gd(3+)) can convert NaYbF4:Tm(3+) 0.5% nanoparticles with cubic phase and irregular shape into highly monodisperse NaYbF4:Tm(3+) 0.5% nanoplates or nanospheres in a pure hexagonal-phase and of tunable size. The intensity and the lifetime of the upconverted NIR luminescence at 800 nm exhibit a direct dependence on the size distribution of the resulting nanoparticles, being ascribed to the varied surface-to-volume ratios determined by the different nanoparticle size. Epitaxial growth of a thin NaYF4 shell layer of ∼2 nm on the ∼22 nm core of hexagonal NaYbF4:Gd(3+) 30%/Tm(3+) 0.5% nanoparticles resulted in a dramatic 350 fold NIR upconversion efficiency enhancement, because of effective suppression of surface-related quenching mechanisms. In vivo NIR-to-NIR upconversion imaging was demonstrated using a dispersion of phospholipid-polyethylene glycol (DSPE-PEG)-coated core/shell nanoparticles in phosphate buffered saline.

  6. Algebraic Theory of Crystal Vibrations: Localization Properties of Wave Functions in Two-Dimensional Lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietz, Barbara; Iachello, Francesco; Macek, Michal

    The localization properties of the wave functions of vibrations in two-dimensional (2D) crystals are studied numerically for square and hexagonal lattices within the framework of an algebraic model. The wave functions of 2D lattices have remarkable localization properties, especially at the van Hove singularities (vHs). Finite-size sheets with a hexagonal lattice (graphene-like materials), in addition, exhibit at zero energy a localization of the wave functions at zigzag edges, so-called edge states. The striped structure of the wave functions at a vHs is particularly noteworthy. We have investigated its stability and that of the edge states with respect to perturbations inmore » the lattice structure, and the effect of the boundary shape on the localization properties. We find that the stripes disappear instantaneously at the vHs in a square lattice when turning on the perturbation, whereas they broaden but persist at the vHss in a hexagonal lattice. For one of them, they eventually merge into edge states with increasing coupling, which, in contrast to the zero-energy edge states, are localized at armchair edges. The results are corroborated based on participation ratios, obtained under various conditions.« less

  7. Discrete breathers in a two-dimensional hexagonal Fermi Pasta Ulam lattice

    NASA Astrophysics Data System (ADS)

    Butt, Imran A.; Wattis, Jonathan A. D.

    2007-02-01

    We consider a two-dimensional Fermi-Pasta-Ulam (FPU) lattice with hexagonal symmetry. Using asymptotic methods based on small amplitude ansatz, at third order we obtain a reduction to a cubic nonlinear Schrödinger equation (NLS) for the breather envelope. However, this does not support stable soliton solutions, so we pursue a higher order analysis yielding a generalized NLS, which includes known stabilizing terms. We present numerical results which suggest that long-lived stationary and moving breathers are supported by the lattice. We find breather solutions which move in an arbitrary direction, an ellipticity criterion for the wavenumbers of the carrier wave, asymptotic estimates for the breather energy, and a minimum threshold energy below which breathers cannot be found. This energy threshold is maximized for stationary breathers and becomes vanishingly small near the boundary of the elliptic domain where breathers attain a maximum speed. Several of the results obtained are similar to those obtained for the square FPU lattice (Butt and Wattis 2006 J. Phys. A: Math. Gen. 39 4955), though we find that the square and hexagonal lattices exhibit different properties in regard to the generation of harmonics, and the isotropy of the generalized NLS equation.

  8. Algebraic Theory of Crystal Vibrations: Localization Properties of Wave Functions in Two-Dimensional Lattices

    DOE PAGES

    Dietz, Barbara; Iachello, Francesco; Macek, Michal

    2017-08-07

    The localization properties of the wave functions of vibrations in two-dimensional (2D) crystals are studied numerically for square and hexagonal lattices within the framework of an algebraic model. The wave functions of 2D lattices have remarkable localization properties, especially at the van Hove singularities (vHs). Finite-size sheets with a hexagonal lattice (graphene-like materials), in addition, exhibit at zero energy a localization of the wave functions at zigzag edges, so-called edge states. The striped structure of the wave functions at a vHs is particularly noteworthy. We have investigated its stability and that of the edge states with respect to perturbations inmore » the lattice structure, and the effect of the boundary shape on the localization properties. We find that the stripes disappear instantaneously at the vHs in a square lattice when turning on the perturbation, whereas they broaden but persist at the vHss in a hexagonal lattice. For one of them, they eventually merge into edge states with increasing coupling, which, in contrast to the zero-energy edge states, are localized at armchair edges. The results are corroborated based on participation ratios, obtained under various conditions.« less

  9. Structure, rheology and shear alignment of Pluronic block copolymer mixtures.

    PubMed

    Newby, Gemma E; Hamley, Ian W; King, Stephen M; Martin, Christopher M; Terrill, Nicholas J

    2009-01-01

    The structure and flow behaviour of binary mixtures of Pluronic block copolymers P85 and P123 is investigated by small-angle scattering, rheometry and mobility tests. Micelle dimensions are probed by dynamic light scattering. The micelle hydrodynamic radius for the 50/50 mixture is larger than that for either P85 or P123 alone, due to the formation of mixed micelles with a higher association number. The phase diagram for 50/50 mixtures contains regions of cubic and hexagonal phases similar to those for the parent homopolymers, however the region of stability of the cubic phase is enhanced at low temperature and concentrations above 40 wt%. This is ascribed to favourable packing of the mixed micelles containing core blocks with two different chain lengths, but similar corona chain lengths. The shear flow alignment of face-centred cubic and hexagonal phases is probed by in situ small-angle X-ray or neutron scattering with simultaneous rheology. The hexagonal phase can be aligned using steady shear in a Couette geometry, however the high modulus cubic phase cannot be aligned well in this way. This requires the application of oscillatory shear or compression.

  10. Tunable magnetic and transport properties of Mn3Ga thin films on Ta/Ru seed layer

    NASA Astrophysics Data System (ADS)

    Hu, Fang; Xu, Guizhou; You, Yurong; Zhang, Zhi; Xu, Zhan; Gong, Yuanyuan; Liu, Er; Zhang, Hongguo; Liu, Enke; Wang, Wenhong; Xu, Feng

    2018-03-01

    Hexagonal D019-type Mn3Z alloys that possess large anomalous and topological-like Hall effects have attracted much attention due to their great potential in antiferromagnetic spintronic devices. Herein, we report the preparation of Mn3Ga films in both tetragonal and hexagonal phases with a tuned Ta/Ru seed layer on a thermally oxidized Si substrate. Large coercivity together with large anomalous Hall resistivity is found in the Ta-only sample with a mixed tetragonal phase. By increasing the thickness of the Ru layer, the tetragonal phase gradually disappears and a relatively pure hexagonal phase is obtained in the Ta(5)/Ru(30) buffered sample. Further magnetic and transport measurements revealed that the anomalous Hall conductivity nearly vanishes in the pure hexagonal sample, while an abnormal asymmetric hump structure emerges in the low field region. The extracted additional Hall term is robust in a large temperature range and presents a sign reversal above 200 K. The abnormal Hall properties are proposed to be closely related to the frustrated spin structure of D019 Mn3Ga.

  11. Computational study of packing a collagen-like molecule: quasi-hexagonal vs "Smith" collagen microfibril model.

    PubMed

    Lee, J; Scheraga, H A; Rackovsky, S

    1996-01-01

    The lateral packing of a collagen-like molecule, CH3CO-(Gly-L-Pro-L-Pro)4-NHCH3, has been examined by energy minimization with the ECEPP/3 force field. Two current packing models, the Smith collagen microfibril twisted equilateral pentagonal model and the quasi-hexagonal packing model, have been extensively investigated. In treating the Smith microfibril model, energy minimization was carried out on various conformations including those with the symmetry of equivalent packing, i.e., in which the triple helices were arranged equivalently with respect to each other. Both models are based on the experimental observation of the characteristic axial periodicity, D = 67 nm, of light and dark bands, indicating that, if any superstructure exists, it should consist of five triple helices. The quasi-hexagonal packing structure is found to be energetically more favorable than the Smith microfibril model by as much as 31.2 kcal/mol of five triple helices. This is because the quasi-hexagonal packing geometry provides more nonbonded interaction possibilities between triple helices than does the Smith microfibril geometry. Our results are consistent with recent x-ray studies with synthetic collagen-like molecules and rat tail tendon, in which the data were interpreted as being consistent with either a quasi-hexagonal or a square-triangular structure.

  12. Additive Manufacturing of Dense Hexagonal Boron Nitride Objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquez Rossy, Andres E.; Armstrong, Beth L.; Elliott, Amy M.

    The feasibility of manufacturing hexagonal boron nitride objects via additive manufacturing techniques was investigated. It was demonstrated that it is possible to hot-extrude thermoplastic filaments containing uniformly distributed boron nitride particles with a volume concentration as high as 60% and that these thermoplastic filaments can be used as feedstock for 3D-printing objects using a fused deposition system. Objects 3D-printed by fused deposition were subsequently sintered at high temperature to obtain dense ceramic products. In a parallel study the behavior of hexagonal boron nitride in aqueous solutions was investigated. It was shown that the addition of a cationic dispersant to anmore » azeotrope enabled the formulation of slurries with a volume concentration of boron nitride as high as 33%. Although these slurries exhibited complex rheological behavior, the results from this study are encouraging and provide a pathway for manufacturing hexagonal boron nitride objects via robocasting.« less

  13. Synthesis of ZnO thin film by sol-gel spin coating technique for H2S gas sensing application

    NASA Astrophysics Data System (ADS)

    Nimbalkar, Amol R.; Patil, Maruti G.

    2017-12-01

    In this present work, zinc oxide (ZnO) thin film synthesized by a simple sol-gel spin coating technique. The structural, morphology, compositional, microstructural, optical, electrical and gas sensing properties of the film were studied by using XRD, FESEM, EDS, XPS, HRTEM, Raman, FTIR and UV-vis techniques. The ZnO thin film shows hexagonal wurtzite structure with a porous structured morphology. Gas sensing performance of synthesized ZnO thin film was tested initially for H2S gas at different operating temperatures as well as concentrations. The maximum gas response is achieved towards H2S gas at 300 °C operating temperature, at 100 ppm gas concentration as compared to other gases like CH3OH, Cl2, NH3, LPG, CH3COCH3, and C2H5OH with a good stability.

  14. A selection principle for Benard-type convection

    NASA Technical Reports Server (NTRS)

    Knightly, G. H.; Sather, D.

    1985-01-01

    In a Benard-type convection problem, the stationary flows of an infinite layer of fluid lying between two rigid horizontal walls and heated uniformly from below are determined. As the temperature difference across the layer increases beyond a certain value, other convective motions appear. These motions are often cellular in character in that their streamlines are confined to certain well-defined cells having, for example, the shape of rolls or hexagons. A selection principle that explains why hexagonal cells seem to be preferred for certain ranges of the parameters is formulated. An operator-theoretical formulation of one generalized Bernard problem is given. The infinite dimensional problem is reduced to one of solving a finite dimensional system of equations, namely, the selection equations. These equations are solved and a linearized stability analysis of the resultant stationary flows is presented.

  15. A selection principle in Benard-type convection

    NASA Technical Reports Server (NTRS)

    Knightly, G. H.; Sather, D.

    1983-01-01

    In a Benard-type convection problem, the stationary flows of an infinite layer of fluid lying between two rigid horizontal walls and heated uniformly from below are determined. As the temperature difference across the layer increases beyond a certain value, other convective motions appear. These motions areoften cellular in character in that their streamlines are confined to certain well-defined cells having, for example, the shape of rolls or hexagons. A selection principle that explains why hexagonal cells seem to be preferred for certain ranges of the parameters is formulated. An operator-theoretical formulation of one generalized Bernard problem is given. The infinite dimensional problem is reduced to one of solving a finite dimensional system of equations, namely, the selection equations. These equations are solved and a linearized stability analysis of the resultant stationary flows is presented.

  16. Dislocation dynamics in hexagonal close-packed crystals

    DOE PAGES

    Aubry, S.; Rhee, M.; Hommes, G.; ...

    2016-04-14

    Extensions of the dislocation dynamics methodology necessary to enable accurate simulations of crystal plasticity in hexagonal close-packed (HCP) metals are presented. They concern the introduction of dislocation motion in HCP crystals through linear and non-linear mobility laws, as well as the treatment of composite dislocation physics. Formation, stability and dissociation of and other dislocations with large Burgers vectors defined as composite dislocations are examined and a new topological operation is proposed to enable their dissociation. Furthermore, the results of our simulations suggest that composite dislocations are omnipresent and may play important roles both in specific dislocation mechanisms and in bulkmore » crystal plasticity in HCP materials. While fully microscopic, our bulk DD simulations provide wealth of data that can be used to develop and parameterize constitutive models of crystal plasticity at the mesoscale.« less

  17. Emergence of chirality in hexagonally packed monolayers of hexapentyloxytriphenylene on Au(111): a joint experimental and theoretical study.

    PubMed

    Sleczkowski, Piotr; Katsonis, Nathalie; Kapitanchuk, Oleksiy; Marchenko, Alexandr; Mathevet, Fabrice; Croset, Bernard; Lacaze, Emmanuelle

    2014-11-11

    We investigate the expression of chirality in a monolayer formed spontaneously by 2,3,6,7,10,11-pentyloxytriphenylene (H5T) on Au(111). We resolve its interface morphology by combining scanning tunneling microscopy (STM) with theoretical calculations of intermolecular and interfacial interaction potentials. We observe two commensurate structures. While both of them belong to a hexagonal space group, analogical to the triangular symmetry of the molecule and the hexagonal symmetry of the substrate surface, they surprisingly reveal a 2D chiral character. The corresponding breaking of symmetry arises for two reasons. First it is due to the establishment of a large molecular density on the substrate, which leads to a rotation of the molecules with respect to the molecular network crystallographic axes to avoid steric repulsion between neighboring alkoxy chains. Second it is due to the molecule-substrate interactions, leading to commensurable large crystallographic cells associated with the large size of the molecule. As a consequence, molecular networks disoriented with respect to the high symmetry directions of the substrate are induced. The high simplicity of the intermolecular and molecule-substrate van der Waals interactions leading to these observations suggests a generic character for this kind of symmetry breaking. We demonstrate that, for similar molecular densities, only two kinds of molecular networks are stabilized by the molecule-substrate interactions. The most stable network favors the interfacial interactions between terminal alkoxy tails and Au(111). The metastable one favors a specific orientation of the triphenylene core with its symmetry axes collinear to the Au⟨110⟩. This specific orientation of the triphenylene cores with respect to Au(111) appears associated with an energy advantage larger by at least 0.26 eV with respect to the disoriented core.

  18. Soft Soil Improvement for Sub-grade Layer Using Hexagonal Micropiles Layout

    NASA Astrophysics Data System (ADS)

    Ambak, K.; Abdullah, N. A. H.; Yusoff, M. F.; Abidin, M. H. Z.

    2018-04-01

    Soft soil problems are often associated with sediment and stability where it represents a major challenge in Geotechnical Engineering. Research on a soft soil was carried out to determine the level of sediment resulting from the applied load and thus compare the most ideal form of arrangement by the results obtained from bearing capacity. The study was conducted at Research Centre for Soft Soil (RECESS), UTHM by using kaolin. There are several tests conducted on kaolin before the arrangement of pile which is liquid limit test. Through these tests, the level of water content can be maintained which is 1.2 liquid limit where it is in the homogeneous condition. Density test also carried to know weight of kaolin and water that needed in the model. Meanwhile, large strain consolidation test carried on the soil by placing a load of 8 kPa. Then, the pile was arranged in the soil in the shape of a hexagon and square. Load was increased to 12 kPa and imposed on the surface of the pile with a different forms. After 24 hours, the reading of sediment was measured everyday and the process collecting data conducted for 3 week. Based on data obtained, time against sediment can be plotted. To determine the bearing capacity, direct shear test was conducted to get the value coefficient of cohesion, c as a parameter in the calculation of the soil bearing capacity. The results showed that the rate of settlement occurs is different where hexagonal form less the rate of settlement compared to square form which is 64.2% while the results of bearing capacity have the same value.

  19. Investigations of Ba{sub x}Sr{sub 1−x}TiO{sub 3} ceramics and powders prepared by direct current arc discharge technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shuangbin; Wang, Xiaohan; University of Chinese Academy of Sciences, Beijing 100049

    2014-09-01

    Ba{sub x}Sr{sub 1−x}TiO{sub 3} ceramics with x ranging from 0 to 1 were prepared by direct current arc discharge technique and studied by means of x-ray diffraction (XRD) and Raman spectroscopy. The cubic-tetragonal ferroelectric phase transition in Ba{sub x}Sr{sub 1−x}TiO{sub 3} ceramics was found to occur at x ≈ 0.75. XRD investigation of as-grown BaTiO{sub 3} ceramics revealed co-existence of tetragonal and hexagonal modifications with a small amount of impurity phase BaTi{sub 4}O{sub 9}. No evidences of hexagonal phase were observed in Raman spectra of as-grown BaTiO{sub 3} ceramics, while Raman peaks related to hexagonal phase were clearly observed in the spectrummore » of fine-grain powders prepared from the same ceramics. A core-shell model for BaTiO{sub 3} ceramics prepared by direct current arc discharge technique is proposed. Absence of the hexagonal phase in any Ba{sub x}Sr{sub 1−x}TiO{sub 3} solid solution with x < 1 is discussed in the frame of specific atomic arrangement.« less

  20. Phase stabilisation of hexagonal barium titanate doped with transition metals: A computational study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, J.A., E-mail: mtp09jd@sheffield.ac.uk; Freeman, C.L.; Harding, J.H.

    Interatomic potentials recently developed for the modelling of BaTiO{sub 3} have been used to explore the stabilisation of the hexagonal polymorph of BaTiO{sub 3} by doping with transition metals (namely Mn, Co, Fe and Ni) at the Ti-site. Classical simulations have been completed on both the cubic and hexagonal polymorphs to investigate the energetic consequences of transition metal doping on each polymorph. Ti-site charge compensation mechanisms have been used for the multi-valent transition metal ions and cluster binding energies have been considered. Simulations show a significant energetic gain when doping occurs at Ti sites in the face sharing dimers (Ti{submore » 2} sites) of the hexagonal polymorph compared with the doping of the cubic polymorph. This energetic difference between the two polymorphs is true for all transition metals tested and all charge states and in the case of tri- and tetra-valent dopants negative solution energies are found for the hexagonal polymorph suggesting actual polymorph stabilisation occurs with the incorporation of these ions as observed experimentally. Oxidation during incorporation of Ni{sup 2+} and Fe{sup 3+} ions has also been considered. - Graphical abstract: The representation of the strongest binding energy clusters for tri-valent dopants—(a) Ti{sub 2}/O{sub 1} cluster and (b) Ti{sub 2}/O{sub 2} cluster. Highlights: ► Classical simulations show a significant energetic gain when doping occurs at Ti sites in the face sharing dimers (Ti2 sites) of the hexagonal polymorph compared with the doping of the cubic polymorph. ► This energetic difference between the two polymorphs is true for all transition metals tested and all charge states. ► In the case of tri- and tetra- valent dopants negative solution energies are found for the hexagonal polymorph suggesting actual polymorph stabilisation occurs with the incorporation of these ions.« less

  1. Room-temperature synthesis and photoluminescence of hexagonal CePO4 nanorods

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Zhang, K.; Zhao, H. Y.

    2018-01-01

    Hexagonal CePO4 nanorods were synthesized via a simple chemical precipitation route at room-temperature without the presence of surfactants and then characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectrometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) spectroscopy. Hexagonal CePO4 nanorods exhibit strong ultraviolet absorption and ultraviolet luminescence, which correspond to the electronic transitions between 4f and 5d state of Ce3+ ions.

  2. Magnetic transition temperatures follow crystallographic symmetry in Samarium under high-pressures and low-temperatures

    DOE PAGES

    Vohra, Yogesh K.; Tsoi, Georgiy M.; Johnson, Craig R.

    2016-12-21

    Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating differentmore » magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm → dhcp → fcc/dist.fcc → hP3 structure sequence at high-pressures and low-temperatures.« less

  3. Magnetic transition temperatures follow crystallographic symmetry in Samarium under high-pressures and low-temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vohra, Yogesh K.; Tsoi, Georgiy M.; Johnson, Craig R.

    Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating differentmore » magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm → dhcp → fcc/dist.fcc → hP3 structure sequence at high-pressures and low-temperatures.« less

  4. Magnetic transition temperatures follow crystallographic symmetry in samarium under high-pressures and low-temperatures

    NASA Astrophysics Data System (ADS)

    Johnson, Craig R.; Tsoi, Georgiy M.; Vohra, Yogesh K.

    2017-02-01

    Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating different magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm  →  dhcp  →  fcc/dist.fcc  →  hP3 structure sequence at high-pressures and low-temperatures.

  5. Magnetic transition temperatures follow crystallographic symmetry in samarium under high-pressures and low-temperatures.

    PubMed

    Johnson, Craig R; Tsoi, Georgiy M; Vohra, Yogesh K

    2017-02-15

    Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating different magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm  →  dhcp  →  fcc/dist.fcc  →  hP3 structure sequence at high-pressures and low-temperatures.

  6. Ab initio structure determination of n-diamond.

    PubMed

    Li, Da; Tian, Fubo; Chu, Binhua; Duan, Defang; Sha, Xiaojing; Lv, Yunzhou; Zhang, Huadi; Lu, Nan; Liu, Bingbing; Cui, Tian

    2015-08-24

    A systematic computational study on the crystal structure of n-diamond has been performed using first-principle methods. A novel carbon allotrope with hexagonal symmetry R32 space group has been predicted. We name it as HR-carbon. HR-carbon composed of lonsdaleite layers and unique C3 isosceles triangle rings, is stable over graphite phase above 14.2 GPa. The simulated x-ray diffraction pattern, Raman, and energy-loss near-edge spectrum can match the experimental results very well, indicating that HR-carbon is a likely candidate structure for n-diamond. HR-carbon has an incompressible atomic arrangement because of unique C3 isosceles triangle rings. The hardness and bulk modulus of HR-carbon are calculated to be 80 GPa and 427 GPa, respectively, which are comparable to those of diamond. C3 isosceles triangle rings are very important for the stability and hardness of HR-carbon.

  7. Growth and Brilliant Photo-Emission of Crystalline Hexagonal Column of Alq3 Microwires

    PubMed Central

    Kim, Seokho; Kim, Do Hyoung; Choi, Jinho; Lee, Hojin; Kim, Sun-Young; Park, Jung Woon; Park, Dong Hyuk

    2018-01-01

    We report the growth and nanoscale luminescence characteristics of 8-hydroxyquinolinato aluminum (Alq3) with a crystalline hexagonal column morphology. Pristine Alq3 nanoparticles (NPs) were prepared using a conventional reprecipitation method. Crystal hexagonal columns of Alq3 were grown by using a surfactant-assisted self-assembly technique as an adjunct to the aforementioned reprecipitation method. The formation and structural properties of the crystalline and non-crystalline Alq3 NPs were analyzed with scanning electron microscopy and X-ray diffraction. The nanoscale photoluminescence (PL) characteristics and the luminescence color of the Alq3 single NPs and their crystal microwires (MWs) were evaluated from color charge-coupled device images acquired using a high-resolution laser confocal microscope. In comparison with the Alq3 NPs, the crystalline MWs exhibited a very bright and sharp emission. This enhanced and sharp emission from the crystalline Alq3 single MWs originated from effective π-π stacking of the Alq3 molecules due to strong interactions in the crystalline structure. PMID:29565306

  8. Molybdenum nitrides as oxygen reduction reaction catalysts: Structural and electrochemical studies

    DOE PAGES

    Cao, Bingfei; Neuefeind, Joerg C.; Adzic, Radoslav R.; ...

    2015-02-09

    Monometallic (δ-MoN, Mo 5N 6, and Mo 2N) and bimetallic molybdenum nitrides (Co 0.6Mo 1.4N 2) were investigated as electrocatalysts for the oxygen reduction reaction (ORR), which is a key half-reaction in hydrogen fuel cells. Monometallic hexagonal molybdenum nitrides are found to exhibit improved activities over rock salt type molybdenum nitride (γ-Mo 2N), suggesting that improvements are due to either the higher molybdenum valence or a more favorable coordination environment in the hexagonal structures. Further enhancements in activity were found for hexagonal bimetallic cobalt molybdenum nitride (Co 0.6Mo 1.4N 2), resulting in a modest onset potential of 0.713 V versusmore » reversible hydrogen electrode (RHE). Co 0.6Mo 1.4N 2 exhibits good stability in acidic environments, and in the potential range lower than 0.5 V versus RHE, the ORR appears to proceed via a four-electron mechanism based on the analysis of rotating disc electrode results. A redetermination of the structures of the binary molybdenum nitrides was carried out using neutron diffraction data, which is far more sensitive to nitrogen site positions than X-ray diffraction data. In conclusion, the revised monometallic hexagonal nitride structures all share many common features with the Co 0.6Mo 1.4N 2 structure, which has alternating layers of cations in octahedral and trigonal prismatic coordination, and are thus not limited to only trigonal prismatic Mo environments (as was originally postulated for δ-MoN).« less

  9. Micellar hexagonal phases in lyotropic liquid crystals

    NASA Astrophysics Data System (ADS)

    Amaral, L. Q.; Gulik, A.; Itri, R.; Mariani, P.

    1992-09-01

    The hexagonal cell parameter a of the system sodium dodecyl lauryl sulfate and water as a function of volume concentration cv in phase Hα shows the functional behavior expected for micelles of finite length: a~c-1/3v. The interpretation of x-ray data based on finite micelles leads to an alternative description of the hexagonal phase Hα: spherocylindrical micelles of constant radius with length that may grow along the range of the Hα phase. Results are compared with recent statistical-mechanical calculations for the isotropic I-Hα transition. The absence of diffraction in the direction perpendicular to the hexagonal plane is ascribed to polydispersity of micellar length, which also is a necessary condition for the occurrence of direct I-Hα transitions.

  10. Maxwell-Wagner effect in hexagonal BaTiO3 single crystals grown by containerless processing

    NASA Astrophysics Data System (ADS)

    Yu, Jianding; Paradis, Paul-François; Ishikawa, Takehiko; Yoda, Shinichi

    2004-10-01

    Oxygen-deficient hexagonal BaTiO3 single crystals, with dielectric constant ε '˜105 and loss component tan δ ˜0.13 at room temperature and a linear temperature dependence of ε' in the range 70-100K, was analyzed by impedance spectroscopy analysis. Two capacitors, bulk and interfacial boundary layer, were observed, and the colossal dielectric constant was mainly dominated by the interfacial boundary layers due to Maxwell-Wagner effect. After annealing the oxygen-deficient hexagonal BaTiO3 at 663K, the ε ' and tanδ became, respectively, 2×104 and 0.07 at room temperature. This work showed an important technological implication as annealing at lower temperatures would help to obtain materials with tailored dielectric properties.

  11. Spin-1 Dirac-Weyl fermions protected by bipartite symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zeren; School of Physics, Peking University, Beijing 100871; Liu, Zhirong, E-mail: LiuZhiRong@pku.edu.cn

    2015-12-07

    We propose that bipartite symmetry allows spin-1 Dirac-Weyl points, a generalization of the spin-1/2 Dirac points in graphene, to appear as topologically protected at the Fermi level. In this spirit, we provide methodology to construct spin-1 Dirac-Weyl points of this kind in a given 2D space group and get the classification of the known spin-1 systems in the literature. We also apply the workflow to predict two new systems, P3m1-9 and P31m-15, to possess spin-1 at K/K′ in the Brillouin zone of hexagonal lattice. Their stability under various strains is investigated and compared with that of T{sub 3}, an extensivelymore » studied model of ultracold atoms trapped in optical lattice with spin-1 also at K/K′.« less

  12. Uranyl-Peroxide Clusters Incorporating Iron Trimers and Bridging by Bisphosphonate- and Carboxylate-Containing Ligands.

    PubMed

    Qiu, Jie; Dong, Sining; Szymanowski, Jennifer E S; Dobrowolska, Malgorzata; Burns, Peter C

    2017-04-03

    A hybrid uranium-iron cage nanocluster, [(UO 2 ) 24 (FeOH) 24 (O 2 ) 24 (PO 4 ) 8 (CH(COO)(PO 3 ) 2 ) 24 ] 96- (U 24 Fe 24 ), was synthesized using bridging ligands containing bisphosphonate and carboxylate groups. U 24 Fe 24 contains six tetramers of uranyl hexagonal bipyramids and eight iron trimers, each of which consists of three corner-sharing Fe 3+ octahedra and is stabilized by in situ formed phosphate and 2,2-bis(phosphonato)acetate (C 2 P 2 ) groups. Tetramers and trimers are bridged by 24 C 2 P 2 groups into a cage cluster. Crystals of U 24 Fe 24 present a paramagnetic-like behavior. X-ray scattering showed that U 24 Fe 24 forms in the reactant solution prior to crystallization and is stable upon dissolution in water.

  13. Discrete solitons and vortices in anisotropic hexagonal and honeycomb lattices

    DOE PAGES

    Hoq, Q. E.; Kevrekidis, P. G.; Bishop, A. R.

    2016-01-14

    We consider the self-focusing discrete nonlinear Schrödinger equation on hexagonal and honeycomb lattice geometries. Our emphasis is on the study of the effects of anisotropy, motivated by the tunability afforded in recent optical and atomic physics experiments. We find that multi-soliton and discrete vortex states undergo destabilizing bifurcations as the relevant anisotropy control parameter is varied. Furthermore, we quantify these bifurcations by means of explicit analytical calculations of the solutions, as well as of their spectral linearization eigenvalues. Finally, we corroborate the relevant stability picture through direct numerical computations. In the latter, we observe the prototypical manifestation of these instabilitiesmore » to be the spontaneous rearrangement of the solution, for larger values of the coupling, into localized waveforms typically centered over fewer sites than the original unstable structure. In weak coupling, the instability appears to result in a robust breathing of the relevant waveforms.« less

  14. Discrete solitons and vortices in anisotropic hexagonal and honeycomb lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoq, Q. E.; Kevrekidis, P. G.; Bishop, A. R.

    We consider the self-focusing discrete nonlinear Schrödinger equation on hexagonal and honeycomb lattice geometries. Our emphasis is on the study of the effects of anisotropy, motivated by the tunability afforded in recent optical and atomic physics experiments. We find that multi-soliton and discrete vortex states undergo destabilizing bifurcations as the relevant anisotropy control parameter is varied. Furthermore, we quantify these bifurcations by means of explicit analytical calculations of the solutions, as well as of their spectral linearization eigenvalues. Finally, we corroborate the relevant stability picture through direct numerical computations. In the latter, we observe the prototypical manifestation of these instabilitiesmore » to be the spontaneous rearrangement of the solution, for larger values of the coupling, into localized waveforms typically centered over fewer sites than the original unstable structure. In weak coupling, the instability appears to result in a robust breathing of the relevant waveforms.« less

  15. Theoretical prediction of low-density hexagonal ZnO hollow structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuoc, Vu Ngoc, E-mail: tuoc.vungoc@hust.edu.vn; Huan, Tran Doan; Thao, Nguyen Thi

    2016-10-14

    Along with wurtzite and zinc blende, zinc oxide (ZnO) has been found in a large number of polymorphs with substantially different properties and, hence, applications. Therefore, predicting and synthesizing new classes of ZnO polymorphs are of great significance and have been gaining considerable interest. Herein, we perform a density functional theory based tight-binding study, predicting several new series of ZnO hollow structures using the bottom-up approach. The geometry of the building blocks allows for obtaining a variety of hexagonal, low-density nanoporous, and flexible ZnO hollow structures. Their stability is discussed by means of the free energy computed within the lattice-dynamicsmore » approach. Our calculations also indicate that all the reported hollow structures are wide band gap semiconductors in the same fashion with bulk ZnO. The electronic band structures of the ZnO hollow structures are finally examined in detail.« less

  16. Atomic scale modelling of hexagonal structured metallic fission product alloys

    PubMed Central

    Middleburgh, S. C.; King, D. M.; Lumpkin, G. R.

    2015-01-01

    Noble metal particles in the Mo-Pd-Rh-Ru-Tc system have been simulated on the atomic scale using density functional theory techniques for the first time. The composition and behaviour of the epsilon phases are consistent with high-entropy alloys (or multi-principal component alloys)—making the epsilon phase the only hexagonally close packed high-entropy alloy currently described. Configurational entropy effects were considered to predict the stability of the alloys with increasing temperatures. The variation of Mo content was modelled to understand the change in alloy structure and behaviour with fuel burnup (Mo molar content decreases in these alloys as burnup increases). The predicted structures compare extremely well with experimentally ascertained values. Vacancy formation energies and the behaviour of extrinsic defects (including iodine and xenon) in the epsilon phase were also investigated to further understand the impact that the metallic precipitates have on fuel performance. PMID:26064629

  17. Synergistic cosolubilization of omega-3 fatty acid esters and CoQ10 in dilutable microemulsions.

    PubMed

    Deutch-Kolevzon, Rivka; Aserin, Abraham; Garti, Nissim

    2011-10-01

    Water-dilutable microemulsions were prepared and loaded with two types of omega-3 fatty acid esters (omega-3 ethyl esters, OEE; and omega-3 triacylglycerides, OTG), each separately and together with ubiquinone (CoQ(10)). The microemulsions showed high and synergistic loading capabilities. The linear fatty acid ester (OEE) solubilization capacity was greater than that of the bulky and robust OTG. The location of the guest molecules within the microemulsions at any dilution point were determined by electrical conductivity, viscosity, DSC, SAXS, cryo-TEM, SD-NMR, and DLS. We found that OEE molecules pack well within the surfactant tails to form reverse micelles that gradually, upon water dilution, invert into bicontinuous phase and finally into O/W droplets. The CoQ(10) increases the stabilization and solubilization of the omega-3 fatty acid esters because it functions as a kosmotropic agent in the micellar system. The hydrophobic and bulky OTG molecule strongly interferes with the tail packing and spaces them significantly - mainly in the low and medium range water dilutions. When added to the micellar system, CoQ(10) forms some reverse hexagonal mesophases. The inversion into direct micelles is more difficult in comparison to the OEE system and requires additional water dilution. The OTG with or without CoQ(10) destabilizes the structures and decreases the solubilization capacity since it acts as a chaotropic agent to the micellar system and as a kosmotropic agent to hexagonal packing. These results explain the differences in the behavior of these molecules with vehicles that solubilize them in aqueous phases. Temperature disorders the bicontinuous structures and reduces the supersaturation of the system containing OEE with CoQ(10); as a result CoQ(10) crystallization is retarded. Copyright © 2011. Published by Elsevier Ireland Ltd.

  18. First-Row Transition Metal Doping in Calcium Phosphate Bioceramics: A Detailed Crystallographic Study

    PubMed Central

    Renaudin, Guillaume; Gomes, Sandrine; Nedelec, Jean-Marie

    2017-01-01

    Doped calcium phosphate bioceramics are promising materials for bone repair surgery because of their chemical resemblance to the mineral constituent of bone. Among these materials, BCP samples composed of hydroxyapatite (Ca10(PO4)6(OH)2) and β-TCP (Ca3(PO4)2) present a mineral analogy with the nano-multi-substituted hydroxyapatite bio-mineral part of bones. At the same time, doping can be used to tune the biological properties of these ceramics. This paper presents a general overview of the doping mechanisms of BCP samples using cations from the first-row transition metals (from manganese to zinc), with respect to the applied sintering temperature. The results enable the preparation of doped synthetic BCP that can be used to tailor biological properties, in particular by tuning the release amounts upon interaction with biological fluids. Intermediate sintering temperatures stabilize the doping elements in the more soluble β-TCP phase, which favors quick and easy release upon integration in the biological environment, whereas higher sintering temperatures locate the doping elements in the weakly soluble HAp phase, enabling a slow and continuous supply of the bio-inspired properties. An interstitial doping mechanism in the HAp hexagonal channel is observed for the six investigated cations (Mn2+, Fe3+, Co2+, Ni2+, Cu2+ and Zn2+) with specific characteristics involving a shift away from the center of the hexagonal channel (Fe3+, Co2+), cationic oxidation (Mn3+, Co3+), and also cationic reduction (Cu+). The complete crystallochemical study highlights a complex HAp doping mechanism, mainly realized by an interstitial process combined with calcium substitution for the larger cations of the series leading to potentially calcium deficient HAp. PMID:28772452

  19. Strong and weak second-order topological insulators with hexagonal symmetry and ℤ3 index

    NASA Astrophysics Data System (ADS)

    Ezawa, Motohiko

    2018-06-01

    We propose second-order topological insulators (SOTIs) whose lattice structure has a hexagonal symmetry C6. We start with a three-dimensional weak topological insulator constructed on a stacked triangular lattice, which has only side topological surface states. We then introduce an additional mass term which gaps out the side surface states but preserves the hinge states. The resultant system is a three-dimensional SOTI. The bulk topological quantum number is shown to be the Z3 index protected by inversion time-reversal symmetry I T and rotoinversion symmetry I C6 . We obtain three phases: trivial, strong, and weak SOTI phases. We argue the origin of these two types of SOTIs. A hexagonal prism is a typical structure respecting these symmetries, where six topological hinge states emerge at the side. The building block is a hexagon in two dimensions, where topological corner states emerge at the six corners in the SOTI phase. Strong and weak SOTIs are obtained when the interlayer hopping interaction is strong and weak, respectively.

  20. Shape and structural motifs control of MgTi bimetallic nanoparticles using hydrogen and methane as trace impurities.

    PubMed

    Krishnan, Gopi; de Graaf, Sytze; Ten Brink, Gert H; Verheijen, Marcel A; Kooi, Bart J; Palasantzas, George

    2018-01-18

    In this work we report the influence of methane/hydrogen on the nucleation and formation of MgTi bimetallic nanoparticles (NPs) prepared by gas phase synthesis. We show that a diverse variety of structural motifs can be obtained from MgTi alloy, TiC x /Mg/MgO, TiC x /MgO and TiH x /MgO core/shell NPs via synthesis using CH 4 /H 2 as a trace gas, and with good control of the final NP morphology and size distribution. Moreover, depending on the concentration of Ti and type of employed trace gas, the as prepared MgTi NPs can be tuned from truncated hexagonal pyramid to triangular and hexagonal platelet shapes. The shape of MgTi NPs is identified using detailed analysis from selected area electron diffraction (SAED) patterns and tomography (3D reconstruction based on a tilt series of Bright-Field transmission electron microscopy (TEM) micrographs). We observe the truncated hexagonal pyramid as a shape of MgTi alloy NPs in contrast to Mg NPs that show a hexagonal prismatic shape. Moreover, based on our experimental observations and generic geometrical model analysis, we also prove that the formation of the various structural motifs is based on a sequential growth mechanism instead of phase separation. One of the prime reasons for such mechanism is based on the inadequacy of Mg to nucleate without template in the synthesis condition. In addition, the shape of the TiC x /TiH x core, and the concentration of Mg have strong influence on the shape evolution of TiC x /MgO and TiH x /MgO NPs compared to TiC x /Mg/MgO NPs, where the thermodynamics and growth rates of the Mg crystal planes dominate the final shape. Finally, it is demonstrated that the core shape of TiC x and TiH x is affected by the Mg/Ti target ratio (affecting the composition in the plasma), and the type of the trace gas employed. In the case of CH 4 the TiC x core forms a triangular platelet, while in the case of H 2 the TiH x core transforms into a hexagonal platelet. We elucidate the reason for the TiC x /TiH x core shape based on the presence of (i) defects, and (ii) hydrogen and carbon adsorption on {111} planes that alter the growth rates and surface facet stabilization.

  1. Nanoparticles of CdCl2 with closed cage structures

    NASA Astrophysics Data System (ADS)

    Popovitz-Biro, R.; Twersky, A.; Hacohen, Y. Rosenfeld; Tenne, R.

    2000-11-01

    Nanoparticles of various layered compounds having a closed cage or nanotubular structure, designated also inorganic fullerene-like (IF) materials, have been reported in the past. In this work IF-CdCl2 nanoparticles were synthesized by electron beam irradiation of the source powder leading to its recrystallization into closed nanoparticles with a nonhollow core. This process created polyhedral nanoparticles with hexagonal or elongated rectangular characters. The analysis also shows that, while the source (dried) powder is orthorhombic cadmium chloride monohydrate, the crystallized IF cage consists of the anhydrous 3R polytype which is not stable as bulk material in ambient atmosphere. Consistent with previous observations, this study shows that the seamless structure of the IF materials can stabilize phases, which are otherwise unstable in ambient conditions.

  2. Doping-stabilized two-dimensional black phosphorus.

    PubMed

    Xuan, Xiaoyu; Zhang, Zhuhua; Guo, Wanlin

    2018-05-03

    Two-dimensional (2D) black phosphorus (BP) has attracted broad interests but remains to be synthesized. One of the issues lies in its large number of 2D allotropes with highly degenerate energies, especially 2D blue phosphorus. Here, we show that both nitrogen and hole-carrier doping can lift the energy degeneracy and locate 2D BP in a deep global energy minimum, while arsenic doping favours the formation of 2D blue phosphorus, attributed to a delicate interplay between s-p overlapping and repulsion of lone pairs. Chemically inert substrates, e.g. graphene and hexagonal boron nitride, can be synergic with carrier doping to stabilize the BP further over other 2D allotropes, while frequently used metal substrates severely reduce the stability of 2D BP. These results not only offer new insight into the structural stability of 2D phosphorus but also suggest a promising pathway towards the chemical synthesis of 2D BP.

  3. His-Tag-Mediated Dimerization of Chemoreceptors Leads to Assembly of Functional Nanoarrays.

    PubMed

    Haglin, Elizabeth R; Yang, Wen; Briegel, Ariane; Thompson, Lynmarie K

    2017-11-07

    Transmembrane chemotaxis receptors are found in bacteria in extended hexagonal arrays stabilized by the membrane and by cytosolic binding partners, the kinase CheA and coupling protein CheW. Models of array architecture and assembly propose receptors cluster into trimers of dimers that associate with one CheA dimer and two CheW monomers to form the minimal "core unit" necessary for signal transduction. Reconstructing in vitro chemoreceptor ternary complexes that are homogeneous and functional and exhibit native architecture remains a challenge. Here we report that His-tag-mediated receptor dimerization with divalent metals is sufficient to drive assembly of nativelike functional arrays of a receptor cytoplasmic fragment. Our results indicate receptor dimerization initiates assembly and precedes formation of ternary complexes with partial kinase activity. Restoration of maximal kinase activity coincides with a shift to larger complexes, suggesting that kinase activity depends on interactions beyond the core unit. We hypothesize that achieving maximal activity requires building core units into hexagons and/or coalescing hexagons into the extended lattice. Overall, the minimally perturbing His-tag-mediated dimerization leads to assembly of chemoreceptor arrays with native architecture and thus serves as a powerful tool for studying the assembly and mechanism of this complex and other multiprotein complexes.

  4. Structural transition and enhanced phase transition properties of Se doped Ge2Sb2Te5 alloys

    NASA Astrophysics Data System (ADS)

    Vinod, E. M.; Ramesh, K.; Sangunni, K. S.

    2015-01-01

    Amorphous Ge2Sb2Te5 (GST) alloy, upon heating crystallize to a metastable NaCl structure around 150°C and then to a stable hexagonal structure at high temperatures (>=250°C). It has been generally understood that the phase change takes place between amorphous and the metastable NaCl structure and not between the amorphous and the stable hexagonal phase. In the present work, it is observed that the thermally evaporated (GST)1-xSex thin films (0 <= x <= 0.50) crystallize directly to the stable hexagonal structure for x >= 0.10, when annealed at temperatures >= 150°C. The intermediate NaCl structure has been observed only for x < 0.10. Chemically ordered network of GST is largely modified for x >= 0.10. Resistance, thermal stability and threshold voltage of the films are found to increase with the increase of Se. The contrast in electrical resistivity between the amorphous and crystalline phases is about 6 orders of magnitude. The increase in Se shifts the absorption edge to lower wavelength and the band gap widens from 0.63 to 1.05 eV. Higher resistance ratio, higher crystallization temperature, direct transition to the stable phase indicate that (GST)1-xSex films are better candidates for phase change memory applications.

  5. Facile synthesis of Co3O4 hexagonal plates by flux method

    NASA Astrophysics Data System (ADS)

    Han, Ji-Long; Meng, Qing-Fen; Gao, Sheng-Li

    2018-01-01

    Using a novel flux method, a hexagonal plate of Co3O4 was directly synthesized. In this method, CoCl2·6H2O, NaOH, and the cosolvent H3BO3 were heated to 750 °C for 2 h in a corundum crucible. The products were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and high-resolution transmission electron microscope (HRTEM). Furthermore, XRD studies indicated that the product consisted of a cubic phase of Co3O4, and the phase existed in a completely crystalline form. Then, SEM results indicated that these hexagonal plates tiered up and they had diameters in the range of 2-10 μm. According to the results of SAED and HRTEM analyses, the interlayer spacing was about 0.24 nm, which corresponds to the interlayer distance of (3 1 1) crystal plane of cubic Co3O4.

  6. Surfactant-assisted growth and optical properties of ZnO hexagonal bilayer disk-like microstructures

    NASA Astrophysics Data System (ADS)

    Zhu, Q. P.; Shen, X. Y.; Wang, L. L.; Zhu, L. P.; Wang, L. J.; Liao, G. H.

    2018-01-01

    ZnO hexagonal bilayer disk-like microstructures are successfully fabricated using a simple solvothermal method assisted with surfactant. The structure and morphology were investigated by XRD, SEM, and EDS. XRD result indicated that the as-obtained samples were well-crystallized wurtzite hexagonal ZnO structure. SEM images showed that the ZnO hexagonal bilayer disk-like assembles consist of two uniform and smooth disks with an average edge length of 6 μm and thickness of ˜4 μm. UV-vis spectrum reveals that ZnO sampls show an appreciable red shift and the band gap energy of the obtained ZnO samples were about 3.15 eV. A very strong UV emission at the ultraviolet (UV) region was observed in the photoluminescence (PL) spectrum of the as-prepared ZnO samples tested at room-temperature. A possible growth process of the ZnO hexagonal bilayer disk-like microstructures was schematically illustrated.

  7. A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes.

    PubMed

    Wang, Zhongwu; Zhao, Yusheng; Tait, Kimberly; Liao, Xiaozhou; Schiferl, David; Zha, Changsheng; Downs, Robert T; Qian, Jiang; Zhu, Yuntian; Shen, Tongde

    2004-09-21

    A quenchable superhard high-pressure carbon phase was synthesized by cold compression of carbon nanotubes. Carbon nanotubes were placed in a diamond anvil cell, and x-ray diffraction measurements were conducted to pressures of approximately 100 GPa. A hexagonal carbon phase was formed at approximately 75 GPa and preserved at room conditions. X-ray and transmission electron microscopy electron diffraction, as well as Raman spectroscopy at ambient conditions, explicitly indicate that this phase is a sp(3)-rich hexagonal carbon polymorph, rather than hexagonal diamond. The cell parameters were refined to a(0) = 2.496(4) A, c(0) = 4.123(8) A, and V(0) = 22.24(7) A (3). There is a significant ratio of defects in this nonhomogeneous sample that contains regions with different stacking faults. In addition to the possibly existing amorphous carbon, an average density was estimated to be 3.6 +/- 0.2 g/cm(3), which is at least compatible to that of diamond (3.52 g/cm(3)). The bulk modulus was determined to be 447 GPa at fixed K' identical with 4, slightly greater than the reported value for diamond of approximately 440-442 GPa. An indented mark, along with radial cracks on the diamond anvils, demonstrates that this hexagonal carbon is a superhard material, at least comparable in hardness to cubic diamond.

  8. A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes

    PubMed Central

    Wang, Zhongwu; Zhao, Yusheng; Tait, Kimberly; Liao, Xiaozhou; Schiferl, David; Zha, Changsheng; Downs, Robert T.; Qian, Jiang; Zhu, Yuntian; Shen, Tongde

    2004-01-01

    A quenchable superhard high-pressure carbon phase was synthesized by cold compression of carbon nanotubes. Carbon nanotubes were placed in a diamond anvil cell, and x-ray diffraction measurements were conducted to pressures of ≈100 GPa. A hexagonal carbon phase was formed at ≈75 GPa and preserved at room conditions. X-ray and transmission electron microscopy electron diffraction, as well as Raman spectroscopy at ambient conditions, explicitly indicate that this phase is a sp3-rich hexagonal carbon polymorph, rather than hexagonal diamond. The cell parameters were refined to a0 = 2.496(4) Å, c0 = 4.123(8) Å, and V0 = 22.24(7) Å 3. There is a significant ratio of defects in this nonhomogeneous sample that contains regions with different stacking faults. In addition to the possibly existing amorphous carbon, an average density was estimated to be 3.6 ± 0.2 g/cm3, which is at least compatible to that of diamond (3.52 g/cm3). The bulk modulus was determined to be 447 GPa at fixed K′≡4, slightly greater than the reported value for diamond of ≈440–442 GPa. An indented mark, along with radial cracks on the diamond anvils, demonstrates that this hexagonal carbon is a superhard material, at least comparable in hardness to cubic diamond. PMID:15361581

  9. Theoretical study on third-order nonlinear optical properties in hexagonal graphene nanoflakes: Edge shape effect

    NASA Astrophysics Data System (ADS)

    Nagai, Hiroshi; Nakano, Masayoshi; Yoneda, Kyohei; Fukui, Hitoshi; Minami, Takuya; Bonness, Sean; Kishi, Ryohei; Takahashi, Hideaki; Kubo, Takashi; Kamada, Kenji; Ohta, Koji; Champagne, Benoît; Botek, Edith

    2009-08-01

    Using hybrid density functional theory methods, we investigate the second hyperpolarizabilities ( γ) of hexagonal shaped finite graphene fragments, which are referred to as hexagonal graphene nanoflakes (HGNFs), with two types of edge shapes: zigzag (Z) and armchair (A) edges. It is found that Z-HGNF, which gives intermediate diradical characters ( y), exhibits about 3.3 times larger orthogonal components of γ ( γ xxxx = γ yyyy in this case) than A-HGNF, which gives zero y value (closed-shell system). The γ density analysis reveals that this enhancement originates in the significant contribution of γ densities on edge regions in Z-HGNF. These observations strongly indicate that Z-HGNF is a promising candidate of open-shell singlet NLO systems.

  10. Resistance of three implant-abutment interfaces to fatigue testing

    PubMed Central

    RIBEIRO, Cleide Gisele; MAIA, Maria Luiza Cabral; SCHERRER, Susanne S.; CARDOSO, Antonio Carlos; WISKOTT, H. W. Anselm

    2011-01-01

    The design and retentive properties of implant-abutment connectors affect the mechanical resistance of implants. A number of studies have been carried out to compare the efficacy of connecting mechanisms between abutment and fixture. Objectives The aims of this study were: 1) to compare 3 implant-abutment interfaces (external hexagon, internal hexagon and cone-in-cone) regarding the fatigue resistance of the prosthetic screw, 2) to evaluate the corresponding mode of failure, and 3) to compare the results of this study with data obtained in previous studies on Nobel Biocare and Straumann connectors. Materials and Methods In order to duplicate the alternating and multivectorial intraoral loading pattern, the specimens were submitted to the rotating cantilever beam test. The implants, abutments and restoration analogs were spun around their longitudinal axes while a perpendicular force was applied to the external end. The objective was to determine the force level at which 50% of the specimens survived 106 load cycles. The mean force levels at which 50% failed and the corresponding 95% confidence intervals were determined using the staircase procedure. Results The external hexagon interface presented better than the cone-in-cone and internal hexagon interfaces. There was no significant difference between the cone-in-cone and internal hex interfaces. Conclusion Although internal connections present a more favorable design, this study did not show any advantage in terms of strength. The external hexagon connector used in this study yielded similar results to those obtained in a previous study with Nobel Biocare and Straumann systems. However, the internal connections (cone-in-cone and internal hexagon) were mechanically inferior compared to previous results. PMID:21710094

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingjie, E-mail: yzx@ansto.gov.au; Karatchevtseva, Inna; Bhadbhade, Mohan

    With the coordination of dimethylformamide (DMF), two new uranium(VI) complexes with either 4-hydroxybenzoic acid (H{sub 2}phb) or terephthalic acid (H{sub 2}tph) have been synthesized under solvothermal conditions and structurally characterized. [(UO{sub 2}){sub 2}(Hphb){sub 2}(phb)(DMF)(H{sub 2}O){sub 3}]·4H{sub 2}O (1) has a dinuclear structure constructed with both pentagonal and hexagonal bipyramidal uranium polyhedra linked through a µ{sub 2}-bridging ligand via both chelating carboxylate arm and alcohol oxygen bonding, first observation of such a coordination mode of 4-hydroxybenzoate for 5 f ions. [(UO{sub 2})(tph)(DMF)] (2) has a three-dimensional (3D) framework built with pentagonal bipyramidal uranium polyhedra linked with µ{sub 4}-terephthalate ligands. The 3Dmore » channeled structure is facilitated by the unique carboxylate bonding with nearly linear C–O–U angles and the coordination of DMF molecules. The presence of phb ligands in different coordination modes, uranyl ions in diverse environments and DMF in complex 1, and tph ligand, DMF and uranyl ion in complex 2 has been confirmed by Raman spectroscopy. In addition, their thermal stability and photoluminescence properties have been investigated. - Graphical abstract: With the coordination of dimethylformamide, two new uranyl complexes with either 4-hydroxybenzoate or terephthalate have been synthesized under solvothermal conditions and structurally characterized. - Highlights: • Solvent facilitates the synthesis of two new uranium(VI) complexes. • A dinuclear complex with both penta- and hexagonal bipyramidal uranium polyhedral. • A unique µ{sub 2}-bridging mode of 4-hydroxybenzoate via alcohol oxygen for 5 f ions. • A 3D framework with uranium polyhedra and µ{sub 4}-terephthalate ligands. • Vibration modes and photoluminescence properties are reported.« less

  12. Silver nanoplates with ground or metastable structures obtained from template-free two-phase aqueous/organic synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhelev, Doncho V., E-mail: dontcho.jelev@nih.gov; Zheleva, Tsvetanka S.

