Science.gov

Sample records for stabilizes multimer formation

  1. Arachidonic acid mediates the formation of abundant alpha-helical multimers of alpha-synuclein

    PubMed Central

    Iljina, Marija; Tosatto, Laura; Choi, Minee L.; Sang, Jason C.; Ye, Yu; Hughes, Craig D.; Bryant, Clare E.; Gandhi, Sonia; Klenerman, David

    2016-01-01

    The protein alpha-synuclein (αS) self-assembles into toxic beta-sheet aggregates in Parkinson’s disease, while it is proposed that αS forms soluble alpha-helical multimers in healthy neurons. Here, we have made αS multimers in vitro using arachidonic acid (ARA), one of the most abundant fatty acids in the brain, and characterized them by a combination of bulk experiments and single-molecule Fӧrster resonance energy transfer (sm-FRET) measurements. The data suggest that ARA-induced oligomers are alpha-helical, resistant to fibril formation, more prone to disaggregation, enzymatic digestion and degradation by the 26S proteasome, and lead to lower neuronal damage and reduced activation of microglia compared to the oligomers formed in the absence of ARA. These multimers can be formed at physiologically-relevant concentrations, and pathological mutants of αS form less multimers than wild-type αS. Our work provides strong biophysical evidence for the formation of alpha-helical multimers of αS in the presence of a biologically relevant fatty acid, which may have a protective role with respect to the generation of beta-sheet toxic structures during αS fibrillation. PMID:27671749

  2. Arachidonic acid mediates the formation of abundant alpha-helical multimers of alpha-synuclein

    NASA Astrophysics Data System (ADS)

    Iljina, Marija; Tosatto, Laura; Choi, Minee L.; Sang, Jason C.; Ye, Yu; Hughes, Craig D.; Bryant, Clare E.; Gandhi, Sonia; Klenerman, David

    2016-09-01

    The protein alpha-synuclein (αS) self-assembles into toxic beta-sheet aggregates in Parkinson’s disease, while it is proposed that αS forms soluble alpha-helical multimers in healthy neurons. Here, we have made αS multimers in vitro using arachidonic acid (ARA), one of the most abundant fatty acids in the brain, and characterized them by a combination of bulk experiments and single-molecule Fӧrster resonance energy transfer (sm-FRET) measurements. The data suggest that ARA-induced oligomers are alpha-helical, resistant to fibril formation, more prone to disaggregation, enzymatic digestion and degradation by the 26S proteasome, and lead to lower neuronal damage and reduced activation of microglia compared to the oligomers formed in the absence of ARA. These multimers can be formed at physiologically-relevant concentrations, and pathological mutants of αS form less multimers than wild-type αS. Our work provides strong biophysical evidence for the formation of alpha-helical multimers of αS in the presence of a biologically relevant fatty acid, which may have a protective role with respect to the generation of beta-sheet toxic structures during αS fibrillation.

  3. Formation of highly ordered multimers in G-quadruplexes.

    PubMed

    Tóthová, Petra; Krafčíková, Petra; Víglaský, Viktor

    2014-11-18

    G-Rich DNA and RNA have a higher propensity to form G-quadruplex structures, but the presence of G-runs alone is not sufficient to prove that such sequences can form stable G-quadruplexes. While G-rich sequences are essential for G-quadruplex formation, not all G-rich sequences have the propensity to form G-quadruplex structures. In addition, monovalent metal ions, dehydrating agents, and loop sequences connecting the G-runs also play important roles in the topology of G-quadruplex folding. To date, no quantitative analysis of the CD spectra of G-quadruplexes in confrontation with the electrophoretic results has been performed. Therefore, in this study, we use information gained through the analysis of a series of well-known G-quadruplex-forming sequences to evaluate other less-studied sets of aptameric sequences. A simple and cost-effective methodology that can verify the formation of G-quadruplex motifs from oligomeric DNA sequences and a technique to determine the molecularity of these structures are also described. This methodology could be of great use in the prediction of G-quadruplex assembly, and the basic principles of our techniques can be extrapolated for any G-rich DNA sequences. This study also presents a model that can predict the multimerization of G-quadruplexes; the predictions offered by this model are shown to match the results obtained using circular dichroism.

  4. Multimer Formation Explains Allelic Suppression of PRDM9 Recombination Hotspots

    PubMed Central

    Baker, Christopher L.; Petkova, Pavlina; Walker, Michael; Flachs, Petr; Mihola, Ondrej; Trachtulec, Zdenek; Petkov, Petko M.; Paigen, Kenneth

    2015-01-01

    Genetic recombination during meiosis functions to increase genetic diversity, promotes elimination of deleterious alleles, and helps assure proper segregation of chromatids. Mammalian recombination events are concentrated at specialized sites, termed hotspots, whose locations are determined by PRDM9, a zinc finger DNA-binding histone methyltransferase. Prdm9 is highly polymorphic with most alleles activating their own set of hotspots. In populations exhibiting high frequencies of heterozygosity, questions remain about the influences different alleles have in heterozygous individuals where the two variant forms of PRDM9 typically do not activate equivalent populations of hotspots. We now find that, in addition to activating its own hotspots, the presence of one Prdm9 allele can modify the activity of hotspots activated by the other allele. PRDM9 function is also dosage sensitive; Prdm9 +/- heterozygous null mice have reduced numbers and less active hotspots and increased numbers of aberrant germ cells. In mice carrying two Prdm9 alleles, there is allelic competition; the stronger Prdm9 allele can partially or entirely suppress chromatin modification and recombination at hotspots of the weaker allele. In cell cultures, PRDM9 protein variants form functional heteromeric complexes which can bind hotspots sequences. When a heteromeric complex binds at a hotspot of one PRDM9 variant, the other PRDM9 variant, which would otherwise not bind, can still methylate hotspot nucleosomes. We propose that in heterozygous individuals the underlying molecular mechanism of allelic suppression results from formation of PRDM9 heteromers, where the DNA binding activity of one protein variant dominantly directs recombination initiation towards its own hotspots, effectively titrating down recombination by the other protein variant. In natural populations with many heterozygous individuals, allelic competition will influence the recombination landscape. PMID:26368021

  5. Multimer Formation Explains Allelic Suppression of PRDM9 Recombination Hotspots.

    PubMed

    Baker, Christopher L; Petkova, Pavlina; Walker, Michael; Flachs, Petr; Mihola, Ondrej; Trachtulec, Zdenek; Petkov, Petko M; Paigen, Kenneth

    2015-09-01

    Genetic recombination during meiosis functions to increase genetic diversity, promotes elimination of deleterious alleles, and helps assure proper segregation of chromatids. Mammalian recombination events are concentrated at specialized sites, termed hotspots, whose locations are determined by PRDM9, a zinc finger DNA-binding histone methyltransferase. Prdm9 is highly polymorphic with most alleles activating their own set of hotspots. In populations exhibiting high frequencies of heterozygosity, questions remain about the influences different alleles have in heterozygous individuals where the two variant forms of PRDM9 typically do not activate equivalent populations of hotspots. We now find that, in addition to activating its own hotspots, the presence of one Prdm9 allele can modify the activity of hotspots activated by the other allele. PRDM9 function is also dosage sensitive; Prdm9+/- heterozygous null mice have reduced numbers and less active hotspots and increased numbers of aberrant germ cells. In mice carrying two Prdm9 alleles, there is allelic competition; the stronger Prdm9 allele can partially or entirely suppress chromatin modification and recombination at hotspots of the weaker allele. In cell cultures, PRDM9 protein variants form functional heteromeric complexes which can bind hotspots sequences. When a heteromeric complex binds at a hotspot of one PRDM9 variant, the other PRDM9 variant, which would otherwise not bind, can still methylate hotspot nucleosomes. We propose that in heterozygous individuals the underlying molecular mechanism of allelic suppression results from formation of PRDM9 heteromers, where the DNA binding activity of one protein variant dominantly directs recombination initiation towards its own hotspots, effectively titrating down recombination by the other protein variant. In natural populations with many heterozygous individuals, allelic competition will influence the recombination landscape.

  6. Complexity in Acid-Base Titrations: Multimer Formation Between Phosphoric Acids and Imines.

    PubMed

    Malm, Christian; Kim, Heejae; Wagner, Manfred; Hunger, Johannes

    2017-08-10

    Solutions of Brønsted acids with bases in aprotic solvents are not only common model systems to study the fundamentals of proton transfer pathways but are also highly relevant to Brønsted acid catalysis. Despite their importance the light nature of the proton makes characterization of acid-base aggregates challenging. Here, we track such acid-base interactions over a broad range of relative compositions between diphenyl phosphoric acid and the base quinaldine in dichloromethane, by using a combination of dielectric relaxation and NMR spectroscopy. In contrast to what one would expect for an acid-base titration, we find strong deviations from quantitative proton transfer from the acid to the base. Even for an excess of the base, multimers consisting of one base and at least two acid molecules are formed, in addition to the occurrence of proton transfer from the acid to the base and simultaneous formation of ion pairs. For equimolar mixtures such multimers constitute about one third of all intermolecular aggregates. Quantitative analysis of our results shows that the acid-base association constant is only around six times larger than that for the acid binding to an acid-base dimer, that is, to an already protonated base. Our findings have implications for the interpretation of previous studies of reactive intermediates in organocatalysis and provide a rationale for previously observed nonlinear effects in phosphoric acid catalysis. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Involvement of surface cysteines in activity and multimer formation of thimet oligopeptidase.

    PubMed

    Sigman, J A; Sharky, M L; Walsh, S T; Pabon, A; Glucksman, M J; Wolfson, A J

    2003-08-01

    Thimet oligopeptidase is a metalloenzyme involved in regulating neuropeptide processing. Three cysteine residues (246, 248, 253) are known to be involved in thiol activation of the enzyme. In contrast to the wild-type enzyme, the triple mutant (C246S/C248S/C253S) displays increased activity in the absence of dithiothreitol. Dimers, purportedly formed through cysteines 246, 248 and 253, have been thought to be inactive. However, analysis of the triple mutant by native gel electrophoresis reveals the existence of dimers and multimers, implying that oligomer formation is mediated by other cysteines, probably on the surface, and that some of these forms are enzymatically active. Isolation and characterization of iodoacetate-modified monomers and dimers of the triple mutant revealed that, indeed, certain dimeric forms of the enzyme are still fully active, whereas others show reduced activity. Cysteine residues potentially involved in dimerization were identified by modeling of thimet oliogopeptidase to its homolog, neurolysin. Five mutants were constructed; all contained the triple mutation C246S/C248S/C253S and additional substitutions. Substitutions at C46 or C682 and C687 prevented multimer formation and inhibited dimer formation. The C46S mutant had enzymatic activity comparable to the parent triple mutant, whereas that of C682S/C687S was reduced. Thus, the location of intermolecular disulfide bonds, rather than their existence per se, is relevant to activity. Dimerization close to the N-terminus is detrimental to activity, whereas dimerization near the C-terminus has little effect. Altering disulfide bond formation is a potential regulatory factor in the cell owing to the varying oxidation states in subcellular compartments and the different compartmental locations and functions of the enzyme.

  8. Antibody Stabilization of Peptide–MHC Multimers Reveals Functional T Cells Bearing Extremely Low-Affinity TCRs

    PubMed Central

    Tungatt, Katie; Bianchi, Valentina; Crowther, Michael D.; Powell, Wendy E.; Schauenburg, Andrea J.; Trimby, Andrew; Donia, Marco; Miles, John J.; Holland, Christopher J.; Cole, David K.; Godkin, Andrew J.; Peakman, Mark; Straten, Per Thor; Svane, Inge Marie; Dolton, Garry

    2015-01-01

    Fluorochrome-conjugated peptide–MHC (pMHC) multimers are commonly used in combination with flow cytometry for direct ex vivo visualization and characterization of Ag-specific T cells, but these reagents can fail to stain cells when TCR affinity and/or TCR cell-surface density are low. pMHC multimer staining of tumor-specific, autoimmune, or MHC class II–restricted T cells can be particularly challenging, as these T cells tend to express relatively low-affinity TCRs. In this study, we attempted to improve staining using anti-fluorochrome unconjugated primary Abs followed by secondary staining with anti-Ab fluorochrome-conjugated Abs to amplify fluorescence intensity. Unexpectedly, we found that the simple addition of an anti-fluorochrome unconjugated Ab during staining resulted in considerably improved fluorescence intensity with both pMHC tetramers and dextramers and with PE-, allophycocyanin-, or FITC-based reagents. Importantly, when combined with protein kinase inhibitor treatment, Ab stabilization allowed pMHC tetramer staining of T cells even when the cognate TCR–pMHC affinity was extremely low (KD >1 mM) and produced the best results that we have observed to date. We find that this inexpensive addition to pMHC multimer staining protocols also allows improved recovery of cells that have recently been exposed to Ag, improvements in the recovery of self-specific T cells from PBMCs or whole-blood samples, and the use of less reagent during staining. In summary, Ab stabilization of pMHC multimers during T cell staining extends the range of TCR affinities that can be detected, yields considerably enhanced staining intensities, and is compatible with using reduced amounts of these expensive reagents. PMID:25452566

  9. Seed-Specific Expression of Spider Silk Protein Multimers Causes Long-Term Stability

    PubMed Central

    Weichert, Nicola; Hauptmann, Valeska; Helmold, Christine; Conrad, Udo

    2016-01-01

    Seeds enable plants to germinate and to grow in situations of limited availability of nutrients. The stable storage of different seed proteins is a remarkable presumption for successful germination and growth. These strategies have been adapted and used in several molecular farming projects. In this study, we explore the benefits of seed-based expression to produce the high molecular weight spider silk protein FLAG using intein-based trans-splicing. Multimers larger than 460 kDa in size are routinely produced, which is above the native size of the FLAG protein. The storage of seeds for 8 weeks and 1 year at an ambient temperature of 15°C does not influence the accumulation level. Even the extended storage time does not influence the typical pattern of multimerized bands. These results show that seeds are the method of choice for stable accumulation of products of complex transgenes and have the capability for long-term storage at moderate conditions, an important feature for the development of suitable downstream processes. PMID:26858734

  10. β-Hairpin-Mediated Formation of Structurally Distinct Multimers of Neurotoxic Prion Peptides

    PubMed Central

    Gill, Andrew C.

    2014-01-01

    atomic-level model for the formation of oligomers and fibrils of the prion protein and suggest that stabilization of β-hairpin structure may enhance cellular toxicity by altering the balance between oligomeric and fibrillar protein assemblies. PMID:24498083

  11. A conserved motif mediates both multimer formation and allosteric activation of phosphoglycerate mutase 5.

    PubMed

    Wilkins, Jordan M; McConnell, Cyrus; Tipton, Peter A; Hannink, Mark

    2014-09-05

    Phosphoglycerate mutase 5 (PGAM5) is an atypical mitochondrial Ser/Thr phosphatase that modulates mitochondrial dynamics and participates in both apoptotic and necrotic cell death. The mechanisms that regulate the phosphatase activity of PGAM5 are poorly understood. The C-terminal phosphoglycerate mutase domain of PGAM5 shares homology with the catalytic domains found in other members of the phosphoglycerate mutase family, including a conserved histidine that is absolutely required for catalytic activity. However, this conserved domain is not sufficient for maximal phosphatase activity. We have identified a highly conserved amino acid motif, WDXNWD, located within the unique N-terminal region, which is required for assembly of PGAM5 into large multimeric complexes. Alanine substitutions within the WDXNWD motif abolish the formation of multimeric complexes and markedly reduce phosphatase activity of PGAM5. A peptide containing the WDXNWD motif dissociates the multimeric complex and reduces but does not fully abolish phosphatase activity. Addition of the WDXNWD-containing peptide in trans to a mutant PGAM5 protein lacking the WDXNWD motif markedly increases phosphatase activity of the mutant protein. Our results are consistent with an intermolecular allosteric regulation mechanism for the phosphatase activity of PGAM5, in which the assembly of PGAM5 into multimeric complexes, mediated by the WDXNWD motif, results in maximal activation of phosphatase activity. Our results suggest the possibility of identifying small molecules that function as allosteric regulators of the phosphatase activity of PGAM5.

  12. Increased Length of Long Terminal Repeats Inhibits Ty1 Transposition and Leads to the Formation of Tandem Multimers

    PubMed Central

    Lauermann, V.; Hermankova, M.; Boeke, J. D.

    1997-01-01

    The Ty1 retrotransposon of Saccharomyces cerevisiae is bounded by long-terminal repeats (LTRs). We have constructed a variety of Ty1 elements in which the LTR length has been increased from the normal length of 334 bp to >2 kb. Although small insertions in the LTR have minimal effects on transposition frequency, larger insertions dramatically reduce it. Nevertheless, elements with long LTRs are incorporated into the genome at a low frequency. Most of these rare insertion events represent Ty1 tandem (head to tail) multimers. PMID:9093846

  13. Enhanced expression of tandem multimers of the antimicrobial peptide buforin II in Escherichia coli by the DEAD-box protein and trxB mutant.

    PubMed

    Lee, J H; Kim, M S; Cho, J H; Kim, S C

    2002-05-01

    The tandem multimeric expression of various peptides has been explored by many researchers. However, expression levels have usually not been proportional to the degree of multimerization. To increase the expression level in Escherichia coli of tandem multimers of a cationic antimicrobial peptide, buforin II, fused to an anionic peptide, we studied the effect of the DEAD-box protein and the trxB mutant on the expression of tandem multimers. An expression vector with a tac promoter was more effective in directing multimeric expression than one with a T7 promoter. The expression level of large multimers was substantially increased with the tac promoter, possibly through stabilization of long transcripts by synchronization of transcription and translation. Coexpression of the DEAD-box protein, an RNA-binding protein, with the T7 expression system increased the expression level of multimers, especially large multimers, due to protection of the long RNA transcripts. In addition, the use of the trxB mutant also enhanced the expression level of tandem multimers, which contain two cysteine residues at both ends of the monomeric unit. It seems that disulfide bonds formed in the multimers in the trxB mutant might help efficient charge neutralization for inclusion body formation of the multimers, resulting in enhancement of expression. Our results show that the expression of multimers can be improved through the stabilization of the long transcripts by the DEAD-box protein or the expression, under an oxidizing environment, of the trxB mutant in which covalent cross-links through disulfide bonds facilitate inclusion body formation of the multimeric fusion peptide.

  14. α-Synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation

    PubMed Central

    Burré, Jacqueline; Sharma, Manu; Südhof, Thomas C.

    2014-01-01

    Physiologically, α-synuclein chaperones soluble NSF attachment protein receptor (SNARE) complex assembly and may also perform other functions; pathologically, in contrast, α-synuclein misfolds into neurotoxic aggregates that mediate neurodegeneration and propagate between neurons. In neurons, α-synuclein exists in an equilibrium between cytosolic and membrane-bound states. Cytosolic α-synuclein appears to be natively unfolded, whereas membrane-bound α-synuclein adopts an α-helical conformation. Although the majority of studies showed that cytosolic α-synuclein is monomeric, it is unknown whether membrane-bound α-synuclein is also monomeric, and whether chaperoning of SNARE complex assembly by α-synuclein involves its cytosolic or membrane-bound state. Here, we show using chemical cross-linking and fluorescence resonance energy transfer (FRET) that α-synuclein multimerizes into large homomeric complexes upon membrane binding. The FRET experiments indicated that the multimers of membrane-bound α-synuclein exhibit defined intermolecular contacts, suggesting an ordered array. Moreover, we demonstrate that α-synuclein promotes SNARE complex assembly at the presynaptic plasma membrane in its multimeric membrane-bound state, but not in its monomeric cytosolic state. Our data delineate a folding pathway for α-synuclein that ranges from a monomeric, natively unfolded form in cytosol to a physiologically functional, multimeric form upon membrane binding, and show that only the latter but not the former acts as a SNARE complex chaperone at the presynaptic terminal, and may protect against neurodegeneration. PMID:25246573

  15. Rapid Restoration of Thrombus Formation and High-Molecular-Weight von Willebrand Factor Multimers in Patients with Severe Aortic Stenosis After Valve Replacement.

    PubMed

    Yamashita, Keigo; Yagi, Hideo; Hayakawa, Masaki; Abe, Takehisa; Hayata, Yoshihiro; Yamaguchi, Naoko; Sugimoto, Mitsuhiko; Fujimura, Yoshihiro; Matsumoto, Masanori; Taniguchi, Shigeki

    2016-10-01

    Patients with severe aortic stenosis (AS) may have bleeding episodes due to the loss of high-molecular-weight (HMW) von Willebrand factor multimers (VWFMs). The absence of HMW-VWFMs and bleeding tendency are usually corrected after aortic valve replacement (AVR). To investigate the process of VWFM recovery and symptoms in patients with severe AS, we analyzed changes in VWF antigen (VWF:Ag), ADAMTS13 activity (ADAMTS13:AC), and platelet thrombus formation under high shear stress conditions. Nine patients with severe AS undergoing AVR were analyzed. Evident deficiency of HMW-VWFMs was observed in six patients before surgery, which was rapidly restored within 8 days after AVR. Median levels of VWF:Ag before surgery, on postoperative days (PODs) 1, 8, 15, and 22, and one year after AVR were 78.1%, 130%, 224%, 155%, 134%, and 142%, respectively. In contrast, ADAMTS13:AC was 50.5%, 35.5%, 25.5%, 25.1%, 30.3%, and 84.6%, respectively. Preoperative thrombus formation but not surface coverage was significantly lower than that on POD 22, which was considered as normal level in each patient. Compared with preoperative levels, thrombus volume was significantly lower on POD 1, but rapidly increased by POD 8. Bleeding tendency and loss of HMW-VWFMs observed in patients with severe AS before surgery was rapidly corrected after AVR. Instead, patients were in a VWF-predominant state between POD 8 and 22.

  16. Rapid Restoration of Thrombus Formation and High-Molecular-Weight von Willebrand Factor Multimers in Patients with Severe Aortic Stenosis After Valve Replacement

    PubMed Central

    Yamashita, Keigo; Yagi, Hideo; Hayakawa, Masaki; Abe, Takehisa; Hayata, Yoshihiro; Yamaguchi, Naoko; Sugimoto, Mitsuhiko; Fujimura, Yoshihiro; Taniguchi, Shigeki

    2016-01-01

    Aim: Patients with severe aortic stenosis (AS) may have bleeding episodes due to the loss of high-molecular-weight (HMW) von Willebrand factor multimers (VWFMs). The absence of HMW-VWFMs and bleeding tendency are usually corrected after aortic valve replacement (AVR). To investigate the process of VWFM recovery and symptoms in patients with severe AS, we analyzed changes in VWF antigen (VWF:Ag), ADAMTS13 activity (ADAMTS13:AC), and platelet thrombus formation under high shear stress conditions. Methods: Nine patients with severe AS undergoing AVR were analyzed. Results: Evident deficiency of HMW-VWFMs was observed in six patients before surgery, which was rapidly restored within 8 days after AVR. Median levels of VWF:Ag before surgery, on postoperative days (PODs) 1, 8, 15, and 22, and one year after AVR were 78.1%, 130%, 224%, 155%, 134%, and 142%, respectively. In contrast, ADAMTS13:AC was 50.5%, 35.5%, 25.5%, 25.1%, 30.3%, and 84.6%, respectively. Preoperative thrombus formation but not surface coverage was significantly lower than that on POD 22, which was considered as normal level in each patient. Compared with preoperative levels, thrombus volume was significantly lower on POD 1, but rapidly increased by POD 8. Conclusion: Bleeding tendency and loss of HMW-VWFMs observed in patients with severe AS before surgery was rapidly corrected after AVR. Instead, patients were in a VWF-predominant state between POD 8 and 22. PMID:27052664

  17. Regulation of copy number and stability of phage lambda derived pTC lambda 1 plasmid in the light of the dimer/multimer catastrophe hypothesis.

    PubMed

    Herman-Antosiewicz, A; Wegrzyn, G

    1999-07-15

    The dimer catastrophe hypothesis has been proposed previously to explain instability of multicopy plasmids whose partitioning is random, contrary to low copy number plasmids which are stably maintained and actively partitioned. Until now, this hypothesis has been investigated using multicopy ColE1 plasmids. However, for more detailed testing of the dimer/multimer catastrophe hypothesis, one should use a plasmid which can be maintained at either low or high copy number and still possesses the same mechanism of replication regulation. Here we used a modified lambda plasmid, pTC lambda 1. The advantage of this plasmid is that it can be maintained at different copy numbers depending on the concentration of an inducer which stimulates the initiation of plasmid replication. Results obtained with this plasmid in recombination proficient and deficient cells generally support the dimer/multimer catastrophe hypothesis, but also suggest some modification in the model.

  18. Stabilizing clayey formations

    SciTech Connect

    Lipowski, S. A.; Miskel Jr., J. J.; Schick, M. J.

    1985-03-19

    Process for treating a clayey geological formation to prevent, inhibit or reduce swelling or migrating of clay particles in a formation by treating the formation with an effective amount of a quaternized oligomer which is the reaction product of a polyamine having a primary amino group and a tertiary amino group with a difunctional reactant to form a precondensate monomer which is then chain extended and quaternized by reaction with a dihalogenated hydrocarbon ether. A preferred oligomer is a product of: (I) about 1.0 mole of a precondensate which is the reaction product of (A) from about 2.0 to about 3.0 mole of a polyamine having a primary amino group and a tertiary amino group, the polyamine having a non-cyclic backbone containing between 1 and 6 carbon atoms, with (B) about 1.0 mole of a difunctional reactant which is a diester of a mixture of dicarboxylic acids such as adipic, glutaric and succinic acid, with (II) from about 1.0 to about 1.2 mole of a chain extender such as dichloroethylether. Process is useful in oil producing operations.

  19. Cryopreservation of MHC Multimers: Recommendations for Quality Assurance in Detection of Antigen Specific T Cells

    PubMed Central

    Hadrup, Sine Reker; Maurer, Dominik; Laske, Karoline; Frøsig, Thomas Mørch; Andersen, Sofie Ramskov; Britten, Cedrik M; van der Burg, Sjoerd H; Walter, Steffen; Gouttefangeas, Cécile

    2015-01-01

    Fluorescence-labeled peptide-MHC class I multimers serve as ideal tools for the detection of antigen-specific T cells by flow cytometry, enabling functional and phenotypical characterization of specific T cells at the single cell level. While this technique offers a number of unique advantages, MHC multimer reagents can be difficult to handle in terms of stability and quality assurance. The stability of a given fluorescence-labeled MHC multimer complex depends on both the stability of the peptide-MHC complex itself and the stability of the fluorochrome. Consequently, stability is difficult to predict and long-term storage is generally not recommended. We investigated here the possibility of cryopreserving MHC multimers, both in-house produced and commercially available, using a wide range of peptide-MHC class I multimers comprising virus and cancer-associated epitopes of different affinities presented by various HLA-class I molecules. Cryopreservation of MHC multimers was feasible for at least 6 months, when they were dissolved in buffer containing 5–16% glycerol (v/v) and 0.5% serum albumin (w/v). The addition of cryoprotectants was tolerated across three different T-cell staining protocols for all fluorescence labels tested (PE, APC, PE-Cy7 and Quantum dots). We propose cryopreservation as an easily implementable method for stable storage of MHC multimers and recommend the use of cryopreservation in long-term immunomonitoring projects, thereby eliminating the variability introduced by different batches and inconsistent stability. © 2014 International Society for Advancement of Cytometry PMID:25297339

  20. Sequential amplification of cloned DNA as tandem multimers using class-IIS restriction enzymes.

    PubMed

    Lee, J H; Skowron, P M; Rutkowska, S M; Hong, S S; Kim, S C

    1996-12-01

    In order to make high-copy-number multimers of DNA fragments in a tandem unit, two different gene amplification vectors (pSK9 and pBBS1) were developed. Two identical class-IIS restriction enzyme sites (BspMI for pSK9 and BbsI for pBBSI) were inversely oriented in each vector with the same cut site, creating asymmetric and complementary cohesive ends (5'-CCCC and 5'-GGGG). Multimers were made by: (i) cloning a target DNA into the class-IIS restriction enzyme cut site of each vector; (ii) excision of the monomeric insert by digestion with the class-IIS restriction enzyme; (iii) isolation of the fragments; (iv) self-ligation of the fragments; (v) cloning into the original vector digested with the class-IIS restriction enzyme; and (vi) repeating steps (i) through (v) to generate higher-order multimers. Various-sized multimers of a 93-bp DNA fragment encoding magainin, an antimicrobial peptide, were obtained with the gene amplification vector, pBBS1. Larger multimers, up to about 108 copies, were constructed from the monomer by the sequential amplification procedure. Of six different Escherichia coli hosts examined for the stability of multimers, the multimers were the most stable in E. coli D1210. The gene amplification vector system described here is very efficient and can be applied in the construction of tandem multimers of any kind of DNA, as long as the cloned DNA does not contain the cut site of the class-IIS restriction enzyme to be utilized.

  1. Binding of factor VIII to von willebrand factor is enabled by cleavage of the von Willebrand factor propeptide and enhanced by formation of disulfide-linked multimers.

    PubMed

    Bendetowicz, A V; Morris, J A; Wise, R J; Gilbert, G E; Kaufman, R J

    1998-07-15

    von Willebrand factor (vWF) is a multimeric adhesive glycoprotein with one factor VIII binding site/subunit. Prior reports suggest that posttranslational modifications of vWF, including formation of N-terminal intersubunit disulfide bonds and subsequent cleavage of the propeptide, influence availability and/or affinity of factor VIII binding sites. We found that deletion of the vWF propeptide produced a dimeric vWF molecule lacking N-terminal intersubunit disulfide bonds. This molecule bound fluorescein-labeled factor VIII with sixfold lower affinity than multimeric vWF in an equilibrium flow cytometry assay (approximate KDs, 5 nmol/L v 0.9 nmol/L). Coexpression of propeptide-deleted vWF with the vWF propeptide in trans yielded multimeric vWF that displayed increased affinity for factor VIII. Insertion of an alanine residue at the N-terminus of the mature vWF subunit destroyed binding to factor VIII, indicating that the native mature N-terminus is required for factor VIII binding. The requirement for vWF propeptide cleavage was shown by (1) a point mutation of the vWF propeptide cleavage site yielding pro-vWF that was defective in factor VIII binding and (2) correlation between efficiency of intracellular propeptide cleavage and factor VIII binding. Furthermore, in a cell-free system, addition of the propeptide-cleaving enzyme PACE/furin enabled factor VIII binding in parallel with propeptide cleavage. Our results indicate that high-affinity factor VIII binding sites are located on N-terminal disulfide-linked vWF subunits from which the propeptide has been cleaved.

  2. Clay stabilization in low-permeability formations

    SciTech Connect

    Himes, R.E.; Vinson, E.F.; Simon, D.E. )

    1991-08-01

    The most popular clay stabilizers used recently in well-treating solutions are classified as cationic organic polymers (COP's). This paper reports on studies that have shown these stabilizers to be ineffective in microdarcy to low-millidarcy sandstones. Recent research led to the development of a stabilizer applicable to formations with permeabilities of 0.010 md and higher that also provides enhanced load-water recovery and more efficient placement from gelled-water solutions.

  3. Identity Formation in Adolescence: Change or Stability?

    ERIC Educational Resources Information Center

    Klimstra, Theo A.; Hale, William W., III; Raaijmakers, Quinten A. W.; Branje, Susan J. T.; Meeus, Wim H. J.

    2010-01-01

    The aim of this five-wave longitudinal study of 923 early to middle adolescents (50.7% boys; 49.3% girls) and 390 middle to late adolescents (43.3% boys and 56.7% girls) is to provide a comprehensive view on change and stability in identity formation from ages 12 to 20. Several types of change and stability (i.e., mean-level change, rank-order…

  4. Identity Formation in Adolescence: Change or Stability?

    ERIC Educational Resources Information Center

    Klimstra, Theo A.; Hale, William W., III; Raaijmakers, Quinten A. W.; Branje, Susan J. T.; Meeus, Wim H. J.

    2010-01-01

    The aim of this five-wave longitudinal study of 923 early to middle adolescents (50.7% boys; 49.3% girls) and 390 middle to late adolescents (43.3% boys and 56.7% girls) is to provide a comprehensive view on change and stability in identity formation from ages 12 to 20. Several types of change and stability (i.e., mean-level change, rank-order…

  5. Cyclic Imide Dioxime: Formation and Hydrolytic Stability

    SciTech Connect

    Kang, S.O.; Vukovic, Sinisa; Custelcean, Radu; Hay, Benjamin

    2012-01-01

    Poly(acrylamidoximes) play an important role in the uranium extraction from seawater. The present work reports solution studies of simple analogs to address the formation and stability of two binding sites present in these polymers, open-chain amidoximes and cyclic imide dioximes, including: 1) conditions that maximize the formation of the cyclic form, 2) existence of a base-induced conversion from open-chain to cyclic form, and 3) degradation under acid and base conditions.

  6. Two Cys residues essential for von Willebrand factor multimer assembly in the Golgi.

    PubMed

    Purvis, Angie R; Gross, Julia; Dang, Luke T; Huang, Ren-Huai; Kapadia, Milan; Townsend, R Reid; Sadler, J Evan

    2007-10-02

    Von Willebrand factor (VWF) dimerizes through C-terminal CK domains, and VWF dimers assemble into multimers in the Golgi by forming intersubunit disulfide bonds between D3 domains. This unusual oxidoreductase reaction requires the VWF propeptide (domains D1D2), which acts as an endogenous pH-dependent chaperone. The cysteines involved in multimer assembly were characterized by using a VWF construct that encodes the N-terminal D1D2D'D3 domains. Modification with thiol-specific reagents demonstrated that secreted D'D3 monomer contained reduced Cys, whereas D'D3 dimer and propeptide did not. Reduced Cys in the D'D3 monomer were alkylated with N-ethylmaleimide and analyzed by mass spectrometry. All 52 Cys within the D'D3 region were observed, and only Cys(1099) and Cys(1142) were modified by N-ethylmaleimide. When introduced into the D1D2D'D3 construct, the mutation C1099A or C1142A markedly impaired the formation of D'D3 dimers, and the double mutation prevented dimerization. In full-length VWF, the mutations C1099A and C1099A/C1142A prevented multimer assembly; the mutation C1142A allowed the formation of almost exclusively dimers, with few tetramers and no multimers larger than hexamers. Therefore, Cys(1099) and Cys(1142) are essential for the oxidoreductase mechanism of VWF multimerization. Cys(1142) is reported to form a Cys(1142)-Cys(1142) intersubunit bond, suggesting that Cys(1099) also participates in a Cys(1099)-Cys(1099) disulfide bond between D3 domains. This arrangement of intersubunit disulfide bonds implies that the dimeric N-terminal D'D3 domains of VWF subunits align in a parallel orientation within VWF multimers.

  7. Model format for a vaccine stability report and software solutions.

    PubMed

    Shin, Jinho; Southern, James; Schofield, Timothy

    2009-11-01

    A session of the International Association for Biologicals Workshop on Stability Evaluation of Vaccine, a Life Cycle Approach was devoted to a model format for a vaccine stability report, and software solutions. Presentations highlighted the utility of a model format that will conform to regulatory requirements and the ICH common technical document. However, there need be flexibility to accommodate individual company practices. Adoption of a model format is premised upon agreement regarding content between industry and regulators, and ease of use. Software requirements will include ease of use and protections against inadvertent misspecification of stability design or misinterpretation of program output.

  8. Characterization of α-Synuclein Multimer Stoichiometry in Complex Biological Samples by Electrophoresis.

    PubMed

    Killinger, Bryan A; Moszczynska, Anna

    2016-04-05

    The aberrant aggregation of α-synuclein in the brain is a hallmark of Parkinson's disease (PD). In vivo soluble α-synuclein occurs as a monomer and several multimers, the latter of which may be important for the biological function of α-synuclein. Currently, there is a lack of reproducible methods to compare α-synuclein multimer abundance between complex biological samples. Here we developed a method, termed "multimer-PAGE," that combines in-gel chemical cross-linking with several common electrophoretic techniques to measure the stoichiometry of soluble α-synuclein multimers in brain tissue lysates. Results show that soluble α-synuclein from the rat brain exists as several high molecular weight species of approximately 56 kDa (αS56), 80 kDa (αS80), and 100 kDa (αS100) that comigrate with endogenous lipids, detergents, and/or micelles during blue native gel electrophoresis (BN-PAGE). Co-extraction of endogenous lipids with α-synuclein was essential for the detection of soluble α-synuclein multimers. Homogenization of brain tissue in small buffer volumes (>50 mg tissue per 1 mL buffer) increased relative lipid extraction and subsequently resulted in abundant soluble multimer detection via multimer-PAGE. α-Synuclein multimers captured by directly cross-linking soluble lysates resembled those observed following multimer-PAGE. The ratio of multimer (αS80) to monomer (αS17) increased linearly with protein input into multimer-PAGE, suggesting to some extent, multimers were also formed during electrophoresis. Overall, soluble α-synuclein maintains lipid interactions following tissue disruption and readily forms multimers when this lipid-protein complex is preserved. Once the multimer-PAGE technique was validated, relative stoichiometric comparisons could be conducted simultaneously between 14 biological samples. Multimer-PAGE provides a simple inexpensive biochemical technique to study the molecular factors influencing α-synuclein multimerization.

  9. Unique profile of chicken adiponectin, a predominantly heavy molecular weight multimer, and relationship to visceral adiposity.

    PubMed

    Hendricks, Gilbert L; Hadley, Jill A; Krzysik-Walker, Susan M; Prabhu, K Sandeep; Vasilatos-Younken, Regina; Ramachandran, Ramesh

    2009-07-01

    Adiponectin, a 30-kDa adipokine hormone, circulates as heavy, medium, and light molecular weight isoforms in mammals. Plasma heavy molecular weight (HMW) adiponectin isoform levels are inversely correlated with the incidence of type 2 diabetes in humans. The objectives of the present study were to characterize adiponectin protein and quantify plasma adiponectin levels in chickens, which are naturally hyperglycemic relative to mammals. Using gel filtration column chromatography and Western blot analysis under nonreducing and non-heat-denaturing native conditions, adiponectin in chicken plasma, and adipose tissue is predominantly a multimeric HMW isoform that is larger than 669 kDa mass. Under reducing conditions and heating to 70-100 C, however, a majority of the multimeric adiponectin in chicken plasma and adipose tissue was reduced to oligomeric and/or monomeric forms. Immunoprecipitation and elution under neutral pH preserved the HMW adiponectin multimer, whereas brief exposure to acidic pH led to dissociation of HMW multimer into multiple oligomers. Mass spectrometric analysis of chicken adiponectin revealed the presence of hydroxyproline and differential glycosylation of hydroxylysine residues in the collagenous domain. An enzyme immunoassay was developed and validated for quantifying plasma adiponectin in chickens. Plasma adiponectin levels were found to be significantly lower in 8- compared with 4-wk-old male chickens and inversely related to abdominal fat pad mass. Collectively, our results provide novel evidence that adiponectin in chicken plasma and tissues is predominantly a HMW multimer, suggesting the presence of unique multimerization and stabilization mechanisms in the chicken that favors preponderance of HMW adiponectin over other oligomers.

  10. Characterizing the impact of CD8 antibodies on class I MHC multimer binding.

    PubMed

    Holman, Philmore O; Walsh, Elizabeth R; Jameson, Stephen C

    2005-04-01

    Many studies have suggested that CD8 Abs affect the binding of class I MHC tetramers/multimers to CD8(+) T cells, which has led to the interpretation that CD8 participates directly in multimer binding. In contrast, a recent publication has argued that CD8 Abs instead cause reorganization of TCR distribution and hence have an indirect effect on multimer binding to the TCR alone. We address these issues by testing the role of CD8 and the impact of CD8 Abs on the binding of normal and mutant multimers to Ag-specific mouse T cells. Our data suggest that, in this system, CD8 Abs act directly on CD8 and only mediate their effects on multimer binding when CD8 is capable of binding to the multimer. These data reinforce the paradigm that CD8 plays an active and direct role in binding of class I MHC multimers.

  11. Formation and stability of samarium iron carbides

    NASA Astrophysics Data System (ADS)

    Mao, Ou

    Phase formation and transformation in mechanically alloyed iron-rich Sm-Fe-C is the principal subject of this thesis. Ternary Sm-Fe-C is a complicated system. The strategy was therefore to start with a binary system. A series of mechanically alloyed R2Fe17 powders were investigated for a better understanding of both the Sm-Fe alloy system in general and the Sm2Fe17 compound in particular. The objective was to learn (1) what is the steady-state in the mechanically alloyed R2Fe17, and (2) how the 2-17 structure is formed from the mechanically alloyed precursors. Phase formation and transformation in the mechanically alloyed Sm2Fe17Cx with various carbon contents was then studied. The objective in this case was to learn (1) how the 2-17 structure with interstitial carbon is formed, (2) what is the maximum C content in the 2-17 structure, the critical content xc, and (3) what phase(s) is (are) formed with x>xc. Phase transformation from Sm2Fe17Cx to Sm2Fe14C was the second subject for study. As required by this study, the grain refinement process was investigated first. The objective was to prepare the nanocrystalline Sm2Fe17Cx with various grain sizes. Emphasis was on the ball milling of Sm2Fe17/graphite mixture in the hope of forming a nano-scale mixing of Sm2Fe17 and graphite by ball milling. Solid-solid reaction between the Sm2Fe17 and graphite leading to the formation of nanocrystalline Sm2Fe17Cx was then studied. The phase transformation from Sm2Fe17 was carried out with nanocrystalline Sm2Fe17Cx samples. Samples prepared by other methods were also studied. The objective was to learn (1) what the transformation product is and (2) what the kinetics of the phase transformation and its grain size dependence are. (Abstract shortened by UMI.)

  12. Formation and Stability of Lipid Membrane Nanotubes.

    PubMed

    Bahrami, Amir Houshang; Hummer, Gerhard

    2017-09-26

    Lipid membrane nanotubes are abundant in living cells, even though tubules are energetically less stable than sheet-like structures. According to membrane elastic theory, the tubular endoplasmic reticulum (ER), with its high area-to-volume ratio, appears to be particularly unstable. We explore how tubular membrane structures can nevertheless be induced and why they persist. In Monte Carlo simulations of a fluid-elastic membrane model subject to thermal fluctuations and without constraints on symmetry, we find that a steady increase in the area-to-volume ratio readily induces tubular structures. In simulations mimicking the ER wrapped around the cell nucleus, tubules emerge naturally as the membrane area increases. Once formed, a high energy barrier separates tubules from the thermodynamically favored sheet-like membrane structures. Remarkably, this barrier persists even at large area-to-volume ratios, protecting tubules against shape transformations despite enormous driving forces toward sheet-like structures. Molecular dynamics simulations of a molecular membrane model confirm the metastability of tubular structures. Volume reduction by osmotic regulation and membrane area growth by lipid production and by fusion of small vesicles emerge as powerful factors in the induction and stabilization of tubular membrane structures.

  13. Formation flying design and applications in weak stability boundary regions.

    PubMed

    Folta, David

    2004-05-01

    Weak stability regions serve as superior locations for interferomertric scientific investigations. These regions are often selected to minimize environmental disturbances and maximize observation efficiency. Designs of formations in these regions are becoming ever more challenging as more complex missions are envisioned. The development of algorithms to enable the capability for formation design must be further enabled to incorporate better understanding of weak stability boundary solution space. This development will improve the efficiency and expand the capabilities of current approaches. The Goddard Space Flight Center (GSFC) is currently supporting multiple formation missions in weak stability boundary regions. This end-to-end support consists of mission operations, trajectory design, and control. It also includes both algorithm and software development. The Constellation-X, Maxim, and Stellar Imager missions are examples of the use of improved numeric methods to attain constrained formation geometries and control their dynamical evolution. This paper presents a survey of formation missions in the weak stability boundary regions and a brief description of formation design using numerical and dynamical techniques.

  14. Mechanism of keyhole formation and stability in stationary laser welding

    NASA Astrophysics Data System (ADS)

    Lee, Jae Y.; Ko, Sung H.; Farson, Dave F.; Yoo, Choong D.

    2002-07-01

    The formation and stability of stationary laser weld keyholes are investigated using a numerical simulation. The effect of multiple reflections in the keyhole is estimated using the ray tracing method, and the free surface profile, flow velocity and temperature distribution are calculated numerically. In the simulation, the keyhole is formed by the displacement of the melt induced by evaporation recoil pressure, while surface tension and hydrostatic pressure oppose cavity formation. A transition mode having the geometry of the conduction mode with keyhole formation occurs between the conduction and keyhole modes. At laser powers of 500 W and greater, the protrusion occurs on the keyhole wall, which results in keyhole collapse and void formation at the bottom. Initiation of the protrusion is caused mainly by collision of upward and downward flows due to the pressure components, and Marangoni flow has minor effects on the flow patterns and keyhole stability.

  15. String Stability of a Linear Formation Flight Control System

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.; Ryan, Jack; Hanson, Curtis E.; Parle, James F.

    2002-01-01

    String stability analysis of an autonomous formation flight system was performed using linear and nonlinear simulations. String stability is a measure of how position errors propagate from one vehicle to another in a cascaded system. In the formation flight system considered here, each i(sup th) aircraft uses information from itself and the preceding ((i-1)(sup th)) aircraft to track a commanded relative position. A possible solution for meeting performance requirements with such a system is to allow string instability. This paper explores two results of string instability and outlines analysis techniques for string unstable systems. The three analysis techniques presented here are: linear, nonlinear formation performance, and ride quality. The linear technique was developed from a worst-case scenario and could be applied to the design of a string unstable controller. The nonlinear formation performance and ride quality analysis techniques both use nonlinear formation simulation. Three of the four formation-controller gain-sets analyzed in this paper were limited more by ride quality than by performance. Formations of up to seven aircraft in a cascaded formation could be used in the presence of light gusts with this string unstable system.

  16. Sediment Formation in Nearshore Environments: Strength, Rheology, Microstructure, and Stability

    DTIC Science & Technology

    2006-01-01

    Sediment Formation in Nearshore Environments: Strength, Rheology, Microstructure, and Stability Homa Lee U.S. Geological Survey 345 Middlefield ...ES) U.S. Geological Survey,345 Middlefield Road,Menlo Park,CA,94025 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S

  17. Theranostic Value of Multimers: Lessons Learned from Trimerization of Neurotensin Receptor Ligands and Other Targeting Vectors

    PubMed Central

    Maschauer, Simone; Einsiedel, Jürgen; Reich, Dominik; Hübner, Harald; Gmeiner, Peter; Wester, Hans-Jürgen; Prante, Olaf; Notni, Johannes

    2017-01-01

    Neurotensin receptor 1 (NTS1) is overexpressed on a variety of cancer entities; for example, prostate cancer, ductal pancreatic adenocarcinoma, and breast cancer. Therefore, it represents an interesting target for the diagnosis of these cancers types by positron emission tomography (PET). The metabolically-stabilized neurotensin (NT) derivative peptide Nlys8-Lys9-Pro10-Tyr11-Tle12-Leu13-OH was elongated at the N-terminus with 6-azido norleucine and coupled with the 1,4,7-triazacyclononane-1,4,7-tris[(2-carboxyethyl)methylenephosphinic acid] (TRAP) chelator TRAP(alkyne)3 in order to synthesize a NT trimer with subnanomolar affinity and high stability. The 68Ga-labeled peptide [68Ga]Ga-TRAP(NT4)3 was characterized in vitro using the NTS1-expressing human colorectal adenocarcinoma cell line HT29. It displayed fast and high internalization rates of >90%, but also fast efflux rates of 50% over 15 min. In vivo, [68Ga]Ga-TRAP(NT4)3 showed moderate HT29 tumor uptake values of 1.7 %ID/g at 60 min post-injection (p.i.), but also high uptake and retention in the kidneys and liver. A comparison of data for trimer/monomer pairs of NT ligands and other targeting vectors (peptides and peptoids targeting integrins αvβ3, α5β1, and αvβ6, the PSMA-ligand DUPA (2-[3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid), and nitroimidazoles targeting hypoxia) revealed that multimers always exhibit higher target affinities and tumor uptake, but not necessarily improved tumor-to-tissue ratios. Thus, although in vitro data are not suitable for prediction of in vivo performance, multimers are potentially superior to monomers, particularly for applications where high tumor accumulation is crucial. PMID:28287433

  18. Association of adiponectin multimers with Barrett’s oesophagus

    PubMed Central

    Rubenstein, J H; Kao, J Y; Madanick, R D; Zhang, M; Wang, M; Spacek, M B; Donovan, J L; Bright, S D; Shaheen, N J

    2012-01-01

    Objective Barrett’s oesophagus is associated with abdominal obesity. Adiponectin is a peptide that is secreted from adipocytes and circulates in three multimeric forms: low molecular weight (LMW), middle molecular weight (MMW), and high molecular weight (HMW). The anti-inflammatory effects of adiponectin are specific to individual multimers, with LMW being most anti-inflammatory. We postulated that circulating levels of adiponectin and its multimers would be associated with the risk of Barrett’s oesophagus. Design Cross-sectional study. Setting Outpatient clinic in North Carolina, USA. Patients Cases of Barrett’s oesophagus and controls undergoing upper endoscopy for gastro-oesophageal reflux disease (GORD). Main outcome measures Adjusted odds ratios of plasma adiponectin levels and its multimers for Barrett’s oesophagus. Results There were 112 cases of Barrett’s oesophagus and 199 GORD controls. Total adiponectin was not associated with Barrett’s oesophagus (3rd tertile vs 1st tertile adjusted odds ratio (aOR) = 0.88; 95% confidence interval (CI) = 0.44 to 1.78). High levels of LMW adiponectin were associated with a decreased risk of Barrett’s oesophagus (3rd tertile vs 1st tertile aOR = 0.33; 95% CI, 0.16 to 0.69), and a high LMW/total ratio appeared particularly inversely associated with Barrett’s oesophagus (3rd tertile vs 1st tertile aOR = 0.27; 95% CI, 0.13 to 0.58). Conclusions High levels of LMW adiponectin are associated with a decreased risk of Barrett’s oesophagus among patients with GORD. Further human studies are required to confirm these findings, and in vitro studies are needed to understand if there is a mechanism whereby adiponectin may affect Barrett’s metaplasia. PMID:19570765

  19. New Insight into Cataract Formation: Enhanced Stability through Mutual Attraction

    SciTech Connect

    Stradner, A.; Schurtenberger, P.; Foffi, G.; Dorsaz, N.; Thurston, G.

    2007-11-09

    Small-angle neutron scattering experiments and molecular dynamics simulations combined with an application of concepts from soft matter physics to complex protein mixtures provide new insight into the stability of eye lens protein mixtures. Exploring this colloid-protein analogy we demonstrate that weak attractions between unlike proteins help to maintain lens transparency in an extremely sensitive and nonmonotonic manner. These results not only represent an important step towards a better understanding of protein condensation diseases such as cataract formation, but provide general guidelines for tuning the stability of colloid mixtures, a topic relevant for soft matter physics and industrial applications.

  20. Characterization of α-Synuclein Multimer Stoichiometry in Complex Biological Samples by Electrophoresis

    PubMed Central

    2016-01-01

    The aberrant aggregation of α-synuclein in the brain is a hallmark of Parkinson’s disease (PD). In vivo soluble α-synuclein occurs as a monomer and several multimers, the latter of which may be important for the biological function of α-synuclein. Currently, there is a lack of reproducible methods to compare α-synuclein multimer abundance between complex biological samples. Here we developed a method, termed “multimer-PAGE,” that combines in-gel chemical cross-linking with several common electrophoretic techniques to measure the stoichiometry of soluble α-synuclein multimers in brain tissue lysates. Results show that soluble α-synuclein from the rat brain exists as several high molecular weight species of approximately 56 kDa (αS56), 80 kDa (αS80), and 100 kDa (αS100) that comigrate with endogenous lipids, detergents, and/or micelles during blue native gel electrophoresis (BN-PAGE). Co-extraction of endogenous lipids with α-synuclein was essential for the detection of soluble α-synuclein multimers. Homogenization of brain tissue in small buffer volumes (>50 mg tissue per 1 mL buffer) increased relative lipid extraction and subsequently resulted in abundant soluble multimer detection via multimer-PAGE. α-Synuclein multimers captured by directly cross-linking soluble lysates resembled those observed following multimer-PAGE. The ratio of multimer (αS80) to monomer (αS17) increased linearly with protein input into multimer-PAGE, suggesting to some extent, multimers were also formed during electrophoresis. Overall, soluble α-synuclein maintains lipid interactions following tissue disruption and readily forms multimers when this lipid–protein complex is preserved. Once the multimer-PAGE technique was validated, relative stoichiometric comparisons could be conducted simultaneously between 14 biological samples. Multimer-PAGE provides a simple inexpensive biochemical technique to study the molecular factors influencing α-synuclein multimerization

  1. Formation and Stability of Partially-Neutralized Plasma Clumps.

    DTIC Science & Technology

    1987-01-01

    propagation in the vacuum region, to the extent studied in the experiments. The goal of that related work is the generation of nearly charge-neutral...A179 444 FORMATION AND STABILITY OF PARTIALLY-NEUTRALIZED PLOSMA Y CLUNPS(U) MARYLAND UNIV COLLEGE PARK LAS FOR PLASMA AND FUSION ENERGY STUDIES J...Energy Studies / Bldg 410 Energy Research 3ldg, College Park Md 20742 Bolling AFB, D.C. 20332-6448 Ga. NAME OF FUNOING;SPONSORINGB. OFFICE SYMBOL 9

  2. Formation and stabilization of C6- by radiative electron attachment

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Vijayanand; Prabhakaran, Aneesh; Kafle, Bhim; Rubinstein, Hilel; Heber, Oded; Rappaport, Michael; Toker, Yoni; Zajfman, Daniel

    2017-03-01

    Radiative electron attachment (REA) plays an important role in forming molecular anions in various astrophysical environments. In this work, we determined the rate coefficient for the formation of C6- by REA based on a detailed balance approach. C6- ions are stored in an electrostatic ion beam trap and are photoexcited above their adiabatic detachment energy (4.18 eV). Due to fast internal conversion and intramolecular vibrational redistribution, photoexcitation leads to the formation of temporary negative ions (TNIs), the same as those one formed by the electron attachment. Absolute vibrational autodetachment and recurrent (or Poincaré) fluorescence (RF) rate coefficients have already been reported [V. Chandrasekaran et al., J. Phys. Chem. Lett. 5, 4078 (2014)]. Knowing the branching ratios of the various competing rate coefficients is decisive to the understanding of the formation probability of anions via REA. The radiative stabilization rate of C6-, shown to be dominated by RF, was determined to be 5 × 104 s-1 at the electron detachment energy, i.e., at least a factor of 100 faster than the stabilization by infrared transitions. The RF is found to very effectively stabilize the TNI formed by electron attachment. Using detailed balance to link the measured delayed detachment rate to the rate of electron attachment, we estimate the REA rate leading to the formation of C6- to be 3 × 10-7 cm3 s-1 at 300 K in agreement with theory (1.7 × 10-7 cm3 s-1 [R. Terzieva and E. Herbst, Int. J. Mass Spectrom. 201, 135 (2000)]). Such a high rate for REA to C6 indicates that REA may play a prominent role in the formation of anions in the interstellar medium.

  3. Detergent Stabilized Nanopore Formation Kinetics of an Anthrax Protein

    NASA Astrophysics Data System (ADS)

    Peterson, Kelby

    2015-03-01

    This summer research project funded through the Society of Physics Students Internship Program and The National Institute of Standards and Technology focused on optimization of pore formation of Protective Antigen protein secreted by Bacillus Anthraces. This experiment analyzes the use of N-tetradecylphosphocholine (FOS-14 Detergent) to stabilize the water soluble protein, protective antigen protein (PA63) to regulate the kinetics of pore formation in a model bilayer lipid membrane. The FOS-14 Detergent was tested under various conditions to understand its impact on the protein pore formation. The optimization of this channel insertion is critical in preparing samples of oriented for neutron reflectometry that provide new data to increase the understanding of the protein's structure.

  4. Formation Flying Design and Applications in Weak Stability Boundary Regions

    NASA Technical Reports Server (NTRS)

    Folta, David

    2003-01-01

    Weak Stability regions serve as superior locations for interferometric scientific investigations. These regions are often selected to minimize environmental disturbances and maximize observing efficiency. Design of formations in these regions are becoming ever more challenging as more complex missions are envisioned. The development of algorithms to enable the capability for formation design must be further enabled to incorporate better understanding of WSB solution space. This development will improve the efficiency and expand the capabilities of current approaches. The Goddard Space Flight Center (GSFC) is currently supporting multiple formation missions in WSB regions. This end-to-end support consists of mission operations, trajectory design, and control. It also includes both algorithm and software development. The Constellation-X, Maxim, and Stellar Imager missions are examples of the use of improved numerical methods for attaining constrained formation geometries and controlling their dynamical evolution. This paper presents a survey of formation missions in the WSB regions and a brief description of the formation design using numerical and dynamical techniques.

  5. Transient Colloidal Stability Controls the Particle Formation of SBA-15

    PubMed Central

    2012-01-01

    A hypothesis about (transient) colloidal stability as a controlling mechanism for particle formation in SBA-15 is presented. The hypothesis is based on results from both in situ and ex situ investigations, including cryogenic transmission electron microscopy (cryo-TEM), UV–vis spectroscopy, and dynamic light scattering (DLS). Cryo-TEM images show that particles grow via the formation of silica–Pluronic–water “flocs”, which coalesce in a seemingly arbitrary manner. Despite this, the final material consists of well-defined particles with a small size distribution. We argue that the interface between the flocs and surrounding media is covered by Pluronic molecules, which provide steric stabilization. As the flocs grow, the coverage of polymers at the interface is increased until a stable size is reached, and that regulates the particle size. By targeting the characteristics of the Pluronic molecules, during the on-going synthesis, the hypothesis is tested. The results are consistent with the concept of (transient) colloidal stability. PMID:22758927

  6. Formation, early evolution, and gravitational stability of protoplanetary disks

    NASA Technical Reports Server (NTRS)

    Nakamoto, Taishi; Nakagawa, Yoshitsugo

    1994-01-01

    The formation, viscous evolution, and gravitational stability of protoplanetary disks are investigated. The formation process is parameterized by the angular velocity of the molecular cloud core omega, while the viscous evolution is parameterized by the viscosity parameter alpha in the disk; in this study we consider a range of (0.4-6) x 10(exp -14)/s for omega and from 10(exp -5) to 10(exp -1) for alpha. The axisymmetric gravitational stabilities of the disks are checked using Toomre's criterion. The resulting disk surface temperature distribution, (d log T(sub s)/d log R) approximately = -0.6 (R is the cylindrical radius), can be attributed to two heating sources: the viscous heating dominant in the inner disk region, and the accretion shock heating dominant in the outer disk region. This surface temperature distribution matches that observed in many disks around young stellar objects. During the infall stage, disks with alpha less than 10(exp -1.5) become gravitationally unstable independent of omega. The gravitational instabilities occur at radii ranging from 5 to 40 AU. The ratio of the disk mass to the central star mass ranges from 0.2 to 0.5 at the times of instability, about 4 x 10(exp -5) x (omega/10(exp -14)/s)(exp -0.67) yr. Most disks with low alpha and high omega become gravitationally unstable during their formation phase.

  7. Formation, early evolution, and gravitational stability of protoplanetary disks

    NASA Technical Reports Server (NTRS)

    Nakamoto, Taishi; Nakagawa, Yoshitsugo

    1994-01-01

    The formation, viscous evolution, and gravitational stability of protoplanetary disks are investigated. The formation process is parameterized by the angular velocity of the molecular cloud core omega, while the viscous evolution is parameterized by the viscosity parameter alpha in the disk; in this study we consider a range of (0.4-6) x 10(exp -14)/s for omega and from 10(exp -5) to 10(exp -1) for alpha. The axisymmetric gravitational stabilities of the disks are checked using Toomre's criterion. The resulting disk surface temperature distribution, (d log T(sub s)/d log R) approximately = -0.6 (R is the cylindrical radius), can be attributed to two heating sources: the viscous heating dominant in the inner disk region, and the accretion shock heating dominant in the outer disk region. This surface temperature distribution matches that observed in many disks around young stellar objects. During the infall stage, disks with alpha less than 10(exp -1.5) become gravitationally unstable independent of omega. The gravitational instabilities occur at radii ranging from 5 to 40 AU. The ratio of the disk mass to the central star mass ranges from 0.2 to 0.5 at the times of instability, about 4 x 10(exp -5) x (omega/10(exp -14)/s)(exp -0.67) yr. Most disks with low alpha and high omega become gravitationally unstable during their formation phase.

  8. Ankyrin protein networks in membrane formation and stabilization

    PubMed Central

    Cunha, Shane R; Mohler, Peter J

    2009-01-01

    In eukaryotic cells, ankyrins serve as adaptor proteins that link membrane proteins to the underlying cytoskeleton. These adaptor proteins form protein complexes consisting of integral membrane proteins, signalling molecules and cytoskeletal components. With their modular architecture and ability to interact with many proteins, ankyrins organize and stabilize these protein networks, thereby establishing the infrastructure of membrane domains with specialized functions. To this end, ankyrin collaborates with a number of proteins including cytoskeletal proteins, cell adhesion molecules and large structural proteins. This review addresses the targeting and stabilization of protein networks related to ankyrin interactions with the cytoskeletal protein β-spectrin, L1-cell adhesion molecules and the large myofibrillar protein obscurin. The significance of these interactions for differential targeting of cardiac proteins and neuronal membrane formation is also presented. Finally, this review concludes with a discussion about ankyrin dysfunction in human diseases such as haemolytic anaemia, cardiac arrhythmia and neurological disorders. PMID:19840192

  9. The Formation and Stability of Alkylthiol Monolayers on Carbon Substrates

    PubMed Central

    Lockett, Matthew R.; Smith, Lloyd M.

    2010-01-01

    The formation and stability of alkylthiol monolayers on amorphous carbon thin films are investigated. Alkylthiol monolayers were prepared via a two-step, wet chemical process in which the carbon surface was first halogenated and then incubated with (4-(trifluoromethyl)phenyl)methanethiol (4tBM). The 4tBM covalently attaches to the surface in a substitution reaction in which the 4tBM thiol replaces the surface halogen. Studies of the substitution mechanism showed that monolayer formation is affected by the nature of the surface-bound halogen as well as the concentration and nucleophilicity of the 4tBM sulfur atom, consistent with a bimolecular (SN2) substitution reaction mechanism. The alkylthiol monolayers are stable over a wide range of solvent, pH, and temperature conditions. PMID:20706614

  10. Pickering emulsions stabilized by oppositely charged colloids: Stability and pattern formation

    NASA Astrophysics Data System (ADS)

    Christdoss Pushpam, Sam David; Basavaraj, Madivala G.; Mani, Ethayaraja

    2015-11-01

    A binary mixture of oppositely charged colloids can be used to stabilize water-in-oil or oil-in-water emulsions. A Monte Carlo simulation study to address the effect of charge ratio of colloids on the stability of Pickering emulsions is presented. The colloidal particles at the interface are modeled as aligned dipolar hard spheres, with attractive interaction between unlike-charged and repulsive interaction between like-charged particles. The optimum composition (fraction of positively charged particles) required for the stabilization corresponds to a minimum in the interaction energy per particle. In addition, for each charge ratio, there is a range of compositions where emulsions can be stabilized. The structural arrangement of particles or the pattern formation at the emulsion interface is strongly influenced by the charge ratio. We find well-mixed isotropic, square, and hexagonal arrangements of particles on the emulsion surface for different compositions at a given charge ratio. The distribution of coordination numbers is calculated to characterize structural features. The simulation study is useful for the rational design of Pickering emulsifications wherein oppositely charged colloids are used, and for the control of pattern formation that can be useful for the synthesis of colloidosomes and porous shells derived thereof.

  11. Formation and stability of point defects in monolayer rhenium disulfide

    NASA Astrophysics Data System (ADS)

    Horzum, S.; ćakır, D.; Suh, J.; Tongay, S.; Huang, Y.-S.; Ho, C.-H.; Wu, J.; Sahin, H.; Peeters, F. M.

    2014-04-01

    Recently, rhenium disulfide (ReS2) monolayers were experimentally extracted by conventional mechanical exfoliation technique from as-grown ReS2 crystals. Unlike the well-known members of transition metal dichalcogenides (TMDs), ReS2 crystallizes in a stable distorted-1T structure and lacks an indirect to direct gap crossover. Here we present an experimental and theoretical study of the formation, energetics, and stability of the most prominent lattice defects in monolayer ReS2. Experimentally, irradiation with 3-MeV He+2 ions was used to break the strong covalent bonds in ReS2 flakes. Photoluminescence measurements showed that the luminescence from monolayers is mostly unchanged after highly energetic α particle irradiation. In order to understand the energetics of possible vacancies in ReS2 we performed systematic first-principles calculations. Our calculations revealed that the formation of a single sulfur vacancy has the lowest formation energy in both Re and S rich conditions and a random distribution of such defects are energetically more preferable. Sulfur point defects do not result in any spin polarization whereas the creation of Re-containing point defects induce magnetization with a net magnetic moment of 1-3μB. Experimentally observed easy formation of sulfur vacancies is in good agreement with first-principles calculations.

  12. Polymer Stabilized Nanosuspensions Formed via Flash Nanoprecipitation: Nanoparticle Formation, Formulation, and Stability

    NASA Astrophysics Data System (ADS)

    Zhu, ZhengXi

    Nanoparticles loaded with hydrophobic components (e.g., active pharmaceutical ingredients, medical diagnostic agents, nutritional or personal care chemicals, catalysts, dyes/pigments, and substances with exceptional magnetic/optical/electronic/thermal properties) have tremendous industrial applications. The common desire is to efficiently generate nanoparticles with a desired size, size distribution, and size stability. Recently, Flash NanoPrecipition (FNP) technique with a fast, continuous, and easily scalable process has been developed to efficiently generate hydrophobe-loaded nanoparticles. This dissertation extended this technique, optimized process conditions and material formulations, and gave new insights into the mechanism and kinetics of nanoparticle formation. This dissertation demonstrated successful generation of spherical beta-carotene nanoparticles with an average diameter of 50--100 nm (90 wt% nanoparticles below 200 nm), good size stability (maintained an average diameter below 200 nm for at least one week in saline), and much higher loading (80--90 wt%) than traditional carriers, such as micelles and polymersomes (typically <20 wt%). Moreover, the nanoparticles are amorphous and expected to have a high dissolution rate and bioavailability. To give insights into the mechanism and kinetics of nanoparticle formation, much remarkable evidence supported the kinetically frozen structures of the nanoparticles rather than the thermodynamic equilibrium micelles. Time scales of the particle formation via FNP were proposed. To optimize the material formulations, either polyelectrolytes (i.e., epsilon-polylysine, branched and linear poly(ethylene imine), and chitosan) or amphiphilic diblock copolymers (i.e., polystyrene-b-poly(ethylene glycol) (PS-b-PEG), polycarprolactone-b-poly(ethylene glycol) (PCL-b-PEG), poly(lactic acid)-b-poly(ethylene glycol) (PLA-b-PEG), and poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG)) were selectively screened

  13. Formation and Stability of Radiation Products in Europa's Icy Shell

    NASA Technical Reports Server (NTRS)

    Moore, M. H.; Hudson, R. L.; Carlson, R. W.; Ferrante, R. F.

    2004-01-01

    Spectra of Europa reveal a surface dominated by water-ice along with hydrated materials and minor amounts of SO2, CO2, and H2O2. Jovian magnetospheric ions (protons, sulfur, and oxygen) and electrons produce significant chemical modifications of the surface on time scales of a few years at micrometer depths. Our laboratory studies examine the formation and stability of radiation products in H2O-rich ices relevant to Europa. Infrared (IR) spectra of ices before and after irradiation reveal the radiation destruction of molecules and the formation of products at 86 - 132 K. In addition, spectra of ices during warming track thermal evolution due to chemical changes and sublimation processes. IR-identified radiation products in 86 - 132 K irradiated H2O + SO2 ices are the bisulfate ion, HSO4(-), sulfate ion, SO4(2-) and the hydronium ion, H3O(+). Warming results in the formation of a residual spectrum similar to liquid sulfuric acid, H2SO4, for H2O:SO2 ratios of 30:1, whereas hydrated sulfuric acid, H2SO4 4 H2O, forms for ratios of 30:1. Radiation products identified for irradiated H2O + H2S ices at 86 K are H2S2 and SO2. When irradiated at 110 and 132 K, ices with H2O:H2S ratios if either 3:1 or 30:1 show the formation of H2SO4 4 H2O on warming to 175 K. We have also examined the radiation stability of H2SO4. Addition of CO2 to H2O + SO2 ices results in the formation of CO3 at 2046 cm (sup -1) (4.89 m). This is the strongest band from a carbon-containing product in the mid-IR spectral region, and it is also seen when either pure CO2 or H2O + CO2 ice is irradiated. Experiments with CH4 added to H2O + SO2 + CO2 ices addressed the question of methane's use as a marker of methanogens in an irradiated ice environment. New results on the near-IR spectrum of pure H2O2 will be included in this presentation. Interpretations of near-IR water bands, with H2O2 present, will be discussed. Irradiations of H2O2 and H2O + H2O2 mixtures, to examine the possibility of O2 and O3

  14. Formation and Stability of Radiation Products in Europa's Icy Shell

    NASA Technical Reports Server (NTRS)

    Moore, M. H.; Hudson, R. L.; Carlson, R. W.; Ferrante, R. F.

    2004-01-01

    Spectra of Europa reveal a surface dominated by water-ice along with hydrated materials and minor amounts of SO2, CO2, and H2O2. Jovian magnetospheric ions (protons, sulfur, and oxygen) and electrons produce significant chemical modifications of the surface on time scales of a few years at micrometer depths. Our laboratory studies examine the formation and stability of radiation products in H2O-rich ices relevant to Europa. Infrared (IR) spectra of ices before and after irradiation reveal the radiation destruction of molecules and the formation of products at 86 - 132 K. In addition, spectra of ices during warming track thermal evolution due to chemical changes and sublimation processes. IR-identified radiation products in 86 - 132 K irradiated H2O + SO2 ices are the bisulfate ion, HSO4(-), sulfate ion, SO4(2-) and the hydronium ion, H3O(+). Warming results in the formation of a residual spectrum similar to liquid sulfuric acid, H2SO4, for H2O:SO2 ratios of 30:1, whereas hydrated sulfuric acid, H2SO4 4 H2O, forms for ratios of 30:1. Radiation products identified for irradiated H2O + H2S ices at 86 K are H2S2 and SO2. When irradiated at 110 and 132 K, ices with H2O:H2S ratios if either 3:1 or 30:1 show the formation of H2SO4 4 H2O on warming to 175 K. We have also examined the radiation stability of H2SO4. Addition of CO2 to H2O + SO2 ices results in the formation of CO3 at 2046 cm (sup -1) (4.89 m). This is the strongest band from a carbon-containing product in the mid-IR spectral region, and it is also seen when either pure CO2 or H2O + CO2 ice is irradiated. Experiments with CH4 added to H2O + SO2 + CO2 ices addressed the question of methane's use as a marker of methanogens in an irradiated ice environment. New results on the near-IR spectrum of pure H2O2 will be included in this presentation. Interpretations of near-IR water bands, with H2O2 present, will be discussed. Irradiations of H2O2 and H2O + H2O2 mixtures, to examine the possibility of O2 and O3

  15. Thermal Stability Threshold for Amyloid Formation in Light Chain Amyloidosis

    PubMed Central

    Poshusta, Tanya L.; Katoh, Nagaaki; Gertz, Morie A.; Dispenzieri, Angela; Ramirez-Alvarado, Marina

    2013-01-01

    Light chain (AL) amyloidosis is a devastating disease characterized by amyloid deposits formed by immunoglobulin light chains. Current available treatments involve conventional chemotherapy and autologous stem cell transplant. We have recently concluded a phase III trial comparing these two treatments. AL amyloidosis patients who achieve hematological complete response (CR) do not necessarily achieve organ response regardless of the treatment they received. In order to investigate the possible correlation between amyloid formation kinetics and organ response, we selected AL amyloidosis patients from the trial with kidney involvement and CR after treatment. Six patients were selected and their monoclonal immunoglobulin light chains were characterized. The proteins showed differences in their stability and their kinetics of amyloid formation. A correlation was detected at pH 7.4, showing that less stable proteins are more likely to form amyloid fibrils. AL-T03 is too unstable to form amyloid fibrils at pH 7.4. This protein was found in the only patient in the study that had organ response, suggesting that partially folded species are required for amyloid formation to occur in AL amyloidosis. PMID:24248061

  16. PARN Modulates Y RNA Stability and Its 3'-End Formation.

    PubMed

    Shukla, Siddharth; Parker, Roy

    2017-10-15

    Loss-of-function mutations in 3'-to-5' exoribonucleases have been implicated in hereditary human diseases. For example, PARN mutations cause a severe form of dyskeratosis congenita (DC), wherein PARN deficiency leads to human telomerase RNA instability. Since the DC phenotype in PARN patients is even more severe than that of loss-of-function alleles in telomerase components, we hypothesized that PARN would also be required for the stability of other RNAs. Here, we show that PARN depletion reduces the levels of abundant human Y RNAs, which might contribute to the severe phenotype of DC observed in patients. Depletion of PAPD5 or the cytoplasmic exonuclease DIS3L rescues the effect of PARN depletion on Y RNA levels, suggesting that PARN stabilizes Y RNAs by removing oligoadenylated tails added by PAPD5, which would otherwise recruit DIS3L for Y RNA degradation. Through deep sequencing of 3' ends, we provide evidence that PARN can also deadenylate the U6 and RMRP RNAs without affecting their levels. Moreover, we observed widespread posttranscriptional oligoadenylation, uridylation, and guanylation of U6 and Y RNA 3' ends, suggesting that in mammalian cells, the formation of a 3' end for noncoding RNAs can be a complex process governed by the activities of various 3'-end polymerases and exonucleases. Copyright © 2017 American Society for Microbiology.

  17. Analysis of von Willebrand factor multimers using a commercially available enhanced chemiluminescence kit.

    PubMed Central

    Cumming, A M; Wensley, R T

    1993-01-01

    AIMS--To develop a rapid, sensitive, and safe method for the analysis of von Willebrand factor (vWf) multimers in plasma or platelet lysates. METHOD--Analysis of vWf multimers was carried out by sodium dodecyl sulphate-agarose discontinuous gel electrophoresis followed by protein transfer to nitrocellulose membranes by western blotting. Blots were probed using horseradish peroxidase (HRP) conjugated rabbit anti-vWf; visualisation of vWf multimers was achieved using a commercially available enhanced chemi-Luminescence (ECL) kit for detecting HRP labelled antibodies on western blots. RESULTS--Electrophoretic transfer of vWf multimers to nitrocellulose membranes, including the higher molecular weight forms, was achieved satisfactorily and there was good resolution of individual multimer bands and of the triplet sub-band structure. Type II vWD variants were readily identifiable. The use of ECL conferred a high degree of sensitivity to the method and the end result on autoradiography film provided a permanent record which did not fade and which was suitable for scanning densitometry. CONCLUSION--The method for vWf multimer analysis described here is sensitive, simple to carry out, uses minimal amounts of reagents, produces results within 48 hours, and does not require the use of potentially hazardous radioactive materials or carcinogenic enzyme substrates. Images PMID:8320330

  18. Twinned silicon and germanium nanocrystals: Formation, stability and quantum confinement

    SciTech Connect

    Yu, Ting; Pi, Xiaodong Ni, Zhenyi; Zhang, Hui; Yang, Deren

    2015-03-15

    Although twins are often observed in Si/Ge nanocrystals (NCs), little theoretical investigation has been carried out to understand this type of important planar defects in Si/Ge NCs. We now study the twinning of Si/Ge NCs in the frame work of density functional theory by representatively considering single-twinned and fivefold-twinned Si/Ge NCs. It is found that the formation of twinned Si/Ge NCs is thermodynamically possible. The effect of twinning on the formation of Si NCs is different from that of Ge NCs. For both Si and Ge NCs twinning enhances their stability. The quantum confinement effect is weakened by twinning for Si NCs. Twinning actually enhances the quantum confinement of Ge NCs when they are small (<136 atoms), while weakening the quantum confinement of Ge NCs as their size is large (>136 atoms). The current results help to better understand the experimental work on twinned Si/Ge NCs and guide the tuning of Si/Ge-NC structures for desired properties.

  19. Multimer recognition and secretion by the non-classical secretion pathway in Bacillus subtilis.

    PubMed

    Zhao, Liuqun; Chen, Jingqi; Sun, Jibin; Zhang, Dawei

    2017-03-09

    Non-classical protein secretion in bacteria is a common phenomenon. However, the selection principle for non-classical secretion pathways remains unclear. Here, our experimental data, to our knowledge, are the first to show that folded multimeric proteins can be recognized and excreted by a non-classical secretion pathway in Bacillus subtilis. We explored the secretion pattern of a typical cytoplasmic protein D-psicose 3-epimerase from Ruminococcus sp. 5_1_39BFAA (RDPE), and showed that its non-classical secretion is not simply due to cell lysis. Analysis of truncation variants revealed that the C- and N-terminus, and two hydrophobic domains, are required for structural stability and non-classical secretion of RDPE. Alanine scanning mutagenesis of the hydrophobic segments of RDPE revealed that hydrophobic residues mediated the equilibrium between its folded and unfolded forms. Reporter mCherry and GFP fusions with RDPE regions show that its secretion requires an intact tetrameric protein complex. Using cross-linked tetramers, we show that folded tetrameric RDPE can be secreted as a single unit. Finally, we provide evidence that the non-classical secretion pathway has a strong preference for multimeric substrates, which accumulate at the poles and septum region. Altogether, these data show that a multimer recognition mechanism is likely applicable across the non-classical secretion pathway.