    2014-01-28

    Silver has unique electrical, catalytic, and plasmonic characteristics and has been widely sought for fabrication of nanostructures. The properties of silver nanostructures are intimately coupled to the structure of silver crystals. Two crystal structures are known for silver: the stable (ground) state cubic face centered 3C-Ag structure and the metastable hexagonal 4H-Ag structure. Recently, Chackraborty et al. [J. Phys.: Condens. Matter 23, 325401 (2011)] discovered a low density, highly reactive metastable hexagonal 2H-Ag structure accessible during electrodeposition of silver nanowires in porous anodic alumina templates. This 2H-Ag structure has enhanced electrical and catalytic characteristics. In the present work we reportmore » template-free synthesis of silver nanoplates with the metastable 2H-Ag crystal structure, which appears together with the ground 3C-Ag and the metastable 4H-Ag structures in a two-phase solution synthesis with citric acid as the capping agent. The capacity of citric acid to stabilize both the stable and the metastable structures is explained by its preferential binding to the close packed facets of Ag crystals, which are the (111) planes for 3C-Ag and the (0001) planes for 4H-Ag and 2H-Ag. Nanoplate morphology and structure are characterized using scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. The synthesized nanoplates have thickness from 15 to 17 nm and edge length from 1 to 10 μm. Transmission electron microscopy selected area electron diffraction is used to uniquely identify and distinguish between nanoplates with 2H-Ag or 4H-Ag or 3C-Ag structures.« less

  13. Carrier transport property of truxene discotic liquid crystals with three different ring substituents

    NASA Astrophysics Data System (ADS)

    Monobe, Hirosato; Ni, Hai-Liang; Hu, Ping; Wang, Bi-Qin; Zhao, Ke-Qing; Shimizu, Yo

    2016-03-01

    In this study, the charge carrier transport property of 3,8,13-trioctyloxytruxene [Trx(OC8)3] and its analogues, to which two different ring substituents of hydroxyl [Trx(OH)3(OC8)3] and methoxy [Trx(OMe)3(OC8)3] groups are introduced, has been studied relative to mesomorphism. Three analogues exhibit a hexagonal columnar (Colh) mesophase and their thermal stability increases with the introduction of hydroxyl and methoxy groups. The drift mobility measurements of Trx(OC8)3 and Trx(OH)3(OC8)3 reveal that the drift mobility is on the order of 5 × 10-2 cm2 V-1 s-1 in the Colh phase and it increases to 10-1 cm2 V-1 s-1 at the Colh-metastable phase transition, although Trx(OMe)3(OC8)3 shows a drift mobility of 1 × 10-2 cm2 V-1 s-1 in the Colh phase with temperature dependence. These results indicate that truxene with three alkoxy chains is an interesting molecular core for mesophase semiconductors.

  14. Influence of the height of the external hexagon and surface treatment on fatigue life of commercially pure titanium dental implants.

    PubMed

    Gil, Francisco Javier; Aparicio, Conrado; Manero, Jose M; Padros, Alejandro

    2009-01-01

    This study evaluated the effect of external hexagon height and commonly applied surface treatments on the fatigue life of titanium dental implants. Electropolished commercially pure titanium dental implants (seven implants per group) with three different external hexagon heights (0.6, 1.2, and 1.8 mm) and implants with the highest external hexagon height (1.8 mm) and different surface treatments (electropolishing, grit blasting with aluminium oxide, and acid etching with sulfuric acid) were tested to evaluate their mechanical fatigue life. To do so, 10-Hz triangular flexural load cycles were applied at 37 degrees C in artificial saliva, and the number of load cycles until implant fracture was determined. Tolerances of the hexagon/abutment fit and implant surface roughness were analyzed by scanning electron microscopy and light interferometry. Transmission electron microscopy and electron diffraction analyses of titanium hydrides were performed. First, the fatigue life of implants with the highest hexagon (8,683 +/- 978 load cycles) was more than double that of the implants with the shortest hexagons (3,654 +/- 789 load cycles) (P < .02). Second, the grit-blasted implants had the longest fatigue life of the tested materials (21,393 +/- 2,356 load cycles), which was significantly greater than that of the other surfaces (P < .001). The compressive surface residual stresses induced when blasting titanium are responsible for this superior mechanical response. Third, precipitation of titanium hydrides in grain boundaries of titanium caused by hydrogen adsorption from the acid solution deteriorates the fatigue life of acid-etched titanium dental implants. These implants had the shortest fatigue life (P < .05). The fatigue life of threaded root-form dental implants varies with the height of the external hexagon and/or the surface treatment of the implant. An external hexagon height of 1.8 mm and/or a blasting treatment appear to significantly increase fatigue life of dental implants.

  15. Mesoporous silicas synthesis and application for lignin peroxidase immobilization by covalent binding method.

    PubMed

    Hu, Zunfang; Xu, Longqian; Wen, Xianghua

    2013-01-01

    Immobilization of enzymes on mesoporous silicas (MS) allows for good reusability. MS with two-dimensional hexagonal pores in diameter up to 14.13 nm were synthesized using Pluronic P123 as template and 1,3,5-triisopropylbenzene as a swelling agent in acetate buffer. The surface of MS was modified by the silanization reagents 3-aminopropyltriethoxysilane. Lignin peroxidase (LiP) was successfully immobilized on the modified MS through covalent binding method by four agents: glutaraldehyde, 1,4-phenylene diisothiocyanate, cyanotic chloride and water-soluble carbodiimide. Results showed that cyanotic chloride provided the best performance for LIP immobilization. The loaded protein concentration was 12.15 mg/g and the immobilized LiP activity was 812.9 U/L. Immobilized LiP had better pH stability. Acid Orange II was used to examine the reusability of immobilized LiP, showing more than 50% of the dye was decolorized at the fifth cycle.

  16. Exploration of the Structure of the High Temperature Phase of the Hexagonal RMnO3 System

    NASA Astrophysics Data System (ADS)

    Wu, T.; Tyson, T. A.; Zhang, H.; Yu, T.; Page, K.; Ghose, S.

    Temperature dependent structural studies of the high temperature phase of hexagonal RMnO3 systems have been conducted. Both long range and local structural probes have been utilized. Discussions of the appropriate space groups and local distortions relevant to length scale will be given. Ab initio MD simulations are used to interpret the observations. This work is supported by DOE Grant DE-FG02-07ER46402.

  17. Impact of structural symmetry on magnetization properties in SrCo0.95Mn0.05O3 prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Meenakshi, Mahto, Rabindra Nath

    2018-04-01

    We have investigated magnetization properties of the sol-gel prepared SrCo0.95Mn0.05O3 (SCMO) sample with respect to change in structural symmetry. The X-ray diffraction patterns show the crystal structure changes from nH-hexagonal, showing trigonal symmetry (SCMO1), to 2H-hexagonal phase (SCMO2). The trigonal crystal symmetry was obtained at lower annealing temperature (less than 1100 °C), however, the 2H-hexagonal symmetry was obtained at higher annealing temperature. The crystallite size calculated using Debye Scherer formula is found to be ˜ 46 nm and ˜ 33 nm for SCMO1 and SCMO2 samples respectively. The temperature dependence zero field cooled (MZFC) and field cooled (MFC) magnetization curves measured under the applied magnetic field of 500 Oe show magnetic reversibility for the SCMO1 sample. However, MZFC and MFC curves in hexagonal phase show magnetic irreversibility with onset temperature, Tirr ˜ 150 K, exhibits weak ferromagnetic ordering. The temperature variation of magnetization in paramagnetic region was analyzed by following Curie-Weiss law fitting. The χ-1(T) curve shows complete linear behavior with single slope for SCMO1 sample, whereas, the SCMO2 curve exhibit the linear behavior with two distinct slopes. Interestingly the sample in hexagonal phase shows small hysteresis loop at 2 K and 100 K respectively.

  18. Boron nitride encapsulated copper nanoparticles: a facile one-step synthesis and their effect on thermal decomposition of ammonium perchlorate.

    PubMed

    Huang, Caijin; Liu, Qiuwen; Fan, Wenjie; Qiu, Xiaoqing

    2015-11-16

    Reactivity is of great importance for metal nanoparticles used as catalysts, biomaterials and advanced sensors, but seeking for high reactivity seems to be conflict with high chemical stability required for metal nanoparticles. There is a subtle balance between reactivity and stability. This could be reached for colloidal metal nanoparticles using organic capping reagents, whereas it is challenging for powder metal nanoparticles. Here, we developed an alternative approach to encapsulate copper nanoparticles with a chemical inertness material--hexagonal boron nitride. The wrapped copper nanoparticles not only exhibit high oxidation resistance under air atmosphere, but also keep excellent promoting effect on thermal decomposition of ammonium perchlorate. This approach opens the way to design metal nanoparticles with both high stability and reactivity for nanocatalysts and their technological application.

  19. Boron nitride encapsulated copper nanoparticles: a facile one-step synthesis and their effect on thermal decomposition of ammonium perchlorate

    PubMed Central

    Huang, Caijin; liu, Qiuwen; Fan, Wenjie; Qiu, Xiaoqing

    2015-01-01

    Reactivity is of great importance for metal nanoparticles used as catalysts, biomaterials and advanced sensors, but seeking for high reactivity seems to be conflict with high chemical stability required for metal nanoparticles. There is a subtle balance between reactivity and stability. This could be reached for colloidal metal nanoparticles using organic capping reagents, whereas it is challenging for powder metal nanoparticles. Here, we developed an alternative approach to encapsulate copper nanoparticles with a chemical inertness material—hexagonal boron nitride. The wrapped copper nanoparticles not only exhibit high oxidation resistance under air atmosphere, but also keep excellent promoting effect on thermal decomposition of ammonium perchlorate. This approach opens the way to design metal nanoparticles with both high stability and reactivity for nanocatalysts and their technological application. PMID:26567862

  20. Purification, crystallization and preliminary crystallographic analysis of a 6-pyruvoyltetrahydropterin synthase homologue from Esherichia coli.

    PubMed

    Seo, Kyung Hye; Supangat; Kim, Hye Lim; Park, Young Shik; Jeon, Che Ok; Lee, Kon Ho

    2008-02-01

    6-Pyruvoyltetrahydropterin synthase from E. coli (ePTPS) has been crystallized using the hanging-drop vapour-diffusion method. Hexagonal- and rectangular-shaped crystals were obtained. Diffraction data were collected from the hexagonal and rectangular crystals to 3.0 and 2.3 A resolution, respectively. The hexagonal plate-shaped crystals belonged to space group P321, with unit-cell parameters a = b = 112.59, c = 68.82 A , and contained two molecules in the asymmetric unit. The rectangular crystals belonged to space group I222, with unit-cell parameters a = 112.76, b = 117.66, c = 153.57 A , and contained six molecules in the asymmetric unit. The structure of ePTPS in both crystal forms has been determined by molecular replacement.

  1. Purification, crystallization and preliminary crystallographic analysis of a 6-pyruvoyltetrahydropterin synthase homologue from Esherichia coli

    PubMed Central

    Seo, Kyung Hye; Supangat; Kim, Hye Lim; Park, Young Shik; Jeon, Che Ok; Lee, Kon Ho

    2008-01-01

    6-Pyruvoyltetrahydropterin synthase from E. coli (ePTPS) has been crystallized using the hanging-drop vapour-diffusion method. Hexagonal- and rectangular-shaped crystals were obtained. Diffraction data were collected from the hexagonal and rectangular crystals to 3.0 and 2.3 Å resolution, respectively. The hexagonal plate-shaped crystals belonged to space group P321, with unit-cell parameters a = b = 112.59, c = 68.82 Å, and contained two molecules in the asymmetric unit. The rectangular crystals belonged to space group I222, with unit-cell parameters a = 112.76, b = 117.66, c = 153.57 Å, and contained six molecules in the asymmetric unit. The structure of ePTPS in both crystal forms has been determined by molecular replacement. PMID:18271114

  2. First-principles study of the structural properties of Ge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, K.J.; Cohen, M.L.

    1986-12-15

    With the use of an ab initio pseudopotential method, the structural properties of Ge are investigated at normal and high pressures. The pressure-induced structural phase transitions from cubic diamond to ..beta..-Sn, to simple hexagonal (sh), and to double hexagonal close packed (dhcp) are examined. With the possible exception of the dhcp structure, the calculated transition pressures, transition volumes, and axial ratios are in good agreement with experimental results. We find that sh Ge has characteristics similar to those of sh Si; the bonds between hexagonal layers are stronger than intralayer bonds and the transverse phonon modes become soft near themore » transitions from the sh to ..beta..-Sn and the sh to hcp structures. At normal pressures, we compare the crystal energies for the cubic diamond, hexagonal 2H, and hexagonal 4H structures. Because of the similar sp/sup 3/ bonds in these structures, the structural energy differences are less than about 14 meV, and the 2H and 4H phases are metastable with respect to the cubic diamond structure. The equation of state is also presented and compared with experiment.« less

  3. Structures, phase transitions, and magnetic properties of C o3Si from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Yu, Shu; Wu, Shunqing; Nguyen, Manh Cuong; Wang, Cai-Zhuang; Ho, Kai-Ming

    2017-07-01

    C o3Si was recently reported to exhibit remarkable magnetic properties in the nanoparticle form [B. Balasubramanian et al., Appl. Phys. Lett. 108, 152406 (2016)], 10.1063/1.4945987, yet better understanding of this material should be promoted. Here we report a study on the crystal structures of C o3Si using an adaptive genetic algorithm and discuss its electronic and magnetic properties from first-principles calculations. Several competing phases of C o3Si have been revealed from our calculations. We show that the hexagonal C o3Si structure reported in experiments has lower energy in the nonmagnetic state than in the ferromagnetic state at zero temperature. The ferromagnetic state of the hexagonal structure is dynamically unstable with imaginary phonon modes and transforms into a new orthorhombic structure, which is confirmed by our structure searches to have the lowest energy for both C o3Si and C o3Ge . Magnetic properties of the experimental hexagonal structure and the lowest-energy structures obtained from our structure searches are investigated in detail.

  4. In-situ X-ray diffraction study of phase transformations in the Am-O system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebreton, Florent, E-mail: florent.lebreton@cea.fr; GEMH, ENSCI, 87065 Limoges; Belin, Renaud C., E-mail: renaud.belin@cea.fr

    2012-12-15

    In the frame of minor actinides recycling, americium can be transmuted by adding it in UO{sub 2} or (U, Pu)O{sub 2} fuels. Americium oxides exhibiting a higher oxygen potential than U or Pu oxides, its addition alters the fuel properties. To comprehend its influence, a thorough knowledge of the Am-O phase equilibria diagram and of thermal expansion behavior is of main interest. Due to americium scarcity and high radiotoxicity, few experimental reports on this topic are available. Here we present in-situ high-temperature XRD results on the reduction from AmO{sub 2} to Am{sub 2}O{sub 3}. We show that fluorite (Fm-3m) AmO{submore » 2} is reduced to cubic (Ia-3) C Prime -type Am{sub 2}O{sub 3+{delta}}, and then into hexagonal (P6{sub 3}/mmc) A-type Am{sub 2}O{sub 3}, which remains stable up to 1840 K. We also demonstrate the transitional existence of the monoclinic (C2/m) B-type Am{sub 2}O{sub 3}. At last, we describe, for the first time, the thermal expansion behavior of the hexagonal Am{sub 2}O{sub 3} between room temperature and 1840 K. - Graphical abstract: Americium dioxide was in situ studied by high-temperature X-ray diffraction. First, fluorite AmO{sub 2} is reduced to cubic C Prime -type Am{sub 2}O{sub 3+{delta}} and then transforms into hexagonal A-type Am{sub 2}O{sub 3}, which remains stable up to 1840 K. Then, we demonstrate the transitional existence of monoclinic B-type Am{sub 2}O{sub 3}. At last, we describe, for the first time, the thermal expansion of A-type Am{sub 2}O{sub 3} between room temperature and 1840 K. This work may contribute to a better understanding of Am oxide behavior. Highlights: Black-Right-Pointing-Pointer We realize an in-situ high-temperature X-ray diffraction study on an AmO{sub 2} sample. Black-Right-Pointing-Pointer Fluorite AmO{sub 2} transforms to cubic Am{sub 2}O{sub 3+{delta}} and then to hexagonal Am{sub 2}O{sub 3}. Black-Right-Pointing-Pointer Little-known monoclinic Am{sub 2}O{sub 3} is observed during the cubic-to-hexagonal transition. Black-Right-Pointing-Pointer Lattice parameter thermal expansion of hexagonal Am{sub 2}O{sub 3} is given up to 1840 K. Black-Right-Pointing-Pointer We give additional data on AmO{sub 2} lattice parameter expansion under self-irradiation.« less

  5. Measuring the order in ordered porous arrays: can bees outperform humans?

    NASA Astrophysics Data System (ADS)

    Kaatz, F. H.

    2006-08-01

    A method that explains how to quantify the amount of order in “ordered” and “highly ordered” porous arrays is derived. Ordered arrays from bee honeycomb and several from the general field of nanoscience are compared. Accurate measures of the order in porous arrays are made using the discrete radial distribution function (RDF). Nanoporous anodized aluminum oxide (AAO), hexagonal arrays from functional materials, hexagonal arrays from nanosphere lithography, and square arrays defined by interference lithography (all taken from the literature) are compared to two-dimensional model systems. These arrays have a range of pore diameters from ˜60 to 180 nm. An order parameter, OP 3 , is defined to evaluate the total order in a given array such that an ideal network has the value of 1. When we compare RDFs of man-made arrays with that of our honeycomb (pore diameter ˜5.89 mm), a locally grown version made by Apis mellifera without the use of foundation comb, we find OP 3 =0.399 for the honeycomb and OP 3 =0.572 for man’s best hexagonal array. The nearest neighbor peaks range from 4.65 for the honeycomb to 5.77 for man’s best hexagonal array, while the ideal hexagonal array has an average of 5.93 nearest neighbors. Ordered arrays are now becoming quite common in nanostructured science, while bee honeycombs were studied for millennia. This paper describes the first method to quantify the order found in these arrays with a simple yet elegant procedure that provides a precise measurement of the order in one array compared to other arrays.

  6. Exploring Ag(111) Substrate for Epitaxially Growing Monolayer Stanene: A First-Principles Study

    PubMed Central

    Gao, Junfeng; Zhang, Gang; Zhang, Yong-Wei

    2016-01-01

    Stanene, a two-dimensional topological insulator composed of Sn atoms in a hexagonal lattice, is a promising contender to Si in nanoelectronics. Currently it is still a significant challenge to achieve large-area, high-quality monolayer stanene. We explore the potential of Ag(111) surface as an ideal substrate for the epitaxial growth of monolayer stanene. Using first-principles calculations, we study the stability of the structure of stanene in different epitaxial relations with respect to Ag(111) surface, and also the diffusion behavior of Sn adatom on Ag(111) surface. Our study reveals that: (1) the hexagonal structure of stanene monolayer is well reserved on Ag(111) surface; (2) the height of epitaxial stanene monolayer is comparable to the step height of the substrate, enabling the growth to cross the surface step and achieve a large-area stanene; (3) the perfect lattice structure of free-standing stanene can be achieved once the epitaxial stanene monolayer is detached from Ag(111) surface; and finally (4) the diffusion barrier of Sn adatom on Ag(111) surface is found to be only 0.041 eV, allowing the epitaxial growth of stanene monolayer even at low temperatures. Our above revelations strongly suggest that Ag(111) surface is an ideal candidate for growing large-area, high-quality monolayer stanene. PMID:27373464

  7. Synthesis and energy applications of oriented metal oxide nanoporous films

    NASA Astrophysics Data System (ADS)

    Wu, Qingliu

    This dissertation mainly addresses the synthesis of well-ordered mesoporous titania thin films by dip coating with PEO-PPO-PEO triblock copolymer surfactant template P123. Because P123 is composed of poly(ethylene oxide) [PEO] and poly(propylene oxide) [PPO] blocks, concentrations of ingredients are adjusted to tune the films' wall thickness, pore size and mesophase. Structural changes are consistent with partitioning of species among PEO blocks, PPO blocks, and the PEO/PPO interface. Titanates localize near PEO and increase wall thickness (by 5 nm to 7 nm). Depending on aging temperature, PPG either swells the PPO cores (when it is hydrophobic) or introduces large (>200 nm) voids (when it is hydrophilic but phase separates during heating). 1-butanol localizes at the PEO/PPO interface to favor a 3D hexagonal mesostructure. In another approach, anodizing Ti foils yields vertically aligned titania nanotubes arrays with exceptional stabilities as anodes in lithium ion batteries; they maintain capacities of 130-230 mAhg-1 over 200 cycles. No microstructural changes are induced by battery cycling and good electrical contact is maintained. A diffusion induced stress model suggests that thin-walled nanotubes arrays should be stable under testing conditions, and that ordered hexagonal columnar pore arrays should have both high charge/discharge rates and low stress development. KEY WORDS: materials synthesis, porous, thin film, alternative energy, self-assembly

  8. High-Performance Polymers Sandwiched with Chemical Vapor Deposited Hexagonal Boron Nitrides as Scalable High-Temperature Dielectric Materials.

    PubMed

    Azizi, Amin; Gadinski, Matthew R; Li, Qi; AlSaud, Mohammed Abu; Wang, Jianjun; Wang, Yi; Wang, Bo; Liu, Feihua; Chen, Long-Qing; Alem, Nasim; Wang, Qing

    2017-09-01

    Polymer dielectrics are the preferred materials of choice for power electronics and pulsed power applications. However, their relatively low operating temperatures significantly limit their uses in harsh-environment energy storage devices, e.g., automobile and aerospace power systems. Herein, hexagonal boron nitride (h-BN) films are prepared from chemical vapor deposition (CVD) and readily transferred onto polyetherimide (PEI) films. Greatly improved performance in terms of discharged energy density and charge-discharge efficiency is achieved in the PEI sandwiched with CVD-grown h-BN films at elevated temperatures when compared to neat PEI films and other high-temperature polymer and nanocomposite dielectrics. Notably, the h-BN-coated PEI films are capable of operating with >90% charge-discharge efficiencies and delivering high energy densities, i.e., 1.2 J cm -3 , even at a temperature close to the glass transition temperature of polymer (i.e., 217 °C) where pristine PEI almost fails. Outstanding cyclability and dielectric stability over a straight 55 000 charge-discharge cycles are demonstrated in the h-BN-coated PEI at high temperatures. The work demonstrates a general and scalable pathway to enable the high-temperature capacitive energy applications of a wide range of engineering polymers and also offers an efficient method for the synthesis and transfer of 2D nanomaterials at the scale demanded for applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A study of transition from n- to p-type based on hexagonal WO3 nanorods sensor

    NASA Astrophysics Data System (ADS)

    Wu, Ya-Qiao; Hu, Ming; Wei, Xiao-Ying

    2014-04-01

    Hexagonal WO3 nanorods are fabricated by a facile hydrothermal process at 180 °C using sodium tungstate and sodium chloride as starting materials. The morphology, structure, and composition of the prepared nanorods are studied by scanning electron microscopy, X-ray diffraction spectroscopy, and energy dispersive spectroscopy. It is found that the agglomeration of the nanorods is strongly dependent on the PH value of the reaction solution. Uniform and isolated WO3 nanorods with diameters ranging from 100 nm-150 nm and lengths up to several micrometers are obtained at PH = 2.5 and the nanorods are identified as being hexagonal in phase structure. The sensing characteristics of the WO3 nanorod sensor are obtained by measuring the dynamic response to NO2 with concentrations in the range 0.5 ppm-5 ppm and at working temperatures in the range 25 °C-250 °C. The obtained WO3 nanorods sensors are found to exhibit opposite sensing behaviors, depending on the working temperature. When being exposed to oxidizing NO2 gas, the WO3 nanorod sensor behaves as an n-type semiconductor as expected when the working temperature is higher than 50 °C, whereas, it behaves as a p-type semiconductor below 50 °C. The origin of the n- to p-type transition is correlated with the formation of an inversion layer at the surface of the WO3 nanorod at room temperature. This finding is useful for making new room temperature NO2 sensors based on hexagonal WO3 nanorods.

  10. Syntheses, Crystal Structures, and Properties of New Layered Tungsten(VI)-Containing Materials Based on the Hexagonal-WO 3 Structure: M2(WO 3) 3SeO 3 ( M = NH 4, Rb, Cs)

    NASA Astrophysics Data System (ADS)

    Harrison, William T. A.; Dussack, Laurie L.; Vogt, Thomas; Jacobson, Allan J.

    1995-11-01

    The hydrothermal syntheses and crystal structures of (NH4)2(WO3)3SeO3 and Cs2(WO3)3SeO3, two new noncentrosymmetric, layered tungsten(VI)-containing phases are reported. Infrared, Raman, and thermogravimetric data are also presented. (NH4)2(WO3)3SeO3 and Cs2(WO3)3SeO3 are isostructural phases built up from hexagonal-tungsten-oxide-like, anionic layers of vertex-sharing WO6 octahedra, capped on one side by Se atoms (as selenite groups). Interlayer NH+4 or Cs+ cations provide charge balance. The full H-bonding scheme in (NH4)2(WO3)3SeO3 has been elucidated from Rietveld refinement against neutron powder diffraction data. The WO6 octahedra display a 3 short + 3 long W-O bond-distance distribution within the WO6 unit in both these phases. (NH4)2(WO3)3SeO3 and Cs2(WO3)3SeO3 are isostructural with their molybdenum(VI)-containing analogues (NH4)2(MoO3)3SeO3 and Cs2 (MoO3)3SeO3. Crystal data: (NH4)2(WO3)3SeO3, Mr = 858.58, hexagonal, space group P63 (No. 173), a = 7.2291(2) Å, c = 12.1486(3) Å, V = 549.82(3) Å3, Z = 2, Rp = 1.81%, and Rwp = 2.29% (2938 neutron powder data). Cs2(WO3)3SeO3, Mr = 1088.31, hexagonal, space group P63 (no. 173), a = 7.2615(2) Å, c = 12.5426(3) Å, V = 572.75(3) Å3, Z = 2, Rp = 4.84%, and Rwp = 5.98% (2588 neutron powder data).

  11. Synthesis, crystal structure, and properties of new lead barium borate with B3O6 plane hexagonal rings

    NASA Astrophysics Data System (ADS)

    Zhao, Wenwu

    2017-08-01

    A new lead barium borate Ba8.02Pb0.98(B3O6)6 with B3O6 plane hexagonal rings was synthesized through spontaneous nucleation from a high-temperature solution utilizing PbO, H3BO3, and BaF2 as reagents. Its crystal structure was determined from single-crystal X-ray diffraction data and further characterized by FT-IR. It crystallizes in space group R32 and the crystallographic structure of Ba8.02Pb0.98(B3O6)6 can be described as a layer-like structure, there is stacking along the c-axis of B3O6 plane hexagonal rings with the Ba2 and Pb/Ba1 atoms alternately occupying sites between the B3O6 sheets. A comparison of the structures of Ba8.02Pb0.98(B3O6)6, PbBa2(B3O6)2 and α-BaB2O4 is presented. UV-Vis-NIR diffuse-reflectance spectrum indicates that the absorption edge of Ba8.02Pb0.98(B3O6)6 is about 399 nm.

  12. Liquid-like ionic conduction in solid lithium and sodium monocarba- closo-decaborates near or at room temperature

    DOE PAGES

    Tang, Wan Si; Matsuo, Motoaki; Wu, Hui; ...

    2016-02-05

    Both LiCB 9H 10 and NaCB 9H 10 exhibit liquid-like cationic conductivities (≥0.03 S cm –1) in their disordered hexagonal phases near or at room temperature. Furthermore, these unprecedented conductivities and favorable stabilities enabled by the large pseudoaromatic polyhedral anions render these materials in their pristine or further modified forms as promising solid electrolytes in next-generation, power devices.

  13. Search for the elusive magnetic state of hexagonal iron: The antiferromagnetic Fe71Ru29 hcp alloy

    NASA Astrophysics Data System (ADS)

    Petrillo, C.; Postorino, P.; Orecchini, A.; Sacchetti, F.

    2018-03-01

    The magnetic states of iron and their dependence on crystal structure represent an important case study for the physics of magnetism and its role in fundamental and applied science, including geophysical sciences. hcp iron is the most elusive structure as it exists only at high pressure but, at the same time, it is expected to be stable up to very high temperature. Exploring the magnetic state of pure Fe at high pressure is difficult and no conclusive results have been obtained. Simple binary alloys where the hexagonal phase of Fe is stabilized, offer a more controllable alternative to investigate iron magnetism. We carried out a neutron diffraction experiment on hcp Fe71Ru29 disordered alloy as a function of temperature. Fe in the hexagonal lattice of this specific alloy results to be antiferromagnetically aligned with a rather complex structure and a small magnetic moment. The temperature dependence suggests a Néel temperature TN = 124 ± 10 K, a value consistent with the low magnetic moment of 1.04 ± 0.10 μB obtained from the diffraction data that also suggest a non-commensurate magnetic structure with magnetic moments probably aligned along the c axis. The present data provide evidence for magnetic ordering in hcp Fe and support the theoretical description of magnetism of pure Fe at high pressure.

  14. Self-assembled metastable γ-Ga2O3 nanoflowers with hexagonal nanopetals for solar-blind photodetection.

    PubMed

    Teng, Yue; Song, Le Xin; Ponchel, Anne; Yang, Zheng Kun; Xia, Juan

    2014-09-01

    Metastable γ-Ga2O3 nanoflowers assembled from hexagonal nanopetals are successfully constructed by the oxidation of metallic Ga in acetone solution. The nanoflowers with a hollow interior structure exhibit a short response time and a large light-current-dark-current ratio under a relatively low bias voltage, suggesting an especially important potential application in solar-blind photodetection. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The interface between ferroelectric and 2D material for a Ferroelectric Field-Effect Transistor

    NASA Astrophysics Data System (ADS)

    Park, Nahee; Kang, Haeyong; Lee, Sang-Goo; Lee, Young Hee; Suh, Dongseok

    We have studied electrical property of ferroelectric field-effect transistor which consists of graphene on hexagonal Boron-Nitride (h-BN) gated by a ferroelectric, PMN-PT (i.e. (1-x)Pb(Mg1/3Nb2/3) O3-xPbTiO3) single-crystal substrate. The PMN-PT was expected to have an effect on polarization field into the graphene channel and to induce a giant amount of surface charge. The hexagonal Boron-Nitride (h-BN) flake was directly exfoliated on the PMN-PT substrate for preventing graphene from directly contacting on the PMN-PT substrate. It can make us to observe the effect of the interface between ferroelectric and 2D material on the device operation. Monolayer graphene as 2D channel material, which was confirmed by Raman spectroscopy, was transferred on top of the hexagonal Boron-Nitride (h-BN) by using the conventional dry-transfer method. Here, we can demonstrate that the structure of graphene/hexagonal-BN/ferroelectric field-effect transistor makes us to clearly understand the device operation as well as the interface between ferroelectric and 2D materials by inserting h-BN between them. The phenomena such as anti-hysteresis, current saturation behavior, and hump-like increase of channel current, will be discussed by in terms of ferroelectric switching, polarization-assisted charge trapping.

  16. Magnetostriction of Hexagonal HoMnO3 and YMnO3 Single Crystals

    NASA Astrophysics Data System (ADS)

    Pavlovskii, N. S.; Dubrovskii, A. A.; Nikitin, S. E.; Semenov, S. V.; Terent'ev, K. Yu.; Shaikhutdinov, K. A.

    2018-03-01

    We report on the magnetostriction of hexagonal HoMnO3 and YMnO3 single crystals in a wide range of applied magnetic fields (up to H = 14 T) at all possible combinations of the mutual orientations of magnetic field H and magnetostriction Δ L/L. The measured Δ L/L( H, T) data agree well with the magnetic phase diagram of the HoMnO3 single crystal reported previously by other authors. It is shown that the nonmonotonic behavior of magnetostriction of the HoMnO3 crystal is caused by the Ho3+ ion; the magnetic moment of the Mn3+ ion parallel to the hexagonal crystal axis. The anomalies established from the magnetostriction measurements of HoMnO3 are consistent with the phase diagram of these compounds. For the isostructural YMnO3 single crystal with a nonmagnetic rare-earth ion, the Δ L/L( H, T) dependences are described well by a conventional quadratic law in a wide temperature range (4-100 K). In addition, the magnetostriction effect is qualitatively estimated with regard to the effect of the crystal electric field on the holmium ion.

  17. Structure-electrochemical evolution of a Mn-rich P2 Na 2/3Fe 0.2Mn 0.8O 2 Na-ion battery cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dose, Wesley M.; Sharma, Neeraj; Pramudita, James C.

    The structural evolution of electrode materials directly influences the performance of sodium-ion batteries. In this work, in situ synchrotron X-ray diffraction is used to investigate the evolution of the crystal structure of a Mn-rich P2-phase Na 2/3Fe 0.2Mn 0.8O 2 cathode. A single-phase reaction takes place for the majority of the discharge–charge cycle at ~C/10, with only a short, subtle hexagonal P2 to hexagonal P2 two-phase region early in the first charge. Thus, a higher fraction of Mn compared to previous studies is demonstrated to stabilize the P2 structure at high and low potentials, with neither “Z”/OP4 phases in themore » charged state nor significant quantities of the P'2 phase in the discharged state between 1.5 and 4.2 V. Notably, sodium ions inserted during discharge are located on both available crystallographic sites, albeit with a preference for the site sharing edges with the MO 6 octahedral unit. The composition Na ~0.70Fe 0.2Mn 0.8O 2 prompts a reversible single-phase sodium redistribution between the two sites. Sodium ions vacate the site sharing faces (Naf), favoring the site sharing edges (Nae) to give a Nae/Naf site occupation of 4:1 in the discharged state. This site preference could be an intermediate state prior to the formation of the P'2 phase. Furthermore, this work shows how the Mn-rich Na 2/3Fe 0.2Mn 0.8O 2 composition and its sodium-ion distribution can minimize phase transitions during battery function, especially in the discharged state.« less

  18. Structure-electrochemical evolution of a Mn-rich P2 Na 2/3Fe 0.2Mn 0.8O 2 Na-ion battery cathode

    DOE PAGES

    Dose, Wesley M.; Sharma, Neeraj; Pramudita, James C.; ...

    2017-08-04

    The structural evolution of electrode materials directly influences the performance of sodium-ion batteries. In this work, in situ synchrotron X-ray diffraction is used to investigate the evolution of the crystal structure of a Mn-rich P2-phase Na 2/3Fe 0.2Mn 0.8O 2 cathode. A single-phase reaction takes place for the majority of the discharge–charge cycle at ~C/10, with only a short, subtle hexagonal P2 to hexagonal P2 two-phase region early in the first charge. Thus, a higher fraction of Mn compared to previous studies is demonstrated to stabilize the P2 structure at high and low potentials, with neither “Z”/OP4 phases in themore » charged state nor significant quantities of the P'2 phase in the discharged state between 1.5 and 4.2 V. Notably, sodium ions inserted during discharge are located on both available crystallographic sites, albeit with a preference for the site sharing edges with the MO 6 octahedral unit. The composition Na ~0.70Fe 0.2Mn 0.8O 2 prompts a reversible single-phase sodium redistribution between the two sites. Sodium ions vacate the site sharing faces (Naf), favoring the site sharing edges (Nae) to give a Nae/Naf site occupation of 4:1 in the discharged state. This site preference could be an intermediate state prior to the formation of the P'2 phase. Furthermore, this work shows how the Mn-rich Na 2/3Fe 0.2Mn 0.8O 2 composition and its sodium-ion distribution can minimize phase transitions during battery function, especially in the discharged state.« less

  19. Long-ranged electrostatic repulsion and crystallization of emulsion droplets in an ultralow dielectric medium supercritical carbon dioxide.

    PubMed

    Ryoo, Won; Webber, Stephen E; Bonnecaze, Roger T; Johnston, Keith P

    2006-01-31

    Electrostatic repulsion stabilizes micrometer-sized water droplets with spacings greater than 10 microm in an ultralow dielectric medium, CO2 (epsilon = 1.5), at elevated pressures. The morphology of the water/CO2 emulsion is characterized by optical microscopy and laser diffraction as a function of height. The counterions, stabilized with a nonionic, highly branched, stubby hydrocarbon surfactant, form an extremely thick double layer with a Debye screening length of 8.9 microm. As a result of the balance between electrostatic repulsion and the downward force due to gravity, the droplets formed a hexagonal crystalline lattice at the bottom of the high-pressure cell with spacings of over 10 microm. The osmotic pressure, calculated by solving the Poisson-Boltzmann equation in the framework of the Wigner-Seitz cell model, is in good agreement with that determined from the sedimentation profile measured by laser diffraction. Thus, the long-ranged stabilization of the emulsion may be attributed to electrostatic stabilization. The ability to form new types of colloids in CO2 with electrostatic stabilization is beneficial because steric stabilization is often unsatisfactory because of poor solvation of the stabilizers.

  20. Solvothermal synthesis of fusiform hexagonal prism SrCO{sub 3} microrods via ethylene glycol solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi Liange; Du Fanglin

    2007-08-07

    Fusiform hexagonal prism SrCO{sub 3} microrods were prepared by a simple solvothermal route at 120 deg. C, and characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and Fourier transform infrared (FT-IR) spectroscopy. By controlling the content of ethylene glycol (EG), it was found that ethylene glycol (EG) played an important role in the formation of such SrCO{sub 3} microrods. Finally, effects of other solvents on the products, including 1,2-propanediol and glycerin, were also investigated.

  1. Growth of potassium niobate micro-hexagonal tablets with monoclinic phase and its excellent piezoelectric property

    NASA Astrophysics Data System (ADS)

    Chen, Zhong; Huang, Jingyun; Wang, Ye; Yang, Yefeng; Wu, Yongjun; Ye, Zhizhen

    2012-09-01

    Potassium niobate micro-hexagonal tablets were synthesized through hydrothermal reaction with KOH, H2O and Nb2O5 as source materials by using a polycrystalline Al2O3 as substrate. X-ray diffraction, Raman spectra and selected area electron diffraction analysis results indicated that the tablets exhibit monoclinic phase structure and are highly crystallized. Meanwhile, piezoelectric property of the micro-hexagonal tablets was investigated. The as-synthesized tablets exhibit excellent piezoactivities in the experiments, and an effective piezoelectric coefficient of around 80 pm/V was obtained. The tablets have huge potential applications in micro/nano-integrated piezoelectric and optical devices.

  2. Static high pressure studies on Nd and Sc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akella, J.; Xu, J.; Smith, G.S.

    1985-06-24

    We have investigated the crystal structural transformations in neodymium and scandium up to 4.0 GPa pressure and at room temperature, in a diamond-anvil high pressure apparatus. Nd has a double hexagonal-close packed (dhcp) structure at ambient pressure and temperature. Then it transforms to a face-centered cubic (fcc) structure at 3.8 GPa, which further transforms to a triple hexagonal-close packed structure (thcp) at about 18.0 GPa. In scandium we observed only one transformation from the hexagonal-close packed (hcp) structure at room temperature to a tetragonal structure. This transformation occurs between 19.0 and 23.2 GPa pressure.

  3. Modeling of monolayer charge-stabilized colloidal crystals with static hexagonal crystal lattice

    NASA Astrophysics Data System (ADS)

    Nagatkin, A. N.; Dyshlovenko, P. E.

    2018-01-01

    The mathematical model of monolayer colloidal crystals of charged hard spheres in liquid electrolyte is proposed. The particles in the monolayer are arranged into the two-dimensional hexagonal crystal lattice. The model enables finding elastic constants of the crystals from the stress-strain dependencies. The model is based on the nonlinear Poisson-Boltzmann differential equation. The Poisson-Boltzmann equation is solved numerically by the finite element method for any spatial configuration. The model has five geometrical and electrical parameters. The model is used to study the crystal with particles comparable in size with the Debye length of the electrolyte. The first- and second-order elastic constants are found for a broad range of densities. The model crystal turns out to be stable relative to small uniform stretching and shearing. It is also demonstrated that the Cauchy relation is not fulfilled in the crystal. This means that the pair effective interaction of any kind is not sufficient to proper model the elasticity of colloids within the one-component approach.

  4. Strain, stabilities and electronic properties of hexagonal BN bilayers

    NASA Astrophysics Data System (ADS)

    Fujimoto, Yoshitaka; Saito, Susumu

    Hexagonal boron nitride (h-BN) atomic layers have been regarded as fascinating materials both scientifically and technologically due to the sizable band gap. This sizable band-gap nature of the h-BN atomic layers would provide not only new physical properties but also novel nano- and/or opto-electronics applications. Here, we study the first-principles density-functional study that clarifies the biaxial strain effects on the energetics and the electronic properties of h-BN bilayers. We show that the band gaps of the h-BN bilayers are tunable by applying strains. Furthermore, we show that the biaxial strains can produce a transition from indirect to direct band gaps of the h-BN bilayer. We also discuss that both AA and AB stacking patterns of h-BN bilayer become feasible structures because h-BN bilayers possess two different directions in the stacking patterns. Supported by MEXT Elements Strategy Initiative to Form Core Research Center through Tokodai Institute for Element Strategy, JSPS KAKENHI Grant Numbers JP26390062 and JP25107005.

  5. Exploration of phase transition in ThS under pressure: An ab-initio investigation

    NASA Astrophysics Data System (ADS)

    Sahoo, B. D.; Mukherjee, D.; Joshi, K. D.; Kaushik, T. C.

    2018-04-01

    The ab-initio total energy calculations have been performed in thorium sulphide (ThS) to explore its high pressure phase stability. Our calculations predict a phase transformation from ambient rocksalt type structure (B1 phase) to a rhombohedral structure (R-3m phase) at ˜ 15 GPa and subsequently R-3m phase transforms to CsCl type structure (B2 phase) at ˜ 45 GPa. The first phase transition has been identified as second order type; whereas, the second transition is of first order type with volume discontinuity of 6.5%. The predicted high pressure R-3m phase is analogous to the experimentally observed hexagonal (distorted fcc) phase (Benedict et al., J. Less-Common Met., 1984) above 20 GPa. Further, using these calculations we have derived the equation of state which has been utilized to determine various physical quantities such as zero pressure equilibrium volume, bulk modulus, and pressure derivative of bulk modulus at ambient conditions.

  6. Cd (II) and holodirected lead (II) 3D-supramolecular coordination polymers based on nicotinic acid: Structure, fluorescence property and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Etaiw, Safaa El-din H.; Abd El-Aziz, Dina M.; Marie, Hassan; Ali, Elham

    2018-05-01

    Two new supramolecular coordination polymers namely {[Cd(NA)2(H2O)]}, SCP 1 and {[Pb(NA)2]}, SCP 2, (NA = nicotinate ligand) were synthesized by self-assembly method and structurally characterized by different analytical and spectroscopic methods. Single-crystal X-ray diffraction showed that SCP 1 extend in three dimensions containing bore structure where the 3D- network is constructed via interweaving zigzag chains. The Cd atom coordinates to (O4N2) atoms forming distorted-octahedral configuration. The structure of SCP 2 extend down the projection of the b-axis creating parallel zigzag 1D-chains connected by μ2-O2 atoms and H-bonds forming a holodirected lead (II) hexagonal bi-pyramid configuration. SCP 2 extend to 3D-network via coordinate and hydrogen bonds. The thermal stability, photoluminescence properties, photocatalytic activity for the degradation of methylene blue dye (MB) under UV-irradiation and sunlight irradiation were also studied.

  7. Single Sublattice Endotaxial Phase Separation Driven by Charge Frustration in a Complex Oxide

    PubMed Central

    2013-01-01

    Complex transition-metal oxides are important functional materials in areas such as energy and information storage. The cubic ABO3 perovskite is an archetypal example of this class, formed by the occupation of small octahedral B-sites within an AO3 network defined by larger A cations. We show that introduction of chemically mismatched octahedral cations into a cubic perovskite oxide parent phase modifies structure and composition beyond the unit cell length scale on the B sublattice alone. This affords an endotaxial nanocomposite of two cubic perovskite phases with distinct properties. These locally B-site cation-ordered and -disordered phases share a single AO3 network and have enhanced stability against the formation of a competing hexagonal structure over the single-phase parent. Synergic integration of the distinct properties of these phases by the coherent interfaces of the composite produces solid oxide fuel cell cathode performance superior to that expected from the component phases in isolation. PMID:23750709

  8. Thermal annealing effect on structural and thermoelectric properties of hexagonal Bi2Te3 nanoplate thin films by drop-casting technique

    NASA Astrophysics Data System (ADS)

    Hosokawa, Yuichi; Wada, Kodai; Tanaka, Masaki; Tomita, Koji; Takashiri, Masayuki

    2018-02-01

    High-purity hexagonal bismuth telluride (Bi2Te3) nanoplates were prepared by a solvothermal synthesis method, followed by the fabrication of nanoplate thin films by the drop-casting technique. The Bi2Te3 nanoplates exhibited a single-crystalline phase with a rhombohedral crystal structure. The nanoplates had a flat surface with edge sizes ranging from 500 to 2000 nm (average size of 1000 nm) and a thickness of less than 50 nm. The resulting Bi2Te3 nanoplate thin films were composed of well-aligned hexagonal nanoplates along the surface direction with an approximate film thickness of 40 µm. To tightly connect the nanoplates together within the thin films, thermal annealing was performed at different temperatures. We found that the thermoelectric properties, especially the Seebeck coefficient, were very sensitive to the annealing temperature. Finally, the optimum annealing temperature was determined to be 250 °C and the Seebeck coefficient and power factor were -300 µV/K and 3.5 µW/(cm·K2), respectively.

  9. Scalable salt-templated synthesis of two-dimensional transition metal oxides

    PubMed Central

    Xiao, Xu; Song, Huaibing; Lin, Shizhe; Zhou, Ying; Zhan, Xiaojun; Hu, Zhimi; Zhang, Qi; Sun, Jiyu; Yang, Bo; Li, Tianqi; Jiao, Liying; Zhou, Jun; Tang, Jiang; Gogotsi, Yury

    2016-01-01

    Two-dimensional atomic crystals, such as two-dimensional oxides, have attracted much attention in energy storage because nearly all of the atoms can be exposed to the electrolyte and involved in redox reactions. However, current strategies are largely limited to intrinsically layered compounds. Here we report a general strategy that uses the surfaces of water-soluble salt crystals as growth templates and is applicable to not only layered compounds but also various transition metal oxides, such as hexagonal-MoO3, MoO2, MnO and hexagonal-WO3. The planar growth is hypothesized to occur via a match between the crystal lattices of the salt and the growing oxide. Restacked two-dimensional hexagonal-MoO3 exhibits high pseudocapacitive performances (for example, 300 F cm−3 in an Al2(SO4)3 electrolyte). The synthesis of various two-dimensional transition metal oxides and the demonstration of high capacitance are expected to enable fundamental studies of dimensionality effects on their properties and facilitate their use in energy storage and other applications. PMID:27103200

  10. Role of zero-point effects in stabilizing the ground state structure of bulk Fe2P

    NASA Astrophysics Data System (ADS)

    Bhat, Soumya S.; Gupta, Kapil; Bhattacharjee, Satadeep; Lee, Seung-Cheol

    2018-05-01

    Structural stability of Fe2P is investigated in detail using first-principles calculations based on density functional theory. While the orthorhombic C23 phase is found to be energetically more stable, the experiments suggest it to be hexagonal C22 phase. In the present study, we show that in order to obtain the correct ground state structure of Fe2P from the first-principles based methods it is utmost necessary to consider the zero-point effects such as zero-point vibrations and spin fluctuations. This study demonstrates an exceptional case where a bulk material is stabilized by quantum effects, which are usually important in low-dimensional materials. Our results also indicate the possibility of magnetic field induced structural quantum phase transition in Fe2P, which should form the basis for further theoretical and experimental efforts.

  11. Electronic structure, stability and magnetic properties of small M1-2Cr (M = Fe, Co, and Ni) alloy encapsulated inside a (BN)48 cage

    NASA Astrophysics Data System (ADS)

    Liang, Wenjuan; Jia, Jianfeng; Lv, Jin; Wu, Haishun

    2015-09-01

    The geometrical structure and magnetic properties of M1-2Cr (M = Fe, Co, and Ni) alloy clusters inside a (BN)48 cage were calculated at the BPW91/LANL2DZ level of theory. The doping with Cr significantly changed the magnetic properties of the transition-metal clusters. When M1-2Cr alloys were placed inside a (BN)48 cage, the alloy clusters interacted strongly with the cage, and the M1-2Cr@(BN)48 clusters showed high stability. Moreover, Cr-doped magnetic metal clusters preferably occupied positions off-center and near the hexagonal rings of (BN)48 cages. Thus, the (BN)48 cages can be used to increase the stability of M1-2Cr alloys, and retain their magnetic nature, except for CoCr and Ni2Cr clusters.

  12. Ba3M Ir2O9 hexagonal perovskites in the light of spin-orbit coupling and local structural distortions

    NASA Astrophysics Data System (ADS)

    Nag, Abhishek; Bhowal, Sayantika; Bert, F.; Hillier, A. D.; Itoh, M.; Carlomagno, Ilaria; Meneghini, C.; Sarkar, T.; Mathieu, R.; Dasgupta, I.; Ray, Sugata

    2018-02-01

    Spin-orbit coupling (SOC) is found to be crucial for understanding the magnetic and electronic properties of 5 d transition metal oxides. In 5 d systems, with Ir5 + ions, where ideally a nonmagnetic J =0 ground state is expected to be stabilized in the presence of strong SOC, often spontaneous moments are generated due to hopping induced superexchange. This effect is more pronounced when the Ir atoms are close by, as in systems with Ir2O9 dimers in 6 H Ba3M Ir2O9 compounds where magnetism is an outcome of complex Ir-O-Ir exchange paths, and is strongly influenced by the presence of local distortions. We find that subtle variations in the local structure of Ba3M Ir2O9 (M = Mg, Sr, and Ca) lead to markedly different magnetic properties. While SOC plays a pivotal role in explaining the insulating ground states of these systems, it is seen that Ba3MgIr2O9 , having a P 63 /m m c symmetry, does not order down to low temperature despite having antiferromagnetic exchange interactions, while Ba3CaIr2O9 shows weak dimer-like features and stabilizes in C 2 /c' magnetic configuration with no net moment, and Ba3SrIr2O9 possesses a ground state corresponding to the magnetic space group C 2'/c' and exhibits ferromagnet-like features.