  20. Multimer recognition and secretion by the non-classical secretion pathway in Bacillus subtilis

    PubMed Central

    Zhao, Liuqun; Chen, Jingqi; Sun, Jibin; Zhang, Dawei

    2017-01-01

    Non-classical protein secretion in bacteria is a common phenomenon. However, the selection principle for non-classical secretion pathways remains unclear. Here, our experimental data, to our knowledge, are the first to show that folded multimeric proteins can be recognized and excreted by a non-classical secretion pathway in Bacillus subtilis. We explored the secretion pattern of a typical cytoplasmic protein D-psicose 3-epimerase from Ruminococcus sp. 5_1_39BFAA (RDPE), and showed that its non-classical secretion is not simply due to cell lysis. Analysis of truncation variants revealed that the C- and N-terminus, and two hydrophobic domains, are required for structural stability and non-classical secretion of RDPE. Alanine scanning mutagenesis of the hydrophobic segments of RDPE revealed that hydrophobic residues mediated the equilibrium between its folded and unfolded forms. Reporter mCherry and GFP fusions with RDPE regions show that its secretion requires an intact tetrameric protein complex. Using cross-linked tetramers, we show that folded tetrameric RDPE can be secreted as a single unit. Finally, we provide evidence that the non-classical secretion pathway has a strong preference for multimeric substrates, which accumulate at the poles and septum region. Altogether, these data show that a multimer recognition mechanism is likely applicable across the non-classical secretion pathway. PMID:28276482

  1. Structure of von Willebrand factor and its function in platelet adhesion and thrombus formation.

    PubMed

    Ruggeri, Z M

    2001-06-01

    The adhesive protein von Willebrand factor mediates the initiation and progression of thrombus formation at sites of vascular injury. von Willebrand factor is synthesized in endothelial cells and megakaryocytes as a very large polymer composed of identical subunits. In the plasma, it appears as a series of multimers of regularly decreasing molecular mass, from several thousand to 500 kDa. The size of circulating von Willebrand factor multimers is controlled by proteolytic cleavage carried out by a specific protease. The biological functions of von Willebrand factor are exerted through specific domains that interact with extracellular matrix components and cell membrane receptors to promote the initial tethering and adhesion of platelets to subendothelial surfaces, as well as platelet aggregation. Moreover, von Willebrand factor binds the procoagulant co-enzyme, factor VIII, contributing to its stability and, indirectly, to its function in the generation of fibrin. This chapter presents a review of current knowledge on the structure, biosynthesis and functions of von Willebrand factor.

  2. An explanation for minor multimer species in endothelial cell-synthesized von Willebrand factor.

    PubMed Central

    Lynch, D C; Zimmerman, T S; Ling, E H; Browning, P J

    1986-01-01

    Initial synthesis of von Willebrand factor (vWf) by cultured human endothelial cells proceeds by formation of a dimer of pro-vWf subunits. These subunits are found only within the cell and have an apparent molecular weight of 240,000-260,000, as measured by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels. Posttranslational modifications, including proteolytic cleavage, glycosylation, and sulfation, result in the appearance of two additional vWf subunits. The major one migrates with the subunit of plasma vWf at an apparent molecular weight of 220,000-225,000 and the other migrates more slowly than pro-vWf at an apparent molecular weight of 260,000-275,000. These subunits oligomerize to form a set of vWf multimers, which are subsequently secreted into the culture medium. We isolated individual vWf oligomer species from the agarose gel bands and show that vWf minor, or satellite, species differ from major species in subunit composition. Images PMID:3486890

  3. Formation and stability of cubic ice in water droplets.

    PubMed

    Murray, Benjamin J; Bertram, Allan K

    2006-01-07

    There is growing evidence that a metastable phase of ice, cubic ice, plays an important role in the Earth's troposphere and stratosphere. Cubic ice may also be important in diverse fields such as cryobiology and planetary sciences. Using X-ray diffraction, we studied the formation of cubic ice in pure water droplets suspended in an oil matrix as a function of droplet size. The results show that droplets of volume median diameter 5.6 microm froze dominantly to cubic ice with stacking faults. These results support previous suggestions that cubic ice is the crystalline phase that nucleates when pure water droplets freeze homogeneously at approximately 235 K. It is also shown that as the size of the water droplets increased from 5.6 to 17.0 microm, the formation of the stable phase of ice, hexagonal ice, was favoured. This size dependence can be rationalised with heat transfer calculations. We also investigated the stability of cubic ice that forms in water droplets suspended in an oil matrix. We observe cubic ice up to 243 K, much higher in temperature than observed in many previous studies. This result adds to the existing literature that shows bulk ice I(c) can persist up to approximately 240 K. The transformation of cubic ice to hexagonal ice also showed a complex time and temperature dependence, proceeding rapidly at first and then slowing down and coming to a halt. These combined results help explain why cubic ice forms in some experiments described in the literature and not others.

  4. [Determination of von Willebrand factor multimers in Mexican population].

    PubMed

    Hernández-Zamora, Edgar; Zavala-Hernández, Cesar; Viveros-Sandoval, Martha Eva; Ochoa-Rico, Angeles; Martínez-Murillo, Carlos; Reyes-Maldonado, Elba

    2014-01-01

    Antecedentes: la enfermedad de von Willebrand es un padecimiento hereditario en el que la estructura, función y concentración del factor de von Willebrand están alteradas y, en consecuencia, también la interacción plaqueta-factor de von Willebrand-endotelio. En México no hay registros epidemiológicos de la enfermedad, sólo se han efectuado algunos estudios aislados desde el punto de vista clínico y hematológico. Material y métodos: estudio retrospectivo efectuado en 155 mexicanos mestizos, 75 de ellos con diagnóstico presuntivo de enfermedad de von Willebrand, 15 con sospecha de hemofilia A y 65 donadores sanos (testigos). Se realizaron pruebas: básicas de coagulación, especiales y de clasificación: análisis de la composición multimérica. Resultados: 15 pacientes se diagnosticaron con hemofilia A; de los 75 sujetos con sospecha de enfermedad de von Willebrand se diagnosticaron 50 de la manera siguiente: tipo 1 (62%), tipo 2 (22%) [subtipos: 2A (14%), 2B (2%) y 2N (6%)] y tipo 3 (16%). Conclusión: el análisis de los multímeros del factor de von Willebrand es un método que cumple con las características adecuadas para el diagnóstico de la enfermedad de von Willebrand, por lo que es necesario implementar esta metodología para su estudio y mejorar su diagnóstico específico.

  5. LMI Based Robust Blood Glucose Regulation in Type-1 Diabetes Patient with Daily Multi-meal Ingestion

    NASA Astrophysics Data System (ADS)

    Mandal, S.; Bhattacharjee, A.; Sutradhar, A.

    2014-04-01

    This paper illustrates the design of a robust output feedback H ∞ controller for the nonlinear glucose-insulin (GI) process in a type-1 diabetes patient to deliver insulin through intravenous infusion device. The H ∞ design specification have been realized using the concept of linear matrix inequality (LMI) and the LMI approach has been used to quadratically stabilize the GI process via output feedback H ∞ controller. The controller has been designed on the basis of full 19th order linearized state-space model generated from the modified Sorensen's nonlinear model of GI process. The resulting controller has been tested with the nonlinear patient model (the modified Sorensen's model) in presence of patient parameter variations and other uncertainty conditions. The performance of the controller was assessed in terms of its ability to track the normoglycemic set point of 81 mg/dl with a typical multi-meal disturbance throughout a day that yields robust performance and noise rejection.

  6. On the formation and stability of resonant planetary systems

    NASA Astrophysics Data System (ADS)

    Hardy, Flavien; Gong, Shengping

    2017-09-01

    We investigate the dynamics of a pair of massive secondaries pushed towards mean-motion resonance by centripetal migration due to interactions with a planetesimal disc surrounding a common primary. An analytical model of planetary systems evolving towards orbital resonance is developed to the second order in eccentricities, allowing for an assessment of the stability of the resonant equilibrium under disc interactions. Numerical applications to resonant pairs are carried out to visualize the selection of inner secondaries leading to stable resonant states by a specific outer secondary body migrating inwards. The structure of the osculating phase space is analysed and the possibilities of capture and escape from resonance are visualized accordingly. Such steps may help in predicting the evolution of a resonant planetary system and understanding its formation, while giving insights on when the driving planetesimal disc could have dissipated. The underlying method is briefly applied to numerical studies of Europa and Enceladus's migrations towards Jupiter and Saturn, respectively, and to the exoplanetary system of GJ 876.

  7. Speciation, formation, stability and analytical challenges of human arsenic metabolites

    PubMed Central

    Yehiayan, Lucy; Pattabiraman, Mahesh; Kavallieratos, Konstantinos; Wang, Xiaotang; Boise, Lawrence H.

    2012-01-01

    Human arsenic metabolism produces a number of species with varying toxicities; the presence of some has been identified while the existence of others has been postulated through indirect evidence. Speciation methods for the analysis of arsenite (AsIII), monomethylarsonous acid (MMAIII), dimethylarsinous acid (DMAIII), arsenate (AsV), monomethylarsonic acid (MMAV), dimethylarsinic acid (DMAV), arsino-glutathione (As(GS)3), monomethylarsino-glutathione (MMA(GS)2) and dimethylarsino-glutathione (DMA(GS)) were developed in this study through the use of cation exchange and reverse phase chromatography in a complementary manner. Electrospray ionization mass spectrometry (ESI-MS) was used for molecular identification of the arsenicals while inductively coupled plasma mass spectrometry (ICP-MS) was employed for quantitation purposes. Validation of the developed methods against each other for the quantitation of trivalent and pentavalent arsenicals was performed. The effect of reduced glutathione (GSH) concentration on the formation of arsenic-glutathione (As-GSH) complexes was studied. In the presence of glutathione, the occurrence of chromatographic artifacts on the cation exchange column was observed. The stability of trivalent arsenicals and As-GSH complexes was studied at various pH conditions. The results shed light on the importance of sample preparation, storage and proper choice of analytical column for the accurate identification of the As species. Reinvestigation of some of the previously reported As speciation studies of glutathione-rich biological samples needs to be performed for the verification of occurrence of As-GSH complexes and DMAIII. PMID:23495261

  8. Liquid Crystal Formation from Sunflower Oil: Long Term Stability Studies.

    PubMed

    da Rocha-Filho, Pedro Alves; Maruno, Mônica; Ferrari, Márcio; Topan, José Fernando

    2016-06-09

    The Brazilian biodiversity offers a multiplicity of raw materials with great potential in cosmetics industry applications. Some vegetable oils and fatty esters increase skin hydration by occlusivity, keeping the skin hydrated and with a shiny appearance. Sunflower (Helianthus annus L.) oil is widely employed in cosmetic emulsions in the form of soaps, creams, moisturizers and skin cleansers due to the presence of polyphenols and its high vitamin E content. Liquid crystals are systems with many applications in both pharmaceutical and cosmetic formulations and are easily detected by microscopy under polarized light due to their birefringence properties. The aim of this research was to develop emulsions from natural sunflower oil for topical uses. Sunflower oil (75.0% w/w) was combined with liquid vaseline (25.0% w/w) employing a natural self-emulsifying base (SEB) derivative. The high temperature of the emulsification process did not influence the antioxidant properties of sunflower oil. Fatty esters were added to cosmetic formulations and extended stability tests were performed to characterize the emulsions. Fatty esters like cetyl palmitate and cetyl ester increase the formation of anisotropic structures. O/W emulsions showed acidic pH values and pseudoplastic behavior. The presence of a lamellar phase was observed after a period of 90 days under different storage conditions.

  9. Mechanochemical Approaches to Pharmaceutical Cocrystal Formation and Stability Analysis.

    PubMed

    Lin, Shan-Yang

    2016-01-01

    Solid-state mechanochemical grinding is important for promoting cocrystal formation, particularly in the design of new solids in the pharmaceutical industry. Pharmaceutical cocrystals are defined as crystalline materials comprising an active pharmaceutical ingredient (API) and one or more appropriate coformers in a definite stoichiometric ratio, formed via non-covalent interactions. Recently, both the US FDA (2013) and the EU EMA (2015) provided a Guidance for Industry and a Reflection Paper, respectively, emphasizing that cocrystals are a new type of substance with potential applications in the pharmaceutical industry. This paper contains a brief and systematic overview of pharmaceutical cocrystals prepared by four grinding processes: neat grinding, solvent-assisted grinding, thermal stress after neat grinding, and polymer-assisted grinding. The paper also highlights some examples of pharmaceutical cocrystals prepared by the above grinding approaches, and discusses the stability of cocrystals prepared by mechanical grinding. Also, an overview of cocrystals that are commercially available or undergoing clinical trials is given. A novel methodology for real-time and in situ monitoring of mechanochemical grinding reactions using various analytical techniques is addressed and can be expected to be applied in the near future.

  10. Liquid Tubule Formation and Stabilization Using Cellulose Nanocrystal Surfactants.

    PubMed

    Liu, Xubo; Shi, Shaowei; Li, Yanan; Forth, Joe; Wang, Dong; Russell, Thomas P

    2017-10-02

    Structured liquids, generated by the interfacial formation, assembly, and jamming of nanoparticle (NP)-surfactants at liquid/liquid interfaces, maintain all the desirable characteristics of each liquid, while providing a spatially structured framework. Herein, we show that rod-like cellulose nanocrystal (CNC)-based NP-surfactants, termed CNC-surfactants, are formed rapidly at the liquid/liquid interface, assemble into a monolayer, and, when jammed, offer a robust assembly with exceptional mechanical properties. Plateau-Rayleigh (PR) instabilities of a free-falling jet of an aqueous medium containing the CNCs into a toluene solution of amine end-functionalized polystyrene are completely suppressed, allowing the jetting of aqueous tubules that are stabilized when the CNC-surfactants are jammed at the interface. These results open a new platform for the additive manufacturing techniques, for example, three-dimensional (3D) printing, of all-liquid constructs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Solid-Supported Lipid Membranes: Formation, Stability and Applications

    NASA Astrophysics Data System (ADS)

    Goh, Haw Zan

    This thesis presents a comprehensive investigation of the formation of supported lipid membranes with vesicle hemifusion, their stability under detergents and organic solvents and their applications in molecular biology. In Chapter 3, we describe how isolated patches of DOPC bilayers supported on glass surfaces are dissolved by various detergents (decyl maltoside, dodecyl maltoside, CHAPS, CTAB, SDS, TritonX-100 and Tween20) at their CMC, as investigated by fluorescence video microscopy. In general, detergents partition into distal leaflets of bilayers and lead to the expansion of the bilayers through a rolling motion of the distal over the proximal leaflets, in agreement with the first stage of the established 3-stage model of lipid vesicle solubilization by detergents. Subsequently, we study the partitioning of organic solvents (methanol, ethanol, isopropanol, propanol, acetone and chloroform) into isolated bilayer patches on glass in Chapter 4 with fluorescence microscopy. The area expansion of bilayers due to the partitioning of organic solvents is measured. From the titration of organic solvents, we measured the rate of area expansion as a function of the volume fraction of organic solvents, which is proposed to be a measure of strength of interactions between solvents and membranes. From the same experiments, we also measure the maximum expansion of bilayers (or the maximum binding stoichiometry between organic solvents and lipids) before structural breakdown, which depends on the depth of penetration of solvents to the membranes. In Chapter 5, we investigate the formation of sparsely-tethered bilayer lipid membranes (stBLMs) with vesicle hemifusion. In vesicle hemifusion, lipid vesicles in contact with a hydrophobic alkyl-terminated self-assembled monolayer (SAM) deposit a lipid monolayer to the SAM surface, thus completing the bilayer. Electrical Impedance Spectroscopy and Neutron Reflectivity are used to probe the integrity of stBLMs in terms of their

  12. Filamentous phage pIV multimer visualized by scanning transmission electron microscopy

    SciTech Connect

    Linderoth, N.A.; Russel, M.; Simon, M.N.

    1997-11-28

    A family of homomultimeric outer-membrane proteins termed secretins mediates the secretion of large macromolecules such as enzymes and filamentous bacteriophages across bacterial outer membranes to the extracellular millieu. The secretin encoded by filamentous phage f1 was purified. Mass determination of individual molecules by scanning transmission electron microscopy revealed two forms, a unit multimer composed of about 14 subunits and a multimer dimer. The secretin is roughly cylindrical and has an internal diameter of about 80 angstroms, which is large enough to accommodate filamentous phage (diameter of 65 angstroms). 21 refs., 3 figs., 1 tab.

  13. Do the stability indices indicate the formation of deep convection?

    NASA Astrophysics Data System (ADS)

    Uma, K. N.; Das, S. K.

    2017-09-01

    The present study investigates the relation between the stability indices and different types of precipitating clouds during the active and the suppressed periods of deep convection of the Madden-Julian oscillation. This is achieved by utilizing three-hourly radiosonde (RS92) data and merged cloud radar data over the Gan Island (0.69°S, 73.15°E) from October 2011 to January, 2012. The active and the suppressed periods are defined based on the rainfall. Three periods of active (15-27 October, 15-28 November and 15-27 December) and suppressed periods (01-14 November, 0-14 December and 01-14 January) are identified. During the above periods, the stability indices are calculated to distinguish the background meteorological conditions. The analysis shows that during both the active and the suppressed periods, the magnitude of the stability indices are not much different. During both the periods, the indices attain their respective threshold corresponding to the occurrence of deep convection. However, the third suppressed period shows a dry condition compared to the other two suppressed periods. The relation between the stability indices and the precipitating cloud categories (shallow, congestus and deep) indicate that even though the threshold in the stability indices were attained, deep convective clouds were not observed during the suppressed periods. The active period correlates well with the stability indices. Therefore, the stability indices do not clearly and directly determine the state of the atmosphere during deep convection. The result shows stability indices need to be substantially improved in the context of deep convection prediction.

  14. Structure of the filamentous phage pIV multimer by cryo-electron microscopy.

    PubMed

    Opalka, Natacha; Beckmann, Roland; Boisset, Nicolas; Simon, Martha N; Russel, Marjorie; Darst, Seth A

    2003-01-17

    The homo-multimeric pIV protein constitutes a channel required for the assembly and export of filamentous phage across the outer membrane of Escherichia coli. We present a 22 A-resolution three-dimensional reconstruction of detergent-solubilized pIV by cryo-electron microscopy associated with image analysis. The structure reveals a barrel-like complex, 13.5 nm in diameter and 24 nm in length, with D14 point-group symmetry, consisting of a dimer of unit multimers. Side views of each unit multimer exhibit three cylindrical domains named the N-ring, the M-ring and the C-ring. Gold labeling of pIV engineered to contain a single cysteine residue near the N or C terminus unambiguously identified the N-terminal region as the N-ring, and the C-terminal region was inferred to make up the C-ring. A large pore, ranging in inner diameter from 6.0 nm to 8.8 nm, runs through the middle of the multimer, but a central domain, the pore gate, blocks it. Moreover, the pore diameter at the N-ring is smaller than the phage particle. We therefore propose that the pIV multimer undergoes a large conformational change during phage transport, with reorganization of the central domain to open the pore, and widening at the N-ring in order to accommodate the 6.5 nm diameter phage particle.

  15. Formation and stability of polychlorinated biphenyl Pickering emulsions.

    PubMed

    Roy-Perreault, Andréanne; Kueper, Bernard H; Rawson, Jim

    2005-03-01

    An emulsion stabilized by colloidal suspensions of finely divided solids is known as a Pickering emulsion. The potential for polychlorinated biphenyls (PCBs) to form Pickering emulsions ex situ when in contact with powdered solids, such as clays and metal oxides, is investigated here. Bentonite, iron oxide and magnesium oxide dispersions proved to be robust Pickering emulsion stabilizers, whereas manganese oxide dispersions were not. Batch experiments revealed that emulsions can be formed using a moderately low energy input and can be stabilized with solid concentrations as low as 0.5 wt.%. For the base conditions (volumetric oil fraction (phi(oil))=30 vol.%; solid concentration (chi)=2 wt.%), the formed emulsions were indefinitely stable and the initial average droplet diameters varied from 80 to 258 mum, depending on the solid used in the colloidal dispersion. The average droplet size varied at early time, but for most conditions stabilized to a steady-state value 1 week after preparation. The effect of Ostwald ripening was limited. At greater than 0.5 wt.% concentration, the efficiency of the solid dispersion as a stabilizer was dependant on the volumetric oil fraction but not on the solid concentration. Generally, systems with volumetric oil fractions outside of the 20-70 vol.% range were unstable. The emulsions' droplet stability, average droplet size and size distribution were observed to vary as a function of the amount of energy provided to the system, the volumetric oil fraction, and the concentration of the solid in the aqueous dispersion. It is hypothesized that drilling through fractured rock in the immediate vicinity of dense, non-aqueous phase liquid (DNAPL) PCBs may provide both the energy and solid material necessary to form Pickering emulsions.

  16. Stability of furosemide polymorphs and the effects of complex formation with β-cyclodextrin and maltodextrin.

    PubMed

    Garnero, Claudia; Chattah, Ana Karina; Longhi, Marcela

    2016-11-05

    The effect of the formation of supramolecular binary complexes with β-cyclodextrin and maltodextrin on the chemical and physical stability of the polymorphs I and II of furosemide was evaluated in solid state. The solid samples were placed under accelerated storage conditions and exposed to daylight into a stability chamber for a 6-month. Chemical stability was monitored by high performance liquid chromatography, while the physical stability was studied by solid state nuclear magnetic resonance, powder X-ray diffraction and scanning electron microscopy. Changes in the physical appearance of the samples were evaluated. The studies showed a significant stabilizing effect of β-cyclodextrin on furosemide form II. Our results suggest that the complex formation is a useful tool for improving the stability of furosemide polymorphs. These new complexes are promising candidates that can be used in the pharmaceutical industry for the preparation of alternative matrices that improve physicochemical properties.

  17. Pressure dependence of stabilized Criegee intermediate formation from a sequence of alkenes.

    PubMed

    Drozd, Greg T; Donahue, Neil M

    2011-05-05

    Ozonolysis is a key reaction in atmospheric chemistry, although important details of the behavior of the ozonolysis intermediates are not known. The key intermediate in ozonolysis, the Criegee intermeiate (CI), is known to quickly isomerize, with the favored unimolecular pathway depending on the relative barriers to isomerization. Stabilized Criegee intermediates (SCI), those with energy below any barriers to isomerization, may result from initial formation with low energy or collisional stabilization of high energy CI. Bimolecular reactions of SCI have been proposed to play a role in OH formation and nucleation of new particles, but unimolecular reactions of SCI may well be too fast for these to be significant. We present measurements of the pressure dependence of SCI formation for a set of alkenes utilizing a hexafluoroacetone scavenger. We studied four alkenes (2,3-dimethyl-2-butene (TME), trans-5-decene, cyclohexene, α-pinene) to characterize how size and cyclization (endo vs exo) affect the stability of Criegee intermediates formed in ozonolysis. SCI yields in ozonolysis were measured in a high pressure flow reactor within a range of 30-750 Torr. The linear alkenes show considerable stabilization with trans-5-decene showing 100% stabilization at ∼400 Torr and TME having 65% stabilization at 710 Torr. Extrapolation of the yields for linear alkenes to 0 Torr shows yields significantly above zero, indicating that a fraction of their CI are formed below the barrier to isomerization. CI from endocyclic alkenes show little to no stabilization and appear to have neglible stabilization at 0 Torr. Cyclohexene derived CI showed no stabilization even at 650 Torr, while α-pinene CI had ∼15% stabilization at 740 Torr. Our results show a strong dependence of SCI formation on carbon number; adding just 2 to 3 CI carbons in linear alkenes increases stabilization by a factor of 10. Stabilization for endocyclic alkenes, at atmospheric pressure, begins to occur at a carbon

  18. Formation and Stability of Impurity "snakes" in Tokamak Plasmas

    SciTech Connect

    L. Delgado-Aparicio, et. al.

    2013-01-28

    New observations of the formation and dynamics of long-lived impurity-induced helical "snake" modes in tokamak plasmas have recently been carried-out on Alcator C-Mod. The snakes form as an asymmetry in the impurity ion density that undergoes a seamless transition from a small helically displaced density to a large crescent-shaped helical structure inside q < 1, with a regularly sawtoothing core. The observations show that the conditions for the formation and persistence of a snake cannot be explained by plasma pressure alone. Instead, many features arise naturally from nonlinear interactions in a 3D MHD model that separately evolves the plasma density and temperature

  19. Salts Enhance Both Protein Stability and Amyloid Formation of an Immunoglobulin Light Chain

    PubMed Central

    Sikkink, Laura A.; Ramirez-Alvarado, Marina

    2008-01-01

    Amyloid fibrils are associated with sulfated glycosaminoglycans in the extracellular matrix. The presence of sulfated glycosaminoglycans is known to promote amyloid formation in vitro and in vivo, with the sulfate groups playing a role in this process. In order to understand the role that sulfate plays in amyloid formation, we have studied the effect of salts from the Hofmeister series on the protein structure, stability and amyloid formation of an amyloidogenic light chain protein, AL-12. We have been able to show for the first time a direct correlation between protein stability and amyloid formation enhancement by salts from the Hofmeister series, where SO42−conferred the most protein stability and enhancement of amyloid formation. Our study emphasizes the importance of the effect of ions in the protein bound water properties and downplays the role of specific interactions between the protein and ions. PMID:18395318

  20. Opalescent and cloudy fruit juices: formation and particle stability.

    PubMed

    Beveridge, Tom

    2002-07-01

    Cloudy fruit juices, particularly from tropical fruit, are becoming a fast-growing part of the fruit juice sector. The classification of cloud as coarse and fine clouds by centrifugation and composition of cloud from apple, pineapple, orange, guava, and lemon juice are described. Fine particulate is shown to be the true stable cloud and to contain considerable protein, carbohydrate, and lipid components. Often, tannin is present as well. The fine cloud probably arises from cell membranes and appears not to be simply cell debris. Factors relating to the stability of fruit juice cloud, including particle sizes, size distribution, and density, are described and discussed. Factors promoting stable cloud in juice are presented.

  1. Formation and decomposition of chemically activated and stabilized hydrazine.

    PubMed

    Asatryan, Rubik; Bozzelli, Joseph W; da Silva, Gabriel; Swinnen, Saartje; Nguyen, Minh Tho

    2010-06-03

    Recombination of two amidogen radicals, NH(2) (X(2)B1), is relevant to hydrazine formation, ammonia oxidation and pyrolysis, nitrogen reduction (fixation), and a variety of other N/H/X combustion, environmental, and interstellar processes. We have performed a comprehensive analysis of the N(2)H(4) potential energy surface, using a variety of theoretical methods, with thermochemical kinetic analysis and master equation simulations used to treat branching to different product sets in the chemically activated NH(2) + NH(2) process. For the first time, iminoammonium ylide (NH(3)NH), the less stable isomer of hydrazine, is involved in the kinetic modeling of N(2)H(4). A new, low-energy pathway is identified for the formation of NH(3) plus triplet NH, via initial production of NH(3)NH followed by singlet-triplet intersystem crossing. This new reaction channel results in the formation of dissociated products at a relatively rapid rate at even moderate temperatures and above. A further novel pathway is described for the decomposition of activated N(2)H(4), which eventually leads to the formation of the simple products N(2) + 2H(2), via H(2) elimination to cis-N(2)H(2). This process, termed as "dihydrogen catalysis", may have significant implications in the formation and decomposition chemistry of hydrazine and ammonia in diverse environments. In this mechanism, stereoselective attack of cis-N(2)H(2) by molecular hydrogen results in decomposition to N(2) with a fairly low barrier. The reverse termolecular reaction leading to the gas-phase formation of cis-N(2)H(2) + H(2) achieves non-heterogeneous catalytic nitrogen fixation with a relatively low activation barrier (77 kcal mol(-1)), much lower than the 125 kcal mol(-1) barrier recently reported for bimolecular addition of H(2) to N(2). This termolecular reaction is an entropically disfavored path, but it does describe a new means of activating the notoriously unreactive N(2). We design heterogeneous analogues of this

  2. Formation and collapse of gels of sterically stabilized colloidal particles

    NASA Astrophysics Data System (ADS)

    Weeks, James R.; van Duijneveldt, Jeroen S.; Vincent, Brian

    2000-11-01

    Colloidal silica spheres (diameter 88 nm) with a thick steric stabilization layer of polystyrene (PS; Mw = 26 600 g mol-1) were prepared. In cyclohexane, a marginal solvent for PS, particle aggregation and gelation were observed on lowering the temperature. Near the gelation temperature and at particle concentrations of a few per cent by weight, the gels were sufficiently weak to slowly compact under gravity. On quenching to slightly lower temperatures, the gels still settled, but the top of the sediment did not become flat, as is usually the case. This seems to be related to an unusual mechanism for gel compaction, which starts by forming a more dense structure at the top of the sample. It is proposed that this is related to the entangled polymer chains on neighbouring particles resisting substantial rearrangement of the local structure. The transient gelation phenomenon, observed previously for mixtures of colloid and non-adsorbing polymer, has so far not been observed for our system.

  3. Formation and Stability of Manganese-Desferrioxamine B Complexes

    NASA Astrophysics Data System (ADS)

    Duckworth, O. W.; Sposito, G.

    2004-12-01

    Recent laboratory and field studies suggest that Mn(III) forms persistent aqueous complexes with high-affinity ligands, particularly those produced by microbes. Aqueous Mn(III) species thus may play a significant, as-yet largely unexplored role in biogeochemical processes. We determined stability constants for both Mn(II) and Mn(III) complexes with the common tri-hydroxamate siderophore, desferrioxamine B (DFOB). We found the thermodynamic stability constants of the species, MHDFOBx-2 [M = Mn(II), x = 2; M = Mn(III), x = 3] to be KMn(II) = 106.8 ± 0.1 and KMn(III) = 1029.2 ± 0.2 at 25° C. The Mn(III)HDFOB+ complex is stable for pH in the range 7.0 - 11.3, but at pH < 7.0, Mn(III)HDFOB+ decays by internal electron transfer, yielding oxidized DFOB products and Mn2+. For pH > 11.3, the complex decays by disproportionation, yielding Mn2+ and solid MnO2. The Mn(III)HDFOB+ complex may be formed by either the oxidation of aqueous Mn(II)-HDFOB complexes or the DFOB-promoted dissolution of solid manganese(III) oxides. The DFOB-promoted Mn(II) air-oxidation rate was found to be proportional to the concentration of Mn(II)-DFOB complexes. At pH > 6.5, the dissolution of manganite (γ -MnOOH) in the presence of DFOB is predominantly a non-reductive ligand-promoted reaction whose rate is proportional to the adsorbed surface concentration of DFOB. At pH < 6.5, Mn2+ is the dominant species resulting from manganite dissolution, thus implicating a reductive dissolution pathway. The results of this study have broad implications for the biogeochemical cycling of manganese, redox-active elements, and siderophores in natural waters and soils.

  4. Protein modification by acrolein: Formation and stability of cysteine adducts

    PubMed Central

    Cai, Jian; Bhatnagar, Aruni; Pierce, William M.

    2010-01-01

    The toxicity of the ubiquitous pollutant and endogenous metabolite, acrolein, is due in part to covalent protein modifications. Acrolein reacts readily with protein nucleophiles via Michael addition and Schiff base formation. Potential acrolein targets in protein include the nucleophilic side chains of cysteine, histidine, and lysine residues as well as the free amino terminus of proteins. Although cysteine is the most acrolein-reactive residue, cysteine-acrolein adducts are difficult to identify in vitro and in vivo. In this study, model peptides with cysteine, lysine, and histidine residues were used to examine the reactivity of acrolein. Results from these experiments show that acrolein reacts rapidly with cysteine residues through Michael addition to form M+56 Da adducts. These M+56 adducts are, however, not stable, even though spontaneous dissociation of the adduct is slow. Further studies demonstrated that when acrolein and model peptides are incubated at physiological pH and temperature, the M+56 adducts decreased gradually accompanied by the increase of M+38 adducts, which are formed from intra-molecular Schiff base formation. Adduct formation with the side chains of other amino acid residues (lysine and histidine) was much slower than cysteine and required higher acrolein concentration. When cysteine residues were blocked by reaction with iodoacetamide and higher concentrations of acrolein were used, adducts of the N-terminal amino group or histidyl residues were formed but lysine adducts were not detected. Collectively, these data demonstrate that acrolein reacts avidly with protein cysteine residues and that the apparent loss of protein-acrolein Michael adducts over time may be related to the appearance of a novel (M+38) adduct. These findings may be important in identification of in vivo adducts of acrolein with protein cysteine residues. PMID:19231900

  5. Formation and stability of Vitamin E enriched nanoemulsions stabilized by Octenyl Succinic Anhydride modified starch

    USDA-ARS?s Scientific Manuscript database

    Vitamin E (VE) is highly susceptible to autoxidation; therefore, it requires systems to encapsulate and protect it from autoxidation.In this study,we developed VE delivery systems, which were stabilized by Capsul® (MS), a starch modified with octenyl succinic anhydride. Influences of interfacial ten...

  6. Tracking antigen-specific CD8⁺ T cells using MHC class I multimers.

    PubMed

    Alanio, Cécile; Bouvier, Isabelle; Jusforgues-Saklani, Hélène; Albert, Matthew L

    2013-01-01

    The tracking of epitope-specific T cells is a useful approach for the study of adaptive immune responses. This protocol describes how Major Histocompatibility Complex Class I (MHC-I) multimers can be used to stain, enrich, and enumerate (rare) populations of CD8(+) T cells specific for a given antigen. It provides the detailed steps for multimer labeling, magnetic enrichment, and cytometric analysis. Additionally, it provides informations for multiplexing experiments in order to achieve simultaneous detection of multiple antigenic specificities, and strategies for coupling the protocol with functional assays (e.g., intracellular cytokine staining). Future developments in cytometric systems (e.g., mass spectroscopy-based cytometry) and gene expression studies (e.g., single cell PCR) will extend these approaches and provide an unprecedented assessment of the immune repertoire.

  7. Formation and stability of high-spin alkali clusters.

    PubMed

    Schulz, C P; Claas, P; Schumacher, D; Stienkemeier, F

    2004-01-09

    Helium nanodroplet isolation has been applied to agglomerate alkali clusters at temperatures of 380 mK. The very weak binding to the surface of the droplets allows a selection of only weakly bound, high-spin states. Here we show that larger clusters of alkali atoms in high-spin states can be formed. The lack of strong bonds from pairing electrons makes these systems nonmetallic, van der Waals-like complexes of metal atoms. We find that sodium and potassium readily form such clusters containing up to 25 atoms. In contrast, this process is suppressed for rubidium and cesium. Apparently, for these heavy alkalis, larger high-spin aggregates are not stable and depolarize spontaneously upon cluster formation.

  8. Formation and Stability of High-Spin Alkali Clusters

    NASA Astrophysics Data System (ADS)

    Schulz, C. P.; Claas, P.; Schumacher, D.; Stienkemeier, F.

    2004-01-01

    Helium nanodroplet isolation has been applied to agglomerate alkali clusters at temperatures of 380mK. The very weak binding to the surface of the droplets allows a selection of only weakly bound, high-spin states. Here we show that larger clusters of alkali atoms in high-spin states can be formed. The lack of strong bonds from pairing electrons makes these systems nonmetallic, vanderWaals like complexes of metal atoms. We find that sodium and potassium readily form such clusters containing up to 25atoms. In contrast, this process is suppressed for rubidium and cesium. Apparently, for these heavy alkalis, larger high-spin aggregates are not stable and depolarize spontaneously upon cluster formation.

  9. Gas-phase structure of the histone multimers characterized by ion mobility mass spectrometry and molecular dynamics simulation.

    PubMed

    Saikusa, Kazumi; Fuchigami, Sotaro; Takahashi, Kyohei; Asano, Yuuki; Nagadoi, Aritaka; Tachiwana, Hiroaki; Kurumizaka, Hitoshi; Ikeguchi, Mitsunori; Nishimura, Yoshifumi; Akashi, Satoko

    2013-04-16

    The minimum structural unit of chromatin is the nucleosome core particle (NCP), consisting of 146 bp of DNA wrapped around a histone octamer, which itself contains two H2A/H2B dimers and one (H3/H4)2 tetramer. These multimers possess functionally important tail regions that are intrinsically disordered. In order to elucidate the mechanisms behind NCP assembly and disassembly processes, which are highly related to gene expression, structural characterization of the H2A/H2B dimer and (H3/H4)2 tetramer will be of importance. In the present study, human histone multimers with disordered tail regions were characterized by electrospray ionization (ESI) ion mobility-mass spectrometry (IM-MS) and molecular dynamics (MD) simulation. Experimentally obtained arrival times of these histone multimer ions showed rather wide distributions, implying that multiple conformers exist for each histone multimer in the gas phase. To examine their structures, MD simulations of the histone multimers were performed first in solution and then in vacuo at four temperatures, resulting in a variety of histone multimer structures. Theoretical collision cross-section (CCS) values calculated for the simulated structures revealed that structural models with smaller CCS values had more compact tail regions than those with larger CCS values. This implied that variation of the CCS values of the histone multimers were primarily due to the random behaviors of the tail regions in the gas phase. The combination of IM-MS and MD simulation enabled clear and comprehensive characterization of the gas-phase structures of histone multimers containing disordered tails.

  10. Dynamical Formation and Stability of Helical Prominence Magnetic Fields

    NASA Astrophysics Data System (ADS)

    DeVore, C. Richard; Antiochos, Spiro K.

    2000-08-01

    We numerically simulated an initially bipolar magnetic field subjected to shear motions concentrated near and parallel to the photospheric polarity inversion line. The simulations yield three principal results: (1) For footpoint displacements comparable to the bipole's depth, the sheared core field acquires a dipped geometry that can support cool prominence material against gravity. This confirms previous force-free equilibrium models for forming dipped prominence fields by differential shear and extends them to much larger applied shears and time-dependent dynamics with dissipation. (2) At larger shears, we discover a new mechanism for forming the helical magnetic fields of prominences. It entails a two-step process of magnetic reconnection in the corona. First, flux in the sheared core reconnects with flux in the unsheared, restraining arcade, producing new pairs of interlinked field lines. Second, as these interlinked fields continue to be sheared, they are brought together and reconnect again, producing helical field threading and enveloping the body of the prominence. This mechanism can account for the twist that is often observed in both quiescent and erupting prominences. (3) Even for very large shears, the dipped, helical structure settles into an apparently stable equilibrium, despite the substantial amount of reconnection and twist in the magnetic field. We conclude that neither a kink instability of the helical core field, nor a tether-cutting instability of the restraining arcade, is operating in our low-lying model prominence. This concurs with both observations and a theoretical model for prominence stability.

  11. Formation and stability of secondary structures in globular proteins

    NASA Astrophysics Data System (ADS)

    Bascle, J.; Garel, T.; Orland, H.

    1993-02-01

    We study two models for the formation and packing of helices and sheets in globular (compact) proteins. These models, based on weighted Hamiltonian paths on a regular lattice both exhibit a first order transition between a compact high temperature phase, with no extended secondary structures, and a quasi-frozen compact phase, with secondary structures invading the whole lattice. The quasi-frozen phase with very weak temperature dependence, is identified as the native phase of proteins, whereas the high-temperature phase may be relevant to the so-called molten globule state of proteins. Nous étudions deux modèles pour la formation et l'empilement d'hélices ou de feuillets dans la phase globulaire (compacte) des protéines. ces modèles, fondés sur des chemins hamiltoniens pondérés sur réseau, possèdent une transition de phase du premier ordre, entre (i) une phase haute température compacte, avec structures secondaires non étendues, et (ii) une phase compacte quasi-gelée, où les structures secondaires envahissent tout le réseau. La phase quasi-gelée, qui a une dépendance en température très faible, est identifiée à la phase native des protéines; la phase haute température est peut-être reliée à la phase native “globule fondu” (molten globule) des protéines.

  12. Formation and stabilization of nanoemulsions using biosurfactants: Rhamnolipids.

    PubMed

    Bai, Long; McClements, David Julian

    2016-10-01

    Nanoemulsions are used in the food, cosmetics, personal care and pharmaceutical industries to provide desirable optical, textural, stability, and delivery characteristics. In many industrial applications, it is desirable to formulate nanoemulsions using natural ingredients so as to develop label-friendly products. Rhamnolipids are biosurfactants isolated from certain microorganisms using fermentation processes. They are glycolipids that have a polar head consisting of rhamnose units and a non-polar tail consisting of a hydrocarbon chain. In this study, the interfacial characteristics of this natural surfactant at medium chain triglyceride (MCT) oil-water interfaces were characterized, and its ability to form nanoemulsions was compared to that of another natural surfactant (quillaja saponins). The influence of rhamnolipid concentration, homogenization pressure, and oil type on the mean droplet diameter of emulsions produced by microfluidization was determined. Rhamnolipids were highly effective at forming small droplets (d32<0.15μm) at low surfactant-to-oil ratios (SOR<1:10) for MCT oil. Rhamnolipids could also be used to form small droplets using long chain triglyceride oils, such as corn and fish oil. Rhamnolipid-coated droplets were stable to aggregation over a range of pH values (5-9), salt concentrations (<100mM NaCl) and temperatures (20-90°C). However, droplet aggregation was observed at highly acidic (pH 2-4) and high ionic strength (200-500mM NaCl) conditions. These effects were attributed to a reduction in electrostatic repulsion at low pH and high salt levels. Rhamnolipid-coated droplets had a high negative charge at neutral pH that decreased in magnitude with decreasing pH. These results indicate that rhamnolipids are effective natural surfactants that may be able to replace synthetic surfactants in certain commercial applications.

  13. Formation of hydrothermal biochar and char stability in soils

    NASA Astrophysics Data System (ADS)

    Baumert, Julia; Gleixner, Gerd

    2010-05-01

    The use of charcoal as an artificial soil additive is suggested to beneficially modify degraded soil, reduce greenhouse gas emission and improve crop yields. So far research has been mainly done using pyrolysis chars which are produced by dry pyrolysis of biomass. Here we used hydrothermal carbonisation (HTC). In this process wet biomass is converted to char at moderate temperatures (~200°C). Due to the exothermal carbonisation reaction this process is almost energy neutral, i.e. the energy needed to start the carbonisation equals the energy released during carbonisation. Different process parameters have been used to modify the properties of the produced chars. We examined the chemical and morphological properties of hydrothermally synthesized biochar. Cellulose, yeast and sucrose were used as model substances for a range of parent material types like organic and garden waste as well as residues from biogas production. By modifying the process conditions of hydrothermal carbonisation concerning temperature (180°C to 220°C) and duration (6 hours to 24 hours) we produced a variety of different biochars. Our findings suggest that the elemental composition and the thermal stability of resulting chars depend on the feedstock and production conditions. Functional group chemistry determined by NMR shows that the aromaticity of the product increases as a function of temperature whereas the amount of O-alkylic compounds declines, concurrently. Our results show that the properties of the biochar can be manipulated by the modification of process conditions. This opens the opportunity to adjust the charcoal to a given soil type.

  14. Interface stability and defect formation during crystal growth

    SciTech Connect

    Fabietti, L.M.R.

    1991-01-08

    Unidirectional solidification experiments have been carried out in organic crystals with the aim of improving our knowledge on the effects of constraints on the interface morphology and to increase our understanding of the growth of anisotropic materials. The experimental information shows that lateral constraints such as a sharp change in the cross-sectional area in the solid liquid interface path, can produce important changes in the microstructure if the interface morphology is planar, cellular or dendritic. The study of anisotropic materials cover several topics. It is first shown that slight anisotropy does not influence the dendrite tip selection criterion. This conclusion is obtained from the analysis of the relationship between tip radius and velocity for dendrites growing under the steady state condition for two different materials, CBr{sub 4} and C{sub 2}Cl{sub 6}, which have different surface energy anisotropy values. The values of the dendrite operating parameters {sigma}* are compared with the predictions of the solvability theory and the morphological stability theory. The experiments show better agreement with the latter theory. Critical experiments have been designed and carried out to find the response functions which determine the composition and temperature of the interface as a function of velocity in faceted materials. The experiments, carried out in Napthalene-Camphor system, indicate a strong temperature dependence of the planar interface growth which can be correlated with the step growth mechanism. Experiments on the interface instability show an important dependence on the crystallographic orientation. Unidirectional solidification experiments in zone refined Napthalene confined in very thin cells (gap size {le} 50 {mu}m) have proven to be a good method to study the defect production at the solid liquid interface. 118 refs., 90 figs., 5 tabs.

  15. Food volatile compounds facilitating HII mesophase formation: solubilization and stability.

    PubMed

    Amar-Zrihen, Natali; Aserin, Abraham; Garti, Nissim

    2011-05-25

    Four lipophilic food volatile molecules of different chemical characteristics, phenylacetaldehyde, 2,6-dimethyl-5-heptenal, linalool, and trans-4-decenal, were solubilized into binary mixtures of monoolein/water, facilitating the formation of reverse hexagonal (H(II)) mesophases at room temperature without the need of solvents or triglycerides. Some of the flavor compounds are important building blocks of the hexagonal mesostructure, preventing phase transition with aging. The solubilization loads were relatively high: 12.6, 10.0, 12.6, and 10.0 wt % for phenylacetaldehyde, 2,6-dimethyl-5-heptenal, linalool, and trans-4-decenal, respectively. Phenylacetaldehyde formed mixtures of lamellar and cubic phases. Linalool, 2,6-dimethyl-5-heptenal, and trans-4-decenal induced structural shift from lamellar directly to H(II) mesophase, remaining stable at room temperature. Lattice parameters were found to increase with water content and to decrease with temperature and/or food volatile content. trans-4-Decenal produces more stable H(II) mesophase compared to linalool-loaded mesophase. At 40-60 °C, depending on the chemical structure and on the solubilization location of the food volatile compounds, the H(II) mesophase transforms to isotropic micellar phase, facilitating the release of the food volatile compounds. Molecular interactions suggest the existence of two consecutive stages in the solubilization process.

  16. Contribution of plant lignin to the soil organic matter formation and stabilization

    USDA-ARS?s Scientific Manuscript database

    Lignin is the third most abundant plant constituent after cellulose and hemicellulose and thought to be one of the building blocks for soil organic matter formation. Lignin can be used as a predictor for long-term soil organic matter stabilization and C sequestration. Soils and humic acids from fo...

  17. ARHGAP18: an endogenous inhibitor of angiogenesis, limiting tip formation and stabilizing junctions

    PubMed Central

    Chang, Garry HK; Lay, Angelina J; Ting, Ka Ka; Zhao, Yang; Coleman, Paul R; Powter, Elizabeth E; Formaz-Preston, Ann; Jolly, Christopher J; Bower, Neil I; Hogan, Benjamin M; Rinkwitz, Silke; Becker, Thomas S; Vadas, Mathew A; Gamble, Jennifer R

    2014-01-01

    The formation of the vascular network requires a tightly controlled balance of pro-angiogenic and stabilizing signals. Perturbation of this balance can result in dysregulated blood vessel morphogenesis and drive pathologies including cancer. Here, we have identified a novel gene, ARHGAP18, as an endogenous negative regulator of angiogenesis, limiting pro-angiogenic signaling and promoting vascular stability. Loss of ARHGAP18 promotes EC hypersprouting during zebrafish and murine retinal vessel development and enhances tumor vascularization and growth. Endogenous ARHGAP18 acts specifically on RhoC and relocalizes to the angiogenic and destabilized EC junctions in a ROCK dependent manner, where it is important in reaffirming stable EC junctions and suppressing tip cell behavior, at least partially through regulation of tip cell genes, Dll4, Flk-1 and Flt-4. These findings highlight ARHGAP18 as a specific RhoGAP to fine tune vascular morphogenesis, limiting tip cell formation and promoting junctional integrity to stabilize the angiogenic architecture. PMID:25425145

  18. Conditions for circumstellar disc formation - II. Effects of initial cloud stability and mass accretion rate

    NASA Astrophysics Data System (ADS)

    Machida, Masahiro N.; Matsumoto, Tomoaki; Inutsuka, Shu-ichiro

    2016-12-01

    Disc formation in strongly magnetized cloud cores is investigated using a three-dimensional magnetohydrodynamic simulation with a focus on the effects of the initial cloud stability and the mass accretion rate. The initial cloud stability greatly alters the disc formation process even for prestellar clouds with the same mass-to-flux ratio. A high mass accretion rate on to the disc-forming region is realized in initially unstable clouds, and a large angular momentum is introduced into the circumstellar region in a short time. The region around the protostar has both a thin infalling envelope and a weak magnetic field, which both weaken the effect of magnetic braking. The growth of the rotation-supported disc is promoted in such unstable clouds. Conversely, clouds in an initially near-equilibrium state show lower accretion rates of mass and angular momentum. The angular momentum is transported to the outer envelope before protostar formation. After protostar formation, the circumstellar region has a thick infalling envelope and a strong magnetic field that effectively brakes the disc. As a result, disc formation is suppressed when the initial cloud is in a nearly stable state. The density distribution of the initial cloud also affects the disc formation process. Disc growth strongly depends on the initial conditions when the prestellar cloud has a uniform density, whereas there is no significant difference in the disc formation process in prestellar clouds with non-uniform densities.

  19. Hagfish slime exudate stabilization and its effect on slime formation and functionality

    PubMed Central

    Zurflüh, R.; Widmer, M.; Windhab, E. J.

    2017-01-01

    ABSTRACT Hagfish produce vast amounts of slime when under attack. The slime is the most dilute hydrogel known to date, and is a highly interesting material for biomaterial research. It forms from a glandular secrete, called exudate, which deploys upon contact with seawater. To study slime formation ex vivo and to characterize its material properties, stabilization of the sensitive slime exudate is crucial. In this study, we compared the two main stabilization methods, dispersion in high osmolarity citrate/PIPES (CP) buffer and immersion in oil, and tested the influence of time, temperature and pH on the stability of the exudate and functionality of the slime. Using water retention measurements to assess slime functionality, we found that CP buffer and oil preserved the exudate within the first 5 hours without loss of functionality. For longer storage times, slime functionality decreased for both stabilization methods, for which the breakdown mechanisms differed. Stabilization in oil likely favored temperature-sensitive osmotic-driven swelling and rupture of the mucin vesicles, causing the exudate to gel and clump. Extended storage in CP buffer resulted in an inhibited unraveling of skeins. We suggest that a water soluble protein glue, which mediates skein unraveling in functional skeins, denatures and gradually becomes insoluble during storage in CP buffer. The breakdown was accentuated when the pH of the CP buffer was raised from pH 6.7 to pH 8.5, probably caused by increased denaturation of the protein glue or by inferior vesicle stabilization. However, when fresh exudate was mixed into seawater or phosphate buffer at pH 6-9, slime functionality was not affected, showing pH insensitivity of the slime formation around a neutral pH. These insights on hagfish exudate stabilization mechanisms will support hagfish slime research at a fundamental level, and contribute to resolve the complex mechanisms of skein unraveling and slime formation. PMID:28619721

  20. Hagfish slime exudate stabilization and its effect on slime formation and functionality.

    PubMed

    Böni, L J; Zurflüh, R; Widmer, M; Fischer, P; Windhab, E J; Rühs, P A; Kuster, S

    2017-07-15

    Hagfish produce vast amounts of slime when under attack. The slime is the most dilute hydrogel known to date, and is a highly interesting material for biomaterial research. It forms from a glandular secrete, called exudate, which deploys upon contact with seawater. To study slime formation ex vivo and to characterize its material properties, stabilization of the sensitive slime exudate is crucial. In this study, we compared the two main stabilization methods, dispersion in high osmolarity citrate/PIPES (CP) buffer and immersion in oil, and tested the influence of time, temperature and pH on the stability of the exudate and functionality of the slime. Using water retention measurements to assess slime functionality, we found that CP buffer and oil preserved the exudate within the first 5 hours without loss of functionality. For longer storage times, slime functionality decreased for both stabilization methods, for which the breakdown mechanisms differed. Stabilization in oil likely favored temperature-sensitive osmotic-driven swelling and rupture of the mucin vesicles, causing the exudate to gel and clump. Extended storage in CP buffer resulted in an inhibited unraveling of skeins. We suggest that a water soluble protein glue, which mediates skein unraveling in functional skeins, denatures and gradually becomes insoluble during storage in CP buffer. The breakdown was accentuated when the pH of the CP buffer was raised from pH 6.7 to pH 8.5, probably caused by increased denaturation of the protein glue or by inferior vesicle stabilization. However, when fresh exudate was mixed into seawater or phosphate buffer at pH 6-9, slime functionality was not affected, showing pH insensitivity of the slime formation around a neutral pH. These insights on hagfish exudate stabilization mechanisms will support hagfish slime research at a fundamental level, and contribute to resolve the complex mechanisms of skein unraveling and slime formation. © 2017. Published by The Company

  1. Assessment of the role of agricultural wastes in aggregate formation and their stability.

    PubMed

    Yilmaz, Erdem

    2014-11-01

    The purpose of this study was to evaluate the effects of three agricultural processing wastes (APWs) on aggregate formation and aggregate stability in a sandy loam textured soil (Typic Xerofluvent) in Antalya, Turkey. The effects of APW applications on aggregate formation and aggregate stability were observed for different aggregate size groups (>4; 4-2; 2-1; 1-0.5; 0.5-0.25; 0.25-0.050 and <0.050 mm). Sugar Beet Pulp (SBP), Apple Pomace (AP) and Cotton Gin Waste (CGW) were applied to soil as fresh material (dry weight basis 0, 10, 20 and 40 t ha(-1)), and a greenhouse pot experiment was conducted using a completely randomized design with five replicates of each treatment. The study consisted of two periods. The first period (P1) consisted of a six-month incubation period (1st sample period). The second period (P2) is a six-month period and includes an eight-week green bean (Phaseolus vulgaris L.) growing process (2nd sample period). At the end of the first six months and fourteen months in total, aggregate formation and aggregate stability were determined and their correlation to different C sources was explained. At the end of the experiment, formation of aggregates was increased with increase in the application level of organic wastes in particular intermediate aggregates. Increase in the incubation time significantly enhanced the formation of particular macroaggregates. Soil aggregate stability of all aggregate sizes generally increased with the increasing in the level of implementation. In addition, incubation time effects on aggregate stability for macroaggregates were not significant, but significant for macro and microaggregates. Copyright © 2014. Published by Elsevier Ltd.

  2. Comparison of different procedures to stabilize biogas formation after process failure in a thermophilic waste digestion system: influence of aggregate formation on process stability.

    PubMed

    Kleyböcker, A; Liebrich, M; Kasina, M; Kraume, M; Wittmaier, M; Würdemann, H

    2012-06-01

    Following a process failure in a full-scale biogas reactor, different counter measures were undertaken to stabilize the process of biogas formation, including the reduction of the organic loading rate, the addition of sodium hydroxide (NaOH), and the introduction of calcium oxide (CaO). Corresponding to the results of the process recovery in the full-scale digester, laboratory experiments showed that CaO was more capable of stabilizing the process than NaOH. While both additives were able to raise the pH to a neutral milieu (pH>7.0), the formation of aggregates was observed particularly when CaO was used as the additive. Scanning electron microscopy investigations revealed calcium phosphate compounds in the core of the aggregates. Phosphate seemed to be released by phosphorus-accumulating organisms, when volatile fatty acids accumulated. The calcium, which was charged by the CaO addition, formed insoluble salts with long chain fatty acids, and caused the precipitation of calcium phosphate compounds. These aggregates were surrounded by a white layer of carbon rich organic matter, probably consisting of volatile fatty acids. Thus, during the process recovery with CaO, the decrease in the amount of accumulated acids in the liquid phase was likely enabled by (1) the formation of insoluble calcium salts with long chain fatty acids, (2) the adsorption of volatile fatty acids by the precipitates, (3) the acid uptake by phosphorus-accumulating organisms and (4) the degradation of volatile fatty acids in the aggregates. Furthermore, this mechanism enabled a stable process performance after re-activation of biogas production. In contrast, during the counter measure with NaOH aggregate formation was only minor resulting in a rapid process failure subsequent the increase of the organic loading rate.

  3. Comparison of different procedures to stabilize biogas formation after process failure in a thermophilic waste digestion system: Influence of aggregate formation on process stability

    SciTech Connect

    Kleyboecker, A.; Liebrich, M.; Kasina, M.; Kraume, M.; Wittmaier, M.; Wuerdemann, H.

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Mechanism of process recovery with calcium oxide. Black-Right-Pointing-Pointer Formation of insoluble calcium salts with long chain fatty acids and phosphate. Black-Right-Pointing-Pointer Adsorption of VFAs by the precipitates resulting in the formation of aggregates. Black-Right-Pointing-Pointer Acid uptake and phosphate release by the phosphate-accumulating organisms. Black-Right-Pointing-Pointer Microbial degradation of volatile fatty acids in the aggregates. - Abstract: Following a process failure in a full-scale biogas reactor, different counter measures were undertaken to stabilize the process of biogas formation, including the reduction of the organic loading rate, the addition of sodium hydroxide (NaOH), and the introduction of calcium oxide (CaO). Corresponding to the results of the process recovery in the full-scale digester, laboratory experiments showed that CaO was more capable of stabilizing the process than NaOH. While both additives were able to raise the pH to a neutral milieu (pH > 7.0), the formation of aggregates was observed particularly when CaO was used as the additive. Scanning electron microscopy investigations revealed calcium phosphate compounds in the core of the aggregates. Phosphate seemed to be released by phosphorus-accumulating organisms, when volatile fatty acids accumulated. The calcium, which was charged by the CaO addition, formed insoluble salts with long chain fatty acids, and caused the precipitation of calcium phosphate compounds. These aggregates were surrounded by a white layer of carbon rich organic matter, probably consisting of volatile fatty acids. Thus, during the process recovery with CaO, the decrease in the amount of accumulated acids in the liquid phase was likely enabled by (1) the formation of insoluble calcium salts with long chain fatty acids, (2) the adsorption of volatile fatty acids by the precipitates, (3) the acid uptake by phosphorus-accumulating organisms and (4

  4. Minimal transition state charge stabilization of the oxyanion during peptide bond formation by the ribosome.

    PubMed

    Carrasco, Nicolas; Hiller, David A; Strobel, Scott A

    2011-12-06

    Peptide bond formation during ribosomal protein synthesis involves an aminolysis reaction between the aminoacyl α-amino group and the carbonyl ester of the growing peptide via a transition state with a developing negative charge, the oxyanion. Structural and molecular dynamic studies have suggested that the ribosome may stabilize the oxyanion in the transition state of peptide bond formation via a highly ordered water molecule. To biochemically investigate this mechanistic hypothesis, we estimated the energetic contribution to catalytic charge stabilization of the oxyanion using a series of transition state mimics that contain different charge distributions and hydrogen bond potential on the functional group mimicking the oxyanion. Inhibitors containing an oxyanion mimic that carried a neutral charge and a mimic that preserved the negative charge but could not form hydrogen bonds had less than a 3-fold effect on inhibitor binding affinity. These observations argue that the ribosome provides minimal transition state charge stabilization to the oxyanion during peptide bond formation via the water molecule. This is in contrast to the substantial level of oxyanion stabilization provided by serine proteases. This suggests that the oxyanion may be neutralized via a proton shuttle, resulting in an uncharged transition state.

  5. Tuning the formation and stability of microcapsules by environmental conditions and chitosan structure.

    PubMed

    Ren, Ying; Xie, Hongguo; Liu, Xiaocen; Yang, Fan; Yu, Weiting; Ma, Xiaojun

    2016-10-01

    The goal of this work is to tune the formation and stability of the alginate-chitosan (AC) polyelectrolyte complexes (PECs) and microcapsules. Particularly, we explore the role of the conformation of chitosan on its interaction with alginate to understand the mechanism underpinning their interactions at the molecular level. Reducing the charge density by increasing pH will increase the compactness of chitosan, the values of the enthalpy (H) and stoichiometry (N) of binding between chitosan and alginate. Consequently, chitosan has advantage in being adsorbed on alginate beads to form microcapsules, including the binding rate and binding amount. Though the total heat release remain similar in the range of ionic strength, chitosan diffuses much easier into alginate hydrogels when in higher ionic strength. Increasing pH and ionic strength both help AC microcapsules to have higher stability. The results indicate that the formation and stability of AC microcapsules are related to the rigidity and conformations of chitosan molecules. After increasing acetylation degree (DA) of chitosan, the binding rate of chitosan and mechanical strength of AC microcapsules are both reduced. This work demonstrates the versatility and feasibility of tuning the formation and stability of polysaccharide microcapsules by physical factors and chitosan chemical structures.

  6. Pore pressure prediction and well bore stability analysis in Lower Paleozoic shale formation, N Poland

    NASA Astrophysics Data System (ADS)

    Słota-Valim, Małgorzata

    2017-04-01

    Pore pressure and wellbore stability sometimes pose a serious challenge while drilling, especially through rock formations of reduced strength or through intervals where abnormally high pore pressure was formed. Lack of prediction of pore pressure and lack of wellbore stability analysis introduce an element of uncertainty in selection of drilling fluid density. Too low density of drilling fluid can lead to uncontrolled flow of the reservoir fluid to the wellbore (kicks), washouts and occurrence of cavern like structures called breakouts. On the other hand too high density can lead to formation fracturing and further fluid loss. Therefore wellbore stability loss frequently prolongs the operating time, rising the costs of the drilling and in severe cases may end up well abandons loss. The above mentioned complications can be avoided or greatly reduced by reliable analysis of drilling conditions with the aspects to geomechanical characteristics of drilled rock formations. This study presents the results of analysis of pore pressure performed with the use of commonly used in oil industry methods. The analysis of pore pressure was carried out in almost entire profile of four boreholes drilled through lower Paleozoic shales, deposited in the southern part of the Baltic Basin. In addition wellbore stability analysis was performed in the well with most complete geomechanical input data base. Obtained results helped identifying intervals with elevated pore pressure could pose a risk during drilling operation. Elaborated 1D geomechanical model provides safe mud weight window helping to reduce the instabilities risk and constitute a great tool for geomechanical model validation.

  7. A Wellbore Stability Model for a Deviated Well in a Transversely Isotropic Formation Considering Poroelastic Effects

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Jin, Yan; Lu, Yunhu; Chen, Mian; Hou, Bing; Chen, Wenyi; Wen, Xin; Yu, Xiaoning

    2016-09-01

    To analyse wellbore stability phenomena when drilling through a transversely isotropic formation such as shale, a wellbore stability model is developed based on the coordinate transformation method and complex variable elasticity theory. In order to comprehensively consider the anisotropies in the transversely isotropic formation, the model includes the followings: 1. the elastic anisotropy due to the sedimentation effect and naturally developed fractures and 2. the strength anisotropy due to the poor cementation between bedding planes and natural fractures. The model is further generalized by accounting for an arbitrary wellbore trajectory under an arbitrary in situ stress orientation. Next, the model is used in a parametric study that includes factors such as elastic anisotropy, strength anisotropy, multiple weak planes, in situ stress anisotropy, and poroelastic anisotropy, all of which can have a great influence on wellbore stability. Finally, a correction for a frequently used failure criterion has been made to ensure that the newly developed model is comprehensive and accurate for wellbore stability analyses in highly heterogeneous formations.

  8. Feasibility of formation of nanocrystalline Fe-Cr-Y alloys: Mechanical properties and thermal stability

    SciTech Connect

    Muthaiah, V.M. Suntharavel; Babu, L. Hari; Koch, Carl C.; Mula, Suhrit

    2016-04-15

    Aim of the present study is to investigate the feasibility of formation of Fe-Cr-Y disordered solid solutions by mechanical alloying and effect of Y on the thermal stability and mechanical properties of such nanocrystalline alloys. Thermodynamic analysis by Miedema's and Toop's models confirms that the energy barrier required to form the disordered solid solutions has been overcome by the stored energy due to strain dislocations and grain boundary defects. Although limited grain growth was observed during annealing of metastable Fe-15Cr-1Y alloy, the grains size found to stabilize at ~ 53 nm after annealing at 1000 °C; and the corresponding hardness value measured to be also quite high (8 GPa). The grain size analysis by TEM and AFM is well-corroborated with the XRD crystallite size. The high thermal stability and large strengthening effect have been discussed in the light of grain boundary pinning by solute segregation, solute drag effect and Zener pinning due to intermetallic phase(s). - Highlights: • Metastable Fe-Cr-Y alloys were developed by mechanical alloying for nuclear applications. • Formation of Fe-Cr-Y solid solutions was explained from the Gibbs free energy change using Toop's model. • 1 at.% Y found to be very effective in the stabilization of Fe-Cr alloys at high temperatures. • Solute drag effect and/or segregation of Y atoms played a pivotal role in the stabilization.

  9. The diskmass survey. VIII. On the relationship between disk stability and star formation

    SciTech Connect

    Westfall, Kyle B.; Verheijen, Marc A. W.; Andersen, David R.; Bershady, Matthew A.; Martinsson, Thomas P. K.; Swaters, Robert A.

    2014-04-10

    We study the relationship between the stability level of late-type galaxy disks and their star-formation activity using integral-field gaseous and stellar kinematic data. Specifically, we compare the two-component (gas+stars) stability parameter from Romeo and Wiegert (Q {sub RW}), incorporating stellar kinematic data for the first time, and the star-formation rate estimated from 21 cm continuum emission. We determine the stability level of each disk probabilistically using a Bayesian analysis of our data and a simple dynamical model. Our method incorporates the shape of the stellar velocity ellipsoid (SVE) and yields robust SVE measurements for over 90% of our sample. Averaging over this subsample, we find a meridional shape of σ{sub z}/σ{sub R}=0.51{sub −0.25}{sup +0.36} for the SVE and, at 1.5 disk scale lengths, a stability parameter of Q {sub RW} = 2.0 ± 0.9. We also find that the disk-averaged star-formation-rate surface density ( Σ-dot {sub e,∗}) is correlated with the disk-averaged gas and stellar mass surface densities (Σ {sub e,} {sub g} and Σ {sub e,} {sub *}) and anti-correlated with Q {sub RW}. We show that an anti-correlation between Σ-dot {sub e,∗} and Q {sub RW} can be predicted using empirical scaling relations, such that this outcome is consistent with well-established statistical properties of star-forming galaxies. Interestingly, Σ-dot {sub e,∗} is not correlated with the gas-only or star-only Toomre parameters, demonstrating the merit of calculating a multi-component stability parameter when comparing to star-formation activity. Finally, our results are consistent with the Ostriker et al. model of self-regulated star-formation, which predicts Σ-dot {sub e,∗}/Σ{sub e,g}∝Σ{sub e,∗}{sup 1/2}. Based on this and other theoretical expectations, we discuss the possibility of a physical link between disk stability level and star-formation rate in light of our empirical results.

  10. Non-aqueous foams: Current understanding on the formation and stability mechanisms.

    PubMed

    Fameau, Anne-Laure; Saint-Jalmes, Arnaud

    2017-09-01

    The most common types of liquid foams are aqueous ones, and correspond to gas bubbles dispersed in an aqueous liquid phase. Non-aqueous foams are also composed of gas bubbles, but dispersed in a non-aqueous solvent. In the literature, articles on such non-aqueous foams are scarce; however, the study of these foams has recently emerged, especially because of their potential use as low calories food products and of their increasing importance in various other industries (such as, for instance, the petroleum industry). Non-aqueous foams can be based on three different foam stabilizers categories: specialty surfactants, solid particles and crystalline particles. In this review, we only focus on recent advances explaining how solid and crystalline particles can lead to the formation of non-aqueous foams, and stabilize them. In fact, as discussed here, the foaming is both driven by the physical properties of the liquid phase and by the interactions between the foam stabilizer and this liquid phase. Therefore, for a given stabilizer, different foaming and stability behavior can be found when the solvent is varied. This is different from aqueous systems for which the foaming properties are only set by the foam stabilizer. We also highlight how these non-aqueous foams systems can easily become responsive to temperature changes or by the application of light. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Role of the crystal field stabilization energy in the formation of metal(II) formate mixed crystals

    NASA Astrophysics Data System (ADS)

    Balarew, Christo; Stoilova, Donka; Vassileva, Violeta

    A relationship between the distribution coefficient values and the factors determining the isomorphous substitution of some metal(II) formates (Mg, Mn, Fe, Co, Ni, Cu, Zn, Cd) has been found, given by D=[exp⁡{aṡf[ΔR/R]+bṡϕ(Δɛ)+cṡψ(Δs)}/{RT}, where Δ R/R is the relative difference in the ionic radii of the intersubstituting ions, Δɛ is the difference in the Me sbnd O bond energy, Δ s is the difference in the crystal field stabilization energy. The pre-exponential term represents the balance in bonding factors between the ions in the crystal and in the aqueous solution, in the case of ideally mixing in the solid state. The exponential term takes into account the enthalpy of mixing in the solid state. For the isostructural formate salts in which the substitution of a given cation by another one occurs in equivalent octahedral positions, the difference in the crystal field stabilization energy exerts the most important influence on the enthalpy of mixing.

  12. ADAMTS13 content and VWF multimer and triplet structure in commercially available VWF/FVIII concentrates.

    PubMed

    Kannicht, Christoph; Fisseau, Claudine; Hofmann, Werner; Kröning, Mario; Fuchs, Birte

    2015-03-01

    ADAMTS13 is a metalloproteinase that cleaves von Willebrand factor (VWF) into smaller multimers in vivo. This cleavage creates both the typical multimeric size distribution and the characteristic triplet band distribution of VWF. Here we analysed ADAMTS13 content, VWF multimeric size distribution and VWF triplet structure in five commercial VWF/factor VIII (FVIII) concentrates. The relative distribution of ADAMTS13 activity values corresponded well to the ADAMTS13 antigen values for all examined concentrates except Haemate HS®, which had markedly higher ADAMTS13 antigen/activity ratio, with Fanhdi® and Haemate HS® displaying the most intense ADAMTS13 signal. Interestingly, ADAMTS13 levels did not correlate with the high molecular weight multimer content of the concentrates, but did correlate with VWF triplet distribution. Densitometric quantification showed that Wilate®, Immunate® and Willfact® displayed human plasma-like VWF triplet distribution, whereas Fanhdi® and Haemate HS® showed enhanced content of the faster migrating triplet band, which corresponded well to their higher ADAMTS13 content. In summary, Immunate®, Willfact® and Wilate® had lower levels of ADAMTS13 antigen and activity and exhibited a plasma-like VWF triplet structure. Fanhdi® and Haemate HS® had higher ADAMTS13 content and an altered triplet structure. The possible impact of these observations on function and clinical efficacy of VWF/FVIII concentrates is discussed.

  13. Rearrangement of MICU1 multimers for activation of MCU is solely controlled by cytosolic Ca2+

    PubMed Central

    Waldeck-Weiermair, Markus; Malli, Roland; Parichatikanond, Warisara; Gottschalk, Benjamin; Madreiter-Sokolowski, Corina T.; Klec, Christiane; Rost, Rene; Graier, Wolfgang F.

    2015-01-01

    Mitochondrial Ca2+ uptake is a vital process that controls distinct cell and organelle functions. Mitochondrial calcium uptake 1 (MICU1) was identified as key regulator of the mitochondrial Ca2+ uniporter (MCU) that together with the essential MCU regulator (EMRE) forms the mitochondrial Ca2+ channel. However, mechanisms by which MICU1 controls MCU/EMRE activity to tune mitochondrial Ca2+ signals remain ambiguous. Here we established a live-cell FRET approach and demonstrate that elevations of cytosolic Ca2+ rearranges MICU1 multimers with an EC50 of 4.4 μM, resulting in activation of mitochondrial Ca2+ uptake. MICU1 rearrangement essentially requires the EF-hand motifs and strictly correlates with the shape of cytosolic Ca2+ rises. We further show that rearrangements of MICU1 multimers were independent of matrix Ca2+ concentration, mitochondrial membrane potential, and expression levels of MCU and EMRE. Our experiments provide novel details about how MCU/EMRE is regulated by MICU1 and an original approach to investigate MCU/EMRE activation in intact cells. PMID:26489515

  14. Defect formation and phase stability of Cu2ZnSnS4 photovoltaic material

    NASA Astrophysics Data System (ADS)

    Nagoya, Akihiro; Asahi, Ryoji; Wahl, Roman; Kresse, Georg

    2010-03-01

    First-principles studies of the phase stability of and defect formation in Cu2ZnSnS4 (CZTS) are performed. We show that CZTS is the thermodynamically stable phase for a rather small confined domain of chemical potentials. Even slight deviations from the optimal growth conditions will therefore result in the formation of other sulfidic precipitates, including ZnS, Cu2SnS3 , SnS, SnS2 , and CuS. In particular, under the prevalent experimental Cu-poor and Zn-rich growth conditions ZnS is the main competing phase. Furthermore, the calculations unambiguously predict that Cu at the Zn site is the most stable defect in the entire stability range of CZTS. This correlates with the experimental observation that CZTS is an intrinsic p -type semiconductor.

  15. Barrierless Cu-Ni-Mo Interconnect Films with High Thermal Stability Against Silicide Formation

    NASA Astrophysics Data System (ADS)

    Li, X. N.; Liu, L. J.; Zhang, X. Y.; Chu, J. P.; Wang, Q.; Dong, C.

    2012-12-01

    Cu-Ni-Mo alloys were investigated to increase thermal stability against silicide formation. The alloy compositions were chosen such that an insoluble element (Mo) solute was dissolved into Cu via a third element Ni which is soluble in both Cu and Ni. Thin-film Cu-Ni-Mo alloys were prepared by magnetron sputtering. The films with Mo/Ni ratio of 1/12 exhibited low electrical resistivities in combination with high thermal stabilities against silicide formation, in support of a tentative "cluster-plus-glue-atom" model for stable solid solutions. In particular, a (Mo1/13Ni12/13)0.3Cu99.7 sample reached a minimum resistivity of 2.6 μΩ cm after 400°C/1 h annealing and remained highly conductive with resistivities below 3 μΩ cm even after 400°C/40 h annealing. These alloys are promising candidates for future interconnect materials.

  16. Evaluation of the geological relationships to gas hydrate formation and stability

    SciTech Connect

    Not Available

    1986-01-01

    Although there are many publications pertaining to gas hydrates, their formation and stability in various geological conditions are poorly known. Therefore, for the same reasons and because of the very broad scope of our research, limited amount and extremely dispersed information, the study regions are very large. Moreover, almost without exception the geological environments controlling gas hydrates formation and stability of the studied regions are very complex. The regions studied (completed and partially completed - total 17 locations) during the reporting period, particularly the Gulf of Mexico and the Middle America Trench, are the most important in this entire research project. In the past, both of these regions have been extensively studied, the presence of gas hydrates confirmed and samples recovered. In our investigation it was necessary not only to review all previous data and interpretations, but to do a thorough analysis of the basins, and a critical evaluation of an previously reported and publicly available but not published information.

  17. Formation and Stability of Bulk Nanobubbles Generated by Ethanol-water Exchange.

    PubMed

    Zhang, Lijuan; Qiu, Jie; Wang, Shuo; Wang, Xingya; Wang, Lei; Zhao, Hongwei; Hu, Jun; Zou, Zhenglei; Dong, Yaming

    2017-03-04

    Bulk nanobubbles have unique properties and have found potential applications in many important processes. However, their stability or long lifetime still needs to further understand and draw much attention from researchers. In this letter, we generated bulk nanobubbles based on ethanol-water exchange, a method which is generally used in the studies of surface nanobubbles. The formation and stability of them was further studied by using "Nanosight" (a new type of dynamic light scattering). Our results showed that the concentration of the bulk nanobubbles produced by our method was about five times than those in the degassed group, which indicated the existence of the bulk gas nanobubbles. The effects of ethanol/water ratios and temperature on the stability of the bulk nanobubbles have also been studied and found that their numbers will reach to the maximum at the ratio of about 1:10 (v/v).

  18. Distributed Receding Horizon Control With Application to Multi-Vehicle Formation Stabilization

    DTIC Science & Technology

    2004-01-26

    given in Section 5. Finally, Section 6 discusses conclusions and extensions. 2 Formation Stabilization Objective In this section, we present the system...incorporate any type of collision avoidance in this paper, although coupling constraints between neighboring agents will be discussed in the conclusions ...communication requirements closer to that of other decentralized schemes [8]. 6 Conclusions and Extensions We have shown under what assumptions a centralized

  19. A computational approach to predicting the formation of iron sulfide species using stability diagrams

    NASA Astrophysics Data System (ADS)

    Anderko, Andrzej; Shuler, Patrick J.

    1997-07-01

    A program has been developed for generating stability diagrams that combine the principles of the Pourbaix E-pH diagrams with a rigorous and predictive thermodynamic model for multicomponent, nonideal aqueous solutions. Since the diagrams are based on a realistic model for the aqueous phase, they are referred to as real-solution stability diagrams. They are valid for solutions ranging from dilute to concentrated (up to 30 mol kg -1) at temperatures up to 300 °C and pressures up to 1 kbar. The stability diagrams are used to predict the conditions that favor the stability of various iron sulfide species. For this purpose, the applicability of the diagrams is extended to include the prediction of both stable and metastable products. The diagrams indicate that the formation of iron monosulfide follows the FeHS + → amorphous FeS → mackinawite → pyrrhotite replacement sequence. It is predicted that a transformation of iron monosulfides to pyrite may occur through greigite and/or marcasite. Greigite is predicted to be absent in strictly reducing environments. The predictions are in agreement with experimental data on iron sulfide formation in solution and/or at the iron/solution interface.

  20. Organic chloramines in drinking water: An assessment of formation, stability, reactivity and risk.

    PubMed

    How, Zuo Tong; Linge, Kathryn L; Busetti, Francesco; Joll, Cynthia A

    2016-04-15

    Although organic chloramines are known to form during the disinfection of drinking water with chlorine, little information is currently available on their occurrence or toxicity. In a recent in vitro study, some organic chloramines (e.g. N-chloroglycine) were found to be cytotoxic and genotoxic even at micromolar concentrations. In this paper, the formation and stability of 21 different organic chloramines, from chlorination of simple amines and amino acids, were studied, and the competition between 20 amino acids during chlorination was also investigated. For comparison, chlorination of two amides was also conducted. The formation and degradation of selected organic chloramines were measured using either direct UV spectroscopic or colorimetric detection. Although cysteine, methionine and tryptophan were the most reactive amino acids towards chlorination, they did not form organic chloramines at the chlorine to precursor molar ratios that were tested. Only 6 out of the 21 organic chloramines formed had a half-life of more than 3 h, although this group included all organic chloramines formed from amines. A health risk assessment relating stability and reactivity data from this study to toxicity and precursor abundance data from the literature indicated that only N-chloroglycine is likely to be of concern due to its stability, toxicity and abundance in water. However, given the stability of organic chloramines formed from amines, more information about the toxicity and precursor abundance for these chloramines is desirable.

  1. Development of a biofilm formation method for waste forms stability evaluation.

    PubMed

    Idachaba, M A; Nyavor, K; Egiebor, N O; Rogers, R D

    2000-10-02

    The development of an accurate assessment protocol is critical for the prediction of long-term performance of waste disposal systems under field conditions. In this study, the development of a biofilm formation method for the evaluation of waste forms stability to microbially induced degradation (MID) is reported. The development process involved significant modifications to the existing Nuclear Regulatory Commission (NRC) approach. In the biofilm formation method, the control media and fermenter broths are designed to be of similar pH to avoid overestimation of the microbe's capability to degrade the waste forms. In the NRC approach, the pH values are different. The existing one-stage process of the NRC approach is also replaced with a two-stage process in the biofilm formation method. This is to ensure full evaluation of the microbe's involvement in waste forms degradation. The first stage of the two-stage process is for biofilm formation and the second is for biofilm evaluation. The use of a two-stage process eliminates the possibility of substrate limitation, resulting in values of degradation indices that are about two times higher than those obtained using the single-stage NRC approach. Two waste forms (100% Tuskegee cement and 21% cobalt chloride/79% cement) were used in the development of the biofilm formation method. Both waste forms showed evidence of biofilm formation. The formation of biofilm on the cobalt-containing waste form indicates a lack of anti-microbial capability of cobalt.