  13. WE-G-204-03: Photon-Counting Hexagonal Pixel Array CdTe Detector: Optimal Resampling to Square Pixels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, S; Vedantham, S; Karellas, A

    Purpose: Detectors with hexagonal pixels require resampling to square pixels for distortion-free display of acquired images. In this work, the presampling modulation transfer function (MTF) of a hexagonal pixel array photon-counting CdTe detector for region-of-interest fluoroscopy was measured and the optimal square pixel size for resampling was determined. Methods: A 0.65mm thick CdTe Schottky sensor capable of concurrently acquiring up to 3 energy-windowed images was operated in a single energy-window mode to include ≥10 KeV photons. The detector had hexagonal pixels with apothem of 30 microns resulting in pixel spacing of 60 and 51.96 microns along the two orthogonal directions.more » Images of a tungsten edge test device acquired under IEC RQA5 conditions were double Hough transformed to identify the edge and numerically differentiated. The presampling MTF was determined from the finely sampled line spread function that accounted for the hexagonal sampling. The optimal square pixel size was determined in two ways; the square pixel size for which the aperture function evaluated at the Nyquist frequencies along the two orthogonal directions matched that from the hexagonal pixel aperture functions, and the square pixel size for which the mean absolute difference between the square and hexagonal aperture functions was minimized over all frequencies up to the Nyquist limit. Results: Evaluation of the aperture functions over the entire frequency range resulted in square pixel size of 53 microns with less than 2% difference from the hexagonal pixel. Evaluation of the aperture functions at Nyquist frequencies alone resulted in 54 microns square pixels. For the photon-counting CdTe detector and after resampling to 53 microns square pixels using quadratic interpolation, the presampling MTF at Nyquist frequency of 9.434 cycles/mm along the two directions were 0.501 and 0.507. Conclusion: Hexagonal pixel array photon-counting CdTe detector after resampling to square pixels provides high-resolution imaging suitable for fluoroscopy.« less

  14. Phase relations in the pseudobinary systems RAO3-R2Ti2O7 (R: rare earth element and Y, A: Fe, Ga, Al, Cr and Mn) and syntheses of new compounds R(A1-xTix)O3+x/2 (2/3≤x≤3/4) at elevated temperatures in air

    NASA Astrophysics Data System (ADS)

    Brown, Francisco; Jacobo-Herrera, Ivan; Alvarez-Montaño, Victor; Kimizuka, Noboru; Kurashina, Keiji; Michiue, Yuichi; Matsuo, Yoji; Mori, Shigeo; Ikeda, Naoshi; Medrano, Felipe

    2017-07-01

    Phase relations in the pseudo-binary systems RFeO3-R2Ti2O7 (R: Lu, Ho and Dy), RGaO3-R2Ti2O7 (R: Lu and Er), LuAlO3-Lu2Ti2O7 and RAO3-R2Ti2O7 (R: Lu and Yb. A: Cr and Mn) at elevated temperatures in air were determined by means of a classic quenching method. There exist Lu(Fe1-xTix)O3+x/2, R(Ga1-xTix)O3+x/2 (R: Lu and Er) and Lu(Al1-xTix)O3+x/2 (2/3≤ x≤3/4) having the Yb(Fe1-xTix)O3+x/2-type of crystal structure (x=0.72, space group: R3m, a(Å)=17.9773 and c(Å)=16.978 as a hexagonal setting) in these pseudo binary systems. Eighteen compounds R(A1-xTix)O3+x/2 (R: Lu-Sm and Y, A: Fe, Ga and Al) were newly synthesized and their lattice constants as a hexagonal setting were measured by means of the X-ray powder diffraction method. The R occupies the octahedral site and both A and Ti does the trigonalbipyramidal one in these compounds. Relation between lattice constants for the rhombic R(A1-xTix)O3+x/2 and the monoclinic In(A1-xTix)O3+x/2 are as follows, ah≈5 x bm, ch≈3 x cm x sin β and am=31/2 x bm, where ah and ch are the lattice constants as a hexagonal setting for R(A1-xTix)O3+x/2 and am, bm, cm and β are those of the monoclinic In(A1-xTix)O3+x/2. Crystal structural relationships among α-InGaO3 (hexagonal, high pressure form, space group: P63/mmc), InGaO3 (rhombic, hypothetical), (RAO3)n(BO)m and RAO3(ZnO)m (R: Lu-Ho, Y and In, A: Fe, Ga, and Al, B: divalent cation element, m, n: natural number), the orthorhombic-and monoclinic In(A1-xTix)O3+x/2 (A: Fe, Ga, Al, Cr and Mn) and the hexagonal-and rhombic R(A1-xTix)O3+x/2 (R: Lu-Sm and Y, A: Fe, Ga and Al) are schematically presented. We concluded that the crystal structures of both the α-InGaO3 (high pressure form, hexagonal, space group: P63/mmc) and the hypothetical InGaO3 (rhombic) are the key structures for constructing the crystal structures of these compounds having the cations with CN=5.

  15. Structural, electronic and vibrational properties of LaF3 according to density functional theory and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Oreshonkov, A. S.; Roginskii, E. M.; Krylov, A. S.; Ershov, A. A.; Voronov, V. N.

    2018-06-01

    Crystal structure of LaF3 single crystal is refined in tysonite-type trigonal unit cell P c1 using density functional theory calculations and Raman spectroscopy. It is shown that trigonal structure with P c1 space group is more energy-efficient than hexagonal structure with space group P63 cm. Simulated Raman spectra obtained using LDA approximation is in much better agreement with experimental data than that obtained with PBE and PBEsol functionals of GGA. The calculated frequency value of silent mode B 2 in case of hexagonal structure P63 cm was found to be imaginary (unstable mode), thus the energy surface obtains negative curvature with respect to the corresponding normal coordinates of the mode which leads to instability of the hexagonal structure in harmonic approximation. The A 1g line at 214 cm‑1 in Raman spectra of LaF3 related to the translation of F2 ions along c axis can be connected with F2 ionic conductivity.

  16. Structural, magnetic, magneto-caloric and Mössbauer spectral study of Tb{sub 2}Fe{sub 17} compound synthesized by arc melting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charfeddine, S.; LVMU, Centre National de Recherches en Sciences des Matériaux, Technopole de Borj-Cédria, BP 73 Soliman 8027; Zehani, K.

    We have synthesized the intermetallic Tb{sub 2}Fe{sub 17} compound in hexagonal crystal structure by arc-melting without annealing. X-ray diffraction pattern has been refined by Rietveld method. The crystal structure is hexagonal with P6{sub 3}/mmc space group (Th{sub 2}Ni{sub 17}-type). The Mössbauer spectrum of Tb{sub 2}Fe{sub 17} compound has been analyzed with seven magnetic sextets assigned to the inequivalent crystallographic sites. The temperature dependence of magnetization data revealed that Tb{sub 2}Fe{sub 17} exhibits a second-order ferromagnetic to paramagnetic phase transition in the vicinity of Curie temperature (T{sub C}=412 K). The relative cooling power around the magnetic transition and the Arrott plotsmore » are also reported. - Graphical abstract: A 3D surface showing the temperature and applied magnetic field dependencies of the magnetization for Tb{sub 2}Fe{sub 17} compound (left). Rietveld analysis of the XRD pattern (right). Crystal structure for the hexagonal P6{sub 3}/mmc Tb{sub 2}Fe{sub 17} (bottom). Display Omitted - Highlights: • Tb{sub 2}Fe{sub 17} single-phase synthesized by simple arc-melting without any heat treatment. • The crystal structure is hexagonal with P6{sub 3}/mmc space group. • The magnetic entropy change of the sample was determined by Maxwell relation. • Hyperfine parameters, magnetic and magnetocaloric properties were studied.« less

  17. Analysis of mechanical behavior of implant-supported prostheses in the anterior maxilla: analysis by speckle pattern interferometry

    NASA Astrophysics Data System (ADS)

    Corrêa, Cássia B.; Ramos, Nuno V.; Monteiro, Jaime; Vaz, Luis G.; Vaz, Mario A. P.

    2012-10-01

    The use of implants to rehabilitation of total edentulous, partial edentulous or single tooth is increasing, it is due to the high rate of success that this type of treatment present. The objective of this study was to analyze the mechanical behavior of different positions of two dental implants in a rehabilitation of 4 teeth in the region of maxilla anterior. The groups studied were divided according the positioning of the implants. The Group 1: Internal Hexagonal implant in position of lateral incisors and pontic in region of central incisors; Group 2: Internal Hexagonal implant in position of central incisors and cantilever of the lateral incisors and Group3 - : Internal Hexagonal implants alternate with suspended elements. The Electronic Speckle Pattern Interferometry (ESPI) technique was selected for the mechanical evaluation of the 3 groups performance. The results are shown in interferometric phase maps representing the displacement field of the prosthetic structure.

  18. Electronic structure and electron-phonon interaction in hexagonal yttrium by density functional calculations

    NASA Astrophysics Data System (ADS)

    Singh, Prabhakar P.

    2007-03-01

    To understand the pressure-induced changes in the electronic structure and the electron-phonon interaction in yttrium, we have studied hexagonal-close-packed (hcp) yttrium, stable at ambient pressure, and double hexagonal-close-packed (dhcp) yttrium, stable up to around 44GPa , using density-functional-based methods. Our results show that as one goes from hcp yttrium to dhcp yttrium, there are (i) a substantial charge transfer from s→d with extensive modifications of the d band and a sizable reduction in the density of states at the Fermi energy, (ii) a substantial stiffening of phonon modes with the electron-phonon coupling covering the entire frequency range, and (iii) an increase in the electron-phonon coupling constant λ from 0.55 to 1.24, leading to a change in the superconducting transition temperature Tc from 0.3to15.3K for μ*=0.2 .

  19. On the Stability of c-BN-Reinforcing Particles in Ceramic Matrix Materials

    PubMed Central

    Wolfrum, Anne-Kathrin; Michaelis, Alexander; Herrmann, Mathias

    2018-01-01

    Cubic boron nitride (c-BN) composites produced at high pressures and temperatures are widely used as cutting tool materials. The advent of new, effective pressure-assisted densification methods, such as spark plasma sintering (SPS), has stimulated attempts to produce these composites at low pressures. Under low-pressure conditions, however, transformation of c-BN to the soft hexagonal BN (h-BN) phase can occur, with a strong deterioration in hardness and wear. In the present work, the influence of secondary phases (B2O3, Si3N4, and oxide glasses) on the transformation of c-BN was studied in the temperature range between 1100 °C and 1575 °C. The different heat treated c-BN particles and c-BN composites were analyzed by SEM, X-ray diffraction, and Raman spectroscopy. The transformation mechanism was found to be kinetically controlled solution–diffusion–precipitation. Given a sufficiently low liquid phase viscosity, the transformation could be observed at temperatures as low as 1200 °C for the c-BN–glass composites. In contrast, no transformation was found at temperatures up to 1575 °C when no liquid oxide phase is present in the composite. The results were compared with previous studies concerning the c-BN stability and the c-BN phase diagram. PMID:29414847

  20. Facile one-pot synthesis of hexagons of NaSrB5O9:Tb3+ phosphor for solid-state lighting

    NASA Astrophysics Data System (ADS)

    Ramesh, B.; Dillip, G. R.; Deva Prasad Raju, B.; Somasundaram, K.; Prasad Peddi, Siva; de Carvalho dos Anjos, Virgilio; Joo, S. W.

    2017-04-01

    NaSrB5O9:Tb3+ hexagons were synthesized by a facile solid-state reaction method. The synthesized powders were structurally examined by x-ray diffraction analysis (XRD), and Rietveld refinement was performed using the XRD data and Fullprof software. Hexagon-like morphology was observed using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The elemental composition of the phosphors was investigated qualitatively by energy dispersive x-ray analysis (EDS) and quantitatively by x-ray photoelectron spectroscopy (XPS). The phosphor has a strong green emission at 545 nm under excitation of 379 nm, which is due to the 5{{\\text{D}}4}{{\\to}7}{{\\text{F}}5} transition of the Tb3+ ion. A lifetime of 3.48 ms was obtained for the phosphor. The important parameters of the light source were determined, such as the thermal quenching, critical distance, the nature of the dopant ion interaction, color coordinates, and quantum yield values. Other reported properties include the site occupancy of the dopant, surface properties, morphological properties, and optical properties.

  1. Crystallographic X-ray analyses of Yb@C(2v)(3)-C80 reveal a feasible rule that governs the location of a rare earth metal inside a medium-sized fullerene.

    PubMed

    Lu, Xing; Lian, Yongfu; Beavers, Christine M; Mizorogi, Naomi; Slanina, Zdenek; Nagase, Shigeru; Akasaka, Takeshi

    2011-07-20

    Single crystal X-ray diffraction studies of Yb@C(2v)(3)-C(80)·Ni(II)(OEP)·CS(2)·1.5C(6)H(6) (OEP = octaethylporphinate) reveal that a relatively flat region of the fullerene interacts with the Ni(II)(OEP) molecule, featuring shape-matching interactions. Surprisingly, it is found that the internal metal is located under a hexagonal carbon ring apart from the 2-fold axis of the C(2v)(3)-C(80) cage, presenting the first example of metallofullerenes with an asymmetrically positioned metal. Such an anomalous location of Yb(2+) is associated with its strong ability to pursue a large coordination number and the lack of hexagon along the C(2) axis of C(2v)(3)-C(80). It is accordingly assumed that a suitable cage hexagon is most likely to be preferred by the single rare earth metal to stay behind inside a medium-sized fullerene, such as C(80) and C(82).

  2. Detector shape in hexagonal sampling grids

    NASA Astrophysics Data System (ADS)

    Baronti, Stefano; Capanni, Annalisa; Romoli, Andrea; Santurri, Leonardo; Vitulli, Raffaele

    2001-12-01

    Recent improvements in CCD technology make hexagonal sampling attractive for practical applications and bring a new interest on this topic. In the following the performances of hexagonal sampling are analyzed under general assumptions and compared with the performances of conventional rectangular sampling. This analysis will take into account both the lattice form (squared, rectangular, hexagonal, and regular hexagonal), and the pixel shape. The analyzed hexagonal grid will not based a-priori on a regular hexagon tessellation, i.e., no constraints will be made on the ratio between the sampling frequencies in the two spatial directions. By assuming an elliptic support for the spectrum of the signal being sampled, sampling conditions will be expressed for a generic hexagonal sampling grid, and a comaprison with the well-known sampling conditions for a comparable rectangular lattice will be performed. Further, by considering for sake of clarity a spectrum with a circular support, the comparison will be performed under the assumption of same number of pixels for unity of surface, and the particular case of regular hexagonal sampling grid will also be considered. Regular hexagonal lattice with regular hexagonal sensitivity shape of the detector elements will result as the best trade-off between the proposed sampling requirement. Concerning the detector shape, the hexagonal is more advantageous than the rectangular. To show that a figure of merit is defined which takes into account that the MTF (modulation transfer function) of a hexagonal detector is not separable, conversely from that of a rectangular detector. As a final result, octagonal shape detectors are compared to those with rectangular and hexagonal shape in the two hypotheses of equal and ideal fill factor, respectively.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Shao-Gang; Liao, Ji-Hai; Zhao, Yu-Jun

    The unique electronic property induced diversified structure of boron (B) cluster has attracted much interest from experimentalists and theorists. B{sub 30–40} were reported to be planar fragments of triangular lattice with proper concentrations of vacancies recently. Here, we have performed high-throughput screening for possible B clusters through the first-principles calculations, including various shapes and distributions of vacancies. As a result, we have determined the structures of B{sub n} clusters with n = 30–51 and found a stable planar cluster of B{sub 49} with a double-hexagon vacancy. Considering the 8-electron rule and the electron delocalization, a concise model for the distributionmore » of the 2c–2e and 3c–2e bonds has been proposed to explain the stability of B planar clusters, as well as the reported B cages.« less

  4. Effect of Mg doping in the gas-sensing performance of RF-sputtered ZnO thin films

    NASA Astrophysics Data System (ADS)

    Vinoth, E.; Gowrishankar, S.; Gopalakrishnan, N.

    2018-06-01

    Thin films of Mg-free and Mg-doped (3, 10 and 20 mol%) ZnO thin films have been deposited on Si (100) substrates by RF magnetron sputtering for gas-sensing application. Preferential orientation along (002) plane with hexagonal wurtzite structure has been observed in X-ray diffraction analysis. The conductivity, resistivity, and mobility of the deposited films have been measured by Hall effect measurement. The bandgap of the films has been calculated from the UV-Vis-NIR spectroscopy. It has been found that the bandgap was increased from 3.35 to 3.91 eV with Mg content in ZnO due to the radiative recombination of excitons. The change in morphology of the grown films has been investigated by scanning electron microscope. Gas-sensing measurements have been conducted for fabricated films. The sensor response, selectivity, and stability measurement were done for the fabricated films. Though better response was found towards ethanol, methanol, and ammonia for MZ2 (Mg at 10 mol%) film and maximum gas response was observed towards ammonia. The selectivity measurement reveals maximum sensitivity about 42% for ammonia. The low response time of 123 s and recovery time of 152 s towards ammonia were observed for MZ2 (Mg at 10 mol%). Stability of the Mg-doped ZnO thin film confirmed by the continuous sensing measurements for 4 months.

  5. Morphology controlled synthesis of nanoporous Co3O4 nanostructures and their charge storage characteristics in supercapacitors.

    PubMed

    Deori, Kalyanjyoti; Ujjain, Sanjeev Kumar; Sharma, Raj Kishore; Deka, Sasanka

    2013-11-13

    Cubic spinel Co3O4 nanoparticles with spherical (0D) and hexagonal platelet (2D) morphologies were synthesized using a simple solvothermal method by tuning the reaction time. XRD and HRTEM analyses revealed pure phase with growth of Co3O4 particles along [111] and [110] directions. UV-vis studies showed two clear optical absorption peaks corresponding to two optical band gaps in the range of 400-500 nm and 700-800 nm, respectively, related to the ligand to metal charge transfer events (O(2-) → Co(2+,3+)). Under the electrochemical study in two electrode assembly system (Co3O4/KOH/Co3O4) without adding any large area support or a conductive filler, the hexagonal platelet Co3O4 particles exhibited comparatively better characteristics with high specific capacitance (476 F g(-1)), energy density 42.3 Wh kg(-1) and power density 1.56 kW kg(-1) at current density of 0.5 Ag(-1), that suited for potential applications in supercapacitors. The observed better electrochemical properties of the nanoporous Co3O4 particles is attributed to the layered platelet structural arrangement of the hexagonal platelet and the presence of exceptionally high numbers of regularly ordered pores.

  6. Geometric and electronic structures of monolayer hexagonal boron nitride with multi-vacancy

    NASA Astrophysics Data System (ADS)

    Kim, Do-Hyun; Kim, Hag-Soo; Song, Min Woo; Lee, Seunghyun; Lee, Sang Yun

    2017-05-01

    Hexagonal boron nitride (h-BN) is an electrical insulator with a large band gap of 5 eV and a good thermal conductor of which melting point reaches about 3000 °C. Due to these properties, much attention was given to the thermal stability rather than the electrical properties of h-BN experimentally and theoretically. In this study, we report calculations that the electronic structure of monolayer h-BN can be influenced by the presence of a vacancy defect which leads to a geometric deformation in the hexagonal lattice structure. The vacancy was varied from mono- to tri-vacancy in a supercell, and different defective structures under the same vacancy density were considered in the case of an odd number of vacancies. Consequently, all cases of vacancy defects resulted in a geometric distortion in monolayer h-BN, and new energy states were created between valence and conduction band with the Fermi level shift. Notably, B atoms around vacancies attracted one another while repulsion happened between N atoms around vacancies, irrespective of vacancy density. The calculation of formation energy revealed that multi-vacancy including more B-vacancies has much lower formation energy than vacancies with more N-vacancies. This work suggests that multi-vacancy created in monolayer h-BN will have more B-vacancies and that the presence of multi-vacancy can make monolayer h-BN electrically conductive by the new energy states and the Fermi level shift.

  7. Geometric and electronic structures of monolayer hexagonal boron nitride with multi-vacancy.

    PubMed

    Kim, Do-Hyun; Kim, Hag-Soo; Song, Min Woo; Lee, Seunghyun; Lee, Sang Yun

    2017-01-01

    Hexagonal boron nitride (h-BN) is an electrical insulator with a large band gap of 5 eV and a good thermal conductor of which melting point reaches about 3000 °C. Due to these properties, much attention was given to the thermal stability rather than the electrical properties of h-BN experimentally and theoretically. In this study, we report calculations that the electronic structure of monolayer h-BN can be influenced by the presence of a vacancy defect which leads to a geometric deformation in the hexagonal lattice structure. The vacancy was varied from mono- to tri-vacancy in a supercell, and different defective structures under the same vacancy density were considered in the case of an odd number of vacancies. Consequently, all cases of vacancy defects resulted in a geometric distortion in monolayer h-BN, and new energy states were created between valence and conduction band with the Fermi level shift. Notably, B atoms around vacancies attracted one another while repulsion happened between N atoms around vacancies, irrespective of vacancy density. The calculation of formation energy revealed that multi-vacancy including more B-vacancies has much lower formation energy than vacancies with more N-vacancies. This work suggests that multi-vacancy created in monolayer h-BN will have more B-vacancies and that the presence of multi-vacancy can make monolayer h-BN electrically conductive by the new energy states and the Fermi level shift.

  8. Chemical synthesis of hexagonal indium nitride nanocrystallines at low temperature

    NASA Astrophysics Data System (ADS)

    Wang, Liangbiao; Shen, Qianli; Zhao, Dejian; Lu, Juanjuan; Liu, Weiqiao; Zhang, Junhao; Bao, Keyan; Zhou, Quanfa

    2017-08-01

    In this study, hexagonal indium nitride nanocystallines with high crystallinity have been prepared by the reaction of InCl3·4H2O, sulfur and NaNH2 in an autoclave at 160 °C. The crystal structures and morphologies of the obtained InN sample are characterized by X-ray diffraction and scanning electron microscope. As InCl3·4H2O is substituted by In(NO3)3·4.5H2O, InN nanocrystallines could also be obtained by using the similar method. The photoluminescence spectrum shows that the InN emits a broad peak positioned at 2.3 eV.

  9. Wear at the Implant-Abutment Interface of Zirconia Abutments Manufactured by Three CAD/CAM Systems.

    PubMed

    Pinheiro Tannure, Ana Luiza; Cunha, Alfredo Gonçalves; Borges Junior, Luiz Antônio; da Silva Concílio, Laís Regiane; Claro Neves, Ana Christina

    To evaluate the changes in the external-hexagon surface of the titanium (Ti) implant before and after mechanical cycling, when coupled with zirconia (Zr) abutments (A) manufactured by three computer-aided design/computer-aided manufacturing (CAD/CAM) systems (Neodent Digital, Zirkonzahn, and AmannGirrbach) and the ZrTi abutment manufactured by Neodent. Four groups were formed (n = 6): titanium implant with Zr AmannGirrbach abutment (AZrAG), with Zr Zirkonzahn abutment (AZrZ), with Zr Neodent abutment (AZrN), and with Zr abutment with infrastructure in Ti Neodent (AZrTiN). Standardized abutments were made from three identical abutments milled in wax. Images of the surface of each side of the hexagons of the implant were obtained by scanning electron microscopy, before and after mechanical cycling, to evaluate the parameters: (1) scratches in the hexagon face; (2) hexagon superior shoulder kneading; (3) hexagon shoulder wear; (4) alterations on the hexagon base; and (5) scratches on the hexagon top. The abutments were coupled with the implants, and Cr-Co crowns were cemented. The implant/abutment/crown assemblies were submitted to mechanical cycling (400 N, 8.0 Hz) for 1 million cycles. The observed changes were classified as follows: absence (0), mild (1), moderate (2), and severe (3). The results were analyzed using the Mann-Whitney, Kruskal-Wallis, and Dunn tests (P < .05). For parameter 1, a significant difference (P = .008) was observed between AZrZ and AZrAG, with more scratches in AZrZ; and between AZrN and AZrTiN (P = .006), with more scratches in AZrN. For parameter 2, a significant difference (P < .05) was observed between AZrZ and AZrAG and between AZrZ and AZrN, with greater kneading in AZrZ; among AZrN and AZrTiN, there was no significant difference (P = .103). For parameter 3, a significant difference (P < .05) was observed between AZrZ and the other groups of Zr, with more wear in AZrZ; between AZrN and AZrTiN, there was no significant difference (P = .107). For parameter 4, a significant difference (P < .05) was observed between AZrZ and AZrN, with more scratches in AZrZ; a significant difference (P = .002) was also observed between AZrN and AZrTiN, with more scratches in AZrN. For parameter 5, a significant difference (P < .05) was observed between AZrZ and AZrAG and between AZrZ and AZrN, with the fewest scratches in AZrZ; a significant difference (P = .006) was also observed between AZrN and AZrTiN, with more alterations in AZrN. Considering all the alterations, the AZrZ group showed more surface alteration, 1.74 (0.99); followed by AZrN, 1.43 (0.92); AZrAG, 1.32 (0.96); and AZrTiN, 0.88 (0.94). Among the Neodent abutments, the AZrN group had shown more surface alterations. Among the Zr groups, AZrZ samples had shown the most altered surfaces, suggesting that alterations on the implant/Zr abutment hexagon surfaces are related to the abutment milled hexagon shape.

  10. Structure of 18R shifted hexagonal perovskite La{sub 6}MgTi{sub 4}O{sub 18} revisited by neutron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Fengqi; Kuang, Xiaojun, E-mail: kuangxj@glut.edu.cn

    The structure of 18-layer shifted B-site deficient hexagonal perovskite La{sub 6}MgTi{sub 4}O{sub 18} compound has been re-examined by neutron powder diffraction. Structural analysis reveals that La{sub 6}MgTi{sub 4}O{sub 18} compound adopts a 18R octahedral-tilted structure with LaO{sub 3} layer stacking sequence of (hhcccc){sub 3} in space group R{sup {sup -}}3, in contrast with the previously proposed R3m. La{sub 6}MgTi{sub 4}O{sub 18} demonstrates partially ordered Mg cation distribution with a preference on the central octahedral sites over the outer octahedral sites in the cubic perovskite blocks isolated by the single vacant octahedral layers between the two consecutive hexagonal layers. The instabilitymore » of the La{sub 6}MgTi{sub 4}O{sub 18} on alumina ceramic substrate at high temperature and its dependencies of cell parameters and permittivity were characterized as well. - Graphical abstract: 18-layer shifted hexagonal perovskite La{sub 6}MgTi{sub 4}O{sub 18} adopts octahedral-tilted structure in R{sup {sup -}}3 and demonstrates partially ordered Mg distribution in the cubic perovskite blocks isolated by the vacant octahedral layers. - Highlights: • Neutron diffraction reveals an octahedra-tilted structure in R{sup {sup -}}3 for La{sub 6}MgTi{sub 4}O{sub 18}. • Mg/Ti distribution in La{sub 6}MgTi{sub 4}O{sub 18} is partially ordered in the perovskite blocks. • Instability of La{sub 6}MgTi{sub 4}O{sub 18} on alumina ceramic at high temperature is demonstrated.« less

  11. Wrinkle-to-fold transition in soft layers under equi-biaxial strain: A weakly nonlinear analysis

    NASA Astrophysics Data System (ADS)

    Ciarletta, P.

    2014-12-01

    Soft materials can experience a mechanical instability when subjected to a finite compression, developing wrinkles which may eventually evolve into folds or creases. The possibility to control the wrinkling network morphology has recently found several applications in many developing fields, such as scaffolds for biomaterials, stretchable electronics and surface micro-fabrication. Albeit much is known of the pattern initiation at the linear stability order, the nonlinear effects driving the pattern selection in soft materials are still unknown. This work aims at investigating the nature of the elastic bifurcation undertaken by a growing soft layer subjected to a equi-biaxial strain. Considering a skin effect at the free surface, the instability thresholds are found to be controlled by a characteristic length, defined by the ratio between capillary energy and bulk elasticity. For the first time, a weakly nonlinear analysis of the wrinkling instability is performed here using the multiple-scale perturbation method applied to the incremental theory in finite elasticity. The Ginzburg-Landau equations are derived for different superposing linear modes. This study proves that a subcritical pitchfork bifurcation drives the observed wrinkle-to-fold transition in swelling gels experiments, favoring the emergence of hexagonal creased patterns, albeit quasi-hexagonal patterns might later emerge because of an expected symmetry break. Moreover, if the surface energy is somewhat comparable to the bulk elastic energy, it has the same stabilizing effect as for fluid instabilities, driving the formation of stable wrinkles, as observed in elastic bi-layered materials.

  12. Hexagonal spherical Ln3+-doped NaGdF4: A facile double solvent hydrothermal synthesis and luminescent properties

    NASA Astrophysics Data System (ADS)

    Wu, Kelu; Huang, Zhuanzhuan; Yu, Qiao-He; Wang, Yi-Yan; Xia, Tian-Long

    2017-04-01

    Different sizes of hexagonal spherical NaGdF4:Eu3+ particles are synthesized via a facile hydrothermal method with the use of ethylene glycol (EG), propylene glycol (PG) or butylene glycol (BG) as another solvent. The particle size decreases with the addition of EG, PG or BG and the decreasing trend in BG/H2O system is significantly more than that in the other two systems. Meanwhile, results show that luminescent properties of NaGdF4:Eu3+ are enhanced along with the decrease of particle size. Besides, the energy transfer from Dy3+ to Eu3+ is directly observed in the PL spectra of NaGdF4:Eu3+/Dy3+.

  13. Synthesis of a single phase of high-entropy Laves intermetallics in the Ti-Zr-V-Cr-Ni equiatomic alloy

    NASA Astrophysics Data System (ADS)

    Yadav, T. P.; Mukhopadhyay, Semanti; Mishra, S. S.; Mukhopadhyay, N. K.; Srivastava, O. N.

    2017-12-01

    The high-entropy Ti-Zr-V-Cr-Ni (20 at% each) alloy consisting of all five hydride-forming elements was successfully synthesised by the conventional melting and casting as well as by the melt-spinning technique. The as-cast alloy consists entirely of the micron size hexagonal Laves Phase of C14 type; whereas, the melt-spun ribbon exhibits the evolution of nanocrystalline Laves phase. There was no evidence of any amorphous or any other metastable phases in the present processing condition. This is the first report of synthesising a single phase of high-entropy complex intermetallic compound in the equiatomic quinary alloy system. The detailed characterisation by X-ray diffraction, scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy confirmed the existence of a single-phase multi-component hexagonal C14-type Laves phase in all the as-cast, melt-spun and annealed alloys. The lattice parameter a = 5.08 Å and c = 8.41 Å was determined from the annealed material (annealing at 1173 K). The thermodynamic calculations following the Miedema's approach support the stability of the high-entropy multi-component Laves phase compared to that of the solid solution or glassy phases. The high hardness value (8.92 GPa at 25 g load) has been observed in nanocrystalline high-entropy alloy ribbon without any cracking. It implies that high-yield strength ( 3.00 GPa) and the reasonable fracture toughness can be achieved in this high-entropy material.

  14. Synthesis of three-dimensional reduced graphene oxide layer supported cobalt nanocrystals and their high catalytic activity in F-T CO2 hydrogenation

    NASA Astrophysics Data System (ADS)

    He, Fei; Niu, Na; Qu, Fengyu; Wei, Shuquan; Chen, Yujin; Gai, Shili; Gao, Peng; Wang, Yan; Yang, Piaoping

    2013-08-01

    The reduced graphene oxide (rGO) supported cobalt nanocrystals have been synthesized through an in situ crystal growth method using Co(acac)2 under solvothermal conditions by using DMF as the solvent. By carefully controlling the reaction temperature, the phase transition of the cobalt nanocrystals from the cubic phase to the hexagonal phase has been achieved. Moreover, the microscopic structure and morphology as well as the reduction process of the composite have been investigated in detail. It is found that oxygen-containing functional groups on the graphene oxide (GO) can greatly influence the formation process of the Co nanocrystals by binding the Co2+ cations dissociated from the Co(acac)2 in the initial reaction solution at 220 °C, leading to the 3D reticular structure of the composite. Furthermore, this is the first attempt to use a Co/rGO composite as the catalyst in the F-T CO2 hydrogenation process. The catalysis testing results reveal that the as-synthesized 3D structured composite exhibits ideal catalytic activity and good stability, which may greatly extend the scope of applications for this kind of graphene-based metal hybrid material.The reduced graphene oxide (rGO) supported cobalt nanocrystals have been synthesized through an in situ crystal growth method using Co(acac)2 under solvothermal conditions by using DMF as the solvent. By carefully controlling the reaction temperature, the phase transition of the cobalt nanocrystals from the cubic phase to the hexagonal phase has been achieved. Moreover, the microscopic structure and morphology as well as the reduction process of the composite have been investigated in detail. It is found that oxygen-containing functional groups on the graphene oxide (GO) can greatly influence the formation process of the Co nanocrystals by binding the Co2+ cations dissociated from the Co(acac)2 in the initial reaction solution at 220 °C, leading to the 3D reticular structure of the composite. Furthermore, this is the first attempt to use a Co/rGO composite as the catalyst in the F-T CO2 hydrogenation process. The catalysis testing results reveal that the as-synthesized 3D structured composite exhibits ideal catalytic activity and good stability, which may greatly extend the scope of applications for this kind of graphene-based metal hybrid material. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03038e

  15. Formation of hexagonal and cubic ice during low-temperature growth

    PubMed Central

    Thürmer, Konrad; Nie, Shu

    2013-01-01

    From our daily life we are familiar with hexagonal ice, but at very low temperature ice can exist in a different structure––that of cubic ice. Seeking to unravel the enigmatic relationship between these two low-pressure phases, we examined their formation on a Pt(111) substrate at low temperatures with scanning tunneling microscopy and atomic force microscopy. After completion of the one-molecule-thick wetting layer, 3D clusters of hexagonal ice grow via layer nucleation. The coalescence of these clusters creates a rich scenario of domain-boundary and screw-dislocation formation. We discovered that during subsequent growth, domain boundaries are replaced by growth spirals around screw dislocations, and that the nature of these spirals determines whether ice adopts the cubic or the hexagonal structure. Initially, most of these spirals are single, i.e., they host a screw dislocation with a Burgers vector connecting neighboring molecular planes, and produce cubic ice. Films thicker than ∼20 nm, however, are dominated by double spirals. Their abundance is surprising because they require a Burgers vector spanning two molecular-layer spacings, distorting the crystal lattice to a larger extent. We propose that these double spirals grow at the expense of the initially more common single spirals for an energetic reason: they produce hexagonal ice. PMID:23818592

  16. Star cell type core configuration for structural sandwich materials

    DOEpatents

    Christensen, R.M.

    1995-08-01

    A new pattern for cellular core material used in sandwich type structural materials is disclosed. The new pattern involves star shaped cells intermixed with hexagonal shaped cells. The new patterned cellular core material includes star shaped cells interconnected at points thereof and having hexagonal shape cells positioned adjacent the star points. The new pattern allows more flexibility and can conform more easily to curved shapes. 3 figs.

  17. Tailoring the light absorption of Ag-PZT thin films by controlling the growth of hexagonal- and cubic-phase Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Hu, Tao; Wang, Zongrong; Ma, Ning; Du, Piyi

    2017-12-01

    PbZr0.52Ti0.48O3 thin films containing hexagonal and cubic Ag nanoparticles (Ag NPs) of various sizes were prepared using the sol-gel technique. During the aging process, Ag ions were photo-reduced to form hexagonal Ag NPs. These NPs were uniform in size, and their uniformity was maintained in the thin films during the heat treatment process. Both the total volume and average size of the hexagonal Ag NPs increased with an increasing Ag ion concentration from 0.02 to 0.08 mol l-1. Meanwhile, the remaining Ag ions were reduced to form unstable Ag-Pb alloy particles with Pb ions during the early heating stage. During subsequent heat treatment, these alloys decomposed to form cubic Ag NPs in the thin films. The absorption range of the thin films, quantified as the full width at half maximum in the ultraviolet-visible absorption spectrum, expanded from 6.3 × 1013 Hz (390-425 nm) to 8.4 × 1013 Hz (383-429 nm) as the Ag NPs/PZT ratio increased from 0.2 to 0.8. This work provides an effective way to broaden the absorption range and enhance the optical properties of such films.

  18. Ultrasound irradiation based in-situ synthesis of star-like Tragacanth gum/zinc oxide nanoparticles on cotton fabric.

    PubMed

    Ghayempour, Soraya; Montazer, Majid

    2017-01-01

    Application of natural biopolymers for green and safe synthesis of zinc oxide nanoparticles on the textiles is a novel and interesting approach. The present study offers the use of natural biopolymer, Tragacanth gum, as the reducing, stabilizing and binding agent for in-situ synthesis of zinc oxide nanoparticles on the cotton fabric. Ultrasonic irradiation leads to clean and easy synthesis of zinc oxide nanoparticles in short-time at low-temperature. FESEM/EDX, XRD, FT-IR spectroscopy, DSC, photocatalytic activities and antimicrobial assay are used to characterize Tragacanth gum/zinc oxide nanoparticles coated cotton fabric. The analysis confirmed synthesis of star-like zinc oxide nanoparticles with hexagonal wurtzite structure on the cotton fabric with the average particle size of 62nm. The finished cotton fabric showed a good photocatalytic activity on degradation of methylene blue and 100% antimicrobial properties with inhibition zone of 3.3±0.1, 3.1±0.1 and 3.0±0.1mm against Staphylococcus aureus, Escherichia coli and Candida albicans. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Structure and stability of solid Xe(H 2) n

    DOE PAGES

    Somayazulu, Maddury; Dera, Przemyslaw; Smith, Jesse; ...

    2015-03-10

    Mixtures of xenon and molecular hydrogen form a series of hexagonal, van der Waals compounds at high pressures and at 300 K. Synchrotron, x-ray, single crystal diffraction studies reveal that below 7.5 GPa, Xe(H 2) 8 crystallizes in a P3¯m1 structure that displays pressure-induced occupancy changes of two pairs of xenon atoms located on the 2c and 2d sites (while the third pair on yet another 2c site remains fully occupied). The occupancy becomes 1 at the P3¯m1 to R3 transition and all the xenon atoms occupy the 3d sites in the high-pressure structure. These pressure-induced changes in occupancy coincidemore » with volume changes that maintain the average Xe:H 2 stoichiometry fixed at 1:8. Furthermore, the synchrotron x-ray diffraction and Raman measurements show that this unique hydrogen-bearing compound that can be synthesized at 4.2 GPa and 300 K, quenched at low temperatures to atmospheric pressure, and retained up to 90 K on subsequent warming.« less

  20. Trivalent rare-earth activated hexagonal lanthanum fluoride (LaF3 :RE3+ , where RE = Tb, Sm, Dy and Tm) nanocrystals: Synthesis and optical properties.

    PubMed

    Kasturi, Singh; Marikumar, R; Vaidyanathan, Sivakumar

    2018-05-10

    The LaF 3 nanocrystals through a facile hydrothermal route with hexagonal structures have been synthesized via doping of trivalent rare earth (RE 3+ ) ions - RE = Tb, Sm, Dy and Tm - with rod-like and perforated morphologies using NH 4 F as fluorine precursor. Hexagonal phase formation was confirmed by powder X-ray diffraction. The crystalline sizes were calculated by the Scherrer equation where found to have an average crystalline size of 12 to 35 nm. The morphological studies of the nanocrystals were carried out by means of transmission electron microscopy (TEM). The LaF 3 :Tm 3+ ,Sm 3+ ions show the characteristic emission of Tb 3+ and Tm 3+ respectively. In Sm 3+ -doped LaF 3 , three prominent emission peaks at 561, 597 and 641 nm were found, which belong to 4 G 5/2  →  6 H 5/2 , 4 G 5/2  →  6 H 7/2 (magnetic dipole) and 4 G 5/2  →  6 H 9/2 (electric dipole) transitions, respectively. The Dy 3+ activated LaF 3 shows blue and yellow emission and the corresponding CIE color coordinate show white light emission (CCT value 10650 K). Copyright © 2018 John Wiley & Sons, Ltd.

  1. Wafer-Scale and Wrinkle-Free Epitaxial Growth of Single-Orientated Multilayer Hexagonal Boron Nitride on Sapphire.

    PubMed

    Jang, A-Rang; Hong, Seokmo; Hyun, Chohee; Yoon, Seong In; Kim, Gwangwoo; Jeong, Hu Young; Shin, Tae Joo; Park, Sung O; Wong, Kester; Kwak, Sang Kyu; Park, Noejung; Yu, Kwangnam; Choi, Eunjip; Mishchenko, Artem; Withers, Freddie; Novoselov, Kostya S; Lim, Hyunseob; Shin, Hyeon Suk

    2016-05-11

    Large-scale growth of high-quality hexagonal boron nitride has been a challenge in two-dimensional-material-based electronics. Herein, we present wafer-scale and wrinkle-free epitaxial growth of multilayer hexagonal boron nitride on a sapphire substrate by using high-temperature and low-pressure chemical vapor deposition. Microscopic and spectroscopic investigations and theoretical calculations reveal that synthesized hexagonal boron nitride has a single rotational orientation with AA' stacking order. A facile method for transferring hexagonal boron nitride onto other target substrates was developed, which provides the opportunity for using hexagonal boron nitride as a substrate in practical electronic circuits. A graphene field effect transistor fabricated on our hexagonal boron nitride sheets shows clear quantum oscillation and highly improved carrier mobility because the ultraflatness of the hexagonal boron nitride surface can reduce the substrate-induced degradation of the carrier mobility of two-dimensional materials.

  2. Enhanced room temperature multiferroic characteristics in hexagonal LuFe1-xNixO3 (x = 0 - 0.3) nanoparticles

    NASA Astrophysics Data System (ADS)

    Suresh, Pittala; Vijaya Laxmi, K.; Anil Kumar, P. S.

    2018-02-01

    Single phase polycrystalline LuFe1-xNixO3 (x = 0 - 0.3) (LFNO) nanoparticles are synthesized using the sol-gel method. X-ray diffraction measurements revealed that the crystal structure of Ni-doped samples is isomorphic to hexagonal LuFeO3 (LFO). The phase pure hexagonal P63cm symmetry exists for 0 ≤ x ≤ 0.3, and the secondary phases appear for x ≥ 0.4. Raman spectra show a shift in the mode frequency corresponding to the changes in Lu-O and Fe-O bond lengths with Ni doping. An enhancement in the magnetization is observed for LFNO throughout the temperature range (400-5 K) compared to LFO. The antiferromagnetic state of LFO becomes ferrimagnetic at low temperatures, and a net magnetization is observed at room temperature with Ni doping. As Ni concentration increases, a systematic increment in the ferroelectric polarization is observed. This enhancement in polarization is believed to be due to the distortion in FeO5 cage, while the improvement in magnetic properties is due to the induced magnetic interactions, caused by the Fe-Ni interactions on the triangular lattice with Ni doping in LuFeO3.

  3. Insights into the mechanism of the capture of CO2 by K2CO3 sorbent: a DFT study.

    PubMed

    Liu, Hongyan; Qin, Qiaoyun; Zhang, Riguang; Ling, Lixia; Wang, Baojun

    2017-09-13

    The adsorption and reactions of CO 2 and H 2 O on both monoclinic and hexagonal crystal K 2 CO 3 were investigated using the density functional theory (DFT) approach. The calculated adsorption energies showed that adsorption of H 2 O molecules was clearly substantially stronger on the K 2 CO 3 surface than the adsorption of CO 2 , except on the (001)-1 surface of hexagonal K 2 CO 3 , where CO 2 is competitively adsorbed with H 2 O. Carbonation reactions easily occur on pure K 2 CO 3 and involve two parallel paths: one is where adsorbed H 2 O reacts with molecular CO 2 in gas to form the bicarbonate, while the other is where H 2 O dissociates into OH and H before bicarbonate formation, and then OH reacts with gaseous CO 2 to form a bicarbonate. Our results indicate that adding a support or promoter or using a special technique to expose more (001)-1 surfaces in hexagonal K 2 CO 3 may improve the conversion of CO 2 to the bicarbonate, which provides a theoretical direction for the experimental preparation of the K 2 CO 3 sorbent to capture CO 2 .

  4. In-situ precipitation of ultra-stable nano-magnetite slurry

    NASA Astrophysics Data System (ADS)

    Ramimoghadam, Donya; Bagheri, Samira; Hamid, Sharifah Bee Abd

    2015-04-01

    In this contribution, we prepared water-based magnetic fluids of iron oxide nanoparticles using an in-situ precipitation method. The effect of dodecanoic acid addition as a surfactant on the physico-chemical and magnetic properties of iron oxide nanoparticles was investigated as well. The quantity of the surfactant was varied between 3 and 5 g. Raman spectroscopy and X-ray diffraction (XRD) were utilized to confirm the presence of spinel phase magnetites (Fe3O4). Dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to characterize the resulting magnetic nanoparticles' size and morphology. The results showed polydispersed hexagonal nanoparticles (average diameter of ca. 70 nm) as a result of the protocol. Moreover, the pH-dependent stability of the samples confirms that magnetite nanofluids were highly stable in the wide range of pH, from 4-12. The optimal amount of dodecanoic acid to produce ultra-stable nano-magnetite slurry with the highest saturation magnetization of 8.6 emu g-1 was determined to be 4.5 g.

  5. Quantum mechanical design and structures of hexanuclear sandwich complex and its multidecker sandwich clusters (Li6)n([18]annulene)n+1 (n = 1-3).

    PubMed

    Wang, Shu-Jian; Li, Ying; Wu, Di; Wang, Yin-Feng; Li, Zhi-Ru

    2012-09-13

    By means of density functional theory, a hexanuclear sandwich complex [18]annulene-Li6-[18]annulene which consists of a central Li6 hexagon ring and large face-capping ligands, [18]annulene, is designed and investigated. The large interaction energy and HOMO-LUMO gap suggest that this novel charge-separated complex is highly stable and may be experimentally synthesized. In addition, the stability found in the [18]annulene-Li6-[18]annulene complex extends to multidecker sandwich clusters (Li6)n([18]annulene)n+1 (n = 2-3). The energy gain upon addition of a [18]annulene-Li6 unit to (Li6)n-1([18]annulene)n is pretty large (96.97-98.22 kcal/mol), indicating that even larger multideckers will also be very stable. Similar to ferrocene, such a hexanuclear sandwich complex could be considered as a versatile building block to find potential applications in different areas of chemistry, such as nanoscience and material science.

  6. Chemical reactions and morphological stability at the Cu/Al2O3 interface.

    PubMed

    Scheu, C; Klein, S; Tomsia, A P; Rühle, M

    2002-10-01

    The microstructures of diffusion-bonded Cu/(0001)Al2O3 bicrystals annealed at 1000 degrees C at oxygen partial pressures of 0.02 or 32 Pa have been studied with various microscopy techniques ranging from optical microscopy to high-resolution transmission electron microscopy. The studies revealed that for both oxygen partial pressures a 20-35 nm thick interfacial CuAlO2 layer formed, which crystallises in the rhombohedral structure. However, the CuAlO2 layer is not continuous, but interrupted by many pores. In the samples annealed in the higher oxygen partial pressure an additional reaction phase with a needle-like structure was observed. The needles are several millimetres long, approximately 10 microm wide and approximately 1 microm thick. They consist of CuAlO2 with alternating rhombohedral and hexagonal structures. Solid-state contact angle measurements were performed to derive values for the work of adhesion. The results show that the adhesion is twice as good for the annealed specimen compared to the as-bonded sample.

  7. Molecular dynamics simulations of electrostatics and hydration distributions around RNA and DNA motifs

    NASA Astrophysics Data System (ADS)

    Marlowe, Ashley E.; Singh, Abhishek; Semichaevsky, Andrey V.; Yingling, Yaroslava G.

    2009-03-01

    Nucleic acid nanoparticles can self-assembly through the formation of complementary loop-loop interactions or stem-stem interactions. Presence and concentration of ions can significantly affect the self-assembly process and the stability of the nanostructure. In this presentation we use explicit molecular dynamics simulations to examine the variations in cationic distributions and hydration environment around DNA and RNA helices and loop-loop interactions. Our simulations show that the potassium and sodium ionic distributions are different around RNA and DNA motifs which could be indicative of ion mediated relative stability of loop-loop complexes. Moreover in RNA loop-loop motifs ions are consistently present and exchanged through a distinct electronegative channel. We will also show how we used the specific RNA loop-loop motif to design a RNA hexagonal nanoparticle.

  8. Crystal Structure, Electric Polarization and Heat Capacity Measurements on Small R-Ion Multiferroic Hexagonal RMnO3

    NASA Astrophysics Data System (ADS)

    Yu, Tian; Gao, Peng; Wu, Tao; Tyson, Trevor; Lalancette, Roger

    2013-03-01

    Crystal structure, electric polarization and heat capacity measurements on the hexagonal multiferroic RMnO3 reveal that small R ion (Lu and lower cation size) systems are ferroelectric and possess the same space-group as YMnO3. Combined local and long range structural measurements were conducted by XAFS, PDF and single crystal and powder XRD methods. The influence of the Mn-O and R-O distribution on the electric polarization is discussed. Point charge estimates of the electrical polarization are given for comparison with the YMnO3 system. This work is supported by DOE Grant DE-FG02-07ER46402.

  9. The microscopic model of BiFeO3

    NASA Astrophysics Data System (ADS)

    Fishman, R. S.

    2018-05-01

    Many years and great effort have been spent constructing the microscopic model for the room temperature multiferroic BiFeO3. However, earlier models implicitly assumed that the cycloidal wavevector q was confined to one of the three-fold symmetric axes in the hexagonal plane normal to the electric polarization. Because recent measurements indicate that q can be rotated by a magnetic field, it is essential to properly treat the anisotropy that confines q at low fields. We propose that the anisotropy energy -K3S6sin6 θ cos 6 ϕ confines the wavevectors q to the three-fold axis ϕ = 0 and ± 2 π / 3 within the hexagonal plane with θ = π / 2 .

  10. The barium iron ruthenium oxide system

    NASA Technical Reports Server (NTRS)

    Kemmler-Sack, S.; Ehmann, A.

    1986-01-01

    In the system BaFe(1-x)Ru(x)O(3-y), three phases, separated by immiscibility gaps, are present: an Fe-rich phase (x = 0 to 0.75) with hexagonal BaTiO3 structure (6H; sequence (hcc)2), a Ru-rich phase (x = 0.9) of hexagonal 4H-type (sequence (hc)2), and the pure Ru compounds BaRuO3 with rhombohedral 9R structure (sequence (hhc)3). By vibrational spectroscopic investigations in the 6H phase a transition from n-type semiconduction (Fe-rich compounds with complete O lattice) can be detected. The 4H and 9R stacking polytypes are good, metal-like conductors. The lattice parameters are given.

  11. Comparative study of torque resistance and microgaps between a combined Octatorx-cone connection and an internal hexagon implant-abutment connection.

    PubMed

    Khongkhunthian, Pathawee; Khongkhunthian, Sakornratana; Weerawatprachya, Winai; Pongpat, Kanuengnit; Aunmeungtong, Weerapan

    2015-05-01

    Although the implant-abutment connection may prevent crestal bone loss around dental implants, its failure often leads to treatment failure. Microgap and micromovement of the implant-abutment connection could be causes of bone resorption around dental implant neck. The purpose of this study was to compare torque resistance and microgaps between a new cone and index connection (Octatorx) and an internal hexagon implant-abutment connection (Internal hex). Twenty Octatorx and 20 internal hexagon connections were attached with retaining screws at 30 Ncm. In a torsion resistance test, 10 of each type of connection were attached to a universal testing machine. Torque resistance with 90 degrees per minute rotation speed was recorded. For microgap measurement, each of 10 connections was embedded in clear acrylic resin. The blocks were cut longitudinally. Twenty specimens of each connection were evaluated. Twelve measurements of microgaps (6 on each side of specimen) were recorded under scanning electron microscopy. The average torsion resistance of Octatorx (203.6 ±17.4 Ncm) was significantly greater than that of the internal hexagon (146.4 ±16.1 Ncm, P<.05). For the microgap, there was a significant difference (P=.001) between the median values of Octatorx (1.19 μm) and the internal hexagon (3.80 μm). In this study, the new connection, Octatorx, had a smaller microgap and greater torque resistance than the internal hexagon connection. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. Tuning the morphology, luminescence and magnetic properties of hexagonal-phase NaGdF4: Yb, Er nanocrystals via altering the addition sequence of the precursors

    NASA Astrophysics Data System (ADS)

    Zhao, Shuwen; Xia, Donglin; Zhao, Ruimin; Zhu, Hao; Zhu, Yiru; Xiong, Yuda; Wang, Youfa

    2017-01-01

    Hexagonal-phase NaGdF4: Yb, Er upconversion nanocrystals (UCNCs) with tunable morphology and properties were successfully prepared via a thermal decomposition method. The influences of the adding sequence of the precursors on the morphology, chemical composition, luminescence and magnetic properties were investigated by transmission electron microscopy (TEM), inductively coupled plasma-atomic emission spectrometry (ICP-AES), upconversion (UC) spectroscopy, and a vibrating sample magnetometer (VSM). It was found that the resulting nanocrystals, with different sizes ranging from 24 to 224 nm, are in the shape of spheres, hexagonal plates and flakes; moreover, the composition percentage of Yb3+-Er3+ and Gd3+ ions was found to vary in a regular pattern with the adding sequence. Furthermore, the intensity ratios of emission colors (f g/r, f g/p), and the magnetic mass susceptibility of hexagonal-phase NaGdF4: Yb, Er nanocrystals change along with the composition of the nanocrystals. A positive correlation between the susceptibility and f g/r of NaGdF4: Yb, Er was proposed. The decomposition processes of the precursors were investigated by a thermogravimetric (TG) analyzer. The result indicated that the decomposition of the resolved lanthanide trifluoroacetate is greatly different from lanthanide trifluoroacetate powder. It is of tremendous help to recognize the decomposition process of the precursors and to understand the related reaction mechanism.

  13. Codification of scan path parameters and development of perimeter scan strategies for 3D bowl-shaped laser forming

    NASA Astrophysics Data System (ADS)

    Tavakoli, A.; Naeini, H. Moslemi; Roohi, Amir H.; Gollo, M. Hoseinpour; Shahabad, Sh. Imani

    2018-01-01

    In the 3D laser forming process, developing an appropriate laser scan pattern for producing specimens with high quality and uniformity is critical. This study presents certain principles for developing scan paths. Seven scan path parameters are considered, including: (1) combined linear or curved path; (2) type of combined linear path; (3) order of scan sequences; (4) the position of the start point in each scan; (5) continuous or discontinuous scan path; (6) direction of scan path; and (7) angular arrangement of combined linear scan paths. Regarding these path parameters, ten combined linear scan patterns are presented. Numerical simulations show continuous hexagonal, scan pattern, scanning from outer to inner path, is the optimized. In addition, it is observed the position of the start point and the angular arrangement of scan paths is the most effective path parameters. Also, further experimentations show four sequences due to creat symmetric condition enhance the height of the bowl-shaped products and uniformity. Finally, the optimized hexagonal pattern was compared with the similar circular one. In the hexagonal scan path, distortion value and standard deviation rather to edge height of formed specimen is very low, and the edge height despite of decreasing length of scan path increases significantly compared to the circular scan path. As a result, four-sequence hexagonal scan pattern is proposed as the optimized perimeter scan path to produce bowl-shaped product.