  2. Use of Ramachandran plot for increasing thermal stability of bacterial formate dehydrogenase.

    PubMed

    Serov, A E; Odintzeva, E R; Uporov, I V; Tishkov, V I

    2005-07-01

    From analysis of Ramachandran plot for NAD+-dependent formate dehydrogenase from the methylotrophic bacterium Pseudomonas sp. 101 (FDH, EC 1.2.1.2), five amino acid residues with non-optimal values phi and psi have been located in beta- and pi-turns of the FDH polypeptide chain, e.g., Asn136, Ala191, Tyr144, Asn234, and His263. To clarify their role in the enzyme stability, the residues were replaced with Gly by means of site-directed mutagenesis. The His263Gly mutation caused FDH destabilization and a 1.3-fold increase in the monomolecular inactivation rate constant. The replacements Ala191Gly and Asn234Gly had no significant effect on the stability. The mutations Asn136Gly and Tyr144Gly resulted in higher thermal stability and decreased the inactivation rate by 1.2- and 1.4-fold, respectively. The stabilizing effect of the Tyr144Gly mutation was shown to be additive when introduced into the previously obtained mutant FDH with enhanced thermal stability.

  3. Fibulin-3, -4, and -5 Are Highly Susceptible to Proteolysis, Interact with Cells and Heparin, and Form Multimers*

    PubMed Central

    Djokic, Jelena; Fagotto-Kaufmann, Christine; Bartels, Rainer; Nelea, Valentin; Reinhardt, Dieter P.

    2013-01-01

    Extracellular short fibulins, fibulin-3, -4, and -5, are components of the elastic fiber/microfibril system and are implicated in the formation and homeostasis of elastic tissues. In this study, we report new structural and functional properties of the short fibulins. Full-length human short fibulins were recombinantly expressed in human embryonic kidney cells and purified by immobilized metal ion affinity chromatography. All three fibulins showed various levels of degradation after the purification procedure. N-terminal sequencing revealed that all three fibulins are highly susceptible to proteolysis within the N-terminal linker region of the first calcium-binding epidermal growth factor domain. Proteolytic susceptibility of the linker correlated with its length. Exposure of these fibulins to matrix metalloproteinase (MMP)-1, -2, -3, -7, -9, and -12 resulted in similar proteolytic fragments with MMP-7 and -12 being the most potent proteases. Fibulin-3 proteolysis was almost completely inhibited in cell culture by the addition of 25 μm doxycycline (a broad spectrum MMP inhibitor). Reducible fibulin-4 dimerization and multimerization were consistently observed by SDS-PAGE, Western blotting, and mass spectrometry. Atomic force microscopy identified monomers, dimers, and multimers in purified fibulin-4 preparations with sizes of ∼10–15, ∼20–25, and ∼30–50 nm, respectively. All short fibulins strongly adhered to human fibroblasts and smooth muscle cells. Although only fibulin-5 has an RGD integrin binding site, all short fibulins adhere at a similar level to the respective cells. Solid phase binding assays detected strong calcium-dependent binding of the short fibulins to immobilized heparin, suggesting that these fibulins may bind cell surface-located heparan sulfate. PMID:23782690

  4. Stability and pattern formation for competing populations with asymmetric nonlocal coupling.

    PubMed

    Tanzy, M C; Volpert, V A; Bayliss, A; Nehrkorn, M E

    2013-11-01

    We consider a model of two competing species with asymmetric nonlocal coupling in a competition for resources. The nonlocal coupling is via convolution integrals and the asymmetry is via convolution kernel functions which are not even functions of their arguments. The nonlocality is due to species mobility, so that at any fixed point in space the competition for resources depends not just on the populations at that point but on a suitably weighted average of the populations. We introduce two parameters, δ, describing the extent of the coupling, with δ=0 corresponding to local coupling, and α, describing the extent of the asymmetry, with α=0 corresponding to symmetric nonlocal interactions. We consider the case where the model admits a stable coexistence equilibrium solution. We perform a linear stability analysis and show that this solution can be destabilized by sufficient nonlocality, i.e., when δ increases beyond a critical value. We consider two specific kernel functions, (i) an asymmetric Gaussian and (ii) an asymmetric stepfunction. We compute the stability boundary as a function of α, and for δ beyond the stability boundary we determine unstable wavenumber bands. We compute nonlinear patterns for δ significantly beyond the stability boundary. Patterns consist of arrays of islands, regions of nonzero population, separated by either near-deadzones where the populations are small, but nonzero, or by deadzones where populations are exponentially small and essentially extinct. We find solutions consisting of propagating traveling waves of islands, solutions exhibiting colony formation, where a colony is formed just ahead of an island and eventually grows as the parent island decays, and modulated traveling waves, where competition between the two species allows propagation and inhibits colony formation. We explain colony formation and the modulated traveling waves as due to a positive feedback mechanism associated with small variations in the amplitude of

  5. Effects of mineral additives on biochar formation: carbon retention, stability, and properties.

    PubMed

    Li, Feiyue; Cao, Xinde; Zhao, Ling; Wang, Jianfei; Ding, Zhenliang

    2014-10-07

    Biochar is being recognized as a promising tool for long-term carbon sequestration, and biochar with high carbon retention and strong stability is supposed to be explored for that purpose. In this study, three minerals, including kaolin, calcite (CaCO3), and calcium dihydrogen phosphate [Ca(H2PO4)2], were added to rice straw feedstock at the ratio of 20% (w/w) for biochar formation through pyrolysis treatment, aiming to improve carbon retention and stabilization in biochar. Kaolin and CaCO3 had little effect on the carbon retention, whereas Ca(H2PO4)2 increased the carbon retention by up to 29% compared to untreated biochar. Although the carbon loss from the kaolin-modified biochar with hydrogen peroxide oxidation was enhanced, CaCO3 and Ca(H2PO4)2 modification reduced the carbon loss by 18.6 and 58.5%, respectively. Moreover, all three minerals reduced carbon loss of biochar with potassium dichromate oxidation from 0.3 to 38.8%. The microbial mineralization as CO2 emission in all three modified biochars was reduced by 22.2-88.7% under aerobic incubation and 5-61% under anaerobic incubation. Enhanced carbon retention and stability of biochar with mineral treatment might be caused by the enhanced formation of aromatic C, which was evidenced by cross-polarization magic angle spinning (13)C nuclear magnetic resonance spectra and Fourier transform infrared spectroscopy analysis. Our results indicated that the three minerals, especially Ca(H2PO4)2, were effective in increasing carbon retention and strengthening biochar stabilization, which provided a novel idea that people could explore and produce the designated biochar with high carbon sequestration capacity and stability.

  6. Magnetic microparticle-based multimer detection system for the detection of prion oligomers in sheep

    PubMed Central

    Lim, Kuntaek; Kim, Su Yeon; Lee, Byoungsub; Segarra, Christiane; Kang, Sungmin; Ju, Youngran; Schmerr, Mary Jo; Coste, Joliette; Kim, Sang Yun; Yokoyama, Takashi; An, Seong Soo A

    2015-01-01

    Transmissible spongiform encephalopathies (TSEs) are zoonotic fatal neurodegenerative diseases in animals and humans. TSEs are commonly known as bovine spongiform encephalopathy in cattle, scrapie in sheep and goats, chronic wasting disease in cervids, and Creutzfeldt–Jakob disease in humans. The putative transmissible agents are infectious prion proteins (PrPSc), which are formed by the conversion of the normal prion protein on the glycoprotein cell surface in the presence of other PrPSc. Reports of the transmission of TSEs through blood raised considerable concern about the safety of blood and blood products. To address this issue, many laboratories attempted to develop a sensitive and accurate blood diagnostic test to detect PrPSc. Previously, we reported that, compared to normal controls, the multimer detection system (MDS) was more efficient in detecting PrPSc in infected hamster brain homogenate, mouse plasma spiked with purified PrPSc from scrapie mouse brain, and scrapie-infected hamster plasmas. MDS differentiates prion multimers from the cellular monomer through the multimeric expression of epitopes on prion multimers, in contrast to the monomeric form. In this study, MDS detected PrPSc in plasma samples from scrapie-infected sheep expressing clinical symptoms, demonstrating 100% sensitivity and specificity in these samples. Plasma samples from asymptomatic lambs at the preclinical stage (8-month-old naturally infected offspring of scrapie-infected parents expressing a highly susceptible genotype) tested positive with 50% sensitivity and 100% specificity. In the first of two coded analyses using clinical scrapie-infected sheep and normal healthy samples, MDS successfully identified all but one of the clinical samples with 92% sensitivity and 100% specificity. Similar results were obtained in the second coded analysis using preclinical samples. MDS again successfully identified all but one of the samples with 87% sensitivity and 100% specificity. The

  7. Complex formation and stability of westiellamide derivatives with copper(II).

    PubMed

    Comba, Peter; Dovalil, Nina; Haberhauer, Gebhard; Hanson, Graeme R; Kato, Yuki; Taura, Toshiaki

    2010-09-01

    The CuII coordination chemistry of three synthetic analogues of westiellamide (H3Lwa) with an [18]azacrown-6 macrocyclic structure and imidazole (H3L1), oxazole (H3L2), or thiazole (H3L3) heterocyclic donors in addition to the peptide groups, is reported. The Nheterocycle-Npeptide-N(heterocycle) binding sites are highly preorganized for the coordination to CuII ions. The stability constants of mono- and dinuclear CuII complexes of H3L1, H3L2, and H3L3, obtained by isothermal titration microcalorimetry, are reported. EPR and NMR spectroscopy as well as electrospray ionization mass spectrometry (ESI-MS) were used to characterize the complexes formed in solution. The stabilities of the mononuclear and dinuclear CuII complexes of the three ligands are in the range of 10(5) M(-1), but there are subtle differences; specifically the oxazole-derived ligand has, in contrast to the other two macrocycles, a negative formation entropy for coordination to the first CuII ion and a higher stability for complexation to a second CuII center in comparison with the first CuII center (cooperativity). Differences between the three ligands are also apparent in terms of the formation mechanism. With the oxazole-based ligand H3L2, NMR spectroscopy, EPR spectroscopy, and ESI-MS indicate the formation of a ligand-CuII 2:1 intermediate, and this may explain the differences in the formation entropy as well as the cooperativity.

  8. Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model

    NASA Astrophysics Data System (ADS)

    Choi, Young-Pil; Ha, Seung-Yeal; Jung, Sungeun; Kim, Yongduck

    2012-04-01

    We discuss the asymptotic formation and nonlinear orbital stability of phase-locked states arising from the ensemble of non-identical Kuramoto oscillators. We provide an explicit lower bound for a coupling strength on the formation of phase-locked states, which only depends on the diameters of natural frequencies and initial phase configurations. We show that, when the phases of non-identical oscillators are distributed over the half circle and the coupling strength is sufficiently large, the dynamics of Kuramoto oscillators exhibits two stages (transition and relaxation stages). In a transition stage, initial configurations shrink to configurations whose diameters are strictly less than {π}/{2} in a finite-time, and then the configurations tend to phase-locked states asymptotically. This improves previous results on the formation of phase-locked states by Chopra-Spong (2009) [26] and Ha-Ha-Kim (2010) [27] where their attention were focused only on the latter relaxation stage. We also show that the Kuramoto model is ℓ1-contractive in the sense that the ℓ1-distance along two smooth Kuramoto flows is less than or equal to that of initial configurations. In particular, when two initial configurations have the same averaged phases, the ℓ1-distance between them decays to zero exponentially fast. For the configurations with different phase averages, we use the method of average adjustment and translation-invariant of the Kuramoto model to show that one solution converges to the translation of the other solution exponentially fast. This establishes the orbital stability of the phase-locked states. Our stability analysis does not employ any standard linearization technique around the given phase-locked states, but instead, we use a robust ℓ1-metric functional as a Lyapunov functional. In the formation process of phase-locked states, we estimate the number of collisions between oscillators, and lower-upper bounds of the transversal phase differences.

  9. Covalently linked multimers of gold nanoclusters Au102(p-MBA)44 and Au∼250(p-MBA)n.

    PubMed

    Lahtinen, Tanja; Hulkko, Eero; Sokołowska, Karolina; Tero, Tiia-Riikka; Saarnio, Ville; Lindgren, Johan; Pettersson, Mika; Häkkinen, Hannu; Lehtovaara, Lauri

    2016-11-10

    We present the synthesis, separation, and characterization of covalently-bound multimers of para-mercaptobenzoic acid (p-MBA) protected gold nanoclusters. The multimers were synthesized by performing a ligand-exchange reaction of a pre-characterized Au102(p-MBA)44 nanocluster with biphenyl-4,4'-dithiol (BPDT). The reaction products were separated using gel electrophoresis yielding several distinct bands. The bands were analyzed by transmission electron microscopy (TEM) revealing monomer, dimer, and trimer fractions of the nanocluster. TEM analysis of dimers in combination with molecular dynamics simulations suggest that the nanoclusters are covalently bound via a disulfide bridge between BPDT molecules. The linking chemistry is not specific to Au102(p-MBA)44. The same approach yields multimers also for a larger monodisperse p-MBA-protected cluster of approximately 250 gold atoms, Au∼250(p-MBA)n. While the Au102(p-MBA)44 is not plasmonic, the Au∼250(p-MBA)n nanocluster supports localized surface plasmon resonance (LSPR) at 530 nm. Multimers of the Au∼250(p-MBA)n exhibit additional transitions in their UV-vis spectrum at 630 nm and 810 nm, indicating the presence of hybridized LSPR modes. Well-defined structures and relatively small sizes make these systems excellent candidates for connecting ab initio theoretical studies and experimental quantum plasmonics. Moreover, our work opens new possibilities in the controlled synthesis of advanced monodisperse nanocluster superstructures.

  10. Dynamical stability of imaged planetary systems in formation: Application to HL Tau

    NASA Astrophysics Data System (ADS)

    Tamayo, Daniel; Triaud, Amaury H. M. J.; Menou, Kristen; Rein, Hanno

    2015-08-01

    A recent ALMA image revealed several concentric gaps in the protoplanetary disk surrounding the young star HL Tau. We consider the hypothesis that these gaps are carved by planets, and present a general framework for understanding the dynamical stability of such systems over typical disk lifetimes, providing estimates for the maximum planetary masses.We argue that the locations of resonances should be significantly shifted in massive disks like HL Tau, and that theoretical uncertainties in the exact offset, together with observational errors, imply a large uncertainty in the dynamical state and stability in such disks. This may present an important barrier to using systems like HL Tau as a proxy for the initial conditions following planet formation. An important observational avenue to breaking this degeneracy is to search for eccentric gaps, which could implicate resonantly interacting planets. Unfortunately, a massive disk would also induce swift pericenter precession that would smear out any such eccentric features of planetary origin. This motivates pushing toward more typical, less massive disks.For a nominal non-resonant model of the HL Tau system with five planets, we find a maximum mass for the outer three bodies of approximately 2 Neptune masses. In a resonant configuration, these planets can reach at least the mass of Saturn. The inner two planets' masses are unconstrained by dynamical stability arguments. We will consider the implications for the HL Tau system, and discuss the exciting future of the planetary formation studies in the ALMA era.

  11. Input-to-state stability of model-based spacecraft formation control systems with communication constraints

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Kumar, K. D.

    2011-06-01

    This paper investigates the formation keeping problem for multiple spacecraft in the framework of networked control systems (NCSs). A continuous-time representation of the NCS is considered for the tracking control of relative translational motion between two spacecraft in a leader-follower formation in the presence of communication constraints and system uncertainties. Model-based control schemes are presented, which employ state feedback (when the relative position and velocity vectors are directly measurable) and output feedback (when velocity measurements are not available), respectively, to guarantee input-to-state stability (ISS) of the system. The stability conditions on network transfer intervals are derived as simple eigenvalue tests of a well-structured test matrix. The results are then extended to include network communication delay. Numerical simulations are presented to demonstrate the effectiveness of the control scheme ensuring high formation keeping precision and robustness to nonlinearities and system uncertainties. The proposed controllers are robust not only to structured uncertainties such as system parameter perturbations but also to unstructured uncertainties such as external disturbances and measurement noises.

  12. A model for the formation and stabilization of charged water clathrates

    NASA Technical Reports Server (NTRS)

    Holland, P. M.; Castleman, A. W., Jr.

    1980-01-01

    A model for the formation and stabilization of charged water clathrates is presented which accounts for observed anomalies in H(+)(H2O)n ion distributions. These anomalies are observed in both ion cluster and neutral expansions and are consistent with the sizes expected for clathrate ions. That the same sizes are observed in both ion cluster and neutral expansions strongly suggests that a rapid ionic process is responsible for their formation. The proposed model is based on the high mobility and bonding effects of the excess proton in water. Computer simulations suggest that excess proton movement in a water clathrate would be suitable for stabilizing the clathrate structure as well as giving it access to a large number of nearly degenerate proton configurations. The formation of clathrates in charged water clusters of proper size can be ascribed to the following: rapid excess proton movement, a strong preference of the H3O(+) for a three-coordinate bonding structure (which is compatible with hydrogen bonding), and finally, relatively slow processes leading to thermal disorder.

  13. A model for the formation and stabilization of charged water clathrates

    NASA Technical Reports Server (NTRS)

    Holland, P. M.; Castleman, A. W., Jr.

    1980-01-01

    A model for the formation and stabilization of charged water clathrates is presented which accounts for observed anomalies in H(+)(H2O)n ion distributions. These anomalies are observed in both ion cluster and neutral expansions and are consistent with the sizes expected for clathrate ions. That the same sizes are observed in both ion cluster and neutral expansions strongly suggests that a rapid ionic process is responsible for their formation. The proposed model is based on the high mobility and bonding effects of the excess proton in water. Computer simulations suggest that excess proton movement in a water clathrate would be suitable for stabilizing the clathrate structure as well as giving it access to a large number of nearly degenerate proton configurations. The formation of clathrates in charged water clusters of proper size can be ascribed to the following: rapid excess proton movement, a strong preference of the H3O(+) for a three-coordinate bonding structure (which is compatible with hydrogen bonding), and finally, relatively slow processes leading to thermal disorder.

  14. Understanding soil organic matter formation and stabilization (Philippe Duchaufour Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Kögel-Knabner, Ingrid

    2015-04-01

    During the biomass formation/decomposition cycle carbon dioxide (CO2), the main gas driving global warming, is either released from or stabilized in the organic matter of soils. One of the most fundamental functions of soil organic matter is the provision of metabolic energy which drives soil biological processes. In essence, it is the transformation of carbon by plant, micro- and macro-biological processes that provides energy and results in the establishment of a cycle that connects above- and belowground energy transformations. The amount and type of organic matter accumulated in soils is controlled, among other factors by intrinsic soil properties, specifically soil texture and the associated aggregate structures. Soil development leads to the formation of aggregated structures composed of a highly complex mixture of different mineral and organic constituents. The resulting soil type specific carbon sequestration can strongly be affected by soil management, varying greatly with the type and intensity of land use. The processes of formation and stabilization of organic matter through organo-mineral interactions in aggregated soil structures are controlled at the sub-µm scale. Understanding the binding of organic matter in these fine soil structures is thus key to elucidate the biogeochemical soil processes that are part of the carbon cycle as well as to evaluate the effects of soil management on the carbon cycle. I will discuss open questions for understanding these processes and how we can approach them by combining state-of-the-art analytical techniques with innovative experiments.

  15. Orbital Stability of Protoplanetary Systems in Nebular Gas and Implications for Terrestrial Planet Formation

    NASA Astrophysics Data System (ADS)

    Iwasaki, Kazunori; Ohtsuki, Keiji

    2006-06-01

    The oligarchic growth model of planetary accretion predicts the formation of protoplanets of similar sizes, and the final stage of terrestrial planet formation involves long-term orbital instability and mutual collision of protoplanets through their gravitational interaction. However, the mass of the protoplanets formed by oligarchic growth depends on the initial surface density of the protoplanetary disk, as well as the distance from the central star. In order to better understand the final stage of terrestrial planet formation in disks with various profiles, we perform orbital integration for systems of five protoplanets and examine the dependence of the orbital instability timescale of the systems on the mass of the protoplanets, Mp, both with and without nebular gas. Previous studies have shown that the timescale for orbital instability in the absence of nebular gas increases exponentially with the initial semimajor axis difference between the protoplanets. We find that the exponential constant is independent of the mass of the protoplanets, as long as the initial separation is measured in units of ~M0.29p, which is very close to the previously derived mass dependence of the critical separation for the onset of chaotic behavior in the restricted circular three-body problem. In the presence of nebular gas, on the other hand, protoplanetary systems are stabilized by gas drag and experience no orbital instability when the initial semimajor axis difference is larger than a certain critical value. Using these results, we discuss the orbital stability of protoplanetary systems in disks with various surface densities.

  16. Particle stability in dilute fermented dairy drinks: formation of fluid gel and impact on rheological properties.

    PubMed

    Kiani, H; Mousavi, M E; Mousavi, Z E

    2010-12-01

    Fluid gels are known to be very shear-thinning materials with yield stress. In this study, the rheological properties of gellan and gellan-pectin fluid gels in fermented dairy drinks were evaluated using viscometric measurements. Both gellan- and gellan-pectin-containing solutions showed the rheological properties of fluid gels resulting in stabilization of particles; but no evidence of a fluid gel was observed for those with pectin alone and those with no hydrocolloid content. Unlike pectin, gellan gum was capable of creating significant values of yield stress and accordingly stabilized colloidal particles and extrinsic added solid particles in the fermented dairy drink. However, pectin improved the stability in combination with gellan. The origin of fluid gel formation was assumed to be both permanent interactions occurring between gellan and proteins, forming hairy particle gels and transient interactions between the particle gels. The significance of yield stress values for particle stability was demonstrated and two methods, including a noteworthy infinite apparent viscosity method and a conventional Bingham approach, were employed to calculate the values of yield stress. Both the methods showed a good application potential due to their simplicity, reasonable results and also wide availability of the instrument applied.

  17. [Stabilization of alkaline proteinase and cellulases via complex formation with chitosan for use as detergent components].

    PubMed

    Kudriashova, E V; Vasil'eva, I S; Zorov, I N; Sinitsyn, A P; Levashov, A V

    2009-01-01

    An effective approach to the stabilization of hydrolytic enzymes (alkaline proteinase and cellulases) via the complex formation with chitosan for their further use as detergent components has been developed. Interaction with chitosan results in a 35-50% increase in the level of catalytic activity of the enzymes after incubation for 60 min under the conditions of detergent use (alkaline pH, increased temperature, the presence of anionic surfactants) as compared to the system in the absence of chitosan both due to the enzyme stabilization and the increase of the starting level of catalytic activity. A twofold decrease of the enzyme inactivation constant is observed under the aforementioned conditions in the case of alkaline proteinase. In the case of cellulase preparation, the method for the control of the concentration of the active enzyme in the system modeling synthetic detergents has been suggested. The method is based on the enzymatic destruction of the stabilizing agent, chitosan, by enzymes of the cellulase complex. The destruction of chitosan removed the stabilizing effect, thus resulting in the inactivation of cellulases. The developed approaches allow for the widening of the field of the possible application of enzymes as detergent components.

  18. Crosslink formation in porcine valves stabilized by dye-mediated photooxidation.

    PubMed

    Adams, A K; Talman, E A; Campbell, L; McIlroy, B K; Moore, M A

    2001-12-15

    Bovine pericardial and porcine valve materials stabilized by dye-mediated photooxidation have shown potential for bioprosthetic valve use. Previously, in vitro and in vivo stability of these materials was demonstrated through enzymatic, chemical, extraction, rat subcutaneous, and functional challenges. Here, we examine the stability of photooxidized porcine aortic valves through amino acid, crosslink, and hydrothermal isometric tension analysis. Photooxidation reduced intact histidine residues from 17.0 to 0 residues per 1000, indicating the photooxidative alteration of this amino acid. Diphenyl borinic acid-derivitized hydrolyzates of proteins were separated by high-performance liquid chromatography, which identified several amino acid crosslinks that appeared with photooxidation that were absent in untreated controls. Thermal relaxation analysis indicated a significantly higher (p < 0.0002) thermal stability for photooxidized porcine cusps than that of untreated controls, with mean relaxation times for untreated cusps of 14,000 +/- 4650 versus 22,900 +/- 2480 s for photooxidized cusps. In summary, porcine aortic valve tissue treated by dye-mediated photooxidation contains new chemical species and exhibits properties consistent with intermolecular crosslink formation, which explain the increased biostability of this material and its potential for use in bioprosthetic devices. Copyright 2001 John Wiley & Sons, Inc. J Biomed Mater Res 57: 582-587, 2001

  19. The effects of extracellular polymeric substances on the formation and stability of biogranules.

    PubMed

    Liu, Yong-Qiang; Liu, Yu; Tay, Joo-Hwa

    2004-08-01

    Biogranulation is a promising biotechnology developed for wastewater treatment. Biogranules exhibit a matrix microbial structure, and intensive research has shown that extracellular polymeric substances (EPS) are a major component of the biogranule matrix material in both anaerobic and aerobic granules. This paper aims to review the role of EPS in biogranulation, factors influencing EPS production, the effect of EPS on cell surface properties of biogranules, and the relationship of EPS to the structural stability of biogranules. EPS production is substantially enhanced when the microbial community is subject to stressful culture conditions, and the stimulated EPS production in the microbial matrix in turn favours the formation of anaerobic and aerobic granules. EPS can also play an essential role in maintaining the integrity and stability of spatial structure in mature biogranules. It is expected that this paper can provide deep insights into the functions of EPS in the biogranulation process.

  20. High-Temperature Stability and Grain Boundary Complexion Formation in a Nanocrystalline Cu-Zr Alloy

    NASA Astrophysics Data System (ADS)

    Khalajhedayati, Amirhossein; Rupert, Timothy J.

    2015-12-01

    Nanocrystalline Cu-3 at.% Zr powders with ~20 nm average grain size were created with mechanical alloying and their thermal stability was studied from 550-950°C. Annealing drove Zr segregation to the grain boundaries, which led to the formation of amorphous intergranular complexions at higher temperatures. Grain growth was retarded significantly, with 1 week of annealing at 950°C, or 98% of the solidus temperature, only leading to coarsening of the average grain size to 54 nm. The enhanced thermal stability can be connected to both a reduction in grain boundary energy with doping as well as the precipitation of ZrC particles. High mechanical strength is retained even after these aggressive heat treatments, showing that complexion engineering may be a viable path toward the fabrication of bulk nanostructured materials with excellent properties.

  1. PHOSPHOLIPIDS ARE NEEDED FOR PROPER FORMATION, STABILITY AND FUNCTION OF THE PHOTOACTIVATED RHODOPSIN-TRANSDUCIN COMPLEX

    PubMed Central

    Jastrzebska, Beata; Goc, Anna; Golczak, Marcin; Palczewski, Krzysztof

    2009-01-01

    Heterotrimeric G proteins become activated after they form a catalytically active complex with activated G protein-coupled receptors (GPCRs) and GTP replaces GDP on the G protein α subunit. This transient coupling can be stabilized by nucleotide depletion, resulting in an empty-nucleotide G-protein-GPCR complex. Efficient and reproducible formation of conformationally homogenous GPCR-Gt complexes is a prerequisite for structural studies. Herein, we report isolation conditions that enhance the stability, and preserve activity and proper stoichiometry of productive complexes between the purified prototypical GPCR, rhodopsin (Rho), and the rod cell-specific G protein, transducin (Gt). Binding of purified Gt to photoactivated Rho (Rho*) in n-dodecyl-β-maltoside (DDM) examined by gel filtration chromatography was generally modest and purified complexes provided heterogeneous ratios of protein components, most likely because of excess detergent. Rho*-Gt complex stability and activity was greatly increased by addition of phospholipids such as DOPC, DOPE and DOPS, and asolectin to detergent-containing solutions of these proteins. In contrast, native Rho*-Gt complexes purified directly from light-exposed bovine ROS membranes by sucrose gradient centrifugation exhibited improved stability and the expected 2:1 stoichiometry between Rho* and Gt. The above results strongly indicate a lipid requirement for stable complex formation wherein the likely oligomeric structure of Rho provides a superior platform for coupling to Gt, and phospholipids likely form a matrix to which Gt can anchor through its myristoyl and farnesyl groups. Our findings also demonstrate that the choice of detergent and purification method is critical for obtaining highly purified, stable, and active complexes with appropriate stoichiometry between GPCRs and G proteins needed for structural studies. PMID:19413332

  2. Quantifying tetrahedral adduct formation and stabilization in the cysteine and the serine proteases.

    PubMed

    Cleary, Jennifer A; Doherty, William; Evans, Paul; Malthouse, J Paul G

    2015-10-01

    Two new papain inhibitors have been synthesized where the terminal α-carboxyl groups of Z-Phe-Ala-COOH and Ac-Phe-Gly-COOH have been replaced by a proton to give Z-Phe-Ala-H and Ac-Phe-Gly-H. We show that for papain, replacing the terminal carboxylate group of a peptide inhibitor with a hydrogen atom decreases binding 3-4 fold while replacing an aldehyde or glyoxal group with a hydrogen atom decreases binding by 300,000-1,000,000 fold. Thiohemiacetal formation by papain with aldehyde or glyoxal inhibitors is shown to be ~10,000 times more effective than hemiacetal or hemiketal formation with chymotrypsin. It is shown using effective molarities, that for papain, thiohemiacetal stabilization is more effective with aldehyde inhibitors than with glyoxal inhibitors. The effective molarity obtained when papain is inhibited by an aldehyde inhibitor is similar to the effective molarity obtained when chymotrypsin is inhibited by glyoxal inhibitors showing that both enzymes can stabilize tetrahedral adducts by similar amounts. Therefore the greater potency of aldehyde and glyoxal inhibitors with papain is not due to greater thiohemiacetal stabilization by papain compared to the hemiketal and hemiacetal stabilization by chymotrypsin, instead it reflects the greater intrinsic reactivity of the catalytic thiol group of papain compared to the catalytic hydroxyl group of chymotrypsin. It is argued that while the hemiacetals and thiohemiacetals formed with the serine and cysteine proteases respectively can mimic the catalytic tetrahedral intermediate they are also analogues of the productive and non-productive acyl intermediates that can be formed with the cysteine and serine proteases.

  3. A multi-grain reduced-complexity model for step formation and stability in steep streams

    NASA Astrophysics Data System (ADS)

    Saletti, Matteo; Molnar, Peter; Turowski, Jens; Rickenmann, Dieter

    2017-04-01

    We present a multi-grain particle-based reduced-complexity model for the simulation of the formation and stability of step-pool morphology by specifically considering the granular interactions between sediment and river bed leading to entrainment and deposition of grains. The model CAST2 (Cellular Automaton Sediment Transport), based on the uniform-size model of Saletti et al. [2016], contains phenomenological parameterizations of sediment supply, bed load transport, particle entrainment and deposition, and granular interactions in a cellular-automaton space. CAST2 simulates the effect of different grain sizes by considering two types of particles: fine grains, which can be mobilized by any flow, and coarse grains, whose mobility is flow-dependent. The model has been applied to test the effect of granular forces on step formation and stability in step-pool channels, as hypothesized in the jammed-state framework by Church and Zimmermann [2007]. The jamming of particles in motion and their enhanced stability on the bed are modelled explicitely: in this way steps are effectively generated during high-flow periods and they are stable during low flows when sediment supply is small. Moreover, model results are used to show which are the fundamental processes required to produce and maintain steps in steep streams and these findings are consistent with field observations. Finally the effect of flood frequency on step density is investigated by means of long stochastic simulations with repeated flood events. Model results show that systems with high flood frequency are characterized by greater step density, due to the dominance of step-forming conditions. Our results show the potential of reduced-complexity models as learning tools to gain new insight into the complex feedbacks and poorly understood processes characterizing rapidly changing geomorphic systems like step-pool streams, pointing out the importance of granular effects on the formation and stability of the step

  4. Microemulsions as novel drug carriers: the formation, stability, applications and toxicity.

    PubMed

    Karasulu, H Yesim

    2008-01-01

    A microemulsion, made from water, oil, surfactants and cosurfactant is a thermodynamically stable system. The presence of the cosurfactant is often required in order to lower the interfacial tension of this interface, because a low interfacial tension is essential for the formation of microemulsions. The transparency of microemulsions arises from their small droplet diameter. The droplet diameter in stable microemulsions is usually within the range of 10 - 140 nm. Microemulsions are graphically represented as stability areas in triangular phase diagrams where each triangular corner designates a certain component. Microemulsions are actually quaternary (pseudoternary) systems. In pharmaceutical fields, the interest in microemulsions is increasing and, thus, they are applied to various administration routes.

  5. Formation, spin-up, and stability of field-reversed configurations

    SciTech Connect

    Omelchenko, Yuri A.

    2015-08-24

    Formation, spontaneous spin-up and stability of theta-pinch formed field-reversed configurations are studied self-consistently in three dimensions with a multiscale hybrid model that treats all plasma ions as full-orbit collisional macro-particles and the electrons as a massless quasineutral fluid. The end-to-end hybrid simulations for the first time reveal poloidal profiles of implosion-driven fast toroidal plasma rotation and demonstrate three well-known discharge regimes as a function of experimental parameters: the decaying stable configuration, the tilt unstable configuration and the nonlinear evolution of a fast growing tearing mode.

  6. RELATIONSHIP FORMATION AND STABILITY IN EMERGING ADULTHOOD: DO SEX RATIOS MATTER?

    PubMed Central

    Warner, Tara D.; Manning, Wendy D.; Giordano, Peggy C.; Longmore, Monica A.

    2013-01-01

    Research links sex ratios with the likelihood of marriage and divorce. However, whether sex ratios similarly influence precursors to marriage—transitions in and out of dating or cohabiting relationships—is unknown. Utilizing data from the Toledo Adolescent Relationships Study (TARS) and the 2000 census, this study assesses whether sex ratios influence the formation and stability of emerging adults’ romantic relationships. Findings show that relationship formation is unaffected by partner availability, yet the presence of partners increases women’s odds of cohabiting, decreases men’s odds of cohabiting, and increases number of dating partners and cheating among men. It appears that sex ratios influence not only transitions in and out of marriage, but also the process through which individuals search for and evaluate partners prior to marriage. PMID:24265510

  7. Evaluation of the geological relationships to gas hydrate formation and stability

    SciTech Connect

    Krason, J.; Finley, P.

    1988-01-01

    The summaries of regional basin analyses document that potentially economic accumulations of gas hydrates can be formed in both active and passive margin settings. The principal requirement for gas hydrate formation in either setting is abundant methane. Passive margin sediments with high sedimentation rates and sufficient sedimentary organic carbon can generate large quantities of biogenic methane for hydrate formation. Similarly, active margin locations near a terrigenous sediment source can also have high methane generation potential due to rapid burial of adequate amounts of sedimentary organic matter. Many active margins with evidence of gas hydrate presence correspond to areas subject to upwelling. Upwelling currents can enhance methane generation by increasing primary productivity and thus sedimentary organic carbon. Structural deformation of the marginal sediments at both active and passive sites can enhance gas hydrate formation by providing pathways for migration of both biogenic and thermogenic gas to the shallow gas hydrate stability zone. Additionally, conventional hydrocarbon traps may initially concentrate sufficient amounts of hydrocarbons for subsequent gas hydrate formation.

  8. Caspase-1 activity affects AIM2 speck formation/stability through a negative feedback loop

    PubMed Central

    Juruj, C.; Lelogeais, V.; Pierini, R.; Perret, M.; Py, B. F.; Jamilloux, Y.; Broz, P.; Ader, F.; Faure, M.; Henry, T.

    2013-01-01

    The inflammasome is an innate immune signaling platform leading to caspase-1 activation, maturation of pro-inflammatory cytokines and cell death. Recognition of DNA within the host cytosol induces the formation of a large complex composed of the AIM2 receptor, the ASC adaptor and the caspase-1 effector. Francisella tularensis, the agent of tularemia, replicates within the host cytosol. The macrophage cytosolic surveillance system detects Francisella through the AIM2 inflammasome. Upon Francisella novicida infection, we observed a faster kinetics of AIM2 speck formation in ASCKO and Casp1KO as compared to WT macrophages. This observation was validated by a biochemical approach thus demonstrating for the first time the existence of a negative feedback loop controlled by ASC/caspase-1 that regulates AIM2 complex formation/stability. This regulatory mechanism acted before pyroptosis and required caspase-1 catalytic activity. Our data suggest that sublytic caspase-1 activity could delay the formation of stable AIM2 speck, an inflammasome complex associated with cell death. PMID:23630667

  9. Rapid formation and selective stabilization of synapses for enduring motor memories

    PubMed Central

    Xu, Tonghui; Yu, Xinzhu; Perlik, Andrew J.; Tobin, Willie F.; Zweig, Jonathan A.; Tennant, Kelly; Jones, Theresa; Zuo, Yi

    2010-01-01

    Novel motor skills are learned through repetitive practice and, once acquired, persist long after training stops1,2. Earlier studies have shown that such learning induces an increase in the efficacy of synapses in the primary motor cortex, the persistence of which is associated with retention of the task3–5. However, how motor learning affects neuronal circuitry at the level of individual synapses and how long-lasting memory is structurally encoded in the intact brain remain unknown. Here we show that synaptic connections in the living mouse brain rapidly respond to motor-skill learning and permanently rewire. Training in a forelimb reaching task leads to rapid (within an hour) formation of postsynaptic dendritic spines on the output pyramidal neurons in the contralateral motor cortex. Although selective elimination of spines that existed before training gradually returns the overall spine density back to the original level, the new spines induced during learning are preferentially stabilized during subsequent training and endure long after training stops. Furthermore, we show that different motor skills are encoded by different sets of synapses. Practice of novel, but not previously learned, tasks further promotes dendritic spine formation in adulthood. Our findings reveal that rapid, but long-lasting, synaptic reorganization is closely associated with motor learning. The data also suggest that stabilized neuronal connections are the foundation of durable motor memory. PMID:19946267

  10. Kinetic simulations of the formation and stability of the field-reversed configuration

    SciTech Connect

    Omelchenko, Yu. A.

    2000-05-01

    The Field-Reversed Configuration (FRC) is a high-beta compact toroidal plasma confined primarily by poloidal fields. In the FRC the external field is reversed on axis by the diamagnetic current carried by thermal plasma particles. A three-dimensional, hybrid, particle-in-cell (zero-inertia fluid electrons, and kinetic ions), code FLAME, previously used to study ion rings [Yu. A. Omelchenko and R. N. Sudan, J. Comp. Phys. 133, 146 (1997)], is applied to investigate FRC formation and tilt instability. Axisymmetric FRC equilibria are obtained by simulating the standard experimental reversed theta-pinch technique. These are used to study the nonlinear tilt mode in the ''kinetic'' and ''fluid-like'' cases characterized by ''small'' ({approx}3) and ''large'' ({approx}12) ratios of the characteristic radial plasma size to the mean ion gyro-radius, respectively. The formation simulations have revealed the presence of a substantial toroidal (azimuthal) magnetic field inside the separatrix, generated due to the stretching of the poloidal field by a sheared toroidal electron flow. This is shown to be an important tilt-stabilizing effect in both cases. On the other hand, the tilt mode stabilization by finite Larmor radius effects has been found relatively insignificant for the chosen equilibria. (c) 2000 American Institute of Physics.

  11. Dynamics, Fluxes, Stability, Succession and Landscape Formation in Cold Environments: The DYNAFLUX / DYNACOLD Network

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.

    2015-04-01

    Within Europe there is a wide array of high-latitude and high-altitude landscapes, covering a significant proportion of the total land area. These defined cold climate landscapes represent a variety of stages of deglaciation history and landscape formation. We find landscapes at different levels of postglacial stabilization, providing the unique opportunity to study the interactions between geo-, bio-, social and socio-economic systems at the land surface. The DYNAFLUX / DYNACOLD Network (2004 - ) bridges across the geo-, bio-, social and socio-economic sciences in order to investigate the complex dynamics of stabilization, succession and landscape formation during and after ice retreat and under human impact. The Network provides a multidisciplinary forum where research groups come together. It is linking and integrating a number of networks and programs and creates an umbrella program and a forum for sharing knowledge. The focus of this network is relevant for different end users, including risk and vulnerability assessment, sustainable land use, land management and conservation. Also questions closely related to Global Change like, e.g., hazards, permafrost degradation, loss of biodiversity are addressed.

  12. The DYNAFLUX / DYNACOLD Network: Dynamics, Fluxes, Stability, Succession and Landscape Formation in Cold Climate Environments

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.

    2016-04-01

    There is a wide range of high-latitude and high-altitude cold climate landscapes in Europe, covering a significant proportion of the total land surface area. This spectrum of defined cold climate landscapes represents a variety of stages of deglaciation history and landscape formation. We can find landscapes at different levels of postglacial stabilization which is providing the opportunity to study the interactions between geo-, bio-, social and socio-economic systems at the land surface. The DYNAFLUX / DYNACOLD Network (2004-) bridges across the geo-, bio-, social and socio-economic sciences in order to analyze the complex dynamics of stabilization, succession and landscape formation during and after ice retreat and under ongoing human influences. The network provides a multidisciplinary forum where researchers come together. In addition, it is linking a number of networks, working groups and programs and creates an umbrella network and a forum for sharing knowledge. The scientific focus of this network is also relevant for different end users, including risk and vulnerability assessment, sustainable land use, land management and conservation. In addition, key questions related to Global Change like, e.g., hazards, permafrost degradation and loss of biodiversity are discussed.

  13. Polyphenylenepyridyl dendrimers as stabilizing and controlling agents for CdS nanoparticle formation

    NASA Astrophysics Data System (ADS)

    Kuchkina, Nina V.; Morgan, David Gene; Stein, Barry D.; Puntus, Lada N.; Sergeev, Alexander M.; Peregudov, Alexander S.; Bronstein, Lyudmila M.; Shifrina, Zinaida B.

    2012-03-01

    Semiconductor nanoparticles (NPs) are being actively explored for applications in medical diagnostics and therapy and numerous electronic devices including solar cells. In this paper we demonstrate the influence of the third generation rigid polyphenylenepyridyl dendrimers (PPPDs) of a different architecture on the formation of well-defined CdS NPs. A high temperature approach to the synthesis of novel CdS/PPPD nanocomposites is feasible due to the high thermal stability of PPPDs. The PPPD architecture affects the CdS NP formation: larger NPs are obtained in the presence of dendrimers with 1,3,5-triphenylbenzene cores compared to those with tetrakis(4-ethynylphen-1-yl)methane cores. The reaction conditions such as concentrations of PPPDs and NP precursors and the temperature regime also influence the CdS NP sizes. For the first time, we elucidated a mechanism of CdS NP formation in a non-coordinating solvent through the CdO redispersion in the presence of PPPDs. Interesting optical properties of these CdS/PPPD nanocomposites make them promising candidates for imaging applications.Semiconductor nanoparticles (NPs) are being actively explored for applications in medical diagnostics and therapy and numerous electronic devices including solar cells. In this paper we demonstrate the influence of the third generation rigid polyphenylenepyridyl dendrimers (PPPDs) of a different architecture on the formation of well-defined CdS NPs. A high temperature approach to the synthesis of novel CdS/PPPD nanocomposites is feasible due to the high thermal stability of PPPDs. The PPPD architecture affects the CdS NP formation: larger NPs are obtained in the presence of dendrimers with 1,3,5-triphenylbenzene cores compared to those with tetrakis(4-ethynylphen-1-yl)methane cores. The reaction conditions such as concentrations of PPPDs and NP precursors and the temperature regime also influence the CdS NP sizes. For the first time, we elucidated a mechanism of CdS NP formation in a non

  14. AN EFFICIENT, NON-LINEAR STABILITY ANALYSIS FOR DETECTING PATTERN FORMATION IN REACTION DIFFUSION SYSTEMS

    PubMed Central

    HOLMES, WILLIAM R.

    2014-01-01

    Reaction diffusion systems are often used to study pattern formation in biological systems. However, most methods for understanding their behavior are challenging and can rarely be applied to complex systems common in biological applications. I present a relatively simple and efficient, non-linear stability technique that greatly aids such analysis when rates of diffusion are substantially different. This technique reduces a system of reaction diffusion equations to a system of ordinary differential equations tracking the evolution of a large amplitude, spatially localized perturbation of a homogeneous steady state. Stability properties of this system, determined using standard bifurcation techniques and software, describe both linear and non-linear patterning regimes of the reaction diffusion system. I describe the class of systems this method can be applied to and demonstrate its application. Analysis of Schnakenberg and substrate inhibition models is performed to demonstrate the methods capabilities in simplified settings and show that even these simple models have non-linear patterning regimes not previously detected. The real power of this technique however is its simplicity and applicability to larger complex systems where other non-linear methods become intractable. This is demonstrated through analysis of a chemotaxis regulatory network comprised of interacting proteins and phospholipids. In each case, predictions of this method are verified against results of numerical simulation, linear stability, asymptotic, and / or full PDE bifurcation analyses. PMID:24158538

  15. Influence of PEG-12 Dimethicone addition on stability and formation of emulsions containing liquid crystal.

    PubMed

    Andrade, F F; Santos, O D H; Oliveira, W P; Rocha-Filho, P A

    2007-06-01

    Oil/water emulsions, containing liquid crystals, were developed employing Andiroba oil, PEG-12 Dimethicone and Crodafos CES. It was evaluated the influence of silicone surfactants on the emulsions stability and on the formation of liquid crystalline phases and therefore, physicochemical characteristics, such as rheology and zeta potential, were evaluated. Emulsions were prepared by the emulsions phase inversion method. All the formulations presented lamellar liquid crystalline phases. The PEG-12 Dimethicone addition did not change microscopically the liquid crystalline phases. The emulsions containing silicone demonstrated lower viscosity than those without the additive. This is an important feature, as the silicone did not change the rheological profile; however, the addition of silicone still can be used as a viscosity controller. The formulations had their viscosity increased 15 and 150 days after their preparation. This characteristic shows that the emulsions have their organization increased along the storing time. In the analysis of zeta potential, we could verify that all formulations presented negative values between -39.7 and -70.0 mV. Within this range of values, the emulsion physical stability is high (Fig. 10). It was concluded that the addition of PEG-12 Dimethicone kept the liquid crystalline phase of the emulsion obtained with Crodafos CES, influencing in a positive way in the system stability.

  16. Iron hydroxy carbonate formation in zerovalent iron permeable reactive barriers: characterization and evaluation of phase stability.

    PubMed

    Lee, Tony R; Wilkin, Richard T

    2010-07-30

    Predicting the long-term potential of permeable reactive barriers for treating contaminated groundwater relies on understanding the endpoints of biogeochemical reactions between influent groundwater and the reactive medium. Iron hydroxy carbonate (chukanovite) is frequently observed as a secondary mineral precipitate in granular iron PRBs. Mineralogical characterization was carried out using X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and X-ray absorption spectroscopy on materials collected from three field-based PRBs in the US (East Helena, MT; Elizabeth City, NC; Denver Federal Center, CO). These PRBs were installed to treat a range of contaminants, including chlorinated organics, hexavalent chromium, and arsenic. Results obtained indicate that chukanovite is a prevalent secondary precipitate in the PRBs. Laboratory experiments on high-purity chukanovite separates were carried out to constrain the room-temperature solubility for this mineral. An estimated Gibbs energy of formation (Delta(f)G degrees) for chukanovite is -1174.4 +/- 6 kJ/mol. A mineral stability diagram is consistent with observations from the field. Water chemistry from the three reactive barriers falls inside the predicted stability field for chukanovite, at inorganic carbon concentrations intermediate to the stability fields of siderite and ferrous hydroxide. These new data will aid in developing better predictive models of mineral accumulation in zerovalent iron PRBs. Published by Elsevier B.V.

  17. Iron hydroxy carbonate formation in zerovalent iron permeable reactive barriers: Characterization and evaluation of phase stability

    SciTech Connect

    Wilkin, Richard T.; Lee, T.R.

    2010-10-22

    Predicting the long-term potential of permeable reactive barriers for treating contaminated groundwater relies on understanding the endpoints of biogeochemical reactions between influent groundwater and the reactive medium. Iron hydroxy carbonate (chukanovite) is frequently observed as a secondary mineral precipitate in granular iron PRBs. Mineralogical characterization was carried out using X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and X-ray absorption spectroscopy on materials collected from three field-based PRBs in the US (East Helena, MT; Elizabeth City, NC; Denver Federal Center, CO). These PRBs were installed to treat a range of contaminants, including chlorinated organics, hexavalent chromium, and arsenic. Results obtained indicate that chukanovite is a prevalent secondary precipitate in the PRBs. Laboratory experiments on high-purity chukanovite separates were carried out to constrain the room-temperature solubility for this mineral. An estimated Gibbs energy of formation ({Delta}{sub f}G{sup o}) for chukanovite is - 1174.4 {+-} 6 kJ/mol. A mineral stability diagram is consistent with observations from the field. Water chemistry from the three reactive barriers falls inside the predicted stability field for chukanovite, at inorganic carbon concentrations intermediate to the stability fields of siderite and ferrous hydroxide. These new data will aid in developing better predictive models of mineral accumulation in zerovalent iron PRBs.

  18. A test of the transition-metal nanocluster formation and stabilization ability of the most common polymeric stabilizer, poly(vinylpyrrolidone), as well as four other polymeric protectants.

    PubMed

    Ott, Lisa Starkey; Hornstein, Brooks J; Finke, Richard G

    2006-10-24

    Following an introduction to the nanocluster stabilization literature and DLVO (Derjaugin-Landau-Verwey-Overbeek) theory of colloidal stability, the most common steric stabilizer of transition-metal nanoclusters, poly(vinylpyrrolidone) (PVP), has been examined for its efficacy in the formation, stabilization, and subsequent catalytic activity of prototype, test case Ir(0)n nanoclusters. First, the five criteria established previously for ranking nanocluster protectants for their nanocluster formation and stabilization ability were evaluated for 1 monomer equiv of 10000 average molecular weight (MWav) PVP in the absence, and then presence, of the traditionally weakly coordinating anion BF4- as well as the absence and presence of the strongly coordinating, superior anionic stabilizer P2W15Nb3O62(9-), all in propylene carbonate solvent. It is found that neither 1 equiv of BF4- in propylene carbonate nor 1 monomer equiv of (undried) PVP alone allows for isolable and redissolvable nanoclusters without bulk Ir(0)n metal formation. Careful predrying of the PVP, and by implication other polymers, is shown to be necessary for the formation and stabilization of the nanoclusters. Next, 40 monomer equiv of 10000 MWav PVP and 1 equiv of BF4- in propylene carbonate are shown to allow isolable, redissolvable nanoclusters. Control experiments reveal little difference on nanocluster stabilization by 3500 or 55000 (i.e., vs 10,000) MWav PVP, but yield interesting effects on nanocluster nucleation by the 3500 MWav PVP, as well as by the polymer poly(bis(ethoxy)phosphazene) (PBEP). Four other key polymers reported in the literature to be nanocluster stabilizers are tested by the five criteria method for their efficacy in the formation and stabilization of Ir0n nanoclusters (now in acetone due to the polymers' solubility) and in comparison to each other, specifically, poly(methyl methacrylate) (PMMA), poly(styrene) (PS), poly(methylhydrosilane) (PMHS), and PBEP. Only 40 monomer equiv

  19. Formation and Stabilization of Raphasatin and Sulforaphene from Radish Roots by Endogenous Enzymolysis

    PubMed Central

    Kim, Jae-Won; Kim, Mi-Bo; Lim, Sang-Bin

    2015-01-01

    The biologically active compounds raphasatin and sulforaphene are formed during the hydrolysis of radishes by an endogenous myrosinase. Raphasatin is very unstable, and it is generated and simultaneously degraded to less active compounds during hydrolysis in aqueous media. This study determined the hydrolysis conditions to maximize the formation of raphasatin and sulforaphene by an endogenous myrosinase and minimize their degradation during the hydrolysis of radish roots. The reaction parameters, such as the reaction medium, reaction time, type of mixing, and reaction temperature were optimized. A stability test for raphasatin and sulforaphene was also performed during storage of the hydrolyzed products at 25°C for 10 days. The formation and breakdown of raphasatin and sulforaphene in radish roots by endogenous enzymolysis was strongly influenced by the reaction medium, reaction time, and type of mixing. The production and stabilization of raphasatin in radishes was efficient in water and dichloromethane with shaking for 15 min at 25°C. For sulforaphene, the favorable condition was water as the reaction medium without shaking for 10 min at 25°C. The maximum yields of raphasatin and sulforaphene were achieved in a concurrent hydrolysis reaction without shaking in water for 10 min and then with shaking in dichloromethane for 15 min at 25°C. Under these conditions, the yields of raphasatin and sulforaphene were maximized at 12.89 and 1.93 μmol/g of dry radish, respectively. The stabilities of raphasatin and sulforaphene in the hydrolyzed products were 56.4% and 86.5% after 10 days of storage in water and dichloromethane at 25°C. PMID:26175999

  20. Stabilization of microbial biomass in soils: Implications for SOM formation and xenobiotics degradation

    NASA Astrophysics Data System (ADS)

    Miltner, A.; Kindler, R.; Achtenhagen, J.; Nowak, K.; Girardi, C.; Kästner, M.

    2012-04-01

    Soil organic matter (SOM) plays an important role in soils. It is the carbon source and the habitat of many soil microorganisms, its quality and quantity thus affect soil microbial activity. Therefore, the amount and composition of SOM determines soil quality, but SOM formation and stabilization are not yet sufficiently understood. Recently, microbial biomass residues could be identified as a significant source of SOM. We incubated 13C-labelled bacterial cells for 224 days in an agricultural soil and traced the fate of the 13C label of bacterial biomass in soil by isotopic analysis. The data were combined to a mass balance, and the biomass residues were visualized by scanning electron microscopy (SEM). A high percentage of the biomass-derived carbon (in particular from proteins) remained in soil, mainly in the non-living part of SOM, after extended incubation. The SEM micrographs only rarely showed intact cells. Instead, organic patchy fragments of 200-500 nm size were abundant. These fragments were associated with all stages of cell envelope decay and fragmentation, indicating specific disintegration processes of cell walls. Similar fragments developed on initially clean and sterile in situ microcosms during exposure in groundwater, thus providing clear evidence for their microbial origin. Microbial cell envelope fragments thus contribute significantly to SOM formation. A significant contribution of cell envelope fragments to SOM formation provides a simple explanation for the development of the small, nano-scale patchy organic materials observed in soil electron micrographs. It also suggests that microstructures of microbial cells and of small plant debris provide the molecular architecture of SOM attached to particle surfaces. This origin and macromolecular architecture of SOM is consistent with most observations on SOM, e.g. the abundance of microbial-derived biomarkers, the low C/N ratio, the water repellency and the stabilization of microbial biomass. The

  1. Studies on the formation and stability of triplex DNA using fluorescence correlation spectroscopy.

    PubMed

    Hu, Hongyan; Huang, Xiangyi; Ren, Jicun

    2016-05-01

    Triplex DNA has become one of the most useful recognition motifs in the design of new molecular biology tools, therapeutic agents and sophisticated DNA-based nanomaterials because of its direct recognition of natural double-stranded DNA. In this paper, we developed a sensitive and microscale method to study the formation and stability characterization of triplex DNA using fluorescence correlation spectroscopy (FCS). The principle of this method is mainly based on the excellent capacity of FCS for sensitively distinguishing between free single-strand DNA (ssDNA) fluorescent probes and fluorescent probe-double-strand DNA (dsDNA) hybridized complexes. First, we systematically investigated the experimental conditions of triplex DNA formation. Then, we evaluated the equilibrium association constants (K(a)) under different ssDNA probe lengths, composition and pH. Finally, we used FCS to measure the hybridization fraction of a 20-mer perfectly matched ssDNA probe and three single-base mismatched ssDNA probes with 146-mer dsDNA. Our data illustrated that FCS is a useful tool for the direct determination of the thermodynamic parameters of triplex DNA formation and discrimination of a single-base mismatch of triplex DNA without denaturation. Compared with current methods, our method is characterized by high sensitivity, good universality and small sample and reagent requirements. More importantly, our method has the potential to become a platform for triplex DNA research in vitro. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Polyphenylenepyridyl dendrimers as stabilizing and controlling agents for CdS nanoparticle formation.

    PubMed

    Kuchkina, Nina V; Morgan, David Gene; Stein, Barry D; Puntus, Lada N; Sergeev, Alexander M; Peregudov, Alexander S; Bronstein, Lyudmila M; Shifrina, Zinaida B

    2012-04-07

    Semiconductor nanoparticles (NPs) are being actively explored for applications in medical diagnostics and therapy and numerous electronic devices including solar cells. In this paper we demonstrate the influence of the third generation rigid polyphenylenepyridyl dendrimers (PPPDs) of a different architecture on the formation of well-defined CdS NPs. A high temperature approach to the synthesis of novel CdS/PPPD nanocomposites is feasible due to the high thermal stability of PPPDs. The PPPD architecture affects the CdS NP formation: larger NPs are obtained in the presence of dendrimers with 1,3,5-triphenylbenzene cores compared to those with tetrakis(4-ethynylphen-1-yl)methane cores. The reaction conditions such as concentrations of PPPDs and NP precursors and the temperature regime also influence the CdS NP sizes. For the first time, we elucidated a mechanism of CdS NP formation in a non-coordinating solvent through the CdO redispersion in the presence of PPPDs. Interesting optical properties of these CdS/PPPD nanocomposites make them promising candidates for imaging applications.

  3. Formation and characterization of surfactant stabilized silver nanoparticles: a kinetic study.

    PubMed

    Al-Thabaiti, Shaeel Ahmed; Al-Nowaiser, F M; Obaid, A Y; Al-Youbi, A O; Khan, Zaheer

    2008-12-01

    Kinetic data for the silver nitrate-ascorbic acid redox system in presence of three surfactants (cationic, anionic and nonionic) are reported. Conventional spectrophotometric method was used to monitor the formation of surfactant stabilized nanosize silver particles during the reduction of silver nitrate by ascorbic acid. The size of the particles was determined with the help of transmission electron microscope. It was found that formation of stable perfect transparent silver sol and size of the particles depend upon the nature of the head group of the surfactants, i.e., cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulphate (SDS) and Triton X-100. The silver nanoparticles are spherical and of uniform particle size, and the average particle size is about 10 and 50 nm, respectively, for SDS and CTAB. For a certain reaction time, i.e., 30 min, the absorbance of reaction mixture first increased until it reached a maximum, then decreased with [ascorbic acid]. The reaction follows a fractional-order kinetics with respect to [ascorbic acid] in presence of CTAB. On the basis of various observations, the most plausible mechanism is proposed for the formation of silver nanoparticles.

  4. Steady states and linear stability analysis of precipitation pattern formation at geothermal hot springs.

    PubMed

    Chan, Pak Yuen; Goldenfeld, Nigel

    2007-10-01

    A dynamical theory of geophysical precipitation pattern formation is presented and applied to irreversible calcium carbonate (travertine) deposition. Specific systems studied here are the terraces and domes observed at geothermal hot springs, such as those at Yellowstone National Park, and speleothems, particularly stalactites and stalagmites. The theory couples the precipitation front dynamics with shallow water flow, including corrections for turbulent drag and curvature effects. In the absence of capillarity and with a laminar flow profile, the theory predicts a one-parameter family of steady state solutions to the moving boundary problem describing the precipitation front. These shapes match the measured shapes near the vent at the top of observed travertine domes well. Closer to the base of the dome, the solutions deviate from observations and circular symmetry is broken by a fluting pattern, which we show is associated with capillary forces causing thin film break-up. We relate our model to that recently proposed for stalactite growth, and calculate the linear stability spectrum of both travertine domes and stalactites. Lastly, we apply the theory to the problem of precipitation pattern formation arising from turbulent flow down an inclined plane and identify a linear instability that underlies scale-invariant travertine terrace formation at geothermal hot springs.

  5. Steady states and linear stability analysis of precipitation pattern formation at geothermal hot springs

    NASA Astrophysics Data System (ADS)

    Chan, Pak Yuen; Goldenfeld, Nigel

    2007-10-01

    A dynamical theory of geophysical precipitation pattern formation is presented and applied to irreversible calcium carbonate (travertine) deposition. Specific systems studied here are the terraces and domes observed at geothermal hot springs, such as those at Yellowstone National Park, and speleothems, particularly stalactites and stalagmites. The theory couples the precipitation front dynamics with shallow water flow, including corrections for turbulent drag and curvature effects. In the absence of capillarity and with a laminar flow profile, the theory predicts a one-parameter family of steady state solutions to the moving boundary problem describing the precipitation front. These shapes match the measured shapes near the vent at the top of observed travertine domes well. Closer to the base of the dome, the solutions deviate from observations and circular symmetry is broken by a fluting pattern, which we show is associated with capillary forces causing thin film break-up. We relate our model to that recently proposed for stalactite growth, and calculate the linear stability spectrum of both travertine domes and stalactites. Lastly, we apply the theory to the problem of precipitation pattern formation arising from turbulent flow down an inclined plane and identify a linear instability that underlies scale-invariant travertine terrace formation at geothermal hot springs.

  6. Multimer staining of cytomegalovirus phosphoprotein 65-specific T cells for diagnosis and therapeutic purposes: a comparative study.

    PubMed

    Yao, Junxia; Bechter, Clemens; Wiesneth, Markus; Härter, Georg; Götz, Marlies; Germeroth, Lothar; Guillaume, Philippe; Hasan, Ferishte; von Harsdorf, Stephanie; Mertens, Thomas; Michel, Detlef; Döhner, Hartmut; Bunjes, Donald; Schmitt, Michael; Schmitt, Anita

    2008-05-15

    Cytomegalovirus (CMV) disease represents a serious complication after allogeneic peripheral blood stem cell (PBSC) transplantation. If possible, stem cell donors for transplantation are selected on the basis of their CMV serostatus. However, the cytomegalovirus-specific immune status can be further characterized by measuring CMV phosphoprotein 65-specific CD8(+) T cell frequencies using tetramers, pentamers, and streptamers. We therefore investigated the specificity and sensitivity of all 3 methods and compared the results to patient serostatus. Twenty-three samples from CMV-seropositive healthy volunteers and 15 samples from CMV-seropositive patients before and after allogeneic PBSC transplantation were stained with tetramers, pentamers, or streptamers and analyzed by flow cytometry. Similar frequencies of CD8(+) and multimer(+) T cells could be measured by all 3 multimer technologies. The lowest background signals (< or =0.02%) were obtained using tetramer technology. Frequencies of 0.19%-2.48% of CMV phosphoprotein 65 495-503-specific CD8(+) T cells were detected in healthy volunteers. Antigen-specific T cells were detected in only 11 (48%) of 23 seropositive healthy volunteers. CMV antigenemia before day 100 after allogeneic PBSC transplantation occurred in 2 of 3 patients without any specific T cells. These findings demonstrate the power of multimer staining and a certain limitation of serologic testing to define appropriate donors for transplantation. Therefore, whenever possible, CMV-seropositive donors of transplants to seropositive recipients should be screened for their CD8(+) T cell frequency. All 3 multimer technologies can be used, yielding similar results. The streptamer technology additionally offers the advantage of selecting CMV phosphoprotein 65-specific CD8(+) T cells at the good manufacturing practice level for adoptive T cell transfer.

  7. Adiponectin multimers and ADIPOQ T45G in coronary artery disease in Caribbean type 2 diabetic subjects of African descent.

    PubMed

    Foucan, Lydia; Ezourhi, Nabila; Maimaitiming, Suliya; Hedreville, Segho; Inamo, Jocelyn; Atallah, Andre; Bangou-Bredent, Jacqueline; Aubert, Roberte; Chout, Roger; Fumeron, Frederic; Donnet, Jean-Paul; Marre, Michel

    2010-07-01

    Ethnic differences may affect the association of adiponectin (Ad) multimers with coronary artery disease (CAD). We analyzed the associations of total Ad, Ad multimers, and T45G polymorphism of ADIPOQ gene with pre-existing CAD. We carried out a cross-sectional study of 216 Afro-Caribbean type 2 diabetic (T2D) subjects. Levels of total Ad, high molecular weight (HMW), middle molecular weight (MMW), and low molecular weight (LMW) isoforms were measured. Subjects were genotyped. Of the subjects studied, 57 had pre-existing CAD, 77% of whom have had myocardial infarction. Subjects with CAD had lower Ad levels (total and multimers) and a higher frequency carried the minor allele 45G, GG/TG, (18% vs. 8%, P = 0.03) than subjects without CAD. In logistic regression analysis, the models used evaluate Ad in the context of adjustment for metabolic syndrome characteristics. The adjusted odds ratio (OR) of CAD was increased significantly (by factors of 1.05-3.27) for males, older subjects, low high-density lipoprotein cholesterol (HDL-C), high triglycerides (TGs), and carriers of the 45 G allele. For Ad, in model 1 (including only total Ad) the adjusted OR was 2.30; P = 0.03 and, in model 2 (including the three multimers, but not total Ad), the adjusted ORs were 0.73; P = 0.52 (HMW), 2.90; P = 0.01 (MMW), and 2.08; P = 0.09 (LMW). The T45G polymorphism in the ADIPOQ gene and hypoadiponectinemia were associated with CAD in our T2D subjects of predominantly African background. This effect of Ad level was mainly related to the MMW Ad form.

  8. Generalized Momentum Control of the Spin-Stabilized Magnetospheric Multiscale Formation

    NASA Technical Reports Server (NTRS)

    Queen, Steven Z.; Shah, Neerav; Benegalrao, Suyog S.; Blackman, Kathie

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four identically instrumented, spin-stabilized observatories elliptically orbiting the Earth in a tetrahedron formation. The on-board attitude control system adjusts the angular momentum of the system using a generalized thruster-actuated control system that simultaneously manages precession, nutation and spin. Originally developed using Lyapunov control-theory with rate-feedback, a published algorithm has been augmented to provide a balanced attitude/rate response using a single weighting parameter. This approach overcomes an orientation sign-ambiguity in the existing formulation, and also allows for a smoothly tuned-response applicable to both a compact/agile spacecraft, as well as one with large articulating appendages.

  9. Silicon nanowire degradation and stabilization during lithium cycling by SEI layer formation.

    PubMed

    Cho, Jeong-Hyun; Picraux, S Tom

    2014-06-11

    Silicon anodes are of great interest for advanced lithium-ion battery applications due to their order of magnitude higher energy capacity than graphite. Below a critical diameter, silicon nanowires enable the ∼300% volume expansion during lithiation without pulverization. However, their high surface-to-volume ratio is believed to contribute to fading of their capacity retention during cycling due to solid-electrolyte-interphase (SEI) growth on surfaces. To better understand this issue, previous studies have examined the composition and morphology of the SEI layers. Here we report direct measurements of the reduction in silicon nanowire diameter with number of cycles due to SEI formation. The results reveal significantly greater Si loss near the nanowire base. From the change in silicon volume we can accurately predict the measured specific capacity reduction for silicon nanowire half cells. The enhanced Si loss near the nanowire/metal current collector interface suggests new strategies for stabilizing nanowires for long cycle life performance.

  10. Formation conditions, chloride content, and stability of passive films on an iron-chromium alloy

    SciTech Connect

    Hubschmid, C.; Landolt, D. . Dept. des Materiaux)

    1993-07-01

    Passive films were formed on a high purity Fe-23 Cr alloy in acid sulfate solutions in the presence and absence of chloride ion. The resulting film composition was investigated by Auger depth profiling. The passivated samples were exposed to a 1M NaCl solution at a constant potential slightly above the critical pitting potential, and the current-time transient was measured in order to compare the relative stability of the different films. The results obtained suggest that the formation conditions influence the chloride content of the passive film and the breakdown behavior. Passive films formed in the presence of chloride contain and are slightly less stable towards breakdown. No chloride was found in films formed in sulfate and subsequently exposed to chloride well below the pitting potential.

  11. Microwave-induced formation of platinum nanostructured networks with superior electrochemical activity and stability.

    PubMed

    Jia, Falong; Wang, Fangfang; Lin, Yun; Zhang, Lizhi

    2011-12-16

    Platinum nanostructured networks (PNNs) can be synthesized through the chemical reduction of H(2)PtCl(6) by benzyl alcohol under microwave irradiation without the introduction of any surfactants, templates, or seeds. The synthesis route utilizes benzyl alcohol as both the reductant and the structure-directing agent, and thus, the process is particularly simple and highly repeatable. The formation of the PNN structure was ascribed to the collision-induced fusion of Pt nanocrystals owing to the cooperative functions of microwave irradiation and benzyl alcohol. Compared with a commercial Pt/C catalyst, the as-prepared PNNs possessed superior electrochemical activity and stability on the oxidation of methanol because of the unique 3D nanostructured networks and abundant defects formed during the assembly process. This study may provide a facile microwave-induced approach for the synthesis of other 3D nanostructured noble metals or their alloys.

  12. Nonlinear stability analyses of vegetative pattern formation in an arid environment

    PubMed Central

    Boonkorkuea, N.; Lenbury, Y.; Alvarado, F.J.; Wollkind, D.J.

    2009-01-01

    The development of spontaneous stationary vegetative patterns in an arid isotropic homogeneous environment is investigated by means of various weakly nonlinear stability analyses applied to the appropriate governing equation for this phenomenon. In particular, that process can be represented by a fourth-order partial differential time-evolution logistic equation for the total plant biomass per unit area divided by the carrying capacity of its territory and defined on an unbounded flat spatial domain. Those patterns that consist of parallel stripes, labyrinth-like mazes, rhombic arrays of rectangular patches, and hexagonal distributions of spots or gaps are generated by the balance between the effects of short-range facilitation and long-range competition. Then those theoretical predictions are compared with both relevant observational evidence and existing numerical simulations as well as placed in the context of the results from some recent nonlinear pattern formation studies. PMID:22881129

  13. Formation and stability of the self-consistent one-dimensional tail current sheet

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.; Coroniti, F. V.

    1992-01-01

    The paper investigates the formation, the structure, and the stability of self-consistent one-dimensional current sheets in which the ions carry most of the current and momentum (the occurrence of which was suggested by observations of Mitchell et al., 1990; and Sergeev et al., 1990). Results of the analysis showed that, for the case of a cold current sheet, the characteristic thickness lamba equals to about (Bz/B0) exp 4/3 c/omega(p0), where Bz is the normal field component, B0 is the asymptotic magnitude of the reversing field, and c/omega(p0)is the collisionless ion skin depth based on lobe density. A two-dimensional self-consistent dynamical simulation model is developed, which demonstrates that these idealized current sheets are unstable to kink perturbations driven by the anisotropic pressure distribution produced by the chaotic nature of the particle orbits in a field-reversal region.

  14. The DYNAFLUX / DYNACOLD Network: Dynamics, Fluxes, Stability, Succession and Landscape Formation in Cold Environments

    NASA Astrophysics Data System (ADS)

    Beylich, A. A.; Molau, U.

    2012-04-01

    Within Europe there is a wide array of high-latitude and high-altitude landscapes, covering a significant proportion of the total land area. These cold climate landscapes represent a variety of stages of deglaciation history and landscape formation. We find landscapes at different levels of postglacial stabilization providing the unique possibility to study the interactions between geo-, bio-, social and socio-economic systems at the land surface. The DYNAFLUX / DYNACOLD Network (2004 - ) bridges across geo-, bio-, social and socio-economic sciences in order to investigate the complex dynamics of stabilization, succession and landscape formation during and after ice retreat and under human impact. DYNAFLUX / DYNACOLD provides a multidisciplinary forum where research groups come together. The integrated approach provides - in addition to newly generated disciplinary knowledge - the qualitative and quantitative linkages of findings from geo-, bio- and socio-work groups to develop a systems-based holistic level-of-understanding about the dynamics of environmental fluxes in high-latitude and high-altitude geo-ecosystems and landscapes. This knowledge can be used to assess the risks and potentials of the future development with reference to land use intensity / changes and climatic dynamics. DYNAFLUX / DYNACOLD is since 2004 linking and integrating a number of networks and programmes and creates an umbrella programme and a forum for sharing knowledge. The focus of the Network is relevant for different end users, including risk and vulnerability assessment, sustainable land use, land management and conservation. Also questions with regards to Global Change are addressed (hazards, permafrost degradation, loss of biodiversity, etc.).

  15. Insights into Hydrate Formation and Stability of Morphinanes from a Combination of Experimental and Computational Approaches

    PubMed Central

    2014-01-01

    Morphine, codeine, and ethylmorphine are important drug compounds whose free bases and hydrochloride salts form stable hydrates. These compounds were used to systematically investigate the influence of the type of functional groups, the role of water molecules, and the Cl– counterion on molecular aggregation and solid state properties. Five new crystal structures have been determined. Additionally, structure models for anhydrous ethylmorphine and morphine hydrochloride dihydrate, two phases existing only in a very limited humidity range, are proposed on the basis of computational dehydration modeling. These match the experimental powder X-ray diffraction patterns and the structural information derived from infrared spectroscopy. All 12 structurally characterized morphinane forms (including structures from the Cambridge Structural Database) crystallize in the orthorhombic space group P212121. Hydrate formation results in higher dimensional hydrogen bond networks. The salt structures of the different compounds exhibit only little structural variation. Anhydrous polymorphs were detected for all compounds except ethylmorphine (one anhydrate) and its hydrochloride salt (no anhydrate). Morphine HCl forms a trihydrate and dihydrate. Differential scanning and isothermal calorimetry were employed to estimate the heat of the hydrate ↔ anhydrate phase transformations, indicating an enthalpic stabilization of the respective hydrate of 5.7 to 25.6 kJ mol–1 relative to the most stable anhydrate. These results are in qualitative agreement with static 0 K lattice energy calculations for all systems except morphine hydrochloride, showing the need for further improvements in quantitative thermodynamic prediction of hydrates having water···water interactions. Thus, the combination of a variety of experimental techniques, covering temperature- and moisture-dependent stability, and computational modeling allowed us to generate sufficient kinetic, thermodynamic and structural

  16. X Chromosome Crossover Formation and Genome Stability in Caenorhabditis elegans Are Independently Regulated by xnd-1

    PubMed Central

    McClendon, T. Brooke; Mainpal, Rana; Amrit, Francis R. G.; Krause, Michael W.; Ghazi, Arjumand; Yanowitz, Judith L.

    2016-01-01

    The germ line efficiently combats numerous genotoxic insults to ensure the high fidelity propagation of unaltered genomic information across generations. Yet, germ cells in most metazoans also intentionally create double-strand breaks (DSBs) to promote DNA exchange between parental chromosomes, a process known as crossing over. Homologous recombination is employed in the repair of both genotoxic lesions and programmed DSBs, and many of the core DNA repair proteins function in both processes. In addition, DNA repair efficiency and crossover (CO) distribution are both influenced by local and global differences in chromatin structure, yet the interplay between chromatin structure, genome integrity, and meiotic fidelity is still poorly understood. We have used the xnd-1 mutant of Caenorhabditis elegans to explore the relationship between genome integrity and crossover formation. Known for its role in ensuring X chromosome CO formation and germ line development, we show that xnd-1 also regulates genome stability. xnd-1 mutants exhibited a mortal germ line, high embryonic lethality, high incidence of males, and sensitivity to ionizing radiation. We discovered that a hypomorphic allele of mys-1 suppressed these genome instability phenotypes of xnd-1, but did not suppress the CO defects, suggesting it serves as a separation-of-function allele. mys-1 encodes a histone acetyltransferase, whose homolog Tip60 acetylates H2AK5, a histone mark associated with transcriptional activation that is increased in xnd-1 mutant germ lines, raising the possibility that thresholds of H2AK5ac may differentially influence distinct germ line repair events. We also show that xnd-1 regulated him-5 transcriptionally, independently of mys-1, and that ectopic expression of him-5 suppressed the CO defects of xnd-1. Our work provides xnd-1 as a model in which to study the link between chromatin factors, gene expression, and genome stability. PMID:27678523

  17. Insights into hydrate formation and stability of morphinanes from a combination of experimental and computational approaches.

    PubMed

    Braun, Doris E; Gelbrich, Thomas; Kahlenberg, Volker; Griesser, Ulrich J

    2014-09-02

    Morphine, codeine, and ethylmorphine are important drug compounds whose free bases and hydrochloride salts form stable hydrates. These compounds were used to systematically investigate the influence of the type of functional groups, the role of water molecules, and the Cl(-) counterion on molecular aggregation and solid state properties. Five new crystal structures have been determined. Additionally, structure models for anhydrous ethylmorphine and morphine hydrochloride dihydrate, two phases existing only in a very limited humidity range, are proposed on the basis of computational dehydration modeling. These match the experimental powder X-ray diffraction patterns and the structural information derived from infrared spectroscopy. All 12 structurally characterized morphinane forms (including structures from the Cambridge Structural Database) crystallize in the orthorhombic space group P212121. Hydrate formation results in higher dimensional hydrogen bond networks. The salt structures of the different compounds exhibit only little structural variation. Anhydrous polymorphs were detected for all compounds except ethylmorphine (one anhydrate) and its hydrochloride salt (no anhydrate). Morphine HCl forms a trihydrate and dihydrate. Differential scanning and isothermal calorimetry were employed to estimate the heat of the hydrate ↔ anhydrate phase transformations, indicating an enthalpic stabilization of the respective hydrate of 5.7 to 25.6 kJ mol(-1) relative to the most stable anhydrate. These results are in qualitative agreement with static 0 K lattice energy calculations for all systems except morphine hydrochloride, showing the need for further improvements in quantitative thermodynamic prediction of hydrates having water···water interactions. Thus, the combination of a variety of experimental techniques, covering temperature- and moisture-dependent stability, and computational modeling allowed us to generate sufficient kinetic, thermodynamic and structural

  18. Dynamical Stability of Imaged Planetary Systems in Formation: Application to HL Tau

    NASA Astrophysics Data System (ADS)

    Tamayo, D.; Triaud, A. H. M. J.; Menou, K.; Rein, H.

    2015-06-01

    A recent Atacama Large Millimeter/Submillimeter Array image revealed several concentric gaps in the protoplanetary disk surrounding the young star HL Tau. We consider the hypothesis that these gaps are carved by planets, and present a general framework for understanding the dynamical stability of such systems over typical disk lifetimes, providing estimates for the maximum planetary masses. We collect these easily evaluated constraints into a workflow that can help guide the design and interpretation of new observational campaigns and numerical simulations of gap opening in such systems. We argue that the locations of resonances should be significantly shifted in massive disks like HL Tau, and that theoretical uncertainties in the exact offset, together with observational errors, imply a large uncertainty in the dynamical state and stability in such disks. This presents an important barrier to using systems like HL Tau as a proxy for the initial conditions following planet formation. An important observational avenue to breaking this degeneracy is to search for eccentric gaps, which could implicate resonantly interacting planets. Unfortunately, massive disks like HL Tau should induce swift pericenter precession that would smear out any such eccentric features of planetary origin. This motivates pushing toward more typical, less massive disks. For a nominal non-resonant model of the HL Tau system with five planets, we find a maximum mass for the outer three bodies of approximately 2 Neptune masses. In a resonant configuration, these planets can reach at least the mass of Saturn. The inner two planets’ masses are unconstrained by dynamical stability arguments.

  19. Emulsification by high frequency ultrasound using piezoelectric transducer: formation and stability of emulsifier free emulsion.

    PubMed

    Kaci, Messaouda; Meziani, Smail; Arab-Tehrany, Elmira; Gillet, Guillaume; Desjardins-Lavisse, Isabelle; Desobry, Stephane

    2014-05-01

    Emulsifier free emulsion was developed with a new patented technique for food and cosmetic applications. This emulsification process dispersed oil droplets in water without any emulsifier. Emulsions were prepared with different vegetable oil ratios 5%, 10% and 15% (v/v) using high frequency ultrasounds generated by piezoelectric ceramic transducer vibrating at 1.7 MHz. The emulsion was prepared with various emulsification times between 0 and 10h. Oil droplets size was measured by laser granulometry. The pH variation was monitored; electrophoretic mobility and conductivity variation were measured using Zêtasizer equipment during emulsification process. The results revealed that oil droplets average size decreased significantly (p<0.05) during the first 6h of emulsification process and that from 160 to 1 μm for emulsions with 5%, 10% and from 400 to 29 μm for emulsion with 15% of initial oil ratio. For all tested oil ratios, pH measurement showed significant decrease and negative electrophoretic mobility showed the accumulation of OH(-) at oil/water interface leading to droplets stability in the emulsion. The conductivity of emulsions showed a decrease of the ions quantity in solution, which indicated formation of positive charge layer around OH(-) structure. They constitute a double ionic layer around oil particles providing emulsion stability. This study showed a strong correlation between turbidity measurement and proportion of emulsified oil. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Formation of Wide-orbit Gas Giants Near the Stability Limit in Multi-stellar Systems

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Ida, S.

    2017-09-01

    We have investigated the formation of a circumstellar wide-orbit gas giant planet in a multiple stellar system. We consider a model of orbital circularization for the core of a giant planet after it is scattered from an inner disk region by a more massive planet, which was proposed by Kikuchi et al. We extend their model for single star systems to binary (multiple) star systems, by taking into account tidal truncation of the protoplanetary gas disk by a binary companion. As an example, we consider a wide-orbit gas giant in a hierarchical triple system, HD131399Ab. The best-fit orbit of the planet is that with semimajor axis ˜80 au and eccentricity ˜0.35. As the binary separation is ˜350 au, it is very close to the stability limit, which is puzzling. With the original core location ˜20-30 au, the core (planet) mass ˜50 M E and the disk truncation radius ˜150 au, our model reproduces the best-fit orbit of HD131399Ab. We find that the orbit after the circularization is usually close to the stability limit against the perturbations from the binary companion, because the scattered core accretes gas from the truncated disk. Our conclusion can also be applied to wider or more compact binary systems if the separation is not too large and another planet with ≳20-30 Earth masses that scattered the core existed in inner region of the system.

  1. Oxidation Enhances Human Serum Albumin Thermal Stability and Changes the Routes of Amyloid Fibril Formation

    PubMed Central

    Sancataldo, Giuseppe; Vetri, Valeria; Foderà, Vito; Di Cara, Gianluca; Militello, Valeria; Leone, Maurizio

    2014-01-01

    Oxidative damages are linked to several aging-related diseases and are among the chemical pathways determining protein degradation. Specifically, interplay of oxidative stress and protein aggregation is recognized to have a link to the loss of cellular function in pathologies like Alzheimer's and Parkinson's diseases. Interaction between protein and reactive oxygen species may indeed induce small changes in protein structure and lead to the inhibition/modification of protein aggregation process, potentially determining the formation of species with different inherent toxicity. Understanding the temperate relationship between these events can be of utmost importance in unraveling the molecular basis of neurodegeneration. In this work, we investigated the effect of hydrogen peroxide oxidation on Human Serum Albumin (HSA) structure, thermal stability and aggregation properties. In the selected conditions, HSA forms fibrillar aggregates, while the oxidized protein undergoes aggregation via new routes involving, in different extents, specific domains of the molecule. Minute variations due to oxidation of single residues affect HSA tertiary structure leading to protein compaction, increased thermal stability, and reduced association propensity. PMID:24416244

  2. The hypoparathyroidism-associated mutation in Drosophila Gcm compromises protein stability and glial cell formation

    PubMed Central

    Xi, Xiao; Lu, Lu; Zhuge, Chun-Chun; Chen, Xuebing; Zhai, Yuanfen; Cheng, Jingjing; Mao, Haian; Yang, Chang-Ching; Tan, Bertrand Chin-Ming; Lee, Yi-Nan; Chien, Cheng-Ting; Ho, Margaret S.

    2017-01-01

    Differentiated neurons and glia are acquired from immature precursors via transcriptional controls exerted by factors such as proteins in the family of Glial Cells Missing (Gcm). Mammalian Gcm proteins mediate neural stem cell induction, placenta and parathyroid development, whereas Drosophila Gcm proteins act as a key switch to determine neuronal and glial cell fates and regulate hemocyte development. The present study reports a hypoparathyroidism-associated mutation R59L that alters Drosophila Gcm (Gcm) protein stability, rendering it unstable, and hyperubiquitinated via the ubiquitin-proteasome system (UPS). GcmR59L interacts with the Slimb-based SCF complex and Protein Kinase C (PKC), which possibly plays a role in its phosphorylation, hence altering ubiquitination. Additionally, R59L causes reduced Gcm protein levels in a manner independent of the PEST domain signaling protein turnover. GcmR59L proteins bind DNA, functionally activate transcription, and induce glial cells, yet at a less efficient level. Finally, overexpression of either wild-type human Gcmb (hGcmb) or hGcmb carrying the conserved hypoparathyroidism mutation only slightly affects gliogenesis, indicating differential regulatory mechanisms in human and flies. Taken together, these findings demonstrate the significance of this disease-associated mutation in controlling Gcm protein stability via UPS, hence advance our understanding on how glial formation is regulated. PMID:28051179

  3. Wormlike morphology formation and stabilization of "pluronic p123" micelles by solubilization of pentaerythritol tetraacrylate.

    PubMed

    Petrov, Petar; Yuan, Jiayin; Yoncheva, Krassimira; Müller, Axel H E; Tsvetanov, Christo B

    2008-07-31

    A transition from spherical to wormlike micelles of a poly(ethylene oxide) 20- block-poly(propylene oxide) 70- block-poly(ethylene oxide) 20 triblock copolymer Pluronic P123 induced by solubilization of a tetrafuctional monomer, Pentaerythritol tetraacrylate (PETA), in aqueous media has been studied. The wormlike micelles shape was locked by UV cross-linking of PETA within the micelles resulting in stabilized polymeric micelles (SPMs). The stability of SPMs in a good solvent for both polyether blocks like THF, and upon dilution below the critical micelle concentration (CMC) of P123 in water was confirmed by dynamic light scattering (DLS) and scanning force microscopy (SFM). Formation of cadmium sulfide (CdS) nanoparticles within the wormlike SPMs was carried out via the reduction of Cd (2+) with NaS and analyzed by transmission electron microscopy (TEM) and UV-vis absorption measurements. A stable water-dispersible hybrid system consisting of CdS quantum dots embedded into the wormlike SPMs was obtained.

  4. Study of formation, stabilization and properties of porous silicon and porous silica

    NASA Astrophysics Data System (ADS)

    Hecini, Mouna; Khelifa, Abdellah; Bouzid, Bachir; Drouiche, Nadjib; Aoudj, Salaheddine; Hamitouche, Houria

    2013-09-01

    The large specific surface area of porous silicon (PS) gives it a high degree of chemical surface reactivity. Formation of silicon oxide (silica, SiO2), via different oxidation methods (thermal or electrochemical) within the porous matrix turns out to be an additional factor of PS stability and an improvement of its chemical, structural, morphological, crystalline and optical properties. In this work, PS reactivity is justified by the presence of siloxane (SiOSi) and silanol (SiOH) free and bound sites. Oxidation and densification effects on mesoporous silicon layers properties were investigated. The influence of operating parameters (current density, electrolyte concentration, treatment time, temperature, and oxidizing gas) on PS morphology and oxide quality were assessed. Sample characterization was performed using FTIR, SEM, EDS, XRD and UV-Visible spectrophotometry. Our results showed that oxidation provides stabilization and chemical modification of PS specific surface by creation of SiOH and SiOSi active sites. The optical and crystalline properties are dependent on oxidation temperature. Wet thermal oxidation, preceded by a short dry oxidation under O2, followed by densification under N2, with an oxidation rate of greater than 62%, improves PS properties for a functionalization via silanization.

  5. Bio-prospective of Polyscias fruticosa leaf extract as redactor and stabilizer of gold nanoparticles formation

    NASA Astrophysics Data System (ADS)

    Yulizar, Y.; Ayun, Q.

    2017-03-01

    Metal nanoparticle is a great interest to researches due to its applications toward catalysis, sensors, and drug delivery. Biosynthesis of gold nanoparticles (AuNPs) using aqueous leaf extract of Polycias fruticosa (PFE) is reported in this article. PFE plays a role as reductor and stabilizer of AuNPs. The formation of PFE-AuNPs under radiation of natrium lamp for 15 min was monitored by UV - Vis spectrophotometer. The growth process and stability of PFE-AuNPs was observed from the colour and absorbance change in the wavelength range of 529-533 nm. The optimum synthesis condition of PFE-AuNPs was obtained at 0.06% (w/v) of PFE concentration. Size and its distribution of PFE-AuNPs were identified by particle size analyzer (PSA) as 35.02 nm and stable up until 21 days. The stable PFE-AuNPs was further characterized by Fourier transform infrared (FT-IR) spectroscopy to identify the functional group in phenolic compound of PFE interact with AuNps.

  6. Design and expression of recombinant antihypertensive peptide multimer gene in Escherichia coli BL21.

    PubMed

    Rao, Shengqi; Su, Yujie; Li, Junhua; Xu, Zhenzhen; Yang, Yanjun

    2009-12-01

    The design and expression of an antihypertensive peptide multimer (AHPM), a common precursor of 11 kinds of antihypertensive peptides (AHPs) tandemly linked up according to the restriction sites of gastrointestinal proteases, were explored. The DNA fragment encoding the AHPM was chemically synthesized and cloned into expression vector pGEX-3X. After an optimum induction with IPTG, the recombinant AHPM fused with glutathione S-transferase (GST-AHPM) was expressed mostly as inclusion body in Escherichia coli BL21 and reached the maximal production, 35% of total intracellular protein. The inclusion body was washed, dissolved, and purified by cation exchange chromatography under denaturing conditions, followed by refolding together with size exclusion chromatography and gradual dialysis. The resulting yield of the soluble GST-AHPM (34 kDa) with a purity of 95% reached 399 mg/l culture. The release of high active fragments from the AHPM was confirmed by the simulated gastrointestinal digestion. The results suggest that the design strategy and production method of the AHPM will be useful to obtain a large quantity of recombinant AHPs at a low cost.

  7. Oligomerization of bovine ribonuclease A: structural and functional features of its multimers.

    PubMed Central

    Libonati, Massimo; Gotte, Giovanni

    2004-01-01

    Bovine pancreatic RNase A (ribonuclease A) aggregates to form various types of catalytically active oligomers during lyophilization from aqueous acetic acid solutions. Each oligomeric species is present in at least two conformational isomers. The structures of two dimers and one of the two trimers have been solved, while plausible models have been proposed for the structures of a second trimer and two tetrameric conformers. In this review, these structures, as well as the general conditions for RNase A oligomerization, based on the well known 3D (three-dimensional) domain-swapping mechanism, are described and discussed. Attention is also focused on some functional properties of the RNase A oligomers. Their enzymic activities, particularly their ability to degrade double-stranded RNAs and polyadenylate, are summarized and discussed. The same is true for the remarkable antitumour activity of the oligomers, displayed in vitro and in vivo, in contrast with monomeric RNase A, which lacks these activities. The RNase A multimers also show an aspermatogenic action, but lack any detectable embryotoxicity. The fact that both activity against double-stranded RNA and the antitumour action increase with the size of the oligomer suggests that these activities may share a common structural requirement, such as a high number or density of positive charges present on the RNase A oligomers. PMID:15104538

  8. Shear-Induced Unfolding and Enzymatic Cleavage of Full-Length VWF Multimers

    PubMed Central

    Lippok, Svenja; Radtke, Matthias; Obser, Tobias; Kleemeier, Lars; Schneppenheim, Reinhard; Budde, Ulrich; Netz, Roland R.; Rädler, Joachim O.

    2016-01-01

    Proteolysis of the multimeric blood coagulation protein von Willebrand Factor (VWF) by ADAMTS13 is crucial for prevention of microvascular thrombosis. ADAMTS13 cleaves VWF within the mechanosensitive A2 domain, which is believed to open under shear flow. In this study, we combine fluorescence correlation spectroscopy (FCS) and a microfluidic shear cell to monitor real-time kinetics of full-length VWF proteolysis as a function of shear stress. For comparison, we also measure the Michaelis-Menten kinetics of ADAMTS13 cleavage of wild-type VWF in the absence of shear but partially denaturing conditions. Under shear, ADAMTS13 activity on full-length VWF arises without denaturing agent as evidenced by FCS and gel-based multimer analysis. In agreement with Brownian hydrodynamics simulations, we find a sigmoidal increase of the enzymatic rate as a function of shear at a threshold shear rate γ˙1/2 = 5522/s. The same flow-rate dependence of ADAMTS13 activity we also observe in blood plasma, which is relevant to predict hemostatic dysfunction. PMID:26840720

  9. Enhanced enteric properties and stability of shellac films through composite salts formation.

    PubMed

    Limmatvapirat, Sontaya; Limmatvapirat, Chutima; Puttipipatkhachorn, Satit; Nuntanid, Jurairat; Luangtana-Anan, Manee

    2007-11-01

    The objective of this study was to improve the properties of shellac by composite salts formation. The shellac samples were prepared in various salt forms by dissolving them with 2-amino-2-methyl-1-propanol (AMP) and ammonium hydroxide (AMN) at various ratios of AMP:AMN. The results demonstrated that aqueous solubility of the shellac salts was improved as the ratio of AMP:AMN increased. The absorbance ratio of the FTIR peaks assigned to CO stretching of carboxylate and carboxylic acid (ABS1556/ABS1716) was increased with the increase of the AMP fraction, suggesting that the solubility enhancement was due to more ionization of AMP salts. Moisture adsorption studies indicated that shellac salts were more hygroscopic as AMP content increased. After storage at 40 degrees C, 75% RH, the acid value and insoluble solid of AMP salts were relatively constant even after storage of up to 180 days, suggesting that AMP should protect polymerization. The ABS1556/ABS1716 values of the shellac salts were rapidly decreased after storage, especially for those consisting of a high percentage of AMN. Thus, AMP should bind much tighter at the carboxylate binding site as compared with AMN, resulting in more solubility and stability. In conclusion, optimized shellac properties could be easily accomplished by composite salts formation.

  10. Storage stability of light cycle oil: Studies for the root substance of insoluble sediment formation

    SciTech Connect

    Motohashi, Katsunori; Nakazono, Kingo; Oki, Masami

    1995-04-01

    The storage stabilities of a raw and pretreated light cycle oils (LCOs) have been studied under the condition of ASTM D2274-88. The raw LCO was pretreated by five methods; 10% sulfuric acid-extraction, 10% sodium hydroxide-extraction, methanol-extraction, active clay- treatment, and catalytic hydrotreating. The raw and pretreated LCOs were aged at 95{degrees}C for 144 hours while oxygen was bubbled. The pretreatment except 10% sulfuric acid-extraction showed the decreasing sediments. After removing the sediments by filtration, the changes of component of the residual oils before and after aging, were analyzed by GUMS, GC/AED and GC/NPD. Remarkable changes were observed in nitrogen compounds such as anilines and indoles, sulfur compounds such as thiophenols, and oxygen compounds such as phenol and its derivatives. It was clarified that the sediment formation was caused by the mutual interactions among heteroatom-containing compounds mentioned above. In addition, unstable hydrocarbons were suggested to behave as key-compounds for sediment formation.

  11. Formation and stability of ridge-ridge-ridge triple junctions in rheologically realistic lithosphere model

    NASA Astrophysics Data System (ADS)

    Gerya, Taras; Burov, Evgueni

    2015-04-01

    Triple junctions are probably the most remarkable features of plate boundaries since their presence constitutes one of the major demonstrations of plate tectonics theory. Divergent (R-R-R) triple junctions (at 120° and T junctions) are particular ones since their stability depends on the exact values of the relative velocities of plate divergence and hence is strongly affected by plate rheology and processes of crustal accretion. The mechanisms of their formation and long-term steadiness are not well understood even though it is commonly accepted, generally based on common sense, that the geometry and stability of triple junctions should be related to the intuitively acceptable geometric considerations that 3-branch configurations should be "stable" over the time on a 3D Earth surface. That said, most plate boundaries are in fact 2D in terms that they involve only two plates, while junctions with 3 and more branches, if even mechanically not excluded, are generally short-lived and hence rarely observed at tectonic scale. Indeed, it has been long-time suggested that triple junctions result from evolution of short-lived quadruple junctions, yet, without providing a consistent mechanical explanation or experimental demonstration of this process, due to the rheological complexity of the lithosphere and that of strain localization and crustal accretion processes. For example, it is supposed that R-R-R junctions form as result of axisymmetric mantle upwellings. However, impingement of buoyant fluid on a non-pre-stressed lithosphere should result in multiple radial cracks, as is well known from previous analog and numerical experiments. In case of uni-directionally pre-stressed lithosphere, it has also shown that linear 2D rift structures should be formed. Therefore, a complete 3D thermos-mechanically consistent approach is needed to understand the processes of formation of multi-branch junctions. With this goal we here reproduce and study the processes of multi

  12. Protein kinase D promotes plasticity-induced F-actin stabilization in dendritic spines and regulates memory formation

    PubMed Central

    Bencsik, Norbert; Szíber, Zsófia; Liliom, Hanna; Tárnok, Krisztián; Borbély, Sándor; Gulyás, Márton; Rátkai, Anikó; Szűcs, Attila; Hazai-Novák, Diána; Ellwanger, Kornelia; Rácz, Bence; Pfizenmaier, Klaus; Hausser, Angelika

    2015-01-01

    Actin turnover in dendritic spines influences spine development, morphology, and plasticity, with functional consequences on learning and memory formation. In nonneuronal cells, protein kinase D (PKD) has an important role in stabilizing F-actin via multiple molecular pathways. Using in vitro models of neuronal plasticity, such as glycine-induced chemical long-term potentiation (LTP), known to evoke synaptic plasticity, or long-term depolarization block by KCl, leading to homeostatic morphological changes, we show that actin stabilization needed for the enlargement of dendritic spines is dependent on PKD activity. Consequently, impaired PKD functions attenuate activity-dependent changes in hippocampal dendritic spines, including LTP formation, cause morphological alterations in vivo, and have deleterious consequences on spatial memory formation. We thus provide compelling evidence that PKD controls synaptic plasticity and learning by regulating actin stability in dendritic spines. PMID:26304723

  13. Analytical modelling of the formation temperature stabilization during the borehole shut-in period

    NASA Astrophysics Data System (ADS)

    Fomin, S.; Chugunov, V.; Hashida, T.

    2003-11-01

    The problem of formation temperature stabilization during the shut-in period is solved analytically by the approximate generalized integral-balance method. The model accounts for the thermal history of the borehole exploitation, which may include a finite number of circulation and shut-in periods, and different flow regimes during circulation periods. The latter is determined by the temperatures of the circulating fluid and different Biot numbers that depend on intensity of the heat transfer on the bore-face. Normally the temperature fields in the well and surrounding rocks are calculated numerically by the finite-difference and finite-element methods or analytically, by applying the Laplace-transform method. Formulae, analytically obtained by Laplace transform, are rather bulky and require tedious non-trivial numerical evaluations. Moreover, in previous research the heat interactions of the circulating fluid with formation were treated under the condition of constant bore-face temperatures. In the present study the temperature field in the formation disturbed by the heat flow from the borehole is modelled by the heat conduction equation and thermal interaction of the circulating fluid with formation is approximated by the Newton relationship on the bore-face. The problem for circulation and shut-in periods is solved analytically using the heat balance integral method, where the radius of thermal influence, which defines the thermally disturbed domain, is a function of time, which satisfies the algebraic equation. Within this method, the approximate solution of the heat conduction problem is sought in the form of a finite sum of functions which belong to a complete set of the linearly independent functions defined on the finite interval bounded by the radius of thermal influence and satisfy the homogeneous boundary condition on the bore-face. It can be proved theoretically that the approximate solution found by this method converges to the exact one. Numerical

  14. Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): identification of multiple raft-stabilization mechanisms.

    PubMed

    Bakht, Omar; Pathak, Priyadarshini; London, Erwin

    2007-12-15

    Despite the importance of lipid rafts, commonly defined as liquid-ordered domains rich in cholesterol and in lipids with high gel-to-fluid melting temperatures (T(m)), the rules for raft formation in membranes are not completely understood. Here, a fluorescence-quenching strategy was used to define how lipids with low T(m), which tend to form disordered fluid domains at physiological temperatures, can stabilize ordered domain formation by cholesterol and high-T(m) lipids (either sphingomyelin or dipalmitoylphosphatidylcholine). In bilayers containing mixtures of low-T(m) phosphatidylcholines, cholesterol, and high-T(m) lipid, the thermal stability of ordered domains decreased with the acyl-chain structure of low-T(m) lipids in the following order: diarachadonyl > diphytanoyl > 1-palmitoyl 2-docosahexenoyl = 1,2 dioleoyl = dimyristoleoyl = 1-palmitoyl, 2-oleoyl (PO). This shows that low-T(m) lipids with two acyl chains having very poor tight-packing propensities can stabilize ordered domain formation by high-T(m) lipids and cholesterol. The effect of headgroup structure was also studied. We found that even in the absence of high-T(m) lipids, mixtures of cholesterol with PO phosphatidylethanolamine (POPE) and PO phosphatidylserine (POPS) or with brain PE and brain PS showed a (borderline) tendency to form ordered domains. Because these lipids are abundant in the inner (cytofacial) leaflet of mammalian membranes, this raises the possibility that PE and PS could participate in inner-leaflet raft formation or stabilization. In bilayers containing ternary mixtures of PO lipids, cholesterol, and high-T(m) lipids, the thermal stability of ordered domains decreased with the polar headgroup structure of PO lipids in the order PE > PS > phosphatidylcholine (PC). Analogous experiments using diphytanoyl acyl chain lipids in place of PO acyl chain lipids showed that the stabilization of ordered lipid domains by acyl chain and headgroup structure was not additive. This implies

  15. Isotope Effect in Ozone Formation: Assessing the Relationship Between Photon Energy and Stabilization

    NASA Astrophysics Data System (ADS)

    Gardner, D. A.; Chakraborty, S.; Thiemens, M. H.

    2016-12-01

    While it has been found that the isotopic fractionation of oxygen during processes such as evaporation or precipitation happens mass-dependently (i.e. δ17O = 0.52δ18O), it was discovered in the 1980's that during ozone (O3) formation, fractionation occurs mass-independently (i.e. δ17O = δ18O). The purpose of this series of photolysis experiments was to assess the relationship between incoming photon energy and anomalous oxygen enrichment during the formation of ozone from molecular oxygen, a topic that has not yet been explored in detail, to our knowledge. A UV lamp emitting wavelengths of 184.9 and 253.7 nm was used to photolyze molecular oxygen in a vacuum chamber to form ozone. The ozone was separated from unreacted oxygen by trapping ozone with liquid nitrogen in the reaction chamber finger. After the untrapped oxygen was evacuated, the ozone was collected in a sample tube with molecular sieve, which allows the ozone to break down to molecular oxygen. In these experiments, mass-spectroscopy was performed on molecular oxygen to measure the isotopic composition (δ17O and δ18O). A limited number of experiments were performed using two different collection methods: collection immediately following formation and collection at the end of photon exposure, allowing a certain amount of ozone to dissociate and recycle. We compared the enrichments of against in ozone from the two above mentioned cases. In the former case, the enrichment in δ17O and δ18O follow a linear relationship of 0.92 (normalized to starting composition), consistent with literature data. Whereas for the latter case, the measured slope value was 0.83. The individual δ17O and δ18O values were also relatively higher compared to the first case. Differences for these two cases may arise due to the additional contribution from ozone dissociation (follow a nearly mass-dependent slope, i.e. 0.5) in the second case. More experiments are underway in an attempt to understand the stabilization step of

  16. Formation, stability, and solubility of metal oxide nanoparticles: Surface entropy, enthalpy, and free energy of ferrihydrite

    NASA Astrophysics Data System (ADS)

    Hiemstra, Tjisse

    2015-06-01

    Ferrihydrite (Fh) is an excellent model for understanding nanoparticle behavior in general. Moreover, Fh is one of the most important Fe (hydr) oxides in nature. Fh particles can be extremely small leading to a very high reactive surface area that changes its chemical potential, strongly affecting the solubility, nucleation, and stability. These characteristics can be coupled to the interfacial Gibbs free energy, being γ = 0.186 ± 0.01 J m-2 for Fh. The surface free energy has a relatively large contribution of surface entropy (-TSsurf = +0.079 ± 0.01 J m-2). The surface entropy is primarily related to the formation of surface groups by chemisorption of water (-17.1 J mol-1 K-1), for Fh equivalent with +0.064 ± 0.002 J m-2 at a surface loading NH2O = 12.6 μmol m-2. The entropy contribution of physisorbed water has been estimated by analyzing, as model, the surface enthalpy, entropy, and Gibbs free energy of the principal interfaces of H2O, i.e. ice-water-gas. It is about 20% of the contribution of chemisorbed water. The surface enthalpy of Fh is exceptionally low (Hsurf = +0.107 ± 0.01 J m-2), which can be explained by surface depletion (SD) of relatively unstable Fe polyhedra, or similarly, by additional surface loading of the non-depleted mineral core with specific Fe polyhedra for stabilization. The experimental enthalpy of Fh formation varies linearly with the surface area and correctly predicts the enthalpy value for the mineral core (-405.2 ± 1.2 kJ mol FeO3/2), being similar to the literature value for Fh as virtual bulk material (-406.7 ± 1.5 kJ mol FeO3/2) obtained with MO/DFT computations. The thermochemical quantities of the mineral core and surface are essentially the same for the entire range of Fh samples, in line with the SD model. The solubility of Fh suspensions as a whole may differ from the behavior of individual particles due to polydispersity. For 2-line Fh, the overall solubility is log Kso ∼ -38.5 ± 0.1 and for prolongedly aged 6

  17. Evidence for formation of a PAN analogue of pinonic structure and investigation of its thermal stability

    NASA Astrophysics Data System (ADS)

    NozièRe, Barbara; Barnes, Ian

    1998-10-01

    The first evidence and laboratory study of a peroxyacetyl nitrate (PAN) analogue produced by the photooxidation of a terpene, α-pinene, is presented. This PAN analogue, assigned to 3-acetyl-2,2-dimethyl-cyclobutane-acetyl peroxynitrate and referred to as "α-pinonyl peroxynitrate" (αP-PAN) was synthesized in the gas phase from the radical (OH, Cl, Br, or NO3) initiated oxidation of pinonaldehyde (3-acetyl-2,2-dimethyl-cyclobutyl-ethanal) in the presence of excess NO2 and evidenced by Fourier transform-infrared (FT-IR) spectroscopy. Another reaction channel producing PAN was also observed for some of the radical initiators. Of particular atmospheric interest, the experiments with OH radicals demonstrated that αP-PAN is the main product of pinonaldehyde under NOx-rich conditions with a yield of (81.3±16)%, while an upper limit of the PAN yield for this reaction is around 8%. The further photooxidation of αP-PAN was also observed to produce PAN directly. The thermal stability of αP-PAN was studied between 303 and 281 K. The rate constant of thermal dissociation was found to be k-1 = 10(9.25±0.33) × exp [-(72.0±1.9)/RT] where the activation energy is in kJ mol-1. Distortions of the kinetic profiles attributed to aerosol formation were observed and led to large errors in the above estimation of k-1. Within the uncertainties, the observed thermal stability of αP-PAN is comparable to that of PAN. The tropospheric importance of pinonaldehyde and of αP-PAN are discussed.

  18. Formation, stability, and mechanical properties of bovine serum albumin stabilized air bubbles produced using coaxial electrohydrodynamic atomization.

    PubMed

    Mahalingam, S; Meinders, M B J; Edirisinghe, M

    2014-06-17

    Bovine serum albumin (BSA) microbubbles were generated using coaxial electrohydrodynamic atomization (CEDHA) using various concentrations of BSA solutions. The bubble characteristics and the long-term stability of the microbubbles were studied through adjustment of processing parameters and the collection media. Bubbles in the range of 40-800 μm were obtained in a controlled fashion, and increasing the flow rate of the BSA solution reduced the polydispersity of the microbubbles. Use of distilled water-glutaraldehyde, glycerol, and glycerol-Tween 80 collection media allowed a remarkable improvement in bubble stability compared to BSA solution collection medium. Possible physical mechanisms were developed to explain the stability of the microbubbles. The collection distance showed a marked influence on stability of the microbubbles. Near-monodisperse particle-reinforced microbubbles were formed with various concentrations of 2,2'-azobis(isobutyramidine) dihydrochloride (AIBA)-polystyrene particle in BSA solution. The bubble size and the size distribution showed negligible change over a period of time irrespective of the concentration of particles at the bubble surface. The compression stiffness of the microbubbles was determined using nanoindentation at ambient temperature and showed that the stiffness of the microbubbles increased from 8 N/m to 20 N/m upon changing the concentration of BSA solution from 5 wt % to 15 wt %.

  19. Partial reactivation of a huge deep-seated ancient rock slide: recognition, formation mechanism, and stability

    NASA Astrophysics Data System (ADS)

    Tang, Minggao; Xu, Qiang; Li, Yusheng; Huang, Runqiu; Rengers, Niek; Zhu, Xing

    2016-08-01

    About 18 years ago, a large-scale discontinuous layer in properties and colour was found in the new Fengjie town at the shore of the Three Gorges Reservoir area in China. There are many resettled residents and buildings on the sloping area, the safety of which is potentially affected by this layer, so it has become the focus of attention. Before this study started there were two viewpoints regarding the origin of this layer. One was that is was from a huge ancient slide and the other was that is was from a fault graben. In order to find out how it was formed and to be able to carry out a stability analysis of the slope the authors have carried out a research program, including geological field investigations and mapping, a deep drilling hole, a geotechnical centrifuge model test, and a simulation analysis. The results of the research led to the conclusion that the layer is the sliding plane of a huge deep-seated ancient rock slide, which we called the Sanmashan landslide. An important argument for the conclusion is the recognition of a regional compressive tectonic stress field in this area, which cannot lead to the formation of a fault graben because it needs a tensional tectonic stress field. Moreover, numerous unique geological features, sliding marks, and other relics of the ancient slide have been discovered in the field. The formation process of the ancient slide could be repeated in a large geotechnical centrifuge model test. The test shows that a deformation and failure process of "creep-crack-cut" has occurred. The type of the ancient slide can be classified as a "successive rotational rock slide". Finally, the role of seepage in the stability of the Sanmashan landslide has been analysed. Our final conclusions are that, during rainfall and filling-drawdown cycles in the Three Gorges Reservoir, the Sanmashan landslide as a whole is dormant and stable and the secondary landslides in the toe area of the slope are presently stable but can be reactivated. This

  20. Nitrate photochemistry in NaY zeolite: product formation and product stability under different environmental conditions.

    PubMed

    Gankanda, Aruni; Grassian, Vicki H

    2013-03-14

    In the atmosphere, mineral dust particles are often associated with adsorbed nitrate from heterogeneous reactions with nitrogen oxides (N2O5, HNO3, NO3, and NO2). Nitrate ions associated with mineral dust particles can undergo further reactions including those initiated by solar radiation. Although nitrate photochemistry in aqueous media is fairly well studied, much less is known about the photochemistry of nitrate adsorbed on mineral dust particles. In this study, the photochemistry of nitrate from HNO3 adsorption in NaY zeolite under different environmental conditions has been investigated using transmission FTIR spectroscopy. NaY zeolite is used as a model zeolite for studying reactions that can occur in confined space such as those found in porous materials including naturally occurring zeolites and clays. Upon nitrate photolysis under dry conditions (relative humidity, RH, < 1%), surface nitrite is formed as the major adsorbed product. Although nitrite has been proposed as a product in the photochemistry of nitrate adsorbed on metal oxide particle surfaces, such as on alumina, it has not been previously detected. The stability of adsorbed nitrite in NaY is attributed to the confined three-dimensional structure of the porous zeolite, which contains a charge compensating cation that can stabilize the nitrite ion product. Besides adsorbed nitrite, small amounts of gas phase nitrogen-containing products are observed as well including NO2, NO, and N2O at long irradiation times. The amount of nitrite formed via nitrate photochemistry decreases with increasing relative humidity, whereas gas phase NO and N2O become the only detectable products. Gas-phase NO2 does not observe at RH > 1%. In the presence of gas phase ammonia, ammonium nitrate is formed in NaY zeolite. Photochemistry of ammonium nitrate yields gas phase N2O as the sole gas phase product. Evidence for an NH2 intermediate in the formation of N2O is identified with FTIR spectroscopy for HNO3 adsorption and

  1. Modeling the influence of storms on sand wave formation: A linear stability approach

    NASA Astrophysics Data System (ADS)

    Campmans, G. H. P.; Roos, P. C.; de Vriend, H. J.; Hulscher, S. J. M. H.

    2017-04-01

    We present an idealized process-based morphodynamic model to study the effect of storms on sand wave formation. To this end, we include wind waves, wind-driven flow and, in addition to bed load transport, suspended load sediment transport. A linear stability analysis is applied to systematically study the influence of wave and wind conditions on growth and migration rates of small-amplitude wavy bed undulations. The effects of the wind and waves of various magnitudes and directions are investigated. Waves turn out to decrease the growth rate of sand waves, because their effect on the downhill gravitational transport component is stronger than their growth-enhancing effect. The wind wave effect is strongest for wind waves perpendicular to the tidal current. In the case of a symmetrical tidal current, wind-driven flow tends to breach the symmetry, thus causing sand wave migration. Wind effects on sand wave behavior are strongly influenced by the Coriolis effect, in magnitude as well as direction. Stirring due to wind waves enhances sand wave migration. Next to bed load transport, suspended load also has a growing and a decaying mechanism, being the perturbed flow and the perturbed suspended sediment concentration respectively. The decaying mechanism outcompetes the growing mechanism for bed forms with shorter wavelengths, resulting in an increase in the preferred wavelength. Wind waves increase the growth rate due to suspended load, but this is outcompeted by the reduction in growth rate by wind waves due to bed load transport. We conclude that storms significantly influence sand wave dynamics in their formation stage.

  2. Zinc promotes clot stability by accelerating clot formation and modifying fibrin structure.

    PubMed

    Henderson, Sara J; Xia, Jing; Wu, Huayin; Stafford, Alan R; Leslie, Beverly A; Fredenburgh, James C; Weitz, David A; Weitz, Jeffrey I

    2016-03-01

    Zinc released from activated platelets binds fibrin(ogen) and attenuates fibrinolysis. Although zinc also affects clot formation, the mechanism and consequences are poorly understood. To address these gaps, the effect of zinc on clot formation and structure was examined in the absence or presence of factor (F) XIII. Zinc accelerated a) plasma clotting by 1.4-fold, b) fibrinogen clotting by 3.5- and 2.3-fold in the absence or presence of FXIII, respectively, c) fragment X clotting by 1.3-fold, and d) polymerisation of fibrin monomers generated with thrombin or batroxobin by 2.5- and 1.8-fold, respectively. Whereas absorbance increased up to 3.3-fold when fibrinogen was clotted in the presence of zinc, absorbance of fragment X clots was unaffected by zinc, consistent with reports that zinc binds to the αC-domain of fibrin(ogen). Scanning electron microscopic analysis revealed a two-fold increase in fibre diameter in the presence of zinc and in permeability studies, zinc increased clot porosity by 30-fold with or without FXIII. Whereas FXIII increased clot stiffness from 128 ± 19 Pa to 415 ± 27 Pa in rheological analyses, zinc reduced clot stiffness by 10- and 8.5-fold in the absence and presence of FXIII, respectively. Clots formed in the presence of zinc were more stable and resisted rupture with or without FXIII. Therefore, zinc accelerates clotting and reduces fibrin clot stiffness in a FXIII-independent manner, suggesting that zinc may work in concert with FXIII to modulate clot strength and stability.

  3. Green rust nanoparticle formation, stability and oxidation, and its role in natural and engineered systems

    NASA Astrophysics Data System (ADS)

    Shaw, S.; Benning, L.; Ahmed, I.; Kakonyi, G.; Sumoondur, A.; Terrill, N.

    2009-12-01

    Highly reactive green rust (GR) nanoparticles are believed to play an important role in the geochemistry of water saturated sediments (e.g. hydromorphic soils) and engineered systems where zero-valent iron is used for decontaminating polluted sites (e.g. permeable reactive barriers). The presence of structural Fe2+ within GR and its high specific surface area make it an effective reductant for many inorganic (e.g. Cr, U, Se) and organic substances (e.g. tetrachloroethene (TCE)). These reduction processes can lead to breakdown of organic molecules or the formation of insoluble reduced inorganic phases (e.g., UO2(s)), thus reducing the bioavailability of these toxic compounds. Understanding the formation and geochemical stability of GR is key to assessing its potential role in natural sediments and engineered environments. However, characterizing GR is difficult due to the rapid oxidation (seconds - minutes) of structural Fe2+ in the presence of air. Thus, to obtain detailed information about the mechanism and kinetics of GR formation, stabilisation and oxidative breakdown, novel synchrotron-based methods have been developed which combine in situ and time-resolved X-ray diffraction/scattering (XRD/SAXS) analysis with controlled anaerobic chemical synthesis. This system allowed the simultaneous quantification of several chemical parameters in the aqueous solution (i.e., pH, Eh) with detailed analysis of the changes in the solid phase crystal structure. In conjunction with this X-ray Absorption Spectroscopy (XAS) was used to characterise the speciation of trace elements (i.e. U, Zn and Se) associated with GR as it crystallised and/or transformed. The formation of green rust (Fe2+/Fe3+ > 1.2) from solution occurs via a 3 stage process. The first stage is the nucleation and growth of ferric hydroxysulfate (schwertmannite) nanoparticles (~5 nm). With increasing pH the schwertmannite transforms into nanogoethite particles (< 50 nm). This process is catalyzed by adsorbed Fe

  4. Stability of formation control using a consensus protocol under directed communications with two time delays and delay scheduling

    NASA Astrophysics Data System (ADS)

    Cepeda-Gomez, Rudy; Olgac, Nejat

    2016-01-01

    We consider a linear algorithm to achieve formation control in a group of agents which are driven by second-order dynamics and affected by two rationally independent delays. One of the delays is in the position and the other in the velocity information channels. These delays are taken as constant and uniform throughout the system. The communication topology is assumed to be directed and fixed. The formation is attained by adding a supplementary control term to the stabilising consensus protocol. In preparation for the formation control logic, we first study the stability of the consensus, using the recent cluster treatment of characteristic roots (CTCR) paradigm. This effort results in a unique depiction of the non-conservative stability boundaries in the domain of the delays. However, CTCR requires the knowledge of the potential stability switching loci exhaustively within this domain. The creation of these loci is done in a new surrogate coordinate system, called the 'spectral delay space (SDS)'. The relative stability is also investigated, which has to do with the speed of reaching consensus. This step leads to a paradoxical control design concept, called the 'delay scheduling', which highlights the fact that the group behaviour may be enhanced by increasing the delays. These steps lead to a control strategy to establish a desired group formation that guarantees spacing among the agents. Example case studies are presented to validate the underlying analytical derivations.

  5. Stabilization and activation of alpha-chymotrypsin in water-organic solvent systems by complex formation with oligoamines.

    PubMed

    Kudryashova, Elena V; Artemova, Tatiana M; Vinogradov, Alexei A; Gladilin, Alexander K; Mozhaev, Vadim V; Levashov, Andrey V

    2003-04-01

    Formation of enzyme-oligoamine complexes was suggested as an approach to obtain biocatalysts with enhanced resistance towards inactivation in water-organic media. Complex formation results in broadening (by 20-40% v/v ethanol) of the range of cosolvent concentrations where the enzyme retains its catalytic activity (stabilization effect). At moderate cosolvent concentrations (20-40% v/v) complex formation activates the enzyme (by 3-6 times). The magnitude of activation and stabilization effects increases with the number of possible electrostatic contacts between the protein surface and the molecules of oligoamines (OA). Circular dichroism spectra in the far-UV region show that complex formation stabilizes protein conformation and prevents aggregation in water-organic solvent mixtures. Two populations of the complexes with different thermodynamic stabilities were found in alpha-chymotrypsin (CT)-OA systems depending on the CT/OA ratio. The average dissociation constants and stoichiometries of both low- and high-affinity populations of the complexes were estimated. It appears that it is the low-affinity sites on the CT surface that are responsible for the activation effect.

  6. Resonant structure, formation and stability of the planetary system HD155358

    NASA Astrophysics Data System (ADS)

    Silburt, Ari; Rein, Hanno

    2017-08-01

    Two Jovian-sized planets are orbiting the star HD155358 near exact mean motion resonance (MMR) commensurability. In this work, we re-analyse the radial velocity (RV) data previously collected by Robertson et al. Using a Bayesian framework, we construct two models - one that includes and the other that excludes gravitational planet-planet interactions (PPIs). We find that the orbital parameters from our PPI and no planet-planet interaction (noPPI) models differ by up to 2σ, with our noPPI model being statistically consistent with previous results. In addition, our new PPI model strongly favours the planets being in MMR, while our noPPI model strongly disfavours MMR. We conduct a stability analysis by drawing samples from our PPI model's posterior distribution and simulating them for 109 yr, finding that our best-fitting values land firmly in a stable region of parameter space. We explore a series of formation models that migrate the planets into their observed MMR. We then use these models to directly fit to the observed RV data, where each model is uniquely parametrized by only three constants describing its migration history. Using a Bayesian framework, we find that a number of migration models fit the RV data surprisingly well, with some migration parameters being ruled out. Our analysis shows that PPIs are important to take into account when modelling observations of multiplanetary systems. The additional information that one can gain from interacting models can help constrain planet migration parameters.

  7. Formation, antioxidant property and oxidative stability of cold pressed rice bran oil emulsion.

    PubMed

    Thanonkaew, Amonrat; Wongyai, Surapote; Decker, Eric A; McClements, David J

    2015-10-01

    Cold pressed rice bran oil (CPRBO) is used in foods, cosmetics, and pharmaceuticals due to its desirable health and functional attributes. The purpose of this work was to study the formation, antioxidant property and oxidative stability of oil-in-water emulsion of CPRBO. The influence of oil (10-40 % CPRBO) and surfactant (1-5 % glyceryl monostearate (GMS)) concentration on the properties of emulsions were studied. The lightness (L*) and yellowness (b*) of CPRBO emulsions decreased as GMS concentration increased, which was attributed to a decrease in droplet size after homogenization. The CPRBO emulsion was stable during storage at room temperature for 30 days. Increasing the oil concentration in the CPRBO emulsions increased their antioxidant activity, which can be attributed to the corresponding increase in phytochemical content. However, GMS concentration had little impact on the antioxidant activity of CPRBO emulsions. The storage of CPRBO emulsion at room temperature showed that lipid oxidation markers gradually increased after 30 days of storage, which was correlated to a decrease in gamma oryzanol content and antioxidant activity. These results have important implications for the utilization of rice bran oil (RBO) as a function ingredient in food, cosmetic, and pharmaceutical products.

  8. Enigmatic Isovaline: Investigating the Stability, Racemization, and Formation of a Non-biological Meteoritic Amino Acid

    NASA Technical Reports Server (NTRS)

    Hudson, Reggie; Moore, Marla; Lewis, Ariel; Dworkin, Jason

    2008-01-01

    Among the Murchison meteoritic amino acids, isovaline stands out as being both nonbiological (non-protein) and having a relatively high abundance. While approximately equal amounts of D- and L-isovaline have been reported in Murchison and other CM meteorites, the molecule's structure appears to prohibit its racemization in aqueous solutions. We recently have investigated the low-temperature solid-phase chemistry of both isovaline and valine with an eye toward each molecule's formation, stability, and possible interconversions of D and L enantiomers. Ion-irradiated isovaline- and valinecontaining ices were examined by IR spectroscopy and highly-sensitive liquid chromatography/time-of-flight mass spectral methods to assess both amino acid destruction and racemization. Samples were studied in the presence and in the absence of water-ice, and the destruction of both isovaline and valine was measured as a function of radiation dose. In addition, we have undertaken experiments to synthesize isovaline, valine, and their amino acid isomers by solid-phase radiation-chemical pathways other than the oft-invoked Strecker process. This presentation will review and summarize some of our recent findings. -- Our work has been supported by a grant to the Goddard Center for Astrobiology through the NASA Astrobiology Institute. Experiments were performed in the Cosmic Ice Laboratory (RLH, MHM, AL) and the Astrobiology Analytical Laboratory (JPD, DPG) at the NASA Goddard Space Flight Center.

  9. Formation and stability of lanthanide complexes and their encapsulation into polymeric microspheres

    SciTech Connect

    Mumper, R.J.; Jay, M.

    1992-10-15

    The complexation of lanthanides (Ln) with dicarbonyl compounds (acetylacetone, acac; ethyl acetoacetate; 3-ethyl-2,4-pentanedione; 2,4-hexanedione; 3-methyl-2,4-pentanedione; and diethyl malonate) was investigated using a potentiometric titration technique. The ability of a dicarbonyl compound to complex with the lanthanide elements was greatly dependent on its pK{sub a} and on the pH of the titrated solution. Selected lanthanide complexes (Ln complexes) were incorporated into spherical poly(L-lactic acid)(PLA) matrices and irradiated in a nuclear reactor with neutrons to produce short-lived high-energy {Beta}-particle-emitting radioisotopes. The lanthanides investigated (Ho, Dy, Sm, and La) were chosen on the basis of their physical and nuclear properties. A transition element (Re) was also studied. The small decrease in the ionic radii of the lanthanides with increasing atomic number led to (a) greater ability to extract and complex from an aqueous solution with complexing agents, (b) larger formation and stability constants for the Ln complexes, (c) increased solubility of the Ln complexes in chloroform, and (d) increase in the maximum percent incorporation of the stable lanthanides in PLA spheres. Ho(aca) was found to be the most promising candidate of the complexes studied on the basis of the above observations and due to the favorable physical properties of {sup 165}Ho and nuclear properties of {sup 166}Ho. 21 refs., 5 figs., 4 tabs.

  10. Src and cortactin promote lamellipodia protrusion and filopodia formation and stability in growth cones

    PubMed Central

    He, Yingpei; Ren, Yuan; Wu, Bingbing; Decourt, Boris; Lee, Aih Cheun; Taylor, Aaron; Suter, Daniel M.

    2015-01-01

    Src tyrosine kinases have been implicated in axonal growth and guidance; however, the underlying cellular mechanisms are not well understood. Specifically, it is unclear which aspects of actin organization and dynamics are regulated by Src in neuronal growth cones. Here, we investigated the function of Src2 and one of its substrates, cortactin, in lamellipodia and filopodia of Aplysia growth cones. We found that up-regulation of Src2 activation state or cortactin increased lamellipodial length, protrusion time, and actin network density, whereas down-regulation had opposite effects. Furthermore, Src2 or cortactin up-regulation increased filopodial density, length, and protrusion time, whereas down-regulation promoted lateral movements of filopodia. Fluorescent speckle microscopy revealed that rates of actin assembly and retrograde flow were not affected in either case. In summary, our results support a model in which Src and cortactin regulate growth cone motility by increasing actin network density and protrusion persistence of lamellipodia by controlling the state of actin-driven protrusion versus retraction. In addition, both proteins promote the formation and stability of actin bundles in filopodia. PMID:26224308

  11. Microsolvated and chelated butylzinc cations: formation, relative stability, and unimolecular gas-phase chemistry.

    PubMed

    Fleckenstein, Julia E; Koszinowski, Konrad

    2009-11-23

    Solutions of butylzinc iodide in tetrahydrofuran, acetonitrile, and N,N-dimethylformamide were analyzed by electrospray ionization mass spectrometry. In all cases, microsolvated butylzinc cations [ZnBu(solvent)(n)](+), n=1-3, were detected. The parallel observation of the butylzincate anion [ZnBuI(2)](-) suggests that these ions result from disproportionation of neutral butylzinc iodide in solution. In the presence of simple bidentate ligands (1,2-dimethoxyethane, N,N-dimethyl-2-methoxyethylamine, and N,N,N',N'-tetramethylethylenediamine), chelate complexes of the type [ZnBu(ligand)](+) form quite readily. The relative stabilities of these complexes were probed by competition experiments and analysis of their unimolecular gas-phase reactivity. Fragmentation of mass-selected [ZnBu(ligand)](+) leads to the elimination of butene and formation of [ZnH(ligand)](+). In marked contrast, the microsolvated cations [ZnBu(solvent)(n)](+) lose the attached solvent molecules upon gas-phase fragmentation to produce bare [ZnBu](+), which subsequently dissociates into [C(4)H(9)](+) and Zn. This difference in reactivity resembles the situation in organozinc solution chemistry, in which chelating ligands are needed to activate dialkylzinc compounds for the nucleophilic addition to aldehydes.

  12. Septin9 is involved in septin filament formation and cellular stability.

    PubMed

    Füchtbauer, Annette; Lassen, Louise B; Jensen, Astrid B; Howard, Jennifer; Quiroga, Adán de Salas; Warming, Søren; Sørensen, Annette B; Pedersen, Finn S; Füchtbauer, Ernst-Martin

    2011-08-01

    Septin9 (Sept9) is a member of the filament-forming septin family of structural proteins and is associated with a variety of cancers and with hereditary neuralgic amyotrophy. We have generated mice with constitutive and conditional Sept9 knockout alleles. Homozygous deletion of Sept9 results in embryonic lethality around day 10 of gestation whereas mice homozygous for the conditional allele develop normally. Here we report the consequences of homozygous loss of Sept9 in immortalized murine embryonic fibroblasts. Proliferation rate was not changed but cells without Sept9 had an altered morphology compared to normal cells, particularly under low serum stress. Abnormal, fragmented, and multiple nuclei were more frequent in cells without Sept9. Cell migration, as measured by gap-filling and filter-invasion assays, was impaired, but individual cells did not move less than wild-type cells. Sept9 knockout cells showed a reduced resistance to hypo-osmotic stress. Stress fiber and vinculin staining at focal adhesion points was less prominent. Long septin filaments stained for Sept7 disappeared. Instead, staining was found in short, often curved filaments and rings. Furthermore, Sept7 was no longer localized to the mitotic spindle. Together, these data reveal the importance of Sept9 for septin filament formation and general cell stability.

  13. The Formation and Stability of DC-SIGN Microdomains Require its Extracellular Moiety

    PubMed Central

    Liu, Ping; Wang, Xiang; Itano, Michelle S.; Neumann, Aaron K.; Jacobson, Ken; Thompson, Nancy L.

    2012-01-01

    DC-SIGN (Dendritic cell-specific ICAM-3-grabbing non-integrin) is a Ca2+-dependent transmembrane lectin that binds a large variety of pathogens and facilitates their uptake for subsequent antigen presentation. This receptor is present in cell surface microdomains, but factors involved in microdomain formation and their exceptional stability are not clear. To determine which domain/motif of DC-SIGN facilitates its presence in microdomains, we studied mutations at key locations including truncation of the cytoplasmic tail, and ectodomain mutations that resulted in removal of the N-linked glycosylation site, the tandem repeats and the carbohydrate recognition domain (CRD) as well as modification of the calcium sites in the CRD required for carbohydrate binding. Confocal imaging and FRAP measurements showed that the cytoplasmic domain and N-linked glycosylation site do not affect the ability of DC-SIGN to form stable microdomains. However, truncation of the CRD results in complete loss of visible microdomains and subsequent lateral diffusion of the mutants. Apart from cell adhesions, membrane domains are thought to be localized primarily via the cytoskeleton. By contrast, we propose that interactions between the CRD of DC-SIGN and the extracellular matrix and/or cis interactions with transmembrane scaffolding protein(s) play an essential role in organizing these microdomains. PMID:22292921

  14. Eudragit® RL as a stabilizer for supersaturation and a substrate for nanocrystal formation.

    PubMed

    Dereymaker, Aswin; Cinghia, Giulia; Van den Mooter, Guy

    2017-05-01

    In order to optimize supersaturation levels and avoid early drug precipitation, Eudragit® RL was tested as a carrier in solid dispersions, either alone or in combination with a hydrophilic polymer (PVP K25). In vitro dissolution performance of the spray dried solid dispersions was tested. The phase behavior of the produced solid dispersions was analyzed as well as dissolution precipitates. In case of weak acid model compounds (indomethacin and naproxen), the incorporation of Eudragit® RL resulted in a prolongation of supersaturation. A combination of PVP and Eudragit® RL led to high and stable drug concentrations. Eudragit® RL was only suited as a carrier in combination with higher drug loadings. Phase behavior analysis of the produced solid dispersions showed that Eudragit® RL could form glass solutions, and precipitate analysis showed that these drug-polymer combinations remained amorphous after in vitro dissolution for 24h. Surprisingly, indomethacin and naproxen also formed nanocrystals in presence of Eudragit® RL. These nanocrystals were formed by a dynamic interplay of dissolution, sorption and desorption. A charge interaction between anionic drugs and a cationic polymer provided a high driving force for sorption, which was necessary for nanocrystal formation and supersaturation stabilization. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Drosophila BTB/POZ domains of "ttk group" can form multimers and selectively interact with each other.

    PubMed

    Bonchuk, Artem; Denisov, Stepan; Georgiev, Pavel; Maksimenko, Oksana

    2011-09-23

    The BTB (bric-a-brac, tramtrack and broad complex)/POZ (poxvirus and zinc finger) domain is a conserved protein-protein interaction motif contained in a variety of transcription factors involved in development, chromatin remodeling, insulator activity, and carcinogenesis. All well-studied mammalian BTB domains form obligate homodimers and, rarely, tetramers. Only the BTB domain of the Drosophila GAGA factor (GAF) has been shown to exist as higher-order multimers. The BTB domain of GAF belongs to the "ttk group" that contains several highly conserved sequences not found in other BTB domains. Here, we have shown by size-exclusion chromatography, chemical cross-linking, and nondenaturing PAGE that four additional BTB domains of the ttk group-Batman, Mod(mdg4), Pipsqueak, and Tramtrack-can form multimers, like GAF. Interestingly, the BTB domains of GAF and Batman have formed a wide range of complexes and interacted in the yeast two-hybrid assay with other BTB domains tested. In contrast, the BTB domains of Mod(mdg4), Pipsqueak, and Tramtrack have formed stable high-order multimer complexes and failed to interact with each other. The BTB domain of Drosophila CP190 protein does not belong to the ttk group. This BTB domain has formed stable dimers and has not interacted with domains of the ttk group. Previously, it was suggested that GAF oligomerization into higher-order complexes facilitates long-range activation by providing a protein bridge between an enhancer and a promoter. Unexpectedly, experiments in the Drosophila model system have not supported the role of GAF in organization of long-distance interaction between the yeast GAL4 activator and the white promoter.

  16. Studies on chalcone derivatives: Complex formation, thermal behavior, stability constant and antioxidant activity

    NASA Astrophysics Data System (ADS)

    El-Sayed, Yusif S.; Gaber, M.

    2015-02-01

    The chalcone 3-[4‧-dimethylaminophenyl]-1-(2-pyridyl) prop-2-en-1-one (DMAPP) and 3-(4‧-diethylaminophenyl)-1-(2-pyridinyl) prop-2-en-1-one abbreviated as DEAPP have been synthesized and characterized with IR, 1H NMR, 13C NMR spectroscopic techniques as described previously (El-Daly et al., 2008; Gaber et al., 2009; El-Sayed, 2013). By using UV visible spectroscopy method the mole fraction ratio for copper with DMAPP and DEAPP complexes were determined and it was found to be 1:1. The stability constants of this complex have been determined by Job's method. The stability constant (Kf) of copper with DMAPP and DEAPP complexes in universal buffer pH = 3.2 was determined to be 9.9 × 104 and 5.2 × 104 respectively. The effect of Cu(II) ion on the emission spectrum of the free chalcone is also assigned. Adherence to Beer's law and Ringbom optimum concentration ranges are determined. The thermal decomposition of the metal complexes is studied by TGA technique. The kinetic parameters like activation energy, pre-exponential factor and entropy of activation are estimated. The structure of complexes was energetically optimized through molecular mechanics applying MM+ force field coupled with molecular dynamics simulation. The bond lengths and bond angles have been calculated to confirm the geometry of the ligands and their Cu(II) complexes. The mode of interaction of the chalcone to copper nanoparticles was studied. The apparent association constants of the colloidal copper nanoparticles:chalcone complexes in solution were evaluated using the spectral method and compared with the formation constant of the Cu(II) chalcone complexes. Antioxidant activity of these chalcones was evaluated by using 1,1‧-diphenyl-2-picrylhydrazyl (DPPHrad) radicals scavenging method, which showed that the antioxidant activity of DMAPP has higher value than the DEAPP. Semi-empirical study results showed that DMAPP have higher dipole moment than DEAPP [1].

  17. Controlled formation of emulsion gels stabilized by salted myofibrillar protein under malondialdehyde (MDA)-induced oxidative stress.

    PubMed

    Zhou, Feibai; Sun, Weizheng; Zhao, Mouming

    2015-04-15

    This study presented the cold-set gelation of emulsions stabilized by salted myofibrillar protein (MP) under oxidative stress originated from malondialdehyde (MDA). Gel properties were compared over a range of MDA/NaCl concentrations including gel viscoelastic properties, strength, water-holding capacity (WHC), amount of protein entrapped, and microstructure. The oxidative stability of emulsion gels as indicated by lipid hydroperoxide was further determined and compared. Results indicated that emulsion stabilized by MP at swollen state under certain ionic strengths (0.2-0.6 M) was the premise of gel formation under MDA. In the presence of intermediate MDA concentrations (2.5-10 mM), the emulsion gels showed an improved elasticity, strength, WHC, and oxidative stability. This improvement should be mainly attributed to the enhanced protein-protein cross-linkings via MDA, which were homogeneously formed among absorbed and/or unabsorbed proteins, entrapping a greater amount and fractions of protein within network. Therefore, the oil droplets were better adherent to the gel matrix. Nevertheless, addition of high MDA concentrations (25-50 mM) led to the formation of excessive covalent bonds, which might break protein-protein bonds and trigger the desorption of protein from the interface. This ultimately caused "oil leak" phenomena as well as the collapse of gel structure and, thus, overall decreased gel properties and oxidative stability.

  18. Miscibility behavior and formation mechanism of stabilized felodipine-polyvinylpyrrolidone amorphous solid dispersions.

    PubMed

    Karavas, Evangelos; Ktistis, Georgios; Xenakis, Aristotelis; Georgarakis, Emmanouel

    2005-07-01

    In the present study, solid dispersion systems of felodipine (FEL) with polyvinylpyrrolidone (PVP) were developed, in order to enhance solid state stability and release kinetics. The prepared systems were characterized by using Differential Scanning Calorimetry, X-Ray Diffraction, and Scanning Electron Microscopy techniques, while the interactions which take place were identified by using Fourier Transformation-Infrared Spectroscopy. Due to the formation of hydrogen bonds between the carbonyl group of PVP and the amino groups of FEL, transition of FEL from crystalline to amorphous state was achieved. The dispersion of FEL was found to be in nano-scale particle sizes and dependent on the FEL/PVP ratio. This modification leads to partial miscibility of the two components, as it was verified by DSC and optimal glass dispersion of FEL into the polymer matrix since no crystalline structure was detected with XRD. The above deformation has a significant effect on the dissolution enhancement and the release kinetics of FEL, as it causes the pattern to change from linear to logarithmic. An impressive optimization of the dissolution profile is observed corresponding to a rapid release of FEL in the system containing 10% w/w of FEL, releasing 100% in approximately 20 min. The particle size of dispersed FEL into PVP matrix could be classified as the main parameter affecting dissolution optimization. The mechanism of such enhancement consists of the lower energy required for the dissolution due to the amorphous transition and the fine dispersion, which leads to an optimal contact surface of the drug substance with the dissolution media. The prepared systems are stable during storage at 40 +/- 1 degrees C and relative humidity of 75 +/- 5%. Addition of sodium docusate as surfactant does not affect the release kinetics, but only the initial burst due to its effect on the surface tension and wettability of the systems.

  19. Impact of lemon oil composition on formation and stability of model food and beverage emulsions.

    PubMed

    Rao, Jiajia; McClements, David Julian

    2012-09-15

    Lemon oil is a complex organic compound isolated from citrus peel, which is commonly used as a flavouring agent in beverages, foods, cosmetics, and household products. We have studied the influence of lemon oil fold (1×, 3×, 5× and 10×) on the formation and properties of oil-in-water emulsions. Initially, the composition, molecular characteristics, and physicochemical properties of the four lemon oils were established. The main constituents in single-fold lemon oil were monoterpenes (>90%), whereas the major constituents in 10-fold lemon oil were monoterpenes (≈35%), sesquiterpenes (≈14%) and oxygenates (≈33%). The density, interfacial tension, viscosity, and refractive index of the lemon oils increased as the oil fold increased (i.e., 1×<3×<5×<10×). The stability of oil-in-water emulsions produced by high pressure homogenisation was strongly influenced by lemon oil fold. The lower fold oils were highly unstable to droplet growth during storage (1×, 3×, and 5×) with the growth rate increasing with increasing storage temperature and decreasing oil fold. Droplet growth was attributed to Ostwald ripening, i.e., diffusion of lemon oil molecules from small to large droplets. The highest fold oil (10×) was stable to droplet growth, which was attributed to the presence of an appreciable fraction of constituents with very low water-solubility that inhibited droplet growth through a compositional ripening effect. This study provides important information about the relationship between lemon oil composition and its performance in emulsions suitable for use in food and beverage products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Manganese Oxide Formation in Lanthanum Strontium Manganite-Yttria-Stabilized Zirconia SOFC Cathodes

    NASA Astrophysics Data System (ADS)

    Wang, Hsiang-Jen; De Guire, Mark R.; Xing, Zhengliang; Agnew, Gerry; Goettler, Richard; Liu, Zhien; Heuer, Arthur H.

    2014-09-01

    Microstructural changes in the cathode adjacent to the cathode-electrolyte interface were studied in SOFCs with lanthanum strontium manganite (LSM)/Y2O3-stabilized ZrO2 (YSZ) composite cathodes after long-term operation (1.3 to 2.0 kh) with steam (1 to 3 pct H2O) added to the cathode gas. We specifically sought to understand why the degradation rate (the increase of area specific resistance with time) was markedly higher at lower temperatures ( e.g., 1073 K (800 °C)) than at higher temperatures ( e.g., 1198 K (925 °C)). Transmission electron microscopy, combined with X-ray energy-dispersive spectroscopy and electron energy-loss spectroscopy, was used to detect and identify submicron MnxOy precipitates. The particles were shown to be Mn3O4 in cells operated at 1198 K (925 °C), and both Mn3O4 and Mn2O3 in cells operated at 1073 K (800 °C). In a cell exposed for 5 kh at 1198 K (925 °C) to a cathode atmosphere of 1.1 pct H2O at 4 bara, MnxOy precipitates were uniformly distributed across the cathode. On the other hand, in an identical cell exposed to the same conditions but operated continuously at 380 mA cm-2, MnxOy precipitates were observed almost exclusively within about 3 µm of the electrolyte/cathode interface. Whether MnxOy formation is causative or simply correlative with the steam effect remains an important question for future work.

  1. Formation of Inclusions in Ti-Stabilized 17Cr Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Yin, Xue; Sun, Yanhui; Yang, Yindong; Bai, Xuefeng; Barati, Mansoor; Mclean, Alex

    2016-12-01

    The behavior and formation mechanisms of inclusions in Ti-stabilized, 17Cr Austenitic Stainless Steel produced by the ingot casting route were investigated through systematic sampling of liquid steel and rolled products. Analysis methods included total oxygen and nitrogen contents, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results indicate that the composition of inclusions was strongly dependent on the types of added alloying agents. During the AOD refining process, after the addition of ferrosilicon alloy and electrolytic manganese, followed by aluminum, the composition of inclusions changed from manganese silicate-rich inclusions to alumina-rich inclusions. After tapping and titanium wire feeding, pure TiN particles and complex inclusions with Al2O3-MgO-TiO x cores containing TiN were found to be the dominant inclusions when [pct Ti] was 0.307 mass pct in the molten steel. These findings were confirmed by thermodynamic calculations which indicated that there was a driving force for TiN inclusions to be formed in the liquid phase due to the high contents of [Ti] and [N] in the molten steel. From the start of casting through to the rolled bar, there was no further change in the composition of inclusions compared to the titanium addition stage. Stringer-shaped TiN inclusions were observed in the rolled bar. These inclusions were elongated along the rolling direction with lengths varying from 17 to 84 µm and could have a detrimental impact on the corrosion resistance as well as the mechanical properties of the stainless steel products.

  2. Preliminary protein corona formation stabilizes gold nanoparticles and improves deposition efficiency

    NASA Astrophysics Data System (ADS)

    Luby, Alexandra O.; Breitner, Emily K.; Comfort, Kristen K.

    2016-08-01

    Due to their advantageous characteristics, gold nanoparticles (AuNPs) are being increasingly utilized in a vast array of biomedical applications. However, the efficacy of these procedures are highly dependent upon strong interactions between AuNPs and the surrounding environment. While the field of nanotechnology has grown exponentially, there is still much to be discovered with regards to the complex interactions between NPs and biological systems. One area of particular interest is the generation of a protein corona, which instantaneously forms when NPs encounter a protein-rich environment. Currently, the corona is viewed as an obstacle and has been identified as the cause for loss of application efficiency in physiological systems. To date, however, no study has explored if the protein corona could be designed and advantageously utilized to improve both NP behavior and application efficacy. Therefore, we sought to identify if the formation of a preliminary protein corona could modify both AuNP characteristics and association with the HaCaT cell model. In this study, a corona comprised solely of epidermal growth factor (EGF) was successfully formed around 10-nm AuNPs. These EGF-AuNPs demonstrated augmented particle stability, a modified corona composition, and increased deposition over stock AuNPs, while remaining biocompatible. Analysis of AuNP dosimetry was repeated under dynamic conditions, with lateral flow significantly disrupting deposition and the nano-cellular interface. Taken together, this study demonstrated the plausibility and potential of utilizing the protein corona as a means to influence NP behavior; however, fluid dynamics remains a major challenge to progressing NP dosimetry.

  3. Stability of mass transfer from massive giants: double black hole binary formation and ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Pavlovskii, K.; Ivanova, N.; Belczynski, K.; Van, K. X.

    2017-02-01

    Mass transfer in binaries with massive donors and compact companions, when the donors rapidly evolve after their main sequence, determines the formation rates of merging double stellar-mass black hole (BH) binaries formed outside clusters. This mass transfer was previously postulated to be unstable and was expected to lead to a common envelope event. The common envelope event then ends with either the merger of the two stars or formation of a binary that eventually may become a merging double BH. We revisit the stability of this mass transfer and find an unanticipated third outcome: for a large range of binary orbital separations, this mass transfer is stable. This newly found stability allows us to reconcile the empirical rate obtained by LIGO, 9-240 Gpc-3 yr-1, with the theoretical rate for double BH binary mergers predicted by population synthesis studies by excluding a channel that predicts a merger rate above 1000 Gpc-3 yr-1. Furthermore, the stability of the mass transfer leads to the formation of ultraluminous X-ray sources. The theoretically predicted formation rates of bright ultraluminous X-ray sources powered by a stellar-mass BH are high enough to explain the number of observed bright ultraluminous X-ray sources.

  4. Automated Analysis of Flow Cytometry Data to Reduce Inter-Lab Variation in the Detection of Major Histocompatibility Complex Multimer-Binding T Cells

    PubMed Central

    Pedersen, Natasja Wulff; Chandran, P. Anoop; Qian, Yu; Rebhahn, Jonathan; Petersen, Nadia Viborg; Hoff, Mathilde Dalsgaard; White, Scott; Lee, Alexandra J.; Stanton, Rick; Halgreen, Charlotte; Jakobsen, Kivin; Mosmann, Tim; Gouttefangeas, Cécile; Chan, Cliburn; Scheuermann, Richard H.; Hadrup, Sine Reker

    2017-01-01

    Manual analysis of flow cytometry data and subjective gate-border decisions taken by individuals continue to be a source of variation in the assessment of antigen-specific T cells when comparing data across laboratories, and also over time in individual labs. Therefore, strategies to provide automated analysis of major histocompatibility complex (MHC) multimer-binding T cells represent an attractive solution to decrease subjectivity and technical variation. The challenge of using an automated analysis approach is that MHC multimer-binding T cell populations are often rare and therefore difficult to detect. We used a highly heterogeneous dataset from a recent MHC multimer proficiency panel to assess if MHC multimer-binding CD8+ T cells could be analyzed with computational solutions currently available, and if such analyses would reduce the technical variation across different laboratories. We used three different methods, FLOw Clustering without K (FLOCK), Scalable Weighted Iterative Flow-clustering Technique (SWIFT), and ReFlow to analyze flow cytometry data files from 28 laboratories. Each laboratory screened for antigen-responsive T cell populations with frequency ranging from 0.01 to 1.5% of lymphocytes within samples from two donors. Experience from this analysis shows that all three programs can be used for the identification of high to intermediate frequency of MHC multimer-binding T cell populations, with results very similar to that of manual gating. For the less frequent populations (<0.1% of live, single lymphocytes), SWIFT outperformed the other tools. As used in this study, none of the algorithms offered a completely automated pipeline for identification of MHC multimer populations, as varying degrees of human interventions were needed to complete the analysis. In this study, we demonstrate the feasibility of using automated analysis pipelines for assessing and identifying even rare populations of antigen-responsive T cells and discuss the main

  5. Influence of I - anions on the formation and stabilization of copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Kapoor, S.; Joshi, R.; Mukherjee, T.

    2002-03-01

    Copper nanoparticles have been prepared by the reduction of copper(II) sulfate in an aerated water using sodium borohydride at room temperature and stabilized by inorganic anion. Mechanistic steps for the stabilization provided by iodide anion was studied using pulse radiolysis technique. Various inorganic anions have been used to stabilize Cu nanoparticles and compared for their stabilization efficiency. The synthesized nanoparticles exhibit a distinct absorption maximum in the region 560-565 nm. The average size as estimated from TEM micrographs has been found to be in the range 8-10 nm.

  6. The function of ultra-large von Willebrand factor multimers in high shear flow controlled by ADAMTS13.

    PubMed

    Reininger, A J

    2015-01-01

    The paradigm that platelet aggregation, which contributes to bleeding arrest and also to thrombovascular disorders, initiates after signaling-induced platelet activation has been refuted in past recent years. Platelets can form aggregates independently of activation when soluble von Willebrand factor (VWF) is present and the shear rate exceeds a certain threshold where active A1 domains become exposed in soluble VWF multimers and can bind to platelet glycoprotein Ib. Subsequently - fostering each other - VWF can self-assemble into large nets combining with platelets into large conglomerates, which are entirely reversible when they enter a flow region with shear rates below the threshold. In addition the threshold changes from approximately 20 000 s⁻¹ in wall parallel flow to approximately 10 000 s⁻¹ in stagnation point flow. VWF containing ultra-large multimers - as when just released from endothelial storage sites - has been shown to have the highest binding potential to platelets and to each other, thus facilitating rapid platelet accrual to sites of vessel injury and exposed subendothelial structures, i.e. collagen. The VWF nets as well as the platelet-VWF conglomerates are controlled by the cleaving protease ADAMTS13 within minutes under high shear flow. Therewith the hemostatic potential is delivered where needed and the thrombogenic potential is highly controlled twofold: by flow and enzymatic proteolytic cleavage.

  7. Thermodynamics of formation of the insulin hexamer: metal-stabilized proton-coupled assembly of quaternary structure.

    PubMed

    Carpenter, Margaret C; Wilcox, Dean E

    2014-03-04

    The thermodynamics of formation of the insulin hexamer, which is stabilized by two Zn(2+) ions, were quantified by isothermal titration calorimetry (ITC). Because the insulin monomer is unstable to aggregation (fibrillation) during ITC measurements, an original method involving EDTA chelation of Zn(2+) from the hexamer was employed. The two metal ions are chelated sequentially, reflecting stepwise Zn(2+) binding and stabilization of the quaternary structure. Analysis of the ITC data reveals that two to three H(+) bind to the hexamer upon its formation at pH 7.4, which is both enthalpically and entropically favored. The former is due to Zn(2+) coordination to His residues from three subunits, and the latter is associated with desolvation that accompanies the protonation and the packing of the subunits in the hexamer.

  8. A Modulator-Induced Defect-Formation Strategy to Hierarchically Porous Metal-Organic Frameworks with High Stability.

    PubMed

    Cai, Guorui; Jiang, Hai-Long

    2017-01-09

    The pore size enlargement and structural stability have been recognized as two crucial targets, which are rarely achieved together, in the development of metal-organic frameworks (MOFs). Herein, we have developed a versatile modulator-induced defect-formation strategy, in the presence of monocarboxylic acid as a modulator and an insufficient amount of organic ligand, successfully realizing the controllable synthesis of hierarchically porous MOFs (HP-MOFs) with high stability and tailorable pore characters. Remarkably, the integration of high stability and large mesoporous property enables these HP-MOFs to be important porous platforms for applications involving large molecules, especially in catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effects of temperature dependent pre-amorphization implantation on NiPt silicide formation and thermal stability on Si(100)

    SciTech Connect

    Ozcan, Ahmet S.; Wall, Donald; Jordan-Sweet, Jean; Lavoie, Christian

    2013-04-29

    Using temperature controlled Si and C ion implantation, we studied the effects of pre-amorphization implantation on NiPt alloy silicide phase formation. In situ synchrotron x-ray diffraction and resistance measurements were used to monitor phase and morphology evolution in silicide films. Results show that substrate amorphization strongly modulate the nucleation of silicide phases, regardless of implant species. However, morphological stability of the thin films is mainly enhanced by C addition, independently of the amorphization depth.

  10. High-frequency detection of the formation and stabilization of a radiation-induced defect cluster in semiconductor structures

    SciTech Connect

    Puzanov, A. S.; Obolenskiy, S. V. Kozlov, V. A.; Volkova, E. V.; Paveliev, D. G.

    2015-12-15

    The processes of the formation and stabilization of a radiation-induced defect cluster upon the arrival of a fast neutron to the space-charge region of a semiconductor diode are analyzed. The current pulse formed by secondary electrons is calculated and the spectrum of the signal generated by the diode (detector) under the action of an instantaneous neutron flux of the fission spectrum is determined. The possibility of experimental detection of the picosecond radiation-induced transition processes is discussed.

  11. Formation and stability of a double subduction system: a numerical study

    NASA Astrophysics Data System (ADS)

    Pusok, Adina E.; Stegman, Dave

    2017-04-01

    Examples of double subduction systems can be found in both modern (Izu-Bonin-Marianas and Ryukyu arcs, e.g. Hall [1997]) and ancient (Kohistan arc in Western Himalayas, e.g. Burg [2006], Burg et al. [2006]) tectonic record. A double subduction system has also been proposed to explain the high convergence rate observed for the India-Eurasia convergence [Jagoutz et al., 2015; Holt et al., 2016, 2017]. Rates of convergence across coupled double subduction systems can be significantly faster than across single subduction systems because of slab pull by two slabs. However, despite significant geological and geophysical observations, our understanding about this process is limited, and questions regarding double subduction remain largely unexplored in terms of physical factors controlling its initiation, duration and dynamics. Subduction initiation (of a single system) in itself has been a popular and challenging topic in the research community for the last few years, and various mechanisms (i.e., collapse at a passive margin or transform fault [Gerya et al., 2008; Stern, 2004], driven by compression [Hall et al., 2003; Toth and Gurnis, 1998], due to shear heating under compression [Thielmann and Kaus, 2012] or plume induced initiation [Gerya et al., 2015]) have been proposed. However, initiation of a secondary subduction, and formation of a stable double subduction system has not been studied before. Previous studies of double subduction either introduced weak zones to initiate subduction [Mishin et al., 2008] or both the subduction systems were already initiated [Jagoutz et al., 2015], thus assuming a priori information regarding the initial position of the two subduction zones. In this study, we perform 2D and 3D numerical simulations to investigate i) subduction initiation of a secondary system in an already initiated single subduction system, and ii) the dynamics and stability of the newly formed double subduction system. For this, we employ the code LaMEM [Kaus et

  12. Mathematical modeling of vesicle drug delivery systems 1: vesicle formation and stability along with drug loading and release.

    PubMed

    Mosley, Garrett L; Yamanishi, Cameron D; Kamei, Daniel T

    2013-02-01

    Vesicles represent an important class of nanoscale drug delivery vehicles. To significantly reduce the time and resources that are required to optimize these drug carriers, this review article discusses the mathematical models that have been derived for understanding the formation of vesicles and their stability, as well as for predicting drug loading and their release. With regard to vesicle formation and stability, the packing parameter can be used to predict how the solution environment, surfactant composition, and surfactant molecular architecture can influence the supermolecular self-assembled structures that are formed from amphiphiles. In the context of drug delivery, this is useful for facilitating vesicle formation and stability during transit through the body. At the target site, this information can be used to help trigger a rapid release of the drug. With regard to drug loading, kinetic and equilibrium models provide guidelines for appropriate pH conditions and drug incubation times during loading. The diffusivity, partition coefficient, and bilayer thickness also play significant roles during loading and release of the drug. Our hope is that more researchers in this exciting field will complement their experimental approaches with these mathematical models to more efficiently develop vesicle-based drug carriers.

  13. Inquiring the mechanism of formation, encapsulation, and stabilization of gold nanoparticles by poly(vinyl pyrrolidone) molecules in 1-butanol

    NASA Astrophysics Data System (ADS)

    Behera, M.; Ram, S.

    2013-02-01

    We present a plausible mechanism of formation, encapsulation, and stabilization of gold nanoparticles (GNPs) in presence of poly(vinyl pyrrolidone) (PVP) in 1-butanol in support of UV-visible, Raman, Fourier transform infrared spectroscopy (FTIR), zetapotential, X-ray photoelectron spectrum (XPS), and transmission electron microscopy. A surface plasmon resonance band at 533 nm in the UV-visible spectrum reveals formation of ~20 nm spherical GNPs in the non-hydrocolloid. In the FTIR spectrum, selective enhancement in the intensity of C-H stretching and red-shift in the C=O band suggests that PVP encapsulate GNP by an interaction between PVP and GNP that occurs via O-atom of pyrrolidone ring. Raman and XPS spectrum well supports the findings of FTIR spectrum. Zeta potential of -15.22 mV at 7.5 pH found in PVP-capped GNP strongly recommends the role of electrosteric effect towards the observed colloidal stability. Microscopic image demonstrates a thin coating of amorphous PVP layer around GNPs in a core-shell structure. Probing the mechanism of formation, encapsulation, and stabilization of GNP could provide essential information for development of bimetallic NPs for catalytic applications.