  14. Epitaxial growth of hexagonal boron nitride monolayers by a three-step boration-oxidation-nitration process

    NASA Astrophysics Data System (ADS)

    Müller, Frank; Hüfner, Stefan; Sachdev, Hermann; Gsell, Stefan; Schreck, Matthias

    2010-08-01

    The formation of well-ordered monolayers of hexagonal boron nitride on the surface of a Rh/YSZ/Si(111) multilayer substrate via a three-step boration-oxidation-nitration process was investigated by x-ray photoelectron spectroscopy (XPS), x-ray photoelectron diffraction (XPD) and low-energy electron diffraction (LEED). The chemical vapor deposition (CVD) of trimethylborate B(OCH3)3 results in a selective decomposition of the precursor, leading to a dilute distribution of boron within the interstitials of the Rh lattice. After oxidation, the layer of a boron oxygen species of about 1 nm thickness can be transformed into a hexagonal monolayer of BN by annealing in NH3 atmosphere. The results of the present study clearly show that the formation of BN monolayers is also possible when boron and nitrogen are provided successively from separate sources. This procedure represents an alternative routine for the preparation of well-ordered BN monolayers, which benefits from a strong reduction of hazardous potential and economic costs compared to the use of borazine as the current standard precursor.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Ling; Song, Yu, E-mail: songyu@dlpu.edu.cn; Yang, Wei

    Open-framework zinc phosphates were synthesized by microwave-assisted technique, and it was shown that the morphology of as-prepared materials could be easily tailored by changing synthesis temperature, reaction time and pH value. During the synthesis, when the reaction temperature increases from 130 °C to 220 °C, the products transformed from hexagonal prisms to polyhedron along with the disappearance of the hexagonal prisms vertical plane. Simultaneously, both the reaction time and pH value could promote the nucleation and growth of crystal particles. More interestingly, the target products with different morphologies could be obtained by varying the usage of NaOH or NH{sub 3}·H{submore » 2}O at 130 °C during the microwave synthesis process. - Graphical abstract: Zinc phosphates with variable morphologies can be obtained by simply tuning the microwave-heating temperatures. Display Omitted - Highlights: • Synthesis of open-framework Zn{sub 4} (H{sub 3}O) (NH{sub 4}){sub 3}(PO{sub 4}){sub 4} compounds employing microwave technique. • Dependence of morphology on the reaction conditions. • Morphology transformation from hexagonal prisms to polyhedron was observed.« less

  16. Structural, bonding, and electronic properties of the hexagonal ferroelectric and paraelectric phases of LuMnO{sub 3} compound: A density functional theory study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sousa, A. M.; Coutinho, W. S.; Lima, A. F.

    2015-02-21

    We have investigated the structural, bonding, and electronic properties of both ferroelectric (FE) and paraelectric (PE) phases of the hexagonal LuMnO{sub 3} compound using calculations based on density functional theory. The structural properties have been determined by employing the generalized gradient approximation with Perdew-Burke-Ernzerhof and Wu-Cohen parameterization. The bonding and electronic properties have been treated by recently developed modified Becke-Johnson exchange potential, which succeeded to open a band gap for both PE and FE phases, in agreement with experimental predictions. The Bader’s topological analysis of electronic density showed that the character of the Lu–O axial bonds changes when the crystalmore » exhibits the PE → FE structural transition. This fact is in agreement with experimental findings. The covalent character of the Lu–O bond significantly increases due to orbital hybridization between the Lu 5d{sub z}{sup 2} and O 2p{sub z}-states. This bonding mechanism causes the ferroelectricity in the hexagonal LuMnO{sub 3} compound.« less

  17. Ordered hexagonal mesoporous aluminosilicates with low Si/Al ratio: synthesis, characterization, and catalytic application.

    PubMed

    Liu, Aifeng; Che, Hongwei; Liu, Chuanzhi; Fu, Quanrong; Jiang, Ruijiao; Wang, Cheng; Wang, Liang

    2014-06-01

    Ordered hexagonal mesoporous aluminosilicates with lower Si/Al ratio below 5 have been successfully synthesized via the co-assembly of preformed aluminosilicate precursors with Gemini surfactant [C12H25N+(CH3)2(CH2)6N+(CH3)2C12H25] x 2Br(-) as the template. Powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, N2 adsorption-desorption isotherm measurements, Fourier transform infrared spectroscopy, 27Al nuclear magnetic resonance, thermogravimetric analysis, and temperature-programmed desorption of cyclohexylamine are employed to characterize the resulting samples. The phenol alkylation reaction is carried out to evaluate their catalytic performances. These studies indicate that the sample with a low Si/Al ratio of 3 still retains a highly ordered hexagonal mesoporous structure. And it also possesses the highest acidity of 0.96 mmol among the samples with lower Si/Al ratios below 5 due to its higher specific surface area together with more content of tetrahedrally coordinated Al in the framework. The catalytic tests confirm that the acidity of the samples plays a key role in determining their catalytic performances.

  18. Matrix Transformation in Boron Containing High-Temperature Co-Re-Cr Alloys

    NASA Astrophysics Data System (ADS)

    Strunz, Pavel; Mukherji, Debashis; Beran, Přemysl; Gilles, Ralph; Karge, Lukas; Hofmann, Michael; Hoelzel, Markus; Rösler, Joachim; Farkas, Gergely

    2018-03-01

    An addition of boron largely increases the ductility in polycrystalline high-temperature Co-Re alloys. Therefore, the effect of boron on the alloy structural characteristics is of high importance for the stability of the matrix at operational temperatures. Volume fractions of ɛ (hexagonal close-packed—hcp), γ (face-centered cubic—fcc) and σ (Cr2Re3 type) phases were measured at ambient and high temperatures (up to 1500 °C) for a boron-containing Co-17Re-23Cr alloy using neutron diffraction. The matrix phase undergoes an allotropic transformation from ɛ to γ structure at high temperatures, similar to pure cobalt and to the previously investigated, more complex Co-17Re-23Cr-1.2Ta-2.6C alloy. It was determined in this study that the transformation temperature depends on the boron content (0-1000 wt. ppm). Nevertheless, the transformation temperature did not change monotonically with the increase in the boron content but reached a minimum at approximately 200 ppm of boron. A probable reason is the interplay between the amount of boron in the matrix and the amount of σ phase, which binds hcp-stabilizing elements (Cr and Re). Moreover, borides were identified in alloys with high boron content.

  19. A testbed for simultaneous measurement of fiber near and far-field for the evaluation of fiber scrambling properties

    NASA Astrophysics Data System (ADS)

    Feger, Tobias; Brucalassi, Anna; Grupp, Frank U.; Lang-Bardl, Florian; Holzwarth, Ronald; Hopp, Ulrich; Bender, Ralf

    2012-09-01

    To improve our understanding of fiber scrambling properties a test bed where fiber near-field and far-field can be measured simultaneously is described. A variety of measurements has been conducted with a selection of fibers from different vendors, including state-of-the-art octagonal and hexagonal fibers. After characterization of the test bench with respect to stability and resolution, scrambling measurements have been conducted using LEDs with central wavelengths ranging between 465-635 nm. The dependence on wavelength regarding to photometrical scrambling has been initially demonstrated. Moreover, two mechanical combined fiber cables have been analyzed that were made from octagonal-circular and hexagonal-octagonal fiber sections. In this context an apparatus for focal ratio degradation (FRD) measurements was assembled to compare different shaped fibers and fiber combinations. Finally, all these preliminary investigations will help in choosing a fiber with good radial scrambling performance for the next generation fiber-link of the fiber optic coupled Cassegrain echelle spectrograph FOCES intended to be operated at the 2.0m Fraunhofer Telescope at the Wendelstein Observatory.

  20. HIV-1 Nef hijacks clathrin coats by stabilizing AP-1:Arf1 polygons.

    PubMed

    Shen, Qing-Tao; Ren, Xuefeng; Zhang, Rui; Lee, Il-Hyung; Hurley, James H

    2015-10-23

    The lentiviruses HIV and simian immunodeficiency virus (SIV) subvert intracellular membrane traffic as part of their replication cycle. The lentiviral Nef protein helps viruses evade innate and adaptive immune defenses by hijacking the adaptor protein 1 (AP-1) and AP-2 clathrin adaptors. We found that HIV-1 Nef and the guanosine triphosphatase Arf1 induced trimerization and activation of AP-1. Here we report the cryo-electron microscopy structures of the Nef- and Arf1-bound AP-1 trimer in the active and inactive states. A central nucleus of three Arf1 molecules organizes the trimers. We combined the open trimer with a known dimer structure and thus predicted a hexagonal assembly with inner and outer faces that bind the membranes and clathrin, respectively. Hexagons were directly visualized and the model validated by reconstituting clathrin cage assembly. Arf1 and Nef thus play interconnected roles in allosteric activation, cargo recruitment, and coat assembly, revealing an unexpectedly intricate organization of the inner AP-1 layer of the clathrin coat. Copyright © 2015, American Association for the Advancement of Science.

  1. Large-area hexagonal silicon detectors for the CMS High Granularity Calorimeter

    NASA Astrophysics Data System (ADS)

    Pree, E.

    2018-02-01

    During the so-called Phase-2 Upgrade, the CMS experiment at CERN will undergo significant improvements to cope with the 10-fold luminosity increase of the High Luminosity LHC (HL-LHC) era. Especially the forward calorimetry will suffer from very high radiation levels and intensified pileup in the detectors. For this reason, the CMS collaboration is designing a High Granularity Calorimeter (HGCAL) to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (CE-E) and hadronic (CE-H) compartments. The CE-E and a large fraction of CE-H will consist of a sandwich structure with silicon as active detector material. This paper presents an overview of the ongoing sensor development for the HGCAL and highlights important design features and measurement techniques. The design and layout of an 8-inch silicon sensor prototype is shown. The hexagonal sensors consist of 235 pads, each with an area of about 1 cm2. Furthermore, Synopsys TCAD simulations regarding the high voltage stability of the sensors for different geometric parameters are performed. Finally, two different IV characterisation methods are compared on the same sensor.

  2. Quantifying the distribution of nanodiamonds in pre-Younger Dryas to recent age deposits along Bull Creek, Oklahoma Panhandle, USA

    NASA Astrophysics Data System (ADS)

    Bement, Leland C.; Madden, Andrew S.; Carter, Brian J.; Simms, Alexander R.; Swindle, Andrew L.; Alexander, Hanna M.; Fine, Scott; Benamara, Mourad

    2014-02-01

    High levels of nanodiamonds (nds) have been used to support the transformative hypothesis that an extraterrestrial (ET) event (comet explosion) triggered Younger Dryas changes in temperature, flora and fauna assemblages, and human adaptations [Firestone RB, et al. (2007) Proc Natl Acad Sci USA 104(41):16016-16021]. We evaluate this hypothesis by establishing the distribution of nds within the Bull Creek drainage of the Beaver River basin in the Oklahoma panhandle. The earlier report of an abundance spike of nds in the Bull Creek I Younger Dryas boundary soil is confirmed, although no pure cubic diamonds were identified. The lack of hexagonal nds suggests Bull Creek I is not near any impact site. Potential hexagonal nds at Bull Creek were found to be more consistent with graphene/graphane. An additional nd spike is found in deposits of late Holocene through the modern age, indicating nds are not unique to the Younger Dryas boundary. Nd distributions do not correlate with depositional environment, pedogenesis, climate perturbations, periods of surface stability, or cultural activity.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Peter J.; Song, Chaeyeon; Deek, Joanna

    Tau, an intrinsically disordered protein confined to neuronal axons, binds to and regulates microtubule dynamics. Although there have been observations of string-like microtubule fascicles in the axon initial segment (AIS) and hexagonal bundles in neurite-like processes in non-neuronal cells overexpressing Tau, cell-free reconstitutions have not replicated either geometry. Here we map out the energy landscape of Tau-mediated, GTP-dependent ‘active’ microtubule bundles at 37°C, as revealed by synchrotron SAXS and TEM. Widely spaced bundles (wall-to-wall distance D w–w≈25–41nm) with hexagonal and string-like symmetry are observed, the latter mimicking bundles found in the AIS. A second energy minimum (D w–w≈16–23nm) is revealedmore » under osmotic pressure. The wide spacing results from a balance between repulsive forces, due to Tau’s projection domain (PD), and a stabilizing sum of transient sub-k BT cationic/anionic charge–charge attractions mediated by weakly penetrating opposing PDs. In the end, we find that this landscape would be significantly affected by charge-altering modifications of Tau associated with neurodegeneration.« less

  4. A LDA + U study of the photoemission spectra of the double hexagonal close packed phases of Am and Cm

    NASA Astrophysics Data System (ADS)

    Islam, M. Fhokrul; Ray, Asok K.

    2010-05-01

    We have investigated the photoemission spectra and other electronic structure properties such as equilibrium volume and bulk modulus of double hexagonal close packed (dhcp) americium and the density of states (DOS) and magnetic properties of dhcp curium using the LDA+U method. Our calculations show that spin polarized americium is energetically favorable but spin degenerate configuration produces experimental quantities significantly better than those calculated using the spin polarized configuration. The density of states calculated using LDA+U with both non-magnetic and spin polarized configurations is compared and the non-magnetic DOS is shown to be in good agreement with experimental photoemission spectra when U=4.5 eV. In spin polarized case, the onsite interaction parameter, U, is observed to increase the splitting between occupied and unoccupied bands by enhancing the Stoner parameter. The DOS of both non-magnetic americium and anti-ferromagnetic curium are shown to be in good agreement with that calculated using dynamical mean field theory for these two heavy actinides. For curium exchange interaction appears to play a dominant role in magnetic stability.

  5. Scaling of graphene field-effect transistors supported on hexagonal boron nitride: radio-frequency stability as a limiting factor

    NASA Astrophysics Data System (ADS)

    Feijoo, Pedro C.; Pasadas, Francisco; Iglesias, José M.; Martín, María J.; Rengel, Raúl; Li, Changfeng; Kim, Wonjae; Riikonen, Juha; Lipsanen, Harri; Jiménez, David

    2017-12-01

    The quality of graphene in nanodevices has increased hugely thanks to the use of hexagonal boron nitride as a supporting layer. This paper studies to which extent hBN together with channel length scaling can be exploited in graphene field-effect transistors (GFETs) to get a competitive radio-frequency (RF) performance. Carrier mobility and saturation velocity were obtained from an ensemble Monte Carlo simulator that accounted for the relevant scattering mechanisms (intrinsic phonons, scattering with impurities and defects, etc). This information is fed into a self-consistent simulator, which solves the drift-diffusion equation coupled with the two-dimensional Poisson’s equation to take full account of short channel effects. Simulated GFET characteristics were benchmarked against experimental data from our fabricated devices. Our simulations show that scalability is supposed to bring to RF performance an improvement that is, however, highly limited by instability. Despite the possibility of a lower performance, a careful choice of the bias point can avoid instability. Nevertheless, maximum oscillation frequencies are still achievable in the THz region for channel lengths of a few hundreds of nanometers.

  6. Epitaxial Garnets and Hexagonal Ferrites.

    DTIC Science & Technology

    1983-12-01

    operating at frequencies between 1 GHz and 25 GHz. 2. Investigate LPE growth of lithium ferrite with the objective of preparing low-loss, large area films ...and hexagonal ferrites when the series of contracts began in 1975. At that time the liquid phase epitaxy method for growth of magnetic garnet films ...principal interest in epitaxial garnets was for magnetic bubble memories. For this Uapplication the films had to be about 3pm thick with low defect density

  7. Morphology Engineering of Co3O4 Nanoarrays as Free-Standing Catalysts for Lithium-Oxygen Batteries.

    PubMed

    He, Mu; Zhang, Peng; Xu, Shan; Yan, Xingbin

    2016-09-14

    The effective shape-controlled synthesis of Co3O4 nanoarrays on nickel foam substrates has been achieved through a simple hydrothermal strategy. When they served as the binder- and conductive-agent-free porous cathodes for nonaqueous Li-O2 batteries, they sufficiently reflect the favorable catalytic characteristic of Co3O4 and alleviate the problems of serious pore blocking and surface passivation caused by insoluble and insulating discharge products. In particular, Co3O4 rectangular nanosheets exhibit superior electrocatalytic performance comparing with Co3O4 nanowires and hexagonal nanosheets, leading to higher specific capacity and better cycling stability over 54 cycles at 100 mA g(-1), which relate to their good pore structure, large specific surface area, and highly active {112} exposed plane, effectively promoting the mass transport and reversible formation and decomposition of discharge products in the cathode. These comparisons further indicate the morphology effect of nanostructured Co3O4 on their performances as free-standing catalysts for Li-O2 batteries, which also have been proved through the further analysis of discharge products on different shapes of Co3O4 nanoarrays electrodes.

  8. Improved ceramic heat exchange material

    NASA Technical Reports Server (NTRS)

    Mccollister, H. L.

    1977-01-01

    Improved corrosion resistant ceramic materials that are suitable for use as regenerative heat exchangers for vehicular gas turbines is reported. Two glass-ceramic materials, C-144 and C-145, have superior durability towards sulfuric acid and sodium sulfate compared to lithium aluminosilicate (LAS) Corning heat exchange material 9455. Material C-144 is a leached LAS material whose major crystalline phase is silica keatite plus mullite, and C-145 is a LAS keatite solid solution (S.S.) material. In comparison to material 9455, material C-144 is two orders of magnitude better in dimensional stability to sulfuric acid at 300 C, and one order of magnitude better in stability to sodium sulfate at 1000 C. Material C-145 is initially two times better in stability to sulfuric acid, and about one order of magnitude better in stability to sodium sulfate. Both C-144 and C-145 have less than 300 ppm delta L/L thermal expansion from ambient to 1000 C, and good dimensional stability of less than approximately 100 ppm delta L/L after exposure to 1000 C for 100 hours. The glass-ceramic fabrication process produced a hexagonal honeycomb matrix having an 85% open frontal area, 50 micrometer wall thickness, and less than 5% porosity.

  9. Theory of phase stabilities and bonding mechanisms in stoichiometric and substoichiometric molybdenum carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hugosson, H.W.; Eriksson, O.; Nordstroem, L.

    1999-10-01

    First principles, total energy methods have been applied to predict the relative stabilities of the four experimentally verified MoC phases: the cubic {delta}(NaCl) phase and the three hexagonal {gamma}(WC), {eta} and {gamma}{sup {prime}}(TiAs) phases. The effect of vacancies on the relative stability of these four phases was investigated using a model structure with ordered vacancies within the carbon sublattice. For stoichiometric MoC, the {gamma} phase was found to be the most stable followed by {gamma}{sup {prime}}, {delta}, and {eta}, but for substoichiometric MoC{sub 0.75}, the order of relative stability was changed and the substoichiometric {delta} phase was found to havemore » the lowest energy followed by {gamma}{sup {prime}} and {gamma}. A study of the electronic structure revealed vacancy induced peaks in the density of state and the electron density attached to these peaks was analyzed and found to emanate from unscreened Mo{endash}Mo bonds through the carbon vacancy site. Finally, the oxygen stabilization of the {gamma}{sup {prime}} MoC phase was studied. {copyright} {ital 1999 American Institute of Physics.}« less

  10. A Highly Stable Porphyrinic Zirconium Metal–Organic Framework with shp-a Topology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Dawei; Gu, Zhi-Yuan; Chen, Ying-Pin

    2014-12-24

    Through a kinetically controlled synthetic process, we synthesized PCN-223, a new porphyrinic Zr-MOF constructed from the newly reported hexagonal prismatic 12-connected Zr6 cluster through an unusual disordered arrangement, giving rise to the first example of the shp-a network in MOFs. With its extremely high connectivity, PCN-223 shows high stability in aqueous solutions with a wide range of pH. Cationic PCN-223(Fe) formed by postsynthetic treatment is an excellent recyclable heterogeneous catalyst for the hetero-Diels–Alder reaction.

  11. Morphological, spectroscopic and thermal studies of samarium chloride coordinated single crystal grown by slow evaporation method

    NASA Astrophysics Data System (ADS)

    Slathia, Goldy; Raina, Bindu; Gupta, Rashmi; Bamzai, K. K.

    2018-05-01

    The synthesis of samarium chloride coordinated single crystal was carried out at room temperature by slow evaporation method. The crystal possesses a well defined hexagonal morphology with six symmetrically equivalent growth sectors separated by growth boundaries. The theoretical morphology has been established by structural approach using Bravaise-Friedele-Donnaye-Harker (BFDH) law. Fourier transform infra red spectroscopy was carried in order to study the geometry and structure of the crystal. The detailed thermogravimetric analysis elucidates the thermal stability of the complex.

  12. ARO 1.2: Solid Mechanics: Augmented Finite Element Method for High-Fidelity Analysis of Structural Composites

    DTIC Science & Technology

    2017-10-03

    Physics of Solids, 78 (314-332). 2014. 6. C . X. Zhang, J . Z. Song, Q. D. Yang, “Periodic buckling patterns of graphene/hexagonal boron nitride...Mechanics, 139 (78-97), 2015. 9. Y. C . Gu, J . Jung, Q. D. Yang, and W. Q. Chen, “A New Stabilizing Method for Numerical Analyses with Severe...Local and Global Instability”, ASME Journal of Applied Mechanics, 82 (101010-1, -12), 2015 10. J . Jung, B. C . Do, and Q. D. Yang, “A-FEM for Arbitrary

  13. Experimental observation of boron nitride chains.

    PubMed

    Cretu, Ovidiu; Komsa, Hannu-Pekka; Lehtinen, Ossi; Algara-Siller, Gerardo; Kaiser, Ute; Suenaga, Kazu; Krasheninnikov, Arkady V

    2014-12-23

    We report the formation and characterization of boron nitride atomic chains. The chains were made from hexagonal boron nitride sheets using the electron beam inside a transmission electron microscope. We find that the stability and lifetime of the chains are significantly improved when they are supported by another boron nitride layer. With the help of first-principles calculations, we prove the heteroatomic structure of the chains and determine their mechanical and electronic properties. Our study completes the analogy between various boron nitride and carbon polymorphs, in accordance with earlier theoretical predictions.

  14. Phase behavior and transitions of self-assembling nano-structured materials

    NASA Astrophysics Data System (ADS)

    Duan, Hu

    Homologous series of supramolecular nanostructures have been investigated by a combination of transmission electron microscopy (TEM), electron diffraction (ED), thermal polarized optical microscopy and X-ray diffraction (XRD). Materials include amphiphilic oligomers and polymer such as charged complexes, dipeptide dendrons semi-fluorinated dendron and polyethyleneimines. Upon microphase separation, they self-assemble into either cylindrical or spherical shapes, which co-organize into a 2D P6mm hexagonal columnar phase or 3D Pm 3¯ n and Im 3¯ m cubic phases. Correlation between the phase selection and molecular architecture is established accordingly. The order-disorder transition (ODT) is explored by rheometry and rheo-optical microscopy in a model polymeric compound poly(N-[3,4-bis(n-dodecan-1-yloxy)benzoyl]ethyleneimine). Shear alignment of the hexagonal columnar liquid crystalline phase along the velocity direction at low temperature and shear disordering in the vicinity of the ODT were observed. After cessation of shear, transformation back to the stable columnar phase follows a row-nucleation mechanism. The order-order transition process is explored in a monodendron that exhibits a hexagonal columnar and a weakly birefringent mesophase. Polarized DIC microscopy strongly supports an epitaxial relationship between them.

  15. Fabrication of stable, wide-bandgap thin films of Mg, Zn and O

    DOEpatents

    Katiyar, Ram S.; Bhattacharya, Pijush; Das, Rasmi R.

    2006-07-25

    A stable, wide-bandgap (approximately 6 eV) ZnO/MgO multilayer thin film is fabricated using pulsed-laser deposition on c-plane Al2O3 substrates. Layers of ZnO alternate with layers of MgO. The thickness of MgO is a constant of approximately 1 nm; the thicknesses of ZnO layers vary from approximately 0.75 to 2.5 nm. Abrupt structural transitions from hexagonal to cubic phase follow a decrease in the thickness of ZnO sublayers within this range. The band gap of the thin films is also influenced by the crystalline structure of multilayer stacks. Thin films with hexagonal and cubic structure have band-gap values of 3.5 and 6 eV, respectively. In the hexagonal phase, Mg content of the films is approximately 40%; in the cubic phase Mg content is approximately 60%. The thin films are stable and their structural and optical properties are unaffected by annealing at 750.degree. C.

  16. Crystal growth of incommensurate members of 2H-hexagonal perovskite related oxides: Ba{sub 4}M{sub z}Pt{sub 3−z}O{sub 9} (M=Co, Ni, Cu, Zn, Mg, Pt)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, Timothy; Morrison, Gregory; Yeon, Jeongho

    2016-04-15

    Millimeter sized crystals of six oxides of approximate composition Ba{sub 4}M{sub z}Pt{sub 3-z}O{sub 9} (M=Co, Ni, Cu, Zn, Mg, Pt) were grown from molten K{sub 2}CO{sub 3} fluxes and found to crystallize in a 2H hexagonal perovskite-related structure type. The compositions of these incommensurate structures, which belong to the A{sub 3n+3m}A′{sub n}B{sub 3m+n}O{sub 9m+6n} family of 2H hexagonal perovskite related oxides, were characterized by X-ray diffraction, energy dispersive spectroscopy, and magnetic susceptibility measurements. The specific synthetic considerations, crystal growth conditions, and magnetic susceptibility measurements are discussed. - Graphical abstract: SEM image and average commensurate unit cell of Ba{sub 4}Pt{sub 3}O{submore » 9.} - Highlights: • Single crystals of the series Ba{sub 4}A′{sub z}Pt{sub 3-z}O{sub 9} were grown via a molten carbonate flux. • Ba{sub 4}Pt{sub 3}O{sub 9} and all substitutional variants are incommensurate, composite structures. • All compounds have an approximate stoichiometry of Ba{sub 4}A′Pt{sub 2}O{sub 9.}.« less

  17. Positively-charged reduced graphene oxide as an adhesion promoter for preparing a highly-stable silver nanowire film

    NASA Astrophysics Data System (ADS)

    Sun, Qijun; Lee, Seong Jun; Kang, Hyungseok; Gim, Yuseong; Park, Ho Seok; Cho, Jeong Ho

    2015-04-01

    An ultrathin conductive adhesion promoter using positively charged reduced graphene oxide (rGO-NH3+) has been demonstrated for preparing highly stable silver nanowire transparent conductive electrodes (AgNW TCEs). The adhesion promoter rGO-NH3+, spray coated between the substrate and AgNWs, significantly enhances the chemical and mechanical stabilities of the AgNW TCEs. Besides, the ultrathin thickness of the rGO-NH3+ ensures excellent optical transparency and mechanical flexibility for TCEs. The AgNW films prepared using the adhesion promoter are extremely stable under harsh conditions, including ultrasonication in a variety of solvents, 3M Scotch tape detachment test, mechanical bending up to 0.3% strain, or fatigue over 1000 cycles. The greatly enhanced adhesion force is attributed to the ionic interactions between the positively charged protonated amine groups in rGO-NH3+ and the negatively charged hydroxo- and oxo-groups on the AgNWs. The positively charged GO-NH3+ and commercial polycationic polymer (poly allylamine hydrochloride) are also prepared as adhesion promoters for comparison with rGO-NH3+. Notably, the closely packed hexagonal atomic structure of rGO offers better barrier properties to water permeation and demonstrates promising utility in durable waterproof electronics. This work offers a simple method to prepare high-quality TCEs and is believed to have great potential application in flexible waterproof electronics.An ultrathin conductive adhesion promoter using positively charged reduced graphene oxide (rGO-NH3+) has been demonstrated for preparing highly stable silver nanowire transparent conductive electrodes (AgNW TCEs). The adhesion promoter rGO-NH3+, spray coated between the substrate and AgNWs, significantly enhances the chemical and mechanical stabilities of the AgNW TCEs. Besides, the ultrathin thickness of the rGO-NH3+ ensures excellent optical transparency and mechanical flexibility for TCEs. The AgNW films prepared using the adhesion promoter are extremely stable under harsh conditions, including ultrasonication in a variety of solvents, 3M Scotch tape detachment test, mechanical bending up to 0.3% strain, or fatigue over 1000 cycles. The greatly enhanced adhesion force is attributed to the ionic interactions between the positively charged protonated amine groups in rGO-NH3+ and the negatively charged hydroxo- and oxo-groups on the AgNWs. The positively charged GO-NH3+ and commercial polycationic polymer (poly allylamine hydrochloride) are also prepared as adhesion promoters for comparison with rGO-NH3+. Notably, the closely packed hexagonal atomic structure of rGO offers better barrier properties to water permeation and demonstrates promising utility in durable waterproof electronics. This work offers a simple method to prepare high-quality TCEs and is believed to have great potential application in flexible waterproof electronics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00777a

  18. Large-area synthesis of WSe2 from WO3 by selenium-oxygen ion exchange

    NASA Astrophysics Data System (ADS)

    Browning, Paul; Eichfeld, Sarah; Zhang, Kehao; Hossain, Lorraine; Lin, Yu-Chuan; Wang, Ke; Lu, Ning; Waite, A. R.; Voevodin, A. A.; Kim, Moon; Robinson, Joshua A.

    2015-03-01

    Few-layer tungsten diselenide (WSe2) is attractive as a next-generation electronic material as it exhibits modest carrier mobilities and energy band gap in the visible spectra, making it appealing for photovoltaic and low-powered electronic applications. Here we demonstrate the scalable synthesis of large-area, few-layer WSe2 via replacement of oxygen in hexagonally stabilized tungsten oxide films using dimethyl selenium. Cross-sectional transmission electron microscopy reveals successful control of the final WSe2 film thickness through control of initial tungsten oxide thickness, as well as development of layered films with grain sizes up to several hundred nanometers. Raman spectroscopy and atomic force microscopy confirms high crystal uniformity of the converted WSe2, and time domain thermo-reflectance provide evidence that near record low thermal conductivity is achievable in ultra-thin WSe2 using this method.

  19. High Current Emission from Patterned Aligned Carbon Nanotubes Fabricated by Plasma-Enhanced Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Cui, Linfan; Chen, Jiangtao; Yang, Bingjun; Jiao, Tifeng

    2015-12-01

    Vertically, carbon nanotube (CNT) arrays were successfully fabricated on hexagon patterned Si substrates through radio frequency plasma-enhanced chemical vapor deposition using gas mixtures of acetylene (C2H2) and hydrogen (H2) with Fe/Al2O3 catalysts. The CNTs were found to be graphitized with multi-walled structures. Different H2/C2H2 gas flow rate ratio was used to investigate the effect on CNT growth, and the field emission properties were optimized. The CNT emitters exhibited excellent field emission performance (the turn-on and threshold fields were 2.1 and 2.4 V/μm, respectively). The largest emission current could reach 70 mA/cm2. The emission current was stable, and no obvious deterioration was observed during the long-term stability test of 50 h. The results were relevant for practical applications based on CNTs.

  20. Tannic acid assisted synthesis of flake-like hydroxyapatite nanostructures at room temperature

    NASA Astrophysics Data System (ADS)

    Vázquez, Maricela Santana; Estevez, O.; Ascencio-Aguirre, F.; Mendoza-Cruz, R.; Bazán-Díaz, L.; Zorrila, C.; Herrera-Becerra, R.

    2016-09-01

    A simple and non-expensive procedure was performed to synthesize hydroxyapatite (HAp) flake-like nanostructures, by using a co-precipitation method with tannic acid as stabilizing agent at room temperature and freeze drying. Samples were synthesized with two different salts, Ca(NO3)2 and CaCl2. X-ray diffraction analysis, Raman spectroscopy, scanning and transmission electron microscopy characterizations reveal Ca10(PO4)6(OH)2 HAp particles with hexagonal structure and P63/m space group in both cases. In addition, the particle size was smaller than 20 nm. The advantage of this method over the works reported to date lies in the ease for obtaining HAp particles with a single morphology (flakes), in high yield. This opens the possibility of expanding the view to the designing of new composite materials based on the HAp synthesized at room temperature.

  1. Synthesis of Hexagonal Boron Nitride Mono layer: Control of Nucleation and Crystal Morphology

    DOE PAGES

    Stehle, Yijing Y.; Meyer, III, Harry M.; Unocic, Raymond R.; ...

    2015-11-10

    Mono layer hexagonal boron nitride (hBN) attracts significant attention due to the potential to be used as a complementary two-dimensional dielectric in fabrication of functional 2D heterostructures. Here we investigate the growth stages of the hBN single crystals and show that hBN crystals change their shape from triangular to truncated triangular and further to hexagonal depending on copper substrate distance from the precursor. We suggest that the observed hBN crystal shape variation is affected by the ratio of boron to nitrogen active species concentrations on the copper surface inside the CVD reactor. Strong temperature dependence reveals the activation energies formore » the hBN nucleation process of similar to 5 eV and crystal growth of similar to 3.5 eV. We also show that the resulting h-BN film morphology is strongly affected by the heating method of borazane precursor and the buffer gas. Elucidation of these details facilitated synthesis of high quality large area monolayer hexagonal boron nitride by atmospheric pressure chemical vapor deposition on copper using borazane as a precursor.« less

  2. STM/STS Study of LixCoO2 Single Crystals

    NASA Astrophysics Data System (ADS)

    Iwaya, Katsuya; Minato, Taketoshi; Miyoshi, Kiyotaka; Takeuchi, Jun; Kim, Yousoo; Hitosugi, Taro

    2012-02-01

    We have performed low temperature scanning tunneling microscopy/spectroscopy (STM/STS) measurements on LixCoO2 (x=0.66) single crystal surfaces. A (1x1) hexagonal lattice was clearly observed and found to be moved by changing bias-voltage polarity, indicating that this could be associated with Li ions on the surface. Under the (1x1) hexagonal lattice, we imaged almost randomly distributed bright dots that were strongly dependent on bias-voltage, with insulating spectroscopic features. Different area on the surface showed a (2x2) hexagonal lattice that could be related to an ordering of Co^3+ and Co^4+ ions. These results suggest the electronic structure of LixCoO2 surface is inhomogeneous possibly due to segregation of Li ions.

  3. Crystallization and preliminary characterization of a highly thermostable lectin from Trichosanthes dioica and comparison with other Trichosanthes lectins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dharkar, Poorva D.; Anuradha, P.; Gaikwad, Sushama M.

    2006-03-01

    A lectin from Trichosanthes dioica seeds has been purified and crystallized using 25%(w/v) PEG 2K MME, 0.2 M ammonium acetate, 0.1 M Tris–HCl pH 8.5 and 50 µl 0.5%(w/v) n-octyl β-d-glucopyranoside as thick needles belonging to hexagonal space group P6{sub 4}. A lectin from Trichosanthes dioica seeds has been purified and crystallized using 25%(w/v) PEG 2K MME, 0.2 M ammonium acetate, 0.1 M Tris–HCl pH 8.5 and 50 µl 0.5%(w/v) n-octyl β-d-glucopyranoside as thick needles belonging to hexagonal space group P6{sub 4}. Unit-cell parameters were a = b = 167.54, c = 77.42 Å. The crystals diffracted to a Braggmore » spacing of 2.8 Å. Both the structures of abrin-a and T. kirilowii lectin could be used as a model in structure determination using the molecular-replacement method; however, T. kirilowii lectin coordinates gave better values of reliability and correlation parameters. The thermal, chemical and pH stability of this lectin have also been studied. When heated, its haemagglutination activity remained unaffected up to 363 K. Other stability studies show that 4 M guanidinium hydrochloride (Gdn–HCl) initiates unfolding and that the protein is completely unfolded at 6 M Gdn–HCl. Treatment with urea resulted in a total loss of activity at higher concentrations of denaturant with no major structural changes. The protein remained stable over a wide pH range, from pH 6 to pH 12, except for partial unfolding at extremely alkaline pH. The role of disulfide bonds in the protein stability was found to be insignificant. Rayleigh light-scattering studies showed no molecular aggregation in any of the extreme treated conditions. The unusual stability of this lectin resembles that of type II ribosome-inactivating proteins (type II RIPs), which is also supported by structure determination. The structural features observed in a preliminary electron-density map were compared with the other two available Trichosanthes lectin structures.« less

  4. Consideration of critical axial properties of pristine and defected carbon nanotubes under compression.

    PubMed

    Ranjbartoreh, A R; Su, D; Wang, G

    2012-06-01

    Carbon nanotubes are hexagonally configured carbon atoms in cylindrical structures. Exceptionally high mechanical strength, electrical conductivity, surface area, thermal stability and optical transparency of carbon nanotubes outperformed other known materials in numerous advanced applications. However, their mechanical behaviors under practical loading conditions remain to be demonstrated. This study investigates the critical axial properties of pristine and defected single- and multi-walled carbon nanotubes under axial compression. Molecular dynamics simulation method has been employed to consider the destructive effects of Stone-Wales and atom vacancy defects on mechanical properties of armchair and zigzag carbon nanotubes under compressive loading condition. Armchair carbon nanotube shows higher axial stability than zigzag type. Increase in wall number leads to less susceptibility of multi-walled carbon nanotubes to defects and higher stability of them under axial compression. Atom vacancy defect reveals higher destructive effect than Stone-Wales defect on mechanical properties of carbon nanotubes. Critical axial strain of single-walled carbon nanotube declines by 67% and 26% due to atom vacancy and Stone-Wales defects.

  5. Application of geocomposite placed beneath ballast bed to improve ballast quality and track stability

    NASA Astrophysics Data System (ADS)

    Horníček, Leoš; Břešt'ovský, Petr; Jasanský, Petr

    2017-09-01

    The article deals with the application of a stabilization hexagonal geocomposite for the improvement of poor stability of railway tracks caused by undesirable migration of fine soil particles from the subgrade into the ballast bed. The establishment of a test railway section on a single-line track situated near Domazlice and its long-term monitoring programme are described. Evaluation is aimed especially at track geometry parameters, the load-bearing capacity of the ballast bed, elastic rail deflection during train passages and the durability of geocomposite’s physical properties. The data taken from the test section during five measurement campaigns are compared with both adjacent sections. In one of them, only the ballast bed renovation was carried out, whereas in the second one no intervention was performed at all. The usage of a pioneering geosynthetic product in combination with new trends in ballast bed restoration seems to be an innovative as well as effective solution to analogous problematic spots on railway tracks in the Czech Republic.

  6. Tapping into the Hexagon spy imagery database: A new automated pipeline for geomorphic change detection

    NASA Astrophysics Data System (ADS)

    Maurer, Joshua; Rupper, Summer

    2015-10-01

    Declassified historical imagery from the Hexagon spy satellite database has near-global coverage, yet remains a largely untapped resource for geomorphic change studies. Unavailable satellite ephemeris data make DEM (digital elevation model) extraction difficult in terms of time and accuracy. A new fully-automated pipeline for DEM extraction and image orthorectification is presented which yields accurate results and greatly increases efficiency over traditional photogrammetric methods, making the Hexagon image database much more appealing and accessible. A 1980 Hexagon DEM is extracted and geomorphic change computed for the Thistle Creek Landslide region in the Wasatch Range of North America to demonstrate an application of the new method. Surface elevation changes resulting from the landslide show an average elevation decrease of 14.4 ± 4.3 m in the source area, an increase of 17.6 ± 4.7 m in the deposition area, and a decrease of 30.2 ± 5.1 m resulting from a new roadcut. Two additional applications of the method include volume estimates of material excavated during the Mount St. Helens volcanic eruption and the volume of net ice loss over a 34-year period for glaciers in the Bhutanese Himalayas. These results show the value of Hexagon imagery in detecting and quantifying historical geomorphic change, especially in regions where other data sources are limited.

  7. Supramolecular structures of halogenated oligothiophenes on the Si(111)-√3 ×√3-Ag surface

    NASA Astrophysics Data System (ADS)

    Liu, R.; Fu, C.; Perepichka, D. F.; Gallagher, M. C.

    2016-05-01

    We have studied the adsorption of brominated tetrathienoanthracene (TBTTA) molecules onto the Si(111)-√3 × √ 3-Ag surface at room temperature. The two-dimensional √ 3 silver adlayer acts to passivate the silicon surface and provides a high-mobility template for TBTTA adsorption. Scanning tunneling microscopy (STM) images reveal that at low coverage, the molecules readily migrate to step edges and defects in the √ 3 overlayer. With increasing coverage, the molecules eventually form compact supramolecular structures. In terms of the hexagonal √ 3 lattice vectors (a√ 3 and b√ 3), the oblique unit cell of these structures can be defined by lattice vectors am = 3a√ 3 + 2b√ 3, and bm = - a√ 3 + b√ 3. The structures are quite fragile and can decompose under repeated STM imaging. This is particularly true at higher bias and suggests an electric field-induced dissociation in these instances. With increasing molecular dose, the size and stability of the structures increases. At higher coverage, the spatial extent of the supramolecular structures is often limited by defects in the underlying √ 3 layer. Our results suggest that the √ 3-Ag surface provides a relatively inert substrate for the adsorption of TBTTA molecules, and that the supramolecular structures are held together by relatively weak intermolecular forces.

  8. Syntheses, crystal structures, and properties of new layered tungsten(VI)-containing materials based on the hexagonal-WO{sub 3} structure: M{sub 2}(WO{sub 3}){sub 3}SeO{sub 3} (M = NH{sub 4}, Rb, Cs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, W.T.A.; Dussack, L.L.; Jacobson, A.J.

    The hydrothermal syntheses and crystal structures of (NH{sub 4}){sub 2}(WO{sub 3}){sub 3}SeO{sub 3} and Cs{sub 2}(WO{sub 3}){sub 3}SeO{sub 3}, two new noncentrosymmetric, layered tungsten(VI)-containing phases are reported. Infrared, Raman, and thermogravimetric data are also presented. (NH{sub 4}){sub 2}(WO{sub 3}){sub 3}SeO{sub 3} and Cs{sub 2}(WO{sub 3}){sub 3}SeO{sub 3} are isostructural phases built up from hexagonal-tungsten-oxide-like, anionic layers of vertex-sharing WO{sub 6} octahedra, capped on one side by Se atoms (as selenite groups). Interlayer NH{sub 4}{sup +} or Cs{sup +} cations provide charge balance. The full H-bonding scheme in (NH{sub 4}){sub 2}(WO{sub 3}){sub 3}SeO{sub 3} has been elucidated from Rietveld refinement againstmore » neutron powder diffraction data. The WO{sub 6} octahedra display a 3 short + 3 long W-O bond-distance distribution within the WO{sub 6} unit in both these phases. (NH{sub 4}){sub 2}(WO{sub 3}){sub 3}SeO{sub 3} and Cs{sub 2}(WO{sub 3}){sub 3}SeO{sub 3} are isostructural with their molybdenum(VI)-containing analogues (NH{sub 4}){sub 2}(MoO{sub 3}){sub 3}SeO{sub 3} and Cs{sub 2} (MoO{sub 3}){sub 3}SeO{sub 3}. Crystal data: (NH{sub 4}){sub 2}(WO{sub 3}){sub 3}SeO{sub 3}, M{sub r} = 858.58, hexagonal, space group P6{sub 3} (No. 173), a = 7.2291(2) {angstrom}, c = 12.1486(3) {angstrom}, V = 549.82(3) {angstrom}{sup 3}, Z = 2, R{sub p} = 1.81%, and R{sub wp} = 2.29% (2938 neutron powder data). Cs{sub 2}(WO{sub 3}){sub 3}SeO{sub 3}, M{sub r} = 1088.31, hexagonal, space group P6{sub 3} (no. 173), a = 7.2615(2) {angstrom}, c = 12.5426(3) {angstrom}{sup 3}, Z = 2, R{sub p} = 4.84%, and R{sub wp} = 5.98% (2588 neutron powder data).« less

  9. Measurement of the rotational misfit and implant-abutment gap of all-ceramic abutments.

    PubMed

    Garine, Wael N; Funkenbusch, Paul D; Ercoli, Carlo; Wodenscheck, Joseph; Murphy, William C

    2007-01-01

    The specific aims of this study were to measure the implant and abutment hexagonal dimensions, to measure the rotational misfit between implant and abutments, and to correlate the dimension of the gap present between the abutment and implant hexagons with the rotational misfit of 5 abutment-implant combinations from 2 manufacturers. Twenty new externally hexed implants (n = 10 for Nobel Biocare; n = 10 for Biomet/3i) and 50 new abutments were used (n = 10; Procera Zirconia; Procera Alumina; Esthetic Ceramic Abutment; ZiReal; and GingiHue post ZR Zero Rotation abutments). The mating surfaces of all implants and abutments were imaged with a scanning electron microscope before and after rotational misfit measurements. The distances between the corners and center of the implant and abutment hexagon were calculated by entering their x and y coordinates, measured on a measuring microscope, into Pythagoras' theorem. The dimensional difference between abutment and implant hexagons was calculated and correlated with the rotational misfit, which was recorded using a precision optical encoder. Each abutment was rotated (3 times/session) clockwise and counterclockwise until binding. Analysis of variance and Student-Newman-Keuls tests were used to compare rotational misfit among groups (alpha = .05). With respect to rotational misfit, the abutment groups were significantly different from one another (P < .001), with the exception of the Procera Zirconia and Esthetic Ceramic groups (P = .4). The mean rotational misfits in degrees were 4.13 +/- 0.68 for the Procera Zirconia group, 3.92 +/- 0.62 for the Procera Alumina group, 4.10 +/- 0.67 for the Esthetic Ceramic group, 3.48 +/- 0.40 for the ZiReal group, and 1.61 +/- 0.24 for the GingiHue post ZR group. There was no correlation between the mean implant-abutment gap and rotational misfit. Within the limits of this study, machining inconsistencies of the hexagons were found for all implants and abutments tested. The GingiHue Post showed the smallest rotational misfit. All-ceramic abutments without a metal collar showed a greater rotational misfit than those with a metal collar.

  10. Hexagonal quartz resonator

    DOEpatents

    Peters, R.D.M.

    1982-11-02

    A generally flat, relatively thin AT-cut piezoelectric resonator element structured to minimize the force-frequency effect when mounted and energized in a housing. The resonator is in the form of an equilateral hexagon with the X crystallographic axis of the crystal passing through one set of opposing corners with mounting being effected at an adjacent set of corners respectively [+-]60[degree] away from the X axis which thereby results in a substantially zero frequency shift of the operating frequency. 3 figs.

  11. Electrochemical performance of LiCoO 2 cathodes by surface modification using lanthanum aluminum garnet

    NASA Astrophysics Data System (ADS)

    Lu, Cheng-Zhang; Chen, Jin-Ming; Cho, Yung-Da; Hsu, Wen-Hsiang; Muralidharan, P.; Fey, George Ting-Kuo

    LiCoO 2 particles were coated with various wt.% of lanthanum aluminum garnets (3LaAlO 3:Al 2O 3) by an in situ sol-gel process, followed by calcination at 1123 K for 12 h in air. X-ray diffraction (XRD) patterns confirmed the formation of a 3LaAlO 3:Al 2O 3 compound and the in situ sol-gel process synthesized 3LaAlO 3:Al 2O 3-coated LiCoO 2 was a single-phase hexagonal α-NaFeO 2-type structure of the core material without any modification. Scanning electron microscope (SEM) images revealed a modification of the surface of the cathode particles. Transmission electron microscope (TEM) images exposed that the surface of the core material was coated with a uniform compact layer of 3LaAlO 3:Al 2O 3, which had an average thickness of 40 nm. Galvanostatic cycling studies demonstrated that the 1.0 wt.% 3LaAlO 3:Al 2O 3-coated LiCoO 2 cathode showed excellent cycle stability of 182 cycles, which was much higher than the 38 cycles sustained by the pristine LiCoO 2 cathode material when it was charged at 4.4 V.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahab, Rizwan; Ansari, S.G.; Kim, Y.S.

    Synthesis of flower-shaped ZnO nanostructures composed of hexagonal ZnO nanorods was achieved by the solution process using zinc acetate dihydrate and sodium hydroxide at very low temperature of 90 deg. C in 30 min. The individual nanorods are of hexagonal shape with sharp tip, and base diameter of about 300-350 nm. Detailed structural characterizations demonstrate that the synthesized products are single crystalline with the wurtzite hexagonal phase, grown along the [0 0 0 1] direction. The IR spectrum shows the standard peak of zinc oxide at 523 cm{sup -1}. Raman scattering exhibits a sharp and strong E{sub 2} mode atmore » 437 cm{sup -1} which further confirms the good crystallinity and wurtzite hexagonal phase of the grown nanostructures. The photoelectron spectroscopic measurement shows the presence of Zn, O, C, zinc acetate and Na. The binding energy ca. 1021.2 eV (Zn 2p{sub 3/2}) and 1044.3 eV (Zn 2p{sub 1/2}), are found very close to the standard bulk ZnO binding energy values. The O 1s peak is found centered at 531.4 eV with a shoulder at 529.8 eV. Room-temperature photoluminescence (PL) demonstrate a strong and dominated peak at 381 nm with a suppressed and broad green emission at 515 nm, suggests that the flower-shaped ZnO nanostructures have good optical properties with very less structural defects.« less

  13. Synthesis, analysis and processing of novel materials in the yttrium oxide-aluminum oxide system

    NASA Astrophysics Data System (ADS)

    Marchal, Julien Claudius

    In the current work, liquid feed flame spray pyrolysis (LF-FSP) was used to create three novel nanopowders in the Y2O3-Al 2O3 system: alpha-Al2O3, YAG (garnet Y3Al5O12) and hexagonal Y3Al 5O12. For example, LF-FSP combustion of metalloorganic yttrium and aluminum precursors in a 3/5 ratio forms hexagonal Y3Al5O 12, a newly discovered crystalline phase detailed in this work. The resulting 15-35 nm average particle size, single crystal nanopowders were characterized by TGA-DTA, XRD, HR-TEM, electron diffraction and FTIR. The data was used to establish a model for the crystal structure of this new phase (hexagonal, with crystal parameter of a = 0.736 nm, c = 1.052) consisting of a superlattice of substituted hexagonal YAlO3. YAG has been extensively investigated for its applications as scintillators, phosphors and as a laser host. Fully dispersible, unaggregated single crystal YAG nanopowders with average particle sizes of 35-50 nm were obtained from hexagonal Y3Al5O12 after annealing at 850°C-1200°C (for 2h-8d). The resulting YAG nanopowder was processed into green bodies using cold isostatic pressing after adding binders. 99%+ dense monoliths were obtained after sintering at 1400°C in vacuum (6-8 h), while maintaining grain sizes < 500 nm. The ability to sinter while keeping sub-micron grains differs from present techniques (where translucency is obtained through exaggerated grain growth to 5-10 microns) reported in the literature for sintering polycrystalline YAG, and is the first step for improving polycrystalline YAG laser host optical properties. LF-FSP processing of transition Al2O3 nanopowders converts them to single crystal alpha-Al2O3 nanopowders, previously thought impossible to obtain. The alpha-Al2O 3 nanopowders thus obtained, consist of unaggregated 30-40 nm single particles. These nanopowders were characterized by XRD, HR-TEM, SEM, DLS, FTIR. Green bodies of alpha-Al2O3 nanopowders were sintered to 99% density without sintering aids at 1400°C (6-8 h). After HIPing at 1400°C and 138 MPa, the pellets exhibited some transparency. LF-FSP thus allows synthesis of large quantities of previously unavailable alpha-Al 2O3 nanopowders necessary for developing nanograined alpha-Al 2O3 ceramic monoliths for transparent armors, polycrystalline laser hosts and prosthetic implants. Most importantly, it demonstrates the use of LF-FSP to modify the crystalline phase of nanopowders, without causing aggregation.

  14. Development of Low-cost, High Energy-per-unit-area Solar Cell Modules

    NASA Technical Reports Server (NTRS)

    Jones, G. T.; Chitre, S.; Rhee, S. S.

    1978-01-01

    The development of two hexagonal solar cell process sequences, a laserscribing process technique for scribing hexagonal and modified hexagonal solar cells, a large through-put diffusion process, and two surface macrostructure processes suitable for large scale production is reported. Experimental analysis was made on automated spin-on anti-reflective coating equipment and high pressure wafer cleaning equipment. Six hexagonal solar cell modules were fabricated. Also covered is a detailed theoretical analysis on the optimum silicon utilization by modified hexagonal solar cells.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalsi, Deepti; Rayaprol, S.; Siruguri, V.

    We report the crystallographic properties of RE{sub 2}NiGe{sub 3} (RE=La, Ce) synthesized by arc melting. Rietveld refinement on the powder neutron diffraction (ND) data suggest both compounds are isostructural and crystallize in the non-centrosymmetric Er{sub 2}RhSi{sub 3} type structure having hexagonal space group P6{sup ¯}2c. In the crystal structure of RE{sub 2}NiGe{sub 3}, two dimensional arrangements of nickel and germanium atoms lead to the formation of hexagonal layers with rare earth atoms sandwiched between them. Magnetic susceptibility measurements performed in low fields exhibit antiferromagnetic ordering in cerium compound around (T{sub o}=) 3.2 K. Neutron diffraction measurements at 2.8 K (i.e.,more » at T« less

  16. Order and Jamming on Curved Surfaces

    NASA Astrophysics Data System (ADS)

    Burke, Christopher J.

    Geometric frustration occurs when a physical system's preferred ordering (e.g. spherical particles packing in a hexagonal lattice) is incompatible with the system's geometry. An example of this occurs in arrested relaxation in Pickering emulsions. Pickering emulsions are emulsions (e.g. mixtures of oil and water) with colloidal particles mixed in. The particles tend to lie at an oil-water interface, and can coat the surface of droplets within the emulsion (e.g. an oil droplet surrounded by water.) If a droplet is deformed from its spherical ground state, more particles adsorb at the surface, and the droplet is allowed to relax, then the particles on the surface can become close packed and prevent further relaxation, arresting the droplet in a non-spherical shape. The resulting structures tend to be relatively well ordered with regions of highly hexagonal packings; however, the curvature of the surface prevents perfect ordering and defects in the packing are required. These defects may influence the stability of these structures, making it important to understand how to predict and control them for applications in the food, cosmetic, oil, and medical industries. In this work, we use simulations to study the ordering and stability of sphere packings on arrested emulsions droplets. We first isolate the role of surface geometry by creating packings on a static ellipsoidal surface. Next we perform simulations which include dynamic effects that are present in the experimental Pickering emulsion system. Packings are created by evolving an ellipsoidal surface towards a spherical shape at fixed volume; the effects of relaxation rate, interparticle attraction, and gravity are determined. Finally, we study jamming on curved surfaces. Packings of hard particles are used to study marginally stable packings and the role curvature plays in constraining them. We also study packings of soft particles, compressed beyond marginal stability, and find that geometric frustration plays an important role in determining their mechanical properties.