  14. Ion Mobility Measurements of Nondenatured 12-150 kDa Proteins and Protein Multimers by Tandem Differential Mobility Analysis-Mass Spectrometry (DMA-MS)

    NASA Astrophysics Data System (ADS)

    Hogan, Christopher J.; de la Mora, Juan Fernández

    2011-01-01

    The mobilities of electrosprayed proteins and protein multimers with molecular weights ranging from 12.4 kDa (cytochrome C monomers) to 154 kDa (nonspecific concanavalin A hexamers) were measured in dry air by a planar differential mobility analyzer (DMA) coupled to a time-of-flight mass spectrometer (TOF-MS). The DMA determines true mobility at atmospheric pressure, without perturbing ion structure from that delivered by the electrospray. A nondenaturing aqueous 20 mM triethylammonium formate buffer yields compact ions with low charge states, moderating polarization effects on ion mobility. Conversion of mobilities into cross-sections involves a reduction factor ξ for the actual mobility relative to that associated with elastic specular collisions with smooth surfaces. ξ is known to be 1.36 in air from Millikan's oil drop experiments. A similar enhancement effect ascribed to atomic-scale surface roughness has been found in numerical simulations. Adopting Millikan's value ξ = 1.36 and assuming a spherical geometry yields a gas-phase protein density ρ p = 0.949 ± 0.053 g cm-3 for all our protein data. This is substantially higher than the 0.67 g cm-3 found in recent low-resolution DMA measurements of singly charged proteins. DMA-MS can distinguish nonspecific protein aggregates formed during the electrospray process from those formed preferentially in solution. The observed charge versus diameter relation is compatible with a protein charge reduction mechanism based on the evaporation of triethylammonium ions from electrosprayed drops.

  15. Expression, purification, and characterization of protective MPT64 antigen protein and identification of its multimers isolated from nontoxic Mycobacterium tuberculosis H37Ra.

    PubMed

    Chu, Teng-Ping J; Yuann, Jeu-Ming P

    2011-05-01

    MPT64, a secreted protein of Mycobacterium tuberculosis (MTB), stimulates the immune reactions within cells and is a protective antigen that is lost by the bacilli Calmette-Guérin (BCG) vaccine during propagation. To minimize the toxicity caused by MTB, we used the MPT64 gene encoded by nontoxic H37Ra MTB to carry out genetic expansion via polymerase chain reaction and gene clone MPT64. The plasmid DNA encoded MPT64 was expressed at 20°C for 22 H, and a large quantity of MPT64 was obtained. In the absence of urea, MPT64 multimers with subunits being covalently connected via disulfide bonds were detected by Western blot showing strong protein-protein interactions, as evidenced by the formation of MPT64 tetramers. Finally, with urea of decreasing concentrations, we refolded MPT64 purified in the presence of urea and determined its secondary structures using circular dichroism. MPT64 was found to contain 2.2% α-helix, 50.9% β-sheet, 19.5% turn, and 27.4% random coil. The molecular weight of MPT64 was determined by a matrix-assisted laser desorption ionization-time of flight mass spectrometer and found to be 23,497 Da, very close to the theoretical molecular weight of MPT64. The results presented here provide a sound basis for future biochemical and biophysical studies of MPT64 or any other proteins encoded by nontoxic H37Ra MTB. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  16. Analysis of K-Area core samples for K-Area formation stabilization work

    SciTech Connect

    Langton, C.A.

    1992-05-27

    Foundation stabilization work in K-Area has been recently completed by Bechtel Inc. This effort involved pumping cement and cement-sand grout into unconsolidated sediments under K-Area. Subsequent to stabilization, core samples were collected to document the extent of grout flow in the area. Samples of this core were examined by SRTC personnel in support of the grouting program at the request of Bechtel personnel. This report summarizes the results of the SRTC study.

  17. The Stability and Formation of Native Proteins from Unfolded Monomers Is Increased through Interactions with Unrelated Proteins

    PubMed Central

    Rodríguez-Almazán, Claudia; Torner, Francisco J.; Costas, Miguel; Pérez-Montfort, Ruy; de Gómez-Puyou, Marieta Tuena; Puyou, Armando Gómez

    2007-01-01

    The intracellular concentration of protein may be as high as 400 mg per ml; thus it seems inevitable that within the cell, numerous protein-protein contacts are constantly occurring. A basic biochemical principle states that the equilibrium of an association reaction can be shifted by ligand binding. This indicates that if within the cell many protein-protein interactions are indeed taking place, some fundamental characteristics of proteins would necessarily differ from those observed in traditional biochemical systems. Accordingly, we measured the effect of eight different proteins on the formation of homodimeric triosephosphate isomerase from Trypanosoma brucei (TbTIM) from guanidinium chloride unfolded monomers. The eight proteins at concentrations of micrograms per ml induced an important increase on active dimer formation. Studies on the mechanism of this phenomenon showed that the proteins stabilize the dimeric structure of TbTIM, and that this is the driving force that promotes the formation of active dimers. Similar data were obtained with TIM from three other species. The heat changes that occur when TbTIM is mixed with lysozyme were determined by isothermal titration calorimetry; the results provided direct evidence of the weak interaction between apparently unrelated proteins. The data, therefore, are strongly suggestive that the numerous protein-protein interactions that occur in the intracellular space are an additional control factor in the formation and stability of proteins. PMID:17551578

  18. The effects of pH and PEG 400-water cosolvents on oxytetracycline-magnesium complex formation and stability.

    PubMed

    Tongaree, S; Goldberg, A M; Flanagan, D R; Poust, R I

    2000-01-01

    The effects of pH and PEG 400 on the stoichiometry, conformation, and stability of the magnesium-oxytetracycline (Mg+2-OTC) complex were evaluated. Circular dichroism (CD) and HPLC were used to investigate Mg+2-OTC complex formation and determine the stability of the complexes formed. The stoichiometry of the complex was determined to be a 1:1 molar ratio of Mg+2 to OTC regardless of changes in pH, in the range 7-10, and regardless of the percentage of polyethylene glycol (PEG) 400 in solution. CD showed that the conformation assumed by Mg+2-OTC complex is sensitive to changes in pH, however, little to no effect was found when the PEG 400 concentration was varied. PEG 400 was found to effect the magnitude of complexation as evident by the dependence of CD peak intensity on the cosolvent concentration in solution. The Job's method confirmed that the formation of this complex increased with increasing PEG 400 concentration and was most favored at pH 8. HPLC analyses of OTC solutions at pH 9 revealed the formation of multiple degradation products after storage at 50 degrees C. The incidence and magnitude of OTC degradation products were reduced in the presence of Mg+2 and PEG 400. Despite the HPLC results of maintained OTC stability in magnesium-complexed solutions over time, visual inspection showed these solutions to have darkened, indicating that an oxidative process is responsible for initial degradation of OTC. Therefore, the need for additional measures (i.e., antioxidants) was established to ensure the long-term stability of OTC in solution.

  19. Stability constants for the formation of rare earth-inorganic complexes as a function of ionic strength

    NASA Astrophysics Data System (ADS)

    Millero, Frank J.

    1992-08-01

    Recent studies have been made on the distribution of the rare earths (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) in natural waters relative to their concentration in shales. These metals have also been used as models for the behavior of the trivalent actinides. The speciation of the rare earths in natural waters is modelled by using ionic interaction models which require reliable stability constants. In this paper the stability constants for the formation of lanthanide complexes ( k mx∗) with Cl -, NO 3-, SO 42-, OH -, HCO 3-, H 2PO 4-, HPO 42-, and CO 32- determined in NaClO 44 at various ionic strengths have been extrapolated to infinite dilution using the Pitzer interaction model. The activity coefficients for free ions ( γM, γx) needed for this extrapolation have been estimated from the Pitzer equations. The thermodynamic stability constants ( KMX) and activity coefficients of the various ion pairs ( γMX) were determined from In ( solK MX∗/γ Mγ x) = In K mx+ In (γ MX). The activity coefficients of the ion pairs have been used to determine Pitzer parameters ( BMX) for the rare earth complexes. The values of BMX were found to be the same for complexes of the same charge. These results make it possible to estimate the stability constants for the formation of rare earth complexes over a wide range of ionic strengths. The stability constants have been used to determine the speciation of the lanthanides in seawater and in brines. The carbonate complexes dominate for all natural waters where the carbonate alkalinity is greater than 0.001 eq/L at a pH near 8.

  20. A BENCHMARKING ANALYSIS FOR FIVE RADIONUCLIDE VADOSE ZONE MODELS (CHAIN, MULTIMED_DP, FECTUZ, HYDRUS, AND CHAIN 2D) IN SOIL SCREENING LEVEL CALCULATIONS

    EPA Science Inventory

    Five radionuclide vadose zone models with different degrees of complexity (CHAIN, MULTIMED_DP, FECTUZ, HYDRUS, and CHAIN 2D) were selected for use in soil screening level (SSL) calculations. A benchmarking analysis between the models was conducted for a radionuclide (99Tc) rele...

  1. A BENCHMARKING ANALYSIS FOR FIVE RADIONUCLIDE VADOSE ZONE MODELS (CHAIN, MULTIMED_DP, FECTUZ, HYDRUS, AND CHAIN 2D) IN SOIL SCREENING LEVEL CALCULATIONS

    EPA Science Inventory

    Five radionuclide vadose zone models with different degrees of complexity (CHAIN, MULTIMED_DP, FECTUZ, HYDRUS, and CHAIN 2D) were selected for use in soil screening level (SSL) calculations. A benchmarking analysis between the models was conducted for a radionuclide (99Tc) rele...

  2. The Formation and Stability of Carbonic Acid on Outer Solar System Bodies

    NASA Technical Reports Server (NTRS)

    Peeters, Z.; Hudson, R. L.; Moore, M. H.; Lewis, Ariel

    2009-01-01

    The radiation chemistry, thermal stability, and vapor pressure of solid-phase carbonic acid (H2CO3) have been studied with mid-infrared spectroscopy. A new procedure for measuring this molecule's radiation stability has been used to obtain intrinsic IR band strengths and half-lives for radiolytic destruction. Results are compared to literature values. We report, for the first time, measurements of carbonic acid's vapor pressure and its heat of sublimation. We also report the first observation of a chemical reaction involving solid-phase carbonic acid. Possible applications of these findings are discussed, with an emphasis on the outer Solar System.

  3. Prevention of Gordonia and Nocardia Stabilized Foam Formation by Using Bacteriophage GTE7▿†

    PubMed Central

    Petrovski, Steve; Seviour, Robert J.; Tillett, Daniel

    2011-01-01

    Most activated sludge treatment plants suffer from the presence of foams on the surfaces of their aeration reactors. These are often stabilized by hydrophobic mycolic acid-synthesizing actinobacterial species. A polyvalent Siphoviridae phage, GTE7, which lysed several Gordonia and Nocardia species, is described here. Its genome has a modular structure similar to that described for Rhodococcus phage ReqiDocB7. In laboratory-scale experiments, we showed that GTE7 prevents stabilization of foams by these Gordonia and Nocardia species. PMID:21926218

  4. Ultrasonic assisted formation and stability of mustard oil in water nanoemulsion: Effect of process parameters and their optimization.

    PubMed

    Carpenter, Jitendra; Saharan, Virendra Kumar

    2017-03-01

    The present work reports the ultrasound assisted preparation of mustard oil in water nanoemulsion stabilized by Span 80 and Tween 80 at different operating conditions. Effects of various operating parameters such as HLB (Hydrophilic Lipophilic Balance) value, surfactant volume fraction (φS), oil volume fraction (φO) and power amplitude were investigated and optimized on the basis of droplet size and stability of nanoemulsions. It was observed that minimum droplet size of about 87.38nm was obtained within 30min of ultrasonication at an optimum HLB value of 10, φS of 0.08 (8%, v/v), φO of 0.1 (10%, v/v) and ultrasonic power amplitude of 40%. The stability of the nanoemulsion was measured through visual observation and it was found that the unstable emulsions got separated within 24h whereas, stable emulsions never showed any separation until 90days. In addition to that, the kinetic stability of the prepared nanoemulsions was also assessed under centrifuge and thermal stress conditions. The emulsion stability was found to be unaffected by these forces as the droplet size remained unchanged. The ultrasound prepared emulsion was found to be long term stable even after 3months of storage at ambient conditions without any visual evidence of creaming and phase separation and also remained kinetically stable. FTIR analysis of the emulsions at different sonication conditions was carried out to examine the possible impact of ultrasonically induced chemical effects on oil structure during emulsification and it was found that the oil molecular structure was unaffected by ultrasonication process. The present work illustrates the formation and stability of mustard oil in water nanoemulsion using ultrasound cavitation which may be useful in food and cosmetic based applications.

  5. Evidence that TSH Receptor A-Subunit Multimers, Not Monomers, Drive Antibody Affinity Maturation in Graves' Disease

    PubMed Central

    Aliesky, Holly A.; Chen, Chun-Rong; McLachlan, Sandra M.

    2015-01-01

    Context: The TSH receptor (TSHR) A-subunit shed from the cell surface contributes to the induction and/or affinity maturation of pathogenic TSHR autoantibodies in Graves' disease. Objective: This study aimed to determine whether the quaternary structure (multimerization) of shed A-subunits influences pathogenic TSHR autoantibody generation. Design: The isolated TSHR A-subunit generated by transfected mammalian cells exists in two forms; one (active) is recognized only by Graves' TSHR autoantibodies, the second (inactive) is recognized only by mouse monoclonal antibody (mAb) 3BD10. Recent evidence suggests that both Graves' TSHR autoantibodies and mAb 3BD10 recognize the A-subunit monomer. Therefore, if the A-subunit monomer is an immunogen, Graves' sera should have antibodies to both active and inactive A-subunits. Conversely, restriction of TSHR autoantibodies to active A-subunits would be evidence of a role for shed A-subunit multimers, not monomers, in the pathogenesis of Graves' disease. Therefore, we tested a panel of Graves' sera for their relative recognition of active and inactive A-subunits. Results: Of 34 sera from unselected Graves' patients, 28 were unequivocally positive in a clinical TSH binding inhibition assay. None of the latter sera, as well as 8/9 sera from control individuals, recognized inactive A-subunits on ELISA. In contrast to Graves' sera, antibodies induced in mice, not by shedding from the TSHR holoreceptor, but by immunization with adenovirus expressing the free human A-subunit, were directed to both the active and inactive A-subunit forms. Conclusions: The present study supports the concept that pathogenic TSHR autoantibody affinity maturation in Graves' disease is driven by A-subunit multimers, not monomers. PMID:25856215

  6. The biologically active form of the sea urchin egg receptor for sperm is a disulfide-bonded homo-multimer

    PubMed Central

    1994-01-01

    Since many cell surface receptors exist in their active form as oligomeric complexes, we have investigated the subunit composition of the biologically active sperm receptor in egg plasma membranes from Strongylocentrotus purpuratus. Electrophoretic analysis of the receptor without prior reduction of disulfide bonds revealed that the surface receptor exists in the form of a disulfide-bonded multimer, estimated to be a tetramer. These findings are in excellent agreement with the fact that the NH2-terminus of the extracellular domain of the sperm receptor is rich in cysteine residues. Studies with cross-linking agents of various length and hydrophobicity suggest that no other major protein is tightly associated with the receptor. Given the multimeric structure of the receptor, we investigated the effect of disulfide bond reduction on its biological activity. Because in quantitative bioassays fertilization was found to be inhibited by treatment of eggs with 5 mM dithiothreitol, we undertook more direct studies of the effect of reduction on properties of the receptor. First, we studied the effect of addition of isolated, pure receptor on fertilization. Whereas the non-reduced, native receptor complex inhibited fertilization in a dose- dependent manner, the reduced and alkylated receptor was inactive. Second, we tested the ability of the isolated receptor to mediate binding of acrosome-reacted sperm to polystyrene beads. Whereas beads coated with native receptor bound sperm, those containing reduced and alkylated receptor did not. Thus, these results demonstrate that the biologically active form of the sea urchin sperm receptor consists only of 350 kD subunits and that these must be linked as a multimer via disulfide bonds to produce a complex that is functional in sperm recognition and binding. PMID:8188748

  7. Evidence that TSH Receptor A-Subunit Multimers, Not Monomers, Drive Antibody Affinity Maturation in Graves' Disease.

    PubMed

    Rapoport, Basil; Aliesky, Holly A; Chen, Chun-Rong; McLachlan, Sandra M

    2015-06-01

    The TSH receptor (TSHR) A-subunit shed from the cell surface contributes to the induction and/or affinity maturation of pathogenic TSHR autoantibodies in Graves' disease. This study aimed to determine whether the quaternary structure (multimerization) of shed A-subunits influences pathogenic TSHR autoantibody generation. The isolated TSHR A-subunit generated by transfected mammalian cells exists in two forms; one (active) is recognized only by Graves' TSHR autoantibodies, the second (inactive) is recognized only by mouse monoclonal antibody (mAb) 3BD10. Recent evidence suggests that both Graves' TSHR autoantibodies and mAb 3BD10 recognize the A-subunit monomer. Therefore, if the A-subunit monomer is an immunogen, Graves' sera should have antibodies to both active and inactive A-subunits. Conversely, restriction of TSHR autoantibodies to active A-subunits would be evidence of a role for shed A-subunit multimers, not monomers, in the pathogenesis of Graves' disease. Therefore, we tested a panel of Graves' sera for their relative recognition of active and inactive A-subunits. Of 34 sera from unselected Graves' patients, 28 were unequivocally positive in a clinical TSH binding inhibition assay. None of the latter sera, as well as 8/9 sera from control individuals, recognized inactive A-subunits on ELISA. In contrast to Graves' sera, antibodies induced in mice, not by shedding from the TSHR holoreceptor, but by immunization with adenovirus expressing the free human A-subunit, were directed to both the active and inactive A-subunit forms. The present study supports the concept that pathogenic TSHR autoantibody affinity maturation in Graves' disease is driven by A-subunit multimers, not monomers.

  8. Diagnostic Differentiation of von Willebrand Disease Types 1 and 2 by von Willebrand Factor Multimer Analysis and DDAVP Challenge Test.

    PubMed

    Michiels, Jan Jacques; Smejkal, Petr; Penka, Miroslav; Batorova, Angelika; Pricangova, Tatiana; Budde, Ulrich; Vangenechten, Inge; Gadisseur, Alain

    2016-01-01

    The European Clinical Laboratory and Molecular (ECLM) classification of von Willebrand disease (vWD) is based on the splitting approach which uses sensitive and specific von Willebrand factor (vWF) assays with regard to the updated molecular data on structure and function of vWF gene and protein defects. A complete set of FVIII:C and vWF ristocetine cofactor, collagen binding, and antigen, vWF multimeric analysis in low- and medium-resolution gels, and responses to desmopressin (DDAVP) of FVIII:C and vWF parameters are mandatory. The ECLM classification distinguishes recessive types 1 and 3 vWD from recessive vWD 2C due to mutations in the D1 and D2 domains and vWD 2N due to mutations in the D'-FVIII-binding domain of vWF. The ECLM classification differentiates between mild vWD type 1 with variable penetrance of bleedings from symptomatic dominant type 1 vWD secretion defect and/or clearance defect with normal vWF multimers versus vWD 1M and 2M with normal or smeary vWF multimers in low- and medium-resolution gels. High-quality multimeric analysis of vWF in medium-resolution gels based on a DDAVP challenge test clearly delineates and distinguishes each of the dominant type 2 vWDs 1/2E, 2M, 2B, 2A, and 2D caused by vWF gene mutations in the D3 multimerization domain, loss or gain-of-function mutations in the glycoprotein Ib receptor A1 domain, gene mutations in the A2 proteolytic domain, and the C-terminal dimerization domain, respectively.

  9. Effects of freeze-thaw cycling on metal-phosphate formation and stability in single and multi-metal systems.

    PubMed

    Hafsteinsdóttir, Erla G; White, Duanne A; Gore, Damian B

    2013-04-01

    Freeze-thaw cycling may influence the chemistry, mineral stability and reaction rate during metal orthophosphate fixation. This study assessed the formation and stability of Cu-, Pb-, and Zn-phosphates in chemically simple laboratory systems during 240 freeze-thaw cycles (120 days) from +10 to -20 °C, using X-ray diffractometry. In single heavy metal systems, chloro- and hydroxy-pyromorphite (Pb(5)(PO(4))(3)(Cl,OH)), sodalite (Na(6)Zn(6)(PO(4))(6)·8H(2)O), chiral zincophosphate (Na(12)(Zn(12)P(12)O(48))·12H(2)O), and copper phosphate hydrate (Cu(3)(PO(4))(2)·3H(2)O) were the primary phosphate minerals that formed, and were typically stable during the experiment. Zinc and Cu-phosphate formation was reduced in multi heavy metal systems, and was substantially lower in abundance than chloropyromorphite. Successful Cu-, Pb- and Zn-phosphate formation can be expected in cold and freezing environments like the polar regions. However, field implementation of orthophosphate fixation needs to consider competing ion effects, concentration of the phosphate source, and the amount of free-water.

  10. Surface-segregation-induced phase separation in epitaxial Au/Co nanoparticles: Formation and stability of core-shell structures

    NASA Astrophysics Data System (ADS)

    Sato, Kazuhisa; Matsushima, Yuta; Konno, Toyohiko J.

    2017-06-01

    We have studied formation and stability of core-shell structures in epitaxial Au/Co nanoparticles (NPs) by using atomic-resolution scanning transmission electron microscopy. As the particle size reduces, number of NPs having Au-shell increases and their frequency of occurrence reached 65%. Au segregation proceeds during particle growth at 520 K. The core-shell structure formation is particle size-dependent; the critical diameter dividing the Au-shell and the Co-shell structures is about 11 nm, below which the Au-shell is stable. After annealing at 800 K for 3.6 ks, Au-shell NPs were conserved while the Co-shell NPs changed to two-phase structures with a planar interface separating Au and Co. There is a local energy minimum where the Co-shell NP is metastable in the as-deposited state. A simple model based on surface and interfacial energies suggests stability of Au-shell structures. Surface-segregation-induced phase separation in small NPs, due to low surface free energy of Au, will be responsible for the Au-shell formation.

  11. Taxol-stabilized microtubules promote the formation of filaments from unmodified full-length Tau in vitro.

    PubMed

    Duan, Aranda R; Goodson, Holly V

    2012-12-01

    Tau is a neuronal protein that stabilizes the microtubule (MT) network, but it also forms filaments associated with Alzheimer's disease. Understanding Tau-MT and Tau-Tau interactions would help to establish Tau function in health and disease. For many years, literature reports on Tau-MT binding behavior and affinity have remained surprisingly contradictory (e.g., 10-fold variation in Tau-MT affinity). Tau-Tau interactions have also been investigated, but whether MTs might affect Tau filament formation is unknown. We have addressed these issues through binding assays and microscopy. We assessed Tau-MT interactions via cosedimentation and found that the measured affinity of Tau varies greatly, depending on the experimental design and the protein concentrations used. To investigate this dependence, we used fluorescence microscopy to examine Tau-MT binding. Strikingly, we found that Taxol-stabilized MTs promote Tau filament formation without characterized Tau-filament inducers. We propose that these novel Tau filaments account for the incongruence in Tau-MT affinity measurements. Moreover, electron microscopy reveals that these filaments appear similar to the heparin-induced Alzheimer's model. These observations suggest that the MT-induced Tau filaments provide a new model for Alzheimer's studies and that MTs might play a role in the formation of Alzheimer's-associated neurofibrillary tangles.

  12. Phase formation and morphological stability of ultrathin Ni-Co-Pt silicide films formed on Si(100)

    SciTech Connect

    Xu, Peng; Wu, Dongping; Kubart, Tomas; Gao, Xindong; Zhang, Shi-Li

    2014-05-15

    Ultrathin Ni, Co, and Pt films, each no more than 4 nm in thickness, as well as their various combinations are employed to investigate the competing growth of epitaxial Co{sub 1-y}Ni{sub y}Si{sub 2} films against polycrystalline Pt{sub 1-z}Ni{sub z}Si. The phase formation critically affects the morphological stability of the resulting silicide films, with the epitaxial films being superior to the polycrystalline ones. Any combination of those metals improves the morphological stability with reference to their parent individual metal silicide films. When Ni, Co, and Pt are all included, the precise initial location of Pt does little to affect the final phase formation in the silicide films and the epitaxial growth of Co{sub 1-x}Ni{sub x}Si{sub 2} films is always perturbed, in accordance to thermodynamics that shows a preferential formation of Pt{sub 1-z}Ni{sub z}Si over that of Co{sub 1-y}Ni{sub y}Si{sub 2}.

  13. Mesenchymal condensation-dependent accumulation of collagen VI stabilizes organ-specific cell fates during embryonic tooth formation.

    PubMed

    Mammoto, Tadanori; Mammoto, Akiko; Jiang, Amanda; Jiang, Elisabeth; Hashmi, Basma; Ingber, Donald E

    2015-06-01

    Mechanical compression of cells during mesenchymal condensation triggers cells to undergo odontogenic differentiation during tooth organ formation in the embryo. However, the mechanism by which cell compaction is stabilized over time to ensure correct organ-specific cell fate switching remains unknown. Here, we show that mesenchymal cell compaction induces accumulation of collagen VI in the extracellular matrix (ECM), which physically stabilizes compressed mesenchymal cell shapes and ensures efficient organ-specific cell fate switching during tooth organ development. Mechanical induction of collagen VI deposition is mediated by signaling through the actin-p38MAPK-SP1 pathway, and the ECM scaffold is stabilized by lysyl oxidase in the condensing mesenchyme. Moreover, perturbation of synthesis or cross-linking of collagen VI alters the size of the condensation in vivo. These findings suggest that the odontogenic differentiation process that is induced by cell compaction during mesenchymal condensation is stabilized and sustained through mechanically regulated production of collagen VI within the mesenchymal ECM. © 2015 Wiley Periodicals, Inc.

  14. The impact of thermal treatment on the stability of freeze dried amorphous pharmaceuticals: I. Dimer formation in sodium ethacrynate.

    PubMed

    Wang, Bingquan; Pikal, Michael J

    2010-02-01

    The objective of this study was to investigate the impact of heat treatment (annealing) on the molecular mobility and chemical stability of dried sodium ethacrynate (ECA). ECA was lyophilized with sucrose or trehalose, and some samples were held as control while others were annealed at temperatures below T(g). Enthalpy recovery was studied with DSC and free volume was estimated based on density measurements. Global mobility was measured by the thermal activity monitor (TAM), and fast local mobility was studied with neutron backscattering. Formation of ECA dimer was measured by reverse phase HPLC. Maximum enthalpy recovery and minimum fictive temperature were observed at about T(g)-15 degrees C for both ECA/saccharide formulations. Annealing ECA in amorphous solids improved chemical stability, as shown by the decrease in degradation rate constant relative to the control. Annealed samples exhibited larger structural relaxation time than the control, and thus annealing decreased global mobility in the system. However, annealing does not significantly impact the local mobility. Chemical stability correlates with structural relaxation time, fictive temperature, and free volume, which suggests that improved stability is mainly a result of the reduced global mobility upon annealing.

  15. Palladium in Non-Aqueous Solvents. Formation, Stability, and Film Forming Properties.

    DTIC Science & Technology

    1987-07-14

    12V storage battery. Colloidal solutions obtained using these modifications did not show any marked changes P in stability but electrophoretic...8217 * * - -20- References 1. On leave from Departamento de Quimica , Universidad de Concepcion, Casilla 3-C, Concepcion, Chile. 2. Department of Physics. 3

  16. Role of stabilized Criegee Intermediate in secondary organic aerosol formation from the ozonolysis of α-cedrene

    NASA Astrophysics Data System (ADS)

    Yao, Lei; Ma, Yan; Wang, Lin; Zheng, Jun; Khalizov, Alexei; Chen, Mindong; Zhou, Yaoyao; Qi, Lu; Cui, Fenping

    2014-09-01

    Atmospheric ozonolysis of sesquiterpenes is an important source of secondary organic aerosols (SOA). The mechanisms by which Criegee Intermediates (CIs) react to form SOA precursors and the influence of environmental conditions, however, remain unclear. On the basis of environmental chamber experiments coupled with detailed characterization of gas-phase and particle-phase products, we present evidence that a significant fraction of CIs from ozonolysis of α-cedrene are stabilized and bimolecular reactions of these stabilized CIs (SCIs) play a key role in the formation of SOA precursors. Ozonolysis experiments were conducted in a 4.5 m3 collapsible fluoropolymer chamber under various conditions in the presence of the OH radical and SCI scavengers. The size and mass of SOA particles produced during ozonolysis were measured directly and used for calculation of particle effective density and mass yield. Gaseous and particulate products were analyzed by several mass spectrometry methods. A total of 14 compounds in gas phase and 17 compounds in particle phase were tentatively identified. The major gas-phase products are secondary ozonides (SOZ) from intramolecular reactions of SCIs. Multifunctional organic acids are dominant particle-phase products. The measured density of aerosol particles is 1.04 ± 0.03 to 1.38 ± 0.03 g/cm3, and the aerosol mass yield is (23.7 ± 0.4)% to (46.4 ± 6.5)%, depending on reaction conditions. The presence of acetic acid, an SCI scavenger, inhibits new particle formation, but leads to increased aerosol mass yield. In contrast, the addition of SO2 dramatically enhances new particle formation and total aerosol yield. The calculated OH formation yield decreases from (62.4 ± 4.9)% to (9.0 ± 1.6)% upon addition of SCI scavengers CH3COOH and SO2, indicating that a large fraction of excited CIs are collisionally stabilized and unimolecular decomposition of SCIs via the hydroperoxide channel can be suppressed by bimolecular reactions. The

  17. Formation and stability analysis of parabolic pulses through specialty microstructured optical fibers at 2.1 μm

    NASA Astrophysics Data System (ADS)

    Biswas, P.; Adhikary, P.; Biswas, A.; Ghosh, S. N.

    2016-10-01

    We report a numerical study on formation and stability of parabolic pulses during their propagation through highly nonlinear specialty optical fibers. Here, we have formed a parabolic pulse at wavelength of 2.1 μm from a Gaussian input pulse with 1.9 ps FWHM and 75 W peak power after traveling through only 20 cm length from the input end of a 1 m long chalcogenide glass based microstructured optical fiber (MOF). Dependence on input pulse shapes towards most efficient conversion into self-similar states is reported. The stability in terms of any deviation from dissipative self-similar nature of such pulses has been analyzed by introducing a variable longitudinal loss profile within the spectral loss window of the MOF, and detailed pulse shapes are captured. Moreover, three different dispersion regimes of propagation have been considered to study the suitability to support most stable propagation of the pulse.

  18. Formation, stability, and pH sensitivity of free-floating, giant unilamellar vesicles using palmitic acid-cholesterol mixtures.

    PubMed

    Cottenye, Nicolas; Carbajal, Gustavo; Cui, Zhong-Kai; Ducharme, Philippe Dauphin; Mauzeroll, Janine; Lafleur, Michel

    2014-09-14

    Despite the fact that palmitic acid (PA) and cholesterol (Chol) do not form fluid bilayers once hydrated individually, giant unilamellar vesicles (GUVs) were formed from a mixture of palmitic acid and cholesterol, 30/70 mol/mol. These free-floating GUVs were stable over weeks, did not aggregate and were shown to be highly stable in alkaline pH compared to conventional phospholipid-based GUVs. Acidic pH-triggered payload release from the GUVs was associated with the protonation state of palmitic acid that dictated the mixing lipid properties, thus affecting the stability of the fluid lamellar phase. The successful formation of PA-Chol GUVs reveals the possibility to create monoalkylated amphiphile-based GUVs with distinct pH stability/sensitivity.

  19. Formation and stabilization of anionic metal complexes in concentrated aqueous quaternary ammonium salt solutions

    SciTech Connect

    Aronson, F.L.; Hwang, L.L.Y.; Ronca, N.; Solomon, N.A.; Steigman, J.

    1985-02-04

    Anionic complexes of transition metals were stabilized in aqueous solutions containing high concentrations of various short-chain quaternary ammonium salts. Compounds with longer paraffin chains were effective in much less concentrated solution. Complex ions were detected spectrophotometrically. FeCl/sub 4//sup -/, which is usually formed in concentrated HCl, was the predominant Fe(III) complex in 30 m choline chloride containing only 0.12 M HCl. A yellow transitory Tc(VII) chloro-addition intermediate, formed in the reduction of TcO/sub 4//sup -/ by concentrated HCl, was stabilized when the solution also contained 25 m choline chloride. Its spectrum, as well as the isolation of an already known Tc(VII) bipyridyl complex, is reported. Concentrated organic electrolytes also stabilized Tc(V) oxide halides against disproportionation and Tc(IV) hexahalides against hydrolysis. Halochromates of Cr(VI) were formed and stabilized in dilute acid containing quaternary ammonium salts. Their UV spectra showed the well-resolved vibronic fine structure associated with the symmetric chromium-to-oxygen charge-transfer band. It is known that these progressions are resolved in aprotic solvents, but not in aqueous acidic solution alone, and that the loss of fine structure in aqueous media is due to hydrogen bonding. The stabilization of anionic metal complexes and the resolution of vibronic structure in halochromates are probably consequences of water-structure-enforced ion paring. The present work suggests that the water molecules in immediate contact with the complex anions are more strongly hydrogen bonded to each other than to the complex. 21 references, 4 figures.

  20. Computer Simulation Studies of Sputtering and Multimer Formation from Clean and Oxygen Reacted Surfaces of Titanium, Vanadium and Niobium.

    DTIC Science & Technology

    1983-12-01

    concerned with the latter. First discovered by Grove in 1853 and Faraday in 1854 as the deposition of metal atoms on the glass walls of a gas discharge tube...sputter- ing event on an atomic scale was conducted by Stark [Ref. 5]. Applying the conservation laws governing elastic collisions, he proposed two...wo q4 Oig.L 57. 1129 C] • *1 Fig. 150 §J 0 C! vo A’ NOLL~vud Fig. 59. 131 120 zw ~ Lu F emf rei NOLLOVIN Fig. 60. 132 zI SuJ z 0 t.0 0*0 Fig. 61. 133

  1. Phospholipids are needed for the proper formation, stability, and function of the photoactivated rhodopsin-transducin complex.

    PubMed

    Jastrzebska, Beata; Goc, Anna; Golczak, Marcin; Palczewski, Krzysztof

    2009-06-16

    Heterotrimeric G proteins become activated after they form a catalytically active complex with activated G protein-coupled receptors (GPCRs) and GTP replaces GDP on the G protein alpha-subunit. This transient coupling can be stabilized by nucleotide depletion, resulting in an empty-nucleotide G protein-GPCR complex. Efficient and reproducible formation of conformationally homogeneous GPCR-Gt complexes is a prerequisite for structural studies. Herein, we report isolation conditions that enhance the stability and preserve the activity and proper stoichiometry of productive complexes between the purified prototypical GPCR, rhodopsin (Rho), and the rod cell-specific G protein, transducin (Gt). Binding of purified Gt to photoactivated Rho (Rho*) in n-dodecyl beta-D-maltoside (DDM) examined by gel filtration chromatography was generally modest, and purified complexes provided heterogeneous ratios of protein components, most likely because of excess detergent. Rho*-Gt complex stability and activity were greatly increased by addition of phospholipids such as DOPC, DOPE, and DOPS and asolectin to detergent-containing solutions of these proteins. In contrast, native Rho*-Gt complexes purified directly from light-exposed bovine ROS membranes by sucrose gradient centrifugation exhibited improved stability and the expected 2:1 stoichiometry between Rho* and Gt. These results strongly indicate a lipid requirement for stable complex formation in which the likely oligomeric structure of Rho provides a superior platform for coupling to Gt, and phospholipids likely form a matrix to which Gt can anchor through its myristoyl and farnesyl groups. Our findings also demonstrate that the choice of detergent and purification method is critical for obtaining highly purified, stable, and active complexes with appropriate stoichiometry between GPCRs and G proteins needed for structural studies.

  2. Artificial soil formation and stabilization of material cycles in closed ecological systems for Mars habitats

    NASA Astrophysics Data System (ADS)

    Borchardt, Joshua D.

    Scientists are increasingly pressured to investigate novel ways in which to feed astronauts for the first mission to Mars in the 2030s. It is the aim of this thesis to conduct a preliminary investigation for soil formation of NASA JSC Mars-1A Regolith Simulant in an environmentally closed ecosystem to simulate plant growth within these initial habitats, and the prospect of soil formation from a Mars parent material for agricultural purposes. The rhizosphere and plant stress will be the main regions of research focus. It is hypothesized rhizosphere activity will determine the rate of stable soil formation adequate to support the agricultural needs of Mars's first human inhabitants. A Brassica rapa (Wisconsin FastPlant(TM)) was grown on several different substrates, and evaluated for plant stress, elemental analysis, soil fertility, and mineralogical analysis to identify the biogeochemical factors related to areas inside and outside of the rhizosphere, which affect soil formation. In addition, multiple plant generations were grown to investigate bioavailability of nutrients within the system, and lay down preliminary approaches for mathematical model development in order to predict & evaluate future conditions and applications under reduced resource availability situations. Overall, the story of early soil formation from a Mars regolith simulant is further defined to aid in the success of our first human adventurers to the red planet.

  3. Efficient CO2 capture by tertiary amine-functionalized ionic liquids through Li(+)-stabilized zwitterionic adduct formation.

    PubMed

    Yang, Zhen-Zhen; He, Liang-Nian

    2014-01-01

    Highly efficient CO2 absorption was realized through formation of zwitterionic adducts, combining synthetic strategies to ionic liquids (ILs) and coordination. The essence of our strategy is to make use of multidentate cation coordination between Li(+) and an organic base. Also PEG-functionalized organic bases were employed to enhance the CO2-philicity. The ILs were reacted with CO2 to form the zwitterionic adduct. Coordination effects between various lithium salts and neutral ligands, as well as the CO2 capacity of the chelated ILs obtained were investigated. For example, the CO2 capacity of PEG150MeBu2N increased steadily from 0.10 to 0.66 (mol CO2 absorbed per mol of base) through the formation of zwitterionic adducts being stabilized by Li(+).

  4. Efficient CO2 capture by tertiary amine-functionalized ionic liquids through Li+-stabilized zwitterionic adduct formation

    PubMed Central

    Yang, Zhen-Zhen

    2014-01-01

    Summary Highly efficient CO2 absorption was realized through formation of zwitterionic adducts, combining synthetic strategies to ionic liquids (ILs) and coordination. The essence of our strategy is to make use of multidentate cation coordination between Li+ and an organic base. Also PEG-functionalized organic bases were employed to enhance the CO2-philicity. The ILs were reacted with CO2 to form the zwitterionic adduct. Coordination effects between various lithium salts and neutral ligands, as well as the CO2 capacity of the chelated ILs obtained were investigated. For example, the CO2 capacity of PEG150MeBu2N increased steadily from 0.10 to 0.66 (mol CO2 absorbed per mol of base) through the formation of zwitterionic adducts being stabilized by Li+. PMID:25246955

  5. Solid-stabilized emulsion formation using stearoyl lactylate coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Vengsarkar, Pranav S.; Roberts, Christopher B.

    2014-10-01

    Iron oxide nanoparticles can exhibit highly tunable physicochemical properties that are extremely important in applications such as catalysis, biomedicine and environmental remediation. The small size of iron oxide nanoparticles can be used to stabilize oil-in-water Pickering emulsions due to their high energy of adsorption at the interface of oil droplets in water. The objective of this work is to investigate the effect of the primary particle characteristics and stabilizing agent chemistry on the stability of oil-in-water Pickering emulsions. Iron oxide nanoparticles were synthesized by the co-precipitation method using stoichiometric amounts of Fe2+ and Fe3+ salts. Sodium stearoyl lactylate (SSL), a Food and Drug Administration approved food additive, was used to functionalize the iron oxide nanoparticles. SSL is useful in the generation of fat-in-water emulsions due to its high hydrophilic-lipophilic balance and its bilayer-forming capacity. Generation of a monolayer or a bilayer coating on the nanoparticles was controlled through systematic changes in reagent concentrations. The coated particles were then characterized using various analytical techniques to determine their size, their crystal structure and surface functionalization. The capacity of these bilayer coated nanoparticles to stabilize oil-in-water emulsions under various salt concentrations and pH values was also systematically determined using various characterization techniques. This study successfully demonstrated the ability to synthesize iron oxide nanoparticles (20-40 nm) coated with SSL in order to generate stable Pickering emulsions that were pH-responsive and resistant to significant destabilization in a saline environment, thereby lending themselves to applications in advanced oil spill recovery and remediation.

  6. Computational assessment of non-heteroatom-stabilized carbene complexes reactivity: formation of oxazine derivatives.

    PubMed

    Funes-Ardoiz, Ignacio; Sampedro, Diego

    2014-12-05

    A complete DFT-level mechanism elucidation of the two-step reaction of non-heteroatom-stabilized carbenes with imines, followed by addition of alkynes to yield oxazine derivatives, is presented. These compounds show different reactivity than the equivalent Fischer carbene complexes. A rationale of the experimental outcome is presented together with some suggestion for increasing the scope of the reaction, with special attention to the solvent effects in the regioselectivity.

  7. Microfluidic EDGE emulsification: the importance of interface interactions on droplet formation and pressure stability

    NASA Astrophysics Data System (ADS)

    Sahin, Sami; Bliznyuk, Olesya; Rovalino Cordova, Ana; Schroën, Karin

    2016-05-01

    The fact that interactions of components with interfaces can influence processes is well-known; e.g. deposit accumulation on heat exchangers and membrane fouling lead to additional resistances against heat and mass transfer, respectively. In microfluidic emulsification, the situation is even more complex. Component accumulation at the liquid/liquid interface is necessary for emulsion stability, while undesired at the solid/liquid interface where it may change wettability. For successful emulsification both aspects need to be controlled, and that is investigated in this paper for o/w emulsification with microfluidic EDGE devices. These devices were characterised previously, and can be used to detect small wettability changes through e.g. the pressure stability of the device. We used various oil/emulsifier combinations (alkanes, vegetable oil, surfactants and proteins) and related droplet size and operational pressure stability to component interactions with the solid surface and liquid interface. Surfactants with a strong interaction with glass always favour emulsification, while surfactants that have week interactions with the surface can be replaced by vegetable oil that interacts strongly with glass, resulting in loss of emulsification. Our findings clearly show that an appropriate combination of construction material and emulsion components is needed to achieve successful emulsification in microfluidic EDGE devices.

  8. Dynamical stability of imaged planetary systems in formation: Application to HL Tau

    NASA Astrophysics Data System (ADS)

    Tamayo, Daniel; Triaud, Amaury H. M. J.; Menou, Kristen; Rein, Hanno

    2015-05-01

    A recent ALMA image revealed several concentric gaps in the protoplanetary disk surrounding the young star HL Tau. We consider the hypothesis that these gaps are carved by planets, and present a general framework for understanding the dynamical stability of such systems over typical disk lifetimes, providing estimates for the maximum planetary masses. We argue that the locations of resonances should be significantly shifted in disks as massive as estimated for HL Tau, and that theoretical uncertainties in the exact offset, together with observational errors, imply a large uncertainty in the dynamical state and stability in such disks. An important observational avenue to breaking this degeneracy is to search for eccentric gaps, which could implicate resonantly interacting planets. Unfortunately, massive disks should also induce swift pericenter precession that would smear out any such eccentric features of planetary origin. This motivates pushing toward more typical, less massive disks. For a nominal non-resonant model of the HL Tau system with five planets, we find a maximum mass for the outer three bodies of approximately 2 Neptune masses. In a resonant configuration, these planets can reach at least the mass of Saturn. The inner two planets' masses are unconstrained by dynamical stability arguments.

  9. Spinel formation for stabilizing simulated nickel-laden sludge with aluminum-rich ceramic precursors.

    PubMed

    Shih, Kaimin; White, Tim; Leckie, James O

    2006-08-15

    The feasibility of stabilizing nickel-laden sludge from commonly available Al-rich ceramic precursors was investigated and accomplished with high nickel incorporation efficiency. To simulate the process, nickel oxide was mixed alternatively with gamma-alumina, corundum, kaolinite, and mullite and was sintered from 800 to 1480 degrees C. The nickel aluminate spinel (NiAl2O4) was confirmed as the stabilization phase for nickel and crystallized with efficiencies greater than 90% for all precursors above 1250 degrees C and 3-h sintering. The nickel-incorporation reaction pathways with these precursors were identified, and the microstructure and spinel yield were investigated as a function of sintering temperature with fixed sintering time. This study has demonstrated a promising process for forming nickel spinel to stabilize nickel-laden sludge from a wide range of inexpensive ceramic precursors, which may provide an avenue for economically blending waste metal sludges via the building industry processes to reduce the environmental hazards of toxic metals. The correlation of product textures and nickel incorporation efficiencies through selection of different precursors also provides the option of tailoring property-specific products.

  10. Microfluidic EDGE emulsification: the importance of interface interactions on droplet formation and pressure stability

    PubMed Central

    Sahin, Sami; Bliznyuk, Olesya; Rovalino Cordova, Ana; Schroën, Karin

    2016-01-01

    The fact that interactions of components with interfaces can influence processes is well-known; e.g. deposit accumulation on heat exchangers and membrane fouling lead to additional resistances against heat and mass transfer, respectively. In microfluidic emulsification, the situation is even more complex. Component accumulation at the liquid/liquid interface is necessary for emulsion stability, while undesired at the solid/liquid interface where it may change wettability. For successful emulsification both aspects need to be controlled, and that is investigated in this paper for o/w emulsification with microfluidic EDGE devices. These devices were characterised previously, and can be used to detect small wettability changes through e.g. the pressure stability of the device. We used various oil/emulsifier combinations (alkanes, vegetable oil, surfactants and proteins) and related droplet size and operational pressure stability to component interactions with the solid surface and liquid interface. Surfactants with a strong interaction with glass always favour emulsification, while surfactants that have week interactions with the surface can be replaced by vegetable oil that interacts strongly with glass, resulting in loss of emulsification. Our findings clearly show that an appropriate combination of construction material and emulsion components is needed to achieve successful emulsification in microfluidic EDGE devices. PMID:27230981

  11. Formation and Stability of Shear-Induced Shish-Kebab Structure in Highly Entangled Melts of UHMWPE/HDPE Blends

    SciTech Connect

    Keum,J.; Zuo, F.; Hsiao, B.

    2008-01-01

    The formation and stability of a shear-induced shish-kebab structure was investigated by in situ rheo-SAXS (small-angle X-ray scattering) and -WAXD (wide-angle X-ray diffraction) measurements of highly entangled polyethylene melts based on two polymer blends, containing small fractions (2 and 5 wt %) of ultra-high molecular weight polyethylene (UHMWPE) and high-density polyethylene (HDPE). Immediately after shear, the combined SAXS and WAXD results at 142 C confirmed the sole formation of shish without kebabs, indicating the interplay between the topological deformation of highly entangled UHMWPE chains and the extended-chain crystallization of stretched segments without the participation of coiled segments. The presence of HDPE chains influenced the entanglement of UHMWPE but they were not involved in the shish-kebab formation at the initial stage of crystallization. The final shish lengths in both blends were nearly identical at the same strain (e = 500), even though the UHMWPE concentration was different. When the temperature was cooled to 134 C, both sheared blends exhibited the kebab formation, following the diffusion-controlled growth process. Although the total kebab nucleation was higher in the 5/95 wt % UHMWPE/HDPE blend, the kebab density per shish was higher in the 2/98 wt % UHMWPE/HDPE blend. The thermal stability of the shish-kebab structure was also investigated by constrained melting. Both blends exhibited identical melting behavior of kebabs but different melting behavior of shish that is governed by the entanglement restraints of the stretched-chain network.

  12. Evaluation of the geological relationships to gas hydrate formation and stability. Progress report, June 16--September 30, 1988

    SciTech Connect

    Krason, J.; Finley, P.

    1988-12-31

    The summaries of regional basin analyses document that potentially economic accumulations of gas hydrates can be formed in both active and passive margin settings. The principal requirement for gas hydrate formation in either setting is abundant methane. Passive margin sediments with high sedimentation rates and sufficient sedimentary organic carbon can generate large quantities of biogenic methane for hydrate formation. Similarly, active margin locations near a terrigenous sediment source can also have high methane generation potential due to rapid burial of adequate amounts of sedimentary organic matter. Many active margins with evidence of gas hydrate presence correspond to areas subject to upwelling. Upwelling currents can enhance methane generation by increasing primary productivity and thus sedimentary organic carbon. Structural deformation of the marginal sediments at both active and passive sites can enhance gas hydrate formation by providing pathways for migration of both biogenic and thermogenic gas to the shallow gas hydrate stability zone. Additionally, conventional hydrocarbon traps may initially concentrate sufficient amounts of hydrocarbons for subsequent gas hydrate formation.

  13. Activity Dependent Protein Degradation Is Critical for the Formation and Stability of Fear Memory in the Amygdala

    PubMed Central

    Jarome, Timothy J.; Helmstetter, Fred J.

    2011-01-01

    Protein degradation through the ubiquitin-proteasome system [UPS] plays a critical role in some forms of synaptic plasticity. However, its role in memory formation in the amygdala, a site critical for the formation of fear memories, currently remains unknown. Here we provide the first evidence that protein degradation through the UPS is critically engaged at amygdala synapses during memory formation and retrieval. Fear conditioning results in NMDA-dependent increases in degradation-specific polyubiquitination in the amygdala, targeting proteins involved in translational control and synaptic structure and blocking the degradation of these proteins significantly impairs long-term memory. Furthermore, retrieval of fear memory results in a second wave of NMDA-dependent polyubiquitination that targets proteins involved in translational silencing and synaptic structure and is critical for memory updating following recall. These results indicate that UPS-mediated protein degradation is a major regulator of synaptic plasticity necessary for the formation and stability of long-term memories at amygdala synapses. PMID:21961035

  14. Pyromorphite Formation And Stability After Quick Lime Neutralisation In The Presence Of Soil And Clay Sorbents

    EPA Science Inventory

    Soluble Pb is immobilised in pure systems as pyromorphite by adding sources of P, but doubts remain about the efectiveness of this approach in natural soil systems, particularly given the ability of soil humic substances to interfere with Pb-mineral formation. In addition, recen...

  15. The Role of Music Preferences in Early Adolescents' Friendship Formation and Stability

    ERIC Educational Resources Information Center

    Selfhout, Maarten H. W.; Branje, Susan J. T.; ter Bogt, Tom F. M.; Meeus, Wim H. J.

    2009-01-01

    The present study examines the role of similarity in music preferences in the formation and discontinuation of friendships over a 1-year period. Questionnaire data were gathered from 283 Dutch same-sex mutual best friends (mean age = 12.97) in two waves with a 1-year interval. Results show consistent evidence for high similarity in specific music…

  16. Formation and Stabilization of Vertical Hierarchies among Adolescents: Towards a Quantitative Ethology of Dominance among Humans

    ERIC Educational Resources Information Center

    Martin, John Levi

    2009-01-01

    Social psychological investigations of hierarchy formation have been almost entirely confined to the case of task-oriented groups and hence have produced theories that turn on the existence of such a task. But other forms of vertical hierarchy may emerge in non-task groups. One form, orderings of dominance, has been studied among animals using…

  17. The Role of Music Preferences in Early Adolescents' Friendship Formation and Stability

    ERIC Educational Resources Information Center

    Selfhout, Maarten H. W.; Branje, Susan J. T.; ter Bogt, Tom F. M.; Meeus, Wim H. J.

    2009-01-01

    The present study examines the role of similarity in music preferences in the formation and discontinuation of friendships over a 1-year period. Questionnaire data were gathered from 283 Dutch same-sex mutual best friends (mean age = 12.97) in two waves with a 1-year interval. Results show consistent evidence for high similarity in specific music…

  18. Formation and Stability of Ni-Al Hydroxide Phases in Soils

    SciTech Connect

    Peltier, E.; Van Der Lelie, D; Sparks, D

    2010-01-01

    The formation of mixed metal-aluminum hydroxide surface precipitates is a potentially significant uptake route for trace metals (including Co, Ni, and Zn) in environmental systems. This paper investigates the effect of mixed Ni-Al hydroxide precipitate formation and aging on Ni solubility and bioavailability in laboratory contaminated soils. Two Delaware agricultural soils were reacted with a 3 mM Ni solution for 12 months at pH's above and below the threshold for mixed Ni-Al hydroxide formation. Ni speciation was determined at 1, 6, and 12 months using X-ray absorption spectroscopy (XAS). Precipitate solubility was examined through desorption experiments using HNO{sub 3} and EDTA as desorbing agents, whereas metal bioavailability was assessed using a Ni-specific bacterial biosensor. For both soils, the formation of Ni-Al hydroxide surface precipitates resulted in a reduction in the fraction of desorbed and bioavailable Ni. However, precipitate dissolution was greater, particularly with EDTA, than in published studies on isolated soil clay fractions, and less affected by aging processes. These results suggest that mixed Ni-Al hydroxide phases forming in real world environments may be both longer-lasting and more susceptible to ligand-promoted dissolution than previously expected.

  19. Pyromorphite Formation And Stability After Quick Lime Neutralisation In The Presence Of Soil And Clay Sorbents

    EPA Science Inventory

    Soluble Pb is immobilised in pure systems as pyromorphite by adding sources of P, but doubts remain about the efectiveness of this approach in natural soil systems, particularly given the ability of soil humic substances to interfere with Pb-mineral formation. In addition, recen...

  20. Formation and stability of Ni-Al hydroxide phases in soils.

    PubMed

    Peltier, Edward; Lelie, Daniel van der; Sparks, Donald L

    2010-01-01

    The formation of mixed metal-aluminum hydroxide surface precipitates is a potentially significant uptake route for trace metals (including Co, Ni, and Zn) in environmental systems. This paper investigates the effect of mixed Ni-Al hydroxide precipitate formation and aging on Ni solubility and bioavailability in laboratory contaminated soils. Two Delaware agricultural soils were reacted with a 3 mM Ni solution for 12 months at pH's above and below the threshold for mixed Ni-Al hydroxide formation. Ni speciation was determined at 1, 6, and 12 months using X-ray absorption spectroscopy (XAS). Precipitate solubility was examined through desorption experiments using HNO3 and EDTA as desorbing agents, whereas metal bioavailability was assessed using a Ni-specific bacterial biosensor. For both soils, the formation of Ni-Al hydroxide surface precipitates resulted in a reduction in the fraction of desorbed and bioavailable Ni. However, precipitate dissolution was greater, particularly with EDTA, than in published studies on isolated soil clay fractions, and less affected by aging processes. These results suggest that mixed Ni-Al hydroxide phases forming in real world environments may be both longer-lasting and more susceptible to ligand-promoted dissolution than previously expected.

  1. Mechanism of oil bank formation, coalescence in porous media and emulsion stability. Annual report, June 1979-May 1980

    SciTech Connect

    Wasan, D.T.

    1981-02-01

    This report presents results of a basic study of coalescence phenomena, emulsion formation and stability, and dynamic interfacial properties when crude oils and pure hydrocarbons are contacted with aqueous solutions of surfactant/polymer and alkaline agents. These measurements are correlated with each other and with observations on oil bank formation and displacement and recovery efficiency by chemical flooding in microwave monitored laboratory core flooding experiments. The scope of this work includes three interrelated tasks: I - Caustic Flooding of Heavy Crude, II - Surfactant/Polymer Flooding, and III - Thin Liquid Films: drainage and stability of foam and emulsion films. Results obtained in each of these three tasks are summarized: Crude oils from Huntington Beach, Wilmington Field, Salem and El Dorado and the hydrocarbon, decane were used. The chemical agents employed were: n-hexanol, Dow Pusher 700, sodium lauryl sulfate, lauryl alcohol, petroleum sulfonate, TRS 10-80, TRS 10-410, iBuOH, NaCl brine, sodium orthosilicate, sodium hydroxide, Petrostep 465, and C/sub 3/ to C/sub 5/ alcohols.

  2. The DYNAFLUX / DYNACOLD (Dynamics, Fluxes, Stability, Succession and Landscape Formation in Cold Environments) Network (2004-2017)

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.

    2017-04-01

    There is a wide range of high-latitude and high-altitude cold climate landscapes within Europe, covering a significant proportion of the total land surface area. This spectrum of defined cold-climate landscapes represents a variety of stages of deglaciation history and landscape formation. We can find landscapes at different levels of postglacial stabilization which is providing the unique opportunity to study the interactions between geo-, bio-, social and socio-economic systems at the land surface. The DYNAFLUX / DYNACOLD Network (2004-2017) bridges across the geo-, bio-, social and socio-economic sciences in order to analyze the complex dynamics of adjustment, stabilization, succession and landscape formation during and after ice retreat and under ongoing anthropogenic influences. The network provides a multidisciplinary forum where researchers come together and discuss. In addition, this network is linking a number of other scientific networks, working groups and programs and creates an umbrella network and a forum for sharing knowledge and experience. The scientific focus of DYNAFLUX / DYNACOLD is also relevant for a number of end users, including risk and vulnerability assessment, sustainable land use, land management and conservation. In addition, present key questions related to environmental change like, e.g., hazards, permafrost degradation and loss of biodiversity are addressed and discussed. Further information is found under http://www.ngu.no/sediflux.

  3. Formation and stability of D-limonene organogel-based nanoemulsion prepared by a high-pressure homogenizer.

    PubMed

    Zahi, Mohamed Reda; Wan, Pingyu; Liang, Hao; Yuan, Qipeng

    2014-12-31

    D-limonene organogel-based nanoemulsion was prepared by high-pressure homogenization technology. The organogelator type had a major role on the formation of the formulations, in which stearic acid has given nanoemulsions with the smallest droplet size. The surfactant type and concentration also had an appreciable effect on droplet formation, with Tween 80 giving a mean droplet diameter (d ≈ 112 nm) among a range of non-ionic surfactants (Tween 20, 40, 60, 80, and 85). In addition, high-pressure homogenization conditions played a key role in the nanoemulsion preparation. The stability of d-limonene organogel-based nanoemulsion was also investigated under two different temperatures (4 and 28 °C) through 2 weeks of storage. Results showed a good stability of the formulations, which is maybe due to the incorporation of D-limonene into the organogel prior to homogenization. This study may have a valuable contribution for the design and use of organogel-based nanoemulsion as a delivery system in food.

  4. Release of bioactive volatiles from supramolecular hydrogels: influence of reversible acylhydrazone formation on gel stability and volatile compound evaporation.

    PubMed

    Buchs, Barbara; Fieber, Wolfgang; Vigouroux-Elie, Florence; Sreenivasachary, Nampally; Lehn, Jean-Marie; Herrmann, Andreas

    2011-04-21

    In the presence of alkali metal cations, guanosine-5'-hydrazide (1) forms stable supramolecular hydrogels by selective self-assembly into a G-quartet structure. Besides being physically trapped inside the gel structure, biologically active aldehydes or ketones can also reversibly react with the free hydrazide functions at the periphery of the G-quartet to form acylhydrazones. This particularity makes the hydrogels interesting as delivery systems for the slow release of bioactive carbonyl derivatives. Hydrogels formed from 1 were found to be significantly more stable than those obtained from guanosine. Both physical inclusion of bioactive volatiles and reversible hydrazone formation could be demonstrated by indirect methods. Gel stabilities were measured by oscillating disk rheology measurements, which showed that thermodynamic equilibration of the gel is slow and requires several cooling and heating cycles. Furthermore, combining the rheology data with dynamic headspace analysis of fragrance evaporation suggested that reversible hydrazone formation of some carbonyl compounds influences the release of volatiles, whereas the absolute stability of the gel seemed to have no influence on the evaporation rates.

  5. Silver-cemented frit formation for the stabilization of the packing structure in the microchannel of electrochromatographic microchips.

    PubMed

    Park, Jongman; Oh, Hyejin; Jeon, In-Sun

    2011-10-28

    A simple but effective frit formation technique was developed to stabilize the packing structure inside the microchannel of capillary electrochromatographic microchips, utilizing the electroless plating technique. A Ag(NH(3))(2)(+) solution was allowed to diffuse through the colloidal silica packing in the microchannel from the reservoir of the microchip for a limited amount of time, and then it was reduced by an excess amount of formaldehyde solution. A frit structure of ~70 μm in length was formed at the entrance of the microchannel without clogging when treated with 1mM Ag(NH(3))(2)(+) ion and formaldehyde for 30s and 150 s, respectively. The formation of the frit structure was confirmed by a scanning electron microscopy. The stability of the packing structure was tested rigorously and then confirmed by applying alternating electroosmotic flows back and forth with pulsed potential steps on both sides of the frit structure. The effect of the treatment on the electrochromatograms was evaluated after the microchips were repeatedly used and stored for a long period of time. The results indicated that the silver-cemented frit structure extended the lifetime of the fully packed CEC microchips distinctly.

  6. Effects of molecular weight of PVA on formation, stability and deformation of compound droplets for ICF polymer shells

    NASA Astrophysics Data System (ADS)

    Liu, Meifang; Zheng, Yueqing; Li, Jie; Chen, Sufen; Liu, Yiyang; Li, Jing; Li, Bo; Zhang, Zhanwen

    2017-01-01

    Sphericity and wall thickness uniformity are some of the hardest specifications to fulfill, as required by inertial confined fusion (ICF) research for polymer shells prepared by the microencapsulation technique. Driven by the need to control the deformation of compound droplets, the effects of the molecular weight of poly(vinyl alcohol) (PVA) on the formation and stability of the droplets, as well as the sphericity and wall thickness uniformity of the resulting shells, were investigated. On increasing the molecular weight of the PVA, the densities of the external water phases (W2) are almost the same, but the viscosity of the W2 phase increases more quickly than the interfacial tension. This makes the detaching force increase more quickly than the upward one, causing the formation of compound droplets and detachment from the oil tube. On the other hand, the increase in interfacial tension makes the maximum pressures ( P max) in the O phase (O) of the compound droplets increase, causing them to rupture easily and decreasing their stability. However, for PVA with the same molecular weight, the viscous shear force in the flowing field reduces the role of gravity and makes the inner water droplet move towards the center of the compound droplet, decreasing its P max in the flowing field and improving its stability. Moreover, during the solidifying process, the viscous shear force increases more quickly than the interfacial tension force due to the quicker increase in viscosity with an increase in the molecular weight of the PVA. The increase in the viscous shear force can make the droplets deform, resulting in a decrease in their sphericity. However, the appropriate viscous shear force can also center the compound droplet—although they become decentered when the viscous shear force is too large, leading to the wall thickness uniformity increasing at first before decreasing quickly. The results presented in this work provide a more in-depth understanding of the

  7. Self-stabilized discharge filament in plane-parallel barrier discharge configuration: formation, breakdown mechanism, and memory effects

    NASA Astrophysics Data System (ADS)

    Tschiersch, R.; Nemschokmichal, S.; Bogaczyk, M.; Meichsner, J.

    2017-10-01

    Single self-stabilized discharge filaments were investigated in the plane-parallel electrode configuration. The barrier discharge was operated inside a gap of 3 mm shielded by glass plates to both electrodes, using helium-nitrogen mixtures and a square-wave feeding voltage at a frequency of 2 kHz. The combined application of electrical measurements, ICCD camera imaging, optical emission spectroscopy and surface charge diagnostics via the electro-optic Pockels effect allowed the correlation of the discharge development in the volume and on the dielectric surfaces. The formation criteria and existence regimes were found by systematic variation of the nitrogen admixture to helium, the total pressure and the feeding voltage amplitude. Single self-stabilized discharge filaments can be operated over a wide parameter range, foremost, by significant reduction of the voltage amplitude after the operation in the microdischarge regime. Here, the outstanding importance of the surface charge memory effect on the long-term stability was pointed out by the recalculated spatio-temporally resolved gap voltage. The optical emission revealed discharge characteristics that are partially reminiscent of both the glow-like barrier discharge and the microdischarge regime, such as a Townsend pre-phase, a fast cathode-directed ionization front during the breakdown and radially propagating surface discharges during the afterglow.

  8. Nano-silver in drinking water and drinking water sources: stability and influences on disinfection by-product formation.

    PubMed

    Tugulea, A-M; Bérubé, D; Giddings, M; Lemieux, F; Hnatiw, J; Priem, J; Avramescu, M-L

    2014-10-01

    untreated Ottawa River water, with a dissolved organic carbon concentration of 6 mg/L, was significantly higher than the stability of the nano-silver dispersions in distilled, organic-free water. Nano-silver particles suspended in the groundwater agglomerated and were quickly and quantitatively removed from the solution. Our data confirm previous observations that natural dissolved organic matter stabilizes nano-silver particles, while the high-ionic strength of groundwater appears to favor their agglomeration and precipitation. As expected, nano-silver was not stable in Ottawa River water through the chlorination process, but survived for many days when added to the Ottawa River water after treatment with chlorine or chloramines. Stirring appeared to have minimal effect on nano-silver stability in untreated and treated Ottawa River water. The profile of DBPs formed in the presence of nAg differed significantly from the profile of DBPs formed in the absence of nAg only at the 1 mg/L nAg concentration. The differences observed consisted mainly in reduced formation of some brominated DBPs and a small increase in the formation of cyanogen chloride. The reduced formation of brominated congeners may be explained by the decrease in available bromide due to the presence of Ag(+) ions. It should be noted that a concentration of 1 mg/L is significantly higher than nAg concentrations that would be expected to be present in surface waters, but these results could be significant for the disinfection of some wastewaters with comparably high nano-silver concentrations.

  9. Analysis of the CoIE1 stability determinant Rcd.

    PubMed

    Sharpe, M E; Chatwin, H M; Macpherson, C; Withers, H L; Summers, D K

    1999-08-01

    Multimer formation is an important cause of instability for many multicopy plasmids. Plasmid CoIE1 is maintained stably because multimers are converted to monomers by Xer-mediated site-specific recombination at the cer site. However, multimer resolution is not the whole story; inactivation of a promoter (Pcer) within cer causes plasmid instability even though recombination is unaffected. The promoter directs the synthesis of a short transcript (Rcd) which is proposed to delay the division of multimer-containing cells. Mapping of the 5' terminus of Rcd confirms that transcription initiates from Pcer. The 3' terminus shows considerable heterogeneity, consistent with a primary transcript of 95 nt being degraded via intermediates of 79 and 70 nt. Secondary structure predictions for Rcd are presented. Of four mutations which abolish Rcd-mediated growth inhibition, one reduces the activity of Pcer while the other three map to the rcd coding sequence and reduce the steady-state level of the transcript. RNA folding analysis suggests that these three mutant transcripts adopt a common secondary structure in which the major stem-loop differs from that of wild-type Rcd. A survey of 24 cer-like multimer resolution sites revealed six which contain Pcer-like sequences. The putative transcripts from these sites have similar predicted secondary structures to Rcd and contain a highly conserved 15 base sequence. To test the hypothesis that Rcd acts as an anti-sense RNA, interacting with its target gene(s) through the 15 nt sequence, we used DNA hybridization and sequence analysis to find matches to this sequence in the Escherichia coli chromosome. Our failure to find plausible anti-sense targets has led to the suggestion that Rcd may interact directly with a protein target.

  10. Site-directed mutagenesis reveals regions implicated in the stability and fiber formation of human λ3r light chains.

    PubMed

    Villalba, Miryam I; Canul-Tec, Juan C; Luna-Martínez, Oscar D; Sánchez-Alcalá, Rosalba; Olamendi-Portugal, Timoteo; Rudiño-Piñera, Enrique; Rojas, Sonia; Sánchez-López, Rosana; Fernández-Velasco, Daniel A; Becerril, Baltazar

    2015-01-30

    Light chain amyloidosis (AL) is a disease that affects vital organs by the fibrillar aggregation of monoclonal light chains. λ3r germ line is significantly implicated in this disease. In this work, we contrasted the thermodynamic stability and aggregation propensity of 3mJL2 (nonamyloidogenic) and 3rJL2 (amyloidogenic) λ3 germ lines. Because of an inherent limitation (extremely low expression), Cys at position 34 of the 3r germ line was replaced by Tyr reaching a good expression yield. A second substitution (W91A) was introduced in 3r to obtain a better template to incorporate additional mutations. Although the single mutant (C34Y) was not fibrillogenic, the second mutation located at CDR3 (W91A) induced fibrillogenesis. We propose, for the first time, that CDR3 (position 91) affects the stability and fiber formation of human λ3r light chains. Using the double mutant (3rJL2/YA) as template, other variants were constructed to evaluate the importance of those substitutions into the stability and aggregation propensity of λ3 light chains. A change in position 7 (P7D) boosted 3rJL2/YA fibrillogenic properties. Modification of position 48 (I48M) partially reverted 3rJL2/YA fibril aggregation. Finally, changes at positions 8 (P8S) or 40 (P40S) completely reverted fibril formation. These results confirm the influential roles of N-terminal region (positions 7 and 8) and the loop 40-60 (positions 40 and 48) on AL. X-ray crystallography revealed that the three-dimensional topology of the single and double λ3r mutants was not significantly altered. This mutagenic approach helped to identify key regions implicated in λ3 AL.

  11. Surface Adsorption of Oppositely Charged SDS:C(12)TAB Mixtures and the Relation to Foam Film Formation and Stability.

    PubMed

    Fauser, Heiko; Uhlig, Martin; Miller, Reinhard; von Klitzing, Regine

    2015-10-08

    The complexation, surface adsorption, and foam film stabiliztation of the oppositely charged surfactants, sodium dodecyl sulfate (SDS) and dodecyl trimethylammonium bromide (C12TAB), is analyzed. The SDS:C12TAB mixing ratio is systematically varied to investigate whether the adsorption of equimolar or irregular catanionic surfactant complexes, and thus a variation in surface charge (i.e., surface excess of either SDS or C12TAB), governs foam film properties. Surface tension measurements indicate that SDS and C12TAB interact electrostatically in order to form stoichometric catanionic surfactant complexes and enhance surface adsorption. On the other hand it can be demonstrated that the SDS:C12TAB mixing ratio and, thus, a change in surface charge and composition plays a decisive role in foam film stabilization. The present study demonstrates that varying the mixing ratio between SDS and C12TAB offers a tool for tailoring surface composition and foam film properties, which are therefore not exclusively mediated by the presence of equimolar catanionic surfactant complexes. The SDS:C12TAB net amount and mixing ratio determine the type, stability, and thinning behavior of the corresponding foam film. These observations indicate the formation of a mixed surface layer, composed of the catanionic surfactant species surrounded by either free SDS or C12TAB molecules in excess. Furthermore, a systematic variation in CBF-NBF transition kinetics is rationalized on the basis of a microscopic phase transition within the foam films. Fundamental knowlegde gained from this research gives insight into the surface adsorption and foam film formation of catanionic surfactant mixtures. The study helps researchers to understand basic mechanisms of foam film stabilization and to use resources more efficiently.

  12. Site-directed Mutagenesis Reveals Regions Implicated in the Stability and Fiber Formation of Human λ3r Light Chains*

    PubMed Central

    Villalba, Miryam I.; Canul-Tec, Juan C.; Luna-Martínez, Oscar D.; Sánchez-Alcalá, Rosalba; Olamendi-Portugal, Timoteo; Rudiño-Piñera, Enrique; Rojas, Sonia; Sánchez-López, Rosana; Fernández-Velasco, Daniel A.; Becerril, Baltazar

    2015-01-01

    Light chain amyloidosis (AL) is a disease that affects vital organs by the fibrillar aggregation of monoclonal light chains. λ3r germ line is significantly implicated in this disease. In this work, we contrasted the thermodynamic stability and aggregation propensity of 3mJL2 (nonamyloidogenic) and 3rJL2 (amyloidogenic) λ3 germ lines. Because of an inherent limitation (extremely low expression), Cys at position 34 of the 3r germ line was replaced by Tyr reaching a good expression yield. A second substitution (W91A) was introduced in 3r to obtain a better template to incorporate additional mutations. Although the single mutant (C34Y) was not fibrillogenic, the second mutation located at CDR3 (W91A) induced fibrillogenesis. We propose, for the first time, that CDR3 (position 91) affects the stability and fiber formation of human λ3r light chains. Using the double mutant (3rJL2/YA) as template, other variants were constructed to evaluate the importance of those substitutions into the stability and aggregation propensity of λ3 light chains. A change in position 7 (P7D) boosted 3rJL2/YA fibrillogenic properties. Modification of position 48 (I48M) partially reverted 3rJL2/YA fibril aggregation. Finally, changes at positions 8 (P8S) or 40 (P40S) completely reverted fibril formation. These results confirm the influential roles of N-terminal region (positions 7 and 8) and the loop 40–60 (positions 40 and 48) on AL. X-ray crystallography revealed that the three-dimensional topology of the single and double λ3r mutants was not significantly altered. This mutagenic approach helped to identify key regions implicated in λ3 AL. PMID:25505244

  13. Formation of a compound flux rope by the merging of two filament channels, the associated dynamics, and its stability

    SciTech Connect

    Joshi, Navin Chandra; Inoue, Satoshi; Magara, Tetsuya E-mail: njoshi98@gmail.com

    2014-11-01

    We present observations of compound flux rope formation, which occurred on 2014 January 1, via merging of two nearby filament channels, the associated dynamics, and its stability using multiwavelength data. We also discuss the dynamics of cool and hot plasma moving along the newly formed compound flux rope. The merging started after the interaction between the southern leg of the northward filament and the northern leg of the southward filament at ≈01:21 UT and continued until a compound flux rope formed at ≈01:33 UT. During the merging, the cool filament plasma heated up and started to move along both sides of the compound flux rope, i.e., toward the north (≈265 km s{sup –1}) and south (≈118 km s{sup –1}) from the point of merging. After traveling a distance of ≈150 Mm toward the north, the plasma cooled down and started to return back to the south (≈14 km s{sup –1}) after ≈02:00 UT. The observations provide a clear example of compound flux rope formation via merging of two different flux ropes and the occurrence of a flare through tether cutting reconnection. However, the compound flux rope remained stable in the corona and had a confined eruption. The coronal magnetic field decay index measurements revealed that both the filaments and the compound flux rope axis lie within the stability domain (decay index <1.5), which may be the possible cause for their stability. The present study also deals with the relationship between the filament's chirality (sinistral) and the helicity (positive) of the surrounding flux rope.

  14. Site-directed Mutagenesis Reveals Regions Implicated in the Stability and Fiber Formation of Human λ3r Light Chains

    SciTech Connect

    Villalba, Miryam I.; Canul-Tec, Juan C.; Luna-Martínez, Oscar D.; Sánchez-Alcalá, Rosalba; Olamendi-Portugal, Timoteo; Rudiño-Piñera, Enrique; Rojas, Sonia; Sánchez-López, Rosana; Fernández-Velasco, Daniel A.; Becerril, Baltazar

    2014-12-11

    Light chain amyloidosis (AL) is a disease that affects vital organs by the fibrillar aggregation of monoclonal light chains. λ3r germ line is significantly implicated in this disease. In this paper, we contrasted the thermodynamic stability and aggregation propensity of 3mJL2 (nonamyloidogenic) and 3rJL2 (amyloidogenic) λ3 germ lines. Because of an inherent limitation (extremely low expression), Cys at position 34 of the 3r germ line was replaced by Tyr reaching a good expression yield. A second substitution (W91A) was introduced in 3r to obtain a better template to incorporate additional mutations. Although the single mutant (C34Y) was not fibrillogenic, the second mutation located at CDR3 (W91A) induced fibrillogenesis. We propose, for the first time, that CDR3 (position 91) affects the stability and fiber formation of human λ3r light chains. Using the double mutant (3rJL2/YA) as template, other variants were constructed to evaluate the importance of those substitutions into the stability and aggregation propensity of λ3 light chains. A change in position 7 (P7D) boosted 3rJL2/YA fibrillogenic properties. Modification of position 48 (I48M) partially reverted 3rJL2/YA fibril aggregation. Finally, changes at positions 8 (P8S) or 40 (P40S) completely reverted fibril formation. These results confirm the influential roles of N-terminal region (positions 7 and 8) and the loop 40–60 (positions 40 and 48) on AL. X-ray crystallography revealed that the three-dimensional topology of the single and double λ3r mutants was not significantly altered. Finally, this mutagenic approach helped to identify key regions implicated in λ3 AL.

  15. Site-directed Mutagenesis Reveals Regions Implicated in the Stability and Fiber Formation of Human λ3r Light Chains

    DOE PAGES

    Villalba, Miryam I.; Canul-Tec, Juan C.; Luna-Martínez, Oscar D.; ...

    2014-12-11

    Light chain amyloidosis (AL) is a disease that affects vital organs by the fibrillar aggregation of monoclonal light chains. λ3r germ line is significantly implicated in this disease. In this paper, we contrasted the thermodynamic stability and aggregation propensity of 3mJL2 (nonamyloidogenic) and 3rJL2 (amyloidogenic) λ3 germ lines. Because of an inherent limitation (extremely low expression), Cys at position 34 of the 3r germ line was replaced by Tyr reaching a good expression yield. A second substitution (W91A) was introduced in 3r to obtain a better template to incorporate additional mutations. Although the single mutant (C34Y) was not fibrillogenic, themore » second mutation located at CDR3 (W91A) induced fibrillogenesis. We propose, for the first time, that CDR3 (position 91) affects the stability and fiber formation of human λ3r light chains. Using the double mutant (3rJL2/YA) as template, other variants were constructed to evaluate the importance of those substitutions into the stability and aggregation propensity of λ3 light chains. A change in position 7 (P7D) boosted 3rJL2/YA fibrillogenic properties. Modification of position 48 (I48M) partially reverted 3rJL2/YA fibril aggregation. Finally, changes at positions 8 (P8S) or 40 (P40S) completely reverted fibril formation. These results confirm the influential roles of N-terminal region (positions 7 and 8) and the loop 40–60 (positions 40 and 48) on AL. X-ray crystallography revealed that the three-dimensional topology of the single and double λ3r mutants was not significantly altered. Finally, this mutagenic approach helped to identify key regions implicated in λ3 AL.« less

  16. Formation, Stability, and Mobility of One-Dimensional Lipid Bilayer on High Curvature Substrates

    SciTech Connect

    Huang, J; Martinez, J; Artyukhin, A; Sirbuly, D; Wang, Y; Ju, J W; Stroeve, P; Noy, A

    2007-03-23

    Curved lipid membranes are ubiquitous in living systems and play an important role in many biological processes. To understand how curvature and lipid composition affect membrane formation and fluidity we have assembled and studied mixed 1,2-Dioleoyl-sn-Glycero-3-Phosphocholine (DOPC) and 1,2-Dioleoyl-sn-Glycero-3-Phosphoethanolamine (DOPE) supported lipid bilayers on amorphous silicon nanowires with controlled diameters ranging from 20 nm to 200 nm. Addition of cone-shaped DOPE molecules to cylindrical DOPC molecules promotes vesicle fusion and bilayer formation on smaller diameter nanowires. Our experiments demonstrate that nanowire-supported bilayers are mobile, exhibit fast recovery after photobleaching, and have low concentration of defects. Lipid diffusion coefficients in these high-curvature tubular membranes are comparable to the values reported for flat supported bilayers and increase with decreasing nanowire diameter.

  17. The role of music preferences in early adolescents' friendship formation and stability.

    PubMed

    Selfhout, Maarten H W; Branje, Susan J T; ter Bogt, Tom F M; Meeus, Wim H J

    2009-02-01

    The present study examines the role of similarity in music preferences in the formation and discontinuation of friendships over a 1-year period. Questionnaire data were gathered from 283 Dutch same-sex mutual best friends (mean age=12.97) in two waves with a 1-year interval. Results show consistent evidence for high similarity in specific music dimensions among friends at both waves. Moderate similarity was found in the overall patterning of preferences for music genres at both waves, even after controlling for similarity in social background. Specific music similarity in more non-mainstream music dimensions and overall music similarity at Wave 1 were related to selecting a new friend at Wave 2. However, similarity in music preferences was not related to the discontinuation of an existing friendship at Wave 2. Thus, results suggest that similarity in music preferences is related to friendship formation, and not to friendship discontinuation.

  18. Two Decades of Stability and Change in Age at First Union Formation.

    PubMed

    Manning, Wendy D; Brown, Susan L; Payne, Krista K

    2014-04-01

    The landscape of union formation has been shifting; Americans are now marrying at the highest ages on record and the majority of young adults have cohabited. Yet little attention has been paid to the timing of cohabitation relative to marriage. Using the National Survey of Families and Households and 4 cycles of the National Survey of Family Growth, the authors examined the timing of marriage, cohabitation, and unions over 20 years. As the median age at first marriage has climbed, the age at cohabitation has remained stable for men and women. The changes in the timing of union formation have been similar according to race/ethnicity. The marked delay in marriage among women and men with low educational attainment has resulted in a near-convergence in the age at first marriage according to education. The authors conclude that the rise in cohabitation has offset changes in the levels and timing of marriage.

  19. Abluminal Stimulation of Sphingosine 1-Phosphate Receptors 1 and 3 Promotes and Stabilizes Endothelial Sprout Formation

    PubMed Central

    Lenz, Steven M.; Awojoodu, Anthony O.

    2015-01-01

    Local delivery of lipid mediators has become a promising new approach for therapeutic angiogenesis and regenerative medicine. In this study, we investigated how gradient stimulation (either abluminal/distal or luminal/proximal) of engineered microvessels with sphingosine 1-phosphate (S1P) receptor-subtype-targeted molecules affects endothelial sprout growth using a microfluidic device. Our studies show that distal stimulation of microvessels with FTY720, an S1P1/3 selective agonist, promotes both arterial and venular sprout growth, whereas proximal stimulation does not. Using novel pharmacological antagonists of S1P receptor subtypes, we further show that S1P3 functionality is necessary for VEGF-induced sprouting, and confirmed these findings ex vivo using a murine aortic ring assay from S1P3-deficient mice. S1P3 agonist stimulation enhanced vascular stability in both cell types via upregulation of the interendothelial junction protein VE-cadherin. Lastly, S1P3 activation under flow promoted endothelial sprouting and branching while decreasing migratory cell fate in the microfluidic device. We used an in vivo murine dorsal skinfold window chamber model to confirm S1P3's role in neovascular branching. Together, these data suggest that a distal transendothelial gradient of S1P1/3-targeted drugs is an effective technique for both enhancing and stabilizing capillary morphogenesis in angiogenic applications. PMID:25315888

  20. Stabilizing Surfactant Templated Cylindrical Mesopores in Polymer and Carbon Films through Composite Formation with Silica Reinforcement

    SciTech Connect

    Song, Lingyan; Feng, Dan; Lee, Hae-Jeong; Wang, Chengqing; Wu, Quanyan; Zhao, Dongyuan; Vogt, Bryan D.

    2010-10-22

    A facile approach to maintain the periodic mesostructure of cylindrical pores in polymer-resin and carbon films after thermal template removal is explored through the reactive coassembly of resol (carbon precursor) and tetraethylorthosilicate (silica precursor) with triblock copolymer Pluronic F127. Without silica, a low porosity, disordered film is formed after pyrolysis despite the presence of an ordered mesostructure prior to template removal. However for silica concentration greater than 25 wt %, pyrolysis at 350 C yields a mesoporous silica-polymer film with well-defined pore mesostructure. These films remain well ordered upon carbonization at 800 C. In addition to the mesostructural stability, the addition of silica to the matrix impacts other morphological characteristics. For example, the average pore size and porosity of the films increase from 3.2 to 7.5 nm and 12 to 45%, respectively, as the concentration of silica in the wall matrix increases from 0 to 32 wt %. The improved thermal stability of the ordered mesostructure with the addition of silica to the matrix is attributed to the reinforcement of the mechanical properties leading to resistance to stress induced collapse of the mesostructure during template removal.

  1. Dimer formation and conformational flexibility ensure cytoplasmic stability and nuclear accumulation of Elk-1

    PubMed Central

    Evans, Emma L.; Saxton, Janice; Shelton, Samuel J.; Begitt, Andreas; Holliday, Nicholas D.; Hipskind, Robert A.; Shaw, Peter E.

    2011-01-01

    The ETS (E26) protein Elk-1 serves as a paradigm for mitogen-responsive transcription factors. It is multiply phosphorylated by mitogen-activated protein kinases (MAPKs), which it recruits into pre-initiation complexes on target gene promoters. However, events preparatory to Elk-1 phosphorylation are less well understood. Here, we identify two novel, functional elements in Elk-1 that determine its stability and nuclear accumulation. One element corresponds to a dimerization interface in the ETS domain and the second is a cryptic degron adjacent to the serum response factor (SRF)-interaction domain that marks dimerization-defective Elk-1 for rapid degradation by the ubiquitin–proteasome system. Dimerization appears to be crucial for Elk-1 stability only in the cytoplasm, as latent Elk-1 accumulates in the nucleus and interacts dynamically with DNA as a monomer. These findings define a novel role for the ETS domain of Elk-1 and demonstrate that nuclear accumulation of Elk-1 involves conformational flexibility prior to its phosphorylation by MAPKs. PMID:21543455

  2. Dimer formation and conformational flexibility ensure cytoplasmic stability and nuclear accumulation of Elk-1.

    PubMed

    Evans, Emma L; Saxton, Janice; Shelton, Samuel J; Begitt, Andreas; Holliday, Nicholas D; Hipskind, Robert A; Shaw, Peter E

    2011-08-01

    The ETS (E26) protein Elk-1 serves as a paradigm for mitogen-responsive transcription factors. It is multiply phosphorylated by mitogen-activated protein kinases (MAPKs), which it recruits into pre-initiation complexes on target gene promoters. However, events preparatory to Elk-1 phosphorylation are less well understood. Here, we identify two novel, functional elements in Elk-1 that determine its stability and nuclear accumulation. One element corresponds to a dimerization interface in the ETS domain and the second is a cryptic degron adjacent to the serum response factor (SRF)-interaction domain that marks dimerization-defective Elk-1 for rapid degradation by the ubiquitin-proteasome system. Dimerization appears to be crucial for Elk-1 stability only in the cytoplasm, as latent Elk-1 accumulates in the nucleus and interacts dynamically with DNA as a monomer. These findings define a novel role for the ETS domain of Elk-1 and demonstrate that nuclear accumulation of Elk-1 involves conformational flexibility prior to its phosphorylation by MAPKs.

  3. Effects of amphiphilic diblock copolymer on drug nanoparticle formation and stability.

    PubMed

    Zhu, Zhengxi

    2013-12-01

    This study systematically compares the effects of amphiphilic diblock copolymer (di-BCP) on stabilizing hydrophobic drug nanoparticles formed by flash nanoprecipitation (FNP), and provides a guideline on choosing suitable di-BCPs. Four widely used di-BCPs, i.e., polystyrene-block-poly(ethylene glycol) (PS-b-PEG), polycaprolactone-block-poly(ethylene glycol) (PCL-b-PEG), polylactide-block-poly(ethylene glycol) (PLA-b-PEG), and poly(lactic-co-glycolic acid) (PLGA-b-PEG), and β-carotene as a model drug were used. The study showed that PLGA-b-PEG was the most suitable one, whose hydrophobic block was biodegradable and noncrystallizable as well as had relatively high glass transition temperature (Tg) and a right solubility parameter (δ). The molecular weight of PLGA block over the range from 5k to 15k showed an insignificant effect on controlling the particle size. Amorphous drug particles with a high drug loading of over 83 wt% can be achieved. Much remarkable evidence supported the nanoparticles with kinetically frozen and non-equilibrium packing structures of polymer chains rather than either the micelles or micellar nanoparticles with two well segregated polymer blocks. The thermodynamic effects of the drug and BCP on the particle stability, size and structures were discussed by using solubility parameters.

  4. Effects of amphiphilic diblock copolymer on drug nanoparticle formation and stability

    PubMed Central

    Zhu, Zhengxi

    2013-01-01

    This study systematically compares the effects of amphiphilic diblock copolymer (di-BCP) on stabilizing hydrophobic drug nanoparticles formed by flash nanoprecipitation (FNP), and provides a guideline on choosing suitable di-BCPs. Four widely used di-BCPs, i.e., polystyrene-block-poly(ethylene glycol) (PS-b-PEG), polycaprolactone-block-poly(ethylene glycol) (PCL-b-PEG), polylactide-block-poly(ethylene glycol) (PLA-b-PEG), and poly(lactic-co-glycolic acid) (PLGA-b-PEG), and β-carotene as a model drug were used. The study showed that PLGA-b-PEG was the most suitable one, whose hydrophobic block was biodegradable and noncrystallizable as well as had relatively high glass transition temperature (Tg) and a right solubility parameter (δ). The molecular weight of PLGA block over the range from 5k to 15k showed an insignificant effect on controlling the particle size. Amorphous drug particles with a high drug loading of over 83 wt% can be achieved. Much remarkable evidence supported the nanoparticles with kinetically frozen and nonequilibrium packing structures of polymer chains rather than either the micelles or micellar nanoparticles with two well segregated polymer blocks. The thermodynamic effects of the drug and BCP on the particle stability, size and structures were discussed by using solubility parameters. PMID:24070569

  5. Abluminal stimulation of sphingosine 1-phosphate receptors 1 and 3 promotes and stabilizes endothelial sprout formation.

    PubMed

    Das, Anusuya; Lenz, Steven M; Awojoodu, Anthony O; Botchwey, Edward A

    2015-01-01

    Local delivery of lipid mediators has become a promising new approach for therapeutic angiogenesis and regenerative medicine. In this study, we investigated how gradient stimulation (either abluminal/distal or luminal/proximal) of engineered microvessels with sphingosine 1-phosphate (S1P) receptor-subtype-targeted molecules affects endothelial sprout growth using a microfluidic device. Our studies show that distal stimulation of microvessels with FTY720, an S1P1/3 selective agonist, promotes both arterial and venular sprout growth, whereas proximal stimulation does not. Using novel pharmacological antagonists of S1P receptor subtypes, we further show that S1P3 functionality is necessary for VEGF-induced sprouting, and confirmed these findings ex vivo using a murine aortic ring assay from S1P3-deficient mice. S1P3 agonist stimulation enhanced vascular stability in both cell types via upregulation of the interendothelial junction protein VE-cadherin. Lastly, S1P3 activation under flow promoted endothelial sprouting and branching while decreasing migratory cell fate in the microfluidic device. We used an in vivo murine dorsal skinfold window chamber model to confirm S1P3's role in neovascular branching. Together, these data suggest that a distal transendothelial gradient of S1P1/3-targeted drugs is an effective technique for both enhancing and stabilizing capillary morphogenesis in angiogenic applications.

  6. Solubilizing and Stabilizing Proteins in Anhydrous Ionic Liquids through Formation of Protein-Polymer Surfactant Nanoconstructs.

    PubMed

    Brogan, Alex P S; Hallett, Jason P

    2016-04-06

    Nonaqueous biocatalysis is rapidly becoming a desirable tool for chemical and fuel synthesis in both the laboratory and industry. Similarly, ionic liquids are increasingly popular anhydrous reaction media for a number of industrial processes. Consequently, the use of enzymes in ionic liquids as efficient, environment-friendly, commercial biocatalysts is highly attractive. However, issues surrounding the poor solubility and low stability of enzymes in truly anhydrous media remain a significant challenge. Here, we demonstrate for the first time that engineering the surface of a protein to yield protein-polymer surfactant nanoconstructs allows for dissolution of dry protein into dry ionic liquids. Using myoglobin as a model protein, we show that this method can deliver protein molecules with near native structure into both hydrophilic and hydrophobic anhydrous ionic liquids. Remarkably, using temperature-dependent synchrotron radiation circular dichroism spectroscopy to measure half-denaturation temperatures, our results show that protein stability increases by 55 °C in the ionic liquid as compared to aqueous solution, pushing the solution thermal denaturation beyond the boiling point of water. Therefore, the work presented herein could provide a platform for the realization of biocatalysis at high temperatures or in anhydrous solvent systems.

  7. Cluster formation in binary charge-stabilized colloidal suspensions confined to a two-dimensional plane

    NASA Astrophysics Data System (ADS)

    Kumar, Sanat; Mukherjee, Manjori; Mishra, Pankaj

    2016-09-01

    Hypernetted chain (HNC) integral equation theory has been used to study the structural features of binary charged stabilized colloidal suspensions confined to a two-dimensional plane. The particles interact via purely repulsive Yukawa intermolecular potential, the inverse screening length scaled by the average distance between strongly interacting components of the mixture (dimensionless screening parameter) being 1, 3 and 5. Results of HNC theory for one-component systems are found to be in very good agreement with that of simulation, in the parameter range of our study. Binary Yukawa systems with dimensionless screening parameters 1 and 3 are found to exhibit diffuse clusters of the weakly interacting particles, marked by the emergence of a cluster peak in the corresponding partial structure factor curves. No cluster peak is found in the system with the screening parameter 5. For the entire range of mixture parameters, the strongly interacting particles remain homogeneously distributed.

  8. Factors that Influence the Formation and Stability of Thin, Cryo-EM Specimens

    PubMed Central

    Glaeser, Robert M.; Han, Bong-Gyoon; Csencsits, Roseann; Killilea, Alison; Pulk, Arto; Cate, Jamie H.D.

    2016-01-01

    Poor consistency of the ice thickness from one area of a cryo-electron microscope (cryo-EM) specimen grid to another, from one grid to the next, and from one type of specimen to another, motivates a reconsideration of how to best prepare suitably thin specimens. Here we first review the three related topics of wetting, thinning, and stability against dewetting of aqueous films spread over a hydrophilic substrate. We then suggest that the importance of there being a surfactant monolayer at the air-water interface of thin, cryo-EM specimens has been largely underappreciated. In fact, a surfactant layer (of uncontrolled composition and surface pressure) can hardly be avoided during standard cryo-EM specimen preparation. We thus suggest that better control over the composition and properties of the surfactant layer may result in more reliable production of cryo-EM specimens with the desired thickness. PMID:26386606

  9. Beta-Barrel Scaffold of Fluorescent Proteins: Folding, Stability and Role in Chromophore Formation

    PubMed Central

    Stepanenko, Olesya V.; Stepanenko, Olga V.; Kuznetsova, Irina M.; Verkhusha, Vladislav V.; Turoverov, Konstantin K.

    2013-01-01

    This review focuses on the current view of the interaction between the β-barrel scaffold of fluorescent proteins and their unique chromophore located in the internal helix. The chromophore originates from the polypeptide chain and its properties are influenced by the surrounding protein matrix of the β-barrel. On the other hand, it appears that a chromophore tightens the β-barrel scaffold and plays a crucial role in its stability. Furthermore, the presence of a mature chromophore causes hysteresis of protein unfolding and refolding. We survey studies measuring protein unfolding and refolding using traditional methods as well as new approaches, such as mechanical unfolding and reassembly of truncated fluorescent proteins. We also analyze models of fluorescent protein unfolding and refolding obtained through different approaches, and compare the results of protein folding in vitro to co-translational folding of a newly synthesized polypeptide chain. PMID:23351712

  10. Factors that Influence the Formation and Stability of Thin, Cryo-EM Specimens

    DOE PAGES

    Glaeser, Robert M.; Han, Bong-Gyoon; Csencsits, Roseann; ...

    2015-09-17

    Poor consistency of the ice thickness from one area of a cryo-electron microscope (cryo-EM) specimen grid to another, from one grid to the next, and from one type of specimen to another, motivates a reconsideration of how to best prepare suitably thin specimens. We first review the three related topics of wetting, thinning, and stability against dewetting of aqueous films spread over a hydrophilic substrate. Furthermore, we then suggest that the importance of there being a surfactant monolayer at the air-water interface of thin, cryo-EM specimens has been largely underappreciated. In fact, a surfactant layer (of uncontrolled composition and surfacemore » pressure) can hardly be avoided during standard cryo-EM specimen preparation. Thus it is suggested that better control over the composition and properties of the surfactant layer may result in more reliable production of cryo-EM specimens with the desired thickness.« less

  11. Factors that Influence the Formation and Stability of Thin, Cryo-EM Specimens

    SciTech Connect

    Glaeser, Robert M.; Han, Bong-Gyoon; Csencsits, Roseann; Killilea, Alison; Pulk, Arto; Cate, Jamie H. D.

    2015-09-17

    Poor consistency of the ice thickness from one area of a cryo-electron microscope (cryo-EM) specimen grid to another, from one grid to the next, and from one type of specimen to another, motivates a reconsideration of how to best prepare suitably thin specimens. We first review the three related topics of wetting, thinning, and stability against dewetting of aqueous films spread over a hydrophilic substrate. Furthermore, we then suggest that the importance of there being a surfactant monolayer at the air-water interface of thin, cryo-EM specimens has been largely underappreciated. In fact, a surfactant layer (of uncontrolled composition and surface pressure) can hardly be avoided during standard cryo-EM specimen preparation. Thus it is suggested that better control over the composition and properties of the surfactant layer may result in more reliable production of cryo-EM specimens with the desired thickness.

  12. Post-Formation Shrinkage and Stabilization of Microfluidic Bubbles in Lipid Solution.

    PubMed

    Shih, Roger; Lee, Abraham P

    2016-03-01

    Medical ultrasound imaging often employs ultrasound contrast agents (UCAs), injectable microbubbles stabilized by shells or membranes. In tissue, the compressible gas cores can strongly scatter acoustic signals, resonate, and emit harmonics. However, bubbles generated by conventional methods have nonuniform sizes, reducing the fraction that resonates with a given transducer. Microfluidic flow-focusing is an alternative production method which generates highly monodisperse bubbles with uniform constituents, enabling more-efficient contrast enhancement than current UCAs. Production size is tunable by adjusting gas pressure and solution flow rate, but solution effects on downstream stable size and lifetime have not been closely examined. This study therefore investigated several solution parameters, including the DSPC/DSPE-PEG2000 lipid ratio, concentration, viscosity, and preparation temperature to determine their effects on stabilization. It was found that bubble lifetime roughly correlated with stable size, which in turn was strongly influenced by primary-lipid-to-emulsifier ratio, analogous to its effects on conventional bubble yield and Langmuir-trough compressibility in existing studies. Raising DSPE-PEG2000 fraction in solution reduced bubble surface area in proportion to its reduction of lipid packing density at low compression in literature. In addition, the surface area was found to increase proportionately with lipid concentration above 2.1 mM. However, viscosities above or below 2.3-3.3 mPa·s seemed to reduce bubble size. Finally, lipid preparation at room temperature led to smaller bubbles compared to preparation near or above the primary lipid's phase transition point. Understanding these effects will further improve on postformation control over microfluidic bubble production, and facilitate size-tuning for optimal contrast enhancement.

  13. The Formation and Stability of Recognition Memory: What Happens Upon Recall?

    PubMed Central

    Davis, Sabrina; Renaudineau, Sophie; Poirier, Roseline; Poucet, Bruno; Save, Etienne; Laroche, Serge

    2010-01-01

    The idea that an already consolidated memory can become destabilized after recall and requires a process of reconsolidation to maintain it for subsequent use has gained much credence over the past decade. Experimental studies in rodents have shown pharmacological, genetic, or injurious manipulation at the time of memory reactivation can disrupt the already consolidated memory. Despite the force of experimental data showing this phenomenon, a number of questions have remained unanswered and no consensus has emerged as to the conditions under which a memory can be disrupted following reactivation. To date most rodent studies of reconsolidation are based on negatively reinforced memories, in particular fear-associated memories, while the storage and stability of forms of memory that do not rely on explicit reinforcement have been less often studied. In this review, we focus on recognition memory, a paradigm widely used in humans to probe declarative memory. We briefly outline recent advances in our understanding of the processes and brain circuits involved in recognition memory and review the evidence that recognition memory can undergo reconsolidation upon reactivation. We also review recent findings suggesting that some molecular mechanisms underlying consolidation of recognition memory are similarly recruited after recall to ensure memory stability, while others are more specifically engaged in consolidation or reconsolidation. Finally, we provide novel data on the role of Rsk2, a mental retardation gene, and of the transcription factor zif268/egr1 in reconsolidation of object-location memory, and offer suggestions as to how assessing the activation of certain molecular mechanisms following recall in recognition memory may help understand the relative importance of different aspects of remodeling or updating long-lasting memories. PMID:21120149

  14. The stability of elastically strained nanorings and the formation of quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Gill, Simon P. A.

    2015-05-01

    Self-assembled nanorings have recently been identified in a number of heteroepitaxially strained material systems. Under some circumstances these rings have been observed to break up into ring-shaped quantum dot molecules. A general non-linear model for the elastic strain energy of non-axisymmetric epitaxially strained nanostructures beyond the small slope assumption is developed. This model is then used to investigate the stability of strained nanorings evolving via surface diffusion subject to perturbations around their circumference. An expression for the fastest growing mode is determined and related to experimental observations. The model predicts a region of stability for rings below a critical radius, and also a region for larger rings which have a proportionally small thickness. The predictions of the model are shown to be consistent with the available results. For the heteroepitaxial InP on In0.5Ga0.5P system investigated by Jevasuwan et al. (2013), the nanorings are found to be stable below a certain critical size. This is in good quantitative agreement with the model predictions. At larger sizes, the rings are unstable. The number of dots in the resulting quantum dot molecule is similar to the mode number for the fastest growing mode. Second order terms show that the number of dots is expected to reduce as the height of the ring increases in proportion to its thickness. The strained In0.4Ga0.6As on GaAs nanorings of Hanke et al. (2007) are always stable and this is in accordance with the findings of the analysis. The Au nanorings of Ruffino et al. (2011) are stable as well, even as they expand during annealing. This observation is also shown to be consistent with the proposed model, which is expected to be useful in the design and tailoring of heteroepitaxial systems for the self-organisation of quantum dot molecules.

  15. Silver nanoparticles in complex biological media: assessment of colloidal stability and protein corona formation

    NASA Astrophysics Data System (ADS)

    Argentiere, Simona; Cella, Claudia; Cesaria, Maura; Milani, Paolo; Lenardi, Cristina

    2016-08-01

    Engineered silver nanoparticles (AgNPs) are among the most used nanomaterials in consumer products, therefore concerns are raised about their potential for adverse effects in humans and environment. Although an increasing number of studies in vitro and in vivo are being reported on the toxicity of AgNPs, most of them suffer from incomplete characterization of AgNPs in the tested biological media. As a consequence, the comparison of toxicological data is troublesome and the toxicity evaluation still remains an open critical issue. The development of a reliable protocol to evaluate interactions of AgNPs with surrounding proteins as well as to assess their colloidal stability is therefore required. In this regard, it is of importance not only to use multiple, easy-to-access and simple techniques but also to understand limitations of each characterization methods. In this work, the morphological and structural behaviour of AgNPs has been studied in two relevant biological media, namely 10 % FBS and MP. Three different techniques (Dynamic Light Scattering, Transmission Electron Microscopy, UV-Vis spectroscopy) were tested for their suitability in detecting AgNPs of three different sizes (10, 40 and 100 nm) coated with either citrate or polyvinylpyrrolidone. Results showed that UV-Vis spectroscopy is the most versatile and informative technique to gain information about interaction between AgNPs and surrounding proteins and to determine their colloidal stability in the tested biological media. These findings are expected to provide useful insights in characterizing AgNPs before performing any further in vitro/in vivo experiment.

  16. Effect of lentil proteins isolate concentration on the formation, stability and rheological behavior of oil-in-water nanoemulsions.

    PubMed

    Primozic, Maja; Duchek, Akaysha; Nickerson, Michael; Ghosh, Supratim

    2017-12-15

    The formation, stability and rheology of 5wt% oil-in-water nanoemulsions as a function of lentil protein isolate concentration (0.5-5wt%) at pH 3.0 was investigated for 28days. All nanoemulsions, except 1wt% protein, showed bimodal droplet size distribution where the larger diameter peak was ascribed to protein aggregates and entrapped oil droplets. The average droplet size for all nanoemulsions measured from the lower diameter peak ranged from 161 to 357nm, which did not change over 28days. Stable flowable nanoemulsions were formed at 1-2wt% protein concentrations. Nanoemulsions with 3 and 5wt% protein formed strong non-flowable gels which showed a two-step yielding behavior during strain-sweep rheology, indicating gel formation by interconnected clusters of proteins and oil droplets. This study demonstrated that lentil protein has a potential to be utilized as an emulsifier in nanoemulsions, as well as in the formation of emulsion gels at higher protein concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Formation and Stabilization of Environmentally Persistent Free Radicals Induced by the Interaction of Anthracene with Fe(III)-Modified Clays.

    PubMed

    Jia, Hanzhong; Nulaji, Gulimire; Gao, Hongwei; Wang, Fu; Zhu, Yunqing; Wang, Chuanyi

    2016-06-21

    Environmentally persistent free radicals (EPFRs) are occasionally detected in Superfund sites but the formation of EPFRs induced by polycyclic aromatic hydrocarbons (PAHs) is not well understood. In the present work, the formation of EPFRs on anthracene-contaminated clay minerals was quantitatively monitored via electron paramagnetic resonance (EPR) spectroscopy, and surface/interface-related environmental influential factors were systematically explored. The obtained results suggest that EPFRs are more readily formed on anthracene-contaminated Fe(III)-montmorillonite than in other tested systems. Depending on the reaction condition, more than one type of organic radicals including anthracene-based radical cations with g-factors of 2.0028-2.0030 and oxygenic carbon-centered radicals featured by g-factors of 2.0032-2.0038 were identified. The formed EPFRs are stabilized by their interaction with interlayer surfaces, and such surface-bound EPFRs exhibit slow decay with 1/e-lifetime of 38.46 days. Transformation pathway and possible mechanism are proposed on the basis of experimental results and quantum mechanical simulations. Overall, the formation of EPFRs involves single-electron-transfer from anthracene to Fe(III) initially, followed by H2O addition on formed aromatic radical cation. Because of their potential exposure in soil and atmosphere, such clay surface-associated EPFRs might induce more serious toxicity than PAHs and exerts significant impacts on human health.

  18. Nudel is crucial for the WAVE complex assembly in vivo by selectively promoting subcomplex stability and formation through direct interactions.

    PubMed

    Wu, Shuang; Ma, Li; Wu, Yibo; Zeng, Rong; Zhu, Xueliang

    2012-08-01

    The WAVE regulatory complex (WRC), consisting of WAVE, Sra, Nap, Abi, and HSPC300, activates the Arp2/3 complex to control branched actin polymerization in response to Rac activation. How the WRC is assembled in vivo is not clear. Here we show that Nudel, a protein critical for lamellipodia formation, dramatically stabilized the Sra1-Nap1-Abi1 complex against degradation in cells through a dynamic binding to Sra1, whereas its physical interaction with HSPC300 protected free HSPC300 from the proteasome-mediated degradation and stimulated the HSPC300-WAVE2 complex formation. By contrast, Nudel showed little or no interactions with the Sra1-Nap1-Abi1-WAVE2 and the Sra1-Nap1-Abi1-HSPC300 complexes as well as the mature WRC. Depletion of Nudel by RNAi led to general subunit degradation and markedly attenuated the levels of mature WRC. It also abolished the WRC-dependent actin polymerization in vitro and the Rac1-induced lamellipodial actin network formation during cell spreading. Therefore, Nudel is important for the early steps of the WRC assembly in vivo by antagonizing the instability of certain WRC subunits and subcomplexes.

  19. In situ formation of magnetite reactive barriers in soil for waste stabilization

    DOEpatents

    Moore, Robert C.

    2003-01-01

    Reactive barriers containing magnetite and methods for making magnetite reactive barriers in situ in soil for sequestering soil contaminants including actinides and heavy metals, organic materials, iodine and technetium are disclosed. According to one embodiment, a two-step reagent introduction into soil takes place. In the first step, free oxygen is removed from the soil by separately injecting into the soil aqueous solutions of iron (II) salt, for example FeCl.sub.2, and base, for example NaOH or NH.sub.3 in about a 1:1 volume ratio. Then, in the second step, similar reagents are injected a second time (however, according to about a 1:2 volume ratio, iron to salt) to form magnetite. The magnetite formation is facilitated, in part, due to slow intrusion of oxygen into the soil from the surface. The invention techniques are suited to injection of reagents into soil in proximity to a contamination plume or source allowing in situ formation of the reactive barrier at the location of waste or hazardous material. Mixing of reagents to form. precipitate is mediated and enhanced through movement of reagents in soil as a result of phenomena including capillary action, movement of groundwater, soil washing and reagent injection pressure.

  20. Pyromorphite formation and stability after quick lime neutralisation in the presence of soil and clay sorbents

    SciTech Connect

    Chappell, Mark A.; Scheckel, Kirk G.

    2008-06-16

    Soluble Pb is immobilised in pure systems as pyromorphite by adding sources of P, but doubts remain about the effectiveness of this approach in natural soil systems, particularly given the ability of soil humic substances to interfere with Pb-mineral formation. In addition, recent thermodynamic modelling predicts that pyromorphite formed by the addition of phosphoric acid to Pb-contaminated soils, followed by neutralisation with quick lime (Ca(OH){sub 2}) will destabilise the mineral, reverting the Pb back to more soluble species such as cerussite or anglesite. In this paper, we describe experiments to form pyromorphite in the presence of two different sorbents: a reference smectite called Panther Creek Bentonite, and a commercially available, organically rich potting mixture. We present X-ray diffraction (XRD) evidence suggestive of pyromorphite formation, yet, like similar studies, the evidence is less than conclusive. Linear combination fits of Pb X-ray absorption fine-structure spectroscopy (XAFS) data collected at the Advanced Photon Source at Argonne National Laboratory show that pyromorphite is the major Pb species formed after the addition of phosphoric acid. Furthermore, XAFS data shows that neutralising with quick lime enhances (as opposed to reducing) pyromorphite content in these systems. These results call into question relying solely on XRD data to confirm or deny the existence of minerals like pyromorphite, whose complex morphology give less intense and more complicated diffraction patterns than some of the simpler Pb minerals.

  1. Effect of glycerol on formation, stability, and properties of vitamin-E enriched nanoemulsions produced using spontaneous emulsification.

    PubMed

    Saberi, Amir Hossein; Fang, Yuan; McClements, David Julian

    2013-12-01

    Oil-in-water nanoemulsions are finding increasing use as delivery systems to encapsulate lipophilic bioactive components in functional food, personal care, and pharmaceutical products. We investigated the influence of a water-soluble cosolvent (glycerol) on the formation, stability, and properties of vitamin E acetate-loaded nanoemulsions (VE-NEs) prepared by spontaneous emulsification. VE-NEs were formed by titration of a mixture of vitamin E acetate, carrier oil (MCT) and non-ionic surfactant (Tween 80) into an aqueous glycerol solution with continuous mixing. Cosolvent concentration had an appreciable effect on the particle size produced, with the smallest mean droplet diameters (d<50 nm) being formed at 40 and 50 wt% glycerol. Nanoemulsions (d<100 nm) containing 10% vitamin E acetate could be produced at relatively low surfactant concentrations (5%) using these high glycerol levels. The turbidity of the NEs decreased at high glycerol concentrations due to the reduction in droplet size and refractive index contrast. The long-term stability of the VE-NEs was strongly influenced by glycerol concentration and storage temperature. VE-NEs containing 40% glycerol were relatively stable to droplet growth when stored at 5 and 20°C, but a rapid increase in droplet size and turbidity occurred during storage at 37°C. Temperature scanning experiments (20-80-20°C) indicated that a steep and irreversible increase in turbidity occurred during heating, which was around 70°C in the absence of glycerol and 60°C in the presence of 40% glycerol. Droplet instability was attributed to an increase in the rate of Ostwald ripening and/or coalescence as the temperature was increased, associated with dehydration of the non-ionic surfactant head-group leading to a reduction in phase inversion temperature. Dilution (100×) of VE-NEs containing glycerol with water considerably improved their stability to droplet growth, especially at high storage temperatures. This study provides

  2. Formation and Stabilization of Single-Crystalline Metastable AuGe Phases in Ge Nanowires

    SciTech Connect

    Sutter, E.; Sutter, P.

    2011-07-22

    We use in situ observations by variable temperature transmission electron microscopy on AuGe alloy drops at the tips of Ge nanowires (NWs) with systematically varying composition to demonstrate the controlled formation of metastable solid phases integrated in NWs. The process, which operates in the regime of vapor-liquid-solid growth, involves a size-dependent depression of the alloy liquidus at the nanoscale that leads to extremely Ge-rich AuGe melts at low temperatures. During slow cooling, these liquid AuGe alloy drops show pronounced departures from equilibrium, i.e., a frustrated phase separation of Ge into the adjacent solid NW, and ultimately crystallize as single-crystalline segments of metastable {gamma}-AuGe. Our findings demonstrate a general avenue for synthesizing NW heterostructures containing stable and metastable solid phases, applicable to a wide range of materials of which NWs form by the vapor-liquid-solid method.

  3. Formation and stability of As-H bonds in H-implanted GaAs

    SciTech Connect

    Stein, H.J.

    1990-01-01

    The chemical bonding and isochronal annealing of H implanted into GaAs at 80 K has been investigated by infrared absorption measurements. Based upon the frequency shift when deuterium is substituted for H, and an equivalent band formation in InAs, assignment of a new band at 2029 cm{sup {minus}1} is made to As-H centers. Bonding of H at interstitial As of and As-vacancy pair which anneals between 150 and 250K is suggested as the structure for the defect. A previously-reported absorption band at 1834 cm{sup {minus}1} assigned to Ga-H centers in H-implanted GaAS increase in intensity when H is released from As-H centers. 15 refs., 5 figs.

  4. Composition-dependent stability of the medium-range order responsible for metallic glass formation

    DOE PAGES

    Zhang, Feng; Ji, Min; Fang, Xiao-Wei; ...

    2014-09-18

    The competition between the characteristic medium-range order corresponding to amorphous alloys and that in ordered crystalline phases is central to phase selection and morphology evolution under various processing conditions. We examine the stability of a model glass system, Cu–Zr, by comparing the energetics of various medium-range structural motifs over a wide range of compositions using first-principles calculations. Furthermore, we focus specifically on motifs that represent possible building blocks for competing glassy and crystalline phases, and we employ a genetic algorithm to efficiently identify the energetically favored decorations of each motif for specific compositions. These results show that a Bergman-type motifmore » with crystallization-resisting icosahedral symmetry is energetically most favorable in the composition range 0.63 < xCu < 0.68, and is the underlying motif for one of the three optimal glass-forming ranges observed experimentally for this binary system (Li et al., 2008). This work establishes an energy-based methodology to evaluate specific medium-range structural motifs which compete with stable crystalline nuclei in deeply undercooled liquids.« less

  5. Composition-dependent stability of the medium-range order responsible for metallic glass formation

    SciTech Connect

    Zhang, Feng; Ji, Min; Fang, Xiao-Wei; Sun, Yang; Wang, Cai-Zhuang; Mendelev, Mikhail I.; Kramer, M. J.; Napolitano, Ralph E.; Ho, Kai-Ming

    2014-09-18

    The competition between the characteristic medium-range order corresponding to amorphous alloys and that in ordered crystalline phases is central to phase selection and morphology evolution under various processing conditions. We examine the stability of a model glass system, Cu–Zr, by comparing the energetics of various medium-range structural motifs over a wide range of compositions using first-principles calculations. Furthermore, we focus specifically on motifs that represent possible building blocks for competing glassy and crystalline phases, and we employ a genetic algorithm to efficiently identify the energetically favored decorations of each motif for specific compositions. These results show that a Bergman-type motif with crystallization-resisting icosahedral symmetry is energetically most favorable in the composition range 0.63 < xCu < 0.68, and is the underlying motif for one of the three optimal glass-forming ranges observed experimentally for this binary system (Li et al., 2008). This work establishes an energy-based methodology to evaluate specific medium-range structural motifs which compete with stable crystalline nuclei in deeply undercooled liquids.

  6. Immobilization-stabilization of proteins on nanofibrillated cellulose derivatives and their bioactive film formation.

    PubMed

    Arola, Suvi; Tammelin, Tekla; Setälä, Harri; Tullila, Antti; Linder, Markus B

    2012-03-12

    In a number of different applications for enzymes and specific binding proteins a key technology is the immobilization of these proteins to different types of supports. In this work we describe a concept for protein immobilization that is based on nanofibrillated cellulose (NFC). NFC is a form of cellulose where fibers have been disintegrated into fibrils that are only a few nanometers in diameter and have a very large aspect ratio. Proteins were conjugated through three different strategies using amine, epoxy, and carboxylic acid functionalized NFC. The conjugation chemistries were chosen according to the reactive groups on the NFC derivatives; epoxy amination, heterobifunctional modification of amino groups, and EDC/s-NHS activation of carboxylic acid groups. The conjugation reactions were performed in solution and immobilization was performed by spin coating the protein-NCF conjugates. The structure of NFC was shown to be advantageous for both protein performance and stability. The use of NFC allows all covalent chemistry to be performed in solution, while the immobilization is achieved by a simple spin coating or spreading of the protein-NFC conjugates on a support. This allows more scalable methods and better control of conditions compared to the traditional methods that depend on surface reactions.

  7. Plasma oxidation and stabilization of electrospun polyacrylonitrile nanofiber for carbon nanofiber formation

    NASA Astrophysics Data System (ADS)

    Hamideh Mortazavi, S.; Pilehvar, Soheil; Ghoranneviss, Mahmood; Hosseinnejad, M. T.; Zargham, Shamim; Mirarefi, Ali A.; Mirarefi, Amir Y.

    2013-11-01

    The effect of plasma treatment on the stabilization of copolymer P(AN-MA) containing 6.1 mol% methyl acrylate (MA) prepared by an electrospinning technique has been investigated at various oxygen contents (10 %, 20 % and 30 %) and different exposure times. The morphology and chemical structural evolution of electrospun and oxidized nanofibers were studied using field-emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC). FT-IR analysis indicated that the treated nanofibers were effectively oxidized under different contents of oxygen and prolonged plasma exposure times by increasing the peak intensities of polar groups at 1730 and 3400 cm-1 corresponding to C=O stretching band and OH stretching vibration mode, respectively. Additionally, a reduction in the extent of the cyclization reaction is observed with further increase in exposure times and contents of oxygen, which implies lower conversion of C≡N bands into C=N ones in the copolymer chain. According to the FE-SEM studies, the surfaces of the treated nanofibers were completely etched after 15 min of treatment due to the existence of strong ion bombardment and a reduction in the average fiber diameters was observed.

  8. The change of the scFv into the Fab format improves the stability and in vivo toxin neutralization capacity of recombinant antibodies.

    PubMed

    Quintero-Hernández, Veronica; Juárez-González, Victor R; Ortíz-León, Mauricio; Sánchez, Rosalba; Possani, Lourival D; Becerril, Baltazar

    2007-02-01

    The antigen-binding fragment (Fab) has been considered a more functionally stable version of recombinant antibodies than single chain antibody fragments (scFvs), however this intuitive consideration has not been sufficiently proven in vivo. This communication shows that three out of four specific scFvs against a scorpion toxin, with different affinities and stabilities, become neutralizing in vivo when expressed as Fabs, despite the fact that they are not neutralizing in the scFv format. A scFv fragment previously obtained from a neutralizing mouse antibody (BCF2) was used to produce three derived scFvs by directed evolution. Only one of them was neutralizing, however when expressed as Fab, all of them became neutralizing fragments in vivo. The initial scFvBCF2 (earlier used for directed evolution) was not neutralizing in the scFv format. After expressing it as Fab did not become a neutralizing fragment, but did reduce the intoxication symptoms of experimental mice. The stability of the four Fabs derived from their respective scFvs was improved when tested in the presence of guanidinium chloride. The in vitro stability of the Fab format has been shown earlier, but the physiological consequences of this stability are shown in this communication. The present results indicate that improved functional stability conferred by the Fab format can replace additional maturation steps, when the affinity and stability are close to the minimum necessary to be neutralizing.

  9. A Kalman Filter for Mass Property and Thrust Identification of the Spin-Stabilized Magnetospheric Multiscale Formation

    NASA Technical Reports Server (NTRS)

    Queen, Steven Z.

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four identically instrumented, spin-stabilized observatories, elliptically orbiting the Earth in a tetrahedron formation. For the operational success of the mission, on-board systems must be able to deliver high-precision orbital adjustment maneuvers. On MMS, this is accomplished using feedback from on-board star sensors in tandem with accelerometers whose measurements are dynamically corrected for errors associated with a spinning platform. In order to determine the required corrections to the measured acceleration, precise estimates of attitude, rate, and mass-properties are necessary. To this end, both an on-board and ground-based Multiplicative Extended Kalman Filter (MEKF) were formulated and implemented in order to estimate the dynamic and quasi-static properties of the spacecraft.

  10. Splat formation during plasma spraying for 8 mol% yttria-stabilized zirconia droplets impacting on stainless steel substrate

    NASA Astrophysics Data System (ADS)

    Wei, Pei; Wei, Zhengying; Li, Suli; Tan, Chao; Du, Jun

    2014-12-01

    In this paper, the formation of 8 mol% yttria-stabilized zirconia (8YSZ) droplet impacting on stainless substrate during SAPS and APS has been analyzed by numerical simulation and experiments. The objective of the study was to establish the predictable relationships between the coating properties and various parameters of plasma spraying process. A mathematic model of single droplet deposition process was developed, the influence of solidification was considered in the governing equations. The model considered the following factors: surface tension, thermal contact resistance between droplet and substrate, viscosity, impacting velocity, and temperature of droplet. Dimensionless number Reynolds number, Weber number, Ohnesorge number and Biot number were used to explain the phenomena of splashing. The critical values of triggering splashing were analyzed quantitatively for 8YSZ droplets. The numerical results agreed well with the experiment data.

  11. Formation of copper aluminate spinel and cuprous aluminate delafossite to thermally stabilize simulated copper-laden sludge.

    PubMed

    Hu, Ching-Yao; Shih, Kaimin; Leckie, James O

    2010-09-15

    The study reported herein indicated the stabilization mechanisms at work when copper-laden sludge is thermally treated with gamma-alumina and kaolinite precursors, and evaluated the prolonged leachability of their product phases. Four copper-containing phases - copper oxide (CuO), cuprous oxide (Cu(2)O), copper aluminate spinel (CuAl(2)O(4)), and cuprous aluminate delafossite (CuAlO(2)) - were found in the thermal reactions of the investigated systems. These phases were independently synthesized for leaching by 0.1M HCl aqueous solution, and the relative leachabilities were found to be CuAl(2)O(4)formation mechanism employed to stabilize copper into CuAl(2)O(4) and CuAlO(2) are extensively discussed here. With a 3h of short sintering, it was found that CuAl(2)O(4) could be effectively formed between 850 and 950 degrees C by the gamma-alumina precursor. Although kaolinite had a lower incorporation capability than gamma-alumina, it was found to transform a considerable amount of copper into CuAl(2)O(4) between 950 and 1000 degrees C. At higher temperatures, CuAlO(2) was produced only in the gamma-alumina system as the occurrence of Cu(2)O-cristobalite solution in the kaolinite system precluded the production of CuAlO(2). The hypothesis that the spinel formation mechanism has two stages was supported by the results of the changing Cu/Al mole ratio in the system, and the rate-limiting step was identified as the diffusion process in the second stage.

  12. Peroxisome-targeted and tandem repeat multimer expressions of human antimicrobial peptide LL37 in Pichia pastoris.

    PubMed

    Xiao, Siwei; Gao, Yanyun; Wang, Xiaolong; Shen, Wei; Wang, Jinjia; Zhou, Xiangshan; Cai, Menghao; Zhang, Yuanxing

    2017-03-16

    Although the human antimicrobial peptide LL37 has a broad spectrum of antimicrobial activities, it easily damages host cells following heterologous expressions. This study attempted two strategies to alleviate its damage to host cells when expressed in Pichia pastoris using the AOX1 promoter. Tandem repeat multimers of LL37 were first designed, and secretion expression strains GS115-9K-(DPLL37DP)n (n = 2, 4, 6 and 8) containing different copies of the LL37 gene were constructed. However, LL37 tandems still killed the cells after 96 hr of induction. Subsequently, peroxisome-targeted expression was performed by adding a peroxisomal targeting signal 1 (SKL) at the C-terminus of LL37. The LL37 expression strain GS115-3.5K-LL37-SKL showed no significant inhibition in the cells after induction. Antibacterial activity assays showed that the recombinant LL37 expressed in peroxisomes had good antimicrobial activities. Then, a strain GS115-3.5K-LL37-GFP-SKL producing LL37, green fluorescent protein, and SKL fusion proteins was constructed, and the fusion protein was confirmed to be targeting the peroxisomes. However, protein extraction analysis indicated that most of the fusion proteins were still located in the cell debris after cell disruption, and further studies are required to extract more proteins from the peroxisome membrane.

  13. Self-assembling SAS-6 multimer is a core centriole building block.

    PubMed

    Gopalakrishnan, Jayachandran; Guichard, Paul; Smith, Andrew H; Schwarz, Heinz; Agard, David A; Marco, Sergio; Avidor-Reiss, Tomer

    2010-03-19

    Centrioles are conserved microtubule-based organelles with 9-fold symmetry that are essential for cilia and mitotic spindle formation. A conserved structure at the onset of centriole assembly is a "cartwheel" with 9-fold radial symmetry and a central tubule in its core. It remains unclear how the cartwheel is formed. The conserved centriole protein, SAS-6, is a cartwheel component that functions early in centriole formation. Here, combining biochemistry and electron microscopy, we characterize SAS-6 and show that it self-assembles into stable tetramers, which serve as building blocks for the central tubule. These results suggest that SAS-6 self-assembly may be an initial step in the formation of the cartwheel that provides the 9-fold symmetry. Electron microscopy of centrosomes identified 25-nm central tubules with repeating subunits and show that SAS-6 concentrates at the core of the cartwheel. Recombinant and native SAS-6 self-oligomerizes into tetramers with approximately 6-nm subunits, and these tetramers are components of the centrosome, suggesting that tetramers are the building blocks of the central tubule. This is further supported by the observation that elevated levels of SAS-6 in Drosophila cells resulted in higher order structures resembling central tubule morphology. Finally, in the presence of embryonic extract, SAS-6 tetramers assembled into high density complexes, providing a starting point for the eventual in vitro reconstruction of centrioles.

  14. β-Lactamase Inhibition by 7-Alkylidenecephalosporin Sulfones: Allylic Transposition and Formation of an Unprecedented Stabilized Acyl-Enzyme

    PubMed Central

    Rodkey, Elizabeth A.; McLeod, David C.; Bethel, Christopher R.; Smith, Kerri M.; Xu, Yan; Chai, Weirui; Che, Tao; Carey, Paul R.; Bonomo, Robert A.; van den Akker, Focco; Buynak, John D.

    2014-01-01

    The inhibition of the class A SHV-1 β-lactamase by 7-(tert-butoxycarbonyl)methylidenecephalosporin sulfone was examined kinetically, spectroscopically, and crystallographically. An 1.14Å X-ray crystal structure shows that the stable acyl-enzyme, which incorporates an eight-membered ring, is a covalent derivative of Ser70 linked to the 7-carboxy group of 2-H-5,8-dihydro-1,1-dioxo-1,5-thiazocine-4,7-dicarboxylic acid. A cephalosporin-derived enzyme complex of this type is unprecedented and the rearrangement leading to its formation may offer new possibilities for inhibitor design. The observed acyl-enzyme derives its stability from the resonance stabilization conveyed by the β-aminoacrylate (i.e. vinylogous urethane) functionality as there is relatively little interaction of the eight-membered ring with active site residues. Two mechanistic schemes are proposed, differing in whether, subsequent to acylation of the active site serine and opening of the β-lactam, the resultant dihydrothiazine fragments on its own, or is assisted by an adjacent nucleophilic atom, in the form of the carbonyl oxygen of the C7 tert-butyloxycarbonyl group. This compound was also found to be a submicromolar inhibitor of the class C ADC-7 and PDC-3 β-lactamases. PMID:24219313

  15. The Importance of Solid Electrolyte Interphase Formation for Long Cycle Stability Full-Cell Na-Ion Batteries

    SciTech Connect

    Li, Xiaolin; Yan, Pengfei; Engelhard, Mark H.; Crawford, Aladsair J.; Viswanathan, Vilayanur V.; Wang, Chong M.; Liu, Jun; Sprenkle, Vincent L.

    2016-07-30

    Na-ion battery, as an alternative high-efficiency and low-cost energy storage device to Li-ion battery, has attracted wide interest for electrical grid and vehicle applications. However, demonstration of a full-cell battery with high energy and long cycle life remains a significant challenge. Here, we investigated the role of solid electrolyte interphase (SEI) formation on both cathodes and anodes and revealed a potential way to achieve long-term stability for Na-ion battery full-cells. Pre-cycling of cathodes and anodes leads to preformation of SEI, and hence mitigates the consumption of Na ions in full-cells. The example full-cell of Na0.44MnO2-hard carbon with pre-cycled and capacity-matched electrodes can deliver a specific capacity of ~116 mAh/g based on Na0.44MnO2 at 1C rate (1C = 120 mA/g). The corresponding specific energy is ~313 Wh/kg. Excellent cycling stability with ~77% capacity retention over 2000 cycles was demonstrated at 2C rate. Our work represents a leap forward in Na-ion battery development.

  16. Formation and Stabilization of Combustion-Generated, Environmentally Persistent Radicals on Ni(II)O Supported on a Silica Surface

    PubMed Central

    Vejerano, Eric; Lomnicki, Slawomir M.; Dellinger, Barry

    2013-01-01

    Previous studies have indicated Environmentally Persistent Free Radicals (EPFRs) are formed when hydroxyl- and chlorine-substituted aromatics chemisorbed on Cu(II)O and Fe(III)2O3 surfaces and were stabilized through their interactions with the surface metal cation. The current study reports our laboratory investigation on the formation and stabilization of EPFRs on an Ni(II)O surface. The EPFRs were produced by the chemisorption of adsorbates on the supported metal oxide surface and transfer of an electron from the adsorbate to the metal center, resulting in reduction of the metal cation. Depending on the temperature and the nature of the adsorbate, more than one type of organic radical was formed. A phenoxyl-type radical, with g-value between 2.0029 and 2.0044, and a semiquinone-type radical, with g-value from 2.0050 to as high as 2.0081, were observed. The half-lives on Ni(II)O were long and ranged from 1.5 to 5.2 days, which were similar to what were observed on Fe(III)2O3,. The yields of the EPFRs formed on Ni(II)O was ~ 8x higher than on Cu(II)O and ~50x higher than on Fe(III)2O3. PMID:22831558

  17. Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: factors affecting particle size and stability.

    PubMed

    Guttoff, Marrisa; Saberi, Amir Hossein; McClements, David Julian

    2015-03-15

    Oil-in-water nanoemulsions are particularly suitable for encapsulation of lipophilic nutraceuticals because of their ability to form stable and transparent delivery systems with high oral bioavailability. In this study, the influence of system composition and preparation conditions on the particle size and stability of vitamin D nanoemulsions prepared by spontaneous emulsification (SE) was investigated. SE relies on the formation of small oil droplets when an oil/surfactant mixture is titrated into an aqueous solution. The influence of oil phase composition (vitamin D and MCT), surfactant-to-oil ratio (SOR), surfactant type (Tween 20, 40, 60, 80 and 85), and stirring conditions on the initial particle size of vitamin D nanoemulsions was studied. Nanoemulsions with small droplet diameters (d<200 nm) could be formed using Tween 80 at SOR⩾1 at high stirring speeds (800 rpm). These systems were relatively stable to droplet growth at ambient temperatures (<10% in diameter after 1 month storage), but unstable to heating (T>80°C). The thermal stability of the nanoemulsions could be improved by adding a cosurfactant (sodium dodecyl sulphate (SDS)). The spontaneous emulsification method is simple and inexpensive to carry out and therefore has great potential for forming nanoemulsion-based delivery systems for food, personal care, and pharmaceutical applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The ionic liquid isopropylammonium formate as a mobile phase modifier to improve protein stability during reversed phase liquid chromatography.

    PubMed

    Zhou, Ling; Danielson, Neil D

    2013-12-01

    The room temperature ionic liquid isopropylammonium formate (IPAF) is studied as a reversed phase HPLC mobile phase modifier for separation of native proteins using a polymeric column and the protein stability is compared to that using acetonitrile (MeCN) as the standard organic mobile phase modifier. A variety of important proteins with different numbers of subunits are investigated, including non-subunit proteins: albumin, and amyloglucosidase (AMY); a two subunit protein: thyroglobulin (THY); and four subunit proteins: glutamate dehydrogenase (GDH) and lactate dehydrogenase (LDH). A significant enhancement in protein stability is observed in the chromatograms upon using IPAF as a mobile phase modifier. The first sharper peak at about 2min represented protein in primarily the native form and a second broader peak more retained at about 5-6min represented substantially denatured or possibly aggregated protein. The investigated proteins (except LDH) could maintain the native form within up to 50% IPAF, while a mobile phase, with as low as 10% MeCN, induced protein denaturation. The assay for pyruvate using LDH has further shown that enzymatic activity can be maintained up to 30% IPAF in water in contrast to no activity using 30% MeCN.

  19. Formation, stability, and mobility of one-dimensional lipid bilayers on polysilicon nanowires.

    PubMed

    Huang, Shih-Chieh J; Artyukhin, Alexander B; Martinez, Julio A; Sirbuly, Donald J; Wang, Yinmin; Ju, Jiann-Wen; Stroeve, Pieter; Noy, Aleksandr

    2007-11-01

    Curved lipid membranes are ubiquitous in living systems and play an important role in many biological processes. To understand how curvature and lipid composition affect membrane formation and fluidity, we have assembled and studied mixed 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) supported lipid bilayers on amorphous silicon nanowires grown around carbon nanotube cores with controlled wire diameters ranging from 20 to 200 nm. We found that lipid vesicles fused onto nanowire substrates and formed continuous bilayers for all DOPC-DOPE mixtures tested (with the DOPE content of up to 30%). Our measurements demonstrate that nanowire-supported bilayers are mobile, exhibit fast recovery after photobleaching, and have a low concentration of defects. Lipid diffusion coefficients in these high-curvature tubular membranes are comparable to the values reported for flat supported bilayers and increase slightly with decreasing nanowire diameter. A free space diffusion model adequately describes the effect of bilayer curvature on the lipid mobility for nanowire substrates with diameters greater than 50 nm, but shows significant deviations from the experimental values for smaller diameter nanowires.

  20. CCM2-CCM3 interaction stabilizes their protein expression and permits endothelial network formation

    SciTech Connect

    Draheim, Kyle M.; Li, Xiaofeng; Zhang, Rong; Fisher, Oriana S.; Villari, Giulia; Boggon, Titus J.; Calderwood, David A.

    2015-04-21

    Mutations in the essential adaptor proteins CCM2 or CCM3 lead to cerebral cavernous malformations (CCM), vascular lesions that most frequently occur in the brain and are strongly associated with hemorrhagic stroke, seizures, and other neurological disorders. CCM2 binds CCM3, but the molecular basis of this interaction, and its functional significance, have not been elucidated. Here, we used x-ray crystallography and structure-guided mutagenesis to show that an α-helical LD-like motif within CCM2 binds the highly conserved “HP1” pocket of the CCM3 focal adhesion targeting (FAT) homology domain. By knocking down CCM2 or CCM3 and rescuing with binding-deficient mutants, we establish that CCM2–CCM3 interactions protect CCM2 and CCM3 proteins from proteasomal degradation and show that both CCM2 and CCM3 are required for normal endothelial cell network formation. However, CCM3 expression in the absence of CCM2 is sufficient to support normal cell growth, revealing complex-independent roles for CCM3.

  1. Surface-Induced Phase of Tyrian Purple (6,6'-Dibromoindigo): Thin Film Formation and Stability.

    PubMed

    Truger, Magdalena; Roscioni, Otello M; Röthel, Christian; Kriegner, Dominik; Simbrunner, Clemens; Ahmed, Rizwan; Głowacki, Eric D; Simbrunner, Josef; Salzmann, Ingo; Coclite, Anna Maria; Jones, Andrew O F; Resel, Roland

    2016-07-06

    The appearance of surface-induced phases of molecular crystals is a frequently observed phenomenon in organic electronics. However, despite their fundamental importance, the origin of such phases is not yet fully resolved. The organic molecule 6,6'-dibromoindigo (Tyrian purple) forms two polymorphs within thin films. At growth temperatures of 150 °C, the well-known bulk structure forms, while at a substrate temperature of 50 °C, a surface-induced phase is observed instead. In the present work, the crystal structure of the surface-induced polymorph is solved by a combined experimental and theoretical approach using grazing incidence X-ray diffraction and molecular dynamics simulations. A comparison of both phases reveals that π-π stacking and hydrogen bonds are common motifs for the intermolecular packing. In-situ temperature studies reveal a phase transition from the surface-induced phase to the bulk phase at a temperature of 210 °C; the irreversibility of the transition indicates that the surface-induced phase is metastable. The crystallization behavior is investigated ex-situ starting from the sub-monolayer regime up to a nominal thickness of 9 nm using two different silicon oxide surfaces; island formation is observed together with a slight variation of the crystal structure. This work shows that surface-induced phases not only appear for compounds with weak, isotropic van der Waals bonds, but also for molecules exhibiting strong and highly directional hydrogen bonds.

  2. Evaluation of the geological relationships to gas hydrate formation and stability

    SciTech Connect

    Not Available

    1985-01-01

    During the reported year we have enhanced our knowledge on and gained considerable experience in assessment of the gas hydrate resources in the offshore environments. Specifically, we have learned and gained experience in the following: Efficiently locating data sources, including published literature and unpublished information. We have established personal communication extremely critical in data accessability and acquisition. We have updated information pertinent to gas hydrate knowledge, also based on thorough study and evaluation of most Russian literature and additional publications in languages other than English. Besides critical evaluation of widely spread literature, in many cases our reports include previously unpublished information (e.g. BSRs from the Gulf of Mexico). The assessment of the gas resources potential associated with the gas hydrates, although in most cases at a low level of confidence, appears also very encouraging for further, more detailed, study. We are also confident that, because of the present reports' format, new data and a concept-oriented approach, the result of our study will be of strong interest to various industries, research institutions and numerous governmental agencies.

  3. A model for foam formation, stability, and breakdown in glass-melting furnaces.

    PubMed

    van der Schaaf, John; Beerkens, Ruud G C

    2006-03-01

    A dynamic model for describing the build-up and breakdown of a glass-melt foam is presented. The foam height is determined by the gas flux to the glass-melt surface and the drainage rate of the liquid lamellae between the gas bubbles. The drainage rate is determined by the average gas bubble radius and the physical properties of the glass melt: density, viscosity, surface tension, and interfacial mobility. Neither the assumption of a fully mobile nor the assumption of a fully immobile glass-melt interface describe the observed foam formation on glass melts adequately. The glass-melt interface appears partially mobile due to the presence of surface active species, e.g., sodium sulfate and silanol groups. The partial mobility can be represented by a single, glass-melt composition specific parameter psi. The value of psi can be estimated from gas bubble lifetime experiments under furnace conditions. With this parameter, laboratory experiments of foam build-up and breakdown in a glass melt are adequately described, qualitatively and quantitatively by a set of ordinary differential equations. An approximate explicit relationship for the prediction of the steady-state foam height is derived from the fundamental model.

  4. CCM2–CCM3 interaction stabilizes their protein expression and permits endothelial network formation

    PubMed Central

    Draheim, Kyle M.; Li, Xiaofeng; Zhang, Rong; Fisher, Oriana S.; Villari, Giulia

    2015-01-01

    Mutations in the essential adaptor proteins CCM2 or CCM3 lead to cerebral cavernous malformations (CCM), vascular lesions that most frequently occur in the brain and are strongly associated with hemorrhagic stroke, seizures, and other neurological disorders. CCM2 binds CCM3, but the molecular basis of this interaction, and its functional significance, have not been elucidated. Here, we used x-ray crystallography and structure-guided mutagenesis to show that an α-helical LD-like motif within CCM2 binds the highly conserved “HP1” pocket of the CCM3 focal adhesion targeting (FAT) homology domain. By knocking down CCM2 or CCM3 and rescuing with binding-deficient mutants, we establish that CCM2–CCM3 interactions protect CCM2 and CCM3 proteins from proteasomal degradation and show that both CCM2 and CCM3 are required for normal endothelial cell network formation. However, CCM3 expression in the absence of CCM2 is sufficient to support normal cell growth, revealing complex-independent roles for CCM3. PMID:25825518

  5. Carbonic anhydrase generates CO2 and H+ that drive spider silk formation via opposite effects on the terminal domains.

    PubMed

    Andersson, Marlene; Chen, Gefei; Otikovs, Martins; Landreh, Michael; Nordling, Kerstin; Kronqvist, Nina; Westermark, Per; Jörnvall, Hans; Knight, Stefan; Ridderstråle, Yvonne; Holm, Lena; Meng, Qing; Jaudzems, Kristaps; Chesler, Mitchell; Johansson, Jan; Rising, Anna

    2014-08-01

    Spider silk fibers are produced from soluble proteins (spidroins) under ambient conditions in a complex but poorly understood process. Spidroins are highly repetitive in sequence but capped by nonrepetitive N- and C-terminal domains (NT and CT) that are suggested to regulate fiber conversion in similar manners. By using ion selective microelectrodes we found that the pH gradient in the silk gland is much broader than previously known. Surprisingly, the terminal domains respond in opposite ways when pH is decreased from 7 to 5: Urea denaturation and temperature stability assays show that NT dimers get significantly stabilized and then lock the spidroins into multimers, whereas CT on the other hand is destabilized and unfolds into ThT-positive β-sheet amyloid fibrils, which can trigger fiber formation. There is a high carbon dioxide pressure (pCO2) in distal parts of the gland, and a CO2 analogue interacts with buried regions in CT as determined by nuclear magnetic resonance (NMR) spectroscopy. Activity staining of histological sections and inhibition experiments reveal that the pH gradient is created by carbonic anhydrase. Carbonic anhydrase activity emerges in the same region of the gland as the opposite effects on NT and CT stability occur. These synchronous events suggest a novel CO2 and proton-dependent lock and trigger mechanism of spider silk formation.

  6. Formation of diffusion barrier coating on superalloy 690 substrate and its stability in borosilicate melt at elevated temperature

    NASA Astrophysics Data System (ADS)

    Dutta, R. S.; Yusufali, C.; Paul, B.; Majumdar, S.; Sengupta, P.; Mishra, R. K.; Kaushik, C. P.; Kshirsagar, R. J.; Kulkarni, U. D.; Dey, G. K.

    2013-01-01

    Aluminized and thermally oxidized superalloy 690 substrates forming Al2O3 layer on (NiCr)Al + Cr5Al8 types aluminides and bare substrates were exposed in sodium borosilicate melt at 1248 K for 192 h. SEM-EDXS analysis along the cross-section of bare substrate with adhered glass revealed formation of a continuous, thick Cr2O3 layer at the substrate/glass interface due to its low solubility in borosilicate melt. XRD on aluminide coated and thermally oxidized specimen revealed existence of Al2O3 along with NiAl and Cr5Al8 type phases after the exposure in borosilicate melt. SEM-EDXS analysis along the cross-section of aluminide coated and thermally oxidized sample with adhered glass indicated good stability of coating in borosilicate melt without any phase formation at the coating/glass interface. However, some Al enrichment in glass phase adjacent to interface was noticed without any significant Ni or Cr enrichment.

  7. Sol-gel reaction stability studied: Influence in the formation temperature and properties of ferroelectric thin films

    SciTech Connect

    Perez, J. Vilarinho, P.M.; Kholkin, A.L.; Almeida, A.

    2009-03-05

    Lead zirconium titanate (PZT) sol-gel solutions were prepared based on distilled lead acetate precursor solutions. A detailed analysis of the distillation effect on the lead precursor and the final PZT solution were carried out by Infrared and Raman techniques. It was found that the increase in the number of distillation steps experienced by the lead precursor solutions removes the constitutional water and increases the lead acetate-2-methoxyethanol interconnectivity; thus improving stability and avoiding the aging effect of the resulting PZT solutions. The thermal decomposition process of the PZT solutions was analyzed based on the thermogravimetric (TG) and differential thermogravimetric analysis (DTA) measurements. It was found that as the number of distillation steps in the lead precursor solutions increases, the decomposition rate increases and the formation temperature of pure perovskite PZT films decreases. X-ray diffraction (XRD) technique was used to study the film phase formation. A pure perovskite phase at 500 deg. C was found by the XRD analysis after the second distillation step. Scanning electron microscope technique was used to carry out the microstructural analysis. Dense microstructure was found in all analyzed films and an incipient columnar grain growth was revealed in PZT films prepared based on lead precursor solution with more than three distillation steps. The dependence of the dielectric, ferroelectric and piezoelectric properties on the number of distillation steps was revealed and a correlation between the distillation process, film microstructure properties and electrical performance was established.

  8. On the formation and stability of long-lived impurity-ion snakes in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Delgado-Aparicio, L.; Sugiyama, L.; Granetz, R.; Gates, D.; Rice, J.; Reinke, M. L.; Bergerson, W.; Bitter, M.; Brower, D. L.; Fredrickson, E.; Gao, C.; Greenwald, M.; Hill, K.; Hubbard, A.; Irby, J.; Hughes, J. W.; Marmar, E.; Pablant, N.; Scott, S.; Wilson, R.; Wolfe, S.; Wukitch, S.

    2013-04-01

    Long-lived (1, 1) ‘snake’ modes were discovered nearly three decades ago, but basic questions regarding their formation, stability, and superb particle confinement—shown by surviving tens to hundreds of sawtooth cycles—have remained unanswered. High-resolution spectroscopic imaging diagnostics permit studies of heavy-impurity-ion snakes with unprecedented temporal and spatial resolution, making it possible to positively identify the SXR signals with specific ion charge states and to infer, for the first time, the perturbed impurity density, Zeff, and resistivity at the centre of these long-lived helical modes. The results show a new scenario for the formation of heavy-impurity-ion snakes, which can begin as a broad 1/1 kink asymmetry of the central impurity-ion density, that grows and undergoes a seamless transition to a large crescent-shaped helical island-like structure inside q < 1, with a regularly sawtoothing core. This type of formation departs strongly from the nonlinear island model based on a modified Rutherford equation proposed originally to describe the pellet-induced snakes and expanded further to account for the impurity effects (e.g. \\tilde{P}_rad and \\tilde{Z}_eff ). These new high-resolution observations show details of their evolution and the accompanying sawtooth oscillations that suggest important differences between the density and temperature dynamics, ruling out a purely pressure-driven process. Instead, many features arise naturally from nonlinear interactions in a 3D MHD model that separately evolves the plasma density and temperature.

  9. Formation and Fragmentation of Unsaturated Fatty Acid [M - 2H + Na]- Ions: Stabilized Carbanions for Charge-Directed Fragmentation

    NASA Astrophysics Data System (ADS)

    Thomas, Michael C.; Kirk, Benjamin B.; Altvater, Jens; Blanksby, Stephen J.; Nette, Geoffrey W.

    2013-12-01

    Fatty acids are long-chain carboxylic acids that readily produce [M - H]- ions upon negative ion electrospray ionization (ESI) and cationic complexes with alkali, alkaline earth, and transition metals in positive ion ESI. In contrast, only one anionic monomeric fatty acid-metal ion complex has been reported in the literature, namely [M - 2H + FeIICl]-. In this manuscript, we present two methods to form anionic unsaturated fatty acid-sodium ion complexes (i.e., [M - 2H + Na]-). We find that these ions may be generated efficiently by two distinct methods: (1) negative ion ESI of a methanolic solution containing the fatty acid and sodium fluoride forming an [M - H + NaF]- ion. Subsequent collision-induced dissociation (CID) results in the desired [M - 2H + Na]- ion via the neutral loss of HF. (2) Direct formation of the [M - 2H + Na]- ion by negative ion ESI of a methanolic solution containing the fatty acid and sodium hydroxide or bicarbonate. In addition to deprotonation of the carboxylic acid moiety, formation of [M - 2H + Na]- ions requires the removal of a proton from the fatty acid acyl chain. We propose that this deprotonation occurs at the bis-allylic position(s) of polyunsaturated fatty acids resulting in the formation of a resonance-stabilized carbanion. This proposal is supported by ab initio calculations, which reveal that removal of a proton from the bis-allylic position, followed by neutral loss of HX (where X = F- and -OH), is the lowest energy dissociation pathway.

  10. Effects of medium carbon-to-nitrogen ratio on biofilm formation and plasmid stability.

    PubMed

    Huang, C T; Peretti, S W; Bryers, J D

    1994-07-01

    Biofilm formation and plasmid segregational instability in biofilm cultures of Escherichia coli DH5alpha (pMJR1750) were investigated under different medium-carbon-to-nitrogen (C/N) ratios. At C/N ratios of 0.07 and 1, net accumulation of both biofilm plasmid-bearing and plasmid-free cells continued through the entire experiment without attaining any apparent steady state. At C/N ratios of 5 and 10, net biofilm cell accumulation for the two populations reached apparent steady states after 84 and 72 h, respectively. At C/N ratios of 0.07 and 1, polysaccharide production increased slowly and reached about 2g alginate equivalent/cm(2) by the end of both experiments. At a C/N ratio of 5, polysaccharide increase significantly after 84 h, reaching about 7 microg alginate equivalent/cm(2) prior to termination. At a C/N ratio of 10, polysaccharide increased significantly after 72 h and reached 21 microg alginate equivalent/cm(2) at 108 h. At C/N ratios of 0.07 and 1, protein production reached 6.5 and 4 microg/cm(2), respectively. At C/N ratios of 5 and 10, protein production increased slightly for the first 84 h and reached a maximum at 108 h, at 3 and 2 microg/cm(2), respectively, then decreased over the last 12 h of the experiment. Ratios of polysaccharide to protein increased with increasing C/N ratios. At C/N ratios of 0.07 and 1, the ratios between extracellular polysaccharide (EP) and protein were no more than 205 microg polysaccharide/microg protein, whereas those at C/N ratios of 5 and 10 increased to about 7 and 12 microg polysaccharide/microg protein, respectively.Probabilities of plasmid loss in the biofilm cultures increased with increasing C/N ratios. At C/N ratios of 0.07, 1, and 5, the probabilities of plasmid loss were 0.0013 +/- 0.011, 0.020 +/- 0.006 and 0.122 +/- 0.021, respectively. At a C/N ratio of 10, the probability of plasmid loss was significantly higher, reaching 0.38 +/- 0.125. The increase of probability of plasmid loss at higher C/N ratios

  11. Folding Landscape of Mutant Huntingtin Exon1: Diffusible Multimers, Oligomers and Fibrils, and No Detectable Monomer

    PubMed Central

    Sahoo, Bankanidhi; Arduini, Irene; Drombosky, Kenneth W.; Kodali, Ravindra; Sanders, Laurie H.; Greenamyre, J. Timothy; Wetzel, Ronald

    2016-01-01

    Expansion of the polyglutamine (polyQ) track of the Huntingtin (HTT) protein above 36 is associated with a sharply enhanced risk of Huntington’s disease (HD). Although there is general agreement that HTT toxicity resides primarily in N-terminal fragments such as the HTT exon1 protein, there is no consensus on the nature of the physical states of HTT exon1 that are induced by polyQ expansion, nor on which of these states might be responsible for toxicity. One hypothesis is that polyQ expansion induces an alternative, toxic conformation in the HTT exon1 monomer. Alternative hypotheses posit that the toxic species is one of several possible aggregated states. Defining the nature of the toxic species is particularly challenging because of facile interconversion between physical states as well as challenges to identifying these states, especially in vivo. Here we describe the use of fluorescence correlation spectroscopy (FCS) to characterize the detailed time and repeat length dependent self-association of HTT exon1-like fragments both with chemically synthesized peptides in vitro and with cell-produced proteins in extracts and in living cells. We find that, in vitro, mutant HTT exon1 peptides engage in polyQ repeat length dependent dimer and tetramer formation, followed by time dependent formation of diffusible spherical and fibrillar oligomers and finally by larger, sedimentable amyloid fibrils. For expanded polyQ HTT exon1 expressed in PC12 cells, monomers are absent, with tetramers being the smallest molecular form detected, followed in the incubation time course by small, diffusible aggregates at 6–9 hours and larger, sedimentable aggregates that begin to build up at 12 hrs. In these cell cultures, significant nuclear DNA damage appears by 6 hours, followed at later times by caspase 3 induction, mitochondrial dysfunction, and cell death. Our data thus defines limits on the sizes and concentrations of different physical states of HTT exon1 along the reaction

  12. Copper stabilization via spinel formation during the sintering of simulated copper-laden sludge with aluminum-rich ceramic precursors.

    PubMed

    Tang, Yuanyuan; Chui, Stephen Sin-Yin; Shih, Kaimin; Zhang, Lingru

    2011-04-15

    The feasibility of incorporating copper-laden sludge into low-cost ceramic products, such as construction ceramics, was investigated by sintering simulated copper-laden sludge with four aluminum-rich ceramic precursors. The results indicated that all of these precursors (γ-Al(2)O(3), corundum, kaolinite, mullite) could crystallochemically stabilize the hazardous copper in the more durable copper aluminate spinel (CuAl(2)O(4)) structure. To simulate the process of copper transformation into a spinel structure, CuO was mixed with the four aluminum-rich precursors, and fired at 650-1150 °C for 3 h. The products were examined using powder X-ray diffraction (XRD) and scanning electron microscopic techniques. The efficiency of copper transformation among crystalline phases was quantitatively determined through Rietveld refinement analysis of the XRD data. The sintering experiment revealed that the optimal sintering temperature for CuAl(2)O(4) formation was around 1000 °C and that the efficiency of copper incorporation into the crystalline CuAl(2)O(4) structure after 3 h of sintering ranged from 40 to 95%, depending on the type of aluminum precursor used. Prolonged leaching tests were carried out by using acetic acid with an initial pH value of 2.9 to leach CuO and CuAl(2)O(4) samples for 22 d. The sample leachability analysis revealed that the CuAl(2)O(4) spinel structure was more superior to stabilize copper, and suggested a promising and reliable technique for incorporating copper-laden sludge or its incineration ash into usable ceramic products. Such results also demonstrated the potential of a waste-to-resource strategy by using waste materials as part of the raw materials with the attainable temperature range used in the production of ceramics.

  13. Formation of supramolecular hydrogels with controlled microstructures and stability via molecular assembling in a two-component system.

    PubMed

    Wu, Jiwei; Tang, Liming; Chen, Kai; Yan, Liang; Li, Fei; Wang, Yujiang

    2007-03-01

    Two isomeric building units, 4-oxo-4-(2-pyridinylamino) butanoic acid (defined as G1) and 4-oxo-4-(3-pyridinylamino) butanoic acid (defined as G2) formed fiber- and tree-like crystals in aqueous solutions, respectively. The crystal formation process of G1 was suggested based on the layered cross section of an individual crystal and the single crystal structure. Through cooling the aqueous solutions of their mixtures under G1/G2 molar ratios ranged from 7/1 to 1/3, a series of supramolecular hydrogels were formed based on hydrogen bonds as the main driving force. As decreasing G1/G2 ratios, the first observed aggregates in solution changed from fiber to particle form, while the gelating time became longer and longer. At the collapsing temperature, the gels formed at G1/G2 ratio 3/1 kept the original gel shape but released water, while at G1/G2 ratio 2/1 they broke into pieces without releasing water. The "dropping ball" experiment indicated that the highest gel-to-sol dissociation temperature (T(gel)) is obtained at G1/G2 ratio of 2/1. As measured by UV-vis spectroscopy, the two building units distributed uniformly within the gel formed at G1/G2 ratio of 1/1, indicating they assembled together in forming hydrogel. The scanning electron microscope (SEM) and infrared spectrometer (FT-IR) analysis of the dried samples indicated that the backbone shape changed from fiber to sheet and the content of free carboxyl groups increased with decreasing G1/G2 ratios, therefore resulting in hydrogels with different stability. The simple gelator structures and the possibility in controlling gel structure and stability make the hydrogels suitable for various uses.

  14. Selective protein extraction from Chlorobium tepidum chlorosomes using detergents. Evidence that CsmA forms multimers and binds bacteriochlorophyll a.

    PubMed

    Bryant, Donald A; Vassilieva, Elena V; Frigaard, Niels-Ulrik; Li, Hui

    2002-12-03

    Chlorosomes of the photosynthetic green sulfur bacterium Chlorobium tepidum consist of bacteriochlorophyll (BChl) c aggregates that are surrounded by a lipid-protein monolayer envelope that contains ten different proteins. Chlorosomes also contain a small amount of BChl a, but the organization and location of this BChl a are not yet clearly understood. Chlorosomes were treated with sodium dodecyl sulfate (SDS), Lubrol PX, or Triton X-100, separately or in combination with 1-hexanol, and the extracted components were separated from the residual chlorosomes by ultrafiltration on centrifugal filters. When chlorosomes were treated with low concentrations of SDS, all proteins except CsmA were extracted. However, this treatment did not significantly alter the size and shape of the chlorosomes, did not extract the BChl a, and caused only minor changes in the absorption spectrum of the chlorosomes. Cross-linking studies with SDS-treated chlorosomes revealed the presence of multimers of the major chlorosome protein, CsmA, up to homooctamers. Extraction of chlorosomes with SDS and 1-hexanol solubilized all ten chlorosome envelope proteins as well as BChl a. Although the size and shape of these extracted chlorosomes did not initially differ significantly from untreated chlorosomes, the extracted chlorosomes gradually disintegrated, and rod-shaped BChl c aggregates were sometimes observed. These results strongly suggest that CsmA binds the BChl a in Chlorobium-type chlorosomes and further indicate that none of the nine other chlorosome envelope proteins are absolutely required for maintaining the shape and integrity of chlorosomes. Quantitative estimates suggest that chlorosomes contain approximately equimolar amounts of CsmA and BChl a and that roughly one-third of the surface of the chlorosome is covered by CsmA.