  17. Structure, stability, and photoluminescence in the anti-perovskites Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F (0≤x≤1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Eirin, E-mail: esulliv@ilstu.edu; Avdeev, Maxim; Blom, Douglas A.

    2015-10-15

    Single-phase ordered oxyfluorides Na{sub 3}WO{sub 4}F, Na{sub 3}MoO{sub 4}F and their mixed members Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F can be prepared via facile solid state reaction of Na{sub 2}MO{sub 4}·2H{sub 2}O (M=W, Mo) and NaF. Phases produced from incongruent melts are metastable, but lower temperatures allow for a facile one-step synthesis. In polycrystalline samples of Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F, the presence of Mo stabilizes the structure against decomposition to spinel phases. Photoluminescence studies show that upon excitation with λ=254 nm and λ=365 nm, Na{sub 3}WO{sub 4}F and Na{sub 3}MoO{sub 4}F exhibit broad emission maxima centered around 485 nm. Thesemore » materials constitute new members of the family of self-activating ordered oxyfluoride phosphors with anti-perovskite structures which are amenable to doping with emitters such as Eu{sup 3+}. - Graphical abstract: Directed synthesis of the ordered oxyfluorides Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F (0≤x≤1) has shown that a complete solid solution is attainable and provides the first example of photoluminescence in these materials. - Highlights: • Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F is a complete solid solution with hexagonal anti-perovskite structure. • The presence of even small amounts of Mo stabilizes the structure against decomposition. • Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F has broad emissions centered ≈485 nm (λ{sub ex}=254 nm and λ{sub ex}=365 nm). • These materials constitute a new family of self-activated oxyfluoride phosphors. • Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F materials are amenable to doping with emitters such as Eu{sup 3+}.« less

  18. Fatigue Failure of External Hexagon Connections on Cemented Implant-Supported Crowns.

    PubMed

    Malta Barbosa, João; Navarro da Rocha, Daniel; Hirata, Ronaldo; Freitas, Gileade; Bonfante, Estevam A; Coelho, Paulo G

    2018-01-17

    To evaluate the probability of survival and failure modes of different external hexagon connection systems restored with anterior cement-retained single-unit crowns. The postulated null hypothesis was that there would be no differences under accelerated life testing. Fifty-four external hexagon dental implants (∼4 mm diameter) were used for single cement-retained crown replacement and divided into 3 groups: (3i) Full OSSEOTITE, Biomet 3i (n = 18); (OL) OEX P4, Osseolife Implants (n = 18); and (IL) Unihex, Intra-Lock International (n = 18). Abutments were torqued to the implants, and maxillary central incisor crowns were cemented and subjected to step-stress-accelerated life testing in water. Use-level probability Weibull curves and probability of survival for a mission of 100,000 cycles at 200 N (95% 2-sided confidence intervals) were calculated. Stereo and scanning electron microscopes were used for failure inspection. The beta values for 3i, OL, and IL (1.60, 1.69, and 1.23, respectively) indicated that fatigue accelerated the failure of the 3 groups. Reliability for the 3i and OL (41% and 68%, respectively) was not different between each other, but both were significantly lower than IL group (98%). Abutment screw fracture was the failure mode consistently observed in all groups. Because the reliability was significantly different between the 3 groups, our postulated null hypothesis was rejected.

  19. Effect of cyclic load on vertical misfit of prefabricated and cast implant single abutment

    PubMed Central

    DE JESUS TAVAREZ, Rudys Rodolfo; BONACHELA, Wellington Cardoso; XIBLE, Anuar Antônio

    2011-01-01

    Objective The purpose of this in vitro study was to evaluate misfit alterations at the implant/abutment interface of external and internal connection implant systems when subjected to cyclic loading. Material and Methods Standard metal crowns were fabricated for 5 groups (n=10) of implant/abutment assemblies: Group 1, external hexagon implant and UCLA cast-on premachined abutment; Group 2, internal hexagon implant and premachined abutment; Group 3, internal octagon implant and prefabricated abutment; Group 4, external hexagon implant and UCLA cast-on premachined abutment; and Group 5, external hexagon implant and Ceraone abutment. For groups 1, 2, 3 and 5, the crowns were cemented on the abutments and in group 4 crowns were screwed directly on the implant. The specimens were subjected to 500,000 cycles at 19.1 Hz of frequency and non-axial load of 133 N in a MTS 810 machine. The vertical misfit (μm) at the implant/abutment interface was evaluated before (B) and after (A) application of the cyclic loading. Data were analyzed statistically by using two-away ANOVA and Tukey’s post-hoc test (p<0.05). Results Before loading values showed no difference among groups 2 (4.33±3.13), 3 (4.79±3.43) and 5 (3.86±4.60); between groups 1 (12.88±6.43) and 4 (9.67±3.08), and among groups 2, 3 and 4. However, groups 1 and 4 were significantly different from groups 2, 3 and 5. After loading values of groups 1 (17.28±8.77) and 4 (17.78±10.99) were significantly different from those of groups 2 (4.83±4.50), 3 (8.07±4.31) and 5 (3.81±4.84). There was a significant increase in misfit values of groups 1, 3 and 4 after cyclic loading, but not for groups 2 and 5. Conclusion The cyclic loading and type of implant/abutment connection may develop a role on the vertical misfit at the implant/abutment interface. PMID:21437464

  20. Novel metal(II) coordination polymers based on N,N'-bis-(4-pyridyl)phthalamide as supercapacitor electrode materials in an aqueous electrolyte.

    PubMed

    Gong, Yun; Li, Jian; Jiang, Peng-Gang; Li, Qing-Fang; Lin, Jian-Hua

    2013-02-07

    Based on the redox-active L (N,N'-bis-(4-pyridyl)phthalamide) ligand, two porous MOFs formulated as Zn(6)(BPC)(6)(L)(3)·9DMF (H(2)BPC = 4,4'-biphenyldicarboxylic acid) (1) and Cd(2)(TDC)(2)(L)(2)·4H(2)O (H(2)TDC = 2,5-thiophenedicarboxylic acid) (2) were synthesized and structurally characterized by single-crystal X-ray diffractions. Complex 1 features a uninodal 5-connected 3-fold interpenetrated 3D framework with {4(6).6(4)}-bnn hexagonal BN topology. Complex 2 displays a uninodal 6-connected 2-fold interpenetrated 3D framework with {4(12).6(3)}-pcu topology. When complexes 1 and 2 are used as supercapacitor electrode materials, they can provide a large voltage window as high as 2.6 V in an aqueous electrolyte, and their specific capacitances are much more than the value for the bare carbon glassy electrode. It is observed that the more the current density, the less the specific capacitance for the two kinds of supercapacitor electrode materials. The two complexes show different thermal stabilities, UV absorption and photoluminescence properties.

  1. CFA-4 - a fluorinated metal-organic framework with exchangeable interchannel cations.

    PubMed

    Fritzsche, J; Grzywa, M; Denysenko, D; Bon, V; Senkovska, I; Kaskel, S; Volkmer, D

    2017-05-23

    The syntheses and crystal structures of the fluorinated linker 1,4-bis(3,5-bis(trifluoromethyl)-1H-pyrazole-4-yl)benzene (H 2 -tfpb; 1) and the novel metal-organic framework family M[CFA-4] (Coordination Framework Augsburg University-4), M[Cu 5 (tfpb) 3 ] (M = Cu(i), K, Cs, Ca(0.5)), are described. The ligand 1 is fully characterized by single crystal X-ray diffraction, photoluminescence-, NMR-, IR spectroscopy, and mass spectrometry. The copper(i)-containing MOF crystallizes in the hexagonal crystal system within the chiral space group P6 3 22 (no. 182) and the unit cell parameters are as follows: a = 23.630(5) Å, c = 41.390(5) Å, V = 20 015(6) Å 3 . M[CFA-4] features a porous 3-D structure constructed from pentanuclear copper(i) secondary building units {Cu(pz) 6 } - (pz = pyrazolate). Cu(I)[CFA-4] is fully characterized by synchrotron single crystal X-ray diffraction, thermogravimetric analysis, variable temperature powder X-ray diffraction, IR spectroscopy, photoluminescence and gas sorption measurements. Moreover, thermal stability and gas sorption properties of K[CFA-4] and Cu(I)[CFA-4] are compared.

  2. Pattern formation in superdiffusion Oregonator model

    NASA Astrophysics Data System (ADS)

    Feng, Fan; Yan, Jia; Liu, Fu-Cheng; He, Ya-Feng

    2016-10-01

    Pattern formations in an Oregonator model with superdiffusion are studied in two-dimensional (2D) numerical simulations. Stability analyses are performed by applying Fourier and Laplace transforms to the space fractional reaction-diffusion systems. Antispiral, stable turing patterns, and travelling patterns are observed by changing the diffusion index of the activator. Analyses of Floquet multipliers show that the limit cycle solution loses stability at the wave number of the primitive vector of the travelling hexagonal pattern. We also observed a transition between antispiral and spiral by changing the diffusion index of the inhibitor. Project supported by the National Natural Science Foundation of China (Grant Nos. 11205044 and 11405042), the Research Foundation of Education Bureau of Hebei Province, China (Grant Nos. Y2012009 and ZD2015025), the Program for Young Principal Investigators of Hebei Province, China, and the Midwest Universities Comprehensive Strength Promotion Project.

  3. X-ray crystal structures of native HIV-1 capsid protein reveal conformational variability

    DOE PAGES

    Gres, Anna T.; Kirby, Karen A.; KewalRamani, Vineet N.; ...

    2015-06-04

    The detailed molecular interactions between native HIV-1 capsid protein (CA) hexamers that shield the viral genome and proteins have been elusive. In this paper, we report crystal structures describing interactions between CA monomers related by sixfold symmetry within hexamers (intrahexamer) and threefold and twofold symmetry between neighboring hexamers (interhexamer). The structures describe how CA builds hexagonal lattices, the foundation of mature capsids. Lattice structure depends on an adaptable hydration layer modulating interactions among CA molecules. Disruption of this layer alters interhexamer interfaces, highlighting an inherent structural variability. A CA-targeting antiviral affects capsid stability by binding across CA molecules and subtlymore » altering interhexamer interfaces remote to the ligand-binding site. Finally, inherent structural plasticity, hydration layer rearrangement, and effector binding affect capsid stability and have functional implications for the retroviral life cycle.« less

  4. Investigation of the thermal stability of 1T'-MoTe2 multilayers via Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Herman, Irving P.; Wang, Dennis; Smyser, Kori; Rhodes, Daniel; Pasupathy, Abhay N.

    The distorted octahedral (1T') form of MoTe2 has garnered much interest in recent years because of its potential applications as a quantum spin hall insulator. Here we study the structural stability of 1T'-MoTe2 multilayers encapsulated by hexagonal boron nitride (hBN) above room temperature by tracking the evolution of its Raman spectrum and cross-checking the results with atomic force microscopy (AFM). Our data indicate the presence of both linear and nonlinear redshifts in peak positions upon heating and, furthermore, suggest the irreversible degradation of the original compound into tellurium nanocrystals at higher temperatures. We discuss the implications of these findings for related optical and transport experiments involving this material and how encapsulation may help extend the lifetime of such devices. NSF IGERT (DGE-1069240).

  5. Structure of collagen-glycosaminoglycan matrix and the influence to its integrity and stability.

    PubMed

    Bi, Yuying; Patra, Prabir; Faezipour, Miad

    2014-01-01

    Glycosaminoglycan (GAG) is a chain-like disaccharide that is linked to polypeptide core to connect two collagen fibrils/fibers and provide the intermolecular force in Collagen-GAG matrix (C-G matrix). Thus, the distribution of GAG in C-G matrix contributes to the integrity and mechanical properties of the matrix and related tissue. This paper analyzes the transverse isotropic distribution of GAG in C-G matrix. The angle of GAGs related to collagen fibrils is used as parameters to qualify the GAGs isotropic characteristic in both 3D and 2D rendering. Statistical results included that over one third of GAGs were perpendicular directed to collagen fibril with symmetrical distribution for both 3D matrix and 2D plane cross through collagen fibrils. The three factors tested in this paper: collagen radius, collagen distribution, and GAGs density, were not statistically significant for the strength of Collagen-GAG matrix in 3D rendering. However in 2D rendering, a significant factor found was the radius of collagen in matrix for the GAGs directed to orthogonal plane of Collagen-GAG matrix. Between two cross-section selected from Collagen-GAG matrix model, the plane cross through collagen fibrils was symmetrically distributed but the total percentage of perpendicular directed GAG was deducted by decreasing collagen radius. There were some symmetry features of GAGs angle distribution in selected 2D plane that passed through space between collagen fibrils, but most models showed multiple peaks in GAGs angle distribution. With less GAGs directed to perpendicular of collagen fibril, strength in collagen cross-section weakened. Collagen distribution was also a factor that influences GAGs angle distribution in 2D rendering. True hexagonal collagen packaging is reported in this paper to have less strength at collagen cross-section compared to quasi-hexagonal collagen arrangement. In this work focus is on GAGs matrix within the collagen and its relevance to anisotropy.

  6. Transition-metal oxides with triangular lattices: generation of new magnetic and electronic properties.

    PubMed

    Maignan, A; Kobayashi, W; Hébert, S; Martinet, G; Pelloquin, D; Bellido, N; Simon, Ch

    2008-10-06

    The search for multifunctional materials as multiferroics to be applied in microelectronic or for new, chemically stable and nontoxic, thermoelectric materials to recover waste heat is showing a common interest in the oxides whose structures contain a triangular network of transition-metal cations. To illustrate this point, two ternary systems, Ba-Co-O and Ca-Co-O, have been chosen. It is shown that new phases with a complex triangular structure can be discovered, for instance, by introduction of Ga (3+) into the Ba-Co-O system to stabilize Ba 6Ga 2Co 11O 26 and Ba 2GaCo 8O 14, which both belong to a large family of compounds with formula [Ba(Co,Ga)O 3-delta] n [BaCo 8O 11]. In the latter, both sublattices contain triangular networks derived from the hexagonal perovskite and the spinel structure. Among the hexagonal perovskite, the Ca 3Co 2O 6 crystals give clear evidence where the coupling of charges and spins is at the origin of a magnetocapacitance effect. In particular, the ferrimagnetic to ferromagnetic transition, with a one-third plateau on the M( H) curve characteristic of triangular magnetism, is accompanied by a peak in the dielectric constant. A second class of cobaltites is the focus of much interest. Their 2D structure, containing CoO 2 planes isostructural to a CdI 2 slice that are stacked in an incommensurate way with rock salt type layers, is referred to misfit cobaltite. The 2D triangular network of edge-shared CoO 6 octahedra is believed to be responsible for large values of the Seebeck coefficient and low electrical resistivity. A clear relationship between the structuresincommensurability ratiosand the electronic properties is evidenced, showing that the charge carrier concentration can be tuned via the control of the ionic radius of the cations in the separating layers.

  7. A 2D/3D hybrid integral imaging display by using fast switchable hexagonal liquid crystal lens array

    NASA Astrophysics Data System (ADS)

    Lee, Hsin-Hsueh; Huang, Ping-Ju; Wu, Jui-Yi; Hsieh, Po-Yuan; Huang, Yi-Pai

    2017-05-01

    The paper proposes a new display which could switch 2D and 3D images on a monitor, and we call it as Hybrid Display. In 3D display technologies, the reduction of image resolution is still an important issue. The more angle information offer to the observer, the less spatial resolution would offer to image resolution because of the fixed panel resolution. Take it for example, in the integral photography system, the part of image without depth, like background, will reduce its resolution by transform from 2D to 3D image. Therefore, we proposed a method by using liquid crystal component to quickly switch the 2D image and 3D image. Meanwhile, the 2D image is set as a background to compensate the resolution.. In the experiment, hexagonal liquid crystal lens array would be used to take the place of fixed lens array. Moreover, in order to increase lens power of the hexagonal LC lens array, we applied high resistance (Hi-R) layer structure on the electrode. Hi-R layer would make the gradient electric field and affect the lens profile. Also, we use panel with 801 PPI to display the integral image in our system. Hence, the consequence of full resolution 2D background with the 3D depth object forms the Hybrid Display.

  8. 61Ni synchrotron radiation-based Mössbauer spectroscopy of nickel-based nanoparticles with hexagonal structure

    PubMed Central

    Masuda, Ryo; Kobayashi, Yasuhiro; Kitao, Shinji; Kurokuzu, Masayuki; Saito, Makina; Yoda, Yoshitaka; Mitsui, Takaya; Hosoi, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi; Seto, Makoto

    2016-01-01

    We measured the synchrotron-radiation (SR)-based Mössbauer spectra of Ni-based nanoparticles with a hexagonal structure that were synthesised by chemical reduction. To obtain Mössbauer spectra of the nanoparticles without 61Ni enrichment, we developed a measurement system for 61Ni SR-based Mössbauer absorption spectroscopy without X-ray windows between the 61Ni84V16 standard energy alloy and detector. The counting rate of the 61Ni nuclear resonant scattering in the system was enhanced by the detection of internal conversion electrons and the close proximity between the energy standard and the detector. The spectrum measured at 4 K revealed the internal magnetic field of the nanoparticles was 3.4 ± 0.9 T, corresponding to a Ni atomic magnetic moment of 0.3 Bohr magneton. This differs from the value of Ni3C and the theoretically predicted value of hexagonal-close-packed (hcp)-Ni and suggested the nanoparticle possessed intermediate carbon content between hcp-Ni and Ni3C of approximately 10 atomic % of Ni. The improved 61Ni Mössbauer absorption measurement system is also applicable to various Ni materials without 61Ni enrichment, such as Ni hydride nanoparticles. PMID:26883185

  9. Effect of reaction atmosphere on structural and optical properties of hexagonal molybdenum oxide (h-MoO{sub 3})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doss, V. Arumai; Chithambararaj, A.; Bose, A. Chandra, E-mail: acbose@nitt.edu

    2016-05-23

    The present work aims to synthesize single phase h-MoO{sub 3} nanocrytals by chemical precipitation method exposed under different reaction atmospheres. The reaction atmosphere have been successfully tuned as air, nitrogen and argon and studied its effects on structural, functional, morphology and optical properties by using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and diffuse reflectance spectroscopy (DRS) measurements. The XRD result indicates that the sample exhibits characteristic hexagonal phase of MoO{sub 3}. The crystallite size is estimated by well known Scherrer’s method. The crystallite size is relative small in the case of sample prepared atmore » argon atmosphere. The functional groups such as Mo-O, N-H and O-H are identified from FT-IR spectroscopy. The particle exhibits rod like morphology with perfect hexagonal cross-section. The optical absorption observed at 420-450 nm corresponds to fundamental optical absorption by h-MoO{sub 3}. The band gap values are estimated using Kublka-Munk (K-M) function and found to be 2. 87 eV, 2.93 eV and 2.97 eV for samples synthesized under air, nitrogen and argon, respectively.« less

  10. Chain hexagonal cacti with the extremal eccentric distance sum.

    PubMed

    Qu, Hui; Yu, Guihai

    2014-01-01

    Eccentric distance sum (EDS), which can predict biological and physical properties, is a topological index based on the eccentricity of a graph. In this paper we characterize the chain hexagonal cactus with the minimal and the maximal eccentric distance sum among all chain hexagonal cacti of length n, respectively. Moreover, we present exact formulas for EDS of two types of hexagonal cacti.

  11. Photocatalytic properties of h-WO3 nanoparticles obtained by annealing and h-WO3 nanorods prepared by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Boyadjiev, Stefan I.; Nagy-Kovács, Teodóra; Lukács, István; Szilágyi, Imre M.

    2016-03-01

    In the present study, two different methods for preparing hexagonal WO3 (h-WO3) photocatalysts were used - controlled thermal decomposition and hydrothermal synthesis. WO3 nanoparticles with hexagonal structure were obtained by annealing (NH4)xWO3-y at 500 °C in air. WO3 nanorods were prepared by a hydrothermal method using sodium tungstate Na2WO4, HCl, (COOH)2 and NaSO4 precursors at 200 °C. The formation, morphology, structure and composition of the as-prepared nanoparticles and nanorods were studied by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDX). The photocatalytic activity of the h-WO3 nanoparticles and nanorods was studied by decomposing methyl orange in aqueous solution under UV light irradiation.

  12. Two-dimensional inorganic-organic perovskite hexagonal nanosheets: growth and mechanism

    NASA Astrophysics Data System (ADS)

    Shakya, Suman; Prakash, G. Vijaya

    2015-03-01

    In this era of novel technological materials, inorganic-organic (IO) materials has emerged as new class of materials for their application in photonic materials, miniaturized sensors, optoelectronic devices, non-linear optical apparatus by exploiting the properties of both constituents in a single entity. Here we present the formation and growth mechanism of two dimensional Inorganic-organic (IO) perovskite structures from anisotropically grown PbO hexagonal nanosheets, in three steps: Fabrication of hexagonal PbO nanosheets by the versatile bottom-up electrochemical deposition technique, iodinization of PbO into PbI2, followed by conversion of PbI2 into IO hybrid by the intercalation of organic moiety. A systematic and detailed structural study reveals that PbO nanosheet formation is more likely to result from an oriented attachment mechanism, in which the sheets formed by the reduction in surface area that happens during aggregation of small nanoparticle that each has a net dipole moment, which tends to form a self-assembled structure. Intercalation of organic moiety into the PbI2 layers yielded a selfassembled quantum-wells system of one of the IO hybrid, i.e. (C6H9C2H4NH3)2PbI4 (CHPI), sustaining the hexagonal shape.

  13. Effect of temperature on the magnetic properties of nano-sized M-type barium hexagonal ferrites

    NASA Astrophysics Data System (ADS)

    Tchouank Tekou Carol, T.; Sharma, Jyoti; Mohammed, J.; Kumar, Sachin; Srivastava, A. K.

    2017-07-01

    The application of M-type hexagonal ferrites in electronic devices is increasing with technological advancement. This is due to the possibility of improving the physical and magnetic properties to suit the desired application. Enhanced magnetic properties make hexagonal ferrites suitable for hyper frequency and radar absorbing application. In this paper, we investigated the effect of heat-treatment temperature on the structural and magnetic properties of M-type barium hexagonal ferrites with chemical composition Ba1-xAlxFe12-yMnyO19 (x=0.6 and y=0.3) synthesized by sol-gel auto-combustion method and sintered at 750°C, 850°C, 950°C and 1050°C. Characterisations of the prepared samples were done using Fourier transform-infrared (FT-IR), and vibrating sample magnetometer (VSM). The formation of M-type hexaferrite has been confirmed from XRD. The presence of two prominent peaks between 400 cm-1 and 600 cm-1 in the spectra of Fourier transform-infrared spectroscopy (FT-IR) also shows the formation of ferrite phase. Saturation magnetisation (MS), remnant magnetisation (Mr), coercivity (Hc) and squareness ratio (SR) were calculated from the M-H loop obtained from vibrating sample magnetometer (VSM).

  14. Resistance to alveolar shape change limits range of force propagation in lung parenchyma.

    PubMed

    Ma, Baoshun; Smith, Bradford J; Bates, Jason H T

    2015-06-01

    We have recently shown that if the lung parenchyma is modeled in 2 dimensions as a network of springs arranged in a pattern of repeating hexagonal cells, the distortional forces around a contracting airway propagate much further from the airway wall than classic continuum theory predicts. In the present study we tested the hypothesis that this occurs because of the negligible shear modulus of a hexagonal spring network. We simulated the narrowing of an airway embedded in a hexagonal network of elastic alveolar walls when the hexagonal cells of the network offered some resistance to a change in shape. We found that as the forces resisting shape change approach about 10% of the forces resisting length change of an individual spring the range of distortional force propagation in the spring network fell of rapidly as in an elastic continuum. We repeated these investigations in a 3-dimensional spring network composed of space-filling polyhedral cells and found similar results. This suggests that force propagation away from a point of local parenchymal distortion also falls off rapidly in real lung tissue. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A computationally efficient method for full-core conjugate heat transfer modeling of sodium fast reactors

    DOE PAGES

    Hu, Rui; Yu, Yiqi

    2016-09-08

    For efficient and accurate temperature predictions of sodium fast reactor structures, a 3-D full-core conjugate heat transfer modeling capability is developed for an advanced system analysis tool, SAM. The hexagon lattice core is modeled with 1-D parallel channels representing the subassembly flow, and 2-D duct walls and inter-assembly gaps. The six sides of the hexagon duct wall and near-wall coolant region are modeled separately to account for different temperatures and heat transfer between coolant flow and each side of the duct wall. The Jacobian Free Newton Krylov (JFNK) solution method is applied to solve the fluid and solid field simultaneouslymore » in a fully coupled fashion. The 3-D full-core conjugate heat transfer modeling capability in SAM has been demonstrated by a verification test problem with 7 fuel assemblies in a hexagon lattice layout. In addition, the SAM simulation results are compared with RANS-based CFD simulations. Very good agreements have been achieved between the results of the two approaches.« less

  16. Polytypism in the ground state structure of the Lennard-Jonesium.

    PubMed

    Pártay, Lívia B; Ortner, Christoph; Bartók, Albert P; Pickard, Chris J; Csányi, Gábor

    2017-07-26

    We present a systematic study of the stability of nineteen different periodic structures using the finite range Lennard-Jones potential model discussing the effects of pressure, potential truncation, cutoff distance and Lennard-Jones exponents. The structures considered are the hexagonal close packed (hcp), face centred cubic (fcc) and seventeen other polytype stacking sequences, such as dhcp and 9R. We found that at certain pressure and cutoff distance values, neither fcc nor hcp is the ground state structure as previously documented, but different polytypic sequences. This behaviour shows a strong dependence on the way the tail of the potential is truncated.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yingxiang, E-mail: yingxiangcai@ncu.edu.cn; Wang, Hao; Xu, Shengliang

    Carbon nanotubes (CNTs) with homogeneous diameters have been proven to transform into new carbon allotropes under pressure but no studies on the compression of inhomogeneous CNTs have been reported. In this study, we propose to build new carbon allotropes from the bottom-up by applying pressure on symmetry-matched inhomogeneous CNTs. We find that the (3,0) CNT with point group C{sub 3v} and the (6,0) CNT with point group C{sub 6v} form an all sp{sup 3} hybridized hexagonal 3060-Carbon crystal, but the (4,0) CNT with point group D{sub 4h} and the (8,0) CNT with point group D{sub 8h} polymerize into a sp{supmore » 2}+sp{sup 3} hybridized tetragonal 4080-Carbon structure. Their thermodynamic, mechanical and dynamic stabilities show that they are potential carbon allotropes to be experimentally synthesized. The multiporous structures, excellently mechanical properties and special electronic structures (semiconductive 3060-Carbon and semimetallic 4080-Carbon) imply their many potential applications, such as gases purification, hydrogen storage and lightweight semiconductor devices. In addition, we simulate their feature XRD patterns which are helpful for identifying the two carbon crystals in future experimental studies.« less

  18. Freezing, melting and structure of ice in a hydrophilic nanopore.

    PubMed

    Moore, Emily B; de la Llave, Ezequiel; Welke, Kai; Scherlis, Damian A; Molinero, Valeria

    2010-04-28

    The nucleation, growth, structure and melting of ice in 3 nm diameter hydrophilic nanopores are studied through molecular dynamics simulations with the mW water model. The melting temperature of water in the pore was T(m)(pore) = 223 K, 51 K lower than the melting point of bulk water in the model and in excellent agreement with experimental determinations for 3 nm silica pores. Liquid and ice coexist in equilibrium at the melting point and down to temperatures as low as 180 K. Liquid water is located at the interface of the pore wall, increasing from one monolayer at the freezing temperature, T(f)(pore) = 195 K, to two monolayers a few degrees below T(m)(pore). Crystallization of ice in the pore occurs through homogeneous nucleation. At the freezing temperature, the critical nucleus contains approximately 75 to 100 molecules, with a radius of gyration similar to the radius of the pore. The critical nuclei contain features of both cubic and hexagonal ice, although stacking of hexagonal and cubic layers is not defined until the nuclei reach approximately 150 molecules. The structure of the confined ice is rich in stacking faults, in agreement with the interpretation of X-ray and neutron diffraction experiments. Though the presence of cubic layers is twice as prevalent as hexagonal ones, the crystals should not be considered defective Ic as sequences with more than three adjacent cubic (or hexagonal) layers are extremely rare in the confined ice.

  19. Effect of texture dispersion on the effective biaxial modulus of fiber-textured hexagonal, tetragonal, and orthorhombic films

    NASA Astrophysics Data System (ADS)

    Wu, Huaping; Wu, Linzhi; Du, Shanyi

    2008-04-01

    The effective biaxial modulus (Meff) of fiber-textured hexagonal, tetragonal, and orthorhombic films is estimated by using the Voigt-Reuss-Hill and Vook-Witt grain-interaction models. The orientation distribution function with Gaussian distributions of the two Euler angles θ and ϕ is adopted to analyze the effect of texture dispersion degree on Meff. Numerical results that are based on ZnO, BaTiO3, and yttrium barium copper oxide (YBCO) materials show that the Vook-Witt average of Meff is identical to the Voigt-Reuss-Hill average of Meff for the (001) plane of ideally fiber-textured hexagonal and tetragonal films. The ϕ distribution has no influence on Meff of the (hkl)-fiber-textured hexagonal film at any θ distribution in terms of the isotropy in the plane perpendicular to the [001] direction. Comparably, tetragonal and orthorhombic films represent considerable actions of ϕ dispersion on Meff, and the effect of ϕ dispersion on Meff of a (001)-fiber-textured YBCO film is smaller than that for a (001)-fiber-textured BaTiO3 film since the shear anisotropic factor in the (001) shear plane of a YBCO film more closely approaches 1. Enhanced θ and ϕ distributions destroy the perfect fiber textures, and as a result, the films exhibit an evolution from ideal (hkl) fiber textures to random textures with varying full widths at half maximums of θ and ϕ.

  20. Synthesis and Thermal Conductivity of Exfoliated Hexagonal Boron Nitride/Alumina Ceramic Composite

    NASA Technical Reports Server (NTRS)

    Hung, Ching-cheh; Hurst, Janet; Santiago, Diana; Lizcano, Maricela; Kelly, Marisabel

    2017-01-01

    Exfoliated hexagonal boron nitride (hBN)/alumina composite can be fabricated by following the process of (1) heating a mixture of hBN, AlCl3, and NaF in nitrogen for intercalation; (2) heating the intercalated product in air for exfoliation and at the same time converting the intercalate (AlCl3) into Al2O3, (3) rinsing the oxidized product, (4) coating individual exfoliated hBN platelets that contain Al2O3 with new layers of aluminum oxide, and finally, (5) hot pressing the product into the composite. The composite thus obtained has a composition of approximately 60 percent by weight hBN and 40 percent by weight alumina. Its in-plane and through-plane thermal conductivity were measured to be 86 and 18 watts per meter Kelvin, respectively, at room temperature.

  1. Surfaces and Interfaces of Magnetoelectric Oxide Systems

    NASA Astrophysics Data System (ADS)

    Cao, Shi

    Magnetoelectric materials Cr2O3, hexagonal LuFeO 3 and YbFeO3 are studied in this thesis. The surface of chromia (Cr2O3) has a surface electronic structure distinct from the bulk. Our work shows that placing a Cr2O3 single crystal into a single domain state will result in net Cr2O 3 spin polarization at the boundary, even in the presence of a gold overlayer. From the Cr 2p3/2 X-ray magnetic circular dichroism signal, there is clear evidence of interface polarization with overlayers of both Pd and Pt on chromia. Cobalt thin films on Cr2O3(0001) show larger magnetic contrast in magnetic force microscopy indicating enhancement of perpendicular anisotropy induced by Cr2O3. The interfacial charge transfer between mechanically exfoliated few-layer graphene and Cr2O3(0001) surfaces has been investigated showing hole doping of few-layer graphene. Density functional theory calculations furthermore confirm the p-type nature of the graphene on top of chromia, and suggest that the chromia is able to induce a significant carrier spin polarization in the graphene layer. The surface termination and the nominal valence states for hexagonal LuFeO3 thin films were characterized. The stable surface terminates in a Fe-O layer. This is consistent wit the results of density functional calculations. The structural transition at about 1000 °C, from the hexagonal to the orthorhombic phase of LuFeO3, has been investigated in thin films of LuFeO3. The electronic structure for the conduction bands of both hexagonal and orthorhombic LuFeO3 thin films have been measured. Dramatic differences in both the spectral features and the linear dichroism are observed. We have also studied the ferrimagnetism in h-YbFeO3 by measuring the magnetization of Fe and Yb separately. The results directly show antialignment of magnetization of Yb and Fe ions in h-YbFeO3 at low temperature, with an exchange field on Yb of about 17 kOe. All ferrimagnets, by default, are magnetoelectrics. These findings directly demonstrate that ferrimagnetic order exists in h-YbFeO3.

  2. Fabrication and Characterization of Quinoa Protein Nanoparticle-Stabilized Food-Grade Pickering Emulsions with Ultrasound Treatment: Interfacial Adsorption/Arrangement Properties.

    PubMed

    Qin, Xin-Sheng; Luo, Zhi-Gang; Peng, Xi-Chun

    2018-05-02

    The natural quinoa protein isolate (QPI) was largely reflected in the nanoparticle form at pH 7.0 (∼401 nm), and the ultrasound at 20 min progressively improved the contact angle (wettability) and surface hydrophobicity of the nanoparticles. Ultrasound process also modified the type of intraparticle interaction, and the internal forces of sonicated particles were largely maintained by both disulfide bonds and hydrophobic interaction forces. In emulsion system, the ultrasound progressively increased the emulsification efficiency of the QPI nanoparticles, particularly at high protein concentration ( c > 1%, w/ v) and higher emulsion stability against coalescence. As compared with the natural QPI-stabilized emulsions, the 20 min sonicated emulsions exhibited higher packing and adsorption at the protein interface. The microstructure of emulsions that occurs is bridging flocculation of droplets at low c (≤1%, w/ v), while the amount of protein particles could be high enough to cover the droplet surface at high c ( >1%, w/ v) with hexagonal array model arrangement. Thus these results illustrated that both natural and sonicated QPI nanoparticles could be performed as effective food-grade stabilizer for Pickering emulsion; however, the sonicated QPI nanoparticles exhibited much better emulsifying and interfacial properties.

  3. Generalized-stacking-fault energy and twin-boundary energy of hexagonal close-packed Au: A first-principles calculation.

    PubMed

    Wang, Cheng; Wang, Huiyuan; Huang, Tianlong; Xue, Xuena; Qiu, Feng; Jiang, Qichuan

    2015-05-22

    Although solid Au is usually most stable as a face-centered cubic (fcc) structure, pure hexagonal close-packed (hcp) Au has been successfully fabricated recently. However, the phase stability and mechanical property of this new material are unclear, which may restrict its further applications. Here we present the evidence that hcp → fcc phase transformation can proceed easily in Au by first-principles calculations. The extremely low generalized-stacking-fault (GSF) energy in the basal slip system implies a great tendency to form basal stacking faults, which opens the door to phase transformation from hcp to fcc. Moreover, the Au lattice extends slightly within the superficial layers due to the self-assembly of alkanethiolate species on hcp Au (0001) surface, which may also contribute to the hcp → fcc phase transformation. Compared with hcp Mg, the GSF energies for non-basal slip systems and the twin-boundary (TB) energies for and twins are larger in hcp Au, which indicates the more difficulty in generating non-basal stacking faults and twins. The findings provide new insights for understanding the nature of the hcp → fcc phase transformation and guide the experiments of fabricating and developing materials with new structures.

  4. Influence of ibuprofen on phospholipid membranes

    NASA Astrophysics Data System (ADS)

    Jaksch, Sebastian; Lipfert, Frederik; Koutsioubas, Alexandros; Mattauch, Stefan; Holderer, Olaf; Ivanova, Oxana; Frielinghaus, Henrich; Hertrich, Samira; Fischer, Stefan F.; Nickel, Bert

    2015-02-01

    A basic understanding of biological membranes is of paramount importance as these membranes comprise the very building blocks of life itself. Cells depend in their function on a range of properties of the membrane, which are important for the stability and function of the cell, information and nutrient transport, waste disposal, and finally the admission of drugs into the cell and also the deflection of bacteria and viruses. We have investigated the influence of ibuprofen on the structure and dynamics of L-α -phosphatidylcholine (SoyPC) membranes by means of grazing incidence small-angle neutron scattering, neutron reflectometry, and grazing incidence neutron spin echo spectroscopy. From the results of these experiments, we were able to determine that ibuprofen induces a two-step structuring behavior in the SoyPC films, where the structure evolves from the purely lamellar phase for pure SoyPC over a superposition of two hexagonal phases to a purely hexagonal phase at high concentrations. A relaxation, which is visible when no ibuprofen is present in the membrane, vanishes upon addition of ibuprofen. This we attribute to a stiffening of the membrane. This behavior may be instrumental in explaining the toxic behavior of ibuprofen in long-term application.

  5. Simultaneous and coordinated rotational switching of all molecular rotors in a network

    DOE PAGES

    Zhang, Y.; Kersell, H.; Stefak, R.; ...

    2016-05-09

    A range of artificial molecular systems have been created that can exhibit controlled linear and rotational motion. In the development of such systems, a key step is the addition of communication between molecules in a network. Here, we show that a two-dimensional array of dipolar molecular rotors can undergo simultaneous rotational switching by applying an electric field from the tip of a scanning tunnelling microscope. Several hundred rotors made from porphyrin-based double-decker complexes can be simultaneously rotated when in a hexagonal rotor network on a Cu(111) surface by applying biases above ±1 V at 80 K. The phenomenon is observedmore » only in a hexagonal rotor network due to the degeneracy of the ground state dipole rotational energy barrier of the system. Defects are essential to increase electric torque on the rotor network and to stabilize the switched rotor domains. At low biases and low initial rotator angles, slight reorientations of individual rotors can occur resulting in the rotator arms pointing in different directions. In conclusion, analysis reveals that the rotator arm directions here are not random, but are coordinated to minimize energy via cross talk among the rotors through dipolar interactions.« less

  6. Tau mediates microtubule bundle architectures mimicking fascicles of microtubules found in the axon initial segment

    DOE PAGES

    Chung, Peter J.; Song, Chaeyeon; Deek, Joanna; ...

    2016-07-25

    Tau, an intrinsically disordered protein confined to neuronal axons, binds to and regulates microtubule dynamics. Although there have been observations of string-like microtubule fascicles in the axon initial segment (AIS) and hexagonal bundles in neurite-like processes in non-neuronal cells overexpressing Tau, cell-free reconstitutions have not replicated either geometry. Here we map out the energy landscape of Tau-mediated, GTP-dependent ‘active’ microtubule bundles at 37°C, as revealed by synchrotron SAXS and TEM. Widely spaced bundles (wall-to-wall distance D w–w≈25–41nm) with hexagonal and string-like symmetry are observed, the latter mimicking bundles found in the AIS. A second energy minimum (D w–w≈16–23nm) is revealedmore » under osmotic pressure. The wide spacing results from a balance between repulsive forces, due to Tau’s projection domain (PD), and a stabilizing sum of transient sub-k BT cationic/anionic charge–charge attractions mediated by weakly penetrating opposing PDs. In the end, we find that this landscape would be significantly affected by charge-altering modifications of Tau associated with neurodegeneration.« less

  7. Wet formation and structural characterization of quasi-hexagonal monolayers.

    PubMed

    Batys, Piotr; Weroński, Paweł; Nosek, Magdalena

    2016-01-01

    We have presented a simple and efficient method for producing dense particle monolayers with controlled surface coverage. The method is based on particle sedimentation, manipulation of the particle-substrate electrostatic interaction, and gentle mechanical vibration of the system. It allows for obtaining quasi-hexagonal structures under wet conditions. Using this method, we have produced a monolayer of 3 μm silica particles on a glassy carbon substrate. By optical microscopy, we have determined the coordinates of the particles and surface coverage of the obtained structure to be 0.82. We have characterized the monolayer structure by means of the pair-correlation function and power spectrum. We have also compared the results with those for a 2D hexagonal monolayer and monolayer generated by random sequential adsorption at the coverage 0.50. We have found the surface fractal dimension to be 2.5, independently of the monolayer surface coverage. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Technique for the control of the crystal habit of ultrafine particles in the gas-evaporation technique

    NASA Astrophysics Data System (ADS)

    Kasukabe, S.; Mihama, K.

    1986-12-01

    Magnesium ultrafine particles have clear-cut habits such as hexagonal plates and polyhedra. When magnesium is evaporated downwards using a tube with holes at the bottom, hexagonal plates are formed exclusively throughout the smoke. Their size is controlled by selecting an inert gas. The growth process of an hexagonal plate can be considered to be a coalescent growth of other hexagonal plates.

  9. Thermal conductivity of hexagonal Si, Ge, and Si1-xGex alloys from first-principles

    NASA Astrophysics Data System (ADS)

    Gu, Xiaokun; Zhao, C. Y.

    2018-05-01

    Hexagonal Si and Ge with a lonsdaleite crystal structure are allotropes of silicon and germanium that have recently been synthesized. These materials as well as their alloys are promising candidates for novel applications in optoelectronics. In this paper, we systematically study the phonon transport and thermal conductivity of hexagonal Si, Ge, and their alloys by using the first-principle-based Peierls-Boltzmann transport equation approach. Both three-phonon and four-phonon scatterings are taken into account in the calculations as the phonon scattering mechanisms. The thermal conductivity anisotropy of these materials is identified. While the thermal conductivity parallel to the hexagonal plane for hexagonal Si and Ge is found to be larger than that perpendicular to the hexagonal plane, alloying effectively tunes the thermal conductivity anisotropy by suppressing the thermal conductivity contributions from the middle-frequency phonons. The importance of four-phonon scatterings is assessed by comparing the results with the calculations without including four-phonon scatterings. We find that four-phonon scatterings cannot be ignored in hexagonal Si and Ge as the thermal conductivity would be overestimated by around 10% (40%) at 300 K (900) K. In addition, the phonon mean free path distribution of hexagonal Si, Ge, and their alloys is also discussed.

  10. Rich structural chemistry in new alkali metal yttrium tellurites: three-dimensional frameworks of NaYTe4O10, KY(TeO3)2, RbY(TeO3)2, and a novel variant of hexagonal tungsten bronze, CsYTe3O8.

    PubMed

    Kim, Youngkwon; Lee, Dong Woo; Ok, Kang Min

    2015-01-05

    Pure polycrystalline phases and single crystals of four new quaternary alkali metal yttrium tellurites, NaYTe4O10, KY(TeO3)2, RbY(TeO3)2, and CsYTe3O8, have been prepared by solid-state and hydrothermal reactions using A2CO3 (A = Na, K, Rb, and Cs), Y(NO3)3·6H2O, Y2O3, and TeO2 as starting reagents. X-ray diffraction analyses suggest that NaYTe4O10 exhibits a highly symmetric three-dimensional (3D) framework consisting of YO8 square antiprisms and chains of TeO4 polyhedra. Within the framework, six- (6-) and eight-membered ring (8-MR) channels are observed. KY(TeO3)2 and RbY(TeO3)2 are isostructural to each other and reveal another 3D framework with structures containing YO6 octahedra and TeO3 trigonal pyramids with 4-MR and 12-MR channels. CsYTe3O8 shows a hexagonal tungsten bronze (HTB)-like topology composed of hexagonal tungsten oxide-like layers of TeO4 polyhedra and YO6 octahedral linkers with 3-MR and 6-MR channels. Thermal analyses, elemental analyses, and spectroscopic characterizations, such as UV-vis diffuse reflectance and infrared spectra, are presented, as are local dipole moment calculations for the constituent asymmetric polyhedra TeO3 and TeO4.

  11. Role of indium tin oxide electrode on the microstructure of self-assembled WO3-BiVO4 hetero nanostructures

    NASA Astrophysics Data System (ADS)

    Song, Haili; Li, Chao; Van, Chien Nguyen; Dong, Wenxia; Qi, Ruijuan; Zhang, Yuanyuan; Huang, Rong; Chu, Ying-Hao; Duan, Chun-Gang

    2017-11-01

    Self-assembled WO3-BiVO4 nanostructured thin films were grown on a (001) yttrium stabilized zirconia (YSZ) substrate by the pulsed laser deposition method with and without the indium tin oxide (ITO) bottom electrode. Their microstructures including surface morphologies, crystalline phases, epitaxial relationships, interface structures, and composition distributions were investigated by scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray energy dispersive spectroscopy. In both samples, WO3 formed nanopillars embedded into the monoclinic BiVO4 matrix with specific orientation relationships. In the sample with the ITO bottom electrode, an atomically sharp BiVO4/ITO interface was formed and the orthorhombic WO3 nanopillars were grown on a relaxed BiVO4 buffer layer with a mixed orthorhombic and hexagonal WO3 transition layer. In contrast, a thin amorphous layer appears at the interfaces between the thin film and the YSZ substrate in the sample without the ITO electrode. In addition, orthorhombic Bi2WO6 lamellar nanopillars were formed between WO3 and BiVO4 due to interdiffusion. Such a WO3-Bi2WO6-BiVO4 double heterojunction photoanode may promote the photo-generated charge separation and further improve the photoelectrochemical water splitting properties.

  12. Magnetic Susceptibility and Spin Exchange Interactions of the Hexagonal Perovskite-Type Oxides Sr 4/3(Mn 2/3Ni 1/3)O 3

    NASA Astrophysics Data System (ADS)

    El Abed, A.; Gaudin, E.; Darriet, J.; Whangbo, M.-H.

    2002-02-01

    Magnetic susceptibility measurements were carried out for two hexagonal perovskite-type oxides Sr1+x(Mn1-xNix)O3 with slightly different compositions (i.e., x={1}/{3} and 0.324). A significant difference in the susceptibilities of the two phases demonstrates the need to control phase compositions accurately. Sr4/3(Mn2/3Ni1/3)O3 consists of two spin sublattices, i.e., the Mn4+ and the Ni2+ ion sublattices. Spin dimer analysis was carried out to examine the relative strengths in the spin exchange interactions of the Mn4+ ion sublattice. The temperature dependence of the magnetic susceptibility of Sr4/3(Mn2/3Ni1/3)O3 was found consistent with a picture in which the Mn4+ ion sublattice has weakly interacting antiferromagnetically coupled (Mn4+)2 dimers, the Ni2+ ion sublattice acts as a paramagnetic system, and the two sublattices are nearly independent.

  13. Sensory enhancing insoles improve athletic performance during a hexagonal agility task.

    PubMed

    Miranda, Daniel L; Hsu, Wen-Hao; Gravelle, Denise C; Petersen, Kelsey; Ryzman, Rachael; Niemi, James; Lesniewski-Laas, Nicholas

    2016-05-03

    Athletes incorporate afferent signals from the mechanoreceptors of their plantar feet to provide information about posture, stability, and joint position. Sub-threshold stochastic resonance (SR) sensory enhancing insoles have been shown to improve balance and proprioception in young and elderly participant populations. Balance and proprioception are correlated with improved athletic performance, such as agility. Agility is defined as the ability to quickly change direction. An athlete's agility is commonly evaluated during athletic performance testing to assess their ability to participate in a competitive sporting event. Therefore, the purpose of this study was to examine the effects of SR insoles during a hexagonal agility task routinely used by coaches and sports scientists. Twenty recreational athletes were recruited to participate in this study. Each athlete was asked to perform a set of hexagonal agility trials while SR stimulation was either on or off. Vicon motion capture was used to measure feet position during six successful trials for each stimulation condition. Stimulation condition was randomized in a pairwise fashion. The study outcome measures were the task completion time and the positional accuracy of footfalls. Pairwise comparisons revealed a 0.12s decrease in task completion time (p=0.02) with no change in hopping accuracy (p=0.99) when SR stimulation was on. This is the first study to show athletic performance benefits while wearing proprioception and balance improving equipment on healthy participants. With further development, a self-contained sensory enhancing insole device could be used by recreational and professional athletes to improve movements that require rapid changes in direction. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Monte Carlo study of the hetero-polytypical growth of cubic on hexagonal silicon carbide polytypes

    NASA Astrophysics Data System (ADS)

    Camarda, Massimo

    2012-08-01

    In this article we use three dimensional kinetic Monte Carlo simulations on super-lattices to study the hetero-polytypical growth of cubic silicon carbide polytype (3C-SiC) on misoriented hexagonal (4H and 6H) substrates. We analyze the quality of the 3C-SiC film varying the polytype, the miscut angle and the initial surface morphology of the substrate. We find that the use of 6H misoriented (4°-10° off) substrates, with step bunched surfaces, can strongly improve the quality of the cubic epitaxial film whereas the 3C/4H growth is affected by the generation of dislocations, due to the incommensurable periodicity of the 3C (3) and the 4H (4) polytypes. For these reasons, a proper pre-growth treatment of 6H misoriented substrates can be the key for the growth of high quality, twin free, 3C-SiC films.

  15. Predicting the solid state phase diagram for glass-forming alloys of copper and zirconium

    NASA Astrophysics Data System (ADS)

    Tang, C.; Harrowell, Peter

    2012-06-01

    The free energies of six crystal structures associated with Cu-Zr alloys—Cu (face centred cubic), Cu2Zr, Cu10Zr7, CuZr, CuZr2 and Zr (hexagonal close packed)—are calculated using the embedded atom potential of Mendelev et al (2009 Phil. Mag. 89 967). We find that the observed low temperature stability of the Cu10Zr7 and CuZr2 phases is not reproduced. Instead, the model predicts that the CuZr phase remains stable down to T = 0 K. This discrepancy is largely removed when the interaction potentials are cut off at a short distance, such as that used by Duan et al (2005 Phys. Rev. B 71 224208). We present evidence, however, that the cut-off distance necessary to achieve the change in phase stability results in pathological artefacts in the energetics of some crystal phases.

  16. Layered double hydroxide using hydrothermal treatment: morphology evolution, intercalation and release kinetics of diclofenac sodium

    NASA Astrophysics Data System (ADS)

    Joy, Mathew; Iyengar, Srividhya J.; Chakraborty, Jui; Ghosh, Swapankumar

    2017-12-01

    The present work demonstrates the possibilities of hydrothermal transformation of Zn-Al layered double hydroxide (LDH) nanostructure by varying the synthetic conditions. The manipulation in washing step before hydrothermal treatment allows control over crystal morphologies, size and stability of their aqueous solutions. We examined the crystal growth process in the presence and the absence of extra ions during hydrothermal treatment and its dependence on the drug (diclofenac sodium (Dic-Na)) loading and release processes. Hexagonal plate-like crystals show sustained release with ˜90% of the drug from the matrix in a week, suggesting the applicability of LDH nanohybrids in sustained drug delivery systems. The fits to the release kinetics data indicated the drug release as a diffusion-controlled release process. LDH with rod-like morphology shows excellent colloidal stability in aqueous suspension, as studied by photon correlation spectroscopy.

  17. Effect of both protective and reducing agents in the synthesis of multicolor silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Rivero, Pedro Jose; Goicoechea, Javier; Urrutia, Aitor; Arregui, Francisco Javier

    2013-02-01

    In this paper, the influence of variable molar ratios between reducing and loading agents (1:100, 1:50, 1:20, 1:10, 1:5, 1:2, 1:1, 2:1) and between protective and loading agents (0.3:1, 0.75:1, 1.5:1, 3:1, 7.5:1, 30:1, 75:1) in the synthesis of silver nanoparticles by chemical reduction has been evaluated to obtain multicolor nanoparticles with a high stability in time. The protective agent poly(acrylic acid, sodium salt) (PAA) and reducing agent dimethylaminoborane (DMAB) play a key role in the formation of the resultant color. Evolution of the optical absorption bands of the silver nanoparticles as a function of PAA and DMAB molar ratios made it possible to confirm the presence of silver nanoparticles or clusters with a specific shape. The results reveal that a wide range of colors (violet, blue, green, brown, yellow, red, orange), sizes (from nanometer to micrometer), and shapes (cubic, rod, triangle, hexagonal, spherical) can be perfectly tuned by means of a fine control of the PAA and DMAB molar concentrations.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, A. S.; Rovani, P. R.; Lima, J. C. de, E-mail: joao.cardoso.lima@ufsc.br

    A nanostructured Ti{sub 50}Ni{sub 25}Fe{sub 25} phase (B2) was formed by mechanical alloying and its structural stability was studied as a function of pressure. The changes were followed by X-ray diffraction. The B2 phase was observed up to 7 GPa; for larger pressures, the B2 phase transformed into a trigonal/hexagonal phase (B19) that was observed up to the highest pressure used (18 GPa). Besides B2 and B19, elemental Ni or a SS-(Fe,Ni) and FeNi{sub 3} were observed. With decompression, the B2 phase was recovered. Using in situ angle-dispersive X-ray diffraction patterns, the single line method was applied to obtain the apparent crystallitemore » size and the microstrain for both the B2 and the B19 phases as a function of the applied pressure. Values of the bulk modulus for the B2, B19, elemental Ni or SS-(Fe,Ni) and FeNi{sub 3} phases were obtained by fitting the pressure dependence of the volume to a Birch–Murnaghan equation of state (BMEOS)« less

  19. Electrical Stressing Induced Monolayer Vacancy Island Growth on TiSe2

    NASA Astrophysics Data System (ADS)

    Zheng, Husong; Valtierra, Salvador; Ofori-Opoku, Nana; Chen, Chuanhui; Sun, Lifei; Yuan, Shuaishuai; Jiao, Liying; Bevan, Kirk H.; Tao, Chenggang

    2018-03-01

    To ensure the practical application of atomically thin transition metal dichalcogenides, it is essential to characterize their structural stability under external stimuli such as electric fields and currents. Using vacancy monolayer islands on TiSe2 surfaces as a model system, for the first time we have observed a shape evolution and growth from triangular to hexagonal driven by scanning tunneling microscopy (STM) electrical stressing. The size of islands shows linear growth with a rate of (3.00 +- 0.05) x 10-3 nm/s, when the STM scanning parameters are held fixed at Vs = 1.0 V and I = 1.8 nA. We further quantified how the growth rate is related to the tunneling current magnitude. Our simulations of monolayer island evolution using phase-field modeling are in good agreement with our experimental observations, and point towards preferential edge atom dissociation under STM scanning driving the observed growth. The results could be potentially important for device applications of ultrathin transition metal dichalcogenides and related 2D materials subject to electrical stressing under device operating conditions.