  15. Formation of H2-He substellar bodies in cold conditions. Gravitational stability of binary mixtures in a phase transition

    NASA Astrophysics Data System (ADS)

    Füglistaler, A.; Pfenniger, D.

    2016-06-01

    Context. Molecular clouds typically consist of 3/4 H2, 1/4 He and traces of heavier elements. In an earlier work we showed that at very low temperatures and high densities, H2 can be in a phase transition leading to the formation of ice clumps as large as comets or even planets. However, He has very different chemical properties and no phase transition is expected before H2 in dense interstellar medium conditions. The gravitational stability of fluid mixtures has been studied before, but these studies did not include a phase transition. Aims: We study the gravitational stability of binary fluid mixtures with special emphasis on when one component is in a phase transition. The numerical results are aimed at applications in molecular cloud conditions, but the theoretical results are more general. Methods: First, we study the gravitational stability of van der Waals fluid mixtures using linearized analysis and examine virial equilibrium conditions using the Lennard-Jones intermolecular potential. Then, combining the Lennard-Jones and gravitational potentials, the non-linear dynamics of fluid mixtures are studied via computer simulations using the molecular dynamics code LAMMPS. Results: Along with the classical, ideal-gas Jeans instability criterion, a fluid mixture is always gravitationally unstable if it is in a phase transition because compression does not increase pressure. However, the condensed phase fraction increases. In unstable situations the species can separate: in some conditions He precipitates faster than H2, while in other conditions the converse occurs. Also, for an initial gas phase collapse the geometry is essential. Contrary to spherical or filamentary collapses, sheet-like collapses starting below 15 K easily reach H2 condensation conditions because then they are fastest and both the increase of heating and opacity are limited. Conclusions: Depending on density, temperature and mass, either rocky H2 planetoids, or gaseous He planetoids form. H2

  16. Formation of a Stabilized Cysteine Sulfinic Acid Is Critical for the Mitochondrial Function of the Parkinsonism Protein DJ-1*

    PubMed Central

    Blackinton, Jeff; Lakshminarasimhan, Mahadevan; Thomas, Kelly J.; Ahmad, Rili; Greggio, Elisa; Raza, Ashraf S.; Cookson, Mark R.; Wilson, Mark A.

    2009-01-01

    The formation of cysteine-sulfinic acid has recently become appreciated as a modification that links protein function to cellular oxidative status. Human DJ-1, a protein associated with inherited parkinsonism, readily forms cysteine-sulfinic acid at a conserved cysteine residue (Cys106 in human DJ-1). Mutation of Cys106 causes the protein to lose its normal protective function in cell culture and model organisms. However, it is unknown whether the loss of DJ-1 protective function in these mutants is due to the absence of Cys106 oxidation or the absence of the cysteine residue itself. To address this question, we designed a series of substitutions at a proximal glutamic acid residue (Glu18) in human DJ-1 that alter the oxidative propensity of Cys106 through changes in hydrogen bonding. We show that two mutations, E18N and E18Q, allow Cys106 to be oxidized to Cys106-sulfinic acid under mild conditions. In contrast, the E18D mutation stabilizes a cysteine-sulfenic acid that is readily reduced to the thiol in solution and in vivo. We show that E18N and E18Q can both partially substitute for wild-type DJ-1 using mitochondrial fission and cell viability assays. In contrast, the oxidatively impaired E18D mutant behaves as an inactive C106A mutant and fails to protect cells. We therefore conclude that formation of Cys106-sulfinic acid is a key modification that regulates the protective function of DJ-1. PMID:19124468

  17. Functional invadopodia formation through stabilization of the PDPN transcript by IMP-3 and cancer-stromal crosstalk for PDPN expression.

    PubMed

    Hwang, Young Sun; Xianglan, Zhang; Park, Kwang-Kyun; Chung, Won-Yoon

    2012-11-01

    We previously reported that insulin-like growth factor-II mRNA-binding protein-3 (IMP-3) depletion (IMP-3(Δ)) was shown to inhibit invadopodia formation and extracellular matrix degradation capacity in oral squamous cell carcinoma (OSCC) cells. In this study, we found that IMP-3(Δ) cells significantly downregulated the podoplanin (PDPN) level, which resulted in a loss of extracellular matrix degradation activity, although invadopodia was still thriving. From RNA in situ hybridization using a digoxigenin-labeled 3'UTR recognition probe of PDPN and reporter assay with 3'UTR of the PDPN gene cloned downstream from the luciferase reporter gene, we revealed that IMP-3 depletion was shown to be downregulated, which most probably lowered PDPN gene expression by reducing mRNA stabilization. In a xenograft model, PDPN depletion was the cause of a decrease in tumor volume and regional infiltration into nearby stroma. Taken together, transforming growth factor beta 1 increased PDPN expression, which potentiated cancer invasion through increased invadopodia formation and extracellular matrix degradation in the low invasive OSCC cell line. Reciprocally, interleukin-1 beta secreted by OSCC cells, stimulated transforming growth factor beta 1 secretion from stromal fibroblasts to induce PDPN expression in OSCC cells. In addition, a retrospective investigation of OSCC patients found that IMP-3 and PDPN expression significantly correlated with lymph node metastasis of OSCC patients. Moreover, co-expression of IMP-3 and PDPN were frequently detected both in primary and lymph nodes metastatic OSCC cells using immunohistochemical dual staining. Thus, the IMP-3-PDPN axis may be a sensitive target molecule in anti-invadopodia therapy for the treatment of metastatic cancers.

  18. Foam-stabilizing effects and cling formation patterns of iso-alpha-acids and reduced iso-alpha-acids in lager beer.

    PubMed

    Kunimune, Takeshi; Shellhammer, Thomas H

    2008-09-24

    Foam-stabilizing properties and cling formation patterns of iso-alpha-acids and reduced iso-alpha-acids were investigated using an unhopped lager beer. Unhopped beer was dosed with iso-alpha-acid (Iso), rho-iso-alpha-acid (Rho), tetrahydro-iso-alpha-acid (Tetra), and hexahydro-iso-alpha-acid (Hexa), separately, over a range of concentrations from 2 to 10 ppm. A uniform foam was created by Inpack 2000 Flasher Head and was measured by a NIBEM Foam Stability Tester (NIBEM-TPH) followed by a NIBEM Cling Meter (NIBEM-CLM) to determine the relationship between the concentration and NIBEM-30 and the cling formation ability of each compound. The foam-stabilizing power was determined to be Tetra, Hexa, Iso, and Rho from the strongest to weakest. Linear regression models were created using the NIBEM-TPH data set, and on the basis of 95% confidence intervals, the foam stability of Tetra or Hexa became significantly larger than that of Iso when 2.4 or 4.2 ppm of Tetra or Hexa was used as a replacement for Iso, respectively. Cling formation patterns could be categorized into three groups: "ring", "mesh", and "powdery". The control beer had the lowest foam stability and did not yield any foam cling.

  19. Effects of biodegradable plastics on the predominant culturable bacteria associated with soil aggregate formation and stability after 9 months of incubation in natural soil

    USDA-ARS?s Scientific Manuscript database

    An in vitro study of the effects of biodegradable plastics on the predominant soil aggregating bacteria associated to soil aggregate formation and stability after 9 months of incubation in soil. Caesar-TonThat TC, Fukui R*, Caesar AJ., Lartey, RT, and Gaskin, JF. USDA-Agricultural Research Service, ...

  20. The heat of formation of chlorine-isocyanate and the relative stability of isoelectronic molecules: an experimental and theoretical study.

    PubMed

    Ji, Yuanyuan; Bobadova-Parvanova, Petia; Larson, Chris; Samartzis, Peter C; Morokuma, Keiji; Lin, Jim Jr-Min; Ching, Tao-Tsung; Chaudhuri, Chanchal; Lee, Shih-Huang; Wodtke, Alec M

    2006-06-28

    Accurate thermochemical data of small molecules are invaluable to the progress of every aspect of chemistry, especially in the atmosphere, combustion and industry. In this work, photofragmentation translational spectroscopy and 1st principles electronic structure theory reveal the literature value of the heat of formation of chlorine-isocyanate to be in error by more than 40 kcalmol. We report a revised experimental value for D0(Cl-NCO) = 51+/-3 kcal/mol which leads to a Delta Hf (ClNCO) = 8.5+/-3 kcal/mol. High level ab initio (CCSD(T)) electronic structure calculations extrapolated to the complete basis set limit give D0(Cl-NCO) = 6.3 kcal/mol, in good agreement with experiment. In light of the present results, the destabilization of azides relative to isoelectronic isocyanates has been evaluated empirically for three pairs of related molecules. It is found to be 90-110 kcal/mol, and has been attributed mainly to the weakening of the N-NN bond relative to the N-CO bond. Electronic structure calculations employing decomposition analysis suggest that, compared to homopolar N2, the (+delta)CO(-delta) pi polarity provides better orbital interaction (charge transfer) and electrostatic attraction and results in a closer encounter and larger stabilization between the fragments and that this is the origin of isoelectronic destabilization of azides relative to the isocyanates.

  1. Influence of surfactant type and thermal cycling on formation and stability of flavor oil emulsions fabricated by spontaneous emulsification.

    PubMed

    Saberi, Amir Hossein; Fang, Yuan; McClements, David Julian

    2016-11-01

    Food-grade emulsions can be fabricated using simple and inexpensive low-energy homogenization methods. In this study, we examined the influence of surfactant type (Tween 40, 60, and 80), oil phase composition (limonene-to-medium chain triglyceride ratio), and temperature (25 to 95°C) on the formation and stability of flavor oil-in-water emulsions (10wt% oil, 15wt% surfactant, pH3) fabricated using spontaneous emulsification. Transparent emulsion-based delivery systems containing ultrafine droplets (d<40nm) could be formed at room temperature at certain limonene contents for all three surfactants. When these emulsions were heated and then cooled, appreciable droplet growth occurred at lower limonene levels (<60% limonene) leading to cloudiness, but ultrafine droplets were still present at higher limonene concentrations (80% limonene) leading to optical clarity. These results were attributed to the influence of oil phase composition and surfactant type on the phase inversion behavior of the surfactant-oil-water systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The identification of goat peroxiredoxin-5 and the evaluation and enhancement of its stability by nanoparticle formation

    PubMed Central

    Feng, Xiaozhou; Liu, Juanjuan; Fan, Shuai; Liu, Fan; Li, Yadong; Jin, Yuanyuan; Bai, Liping; Yang, Zhaoyong

    2016-01-01

    An anticancer bioactive peptide (ACBP), goat peroxiredoxin-5 (gPRDX5), was identified from goat-spleen extract after immunizing the goat with gastric cancer-cell lysate. Its amino acid sequence was determined by employing 2D nano-LC-ESI-LTQ-Orbitrap MS/MS combined with Mascot database search in the goat subset of the Uniprot database. The recombinant gPRDX5 protein was acquired by heterogeneous expression in Escherichia coli. Subsequently, the anti-cancer bioactivity of the peptide was measured by several kinds of tumor cells. The results indicated that the gPRDX5 was a good anti-cancer candidate, especially for killing B16 cells. However, the peptide was found to be unstable without modification with pharmaceutical excipients, which would be a hurdle for future medicinal application. In order to overcome this problem and find an effective way to evaluate the gPRDX5, nanoparticle formation, which has been widely used in drug delivery because of its steadiness in application, less side-effects and enhancement of drug accumulation in target issues, was used here to address the issues. In this work, the gPRDX5 was dispersed into nanoparticles before delivered to B16 cells. By the nanotechnological method, the gPRDX5 was stabilized by a fast and accurate procedure, which suggests a promising way for screening the peptide for further possible medicinal applications. PMID:27074889

  3. Influence of calcium, magnesium, or potassium ions on the formation and stability of emulsions prepared using highly hydrolyzed whey proteins.

    PubMed

    Ramkumar, C; Singh, H; Munro, P A; Singh, A M

    2000-05-01

    Oil-in-water emulsions (4 wt % soy oil) containing 4 wt % whey protein hydrolysate (WPH) (27% degree of hydrolysis) and different levels of calcium, magnesium, or potassium chloride were prepared in a two-stage homogenizer. Other emulsions containing 4 wt % WPH but including 0.35 wt % hydroxylated lecithin and different levels of the above minerals were similarly prepared. The formation and stability of these emulsions were determined by measuring oil droplet size distributions using laser light scattering and by confocal scanning laser microscopy and a gravity creaming test. Both lecithin-free and lecithin-containing emulsions showed no change in droplet size distributions with increasing concentration of potassium in the range 0-37.5 mM. In contrast, the diameter of emulsion droplets increased with increasing calcium or magnesium concentration >12.5 mM. Emulsions containing hydroxylated lecithin were more sensitive to the addition of calcium or magnesium than the lecithin-free emulsions. Storage of emulsions at 20 degrees C for 24 h further increased the diameter of droplets and resulted in extensive creaming in emulsions containing >25 mM calcium or magnesium. It appears that both flocculation and coalescence processes were involved in the destabilization of emulsions induced by the addition of divalent cations.

  4. Label-free fluorescent sensor for lead ion detection based on lead(II)-stabilized G-quadruplex formation.

    PubMed

    Zhan, Shenshan; Wu, Yuangen; Luo, Yanfang; Liu, Le; He, Lan; Xing, Haibo; Zhou, Pei

    2014-10-01

    A label-free fluorescent DNA sensor for the detection of lead ions (Pb(2+)) based on lead(II)-stabilized G-quadruplex formation is proposed in this article. A guanine (G)-rich oligonucleotide, T30695, was used as a recognition probe, and a DNA intercalator, SYBR Green I (SG), was used as a signal reporter. In the absence of Pb(2+), the SG intercalated with the single-stranded random-coil T30695 and emitted strong fluorescence. While in the presence of Pb(2+), the random-coil T30695 would fold into a G-quadruplex structure and the SG could barely show weak fluorescence, and the fluorescence intensity was inversely proportional to the involving amount of Pb(2+). Based on this, a selective lead ion sensor with a limit of detection of 3.79 ppb (parts per billion) and a detection range from 0 to 600 ppb was constructed. Because detection for real samples was also demonstrated to be reliable, this simple, low-cost, sensitive, and selective sensor holds good potential for Pb(2+) detection in real environmental samples.

  5. The spectrin-based membrane skeleton stabilizes mouse megakaryocyte membrane systems and is essential for proplatelet and platelet formation

    PubMed Central

    Patel-Hett, Sunita; Wang, Hongbei; Begonja, Antonija J.; Thon, Jonathan N.; Alden, Eva C.; Wandersee, Nancy J.; An, Xiuli; Mohandas, Narla; Hartwig, John H.

    2011-01-01

    Megakaryocytes generate platelets by remodeling their cytoplasm first into proplatelets and then into preplatelets, which undergo fission to generate platelets. Although the functions of microtubules and actin during platelet biogenesis have been defined, the role of the spectrin cytoskeleton is unknown. We investigated the function of the spectrin-based membrane skeleton in proplatelet and platelet production in murine megakaryocytes. Electron microscopy revealed that, like circulating platelets, proplatelets have a dense membrane skeleton, the main fibrous component of which is spectrin. Unlike other cells, megakaryocytes and their progeny express both erythroid and nonerythroid spectrins. Assembly of spectrin into tetramers is required for invaginated membrane system maturation and proplatelet extension, because expression of a spectrin tetramer–disrupting construct in megakaryocytes inhibits both processes. Incorporation of this spectrin-disrupting fragment into a novel permeabilized proplatelet system rapidly destabilizes proplatelets, causing blebbing and swelling. Spectrin tetramers also stabilize the “barbell shapes” of the penultimate stage in platelet production, because addition of the tetramer-disrupting construct converts these barbell shapes to spheres, demonstrating that membrane skeletal continuity maintains the elongated, pre-fission shape. The results of this study provide evidence for a role for spectrin in different steps of megakaryocyte development through its participation in the formation of invaginated membranes and in the maintenance of proplatelet structure. PMID:21566095

  6. Chitosan-mediated formation of biomimetic silica nanoparticles: an effective method for manganese peroxidase immobilization and stabilization.

    PubMed

    Luan, Pan-Pan; Jiang, Yan-Jun; Zhang, Song-Ping; Gao, Jing; Su, Zhi-Guo; Ma, Guang-Hui; Zhang, Yu-Fei

    2014-11-01

    Our work here, for the first time, reported the use of chitosan-mediated biomimetic silica nanoparticles in enzyme immobilization. In order to make clear the relationship among silicification process, silica nanoparticle structure and immobilized enzyme activity, a mechanism of chitosan-mediated silicification using sodium silicate as the silica source was primarily evaluated. Chitosan was demonstrated effectively to promote the silicification not only in accelerating the aggregation rate of sodium silicate, but also in templating the formation of silica nanoparticles. Although the whole biomimetic silicification process contained polycondensation-aggregation-precipitation three stages, the elemental unit in precipitated silica was confirmed to be nanoparticles with 100 nm diameter regardless of the chitosan and silicate concentration used. Furthermore, the effect of enzyme on silicification process was also investigated. The introducing of manganese peroxidase (MnP) to silica precursor solution had no obvious effect on the silicification rate and nanoparticle morphology. The residual activity and embedding rate of immobilized MnP were 64.2% and 36.4% respectively under the optimum conditions. In addition, compared to native MnP, the MnP embedded in chitosan/silica nanoparticles exhibited improved stability against organic solvent and ultrasonic wave. After ultrasonic treatment for 20 min, 77% of the initial activity was remained due to the protective effect of chitosan/silica nanoparticles, while native MnP lost almost all of its original activity.

  7. The identification of goat peroxiredoxin-5 and the evaluation and enhancement of its stability by nanoparticle formation

    NASA Astrophysics Data System (ADS)

    Feng, Xiaozhou; Liu, Juanjuan; Fan, Shuai; Liu, Fan; Li, Yadong; Jin, Yuanyuan; Bai, Liping; Yang, Zhaoyong

    2016-04-01

    An anticancer bioactive peptide (ACBP), goat peroxiredoxin-5 (gPRDX5), was identified from goat-spleen extract after immunizing the goat with gastric cancer-cell lysate. Its amino acid sequence was determined by employing 2D nano-LC-ESI-LTQ-Orbitrap MS/MS combined with Mascot database search in the goat subset of the Uniprot database. The recombinant gPRDX5 protein was acquired by heterogeneous expression in Escherichia coli. Subsequently, the anti-cancer bioactivity of the peptide was measured by several kinds of tumor cells. The results indicated that the gPRDX5 was a good anti-cancer candidate, especially for killing B16 cells. However, the peptide was found to be unstable without modification with pharmaceutical excipients, which would be a hurdle for future medicinal application. In order to overcome this problem and find an effective way to evaluate the gPRDX5, nanoparticle formation, which has been widely used in drug delivery because of its steadiness in application, less side-effects and enhancement of drug accumulation in target issues, was used here to address the issues. In this work, the gPRDX5 was dispersed into nanoparticles before delivered to B16 cells. By the nanotechnological method, the gPRDX5 was stabilized by a fast and accurate procedure, which suggests a promising way for screening the peptide for further possible medicinal applications.

  8. Imagens do céu ontem e hoje - um multimídia interativo de astronomia e uma nova exposição no MAST

    NASA Astrophysics Data System (ADS)

    Caretta, C. A.; Lima, F. P.; Requeijo, F.; Vieira, G. G.; Alves, F.; Valente, M. E. A.; de Almeida, R.; de Garcia, G. C.; Quixadá, A. C.

    2003-08-01

    "Imagens do Céu Ontem e Hoje" é o título de uma nova exposição que está sendo inaugurada no Museu de Astronomia e Ciências Afins (MCT), que inclui experimentos interativos, maquetes, réplicas e 8 terminais de computador com um multimídia interativo sobre Astronomia para consulta dos visitantes. O multimídia apresenta um conteúdo bastante extenso, que engloba quase todos os temas em Astronomia, consistindo numa fonte de divulgação e pesquisa para um público que vai das crianças até estudantes universitários. O conteúdo está distribuído em mais de 500 páginas de texto divididas em 4 módulos: "O Universo", "Espectroscopia", "Telescópios" e "Observando o Céu". Cada módulo é subdividido em 5 seções, em média, cada uma iniciada por uma animação que ilustra os temas a serem abordados na seção. Ao final da animação, uma lista de temas é apresentada sob o título "Saiba Mais". Para exemplificar, o módulo "O Universo" contém as seguintes seções: "O Universo visto pelo homem", "Conhecendo o Sistema Solar", "Indo além do Sistema Solar", "Nossa Galáxia, a Via-Láctea" e "Indo mais além, a imensidão do Universo". A seção "Conhecendo o Sistema Solar", por sua vez, tem os seguintes temas: "A origem do Sistema Solar", "O Sol", "Os planetas", "Satélites, asteróides, cometas e outros bichos..." e "O Sistema Solar em números". Cada texto é repleto de imagens, quadros, desenhos, esquemas, etc, além de passatempos ao final de cada seção, incluindo jogos interativos, quadrinhos e curiosidades, que auxiliam o aprendizado de forma divertida. Apresentamos neste trabalho as idéias gerais que permearam a produção da exposição, e uma viagem pelo multimídia para exemplificar sua estrutura e conteúdo. O multimídia será posteriormente disponibilizado para o público externo pela página eletrônica do MAst e/ou por intermédio de uma publicação comercial.

  9. Shining a light on Jarosite: formation, alteration and stability studies using in situ experimental synchrotron and neutron techniques.

    NASA Astrophysics Data System (ADS)

    Brand, H. E. A.; Scarlett, N. V. Y.; Wilson, S. A.; Frierdich, A. J.; Grey, I. E.

    2016-12-01

    Jarosites and related minerals are critical to a range of mineral processing and research applications. They are used in the removal of iron species from smelting processes; they occur in metal bioleaching systems, and they are present in acid mine drainage environments. There has been a recent resurgence in interest in jarosites since their detection on Mars. In this context, the presence of jarosite has been recognised as a likely indicator of liquid water at the surface of Mars in the past & it is thought that their study will provide insight into the environmental history of Mars. Acid sulfate soils cover large areas of the Australian coastline and are likely to be a major constituent of the Martian environment. The oxidation of acid sulfate soils, coupled with potential release of heavy metals and acidic groundwaters, can have serious consequences for fragile ecosystems. Understanding these sediments will provide insight into the biogeochemical processes that affect the lifetimes of transient mineral species on Earth, and may be used to better understand soil acidification, contaminant mobility at sites affected by acid and metalliferous drainage, and even constrain past weathering and putative biosignatures on Mars. Knowledge of the behaviour of jarosite minerals under the actual conditions that they are found in is crucial to understanding their potential environmental impacts on both Earth and Mars. To this end, we are engaged in a program to study the formation, stability and alteration of natural and synthetic jarosite minerals using a complementary suite of in situ synchrotron and neutron techniques. There are 3 sections to this work that will introduce the experimental techniques and sample environments that make these measurements possible: Studying the nucleation and growth of jarosites under laboratory conditions. The experimentation consisted of time-resolved synchrotron small angle X-ray scattering and X-ray diffraction. Studying the stability of

  10. Additivity of the Stabilization Effect of Single Amino Acid Substitutions in Triple Mutants of Recombinant Formate Dehydrogenase from the Soybean Glycine max.

    PubMed

    Alekseeva, A A; Kargov, I S; Kleimenov, S Yu; Savin, S S; Tishkov, V I

    2015-01-01

    Recently, we demonstrated that the amino acid substitutions Ala267Met and Ala267Met/Ile272Val (Alekseeva et al., Biochemistry, 2012), Phe290Asp, Phe290Asn and Phe290Ser (Alekseeva et al., Prot. Eng. Des. Select, 2012) in recombinant formate dehydrogenase from soya Glycine max (SoyFDH) lead to a significant (up to 30-100 times) increase in the thermal stability of the enzyme. The substitutions Phe290Asp, Phe290Asn and Phe290Ser were introduced into double mutant SoyFDH Ala267Met/Ile272Val by site-directed mutagenesis. Combinations of three substitutions did not lead to a noticeable change in the catalytic properties of the mutant enzymes. The stability of the resultant triple mutants was studied through thermal inactivation kinetics and differential scanning calorimetry. The thermal stability of the new mutant SoyFDHs was shown to be much higher than that of their precursors. The stability of the best mutant SoyFDH Ala267Met/Ile272Val/Phe290Asp turned out to be comparable to that of the most stable wild-type formate dehydrogenases from other sources. The results obtained with both methods indicate a great synergistic contribution of individual amino acid substitutions to the common stabilization effect.

  11. Additivity of the Stabilization Effect of Single Amino Acid Substitutions in Triple Mutants of Recombinant Formate Dehydrogenase from the Soybean Glycine max

    PubMed Central

    Alekseeva, A. A.; Kargov, I. S.; Kleimenov, S. Yu.; Savin, S. S.; Tishkov, V. I.

    2015-01-01

    Recently, we demonstrated that the amino acid substitutions Ala267Met and Ala267Met/Ile272Val (Alekseeva et al., Biochemistry, 2012), Phe290Asp, Phe290Asn and Phe290Ser (Alekseeva et al., Prot. Eng. Des. Select, 2012) in recombinant formate dehydrogenase from soya Glycine max (SoyFDH) lead to a significant (up to 30–100 times) increase in the thermal stability of the enzyme. The substitutions Phe290Asp, Phe290Asn and Phe290Ser were introduced into double mutant SoyFDH Ala267Met/Ile272Val by site-directed mutagenesis. Combinations of three substitutions did not lead to a noticeable change in the catalytic properties of the mutant enzymes. The stability of the resultant triple mutants was studied through thermal inactivation kinetics and differential scanning calorimetry. The thermal stability of the new mutant SoyFDHs was shown to be much higher than that of their precursors. The stability of the best mutant SoyFDH Ala267Met/Ile272Val/Phe290Asp turned out to be comparable to that of the most stable wild-type formate dehydrogenases from other sources. The results obtained with both methods indicate a great synergistic contribution of individual amino acid substitutions to the common stabilization effect. PMID:26483960

  12. Effect of 5-methylcytosine on the structure and stability of DNA. Formation of triple-stranded concatenamers by overlapping oligonucleotides.

    PubMed

    Xodo, L E; Alunni-Fabbroni, M; Manzini, G

    1994-02-01

    A triple helix can be formed upon binding of a pyrimidine oligonucleotide to the major groove of a homopurine-homopyrimidine (R.Y) double-stranded DNA target site. Here, we report that this reaction can be influenced by base methylation. The pyrimidine strand 5'-TmCTmCTmCTmCTTmCT (mY12), whose cytosine residues are methylated at C5, does not bind the duplex 5'-AGAGAGAGAAGA.3'-TCTCTCTCTTCT (R12.Y12) to yield a 12-triad triplex, as would be expected from these DNA sequences. Rather, a complex of overlapping oligonucleotides, which we define concatenamer, is formed. The concatenamer is clearly evidenced by polyacrylamide gel electrophoresis (PAGE) since it migrates with a smeared band of very low mobility. The stoichiometry of the concatenamer, determined by both UV mixing curves and electrophoresis, is surprisingly found to be (R12.2mY12)n, thus showing that the unmethylated Y12 strand is excluded from the complex. Denaturation experiments performed by ultraviolet absorbance (UV) and differential scanning calorimetry (DSC) show that the concatenamers melt with a single and highly cooperative transition whose Tm strongly depends on pH. Overall, the data point to the conclusion that the concatenamers are in triple helix, where the methylated mY12 strand is engaged in both Watson-Crick and Hoogsteen base pairings, thus displacing the Y12 strand from the R12.Y12 duplex. A possible mechanism of concatenamer formation is proposed. The results presented in this paper show that 5-methylcytosine brings about a strong stabilizing effect on both double and triple DNA helices, and that pyrimidine oligonucleotides containing 5-methylcytosine can displace from R.Y duplexes the analogous non-methylated strand. The advantage of using methylated oligonucleotides in antisense technology is discussed.

  13. The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis

    PubMed Central

    Kuo, Chay T.; Veselits, Margaret L.; Barton, Kevin P.; Lu, Min Min; Clendenin, Cynthia; Leiden, Jeffrey M.

    1997-01-01

    The transcriptional programs that regulate blood vessel formation are largely unknown. In this paper, we examine the role of the zinc finger transcription factor LKLF in murine blood vessel morphogenesis and homeostasis. By in situ hybridization and immunohistochemistry, we show that LKLF is expressed as early as embryonic day 9.5 (E9.5) in vascular endothelial cells throughout the developing mouse embryo. To better understand the function of LKLF, we used homologous recombination in embryonic stem (ES) cells to generate LKLF-deficient (LKLF−/−) mice. Both angiogenesis and vasculogenesis were normal in the LKLF−/− mice. However, LKLF−/− embryos died between E12.5 and E14.5 from severe intra-embryonic and intra-amniotic hemorrhaging. This bleeding disorder was associated with specific defects in blood vessel morphology. Umbilical veins and arteries in the LKLF−/− embryos displayed an abnormally thin tunica media and aneurysmal dilatation before rupturing into the amniotic cavity. Similarly, vascular smooth muscle cells in the aortae from the LKLF−/− animals displayed a cuboidal morphology and failed to organize into a compact tunica media. Consistent with these findings, electron microscopic analyses demonstrated endothelial cell necrosis, significant reductions in the number of vessel-wall pericytes and differentiating smooth muscle cells, and decreased deposition of extracellular matrix in the LKLF−/− vessels. Despite these defects, in situ hybridization demonstrated normal expression of platelet-derived growth factor B, Tie1, Tie2, transforming growth factor β, and heparin-binding epidermal growth factor in the vasculature of the LKLF−/− embryos. Therefore, LKLF defines a novel transcriptional pathway in which endothelial cells regulate the assembly of the vascular tunica media and concomitant vessel wall stabilization during mammalian embryogenesis. PMID:9367982

  14. MHC Multimer-Guided and Cell Culture-Independent Isolation of Functional T Cell Receptors from Single Cells Facilitates TCR Identification for Immunotherapy

    PubMed Central

    Dössinger, Georg; Bunse, Mario; Bet, Jeannette; Albrecht, Julia; Paszkiewicz, Paulina J.; Weißbrich, Bianca; Schiedewitz, Isabell; Henkel, Lynette; Schiemann, Matthias; Neuenhahn, Michael; Uckert, Wolfgang; Busch, Dirk H.

    2013-01-01

    Adoptive therapy using T cells redirected to target tumor- or infection-associated antigens is a promising strategy that has curative potential and broad applicability. In order to accelerate the screening process for suitable antigen-specific T cell receptors (TCRs), we developed a new approach circumventing conventional in vitro expansion-based strategies. Direct isolation of paired full-length TCR sequences from non-expanded antigen-specific T cells was achieved by the establishment of a highly sensitive PCR-based T cell receptor single cell analysis method (TCR-SCAN). Using MHC multimer-labeled and single cell-sorted HCMV-specific T cells we demonstrate a high efficacy (approximately 25%) and target specificity of TCR-SCAN receptor identification. In combination with MHC-multimer based pre-enrichment steps, we were able to isolate TCRs specific for the oncogenes Her2/neu and WT1 even from very small populations (original precursor frequencies of down to 0.00005% of CD3+ T cells) without any cell culture step involved. Genetic re-expression of isolated receptors demonstrates their functionality and target specificity. We believe that this new strategy of TCR identification may provide broad access to specific TCRs for therapeutically relevant T cell epitopes. PMID:23637823

  15. Amine-reactive OVA multimers for auto-vaccination against cytokines and other mediators: perspectives illustrated for GCP-2 in L. major infection

    PubMed Central

    Uyttenhove, Catherine; Marillier, Reece G.; Tacchini-Cottier, Fabienne; Charmoy, Mélanie; Caspi, Rachel R.; Damsker, Jesse M.; Goriely, Stanislas; Su, Dan; Van Damme, Jo; Struyf, Sofie; Opdenakker, Ghislain; Van Snick, Jacques

    2011-01-01

    Anticytokine auto-vaccination is a powerful tool for the study of cytokine functions in vivo but has remained rather esoteric as a result of numerous technical difficulties. We here describe a two-step procedure based on the use of OVA multimers purified by size exclusion chromatography after incubation with glutaraldehyde at pH 6. When such polymers are incubated with a target protein at pH 8.5 to deprotonate reactive amines, complexes are formed that confer immunogenicity to self-antigens. The chemokine GCP-2/CXCL6, the cytokines GM-CSF, IL-17F, IL-17E/IL-25, IL-27, and TGF-β1, and the MMP-9/gelatinase B are discussed as examples. mAb, derived from such immunized mice, have obvious advantages for in vivo studies of the target proteins. Using a mAb against GCP-2, obtained by the method described here, we provide the first demonstration of the major role played by this chemokine in rapid neutrophil mobilization after Leishmania major infection. Pre-activated OVA multimers reactive with amine residues thus provide an efficient carrier for auto-vaccination against 9–90 kDa autologous proteins. PMID:21385949

  16. Enhanced Detection of Antigen-Specific CD4+ T Cells Using Altered Peptide Flanking Residue Peptide–MHC Class II Multimers

    PubMed Central

    Holland, Christopher J.; Dolton, Garry; Scurr, Martin; Ladell, Kristin; Schauenburg, Andrea J.; Miners, Kelly; Madura, Florian; Sewell, Andrew K.; Price, David A.

    2015-01-01

    Fluorochrome-conjugated peptide–MHC (pMHC) class I multimers are staple components of the immunologist’s toolbox, enabling reliable quantification and analysis of Ag-specific CD8+ T cells irrespective of functional outputs. In contrast, widespread use of the equivalent pMHC class II (pMHC-II) reagents has been hindered by intrinsically weaker TCR affinities for pMHC-II, a lack of cooperative binding between the TCR and CD4 coreceptor, and a low frequency of Ag-specific CD4+ T cell populations in the peripheral blood. In this study, we show that peptide flanking regions, extending beyond the central nonamer core of MHC-II–bound peptides, can enhance TCR–pMHC-II binding and T cell activation without loss of specificity. Consistent with these findings, pMHC-II multimers incorporating peptide flanking residue modifications proved superior for the ex vivo detection, characterization, and manipulation of Ag-specific CD4+ T cells, highlighting an unappreciated feature of TCR–pMHC-II interactions. PMID:26553072

  17. Evaluation of the geological relationships to gas hydrate formation and stability. Second annual technical progress report, October 1, 1985--September 30, 1986

    SciTech Connect

    Not Available

    1986-12-31

    Although there are many publications pertaining to gas hydrates, their formation and stability in various geological conditions are poorly known. Therefore, for the same reasons and because of the very broad scope of our research, limited amount and extremely dispersed information, the study regions are very large. Moreover, almost without exception the geological environments controlling gas hydrates formation and stability of the studied regions are very complex. The regions studied (completed and partially completed - total 17 locations) during the reporting period, particularly the Gulf of Mexico and the Middle America Trench, are the most important in this entire research project. In the past, both of these regions have been extensively studied, the presence of gas hydrates confirmed and samples recovered. In our investigation it was necessary not only to review all previous data and interpretations, but to do a thorough analysis of the basins, and a critical evaluation of an previously reported and publicly available but not published information.

  18. Inhibition of Tongue Coat and Dental Plaque Formation by Stabilized Chlorine Dioxide Vs Chlorhexidine Mouthrinse: A Randomized, Triple Blinded Study

    PubMed Central

    Kini, Vineet Vaman; Padhye, Ashvini

    2015-01-01

    Background Chlorine dioxide (ClO2) is an oxidizing agent with known bactericidal, viricidal and fungicidal properties. Its efficacy in reducing the halitosis has been established by previous literature. However, data evaluating its antiplaque property is scarce. Chlorhexidine (CHX) is considered as the gold standard and an effective adjunctive to mechanical plaque removal. However, it is associated with few reversible side effects. Therefore a study was conducted to assess the antiplaque property of ClO2 containing mouthrinse against CHX mouthrinse. Aims and Objectives To evaluate the efficacy of stabilized chlorine dioxide containing mouthrinse and CHX containing mouthrinse in inhibition of tongue coat accumulation and dental plaque formation using a four day plaque regrowth model clinically and microbiologically in a healthy dental cohort. Materials and Methods A Single Center, Randomized, Triple blinded, Microbiological clinical trial was conducted involving 25 healthy dental students volunteers (11 males, 14 females). Two commercially available mouthrinse: Mouthrinse A – Aqueous based ClO2 mouthrinse Freshchlor® and Mouthrinse B - Aqueous based 0.2% CHX mouthrinse Hexidine® were selected as the test products. Subjects were asked to rinse and gargle for 1 minute with the allocated mouthrinse under supervision after supragingival scaling, polishing and tongue coat removal. After four hours, smears were taken from the buccal mucosa and tooth surface. On the fifth day from baseline of four day non brushing plaque regrowth model the samples were again taken from buccal mucosa and tooth surface followed by recording of plaque scores by Rastogi Modification of Navy Plaque index, extent of tongue coat by Winkel’s tongue coating index and measuring tongue coat wet weight in grams. The samples collected were subjected to microbial analysis and the results were expressed as colony forming units (CFUs) per sample. Statistical Analysis The Data was analysed using SPSS

  19. Evaluation of three different formats of a neutralizing single chain human antibody against toxin Cn2: neutralization capacity versus thermodynamic stability.

    PubMed

    Quintero-Hernández, Veronica; Del Pozo-Yauner, Luis; Pedraza-Escalona, Martha; Juárez-González, Victor R; Alcántara-Recillas, Israel; Possani, Lourival D; Becerril, Baltazar

    2012-04-30

    The single-chain antibody fragment (scFv) 6009F, obtained by directed evolution, neutralizes the effects of the Cn2 toxin, which is the major toxic component of Centruroides noxius scorpion venom. In this work we compared the neutralization capacity and the thermodynamic stability of scFv 6009F with those of two other derived formats: Fab 6009F and diabody 6009F. Additionally, the affinity constants to Cn2 toxin of the three recombinant antibody fragments were determined by means of BIAcore. We found a correlation between the thermodynamic stability of these antibody fragments with their neutralization capacity. The order of thermodynamic stability determined was Fab≫scFv>diabody. The Fab and scFv were capable of neutralizing the toxic effects of Cn2 and whole venom but the diabody was unable to fully neutralize intoxication. In silico analysis of the diabody format indicates that the reduction of stability and neutralization capacity could be explained by a less cooperative interface between the heavy and the light variable domains.

  20. Formation of Pickering emulsions stabilized via interaction between nanoparticles dispersed in aqueous phase and polymer end groups dissolved in oil phase.

    PubMed

    Okada, Masahiro; Maeda, Hayata; Fujii, Syuji; Nakamura, Yoshinobu; Furuzono, Tsutomu

    2012-06-26

    The influence of end groups of a polymer dissolved in an oil phase on the formation of a Pickering-type hydroxyapatite (HAp) nanoparticle-stabilized emulsion and on the morphology of HAp nanoparticle-coated microspheres prepared by evaporating solvent from the emulsion was investigated. Polystyrene (PS) molecules with varying end groups and molecular weights were used as model polymers. Although HAp nanoparticles alone could not function as a particulate emulsifier for stabilizing dichloromethane (oil) droplets, oil droplets could be stabilized with the aid of carboxyl end groups of the polymers dissolved in the oil phase. Lower-molecular-weight PS molecules containing carboxyl end groups formed small droplets and deflated microspheres, due to the higher concentration of carboxyl groups on the droplet/microsphere surface and hence stronger adsorption of the nanoparticles at the water/oil interface. In addition, Pickering-type suspension polymerization of styrene droplets stabilized by PS molecules containing carboxyl end groups successfully led to the formation of spherical HAp-coated microspheres.

  1. Presentation of the Multimédia Game "Geolover" Concept, to Educational Enchancement of the Geolocical Heritage of the Following Regions: "Ilha do Fogo" (Cabo-Verde), Seridó (Brasil), Sabugal (Portugal) and Açores (Portugal)

    NASA Astrophysics Data System (ADS)

    Cabral, João; Gomes, Ana; Alfama, Vera; Oliveira, Sirlene; Pinharandas, Carlos; Fonseca, Pedro; Campos, José; Nobre, José

    2013-04-01

    "Geolover" - Presentation of the multimédia game concept, to educational enchancement of the geolocical heritage of the following regions: : "Ilha do Fogo" (Cabo-Verde), Seridó (Brasil), Sabugal and Açores (Portugal). "Geolover" is a multitouch game, played by four players simultaneously, identified by 4 mascots and using as sceneries, the four regions landscapes, aimed to the young people with ages between 8 and 12 years old. The main objective is value the geological heritage of the Ilha do Fogo (Cabo Verde), Seridó in State of Rio Grande do Norte (Brasil) , Sabugal in Beira Alta province (Portugal) and Arquipélago dos Açores (Portuguese autonomous region). These regions have a great geological heritage like volcanology, plutonic rocks, sedimentar formations, metamorphic, paleontologic, mineralogic, geomorphologic, hydric and mining resources. Such heritage is being used in the different regions has base of studies to senior scientists and were used to great scientific researches. The diversified and distinguished cultural heritage of these four regions is referenced and it's a value to the union of the students from these three continents, with the Portuguese language as communication tool. The variety of the geological wealth and cultural of these regions, results in the common objective of their valuing like Geoparks. His creation on these three regions is a strategy with a great relevance to the socio-economic development. With the creation of this game, we promote the union of these 3 countries from these three continents, the universal values of the heritage richness that are offered by our planet.

  2. H-treatment impact on conductive-filament formation and stability in Ta{sub 2}O{sub 5}-based resistive-switching memory cells

    SciTech Connect

    Goux, L. Redolfi, A.; Jurczak, M.; Kim, J. Y.; Magyari-Kope, B.; Nishi, Y.

    2015-03-28

    In this article, we evidence the lower formation energy and improved stability of the conductive filament (CF) formed in TiN\\Ta{sub 2}O{sub 5}\\Ta resistive-switching memory cells treated in NH{sub 3} atmosphere at 400 °C. This annealing treatment results in (i) lower forming voltage, (ii) lower CF resistance, and (iii) longer retention lifetime of the oxygen-vacancy (V{sub o}) chain constituting the CF. Atomistic insights into these processes are provided by ab initio calculations performed for hydrogen (H) species incorporated in non-stoichiometric Ta{sub 2}O{sub 5} supercells: (i) V{sub o} formation energy is reduced by the presence of H, (ii) V{sub o}-chain CF conductivity is increased by V{sub o} + OH complex formation, and (iii) V{sub o}-chain retention is strengthened by the stable V{sub o} + OH complex. As a result, efficient CF formation and excellent state stability are obtained after 15 days at 250 °C.

  3. Enhanced Long-term and Thermal Stability of Polymer Solar Cells in Air at High Humidity with the Formation of Unusual Quantum Dot Networks.

    PubMed

    Tan, Long; Yang, Fan; Kim, Mee Rahn; Li, Pandeng; Gangadharan, Deepak Thrithamarassery; Margot, Joëlle; Izquierdo, Ricardo; Chaker, Mohamed; Ma, Dongling

    2017-08-09

    Due to the practical applications of polymer solar cells (PSCs), their stability recently has received increasing attention. Herein, a new strategy was developed to largely enhance the long-term and thermal stability of PSCs in air with a relatively high humidity of 50-60% without any encapsulation. In this strategy, semiconductor PbS/CdS core/shell quantum dots (QDs) were incorporated into the photoactive blend of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM). By replacing the initial ligands of oleic acid with halide ligands on the surface of PbS/CdS QDs via solution-phase ligand exchange, we were able to form unusual, continuous QD networks in the film of P3HT:PCBM, which effectively stabilized the photoactive layer. Air-processed PSCs based on the stabilized P3HT:PCBM film showed excellent long-term stability under high humidity, providing over 3% of power conversion efficiency (PCE) simultaneously. Around 91% of pristine PCE was retained after 30 days storage in high-humidity air without encapsulation. This constitutes a remarkable improvement compared to ∼53% retained PCE for the QD-free devices, which can be ascribed to the efficient suppression of both PCBM aggregation and oxidation of the thiophene ring in P3HT, thanks to the formation of robust QD networks. Furthermore, the presence of QD networks was able to enhance the stability of the P3HT:PCBM film against thermal stress/oxidation under high-humidity environment (50-60%) as well. The device kept 60% of pristine PCE after thermal treatment for 12 h at 85 °C in air, which is more than twice higher than that for the QD-free device. To the best of our knowledge, the work represents the first unambiguous demonstration of the formation of QD networks in the photoactive layer and of their important contribution to the stability of PSCs. This strategy is highly promising for other fullerene-based PSCs and opens a new avenue toward achieving PSCs with high PCE and excellent

  4. Synthesis, properties and formation of (RCp)Co- and (RCp)Rh-stabilized[4.8]3cyclacene derivatives.

    PubMed

    Kornmayer, Stefan C; Hellbach, Björn; Rominger, Frank; Gleiter, Rolf

    2009-01-01

    Metal-stabilized belts: A torus, 3, consisting of three four- and three eight-membered conjugated rings and stabilized by (RCp)Co- and (RCp)Rh- units, was generated by irradiation of [(RCp)Co(CO)(2)] and [(RCp)Rh(C(2)H(4))(2)], respectively, and 1.Eleven metal stabilized [4.8](3)cyclacene derivatives were synthesized. The substances were prepared in one-pot reactions by irradiation of a solution of 5,6,11,12-tetradehydro-dibenzo[a,e]cyclooctatetraene and the corresponding cobalt reagents or rhodium compounds. The resulting cyclacene derivatives reveal D(3h) symmetry in solution. In the solid state the hoop shaped systems crystallize in layers, which are intercalated with solvent layers. To unravel the mechanism of the one-pot reaction we isolated an intermediate, which shows almost planar cyclooctatetraene rings.

  5. Alternating d(GA)n DNA sequences form antiparallel stranded homoduplexes stabilized by the formation of G.A base pairs.

    PubMed Central

    Huertas, D; Bellsolell, L; Casasnovas, J M; Coll, M; Azorín, F

    1993-01-01

    Alternating d(GA)n DNA sequences form antiparallel stranded homoduplexes which are stabilized by the formation of G.A pairs. Three base pairings are known to occur between adenine and guanine: AH+ (anti).G(syn), A(anti).G(anti) and A(syn).G(anti). Protonation of the adenine residues is not involved in the stabilization of this structure, since it is observed at any pH value from 8.3 to 4.5; at pH < or = 4.0 antiparallel stranded d(GA.GA) DNA is destabilized. The results reported in this paper strongly suggest that antiparallel stranded d(GA.GA) homoduplexes are stabilized by the formation of alternating A(anti).G(anti) and G(anti).A(syn) pairs. In this structure, all guanine residues are in the anti conformation with their N7 position freely accessible to DMS methylation. On the other hand, adenines in one strand adopt the anti conformation, with their N7 position also free for reaction, while those of the opposite strand are in the syn conformation, with their N7 position hydrogen bonded to the guanine N1 group of the opposite strand. A regular right-handed helix can be generated using alternating G(anti).A(syn) and A(anti).G(anti) pairs. Images PMID:8404869

  6. The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics.

    PubMed

    Rajput, Nav Nidhi; Qu, Xiaohui; Sa, Niya; Burrell, Anthony K; Persson, Kristin A

    2015-03-11

    In this work we uncover a novel effect between concentration dependent ion pair formation and anion stability at reducing potentials, e.g., at the metal anode. Through comprehensive calculations using both first-principles as well as well-benchmarked classical molecular dynamics over a matrix of electrolytes, covering solvents and salt anions with a broad range in chemistry, we elucidate systematic correlations between molecular level interactions and composite electrolyte properties, such as electrochemical stability, solvation structure, and dynamics. We find that Mg electrolytes are highly prone to ion pair formation, even at modest concentrations, for a wide range of solvents with different dielectric constants, which have implications for dynamics as well as charge transfer. Specifically, we observe that, at Mg metal potentials, the ion pair undergoes partial reduction at the Mg cation center (Mg(2+) → Mg(+)), which competes with the charge transfer mechanism and can activate the anion to render it susceptible to decomposition. Specifically, TFSI(-) exhibits a significant bond weakening while paired with the transient, partially reduced Mg(+). In contrast, BH4(-) and BF4(-) are shown to be chemically stable in a reduced ion pair configuration. Furthermore, we observe that higher order glymes as well as DMSO improve the solubility of Mg salts, but only the longer glyme chains reduce the dynamics of the ions in solution. This information provides critical design metrics for future electrolytes as it elucidates a close connection between bulk solvation and cathodic stability as well as the dynamics of the salt.

  7. Formation and stabilization of the telomeric antiparallel G-quadruplex and inhibition of telomerase by novel benzothioxanthene derivatives with anti-tumor activity

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Chen, Min; Ling Wu, Yan; Tanaka, Yoshimasa; Juan Ji, Yan; Lin Zhang, Su; He Wei, Chuan; Xu, Yan

    2015-09-01

    G-quadruplexes formed in telomeric DNA sequences at human chromosome ends can be a novel target for the development of therapeutics for the treatment of cancer patients. Herein, we examined the ability of six novel benzothioxanthene derivatives S1-S6 to induce the formation of and stabilize an antiparallel G-quadruplex by EMSA, UV-melting and CD techniques and the influence of S1-S6 on A549 and SGC7901 cells through real-time cell analysis, wound healing, trap assay methods. Results show that six compounds could differentially induce 26 nt G-rich oligonucleotides to form the G-quadruplex with high selectivity vs C-rich DNA, mutated DNA and double-stranded DNA, stabilize it with high affinity, promote apoptosis and inhibit mobility and telomerase activity of A549 cells and SGC7901 cells. Especially, S1, S3, S4 displayed stronger abilities, of which S3 was the most optimal with the maximum ΔTm value being up to 29.8 °C for G-quadruplex, the minimum IC50 value being 0.53 μM and the maximum cell inhibitory rate being up to 97.2%. This study suggests that this type of compounds that induce the formation of and stabilize the telomeric antiparallel G-quadruplex, and consequently inhibit telomerase activity, leading to cell apoptosis, can be screened for the discovery of novel antitumor therapeutics.

  8. A separate pool of cardiac phospholemman that does not regulate or associate with the sodium pump: multimers of phospholemman in ventricular muscle.

    PubMed

    Wypijewski, Krzysztof J; Howie, Jacqueline; Reilly, Louise; Tulloch, Lindsay B; Aughton, Karen L; McLatchie, Linda M; Shattock, Michael J; Calaghan, Sarah C; Fuller, William

    2013-05-10

    Phospholemman regulates the plasmalemmal sodium pump in excitable tissues. In cardiac muscle, a subpopulation of phospholemman with a unique phosphorylation signature associates with other phospholemman molecules but not with the pump. Phospholemman oligomers exist in cardiac muscle. Much like phospholamban regulation of SERCA, phospholemman exists as both a sodium pump inhibiting monomer and an unassociated oligomer. Phospholemman (PLM), the principal quantitative sarcolemmal substrate for protein kinases A and C in the heart, regulates the cardiac sodium pump. Much like phospholamban, which regulates the related ATPase SERCA, PLM is reported to oligomerize. We investigated subpopulations of PLM in adult rat ventricular myocytes based on phosphorylation status. Co-immunoprecipitation identified two pools of PLM: one not associated with the sodium pump phosphorylated at Ser(63) and one associated with the pump, both phosphorylated at Ser(68) and unphosphorylated. Phosphorylation of PLM at Ser(63) following activation of PKC did not abrogate association of PLM with the pump, so its failure to associate with the pump was not due to phosphorylation at this site. All pools of PLM co-localized to cell surface caveolin-enriched microdomains with sodium pump α subunits, despite the lack of caveolin-binding motif in PLM. Mass spectrometry analysis of phosphospecific immunoprecipitation reactions revealed no unique protein interactions for Ser(63)-phosphorylated PLM, and cross-linking reagents also failed to identify any partner proteins for this pool. In lysates from hearts of heterozygous transgenic animals expressing wild type and unphosphorylatable PLM, Ser(63)-phosphorylated PLM co-immunoprecipitated unphosphorylatable PLM, confirming the existence of PLM multimers. Dephosphorylation of the PLM multimer does not change sodium pump activity. Hence like phospholamban, PLM exists as a pump-inhibiting monomer and an unassociated oligomer. The distribution of different PLM

  9. Data analysis as a source of variability of the HLA-peptide multimer assay: from manual gating to automated recognition of cell clusters.

    PubMed

    Gouttefangeas, Cécile; Chan, Cliburn; Attig, Sebastian; Køllgaard, Tania T; Rammensee, Hans-Georg; Stevanović, Stefan; Wernet, Dorothee; thor Straten, Per; Welters, Marij J P; Ottensmeier, Christian; van der Burg, Sjoerd H; Britten, Cedrik M

    2015-05-01

    Multiparameter flow cytometry is an indispensable method for assessing antigen-specific T cells in basic research and cancer immunotherapy. Proficiency panels have shown that cell sample processing, test protocols and data analysis may all contribute to the variability of the results obtained by laboratories performing ex vivo T cell immune monitoring. In particular, analysis currently relies on a manual, step-by-step strategy employing serial gating decisions based on visual inspection of one- or two-dimensional plots. It is therefore operator dependent and subjective. In the context of continuing efforts to support inter-laboratory T cell assay harmonization, the CIMT Immunoguiding Program organized its third proficiency panel dedicated to the detection of antigen-specific CD8(+) T cells by HLA-peptide multimer staining. We first assessed the contribution of manual data analysis to the variability of reported T cell frequencies within a group of laboratories staining and analyzing the same cell samples with their own reagents and protocols. The results show that data analysis is a source of variation in the multimer assay outcome. To evaluate whether an automated analysis approach can reduce variability of proficiency panel data, we used a hierarchical statistical mixture model to identify cell clusters. Challenges for automated analysis were the need to process non-standardized data sets from multiple centers, and the fact that the antigen-specific cell frequencies were very low in most samples. We show that this automated method can circumvent difficulties inherent to manual gating strategies and is broadly applicable for experiments performed with heterogeneous protocols and reagents.

  10. Molecular dynamics simulation to investigate the impact of disulfide bond formation on conformational stability of chicken cystatin I66Q mutant.

    PubMed

    He, Jianwei; Xu, Linan; Zou, Zhiyuan; Ueyama, Nobuhiro; Li, Hui; Kato, Akio; Jones, Gary W; Song, Youtao

    2013-10-01

    Chicken cystatin (cC) mutant I66Q is located in the hydrophobic core of the protein and increases the propensity for amyloid formation. Here, we demonstrate that under physiological conditions, the replacement of Ile with the Gln in the I66Q mutant increases the susceptibility for the disulfide bond Cys71-Cys81 to be reduced when compared to the wild type (WT) cC. Molecular dynamics (MD) simulations under conditions favoring cC amyloid fibril formation are in agreement with the experimental results. MD simulations were also performed to investigate the impact of disrupting the Cys71-Cys81 disulfide bond on the conformational stability of cC at the atomic level, and highlighted major disruption to the cC appendant structure. Domain swapping and extensive unfolding has been proposed as one of the possible mechanisms initiating amyloid fibril formation by cystatin. Our in silico studies suggest that disulfide bond formation between residues Cys95 and Cys115 is necessary to maintain conformational stability of the I66Q mutant following breakage of the Cys71-Cys81 disulfide bridge. Subsequent breakage of disulfide bond Cys95-Cys115 resulted in large structural destabilization of the I66Q mutant, which increased the α-β interface distance and expanded the hydrophobic core. These experimental and computational studies provide molecular-level insight into the relationship between disulfide bond formation and progressive unfolding of amyloidogenic cC mutant I66Q. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:23.

  11. Thermal analysis and FTIR spectral curve-fitting investigation of formation mechanism and stability of indomethacin-saccharin cocrystals via solid-state grinding process.

    PubMed

    Zhang, Gang-Chun; Lin, Hong-Liang; Lin, Shan-Yang

    2012-07-01

    The cocrystal formation of indomethacin (IMC) and saccharin (SAC) by mechanical cogrinding or thermal treatment was investigated. The formation mechanism and stability of IMC-SAC cocrystal prepared by cogrinding process were explored. Typical IMC-SAC cocrystal was also prepared by solvent evaporation method. All the samples were identified and characterized by using differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) microspectroscopy with curve-fitting analysis. The physical stability of different IMC-SAC ground mixtures before and after storage for 7 months was examined. The results demonstrate that the stepwise measurements were carried out at specific intervals over a continuous cogrinding process showing a continuous growth in the cocrystal formation between IMC and SAC. The main IR spectral shifts from 3371 to 3,347 cm(-1) and 1693 to 1682 cm(-1) for IMC, as well as from 3094 to 3136 cm(-1) and 1718 to 1735 cm(-1) for SAC suggested that the OH and NH groups in both chemical structures were taken part in a hydrogen bonding, leading to the formation of IMC-SAC cocrystal. A melting at 184 °C for the 30-min IMC-SAC ground mixture was almost the same as the melting at 184 °C for the solvent-evaporated IMC-SAC cocrystal. The 30-min IMC-SAC ground mixture was also confirmed to have similar components and contents to that of the solvent-evaporated IMC-SAC cocrystal by using a curve-fitting analysis from IR spectra. The thermal-induced IMC-SAC cocrystal formation was also found to be dependent on the temperature treated. Different IMC-SAC ground mixtures after storage at 25 °C/40% RH condition for 7 months had an improved tendency of IMC-SAC cocrystallization.

  12. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic.

    PubMed

    Ozturk, Bengu; Argin, Sanem; Ozilgen, Mustafa; McClements, David Julian

    2015-12-01

    Natural biopolymers, whey protein isolate (WPI) and gum arabic (GA), were used to fabricate emulsion-based delivery systems for vitamin E-acetate. Stable delivery systems could be formed when vitamin E-acetate was mixed with sufficient orange oil prior to high pressure homogenization. WPI (d32=0.11 μm, 1% emulsifier) was better than GA (d32=0.38 μm, 10% emulsifier) at producing small droplets at low emulsifier concentrations. However, WPI-stabilized nanoemulsions were unstable to flocculation near the protein isoelectric point (pH 5.0), at high ionic strength (>100mM), and at elevated temperatures (>60 °C), whereas GA-stabilized emulsions were stable. This difference was attributed to differences in emulsifier stabilization mechanisms: WPI by electrostatic repulsion; GA by steric repulsion. These results provide useful information about the emulsifying and stabilizing capacities of natural biopolymers for forming food-grade vitamin-enriched delivery systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. High-Burnup-Structure (HBS): Model Development in MARMOT for HBS Formation and Stability Under Radiation and High Temperature

    SciTech Connect

    Ahmed, K.; Bai, X.; Zhang, Y.; Biner, B.

    2016-09-01

    A detailed phase field model for the formation of High Burnup Structure (HBS) was developed and implemented in MARMOT. The model treats the HBS formation as an irradiation-induced recrystallization. The model takes into consideration the stored energy associated with dislocations formed under irradiation. The accumulation of radiation damage, hence, increases the system free energy and triggers recrystallization. The increase in the free energy due to the formation of new grain boundaries is offset by the reduction in the free energy by creating dislocation-free grains at the expense of the deformed grains. The model was first used to study the growth of recrystallized flat and circular grains. The model reults were shown to agree well with theorrtical predictions. The case of HBS formation in UO2 was then investigated. It was found that a threshold dislocation density of (or equivalently a threshold burn-up of 33-40 GWd/t) is required for HBS formation at 1200K, which is in good agrrement with theory and experiments. In future studies, the presence of gas bubbles and their effect on the formation and evolution of HBS will be considered.

  14. Formation and stability of twisted ribbons in mixtures of rod-like fd-virus and non-adsorbing polymer

    NASA Astrophysics Data System (ADS)

    Dogic, Z.; Didonna, B.; Bryning, M.; Lubensky, T. C.; Yodh, A. G.; Janmey, P. A.

    2003-03-01

    We are investigating the behavior of mixtures of monodisperse fd-virus rods and non-adsorbing polymer. We observe the formation of isolated smectic disks. The single smectic disk is of a monolayer of aligned rods while its thickness equal to the length of a single rod. As disks coalesce they undergo shape transformations from flat structures to elongated twisted ribbons. A theoretical model is formulated wherein the chirality of the molecule favors the formation of the elongated ribbon structure while the line tension favors formation of untwisted disks. To check the validity of the theoretical model line tension and twist constants are experimentally measured. The line tension is deduced from thermal fluctuations of the interface. The twist constant is determined by unwinding the twisted ribbons using optical tweezers. This work is partially supported by NSF grants DMR-0203378, the PENN MRSEC, DMR-0079909, and NASA grant NAG8-2172.

  15. Electronic structure, stability, and formation dynamics of hypervalent molecular clusters: CH 3NH 3(CH 3NH 2) n

    NASA Astrophysics Data System (ADS)

    Okai, Nobuhiro; Takahata, Akihiro; Fuke, Kiyokazu

    2004-03-01

    The formation and decay processes of CH 3NH 3(CH 3NH 2) n produced by the photolysis of (CH 3NH 2) n are studied by a pump-probe technique with femtosecond laser. The dissociation time of CH 3NH 2 in clusters is estimated to be less than 500 fs, while the formation time of CH 3NH 3(CH 3NH 2) n is less than 2 ps in the photolysis at 200 nm. The lifetime of free CH 3NH 3 is determined to be 30 ps and is elongated by 10 5 times in clusters. The ionization potentials and the binding energies of these clusters are determined by photoionization threshold measurements. On the basis of these results, the formation and decay processes for these clusters are discussed.

  16. The methane hydrate formation and the resource estimate resulting from free gas migration in seeping seafloor hydrate stability zone

    NASA Astrophysics Data System (ADS)

    Guan, Jinan; Liang, Deqing; Wu, Nengyou; Fan, Shuanshi

    2009-10-01

    It is a typical multiphase flow process for hydrate formation in seeping seafloor sediments. Free gas can not only be present but also take part in formation of hydrate. The volume fraction of free gas in local pore of hydrate stable zone (HSZ) influences the formation of hydrate in seeping seafloor area, and methane flux determines the abundance and resource of hydrate-bearing reservoirs. In this paper, a multiphase flow model including water (dissolved methane and salt)-free gas hydrate has been established to describe this kind of flow-transfer-reaction process where there exists a large scale of free gas migration and transform in seafloor pore. In the order of three different scenarios, the conversions among permeability, capillary pressure, phase saturations and salinity along with the formation of hydrate have been deducted. Furthermore, the influence of four sorts of free gas saturations and three classes of methane fluxes on hydrate formation and the resource has also been analyzed and compared. Based on the rules drawn from the simulation, and combined information gotten from drills in field, the methane hydrate(MH) formation in Shenhu area of South China Sea has been forecasted. It has been speculated that there may breed a moderate methane flux below this seafloor HSZ. If the flux is about 0.5 kg m -2 a -1, then it will go on to evolve about 2700 ka until the hydrate saturation in pore will arrive its peak (about 75%). Approximately 1.47 × 10 9 m 3 MH has been reckoned in this marine basin finally, is about 13 times over preliminary estimate.

  17. Resonance stabilization effects on ketone autoxidation: Isomer-specific cyclic ether and ketohydroperoxide formation in the low-temperature (400–625 K) oxidation of diethyl ketone

    DOE PAGES

    Scheer, Adam M.; Eskola, Arkke J.; Osborn, David L.; ...

    2016-10-11

    Here, the pulsed photolytic chlorine-initiated oxidation of diethyl ketone [DEK; (CH3CH2)2C=O], 2,2,4,4-d4-DEK [d4-DEK; (CH3CD2)2C=O], and 1,1,1,5,5,5-d6-DEK [d6-DEK; (CD3CH2)2C=O] is studied at 8 torr and 1–2 atm and from 400–625 K. Cl atoms produced by laser photolysis react with diethyl ketone to form either primary (3-pentan-on-1-yl, RP) or secondary (3-pentan-on-2-yl, RS) radicals, which in turn react with O2. Multiplexed time-of-flight mass spectrometry, coupled to either a hydrogen discharge lamp or tunable synchrotron photoionizing radiation, is used to detect products as a function of mass, time, and photon energy. At 8 torr, the nature of the chain propagating cyclic ether + OHmore » channel changes as a function of temperature. At 450 K, the production of OH is mainly in conjunction with formation of 2,4-dimethyloxetan-3-one, resulting from reaction of the resonance-stabilized secondary RS with O2. In contrast, at 550 K and 8 torr, 2-methyl-tetrahydrofuran-3-one, originating from oxidation of the primary radical (RP), is observed as the dominant cyclic ether product. Formation of both of these cyclic ether production channels proceeds via a resonance-stabilized hydroperoxy alkyl (QOOH) intermediate. Little or no ketohydroperoxide (KHP) is observed under the low-pressure conditions. At higher O2 concentrations and higher pressures (1–2 atm), a strong KHP signal appears as the temperature is increased above 450 K. Definitive isomeric identification from measurements on the deuterated DEK isotopologues indicates the favored pathway produces a γ-KHP via resonance-stabilized alkyl, QOOH, and HOOPOOH radicals. Time-resolved measurements reveal the KHP formation becomes faster and signal more intense upon increasing temperature from 450 to 575 K before intensity drops significantly at 625 K. The KHP time profile also shows a peak followed by a gradual depletion for the extent of experiment. Several tertiary products exhibit a slow accumulation in

  18. IL1RAPL1 associated with mental retardation and autism regulates the formation and stabilization of glutamatergic synapses of cortical neurons through RhoA signaling pathway.

    PubMed

    Hayashi, Takashi; Yoshida, Tomoyuki; Ra, Moonjin; Taguchi, Ryo; Mishina, Masayoshi

    2013-01-01

    Interleukin-1 receptor accessory protein-like 1 (IL1RAPL1) is associated with X-linked mental retardation and autism spectrum disorder. We found that IL1RAPL1 regulates synapse formation of cortical neurons. To investigate how IL1RAPL1 controls synapse formation, we here screened IL1RAPL1-interacting proteins by affinity chromatography and mass spectroscopy. IL1RAPL1 interacted with Mcf2-like (Mcf2l), a Rho guanine nucleotide exchange factor, through the cytoplasmic Toll/IL-1 receptor domain. Knockdown of endogenous Mcf2l and treatment with an inhibitor of Rho-associated protein kinase (ROCK), the downstream kinase of RhoA, suppressed IL1RAPL1-induced excitatory synapse formation of cortical neurons. Furthermore, we found that the expression of IL1RAPL1 affected the turnover of AMPA receptor subunits. Insertion of GluA1-containing AMPA receptors to the cell surface was decreased, whereas that of AMPA receptors composed of GluA2/3 was enhanced. Mcf2l knockdown and ROCK inhibitor treatment diminished the IL1RAPL1-induced changes of AMPA receptor subunit insertions. Our results suggest that Mcf2l-RhoA-ROCK signaling pathway mediates IL1RAPL1-dependent formation and stabilization of glutamatergic synapses of cortical neurons.

  19. Experimental Constraints on the Stability of Clinopyroxene (+) Magnesite in Iron Bearing Planetary Mantles: Implications for Nakhlite Formation

    NASA Technical Reports Server (NTRS)

    Martin, Audrey M.; Righter, Kevin

    2010-01-01

    Carbon is present in various forms in the Earth s upper mantle (carbonate- or diamond-bearing mantle xenoliths, carbonatite magmas, CO2 emissions from volcanoes...). Moreover, there is enough carbon in chondritic material to stabilize carbonates into the mantles of Mars or Venus as well as in the Earth. However, the interactions with iron have to be constrained, because Fe is commonly thought to buffer oxygen fugacity into planetary mantles. [1] and [2] show evidences of the stability of clinopyroxene Ca(Mg,Fe)Si2O6 + magnesite (Mg,Fe)CO3 in the Earth s mantle around 6GPa (about 180km). The stability of oxidized forms of carbon (like magnesite) depends on the oxygen fugacity of the system. In the Earth s mantle, the maximum carbon content is 10000 ppm [3]. The fO2 parameter varies vertically as a function of pressure, but also laterally because of geodynamic processes like subduction. Thus, carbonates, graphite, diamond, C-rich gases and melts are all stable forms of carbon in the Earth s mantle. [4] show that the fO2 variations observed in SNC meteorites can be explained by polybaric graphite-CO-CO2 equilibria in the Martian mantle. [5] inferred from thermodynamic calculations that the stable form of carbon in the source regions of the Martian basalts should be graphite (and/or diamond). After [6], a metasomatizing agent like a CO2-rich melt may infiltrate the mantle source of nakhlites. However, according to [7] and [8], the FeO wt% value in the Martian bulk mantle is more than twice that of the Earth s mantle (KLB-1 composition by [9]). As iron and carbon are two elements with various oxidation states, Fe/C interaction mechanisms must be considered.

  20. The formation and physical stability of two-phase solid dispersion systems of indomethacin in supercooled molten mixtures with different matrix formers.

    PubMed

    Semjonov, Kristian; Kogermann, Karin; Laidmäe, Ivo; Antikainen, Osmo; Strachan, Clare J; Ehlers, Henrik; Yliruusi, Jouko; Heinämäki, Jyrki

    2017-01-15

    Amorphous solid dispersions (SDs) are a promising approach to improve the dissolution rate of and oral bioavailability of poorly water-soluble drugs. In some cases multi-phase, instead of single-phase, SD systems with amorphous drug are obtained. While it is widely assumed that one-phase amorphous systems are desirable, two-phase systems may still potentially exhibit enhanced stability and dissolution advantages over undispersed systems. The objective of the present study was to understand the solid-state properties of two-phase SDs with amorphous drug and their relation to physical stability. Two different types of excipients for SD formation were used, one being a polymer and the other a small molecule excipient. The supercooled molten SDs of a poorly water-soluble indomethacin (IND) with a graft copolymer, Soluplus® (SOL) and sugar alcohol, xylitol (XYL) were prepared. Supercooled molten SDs of IND with SOL were two-phase glassy suspension in which the amorphous drug was dispersed in an amorphous polymer matrix. A short-term aging of the SDs led to the formation of glassy suspensions where the crystalline drug was dispersed in an amorphous polymer matrix. These were physically stable at room temperature for the time period studied (RT, 23±2°C), but aging at high-humidity conditions (75% RH) recrystallization to metastable α-IND occurred. Interestingly, the SDs with XYL were two-phase amorphous precipitation systems in which the drug was in an amorphous form in the crystalline sugar alcohol matrix. The SDs of IND and XYL exhibited fast drug recrystallization. In conclusion, the preparation method of two-phase systems via co-melting in association with the rapid quench cooling is a feasible method for the formulation of poorly water-soluble drugs. The physical stability of these two-phase systems, however, is dependent on the carrier material and storage conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics

    SciTech Connect

    Rajput, Nav Nidhi; Qu, Xiaohuui; Sa, Niya; Burrell, Anthony K.; Persson, Kristin A.

    2015-02-10

    Here in this work we uncover a novel effect between concentration dependent ion pair formation and anion stability at reducing potentials, e.g., at the metal anode. Through comprehensive calculations using both first-principles as well as well-benchmarked classical molecular dynamics over a matrix of electrolytes, covering solvents and salt anions with a broad range in chemistry, we elucidate systematic correlations between molecular level interactions and composite electrolyte properties, such as electrochemical stability, solvation structure, and dynamics. We find that Mg electrolytes are highly prone to ion pair formation, even at modest concentrations, for a wide range of solvents with different dielectric constants, which have implications for dynamics as well as charge transfer. Specifically, we observe that, at Mg metal potentials, the ion pair undergoes partial reduction at the Mg cation center (Mg2+ -> Mg+), which competes with the charge transfer mechanism and can activate the anion to render it susceptible to decomposition. Specifically, TFSI exhibits a significant bond weakening while paired with the transient, partially reduced Mg+. In contrast, BH4$-$ and BF4$-$ are shown to be chemically stable in a reduced ion pair configuration. Furthermore, we observe that higher order glymes as well as DMSO improve the solubility of Mg salts, but only the longer glyme chains reduce the dynamics of the ions in solution. This information provides critical design metrics for future electrolytes as it elucidates a close connection between bulk solvation and cathodic stability as well as the dynamics of the salt.

  2. The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics

    DOE PAGES

    Rajput, Nav Nidhi; Qu, Xiaohuui; Sa, Niya; ...

    2015-02-10

    Here in this work we uncover a novel effect between concentration dependent ion pair formation and anion stability at reducing potentials, e.g., at the metal anode. Through comprehensive calculations using both first-principles as well as well-benchmarked classical molecular dynamics over a matrix of electrolytes, covering solvents and salt anions with a broad range in chemistry, we elucidate systematic correlations between molecular level interactions and composite electrolyte properties, such as electrochemical stability, solvation structure, and dynamics. We find that Mg electrolytes are highly prone to ion pair formation, even at modest concentrations, for a wide range of solvents with different dielectricmore » constants, which have implications for dynamics as well as charge transfer. Specifically, we observe that, at Mg metal potentials, the ion pair undergoes partial reduction at the Mg cation center (Mg2+ -> Mg+), which competes with the charge transfer mechanism and can activate the anion to render it susceptible to decomposition. Specifically, TFSI exhibits a significant bond weakening while paired with the transient, partially reduced Mg+. In contrast, BH4$-$ and BF4$-$ are shown to be chemically stable in a reduced ion pair configuration. Furthermore, we observe that higher order glymes as well as DMSO improve the solubility of Mg salts, but only the longer glyme chains reduce the dynamics of the ions in solution. This information provides critical design metrics for future electrolytes as it elucidates a close connection between bulk solvation and cathodic stability as well as the dynamics of the salt.« less

  3. Long-term Formation of Aggressive Bony Lesions in Dogs with Mid-Diaphyseal Fractures Stabilized with Metallic Plates: Incidence in a Tertiary Referral Hospital Population

    PubMed Central

    Gilley, Robert S.; Hiebert, Elizabeth; Clapp, Kemba; Bartl-Wilson, Lara; Nappier, Michael; Werre, Stephen; Barnes, Katherine

    2017-01-01

    The incidence of complications secondary to fracture stabilization, particularly osteolytic lesions and bony tumor formation, has long been difficult to evaluate. The objective of this study was to describe the long-term incidence of aggressive bony changes developing in dogs with long bone diaphyseal fractures stabilized by metallic bone plates compared to a breed-, sex-, and age-matched control group. The medical records of a tertiary referral center were retrospectively reviewed for dogs that matched each respective criterion. Signalment, history, cause of death (if applicable), and aggressive bony changes at previous fracture sites were recorded. Ninety dogs met the criteria for inclusion in the fracture group and were matched with appropriate control dogs. Four of the dogs in the fracture group developed aggressive bony changes at the site of previous fracture repairs most consistent with osseous neoplasia. One lesion was confirmed with cytology as neoplastic. The population of dogs was mixed with regard to breed and body weight, but all dogs with aggressive bony lesions were male. Incidence of aggressive bony lesion formation in the fracture group was 4 (4.4%) and was 0 (0%) in the control group; three (75%) of the affected dogs in the fracture group included cerclage as a component of their primary fracture stabilizations. Incidence of aggressive bony lesions in the fracture group compared to the control group was determined to be statistically significant (p = 0.0455), as was the incidence of cerclage among dogs affected by aggressive bony lesions compared to the rest of the fracture group (p = 0.0499). Development of aggressive bony lesions is an uncommon complication of fracture fixation. Additional research is needed to further identify and elucidate the long-term effects of metallic implants in dogs. PMID:28197406

  4. Long-term Formation of Aggressive Bony Lesions in Dogs with Mid-Diaphyseal Fractures Stabilized with Metallic Plates: Incidence in a Tertiary Referral Hospital Population.

    PubMed

    Gilley, Robert S; Hiebert, Elizabeth; Clapp, Kemba; Bartl-Wilson, Lara; Nappier, Michael; Werre, Stephen; Barnes, Katherine

    2017-01-01

    The incidence of complications secondary to fracture stabilization, particularly osteolytic lesions and bony tumor formation, has long been difficult to evaluate. The objective of this study was to describe the long-term incidence of aggressive bony changes developing in dogs with long bone diaphyseal fractures stabilized by metallic bone plates compared to a breed-, sex-, and age-matched control group. The medical records of a tertiary referral center were retrospectively reviewed for dogs that matched each respective criterion. Signalment, history, cause of death (if applicable), and aggressive bony changes at previous fracture sites were recorded. Ninety dogs met the criteria for inclusion in the fracture group and were matched with appropriate control dogs. Four of the dogs in the fracture group developed aggressive bony changes at the site of previous fracture repairs most consistent with osseous neoplasia. One lesion was confirmed with cytology as neoplastic. The population of dogs was mixed with regard to breed and body weight, but all dogs with aggressive bony lesions were male. Incidence of aggressive bony lesion formation in the fracture group was 4 (4.4%) and was 0 (0%) in the control group; three (75%) of the affected dogs in the fracture group included cerclage as a component of their primary fracture stabilizations. Incidence of aggressive bony lesions in the fracture group compared to the control group was determined to be statistically significant (p = 0.0455), as was the incidence of cerclage among dogs affected by aggressive bony lesions compared to the rest of the fracture group (p = 0.0499). Development of aggressive bony lesions is an uncommon complication of fracture fixation. Additional research is needed to further identify and elucidate the long-term effects of metallic implants in dogs.

  5. Formation of natural gas hydrates in marine sediments. Gas hydrate growth and stability conditioned by host sediment properties

    USGS Publications Warehouse

    Clennell, M.B.; Henry, P.; Hovland, M.; Booth, J.S.; Winters, W.J.; Thomas, M.

    2000-01-01

    The stability conditions of submarine gas hydrates (methane clathrates) are largely dictated by pressure, temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of the host sediments also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our model presumes that gas hydrate behaves in a way analogous to ice in the pores of a freezing soil, where capillary forces influence the energy balance. Hydrate growth is inhibited within fine-grained sediments because of the excess internal phase pressure of small crystals with high surface curvature that coexist with liquid water in small pores. Therefore, the base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature, and so nearer to the seabed than would be calculated from bulk thermodynamic equilibrium. The growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, sheets, and lenses in muds; cements in sand and ash layers) can be explained by a requirement to minimize the excess of mechanical and surface energy in the system.

  6. A novel strategy for high-stability lithium sulfur batteries by in situ formation of polysulfide adsorptive-blocking layer

    NASA Astrophysics Data System (ADS)

    Jin, Liming; Li, Gaoran; Liu, Binhong; Li, Zhoupeng; Zheng, Junsheng; Zheng, Jim P.