  20. Nb-H system at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Guangtao; Besedin, Stanislav; Irodova, Alla; Liu, Hanyu; Gao, Guoying; Eremets, Mikhail; Wang, Xin; Ma, Yanming

    2017-03-01

    We studied the Nb-H system over extended pressure and temperature ranges to establish the highest level of hydrogen abundance we could achieve from the resulting alloy. We probed the Nb-H system with laser heating and x-ray diffraction complemented by numerical density functional theory-based simulations. New quenched double hexagonal close-packed (hcp) Nb H2.5 appears under 46 GPa, and above 56 GPa cubic Nb H3 is formed as theoretically predicted. Nb atoms are arranged in close-packed lattices which are martensitically transformed in the sequence: face-centered cubic (fcc) → hcp → double hcp (dhcp) → distorted body-centered cubic (bcc) as pressure increases. The appearance of fcc Nb H2.5 -3 and dhcp Nb H2.5 cannot be understood in terms of enthalpic stability, but can be rationalized when finite temperatures are taken into account. The structural and compressional behavior of Nb Hx >2 is similar to that of NbH. Nevertheless, a direct H-H interaction emerges with hydrogen concentration increases, which manifests itself via a reduction in the lattice expansion induced by hydrogen dissolution.

  1. Supramolecule-to-supramolecule transformations of coordination-driven self-assembled polygons.

    PubMed

    Zhao, Liang; Northrop, Brian H; Stang, Peter J

    2008-09-10

    Two types of supramolecular transformations, wherein a self-assembled Pt(II)-pyridyl metal-organic polygon is controllably converted into an alternative polygon, have been achieved through the reaction between cobalt carbonyl and the acetylene moiety of a dipyridyl donor ligand. A [6 + 6] hexagon is transformed into two [3 + 3] hexagons, and a triangle-square mixture is converted into [2 + 2] rhomboids. 1H and 31P NMR spectra are used to track the transformation process and evaluate the yield of new self-assembled polygons. Such transformed species are identified by electrospray ionization (ESI) mass spectrometry. This new kind of supramolecule-to-supramolecule transformations provides a viable means for constructing, and then converting, new self-assembled polygons.

  2. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Lee, Gwan-Hyoung; Yu, Young-Jun; Lee, Changgu; Dean, Cory; Shepard, Kenneth L.; Kim, Philip; Hone, James

    2011-12-01

    Electron tunneling through atomically flat and ultrathin hexagonal boron nitride (h-BN) on gold-coated mica was investigated using conductive atomic force microscopy. Low-bias direct tunneling was observed in mono-, bi-, and tri-layer h-BN. For all thicknesses, Fowler-Nordheim tunneling (FNT) occurred at high bias, showing an increase of breakdown voltage with thickness. Based on the FNT model, the barrier height for tunneling (3.07 eV) and dielectric strength (7.94 MV/cm) of h-BN are obtained; these values are comparable to those of SiO2.

  3. Comparison of presumptive blood test kits including hexagon OBTI.

    PubMed

    Johnston, Emma; Ames, Carole E; Dagnall, Kathryn E; Foster, John; Daniel, Barbara E

    2008-05-01

    Four presumptive blood tests, Hexagon OBTI, Hemastix(R), Leucomalachite green (LMG), and Kastle-Meyer (KM) were compared for their sensitivity in the identification of dried bloodstains. Stains of varying blood dilutions were subjected to each presumptive test and the results compared. The Hexagon OBTI buffer volume was also reduced to ascertain whether this increased the sensitivity of the kit. The study found that Hemastix(R) was the most sensitive test for trace blood detection. Only with the reduced buffer volume was the Hexagon OBTI kit as sensitive as the LMG and KM tests. However, the Hexagon OBTI kit has the advantage of being a primate specific blood detection kit. This study also investigated whether the OBTI buffer within the kit could be utilized for DNA profiling after presumptive testing. The results show that DNA profiles can be obtained from the Hexagon OBTI kit buffer directly.

  4. Magnetic self-orientation of lyotropic hexagonal phases based on long chain alkanoic (fatty) acids.

    PubMed

    Douliez, Jean-Paul

    2010-07-06

    It is presently shown that long chain (C14, C16, and C18) alkanoic (saturated fatty) acids can form magnetically oriented hexagonal phases in aqueous concentrated solutions in mixtures with tetrabutylammonium (TBAOH) as the counterion. The hexagonal phase occurred for a molar ratio, alkanoic acid/TBAOH, higher than 1, i.e., for an excess of fatty acid. The hexagonal phase melted to an isotropic phase (micelles) upon heating at a given temperature depending on the alkyl chain length. The self-orientation of the hexagonal phase occurred upon cooling from the "high-temperature" isotropic phase within the magnetic field. The long axis of the hexagonal phase was shown to self-orient parallel to the magnetic field as evidenced by deuterium solid-state NMR. This finding is expected to be of interest in the field of structural biology and materials chemistry for the synthesis of oriented materials.

  5. Stabilization of a Chlorinated (#4348)C66:C2v Cage by Encapsulating Monometal Species: Coordination between Metal and Double Hexagon-Condensed Pentalenes.

    PubMed

    Li, Qiao-Zhi; Zheng, Jia-Jia; He, Ling; Nagase, Shigeru; Zhao, Xiang

    2016-08-01

    Carbon cages in endohedral and exohedral fullerene derivatives are usually different. A recent report suggested that chlorofullerene C66Cl10:Cs and endohedral metallofullerene (EMF) Sc2@C66 shared the same cage (#4348)C66:C2v, while it was denied by the definitive characterization of Sc2@C66, which actually possesses the (#4059)C66:C2v isomer. Here, we show that a (#4348)C66:C2v cage with a double hexagon-condensed pentalene (DHCP) moiety, which was captured by exohedral chlorination, is also capable of being stabilized by encapsulating tri- or divalent monometal (M) species. On the basis of density functional theory calculations combined with statistical mechanics analyses, (#4348)C66:C2v-based mono-EMFs M@C2v(4348)-C66 (M = Tb, La, Y, and Yb) were demonstrated to be the most stable and predominant isomers at the fullerene formation temperature region, while another chlorinated cage (#4169)C66:Cs, featured with triple sequentially fused pentagon (TSFP) moiety, is less favorable to be obtained in the form of EMFs, although these two cages can be interconverted by a simple Stone-Wales transformation. The superiority of M@C2v(4348)-C66 over M@Cs(4169)-C66 comes from the stronger interaction of M-DHCP over that of M-TSFP in both ionic and covalent bonding aspects. In addition, size-selective complexation of host [n]cycloparaphenylene ([n]CPP) and Tb@C2v(4348)-C66 was simulated, showing that [10]CPP exhibits the best affinity toward Tb@C66, which provides a new opportunity for isolation and characterization of C66-based mono-EMFs.

  6. CePd2Ga3 and CePd2Zn3 - Kondo lattices and magnetic behaviour

    NASA Astrophysics Data System (ADS)

    Bartha, A.; Vališka, M.; Míšek, M.; Proschek, P.; Kaštil, J.; Dušek, M.; Sechovský, V.; Prokleška, J.

    2018-05-01

    We report the single crystal properties of CePd2Zn3 and CePd2Ga3 compounds. The compounds were prepared by Bridgman method in high-frequency induction furnace. Both compounds adopt the hexagonal PrNi2Al3-type structure with a = 5.3914(2) Å, c = 4.3012(2) Å for CePd2Zn3 and a = 5.4106(8) Å, c = 4.2671(8) Å for CePd2Ga3, respectively. CePd2Zn3 orders antiferromagnetically below TN = 1.9 K. Magnetoresistance measurements revealed a crossover at Bc = 0.95 T. CePd2Ga3 orders ferromagnetically at TC = 6.7 K. Applied hydrostatic pressure reduces the value of the Curie-temperature (rate ∂TC / ∂ p = 0.9 K GPa -1) down to 3.9 K at 3.2 GPa. Both compounds display a strong magnetocrystalline anisotropy with easy axis of magnetization perpendicular to the c-axis in the hexagonal lattice.

  7. Entropically Stabilized Colloidal Crystals Hold Entropy in Collective Modes

    NASA Astrophysics Data System (ADS)

    Antonaglia, James; van Anders, Greg; Glotzer, Sharon

    Ordered structures can be stabilized by entropy if the system has more ordered microstates available than disordered ones. However, ``locating'' the entropy in an ordered system is challenging because entropic ordering is necessarily a collective effort emerging from the interactions of large numbers of particles. Yet, we can characterize these crystals using simple traditional tools, because entropically stabilized crystals exhibit collective motion and effective stiffness. For a two-dimensional system of hard hexagons, we calculate the dispersion relations of both vibrational and librational collective modes. We find the librational mode is gapped, and the gap provides an emergent, macroscopic, and density-dependent length scale. We quantify the entropic contribution of each collective mode and find that below this length scale, the dominant entropic contributions are librational, and above this length scale, vibrations dominate. This length scale diverges in the high-density limit, so entropy is found predominantly in libration near dense packing. National Science Foundation Graduate Research Fellowship Program Grant No. DGE 1256260, Advanced Research Computing at the University of Michigan, Ann Arbor, and the Simons Foundation.

  8. Catalytic activity of various pepsin reduced Au nanostructures towards reduction of nitroarenes and resazurin

    NASA Astrophysics Data System (ADS)

    Sharma, Bhagwati; Mandani, Sonam; Sarma, Tridib K.

    2015-01-01

    Pepsin, a digestive protease enzyme, could function as a reducing as well as stabilizing agent for the synthesis of Au nanostructures of various size and shape under different reaction conditions. The simple tuning of the pH of the reaction medium led to the formation of spherical Au nanoparticles, anisotropic Au nanostructures such as triangles, hexagons, etc., as well as ultra small fluorescent Au nanoclusters. The activity of the enzyme was significantly inhibited after its participation in the formation of Au nanoparticles due to conformational changes in the native structure of the enzyme which was studied by fluorescence, circular dichroism (CD), and infra red spectroscopy. However, the Au nanoparticle-enzyme composites served as excellent catalyst for the reduction of p-nitrophenol and resazurin, with the catalytic activity varying with size and shape of the nanoparticles. The presence of pepsin as the surface stabilizer played a crucial role in the activity of the Au nanoparticles as reduction catalysts, as the approach of the reacting molecules to the nanoparticle surface was actively controlled by the stabilizing enzyme.

  9. First-principles modeling of hafnia-based nanotubes.

    PubMed

    Evarestov, Robert A; Bandura, Andrei V; Porsev, Vitaly V; Kovalenko, Alexey V

    2017-09-15

    Hybrid density functional theory calculations were performed for the first time on structure, stability, phonon frequencies, and thermodynamic functions of hafnia-based single-wall nanotubes. The nanotubes were rolled up from the thin free layers of cubic and tetragonal phases of HfO 2 . It was shown that the most stable HfO 2 single-wall nanotubes can be obtained from hexagonal (111) layer of the cubic phase. Phonon frequencies have been calculated for different HfO 2 nanolayers and nanotubes to prove the local stability and to find the thermal contributions to their thermodynamic functions. The role of phonons in stability of nanotubes seems to be negligible for the internal energy and noticeable for the Helmholtz free energy. Zone folding approach has been applied to estimate the connection between phonon modes of the layer and nanotubes and to approximate the nanotube thermodynamic properties. It is found that the zone-folding approximation is sufficiently accurate for heat capacity, but less accurate for entropy. The comparison has been done between the properties of TiO 2 , ZrO 2 , and HfO 2 . © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Torque removal evaluation of prosthetic screws after tightening and loosening cycles: an in vitro study.

    PubMed

    Cardoso, Mayra; Torres, Marcelo Ferreira; Lourenço, Eduardo José Veras; de Moraes Telles, Daniel; Rodrigues, Renata Cristina Silveira; Ribeiro, Ricardo Faria

    2012-04-01

    The aim of this study was to evaluate the variation in removal torque of implant prosthetic abutment screws after successive tightening and loosening cycles, in addition to evaluating the influence of the hexagon at the abutment base on screw removal torque. Twenty hexagonal abutments were tightened to 20 regular external hex implants with a titanium alloy screw, with an insertion torque of 32 N cm, measured with a digital torque gauge. The implant/abutment/screw assemblies were divided into two groups: (1) abutments without hexagon at the base and (2) abutments with a hexagon at the base. Each assembly received a provisional restoration and was submitted to mechanical loading cycles. After this, the screws were removed and the removal torque was measured. This sequence was repeated 10 times, then the screw was replaced by a new one, and another cycle was performed. Linear regression analysis was performed. Removal torque values tended to decrease as the number of insertion/removal cycles increased, for both groups. Comparisons of the slopes and the intercepts between groups showed no statistical difference. There was no significant difference between the mean values of last five cycles and the 11th cycle. Within the limitations of this in vitro study, it was concluded that (1) repeated insertion/removal cycles promoted gradual reduction in removal torque of screws, (2) replacing the screw with a new one after 10 cycles did not increase resistance to loosening, and (3) removal of the hexagon from the abutment base had no effect on the removal torque of the screws. © 2011 John Wiley & Sons A/S.

  11. A metal-organic framework based on nanosized hexagonal channels as fluorescent indicator for detection of nitroaromatic explosives

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Li; Wang, Xin-Long; Su, Zhong-Min

    2018-02-01

    A novel Zn-MOF (metal organic framework) [Zn3(NTB)2(DMA)2]·12DMA (NTB = 4,4‧,4″-nitrilotrisbenzoic acid; DMA = N,N-dimethylacetamide) (1) was obtained under solvothermal condition. The resulted MOF which is based on {Zn3} SBU displays an interesting (3,6)-connected three-dimensional net with nanosized, hexagonal channels. Additionally, 1 can be a useful fluorescent indicator for the detection of nitroaromatic explosives qualitatively and quantitatively via a strong quenching effect, especially for picric acid (PA). With increasing - NO2 groups, energy transfer from the electron-donating framework to high electron deficiency becomes more, making the effect of fluorescence quenching more obvious. The result demonstrates that the photo-induced electron transfer (PET) is responsible for the emission quenching.

  12. Hyperfine fields and anisotropy of the orbital moment in epitaxial Mn5Ge3 films studied by 55Mn NMR

    NASA Astrophysics Data System (ADS)

    Kalvig, R.; Jedryka, E.; Wojcik, M.; Allodi, G.; De Renzi, R.; Petit, M.; Michez, L.

    2018-05-01

    55Mn NMR was used to perform the atomic-scale study of the anisotropic properties of Mn5Ge3 /Ge(111) epitaxial films with thicknesses between 9 and 300 nm. The NMR spectra have been recorded as a function of strong external magnetic field applied in the film plane and perpendicular to it. Two 55Mn NMR resonances have been observed, corresponding to the two manganese sites 4 d and 6 g , in the hexagonal D 88 structure; in zero field their frequency is centered around 207.5 and 428 MHz, respectively. The anisotropy of 55Mn hyperfine fields between the hexagonal c direction and the c plane at both Mn sites was evidenced and attributed to the anisotropic term due to the unquenched Mn orbital momentum. The anisotropy of the orbital contribution to hyperfine fields was determined as 1.52 T in the 4 d site and up to 2.77 T in the 6 g site. The 4 d site reveals a quadrupolar interaction due to the strong electric field gradient: Vz z=5.3 ×1019V/m2 in this site, which is shown to be oriented along the hexagonal c axis.

  13. Chemical Interaction-Guided, Metal-Free Growth of Large-Area Hexagonal Boron Nitride on Silicon-Based Substrates.

    PubMed

    Behura, Sanjay; Nguyen, Phong; Debbarma, Rousan; Che, Songwei; Seacrist, Michael R; Berry, Vikas

    2017-05-23

    Hexagonal boron nitride (h-BN) is an ideal platform for interfacing with two-dimensional (2D) nanomaterials to reduce carrier scattering for high-quality 2D electronics. However, scalable, transfer-free growth of hexagonal boron nitride (h-BN) remains a challenge. Currently, h-BN-based 2D heterostructures require exfoliation or chemical transfer of h-BN grown on metals resulting in small areas or significant interfacial impurities. Here, we demonstrate a surface-chemistry-influenced transfer-free growth of large-area, uniform, and smooth h-BN directly on silicon (Si)-based substrates, including Si, silicon nitride (Si 3 N 4 ), and silicon dioxide (SiO 2 ), via low-pressure chemical vapor deposition. The growth rates increase with substrate electronegativity, Si < Si 3 N 4 < SiO 2 , consistent with the adsorption rates calculated for the precursor molecules via atomistic molecular dynamics simulations. Under graphene with high grain density, this h-BN film acts as a polymer-free, planar-dielectric interface increasing carrier mobility by 3.5-fold attributed to reduced surface roughness and charged impurities. This single-step, chemical interaction guided, metal-free growth mechanism of h-BN for graphene heterostructures establishes a potential pathway for the design of complex and integrated 2D-heterostructured circuitry.

  14. Strain-Induced Extrinsic High-Temperature Ferromagnetism in the Fe-Doped Hexagonal Barium Titanate

    PubMed Central

    Zorko, A.; Pregelj, M.; Gomilšek, M.; Jagličić, Z.; Pajić, D.; Telling, M.; Arčon, I.; Mikulska, I.; Valant, M.

    2015-01-01

    Diluted magnetic semiconductors possessing intrinsic static magnetism at high temperatures represent a promising class of multifunctional materials with high application potential in spintronics and magneto-optics. In the hexagonal Fe-doped diluted magnetic oxide, 6H-BaTiO3-δ, room-temperature ferromagnetism has been previously reported. Ferromagnetism is broadly accepted as an intrinsic property of this material, despite its unusual dependence on doping concentration and processing conditions. However, the here reported combination of bulk magnetization and complementary in-depth local-probe electron spin resonance and muon spin relaxation measurements, challenges this conjecture. While a ferromagnetic transition occurs around 700 K, it does so only in additionally annealed samples and is accompanied by an extremely small average value of the ordered magnetic moment. Furthermore, several additional magnetic instabilities are detected at lower temperatures. These coincide with electronic instabilities of the Fe-doped 3C-BaTiO3-δ pseudocubic polymorph. Moreover, the distribution of iron dopants with frozen magnetic moments is found to be non-uniform. Our results demonstrate that the intricate static magnetism of the hexagonal phase is not intrinsic, but rather stems from sparse strain-induced pseudocubic regions. We point out the vital role of internal strain in establishing defect ferromagnetism in systems with competing structural phases. PMID:25572803

  15. Tellurite microstructure fibers with small hexagonal core for supercontinuum generation.

    PubMed

    Liao, Meisong; Chaudhari, Chitrarekha; Qin, Guanshi; Yan, Xin; Suzuki, Takenobu; Ohishi, Yasutake

    2009-07-06

    Tellurite glass microstructure fibers with a 1 microm hexagonal core were fabricated successfully by accurately controlling the temperature field in the fiber-drawing process. The diameter ratio of holey region to core (DRHC) for the fiber can be adjusted freely in the range of 1-20 by pumping a positive pressure into the holes when drawing fiber, which provides much freedom in engineering the chromatic dispersion. With the increase of DRHC from 3.5 to 20, the zero dispersion wavelengths were shifted several hundred nanometers, the cutoff wavelength due to confinement loss was increased from 1600 nm to 3800 nm, and the nonlinear coefficient gamma was increased from 3.9 to 5.7 W(-1)/m. Efficient visible emissions due to third harmonic generation were found for fibers with a DRHC of 10 and 20 under the 1557 nm pump of a femtosecond fiber laser. One octave flattened supercontinuum spectrum was generated from fibers with a DRHC of 3.5, 10 and 20 by the 1064 nm pump of a picosecond fiber laser. To the best of our knowledge, we have for the first time fabricated a hexagonal core fiber by soft glass with such a small core size, and have demonstrated a large influence of the holey region on the dispersion, nonlinear coefficient and supercontinuum generation for such fiber.

  16. Metastable phases of silver and gold in hexagonal structure

    NASA Astrophysics Data System (ADS)

    Jona, F.; Marcus, P. M.

    2004-07-01

    Metastable phases of silver and gold in hexagonal close-packed structures are investigated by means of first-principles total-energy calculations. Two different methods are employed to find the equilibrium states: determination of the minima along the hexagonal epitaxial Bain path, and direct determination of minima of the total energy by a new minimum-path procedure. Both metals have two equilibrium states at different values of the hexagonal axial ratio c/a. For both metals, the elastic constants show that the high-c/a states are stable, hence, since the ground states are face-centred cubic, these states represent hexagonal close-packed metastable phases. The elastic constants of the low-c/a states show that they are unstable.

  17. High-performance anode based on porous Co3O4 nanodiscs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Anqiang; Wang, Yaping; Xu, Wu

    2014-06-01

    In this article, two-dimensional, Co3O4 hexagonal nanodiscs are prepared using a hydrothermal method without surfactants. X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) have been employed to characterize the structural properties. As revealed by the SEM and TEM experiments, the thickness of our as-fabricated Co3O4 hexagonal nanodiscs is about 20 nm, and the pore diameters range from several nanometers to 30 nm. As an anode for lithium-ion batteries, porous Co3O4 nanodiscs exhibit an average discharge voltage of ~1 V (Vs. Li/Li+) and a high specific charge capacity of 1161 mAh g-1 after 100 cycles. They alsomore » demonstrate excellent rate performance and high Coloumbic efficiency at various rates. These results indicate that porous Co3O4 nanodiscs are good candidates as anode materials for lithium-ion batteries.« less

  18. Robustness of magnetic and electric domains against charge carrier doping in multiferroic hexagonal ErMnO 3

    DOE PAGES

    Hassanpour, E.; Wegmayr, V.; Schaab, J.; ...

    2016-04-12

    We investigate the effect of chemical doping on the electric and magnetic domain pattern in multiferroic hexagonal ErMnO 3 . Hole- and electron doping are achieved through the growth of Er 1-x Ca x MnO 3 and Er 1-x Zr x MnO 3 single crystals, which allows for a controlled introduction of divalent and tetravalent ions, respectively. Using conductance measurements, piezoresponse force microscopy and nonlinear optics we study doping-related variations in the electronic transport and image the corrsponding ferroelectric and antiferromagnetic domains. We find that moderate doping levels allow for adjusting the electronic conduction properties of ErMnO 3 without destroyingmore » its characteristic domain patterns. Our findings demonstrate the feasibility of chemical doping for nonperturbative property-engineering of intrinsic domain states in this important class of multiferroics.« less

  19. Synthesis of hexagonal wurtzite Cu{sub 2}ZnSnS{sub 4} prisms by an ultrasound-assisted microwave solvothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Fei, E-mail: long.drf@gmail.com; Chi, Shangsen; Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083

    Wurtzite Cu{sub 2}ZnSnS{sub 4} (CZTS) hexagonal prisms were synthesized by a simple ultrasound-microwave solvothermal method. The product was characterized by XRD, FESEM, EDS, TEM, Raman and UV–vis spectrometer. The hexagonal prisms were 0.5–2 μm wide and 5–12 μm long. The PVP played an important role in the formation of the CZTS hexagonal prisms. In addition, the ultrasound-assisted microwave process was helpful for synthesis of wurtzite rather than kesterite phase CZTS. A nucleation–dissolution–recrystallization mechanism was also proposed to explain the growth of the CZTS hexagonal prisms. - Graphical abstract: Wurtzite Cu{sub 2}ZnSnS{sub 4} hexagonal prisms were synthesized by ultrasound-microwave solvothermal method.more » The ultrasound-assisted microwave process and PVP were useful to the growth of CZTS. A nucleation–dissolution–recrystallization growth mechanism was also proposed. - Highlights: • Wurtzite Cu{sub 2}ZnSnS{sub 4} was prepared by ultrasound-assisted microwave solvothermal method. • The wurtzite CZTS hexagonal prisms are demonstrated a band gap of 1.49 eV. • Synergistic effect of ultrasound and microwave is helpful to prepare Wurtzite CZTS. • PVP plays an important role in the formation of the CZTS hexagonal prisms. • Nucleation–dissolution–recrystallization growth mechanism of the CZTS was proposed.« less

  20. On domain symmetry and its use in homogenization

    DOE PAGES

    Barbarosie, Cristian A.; Tortorelli, Daniel A.; Watts, Seth E.

    2017-03-08

    The present study focuses on solving partial differential equations in domains exhibiting symmetries and periodic boundary conditions for the purpose of homogenization. We show in a systematic manner how the symmetry can be exploited to significantly reduce the complexity of the problem and the computational burden. This is especially relevant in inverse problems, when one needs to solve the partial differential equation (the primal problem) many times in an optimization algorithm. The main motivation of our study is inverse homogenization used to design architected composite materials with novel properties which are being fabricated at ever increasing rates thanks to recentmore » advances in additive manufacturing. For example, one may optimize the morphology of a two-phase composite unit cell to achieve isotropic homogenized properties with maximal bulk modulus and minimal Poisson ratio. Typically, the isotropy is enforced by applying constraints to the optimization problem. However, in two dimensions, one can alternatively optimize the morphology of an equilateral triangle and then rotate and reflect the triangle to form a space filling D 3 symmetric hexagonal unit cell that necessarily exhibits isotropic homogenized properties. One can further use this D 3 symmetry to reduce the computational expense by performing the “unit strain” periodic boundary condition simulations on the single triangle symmetry sector rather than the six fold larger hexagon. In this paper we use group representation theory to derive the necessary periodic boundary conditions on the symmetry sectors of unit cells. The developments are done in a general setting, and specialized to the two-dimensional dihedral symmetries of the abelian D 2, i.e. orthotropic, square unit cell and nonabelian D 3, i.e. trigonal, hexagon unit cell. We then demonstrate how this theory can be applied by evaluating the homogenized properties of a two-phase planar composite over the triangle symmetry sector of a D 3 symmetric hexagonal unit cell.« less

  1. Hexagonal nanorods of tungsten trioxide: Synthesis, structure, electrochemical properties and activity as supporting material in electrocatalysis

    NASA Astrophysics Data System (ADS)

    Salmaoui, Samiha; Sediri, Faouzi; Gharbi, Néji; Perruchot, Christian; Aeiyach, Salah; Rutkowska, Iwona A.; Kulesza, Pawel J.; Jouini, Mohamed

    2011-07-01

    Tungsten trioxide, unhydrated with hexagonal structure (h-WO 3), has been prepared by hydrothermal method at a temperature of 180 °C in acidified sodium tungstate solution. Thus prepared h-WO 3 has been characterized by X-ray diffraction (XRD) method and using electrochemical techniques. The morphology has been examined by scanning and transmission electron microscopies (SEM and TEM) and it is consistent with existence of nanorods of 50-70 nm diameter and up to 5 μm length. Cyclic voltammetric characterization of thin films of h-WO 3 nanorods has revealed reversible redox behaviour with charge-discharge cycling corresponding to the reversible lithium intercalation/deintercalation into the crystal lattice of the h-WO 3 nanorods. In propylene carbonate containing LiClO 4, two successive redox processes of hexagonal WO 3 nanorods are observed at the scan rate of 50 mV/s. Such behaviour shall be attributed to the presence of at least two W atoms of different surroundings in the lattice structure of h-WO 3 nanorods. On the other hand, in aqueous LiClO 4 solution, only one redox process is observed at the scan rate of 10 mV/s. The above observations can be explained in terms of differences in the diffusion of ions inside two types of channel cavities existing in the structure of the h-WO 3 nanorods. Moreover, the material can be applied as active support for the catalytic bi-metallic Pt-Ru nanoparticles during electrooxidation of ethanol in acid medium (0.5 mol dm -3 H 2SO 4).

  2. Influence of molecular weight on the phase behavior and structure formation of branched side-chain hairy-rod polyfluorene in bulk phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knaapila, M.; Lyons, B.P.; Foreman, J.P.

    We report on an experimental study of the self-organization and phase behavior of hairy-rod {pi}-conjugated branched side-chain polyfluorene, poly[9,9-bis(2-ethylhexyl)-fluorene-2,7-diyl] - i.e., poly[2,7-(9,9-bis(2-ethylhexyl)fluorene] (PF2/6) - as a function of molecular weight (M{sub n}). The results have been compared to those of phenomenological theory. Samples for which M{sub n}=3-147 kg/mol were used. First, the stiffness of PF2/6, the assumption of the theory, has been probed by small-angle neutron scattering in solution. Thermogravimetry has been used to show that PF2/6 is thermally stable over the conditions studied. Second, the existence of nematic and hexagonal phases has been phenomenologically identified for lower and highermore » M{sub n} (LMW, M{sub n}M{sub n}{sup *}) regimes, respectively, based on free-energy argument of nematic and hexagonal hairy rods and found to correspond to the experimental x-ray diffraction (XRD) results for PF2/6. By using the lattice parameters of PF2/6 as an experimental input, the nematic-hexagonal transition has been predicted in the vicinity of glassification temperature (T{sub g}) of PF2/6. Then, by taking the orientation parts of the free energies into account the nematic-hexagonal transition has been calculated as a function of temperature and M{sub n} and a phase diagram has been formed. Below T{sub g} of 80 deg. C only (frozen) nematic phase is observed for M{sub n}M{sub n}*. The nematic-hexagonal transition upon heating is observed for the HMW regime depending weakly on M{sub n}, being at 140-165 deg. C for M{sub n}>M{sub n}*. Third, the phase behavior and structure formation as a function of M{sub n} have been probed using powder and fiber XRD and differential scanning calorimetry and reasonable semiquantitative agreement with theory has been found for M{sub n}{>=}3 kg/mol. Fourth, structural characteristics are widely discussed. The nematic phase of LMW materials has been observed to be denser than high-temperature nematic phase of HMW compounds. The hexagonal phase has been found to be paracrystalline in the (ab0) plane but a genuine crystal meridionally. We also find that all these materials including the shortest 10-mer possess the formerly observed rigid five-helix hairy-rod molecular structure.« less

  3. Robust half-metallicity of hexagonal SrNiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Gao-Yuan; Ma, Chun-Lan, E-mail: machunlan@126.com; Chen, Da

    In the rich panorama of the electronic and magnetic properties of 3d transition metal oxides SrMO{sub 3} (M=Ti, V, Cr, Mn, Fe, Co, Ni, Cu), one member (SrNiO{sub 3}) is missing. In this paper we use GGA+U method based on density functional theory to examine its properties. It is found that SrNiO{sub 3} is a ferromagnetic half-metal. The charge density map shows a high degree of ionic bonding between Sr and other atoms. Meanwhile, a covalent-bonding Ni–O–Ni–O–Ni chain is observed. The spin density contour of SrNiO{sub 3} further indicates that the magnetic interaction between Ni atoms mediated by O ismore » semicovalent exchange. The density of states are examined to explore the unusual indirect magnetic-exchange mechanism. Corresponding to the total energies results, a robust half-metallic character is observed, suggesting a promising giant magneto-optical Kerr property of the material. The partial density of states are further examined to explore the origin of ferromagnetic half-metallicity. The O atoms are observed to have larger contribution at fermi level than Ni atoms to the spin-polarized states, demonstrating that O atoms play a critical role in ferromagnetic half-metallicity of SrNiO{sub 3}. Hydrostatic pressure effect is examined to evaluate how robust the half-metallic ferromagnetism is. - Graphical abstract: (a) The total energy as a function of the lattice constant a for hexagonal SrNiO3 with various magnetic phases. (b) The total electronic density of states for hexagonal SrNiO{sub 3} with FM configuration from GGA+U calculations. (c) Total electron-density distribution in the (110) plane. The colors gradually change from cyan (through pink) to yellow corresponding to charge density value from 0 to 4.0. (d) The magnetization density map in the (110) plane. The colors range from blue (through green) to red corresponding to magnetization density value from −0.15 to 0.45. Black and white contours stand for positive and negative values, respectively. - Highlights: • Hexagonal SrNiO{sub 3} is studied using first-principles method for the first time. • It is predicted that SrNiO{sub 3} is a ferromagnetic half metal. • The half-metallic ferromagnetism survives upon a pressure up to 20 GPa.« less

  4. Influence of spatial configurations on electromagnetic interference shielding of ordered mesoporous carbon/ordered mesoporous silica/silica composites

    PubMed Central

    Wang, Jiacheng; Zhou, Hu; Zhuang, Jiandong; Liu, Qian

    2013-01-01

    Ordered mesoporous carbons (OMCs), obtained by nanocasting using ordered mesoporous silicas (OMSs) as hard templates, exhibit unique arrangements of ordered regular nanopore/nanowire mesostructures. Here, we used nanocasting combined with hot-pressing to prepare 10 wt% OMC/OMS/SiO2 ternary composites possessing various carbon mesostructure configurations of different dimensionalities (1D isolated CS41 carbon nanowires, 2D hexagonal CMK-3 carbon, and 3D cubic CMK-1 carbon). The electric/dielectric properties and electromagnetic interference (EMI) shielding efficiency (SE) of the composites were influenced by spatial configurations of carbon networks. The complex permittivity and the EMI SE of the composites in the X-band frequency range decreased for the carbon mesostructures in the following order: CMK-3-filled > CMK-1-filled > CS41-filled. Our study provides technical directions for designing and preparing high-performance EMI shielding materials. Our OMC-based silica composites can be used for EMI shielding, especially in high-temperature or corrosive environments, owing to the high stability of the OMC/OMS fillers and the SiO2 matrix. Related shielding mechanisms are also discussed. PMID:24248277

  5. Anionic ordering and thermal properties of FeF3·3H2O.

    PubMed

    Burbano, Mario; Duttine, Mathieu; Borkiewicz, Olaf; Wattiaux, Alain; Demourgues, Alain; Salanne, Mathieu; Groult, Henri; Dambournet, Damien

    2015-10-05

    Iron fluoride trihydrate can be used to prepare iron hydroxyfluoride with the hexagonal-tungsten-bronze (HTB) type structure, a potential cathode material for batteries. To understand this phase transformation, a structural description of β-FeF3·3H2O is first performed by means of DFT calculations and Mössbauer spectroscopy. The structure of this compound consists of infinite chains of [FeF6]n and [FeF2(H2O)4]n. The decomposition of FeF3·3H2O induces a collapse and condensation of these chains, which lead to the stabilization, under specific conditions, of a hydroxyfluoride network FeF3-x(OH)x with the HTB structure. The release of H2O and HF was monitored by thermal analysis and physical characterizations during the decomposition of FeF3·3H2O. An average distribution of FeF4(OH)2 distorted octahedra in HTB-FeF3-x(OH)x was obtained subsequent to the thermal hydrolysis/olation of equatorial anionic positions involving F(-) and H2O. This study provides a clear understanding of the structure and thermal properties of FeF3·3H2O, a material that can potentially bridge the recycling of pickling sludge from the steel industry by preparing battery electrodes.

  6. Anionic ordering and thermal properties of FeF 3·3H 2O

    DOE PAGES

    Burbano, Mario; Duttine, Mathieu; Borkiewicz, Olaf; ...

    2015-09-17

    In this study, iron fluoride tri-hydrate can be used to prepare iron hydroxyfluoride with the Hexagonal-Tungsten-Bronze (HTB) type structure, a potential cathode material for batteries. To understand this phase transformation, a structural description of β-FeF 3·3H 2O is first performed by means of DFT calculations and Mössbauer spectroscopy. The structure of this compound consists of infinite chains of [FeF 6]n and [FeF 2(H2O) 4] n. The decomposition of FeF 3·3H 2O induces a collapse and condensation of these chains, which lead to the stabilization, under specific conditions, of a hydroxyfluoride network FeF 3-x(OH) x with the HTB structure. The releasemore » of H 2O and HF was monitored by thermal analysis and physical characterizations during the decomposition of FeF 3·3H 2O. An average distribution of FeF 4(OH) 2 distorted octahedra in HTB-FeF 3-x(OH) x was obtained subsequent to the thermal hydrolysis/olation of equatorial anionic positions involving F- and H 2O. This study provides a clear understanding of the structure and thermal properties of FeF 3·3H 2O, a material that can potentially bridge the recycling of pickling sludge from the steel industry by preparing battery electrodes.« less

  7. Research on the comparison of extension mechanism of cellular automaton based on hexagon grid and rectangular grid

    NASA Astrophysics Data System (ADS)

    Zhai, Xiaofang; Zhu, Xinyan; Xiao, Zhifeng; Weng, Jie

    2009-10-01

    Historically, cellular automata (CA) is a discrete dynamical mathematical structure defined on spatial grid. Research on cellular automata system (CAS) has focused on rule sets and initial condition and has not discussed its adjacency. Thus, the main focus of our study is the effect of adjacency on CA behavior. This paper is to compare rectangular grids with hexagonal grids on their characteristics, strengths and weaknesses. They have great influence on modeling effects and other applications including the role of nearest neighborhood in experimental design. Our researches present that rectangular and hexagonal grids have different characteristics. They are adapted to distinct aspects, and the regular rectangular or square grid is used more often than the hexagonal grid. But their relative merits have not been widely discussed. The rectangular grid is generally preferred because of its symmetry, especially in orthogonal co-ordinate system and the frequent use of raster from Geographic Information System (GIS). However, in terms of complex terrain, uncertain and multidirectional region, we have preferred hexagonal grids and methods to facilitate and simplify the problem. Hexagonal grids can overcome directional warp and have some unique characteristics. For example, hexagonal grids have a simpler and more symmetric nearest neighborhood, which avoids the ambiguities of the rectangular grids. Movement paths or connectivity, the most compact arrangement of pixels, make hexagonal appear great dominance in the process of modeling and analysis. The selection of an appropriate grid should be based on the requirements and objectives of the application. We use rectangular and hexagonal grids respectively for developing city model. At the same time we make use of remote sensing images and acquire 2002 and 2005 land state of Wuhan. On the base of city land state in 2002, we make use of CA to simulate reasonable form of city in 2005. Hereby, these results provide a proof of concept for hexagonal which has great dominance.

  8. Novel high pressure hexagonal OsB2 by mechanochemistry

    NASA Astrophysics Data System (ADS)

    Xie, Zhilin; Graule, Moritz; Orlovskaya, Nina; Andrew Payzant, E.; Cullen, David A.; Blair, Richard G.

    2014-07-01

    Hexagonal OsB2, a theoretically predicted high-pressure phase, has been synthesized for the first time by a mechanochemical method, i.e., high energy ball milling. X-ray diffraction indicated that formation of hexagonal OsB2 begins after 2.5 h of milling, and the reaction reaches equilibrium after 18 h of milling. Rietveld refinement of the powder data indicated that hexagonal OsB2 crystallizes in the P63/mmc space group (No. 194) with lattice parameters of a=2.916 Å and c=7.376 Å. Transmission electron microscopy confirmed the appearance of the hexagonal OsB2 phase after high energy ball milling. in situ X-ray diffraction experiments showed that the phase is stable from -225 °C to 1050 °C. The hexagonal OsB2 powder was annealed at 1050 °C for 6 days in vacuo to improve crystallinity and remove strain induced during the mechanochemical synthesis. The structure partially converted to the orthorhombic phase (20 wt%) after fast current assisted sintering of hexagonal OsB2 at 1500 °C for 5 min. Mechanochemical approaches to the synthesis of hard boride materials allow new phases to be produced that cannot be prepared using conventional methods.

  9. Cubic ice and large humidity with respect to ice in cold cirrus clouds

    NASA Astrophysics Data System (ADS)

    Bogdan, A.; Loerting, T.

    2009-04-01

    Recently several studies have reported about the possible formation of cubic ice in upper-tropospheric cirrus ice clouds and its role in the observed elevated relative humidity with respect to hexagonal ice, RHi, within the clouds. Since cubic ice is metastable with respect to stable hexagonal ice, its vapour pressure is higher. A key issue in determining the ratio of vapour pressures of cubic ice Pc and hexagonal ice Ph is the enthalpy of transformation from cubic to hexagonal ice Hc→h. By dividing the two integrated forms of the Clausius-Clapeyron equation for cubic ice and hexagonal ice, one obtains the relationship (1): ln Pc-- ln P*c-=--(Hc→h--) Ph P*h R 1T-- 1T* (1) from which the importance of Hc→h is evident. In many literature studies the approximation (2) is used: ln Pc-= Hc-→h. Ph RT (2) Using this approximated form one can predict the ratio of vapour pressures by measuring Hc→h. Unfortunately, the measurement of Hc→h is difficult. First, the enthalpy difference is very small, and the transition takes place over a broad temperature range, e.g., between 230 K and 260 K in some of our calorimetry experiments. Second, cubic ice (by contrast to hexagonal ice) can not be produced as a pure crystal. It always contains hexagonal stacking faults, which are evidenced by the (111)-hexagonal Bragg peak in the powder diffractogram. If the number of hexagonal stacking faults in cubic ice is high, then one could even consider this material as hexagonal ice with cubic stacking faults. Using the largest literature value of the change of enthalpy of transformation from cubic to hexagonal ice, Hc→h ? 160 J/mol, Murphy and Koop (2005) calculated that Pc would be ~10% higher than that of hexagonal ice Phat 180 K - 190 K, which agrees with the measurements obtained later by Shilling et al. (2006). Based on this result Shilling et al. concluded that "the formation of cubic ice at T < 202 K may significantly contribute to the persistent in-cloud water supersaturations" in the upper-tropospheric cold cirrus clouds. Using instead the value of Hc→h ? 50 J/mol (Handa et al., 1986; Mayer and Hallbrucker, 1987) the calculation gives that Pc is only ~3% larger than that of Ph. Recently it has been reported that emulsified water droplets freeze to cubic ice when being cooled at a rate of 10 K/min (Murray and Bertram, 2006,). We prepared emulsified droplets using the same emulsification technique and studied them with a differential scanning calorimeter (DSC) between 278 and 180 K using a scanning rate of 10 K/min. During the warming of the samples we observed a very broad, tiny exothermal peak approximately between 230 and 260 K. Kohl et al. (2000) observed exothermal peak at ~230 K during the warming at 30 K/min of several samples of hyperquenched glassy water (HGW) prepared at temperature between 130 and 190 K. They attributed this peak to the cubic-to-hexagonal ice transition and estimated Hc→h to be between ~33 and 75 J/mol. Johari (2005) used the value of Hc→h ? 37 J/mol. Assuming that in our case the broad peak between 230 and 260 K is also due to the cubic-to-hexagonal ice transition we obtained approximately between 10 and 25 J/mol for Hc→h. This low enthalpy of transformation suggests that cubic ice in the atmosphere contains many hexagonal stacking faults. Using these values of Hc→h for cubic ice as produced at atmospheric cooling rates, the above mentioned formula gives that Pc is larger than that of Ph only by ~1%. We, therefore, suggest that the difference in the water vapor pressures between ice Ic and ice Ih is small and does not play a significant role in the elevation of RHi in cold cirrus clouds. Murphy, D. M., and T. Koop (2005), Q. J. R. Meteorol. Soc. 131, 1539-1565. Shilling, J. E. et al. (2006). Geophys. Res. Lett. 33, L17801, doi:1029/2006GL026671. Handa, P. Y., D. D. Klug, and E. Whalley (1986). J. Chem. Phys. 84, 7009-7010. Mayer, E., and A. Hallbrucker (1987), Nature, 325, 601-602. Murray, B. J. and A. K. Bertram (2006), Phys. Chem. Chem. Phys. 8, 186-192. Kohl, I., E. Mayer, and A. Hallbrucker (2000), Phys. Chem. Chem. Phys. 2, 1579-1586. G. P. Johari, (2005), J. Chem. Phys. 122, 194504.

  10. Prediction of the electronic structures, thermodynamic and mechanical properties in manganese doped magnesium-based alloys and their saturated hydrides based on density functional theory

    NASA Astrophysics Data System (ADS)

    Zhang, Ziying; Zhang, Huizhen; Zhao, Hui; Yu, Zhishui; He, Liang; Li, Jin

    2015-04-01

    The crystal structures, electronic structures, thermodynamic and mechanical properties of Mg2Ni alloy and its saturated hydride with different Mn-doping contents are investigated using first-principles density functional theory. The lattice parameters for the Mn-doped Mg2Ni alloys and their saturated hydrides decreased with an increasing Mn-doping content because of the smaller atomic size of Mn compared with that of Mg. Analysis of the formation enthalpies and electronic structures reveal that the partial substitution of Mg with Mn reduces the stability of Mg2Ni alloy and its saturated hydride. The calculated elastic constants indicate that, although the partial substitution of Mg with Mn lowers the toughness of the hexagonal Mg2Ni alloy, the charge/discharge cycles are elevated when the Mn-doping content is high enough to form the predicted intermetallic compound Mg3MnNi2.

  11. Superhard nanocomposite of dense polymorphs of boron nitride: Noncarbon material has reached diamond hardness

    NASA Astrophysics Data System (ADS)

    Dubrovinskaia, Natalia; Solozhenko, Vladimir L.; Miyajima, Nobuyoshi; Dmitriev, Vladimir; Kurakevych, Oleksandr O.; Dubrovinsky, Leonid

    2007-03-01

    The authors report a synthesis of unique superhard aggregated boron nitride nanocomposites (ABNNCs) showing the enhancement of hardness up to 100% in comparison with single crystal c-BN. Such a great hardness increase is due to the combination of the Hall-Petch and the quantum confinement effects. The decrease of the grain size down to 14nm and the simultaneous formation of the two dense BN phases with hexagonal and cubic structures within the grains at nano- and subnanolevel result in enormous mechanical property enhancement with maximum hardness of 85(5)GPa. Thus, ABNNC is the first non-carbon-based bulk material with the value of hard-ness approaching that of single crystal and polycrystalline diamond and aggregated diamond nanorods. ABNNC also has an unusually high fracture toughness for superhard materials (K1C=15MPam0.5) and wear resistance (WH=11; compare, for industrial polycrystalline diamond, WH=3-4), in combination with high thermal stability (above 1600K in air), making it an exceptional superabrasive.

  12. Improving adsorption and activation of the lipase immobilized in amino-functionalized ordered mesoporous SBA-15

    NASA Astrophysics Data System (ADS)

    Xu, Yun-qiang; Zhou, Guo-wei; Wu, Cui-cui; Li, Tian-duo; Song, Hong-bin

    2011-05-01

    Ordered mesoporous SBA-15 was prepared by hydrothermal process and was functionalized with(3-aminopropyl) triethoxysilane (APTES) by post-synthesis-grafting method. The materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectrometer (EDS), small-angle X-ray powder diffraction (SAXRD), N 2 adsorption-desorption and Fourier transform infrared spectroscopy (FT-IR). The results indicated that SBA-15 had a 2-dimensional hexagonal p6 mm mesoscopic structure and the mesoscopic structure was remained after the functionalization procedure. The activities of porcine pancreatic lipase (PPL) immobilized in SBA-15 by physical adsorption and in APTES functionalized SBA-15 by chemical adsorption were studied by hydrolysis of triacetin. Chemically adsorbed PPL showed higher loading amount and catalytic activity comparing with physically adsorbed PPL. The stability of immobilized PPL against thermal and pH of reaction medium was significantly improved. Recycling experiments showed that chemically adsorbed PPL exhibited better reusability than physically adsorbed PPL.

  13. Multi-scale thermal stability of a hard thermoplastic protein-based material

    NASA Astrophysics Data System (ADS)

    Latza, Victoria; Guerette, Paul A.; Ding, Dawei; Amini, Shahrouz; Kumar, Akshita; Schmidt, Ingo; Keating, Steven; Oxman, Neri; Weaver, James C.; Fratzl, Peter; Miserez, Ali; Masic, Admir

    2015-09-01

    Although thermoplastic materials are mostly derived from petro-chemicals, it would be highly desirable, from a sustainability perspective, to produce them instead from renewable biopolymers. Unfortunately, biopolymers exhibiting thermoplastic behaviour and which preserve their mechanical properties post processing are essentially non-existent. The robust sucker ring teeth (SRT) from squid and cuttlefish are one notable exception of thermoplastic biopolymers. Here we describe thermoplastic processing of squid SRT via hot extrusion of fibres, demonstrating the potential suitability of these materials for large-scale thermal forming. Using high-resolution in situ X-ray diffraction and vibrational spectroscopy, we elucidate the molecular and nanoscale features responsible for this behaviour and show that SRT consist of semi-crystalline polymers, whereby heat-resistant, nanocrystalline β-sheets embedded within an amorphous matrix are organized into a hexagonally packed nanofibrillar lattice. This study provides key insights for the molecular design of biomimetic protein- and peptide-based thermoplastic structural biopolymers with potential biomedical and 3D printing applications.

  14. [The reproducibility of multifocal ERG recordings].

    PubMed

    Meigen, T; Friedrich, A

    2002-09-01

    Multifocal electroretinogram recordings (mfERG) can be used to detect a local dysfunction of the retina. In this study we tested both the intrasessional and inter-sessional reproducibility of mfERG amplitudes. MfERGs from 6 eyes of 6 normal subjects were recorded on two different days using DTL electrodes. The relative coefficient of variation ( RCV) was used to quantify the amplitude reproducibility. We tested the effect of (a) session (inter- vs. intrasessional), (b) recording duration (7.3 vs. 3.6 min), (c) trace type (hexagon traces vs. ring averages), and (d) amplitude definition (peak-trough analysis vs. scalar product) on RCV. RCV was 6.5+/-0.4% (Mean+/-SEM, n=96) when averaged across all recording conditions and all subjects. The ANOVA showed a significant difference ( p=0.018) between hexagon traces and ring averages. Another significant effect ( p=0.016) occurred for the interaction of (a) and (b). MfERGs can be recorded with a high degree of reproducibility even for short recording durations and single hexagon traces. As the factor (a) did not show a significant effect, the new placement of the DTL electrode in the second session does not necessarily increase the retest variability compared to a second recording within the same session.

  15. Magnetic excitations in praseodymium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houmann, J.G.; Rainford, B.D.; Jensen, J.

    1979-08-01

    The magnetic excitations in a single crystal of dhcp Pr have been studied by inelastic neutron scattering. The excitations on the hexagonal sites, and their dependence on magnetic fields up to 43 kOe applied in the basal plane, have been analyzed in terms of a Hamiltonian in which exchange, crystal-field, and magnetoelastic interactions are included. The exchange is found to be strongly anisotropic, and this anisotropy is manifested directly in a splitting of most branches of the dispersion relations. By considering a variety of magnetic properties, we have been able to determine the crystal-field level scheme for the hexagonal sitesmore » fairly unambiguously. The first excited level is 3.5 meV above the ground state. The value of the magnetoelastic coupling deduced from the excitations is in good agreement with values obtained from other measurements. A field-dependent interaction with the phonons has been observed, and a pronounced broadening of the acoustic excitations of long wavelength is ascribed to the influence of the conduction electrons. The first excited state on the cubic ions is about 8.3 meV above the ground state. The corresponding excitations show a pronounced dispersion, but the exchange anisotropy is of less importance than for the hexagonal sites.« less

  16. Crystallization of phycoerythrocyanin from the cyanobacterium Mastigocladus laminosus and preliminary characterization of two crystal forms.

    PubMed

    Rümbeli, R; Schirmer, T; Bode, W; Sidler, W; Zuber, H

    1985-11-05

    The light-harvesting protein phycoerythrocyanin from the cyanobacterium Mastigocladus laminosus Cohn has been crystallized in two different crystal forms by vapour diffusion. In 5% (w/v) polyethylene glycol at pH 8.5, hexagonal crystals of space group P63 with cell constants a = b = 158 A, c = 40.6 A were obtained, which turned out to be almost isomorphous with the hexagonal crystals of C-phycocyanin from the same organism. Consequently, the conformation of both phycobiliproteins must be very similar. From 1.5 M-ammonium sulfate (pH 8.5), orthorhombic crystals of space group P2221 with cell constants a = 60.5 A, b = 105 A, c = 188 A could be grown. Density measurements of these crystals indicate that the unit cell contains 18 (alpha beta)-units. A detailed packing scheme is proposed that is consistent with the observed pseudo-hexagonal X-ray intensity pattern and with the known size and shape of (alpha beta)3-trimers of C-phycocyanin. Accordingly, disc-like (alpha beta)3-trimers are associated face-to-face and stacked one upon another in rods with a period of 60.5 A, corresponding to the cell dimension a.

  17. EDTA-assisted phase conversion synthesis of (Gd0.95RE0.05)PO4 nanowires (RE = Eu, Tb) and investigation of photoluminescence

    PubMed Central

    Wang, Zhihao; Li, Ji-Guang; Zhu, Qi; Ai, Zhengrong; Li, Xiaodong; Sun, Xudong; Kim, Byung-Nam; Sakka, Yoshio

    2017-01-01

    Abstract Hexagonal (Gd0.95RE0.05)PO4·nH2O nanowires ~300 nm in length and ~10 nm in diameter have been converted from (Gd0.95RE0.05)2(OH)5NO3·nH2O nanosheets (RE = Eu, Tb) in the presence of monoammonium phosphate (NH4H2PO4) and ethylene diamine tetraacetic acid (EDTA). They were characterized by X-ray diffraction, thermogravimetry, electron microscopy, and Fourier transform infrared and photoluminescence spectroscopies. It is shown that EDTA played an essential role in the morphology development of the nanowires. The hydrothermal products obtained up to 180 °C are of a pure hexagonal phase, while monoclinic phosphate evolved as an impurity at 200 °C. The nanowires undergo hexagonal→monoclinic phase transformation upon calcination at ≥600 °C to yield a pure monoclinic phase at ~900 °C. The effects of calcination on morphology, excitation/emission, and fluorescence decay kinetics were investigated in detail with (Gd0.95Eu0.05)PO4 as example. The abnormally strong 5D0→7F4 electric dipole Eu3+ emission in the hexagonal phosphates was ascribed to site distortion. The process of energy migration was also discussed for the optically active Gd3+ and Eu3+/Tb3+ ions. PMID:28740561

  18. Preparation and near-infrared photothermal conversion property of cesium tungsten oxide nanoparticles

    PubMed Central

    2013-01-01

    Cs0.33WO3 nanoparticles have been prepared successfully by a stirred bead milling process. By grinding micro-sized coarse powder with grinding beads of 50 μm in diameter, the mean hydrodynamic diameter of Cs0.33WO3 powder could be reduced to about 50 nm in 3 h, and a stable aqueous dispersion could be obtained at pH 8 via electrostatic repulsion mechanism. After grinding, the resulting Cs0.33WO3 nanoparticles retained the hexagonal structure and had no significant contaminants from grinding beads. Furthermore, they exhibited a strong characteristic absorption and an excellent photothermal conversion property in the near-infrared (NIR) region, owing to the free electrons or polarons. Also, the NIR absorption and photothermal conversion property became more significant with decreasing particle size or increasing particle concentration. When the concentration of Cs0.33WO3 nanoparticles was 0.08 wt.%, the solution temperature had a significant increase of above 30°C in 10 min under NIR irradiation (808 nm, 2.47 W/cm2). In addition, they had a photothermal conversion efficiency of about 73% and possessed excellent photothermal stability. Such an effective NIR absorption and photothermal conversion nanomaterial not only was useful in the NIR shielding, but also might find great potential in biomedical application. PMID:23379652

  19. Synthesis and characterization of nanostructured CaSiO3 biomaterial

    NASA Astrophysics Data System (ADS)

    Jagadale, Pramod N.; Kulal, Shivaji R.; Joshi, Meghanath G.; Jagtap, Pramod P.; Khetre, Sanjay M.; Bamane, Sambhaji R.

    2013-04-01

    Here we report a successful preparation of nanostructured calcium silicate by wet chemical approach. The synthesized sample was characterized by various physico-chemical methods. Thermal stability was investigated using thermo-gravimetric and differential thermal analysis (TG-DTA). Structural characterization of the sample was carried out by the X-ray diffraction technique (XRD) which confirmed its single phase hexagonal structure. Transmission electron microscopy (TEM) was used to study the nanostructure of the ceramics while homogeneous grain distribution was revealed by scanning electron microscopy studies (SEM). The elemental analysis data obtained from energy dispersive X-ray spectroscopy (EDAX) were in close agreement with the starting composition used for the synthesis. Superhydrophilic nature of CaSiO3 was investigated at room temperature by sessile drop technique. Effect of porous nanosized CaSiO3 on early adhesion and proliferation of human bone marrow mesenchymal stem cells (BMMSCs) and cord blood mesenchymal stem (CBMSCs) cells was measured in vitro. MTT cytotoxicity test and cell adhesion test showed that the material had good biocompatibility and promoted cell viability and cell proliferation. It has been stated that the cell viability and proliferation are significantly affected by time and concentration of CaSiO3. These findings indicate that the CaSiO3 ceramics has good biocompatibility and that it is promising as a biomaterial.

  20. Pyramidal dislocation induced strain relaxation in hexagonal structured InGaN/AlGaN/GaN multilayer

    NASA Astrophysics Data System (ADS)

    Yan, P. F.; Du, K.; Sui, M. L.

    2012-10-01

    Due to the special dislocation slip systems in hexagonal lattice, dislocation dominated deformations in hexagonal structured multilayers are significantly different from that in cubic structured systems. In this work, we have studied the strain relaxation mechanism in hexagonal structured InGaN/AlGaN/GaN multilayers with transmission electron microscopy. Due to lattice mismatch, the strain relaxation was found initiated with the formation of pyramidal dislocations. Such dislocations locally lie at only one preferential slip direction in the hexagonal lattice. This preferential slip causes a shear stress along the basal planes and consequently leads to dissociation of pyramidal dislocations and operation of the basal plane slip system. The compressive InGaN layers and "weak" AlGaN/InGaN interfaces stimulate the dissociation of pyramidal dislocations at the interfaces. These results enhance the understanding of interactions between dislocations and layer interfaces and shed new lights on deformation mechanism in hexagonal-lattice multilayers.

  1. Supramolecule-to-Supramolecule Transformations of Coordination-Driven Self-Assembled Polygons

    PubMed Central

    Zhao, Liang; Northrop, Brian H.; Stang, Peter J.

    2009-01-01

    Two types of supramolecular transformations, wherein a self-assembled Pt(II)-pyridyl metal-organic polygon is controllably converted into an alternative polygon, have been achieved through the reaction between cobalt carbonyl and the acetylene moiety of a dipyridyl donor ligand. A [6+6] hexagon is transformed into two [3+3] hexagons and a triangle-square mixture is converted into [2+2] rhomboids. 1H and 31P NMR spectra are used to track the transformation process and evaluate the yield of new self-assembled polygons. Such transformed species are identified by electrospray ionization (ESI) mass spectrometry. This new kind of supramolecule-to-supramolecule transformations provides a viable means for constructing, and then converting, new self-assembled polygons. PMID:18702485

  2. Phase transition studies of germanium to 1. 25 Mbar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vohra, Y.K.; Brister, K.E.; Desgreniers, S.

    1986-05-05

    New phase transitions in Ge were observed by energy-dispersive x-ray diffraction techniques for pressures up to 125 GPa (1.25 Mbar) as follows: the ..beta..-Sn structure to the simple hexagonal (sh) phase at 75 +- 3 GPa and to the double hexagonal close-packed structure (dhcp) at 102 +- 5 GPa. These are the highest pressures for which a crystalline structure change has been directly observed in any material by x-ray diffraction. Total-energy pseudopotential calculations predict 84 +- 10 GPa for the ..beta..-Sn to sh phase transition and 105 +- 21 GPa for sh to hcp (not dhcp) transition. The role ofmore » 3d core electrons in increasing the transformation pressures in Ge, as compared to Si, is emphasized.« less

  3. Wrinkling pattern evolution of cylindrical biological tissues with differential growth.

    PubMed

    Jia, Fei; Li, Bo; Cao, Yan-Ping; Xie, Wei-Hua; Feng, Xi-Qiao

    2015-01-01

    Three-dimensional surface wrinkling of soft cylindrical tissues induced by differential growth is explored. Differential volumetric growth can cause their morphological stability, leading to the formation of hexagonal and labyrinth wrinkles. During postbuckling, multiple bifurcations and morphological transitions may occur as a consequence of continuous growth in the surface layer. The physical mechanisms underpinning the morphological evolution are examined from the viewpoint of energy. Surface curvature is found to play a regulatory role in the pattern evolution. This study may not only help understand the morphogenesis of soft biological tissues, but also inspire novel routes for creating desired surface patterns of soft materials.

  4. Growth of single-layer boron nitride dome-shaped nanostructures catalysed by iron clusters.

    PubMed

    Torre, A La; Åhlgren, E H; Fay, M W; Ben Romdhane, F; Skowron, S T; Parmenter, C; Davies, A J; Jouhannaud, J; Pourroy, G; Khlobystov, A N; Brown, P D; Besley, E; Banhart, F

    2016-08-11

    We report on the growth and formation of single-layer boron nitride dome-shaped nanostructures mediated by small iron clusters located on flakes of hexagonal boron nitride. The nanostructures were synthesized in situ at high temperature inside a transmission electron microscope while the e-beam was blanked. The formation process, typically originating at defective step-edges on the boron nitride support, was investigated using a combination of transmission electron microscopy, electron energy loss spectroscopy and computational modelling. Computational modelling showed that the domes exhibit a nanotube-like structure with flat circular caps and that their stability was comparable to that of a single boron nitride layer.

  5. Stability and electronic spectra of C76N2 isomers

    PubMed Central

    Teng, Qi-wen; Wu, Shi

    2005-01-01

    Study of geometries of 16 possible isomers for C76N2 based on C78(C 2v) by intermediate neglect of differential overlap (INDO) series of methods indicated that the most stable geometry 25,78-C76N2 where two nitrogen atoms substitute two apexes C(25) and C(78) near the shortest X axis and Y axis formed by two hexagons and a pentagon. Electronic structures and spectra of C76N2 were investigated. The reason for the red-shift for absorptions of C76N2 compared with that of C78(C 2v) is discussed. PMID:15909352

  6. Survival and failure modes: platform-switching for internal and external hexagon cemented fixed dental prostheses.

    PubMed

    Anchieta, Rodolfo B; Machado, Lucas S; Hirata, Ronaldo; Coelho, Paulo G; Bonfante, Estevam A

    2016-10-01

    This study evaluated the probability of survival (reliability) of platform-switched fixed dental prostheses (FDPs) cemented on different implant-abutment connection designs. Eighty-four-three-unit FDPs (molar pontic) were cemented on abutments connected to two implants of external or internal hexagon connection. Four groups (n = 21 each) were established: external hexagon connection and regular platform (ERC); external hexagon connection and switched platform (ESC); internal hexagon and regular platform (IRC); and internal hexagon and switched platform (ISC). Prostheses were subjected to step-stress accelerated life testing in water. Weibull curves and probability of survival for a mission of 100,000 cycles at 400 N (two-sided 90% CI) were calculated. The beta values of 0.22, 0.48, 0.50, and 1.25 for groups ERC, ESC, IRC, and ISC, respectively, indicated a limited role of fatigue in damage accumulation, except for group ISC. Survival decreased for both platform-switched groups (ESC: 74%, and ISC: 59%) compared with the regular matching platform counterparts (ERC: 95%, and IRC: 98%). Characteristic strength was higher only for ERC compared with ESC, but not different between internal connections. Failures chiefly involved the abutment screw. Platform switching decreased the probability of survival of FDPs on both external and internal connections. The absence in loss of characteristic strength observed in internal hexagon connections favor their use compared with platform-switched external hexagon connections. © 2016 Eur J Oral Sci.

  7. Demonstration of the feasibility of automated silicon solar cell fabrication

    NASA Technical Reports Server (NTRS)

    Thornhill, J. W.; Taylor, W. E.

    1976-01-01

    An analysis of estimated costs indicate that for an annual output of 4,747,000 hexagonal cells (38 mm. on a side) a total factory cost of $0.866 per cell could be achieved. For cells with 14% efficiency at AMO intensity (1353 watts per square meter), this annual production rate is equivalent to 3,373 kilowatts and a manufacturing cost of $1.22 per watt of electrical output. A laboratory model of such a facility was operated to produce a series of demonstration runs, producing hexagonal cells, 2 x 2 cm cells and 2 x 4 cm cells.

  8. High pressure behaviour of uranium dicarbide (UC{sub 2}): Ab-initio study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, B. D., E-mail: bdsahoo@barc.gov.in; Mukherjee, D.; Joshi, K. D.

    2016-08-28

    The structural stability of uranium dicarbide has been examined under hydrostatic compression employing evolutionary structure search algorithm implemented in the universal structure predictor: evolutionary Xtallography (USPEX) code in conjunction with ab-initio electronic band structure calculation method. The ab-initio total energy calculations involved for this purpose have been carried out within both generalized gradient approximations (GGA) and GGA + U approximations. Our calculations under GGA approximation predict the high pressure structural sequence of tetragonal → monoclinic → orthorhombic for this material with transition pressures of ∼8 GPa and 42 GPa, respectively. The same transition sequence is predicted by calculations within GGA + U also with transition pressuresmore » placed at ∼24 GPa and ∼50 GPa, respectively. Further, on the basis of comparison of zero pressure equilibrium volume and equation of state with available experimental data, we find that GGA + U approximation with U = 2.5 eV describes this material better than the simple GGA approximation. The theoretically predicted high pressure structural phase transitions are in disagreement with the only high experimental study by Dancausse et al. [J. Alloys. Compd. 191, 309 (1993)] on this compound which reports a tetragonal to hexagonal phase transition at a pressure of ∼17.6 GPa. Interestingly, during lowest enthalpy structure search using USPEX, we do not see any hexagonal phase to be closer to the predicted monoclinic phase even within 0.2 eV/f. unit. More experiments with varying carbon contents in UC{sub 2} sample are required to resolve this discrepancy. The existence of these high pressure phases predicted by static lattice calculations has been further substantiated by analyzing the elastic and lattice dynamic stability of these structures in the pressure regimes of their structural stability. Additionally, various thermo-physical quantities such as equilibrium volume, bulk modulus, Debye temperature, thermal expansion coefficient, Gruneisen parameter, and heat capacity at ambient conditions have been determined from these calculations and compared with the available experimental data.« less

  9. Cr-doped Ge{sub 2}Sb{sub 2}Te{sub 5} for ultra-long data retention phase change memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qing; Xia, Yangyang; Zheng, Yonghui

    Phase change memory is regarded as one of the most promising candidates for the next-generation non-volatile memory. Its storage medium, phase change material, has attracted continuous exploration. Ge{sub 2}Sb{sub 2}Te{sub 5} (GST) is the most popular phase change material, but its thermal stability needs to be improved when used in some fields at high temperature (more than 120 °C). In this paper, we doped Cr atoms into GST and obtained Cr{sub 10}(Ge{sub 2}Sb{sub 2}Te{sub 5}){sub 90} (labeled as Cr-GST) with high thermal stability. For Cr-GST film, the sheet resistance ratio between amorphous and crystalline states is high up to 3 ordersmore » of magnitude. The crystalline Cr-GST film inherits the phase structure of GST, with metastable face-centered cubic phase and/or stable hexagonal phase. The doped Cr atoms not only bond with other atoms but also help to improve the anti-oxidation property of Cr-GST. As for the amorphous thermal stability, the calculated temperature for 10-year-data-retention of Cr-GST film, based on the Arrhenius equation, is about 180 °C. The threshold current and threshold voltage of a cell based on Cr-GST are about 6 μA and 2.7 V. The cell could be operated by suitable voltages for more than 40 000 cycles. Thus, Cr-GST is proved to be a promising phase change material with ultra-long data retention.« less

  10. THE INFLUENCE OF SCREW TYPE, ALLOY AND CYLINDER POSITION ON THE MARGINAL FIT OF IMPLANT FRAMEWORKS BEFORE AND AFTER LASER WELDING

    PubMed Central

    Castilio, Daniela; Pedreira, Ana Paula Ribeiro do Vale; Rossetti, Paulo Henrique Orlato; Rossetti, Leylha Maria Nunes; Bonachela, Wellington Cardoso

    2006-01-01

    Misfit at the abutment-prosthetic cylinder interface can cause loss of preload, leading to loosening or fracture of gold and titanium screws. Objectives: To evaluate the influence of screw type, alloy, and cylinder position on marginal fit of implant frameworks before and after laser welding. Methods: After Estheticone-like abutments were screwed to the implants, thirty plastic prosthetic cylinders were mounted and waxed-up to fifteen cylindrical bars. Each specimen had three interconnected prosthetic components. Five specimens were one-piece cast in titanium and five in cobalt-chromium alloy. On each specimen, tests were conducted with hexagonal titanium and slotted gold screws separately, performing a total of thirty tested screws. Measurements at the interfaces were performed using an optical microscope with 5 μm accuracy. After sectioning, specimens were laser welded and new measurements were obtained. Data were submitted to a four-way ANOVA and Tukey's multiple comparisons test (α =0.05). Results: Slotted and hexagonal screws did not present significant differences regarding to the fit of cylinders cast in titanium, either in one-piece casting framework or after laser welding. When slotted and hexagonal screws were tested on the cobalt-chromium specimens, statistically significant differences were found for the one-piece casting condition, with the slotted screws presenting better fit (24.13μm) than the hexagonal screws (27.93 μm). Besides, no statistically significant differences were found after laser welding. Conclusions: 1) The use of different metal alloys do exert influence on the marginal fit, 2) The slotted and hexagonal screws play the exclusive role of fixing the prosthesis, and did not improve the fit of cylinders, and 3) cylinder position did not affect marginal fit values. PMID:19089035

  11. The influence of screw type, alloy and cylinder position on the marginal fit of implant frameworks before and after laser welding.

    PubMed

    Castilio, Daniela; Pedreira, Ana Paula Ribeiro do Vale; Rossetti, Paulo Henrique Orlato; Rossetti, Leylha Maria Nunes; Bonachela, Wellington Cardoso

    2006-04-01

    Misfit at the abutment-prosthetic cylinder interface can cause loss of preload, leading to loosening or fracture of gold and titanium screws. To evaluate the influence of screw type, alloy, and cylinder position on marginal fit of implant frameworks before and after laser welding. After Estheticone-like abutments were screwed to the implants, thirty plastic prosthetic cylinders were mounted and waxed-up to fifteen cylindrical bars. Each specimen had three interconnected prosthetic components. Five specimens were one-piece cast in titanium and five in cobalt-chromium alloy. On each specimen, tests were conducted with hexagonal titanium and slotted gold screws separately, performing a total of thirty tested screws. Measurements at the interfaces were performed using an optical microscope with 5mm accuracy. After sectioning, specimens were laser welded and new measurements were obtained. Data were submitted to a four-way ANOVA and Tukey's multiple comparisons test (alpha=0.05). Slotted and hexagonal screws did not present significant differences regarding to the fit of cylinders cast in titanium, either in one-piece casting framework or after laser welding. When slotted and hexagonal screws were tested on the cobalt-chromium specimens, statistically significant differences were found for the one-piece casting condition, with the slotted screws presenting better fit (24.13 microm) than the hexagonal screws (27.93 microm). Besides, no statistically significant differences were found after laser welding. 1) The use of different metal alloys do exert influence on the marginal fit, 2) The slotted and hexagonal screws play the exclusive role of fixing the prosthesis, and did not improve the fit of cylinders, and 3) cylinder position did not affect marginal fit values.

  12. Defect chaos of oscillating hexagons in rotating convection

    PubMed

    Echebarria; Riecke

    2000-05-22

    Using coupled Ginzburg-Landau equations, the dynamics of hexagonal patterns with broken chiral symmetry are investigated, as they appear in rotating non-Boussinesq or surface-tension-driven convection. We find that close to the secondary Hopf bifurcation to oscillating hexagons the dynamics are well described by a single complex Ginzburg-Landau equation (CGLE) coupled to the phases of the hexagonal pattern. At the band center these equations reduce to the usual CGLE and the system exhibits defect chaos. Away from the band center a transition to a frozen vortex state is found.

  13. Structure and energetics of carbon, hexagonal boron nitride, and carbon/hexagonal boron nitride single-layer and bilayer nanoscrolls

    NASA Astrophysics Data System (ADS)

    Siahlo, Andrei I.; Poklonski, Nikolai A.; Lebedev, Alexander V.; Lebedeva, Irina V.; Popov, Andrey M.; Vyrko, Sergey A.; Knizhnik, Andrey A.; Lozovik, Yurii E.

    2018-03-01

    Single-layer and bilayer carbon and hexagonal boron nitride nanoscrolls as well as nanoscrolls made of bilayer graphene/hexagonal boron nitride heterostructure are considered. Structures of stable states of the corresponding nanoscrolls prepared by rolling single-layer and bilayer rectangular nanoribbons are obtained based on the analytical model and numerical calculations. The lengths of nanoribbons for which stable and energetically favorable nanoscrolls are possible are determined. Barriers to rolling of single-layer and bilayer nanoribbons into nanoscrolls and barriers to nanoscroll unrolling are calculated. Based on the calculated barriers nanoscroll lifetimes in the stable state are estimated. Elastic constants for bending of graphene and hexagonal boron nitride layers used in the model are found by density functional theory calculations.

  14. Thermal conductivity of hexagonal Si and hexagonal Si nanowires from first-principles

    NASA Astrophysics Data System (ADS)

    Raya-Moreno, Martí; Aramberri, Hugo; Seijas-Bellido, Juan Antonio; Cartoixà, Xavier; Rurali, Riccardo

    2017-07-01

    We calculate the thermal conductivity, κ, of the recently synthesized hexagonal diamond (lonsdaleite) Si using first-principles calculations and solving the Boltzmann Transport Equation. We find values of κ which are around 40% lower than in the common cubic diamond polytype of Si. The trend is similar for [111] Si nanowires, with reductions of the thermal conductivity that are even larger than in the bulk in some diameter range. The Raman active modes are identified, and the role of mid-frequency optical phonons that arise as a consequence of the reduced symmetry of the hexagonal lattice is discussed. We also show briefly that popular classic potentials used in molecular dynamics might not be suited to describe hexagonal polytypes, discussing the case of the Tersoff potential.

  15. Engineering and Localization of Quantum Emitters in Large Hexagonal Boron Nitride Layers.

    PubMed

    Choi, Sumin; Tran, Toan Trong; Elbadawi, Christopher; Lobo, Charlene; Wang, Xuewen; Juodkazis, Saulius; Seniutinas, Gediminas; Toth, Milos; Aharonovich, Igor

    2016-11-02

    Hexagonal boron nitride is a wide-band-gap van der Waals material that has recently emerged as a promising platform for quantum photonics experiments. In this work, we study the formation and localization of narrowband quantum emitters in large flakes (up to tens of micrometers wide) of hexagonal boron nitride. The emitters can be activated in as-grown hexagonal boron nitride by electron irradiation or high-temperature annealing, and the emitter formation probability can be increased by ion implantation or focused laser irradiation of the as-grown material. Interestingly, we show that the emitters are always localized at the edges of the flakes, unlike most luminescent point defects in three-dimensional materials. Our results constitute an important step on the roadmap of deploying hexagonal boron nitride in nanophotonics applications.

  16. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale

    PubMed Central

    Hossain, R.; Pahlevani, F.; Quadir, M. Z.; Sahajwalla, V.

    2016-01-01

    Although high carbon martensitic steels are well known for their industrial utility in high abrasion and extreme operating environments, due to their hardness and strength, the compressive stability of their retained austenite, and the implications for the steels’ performance and potential uses, is not well understood. This article describes the first investigation at both the macro and nano scale of the compressive stability of retained austenite in high carbon martensitic steel. Using a combination of standard compression testing, X-ray diffraction, optical microstructure, electron backscattering diffraction imaging, electron probe micro-analysis, nano-indentation and micro-indentation measurements, we determined the mechanical stability of retained austenite and martensite in high carbon steel under compressive stress and identified the phase transformation mechanism, from the macro to the nano level. We found at the early stage of plastic deformation hexagonal close-packed (HCP) martensite formation dominates, while higher compression loads trigger body-centred tetragonal (BCT) martensite formation. The combination of this phase transformation and strain hardening led to an increase in the hardness of high carbon steel of around 30%. This comprehensive characterisation of stress induced phase transformation could enable the precise control of the microstructures of high carbon martensitic steels, and hence their properties. PMID:27725722

  17. Formation of bcc non-equilibrium La, Gd and Dy alloys and the magnetic structure of Mg-stabilized. beta. Gd and. beta. Dy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herchenroeder, J.W.

    1989-02-01

    The high temperature bcc allotrope of a rare earth metal has the potential for substantially different magnetic properties than the room temperature hexagonal (hcp or dhcp) counterpart because of its more symmetrical crystal field. The stabilization by alloying and quenching of this bcc phase was studied for La-M alloys where M is an non-rare earth metal from Group II or III. The factors influencing the stabilization, such as size of M and quench rate, are discussed. ..gamma..La (bcc) could be retained over a composition range around the eutectoid composition by Mg or Cd alloying. A comparison of T/sub o/ curvesmore » of the various alloy systems suggest that the eutectoid temperature of the La-M system must be approximately equal to or less than a critical T/sub o/ temperature of 515/degree/C if the bcc phase is to be retained by quenching. The thermal stability of ..beta..Gd (bcc) was investigated by DTA and isothermal annealing. It was found to transform to an intermediate phase before reverting to the equilibrium phases in contrast to ..gamma..La alloys which decompose directly on heating to the equilibrium phases. 71 refs., 52 figs., 7 tabs.« less

  18. Ferromagnetism in a hexagonal PrRh3 with 4f2 configuration

    NASA Astrophysics Data System (ADS)

    Park, G. B.; Yamane, Y.; Onimaru, T.; Umeo, K.; Takabatake, T.

    2018-05-01

    Electrical resistivity ρ , magnetization M and specific heat C are reported for polycrystalline samples of the hexagonal system PrRh3. The magnetic susceptibility M/B obeys the Curie-Weiss law with the effective magnetic moment μeff = 3.88 μB/Pr and the paramagnetic Curie temperature θp = +2.9 K, which indicates ferro-type magnetic interaction between the trivalent Pr ions. A cusp in C(T) at 3.0 K coincides with a bend in ρ (T). Applying magnetic fields, the peak broadens and shifts to higher temperatures. The field dependence indicates a ferro-type magnetic order. The magnetic entropy Sm is (1/3)Rln2 at TC = 3.0 K, suggesting that part of the Pr ions take part in the magnetic order. A broad tail of the magnetic specific heat Cm observed above TC may result from short-range correlations and/or fluctuations of the active magnetic dipole and quadrupoles in the ground state doublet.

  19. Noncollinear antiferromagnetic Mn3Sn films

    NASA Astrophysics Data System (ADS)

    Markou, A.; Taylor, J. M.; Kalache, A.; Werner, P.; Parkin, S. S. P.; Felser, C.

    2018-05-01

    Noncollinear hexagonal antiferromagnets with almost zero net magnetization were recently shown to demonstrate giant anomalous Hall effect. Here, we present the structural and magnetic properties of noncollinear antiferromagnetic Mn3Sn thin films heteroepitaxially grown on Y:ZrO2 (111) substrates with a Ru underlayer. The Mn3Sn films were crystallized in the hexagonal D 019 structure with c -axis preferred (0001) crystal orientation. The Mn3Sn films are discontinuous, forming large islands of approximately 400 nm in width, but are chemical homogeneous and characterized by near perfect heteroepitaxy. Furthermore, the thin films show weak ferromagnetism with an in-plane uncompensated magnetization of M =34 kA/m and coercivity of μ0Hc=4.0 mT at room temperature. Additionally, the exchange bias effect was studied in Mn3Sn /Py bilayers. Exchange bias fields up to μ0HEB=12.6 mT can be achieved at 5 K. These results show Mn3Sn films to be an attractive material for applications in antiferromagnetic spintronics.

  20. Morphology-controlled synthesis of α-Fe 2O 3 nanostructures with magnetic property and excellent electrocatalytic activity for H 2O 2

    NASA Astrophysics Data System (ADS)

    Li, Xiyan; Lei, Yongqian; Li, Xiaona; Song, Shuyan; Wang, Cheng; Zhang, Hongjie

    2011-12-01

    α-Fe 2O 3 nanocrystals (NCs) with different morphologies are successfully synthesized via a facile template-free hydrothermal route. By simply changing the volume ratio of ethanol to water, we obtained three different α-Fe 2O 3 nanostructures of rhombohedra, truncated rhombohedra and hexagonal sheet. The morphologies and structures of the as-obtained products have been confirmed by varieties of characterizations such as X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The influences of the experimental conditions, such as the amount of NaOH and reaction temperature on the morphologies of the as-prepared α-Fe 2O 3 NCs, have been well investigated. Additionally, magnetic investigations show that the as-obtained α-Fe 2O 3 nanostructures show structure-dependent magnetic properties. Furthermore, the electrochemical experiments indicate that the as-prepared α-Fe 2O 3 hexagonal sheets exhibit strong electrocatalytic reduction activity for H 2O 2.

  1. Rare earth indates (RE: La-Yb): influence of the synthesis route and heat treatment on the crystal structure.

    PubMed

    Shukla, Rakesh; Grover, Vinita; Srinivasu, Kancharlapalli; Paul, Barnita; Roy, Anushree; Gupta, Ruma; Tyagi, Avesh Kumar

    2018-05-15

    Rare earth indates are an interesting class of compounds with rich crystallography. The present study explores the crystallographic phases observed in REInO3 (RE: La-Yb) systems and their dependence on synthesis routes and annealing temperature. All REInO3 compositions were synthesized by a solid state route as well as gel-combustion synthesis (GC) followed by annealing at different temperatures. The systems were well characterized by powder XRD studies and were analysed by Rietveld refinement for the structural parameters. The cell parameters were observed to decrease in accordance with the trend in ionic radii on proceeding from lighter to heavier rare earth ions. Interestingly, the synthesis route and the annealing temperature had a profound bearing on the phase relationships observed in the REInO3 series. The solid state synthesized samples depicted an orthorhombic phase (Pbnm) field for LaInO3 to SmInO3, followed by a hexagonal-type phase (P63cm) for GdInO3 to DyInO3. However, the phase field distribution was greatly influenced upon employing gel-combustion (GC) wherein both single-phasic hexagonal and orthorhombic phase fields were found to shrink. Annealing the GC-synthesized compositions to still higher temperatures (1250 °C) further evolved the phase boundaries. An important outcome of the study is observance of polymorphism in SmInO3 which crystallized in the hexagonal phase when synthesized by GC and orthorhombic phase by solid state synthesis. This reveals the all-important role played by synthesis conditions. The existence and energetics of the two polymorphs have been elucidated and discussed with the aid of theoretical studies.

  2. Thermal hydrogen reduction for preservation of mesoporous silica film nanocomposites with a hexagonal structure containing amphiphilic triphenylene

    NASA Astrophysics Data System (ADS)

    Lintang, Hendrik O.; Jalani, Mohamad Azani; Yuliati, Leny

    2017-11-01

    We highlight that columnar assembly of self-assembled templates was successfully utilized using sol-gel technique of mesostructured silica for the quality improvement of transparent mesoporous film nanocomposites with a hexagonal structure through appropriate heat treatment methods and self-assembled templates in the removal of organic components. In contrast to the reported mesostructured silica film nanocomposites containing columnar assembly of trinuclear gold(I) pyrazolate complex ([Au3Pz3]C10TEG/silicahex) with calcination at 450 °C, mesostructured silica film nanocomposites from self-assembled template of triphenylene bearing amphiphilic decoxy triethylene glycol side chains (TPC10TEG/silicahex) can be completely collapsed upon calcination at 450 °C. This hexagonal structure can be only preserved with calcination at 250 °C although intensity of its main diffraction peak of d100 at 2θ of 3.70° was significantly decreased. On the other hands, thermal hydrogen reduction at the same temperature was found to be the best heat treatment to preserve the quality of mesoporous silica film nanocomposites with decreasing in intensity of diffraction peak up to 30%. Such phenomenon might be caused by slow decomposition of organic components with the presence of hydrogen gas upon heating to shrinkage the silica wall from interpenetration of ethylene glycol segments of the side chains and to open bonding of benzene ring from the core.

  3. Anticorrosive performance of waterborne epoxy coatings containing water-dispersible hexagonal boron nitride (h-BN) nanosheets

    NASA Astrophysics Data System (ADS)

    Cui, Mingjun; Ren, Siming; Chen, Jia; Liu, Shuan; Zhang, Guangan; Zhao, Haichao; Wang, Liping; Xue, Qunji

    2017-03-01

    Homogenous dispersion of hexagonal boron nitride (h-BN) nanosheets in solvents or in the polymer matrix is crucial to initiate their many applications. Here, homogeneous dispersion of hexagonal boron nitride (h-BN) in epoxy matrix was achieved with a water-soluble carboxylated aniline trimer derivative (CAT-) as a dispersant, which was attributed to the strong π-π interaction between h-BN and CAT-, as proved by Raman and UV-vis spectra. Transmission electron microscopy (TEM) analysis confirmed a random dispersion of h-BN nanosheets in the waterborne epoxy coatings. The deterioration process of water-borne epoxy coating with and without h-BN nanosheets during the long-term immersion in 3.5 wt% NaCl solution was investigated by electrochemical measurements and water absorption test. Results implied that the introduction of well dispersed h-BN nanosheets into waterborne epoxy system remarkably improved the corrosion protection performance to substrate. Moreover, 1 wt% BN/EP composite coated substrate exhibited higher impedance modulus (1.3 × 106 Ω cm2) and lower water absorption (4%) than those of pure waterborne epoxy coating coated electrode after long-term immersion in 3.5 wt% NaCl solution, demonstrating its superior anticorrosive performance. This enhanced anticorrosive performance was mainly ascribed to the improved water barrier property of epoxy coating via incorporating homogeneously dispersed h-BN nanosheets.

  4. Effect of ripples on the finite temperature elastic properties of hexagonal boron nitride using strain-fluctuation method

    NASA Astrophysics Data System (ADS)

    Thomas, Siby; Ajith, K. M.; Valsakumar, M. C.

    2017-11-01

    This work intents to put forth the results of a classical molecular dynamics study to investigate the temperature dependent elastic constants of monolayer hexagonal boron nitride (h-BN) between 100 and 1000 K for the first time using strain fluctuation method. The temperature dependence of out-of-plane fluctuations (ripples) is quantified and is explained using continuum theory of membranes. At low temperatures, negative in-plane thermal expansion is observed and at high temperatures, a transition to positive thermal expansion has been observed due to the presence of thermally excited ripples. The decrease of Young's modulus, bulk modulus, shear modulus and Poisson's ratio with increase in temperature has been analyzed. The thermal rippling in h-BN leads to strong anharmonic behaviour that causes large deviation from the isotropic elasticity. A detailed study shows that the strong thermal rippling in large systems is also responsible for the softening of elastic constants in h-BN. From the determined values of elastic constants and elastic moduli, it has been elucidated that 2D h-BN sheets meet the Born's mechanical stability criterion in the investigated temperature range. The variation of longitudinal and shear velocities with temperature is also calculated from the computed values of elastic constants and elastic moduli.

  5. Color Difference and Memory Recall in Free-Flying Honeybees: Forget the Hard Problem

    PubMed Central

    Dyer, Adrian G.; Garcia, Jair E.

    2014-01-01

    Free-flying honeybees acquire color information differently depending upon whether a target color is learnt in isolation (absolute conditioning), or in relation to a perceptually similar color (differential conditioning). Absolute conditioning allows for rapid learning, but color discrimination is coarse. Differential conditioning requires more learning trials, but enables fine discriminations. Currently it is unknown whether differential conditioning to similar colors in honeybees forms a long-term memory, and the stability of memory in a biologically relevant scenario considering similar or saliently different color stimuli. Individual free-flying honeybees (N = 6) were trained to similar color stimuli separated by 0.06 hexagon units for 60 trials and mean accuracy was 81.7% ± 12.2% s.d. Bees retested on subsequent days showed a reduction in the number of correct choices with increasing time from the initial training, and for four of the bees this reduction was significant from chance expectation considering binomially distributed logistic regression models. In contrast, an independent group of 6 bees trained to saliently different colors (>0.14 hexagon units) did not experience any decay in memory retention with increasing time. This suggests that whilst the bees’ visual system can permit fine discriminations, flowers producing saliently different colors are more easily remembered by foraging bees over several days. PMID:26462830

  6. Generalized-stacking-fault energy and twin-boundary energy of hexagonal close-packed Au: A first-principles calculation

    PubMed Central

    Wang, Cheng; Wang, Huiyuan; Huang, Tianlong; Xue, Xuena; Qiu, Feng; Jiang, Qichuan

    2015-01-01

    Although solid Au is usually most stable as a face-centered cubic (fcc) structure, pure hexagonal close-packed (hcp) Au has been successfully fabricated recently. However, the phase stability and mechanical property of this new material are unclear, which may restrict its further applications. Here we present the evidence that hcp → fcc phase transformation can proceed easily in Au by first-principles calculations. The extremely low generalized-stacking-fault (GSF) energy in the basal slip system implies a great tendency to form basal stacking faults, which opens the door to phase transformation from hcp to fcc. Moreover, the Au lattice extends slightly within the superficial layers due to the self-assembly of alkanethiolate species on hcp Au (0001) surface, which may also contribute to the hcp → fcc phase transformation. Compared with hcp Mg, the GSF energies for non-basal slip systems and the twin-boundary (TB) energies for and twins are larger in hcp Au, which indicates the more difficulty in generating non-basal stacking faults and twins. The findings provide new insights for understanding the nature of the hcp → fcc phase transformation and guide the experiments of fabricating and developing materials with new structures. PMID:25998415

  7. Controlling insulin release from reverse hexagonal (HII) liquid crystalline mesophase by enzymatic lipolysis.

    PubMed

    Mishraki-Berkowitz, Tehila; Cohen, Guy; Aserin, Abraham; Garti, Nissim

    2018-01-01

    In the present study we aimed to control insulin release from the reverse hexagonal (H II ) mesophase using Thermomyces lanuginosa lipase (TLL) in the environment (outer TLL) or within the H II cylinders (inner TLL). Two insulin-loaded systems differing by the presence (or absence) of phosphatidylcholine (PC) were examined. In general, incorporation of PC into the H II interface (without TLL) increased insulin release, as a more cooperative system was formed. Addition of TLL to the systems' environments resulted in lipolysis of the H II structure. In the absence of PC, the lipolysis was more dominant and led to a significant increase in insulin release (50% after 8h). However, the presence of PC stabilized the interface, hindering the lipolysis, and therefore no impact on the release profile was detected during the first 8h. Entrapment of TLL within the H II cylinders (with and without PC) drastically increased insulin release in both systems up to 100%. In the presence of PC insulin released faster and the structure was more stable. Consequently, the presence of lipases (inner or outer) both enhanced the destruction of the carrier, and provided sustained release of the entrapped insulin. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Theoretical predictions for hexagonal BN based nanomaterials as electrocatalysts for the oxygen reduction reaction.

    PubMed

    Lyalin, Andrey; Nakayama, Akira; Uosaki, Kohei; Taketsugu, Tetsuya

    2013-02-28

    The catalytic activity for the oxygen reduction reaction (ORR) of both the pristine and defect-possessing hexagonal boron nitride (h-BN) monolayer and H-terminated nanoribbon have been studied theoretically using density functional theory. It is demonstrated that an inert h-BN monolayer can be functionalized and become catalytically active by nitrogen doping. It is shown that the energetics of adsorption of O(2), O, OH, OOH, and H(2)O on N atom impurities in the h-BN monolayer (N(B)@h-BN) is quite similar to that known for a Pt(111) surface. The specific mechanism of destructive and cooperative adsorption of ORR intermediates on the surface point defects is discussed. It is demonstrated that accounting for entropy and zero-point energy (ZPE) corrections results in destabilization of the ORR intermediates adsorbed on N(B)@h-BN, while solvent effects lead to their stabilization. Therefore, entropy, ZPE and solvent effects partly cancel each other and have to be taken into account simultaneously. Analysis of the free energy changes along the ORR pathway allows us to suggest that a N-doped h-BN monolayer can demonstrate catalytic properties for the ORR under the condition that electron transport to the catalytically active center is provided.

  9. Highly Stable, Dual-Gated MoS2 Transistors Encapsulated by Hexagonal Boron Nitride with Gate-Controllable Contact, Resistance, and Threshold Voltage.

    PubMed

    Lee, Gwan-Hyoung; Cui, Xu; Kim, Young Duck; Arefe, Ghidewon; Zhang, Xian; Lee, Chul-Ho; Ye, Fan; Watanabe, Kenji; Taniguchi, Takashi; Kim, Philip; Hone, James

    2015-07-28

    Emerging two-dimensional (2D) semiconductors such as molybdenum disulfide (MoS2) have been intensively studied because of their novel properties for advanced electronics and optoelectronics. However, 2D materials are by nature sensitive to environmental influences, such as temperature, humidity, adsorbates, and trapped charges in neighboring dielectrics. Therefore, it is crucial to develop device architectures that provide both high performance and long-term stability. Here we report high performance of dual-gated van der Waals (vdW) heterostructure devices in which MoS2 layers are fully encapsulated by hexagonal boron nitride (hBN) and contacts are formed using graphene. The hBN-encapsulation provides excellent protection from environmental factors, resulting in highly stable device performance, even at elevated temperatures. Our measurements also reveal high-quality electrical contacts and reduced hysteresis, leading to high two-terminal carrier mobility (33-151 cm(2) V(-1) s(-1)) and low subthreshold swing (80 mV/dec) at room temperature. Furthermore, adjustment of graphene Fermi level and use of dual gates enable us to separately control contact resistance and threshold voltage. This novel vdW heterostructure device opens up a new way toward fabrication of stable, high-performance devices based on 2D materials.

  10. Color Difference and Memory Recall in Free-Flying Honeybees: Forget the Hard Problem.

    PubMed

    Dyer, Adrian G; Garcia, Jair E

    2014-07-30

    Free-flying honeybees acquire color information differently depending upon whether a target color is learnt in isolation (absolute conditioning), or in relation to a perceptually similar color (differential conditioning). Absolute conditioning allows for rapid learning, but color discrimination is coarse. Differential conditioning requires more learning trials, but enables fine discriminations. Currently it is unknown whether differential conditioning to similar colors in honeybees forms a long-term memory, and the stability of memory in a biologically relevant scenario considering similar or saliently different color stimuli. Individual free-flying honeybees (N = 6) were trained to similar color stimuli separated by 0.06 hexagon units for 60 trials and mean accuracy was 81.7% ± 12.2% s.d. Bees retested on subsequent days showed a reduction in the number of correct choices with increasing time from the initial training, and for four of the bees this reduction was significant from chance expectation considering binomially distributed logistic regression models. In contrast, an independent group of 6 bees trained to saliently different colors (>0.14 hexagon units) did not experience any decay in memory retention with increasing time. This suggests that whilst the bees' visual system can permit fine discriminations, flowers producing saliently different colors are more easily remembered by foraging bees over several days.

  11. Configuration of ripple domains and their topological defects formed under local mechanical stress on hexagonal monolayer graphene.

    PubMed

    Park, Yeonggu; Choi, Jin Sik; Choi, Taekjib; Lee, Mi Jung; Jia, Quanxi; Park, Minwoo; Lee, Hoonkyung; Park, Bae Ho

    2015-03-24

    Ripples in graphene are extensively investigated because they ensure the mechanical stability of two-dimensional graphene and affect its electronic properties. They arise from spontaneous symmetry breaking and are usually manifested in the form of domains with long-range order. It is expected that topological defects accompany a material exhibiting long-range order, whose functionality depends on characteristics of domains and topological defects. However, there remains a lack of understanding regarding ripple domains and their topological defects formed on monolayer graphene. Here we explore configuration of ripple domains and their topological defects in exfoliated monolayer graphenes on SiO2/Si substrates using transverse shear microscope. We observe three-color domains with three different ripple directions, which meet at a core. Furthermore, the closed domain is surrounded by an even number of cores connected together by domain boundaries, similar to topological vortex and anti-vortex pairs. In addition, we have found that axisymmetric three-color domains can be induced around nanoparticles underneath the graphene. This fascinating configuration of ripple domains may result from the intrinsic hexagonal symmetry of two-dimensional graphene, which is supported by theoretical simulation using molecular dynamics. Our findings are expected to play a key role in understanding of ripple physics in graphene and other two-dimensional materials.

  12. Electride and superconductivity behaviors in Mn5Si3-type intermetallics

    NASA Astrophysics Data System (ADS)

    Zhang, Yaoqing; Wang, Bosen; Xiao, Zewen; Lu, Yangfan; Kamiya, Toshio; Uwatoko, Yoshiya; Kageyama, Hiroshi; Hosono, Hideo

    2017-08-01

    Electrides are unique in the sense that they contain localized anionic electrons in the interstitial regions. Yet they exist with a diversity of chemical compositions, especially under extreme conditions, implying generalized underlying principles for their existence. What is rarely observed is the combination of electride state and superconductivity within the same material, but such behavior would open up a new category of superconductors. Here, we report a hexagonal Nb5Ir3 phase of Mn5Si3-type structure that falls into this category and extends the electride concept into intermetallics. The confined electrons in the one-dimensional cavities are reflected by the characteristic channel bands in the electronic structure. Filling these free spaces with foreign oxygen atoms serves to engineer the band topology and increase the superconducting transition temperature to 10.5 K in Nb5Ir3O. Specific heat analysis indicates the appearance of low-lying phonons and two-gap s-wave superconductivity. Strong electron-phonon coupling is revealed to be the pairing glue with an anomalously large ratio between the superconducting gap Δ0 and Tc, 2Δ0/kBTc = 6.12. The general rule governing the formation of electrides concerns the structural stability against the cation filling/extraction in the channel site.

  13. Influence of parafunctional loading and prosthetic connection on stress distribution: a 3D finite element analysis.

    PubMed

    Torcato, Leonardo Bueno; Pellizzer, Eduardo Piza; Verri, Fellippo Ramos; Falcón-Antenucci, Rosse Mary; Santiago Júnior, Joel Ferreira; de Faria Almeida, Daniel Augusto

    2015-11-01

    Clinicians should consider parafunctional occlusal load when planning treatment. Prosthetic connections can reduce the stress distribution on an implant-supported prosthesis. The purpose of this 3-dimensional finite element study was to assess the influence of parafunctional loading and prosthetic connections on stress distribution. Computer-aided design software was used to construct 3 models. Each model was composed of a bone and an implant (external hexagon, internal hexagon, or Morse taper) with a crown. Finite element analysis software was used to generate the finite element mesh and establish the loading and boundary conditions. A normal force (200-N axial load and 100-N oblique load) and parafunctional force (1000-N axial and 500-N oblique load) were applied. Results were visualized as the maximum principal stress. Three-way analysis of variance and Tukey test were performed, and the percentage of contribution of each variable to the stress concentration was calculated from sum-of squares-analysis. Stress was concentrated around the implant at the cortical bone, and models with the external hexagonal implant showed the highest stresses (P<.001). Oblique loads produced high tensile stress concentrations on the site opposite the load direction. Internal connection implants presented the most favorable biomechanical situation, whereas the least favorable situation was the biomechanical behavior of external connection implants. Parafunctional loading increased the magnitude of stress by 3 to 4 times. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Highly efficient upconversion luminescence in hexagonal NaYF4:Yb3+, Er3+ nanocrystals synthesized by a novel reverse microemulsion method

    NASA Astrophysics Data System (ADS)

    Gunaseelan, M.; Yamini, S.; Kumar, G. A.; Senthilselvan, J.

    2018-01-01

    A new reverse microemulsion system is proposed for the first time to synthesize NaYF4:Yb,Er nanocrystals, which demonstrated high upconversion emission in 550 and 662 nm at 980 nm diode laser excitation. The reverse microemulsion (μEs) system is comprised of CTAB and oleic acid as surfactant and 1-butanol co-surfactant and isooctane oil phase. The surfactant to water ratio is able to tune the microemulsion droplet size from 14 to 220 nm, which eventually controls the crystallinity and particulate morphology of NaYF4:Yb,Er. Also, the microemulsion precursor and calcination temperature plays certain role in transforming the cubic NaYF4:Yb,Er to highly luminescent hexagonal crystal structured upconversion material. Single phase hexagonal NaYF4:YbEr nanorod prepared by water-in-oil reverse microemulsion (μEs) gives intense red upconversion emission. Both nanosphere and nanorod shaped NaYF4:Yb,Er was obtained, but nanorod morphology resulted an enhanced upconversion luminescence. The structural, morphological, thermal and optical luminescence properties of the NaYF4:Yb,Er nanoparticles are discussed in detail by employing powder X-ray diffraction, dynamic light scattering, high resolution electron microscopy, TGA-DTA, UV-DRS, FTIR and photoluminescence spectroscopy. Intense upconversion emission achieved in the microemulsion synthesized NaYF4:Yb3+,Er3+ nanocrystal can make it as useful optical phosphor for solar cell applications.

  15. Magnetic and High-Frequency Dielectric Parameters of Divalent Ion-Substituted W-Type Hexagonal Ferrites

    NASA Astrophysics Data System (ADS)

    Ali, Akbar; Grössinger, R.; Imran, Muhammad; Khan, M. Ajmal; Elahi, Asmat; Akhtar, Majid Niaz; Mustafa, Ghulam; Khan, Muhammad Azhar; Ullah, Hafeez; Murtaza, Ghulam; Ahmad, Mukhtar

    2017-02-01

    Polycrystalline W-type hexagonal ferrites with chemical formulae Ba0.5Sr0.5 Co2- x Me x Fe16O27 ( x = 0, 0.5, Me = Mn, Mg, Zn, Ni) have been prepared using sol-gel autocombustion. It has been reported in our earlier published work that all the samples exhibit a single-phase W-type hexagonal structure which was confirmed by x-ray diffraction (XRD) analysis. The values of bulk density lie in the range of 4.64-4.78 g/cm3 for all the samples which are quite high as compared to those for other types of hexaferrites. It was also observed that Zn-substituted ferrite reflects the highest (14.7 × 107 Ω-cm) whereas Mn-substituted ferrite has the lowest (11.3 × 107 Ω-cm) values of direct current (DC) electrical resistivity. The observed values of saturation magnetization ( M s) are found to be in the range of 62.01-68.7 emu/g depending upon the type of cation substitution into the hexagonal lattice. All the samples exhibit a typical soft magnetic character with low values of coercivity ( H c) that are in the range of 26-85 Oe. These ferrites may be promising materials for microwave absorbers due to their higher saturation magnetization and low coercivities. Both the dielectric constant and tangent loss decrease with increasing frequency in the lower frequency region and become constant in the higher frequency region. The much lower dielectric constant obtained in this study makes the investigated ferrites very useful for high-frequency applications, i.e. dielectric resonators and for camouflaging military targets such as ships, tanks and aircrafts, etc.

  16. Effect of different thickness h-BN coatings on interface shear strength of quartz fiber reinforced Sisbnd Osbnd Csbnd N composite

    NASA Astrophysics Data System (ADS)

    Wang, Shubin; Zheng, Yu

    2014-02-01

    Hexagonal boron nitride (h-BN) coatings with different thickness were prepared on quartz fibers to improve mechanical properties of quartz fiber reinforced Sisbnd Osbnd Csbnd N composite. Scanning electron microscopy (SEM), push-out test and single edge notched beam (SENB) in three point bending test were employed to study morphology, interface shear strength and fracture toughness of the composite. The results showed that h-BN coatings changed the crack growth direction and weaken the interface shear strength efficiently. When the h-BN coating was 308.2 nm, the interface shear strength was about 5.2 MPa, which was about one-quarter of that of the sample without h-BN coatings. After the heating process for obtaining composite, the h-BN nanometer-sized grains would grow up to micron-sized hexagonal grains. Different thickness h-BN coatings had different structure. When the coatings were relatively thin, the hexagonal grains were single layer structure, and when the coatings were thicker, the hexagonal grains were multiple layer structure. This multiple layer interface phase would consume more power of cracks, thus interface shear strength of the composite decreased steadily with the increasing of h-BN coatings thickness. When the coating thickness was 238.8 nm, KIC reaches the peak value 3.8 MPa m1/2, which was more than two times of that of composites without h-BN coatings.

  17. Synthesis and characterization of two new TiO2-containing benzothiazole-based imine composites for organic device applications.

    PubMed

    Różycka, Anna; Iwan, Agnieszka; Bogdanowicz, Krzysztof Artur; Filapek, Michal; Górska, Natalia; Pociecha, Damian; Malinowski, Marek; Fryń, Patryk; Hreniak, Agnieszka; Rysz, Jakub; Dąbczyński, Paweł; Marzec, Monika

    2018-01-01

    The effect of the presence of titanium dioxide in two new imines, ( E , E )-(butane-1,4-diyl)bis(oxybutane-4,1-diyl) bis(4-{[(benzo[ d ][1,3]thiazol-2-yl)methylidene]amino}benzoate) (SP1) and ( E )- N -[(benzo[ d ][1,3]thiazol-2-yl)methylidene]-4-dodecylaniline (SP2), on the properties and stability of imine:TiO 2 composites for organic device applications were examined. The investigated titanium dioxide (in anatase form, obtained via the sol-gel method) exhibited a surface area of 59.5 m 2 /g according to Brunauer-Emmett-Teller theory, and its structure is a combination of both meso- and microporous. The average pore diameter calculated by the Barrett-Joyner-Halenda method was 6.2 nm and the cumulative volume of pores was 0.117 m 3 /g. The imine SP1 exhibited columnar organization (Col), while SP2 revealed a hexagonal columnar crystalline phase (Col hk ). The imine:TiO 2 mixtures in various weight ratio (3:0, 3:1, 3:2, 3:3) showed a lower energy gap and HOMO-LUMO energy levels compared to pure TiO 2 . This implies that TiO 2 provides not only a larger surface area for sensitizer adsorption and good electron collection, but also causes a shift of the imine energy levels resulting from intermolecular interaction. Also the temperature of the phase transition was slightly affected with the increase of TiO 2 concentration in imine-based composites. The changes observed in the Fourier transform middle-infrared absorption (FT-MIR) spectra confirmed the significant influence of TiO 2 on structural properties of both investigated imines. Similar interactions of oxygen vacancies existing on the TiO 2 surface with SP1 and SP2 were observed. The imine:TiO 2 mixtures showed good air stability and reusability, which demonstrates its potential for organic device applications.