    2017-07-01

    Lithium sulfur (Lisbnd S) batteries are one of the most promising energy storage devices owing to their high energy and power density. However, the shuttle effect as a key barrier hinders its practical application by resulting in low coulombic efficiency and poor cycling performance. Herein, a novel design of in situ formed polysulfide adsorptive-blocking layer (PAL) on the cathode surface was developed to tame the polysulfide shuttling and promote the cycling stability for Lisbnd S batteries. The PAL is consisted of La2S3, which is capable to chemically adsorb polysulfide via the strong interaction of Lasbnd S bond and Ssbnd S bond, and build an effective barrier against sulfur escaping. Moreover, the La2S3 is capable to suppress the crystallization of Li2S and promote the ion transfer, which contributes to the reduced internal resistance of batteries. Furthermore, the by-product LiNO3 simultaneously forms a stable anode solid and electrolyte interface to further inhibit the polysulfide shuttle. By this simple and convenient method, the resultant Lisbnd S batteries achieved exceptional cycling stability with an ultralow decay rate of 0.055% since the 10th cycle.

  7. Thermal stability of plant sterols and formation of their oxidation products in vegetable oils and margarines upon controlled heating.

    PubMed

    Lin, Yuguang; Knol, Diny; Valk, Iris; van Andel, Vincent; Friedrichs, Silvia; Lütjohann, Dieter; Hrncirik, Karel; Trautwein, Elke A

    2017-02-02

    Fat-based products like vegetable oils and margarines are commonly used for cooking, which may enhance oxidation of plant sterols (PS) present therein, leading to the formation of PS oxidation products (POP). The present study aims to assess the kinetics of POP formation in six different fat-based products. Vegetable oils and margarines without and with added PS (7.5-7.6% w/w) in esterified form were heated in a Petri-dish at temperatures of 150, 180 and 210°C for 8, 12 and 16min. PS and POP were analysed using GC-FID and GC-MS-SIM, respectively. Increasing PS content, temperature and heating time led to higher POP formation in all tested fat-based products. PS (either naturally occurring or added) in margarines were less susceptible to oxidation as compared to PS in vegetable oils. The susceptibility of sitosterol to oxidation was about 20% lower than that of campesterol under all the applied experimental conditions. During heating, the relative abundance of 7-keto-PS (expressed as% of total POP) decreased in all the fat-based products regardless of their PS contents, which was accompanied by an increase in the relative abundance of 7-OH-PS and 5,6-epoxy-PS, while PS-triols were fairly unchanged. In conclusion, heating time, temperature, initial PS content and the matrix of the fat-based products (vegetable oil vs. margarine) showed distinct effects on POP formation and composition of individual POP formed.

  8. Electronic and mechanical properties, phase stability, and formation energies of point defects of niobium boronitride Nb2BN

    NASA Astrophysics Data System (ADS)

    Suetin, D. V.; Shein, I. R.

    2017-08-01

    The electronic structure, Fermi surface, Sommerfeld and Pauli paramagnetic susceptibility coefficients, cohesive energies, phase and point defect formation energies, elastic constants, bulk, shear, and Young moduli, Poisson ratios, and Vickers microhardness of niobium boronitride Nb2BN are determined by the ab initio FLAPW-GGA full-potential method. The obtained values are discussed in comparison with similar data for Mo2BC and other related binary carbides, nitrides, and borides of transition metals, and with available experimental data.

  9. Numerical Study of the Formation, Ion Spin-up and Nonlinear Stability Properties of Field-reversed Configurations

    SciTech Connect

    E.V. Belova; R.C. Davidson; H. Ji; M. Yamada; C.D. Cothran; M.R. Brown; M.J. Schaffer

    2004-11-12

    Results of three-dimensional numerical simulations of field-reversed configurations (FRCs) are presented. Emphasis of this work is on the nonlinear evolution of magnetohydrodynamic (MHD) instabilities in kinetic FRCs and the new FRC formation method by the counter-helicity spheromak merging. Kinetic simulations show nonlinear saturation of the n = 1 tilt mode, where n is the toroidal mode number. The n = 2 and n = 3 rotational modes are observed to grow during the nonlinear phase of the tilt instability due to the ion spin-up in the toroidal direction. The ion toroidal spin-up is shown to be related to the resistive decay of the internal flux, and the resulting loss of particle confinement. Three-dimensional MHD simulations of counter-helicity spheromak merging and FRC formation show good agreement with results from the SSX-FRC experiment. Simulations show formation of an FRC in about 30 Alfven times for typical experimental parameters. The growth rate of the n = 1 tilt mode is shown to be significantly reduced compared to the MHD growth rate due to the large plasma viscosity and field-line-tying effects.

  10. Bacterial adhesion and biofilm formation on yttria-stabilized, tetragonal zirconia and titanium oral implant materials with low surface roughness - an in situ study.

    PubMed

    Al-Ahmad, Ali; Karygianni, Lamprini; Schulze Wartenhorst, Max; Bächle, Maria; Hellwig, Elmar; Follo, Marie; Vach, Kirstin; Han, Jung-Suk

    2016-04-19

    Bacterially-driven mucosal inflammation and the development of periimplantitis can lead to oral implant failure. In this study, initial bacterial adhesion after 2 h and biofilm formation after 1 day and 3 days were analyzed in situ on novel 3 mol% yttria-stabilized tetragonal zirconia polycrystal samples (Zr; 3Y-TZP), as well as on alumina and niobium co-doped yttria-stabilized tetragonal zirconia samples (Al-Zr; Al2O3/Y(Nb)-TZP). Pure titanium implant material (Ti) and bovine enamel slabs (BES) served as controls. The initially adherent oral bacteria were determined by DAPI-staining. Biofilm thickness, surface covering grade and content of oral streptococci within the biofilm were measured by fluorescence in situ hybridization. No significant differences between the ceramic and titanium surfaces were detectable for either initial bacterial adhesion or the oral streptococci content of the in situ biofilm. The values of oral biofilm thickness on the implant surfaces were almost doubled after three days compared to the first day of oral exposure. Nevertheless, the biofilm thickness values among the different implant surfaces and controls did not differ significantly for any time point of measurement after 1 day or 3 days of biofilm formation. Significant differences in the covering grade were only detected between day 1 and day 3 for each tested implant material group. The content of oral streptococci increased significantly in parallel with the increase of biofilm age from day 1 to day 3. In conclusion, oral implant zirconia surfaces with low surface roughness are comparable to titanium surfaces with regard to initial bacterial adhesion and biofilm formation.

  11. Characterization of nitrogen-bridged 1,2,4,5-tetrazine-, furazan-, and 1H-tetrazole-based polyheterocyclic compounds: heats of formation, thermal stability, and detonation properties.

    PubMed

    Wei, Tao; Wu, Jianzhang; Zhu, Weihua; Zhang, Chenchen; Xiao, Heming

    2012-08-01

    The heats of formation (HOFs), thermal stability, and detonation properties for a series of nitrogen-bridged 1,2,4,5-tetrazine-, furazan-, and 1H-tetrazole-based polyheterocyclic compounds (3,6-bis(1H-1,2,3,4-tetrazole-5-ylamino)-1,2,4,5- tetrazine (TST), 3,6-bis(furazan-5-ylamino)-1,2,4,5-tetrazine (FSF), 3,4-bis(1,2,4,5- tetrazine-3-ylamino)-furazan (SFS), 3,4-bis(1H-1,2,3,4-tetrazole-5-ylamino)-furazan (TFT), 1,5-bis(1,2,4,5-tetrazine-3-ylamino)-1H-1,2,3,4-tetrazole (STS), and 1,5-bis(furazan-3-ylamino)-1H-1,2,3,4-tetrazole (FTF) derivatives) were systematically studied by using density functional theory. The results show that the -N(3) or -NHNH(2) group plays a very important role in increasing the HOF values of the derivatives. Among these series, the SFS derivatives have lower energy gaps, while the TFT derivatives have higher ones. Incorporation of the -NH(2) group into the FSF, SFS, STS, or FTF ring is favorable for enhancing its thermal stability, whereas the substitution of the -NHNH(2) group could increase the thermal stability of the TST, SFS, STS, or FTF ring. The calculated detonation properties indicate that the -NO(2) or -NF(2) is very helpful for enhancing the detonation performance for these derivatives. Considering the detonation performance and thermal stability, six derivatives may be regarded as promising candidates of high-energy density materials (HEDMs). These results provide basic information for the molecular design of novel HEDMs.

  12. Real-Time Detection Reveals Responsive Cotranscriptional Formation of Persistent Intramolecular DNA and Intermolecular DNA:RNA Hybrid G-Quadruplexes Stabilized by R-Loop.

    PubMed

    Zhao, Yang; Zhang, Jia-Yu; Zhang, Zong-Yu; Tong, Tan-Jun; Hao, Yu-Hua; Tan, Zheng

    2017-06-06

    G-quadruplex (GQ) structures are implicated in important physiological and pathological processes. Millions of GQ-forming motifs are enriched near transcription start sites (TSSs) of animal genes. Transcription can induce the formation of GQs, which in turn regulate transcription. The kinetics of the formation and persistence of GQs in transcription is crucial for the role they play but has not yet been explored. We established a method based on the fluorescence resonance energy transfer (FRET) technique to monitor in real-time the cotranscriptional formation and post-transcriptional persistence of GQs in DNA. Using a T7 transcription model, we demonstrate that a representative intramolecular DNA GQ and DNA:RNA hybrid GQ promptly form in proportion to transcription activity and, once formed, are maintained for hours or longer at physiological temperature even after transcription is stopped. Both their formation and persistence strongly depend on R-loop, a DNA:RNA hybrid duplex formed during transcription. Enzymatic removal of R-loop dramatically slows their formation and accelerates their unfolding. These results suggest that a transcription event is promptly read-out by GQ-forming motifs and the GQ formed can either perform regulation in fast response to transcription and/or memorized in DNA to mediate time-delayed regulation under the control of RNA metabolism and GQ-resolving activity. Alternatively, GQs need to be timely resolved to warrant success of translocating activities such as replication. The kinetic characteristics of GQs and its connection with the R-loop may have implications in transcription regulation, signal transduction, G-quadruplex processing, and genome stability.

  13. Facile formation of dendrimer-stabilized gold nanoparticles modified with diatrizoic acid for enhanced computed tomography imaging applications

    NASA Astrophysics Data System (ADS)

    Peng, Chen; Li, Kangan; Cao, Xueyan; Xiao, Tingting; Hou, Wenxiu; Zheng, Linfeng; Guo, Rui; Shen, Mingwu; Zhang, Guixiang; Shi, Xiangyang

    2012-10-01

    We report a facile approach to forming dendrimer-stabilized gold nanoparticles (Au DSNPs) through the use of amine-terminated fifth-generation poly(amidoamine) (PAMAM) dendrimers modified by diatrizoic acid (G5.NH2-DTA) as stabilizers for enhanced computed tomography (CT) imaging applications. In this study, by simply mixing G5.NH2-DTA dendrimers with gold salt in aqueous solution at room temperature, dendrimer-entrapped gold nanoparticles (Au DENPs) with a mean core size of 2.5 nm were able to be spontaneously formed. Followed by an acetylation reaction to neutralize the dendrimer remaining terminal amines, Au DSNPs with a mean size of 6 nm were formed. The formed DTA-containing [(Au0)50-G5.NHAc-DTA] DSNPs were characterized via different techniques. We show that the Au DSNPs are colloid stable in aqueous solution under different pH and temperature conditions. In vitro hemolytic assay, cytotoxicity assay, flow cytometry analysis, and cell morphology observation reveal that the formed Au DSNPs have good hemocompatibility and are non-cytotoxic at a concentration up to 3.0 μM. X-ray absorption coefficient measurements show that the DTA-containing Au DSNPs have enhanced attenuation intensity, much higher than that of [(Au0)50-G5.NHAc] DENPs without DTA or Omnipaque at the same molar concentration of the active element (Au or iodine). The formed DTA-containing Au DSNPs can be used for CT imaging of cancer cells in vitro as well as for blood pool CT imaging of mice in vivo with significantly improved signal enhancement. With the two radiodense elements of Au and iodine incorporated within one particle, the formed DTA-containing Au DSNPs may be applicable for CT imaging of various biological systems with enhanced X-ray attenuation property and detection sensitivity.We report a facile approach to forming dendrimer-stabilized gold nanoparticles (Au DSNPs) through the use of amine-terminated fifth-generation poly(amidoamine) (PAMAM) dendrimers modified by diatrizoic acid

  14. CYLD regulates spindle orientation by stabilizing astral microtubules and promoting dishevelled-NuMA-dynein/dynactin complex formation

    PubMed Central

    Yang, Yunfan; Liu, Min; Li, Dengwen; Ran, Jie; Gao, Jinmin; Suo, Shaojun; Sun, Shao-Cong; Zhou, Jun

    2014-01-01

    Oriented cell division is critical for cell fate specification, tissue organization, and tissue homeostasis, and relies on proper orientation of the mitotic spindle. The molecular mechanisms underlying the regulation of spindle orientation remain largely unknown. Herein, we identify a critical role for cylindromatosis (CYLD), a deubiquitinase and regulator of microtubule dynamics, in the control of spindle orientation. CYLD is highly expressed in mitosis and promotes spindle orientation by stabilizing astral microtubules and deubiquitinating the cortical polarity protein dishevelled. The deubiquitination of dishevelled enhances its interaction with nuclear mitotic apparatus, stimulating the cortical localization of nuclear mitotic apparatus and the dynein/dynactin motor complex, a requirement for generating pulling forces on astral microtubules. These findings uncover CYLD as an important player in the orientation of the mitotic spindle and cell division and have important implications in health and disease. PMID:24469800

  15. Quantum many-body intermetallics: Phase stability of Fe3Al and small-gap formation in Fe2VAl

    NASA Astrophysics Data System (ADS)

    Kristanovski, Oleg; Richter, Raphael; Krivenko, Igor; Lichtenstein, Alexander I.; Lechermann, Frank

    2017-01-01

    Various intermetallic compounds harbor subtle electronic correlation effects. To elucidate this fact for the Fe-Al system, we perform a realistic many-body investigation based on a combination of density functional theory with dynamical mean-field theory in a charge self-consistent manner. A better characterization and understanding of the phase stability of bcc-based D 03-Fe3Al through an improved description of the correlated charge density and the magnetic energy is achieved. Upon replacement of one Fe sublattice with V, the Heusler compound Fe2VAl is realized, known to display bad-metal behavior and increased specific heat. Here we document a charge-gap opening at low temperatures in line with previous experimental work. The gap structure does not match conventional band theory and is reminiscent of (pseudo)gap characteristics in correlated oxides.

  16. Learning to read as the formation of a dynamic system: evidence for dynamic stability in phonological recoding

    PubMed Central

    Fletcher-Flinn, Claire M.

    2014-01-01

    Two aspects of dynamic systems approaches that are pertinent to developmental models of reading are the emergence of a system with self-organizing characteristics, and its evolution over time to a stable state that is not easily modified or perturbed. The effects of dynamic stability may be seen in the differences obtained in the processing of print by beginner readers taught by different approaches to reading (phonics and text-centered), and more long-term effects on adults, consistent with these differences. However, there is little direct evidence collected over time for the same participants. In this study, lexicalized (implicit) phonological processing, and explicit phonological and letter-sound skills are further examined in a precocious reader whose early development at 3 and 5 years has been extensively described (Cognition, 2000, 2004). At ages 10 and 14 years, comparisons were made with these earlier reports and skilled adult readers, using the same tasks for evidence of changes in reading processes. The results showed that along with an increase of reading accuracy and speed, her pattern of lexicalized phonological responses for reading did not change over time. Neither did her pattern of explicit phonological and letter-sound skills, aspects of which were inferior to her lexicalized phonological processing, and word reading. These results suggest dynamic stability of the word reading system. The early emergence of this system with minimal explicit skill development calls into question developmental reading theories that require such skills for learning to read. Currently, only the Knowledge Sources theory of reading acquisition can account for such findings. Consideration of these aspects of dynamic systems raise theoretical issues that could result in a paradigm shift with regard to best practice and intervention. PMID:25071635

  17. Intrinsic karyotype stability and gene copy number variations may have laid the foundation for tetraploid wheat formation.

    PubMed

    Zhang, Huakun; Bian, Yao; Gou, Xiaowan; Dong, Yuzhu; Rustgi, Sachin; Zhang, Bangjiao; Xu, Chunming; Li, Ning; Qi, Bao; Han, Fangpu; von Wettstein, Diter; Liu, Bao

    2013-11-26

    Polyploidy or whole-genome duplication is recurrent in plant evolution, yet only a small fraction of whole-genome duplications has led to successful speciation. A major challenge in the establishment of nascent polyploids is sustained karyotype instability, which compromises fitness. The three putative diploid progenitors of bread wheat, with AA, SS (S ∼ B), and DD genomes occurred sympatrically, and their cross-fertilization in different combinations may have resulted in fertile allotetraploids with various genomic constitutions. However, only SSAA or closely related genome combinations have led to the speciation of tetraploid wheats like Triticum turgidum and Triticum timopheevii. We analyzed early generations of four newly synthesized allotetraploid wheats with genome compositions S(sh)S(sh)A(m)A(m), S(l)S(l)AA, S(b)S(b)DD, and AADD by combined fluorescence and genomic in situ hybridization-based karyotyping. Results of karyotype analyses showed that although S(sh)S(sh)A(m)A(m) and S(l)S(l)AA are characterized by immediate and persistent karyotype stability, massive aneuploidy and extensive chromosome restructuring are associated with S(b)S(b)DD and AADD in which parental subgenomes showed markedly different propensities for chromosome gain/loss and rearrangements. Although compensating aneuploidy and reciprocal translocation between homeologs prevailed, reproductive fitness was substantially compromised due to chromosome instability. Strikingly, localized genomic changes in repetitive DNA and copy-number variations in gene homologs occurred in both chromosome stable lines, S(sh)S(sh)A(m)A(m) and S(l)S(l)AA. Our data demonstrated that immediate and persistent karyotype stability is intrinsic to newly formed allotetraploid wheat with genome combinations analogous to natural tetraploid wheats. This property, coupled with rapid gene copy-number variations, may have laid the foundation of tetraploid wheat establishment.

  18. Effects of Size and Stability of Native Fat Globules on the Formation of Milk Gel Induced by Rennet.

    PubMed

    Luo, Jie; Wang, Yuhan; Guo, Huiyuan; Ren, Fazheng

    2017-03-01

    Rennet-induced gelation crucially impacts cheese structure. In this study, effects of the size and stability of native fat globules on the kinetics of rennet-induced coagulation were revealed by determining the caseinomacropeptide release rate and rheological properties of milk. Moreover, the mobility and stability of fat globules during renneting was revealed using diffusing wave spectroscopy and confocal laser scanning microscopy. By use of a 2-stage gravity separation combined centrifugation scheme, native fat globules were selectively separated into small (SFG, D4,3 = 1.87 ± 0.02 μm) and large fat globules (LFG, D4,3 = 5.65 ± 0.03 μm). The protein and fat content of SFG and LFG milk were then standardized to 3.2 g/100 mL and 1.2 g/100 mL, respectively. The milk containing different sized globules were then subjected to renneting experiments in the laboratory. Reduction of globule size accelerated the aggregation of casein micelles during renneting, giving a shorter gelation time and earlier 1/l(*) change. The gel produced from LFG milk was broken due to coalescent fat globules and generated coarser gel strands compared to the finer strands formed with SFG milk. Structural differences were also confirmed with a higher final storage modulus of the curd made from SFG milk than that from the LFG. In conclusion, the size of fat globules affects the aggregation of casein micelles. Moreover, fat globule coalescence and creaming during renneting, also affects the structure of the rennet gel. A better understanding of the size of globules effect on milk gelation could lead to the development of cheese with specific properties. © 2017 Institute of Food Technologists®.

  19. Intrinsic karyotype stability and gene copy number variations may have laid the foundation for tetraploid wheat formation

    PubMed Central

    Zhang, Huakun; Bian, Yao; Gou, Xiaowan; Dong, Yuzhu; Rustgi, Sachin; Zhang, Bangjiao; Xu, Chunming; Li, Ning; Qi, Bao; Han, Fangpu; von Wettstein, Diter; Liu, Bao

    2013-01-01

    Polyploidy or whole-genome duplication is recurrent in plant evolution, yet only a small fraction of whole-genome duplications has led to successful speciation. A major challenge in the establishment of nascent polyploids is sustained karyotype instability, which compromises fitness. The three putative diploid progenitors of bread wheat, with AA, SS (S ∼ B), and DD genomes occurred sympatrically, and their cross-fertilization in different combinations may have resulted in fertile allotetraploids with various genomic constitutions. However, only SSAA or closely related genome combinations have led to the speciation of tetraploid wheats like Triticum turgidum and Triticum timopheevii. We analyzed early generations of four newly synthesized allotetraploid wheats with genome compositions SshSshAmAm, SlSlAA, SbSbDD, and AADD by combined fluorescence and genomic in situ hybridization-based karyotyping. Results of karyotype analyses showed that although SshSshAmAm and SlSlAA are characterized by immediate and persistent karyotype stability, massive aneuploidy and extensive chromosome restructuring are associated with SbSbDD and AADD in which parental subgenomes showed markedly different propensities for chromosome gain/loss and rearrangements. Although compensating aneuploidy and reciprocal translocation between homeologs prevailed, reproductive fitness was substantially compromised due to chromosome instability. Strikingly, localized genomic changes in repetitive DNA and copy-number variations in gene homologs occurred in both chromosome stable lines, SshSshAmAm and SlSlAA. Our data demonstrated that immediate and persistent karyotype stability is intrinsic to newly formed allotetraploid wheat with genome combinations analogous to natural tetraploid wheats. This property, coupled with rapid gene copy-number variations, may have laid the foundation of tetraploid wheat establishment. PMID:24218593

  20. Fibril stability in solutions of twisted Format="TEX"/>-sheet peptides: a new kind of micellization in chiral systems

    NASA Astrophysics Data System (ADS)

    Nyrkova, I. A.; Semenov, A. N.; Aggeli, A.; Boden, N.

    2000-10-01

    The problem of fibril (fibre) formation in chiral systems is explored theoretically being supported by experiments on synthetic de novo 11-mer peptide forming self-assembled -sheet tapes. Experimental data unambiguously indicate that the tapes form fibrils of nearly monodisperse thickness ca. 8-10 nm. Fibril formation and stabilisation are attributed to inter-tape face-to-face attraction and their intrinsic twist, correspondingly. The proposed theory is capable of predicting the fibril aggregation number and its equilibrium twist in terms of molecular parameters of the primary tapes. The suggested novel mechanism of twist stabilisation of finite aggregates (fibrils) is different to the well-known stabilisation of micelles in amphiphilic systems, and it is likely to explain the formation and stability of fibrils in a wide variety of systems including proteinaceous amyloid fibres, sickle-cell hemoglobin fibres responsible for HbS anemia, corkscrew threads found in chromonics in the presence of chiral additives and native cellulose microfibrillar crystallites. The theory also makes it possible to extract the basic molecular parameters of primary tapes (inter-tape attraction energy, helical twist step, elastic moduli) from the experimental data.

  1. Aspartase/fumarase superfamily: a common catalytic strategy involving general base-catalyzed formation of a highly stabilized aci-carboxylate intermediate.

    PubMed

    Puthan Veetil, Vinod; Fibriansah, Guntur; Raj, Hans; Thunnissen, Andy-Mark W H; Poelarends, Gerrit J

    2012-05-29

    Members of the aspartase/fumarase superfamily share a common tertiary and quaternary fold, as well as a similar active site architecture; the superfamily includes aspartase, fumarase, argininosuccinate lyase, adenylosuccinate lyase, δ-crystallin, and 3-carboxy-cis,cis-muconate lactonizing enzyme (CMLE). These enzymes all process succinyl-containing substrates, leading to the formation of fumarate as the common product (except for the CMLE-catalyzed reaction, which results in the formation of a lactone). In the past few years, X-ray crystallographic analysis of several superfamily members in complex with substrate, product, or substrate analogues has provided detailed insights into their substrate binding modes and catalytic mechanisms. This structural work, combined with earlier mechanistic studies, revealed that members of the aspartase/fumarase superfamily use a common catalytic strategy, which involves general base-catalyzed formation of a stabilized aci-carboxylate (or enediolate) intermediate and the participation of a highly flexible loop, containing the signature sequence GSSxxPxKxN (named the SS loop), in substrate binding and catalysis.

  2. Layered double hydroxide stability. 2. Formation of Cr(III)-containing layered double hydroxides directly from solution

    NASA Technical Reports Server (NTRS)

    Boclair, J. W.; Braterman, P. S.; Jiang, J.; Lou, S.; Yarberry, F.

    1999-01-01

    Solutions containing divalent metal [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+] chlorides and CrCl3 6H2O were titrated with NaOH to yield, for M(II) = Zn, Co, and Ni, hydrotalcite-like layered double hydroxides (LDHs), [[M(II)]1-z[Cr(III)]z(OH)2][Cl]z yH2O, in a single step, without intermediate formation of chromium hydroxide. Analysis of the resultant titration curves yields solubility constants for these compounds. These are in the order Zn < Ni approximately Co, with a clear preference for formation of the phase with z = 1/3. With Mg2+ as chloride, titration gives a mixture of Cr(OH)3 and Mg(OH)2, but the metal sulfates give Mg2Cr(OH)6 1/2(SO4) by a two-step process. Titrimetric and spectroscopic evidence suggests short-range cation order in the one-step LDH systems.

  3. Sequential pH-driven dimerization and stabilization of the N-terminal domain enables rapid spider silk formation.

    PubMed

    Kronqvist, Nina; Otikovs, Martins; Chmyrov, Volodymyr; Chen, Gefei; Andersson, Marlene; Nordling, Kerstin; Landreh, Michael; Sarr, Médoune; Jörnvall, Hans; Wennmalm, Stefan; Widengren, Jerker; Meng, Qing; Rising, Anna; Otzen, Daniel; Knight, Stefan D; Jaudzems, Kristaps; Johansson, Jan

    2014-01-01

    The mechanisms controlling the conversion of spider silk proteins into insoluble fibres, which happens in a fraction of a second and in a defined region of the silk glands, are still unresolved. The N-terminal domain changes conformation and forms a homodimer when pH is lowered from 7 to 6; however, the molecular details still remain to be determined. Here we investigate site-directed mutants of the N-terminal domain from Euprosthenops australis major ampullate spidroin 1 and find that the charged residues D40, R60 and K65 mediate intersubunit electrostatic interactions. Protonation of E79 and E119 is required for structural conversions of the subunits into a dimer conformation, and subsequent protonation of E84 around pH 5.7 leads to the formation of a fully stable dimer. These residues are highly conserved, indicating that the now proposed three-step mechanism prevents premature aggregation of spidroins and enables fast formation of spider silk fibres in general.

  4. Formation of 3-MCPD Fatty Acid Esters from Monostearoyl Glycerol and the Thermal Stability of 3-MCPD Monoesters.

    PubMed

    Zhao, Yue; Zhang, Yaqiong; Zhang, Zhongfei; Liu, Jie; Wang, Yi-Lin; Gao, Boyan; Niu, Yuge; Sun, Xiangjun; Yu, Liangli

    2016-11-23

    Formation of 3-monochloropropanediol (3-MCPD) esters from monostearoyl glycerol (MSG) was investigated under high temperature and low moisture conditions. Different organic and inorganic chlorides, including lindane, KCl, CaCl2, NaCl, MgCl2, AlCl3, CuCl2, MnCl2, SnCl2, ZnCl2, and FeCl3, were evaluated for their potential to react with MSG to form 3-MCPD and glycidyl esters at 120 and 240 °C using a UPLC-Q-TOF MS analysis. The results indicated that different chlorine compounds differed in their capacity to react with MSG and formed different products including 3-MCPD mono- and diesters, distearoylglycerol, and glycidyl esters. According to electron spin resonance (ESR) and Fourier transform infrared (FT-IR) spectroscopies, free radical mediated formation mechanisms involving either five-membered or six-membered cyclic acyloxonium free radicals (CAFR) from monoacylglycerol (MAG) were proposed. Tandem quadrupole-time-of-flight (Q-TOF) MS and MS/MS analyses confirmed the free radical mechanisms. In addition, the results from the present study showed that 3-MCPD monoester could be degraded upon thermal treatment and suggested a possible catalytic role of Fe(3+) under the experimental conditions.

  5. Layered double hydroxide stability. 2. Formation of Cr(III)-containing layered double hydroxides directly from solution

    NASA Technical Reports Server (NTRS)

    Boclair, J. W.; Braterman, P. S.; Jiang, J.; Lou, S.; Yarberry, F.

    1999-01-01

    Solutions containing divalent metal [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+] chlorides and CrCl3 6H2O were titrated with NaOH to yield, for M(II) = Zn, Co, and Ni, hydrotalcite-like layered double hydroxides (LDHs), [[M(II)]1-z[Cr(III)]z(OH)2][Cl]z yH2O, in a single step, without intermediate formation of chromium hydroxide. Analysis of the resultant titration curves yields solubility constants for these compounds. These are in the order Zn < Ni approximately Co, with a clear preference for formation of the phase with z = 1/3. With Mg2+ as chloride, titration gives a mixture of Cr(OH)3 and Mg(OH)2, but the metal sulfates give Mg2Cr(OH)6 1/2(SO4) by a two-step process. Titrimetric and spectroscopic evidence suggests short-range cation order in the one-step LDH systems.

  6. Synergy of Membrane Curvature-Stabilization and Electrostatic Interaction leads to Formation of Block Liposomes by Colossal Charged Lipids

    NASA Astrophysics Data System (ADS)

    Zidovska, Alexandra; Ewert, Kai K.; Safinya, Cyrus R.; Quispe, Joel; Carragher, Bridget; Potter, Clinton S.

    2008-03-01

    Recently, we have reported block liposomes (BLs), a new vesicle phase formed in mixtures of MVLBG2, DOPC and water (A. Zidovska et al., Submitted, 2007), where MVLBG2 is a newly synthesized highly charged (16+) lipid (K. Ewert et al., JACS, 2006) with giant dendrimer-like headgroup. BLs are liposomes consisting of distinctly shaped nanoscale spheres, pears, tubes, or rods connected into blocks. In this work we investigate the contribution of spontaneous curvature and membrane charge density to the formation of BLs. By comparing with a system of matching membrane charge density but zero spontaneous curvature and by screening the charge of MVLBG2 but keeping the curvature constant, we were able to identify both, spontaneous curvature and membrane charge, as critical parameters for BLs-formation. The effect of salt and pH on the shape evolution of the BLs was also carefully studied. Funding provided by DOE DE-FG-02-06ER46314, NIH GM-59288, NSF DMR-0503347.

  7. On the formation of phases and their influence on the thermal stability and thermoelectric properties of nanostructured zinc antimonide

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Priyadarshini; Battabyal, Manjusha; Sivaprahasam, Duraiswamy; Gopalan, Raghavan

    2017-01-01

    To investigate the thermal reliability of the structure and thermoelectric properties of the zinc antimony compounds, undoped (Zn4Sb3) and doped (Zn4Sb2.95Sn0.05 and Co0.05Zn3.95Sb3) zinc antimonide samples were processed using the powder metallurgy route. It was observed that the as-prepared undoped sample contains a pure β-Zn4Sb3 phase, whereas the doped samples consist of Ω-ZnSb as the major phase and β-Zn4Sb3 as the minor phase. Differential scanning calorimetry analysis confirms the stability of the β-Zn4Sb3 phase up to 600 K. X-ray diffraction data of the undoped and doped samples show that the nanocrystallinity of the as-prepared samples is retained after one thermal cycle. The thermal bandgap, thermopower and thermal conductivity are not affected by the thermal cycle for the doped samples. A maximum power factor of 0.6 mW m-1 K-2 was achieved in the Sn-doped sample (Zn4Sb2.95Sn0.05). This is enhanced to 0.72 mW m-1 K-2 after one thermal cycle at 650 K under Ar atmosphere and slightly decreases after the third thermal cycle. In the case of the Co-doped sample (Co0.05Zn3.95Sb3), the power factor increases from 0.4 mW m-1 K-2 to 0.7 mW m-1 K-2 after the third thermal cycle. A figure of merit of ~0.3 is achieved at 573 K in the Zn4Sb2.95Sn0.05 sample. The results from the nanoindentation experiment show that Young’s modulus of the Sn-doped sample (Zn4Sb2.95Sn0.05) after the thermal cycle is enhanced (96 GPa) compared to the as-prepared sample (~76 GPa). These important findings on the thermal stability of the thermoelectric and mechanical properties of Sn-doped samples (Zn4Sb2.95Sn0.05) confirm that Sn-doped zinc antimonide samples can be used as efficient thermoelectric materials for device applications.

  8. Structure, stability, and formation pathways of colloidal gels in systems with short-range attraction and long-range repulsion.

    PubMed

    van Schooneveld, Matti M; de Villeneuve, Volkert W A; Dullens, Roel P A; Aarts, Dirk G A L; Leunissen, Mirjam E; Kegel, Willem K

    2009-04-09

    We study colloidal gels formed upon centrifugation of dilute suspensions of spherical colloids (radius 446 nm) that interact through a long-range electrostatic repulsion (Debye length approximately 850 nm) and a short-range depletion attraction (approximately 12.5 nm), by means of confocal scanning laser microscopy (CSLM). In these systems, at low colloid densities, colloidal clusters are stable. Upon increasing the density by centrifugation, at different stages of cluster formation, we show that colloidal gels are formed that significantly differ in structure. While significant single-particle displacements do not occur on the hour time scale, the different gels slowly evolve within several weeks to a similar structure that is at least stable for over a year. Furthermore, while reference systems without long-range repulsion collapse into dense glassy states, the repulsive colloidal gels are able to support external stress in the form of a centrifugal field of at least 9g.

  9. Thermal stability of polyethylene terephthalate food contact materials: formation of volatiles from retain samples and implications for recycling.

    PubMed

    Freire, M T; Castle, L; Reyes, F G; Damant, A P

    1998-01-01

    PET packaging materials have been tested for volatile content after exposure to high temperatures. Samples included laminates, bottles, and roasting bags, and were heated at 120 degrees C, 150 degrees C and 230 degrees C for 50 min, according to sample type. Volatiles released from the material were trapped on Tenax, identified by GC-MS and assessed against a 10 micrograms/kg migration threshold limit. Few volatiles were found for samples composed only of PET. Volatiles from laminates varied according to the sample structure, but the main substances identified were not related to PET, but probably came from printing inks and adhesives. It is concluded that the migration potential of PET in high temperature applications is very low and that the formation of volatiles during use is unlikely to cause any special problems in polymer recovery in recycling schemes, provided that other packaging residues are removed effectively.

  10. Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments

    PubMed Central

    2011-01-01

    Background Nanoemulsions have practical application in a multitude of commercial areas, such as the chemical, pharmaceutical and cosmetic industries. Cosmetic industries use rice bran oil in sunscreen formulations, anti ageing products and in treatments for skin diseases. The aim of this study was to create rice bran oil nanoemulsions using low energy emulsification methods and to evaluate their physical stability, irritation potential and moisturising activity on volunteers with normal and diseased skin types. Results The nanoemulsion developed by this phase diagram method was composed of 10% rice bran oil, 10% surfactants sorbitan oleate/PEG-30 castor oil, 0.05% antioxidant and 0.50% preservatives formulated in distilled water. The nanoemulsion was stable over the time course of this study. In vitro assays showed that this formulation has a low irritation potential, and when applied to human skin during in vivo studies, the nanoemulsion improved the skin's moisture and maintained normal skin pH values. Conclusion The results of irritation potential studies and in vivo assessments indicate that this nanoemulsion has potential to be a useful tool to treat skin diseases, such as atopic dermatitis and psoriasis. PMID:21952107

  11. The study of polyplex formation and stability by time-resolved fluorescence spectroscopy of SYBR Green I-stained DNA.

    PubMed

    D'Andrea, Cosimo; Pezzoli, Daniele; Malloggi, Chiara; Candeo, Alessia; Capelli, Giulio; Bassi, Andrea; Volonterio, Alessandro; Taroni, Paola; Candiani, Gabriele

    2014-12-01

    Polyplexes are nanoparticles formed by the self-assembly of DNA/RNA and cationic polymers specifically designed to deliver exogenous genetic material to cells by a process called transfection. There is a general consensus that a subtle balance between sufficient extracellular protection and intracellular release of nucleic acids is a key factor for successful gene delivery. Therefore, there is a strong need to develop suitable tools and techniques for enabling the monitoring of the stability of polyplexes in the biological environment they face during transfection. In this work we propose time-resolved fluorescence spectroscopy in combination with SYBR Green I-DNA dye as a reliable tool for the in-depth characterization of the DNA/vector complexation state. As a proof of concept, we provide essential information on the assembly and disassembly of complexes formed between DNA and each of three cationic polymers, namely a novel promising chitosan-graft-branched polyethylenimine copolymer (Chi-g-bPEI), one of its building block 2 kDa bPEI and the gold standard transfectant 25 kDa bPEI. Our results highlight the higher information content provided by the time-resolved studies of SYBR Green I/DNA, as compared to conventional steady state measurements of ethidium bromide/DNA that enabled us to draw relationships among fluorescence lifetime, polyplex structural changes and transfection efficiency.

  12. Formation of the -N(NO)N(NO)- polymer at high pressure and stabilization at ambient conditions.

    PubMed

    Xiao, Hai; An, Qi; Goddard, William A; Liu, Wei-Guang; Zybin, Sergey V

    2013-04-02

    A number of exotic structures have been formed through high-pressure chemistry, but applications have been hindered by difficulties in recovering the high-pressure phase to ambient conditions (i.e., one atmosphere and 300 K). Here we use dispersion-corrected density functional theory [PBE-ulg (Perdew-Burke-Ernzerhof flavor of DFT with the universal low gradient correction for long range London dispersion)] to predict that above 60 gigapascal (GPa) the most stable form of N2O (the laughing gas in its molecular form) is a one-dimensional polymer with an all-nitrogen backbone analogous to cis-polyacetylene in which alternate N are bonded (ionic covalent) to O. The analogous trans-polymer is only 0.03∼0.10 eV/molecular unit less stable. Upon relaxation to ambient conditions, both polymers relax below 14 GPa to the same stable nonplanar trans-polymer. The predicted phonon spectrum and dissociation kinetics validates the stability of this trans-poly-NNO at ambient conditions, which has potential applications as a type of conducting nonlinear optical polymer with all-nitrogen chains and as a high-energy oxidizer for rocket propulsion. This work illustrates in silico materials discovery particularly in the realm of extreme conditions (very high pressure or temperature).

  13. Formation of the –N(NO)N(NO)– polymer at high pressure and stabilization at ambient conditions

    PubMed Central

    Xiao, Hai; An, Qi; Goddard, William A.; Liu, Wei-Guang; Zybin, Sergey V.

    2013-01-01

    A number of exotic structures have been formed through high-pressure chemistry, but applications have been hindered by difficulties in recovering the high-pressure phase to ambient conditions (i.e., one atmosphere and 300 K). Here we use dispersion-corrected density functional theory [PBE-ulg (Perdew-Burke-Ernzerhof flavor of DFT with the universal low gradient correction for long range London dispersion)] to predict that above 60 gigapascal (GPa) the most stable form of N2O (the laughing gas in its molecular form) is a one-dimensional polymer with an all-nitrogen backbone analogous to cis-polyacetylene in which alternate N are bonded (ionic covalent) to O. The analogous trans-polymer is only 0.03∼0.10 eV/molecular unit less stable. Upon relaxation to ambient conditions, both polymers relax below 14 GPa to the same stable nonplanar trans-polymer. The predicted phonon spectrum and dissociation kinetics validates the stability of this trans-poly-NNO at ambient conditions, which has potential applications as a type of conducting nonlinear optical polymer with all-nitrogen chains and as a high-energy oxidizer for rocket propulsion. This work illustrates in silico materials discovery particularly in the realm of extreme conditions (very high pressure or temperature). PMID:23503849

  14. Facile Formation of a Solid Electrolyte Interface as a Smart Blocking Layer for High-Stability Sulfur Cathode.

    PubMed

    Guo, Junling; Du, Xinyu; Zhang, Xiaolong; Zhang, Fengxiang; Liu, Jinping

    2017-07-01

    The practical application of lithium-sulfur batteries (LSBs) is hindered by their poor cycle life, which stems mainly from the "redox shuttle reactions" of dissolved polysulfides. To develop a high-performance cathode for LSBs, encapsulation of polysulfides with a blocking layer is potentially straightforward. Herein, a novel strategy is reported encapsulate sulfur and the electrolyte together in porous carbon spheres by using a solid electrolyte interface (SEI) that can selectively sieve Li(+) ions while efficiently avoiding polysulfide accumulation and suppressing undesired polysulfide migration. This strategy is simple, straightforward, and effective. The carbon/sulfur cathode only needs to be cycled a few times within a voltage window of 0.3-1.0 V to form such a smart SEI, allowing the resulting cathode to exhibit superior stability extending 600 cycles. This strategy can be combined with other existing advanced sulfur cathode designs to improve the overall performance of LSBs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Factors that influence the formation and stability of hydrated ferrous sulfate in coal dusts. Possible relation to the emphysema of coal miners

    SciTech Connect

    Huang, Xi; Zalma, R.; Pezerat, H.

    1994-05-01

    Epidemiological studies have shown that a causal relationship may exist between coal dust exposure and emphysema in coal miners. Emphysema can be considered as one of the human pathologies associated with oxidative stress, resulting from oxidant-induced {alpha}{sub 1}-antitrypsin ({alpha}{sub 1}-AT) inactivation and uncontrolled proteolysis of lung tissue. We have previously reported that certain coal dusts contained hydrated ferrous sulfate (FeSO{sub 4}) that inactivated {alpha}{sub 1}-AT. In the present study, we have shown that the FeSO{sub 4} originated from oxidation of pyrite (FeS{sub 2}), which is a typical contaminant of coal dusts. The relative humidity and microenvironmental around individual pyrite particles influence the formation of FeSO{sub 4} in the coal. However, the subsequent human exposure to coal dust containing FeSO{sub 4} depends on the stability of the formed FeSO{sub 4}. We found that pH played the most important role in stabilizing the FeSO{sub 4}, such that a final pH < 4.5 after oxidation of pyrite stabilized FeSO{sub 4}, whereas at high pH the conversion of reactive Fe{sup 2+} to Fe{sup 3+} was immediate. Sulfuric acid (H{sub 2}SO{sub 4}), which is also produced by the oxidation of pyrite, can lower the pH, but it can also be neutralized by other minerals in coal dusts, such as calcite (CaCO{sub 3}). The stability of FeSO{sub 4} in coal dust can also be influenced by the length of exposure to air. Our studies demonstrated that coal samples differed in their capacity to stabilize FeSO{sub 4}. This current study strengthens our previous reported hypothesis that emphysema, which occurs irregularly in coal miners, could be directly related to exposure to coal dust containing FeSO{sub 4}. 35 refs., 3 figs., 4 tabs.

  16. A Benchmarking Analysis for Five Radionuclide Vadose Zone Models (Chain, Multimed{_}DP, Fectuz, Hydrus, and Chain 2D) in Soil Screening Level Calculations

    SciTech Connect

    Chen, J-S.; Drake, R.; Lin, Z.; Jewett, D. G.

    2002-02-26

    Five vadose zone models with different degrees of complexity (CHAIN, MULTIMED{_}DP, FECTUZ, HYDRUS, and CHAIN 2D) were selected for use in radionuclide soil screening level (SSL) calculations. A benchmarking analysis between the models was conducted for a radionuclide ({sup 99}Tc) release scenario at the Las Cruces Trench Site in New Mexico. Sensitivity of three model outputs to the input parameters were evaluated and compared among the models. The three outputs were peak contaminant concentrations, time to peak concentrations at the water table, and time to exceed the contaminants maximum critical level at a representative receptor well. Model parameters investigated include soil properties such as bulk density, water content, soil water retention parameters and hydraulic conductivity. Chemical properties examined include distribution coefficient, radionuclide half-life, dispersion coefficient, and molecular diffusion. Other soil characteristics, such as recharge rate, also were examined. Model sensitivity was quantified in the form of sensitivity and relative sensitivity coefficients. Relative sensitivities were used to compare the sensitivities of different parameters. The analysis indicates that soil water content, recharge rate, saturated soil water content, and soil retention parameter, {beta}, have a great influence on model outputs. In general, the results of sensitivities and relative sensitivities using five models are similar for a specific scenario. Slight differences were observed in predicted peak contaminant concentrations due to different mathematical treatment among models. The results of benchmarking and sensitivity analysis would facilitate the model selection and application of the model in SSL calculations.

  17. ATF7IP-Mediated Stabilization of the Histone Methyltransferase SETDB1 Is Essential for Heterochromatin Formation by the HUSH Complex.

    PubMed

    Timms, Richard T; Tchasovnikarova, Iva A; Antrobus, Robin; Dougan, Gordon; Lehner, Paul J

    2016-10-11

    The histone methyltransferase SETDB1 plays a central role in repressive chromatin processes, but the functional requirement for its binding partner ATF7IP has remained enigmatic. Here, we show that ATF7IP is essential for SETDB1 stability: nuclear SETDB1 protein is degraded by the proteasome upon ablation of ATF7IP. As a result, ATF7IP is critical for repression that requires H3K9 trimethylation by SETDB1, including transgene silencing by the HUSH complex. Furthermore, we show that loss of ATF7IP phenocopies loss of SETDB1 in genome-wide assays. ATF7IP and SETDB1 knockout cells exhibit near-identical defects in the global deposition of H3K9me3, which results in similar dysregulation of the transcriptome. Overall, these data identify a critical functional role for ATF7IP in heterochromatin formation by regulating SETDB1 abundance in the nucleus.

  18. Geological evolution and analysis of confirmed or suspected gas hydrate localities: Volume 7, Basin analysis, formation and stability of gas hydrates in the Colombia Basin

    SciTech Connect

    Finley, P.; Krason, J.

    1986-03-01

    This report presents a geological description of the Columbia Basin, including regional and local structural settings, geomorphology, geological history, stratigraphy, and physical properties. It provides the necessary regional and geological background for more in-depth research of the area. Detailed discussion of bottom simulating acoustic reflectors, sediment acoustic properties, distribution of hydrates within the sediments, and the relation of hydrate distribution to other features such as salt diapirism are also included. The formation and stabilization of gas hydrates in sediments are considered in terms of phase relations, nucleation, and crystallization constraints, gas solubility, pore fluid chemistry, inorganic diagenesis, and sediment organic content. Together with a depositional analysis of the area, this report is a better understanding of the thermal evolution of the locality. It should lead to an assessment of the potential for both biogenic and thermogenic hydrocarbon generation. 66 refs., 49 figs., 5 tabs.

  19. Stability of Microturbulent Drift Modes during Internal Transport Barrier Formation in the Alcator C-Mod Radio Frequency Heated H-mode

    SciTech Connect

    M.H. Redi; C.L. Fiore; W. Dorland; D.R. Mikkelsen; G. Rewoldt; P.T. Bonoli; D.R. Ernst; J.E. Rice; S.J. Wukitch

    2003-11-20

    Recent H-mode experiments on Alcator C-Mod [I.H. Hutchinson, et al., Phys. Plasmas 1 (1994) 1511] which exhibit an internal transport barrier (ITB), have been examined with flux tube geometry gyrokinetic simulations, using the massively parallel code GS2 [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88 (1995) 128]. The simulations support the picture of ion/electron temperature gradient (ITG/ETG) microturbulence driving high xi/ xe and that suppressed ITG causes reduced particle transport and improved ci on C-Mod. Nonlinear calculations for C-Mod confirm initial linear simulations, which predicted ITG stability in the barrier region just before ITB formation, without invoking E x B shear suppression of turbulence. Nonlinear fluxes are compared to experiment, which both show low heat transport in the ITB and higher transport within and outside of the barrier region.

  20. Formation, stability, and mobility of self-trapped excitations in NaI and NaI1-xTlx from first principles

    NASA Astrophysics Data System (ADS)

    Prange, M. P.; Van Ginhoven, R. M.; Govind, N.; Gao, F.

    2013-03-01

    We study the formation, mobility, and stability of self-trapped excitons (STE) and self-trapped holes and electrons in NaI and NaI(Tl) using embedded cluster hybrid density functional theory calculations. This method employs an array of classical charges to provide an environment simulating the interior of an ionic solid in which the electronic structure of a modestly sized quantum-mechanical cluster is computed including nonlocal exchange effects which are necessary to describe localized excitations in NaI. In contrast with previous models, we find that both carriers in pure NaI have similar mobilities, with an activation energy of ˜0.2 eV. We propose an alternate interpretation including a new migration mechanism for the STE. In Tl-doped material excitons preferentially trap at dopants, inducing off-center distortions that have a structure unlike an STE and provide a mechanism for light emission at multiple wavelengths.

  1. Understanding the Mechanism of the Divergent Reactivity of Non-Heteroatom-Stabilized Chromium Carbene Complexes with Furfural Imines: Formation of Benzofurans and Azetines.

    PubMed

    Funes-Ardoiz, Ignacio; González, Jairo; Santamaría, Javier; Sampedro, Diego

    2016-02-19

    The mechanisms of the reaction between non-heteroatom-stabilized alkynyl chromium carbene complexes prepared in situ and furfural imines to yield benzofurans and/or azetines have been explored by means of density functional theory method calculations. The reaction proceeds through a complex cascade of steps triggered by a nucleophilic addition of the imine nitrogen atom. The formation of two benzofuran regioisomers has been explained in terms of competitive nucleophilic attacks to different positions of the carbene complex. Each of these regioisomers can be obtained as the major product depending on the starting materials. The overall sequence could be controlled to yield benzofurans or azetines by adjusting the substituents present in the initial carbene complex. This mechanistic information allowed for the preparation of new benzofurans and azetinylcarbenes in good yields.

  2. Influence of Water Content on the β-Sheet Formation, Thermal Stability, Water Removal, and Mechanical Properties of Silk Materials.

    PubMed

    Yazawa, Kenjiro; Ishida, Kana; Masunaga, Hiroyasu; Hikima, Takaaki; Numata, Keiji

    2016-03-14

    Silk, which has excellent mechanical toughness and is lightweight, is used as a structural material in nature, for example, in silkworm cocoons and spider draglines. However, the industrial use of silk as a structural material has garnered little attention. For silk to be used as a structural material, its thermal processability and associated properties must be well understood. Although water molecules influence the glass transition of silk, the effects of water content on the other thermal properties of silks are not well understood. In this study, we prepared Bombyx mori cocoon raw fibers, degummed fibers, and films with different water contents and then investigated the effects of water content on crystallization, degradation, and water removal during thermal processing. Thermal gravimetric analyses of the silk materials showed that water content did not affect the thermal degradation temperature but did influence the water removal behavior. By increasing the water content of silk, the water molecules were removed at lower temperatures, indicating that the amount of free water in silk materials increased; additionally, the glass transition temperature decreased with increasing water plasticization. Differential scanning calorimetry and wide-angle X-ray scattering of the silk films also suggested that the water molecules in the amorphous regions of the silk films acted as a plasticizer and induced β-sheet crystallization. The plasticizing effect of water was not detected in silk fibers, owing to their lower amorphous content and mobility. The structural and mechanical characterizations of the silk films demonstrated the silk film prepared at RH 97% realized both crystallinity and ductility simultaneously. Thus, the thermal stability, mechanical, and other properties of silk materials are regulated by their water content and crystallinity.

  3. His374 of wheat endoxylanase inhibitor TAXI-I stabilizes complex formation with glycoside hydrolase family 11 endoxylanases.

    PubMed

    Fierens, Katleen; Gils, Ann; Sansen, Stefaan; Brijs, Kristof; Courtin, Christophe M; Declerck, Paul J; De Ranter, Camiel J; Gebruers, Kurt; Rabijns, Anja; Robben, Johan; Campenhout, Steven; Volckaert, Guido; Delcour, Jan A

    2005-11-01

    Wheat endoxylanase inhibitor TAXI-I inhibits microbial glycoside hydrolase family 11 endoxylanases. Crystallographic data of an Aspergillus niger endoxylanase-TAXI-I complex showed His374 of TAXI-I to be a key residue in endoxylanase inhibition. Its role in enzyme-inhibitor interaction was further investigated by site-directed mutagenesis of His374 into alanine, glutamine or lysine. Binding kinetics and affinities of the molecular interactions between A. niger, Bacillus subtilis, Trichoderma longibrachiatumendoxylanases and wild-type TAXI-I and TAXI-I His374 mutants were determined by surface plasmon resonance analysis. Enzyme-inhibitor binding was in accordance with a simple 1 : 1 binding model. Association and dissociation rate constants of wild-type TAXI-I towards the endoxylanases were in the range between 1.96 and 36.1 x 10(4)m(-1) x s(-1) and 0.72-3.60 x 10(-4) x s(-1), respectively, resulting in equilibrium dissociation constants in the low nanomolar range. Mutation of TAXI-I His374 to a variable degree reduced the inhibition capacity of the inhibitor mainly due to higher complex dissociation rate constants (three- to 80-fold increase). The association rate constants were affected to a smaller extent (up to eightfold decrease). Substitution of TAXI-I His374 therefore strongly affects the affinity of the inhibitor for the enzymes. In addition, the results show that His374 plays a critical role in the stabilization of the endoxylanase-TAXI-I complex rather than in the docking of inhibitor onto enzyme.

  4. Formation and stability of manganese-doped ZnS quantum dot monolayers determined by QCM-D and streaming potential measurements.

    PubMed

    Oćwieja, Magdalena; Matras-Postołek, Katarzyna; Maciejewska-Prończuk, Julia; Morga, Maria; Adamczyk, Zbigniew; Sovinska, Svitlana; Żaba, Adam; Gajewska, Marta; Król, Tomasz; Cupiał, Klaudia; Bredol, Michael

    2017-10-01

    Manganese-doped ZnS quantum dots (QDs) stabilized by cysteamine hydrochloride were successfully synthesized. Their thorough physicochemical characteristics were acquired using UV-Vis absorption and photoluminescence spectroscopy, X-ray diffraction, dynamic light scattering (DLS), transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared (FT-IR) spectroscopy. The average particle size, derived from HR-TEM, was 3.1nm, which agrees with the hydrodynamic diameter acquired by DLS, that was equal to 3-4nm, depending on ionic strength. The quantum dots also exhibited a large positive zeta potential varying between 75 and 36mV for ionic strength of 10(-4) and 10(-2)M, respectively (at pH 6.2) and an intense luminescent emission at 590nm. The quantum yield was equal to 31% and the optical band gap energy was equal to 4.26eV. The kinetics of QD monolayer formation on silica substrates (silica sensors and oxidized silicon wafers) under convection-controlled transport was quantitatively evaluated by the quartz crystal microbalance (QCM) and the streaming potential measurements. A high stability of the monolayer for ionic strength 10(-4) and 10(-2)M was confirmed in these measurements. The experimental data were adequately reflected by the extended random sequential adsorption model (eRSA). Additionally, thorough electrokinetic characteristics of the QD monolayers and their stability for various ionic strengths and pH were acquired by streaming potential measurements carried out under in situ conditions. These results were quantitatively interpreted in terms of the three-dimensional (3D) electrokinetic model that furnished bulk zeta potential of particles for high ionic strengths that is impractical by other experimental techniques. It is concluded that these results can be used for designing of biosensors of controlled monolayer structure capable to bind various ligands via covalent as well as electrostatic interactions

  5. Chemical stabilization and improved thermal resilience of molecular arrangements: possible formation of a surface network of bonds by multiple pulse atomic layer deposition.

    PubMed

    de Pauli, Muriel; Matos, Matheus J S; Siles, Pablo F; Prado, Mariana C; Neves, Bernardo R A; Ferreira, Sukarno O; Mazzoni, Mário S C; Malachias, Angelo

    2014-08-14

    In this work, we make use of an atomic layer deposition (ALD) surface reaction based on trimethyl-aluminum (TMA) and water to modify O-H terminated self-assembled layers of octadecylphosphonic acid (OPA). The structural modifications were investigated by X-ray reflectivity, X-ray diffraction, and atomic force microscopy. We observed a significant improvement in the thermal stability of ALD-modified molecules, with the existence of a supramolecular packing structure up to 500 °C. Following the experimental observations, density functional theory (DFT) calculations indicate the possibility of formation of a covalent network with aluminum atoms connecting OPA molecules at terrace surfaces. Chemical stability is also achieved on top of such a composite surface, inhibiting further ALD oxide deposition. On the other hand, in the terrace edges, where the covalent array is discontinued, the chemical conditions allow for oxide growth. Analysis of the DFT results on band structure and density of states of modified OPA molecules suggests that besides the observed thermal resilience, the dielectric character of OPA layers is preserved. This new ALD-modified OPA composite is potentially suitable for applications such as dielectric layers in organic devices, where better thermal performance is required.

  6. Rosmarinus officinalis L. extract and some of its active ingredients as potential emulsion stabilizers: a new approach to the formation of multiple (W/O/W) emulsion.

    PubMed

    Cizauskaite, Ugne; Ivanauskas, Liudas; Jakštas, Valdas; Marksiene, Ruta; Jonaitiene, Laimute; Bernatoniene, Jurga

    2016-09-01

    Nowadays, novel topical formulations loaded with natural functional actives are under intense investigations. Therefore, the aim of our study was to evaluate how the rosemary extract and some of its active ingredients [rosmarinic acid (RA), ursolic acid (UA) and oleanolic acid (OA)] affect technological characteristics of multiple emulsion. Formulation has been prepared by adding investigated solutions (10%) in water/oil/water (W/O/W) multiple emulsion consisting of different lipophilic phases: olive oil and liquid paraffin, with 0.5% emulsifying agent (complex of sodium polyacrylate and polysorbate 20) under constant stirring with mechanical stirrer at room temperature. The emulsion parameters were evaluated using centrifugation test, freeze-thaw cycle test, microscopical and texture analyses. Rosemary's triterpenic saponins UA and OA showed the highest emulsion stabilizing properties: they decreased CI from 3.26% to 10.23% (p < 0.05). According to obtained interfacial tension data, the effect of rosemary active ingredients is not surfactant-like. Even though emulsifier itself at low concentration intends to form directly the multiple emulsion, the obtained results indicate that rosemary extract containing active ingredients does not only serve as functional cosmetic agent due to a number of biological activities, but also offer potential advantages as a stabilizer and an enhancer of W/O/W emulsions formation for dermopharmaceutical and cosmetic preparations.

  7. Effect of ubiquinol-10 on citral stability and off-flavor formation in oil-in-water (O/W) nanoemulsions.

    PubMed

    Zhao, Qin; Ho, Chi-Tang; Huang, Qingrong

    2013-08-07

    The effects of different concentrations of ubiquinol-10 (Q10H2) on citral's stability were systematically investigated and compared in citral-loaded oil-in-water (O/W) nanoemulsions. Solid phase microextraction gas chromatography (SPME-GC) was employed to monitor the degradation of citral and the formation of off-flavor compounds throughout storage at 25 and 45 °C. The optimum concentration of Q10H2 in the current formulation was determined to be around 0.10 wt % in the system (Q10H2/citral ratio 1:1), which can effectively protect citral from chemical degradation and oxidation. Results suggested, however, that a low concentration of Q10H2 may induce the majority of the ubisemiquinone (Q10(•-))/ubiquinone (Q10) redox transition, which possibly endowed Q10H2 with pro-oxidant properties. Further increase in Q10H2 concentration beyond a certain value also hindered its effect due to the complex properties of radicals involved and the overall environment encountered. With appropriate concentrations of Q10H2 presented in the system, major citral oxidation off-flavor compounds (p-cresol, α,p-dimethylstyrene, p-methylacetophenone), and some of the lipid degradation products can be inhibited to lower levels. In contrast, ubiquinone-10 (Q10) had a negligible effect on citral's chemical stability and off-flavor generation.

  8. Resonance stabilization effects on ketone autoxidation: Isomer-specific cyclic ether and ketohydroperoxide formation in the low-temperature (400–625 K) oxidation of diethyl ketone

    SciTech Connect

    Scheer, Adam M.; Eskola, Arkke J.; Osborn, David L.; Sheps, Leonid; Taatjes, Craig A.

    2016-10-11

    Here, the pulsed photolytic chlorine-initiated oxidation of diethyl ketone [DEK; (CH3CH2)2C=O], 2,2,4,4-d4-DEK [d4-DEK; (CH3CD2)2C=O], and 1,1,1,5,5,5-d6-DEK [d6-DEK; (CD3CH2)2C=O] is studied at 8 torr and 1–2 atm and from 400–625 K. Cl atoms produced by laser photolysis react with diethyl ketone to form either primary (3-pentan-on-1-yl, RP) or secondary (3-pentan-on-2-yl, RS) radicals, which in turn react with O2. Multiplexed time-of-flight mass spectrometry, coupled to either a hydrogen discharge lamp or tunable synchrotron photoionizing radiation, is used to detect products as a function of mass, time, and photon energy. At 8 torr, the nature of the chain propagating cyclic ether + OH channel changes as a function of temperature. At 450 K, the production of OH is mainly in conjunction with formation of 2,4-dimethyloxetan-3-one, resulting from reaction of the resonance-stabilized secondary RS with O2. In contrast, at 550 K and 8 torr, 2-methyl-tetrahydrofuran-3-one, originating from oxidation of the primary radical (RP), is observed as the dominant cyclic ether product. Formation of both of these cyclic ether production channels proceeds via a resonance-stabilized hydroperoxy alkyl (QOOH) intermediate. Little or no ketohydroperoxide (KHP) is observed under the low-pressure conditions. At higher O2 concentrations and higher pressures (1–2 atm), a strong KHP signal appears as the temperature is increased above 450 K. Definitive isomeric identification from measurements on the deuterated DEK isotopologues indicates the favored pathway produces a γ-KHP via resonance-stabilized alkyl, QOOH, and HOOPOOH radicals. Time-resolved measurements reveal the KHP formation becomes faster and signal more intense upon increasing temperature from

  9. Surface-Induced Phase of Tyrian Purple (6,6′-Dibromoindigo): Thin Film Formation and Stability

    PubMed Central

    2016-01-01

    The appearance of surface-induced phases of molecular crystals is a frequently observed phenomenon in organic electronics. However, despite their fundamental importance, the origin of such phases is not yet fully resolved. The organic molecule 6,6′-dibromoindigo (Tyrian purple) forms two polymorphs within thin films. At growth temperatures of 150 °C, the well-known bulk structure forms, while at a substrate temperature of 50 °C, a surface-induced phase is observed instead. In the present work, the crystal structure of the surface-induced polymorph is solved by a combined experimental and theoretical approach using grazing incidence X-ray diffraction and molecular dynamics simulations. A comparison of both phases reveals that π–π stacking and hydrogen bonds are common motifs for the intermolecular packing. In-situ temperature studies reveal a phase transition from the surface-induced phase to the bulk phase at a temperature of 210 °C; the irreversibility of the transition indicates that the surface-induced phase is metastable. The crystallization behavior is investigated ex-situ starting from the sub-monolayer regime up to a nominal thickness of 9 nm using two different silicon oxide surfaces; island formation is observed together with a slight variation of the crystal structure. This work shows that surface-induced phases not only appear for compounds with weak, isotropic van der Waals bonds, but also for molecules exhibiting strong and highly directional hydrogen bonds. PMID:27418882

  10. Mechanical shear contributes to granule formation resulting in quick start-up and stability of a hybrid anammox reactor.

    PubMed

    Gao, Yanning; Liu, Zhijun; Liu, Fengxia; Furukawa, Kenji

    2012-06-01

    It appears that if suspended biomass washout can be reduced effectively, granule formation will be fastened in fluidized bed. Quicker reactor start-up can be anticipated especially for those system keeping slow growth bacteria such as anammox. A hybrid reactor combined fixed-bed with nonwoven fabrics as biomass carrier and fluidized bed with slow speed mechanical stirring was therefore developed, and its nitrogen removal performances was evaluated experimentally. Only in 38 days, the total nitrogen removal rate (NRR) reached to 1.9 kg(N) m(-3) day (-1) and then doubled within 17 days, with total nitrogen removal efficiency kept above 70%. After 180 days reactor operating, the NRR reached a maximum value of 6.6 kg(N) m(-3) day(-1) and the specific anammox activity was gradually constant in 0.32 kg(N) kg(VSS)(-1) day(-1). Biomass attached on nonwoven fabrics could additionally improve reactor nitrogen removal by 8%. The dominant size of granular sludge reached to 0.78 mm with stirring speed adjusted from 30 to 80 rpm and the hydraulic retention time (HRT) from 8 to 1.5 h during the whole operating time. Scanning electron microscope observation showed especially compact structure of granular sludge. A 70% of anammox bacteria percentage was identified by fluorescence in situ hybridization analysis.

  11. A new look at the statistical assessment of approximate and rigorous methods for the estimation of stabilized formation temperatures in geothermal and petroleum wells

    NASA Astrophysics Data System (ADS)

    Espinoza-Ojeda, O. M.; Santoyo, E.; Andaverde, J.

    2011-06-01

    Approximate and rigorous solutions of seven heat transfer models were statistically examined, for the first time, to estimate stabilized formation temperatures (SFT) of geothermal and petroleum boreholes. Constant linear and cylindrical heat source models were used to describe the heat flow (either conductive or conductive/convective) involved during a borehole drilling. A comprehensive statistical assessment of the major error sources associated with the use of these models was carried out. The mathematical methods (based on approximate and rigorous solutions of heat transfer models) were thoroughly examined by using four statistical analyses: (i) the use of linear and quadratic regression models to infer the SFT; (ii) the application of statistical tests of linearity to evaluate the actual relationship between bottom-hole temperatures and time function data for each selected method; (iii) the comparative analysis of SFT estimates between the approximate and rigorous predictions of each analytical method using a β ratio parameter to evaluate the similarity of both solutions, and (iv) the evaluation of accuracy in each method using statistical tests of significance, and deviation percentages between 'true' formation temperatures and SFT estimates (predicted from approximate and rigorous solutions). The present study also enabled us to determine the sensitivity parameters that should be considered for a reliable calculation of SFT, as well as to define the main physical and mathematical constraints where the approximate and rigorous methods could provide consistent SFT estimates.

  12. Geotechnical Characterization and Stability of a Slope in the Marnoso-Arenacea Formation for the Realization of an Underground Car Park in Urbino (Italy)

    NASA Astrophysics Data System (ADS)

    Gori, Umberto; Polidori, Ennio; Tonelli, Gianluigi; Veneri, Francesco

    The plan of an underground car park located near the historical centre of Urbino town, has required characterizing the Marnoso-Arenacea Formation (Tortonian), from a geomechanical point of view. The project implies that the intervention will be insert inside the flank of the hill, in order to mitigate the effect of the environmental impact. It also involves an excavation front 42 m high and 100 m large. To analyze the mechanical behaviour of the soils, many samples both from the Marnoso-Arenacea Formation and from the cover, have been tested in laboratory. The anisotropy index evaluated by point load test in natural water conditions shows a higher value of the arenitic levels in comparison with the marls. On the contrary, the marls level tested in dry condition provides greater anisotropy index data. In the mono-axial compression test the arenaceous sediments show higher results. The stability analysis carried out with distinct element method shows the opportunity to retain the upper part of the cut with anchored bulkhead.

  13. Formation and Stability of Equiatomic and Nonequiatomic Nanocrystalline CuNiCoZnAlTi High-Entropy Alloys by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Varalakshmi, S.; Kamaraj, M.; Murty, B. S.

    2010-10-01

    Nanocrystalline equiatomic high-entropy alloys (HEAs) have been synthesized by mechanical alloying in the Cu-Ni-Co-Zn-Al-Ti system from the binary CuNi alloy to the hexanary CuNiCoZnAlTi alloy. An attempt also has been made to find the influence of nonequiatomic compositions on the HEA formation by varying the Cu content up to 50 at. pct (Cu x NiCoZnAlTi; x = 0, 8.33, 33.33, 49.98 at. pct). The phase formation and stability of mechanically alloyed powder at an elevated temperature (1073 K [800 °C] for 1 hour) were studied. The nanocrystalline equiatomic Cu-Ni-Co-Zn-Al-Ti alloys have a face-centered cubic (fcc) structure up to quinary compositions and have a body-centered cubic (bcc) structure in a hexanary alloy. In nonequiatomic alloys, bcc is the dominating phase in the alloys containing 0 and 8.33 at. pct of Cu, and the fcc phase was observed in alloys with 33.33 and 49.98 at. pct of Cu. The Vicker’s bulk hardness and compressive strength of the equiatomic nanocrystalline hexanary CuNiCoZnAlTi HEA after hot isostatic pressing is 8.79 GPa, and the compressive strength is 2.76 GPa. The hardness of these HEAs is higher than most commercial hard facing alloys ( e.g., Stellite, which is 4.94 GPa).

  14. On the crucial importance of the pH for the formation and self-stabilization of protein microgels and strands.

    PubMed

    Phan-Xuan, Tuan; Durand, Dominique; Nicolai, Taco; Donato, Laurence; Schmitt, Christophe; Bovetto, Lionel

    2011-12-20

    Stable suspensions of protein microgels are formed by heating salt-free β-lactoglobulin solutions at concentrations up to about C = 50 g·L(-1) if the pH is set within a narrow range between 5.75 and 6.1. The internal protein concentration of these spherical particles is about 150 g·L(-1) and the average hydrodynamic radius decreases with increasing pH from 200 to 75 nm. The formation of the microgels leads to an increase of the pH, which is a necessary condition to obtain stable suspensions. The spontaneous increase of the pH during microgel formation leads to an increase of their surface charge density and inhibits secondary aggregation. This self-stabilization mechanism is not sufficient if the initial pH is below 5.75 in which case secondary aggregation leads to precipitation. Microgels are no longer formed above a critical initial pH, but instead short, curved protein strands are obtained with a hydrodynamic radius of about 15-20 nm.

  15. The Combined Effect of High Hydrostatic Pressure and Calcium Salts on the Stability, Solubility and Gel Formation of β-Lactoglobulin.

    PubMed

    Saalfeld, Daniel; Riegel, Ina; Kulozik, Ulrich; Gebhardt, Ronald

    2015-06-08

    Stability, aggregation and gelation of β-Lactoglobulin are affected by high pressure and salts of the Hofmeister series. Little is known about their combined effects on structure formation processes of β-Lactoglobulin, mainly because many salts of the series are not suitable for use in food. Here, we investigate the effect of calcium salts on the strength of pressure-induced gels, inspired by the fact that high pressure and salts change the water structure in a similar way. We find that the larger the applied pressures, the higher the strength of the gels. In addition to pressure, there is a significant influence by the type of anions and the amount of added calcium salts. Gel strength increases in the order CaCl₂ < Ca (NO₃)₂ < CaI₂. This trend correlates with the position of the salts in the Hofmeister series. The results are explained by analogy with the thermal aggregate formation by taking reaction rates for unfolding and aggregation, as well as specific/non-specific salts effect into consideration.

  16. Molybdenum-containing membrane-bound formate dehydrogenase isolated from Citrobacter sp. S-77 having high stability against oxygen, pH, and temperature.

    PubMed

    Nguyen, Nga T; Yatabe, Takeshi; Yoon, Ki-Seok; Ogo, Seiji

    2014-10-01

    Membrane-bound formate dehydrogenase (FDH) was purified to homogeneity from a facultative anaerobic bacterium Citrobacter sp. S-77. The FDH from Citrobacter sp. S-77 (FDHS77) was a monomer with molecular mass of approximately 150 kDa. On SDS-PAGE, the purified FDHS77 showed as three different protein bands with molecular mass of approximately 95, 87, and 32 kDa, respectively. Based on the N-terminal amino acid sequence analysis, the sequence alignments observed for the 87 kDa protein band were identical to that of the large subunit of 95 kDa, indicating that the purified FDHS77 consisted of two subunits; a 95 kDa large subunit and a 32 kDa small subunit. The purified FDHS77 in this purification did not contain a heme b subunit, but the FDHS77 showed significant activity for formate oxidation, determined by the Vmax of 30.4 U/mg using benzyl viologen as an electron acceptor. The EPR and ICP-MS spectra indicate that the FDHS77 is a molybdenum-containing enzyme, displaying a remarkable O2-stability along with thermostability and pH resistance. This is the first report of the purification and characterization of a FDH from Citrobacter species.

  17. Influence of particle size of deproteinized bovine bone mineral on new bone formation and implant stability after simultaneous sinus floor elevation: a histomorphometric study in minipigs.

    PubMed

    Jensen, Simon S; Aaboe, Merete; Janner, Simone F M; Saulacic, Nikola; Bornstein, Michael M; Bosshardt, Dieter D; Buser, Daniel

    2015-04-01

    Deproteinized bovine bone mineral (DBBM) is one of the best-documented bone substitute materials for sinus floor elevation (SFE). DBBM is available in two particle sizes. Large particles are believed to facilitate improved neoangiogenesis compared with small ones. However, their impact on the rate of new bone formation, osteoconduction, and DBBM degradation has never been reported. In addition, the implant stability quotient (ISQ) has never been correlated to bone-to-implant contact (BIC) after SFE with simultaneous implant placement. Bilateral SFE with simultaneous implant placement was performed in 10 Göttingen minipigs. The two sides were randomized to receive large or small particle size DBBM. Two groups of 5 minipigs healed for 6 and 12 weeks, respectively. ISQ was recorded immediately after implant placement and at sacrifice. Qualitative histological differences were described and bone formation, DBBM degradation, BIC and bone-to-DBBM contact (osteoconduction) were quantified histomorphometrically. DBBM particle size had no qualitative or quantitative impact on the amount of newly formed bone, DBBM degradation, or BIC for either of the healing periods (p > 0.05). Small-size DBBM showed higher osteoconduction after 6 weeks than large-size DBBM (p < 0.001). After 12 weeks this difference was compensated. There was no significant correlation between BIC and ISQ. Small and large particle sizes were equally predictable when DBBM was used for SFE with simultaneous implant placement. © 2013 Wiley Periodicals, Inc.

  18. The Combined Effect of High Hydrostatic Pressure and Calcium Salts on the Stability, Solubility and Gel Formation of β-Lactoglobulin

    PubMed Central

    Saalfeld, Daniel; Riegel, Ina; Kulozik, Ulrich; Gebhardt, Ronald

    2015-01-01

    Stability, aggregation and gelation of β-Lactoglobulin are affected by high pressure and salts of the Hofmeister series. Little is known about their combined effects on structure formation processes of β-Lactoglobulin, mainly because many salts of the series are not suitable for use in food. Here, we investigate the effect of calcium salts on the strength of pressure-induced gels, inspired by the fact that high pressure and salts change the water structure in a similar way. We find that the larger the applied pressures, the higher the strength of the gels. In addition to pressure, there is a significant influence by the type of anions and the amount of added calcium salts. Gel strength increases in the order CaCl2 < Ca (NO3)2 < CaI2. This trend correlates with the position of the salts in the Hofmeister series. The results are explained by analogy with the thermal aggregate formation by taking reaction rates for unfolding and aggregation, as well as specific/non-specific salts effect into consideration. PMID:28231200

  19. Effect of Mutation on an Aggregation-Prone Segment of p53: From Monomer to Dimer to Multimer.

    PubMed

    Das, Atanu; Makarov, Dmitrii E

    2016-11-17

    Protein aggregation and amyloid formation are implicated in many diseases as well as in other biological phenomena. Recent studies have suggested that amyloid formation of tumor suppressor p53 can lead to loss of its physiological function, resulting in accelerated cancer progression. Design of cancer therapeutics, therefore, requires understanding of the mechanism of p53 aggregation. Here, we have employed atomistic simulations to characterize the aggregation process of the aggregation-prone (as suggested by experimental studies) p53 fragment (LTIITLE, 252-258) and to assess the efficiency of its I254R mutant as an aggregation suppressor. We show that the wild-type sequence attains stable β-sheet rich structure in the parallely arranged dimeric form, which dissociates in a sequential manner under mechanical force. The wild-type sequence further displays high aggregation propensity self-assembling into structures with parallel peptide arrangement. The I254R mutation destabilizes the dimer, changes the mechanical dissociation of the dimer to cooperative unfolding, reduces the aggregation propensity of the sequence, and alters the relative orientation of the peptides in the aggregate. Addition of the wild-type sequence, however, partially restores the aggregation propensity of the I254R mutant.

  20. The formation of a hydroxyl bond and the effects thereof on bone-like apatite formation on a magnesia partially stabilized zirconia (MgO-PSZ) bioceramic following CO2 laser irradiation.

    PubMed

    Hao, L; Lawrence, J; Chian, K S; Low, D K Y; Lim, G C; Zheng, H Y

    2004-09-01

    For the purpose of improving the bioactivity of a magnesia partially stabilized zirconia (MgO-PSZ) and to explore a new technique for inducing OH group and apatite formation, a CO(2) laser has been used to modified the surface properties. The bioactivity of the CO(2) laser modified MgO-PSZ has been investigated in stimulated human fluids (SBF) with ion concentrations almost equal to those in human blood plasma. Some hydroxyl groups were found on the MgO-PSZ following CO(2) laser treatment with selected power densities. The surface melting on the MgO-PSZ induced by CO(2) laser processing provides the Zr(4+) ion and OH(-) ion, in turn, the incorporation of the Zr(4+) ion and the OH(-) ion creates the Zr-OH group on the surface. After 14 days of SBF soaking, the apatites formed on the MgO-PSZ with relatively high amount of hydroxyl groups generated by the CO(2) laser treatment, while no apatite was observed on the untreated with few hydroxyl groups. It exhibits that the Zr-OH groups on the MgO-PSZ surface is the functional groups to facilitate the apatite formation. The increased surface roughness provides more active sites, meantime, increased surface energy benefits to the adsorption and reaction on the surface.

  1. Cysteine Residues in the Major Capsid Protein, Vp1, of the JC Virus Are Important for Protein Stability and Oligomer Formation

    PubMed Central

    Kobayashi, Shintaro; Suzuki, Tadaki; Igarashi, Manabu; Orba, Yasuko; Ohtake, Noriko; Nagakawa, Keita; Niikura, Kenichi; Kimura, Takashi; Kasamatsu, Harumi; Sawa, Hirofumi

    2013-01-01

    The capsid of the human polyomavirus JC virus (JCV) consists of 72 pentameric capsomeres of a major structural protein, Vp1. The cysteine residues of the related Vp1 of SV40 are known to contribute to Vp1 folding, pentamer formation, pentamer-pentamer contacts, and capsid stabilization. In light of the presence of a slight structural difference between JCV Vp1 and SV40 counterpart, the way the former folds could be either different from or similar to the latter. We found a difference: an important contribution of Vp1 cysteines to the formation of infectious virions, unique in JCV and absent in SV40. Having introduced amino acid substitution at each of six cysteines (C42, C80, C97, C200, C247, and C260) in JCV Vp1, we found that, when expressed in HeLa cells, the Vp1 level was decreased in C80A and C247A mutants, and remained normal in the other mutants. Additionally, the C80A and C247A Vp1-expressing cell extracts did not show the hemagglutination activity characteristic of JCV particles. The C80A and C247A mutant Vp1s were found to be less stable than the wild-type Vp1 in HeLa cells. When produced in a reconstituted in vitro protein translation system, these two mutant proteins were stable, suggesting that some cellular factors were responsible for their degradation. As determined by