  18. Synthesis and characterization of two new TiO2-containing benzothiazole-based imine composites for organic device applications

    PubMed Central

    Różycka, Anna; Bogdanowicz, Krzysztof Artur; Filapek, Michal; Górska, Natalia; Pociecha, Damian; Malinowski, Marek; Fryń, Patryk; Hreniak, Agnieszka; Rysz, Jakub; Dąbczyński, Paweł

    2018-01-01

    The effect of the presence of titanium dioxide in two new imines, (E,E)-(butane-1,4-diyl)bis(oxybutane-4,1-diyl) bis(4-{[(benzo[d][1,3]thiazol-2-yl)methylidene]amino}benzoate) (SP1) and (E)-N-[(benzo[d][1,3]thiazol-2-yl)methylidene]-4-dodecylaniline (SP2), on the properties and stability of imine:TiO2 composites for organic device applications were examined. The investigated titanium dioxide (in anatase form, obtained via the sol–gel method) exhibited a surface area of 59.5 m2/g according to Brunauer–Emmett–Teller theory, and its structure is a combination of both meso- and microporous. The average pore diameter calculated by the Barrett–Joyner–Halenda method was 6.2 nm and the cumulative volume of pores was 0.117 m3/g. The imine SP1 exhibited columnar organization (Col), while SP2 revealed a hexagonal columnar crystalline phase (Colhk). The imine:TiO2 mixtures in various weight ratio (3:0, 3:1, 3:2, 3:3) showed a lower energy gap and HOMO–LUMO energy levels compared to pure TiO2. This implies that TiO2 provides not only a larger surface area for sensitizer adsorption and good electron collection, but also causes a shift of the imine energy levels resulting from intermolecular interaction. Also the temperature of the phase transition was slightly affected with the increase of TiO2 concentration in imine-based composites. The changes observed in the Fourier transform middle-infrared absorption (FT-MIR) spectra confirmed the significant influence of TiO2 on structural properties of both investigated imines. Similar interactions of oxygen vacancies existing on the TiO2 surface with SP1 and SP2 were observed. The imine:TiO2 mixtures showed good air stability and reusability, which demonstrates its potential for organic device applications. PMID:29600135

  19. Measurement area and repeatability of semiautomated assessment of corneal endothelium in the Topcon specular microscope SP-2000P and IMAGEnet system.

    PubMed

    Ding, Xiaohu; Huang, Qunxiao; Zheng, Yingfeng; Jiang, Yuzhen; Huang, Shengsong; He, Mingguang

    2012-10-01

    To investigate the repeatability of the semiautomatic assessment of corneal endothelial cells and its association with the measurement area in the Topcon SP-2000P microscope and IMAGEnet system. Specular microscopic images of 86 healthy subjects were captured and analyzed using the Topcon SP-2000P microscope and IMAGEnet system. The same images were analyzed twice, on separate days, by the same examiner using the built-in measurement tool of the IMAGEnet system. The measurement areas were defined with a frame mounted on a computer screen. Four different-sized measurement areas were chosen for the semiautomatic measurements: box A (5.4 × 13.9 cm(2)), box B (4 × 10 cm(2)), box C (4 × 7 cm(2)), and box D (2 × 5 cm(2)). Average cell size (ACS), endothelial cell density (ECD), coefficient of variance, and hexagonality were measured. Repeatability was assessed based on the limit of agreement (LOA). The means of ACS, ECD, and hexagonality were not statistically different across 4 measurement areas (analysis of variance, P > 0.05). The mean differences (bias) were modest for ACS (range, -1.9∼3.9 μm(2)), ECD (range, -27.2∼14.6 cells per square millimeter), coefficient of variance (range, -0.14∼1.00), and hexagonality (range, -1.3%∼6.8%). Limits of agreement (mean difference ± 1.96× SD) were greater in the measurements with smaller areas: limit of agreement values for ECD were 14.6 ± 99.6, -3.8 ± 101.1, -27.2 ± 179, and -15.8 ± 488 cells per square millimeter for boxes A, B, C, and D, respectively. Similar trends were found in the repeatability of ACS and hexagonality. Repeatability is improved when larger measurement areas are chosen.

  20. Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications

    PubMed Central

    Shrestha, Suman; Karellas, Andrew; Shi, Linxi; Gounis, Matthew J.; Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo

    2016-01-01

    Purpose: High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. Methods: A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. Results: At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54 μm. After resampling to 54 μm square pixels using trilinear interpolation, the presampled MTF at Nyquist frequency of 9.26 cycles/mm was 0.29 and 0.24 along the orthogonal directions and the limiting resolution (10% MTF) occurred at approximately 12 cycles/mm. Visual analysis of a bar pattern image showed the ability to resolve close to 12 line-pairs/mm and qualitative evaluation of a neurovascular nitinol-stent showed the ability to visualize its struts at clinically relevant conditions. Conclusions: Hexagonal pixel array photon-counting CdTe detector provides high spatial resolution in single-photon counting mode. After resampling to optimal square pixel size for distortion-free display, the spatial resolution is preserved. The dual-energy capabilities of the detector could allow for artifact-free subtraction angiography and basis material decomposition. The proposed high-resolution photon-counting detector with energy-resolving capability can be of importance for several image-guided interventional procedures as well as for pediatric applications. PMID:27147324

  1. Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications.

    PubMed

    Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew; Shi, Linxi; Gounis, Matthew J; Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo

    2016-05-01

    High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54 μm. After resampling to 54 μm square pixels using trilinear interpolation, the presampled MTF at Nyquist frequency of 9.26 cycles/mm was 0.29 and 0.24 along the orthogonal directions and the limiting resolution (10% MTF) occurred at approximately 12 cycles/mm. Visual analysis of a bar pattern image showed the ability to resolve close to 12 line-pairs/mm and qualitative evaluation of a neurovascular nitinol-stent showed the ability to visualize its struts at clinically relevant conditions. Hexagonal pixel array photon-counting CdTe detector provides high spatial resolution in single-photon counting mode. After resampling to optimal square pixel size for distortion-free display, the spatial resolution is preserved. The dual-energy capabilities of the detector could allow for artifact-free subtraction angiography and basis material decomposition. The proposed high-resolution photon-counting detector with energy-resolving capability can be of importance for several image-guided interventional procedures as well as for pediatric applications.

  2. Electronic Structure of Two-Dimensional Hydrocarbon Networks of sp2 and sp3 C Atoms

    NASA Astrophysics Data System (ADS)

    Fujii, Yasumaru; Maruyama, Mina; Wakabayashi, Katsunori; Nakada, Kyoko; Okada, Susumu

    2018-03-01

    Based on density functional theory with the generalized gradient approximation, we have investigated the geometric and electronic structures of two-dimensional hexagonal covalent networks consisting of oligoacenes and fourfold coordinated hydrocarbon atoms, which are alternately arranged in a hexagonal manner. All networks were semiconductors with a finite energy gap at the Γ point, which monotonically decreased with the increase of the oligoacene length. As a result of a Kagome network of oligoacene connected through sp3 C atoms, the networks possess peculiar electron states in their valence and conduction bands, which consist of a flat dispersion band and a Dirac cone. The total energy of the networks depends on the oligoacene length and has a minimum for the network comprising naphthalene.

  3. Hexagonal Ag nanoarrays induced enhancement of blue light emission from amorphous oxidized silicon nitride via localized surface plasmon coupling.

    PubMed

    Ma, Zhongyuan; Ni, Xiaodong; Zhang, Wenping; Jiang, Xiaofan; Yang, Huafeng; Yu, Jie; Wang, Wen; Xu, Ling; Xu, Jun; Chen, Kunji; Feng, Duan

    2014-11-17

    A significant enhancement of blue light emission from amorphous oxidized silicon nitride (a-SiNx:O) films is achieved by introduction of ordered and size-controllable arrays of Ag nanoparticles between the silicon substrate and a-SiNx:O films. Using hexagonal arrays of Ag nanoparticles fabricated by nanosphere lithography, the localized surface plasmons (LSPs) resonance can effectively increase the internal quantum efficiency from 3.9% to 13.3%. Theoretical calculation confirms that the electromagnetic field-intensity enhancement is through the dipole surface plasma coupling with the excitons of a-SiNx:O films, which demonstrates a-SiNx:O films with enhanced blue emission are promising for silicon-based light-emitting applications by patterned Ag arrays.

  4. Development of the ReaxFFCBN reactive force field for the improved design of liquid CBN hydrogen storage materials.

    PubMed

    Pai, Sung Jin; Yeo, Byung Chul; Han, Sang Soo

    2016-01-21

    Liquid CBN (carbon-boron-nitrogen) hydrogen-storage materials such as 3-methyl-1,2-BN-cyclopentane have the advantage of being easily accessible for use in current liquid-fuel infrastructure. To develop practical liquid CBN hydrogen-storage materials, it is of great importance to understand the reaction pathways of hydrogenation/dehydrogenation in the liquid phase, which are difficult to discover by experimental methods. Herein, we developed a reactive force field (ReaxFFCBN) from quantum mechanical (QM) calculations based on density functional theory for the storage of hydrogen in BN-substituted cyclic hydrocarbon materials. The developed ReaxFFCBN provides similar dehydrogenation pathways and energetics to those predicted by QM calculations. Moreover, molecular dynamics (MD) simulations with the developed ReaxFFCBN can predict the stability and dehydrogenation behavior of various liquid CBN hydrogen-storage materials. Our simulations reveal that a unimolecular dehydrogenation mechanism is preferred in liquid CBN hydrogen-storage materials. However, as the temperature in the simulation increases, the contribution of a bimolecular dehydrogenation mechanism also increases. Moreover, our ReaxFF MD simulations show that in terms of thermal stability and dehydrogenation kinetics, liquid CBN materials with a hexagonal structure are more suitable materials than those with a pentagonal structure. We expect that the developed ReaxFFCBN could be a useful protocol in developing novel liquid CBN hydrogen-storage materials.

  5. Thermodynamic stability of boron: the role of defects and zero point motion.

    PubMed

    van Setten, Michiel J; Uijttewaal, Matthé A; de Wijs, Gilles A; de Groot, Robert A

    2007-03-07

    Its low weight, high melting point, and large degree of hardness make elemental boron a technologically interesting material. The large number of allotropes, mostly containing over a hundred atoms in the unit cell, and their difficult characterization challenge both experimentalists and theoreticians. Even the ground state of this element is still under discussion. For over 30 years, scientists have attempted to determine the relative stability of alpha- and beta-rhombohedral boron. We use density functional calculations in the generalized gradient approximation to study a broad range of possible beta-rhombohedral structures containing interstitial atoms and partially occupied sites within a 105 atoms framework. The two most stable structures are practically degenerate in energy and semiconducting. One contains the experimental 320 atoms in the hexagonal unit cell, and the other contains 106 atoms in the triclinic unit cell. When populated with the experimental 320 electrons, the 106 atom structure exhibits a band gap of 1.4 eV and an in-gap hole trap at 0.35 eV above the valence band, consistent with known experiments. The total energy of these two structures is 23 meV/B lower than the original 105 atom framework, but it is still 1 meV/B above the alpha phase. Adding zero point energies finally makes the beta phase the ground state of elemental boron by 3 meV/B. At finite temperatures, the difference becomes even larger.

  6. Synthesis, characterization and photocatalytic activity of magnetically separable hexagonal Ni/ZnO nanostructure

    NASA Astrophysics Data System (ADS)

    Senapati, Samarpita; Srivastava, Suneel K.; Singh, Shiv B.

    2012-09-01

    The hexagonal zinc oxide coated nickel (Ni/ZnO) nanostructure photocatalyst has successfully been prepared by the reduction of nickel chloride hexahydrate using hydrazine hydrate through the solvothermal process at 140 °C followed by surface modification of the product by the reflux method at 110 °C for 1 h. The X-ray diffraction (XRD) pattern showed that the `as prepared' sample consists of face centered cubic Ni and hexagonal wurtzite ZnO without any traces of impurity. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images confirmed the formation of nickel nanoparticles under solvothermal conditions. These nickel nanoparticles, when subjected to reflux, formed the hexagonal zinc oxide coated nickel nanostructure. Fourier transform infrared (FTIR) spectra, photoluminescence (PL) and Raman studies also confirmed the presence of zinc oxide in the hybrid nanostructure. The growth mechanism for the development of the hexagonal zinc oxide coated nickel (Ni/ZnO) nanostructure has also been proposed. The appearance of the hysteresis loop, in the as-prepared Ni/ZnO hybrid nanostructure, demonstrated its ferromagnetic character at room temperature. The hexagonal Ni/ZnO nanostructure also acts as an efficient photocatalyst in the degradation of methylene blue under ultraviolet light irradiation. It is observed that the catalytic efficiency of the hybrid nanocatalyst is better compared to pure zinc oxide. Most importantly, the Ni/ZnO catalyst could also be easily separated, simply by applying an external magnetic field, and reused.The hexagonal zinc oxide coated nickel (Ni/ZnO) nanostructure photocatalyst has successfully been prepared by the reduction of nickel chloride hexahydrate using hydrazine hydrate through the solvothermal process at 140 °C followed by surface modification of the product by the reflux method at 110 °C for 1 h. The X-ray diffraction (XRD) pattern showed that the `as prepared' sample consists of face centered cubic Ni and hexagonal wurtzite ZnO without any traces of impurity. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images confirmed the formation of nickel nanoparticles under solvothermal conditions. These nickel nanoparticles, when subjected to reflux, formed the hexagonal zinc oxide coated nickel nanostructure. Fourier transform infrared (FTIR) spectra, photoluminescence (PL) and Raman studies also confirmed the presence of zinc oxide in the hybrid nanostructure. The growth mechanism for the development of the hexagonal zinc oxide coated nickel (Ni/ZnO) nanostructure has also been proposed. The appearance of the hysteresis loop, in the as-prepared Ni/ZnO hybrid nanostructure, demonstrated its ferromagnetic character at room temperature. The hexagonal Ni/ZnO nanostructure also acts as an efficient photocatalyst in the degradation of methylene blue under ultraviolet light irradiation. It is observed that the catalytic efficiency of the hybrid nanocatalyst is better compared to pure zinc oxide. Most importantly, the Ni/ZnO catalyst could also be easily separated, simply by applying an external magnetic field, and reused. Electronic supplementary information (ESI) available: Fig. S1 Ni/ZnO hybrid nanostructure prepared using (a) 0.195 and (b) 0.25 M [Zn2+] at 90 °C Fig. S2 FTIR spectra of nickel nanoparticles prepared at 140 °C (a), and Ni/ZnO hybrid nanostructure prepared using (b) 0.063, (c) 0.125, (d) 0.195 and (e) 0.25 M [Zn2+]; Fig. S3 Raman spectra of Ni/ZnO nanostructure prepared using (a) 0.063, (b) 0.125, (c) 0.195 and (d) 0.25 M [Zn2+]; Fig. S4 Room temperature PL spectra of (a) ZnO and (b) Ni/ZnO nanostructure prepared using 0.25 M [Zn2+]. See DOI: 10.1039/c2nr31831h

  7. Partial glass isosymmetry transition in multiferroic hexagonal ErMn O 3

    DOE PAGES

    Barbour, A.; Alatas, A.; Liu, Y.; ...

    2016-02-08

    Ferroelectric transitions of a hexagonal multiferroic, ErMnO 3, are studied by x-ray scattering techniques. An isosymmetry transition, similar to that previously observed for YMnO 3, approximately 300 K below the well-known ferroic transition temperature is investigated. The partial glassy behavior of the isosymmetry transition is identified by appearance of quasi-elastic scattering lines in high-energy-resolution scans. The glassy behavior is further supported by the increased interlayer decorrelation of (√3×√3)R30º ordering below the isosymmetry transition. The transition behavior is considered for possible hidden sluggish modes and two-step phase transitions theoretically predicted for the stacked triangular antiferromagnets. The in-plane azimuthal (orientational) ordering behaviorsmore » were also compared to the theoretical predictions. Coherent x-ray speckle measurements show unambiguously that the domain sizes decrease anomalously near both the isosymmetry and ferroic transitions. However, domain boundary fluctuations increase monotonically with an Arrhenius form with an activation energy of 0.54(5) eV through both transitions.« less

  8. Oxygen ingress study of 3D printed gaseous radiation detector enclosures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steer, Christopher A.; Durose, Aaron

    2015-07-01

    As part of our ongoing studies into the potential application of 3D printing techniques to gaseous radiation detectors, we have studied the ability of 3D printed enclosures to resist environmental oxygen ingress. A set of cuboid and hexagonal prism shaped enclosures with wall thicknesses of 4 mm, 6 mm, 8 mm and 10 mm were designed and printed in nylon using a EOSINT P 730 Selective Laser Sintering 3D printer system These test enclosures provide a comparison of different environmental gas ingress for different 3D printing techniques. The rate of change of oxygen concentration was found to be linear, decreasingmore » as the wall thickness increases. It was also found that the hexagonal prism geometry produced a lower rate of change of oxygen concentration compared with the cuboid shaped enclosures. Possible reasons as to why these results were obtained are discussed The implications for the this study for deployable systems are also discussed (authors)« less

  9. Elastic moduli of the distorted Kagome-lattice ferromagnet Nd3Ru4Al12

    NASA Astrophysics Data System (ADS)

    Suzuki, Takashi; Mizuno, Takuyou; Takezawa, Kohki; Kamikawa, Shuhei; Andreev, Alexander V.; Gorbunov, Denis I.; Henriques, Margarida S.; Ishii, Isao

    2018-05-01

    The distorted kagome-lattice compound Nd3Ru4Al12 has the hexagonal structure. This compound is reported as a ferromagnet in which spins are aligned along the c-axis with the Curie temperature TC = 39 K . The nature of localized f-electrons is expected in Nd3Ru4Al12, and magnetic anisotropy can be attributed to a crystal electric field (CEF) effect. We performed ultrasonic measurements on a Nd3Ru4Al12 single-crystalline sample in order to investigate the phase transition at TC and the CEF effect. All longitudinal and transverse elastic moduli increase monotonically with decreasing temperature, and no clear elastic softening due to a quadrupole interaction is detected under the hexagonal CEF. This result is in contrast to an isomorphic compound Dy3Ru4Al12 with a remarkable elastic softening of the transverse modulus C44. At the ferromagnetic phase transition, the moduli show obvious elastic anomalies, suggesting characteristic couplings between a strain and a magnetic order parameter.

  10. Surface modified α-glycine - EuF3: Gd nanoparticles for upconversion luminescence

    NASA Astrophysics Data System (ADS)

    Mahajan, Manoj P.; Khandpekar, M. M.

    2018-04-01

    Gadolinium doped EuF3 nanoparticles have been synthesized in the presence of α-glycine via chloride route with subsequent microwave drying. The XRD profile shows hexagonal phase structure with lattice parameters a = b = 6.920 A° and c = 7.085 A° (JCPDS No. 32-0373) with Debye-Scherer particle size of 51 nm. The SEM shows chipped morphology and TEM images exhibit shallow toroid like hexagonal - rounded nanostructures (30 - 50 nm) and their subsequent spontaneous transformation in to hyperboloid shaped nanostructures (200 - 600 nm) possibly with extension of the reaction time. SAED pattern confirms crystalline nature of nanoparticles and the planes are in agreement with XRD Peaks. Comparative FTTR and Raman spectrum shows presence of various functional groups confirming the capping of the glycine on EuF3:Gd core. A TGA/DTA spectrum shows decomposition in two stages. The photoluminescence spectrum shows up conversion luminescence at wavelength 653 nm (red).

  11. NV centers in 3 C ,4 H , and 6 H silicon carbide: A variable platform for solid-state qubits and nanosensors

    NASA Astrophysics Data System (ADS)

    von Bardeleben, H. J.; Cantin, J. L.; Csóré, A.; Gali, A.; Rauls, E.; Gerstmann, U.

    2016-09-01

    The outstanding magneto-optical properties of the nitrogen-vacancy (NV) center in diamond have stimulated the search for similar systems. We show here that NV triplet centers can also be generated in all the main SiC polytypes. We have identified by electron paramagnetic resonance spectroscopy and first-principles calculations the axial NV- pairs in 3 C ,4 H , and 6 H SiC, showing polytype and lattice site-specific magnetic and optical properties. We demonstrate very efficient room-temperature spin polarization of the ground state upon near infrared optical excitation for the NV center in 3 C SiC and axial NV centers in the hexagonal (4 H ,6 H ) polytypes; the signals of basal pairs are much lower in intensity. Axial NV centers in hexagonal SiC polytypes and thus constitute unidirectional ensembles which may be useful in nanosensing applications.

  12. Raman Scattering Study of the Soft Phonon Mode in the Hexagonal Ferroelectric Crystal KNiCl 3

    NASA Astrophysics Data System (ADS)

    Machida, Ken-ichi; Kato, Tetsuya; Chao, Peng; Iio, Katsunori

    1997-10-01

    Raman spectra of some phonon modes of the hexagonal ferroelectriccrystal KNiCl3are obtained in the temperature range between 290 K and 590 K, which includes the structural phase transition point T2(=561 K) at which previous measurements of dielectric constant and spontaneouspolarization as a function of temperature had shown that KNiCl3 undergoes a transition between polar phases II and III. An optical birefringence measurement carried outas a complement to the present Raman scattering revealed that this transition is of second order. Towards this transition point, the totally symmetric phonon mode with the lowest frequency observed in the room-temperature phasewas found to soften with increasing temperature.The present results provide new information on the phase-transitionmechanism and the space groups of thehigher (II)- and lower (III)-symmetric phases around T2.

  13. Fabrication of nickel hydroxide electrodes with open-ended hexagonal nanotube arrays for high capacitance supercapacitors.

    PubMed

    Wu, Mao-Sung; Huang, Kuo-Chih

    2011-11-28

    A nickel hydroxide electrode with open-ended hexagonal nanotube arrays, prepared by hydrolysis of nickel chloride in the presence of hexagonal ZnO nanorods, shows a very high capacitance of 1328 F g(-1) at a discharge current density of 1 A g(-1) due to the significantly improved ion transport.

  14. Dielectric properties of Ti4+ substituted BaFe12O19 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ghoneim, A. I.; Amer, M. A.; Meaz, T. M.; Attalah, S. S.

    2017-02-01

    Series of nanocrystalline BaTixFe12-(4/3)xO19 hexagonal ferrites, 0≤x≤1, was prepared using the chemical co-precipitation method. As-prepared samples were heated at 1200 °C for 20 h and slowly cooled to room temperature (RT). XRD studies proved that the samples have single phase M-type hexagonal nanostructure, where their grain size lies in the range of 42.4 - 61.3 nm. Their dielectric properties were studied against temperature (T) and frequency (F). DC conductivity showed increase against T, whereas AC conductivity showed increase with increasing both T and F. This proved the semiconducting behavior of the samples. Activation energies were found to lie in the range of 0.054-0.169 eV for temperature range of RT 373 K and of 0.114-0.274 eV for higher temperatures up to 473 K. Variation of the dielectric constant and AC conductivity against F revealed dispersion in all these hexagonal nanostructures, which was assigned to Maxwell-Wagner type of interfacial polarization. Variation of the dielectric loss tangent against F showed a relaxation spectrum for all samples, whereas the dielectric constant and loss tangent showed an increasing trend against T. The relative magnetic permeability μr showed an increasing trend with temperature.

  15. Electric field driven evolution of topological domain structure in hexagonal manganites

    NASA Astrophysics Data System (ADS)

    Yang, K. L.; Zhang, Y.; Zheng, S. H.; Lin, L.; Yan, Z. B.; Liu, J.-M.; Cheong, S.-W.

    2017-10-01

    Controlling and manipulating the topological state represents an important topic in condensed matters for both fundamental researches and applications. In this work, we focus on the evolution of a real-space topological domain structure in hexagonal manganites driven by electric field, using the analytical and numerical calculations based on the Ginzburg-Landau theory. It is revealed that the electric field drives a transition of the topological domain structure from the type-I pattern to the type-II one. In particular, it is identified that a high electric field can enforce the two antiphase-plus-ferroelectric (AP +FE ) domain walls with Δ Φ =π /3 to approach each other and to merge into one domain wall with Δ Φ = 2 π /3 eventually if the electric field is sufficiently high, where Δ Φ is the difference in the trimerization phase between two neighboring domains. Our simulations also reveal that the vortex cores of the topological structure can be disabled at a sufficiently high critical electric field by suppressing the structural trimerization therein, beyond which the vortex core region is replaced by a single ferroelectric domain without structural trimerization (Q = 0 ). Our results provide a stimulating reference for understanding the manipulation of real-space topological domain structure in hexagonal manganites.

  16. Phase selective synthesis of quantum cutting nanophosphors and the observation of a spontaneous room temperature phase transition.

    PubMed

    Ghosh, Pushpal; Mudring, Anja-Verena

    2016-04-21

    Oxygen-free Eu(3+)-doped NaGdF4 nanocrystals with high quantum cutting efficiency are accessible at low temperatures (room temperature to 80 °C) using task-specific ionic liquids (ILs) as structure directing agents and only water as solvent. Selective tuning of the shape, morphology and, most importantly, the crystal phase of the host lattice is achieved by changing the alkyl side length, the H-bonding capabilities and the concentration of 1-alkyl-3-methylimidazolium bromide ILs, [C(n)mim]Br. When using [C2mim]Br, hexagonal NaGdF4 nanoparticles are obtained. In the case of methylimidazolium bromides with longer pendant alkyl chains such as butyl (C4), octyl (C8) or decyl (C10), extremely small nanoparticles of the cubic polymorph form, which then convert even at room temperature (RT) to the thermodynamically favored hexagonal modification. To the best of our knowledge, this kind of spontaneous phase transition is not yet reported. The hexagonal nanomaterial shows a substantial quantum cutting efficiency (154%) whilst in the cubic material, the effect is negligible (107%). The easy yet highly phase selective green synthesis of the materials promises large scale industrial application in environmentally benign energy efficient lighting.

  17. Inverse hexagonal and cubic micellar lyotropic liquid crystalline phase behaviour of novel double chain sugar-based amphiphiles.

    PubMed

    Feast, George C; Lepitre, Thomas; Tran, Nhiem; Conn, Charlotte E; Hutt, Oliver E; Mulet, Xavier; Drummond, Calum J; Savage, G Paul

    2017-03-01

    The lyotropic phase behaviour of a library of sugar-based amphiphiles was investigated using high-throughput small-angle X-ray scattering (SAXS). Double unsaturated-chain monosaccharide amphiphiles formed inverse hexagonal and cubic micellar (Fd3m) lyotropic phases under excess water conditions. A galactose-oleyl amphiphile from the library was subsequently formulated into hexosome nanoparticles, which have potential uses as drug delivery vehicles. The nanoparticles were shown to be stable at elevated temperatures and non-cytotoxic up to at least 200μgmL -1 . Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  18. Microwave-Assisted Synthesis Cd Metal Hexagonal Nanosheets

    NASA Astrophysics Data System (ADS)

    Sun, Yidong; She, Houde; Bai, Wencai; Li, Liangshan; Zhou, Hua

    2018-07-01

    Sodium borohydride (NaBH4) as reducing agent, oleic acid (OA) as surfactant, deionized water as the dispersant, reducing cadmium nitrate (Cd(NO3)2 · 4H2O) can get Cd nanosheets by microwave method. Room temperature photoluminescence (PL) spectrum for Cd nanosheets recorded under xenon light wavelength of 325 nm exhibited obviously emission bands at 331, 379, and 390 nm. By analyzing the results of XRD and TEM, the nanosheets are thought as hexagonal phase and the size is about 20 nm. This synthesis performs in a lower temperature. Moreover our method is quite simple and the cost of the experiment is relatively lower.

  19. Mechanism of bio molecule stabilized selenium nanoparticles against oxidation process and Clostridium Botulinum.

    PubMed

    Tareq, Foysal Kabir; Fayzunnesa, Mst; Kabir, Md Shahariar; Nuzat, Musrat

    2018-02-01

    The bio molecules from plant leaf extract utilized in the preparation of selenium material at the nano scale. The selenium ion was reduced to selenium nanoparticles in the presence of molecule residue of the plant leaf extract. The bio molecule stabilized selenium nanoparticles were grown gradually in the reaction mixture. The selenium nanoparticles were characterized using atomic absorption spectroscopy, fourier transform inferred spectroscopy, X-ray diffraction, scanning electronic microscope and transmission electronic microscope. The selenium nanoparticles were synthesized successfully as the nano-crystalline pure hexagonal phase and the size range of 26-41 nm with spherical in shape. The activity and mechanism of nanoparticles suggested that the selenium nanoparticles are causes of leakage of reducing sugars and protein of pathogens membrane cell. The selenium nano are responsible for death and fully inhibited the microbial growth of pathogen. The bio molecule stabilized selenium nanoparticles were also investigated for the antioxidant agent. Selenium nanoparticles showed scavenging activity up to 94.48%. These results recommended that the advantages of using this method for synthesis of selenium nanoparticles with excellent antioxidant and antimicrobial mechanism and activity, which can be used as the antioxidant and antibiotic agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Characterization of novel microstructures in Al-Fe-V-Si and Al-Fe-V-Si-Y alloys processed at intermediate cooling rates

    NASA Astrophysics Data System (ADS)

    Marshall, Ryan

    Samples of an Al-Fe-V-Si alloy with and without small Y additions were prepared by copper wedge-mold casting. Analysis of the microstructures developed at intermediate cooling rates revealed the formation of an atypical morphology of the cubic alpha-Al12(Fe/V)3Si phase (Im 3 space group with a = 1.26 nm) in the form of a microeutectic with alpha-Al that forms in relatively thick sections. This structure was determined to exhibit promising hardness and thermal stability when compared to the commercial rapidly solidified and processed Al-Fe-V-Si (RS8009) alloy. In addition, convergent beam electron diffraction (CBED) and selected area electron diffraction (SAD) were used to characterize a competing intermetallic phase, namely, a hexagonal phase identified as h-AlFeSi (P6/mmm space group with a = 2.45 nm c = 1.25 nm) with evidence of a structural relationship to the icosahedral quasicrystalline (QC) phase (it is a QC approximant) and a further relationship to the more desirable alpha-Al12(Fe/V) 3Si phase, which is also a QC approximant. The analysis confirmed the findings of earlier studies in this system, which suggested the same structural relationships using different methods. As will be shown, both phases form across a range of cooling rates and appear to have good thermal stabilities. Additions of Y to the alloy were also studied and found to cause the formation of primary YV2Al20 particles on the order of 1 microm in diameter distributed throughout the microstructure, which otherwise appeared essentially identical to that of the Y-free 8009 alloy. The implications of these results on the possible development of these structures will be discussed in some detail.

  1. Versatile RNA tetra-U helix linking motif as a toolkit for nucleic acid nanotechnology.

    PubMed

    Bui, My N; Brittany Johnson, M; Viard, Mathias; Satterwhite, Emily; Martins, Angelica N; Li, Zhihai; Marriott, Ian; Afonin, Kirill A; Khisamutdinov, Emil F

    2017-04-01

    RNA nanotechnology employs synthetically modified ribonucleic acid (RNA) to engineer highly stable nanostructures in one, two, and three dimensions for medical applications. Despite the tremendous advantages in RNA nanotechnology, unmodified RNA itself is fragile and prone to enzymatic degradation. In contrast to use traditionally modified RNA strands e.g. 2'-fluorine, 2'-amine, 2'-methyl, we studied the effect of RNA/DNA hybrid approach utilizing a computer-assisted RNA tetra-uracil (tetra-U) motif as a toolkit to address questions related to assembly efficiency, versatility, stability, and the production costs of hybrid RNA/DNA nanoparticles. The tetra-U RNA motif was implemented to construct four functional triangles using RNA, DNA and RNA/DNA mixtures, resulting in fine-tunable enzymatic and thermodynamic stabilities, immunostimulatory activity and RNAi capability. Moreover, the tetra-U toolkit has great potential in the fabrication of rectangular, pentagonal, and hexagonal NPs, representing the power of simplicity of RNA/DNA approach for RNA nanotechnology and nanomedicine community. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fei; Wu, Yuan; Lou, Hongbo

    Polymorphism, which describes the occurrence of different lattice structures in a crystalline material, is a critical phenomenon in materials science and condensed matter physics. Recently, configuration disorder was compositionally engineered into single lattices, leading to the discovery of high-entropy alloys and high-entropy oxides. For these novel entropy-stabilized forms of crystalline matter with extremely high structural stability, is polymorphism still possible? Here by employing in situ high-pressure synchrotron radiation X-ray diffraction, we reveal a polymorphic transition from face-centred-cubic (fcc) structure to hexagonal-close-packing (hcp) structure in the prototype CoCrFeMnNi high-entropy alloy. The transition is irreversible, and our in situ high-temperature synchrotron radiationmore » X-ray diffraction experiments at different pressures of the retained hcp high-entropy alloy reveal that the fcc phase is a stable polymorph at high temperatures, while the hcp structure is more thermodynamically favourable at lower temperatures. Lastly, as pressure is increased, the critical temperature for the hcp-to-fcc transformation also rises.« less

  3. The Calculation Study of Electronic Properties of Doped RE (Eu, Er and Tm)-GaN using Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Zaharo, Aflah; Purqon, Acep

    2017-07-01

    The calculation of the structure and electronic properties of Rare Earth (RE) at the wurtzite Gallium Nitride (GaN) based on DFT has completed. GGA approximation used for exchange correlation and Ultra soft pseudo potential too. The stability structure of GaN is seen that difference lattice parameter 11% lower than another calculation and experiment result. It is shown the stability structure GaN have direct band gap energy on Gamma point hexagonal lattice Brillouin zone. The width Eg is 2.6 eV. When one atom Ga is substituted with one atom RE, the bond length is change 12 % longest. An in good agreement with theoretical doping RE concentration increases, the edge of energy level shifted towards to make the band gap narrow which is allow the optical transitions and help to improve the optical performance of GaN. The RE doped GaN is potentially applicable for various color of LED with lower energy consumption and potentially energy saving application

  4. Observations of two-dimensional monolayer zinc oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, Trilochan, E-mail: trilochansahoo@gmail.com; Nayak, Sanjeev K.; Chelliah, Pandian

    2016-03-15

    Highlights: • Synthesis of planer ZnO nanostructure. • Observation of multilayered and monolayer ZnO. • DFT calculation of (10-10), (11-20) and (0 0 0 1) planes of ZnO. • Stability of non-polar (10-10) and (11-20) planes of ZnO. - Abstract: This letter reports the observations of planar two-dimensional ZnO synthesized using the hydrothermal growth technique. High-resolution transmission electron microscopy revealed the formation of a two-dimensional honeycomb lattice and aggregated structures of layered ZnO. The nonpolar (10-10) and (11-20) planes were present in the X-ray diffraction patterns, but the characteristic (0 0 0 1) peak of bulk ZnO was absent. Themore » study found that nonpolar freestanding ZnO structures composed of a single or few layers may be more stable and may have a higher probability of formation than their polar counterparts. The stability of the nonpolar two-dimensional hexagonal ZnO slabs is supported by density functional theory studies.« less

  5. Polymorphism in a high-entropy alloy

    DOE PAGES

    Zhang, Fei; Wu, Yuan; Lou, Hongbo; ...

    2017-06-01

    Polymorphism, which describes the occurrence of different lattice structures in a crystalline material, is a critical phenomenon in materials science and condensed matter physics. Recently, configuration disorder was compositionally engineered into single lattices, leading to the discovery of high-entropy alloys and high-entropy oxides. For these novel entropy-stabilized forms of crystalline matter with extremely high structural stability, is polymorphism still possible? Here by employing in situ high-pressure synchrotron radiation X-ray diffraction, we reveal a polymorphic transition from face-centred-cubic (fcc) structure to hexagonal-close-packing (hcp) structure in the prototype CoCrFeMnNi high-entropy alloy. The transition is irreversible, and our in situ high-temperature synchrotron radiationmore » X-ray diffraction experiments at different pressures of the retained hcp high-entropy alloy reveal that the fcc phase is a stable polymorph at high temperatures, while the hcp structure is more thermodynamically favourable at lower temperatures. Lastly, as pressure is increased, the critical temperature for the hcp-to-fcc transformation also rises.« less

  6. Structural, optical, magnetic and electrical properties of hematite (α-Fe2O3) nanoparticles synthesized by two methods: polyol and precipitation

    NASA Astrophysics Data System (ADS)

    Mansour, Houda; Letifi, Hanen; Bargougui, Radhouane; De Almeida-Didry, Sonia; Negulescu, Beatrice; Autret-Lambert, Cécile; Gadri, Abdellatif; Ammar, Salah

    2017-12-01

    Hematite (α-Fe2O3) nanoparticles have been successfully synthesized via two methods: (1) polyol and (2) precipitation in water. The influence of synthesis methods on the crystalline structure, morphological, optical, magnetic and electrical properties were investigated using X-ray diffraction, RAMAN spectroscopy, scanning electron microscopy, transmission electron microscopy, UV-visible diffuse reflectance spectroscopy (UV-vis DRS), superconducting quantum interference device and impedance spectroscopy. The structural properties showed that the obtained hematite α-Fe2O3 nanoparticles with two preparation methods exhibit hexagonal phase with high crystallinity and high-phase stability at room temperature. It was found that the average hematite nanoparticle size is estimated to be 36.86 nm for the sample synthesized by precipitation and 54.14 nm for the sample synthesized by polyol. Moreover, the optical properties showed that the band gap energy value of α-Fe2O3 synthesized by precipitation (2.07 eV) was higher than that of α-Fe2O3 synthesized by polyol (1.97 eV) and they showed a red shift to the visible region. Furthermore, the measurements of magnetic properties indicated a magnetization loop typical of ferromagnetic systems at room temperature. Measurements of electrical properties show higher dielectric permittivity (5.64 × 103) and relaxation phenomenon for α-Fe2O3 issued from the precipitation method than the other sample.

  7. Significance of an in-situ generated boundary film on tribocorrosion behavior of polymer-metal sliding pair.

    PubMed

    Xu, Yongkun; Qi, Huimin; Li, Guitao; Guo, Xueping; Wan, Yong; Zhang, Ga

    2018-05-15

    Polymer composites have a high potential for applications as tribo-materials exposed to sea water owing to their self-lubrication characteristic and high chemical stability. In the present work, tribological behaviors of polyetheretherketone (PEEK) composites rubbing with stainless steel in sea water were explored using a pin-on-disc tribometer integrated with a potentiostat for electrochemical control. It was demonstrated that further adding 5 vol% hexagonal boron nitride (h-BN) nanoparticles into PEEK reinforced with short carbon fibers (SCF) significantly enhanced the wear resistance. Moreover, the stainless steel exhibited significantly enhanced tribocorrosion resistance when rubbing with the hybrid nanocomposite, in comparison to the sliding against PEEK filled only with SCF. Nanostructures of the boundary films formed on the steel surface were comprehensively investigated. It was manifested that tribo-chemistry products of h-BN, i.e. H 3 BO 3 and B 2 O 3 , were arrayed in a closely packed boundary film. It seems that inclusion of layer-structured H 3 BO 3 and B 2 O 3 improved the resilience of the boundary film. The continuous boundary film covering the steel surface provided a lubrication effect and strengthened the passivation layer. A new route for enhancing simultaneously tribological and corrosion resistance of polymer-metal pairs by controlling in-situ tribo-chemistry was thus proposed. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. The 4-meter lunar engineering telescope

    NASA Technical Reports Server (NTRS)

    Peacock, Keith; Giannini, Judith A.; Kilgus, Charles C.; Bely, Pierre Y.; May, B. Scott; Cooper, Shannon A.; Schlimm, Gerard H.; Sounder, Charles; Ormond, Karen; Cheek, Eric

    1991-01-01

    The 16-meter diffraction limited lunar telescope incorporates a primary mirror with 312 one-meter segments; 3 nanometer active optics surface control with laser metrology and hexapod positioners; a space frame structure with one-millimeter stability; and a hexapod mount for pointing. The design data needed to limit risk in this development can be obtained by building a smaller engineering telescope on the moon with all of the features of the 16-meter design. This paper presents a 4.33-meter engineering telescope concept developed by the Summer 1990 Student Program of the NASA/JHU Space Grant Consortium Lunar Telescope Project. The primary mirror, made up of 18 one-meter hexagonal segments, is sized to provide interesting science as well as engineering data. The optics are configured as a Ritchey-Chretien with a coude relay to the focal plane beneath the surface. The optical path is continuously monitored with 3-nanometer precision interferometrically. An active optics processor and piezoelectric actuators operate to maintain the end-to-end optical configuration established by wave front sensing using a guide star. The mirror segments, consisting of a one-centimeter thick faceplate on 30-cm deep ribs, maintain the surface figure to a few nanometers under lunar gravity and thermal environment.

  9. Synthesis of three-dimensional reduced graphene oxide layer supported cobalt nanocrystals and their high catalytic activity in F-T CO2 hydrogenation.

    PubMed

    He, Fei; Niu, Na; Qu, Fengyu; Wei, Shuquan; Chen, Yujin; Gai, Shili; Gao, Peng; Wang, Yan; Yang, Piaoping

    2013-09-21

    The reduced graphene oxide (rGO) supported cobalt nanocrystals have been synthesized through an in situ crystal growth method using Co(acac)2 under solvothermal conditions by using DMF as the solvent. By carefully controlling the reaction temperature, the phase transition of the cobalt nanocrystals from the cubic phase to the hexagonal phase has been achieved. Moreover, the microscopic structure and morphology as well as the reduction process of the composite have been investigated in detail. It is found that oxygen-containing functional groups on the graphene oxide (GO) can greatly influence the formation process of the Co nanocrystals by binding the Co(2+) cations dissociated from the Co(acac)2 in the initial reaction solution at 220 °C, leading to the 3D reticular structure of the composite. Furthermore, this is the first attempt to use a Co/rGO composite as the catalyst in the F-T CO2 hydrogenation process. The catalysis testing results reveal that the as-synthesized 3D structured composite exhibits ideal catalytic activity and good stability, which may greatly extend the scope of applications for this kind of graphene-based metal hybrid material.

  10. Synthesis and structural characterization of the Zintl phases Na{sub 3}Ca{sub 3}TrPn{sub 4}, Na{sub 3}Sr{sub 3}TrPn{sub 4}, and Na{sub 3}Eu{sub 3}TrPn{sub 4} (Tr=Al, Ga, In; Pn=P, As, Sb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi; Suen, Nian-Tzu; College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002

    15 new quaternary Zintl phases have been synthesized by solid-state reactions from the respective elements, and their structures have been determined by single-crystal X-ray diffraction. Na{sub 3}E{sub 3}TrPn{sub 4} (E=Ca, Sr, Eu; Tr=Al, Ga, In; Pn=P, As, Sb) crystallize in the hexagonal crystal system with the non-centrosymmetric space group P6{sub 3}mc (No. 186). The structure represents a variant of the K{sub 6}HgS{sub 4} structure type (Pearson index hP22) and features [TrPn{sub 4}]{sup 9–} tetrahedral units, surrounded by Na{sup +} and Ca{sup 2+}, Sr{sup 2+}, Eu{sup 2+} cations. The nominal formula rationalization [Na{sup +}]{sub 3}[E{sup 2+}]{sub 3}[TrPn{sub 4}]{sup 9–} follows themore » octet rule, suggesting closed-shell configurations for all atoms and intrinsic semiconducting behavior. However, structure refinements for several members hint at disorder and mixing of cations that potentially counteract the optimal valence electron count. - Graphical abstract: The hexagonal, non-centrosymmetric structure of Na{sub 3}E{sub 3}TrPn{sub 4} (E=Ca, Sr, Eu; Tr=Al, Ga, In; Pn=P, As, Sb) features [TrPn{sub 4}]{sup 9–} tetrahedral units, surrounded by Na{sup +} and Ca{sup 2+}, Sr{sup 2+}, Eu{sup 2+} cations. - Highlights: • 15 quaternary phosphides, arsenides, and antimonides are synthesized and structurally characterized. • The structure is a variant of the hexagonal K{sub 6}HgS{sub 4}-type, with distinctive pattern for the cations. • Occupational and/or positional disorder of yet unknown origin exists for some members of the series.« less

  11. Crystallographic characterizations of eutectic and secondary carbides in a Fe-12Cr-2.5Mo-1.5W-3V-1.25C alloy

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Liu, Ligang; Feng, Yunli; Liu, Sha; Ren, Xuejun; Yang, Qingxiang

    2017-03-01

    In this work, the morphology and structures of the eutectic and secondary carbides in a new high chromium Fe-12Cr-2.5Mo-1.5W-3V-1.25C designed for cold-rolling work roll were systematically studied. The precipitated carbides inside the grains and along the grain boundaries were investigated with optical microscope, scanning electron microscopy with energy dispersive spectroscopy, transmission electron microscopy and X-Ray diffraction. Selected area diffraction patterns have been successfully used to identify the crystal formation and lattice constants of the carbides with different alloying elements. The results show that the eutectic carbides precipitated contain MC and M2C distributed along the grain boundaries with dendrite feature. The composition and crystal structure analysis shows that the eutectic MC carbides contain VC and WC with a cubic and hexagonal crystal lattice structures respectively, while the eutectic M2C carbides predominantly contain V2C and Mo2C with orthorhombic and hexagonal crystal lattices respectively. The secondary carbides contain MC, M2C, M7C3 formed along the grain boundaries and their sizes are much larger than the eutectic carbides ones. The secondary M23C6 is much small (0.3-0.5μm) and is distributed dispersively inside the grain. Similar to the eutectic carbides, the secondary carbides also contain VC, WC, V2C, and Mo2C. M7C3 is hexagonal (Fe,Cr)7C3, while M23C6 is indexed to be in a cubic crystal form.

  12. Hexagon solar power panel

    NASA Technical Reports Server (NTRS)

    Rubin, I. (Inventor)

    1978-01-01

    A solar energy panel support is described upon which silicon cells are arrayed. The cells are wafer thin and of two geometrical types, both of the same area and electrical rating, namely hexagon cells and hourglass cells. The hourglass cells are composites of half hexagons. A near perfect nesting relationship of the cells achieves a high density packing whereby optimum energy production per panel area is achieved.

  13. Non-Reciprocal on Wafer Microwave Devices

    DTIC Science & Technology

    2015-05-27

    filter uses a barium hexagonal ferrite film incorporated into the dielectric layer of a microstrip transmission line. The zero-field operational...Fal,, Robert E. Camley. Millimeter wave phase shifter based on ferromagnetic resonancein a hexagonal barium ferrite thin film, Applied Physics...materials for on-wafer microwave devices concentrated on barium hexagonal ferrite (BaM) films grown on Si because these material is a good candidate

  14. Hexagon solar power panel

    DOEpatents

    Rubin, Irwin

    1978-01-01

    A solar energy panel comprises a support upon which silicon cells are arrayed. The cells are wafer thin and of two geometrical types, both of the same area and electrical rating, namely hexagon cells and hourglass cells. The hourglass cells are composites of half hexagons. A near perfect nesting relationship of the cells achieves a high density packing whereby optimum energy production per panel area is achieved.

  15. Self-Assembly of a [1+1] Ionic Hexagonal Macrocycle and its Antiproliferative Activity

    NASA Astrophysics Data System (ADS)

    Singh, Khushwant; Gangrade, Ankit; Bhowmick, Sourav; Jana, Achintya; Mandal, Biman B.; Das, Neeladri

    2018-04-01

    A unique irregular hexagon was self-assembled using an organic donor clip (bearing terminal pyridyl units) and a complementary organometallic acceptor clip. The resulting metallamacrocycle was characterized by multinuclear NMR, mass spectrometry, and elemental analyses. Molecular modeling confirmed hexagonal shaped cavity for this metallamacrocycle which is a unique example of a discrete hexagonal framework self-assembled from only two building blocks. Cytotoxicity of the Pt-based acceptor tecton and the self-assembled PtII-based macrocycle was evaluated using three cancer cell lines and results were compared with cisplatin. Results confirmed a positive effect of the metallamacrocycle formation on cell growth inhibition.

  16. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets.

    PubMed

    Wang, Qisheng; Safdar, Muhammad; Xu, Kai; Mirza, Misbah; Wang, Zhenxing; He, Jun

    2014-07-22

    Van der Waals epitaxy (vdWE) is of great interest due to its extensive applications in the synthesis of ultrathin two-dimensional (2D) layered materials. However, vdWE of nonlayered functional materials is still not very well documented. Here, although tellurium has a strong tendency to grow into one-dimensional nanoarchitecture due to its chain-like structure, we successfully realize 2D hexagonal tellurium nanoplates on flexible mica sheets via vdWE. Chemically inert mica surface is found to be crucial for the lateral growth of hexagonal tellurium nanoplates since it (1) facilitates the migration of tellurium adatoms along mica surface and (2) allows a large lattice mismatch. Furthermore, 2D tellurium hexagonal nanoplates-based photodetectors are in situ fabricated on flexible mica sheets. Efficient photoresponse is obtained even after bending the device for 100 times, indicating 2D tellurium hexagonal nanoplates-based photodetectors on mica sheets have a great application potential in flexible and wearable optoelectronic devices. We believe the fundamental understanding of vdWE effect on the growth of 2D tellurium hexagonal nanoplate can pave the way toward leveraging vdWE as a useful channel to realize the 2D geometry of other nonlayered materials.

  17. Grid cell hexagonal patterns formed by fast self-organized learning within entorhinal cortex.

    PubMed

    Mhatre, Himanshu; Gorchetchnikov, Anatoli; Grossberg, Stephen

    2012-02-01

    Grid cells in the dorsal segment of the medial entorhinal cortex (dMEC) show remarkable hexagonal activity patterns, at multiple spatial scales, during spatial navigation. It has previously been shown how a self-organizing map can convert firing patterns across entorhinal grid cells into hippocampal place cells that are capable of representing much larger spatial scales. Can grid cell firing fields also arise during navigation through learning within a self-organizing map? This article describes a simple and general mathematical property of the trigonometry of spatial navigation which favors hexagonal patterns. The article also develops a neural model that can learn to exploit this trigonometric relationship. This GRIDSmap self-organizing map model converts path integration signals into hexagonal grid cell patterns of multiple scales. GRIDSmap creates only grid cell firing patterns with the observed hexagonal structure, predicts how these hexagonal patterns can be learned from experience, and can process biologically plausible neural input and output signals during navigation. These results support an emerging unified computational framework based on a hierarchy of self-organizing maps for explaining how entorhinal-hippocampal interactions support spatial navigation. Copyright © 2010 Wiley Periodicals, Inc.

  18. Theory of magnetoelastic resonance in a monoaxial chiral helimagnet

    NASA Astrophysics Data System (ADS)

    Tereshchenko, A. A.; Ovchinnikov, A. S.; Proskurin, Igor; Sinitsyn, E. V.; Kishine, Jun-ichiro

    2018-05-01

    We study magnetoelastic resonance phenomena in a monoaxial chiral helimagnet belonging to the hexagonal crystal class. By computing the spectrum of a coupled elastic wave and spin wave, it is demonstrated how hybridization occurs depending on their chirality. Specific features of the magnetoelastic resonance are discussed for the conical phase and the soliton lattice phase stabilized in the monoaxial chiral helimagnet. The former phase exhibits appreciable nonreciprocity of the spectrum, and the latter is characterized by a multiresonance behavior. We propose that the nonreciprocal spin wave around the forced-ferromagnetic state has potential capability to convert the linearly polarized elastic wave to a circularly polarized one with the chirality opposite to the spin-wave chirality.

  19. Direct atomic force microscopic evidence of hydrogen bonding interaction in phosphatidic acid Langmuir-Blodgett bilayer

    NASA Astrophysics Data System (ADS)

    Chunbo, Yuan; Ying, Wu; Yueming, Sun; Zuhong, Lu; Juzheng, Liu

    1997-12-01

    Molecularly resolved atomic force microscopic images of phosphatidic acid Langmuir-Blodgett bilayers show that phosphate groups in polar region of the films are packing in a distorted hexagonal organization with long-range orientational and positional order. Intermolecular hydrogen bonding interactions, which should be responsible for the ordering and stability of bilayers, are visualized directly between adjacent phosphate groups in the polar region of the bilayer. Some adjacent phosphatidic acid molecules link each other through the formation of intermolecular hydrogen bonds between phosphate groups in polar region to form local supramolecules, which provide the bilayer's potential as a functionized film in the investigation on the lateral conductions of protons in the biological bilayers.

  20. Mechanisms of the Wurtzite to Rocksalt Transformation in CdSe Nanocrystals

    NASA Astrophysics Data System (ADS)

    Grünwald, Michael; Rabani, Eran; Dellago, Christoph

    2006-06-01

    We study the pressure-driven phase transition from the four-coordinate wurtzite to the six-coordinate rocksalt structure in CdSe nanocrystals with molecular dynamics computer simulations. With an ideal gas as the pressure medium, we apply hydrostatic pressure to spherical and faceted nanocrystals ranging in diameter from 25 to 62 Å. In spherical crystals, the main mechanism of the transformation involves the sliding of (100) planes, but depending on the specific surface structure we also observe a second mechanism proceeding through the flattening of (100) planes. In faceted crystals, the transition proceeds via a five-coordinated hexagonal structure, which is stabilized at intermediate pressures due to dominant surface energetics.

Top